
Mauro Conti
Marc Stevens
Stephan Krenn (Eds.)

LN
CS

 1
30

99 Cryptology and
Network Security
20th International Conference, CANS 2021
Vienna, Austria, December 13–15, 2021
Proceedings

Lecture Notes in Computer Science 13099

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7410

https://springerlink.bibliotecabuap.elogim.com/bookseries/7410

Mauro Conti · Marc Stevens ·
Stephan Krenn (Eds.)

Cryptology and
Network Security
20th International Conference, CANS 2021
Vienna, Austria, December 13–15, 2021
Proceedings

Editors
Mauro Conti
University of Padua
Padua, Italy

Stephan Krenn
AIT Austrian Institute of Technology
Vienna, Austria

Marc Stevens
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-92547-5 ISBN 978-3-030-92548-2 (eBook)
https://doi.org/10.1007/978-3-030-92548-2

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3612-1934
https://orcid.org/0000-0003-2835-9093
https://orcid.org/0000-0002-7091-2924
https://doi.org/10.1007/978-3-030-92548-2

Preface

The 20th International Conference on Cryptology and Network Security (CANS 2021)
was held during December 13–15, 2021. CANS 2021 was held in cooperation with
the International Association for Cryptologic Research (IACR) and the AIT Austrian
Institute of Technology. Due to the ongoing COVID-19 pandemic, CANS 2021 was held
as a virtual conference, instead of at the intended venue in Vienna, Austria.

CANS is a recognized annual conference focusing on cryptology, computer and
network security, and data security and privacy, attracting cutting-edge research find-
ings from scientists around the world. Previous editions of CANS were held in Taipei
(2001), San Francisco (2002), Miami (2003), Xiamen (2005), Suzhou (2006), Singapore
(2007), Hong Kong (2008), Kanazawa (2009), Kuala Lumpur (2010), Sanya (2011),
Darmstadt (2012), Parary (2013), Crete (2014), Marrakesh (2015), Milan (2016), Hong
Kong (2017), Naples (2018), Fuzhou (2019), and virtually (2020).

In 2021, the conference received 85 valid submissions. The submission and review
process were completed using the EasyChair Web-based software system. We were
helped by 30 Program Committee members and 63 external reviewers. The submissions
went through a double-blind review process and 28 papers were selected. This volume
collates the revised versions of the accepted papers. The Best Paper Award was given
to the paper “Subversion-Resistant Quasi-Adaptive NIZK and Applications to Modular
zk-SNARKs” by Behzad Abdolmaleki and Daniel Slamanig.

Wewould like to thank theAITAustrian Institute of Technology, aswell as theH2020
initiative CyberSec4Europe, for their support during the planning of the conference. We
would also like to thank Springer for their support with producing the proceedings.
We heartily thank the authors of all submitted papers. Moreover, we are grateful to the
members of the Program Committee and the external sub-reviewers for their diligent
work, as well as all members of the Organizing Committee for their kind help.We would
also like to acknowledge the Steering Committee for supporting us.

October 2021 Mauro Conti
Marc Stevens

Stephan Krenn

Organization

Steering Committee

Yvo G. Desmedt (Chair) University of Texas at Dallas, USA
Juan A. Garay Texas A&M University, USA
Amir Herzberg Bar-Ilan University, Israel
Yi Mu Fujian Normal University, China
Panos Papadimitratos KTH Royal Institute of Technology, Sweden
David Pointcheval CNRS and ENS Paris, France
Huaxiong Wang Nanyang Technological University, Singapore

Program Committee Chairs

Mauro Conti Università degli Studi di Padova, Italy
Marc Stevens CentrumWiskunde & Informatica (CWI), The Netherlands

General Chair

Stephan Krenn AIT Austrian Institute of Technology, Austria

Organizing Committee

Alessandro Brighente Università degli Studi di Padova, Italy
Manuela Kos AIT Austrian Institute of Technology, Austria
Edgar Weippl SBA Research and University of Vienna, Austria

Program Committee

Masayuki Abe NTT, Japan
Cristina Alcaraz University of Malaga, Spain
Lejla Batina Radboud University, The Netherlands
Alastair Beresford University of Cambridge, UK
Alessandro Brighente University of Padua, Italy
Mauro Conti University of Padua, Italy
Zekeriya Erkin Delft University of Technology, The Netherlands
Peter Gaži IOHK Research, Slovakia
Dieter Gollmann Hamburg University of Technology, Germany
Sotiris Ioannidis Technical University of Crete, Greece
Chhagan Lal University of Padua, Italy
Riccardo Lazzeretti Sapienza University of Rome, Italy

viii Organization

Eleonora Losiouk University of Padua, Italy
Mark Manulis University of Surrey, UK
Chris Mitchell Royal Holloway, University of London, UK
Veelasha Moonsamy Ruhr University Bochum, Germany
Gerardo Pelosi Politecnico di Milano, Italy
Raphael C.-W. Phan Monash University, Malaysia
Stjepan Picek Delft University of Technology, The Netherlands
Sushmita Ruj CSIRO, Data61, Australia
Dominique Schroeder Friedrich-Alexander University Erlangen-Nürnberg,

Germany
Angelo Spognardi Sapienza University of Rome, Italy
Marc Stevens CentrumWiskunde & Informatica (CWI), The Netherlands
Thorsten Strufe Karlsruhe Institute of Technology (KIT) and TU Dresden,

Germany
Daniele Venturi Sapienza University of Rome, Italy
Frederik Vercauteren Katholieke Universiteit Leuven, Belgium
Damien Vergnaud Université Pierre et Marie Curie and Institut Universitaire

de France, France
Corrado Aaron Visaggio University of Sannio, Italy
Edgar Weippl University of Vienna, Austria
Chia-Mu Yu National Chung Hsing University, Taiwan

Additional Reviewers

Hamza Abusalah
Kamalesh Acharya
Erdem Alkim
Miguel Ambrona
Francesco Antognazza
Fatih Balli
Ward Beullens
Tim Beyne
Sanjay Bhattacherjee
Hamid Bostani
George Christou
Sandro Coretti
Joan Daemen
F. W. Dekker
Cyprien Delpech de Saint Guilhem
Dominic Deuber
Sabyasachi Dey
Dimitris Deyannis
Michalis Diamantaris
Sabyasachi Dutta
Christoph Egger

Maryam Ehsanpour
Solane El Hirch
Francesco Felet
Danilo Francati
Jonathan Fuchs
Rafa Gálvez
Ankit Gangwal
Robert Granger
Bernhard Haslhofer
Ilia Iliashenko
Gulshan Kumar
Russell W. F. Lai
Eftychia Lakka
Mario Larangeira
Julia Len
Tianyu Li
Jia Liu
Philipp Markert
Subhra Mazumdar
Alireza Mehrdad
Konstantina Miteloudi

Organization ix

Vinod P. Nair
Miyako Ohkubo
Guillermo Pascual-Perez
Robi Pedersen
Hilder Vitor Lima Pereira
Nikolaos Petroulakis
Md Masoom Rabbani
Viktoria Ronge
Paul Rösler
Rahul Saha
Simona Samardjiska

Laltu Sardar
Sruthi Sekar
Vojtech Suchanek
Titouan Tanguy
Cihangir Tezcan
Sri Aravinda Krishnan Thyagarajan
Meltem Sonmez Turan
Michiel Van Beirendonck
Jelle Vos
Florian Weber

Contents

Encryption

Cross-Domain Attribute-Based Access Control Encryption 3
Mahdi Sedaghat and Bart Preneel

Grain-128AEADv2: Strengthening the Initialization Against Key
Reconstruction . 24
Martin Hell, Thomas Johansson, Alexander Maximov, Willi Meier,
and Hirotaka Yoshida

Partition Oracles from Weak Key Forgeries . 42
Marcel Armour and Carlos Cid

Practical Privacy-Preserving Face Identification Based on Function-Hiding
Functional Encryption . 63
Alberto Ibarrondo, Hervé Chabanne, and Melek Önen

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 72
Joppe W. Bos, Maximilian Ofner, Joost Renes, Tobias Schneider,
and Christine van Vredendaal

Signatures

BlindOR: an Efficient Lattice-Based Blind Signature Scheme
from OR-Proofs . 95
Nabil Alkeilani Alkadri, Patrick Harasser, and Christian Janson

Efficient Threshold-Optimal ECDSA . 116
Michaella Pettit

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 136
Mahmoud Yehia, Riham AlTawy, and T. Aaron Gulliver

Issuer-Hiding Attribute-Based Credentials . 158
Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher,
and Kai Samelin

Report and Trace Ring Signatures . 179
Ashley Fraser and Elizabeth A. Quaglia

xii Contents

Selectively Linkable Group Signatures—Stronger Security and Preserved
Verifiability . 200
Ashley Fraser, Lydia Garms, and Anja Lehmann

Cryptographic Schemes and Protocols

FO-like Combiners and Hybrid Post-Quantum Cryptography 225
Loïs Huguenin-Dumittan and Serge Vaudenay

Linear-Time Oblivious Permutations for SPDZ . 245
Peeter Laud

On the Higher-Bit Version of Approximate Inhomogeneous Short Integer
Solution Problem . 253
Anaëlle Le Dévéhat, Hiroki Shizuya, and Shingo Hasegawa

Practical Continuously Non-malleable Randomness Encoders
in the Random Oracle Model . 273
Antonio Faonio

Attacks and Counter-Measures

Countermeasures Against Backdoor Attacks Towards Malware Detectors 295
Shintaro Narisada, Yuki Matsumoto, Seira Hidano,
Toshihiro Uchibayashi, Takuo Suganuma, Masahiro Hiji,
and Shinsaku Kiyomoto

Free by Design: On the Feasibility of Free-Riding Attacks Against
Zero-Rated Services . 315
Julian Fietkau, David Pascal Runge, and Jean-Pierre Seifert

Function-Private Conditional Disclosure of Secrets and Multi-evaluation
Threshold Distributed Point Functions . 334
Nolan Miranda, Foo Yee Yeo, and Vipin Singh Sehrawat

How Distance-Bounding Can Detect Internet Traffic Hijacking 355
Ghada Arfaoui, Gildas Avoine, Olivier Gimenez, and Jacques Traoré

SoK: Secure Memory Allocation . 372
Bojan Novković and Marin Golub

Toward Learning Robust Detectors from Imbalanced Datasets Leveraging
Weighted Adversarial Training . 392
Kento Hasegawa, Seira Hidano, Shinsaku Kiyomoto, and Nozomu Togawa

Contents xiii

Towards Quantum Large-Scale Password Guessing on Real-World
Distributions . 412
Markus Dürmuth, Maximilian Golla, Philipp Markert, Alexander May,
and Lars Schlieper

Attestation and Verification

Anonymous Transactions with Revocation and Auditing in Hyperledger
Fabric . 435
Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui,
and Björn Tackmann

Attestation Waves: Platform Trust via Remote Power Analysis 460
Ignacio M. Delgado-Lozano, Macarena C. Martínez-Rodríguez,
Alexandros Bakas, Billy Bob Brumley, and Antonis Michalas

How (not) to Achieve both Coercion Resistance and Cast as Intended
Verifiability in Remote eVoting . 483
Tamara Finogina, Javier Herranz, and Enrique Larraia

Subversion-Resistant Quasi-adaptive NIZK and Applications to Modular
Zk-SNARKs . 492
Behzad Abdolmaleki and Daniel Slamanig

THC: Practical and Cost-Effective Verification of Delegated Computation 513
Pablo Rauzy and Ali Nehme

Tiramisu: Black-Box Simulation Extractable NIZKs in the Updatable
CRS Model . 531
Karim Baghery and Mahdi Sedaghat

Author Index . 553

Encryption

Cross-Domain Attribute-Based Access
Control Encryption

Mahdi Sedaghat(B) and Bart Preneel

imec-COSIC, KU Leuven, Leuven, Belgium
{ssedagha,bart.preneel}@esat.kuleuven.be

Abstract. Logic access control enforces who can read and write data;
the enforcement is typically performed by a fully trusted entity. At
TCC 2016, Damg̊ard et al. proposed Access Control Encryption (ACE)
schemes where a predicate function decides whether or not users can read
(decrypt) and write (encrypt) data, while the message secrecy and the
users’ anonymity are preserved against malicious parties. Subsequently,
several ACE constructions with an arbitrary identity-based access pol-
icy have been proposed, but they have huge ciphertext and key sizes
and/or rely on indistinguishability obfuscation. At IEEE S&P 2021,
Wang and Chow proposed a Cross-Domain ACE scheme with constant-
size ciphertext and arbitrary identity-based policy; the key generators
are separated into two distinct parties, called Sender Authority and
Receiver Authority. In this paper, we improve over their work with a
novel construction that provides a more expressive access control policy
based on attributes rather than on identities, the security of which relies
on standard assumptions. Our generic construction combines Structure-
Preserving Signatures, Non-Interactive Zero-Knowledge proofs, and Re-
randomizable Ciphertext-Policy Attribute-Based Encryption schemes.
Moreover, we propose an efficient scheme in which the sizes of ciphertexts
and encryption and decryption keys are constant and thus independent
of the number of receivers and their attributes. Our experiments demon-
strate that not only is our system more flexible, but it also is more
efficient and results in shorter decryption keys (reduced from about 100
to 47 bytes) and ciphertexts (reduced from about 1400 to 1047).

Keywords: Access Control Encryption · Ciphertext-Policy
Attribute-Based Encryption · Structure-Preserving Signature ·
Non-Interactive Zero-Knowledge Proofs

1 Introduction

Information Flow Control (IFC) systems enforce which parts of the commu-
nication amongst the users are allowed to pass over the network [23,25]. As
introduced in the seminal work of Bell and LaPadula [5], restrictions have to
be imposed on who can receive a message (enforce the No-Read rule) and who

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-92548-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_1

4 M. Sedaghat and B. Preneel

can send a message (enforce the No-Write rule). Although encryption guaran-
tees users’ privacy by limiting the set of recipients, we need more functionality
to control who can write and transfer a ciphertext. Broadcasting of sensitive
data by malicious senders is a serious threat for companies that handle highly
sensitive data such as cryptocurrency wallets with access to signing keys [8].

Although some advanced cryptographical tools such as Functional Encryp-
tion provide fine-grained access to encrypted data, they do not allow to enforce
the No-Write rule, hence additional functionalities beyond these cryptographic
primitives are required to protect against data leakage.

To achieve this aim, Damg̊ard et al. [10] introduced a novel scheme called
Access Control Encryption (ACE) to impose information flow control systems
using cryptographic tools. They have defined two security notions for an ACE
scheme: the No-Read rule and the No-Write rule. Unauthorized receivers
cannot decrypt the ciphertext and unauthorized senders are not able to trans-
mit data over the network. The model assumes that all the communications
are transmitted through an honest-but-curious third party, called Sanitizer.
The Sanitizer follows the protocol honestly but it is curious to find out more
about the encrypted message and the identities of the users. The Sanitizer
performs some operations on the received messages before transmitting them
to the intended recipients without learning any information about the message
itself or the identity of the users. More precisely, with a set of senders S and
receivers R, an ACE scheme determines via a hidden Boolean Predicate func-
tion Pf : S × R → {0, 1} which group of senders (like i ∈ S) are allowed to
communicate with a certain group of receivers (like j ∈ R): communication is
allowed iff Pf(i, j) = 1, else the request will be rejected.

Damg̊ard et al. proposed two ACE constructions that support arbitrary poli-
cies. Their first construction takes a brute-force approach that is based on stan-
dard number-theoretic assumptions, while the size of the ciphertext grows expo-
nentially in the number of receivers. The second scheme is more efficient: cipher-
text length is poly-logarithmic in the number of the receivers, but it relies on the
strong assumption of indistinguishability obfuscation (iO) [13]. In a subsequent
work, Fuchsbauer et al. [12] proposed an ACE scheme for restricted classes of
predicates including equality, comparisons, and interval membership. Although
their scheme is secure under standard assumptions in groups with bilinear maps
and asymptotically efficient (i.e., the length of the ciphertext is linear in the num-
ber of the receivers), the functionalities of their construction are restricted to a
limited class of predicates. Tan et al. [31] proposed an ACE scheme based on the
Learning With Error (LWE) assumption [24]. Since their construction follows the
Damg̊ard et al. approach, the ciphertexts in their construction also grow expo-
nentially with the number of receivers. Recently, Wang et al. [34], proposed an
efficient LWE-based ACE construction from group encryptions. Kim and Wu [20]
proposed a generic ACE construction based on standard assumptions such that
the ciphertext shrinks to poly-logarithmic size in the number of receivers and
with arbitrary policies. Their construction requires Digital Signature, Predicate
Encryption, and Functional Encryption schemes to obtain an ACE construc-
tion based on standard assumptions. Recently, Wang and Chow [33] proposed a

Cross-Domain Attribute-Based Access Control Encryption 5

new notion called Cross-Domain ACE in which the keys are generated by two
distinct entities, the Receiver-Authority and the Sender-Authority. Structure
Preserving Signatures, Non-Interactive Zero-Knowledge proofs, and Sanitizable
Identity-Based Encryption schemes constitute the main ingredients in their con-
struction. In [33], the length of the ciphertext is constant, but it fails to preserve
the identity of the receivers and also the decryption key size grows linearly.

Our Contributions. In this paper, we propose a generic Cross-Domain
Attribute-Based Access Control Encryption (CD-ABACE) scheme and then
propose an efficient CD-ABACE scheme with a constant ciphertext size and
constant key length. Next we explain our results in more detail.

This paper re-defines the way to conceive the predicate function in ACE
constructions by considering users’ attributes instead of their identities. Based
on an Attribute-Based predicate function, Pf : Σk × Σc → {0, 1}, the senders
with a certain ciphertext index value in Σc are limited to transmit data only to
restricted recipients with a key index Σk. In a nutshell, for an attribute space
U, s.t. Σk, Σc ⊆ U, the sender who owns a secret encryption key for ciphertext
index P ∈ Σc can transmit data to those receivers with private decryption key
corresponding to key index B ∈ Σk, iff Pf(B,P) = 1, otherwise, the Sanitizer
bans the communication between them. One of the main differences between
this approach and the identity-based one is that the anonymity of the receivers
corresponds to the level of attribute hiding applied to the underlying Attribute-
Based Encryption (ABE) scheme.

ABE schemes provide a powerful tool to enforce fine-grained access control
over encrypted data; they have been used in several applications [26]. Goyal
et al. in [16], proposed two complementary types of ABE schemes: Key-Policy
Attribute-Based Encryption (KP-ABE) and Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) schemes. In CP-ABE, the sender embeds a (policy) func-
tion f(·) into ciphertext to describe which group of receivers can learn the
encrypted message. In this approach, the ciphertext is labeled by an arbitrary
function f(·), and secret keys are associated with attributes in the domain of
f(·). The decryption algorithm yields the plaintext iff the receivers’ attribute
set A satisfies f(·), i.e., f(A) = 1. Conversely, in KP-ABE the secret keys are
labeled by the function f(·); this label is set in the setup phase and a ciphertext
can only be decrypted with a key whose access structure is satisfied by the set
of attributes. In KP-ABE, the access policy cannot be altered after setup phase,
while in CP-ABE data owners can control the data access.

Hence, we utilize CP-ABE schemes to limit senders to transmit data to a
specific ciphertext index P. While CP-ABE schemes only enable fine-grained
access to the encrypted data, they are not equipped to enforce policies for writing
a message as well; thus we need additional functionalities to cover the latter by
defining secret encryption keys. We utilize a Structure-Preserving Signature to
guarantee the given encryption key is valid and one can only get access with
a valid signature. A signature of this type allows selective re-randomization of
a valid signature, and therefore efficiently proves the validity of this operation.
Additionally, the CP-ABE scheme must also be re-randomizable in order to
achieve the key-less sanitizability.

6 M. Sedaghat and B. Preneel

Based on realistic application scenarios for ACE constructions, the proposed
scheme follows the Cross-Domain key generation method, proposed by Wang
and Chow in [33]. In an ACE scheme, the users might belong to two distinct
companies with different security levels, so one of them may not be able to grant
access rights to the other. In this context, two entities referred to as Sender
Authority and Receiver Authority locally generate secret keys for senders and
receivers, respectively. Moreover, since users, including senders and receivers,
may need to be added to the system later on, the setup phase will be carried
out independently of the predicate function. Hence, our approach follows this
setup method and we provide a generic construction of a Cross-Domain Access
Control Encryption scheme based on Attribute-Based Encryption constructions.

We finally propose an efficient CD-ABACE construction with constant key
and ciphertext sizes. To obtain a CD-ABACE scheme that is efficient both
in the length of the parameters and the computational overhead, we propose
a novel CP-ABE scheme with AND-gate circuits. More specifically, we say a
Boolean AND-gate circuit is satisfied (i.e., the output is true) iff all the input
gates are true. In particular, we say the set of attributes B ⊂ U satisfies the
AND-gate circuit with the set of input constraints P ⊆ U iff P is a subset of
B, i.e., P ⊆ B. As a simple example, let U = {U1, U2, U3, U4}, then the set of
input wires B = {U1, U3, U4} satisfies the circuit P = {U1, U4}, because P ⊆ B.
Identity-based encryptions are special cases of AND-gate ABE schemes with an
attribute universe consisting of the users’ identity and also |B| = 1. Moreover, in
this construction the Sanitizer only requires public parameters, but no secret
or public keys. Our CD-ABACE scheme has the following properties:

– Predicate function takes as inputs user attributes instead of their identities.
– The length of the ciphertext remains constant regardless of the number of

receivers and the number of attributes in the access policy.
– All users’ secret keys for encryption and decryption consist of only one group

element, regardless of the number of attributes of the users.
– As an additional result, we present an efficient CP-ABE scheme with constant

size ciphertexts and keys.

Table 1 compares the efficiency of the proposed construction with related
works. As illustrated, in our scheme the lengths of the ciphertext and the key are
improved to a constant size. The computational overhead for decryption grows
linearly with the number of attributes that a receiver owns, while the encryption
cost is constant and completely independent of the number of intended recipi-
ents. Our experiments show that the time required to run the encryption and
decryption algorithm is only ∼15 ms and ∼45 ms, respectively.

Road-map: The rest of the paper is organized as follows: In Sect. 2, we review
the preliminaries and definitions and describe the system architecture. The
formal definition of the CD-ABACE scheme and its security definitions are
described in Sect. 3. In Sect. 4, we propose the generic construction of CD-
ABACE schemes and discuss their security features. In Sect. 5 we present an
efficient CD-ABACE construction based on a novel CP-ABE scheme. The per-
formance of the proposed construction is compared in Sect. 6.

Cross-Domain Attribute-Based Access Control Encryption 7

Table 1. Comparison of Efficiency and Functionality. n is the number of receivers and
the total number of attributes in the system. r � n indicates the maximum number
of receivers that any sender is allowed to communicate with, and s � n denotes the
maximum number of senders that any receiver can receive a message from. t � n
indicates the maximum number of attributes that a sender can transmit data to. The
maximum number of legitimate attributes that any recipients possesses to decrypt a
ciphertext is denoted by w � n. SS, CD, PF, PE, IB, AB are short for Selectively
Secure, Cross-Domain, Predicate Function, Predicate Encryption, Identity-Based and
Attribute-Based, respectively.

Scheme Ciph. size Enc. key

size

Dec. key

size

San. key

size

Enc.

cost

Dec.

cost

CD PF Assump.

[10, ‡ 3] O(2n) O(r) O(1) O(1) O(n) O(n) � IB DDH/DCR

[10, ‡ 4] poly(n) O(1) O(1) O(1) O(1) O(1) ✗ IB iO

[12] O(n) O(1) O(1) O(1) O(1) O(1) ✗ IB SXDH

[20] poly(n) O(1) O(1) O(1) O(n) O(n) ✗ PE DDH/LWE

[33] (SS) O(1) O(1) O(s) 0 O(1) O(s) � IB GBDP

Ours (SS) O(1) O(1) O(1) 0 O(1) O(w) � AB MSE-DDH

2 Preliminaries and Definitions

To detail the CD-ABACE schemes we need to review some preliminaries.
Throu-ghout, we suppose the security parameter of the scheme is λ and negl(λ)
denotes a negligible function. Let U = {U1, . . . , Un} ∈ Z

n
p be a set and for each

subset A ⊂ U we denote the ith component scalar of this subset by Ai. We use
Y ←$ F (X) to denote a probabilistic function F that on input X is uniformly
sampled resulting in the output Y. Also, [n] denotes the set of integers between 1
and n. The algorithms are randomized unless expressly stated. “PPT” refers to
“Probabilistic Polynomial Time”. Two computationally indistinguishable distri-
butions A and B are shown with A ≈c B. We assumed a prime order field F and
denote by F<d[X] the set of univariate polynomials with degree smaller than
d. The ith coefficient of the univariate polynomial f(x) ∈ F<d[X] is denoted
by fi and a polynomial with degree d has at most d + 1 coefficients. The set
{1,X,X2, . . . , Xd} forms the standard basis: it is trivial to show that the repre-
sentation of the coefficients for a polynomial with degree d as the coefficients of
powers X is unique. The vector of A is denoted by A.

Definition 1 (Access Structure [4]). For a given set of parties P = {p1, . . . ,
pn}, we say a collection U ⊆ 2P is monotone if, for all A,B, if A ∈ U and
A ⊆ B then B ∈ U. Also, a(n) (monotonic) access structure is a (monotone)
collection U ⊆ 2P \ {∅}. We call the sets in U authorized sets and the sets that
do not belong to U are called unauthorized.

Definition 2 (Binary Representation of a subset). For a given universe
set U of size n, we can represent each subset A as a binary string of length n.
Particularly, the ith the element of the binary string for the subset A ⊆ U is
equal to 1 (i.e., a[i] = 1) if Ai = Ui. We show a binary representation set as
binary tuple (a[1], . . . , a[n]) ∈ Z

n
2 .

8 M. Sedaghat and B. Preneel

Definition 3 (Zero-polynomial). For a finite set U = {k1, . . . , kn}, we define
the zero-polynomial ZA(X) for a nonempty subset of A ⊂ U as ZA(X) :=
∏n

i=1 (X − ki)a[i], where a[i] is the binary representation of the complement set
A. In other words, this univariate polynomial vanishes on all the elements of the
set U for which the binary representation of the subset A is zero.

Definition 4 (Bilinear Groups [7]). A Type-III1 bilinear group generator
BG(λ) returns a tuple (G1,G2,GT , p, ê), such that G1, G2 and GT are cyclic
groups of the same prime order p, and ê : G1 ×G2 → GT such that ê(G,H)
= 1
is an efficiently computable bilinear map with the following properties;

– ∀ a, b ∈ Zp, ê(Ga,Hb) = ê(G,H)ab = ê(Gb,Ha),
– ∀ a, b ∈ Zp, ê(Ga+b,H) = ê(Ga,H)ê(Gb,H) .

We use the bracket notation: for randomly selected generators G ∈ G1 and H ∈
G2 we denote x · G ∈ G1 with [x]1, and we write ê

(
Ga,Hb

)
= [a]1 • [b]2.

System Architecture. The proposed scheme’s architecture is based on the
Cross-Domain ACE technique described in [33]. In a Cross-Domain ACE setting,
two distinct entities generate the keys to determine which group of senders can
send data to a certain group of receivers and control which group of receivers
can read this data. There are five entities in this system as follows:

Receiver Authority (RA) as a trusted third party generates and distributes
system parameters and the secret decryption keys for the Receivers. For this
aim, based on a certified predicate function Pf(., .), it authorizes the claimed
attributes by the receivers and returns the corresponding secret decryption keys.

Sender Authority (SA) as a semi-trusted entity generates the pair of SA’s
public parameters and master secret keys; it publishes the former, while it keeps
the latter secret. Moreover, it generates the secret encryption keys for the Senders
based on a predicate function Pf(., .) and SA’s master secret keys.

Sanitizer is an honest-but-curious party in the network that checks the validity
of the communication links and acts based on the predicate function Pf(., .).
If the sender does not allow to transmit a message to the recipients, then the
Sanitizer bans the request, else it broadcasts the received ciphertexts. The
Sanitizer is semi-honest which means that it follows the protocol honestly but
tries to infer some sensitive information including the identities of the users
(Senders and Receivers) or compromise the secrecy of a message.

Senders: to share a secret message among a group of receivers, they encrypt
data and send the resulting ciphertext to the Sanitizer along with a proof to
ensure that they possess a valid encryption key generated by the SA.

Receivers: by having access to the ciphertexts, they can recover the plaintexts
using their own attributes and the corresponding secret key for decryption. Con-
versely, if the receiver does not satisfy the access policy then the ciphertext never
reveals any meaningful information about the encrypted message.
1 For the two distinct cyclic groups G1 �= G2, there is neither efficient algorithm to

compute a nontrivial homomorphism in both directions.

Cross-Domain Attribute-Based Access Control Encryption 9

In a nutshell, RA sets up the global public parameters of the network and
publishes them, while it securely stores its master secret key. After authoriz-
ing the receivers’ attribute set, RA computes the decryption secret keys corre-
sponding to their attribute sets. From the public parameters issued by RA, SA
generates the rest of parameters required for authorization of the senders. Also,
SA uses its master secret key to create the authorized secret encryption keys for
the senders based on the predicate function Pf(., .). Since RA is generating the
main parameters of the system, it can compromise the security requirements,
so we assume this entity is fully-trusted. The sender who wants to share a mes-
sage securely among a group of receivers re-randomizes the signature (to ensure
sender anonymity), then encrypts the plaintext and proves the validity of the
claimed hidden witness. The Sanitizer receives the sender’s request, and checks
the validity of the proof and the signature to decide on rejecting the unauthorized
senders without learning their identities. Otherwise, if the sender – based on the
predicate function – is authorized to communicate with the selected group of
receivers, the Sanitizer re-randomizes the received ciphertext and then passes
the sanitized ciphertext on the recipients. Finally, the receivers who are allowed
to decrypt a ciphertext can run the decryption algorithm and retrieve the mes-
sage, else they learn nothing about it. It is assumed the Sanitizer is honest-
but-curious: while it follows the protocol honestly, it is unable to compromise
the message secrecy and anonymity of the users.

3 Cross-Domain Attribute-Based ACE Scheme

Next we introduce the notion of Cross-Domain Attribute-Based Access Control
Encryption (CD-ABACE) schemes. The high-level idea behind the definition
of a CD-ABACE is that we can generalize the concept of Boolean relations
in the plain CP-ABE schemes (see full version [28]) to the predicate function
in an ACE construction. In this scenario, the encryption key generator allows
the sender to talk to a restricted group of receivers based on a given predicate
function. By contrast with the original approach of specifying the ciphertext
access rights during the encryption phase, in the present approach, the Sender
Authority declares the access right during the encryption key generation phase.
Moreover, the generated encryption keys are signed by the SA, and no one can
convincingly assert ownership unless they have a correct signature.

Definition 5 (CD-ABACE schemes). A CD-ABACE scheme ΨCD-ABACE

over the message space M, the ciphertext space C and a predicate function Pf :
Σk × Σc → {0, 1} has the following PPT algorithms:

– (ppra,mskra) ← RAgen(U, λ): This randomized algorithm takes as inputs the
security parameter λ and the universe attribute set U, and outputs the public
parameters ppra and master secret key mskra.

– (ppsa,msksa) ← SAgen(λ, ppra): This randomized algorithm takes the security
parameter λ and RA’s public parameters ppra as inputs and generates the pair
of SA’s public parameters ppsa and SA’s master secret key msksa.

10 M. Sedaghat and B. Preneel

– (dkB) ← DecKGen(mskra,B): This randomized algorithm takes RA’s master
secret key mskra and the authorized set of attributes B ∈ Σk as inputs and
outputs the corresponding private decryption key dkB.

– (ekP, σ,W) ← EncKGen(ppra, ppsa,msksa,P,Pf): This algorithm takes the
public parameters ppra and ppsa, the SA’s master secret key msksa, autho-
rized ciphertext index P ∈ Σc, and predicate function Pf(., .) as inputs. It
returns the secret encryption key ekP that enforces that only the sender can
send a message to those receivers who satisfy P along with the signature σ
and its underlying re-randomizing token W .

– (π, x) ← Enc(ppra, ppsa,m, ekP, σ,W): This algorithm takes as inputs the pub-
lic parameters, a message m ∈ M, the encryption key corresponding to the
attribute set of P, a valid signature σ and the token W . It returns a request
including a proof π along with its underlying public instance x.

–
(
C̃t,⊥) ← San(ppra, ppsa, π, x,Pf): This algorithm takes as inputs the public

parameters ppra and ppsa, a ciphertext along with a proof π and its cor-
responding instance x. Afterwards, the algorithm either re-randomizes the
ciphertext to C̃t or rejects the request. To this end, it checks the validity of
the proof and, if it allows this flow based on the predicate function Pf(., .), it
transfers the ciphertext C̃t ∈ C to the receivers, else it returns ⊥.

– (m′,⊥) ← Dec(ppra, ppsa, C̃t, dkB): The decryption algorithm takes as inputs
the public parameters ppra and ppsa, a re-randomized ciphertext C̃t and the
decryption key dkB. If Pf(B,P) = 1, then it returns a message m′ ∈ M,
otherwise it responds by ⊥. In other words, a recipient with a wrong decryption
key learns nothing from the output of this algorithm.

3.1 Security Definitions

Next we present the required security properties for a CD-ABACE scheme
under only CPA-based definitions, where A has access to encryption, encryption-
key generation, and decryption-key generation oracles. Noted that the following
security games are motivated by the notion of co-selective CPA security in [3],
such that A has to declare q decryption key queries before the Initialization
phase, while it can select the target challenge ciphertext, adaptively. We slightly
modify the extended security notions introduced in [33] to adapt them to the
CD-ABACE system model.

Definition 6 (Correctness). For a given attribute universe U and predicate
function Pf : Σk × Σc → {0, 1}, we say that ΨCD-ABACE over message space M
and ciphertext space C is correct if we have,

Pr
[
Dec (dkB,San(Enc(m, ekP,P))) = m : Pf(B,P) = 1

] ≈c 1

Correctness captures the feature that a sender with an encryption key ekP is
able to deliver a message to those receivers for which the attribute set B satisfies
Pf(B,P) = 1 with a high probability. In this case, the Sanitizer should pass
the information on and a receiver with decryption key dkB should be able to
retrieve the message correctly from a re-randomized ciphertext.

Cross-Domain Attribute-Based Access Control Encryption 11

Definition 7 (No-Read Rule). Consider ΨCD-ABACE over the attribute uni-
verse U, message space M, a ciphertext space C and a predicate function
Pf : Σk × Σc → {0, 1}. For a security parameter λ, we say that a PPT adver-
sary A wins the defined No-Read rule security game described in Fig. 1 with
access to the oracles in the same table, if she guesses the random bit b better
than by chance. It is assumed that for a challenge access structure P

∗, A would
not request the decryption key for attribute set Bj, such that Pf(Bj ,P

∗) = 1.
ΨCD-ABACE satisfies the No-Read rule if for all PPT adversaries A with advan-
tage AdvNo-Read

ΨCD-ABACE,A(1λ, b) = (Pr[A wins the No-Read game] − 1/2) we have,
∣
∣
∣
∣AdvNo-Read

ΨCD-ABACE,A(1λ, b = 0) − AdvNo-Read
ΨCD-ABACE,A(1λ, b = 1)

∣
∣
∣
∣ ≈c 0. When we call A, it

wins the defined security game iff b′ == b.

Similar to the ID-based ACE constructions, the No-Read rule in an
attribute-based model enforces that only eligible recipients who satisfy a certain
access structure, should learn the message while the other participants learn
nothing. In particular, not only should an unauthorized receiver be unable to
read the messages, combining the decryption secret keys of a group of unautho-
rized receivers should not reveal any information about the message. Also, this
property has to hold even if the recipients collude with the Sanitizer.

Definition 8 (Parameterized No-Write Rule). Consider ΨCD-ABACE over
U, a message space M, ciphertext space C and a predicate function Pf :
Σk × Σc → {0, 1}. We say a ΨCD-ABACE scheme satisfies the Parameterized
No-Write rule, if no PPT adversary A with access to the oracles in Fig. 1
has a non-negligible advantage in winning the No-Write game, i.e., under the
advantage AdvNo-Write

ΨCD-ABACE,A(1λ, b) = (Pr[A wins No-Write] − 1/2) we have,
∣
∣
∣
∣AdvNo-Write

ΨCD-ABACE,A(1λ, b = 0) − AdvNo-Write
ΨCD-ABACE,A(1λ, b = 1)

∣
∣
∣
∣ ≈c 0.

We say A wins the defined No-Write game iff b′ == b under the condition
that for all queried secret encryption keys Pi ∈ QE ∪ {P∗} and all requested
private decryption keys Bj ∈ QD, along with the challenge access structure P

∗,
we have Pf(Bj ,Pi) = 0. The function fix(.) accepts a ciphertext Ct as input and
generates auxiliary information aux of Ct that is not sanitizable [33]. By seeding
an encryption algorithm with this auxiliary information, the resulting ciphertext
has also the same auxiliary information.

Remark 1. With regard to the security definitions, the anonymity of the sender is
guaranteed and the Sanitizer cannot deduce the identity of the sender while the
receivers’ anonymity relies on the CP-ABE construction. Note that the same type
of property is known as weak attribute hiding in the context of ABE construc-
tions [22]. Although an IND-CPA-secure CP-ABE satisfies the payload hiding
property, a stronger security concept, called attribute-hiding CP-ABE, ensures
that the set of attributes associated with each ciphertext is also obscured [19].
The latter increases the ciphertext size incrementally and the identity-based
encryptions reveal the receivers’ identity in plain.

12 M. Sedaghat and B. Preneel

Fig. 1. No-Read and No-Write security games

4 Generic Construction

Our generic construction for a general predicate function and universal CP-ABE
is built from following constructions:

1. An EUF-CMA-secure SPS construction, SPS.(Pgen,KG,Sign,Randz,Vf) (see
full version [28] for formal definition).

2. A computational Knowledge-Sound NIZK proof, ZK.(Kcrs,P,V,Sim) (see full
version for formal definition [28]).

3. A publicly re-randomizable CP-ABE scheme, rABE .(Pgen,KGen,Col,Enc,
Randz,Dec) (see full version for formal definition [28]).

For a given predicate function Pf, message space M and ciphertext space C,
the generic construction consists of the following PPT algorithms:

Cross-Domain Attribute-Based Access Control Encryption 13

– RA setup (RAgen(U, λ)): Takes the security parameter λ and an attribute
universe U, and runs the rABE .Pgen(λ,U) algorithm to generate the global
and CP-ABE parameters. It outputs RA’s master secret key set mskra =
(mskrABE) and RA’s public parameters ppra = (pprABE).

– SA setup (SAgen(ppra,RL)): Takes RA’s public parameters ppra and rela-
tion RL as inputs and runs the ZK.Kcrs(RL), SPS.Pgen(λ) and SPS.KG(pp)
algorithms and returns ppsa = (pp, vk, crs) and msksa = (ts, sk) as outputs.
The underlying relation RL is defined corresponding to the NP-language L
for the statement x = (σ′, vk′, ek′, Ct) and witness w = (σ, ek,m, r, t).

– Decryption KGen (DecKGen(mskra,B)): Takes as inputs RA’s master
secret key mskra and a key index B ∈ Σk. It generates the private decryption
key dkB by executing the algorithm rABE .KGen(mskra,B).

– Encryption KGen (EncKGen(ppra,msksa,P,Pf)): Takes as inputs ppra,
msksa and a ciphertext index P ∈ Σc that indicates to whom the sender
is allowed to talk based on predicate function Pf(., .). It executes the col-
lector algorithm rABE .Col(ppra,P) to obtain the aggregated value ekP and
then signs it by running the algorithm SPS.Sign(sk, ekP). It returns both the
encryption key and the underlying signature to the sender.

– Encryption (Enc (ppsa, ppra,m, ekP, σ,W)): Takes as inouts the secret
encryption key ekP and the underlying signature σ, the public parameters
and a message m ∈ M. It re-randomizes σ under an initial random string μ
by running SPS.Randz(ppsa, ekP, σ,W ;μ). Next it runs the re-randomizable
CP-ABE encryption algorithm rABE .Enc(ppra,m, ekP) and proves knowledge
of hidden values by executing the ZK.P(RL, crs,w, x) algorithm. It returns
the instance and underlying proof (π, x) as outputs.

– Sanitization (San(ppsa, ppra, π, x)): Takes as inputs the proof π and the
instance x: if SPS.Vf(pp, vk′, σ′, ek′) = 1 and ZK.V(RL, crs, π, x) = 1, it runs
the algorithm rABE .Randz(ppra, Ct) and returns the sanitized ciphertext C̃t
as output; otherwise it rejects the link and returns ⊥.

– Decryption (Dec(ppsa, ppra, C̃t, dkB)): Takes as inputs the public parame-
ters, a sanitized ciphertext C̃t and the decryption key dkB. It returns the
plaintext m ∈ M by executing rABE .Dec(ppra, C̃t, dkB) algorithm if and
only if Pf(B,P) = 1; otherwise this algorithm returns ⊥.

Theorem 1. The proposed generic CD-ABACE construction is correct.

The proof can be found in the full version [28].

Theorem 2. The proposed generic CD-ABACE scheme satisfies the No-
Read rule of Definition 7.

The proof can be found in the full version [28].

Theorem 3. No PPT adversary A can win the No-Write security game of
Definition 8 for the proposed CD-ABACE scheme under a fixed predicate func-
tion Pf(., .).

The proof can be found in the full version [28].

14 M. Sedaghat and B. Preneel

5 An Efficient CD-ABACE Scheme

In this section, we propose a CD-ABACE scheme such that the key and cipher-
text sizes are constant. It primarily comes from a novel CP-ABE scheme; we
believe that this is a result that is valuable by itself. Following on from Sect. 4,
there are three main cryptographic primitives that are listed below;

Structure-Preserving Signature (SPS): In this paper, we use a variant of
the selectively re-randomizable SPS scheme of Abe et al. [1] (see full version [28])
as an efficient, unified and selectively re-randomizable SPS. Since in the proposed
CD-ABACE construction the generator of the first cyclic group is hidden and
the message is a second group element over the Type-III bilinear groups, we need
to slightly modify this scheme with the following PPT algorithms:

– (pp) ← SPS.Pgen(λ): This algorithm takes as input the security parameter λ
and picks a random integer α ←$Z

∗
p and a group generator Y ←$G2. It returns

the public parameters pp by running a Type-III bilinear group generator
BG(λ) = (G1,G2,GT , p, ê) and publishes pp = (G1,G2,GT , p, ê,

[
α2

]
1
, Y),

while it keeps α secret.
– (sk, vk) ← SPS.KG(pp): Samples v ←$Zp and publishes the public verification

key vk =
[
vα2

]
1

while it securely stores the secret signing key sk = v.
– (σ,W) ← SPS.Sign(pp, sk,m): The signing algorithm takes as inputs the

public parameters pp, the secret key sk and a message m ∈ G2. It samples
r ←$Z

∗
p, computes σ = (R,S, T) =

([
rα2

]
1
,mv/rY 1/r, Sv/r [1/r]2

)
, and out-

puts (σ,W = [1/r]2).
– (σ′,W ′) ← SPS.Randz(pp, σ,W): The re-randomizing algorithm takes as

inputs the public parameters pp, a signature σ ∈ S along with W, picks
a random integer t ←$Z

∗
p and computes the re-randomized signature as

σ′ = (R′, S′, T ′) = (R1/t, St, T t2W t(1−t)) and returns it along with a new
token W ′ = W t.

– (0, 1) ← SPS.Vf(pp, vk, σ′,m): The verification algorithm takes as inputs pp,
either a plain signature σ or a re-randomized signature σ′, a message m and
the verification key vk. It first checks m,S′, T ′ ∈ G2, R′ ∈ G1 and then
checks the pairing equations R′ • S′ = (vk • m)(

[
α2

]
1

• Y) and R′ • T ′ =
(vk • S′)(

[
α2

]
1

• [1]2). If both conditions hold, then it returns 1, otherwise it
responds with 0 (rejecting the signature).

The proof of correctness is identical to that of Abe et al.’s SPS construction,
where a message is part of the second rather than the first group. As the first
group generator is hidden in the proposed CD-ABACE scheme, we need to take[
α2

]
1

instead of [1]1 to generate and verify signatures.

Non-Interactive Zero-Knowledge (NIZK) Proofs: As discussed in full ver-
sion [28], Zero-Knowledge proofs [15] allow a prover to convince the verifier about
the validity of a statement without revealing any other information. We use a
standard Schnorr proof [27] to prove the knowledge of exponents in the random
oracle model. To convert an interactive protocol to a non-interactive framework,

Cross-Domain Attribute-Based Access Control Encryption 15

we utilize the Fiat-Shamir heuristic [11]. More precisely, the prover has access to
a hash function, modeled as a random function (O), to generate the challenges
instead of receiving them from the verifier. For a given cyclic group Gi of order
p with generator gi, we denote by PoK{(w) : RL(x,w) = 1}, the proof of knowl-
edge of a hidden witness w that satisfies a given relation RL. Figure 2 formalizes
a NIZK in ROM for proof of exponentiation.

Fig. 2. Proof of knowledge of exponents

An Efficient Re-randomizable CP-ABE: In what follows, we define a new
IND-CPA-secure CP-ABE scheme with a constant key and ciphertext size. The
Boolean function of this scheme is applied in AND-gate circuits. Although Guo
et al. in [17] took a similar approach and presented a constant-key size CP-
ABE scheme, the ciphertext size in their scheme increases linearly with the total
number of attributes. The proposed re-randomizable CP-ABE scheme consists
of the following algorithms:

– (pp,msk) ← ABE .Pgen(U, λ): Takes as inputs an attribute space U with
size n along with the security parameter λ, and runs a Type-III bilin-
ear group generator BG(λ) = (G1,G2,GT , p, ê). It also selects a standard
collision-resistant hash function H ←$ H that is modeled as a random ora-
cle in the security proofs. For a randomly selected integer α ←$Z

∗
p, it com-

putes hi =
[
αi

]
2

as the set of monomials in G2 and g2 =
[
α2

]
1
. It returns

the master secret key msk = ([1]1 , α) and the system’s public parameters
pp = (G1,G2,GT , p, ê, g2, {hi}n

i=0, [α]T ,H).
– (dkB) ← ABE .KGen(msk,B): Takes as inputs msk and generates a secret

decryption key corresponding to attribute set B ∈ Σk, such that |B| < n − 1.
It first computes the Zero-Polynomial ZB(x) =

∏n
i=1 (x − ki)b[i] such that

ki = {H(Ui)}Ui∈U. It returns the secret decryption key dkB = [1/ZB(α)]1.
– (Ct) ← ABE .Enc (pp,m,P): Takes as inputs the message m ∈ M, the public

parameters pp and an access structure P ∈ Σc. It first samples r ←$Z
∗
p,

calculates ZP(x) =
∑n

j=0 zjx
j and returns the ciphertext as a tuple Ct =

(P, C, C1, C2) = (P,m [rα]T , (
∏n

j=0 h
zj

j+1)
r = [rαZP(α)]2 , g−r

2 =
[−rα2

]
1
).

We define the collector algorithm as Col(pp,P) = [αZP(α)]2.

16 M. Sedaghat and B. Preneel

– (m′,⊥) ← ABE .Dec (pp, Ct, dkB): This algorithm takes as input the public
parameters pp, a ciphertext Ct and a secret decryption key dkB. If P ⊆ B, it
computes, FB,P(x) =

∏n
i=1 (x − ki)c[i] =

∑n
j=0 fjx

j for c[i] = b[i] − p[i] and

returns m′ = C · ((C2 • ∏n
i=1 (hi−1)fi

) · (dkB • C1)
)−1

f0 ; otherwise it responds
with ⊥.

In the full version [28], we evaluated the proposed CP-ABE scheme regarding
its security properties including the correctness and IND-CPA.

Next we modify the re-randomizing phase of our CP-ABE scheme; the other
algorithms are the same, except that the decryption algorithm can take either
C̃t or Ct as input.

– (C̃t) ← rABE .Randz(pp, Ct): Takes as inputs pp and a ciphertext Ct under
access structure P ∈ Σc. To re-randomize the ciphertext Ct ∈ C, it samples
an initial random integer s ←$Z

∗
p and computes the Zero-polynomial ZP(x).

Then it outputs C̃t = (C̃, C̃1, C̃2) = (C · [sα]T , C1 · [sZP(α)]2 , C2 · g−s
2).

Remark 2. The proposed construction guarantees that no PPT adversary can
obtain the receiver’s identity, deterministically. This is the same as the notion
of “weak attribute-hiding” in the context of Attribute-Based Signatures [30].
Indeed, the access policy corresponding to a ciphertext only reveals the list of
receivers who satisfy a specific set of attributes, even though it never leaks any
information about the identity of the receivers. Under the assumption that there
is more than one user who satisfies a set of certain attributes, the adversary is
unable to deduce for which specific receiver the challenge ciphertext is intended.

Related Works: The first CP-ABE scheme, which allows the data owners to
implement an arbitrary and fine-grained access policy in terms of any mono-
tonic formula for each message was proposed by Bethencourt et al. at IEEE
S&P 2007 in [6]; its security was proven in the Generic Group Model (GGM).
In a subsequent work, Cheung et al. [9] constructed a CP-ABE scheme in the
standard model, which is however restricted to a single AND-gate. Waters [35]
introduced an asymptotically efficient CP-ABE scheme in the standard model,
which is based on a Linear Secret Sharing Scheme (LSSS) to establish an arbi-
trary access policy. Lewko and Waters [21] introduced a secure construction
based on LSSS in which the length of the ciphertext, the size of users’ secret
keys, and the number of required pairings to decrypt a ciphertext correspond to
the size of the Monotone Span Program (MSP) that defines the access structure.
Some recent works have extended the functionality of these schemes for various
applications [18,29]. While these CP-ABE schemes allow to define in an effective
way the right to access data, either the key or the ciphertext size grows linearly
in the number of attributes. Therefore, CP-ABE schemes based on AND-gate
circuits are considered promising candidates to address this downside. In this
approach the sender defines a specific Boolean AND-gate circuit such that a
recipient can learn the encrypted data iff they satisfy all the attributes, other-
wise the decryption algorithm returns nothing. Considering AND-gate circuits

Cross-Domain Attribute-Based Access Control Encryption 17

Fig. 3. The proposed CD-ABACE scheme

18 M. Sedaghat and B. Preneel

provides a constant ciphertext length; several CP-ABE schemes are proposed
based on this approach [17,32].

The Proposed CD-ABACE Scheme: At this point, we can wrap up the
construction described in Fig. 3 by taking a family of collision-resistant hash
functions H : {0, 1}∗ → Z

∗
p. Our CD-ABACE scheme is built under a CP-ABE

scheme based on AND-gate circuits with constant key and ciphertext sizes. The
primary motivation behind this circuit choice is to construct a fully constant
ACE within the context of CD-ABACE schemes. Note that we can build more
universal circuit levels using the generic model discussed in Sect. 4.

Remark 3. While the proposed CD-ABACE scheme achieves a weak notion of
receiver anonymity, it improves Wang and Chow’s weak point where recipients’
identities are public. In order to resolve this issue we can use the existing CP-
ABE schemes with a more universal circuit level, but this compromises the
efficiency. For instance, according to Garg et al. [14], we can fully anonymize
the receiver using our generic construction based on multilinear maps and iO
assumptions. We specify in the full version [28] a CD-ABACE scheme, using
Waters’s CP-ABE [35], which is defined under Linear Secret Sharing Schemes;
we compare it with our proposed CD-ABACE scheme in Sect. 6.

6 Performance Analysis

In this section, we examine how the performance of our proposed fully-constant
CD-ABACE scheme compares to the selectively-secure ACE scheme of Wang
and Chow [33], which is the only implemented ACE construction to date and a
CD-ABACE variant of Waters’s CP-ABE [35] that is described in detail in the
full version [28].

We obtained the benchmarks for our proposed CD-ABACE scheme on
Ubuntu 20.04.2 LTS with an Intel Core i7-9850H CPU @ 2.60 GHz with 16 GB
of memory. We applied the Barreto-Naehrig (BN) curve, type F, y2 = x3 + b
over the field Fq of order p with embedding curve degree k = 12 and 1920-bit
DLog security. For simplicity the bit-lengths of expressions of access policies
and computations over Zp are not taken into account. We implemented the pro-
posed construction using the Charm-Crypto framework [2], a Python library
for Pairing-based Cryptography2. Figure 4 consists of six graphs depicting the
following relationships:

– Total number of Attributes/Users versus RA Setup time: The top left graph dis-
plays the relationship between the total number of attributes/users and time
required to generate the parameter of the Receiver Authority. As can be seen,
in our scheme and [33] scheme the time required to run this algorithm grows
linearly with the total number of attributes/users, and for a generous consider-
ation of 1 000 attributes, it only requires ∼200 milliseconds (ms) and ∼300 ms,
respectively. However, for an ACE variation of Waters’ CP-ABE [35] construc-
tion (see full version [28]) this time is constant and less than 30 ms.

2 https://github.com/CDABACE.

https://github.com/CDABACE

Cross-Domain Attribute-Based Access Control Encryption 19

Fig. 4. Running time of attribute size dependence algorithms

– Maximum number of Attributes/Receivers versus Encryption key size: The
top centre graph of Fig. 4 shows the relationship between the total number of
attributes/receivers that a sender can send to them and the size of the stored
encryption key. As can be seen, this relationship in Waters’ ACE variant is
linear, however the our proposed construction and [33] require a constant
storage. Assuming 1 000 attributes/receivers to be the highest number used
by a sender, the required memory for storing this key for [33], Waters’ ACE
variant and our scheme is ∼300, ∼1 200 and ∼400 bytes, respectively.

– Maximum number of Attributes/Senders versus Decryption key size: The top
right graph of Fig. 4 shows the relationship between maximum the number
of attributes/senders for each receiver and the size of the decryption key.
As can be seen, in Waters’ ACE variant this relationship grows linearly with
number of attributes while in both our scheme and [33] the requires storage is
constant independent of the number of attributes/senders; for instance, this
size for a user having 1 000 attributes/senders is equal to ∼50, ∼100 bytes,
while Waters’ ACE variant is equal to ∼1.2 KB.

– Number of Attributes/Receivers versus ciphertext size: The bottom left
graph of Fig. 4 depicts the relationship between the total number of
attributes/receivers in the policy and the length of ciphertext. As can be
seen, in Waters’ ACE scheme this relationship is linear while our scheme
and [33] achieve a constant ciphertext size. For instance, a ciphertext with
100 embedded attributes/receivers in the policy has a ciphertext of size ∼1,
∼1.4, ∼7 KB in our scheme, [33] and Waters’ ACE scheme.

20 M. Sedaghat and B. Preneel

– Number of Attributes/Receivers versus Encryption time: The bottom cen-
tre graph of Fig. 4 shows the relationship between the total number of
attributes/receivers of in the embedded policy and the encryption time. As
can be seen, the time required to encrypt a ciphertext in our scheme and
[33] is constant, while in Waters’s ACE variation it grows linearly with the
total number of attributes. For example, a sender in Waters’ ACE, [33] and
our scheme requires ∼2 000, ∼18, ∼15 ms to encrypt a message with 1 000
embedded attributes/receivers.

– Number of Attributes/Senders versus Decryption time: The bottom right
graph of Fig. 4 shows the relationship between the maximum number of
attributes/senders of each receivers and the decryption time. As can be seen,
the time required to decrypt a ciphertext in Waters’ ACE variant grows lin-
early with maximum number of attributes, while this overhead in our scheme
and [33] is constant. For instance, a receiver in [33,35] and our proposed con-
struction requires ∼8 000, ∼60, ∼45 ms to decrypt a ciphertext with 1 000
attributes in the policy.

Overall, our scheme has improved the receivers’ key length and privacy
level from identity-based to attribute-based. The ciphertext size has also been
reduced, along with the number of public parameters. Since the second group
generator is hidden in [33], the SA has to choose a new generator to create the
SPS parameters. In contrast, the proposed variant of Abe et al.’s SPS [1] requires
no new generator for the second cyclic group, and the intended NIZK proof cuts
out the need for a target group proof of exponentiation.

7 Conclusion

In this work, we proposed a generic and an efficient CD-ABACE scheme based
on attribute-based predicate functions. In comparison with earlier works, the
length of the secret decryption keys and the ciphertext size has been substan-
tially reduced to less than ∼50 and ∼1000 bytes as compared to Wang and Chow
scheme where the size was ∼100 and ∼1400 bytes, respectively. Moreover, the
computational overhead of encryption and decryption is linear in the number of
the policy attributes and user attributes, respectively. Also, it is formally proved
that the proposed scheme satisfies the No-Read and the No-Write rules based
on standard assumptions. We leave the construction of a CD-ABACE scheme
based on a Boolean circuit instead of AND-gate circuits with the same perfor-
mance as an interesting open problem. As we discussed, the main downside for
AND-gate circuits is that the attribute sets in plain may reveal some mean-
ingful information about the intended constraints and consequently, applying a
Boolean circuit can result in stronger anonymity guarantees for the receivers.

Acknowledgements. We would like to thank Sherman S. M. Chow, Georg Fuchs-
bauer, Karim Baghery, Ward Beullens, Pavel Hubáček and anonymous reviewers for
their helpful discussions and valuable comments. This work was supported by Flanders
Innovation & Entrepreneurship through the Spearhead Cluster Flux50 ICON project

Cross-Domain Attribute-Based Access Control Encryption 21

PrivateFlex. In addition, this work was supported in part by the Research Council KU
Leuven C1 on Security and Privacy for Cyber-Physical Systems and the Internet of
Things with contract number C16/15/058 and by CyberSecurity Research Flanders
with reference number VR20192203.

References

1. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54242-8 29

2. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems.
J. Cryptogr. Eng. 3(2), 111–128 (2013). https://doi.org/10.1007/s13389-013-0057-
3

3. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 23

4. Beimel, A..: Secure schemes for secret sharing and key distribution. Faculty of
Computer Science, Technion-Israel Institute of Technology (1996)

5. Bell, D.E., LaPadula, L.J.: Secure computer systems: mathematical foundations.
Technical report, DTIC document (1973)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334.
IEEE (2007)

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

8. Brengel, M., Rossow, C.: Identifying key leakage of bitcoin users. In: Bailey, M.,
Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050,
pp. 623–643. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-
5 29

9. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security, pp.
456–465 (2007)

10. Damg̊ard, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing infor-
mation flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 547–576. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 21

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

12. Fuchsbauer, G., Gay, R., Kowalczyk, L., Orlandi, C.: Access control encryption for
equality, comparison, and more. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp.
88–118. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 4

13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

https://doi.org/10.1007/978-3-642-54242-8_29
https://doi.org/10.1007/978-3-642-54242-8_29
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/978-3-642-13013-7_23
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-030-00470-5_29
https://doi.org/10.1007/978-3-030-00470-5_29
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-54388-7_4

22 M. Sedaghat and B. Preneel

14. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 27

15. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98 (2006)

17. Guo, F., Mu, Y., Susilo, W., Wong, D.S., Varadharajan, V.: CP-ABE with
constant-size keys for lightweight devices. IEEE Trans. Inf. Forensics Secur. 9(5),
763–771 (2014)

18. Hong, H., Sun, Z.: An efficient and secure attribute based signcryption scheme
with LSSS access structure. Springerplus 5(1), 644 (2016)

19. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

20. Kim, S., Wu, D.J.: Access control encryption for general policies from standard
assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10624, pp. 471–501. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70694-8 17

21. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

22. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 35

23. Osborn, S., Sandhu, R., Munawer, Q.: Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Trans. Inf. Syst.
Secur. (TISSEC) 3(2), 85–106 (2000)

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009)

25. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

26. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

27. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

28. Sedaghat, M., Preneel, B.: Cross-domain attribute-based access control encryption.
Cryptology ePrint Archive, Report 2021/074 (2021). https://eprint.iacr.org/2021/
074

29. Sedaghat, S.M., Ameri, M.H., Mohajeri, J., Aref, M.R.: An efficient and secure
data sharing in Smart Grid: ciphertext-policy attribute-based signcryption. In:
2017 Iranian Conference on Electrical Engineering (ICEE), pp. 2003–2008. IEEE
(2017)

https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-319-70694-8_17
https://doi.org/10.1007/978-3-319-70694-8_17
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/0-387-34805-0_22
https://eprint.iacr.org/2021/074
https://eprint.iacr.org/2021/074

Cross-Domain Attribute-Based Access Control Encryption 23

30. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and
their application to anonymous credential systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 13

31. Tan, G., Zhang, R., Ma, H., Tao, Y.: Access control encryption based on LWE.
In: Proceedings of the 4th ACM International Workshop on ASIA Public-Key
Cryptography, pp. 43–50. ACM (2017)

32. Tran, P.V.X., Dinh, T.N., Miyaji, A.: Efficient ciphertext-policy ABE with con-
stant ciphertext length. In: 2012 7th International Conference on Computing and
Convergence Technology (ICCCT), pp. 543–549. IEEE (2012)

33. Wang, X., Chow, S.M.: Cross-domain access control encryption: arbitrary-policy,
constant-size, efficient. In: IEEE Symposium on Security and Privacy (SP), Los
Alamitos, CA, USA, pp. 388–401. IEEE Computer Society (May 2021)

34. Wang, X., Wong, H.W.H., Chow, S.S.M.: Access control encryption from group
encryption. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12726,
pp. 417–441. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78372-
3 16

35. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

https://doi.org/10.1007/978-3-642-02384-2_13
https://doi.org/10.1007/978-3-030-78372-3_16
https://doi.org/10.1007/978-3-030-78372-3_16
https://doi.org/10.1007/978-3-642-19379-8_4

Grain-128AEADv2: Strengthening
the Initialization Against Key

Reconstruction

Martin Hell1(B), Thomas Johansson1, Alexander Maximov2, Willi Meier3,
and Hirotaka Yoshida4

1 Department of Electrical and Information Technology,
Lund University, Lund, Sweden
{martin,thomas}@eit.lth.se
2 Ericsson AB, Lund, Sweden

alexander.maximov@ericsson.com
3 FHNW, Windisch, Switzerland

willi.meier@fhnw.ch
4 Cyber Physical Security Research Center (CPSEC), National Institute of Advanced

Industrial Science and Technology (AIST), Tokyo, Japan
hirotaka.yoshida@aist.go.jp

Abstract. Properties of the Grain-128AEAD key re-introduction, as
part of the cipher initialization, are analyzed and discussed. We con-
sider and analyze several possible alternatives for key re-introduction
and identify weaknesses, or potential weaknesses, in them. Our results
show that it seems favorable to separate the state initialization, the key
re-introduction, and the A/R register initialization into three separate
phases. Based on this, we propose a new cipher initialization and update
the cipher version to Grain-128AEADv2. It can be noted that previously
reported and published analysis of the cipher remains valid also for this
new version.

Keywords: Stream cipher · Grain · Initialization · Key
reconstruction · Differentials

1 Introduction

Grain-128AEAD is a member of the Grain family of stream ciphers and was
submitted to the NIST lightweight cryptography standardization process. In this
process, NIST aims to standardize cryptographic algorithms that are suitable
for constrained environments. Grain-128AEAD is a stream cipher supporting
authenticated encryption with associated data [17] and was selected as one out of
ten finalists from an initial pool of 57 algorithms. It has so far shown competitive
performance in both hardware [18] and software [15].

The Grain family of stream ciphers has been extensively analyzed since
its introduction in the eSTREAM process, where the 80-bit key variant Grain
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 24–41, 2021.
https://doi.org/10.1007/978-3-030-92548-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_2

Grain-128AEADv2: Strengthening the Initialization 25

v1 [13], together with MICKEY 2.0 [4] and Trivium [6], was selected into the
final portfolio of algorithms (hardware category). Since then, also Grain-128 [12]
and Grain-128a [1], both with 128-bit key and the latter with optional mes-
sage authentication, have been proposed. Grain-128 is considered broken by the
dynamic cube attacks proposed in [7,8], and it has been shown that for Grain-
128a without authentication, there are also attacks more efficient than brute
force.

The design approach, combining one linear and one non-linear shift regis-
ter, has inspired also other lightweight ciphers, aiming at resource constrained
environments, e.g., Fruit-80 [2], Sprout [3] and its successor Plantlet [16], and
Lizard [10].

Compared to the previous variants, Grain-128AEAD modifies the cipher ini-
tialization such that the key is re-introduced at the end of the initialization. The
purpose of this key re-introduction is to not allow the secret key to be immedi-
ately reconstructed in case the states of the LFSR and NFSR are known. This
is a feature inspired by the Lizard stream cipher [10].

Even though any stream cipher would be considered broken if the state can be
recovered in less than 2K computations, where K is the keysize, such additional
precautions provide some practical security in certain cases since only the current
instantiation is broken in case of a state recovery. For a lightweight cipher, it is
important that this key re-introduction is very resource efficient.

Since a key-from-state recovery assumes an already broken cipher, it is not
crucial that the key reconstruction requires 2K computations, but a too efficient
key reconstruction limits the value of this additional precaution.

In [5], Chang and Turan noted that with knowledge of the LFSR and NFSR
states, a message tag, and the corresponding message, it is possible to recon-
struct the secret key with complexity 262. This complexity is probably less than
one would expect from a state-of-the-art cipher and it seems that the Grain-
128AEAD key re-introduction does not provide much added security. Indeed,
any state recovery attack would now only require an additional 262 computa-
tional steps to reconstruct the key.

In this paper, we first briefly outline and discuss the analysis by Chang and
Turan. After analyzing the main issue with the key re-introduction, we present
and discuss a few different main strategies for protecting against key reconstruc-
tion from a known state. In addition to the strategy from [5], we also analyze
differential biases that could be used to reconstruct the key. Our analysis shows
that (1) the key re-introduction should be separated from the initialization of
the authentication registers, denoted A and R, and (2) the existence of differen-
tials in high initialization rounds requires an increased number of initialization
clocks in order to prevent a key-from-state reconstruction. From this we conclude
that an increased number of initialization steps is needed in order to avoid key
information leakage, resulting in an updated algorithm specification, denoted
Grain-128AEADv2.

The paper is outlined as follows. In Sect. 2 we specify the key and nonce ini-
tialization of Grain-128AEAD. Then, we outline the key reconstruction proposed
by Chang and Turan in Sect. 3. In Sect. 4, we discuss several options for avoiding
similar and more advanced key reconstruction algorithms and show that they

26 M. Hell et al.

are inadequate. Then, in Sect. 5 we provide a generic initialization approach and
use the derived differentials in order to motivate suitable parameters for the
initialization. These parameters are then derived in Sect. 6, before the paper is
concluded in Sect. 7.

2 Grain-128AEAD Initialization

Similar to all previous versions, Grain-128AEAD uses three main functions
together with an LFSR and an NFSR. If authentication is used, which is optional
in Grain-128a and mandatory in Grain-128AEAD, there are also two additional
registers for supporting this, denoted A and R. A schematic overview of the
initializations is given in Fig. 1. We will adopt the notation as used in [5] for the
shift register bits, i.e., let (Bt, St, At, Rt) be the full state of Grain-128AEAD at
time t, where,

Bt = (bt, . . . , bt+127) denotes NFSR state at t ≥ 0,

St = (st, . . . , st+127) denotes LFSR state at t ≥ 0,

At = (at
0, . . . , a

t
63) denotes the Accumulator bits at t ≥ 384,

Rt = (rt
0, . . . , r

t
63) denotes the Register bits at t ≥ 384.

The functions for updating the LFSR and NFSR are given by

st+128 = st + st+7 + st+38 + st+70 + st+81 + st+96

= st + f ′(st+7..t+96), (1)
bt+128 = st + bt + bt+26 + bt+56 + bt+91 + bt+96 + bt+3bt+67 + bt+11bt+13

+ bt+17bt+18 + bt+27bt+59 + bt+40bt+48 + bt+61bt+65 + bt+68bt+84

+ bt+22bt+24bt+25 + bt+70bt+78bt+82 + bt+88bt+92bt+93bt+95

= st + bt + g′(bt+3..t+96), (2)

where the functions f ′() and g′() are introduced in order to simplify notation
in our analysis in later sections. The output of Grain-128AEAD uses a nine-
variable, degree three Boolean function h,

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8, (3)

and is given by

yt = st+93 + bt+2 + bt+15 + bt+36 + bt+45 + bt+64 + bt+73 + bt+89 (4)
+ h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94)

= bt+2 + h′(bt+12..t+95, st+8..t+94), (5)

where, again, h′() is introduced for later convenience. The key and nonce
(IV) are 128 and 96 bits respectively and we denote them as k0, . . . , k127 and
IV0, . . . , IV95. To initialize the cipher, let

Grain-128AEADv2: Strengthening the Initialization 27

Fig. 1. Overview of the initialisation of Grain-128AEAD

B0 = (k0, . . . , k127), (6)
S0 = (IV0, . . . , IV95, 1, 1, . . . , 1, 0). (7)

Then, for 256 clocks, the LFSR and NFSR are updated according to

st+128 = st + f ′(st+7..t+96) + yt, 0 ≤ t ≤ 255, (8)
bt+128 = st + bt + g′(bt+3..t+96) + yt, 0 ≤ t ≤ 255. (9)

Then, in the next 128 clocks, the key is re-introduced into the LFSR while the
NFSR is updated as in regular keystream mode,

st+128 = st + f ′(st+7..t+96) + kt−256, 256 ≤ t ≤ 383, (10)
bt+128 = st + bt + g′(bt+3..t+96), 256 ≤ t ≤ 383. (11)

In parallel to this key re-introduction, the A and R registers are initialized with
the generated yt. At the end of the initialization, we thus have

S384 = (s384, . . . , s511),
B384 = (b384, . . . , b511),
A384 = (y256, . . . , y319),
R384 = (y320, . . . , y383).

Note that this notation is slightly different from the design document, but con-
sistent with [5]. Starting at t = 384, the generated yt is used for encryption
and message authentication. The details here are left out as we will only be
considering the cipher initialization.

28 M. Hell et al.

3 Reconstructing the Key

In this section, we outline the key reconstruction approach proposed by Chang
and Turan in [5]. We use the term reconstruct in order to distinguish the approach
from key recovery, which is a well established attack goal. Key recovery typically
uses information known to an attacker, such as keystream or some side channel
information. In the approaches considered in this paper, we additionally assume
that the internal state is known, but not the key. Thus, the reconstruction attacks
discussed in this paper are always preceded by a state recovery attack. This is
implicit in the paper and, in this context, the key recovery attack consists of a
state recovery attack followed by a key reconstruction. This does, however, not
imply that all key recovery attacks must start with a state recovery.

For Grain-128AEAD (and similarly for the other ciphers in the Grain family),
the LFSR/NFSR can always be clocked backward during the running phase
(t ≥ 384). Thus, if the state is recovered at any time t ≥ 384, it is straightforward
to obtain the state B384 and S384. Thus, knowing one state, we can assume that
the attacker has knowledge of bt, t ≥ 384 and st, t ≥ 384. However, finding B383

and S383, which includes b383 and s383 requires knowing the key bit k127, as

s511 = s383 + s390 + s421 + s453 + s464 + s479 + k127. (12)

Thus, we have two unknowns. Combining this with the update for b511, we have

b511 = s383 + b383 + b409 + b439 + b474 + b479 + b386b450 + b394b396

+ b400b401 + b410b442 + b423b431 + b444b448 + b451b467

+ b405b407b408 + b453b461b465 + b471b475b476b478.

(13)

Adding this equation gives another unknown, b383. However, if we assume that
also the register R is known at time t = 384, i.e., R384 = [y320, . . . y383] is known,
then we can add the expression

y381 = h(b393, s389, s394, s401, b476, s423, s441, s460, s475) + s474 + b383

+ b396 + b417 + b426 + b445 + b454 + b470,
(14)

which includes the unknown term b383. Thus, we now have 3 equations and 3
unknown variables that are linearly added in this equation. All key bits can
now be recovered by continuing to clock backwards. The pre-output bits in the
accumulator

A384 = [y256, y257, . . . , y319]

can be computed as

A384 = T +
L−1∑

i=0

mi · R2i+384, (15)

where m0,m1, . . . ,mL is a known message with the corresponding authentication
tag T . With both the state (S384 and B384) and the register contents known,

Grain-128AEADv2: Strengthening the Initialization 29

we can easily reconstruct the secret key. Since the keystream does not depend
on the registers A and R, a state recovery attack is more likely to recover only
the LFSR and NFSR states. Then, as y382 and y383 can be directly determined
from S384 and B384, a key reconstruction requires 262 computational steps, i.e.,
guessing the bits y320, . . . , y381.

4 Basic Attempts to Make the Key Re-introduction
Stronger

In this section, we analyze alternative approaches for key re-introduction in
parallel with the initialization of A/R registers while maintaining 384 clocks for
initialization. We take a conservative approach and assume that the contents of
all four registers (B,S,A,R) are known to an adversary at time t = 384. As will
be shown, virtually any solution in this model fails to protect the key if the state
is recovered.

4.1 Group 1: Push Key Bits into NFSR Instead of LFSR

There are a number of initialization options that fall into the same category,
where the derivation of unknown bits is immediately possible without any extra
effort.

Let us first consider what happens if we XOR the key bits into the NFSR
instead of the LFSR, i.e., the updates given by Eqs. (10) and (11) are replaced
by

st+128 = st + f ′(st+7..t+96), (16)
bt+128 = st + bt + g′(bt+3..t+96) + kt−256. (17)

Considering the equations for computing the same bits as before (y381, s511 and
b511), we have

s511 = s383 + f ′(s390..479), (18)
b511 = s383 + b383 + g′(b386..479) + k127, (19)
y381 = b383 + h′(b393..476, s389..475). (20)

As seen, we end up in the same situation with three equations and three
unknowns that can easily be solved explicitly.

Summary: Any initialization option that leads to a linearly independent system
of 3 equations on 3 unknowns is easily broken.

4.2 Group 2: Push Key Bits into both NFSR and LFSR

Another approach could be to make the above vulnerable system of 3 equations
linearly dependent. There are also several options in this category, but we give

30 M. Hell et al.

just one example where we XOR the key bits into both the LFSR and the NFSR,
i.e., the update given by Eq. (11) is replaced by

bt+128 = st + bt + g′(bt+3..t+96) + kt−256. (21)

The corresponding expressions for y381, s511 and b511 are then

s511 = s383 + k127 + f ′(s390..479), (22)
b511 = s383 + b383 + k127 + g′(b386..479), (23)
y381 = b383 + h′(b393..476, s389..475), (24)

which is a linearly dependent system of equations. At first glance, this seems to
be a better key re-introduction, as it is not possible to determine both s383 and
k127, but only their sum s383 + k127. However, this does leak information. It is
possible to guess the value of s383 and verify this guess in a time offset manner
as follows.

Let us first generalize Eqs. (22–24),

st+128 = (st + kt−256) + f ′(st+7..t+96), (25)
bt+128 = (st + kt−256) + bt + g′(bt+3..t+96), (26)

yt−8 = bt−6 + bt+4st + e′(bt+4..t+87, st+5..t+86), (27)

where e′ is the function h′ without the x0x1 term (here represented by bt+4st).
As for the key reconstruction algorithm, we will run a recursion starting from
t = 383 and clocking the cipher backward. On each step of the recursion we
assume that all values st+1.., bt+1.. are known (or guessed), and we want to
recover the three new bits of st, bt, kt−256.

From Eqs. (25–26) we can derive bt and (st + kt−256). Then, we can guess st

and from that derive kt−256. This guess can then be verified just only 6 recursion
steps later at time (t − 6) by using Eq. (27) since it involves the guessed bit st,
and the newly derived bit bt−6, while yt−8 here serves as a known value taken
from the A/R states and is used as the verification value for the guessing paths
along the recursion. Note that the derived bt is also correct only if all previous
guesses of the involved bits were correct.

Summary: Re-introduction of the key bits such that the 3 equations become
linearly dependent does not help, since the previous guesses may be verified at
a later stage of a recursion backtracing algorithm.

4.3 Generic Recursive Backtracing Attack

An even simpler and generic backtracing recursion that covers attacks on any
tweak from both groups listed above, would be to just guess the st in each step
t, derive bt, kt−256, and simply compute the value of yt and verify it against the
known correct value taken from the A/R state. In this case, we do not even
need to go deeper into the structure of the Boolean functions involved, and

Grain-128AEADv2: Strengthening the Initialization 31

the recursion will automatically return one step backward once it detects that
some previous guess was wrong. The complexity of the key reconstruction can
be summarized in Theorem 1.

Theorem 1 (Backtracing complexity). For all considered initializations
from the groups 1 and 2, one can organize a recursion starting from t = 383
and going down to t = 256, where the expressions on bt+128, st+128 involve 3
unknowns st, bt, kt−256. At every step of recursion, the attacker guesses the value
of st (or bt depending on the initialization) and directly derives the other two
unknowns, then clocks the cipher backward by 1 step and decrements the time
instance t by 1.

In the above recursion, if the guessed value st can be verified (against some
other equation or a new constraint, e.g., y-values) only after the recursion depth
d (i.e., in time t − d), then the overall backtracing complexity will be O(2d).

Proof. The depth of the recursion is 128, and if every guess would be correct, then
the complexity of each node would be O(1) resulting in O(1) overall. However,
in each node of the recursion, we have to make O(2d) other guesses before the
current node can be verified and resolved. Therefore, the overall complexity is
multiplied by O(2d).

Simulation Results. We implemented the above backtracing recursion algo-
rithm and applied it on two different initialization options that belong to the
second group of initializations (see Sect. 4.2). We were able to reconstruct the
whole 128-bit key quite efficiently within some milliseconds, and the time com-
plexity matched well the results of Theorem 1.

Summary: The main problem with these approaches is that the key is re-
introduced while initializing the registers A and R. Thus, it is possible to use
the values of y in these registers for verification in the reconstruction algorithm.

4.4 The Parallel Option: Parallel XOR of the Whole Key at the End
of Initialization

A straightforward approach, and one that is inspired by [9], is to simply XOR
all key bits into one of the registers as a final step in the initialization. This is
also a tweak that was suggested in [5].

First of all, this has a significant drawback of adding to the hardware foot-
print, since, for 128 register cells, we need to add one XOR gate and one mul-
tiplexer, i.e., at least 256 new gates. This makes the hardware footprint much
larger and we would still prefer to explore options where the key is serially
inserted into one or both registers.

Secondly, this approach seems also vulnerable to the generic backtracing
recursion or similar, since y-values stored in A/R can again be used for verifi-
cation at some backward time instances of the recursion against the guessing
paths. Moreover, the order of guessing in this scenario can be chosen freely by
an attacker.

32 M. Hell et al.

Conclusions: Any tweak where the A/R bits are initialized in parallel or before
the key re-introduction can be broken. From this, we conclude that the initial-
ization of the registers A and R must be done after the key re-introduction. In
the next section, we will consider new approaches for initialization that are more
resistant to key reconstruction when the state is known.

5 Re-introducing the Key Before A/R Register
Initialization

Separating key re-introduction and A/R initialization removes the possibility to
verify guesses against the A/R content. In this section, we will consider various
options for a new tweak in initialization that meet these new requirements.

5.1 New Generic Initialization Steps

Considering the above analysis, it becomes clear that the initialization should
consist of 3 clearly separated phases. We believe these phases should be as fol-
lows:

– Cn standard initialization clocks, like in Grain-128a, where the pre-output yt

is added to both LFSR and NFSR, i.e., for t = [0, . . . , Cn − 1]:

st+128 = st + f ′(st+7..t+96) + yt, (28)
bt+128 = st + bt + g′(bt+3..t+96) + yt; (29)

– Ck clocks where the key is re-introduced (to be defined later);
– Cm clocks where the pre-output yt is used to initialize the registers A/R,

while the LFSR and NFSR are updated in the standard keystream mode,
i.e., for t = [Cn + Ck, . . . , Cn + Ck + Cm − 1]:

st+128 = st + f ′(st+7..t+96), (30)
bt+128 = st + bt + g′(bt+3..t+96), (31)
A/R ← yt. (32)

In a straightforward approach, one could select Ck = 128 to re-introduce the
key bits serially in 128 clocks into either (or both) the LFSR and/or NFSR.
However, we can compress this stage to Ck = 64 clocks by splitting the key into
two parts, adding each part to one of the registers,

st+128 = st + f ′(st+7..t+96) + yt + kt−Cn+64, (33)
bt+128 = st + bt + g′(bt+3..t+96) + yt + kt−Cn

, (34)

for 64 time instances t = [Cn, . . . , Cn + 63]. This solution is efficient in both
hardware and software. We fix the two initialization parameters to Ck = 64 and
Cm = 128, and it remains to decide Cn, i.e., the duration of the initial phase.

Grain-128AEADv2: Strengthening the Initialization 33

5.2 An Attempt to Keep 384 Clocks in Total, Cn = 192

To keep the original 384 initialization clocks, we explore the possibility to re-
introduce the key bits in clocks [192, . . . , 255]. Assume a state recovery attack,
where the state B384, S384 after initialization is recovered. Since the key is intro-
duced earlier, we can clock backward and recover B256, S256. The content of
A/R can be recovered immediately since they are initialized at 256 ≤ t ≤ 383
using y256, . . . , y383. However, now these bits cannot be used for verification of
the guessing paths. The last key bits, k63 and k127 are introduced through

s383 = s255 + f ′(s262..351) + y255 + k127, (35)
b383 = s255 + b255 + g′(b258..351) + y255 + k63, (36)

where s255, b255, k63, k127 are unknowns, and other terms can be derived; there-
fore, the pre-outputs yt in time t ≥ 256 are now useless for key reconstruction
(unlike the approaches in Sect. 4).

The only remaining possibility for an attacker to verify the guesses, or to
recover key bits, is to link somehow the known state B256, S256 to the initial
state B0, S0, i.e., to the original Key, IV values.

Differential Analysis. We now show that if Cn is too small, then the initializa-
tion as defined by Eqs. (33) and (34) leaks key information through a differential
attack. Consider the following sum of variables, denoted by z,

zt+128 = bt+128 + st+128 + g′(bt+3..t+96) + f ′(st+7..t+96)
= (st + bt + g′(bt+3..t+96) + yt + kt−192)

+ (st + f ′(st+7..t+96) + yt + kt−128)
+ g′(bt+3..t+96) + f ′(st+7..t+96)

= bt + kt−192 + kt−128.

(37)

Since we know bt and st for t ≥ 256, we can compute zt+128 for t ≥ 253 (since
t + 3 is the lowest used index in the g′ and f ′ functions). Thus, we can find a
differential

Δzt+128 = Δ(bt + kt−256 + kt−192) = Δbt, for t ≥ 253. (38)

A Possible Scenario for Key Bit Reconstruction with Conditional Dif-
ferentials. In a simple scenario we would like to recover some key bit kx,
based on the conditional differential distributions D0 = (Δbt|kx = 0) and
D1 = (Δbt|kx = 1), for some ΔIV . If these distributions have different biases,
then by collecting many samples Δbt, we can determine the key bit kx. This
way, we can recover one key bit. The differential should be introduced, ideally,
by some ΔIV while keeping the same Key, and we would then collect r pairs of
the form (Key, IVi) and (Key, IVi +ΔIV), for i = 1, . . . , r, some fixed Key and
random IVis. Then, for each pair Δzt+128 (that is equal to Δbt) is computed and

34 M. Hell et al.

the empirical distribution D is constructed. Finally, we compute the distances
from D to both D0 and D1, and the shorter distance decides on the key bit
value kx.

Of course, the above procedure for recovering kx requires applying a state
recovery attack on 2r keystreams, recovering 2r states of (B256, S256). These
states are used for collecting the zt+128 samples and the construction of the
empirical distribution D. However, when, for example, the two key bits k63, k127
are recovered, it is possible to clock further backward, and all those recovered
states can be used to collect differential samples to recover some other key bit.

One approach could be to collect many samples with a number of differentials
ΔIV0, . . . ,ΔIV127 – one for each key bit, not necessarily to be used at the same
time instance t. Then, depending on the time instance t and the target key bit
kx, we could derive differential samples from one of the ith group of the recovered
states. As soon as it becomes possible (i.e., when certain key bits are recovered),
the attacker clocks all states backward by one or more clocks, which opens up
for applying other Δis and thus to recover other key bits.

Differential Probabilistic Model. In order to study conditional and/or dif-
ferential probabilities, we have adopted the following model for a binary signal
x, where the signal x is associated with two probabilities:

px = Pr{x = 1},

pΔx = Pr{x ⊕ x′ = 1},

where x′ is the same signal but may have a different value, i.e., Δx = x ⊕ x′.
For two independent signals x and y we derive expressions for the resulting

probabilities of XOR and AND gates:

px⊕y = px + py − 2pxpy,

pΔ(x⊕y) = pΔx + pΔy − 2pΔxpΔy,

px&y = pxpy,

pΔ(x&y) = pΔxpΔy(2(1 − px)(1 − py) − 1) + pxpΔy + pypΔx.

By this, we can configure the initial state of Grain with these signals, where
some of the signals will be random values, constants 0 or 1, or differential bits.
Then we clock the cipher and derive probabilities for the resulting signals. In
the end, we check if some bit of the state or its differential has a detectable bias
and if yes then we can try to use it in an attack.

Note that this method is expected, in most cases, to give a lower bound for
these biases since above we consider x and y as independent. In reality, many of
those signals will be dependent. For example, x = abc and y = bcd are dependent
as they share b and c signals. Also, if some term a is added in a Boolean expression
twice then it should be canceled out, while in this model it will be treated as two
different independent signals, thus making the resulting biases smaller than in
reality. Therefore, this method is suitable for first searching statistical anomalies,
but the actual bias can be verified and refined through, e.g., real simulations.

Grain-128AEADv2: Strengthening the Initialization 35

The state of Grain is thus initialized as follows:

Constant 0 → p0 = 0, pΔ0 = 0,

Constant 1 → p1 = 1, pΔ1 = 0,

Key bits → pk = 0.5, pΔk = 0,

Fixed randomIV bits → piv = 0.5, pΔiv = 0,

Differential Δ IV bits → piv = 0 or 1, pΔiv = 1.

Examples of Conditional Differentials. We have not managed to find a
complete path for the sketched conditional differential attack, but we have found
at least some examples where some of the key bits can be recovered by looking
into Δz255+128.

The best approach found is to initialize the cipher with a difference in a single
IV-bit. If Pr(Δz383) = Pr(Δb255) = 0.5(1+ε) we can distinguish the cipher from
random using about ε−2 such samples. By utilizing the differential probabilistic
model, we find that such a difference can be observed with a differential in IV56,
whenever all other Key and IV bits are random:

ΔIV56|Key109 = 0 → ε(Δb255) = 2−6.73,

ΔIV56|Key109 = 1 → ε(Δb255) = 0.
(39)

The above biases were refined through real simulations by collecting 224 samples,
resulting in:

ΔIV56|Key109 = 0 → ε(Δb255) = 2−3.23,

ΔIV56|Key109 = 1 → ε(Δb255) = 0.
(40)

It is hard to say exactly how these distributions will behave for a concrete
fixed key, but let us assume that for all or most keys the above is true. Then,
recovering k109 would proceed as follows. Collect differential samples Δz383 for
ΔIV56, i.e., the cipher is initialized with many random IV pairs where we flip only
the bit IV56. Then, based on the empirical distribution of Δz383 we can determine
the value of k109. This will require around 2 · 26.46 = 27.46 initializations, each
followed by a state recovery attack. Recovering all key bits in this way requires
finding biases similar to Eq. (40) (where we can also utilize any other t ≥ 253).
While this might not be feasible for all key bits, recovering some key bits in this
way could be followed by an exhaustive search for the rest. We stress that this
requires a state recovery for each initialization and is thus always more expensive
than a state recovery attack. Still, the relatively large biases found here question
the suitability of re-introducing the key in this way as early as t = 192 since a
state recovery attack gives information about the state already at t = 256.

Conclusion: In the presented example we only show that such a conditional
differential exists to some extent. This approach for key reconstruction can be
investigated further, and we leave it for future research. What is clear is that for
Cn = 192 there is at least some leakage of information about the key, although
the exact attack scenario is not easy to find.

36 M. Hell et al.

Other Differentials Detected. The differential probabilistic model was also
used to detect some other biases. For example, we were fixing the key to a random
state and were running the model to see how far we can get a bias with that
model. We found that in ∼ 9.4% of random keys, where we also set IV48..96 = 0
while IV0..47 are random, we get for ΔIV69 the differential Δb288 to have the
bias around 2−9.9..−12.9.

Through real simulations, we collected 230 samples for each random key, and
received the refined bias in the range 2−9..−11, but with a higher success rate of
∼ 12.5% for 2600 random keys tested. For these simulations we used a PRNG
with high entropy. Simulation results are given in Fig. 2.

Fig. 2. Refining simulation results for the bias of Δb288.

I.e., for about one key out of 8 random keys, we can distinguish Δz288+128

from random by collecting around 218..22 IV-differential samples. However, the
result of the distinguisher may leak up to 5 bits of information about the key
in connection to 4 possible answers: random, or one of the 3 biased peaks. To
be more precise, reverse-engineering of the random keys led to the four different
answers resulting in the following key information:

if Δb288 is biased then k73 = k122 = 0, k109 = 1,

if ε(Δb288) ≈ 2−9 then k77 = k112 = 0,

if ε(Δb288) ≈ 2−10 then k77 + k112 = 1,

if ε(Δb288) ≈ 2−11 then k77 = k112 = 1,

which means that Δz416 can be used to get some information about the key.

Grain-128AEADv2: Strengthening the Initialization 37

5.3 What Would Be the Minimum Cn?

From Differential Attacks Perspectives. Recall the previously derived
expression for Δzt+128,

Δzt+128 =Δ(bt+128 + st+128 + g′(bt+3..t+96) + f ′(st+7..t+96)) = Δbt,

and the first (smallest) t for which the above differential is available, right after
the set of state recovery attacks, is t = Cn+Ck −3 (see Eq. (37)), where Ck = 64
but Cn is not yet known. Thus, if there is a weakness in Δbt then the lower bound
for Cn to mitigate such a weakness would be

Cn ≥ t − 60.

In [14], the authors managed to recover 18 key bits after 169 clocks of ini-
tialization, but there they were looking at yt values instead of the state bits. In
a näıve approximation, this would translate to having some (differential) bias in
at most s169+94, b169+95 state bits, where 169 + 95 = 264 is the highest index
of the state bits involved in y169. Thinking purely theoretically one could, per-
haps, collect some statistics on up to Δb264. This leads to the first lower bound
Cn ≥ 204. Clearly, Cn = 192 looks too low – the case we first considered in
Sect. 5.2 in order to keep 384 clocks of initialization.

However, in our simulations, we were able to find highly biased differentials
up to around Δb288 (see Sect. 5.2), which means that Cn must be at least Cn ≥
228 in order to prevent these differentials as well.

Finally, we would like to note that the mentioned paper [14] also provides
a distinguishing attack after 195 initialization rounds, by again looking into yt.
Note that in the case of a state recovery attack a distinguishing attack is not
relevant at all – if the attacker can recover the state of a given keystream then,
certainly, we have a distinguisher. What only matters for this type of analysis is
the possibility to reconstruct at least some key bits given available expressions
and values. Nevertheless, if we could anyways get some biased conditional dis-
tribution on Δb195+95 then that assumption translates into the hardest lower
bound Cn ≥ 230.

Although we make here a very strong assumption that some key bits can
still be recovered by looking at Δb290, there is great uncertainty about how
large the bias would be, and therefore how many samples one has to collect.
The complexity of such an attack is then at least the number of samples needed
multiplied by the complexity of a single state recovery attack. There is also
uncertainty about how many and which key bits can be statistically detected,
and whether this leads to any additional backward clocks of the collected states.
The order of determining key bits is important for the backtracing ability.

Summary: Given the current state-of-the-art analysis of Grain, and making the
most strict (and, perhaps, unrealistic) assumptions, we conclude that we have a
lower bound Cn ≥ 230. This means that we cannot really stay with 384 clocks
for the initialization (starting to re-introduce the key at t = 192), but should
increase it by at least 38 (plus some added margin), even if these strong attack
models are hard to achieve.

38 M. Hell et al.

Combining State Recovery, Guess-and-determine, and Distinguishing
Attacks. Let us again consider the distinguishing attack in [14] using y-terms
after 195 initialization clocks. This means that there could also exist a distin-
guisher on Δb195+95, since y195 involves b195+95. So, if Cn = 229 then we can
sample Δz418 = Δb290 and distinguish that from random. Though a pure distin-
guishing attack itself is not interesting in key reconstruction, such a distinguisher
can be used for verifying guessed key bits.

Assume that, based on the previous discussion, we adopt Cn = 256. Then, we
can collect r pairs of keystreams, each pair with one keystream generated with
some random IV , and one using a differential IV + ΔIV for some fixed ΔIV .
Then we apply a state recovery attack on each of the 2r keystreams, recovering
r pairs of states (B(i)

320, S
(i)
320) and (B′(i)

320, S
′(i)
320), for i = 1, . . . , r.

Then, by guessing the first 54 key bits, we can reverse 27 initialization steps,
recovering (B(i)

293, S
(i)
293) and (B′(i)

293, S
′(i)
293). Thus, we reach Cn = 229. At this point,

for each pair of states in time t = 293, we compute r samples Δz
(i)
290+128, i.e.,

Δb
(i)
290, see Eq. (38). With many states, we can use the empirical distribution for

Δb290 and distinguish it from random. If the 54 key bits were correctly guessed,
we get a biased empirical distribution, otherwise, the guess was incorrect. Note
that, for every key guess we can use the same set of the recovered states for
sampling.

Example. Let us give an example of the complexity of this attack. Assume
that there is a ΔIV that makes Δb290 being biased with ε = 2−10. With 254

distributions, to distinguish the correct key guess, we need about (54·2 ln 2)·220 =
226.2 samples, i.e., 227.2 keystreams are needed [11]. If the state recovery attack
has complexity 2e then the total attack complexity would be O(2e · 227.2 + 254 ·
227.2) = O(2e+27.2 + 281.2). Note also, if the bias of Δb290 would be too small,
the attacker can guess a few more key bits and reach a lower index of Δbt where
the bias is larger. For example, guessing 2 more key bits makes it possible to
backtrace one more step.

Conclusion: The sketched attack is purely theoretical at the moment, and we
leave further investigations for future research. However, to mitigate such kinds
of more advanced attacks, the lower bound on Cn should be increased by 64,
i.e., Cn ≥ 294. In this case, all key bits need to be guessed in order to reach the
time instance where one can collect biased samples and use them for verification.
And, of course, future research might reveal biases in Δbt with t > 290. For these
reasons, Cn = 256 also looks too low in the context of key reconstruction from
known states.

6 A Modified Key Re-introduction

From the analysis in the previous sections, we can conclude:

1. The key should not be re-introduced while also initializing the A and R
register, or in parallel after;

Grain-128AEADv2: Strengthening the Initialization 39

2. Introducing the key as early as t = 256 is questionable due to rather large
biases found in some differentials.

Based on our analysis done in the previous sections, we propose to increase
the initialization by 128 extra clocks and to adopt Cn = 320, Ck = 64, Cm = 128
in the generic description given in Sect. 5.1. We believe that this tweak makes
the key re-introduction secure against the attacks discussed in this paper. The
cipher using this new initialization is denoted Grain-128AEADv2. To summarize
the result of this new initialization, we highlight the following aspects.

– Both Grain-128a and Grain-128AEAD have 256 clocks of initialization, and
no attack was found on that so far. In the proposed tweak we do Cn = 320
initialization clocks, in order to protect the key re-introduction phase in case
the whole state is recovered from the keystream. After that we re-introduce
the key, followed by the A/R initialization. This amounts to a total of 512
initialization steps, adding 33% to the 384 steps in Grain-128AEAD. In the
proposed design we have security not worse than in the previous instances of
Grain, which in turn were analyzed for many years;

– We use only 64 clocks for the key re-introduction phase, which is a compromise
between a parallel XOR of the key (that is more expensive in hardware) and
the introduction of the key bits in 128 clocks (that is more expensive in time).
Moreover, we believe that serialized key re-introduction is more secure than
the parallel, since then an attacker has much less freedom to exploit available
Boolean expressions;

– The attacks on the key re-introduction, similar to the one in [5] are no longer
possible. The three initialization phases are now clearly separated;

– With the proposed tweak we prevent key reconstruction from known states
also with more advanced and comprehensive types of attacks, though some of
them are currently theoretical and speculative, and also under strong assump-
tions.

As noted, we believe that the choice of Cn = 320 provides a good security
margin against key reconstruction from conditional differentials.

7 Conclusions

The security property found in [5] of the key re-introduction of Grain-128AEAD
shows that the key can be reconstructed with low complexity if the state is
known. In this paper, we analyze the initialization, and in particular the key re-
introduction further by considering several different possible approaches for key
reconstruction. We also analyze these approaches, both in relation to a previously
published reconstruction technique, but also by considering more sophisticated
methods. As a result, we suggest a modification to the cipher initialization that
is both more secure, but also maintains the validity of previous analysis of the
initialization algorithm. The new cipher version is denoted Grain-128AEADv2.

40 M. Hell et al.

Acknowledgements. This research was funded in part by the Swedish Foundation
for Strategic Research, grant RIT17-0032 and in part by the ELLIIT project.

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. Int. J. Wireless Mobile Comput. 5(1), 48–59
(2011)

2. Amin Ghafari, V., Hu, H.: Fruit-80: a secure ultra-lightweight stream cipher for
constrained environments. Entropy 20(3) (2018). https://www.mdpi.com/1099-
4300/20/3/180

3. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal
states. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 451–470. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 22

4. Babbage, S., Dodd, M.: The stream cipher mickey 2.0. eSTREAM: the ECRYPT
Stream Cipher Project (2006)

5. Chang, D., Turan, M.S.: Recovering the key from the internal state of grain-
128aead. Cryptology ePrint Archive, Report 2021/439 (2021). https://eprint.iacr.
org/2021/439

6. Cannière, C.: Trivium: a stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006).
https://doi.org/10.1007/11836810 13

7. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally
verified attack on full grain-128 using dedicated reconfigurable hardware. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 18

8. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 10

9. Hamann, M., Krause, M.: On stream ciphers with provable beyond-the-birthday-
bound security against time-memory-data tradeoff attacks. Cryptogr. Commun.
10(5), 959–1012 (2018). https://doi.org/10.1007/s12095-018-0294-5

10. Hamann, M., Krause, M., Meier, W.: Lizard - a lightweight stream cipher for
power-constrained devices. IACR Trans. Symmetric Cryptology 2017(1), 45–79
(2017)

11. Hell, M., Johansson, T., Brynielsson, L.: An overview of distinguishing attacks on
stream ciphers. Cryptogr. Commun. 1(1), 71–94 (2009)

12. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–
1618. IEEE (2006)

13. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. Int. J. Wireless Mobile Comput. 2(1), 86–93 (2007)

14. Ma, Z., Tian, T., Qi, W.F.: Conditional differential attacks on grain-128a stream
cipher. IET Inf. Secur. 11(3), 139–145 (2017)

15. Maximov, A., Hell, M.: Software evaluation of grain-128aead for embedded plat-
forms. Cryptology ePrint Archive, Report 2020/659 (2020). https://eprint.iacr.
org/2020/659

16. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. IACR Trans. Symmetric Cryptology 2016(2), 52–79 (2017)

https://www.mdpi.com/1099-4300/20/3/180
https://www.mdpi.com/1099-4300/20/3/180
https://doi.org/10.1007/978-3-662-48116-5_22
https://eprint.iacr.org/2021/439
https://eprint.iacr.org/2021/439
https://doi.org/10.1007/11836810_13
https://doi.org/10.1007/978-3-642-25385-0_18
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/s12095-018-0294-5
https://eprint.iacr.org/2020/659
https://eprint.iacr.org/2020/659

Grain-128AEADv2: Strengthening the Initialization 41

17. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002,
pp. 98–107. Association for Computing Machinery (2002)

18. Sönnerup, J., Hell, M., Sönnerup, M., Khattar, R.: Efficient hardware implementa-
tions of grain-128AEAD. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT
2019. LNCS, vol. 11898, pp. 495–513. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-35423-7 25

https://doi.org/10.1007/978-3-030-35423-7_25
https://doi.org/10.1007/978-3-030-35423-7_25

Partition Oracles from Weak Key
Forgeries

Marcel Armour1(B) and Carlos Cid1,2

1 Royal Holloway University of London, Egham, UK
{marcel.armour.2017,carlos.cid}@rhul.ac.uk

2 Simula UiB, Bergen, Norway

Abstract. In this work, we show how weak key forgeries against polyno-
mial hash based Authenticated Encryption (AE) schemes, such as AES-
GCM, can be leveraged to launch partitioning oracle attacks. Partition-
ing oracle attacks were recently introduced by Len et al. (Usenix’21) as a
new class of decryption error oracle which, conceptually, takes a cipher-
text as input and outputs whether or not the decryption key belongs to
some known subset of keys. Partitioning oracle attacks allow an adver-
sary to query multiple keys simultaneously, leading to practical attacks
against low entropy keys (e. g. those derived from passwords).

Weak key forgeries were given a systematic treatment in the work of
Procter and Cid (FSE’13), who showed how to construct MAC forgeries
that effectively test whether the decryption key is in some (arbitrary)
set of target keys. Consequently, it would appear that weak key forgeries
naturally lend themselves to constructing partition oracles; we show that
this is indeed the case, and discuss some practical applications of such an
attack. Our attack applies in settings where AE schemes are used with
static session keys, and has the particular advantage that an attacker has
full control over the underlying plaintexts, allowing any format checks on
underlying plaintexts to be met – including those designed to mitigate
against partitioning oracle attacks.

Prior work demonstrated that key commitment is an important secu-
rity property of AE schemes, in particular settings. Our results suggest
that resistance to weak key forgeries should be considered a related design
goal. Lastly, our results reinforce the message that weak passwords should
never be used to derive encryption keys.

Keywords: Authenticated Encryption · Partitioning oracles · Weak
key forgeries · Polynomial hashing · GCM

1 Introduction

Authenticated Encryption (AE) schemes are designed to provide the core prop-
erties of confidentiality and message integrity against chosen-ciphertext attacks
(CCA). A particularly important practical class of AE schemes offer Authen-
ticated Encryption with Associated Data (AEAD); AEAD schemes are widely
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 42–62, 2021.
https://doi.org/10.1007/978-3-030-92548-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_3&domain=pdf
http://orcid.org/0000-0002-1231-6120
http://orcid.org/0000-0001-5761-8694
https://doi.org/10.1007/978-3-030-92548-2_3

Partition Oracles from Weak Key Forgeries 43

standardised and implemented due to their efficiency and security. As a result
of their widespread adoption, AEAD schemes have in some cases been used
in contexts that require additional properties beyond standard CCA security.
One particular property that has attracted recent attention is key-commitment
[3,18,24], also known as robustness [21], which (informally) states that a cipher-
text will only decrypt under the key that was used to encrypt it.

A lack of key-commitment in particular AEAD schemes was exploited by
Len et al., who introduced a new class of attack they call “partitioning oracle
attacks” [31]. Conceptually, a partitioning oracle takes as input a ciphertext
and outputs whether the decryption key belongs to some known subset of keys.
Len et al. first construct so-called “splitting ciphertexts” for AES-GCM and
ChaCha20Poly1305 that decrypt under every key in a set of target keys. This
splitting ciphertext is submitted to a decryption oracle; on observing whether
the ciphertext is accepted or rejected, the adversary learns whether or not the
decryption key is in the set of target keys. As a result, the adversary is able to
query multiple keys simultaneously, speeding up a brute force attack. Combin-
ing this with low entropy keys, such as those derived from passwords, results in
practical attacks. Len et al. give a number of examples including against Shad-
owsocks [1], a censorship evasion tool, where the attack results in key recovery.

The concept of weak keys shares some similarities with that of partition-
ing oracles. Whilst there is no precise definition in the literature, the concept
is intuitively clear; Handschuh and Preneel [25] describe a weak key as a key
that results in an algorithm behaving in an unexpected way (that can easily be
detected) – the idea is that a weak key can be tested for with less effort than
brute force. Procter and Cid [36] give a framework that neatly captures weak
key forgeries (forgeries that are valid if the key is “weak”), which generalised
previous attacks against polynomial hash based message authentication codes
(MACs) by Handschuh and Preneel [25] and Saarinen [37]. Procter and Cid’s
results showed that for these cases the term is a misnomer: in fact, for a poly-
nomial hash based MAC, any set of keys can be considered weak using their
forgery techniques.

Abstractly, weak key forgeries and splitting ciphertexts share the same struc-
ture: ciphertexts whose successful decryption is contingent on the user’s key
being in a set of target keys. This suggests that weak key forgeries are a good
candidate to carry out partitioning oracle attacks; we show that this is indeed
the case. We first generalise the attack formalisation of Len et al. to allow
the adversary to act as a machine-in-the-middle, in a more realistic reflection
of an attacker’s capabilities. As a result we obtain a more abstract definition
that encompasses weak key forgeries and splitting ciphertexts. We show how to
carry out a partitioning oracle attack using weak key forgeries, and discuss some
practical applications of the attack. An advantage of our attack is the control
that an adversary obtains over underlying plaintexts, allowing for partitioning
oracle attacks in settings that are resistant to the attack of [31], in particular
where there are format requirements on underlying plaintexts – including format
requirements that are designed to render schemes key-committing. Our results

44 M. Armour and C. Cid

reinforce the conclusions of [31], especially on the danger of deriving encryp-
tion keys from user-generated passwords. Furthermore, our results suggest that
resistance to weak key forgeries should be considered a related design goal to
key-commitment, particularly in settings that are vulnerable to partitioning ora-
cle attacks. Concretely, our results demonstrate – in contrast to the suggestions
of prior work – that adding structure to underlying plaintexts (e.g. packet head-
ers that prefix every plaintext message, or an appended block of all zeros) is not
a sufficient mitigation against partitioning oracle attacks.

Related Work. Bellovin and Merritt introduced partition attacks against
encrypted key exchange: trial decryption of intercepted traffic allowed multiple
keys to be eliminated at once [11]. Other oracle attacks include padding oracles
[16,38] or other format oracles [4,6,23]; these attacks are similar to but distinct
from partitioning oracles as they recover information regarding plaintexts rather
than secret keys. Subverted decryption oracles that reveal information about
secret keys were considered in [8,9].

Structure. This paper is structured as follows. After describing our notation
below, we provide the relevant background material on polynomial hash based
schemes in Sect. 2. Partitioning Oracle Attacks are introduced in Sect. 3, and
our extension based on Weak Key Forgeries in Sect. 4. Section 5 describes our
experiments with Shadowsocks, as well as other protocols. We close the paper
with our conclusions in Sect. 6.

1.1 Notation

We refer to an element x ∈ {0, 1}∗ as a string, and denote its length by |x|; ε
denotes the empty string. The set of strings of length � is denoted {0, 1}�. In addi-
tion, we denote by ⊥ /∈ {0, 1}∗ a reserved special symbol. For two strings x, x′

we denote by x ‖ x′ their concatenation. A block cipher E is a family of permuta-
tions on {0, 1}n, with each permutation indexed by a key k ∈ K, where the key
space K = {0, 1}� for some fixed key length �. The application of a block cipher
to input x ∈ {0, 1}n using key k will be denoted by Ek(x). Arbitrary finite fields
are denoted by F, or when we specify its characteristic by Fpr , with p prime.

We use code-based notation for probability and security experiments. We
write ← for the assignment operator (that assigns a right-hand-side value to
a left-hand-side variable). If S is a finite set, then s ←$ S denotes choosing s
uniformly at random from S. We use superscript notation to indicate when an
algorithm (typically an adversary) is given access to specific oracles. If A is a
randomised algorithm, we write y ←$ A(x) to indicate that it is invoked on
input x (and fresh random coins), and the result is assigned to variable y. An
experiment terminates with a “stop with x” instruction, where value x is under-
stood as the outcome of the experiment. We write “win” (“lose”) as shorthand
for “stop with 1” (“stop with 0”). We write “require C”, for a Boolean con-
dition C, shorthand for “if not C: lose”. (We use require clauses typically to

Partition Oracles from Weak Key Forgeries 45

abort a game when the adversary performs some disallowed action, e.g. one that
would lead to a trivial win.) We use Iverson brackets [·] to derive bit values from
Boolean conditions: For a condition C we have [C] = 1 if C holds; otherwise we
have [C] = 0. In security games we write AO1,...,Oc ⇒ 1 to denote the event that
the adversary outputs 1 after being given access to the c oracles.

2 Background: Polynomial Hashing

MACs are a symmetric cryptographic primitive that allows two parties sharing a
secret key to communicate with the assurance that their messages have not been
tampered with. Many popular MAC schemes are constructed from universal
hash functions that are realised by polynomial evaluation; such MACs based on
polynomial hashing are discussed in Sect. 2.1. They are often used to provide the
authentication component for AEAD schemes, which are discussed in Sect. 2.2,
where we give an overview of the two most widely used polynomial hash based
AEAD constructions, McGrew and Viega’s Galois/Counter Mode (GCM) [32]
and Bernstein’s ChaCha20-Poly1305 [12].

2.1 MACs from Polynomial Hashing

A polynomial hash based authentication scheme is built on a family of univer-
sal hash functions that are based on polynomial evaluation. It takes as input
an authentication key H and message M (consisting of plaintext or cipher-
text blocks depending on context). Let M = M1 ‖ · · · ‖ Mp ‖ Mp+1 with
Mp+1 = len(M) and all Mi considered as elements of a field F (typically F2n),
and gM (x) be the polynomial in F[x] defined as gM (x) =

∑p+1
i=1 Mix

p+2−i. If
we also consider H ∈ F, the polynomial hash hH(M) of M is calculated by
evaluating gM (x) at H, i.e.

hH(M) := gM (H) =
p+1∑

i=1

MiH
p+2−i ∈ F .

The hash value is usually encrypted with a pseudo-random one-time pad, to
provide the output authentication tag.

The underlying properties of polynomials are inherited by the hash function
and thus the authentication scheme; in particular, the fact that adding a zero
valued polynomial will not change the value of the hash (which gives rise to
“weak key” forgeries, discussed in Sect. 2.4) and the fact that it is possible to
construct a polynomial that passes through a set of given points (giving rise to
multi-key collisions, discussed in Sect. 2.3).

2.2 AEAD

Let AEAD = (AuthEnc,AuthDec) be an AEAD scheme, and let its key space
be the set K. Encryption takes as input a key k ∈ K, together with a tuple
of nonce, associated data and plaintext (N,D,P) and returns a ciphertext and

46 M. Armour and C. Cid

authentication tag. We write (C, T) ← AuthEnck(N,D,P). Similarly, decryption
takes as input a key k ∈ K together with a tuple (N,D,C, T) of nonce, asso-
ciated data, ciphertext and authentication tag and returns either a message or
the error message ⊥ to indicate that the decryption was not successful. Correct-
ness requires that for all N,D,P not exceeding the scheme’s length restrictions,
AuthDeck(N,D,C, T) = P with (C, T) = AuthEnck(N,D,P).

A common paradigm for constructing AEAD schemes is to use an Encrypt-
then-MAC (EtM) construction with a stream cipher for encryption and an
authentication component from a polynomial based universal hash function. We
give a brief overview of the most widely adopted and standardised schemes:
McGrew and Viega’s AES Galois/Counter Mode (AES-GCM) [32] below and
Bernstein’s ChaCha20-Poly1305 [12,35] in AppendixA.

AES-GCM. AES-GCM encryption takes as input: an AES key k, a nonce N ,
plaintext P = P1 ‖ · · · ‖ Pp and associated data D = D1 ‖ · · · ‖ Dd. The key is
128, 192 or 256 bits long, the nonce N should preferably be 96 bits long although
any length is supported. For each i, |Pi| = |Di| = 128 except for perhaps a partial
final block. With this input, AES-GCM returns a ciphertext C = C1 ‖ · · · ‖ Cp

(the same length as the plaintext) and an authentication tag T . From here on,
we will omit associated data for simplicity. The plaintext is encrypted using an
instance of the AES in counter mode, under key k with counter value starting
at CTR1. If the nonce is 96 bits long the initial counter value (CTR0) is N ‖ 0311,
otherwise it is a polynomial evaluation-based hash of N after zero padding (using
the hash key described below). For each i, CTRi = inc(CTRi−1), where inc(·)
increments the last 32 bits of its argument (modulo 232).

The authentication tag is computed from GHASH, a polynomial evalua-
tion hash (in F2128). The ciphertext C is parsed as 128-bit blocks (with partial
final blocks zero padded) and each block is interpreted as an element of F2128 .
We denote by L an encoding of the length of the (unpadded) ciphertext and
additional data. The hash key H is derived from the AES block cipher key:
H = Ek(0128). The hash function is then computed as:

hH(C) = L · H ⊕ C∗
p · H2 ⊕ Cp−1 · H3 ⊕ · · · ⊕ C2 · Hp ⊕ C1 · Hp+1, (1)

where all operations are in F2128 , and C∗
p denotes the zero-padded last block.

The authentication tag is given by: T = Ek(CTR0) ⊕ hH(C).

2.3 Key Commitment

A committing AE scheme is one which satisfies the property of key commitment,
which (informally) states that a ciphertext will only decrypt under the key that
was used to encrypt it. Equivalently, for a committing AE scheme, it should be
infeasible to find a ciphertext that will decrypt under two different keys. Security
goals for committing AE were first formalised by Farshim et al. [21] under the
name “robustness”. Although key commitment is not part of the design goal
of AE schemes, there are natural scenarios where a lack of key commitment

Partition Oracles from Weak Key Forgeries 47

results in security issues. Dodis et al. [18] and Grubbs et al. [24] show how
to exploit non-committing AE schemes in the context of abuse reporting in
Facebook Messenger. Albertini et al. [3] give some further practical examples
where a lack of key commitment leads to practical attacks, e. g. in the setting
of paywalled subscription material where a malicious publisher might prepare a
ciphertext that decrypts to different content for different users.

The partitioning oracle attack of Len et al. [31] exploits the inherent lack
of key commitment for polynomial hash based AEAD schemes. They construct
a ciphertext Ĉ that decrypts under every key in a set of target keys K

∗ =
{k1, · · · , k�} by constructing a linear equation whose variables are the blocks of
ciphertext; Ĉ is the solution to the equation. We describe the technique using
AES-GCM for concreteness.

Given K
∗ and nonce N , first derive the associated GHASH key Hi = Eki

(0n)
for each ki ∈ K

∗. Then construct the linear equation

T = C1 · Hp−1
i ⊕ · · · ⊕ Cp−1 · H2

i ⊕ L · Hi ⊕ Eki
(N ‖ 0311) ,

which is arrived at by assigning Hi to H in Eq. (1) and substituting the result
into the expression for the tag T = hH(C)⊕Eki

(CTR0). The result is a system of
� equations in � unknowns which can be solved; this can be done more efficiently
using a clever trick (fixing T and adding one block of ciphertext as a new variable,
giving a Vandermonde matrix). We refer the reader to [31] for further detail.

Generic AE solutions, the so-called generic composition constructions such
as Encrypt-then-MAC, can provide key-commitment, as shown by Farshim et al.
[21] who suggested using a keyed hash function such as HMAC [10] for authen-
tication. However, if a key-committing scheme is required for security in some
particular setting, then performance considerations may mean that switching to
e. g. encrypt-then-HMAC is not practical. This is illustrated by the choice of
Facebook Messenger to use AES-GCM to encrypt message attachments despite
work showing that this was insecure. Albertini et al. [3] propose two generic fixes
that minimise the changes needed to add key-commitment to widely deployed,
highly efficient schemes such as AES-GCM:

1. Padding Fix. Prepend a constant string to messages before encrypting;
check for the presence of the constant string after decrypting. This fix is
also given in an early draft of an OPAQUE protocol RFC [30], and discussed
in [31]. This solution – essentially adding redundancy to the message – is
not generically secure and must be analysed per scheme. Albertini et al. [3]
perform this analysis for AES-GCM and ChaCha20-Poly1305, showing that
in both cases the resulting scheme is key-committing.

2. Generic Fix. From a given key k, derive an encryption key kenc = Fenc(k)
and a commitment to the key kcom = Fcom(k). Here Fenc and Fcom are col-
lision resistant hash functions. Ciphertexts for the resulting key-committing
scheme consist of a regular ciphertext (for the underlying AEAD scheme)
together with the commitment to the key. Albertini et al. [3] show that this
construction provides key-commitment, if the functions Fenc and Fcom used
to derive the encryption key and commitment are collision resistant pseudo-
random functions.

48 M. Armour and C. Cid

2.4 Weak Key Forgeries

In symmetric cryptography, a class of keys is called a weak key class if the
algorithm behaves in an unexpected way when operating under members of that
class, and this behaviour is easy to detect. In addition, identifying that a key
belongs to such a weak key class should require trying fewer than N keys by
exhaustive search (or verification queries), where N is the size of the class [25].
In the context of polynomial hash based authentication schemes, e.g. the GCM
mode, Handschuh and Preneel [25] and Saarinen [37] identified several weak
key classes. In [36], Procter and Cid proposed a generic framework to mount
forgery attacks against polynomial-based MAC schemes based on weak keys.
Their framework encompasses the previous forgery attacks from [25] and [37], as
well as the earlier Joux’s Forbidden Attack [27], and is based on a malleability
property present in polynomial-based MAC schemes.

If hH is a polynomial hash under key H and M is a message input, let
hH(M) = gM (H), where gM (x) =

∑p+1
i=1 Mix

p+2−i ∈ F[x] and H ∈ F (as in
Sect. 2.1). Now let q(x) =

∑p+1
i=1 qix

p+2−i ∈ F[x] be a polynomial with constant
term zero, such that q(H) = 0. Then

hH(M) = gM (H) = gM (H) + q(H) = gM+Q(H) = hH(M + Q),

where Q = q1 ‖ q2 ‖ . . . ‖ q� and the addition M + Q is done block-wise1. It
follows that given a polynomial q(x) satisfying these properties, it is straightfor-
ward to construct collisions for the hash function. In fact, we have that q(x) is
in the ideal 〈x2 − Hx〉, and any polynomial in this ideal can be used to produce
collisions. On the other hand, collisions in the hash function correspond to MAC
forgeries, by substituting the original message for the one that yields a collision
in the polynomial hash. Thus this method allows an adversary to create forg-
eries when they have seen a tuple of (nonce, message, tag), by simply modifying
the message, as above. Saarinen’s cycling attacks [37] are a special case of this
attack. Forgeries for GCM and variants are presented in [36]. Later, an efficient
method for constructing forgery polynomials which have disjoint sets of roots
(i.e. keys) was proposed in [2].

3 Partitioning Oracle Attacks

Partitioning oracles, introduced by Len et al. [31] are a class of decryption error
oracles which, conceptually, take a ciphertext and return whether the decryption
key belongs to some known subset of keys. This allows an adversary to speed up
an exhaustive search by querying multiple keys at once; in effect, partitioning
the key space. The approach of [31] relies on two conditions: (1) the non-key
committing property of polynomial hash based AE schemes is exploited to craft
targeted “splitting” ciphertexts that will decrypt under multiple keys; and (2) a
decryption oracle that reveals whether decryption (with the user’s key) of such
a splitting ciphertext succeeds or not.
1 The shorter message is zero-padded if required.

Partition Oracles from Weak Key Forgeries 49

Abstractly, a partitioning oracle will (in the optimal case) allow a binary
search of the key space, giving a logarithmic improvement over näıve exhaustive
search. This requires being able to query half the keys in the key space. In
practice however, there is a limit to the number of keys that can be queried at
once – e. g. for AES-GCM, messages are required to be less than approx. 64GB
(239 −256 bits [20]), and applications may impose further restrictions depending
on context. Nevertheless, as shown in [31], it is still possible to launch practical
attacks by combining partitioning oracles with knowledge of non-uniform key
distributions, which arise in particular when human memorable passwords are
used to derive keys, and can be estimated from password breaches [33].

We note that the conditions for a partitioning oracle attack can be satis-
fied with weak key forgeries, following the work of Procter and Cid [36] (see
Sect. 2.4). Weak key forgeries require a valid ciphertext to construct the forgery;
a crucial difference to [31], which considers adversaries that only have access to a
decryption oracle. In practice this is a limitation of the adversary that does not
tally with observed adversarial strategies against censorship evasion [14,39]. We
thus extend the model by allowing an adversary to obtain valid ciphertexts from
chosen plaintexts, a standard adversarial model for AE. In fact, this assumption
is stronger than required; as we later show, adversaries with only “machine-in-
the-middle” capabilities can carry out effective partitioning oracle attacks using
weak key forgeries. Known and chosen plaintext capabilities lead to more pow-
erful attacks, as we briefly describe in Sect. 5.1.

Example: Generic Encryption. Consider a client and server communicating
with end-to-end encryption, using an AEAD scheme and a shared key k derived
from password pw. The client encrypts message P (together with any associated
data D), using key k and nonce N to obtain a ciphertext tag pair (C, T) ←
AuthEnck(N,D,P). The conditions for a partitioning oracle attack are met if the
server reveals whether or not decryption succeeds; it might for example output
an observable error message, or reveal the information via a side-channel.

Example: Password-Authenticated Key Exchange. A Password Authen-
ticated Key Exchange (PAKE) is a cryptographic key exchange protocol in which
a client authenticates to a server using a password pw that the server has stored
(as the equivalent of a hash). Len et al. show how to launch a partitioning ora-
cle attack against OPAQUE, a modern PAKE protocol currently undergoing
standardisation. OPAQUE uses an AEAD scheme as a component, and Len et
al. show the necessity of the AEAD scheme being key-committing by consider-
ing deviations from the specification in some early prototype implementations.
OPAQUE works by composing an oblivious PRF with an authenticated key
exchange; Len et al. ’s attack relies on the fact that the server sends a cipher-
text C encrypted using the password during an execution of the protocol.

50 M. Armour and C. Cid

3.1 Attack Abstraction: Formal Definition of a Partitioning Oracle

Following [31], we consider settings in which an attacker targets AE and seeks
to recover a user’s key k ∈ K, where the key is deterministically derived from
secret password pw ∈ D. We write K(D) ⊆ K for the set of keys derived from
passwords and k(pw) ∈ K(D) to denote a key derived from password pw. The
attacker is given access to an interface that takes as input ciphertext C, and
outputs whether or not the ciphertext decrypts correctly (passing any format
checks) under the user’s key k(pw). The attacker is further given access to an
interface that will encrypt plaintexts of the attacker’s choosing and return the
ciphertext. This set-up represents a “partitioning oracle” if it is computationally
tractable for the adversary, given any set K ⊆ K(D), to compute a value Ĉ
that partitions K into two sets K

∗ and K \ K
∗, with |K∗| ≤ |K \ K

∗|, such that
AuthDeck(Ĉ) �= ⊥ for all k ∈ K

∗ and AuthDeck(Ĉ) = ⊥ for all k ∈ K \ K
∗.

We call such a Ĉ a splitting ciphertext and refer to |K∗| as the degree of Ĉ.
We distinguish between targeted splitting ciphertexts, where the adversary can
select the secrets in K

∗, and untargeted attacks.
In general, the definition can be applied to arbitrary cryptographic function-

alities by considering a Boolean function f that takes as input a string and a
key, returning 1 if some cryptographic operation succeeds and 0 otherwise. The
attacker has access to an interface that takes as input a bit string V , and uses it
plus k to output the result of some Boolean function fk : {0, 1}∗ → {0, 1}. Here
fk is an abstraction of some cryptographic operations that may succeed or fail
depending on k and V ; set fk(V) = 1 for success and fk(V) = 0 for failure. We
note that partitioning oracles may output more than two possible outputs, for
example if there are multiple distinguishable error messages, following [17].

3.2 Multi-Key Contingent Forgeries

Central to launching a partitioning oracle attack is the ability to craft splitting
ciphertexts. This is formalised in the notion of “Targeted Multi-Key Contingent
Forgeries”, which quantifies an adversary’s advantage in crafting splitting cipher-
texts against a particular AEAD scheme, with oracle access to encryption. Our
definition is a slight generalisation of the “Targeted Multi-Key Collision” notion
from [31]; their notion can be obtained from ours by removing the adversary’s
encryption oracle.2

Targeted multi-key contingent forgery resistance (TMKCR) security is
defined by the game given in Fig. 1 (left). It is parameterised by a scheme AEAD
and a target key set K∗ ⊆ K. A possibly randomised adversary A is given input
a target set K

∗ and must produce nonce N∗, associated data D∗ and cipher-
text C∗ such that AuthDeck(N∗,D∗, C∗) �= ⊥ for all k ∈ K

∗. We define the
advantage via

Advtmk-cr
AEAD,K∗(A) = Pr

[
TMKCRA

AEAD,K∗ ⇒ 1
]

(2)
2 We hope the reader forgives our abuse of nomenclature; although we refer to both

notions as TMKCR, ours is a (slight) generalisation of Len et al. ’s, and we use the
term “key contingent forgery” to encompass both.

Partition Oracles from Weak Key Forgeries 51

where “TMKCRA
AEAD,K∗ ⇒ 1” denotes the event that A succeeds in finding

N∗,D∗, C∗ that decrypt under all keys in K
∗. The event is defined over the

coins used by A.
We can define a similar untargeted multi-key contingent forgery resistance

goal, called MKCRA
AEAD,κ. The associated security game, given in Fig. 1 (right),

is the same except that the adversary gets to output a set K
∗ of its choosing in

addition to the nonce N∗, associated data D∗, and ciphertext C∗. The adversary
wins if |K∗| ≥ κ for some parameter κ > 1 and decryption of N∗,D∗, C∗ succeeds
for all k ∈ K

∗. We define the advantage via

Advmk-cr
AEAD,κ(A) = Pr

[
MKCRA

AEAD,κ ⇒ 1
]

(3)

where “MKCRA
AEAD,κ ⇒ 1” denotes the event that A succeeds in finding K

∗ and
N∗,D∗, C∗ that decrypt under all keys in K

∗. The event is defined over the coins
used by A.

Fig. 1. Games modelling (targeted) multi-key contingent forgery resistance for an
AEAD scheme. Note that in both cases, an adversary that can produce a cipher-
text C∗ that decrypts under every key in K

∗ will win the game with probability 1.
Left: Targeted Multi-Key Collision Resistance. Right: Multi-key contingent forgery
resistance, a weaker notion which lets the adversary choose the set of target keys K

∗.

4 Partitioning Oracle Attacks from Weak Key Forgeries

At a high level, our attack works as follows: Construct key-contingent forgeries
from captured ciphertexts using weak-key forgery techniques and submit these
to a decryption oracle; that is, an oracle that reveals whether a ciphertext is
accepted or rejected. The weak key forgery ensures that the ciphertext will only
be accepted if the user’s key is in the set of weak keys.

More specifically: (1) In an offline phase, the adversary pre-computes a set
of ciphertext masks. Each mask corresponds to a set of passwords to be tested.
(2) In an online phase, the adversary intercepts a ciphertext and, using a cipher-
text mask, constructs a key-contingent forgery which it forwards to the parti-
tioning oracle. Observing whether or not the key-contingent forgery is accepted
reveals whether or not the user’s key is in the set of target keys corresponding to

52 M. Armour and C. Cid

the ciphertext mask. Our attack relies on the ability of the adversary to act as a
“machine-in-the-middle” between sender and receiver. We first give an abstract
description of a key contingent forgery consisting of � ciphertext blocks which
encompasses two special cases: a targeted key-contingent forgery testing � keys,
(Sect. 4.1); and a targeted forgery passing format requirements on underlying
plaintexts, (Sect. 4.2).

1. Offline phase. The attack takes a set of target keys K
∗ = {K1, . . . , K�−1}

as input and outputs a ciphertext mask. We note that one key is lost per
ciphertext block that is not a free variable.
(a) First derive the associated authentication (GHASH) keys by setting H

∗ =
{Ek(0128)|k ∈ K

∗}.

(b) Set q(x) =
�∑

i=1

qi · x�+1−i = x ·
∏

H∈H∗
(x ⊕ H) .

2. Online phase. The online phase takes as further input a valid nonce, cipher-
text, tag tuple (N,C, T) and outputs a key-contingent forgery consisting of
tuple (N, Ĉ, T). The key-contingent forgery is forwarded to the partitioning
oracle. In what follows, we assume that � − 1 ≥ p = �len(C/128)�
(a) First parse the captured ciphertext as C = C1 ‖ · · · ‖ C∗

p , i. e., as blocks
of the appropriate length. Let α = len(C) ⊕ len(Ĉ) and β be constants.
Now set q′(x) =

∑�+1
i=1 q′

i · x�+2−i = (a ⊕ bx) · q(x), with

a = α · q−1
� and b = β · q−1

2 ⊕ α · q1 · q−1
2 · q−1

� . (4)

Set Q′ = q′
1 ‖ · · · ‖ q′

�. Note that q′
�+1 = q� ·a = α and q′

1 = a·q1⊕b·q2 = β.
This step can take place offline if len(C) is known in advance.

(b) Let Ĉ = C∗ ⊕ Q′, where C∗ = 0128 ‖ · · · ‖ 0128 ‖ C1 ‖ · · · ‖ C∗
p denotes

the ciphertext C padded (pre-pended) with blocks of zeros to match the
length of Q′. As � ≥ p + 1, at least one block of padding is pre-pended.
Note that if the user key k ∈ K

∗ ∪ {K�} ∪ {0}, where K� = a · b−1, then
for H = Ek(0128),

hH(Ĉ) = len(Ĉ) · H ⊕ Ĉ∗
� · H2 ⊕ Ĉ�−1 · H3 ⊕ · · · ⊕ Ĉ1 · H�+1

= (α ⊕ len(C)) · H ⊕ (
C∗

p ⊕ q′
�

) · H2 ⊕ · · · ⊕ (0128 ⊕ q′
1) · H�+1

= q′(H) ⊕ hH(C).

Consequently, the tag is a valid forgery and AuthEnck(N, ε, Ĉ) �= ⊥.

4.1 Targeted Key Contingent Forgery Testing � keys

We first consider key contingent ciphertext forgeries that test � keys with no
restrictions on the format of the underlying plaintext. Setting β = a · q2 · H−1

� ⊕
a · q1 in Eq. (4) for H� = EK�

(0128) gives a = b · H�. Thus,

q′(x) = b · (x + H�) · x ·
∏

H∈H∗
(x ⊕ H) = b · x ·

∏

H∈H∗∪{H�}
(x ⊕ H) .

The ciphertext forgery Ĉ is a valid forgery if k ∈ K
∗ ∪ K� ∪ {0}. Thus, we are in

effect able to test target key sets of size |K∗| + 1 = �.

Partition Oracles from Weak Key Forgeries 53

Performance. The attack description above is for a fixed set of target keys
K

∗; in practice, an attacker would prepare a collection of ciphertext masks cor-
responding to disjoint target key sets {K∗

i }i∈I , such that pi+1 ≥ pi for all i,
where pi denotes the aggregate success probability of target key set K

∗
i . Given

n = |K∗| hashing keys, the coefficients of the polynomial q(x) can be computed
using O(n2) time and O(n) space. We note that the offline phase need only occur
once, allowing the adversary to amortise the upfront cost of pre-computation over
multiple targets. This is especially useful in cases where generating target keys
from passwords is particularly slow.

In the online phase, splitting ciphertexts are then submitted in order until
a query is successful; we note that a negative result is returned immediately.
For a successful query, we know that the key k ∈ K

∗
i for some particular i.

As our result relies on pre-computation to be practical, in order to perform a
binary search on K

∗
i appropriate forgery masks would have to be pre-computed

– this would require O(n log n) space. In most cases it is probably more efficient,
once an adversary knows that k ∈ K

∗
i , to perform the first few iterations of

a binary search (having precomputed the necessary values) before switching to
trial decryption of C with each key in K

∗
i . We assume that the cost of querying

a ciphertext is low and that either (1) there is a steady supply of ciphertexts to
intercept or (2) it is possible to reuse the same nonce – the server may or may
not enforce unique nonces depending on context. Regarding point (1), we note
that a common adversarial model introduced by the BEAST attack [19] gives
an attacker the ability to inject arbitrary plaintexts via client-side JavaScript in
some window in the user’s browser (see e. g. [5,6,15]).

Our attack is limited to scenarios where keys are deterministically derived
from passwords; that is, if passwords are salted (using randomly generated salts)
then pre-computation is no longer feasible. This highlights the fact that whilst
salts are not secret values, they should be unpredictable when used to derive
encryption keys from passwords, in a direct analogue to password storage. Better
security in any case is obtained by using password authenticated key exchange
protocols such as [26], rather than deriving session keys statically from pass-
words.

4.2 Targeted Key Contingent Forgery Passing Format Checks

The targeted multi-key contingent forgery attack from the previous section
results in ciphertexts that decrypt under the user’s key to plaintexts that are
“garbage”. This is a problem in cases where plaintexts are required to meet
some format check. The most common form of format check will be a header
field containing (for example) protocol data, sender and receiver addresses, serial
numbers or integrity check values. The weak key forgery method of [36] allows
full control over the underlying plaintext, with the caveat that the ciphertext
forgery represents an (untargeted) multi-key contingent forgery – for every block
of underlying plaintext that is part of the format check, the number of targeted
keys being tested will decrease by one, with one extra untargeted key gained.
In practice this will not make much difference: usually, the prefix is designed

54 M. Armour and C. Cid

to be as short as possible, which means one or at most two blocks. We would
typically expect splitting ciphertexts of degree ≈500 so that losing one or two
blocks represents only a small fraction of the total.

Let us assume that the captured nonce, ciphertext, tag tuple (N,C, T) corre-
sponds to some underlying plaintext matching the (known) required format. For
concreteness, assume that the first block of plaintext (respectively, ciphertext)
corresponds to the format to be checked. This means that we need to leave the
first block of plaintext unchanged. We thus set β = C1 ⊕ 0 in Eq. (4) and note
that the method may easily be adapted to “flip bits” in the underlying plaintext
by using a suitable value of β = C1 ⊕ δ; furthermore, it is straightforward to
extend the method to deal with multiple blocks. By construction, Ĉ1 = q′

1 = β,
which gives Ĉ = C1 ‖ Ĉ2 ‖ · · · ‖ Ĉ�, i. e., a ciphertext forgery Ĉ with the
same first block of ciphertext (and thus underlying plaintext) as the original
intercepted ciphertext C. Note that we gain K� = a · b−1 as an untargeted key.

Len et al. [31] show how to craft (untargeted) multi-key collisions to pass for-
mat checks with fixed prefixes, however their method is impractical for prefixes
longer than a couple of bytes; in contrast, our method can easily be applied to
arbitary prefixes and is targeted. Lastly, we observe that this method circum-
vents the key committing “padding fix” discussed in Sect. 2.3, i. e., to prepend a
constant string to messages before encrypting. The ability to control underlying
plaintexts in this way allows an attacker to apply partitioning oracle attacks
using weak key forgeries where attacks based on exploiting non-committment
are infeasible.

5 Partitioning Oracle Attacks Against Shadowsocks

Originally written by a pseudonymous developer, Shadowsocks [1] is an
encrypted proxy for TCP and UDP traffic, based on SOCKS5. Shadowsocks
was first built to help evade censorship in China, and it underlies other tools
such as Jigsaw’s Outline VPN. To use Shadowsocks, a user first deploys the
Shadowsocks proxy server on a remote machine, provisions it with a static pass-
word and chooses an encryption scheme to use for all connections. The most
up-to-date implementations only support AEAD schemes for encryption, with
the options consisting of AES-GCM (128-bit or 256-bit) or ChaCha20/Poly1305.
Next the user configures the Shadowsocks client on their local machine, and can
then forward TCP or UDP traffic from their machine to the Shadowsocks proxy
server.

Len et al. [31] showed how to build a practical partitioning oracle attack
against Shadowsocks proxy servers. At a high level, their attack exploited the
non-key committing property of the AEAD schemes used, making it possible to
craft ciphertexts which decrypt correctly under a set of target keys. Furthermore,
the attack exploits the fact that the proxy server opens an ephemeral UDP port
in response to a valid request (and otherwise does not) which reveals whether
a ciphertext has been accepted or rejected. The attack depends on a particular
configuration: password derived keys and UDP traffic. As a response to [31],

Partition Oracles from Weak Key Forgeries 55

users are advised to mitigate against the attack by generating good quality
passwords and disabling UDP mode [7]. In this section, we first describe the
Shadowsocks protocol and the partitioning oracle attack of Len et al. , before
going on to describe how weak key forgeries can be used to launch a partitioning
oracle attack. We note that whilst our attack is rendered impractical by the per-
message salt used in the Shadowsocks protocol, a description of a hypothetical
attack still offers a useful case study, which we describe below.

The Shadowsocks Protocol. The client starts by hashing the user pass-
word pw to obtain a key k = h(pw). The client then samples a random sixteen-
byte salt s and computes a session key ks ← HKDF(k, s, info) using HKDF [29],
where info is the string ss-subkey. A new salt and session key are generated
for every message. The client encrypts its plaintext payload P by computing
C ← AuthEncks

(Z, ε,flag ‖ ip ‖ port ‖ payload) where Z denotes a nonce set to a
string of zero bytes (12 for AES-GCM); the value ε empty associated data; and
flag is a one-byte header indicating the format of ip with the following conven-
tion: flag = 01 indicates that ip is a 4-byte IPv4 address, flag = 03 indicates that
ip consists of a one byte length and then hostname, and flag = 04 indicates that
ip is a 16-byte IPv6 address. The port field port is two bytes long. The client
sends (s, C) to the server via UDP. If the client is using TCP, the process is the
same except that the ciphertext is prefixed with a two-byte encrypted length
(and authentication tag) before being sent to the server via TCP.

When the Shadowsocks server receives (s, C), it extracts the salt and uses it
together with pw to re-derive the session key ks. It decrypts the remainder of the
ciphertext with ks. If decryption fails, no error message is sent back to the client.
If decryption succeeds, the plaintext’s format is checked by verifying that its first
byte is equal to a valid flag value. If that check passes, the next bytes are inter-
preted as an appropriately encoded address ip, and two-byte port number port.
Finally, the rest of the payload is sent to the remote server identified by ip and
port. The proxy then listens on an ephemeral source UDP port assigned by the
kernel networking stack for a reply from the remote server. When Shadowsocks
receives a reply on the ephemeral port, the server generates a random salt and
uses it with pw to generate a new session key. It then encrypts the response, and
sends the resulting salt and ciphertext back to the client. The same encryption
algorithm is used in both directions.

The Attack of Len et al. The proxy server opens an ephemeral UDP port in
repsonse to a valid request (and otherwise not). One can view this as a remotely
observable logical side-channel that reveals whether decryption succeeds. The
attacker starts with knowledge of a password dictionary D and an estimate p̂
of the probability distribution over keys in the dictionary. The attack has two
steps, a pre-computation phase and an active querying phase.

In the pre-computation phase, the attacker chooses an arbitrary salt s and
derives a set of session keys K = K(D) by ki

s ← HKDF(h(pwi), s, ss-subkey)
for all pwi ∈ D; the nonce is set as a string of all zeroes. The adversary then

56 M. Armour and C. Cid

outputs a ciphertext Ĉ of length 4093 (to meet the length restriction imposed
by Shadowsocks servers) and a set K

∗ of 4091 keys such that Ĉ decrypts under
every key in S to give a plaintext with first byte 01. We gloss over the details of
how Ĉ is constructed and refer the reader to [31]; we note that the construction
is not a targeted multi-key collision.

In the querying phase, the attacker then submits (s∗, C∗) to the proxy server.
Should the user’s key be in the set of target keys, k(pw) ∈ K

∗, the server will
interpret the decrypted plaintext as a 01 byte followed by a random IPv4 address,
destination port, and payload. The IPv4 and destination port will be accepted
by the server’s network protocol stack with high probability, and so the server
will send the payload as a UDP packet and open a UDP source port to listen
for a response, which the attacker can observe by port scanning.

5.1 Partitioning Oracles from Weak Key Forgeries

We now describe how to launch a partitioning oracle attack using weak key
forgeries against Shadowsocks (in the same configuration as the attack of Len
et al. described above). As noted above, our attack is impractical as session
keys are salted on a per-message basis in the Shadowsocks protocol, making pre-
computation of forgery masks infeasible. Nevertheless, a weak key forgery parti-
tioning oracle attack against Shadowsocks is an instructive case study, demon-
strating the feasibility of the approach and allowing us to point out some interest-
ing features; in particular, we are able to construct targeted multi-key contingent
forgeries that meet arbitrary format requirements as we explain below.

Basic Version. We separate the attack into two steps, a computation phase
and an active querying phase. The attacker starts with knowledge of a password
dictionary D and an estimate p̂ of the probability distribution over keys in the
dictionary and then intercepts a salt, ciphertext tuple (s, C).

In the computation phase, the attacker first chooses a set of passwords D∗

with |D∗| = 4092, such that the set has the maximum aggregate probability
according to p̂. The attacker then derives a set of session keys K∗ from the salt s
and set of passwords D∗ by ki

s ← HKDF(h(pwi), s, ss-subkey); the nonce is
set as a string of all zeroes. Using the weak key forgery method described in
Sect. 4.2, the attacker outputs a ciphertext Ĉ of length 4093 (to meet the length
restriction imposed by Shadowsocks servers) such that Ĉ decrypts under the
users key k if k ∈ K

∗. Furthermore, the underlying plaintext P ← AuthDeck(Ĉ)
passes the format check.

In the querying phase, the attacker then submits (s, C∗) to the proxy server.
Should the user’s key be in the set of target keys, the server will interpret the
decrypted plaintext as flag ‖ ip ‖ port ‖ payload; that is, an IP address, destina-
tion port and payload. Note that these are unchanged from the original plaintext
that was sent by the user, so will be accepted by the server’s network protocol
stack. The server will send the payload as a UDP packet and open a UDP source
port to listen for a response, which the attacker can observe by port scanning.

Partition Oracles from Weak Key Forgeries 57

Extension 1: Redirection (Known Plaintext Attack). If the attacker
knows the first 7 bytes of an underlying plaintext, which we write as prefix,
then they can use the weak key forgery technique to redirect the user’s payload
to arbitrary destinations. In particular, the first 7 bytes can be modified to give
01 ‖ ip′ ‖ port′, with ip′ a four-byte IPv4 address, and port′ a two-byte desti-
nation port. This is the idea behind Peng’s “redirect attack” [22,34], discovered
in February 2020, which exploited the use of stream ciphers without integrity
protection in the Shadowsocks protocol. Obtaining plaintexts with known prefix
is relatively easy in the server to client direction, as many common server proto-
cols start with the same bytes (e. g. HTTP/1. for HTTP). In the client to server
direction, underlying plaintexts will be in the format [destination][payload], so
that the adversary needs to know the target address (and its encoding), per-
haps through injecting plaintexts via client-side JavaScript in some window in
the user’s browser [5,6,15,19]. Note that if an adversary is able to launch cho-
sen plaintext attacks, they could target the TCP configuration of Shadowsocks
(the recommended option) by crafting plaintexts with the maximum length to
overcome the fact that for TCP the length is sent encrypted together with the
encrypted payload.

The adversary intercepts a ciphertext C from server to client, and using
weak key forgery techniques modifies C to give a splitting ciphertext Ĉ whose
underlying plaintext begins with prefix′ = 01 ‖ ip′ ‖ port′, i. e., an address that
the adversary controls. The splitting ciphertext is then sent to the Shadowsocks
server: if the splitting ciphertext is accepted, the payload is sent to the adver-
sary, revealing that the user’s key is in the set of target keys associated to Ĉ. To
produce Ĉ, we modify the basic attack above as follows: when it comes to con-
structing the weak key forgery mask, following the technique outlined in Sect. 4.2,
we use a non-zero value of β in Eq. (4); specifically, β = prefix⊕(01 ‖ ip′ ‖ port′),
interpreted as an element of F2128 . The effect is to flip some bits in the 7-byte
prefix prefix, so that we obtain the attacker’s address prefix′.

We note that this attack allows the adversary to efficiently and reliably deter-
mine whether the ciphertext has been accepted; it is no longer necessary to scan
the server for open ports, which is time consuming and not necessarily com-
pletely reliable. Furthermore, if the splitting ciphertext is accepted, the adver-
sary receives the payload payload which means that it can efficiently test target
keys against the ciphertext by encrypting one block of plaintext and checking
whether it matches. Without this, the adversary would need to calculate the
authentication tag of the captured ciphertext for each target key.

Extension 2: Bypassing the Padding Fix. As discussed in Sect. 2.3, prior
work on non-key committing AEAD schemes showed that applying a “padding
fix”, that is prepending a fixed constant string to underlying plaintexts, trans-
forms the scheme to be key-committing. Applying a padding fix is recommended
by Len et al. as a way to mitigate against partitioning oracle attacks; however, a
partitioning oracle attack using weak key forgeries will still be successful despite
that mitigation. To see this, we simply modify the description of the “basic

58 M. Armour and C. Cid

attack version” in the previous subsection to leave one further block unaltered,
at the cost of testing one less key per ciphertext Ĉ. We note that the reason that
our attack impractical is due to the salting of passwords to derive per-message
ephemeral keys, rather than because of the non-key committing property of the
AEAD scheme used.

5.2 Other Proxy Servers (VPNs)

Virtual Private Networks (VPNs) are often used to achieve similar objectives to
Shadowsocks (allowing a user to access the internet via a proxy server), although
Shadowsocks was designed specifically to circumvent internet censorship, which
is not part of the threat model for VPNs. VPNs allow users to interact with what
appears to be a private network, despite the interaction taking place over a public
network (typically, the internet). This is achieved by encrypting packets in transit
so that the contents are hidden from the public network. VPNs have a number
of applications, including enabling users to remotely access local resources, or
allowing individuals to improve their anonymity and privacy online (by masking
their IP and hiding their traffic). Users connect to a proxy server via an encrypted
tunnel, and the proxy server acts as an intermediary for the client and the
internet (or a portion thereof). The most widely used protocols for VPNs are
TLS and the IPsec protocol

At a high level, IPsec works as follows: the user first composes a TLS packet
that will be sent to the end destination. This is encapsulated in an IPsec Encapsu-
lating Security Payload (ESP) packet in tunnelling mode, which essentially adds
a header and encrypts the whole packet to give a ciphertext C. This encrypted
packet C is sent to the proxy server, where it is decrypted to recover the under-
lying TLS packet. The proxy server now forwards the TLS packet to its intended
destination. There are many configuration options for how the user and proxy
server authenticate and/or encrypt the ESP packets, including to provision the
user and proxy server with static keys [28]. This is known as “manual man-
agement”, and is suited to small static environments. However, the standard
does not allow AES-GCM (or ChaCha20-Poly1305) with manual keys, although
they are available in other configurations, due to concerns over the brittleness
when a nonce/key combination is reused. AES with HMAC is preferred, which
happens to be both key-committing and not vulnerable to weak key forgeries.
Similarly, OpenVPN disallows AEAD cipher mode with static keys to avoid the
insecurity of potential nonce/key reuse. We have thus not been able to find any
vulnerable applications “in the wild”, but note that partitioning oracle attacks
are theoretically possible against implementations incorrectly deviating from the
specification.

6 Conclusions

Prior work demonstrated that key commitment is an important security property
of AEAD schemes. Our results suggest that resistance to weak key forgeries

Partition Oracles from Weak Key Forgeries 59

should be considered a related design goal to key-commitment, particularly in
settings that are vulnerable to partitioning oracle attacks. Concretely, our results
demonstrate – in contrast to the suggestions of prior work – that structured
underlying plaintexts (e.g. packet headers that prefix every plaintext message, or
an appended block of all zeros) is not a sufficient mitigation against partitioning
oracle attacks. Lastly, our results reinforce the message that weak passwords
should never be used to derive encryption keys.

Acknowledgements. This research was supported by the EPSRC and the UK gov-
ernment as part of the Centre for Doctoral Training in Cyber Security at Royal Hol-
loway, University of London (EP/P009301/1).

The authors would like to thank Kenny Paterson for the discussion and feedback
on an early draft, as well as the anonymous reviewers.

A ChaCha20-Poly1305 AEAD Scheme

Poly1305 is similar to GHASH, and to form AEAD schemes it is most commonly
combined with the ChaCha20 stream cipher [13], although Poly1305-AES is also
an option [12]. For concreteness, we will give a description of ChaCha20-Poly1305
and note that the differences are trivial.

ChaCha20-Poly1305 encryption takes as input: a 32-byte ChaCha20 key k, a
12-byte nonce N , plaintext P and additional data D. With this input, ChaCha20-
Poly1305 returns a ciphertext C (the same length as the plaintext) and an
authentication tag T of length 16 bytes. From here on, we will omit the asso-
ciated data for simplicity. First, the plaintext is divided into 64 byte blocks,
except perhaps for a partial final block, and encrypted using the ChaCha20
stream cipher, under key k.

The authentication tag is next computed from a polynomial evaluation hash
in the finite field F2130−5. The ciphertext to be hashed is divided into 16-byte
blocks with any partial final block zero-padded to 16 bytes. We denote by L
an encoding of the (unpadded) ciphertext and additional data. Each block is
encoded as an integer modulo 2130 − 5 by first appending 0x01 to each block,
and interpreting the resulting block as a little-endian integer Xi.

The authentication tag is computed from a polynomial evaluation hash (in
F2130−5). First we derive the hashing key r and the pseudo-random one time
pad s: the first 32 bytes of H = Ek(N0 ‖ N) is divided into two 16-byte strings r̃
and s. Here N0 represents 0 encoded as a 4-btye little-endian integer.

The hashing key r is obtained from the string r̃ by setting some of the bits
to zero in a process referred to as “clamping”; we gloss over the specific details.
The hash function is then computed as

hr(C) = L · r ⊕ C∗
p · r2 ⊕ Cp−1 · r3 ⊕ · · · ⊕ C2 · rp ⊕ C1 · rp+1,

where all operations are in F2130−5, and C∗
p denotes the last zero-padded block.

The authentication tag is given by:

T = (s ⊕ hr(C)) mod 2128 ,

60 M. Armour and C. Cid

where s and hr(C) are interpreted as elements of F2128 , and the result as an
integer modulo 2128.

References

1. Shadowsocks - a fast tunnel proxy that helps you bypass firewalls. https://
shadowsocks.org, Accessed May 2021

2. Abdelraheem, M.A., Beelen, P., Bogdanov, A., Tischhauser, E.: Twisted polynomi-
als and forgery attacks on GCM. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 762–786. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46800-5 29

3. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How
to abuse and fix authenticated encryption without key commitment. Cryptology
ePrint Archive, Report 2020/1456 (2020). https://eprint.iacr.org/2020/1456

4. Albrecht, M.R., Paterson, K.G.: Lucky microseconds: a timing attack on amazon’s
s2n implementation of TLS. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 24

5. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: King, S.T. (ed.) USENIX Security 2013: 22nd
USENIX Security Symposium, pp. 305–320. USENIX Association (2013)

6. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy, pp. 526–
540. IEEE Computer Society Press (2013). https://doi.org/10.1109/SP.2013.42

7. Anonymous, Anonymous, Anonymous, Fifield, D., Houmansadr, A.: A practical
guide to defend against the GFW’s latest active probing (2021). https://gfw.
report/blog/ss advise/en/, Accessed May 2021

8. Armour, M., Poettering, B.: Substitution attacks against message authentication.
IACR Trans. Symm. Cryptol. 2019(3), 152–168 (2019). https://doi.org/10.13154/
tosc.v2019.i3.152-168

9. Armour, M., Poettering, B.: Subverting decryption in AEAD. In: Albrecht, M.
(ed.) IMACC 2019. LNCS, vol. 11929, pp. 22–41. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-35199-1 2

10. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

11. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84. IEEE Computer Society Press (1992). https://doi.org/10.1109/
RISP.1992.213269

12. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

13. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol.
8, pp. 3–5 (2008)

14. Beznazwy, J., Houmansadr, A.: How China detects and blocks shadowsocks. In:
Proceedings of the ACM Internet Measurement Conference, pp. 111–124 (2020)

https://shadowsocks.org
https://shadowsocks.org
https://doi.org/10.1007/978-3-662-46800-5_29
https://doi.org/10.1007/978-3-662-46800-5_29
https://eprint.iacr.org/2020/1456
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1109/SP.2013.42
https://gfw.report/blog/ss_advise/en/
https://gfw.report/blog/ss_advise/en/
https://doi.org/10.13154/tosc.v2019.i3.152-168
https://doi.org/10.13154/tosc.v2019.i3.152-168
https://doi.org/10.1007/978-3-030-35199-1_2
https://doi.org/10.1007/978-3-030-35199-1_2
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1007/11502760_3

Partition Oracles from Weak Key Forgeries 61

15. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Confer-
ence on Computer and Communications Security, pp. 456–467. ACM Press (2016).
https://doi.org/10.1145/2976749.2978423

16. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

17. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 367–390. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43933-3 19

18. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 6

19. Duong, T., Rizzo, J.: Here come the ⊕ ninjas. Unpublished manuscript. https://
tlseminar.github.io/docs/beast.pdf, Accessed May 2021

20. Dworkin, M.J.: SP 800–38D. recommendation for block cipher modes of operation:
Galois/counter mode (GCM) and GMAC. Technical report (2007)

21. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symm. Cryptol. 2017(1), 449–473 (2017). https://
doi.org/10.13154/tosc.v2017.i1.449-473

22. Fifield, D.: Decryption vulnerability in shadowsocks stream ciphers. https://
github.com/net4people/bbs/issues/24, Accessed May 2021

23. Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the lip
of the volcano: chosen ciphertext attacks on apple iMessage. In: Holz, T., Savage,
S. (eds.) USENIX Security 2016: 25th USENIX Security Symposium, pp. 655–672.
USENIX Association (2016)

24. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403,
pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 3

25. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–
161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 9

26. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

27. Joux, A.: Authentication failures in NIST version of GCM. Technical report (2006)
28. Kent, S., Seo, K.: Security architecture for the internet protocol. RFC 4301, RFC

Editor (2005). https://tools.ietf.org/html/rfc4301
29. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:

Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 34

30. Krawczyk, H.: The opaque asymmetric PAKE protocol (draft). Technical report
(2018), https://datatracker.ietf.org/doc/html/draft-krawczyk-cfrg-opaque-02

31. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: 30th USENIX
Security Symposium (USENIX Security 21), pp. 195–212. USENIX Association
(2021). https://www.usenix.org/conference/usenixsecurity21/presentation/len

https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://tlseminar.github.io/docs/beast.pdf
https://tlseminar.github.io/docs/beast.pdf
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://github.com/net4people/bbs/issues/24
https://github.com/net4people/bbs/issues/24
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://tools.ietf.org/html/rfc4301
https://doi.org/10.1007/978-3-642-14623-7_34
https://datatracker.ietf.org/doc/html/draft-krawczyk-cfrg-opaque-02
https://www.usenix.org/conference/usenixsecurity21/presentation/len

62 M. Armour and C. Cid

32. McGrew, D., Viega, J.: The galois/counter mode of operation (GCM). Tech-
nical report (2004). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/gcm/gcm-revised-spec.pdf

33. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing:
password similarity models using neural networks. In: 2019 IEEE Symposium on
Security and Privacy, pp. 417–434. IEEE Computer Society Press (2019). https://
doi.org/10.1109/SP.2019.00056

34. Peng, Z.: Redirect attack on shadowsocks stream ciphers. https://github.com/
edwardz246003/shadowsocks, Accessed May 2020

35. Procter, G.: A security analysis of the composition of ChaCha20 and Poly1305.
Cryptology ePrint Archive, Report 2014/613 (2014). https://eprint.iacr.org/2014/
613

36. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 287–304.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 15

37. Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs
and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 13

38. Vaudenay, S.: Security flaws induced by CBC padding — applications to SSL,
IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–545. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 35

39. Winter, P., Lindskog, S.: How the great firewall of China is blocking Tor. In:
Dingledine, R., Wright, J. (eds.) 2nd USENIX Workshop on Free and Open
Communications on the Internet, FOCI ’12, Bellevue, WA, USA, 6 August
2012. USENIX Association (2012). https://www.usenix.org/conference/foci12/
workshop-program/presentation/winter

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
https://doi.org/10.1109/SP.2019.00056
https://doi.org/10.1109/SP.2019.00056
https://github.com/edwardz246003/shadowsocks
https://github.com/edwardz246003/shadowsocks
https://eprint.iacr.org/2014/613
https://eprint.iacr.org/2014/613
https://doi.org/10.1007/978-3-662-43933-3_15
https://doi.org/10.1007/978-3-642-34047-5_13
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7_35
https://www.usenix.org/conference/foci12/workshop-program/presentation/winter
https://www.usenix.org/conference/foci12/workshop-program/presentation/winter

Practical Privacy-Preserving Face
Identification Based on Function-Hiding

Functional Encryption

Alberto Ibarrondo1,2(B), Hervé Chabanne1,3, and Melek Önen2

1 IDEMIA, Courbevoie, France
2 EURECOM, Biot, France

{ibarrond,onen}@eurecom.fr
3 Telecom Paris, Paris, France

herve.chabanne@telecom-paristech.fr

Abstract. Leveraging on function-hiding Functional Encryption (FE)
and inner-product-based matching, this work presents a practical
privacy-preserving face identification system with two key novelties:
switching functionalities of encryption and key generation algorithms
of FE to optimize matching latency while maintaining its security guar-
antees, and identifying output leakage to later formalize two new attacks
based on it with appropriate countermeasures. We validate our scheme
in a realistic face matching scenario, attesting its applicability to pseudo
real-time one-use face identification scenarios like passenger identifica-
tion.

Keywords: Biometric matching · Face identification · Functional
encryption · Privacy-preserving technologies

1 Introduction

The field of Biometrics studies physical and behavioral human characteristics to
digitally identify a person. The most commonly used biometric traits are face,
iris and fingerprint [16]. Biometrics are used in modern identification systems
such as personal (mobile and laptop) authentication, identification for public
administration, or border control/passenger identification in the travel industry.

However, biometric data acquisition and processing raises privacy concerns.
Since biometric traits cannot be modified or re-issued, its protection is deemed
indispensable. Furthermore, data protection regulations enforce strict limitations
over usage and storage of biometrics data. While standard cryptography allows
secure storage and transmission, secure processing requires advanced crypto-
graphic techniques such as Fully Homomorphic Encryption (FHE) [9], Multi-
party Computation (MPC) [17,19] and Functional Encryption (FE) [4].

This work uses FE to protect the biometric matching step with local out-
put decryption. While FE is costly for arbitrary function evaluations, the inner
product computed for a matching can be efficiently implemented using FE.
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 63–71, 2021.
https://doi.org/10.1007/978-3-030-92548-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_4

64 A. Ibarrondo et al.

We present a face identification solution built on FE-based private inner prod-
uct matching, with the key novelties of optimizing matching latency by switching
functionalities of encryption and key generation FE algorithms, and identifying
two attacks based on inner product output leakage coupled with suitable coun-
termeasures. The paper is outlined as follows. Section 2 describes the Biometric
Matching and FE preliminaries. Section 3 details the proposed solution, architec-
ture and characteristics. Section 4 covers a security analysis. Section 5 comprises
implementation and experiments. Section 6 addresses previous work and posi-
tions our contribution.

2 Preliminaries

Biometric systems are pattern recognition systems that establish the authen-
ticity of a specific physiological or behavioral user’s characteristic. To do so, they
scan and compress biometric traits into succinct representations called biometric
templates, and perform comparisons between templates.

Feature
extractor

Reference
Biometric trait

Sensor

Reference
biometric template

Reference
Template DB

Similarity
1:1 or 1:N

Enrollment

(biggest) score

Match Reject

Feat. Extr.

Live Biometric
trait

Sensor

Live biometric
template

Matching

Fig. 1. Diagram of a standard biometric system

Biometric systems present two distinct phases, illustrated in Fig. 1. The
enrollment phase, where reference templates are acquired and stored in a
database, and the matching phase, when a live template is captured and matched
with the reference templates yielding a positive result if the similarity score is
higher than a fixed threshold δ. Depending on the number of reference templates,
we can have two scenarios: Verification (a.k.a. Authentication) for 1:1 matching,
and Identification for 1:N matchings. Receiving its input image from a capture
sensor, the feature extractor component for face biometrics is nowadays based
on Deep Learning models applied to Vision [2,7,8]. The resulting templates are
normalized and matched using an inner product as similarity metric.

The face identification scenario we study on this work leads to two practical
considerations. First, high numerical precision is paired with low error rates
but privacy-preserving techniques support only integer operations. Secondly, N
identities in the DB imply N similarity score computations for a matching,
creating a natural bound to N so that an end-to-end identification be performed

Priv. Pres. Face Identification Based on Function-Hiding FE 65

in pseudo real time, which we set to up to 5s. We exemplify the applicability of
this work in a use-case of identification for transport boarding, requiring one-
time-per-passenger identification of tens to low hundreds of individuals.

A Functional Encryption (FE) [4] scheme is a public-key encryption
scheme where a “master” secret key msk is used to derive “functional” secret
keys skk, allowing decryption for a certain function evaluation F (k, x) on inputs
x previously encrypted with public key pk without revealing anything else about
them. Only a handful of functions F efficiently are supported by FE schemes.
The inner dot product x · y between two vectors x,y ∈ Z

K
L is one of them [1].

We remark that there is no restriction to what the functional secret keys skk

reveal about the function parameters k. For inner products where F (k,x) = x ·
yk, skk reveal yk, one of the two biometric templates. We thus resort to Function-
Hiding inner product encryption (FHIPE) schemes [12], which guarantees that
skk hide the underlying vectors yk. These are its four algorithms:

pp,msk ← FE.setup(1λ) generates public parameters pp and master
secret key msk given security parameter λ

sky ← FE.keygen(msk,y) generates functional secret keys sky for input
y using master secret key msk

cx ← FE.encr(msk,x) encrypts message x with master secret
key msk into ciphertext c

z ← FE.decr(pp, sky, cx) evaluates z = x · y from ciphertext cx and
functional secret key sky using pp

3 Our Solution

Security Goals. We begin by establishing the security goals of our solution:

– Privacy of all templates. The enrollment phase should store reference tem-
plates in a privacy preserving manner still allowing inner products. Likewise,
extracted live templates should support the inner product computation while
remaining private for any other use. This is a standard by-design security
goal of FE, already covered by the FHIPE scheme [12] of our solution.

– Protection against inner product leakage. FE schemes do not treat
the inherent leakage of the reference template when computing several inner
product operations with it. We formalize the newly identified output leakage
below, and develop two practical leakage-based attacks in Sect. 4: full refer-
ence template extraction and brute-force impersonation. Usually overlooked in
the secure computation literature, we stress the importance of this leakage in
our face identification scenario, where multiple inner products are computed
over the same reference template. To protect against them, we establish a
carefully selected limit to the total number of identification requests in our
solution.

66 A. Ibarrondo et al.

Definition 1 (Inner Product Leakage). For a single call to x · y, an inner
product of two vectors in ZK

L , we define function leakage ι as the inverse of
the minimum number p of calls required to unequivocally determine an unknown
input y from known inputs xj and known outputs zj = xj · y ∀j ∈ N, j ≤ p.
As an extension, for n inner product calls we define accumulated leakage to be
ῐ = n ∗ ι. With ῐ ≥ 1, the unknown input y is revealed.

Threat Model. We consider a semi-honest adversary corrupting the similarity
score operation and all steps after that, seeking to obtain as much information as
possible from the inputs but preserving their integrity. We consider the adversary
to have oracle access to the matching phase, thus being able to submit chosen
live biometric samples. Our system is built with trust on the enrollment and the
capture modules, for they receive the msk which can decrypt any ciphertext.

Fig. 2. Architecture of our secure face identification system based on FE

Swapping FE.encr with FE.keygen. The original FHIPE scheme (Sect. 5.1
of [12]) and posterior works based on it [11] use the function-hiding FE.keygen
functionality to protect the live template (step 3 in Fig. 2), keeping FE.encr for
the stored templates (step 2 in Fig. 2). We observe that, given the dual nature of
the FHIPE scheme, the same security properties hold if we were to swap them.
This observation is grounded on remark 3.4.5. of [5]: in the game-based IND-CPA
security definition of FHIPE (Fig. 3.10 of [5] or definition 2.1) the adversary and
the oracle follow a perfectly equivalent game. To optimize the matching latency
we employ the fastest functionality for this phase, which happens to be FE.encr
(see Sect. 5), thereby swapping FE.encr � FE.keygen with respect to [11,12].

Limiting the Number of Requests. For templates with K l-bit elements
in ZL (L ≈ 2(l−1)), we limit the number N of identification requests of our
solution to N < K, in order to prevent full reference template extraction due
to output leakage (keeping ῐ < 1, detailed in Sect. 4). We enforce this limit

Priv. Pres. Face Identification Based on Function-Hiding FE 67

via an access control step with open instantiation, which could materialize as
an agent-controlled checkpoint or a one-time token generated in the enrollment.
Furthermore, we add a security margin of 80 bits to hinder brute-force imper-
sonation attacks identified in Sect. 4, leading to a final limit of N < (K − 80/l)
requests.

System Description. We display our solution in Fig. 2. In the enrollment
phase, the enrollment module acts as trusted authority to generate msk & pp
and protect N ref. templates by converting them into functional keys ski. msk
is sent to the capture module, and all ski along with pp are sent to the matching
module. The matching phase starts with the access control step. The capture
module then gets a live template x and encrypts it into c using msk. Afterwards,
the matching module takes ski and c, computes their privacy-preserving inner
product zi = x · yi, compares the highest score max(zi) to the threshold δ, and
returns a match with the ID/index i of the highest score, or nothing if rejected.

The feature extractor outputs normalized templates t ∈ R
K
[−1,1], easily pro-

jected into the FHIPE discrete space Z2l by scaling with factor 2l and a trun-
cation to l bits. The subsequent inner product is naturally up-scaled twice:

f(xfix,yfix) =
⌊
xfloat ∗ 2l

⌋
l
· ⌊
yfloat ∗ 2l

⌋
l
≈ 22l ∗ f(x,y)

To compare against the threshold δ ∈ [0, 1] we upscale δ twice: δfix = δ ∗
22l, obtaining an equivalent comparison. This fixed-point translation imposes a
minimum ring size of 2l bits to avoid overflows. The approximation impacts the
accuracy, since more bits yield more precision, but at the cost of bigger primitives
in the FE scheme and thus worse latency. We study this trade-off in Sect. 5.

4 Security Analysis

This section first covers the template privacy with FHIPE security, then identifies
two novel attacks based on output leakage (Definition 1), proposing countermea-
sures.

Theorem 1. Our system preserves the privacy of the live template and the ref-
erence templates while allowing the inner product similarity computation.

Proof. The security of FE sits upon game-based definitions that prove Indis-
tinguishability against Chosen Plaintext Attacks a.k.a. IND-CPA (IND [1,4])).
The FHIPE scheme of our solution is proven to hold strong SIM-based security
guarantees as per theorem 3.1 of [12], which implies IND-CPA secure in Remark
2.5 of [12]. This directly ensures the privacy of the biometric templates inside
ciphertexts and functional secret keys of our solution. 	

68 A. Ibarrondo et al.

Protection Against Output Leakage. The inner product function, and by
extension all IPE schemes, suffer from output leakage of ι = 1/K, for input
vectors of K elements. This leads to a full reference template extraction
attack, where the attacker launches N chosen identification requests and uses
the results to reconstruct a hidden reference template. Indeed the system of N

linear equations {zj =
∑K

i=1 x
[i]
j ∗ y[i], j ∈ {1, 2, ..., N}} for known zj and xj

has a unique, non-trivial solution for the K unknown variables y[i] when all
the equations are linearly independent and N ≥ K. In our system (Sect. 3) we
propose the countermeasure of limiting the number N of calls to F to N < K,
ensuring ῐ < 1. This way, the above system of equations is underdetermined; for
y[i] ∈ ZL = {−L, · · · ,−1, 0, 1, · · · L} there are exactly (2∗L+1)(K−N) solutions.

In addition, IPE-based biometric matching schemes with up to N < K
requests can be subject to a brute-force impersonation attack, where a par-
tially extracted (ῐ < 1) reference template ŷ is used to impersonate its owner.
The attacker first sets the remaining K − N unknown values of ŷ to arbitrary
values and launches several identification requests, so that the FHIPE result
z = ŷ ·y might yield z ≥ δ, thus matching positive for the identity of y. Beyond
this, the attacker could also resort to prior knowledge of the template space
(obtainable from feature extractors with similar characteristics) and project the
partially extracted template to it, further increasing the chances of a successful
impersonation. To thwart these attacks, we set an additional security margin τ
to the number N of calls to F in our solution (see Sect. 3), so that N < (K − τ).
Seeking to increase the number of possible solutions of the above system of equa-
tions to 280 (80 bits), we fix τ ≈ 80/l for template values of l bits (L ≈ 2(l−1)).

Fig. 3. Experimental results on Latency vs number N of identities (left), on precision
vs template element size l (center), and practical trade-off between parameters (right).

Table 1. Latency (seconds) for single-core FE.decr with template elements of l bits.

l 2 4 6 8 10 12 14 16

FE.decrypt (s) 0.18 0.18 0.19 0.25 0.40 1.08 3.81 14.86

Priv. Pres. Face Identification Based on Function-Hiding FE 69

5 Experiments

We implement our Cython-based solution using the CiFEr [15] library, an Arc-
Face based [7] feature extractor with templates of size K = 128. The experiments
were run in an Intel(R) Core(TM) i7-7800X CPU and averaged over 10 runs.
Latency optimization in the matching phase is essential to make our system
practical. Using a single core, we measure FE.setup (step 1) to take 0.35s,
FE.keygen (step 2) requires 0.19s per key, and FE.encr (step 3) demands 0.082s;
thus our proposed swapping reduces the latency of live template protection by
55%. As the only FE operation depending on the template element size, FE.decr
latency is recorded in Table 1. The feature extractor clocks 36 ± 1 ms. We disre-
gard the latency of the access control step, as its instantiation is left open; and
the max, the comparison with δ and the secure transmission for being negligible
compared to the FE operations. Additionally, we analyze the matching module
in the left Fig. 3 based on the number N of identities in our system for a one-time
identification scenario. As per Sect. 4, N is limited to strictly less than the tem-
plate vector length (N < 128) to avoid full leakage of the stored templates, and
a red area marks the additional security margin to thwart brute-force attacks.

Precision is measured with face identification benchmarks using the Labeled
Faces in the Wild (LFW) dataset [10] consisting of 13233 112 × 112px real face
images of famous people. We employ the widespread False Acceptance Rate
(FAR) and False Rejection Rate (FRR) as metrics1. Typically, robust identifica-
tion systems enforce FAR < 10−4, obtaining a corresponding higher FRR. In the
central graph of Fig. 3, we remark that highly compressed templates maintain
high precision, with little improvement beyond l = 6.
To close up, the right Fig. 3 presents the best trade-offs in two scenarios:

– Higher precision: Optimizing for low FRR, setting l = 5 bits per template
element to support up to 70 identities, with slower matching of up to 5s.

– Many identities, optimizing for high N (up to 100 identities) by setting
l = 4 bits, at the cost of +2% FRR but with faster matching (≈4 s).

6 Previous Work

The study of IPE started off with selective security in [1], already envisioning
biometric use-cases, and reaching full security with [6,18]. The function-hiding
properties for IPE were introduced in [12], applied to biometric authentication
based on Hamming weight (l = 1). Further works in function-hiding approaches
include [13] and [11]. [3] covers an overhaul of efficient techniques.

The use of FE for privacy-preserving biometrics has also been subject to
intense scrutiny, from [20] for biometric authentication using threshold predi-
cate encryption, to the extreme efficiency of [14]. Whereas these works employ
Hamming-weight based matchings that do not require approximations (typical

1 More info in https://en.wikipedia.org/wiki/Biometrics#Performance.

https://en.wikipedia.org/wiki/Biometrics#Performance

70 A. Ibarrondo et al.

from fingerprint or iris), our work tackles the cosine-similarity based matching
of face biometrics. [2] covers an exhaustive revision of face recognition, which
includes the LFW dataset [10] and the foundations of our feature extractor [7].

Among the most recent works, [11] proposes a useful acceleration trick for
the FE scheme of [12], by caching all the repetitive computation depending
only of the stored templates, obtaining up to 30% speedups. Much like the
original [12], their function-hiding approach uses FE.encr for the stored tem-
plates and FE.keygen for the live templates. Our function-hiding solution swaps
FE.encr � FE.keygen to optimize the latency of the system.

Finally, where all previous works focus on the privacy provided by FE, we
identify and address the IPE output leakage, often overlooked and not covered
by the security guarantees of FE schemes.

7 Conclusions

This work proposes an efficient, precise and privacy-preserving face identification
system based on function-hiding functional encryption. We highlight the inherent
leakage of inner product schemes and identify novel reference template extraction
and brute force attacks. To counter them, we set a hard limit with a security
margin to the number N of identities in the system, adding an access control step
to enforce it. In addition, we optimize the matching phase latency by swapping
FE.encr and FE.keygen usage, speeding up the live template protection by
55% while maintaining the FE security guarantees. Finally, we implemented
this system, showing that 4/5 bits per template element are enough to obtain
precise setups that compute matchings against a database of up to 100 identities
in pseudo real-time, applicable to passenger identification use-cases.

Acknowledgements. The authors thank Vincent Despiegel for his valuable help
towards giving birth to this work. Moreover, we express our gratitude to the will-
ful guidance of Zekeriya Erkin. This work has also been partially supported by the 3IA
Cöte d’Azur program (reference number ANR19-P3IA-0002).

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Adjabi, I., Ouahabi, A., Benzaoui, A., Taleb-Ahmed, A.: Past, present, and future
of face recognition: a review. Electronics 9(8), 1188 (2020)

3. Barbosa, M., Catalano, D., Soleimanian, A., Warinschi, B.: Efficient function-
hiding functional encryption: from inner-products to orthogonality. In: Matsui,
M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 127–148. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-12612-4 7

4. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-12612-4_7
https://doi.org/10.1007/978-3-642-19571-6_16

Priv. Pres. Face Identification Based on Function-Hiding FE 71

5. Bourse, F.: Functional encryption for inner-product evaluations. Ph.D. thesis, PSL
Research University (2017)

6. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 7

7. Deng, J., Guo, J., Niannan, X., Zafeiriou, S.: Arcface: additive angular margin loss
for deep face recognition. In: CVPR (2019)

8. Deng, J., Guo, J., Yuxiang, Z., Yu, J., Kotsia, I., Zafeiriou, S.: Retinaface: single-
stage dense face localisation in the wild. In: arxiv (2019)

9. Gentry, C., et al.: A fully homomorphic encryption scheme, vol. 20. Stanford (2009)
10. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:

A database for studying face recognition in unconstrained environments. Technical
Report. 07–49, University of Massachusetts, Amherst (2007)

11. Jeon, S.Y., Lee, M.K.: Acceleration of inner-pairing product operation for secure
biometric verification. Sensors 21(8), 2859 (2021)

12. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0 29

13. Kim, S., Kim, J., Seo, J.H.: A new approach to practical function-private inner
product encryption. Theor. Comput. Sci. 783, 22–40 (2019)

14. Lee, J., Kim, D., Kim, D., Song, Y., Shin, J., Cheon, J.H.: Instant privacy-
preserving biometric authentication for hamming distance. IACR Cryptol. ePrint
Arch. 2018, 1214 (2018)

15. Project, F.: Cifer: functional encryption library (2021). https://github.com/fentec-
project/CiFEr

16. Sabhanayagam, T., Venkatesan, V.P., Senthamaraikannan, K.: A comprehensive
survey on various biometric systems. Int. J. Appl. Eng. Res. 13(5), 2276–2297
(2018)

17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
18. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product

values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC
2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45871-7 24

19. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986), pp. 162–167. IEEE (1986)

20. Zhou, K., Ren, J.: Passbio: privacy-preserving user-centric biometric authentica-
tion. IEEE Trans. Inf. Forens. Secur. 13(12), 3050–3063 (2018)

https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://github.com/fentec-project/CiFEr
https://github.com/fentec-project/CiFEr
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-319-45871-7_24

The Matrix Reloaded: Multiplication
Strategies in FrodoKEM

Joppe W. Bos1, Maximilian Ofner1,2, Joost Renes1, Tobias Schneider1(B),
and Christine van Vredendaal1

1 NXP Semiconductors, Eindhoven, The Netherlands
{joppe.bos,joost.renes,tobias.schneider,christine.cloostermans}@nxp.com

2 Graz University of Technology, Graz, Austria
m.ofner@student.tugraz.at

Abstract. Lattice-based schemes are promising candidates to replace
the current public-key cryptographic infrastructure in wake of the loom-
ing threat of quantum computers. One of the Round 3 candidates of the
ongoing NIST post-quantum standardization effort is FrodoKEM. It was
designed to provide conservative security, which comes with the caveat
that implementations are often bigger and slower compared to alternative
schemes. In particular, the most time-consuming arithmetic operation of
FrodoKEM is the multiplication of matrices with entries in Zq.

In this work, we investigate the performance of different matrix mul-
tiplication approaches in the specific setting of FrodoKEM. We consider
both optimized “näıve” matrix multiplication with cubic complexity, as
well as the Strassen multiplication algorithm which has a lower asymp-
totic run-time complexity. Our results show that for the proposed param-
eter sets of FrodoKEM we can improve over the state-of-the-art imple-
mentation with a row-wise blocking and packing approach, denoted as
RWCF in the following. For the matrix multiplication in FrodoKEM, this
results in a factor two speed-up. The impact of these improvements on
the full decapsulation operation is up to 22%. We additionally show that
for batching use-cases, where many inputs are processed at once, the
Strassen approach can be the best choice from batch size 8 upwards. For
a practically-relevant batch size of 128 inputs the observed speed-up is
in the range of 5 to 11% over using the efficient RWCF approach and
this speed-up grows with the batch size.

Keywords: Post-quantum cryptography · Matrix multiplication ·
Software implementation · Strassen

1 Introduction

The security of nearly all our digital assets as well as our online activities relies
on the hardness of the underlying cryptographic primitives. Public-key cryptog-
raphy, most notably RSA [37] and Elliptic Curve Cryptography [27,30], is one of

M. Ofner—This work was performed while this author was an internship student at
NXP Semiconductors.

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 72–91, 2021.
https://doi.org/10.1007/978-3-030-92548-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_5

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 73

the fundamental components to establish a secure cryptographic infrastructure.
With the steady progress in the development of quantum computers, the long-
term security of this infrastructure, including encrypted information and digital
signatures, is being threatened. When a full-scale quantum computer becomes
available, all the currently standardized and widely-used public-key algorithms
are vulnerable to polynomial-time attacks using a quantum computer [35,39].

As a reaction to this imminent threat on our currently deployed public-
key infrastructure, the USA’s National Institute of Standards and Technology
(NIST) initiated a process to solicit, evaluate, and standardize one or more
quantum-resistant public-key cryptographic algorithms in 2016 [32] where a new
replacement standard is expected in 2024. These algorithms are known as post-
quantum or quantum-safe algorithms. Arguably the most promising family of
post-quantum secure cryptographic approaches are the lattice-based schemes.
From its inception with Ajtai’s seminal works [2,3], the field has grown to an
active area of research (see e.g., [33] for a comprehensive overview).

Among the lattice-based family, the learning with errors (LWE) problem is
a common foundation on which to construct practical and post-quantum secure
schemes. It was first introduced by Regev in [36] and subsequently gained trac-
tion due to its hardness reduction proofs; the hardness of LWE (for certain
parameterizations) can be reduced to the hardness of various worst-case lattice
problems. To improve efficiency, multiple variants of the original LWE problem
have been proposed. These use additional structures in the lattice to realize a
faster and more compact version of LWE-based schemes. Notable examples are
the Ring-LWE [29,34] and the Module-LWE [13,28] versions. While these vari-
ants indeed offer schemes with better performances, they are more removed from
the original hardness proof of LWE.

In this paper, we focus on the NIST Round 3 candidate FrodoKEM [10,31]. It
is derived from the base LWE problem and was designed to provide a practical
post-quantum key exchange mechanism with conservative security. In particular,
it is based on a carefully parameterized LWE problem, which is closely related to
the conjectured-hard problems on generic, “algebraically unstructured” lattices.
This makes it a very conservative and secure choice in practice.

The downside, of course, is that practical realizations of FrodoKEM are often
bigger and slower compared to the algebraically structured alternatives, i.e.,
Kyber [11,38], NTRU [15], NTRU Prime [8,9] and Saber [17,18]. Still, the
advance to the third round of the ongoing NIST standardization effort as well as
being one of two post-quantum algorithms recommended by the German Federal
Office for Information Security (BSI) as cryptographically suitable for long-term
confidentiality [14] underline the practical relevance of FrodoKEM.

From a performance perspective, the most costly operations in FrodoKEM
are the (pseudo-random) generation, multiplication and addition of large inte-
ger matrices. Hence, from an arithmetic point of view the main bottleneck
and, therefore, focus of optimization is the implementation of the matrix mul-
tiplication. The main matrix used in these computations is a square integer
matrix of dimension n ∈ {640, 976, 1344} depending on the used parame-
ter set of FrodoKEM. In the reference and optimized implementations of [31],

74 J. W. Bos et al.

this is achieved (if available) using the Advanced Vector Extensions (AVX)
instructions on the x64 platform. For matrix dimensions n, the implementations
of [31] use a näıve matrix multiplication approach, i.e. of asymptotic complex-
ity O(n3). This is motivated by “street wisdom” that the asymptotically faster
matrix multiplication algorithms only provide benefits for much larger values
of n than used in FrodoKEM. Examples of such algorithms are the Strassen
algorithm [41] (O(nlog2 (7)) = O(n2.807355)), the Coppersmith–Winograd algo-
rithm [16] (O(n2.375477)), and the most recent improvements by Alman and
Williams [6] (O(n2.3728596)).

The concept of batch cryptography was first introduced by Fiat in [19]. He
proposed to perform multiple encryptions or signature generations simultane-
ously in order to reduce the total complexity. This is achieved by batching the
operations instead of performing them one-by-one (see Sect. 4.2 for more details
and references). For certain use cases, which require the rapid processing of a
large number of cryptographic operations, this approach can be very beneficial,
e.g., one of the recent emerging technologies with such requirements is vehic-
ular communication [12]. In the setting of FrodoKEM, batching could be used
to decapsulate multiple encapsulated keys with the same private key, e.g., a
server processing a multitude of client requests. In effect, this batch decapsula-
tion would increase one dimension of the multiplied matrices in function of the
processed queries.

Contributions. In this work, we investigate the validity of this “street wisdom”.
This is motivated and in line with the results from Huang, Smith, Henry, and
van de Geijn [22] where they dispel some of the preconceived notions regarding
the practicality of the Strassen matrix multiplication algorithm. They introduce
various implementation strategies to make Strassen a viable alternative to and
even outperform the näıve O(n3) approach for much smaller dimensions than
previously assumed. We apply the learnings from [22] to the cryptographic set-
ting of FrodoKEM: matrix multiplication where one of the inputs is significantly
smaller (dimension n̄ × n = 8 × n) compared to the other (dimension n × n
matrix) with the added aspect that one matrix can be generated on-the-fly.

To this end, we first implement FrodoKEM with various approaches for matrix
multiplication. In particular, we explore variations of näıve matrix multiplication
and Strassen matrix multiplication. We show that using a row-wise blocking and
packing approach, denoted as RWCF, combined with on-the-fly generation of
the FrodoKEM matrix outperforms the current FrodoKEM matrix multiplication
implementation by almost a factor two. When the RWCF approach is used in
FrodoKEM decapsulation, we show an improvement of up to 22%.

Furthermore, we investigate the viability of Strassen for the batching use case.
To this end, we benchmark the performance of FrodoKEM when computing batch
operations. We show that for batch sizes as small as 8 (for FrodoKEM-1344),
using the Strassen algorithm can provide better performances than the näıve
multiplication and even the RWCF approach. For batch sizes 128 and upward,
we show that we can expect improvements in the range 19 to 35% compared to
the FrodoKEM matrix-multiplication method and of 5 to 11% over the RWCF

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 75

Table 1. The relevant FrodoKEM parameters for matrix multiplication for the various
security levels.

Parameter set NIST security level q n̄ n

FrodoKEM-640 1 215 8 640

FrodoKEM-976 3 216 8 976

FrodoKEM-1344 5 216 8 1344

approach. As expected, the benefit of using Strassen becomes more significant
as the batch size increases.

Outline. The remainder of this paper is structured as follows. In Sect. 2, we
provide the necessary background on FrodoKEM and recursive matrix multipli-
cation, in particular the Strassen algorithm. In Sect. 3, we outline the application
of the different matrix multiplication approaches in the context of FrodoKEM.
These are then benchmarked for FrodoKEM and batched FrodoKEM in Sect. 4,
and the paper is concluded in Sect. 5.

2 Preliminaries

In this section we outline the basics of the FrodoKEM algorithm [10,31], with
a focus on the generation of the public matrix A ∈ Z

n×n
q . We also recall the

Strassen [41] matrix multiplication algorithm.

Notation. We denote the ring of integers modulo q with Zq = Z/qZ. Matrices
are denoted with upper case boldface letters, e.g., B ∈ Z

m×n
q , and its matrix

element in the i-th row and j-th column as Bi,j (with 0 ≤ i < m and 0 ≤ j < n).

2.1 The FrodoKEM Algorithm

FrodoKEM was derived from the Frodo key agreement protocol proposed in [10].
The security of Frodo reduces to the hardness of the standard Learning With
Errors (LWE) problem with a short secret. In this section, we only recall the
aspects of FrodoKEM relevant to our contribution. For further information, we
refer the interested reader to the specification of FrodoKEM [31].

Table 1 contains the FrodoKEM parameters related to the matrix multipli-
cation and their associated security levels. The NIST security levels 1, 3 and
5 correspond to the brute-force security of AES128, AES-192 and AES-256,
respectively.

As can be seen from Table 1, the LWE integer modulus q ≤ 216 is always
a power of two in FrodoKEM. This was chosen for efficiency reasons: reduction
modulo q is “for free” on modern computer architectures.

During the FrodoKEM key generation, secret and public keys are generated
from an initial secret and public seeds. In particular, the public matrix A ∈ Z

n×n
q

76 J. W. Bos et al.

Algorithm 1. Frodo.Gen using AES128 (algorithm taken from [31]).
Input: Seed seedA ∈ {0, 1}lenseedA .
Output: Matrix A ∈ Z

n×n
q .

1: for (i = 0; i < n; i ← i + 1) do
2: for (j = 0; j < n; j ← j + 8) do
3: b ← 〈i〉‖〈j〉‖0 · · · 0 ∈ {0, 1}128 where 〈i〉, 〈j〉 ∈ {0, 1}16

4: 〈ci,j〉‖〈ci,j+1〉‖ · · · ‖〈ci,j+7〉 ← AES128seedA(b) where each 〈ci,k〉 ∈ {0, 1}16

5: for (k = 0; k < 8; k ← k + 1) do
6: Ai,j+k ← ci,j+k mod q
7: return A

is created by calling FrodoKEM.Gen (seedA) for the public seed seedA. Given A
and the secret matrix S ∈ Z

n×n̄
q , a second public matrix B ∈ Z

n×n̄
q is computed

as
B = A · S + E ,

where E is randomly drawn from a (small) distribution χ. FrodoKEM security in
this context relies on the hardness of recovering S from B and A. The public key
pk is then derived from B and seedA, while the secret key sk further contains the
secret seeds and matrices. Note that A is not part of any key and it is assumed
to be always generated on-the-fly using seedA.

Apart from error sampling and calls to symmetric primitives (i.e., AES128
or SHAKE128), the main operations in FrodoKEM are matrix operations. In the
remainder of this section we focus on these operations.

To perform encryption FrodoPKE.Enc with respect to the matrix A one gen-
erates a secret matrix S′ ∈ Z

n̄×n
q and computes B′ ∈ Z

n̄×n
q as

B′ = S′ · A + E′ ,

where E′ is another matrix randomly drawn from a (small) distribution χ.
Since encryption is a subroutine of both encapsulation and decapsulation, this
matrix multiplication operation is also a critical component of FrodoKEM.Enc
and FrodoKEM.Dec.

Generation of the Public Matrix A. To reduce the size of public keys and
accelerate encryption, the public matrix A ∈ Z

n×n
q could be set to a fixed

value. However, the designers of FrodoKEM chose to assign the public matrix A
dynamically and pseudorandomly generate it for every generated key. Following
previous work in this area [5,10], using dynamic matrices A helps to avoid the
possibility of backdoors and all-for-the-price-of-one attacks [1].

Let us recall how the matrix is constructed following the FrodoKEM spec-
ification [31]. The algorithm FrodoKEM.Gen takes as input the modulus q, a
seed seedA ∈ {0, 1}lenseedA and a dimension n ∈ Z, and outputs a pseudorandom
matrix A ∈ Z

n×n
q . There are two options for instantiating FrodoKEM.Gen. The

first method uses AES128; the second instead uses SHAKE128.

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 77

Algorithm 2. Frodo.Gen using SHAKE128 (algorithm taken from [31]).
Input: Seed seedA ∈ {0, 1}lenseedA .
Output: Pseudorandom matrix A ∈ Z

n×n
q .

1: for (i = 0; i < n; i ← i + 1) do
2: 〈ci,0〉‖〈ci,1〉‖ · · · ‖〈ci,n−1〉 ← SHAKE128(seedA, 16n, 28 + i) where each 〈ci,j〉 ∈

{0, 1}16.
3: for (j = 0; j < n; j ← j + 1) do
4: Ai,j ← ci,j mod q
5: return A

When using AES128, the matrix A ∈ Z
n×n
q is generated 8 elements at-a-

time. For each row and each block of 8 elements (in different columns), the
algorithm generates a 128-bit block of predefined input based on the location in
the matrix. This input is encrypted using the seedA as the AES128 key. This
process is outlined in Algorithm 1. More specifically, the input blocks to AES128
are 〈i〉‖〈j〉‖0‖ · · · ‖0 ∈ {0, 1}128, where i, j are encoded as 16-bit integers (see
Line 3). It then splits the 128-bit AES128 output block into eight 16-bit elements,
which it interprets as non-negative integers ci,j+k for k = 0, 1, . . . , 7 (see Line 4).
Finally, it sets Ai,j+k = ci,j+k mod q for all k. This modular reduction is “for
free” by dropping the most significant bits whenever q < 216.

The second method uses SHAKE128 instead of AES128 to generate the rows
of the matrix A ∈ Z

n×n
q . This process is shown in Algorithm 2. In this case, each

entire row is generated with a SHAKE128 call. Its input consists of seedA and a
customization value 28 + i to produce a 16n-bit output (see Line 2). The output
is then split into 16-bit integers ci,j ∈ {0, 1}16 (for j = 0, 1, . . . , n − 1), and used
to set the corresponding matrix entries Ai,j = ci,j mod q in Line 4. Note that
the offset of 28 in the customization value is used for domain separation where
for details we refer to the specification [31] of FrodoKEM.

2.2 The Strassen Algorithm

In this section we consider the application of the Strassen algorithm to the
FrodoKEM multiplication B′ = S′A+E′, where B′,S′,E′ ∈ Z

n̄×n
q and A ∈ Z

n×n
q .

The schoolbook approach of computing this sum would be to compute

B′
i,j = E′

i,j +
n−1∑

k=0

S′
i,kAk,j ,

for each i = 0, 1, . . . , n̄ − 1 and j = 0, 1, . . . , n − 1. This requires n̄n2 multi-
plications of coefficients in Zq, and therefore is of complexity O(n̄n2). In the
remainder we will refer to this specific multiplication method as the straight-
forward approach, while we will refer to O(n̄n2) methods in general as näıve
approaches.

In 1969, Strassen introduced an algorithm for matrix multiplication [41]
asymptotically faster compared to the straightforward approach. The Strassen

78 J. W. Bos et al.

algorithm works as follows. First the matrices S′,A and E′ are split into four
sub-matrices of equal size:

S′ =
(
S′
00 S′

01

S′
10 S′

11

)
, A =

(
A00 A01

A10 A11

)
, E′ =

(
E′

00 E′
01

E′
10 E′

11

)
,

where the sub-matrices of S′ and E′ are of dimension n̄/2 × n/2 and the sub-
matrices of A of dimension n/2 × n/2 each. The straightforward method would
then be to compute

B′ =
(
B′

00 B′
01

B′
10 B′

11

)
,

where

B′
00 = E′

00 + S′
00 · A00 + S′

01 · A10 ,

B′
01 = E′

01 + S′
00 · A01 + S′

01 · A11 ,

B′
10 = E′

10 + S′
10 · A00 + S′

11 · A10 ,

B′
11 = E′

11 + S′
10 · A01 + S′

11 · A11 .

This split computation consists of eight products of dimension n̄/2 × n/2 sub-
matrices with dimension n/2 × n/2 sub-matrices, and does not decrease the
overall number of multiplications compared to the straightforward approach.
The idea by Strassen is to compute this instead as

M0 = (S′
00 + S′

11) · (A00 + A11) , B′
00 = E′

00 + M0 + M3 − M4 + M6 ,

M1 = (S′
10 + S′

11) · A00 , B′
01 = E′

01 + M2 + M4 ,

M2 = S′
00 · (A01 − A11) B′

10 = E′
10 + M1 + M3 ,

M3 = S′
11 · (A10 − A00) , B′

11 = E′
11 + M0 − M1 + M2 + M5 .

M4 = (S′
00 + S′

01) · A11 ,

M5 = (S′
10 − S′

00) · (A00 + A01) ,

M6 = (S′
01 − S′

11) · (A10 + A11) ,

This requires only seven multiplications of dimension n̄/2×n/2 sub-matrices with
dimension n/2 × n/2 sub-matrices, but has an increased number of additions
and subtractions compared to the näıve method. Strassen’s algorithm applies
this splitting recursively, which asymptotically outperforms the straightforward
block-by-block computation. For example, applying the recursion log2 n̄ times
leads to a complexity of O(n̄log2 7−2 ·n2), which is asymptotically better than the
complexity of O(n̄n2) of näıve methods. The optimal number of recursion levels
will depend on the various parameters and the platform on which the algorithm
is implemented. In [22] it was shown that different strategies can reduce the
overhead of Strassen and that the algorithm can show good results for smaller
dimensions than previously known.

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 79

3 Matrix Multiplication Strategies for Cryptography

In this section, we present different strategies to realize efficient and practical
implementations of matrix multiplication algorithms. These methods have been
studied extensively in the literature before and are not new. The cryptographic
application to FrodoKEM, however, which comes with the different setting of
integer matrices where one of the operands is generated on-the-fly, has as far
as we are aware not been considered in detail before. We use the techniques as
proposed in the BLAS-like Library Instantiation Software (BLIS) framework [42].
BLIS is a software framework and gives the infrastructure for instantiating Basic
Linear Algebra Subprograms (BLAS) functionality. The core design idea of BLIS
is that virtually all BLAS operations (such as matrix-vector and matrix-matrix
multiplications) can be expressed and optimized in terms of very simple kernels.
Moreover, we use and describe the optimizing strategies as summarized and
studied in [40].

3.1 Matrix Multiplication for FrodoKEM

In the setting of FrodoKEM we are particularly interested in the matrix prod-
uct with accumulation. That is, we consider the operations B = A · S + E and
B′ = S′ · A + E′ where S,E ∈ Z

n×n̄
q and S′,E′ ∈ Z

n̄×n
q are sampled from a

rounded continuous Gaussian distribution and A ∈ Z
n×n
q is generated pseudo-

randomly from a seed seedA according to Algorithm 1 or Algorithm 2. For
simplicity, and as it is the case in which the approach of Sect. 3.3 has the most
impact, we only focus on the generation of A with AES128 in this section. How-
ever, the application when using SHAKE128 is straightforward. In the proposed
parameter sets in [31], one uses n = 8 and n ∈ {640, 976, 1344} (see Table 1)
and therefore the public matrix A is quite large: 800, 1860 and 3528 kilobytes,
respectively.

We begin with a brief discussion on the multiplication B = A ·S+E, which
is the most straightforward. In the FrodoKEM submission this is performed with
the näıve (schoolbook) matrix multiplication Bi,j =

∑n−1
k=0 Ai,kSk,j +Ei,j . Note

that this works particularly well with on-the-fly matrix generation: since each
Bi,j only depends on the i-th row of A, and since A is generated row-wise (see
Sect. 2.1), one can generate a row of A and use it to generate all n̄ elements in the
same row of B. This also sets itself up well for using 16-way SIMD 16-bit integer
instructions (like AVX and AVX2 [23]), but hand-optimizing those results in
only a one percent performance improvement due to the compiler being able to
generate such optimized code very well [31, Sect. 3.2.1]. Hence, in this work we
make no improvements to the multiplication B = A · S + E.

Instead, we consider the matrix operation B′ = S′ ·A+E′. In this case, the
näıve computation B′

i,j =
∑n−1

k=0 S
′
i,kAk,j + E′

i,j relies on the j-th column of A.
This leads to a non-trivial problem for on-the-fly computation, as the matrix A
is generated row by row. In the case of AES128 the situation is actually slightly
simpler, as A is really only generated 8 row-elements at a time. However, we
shall see that the choice of algorithm still has significant impact on performance.

80 J. W. Bos et al.

In the remainder of this section we compare various algorithms to compute
B′ = S′ · A + E′.

3.2 The FrodoKEM Algorithm

The idea of FrodoKEM for computing B′ = S′ · A + E′ is simple to describe:
since elements of a row of A are generated 8 columns at a time, the elements of
B′ are also generated 8 columns at a time. That is, for a fixed j one generates

Ai,j‖Ai,j+1‖ · · · ‖Ai,j+7 ← AES128seedA(〈i〉‖〈j〉‖0 · · · ‖0)

for all i = 0, 1, . . . , n − 1 according to Algorithm 1. These elements can then be
used to compute B′

k,j , . . . ,B
′
k,j+7 for k = 0, 1, . . . , n̄ − 1.

The most straightforward way to implement this, which is done by
FrodoKEM, is to store the input to AES128 as a sequence of n blocks of 128-bit
each

〈0〉‖〈j〉‖0‖ · · · ‖0‖〈1〉‖〈j〉‖0‖ · · · ‖0‖ · · · ‖〈n − 1〉‖〈j〉‖0‖ · · · ‖0 ,

to which AES128 can be applied independently. As a result, the elements of the
8 columns of A are stored sequentially as

A0,j‖ · · · ‖A0,j+7‖A1,j‖ · · · ‖A1,j+7‖ · · · ‖An−1,j‖ · · · ‖An−1,j+7 .

However, to compute B′
0,j one would need to access A0,j ,A1,j , . . . ,An−1,j which

are not stored sequentially in memory. To solve this, FrodoKEM explicitly con-
verts the representation to

A0,j‖ · · · ‖An−1,j‖A0,j+1‖ · · · ‖An−1,j+1‖ · · · ‖A0,j+7‖ · · · ‖An−1,j+7 ,

which is essentially a transpose of the columns of A. We observe that this memory
re-organization does have a significant impact on the efficiency of the algorithm
(cf. Table 2 in Sect. 4). For completeness, we summarize the matrix multiplication
algorithm of FrodoKEM in Algorithm 3, where the transposition is performed
in Lines 12 to 14. The authors of FrodoKEM made an efficient implementation
of Algorithm 3 available where the multiplications and additions of the matrix
elements are computed using the 256-bit Advanced Vector Extensions (AVX)
16-way SIMD 16-bit integer instructions [4].

3.3 The RWCF Approach: Row-Wise Cache-Friendly Multiplication

In this paper we look at an alternative approach to implement the same straight-
forward matrix multiplication algorithm with asymptotic run-time O(n2n̄). We
follow the blocking and packing approach as outlined in [20,42] which does not
seem to have been considered for the FrodoKEM submission. Note that the mul-
tiplication with this complexity still falls under the näıve matrix multiplication
methods. The idea is to avoid the expensive transposition in memory required
by the FrodoKEM algorithm, which leads to an improvement in performance.

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 81

Algorithm 3. Matrix multiplication as implemented in the official FrodoKEM
submission when using AES128. The temporary memory buffers used are
Acols,T and ATcols of 8n elements of Zq each.

Input: Seed seedA ∈ {0, 1}lenseedA and matrices S′,E′ ∈ Z
n̄×n
q .

Output: Zn̄×n
q � out = S′ · A + E′.

1: for i ← 0; i < n̄; i ← i + 1 do
2: for j ← 0; j < n; j ← j + 1 do
3: outi,j ← E′

i,j

4: Set T to all zeros
5: aesk ← AES128 load key schedule(seedA)
6: for i ← 0; i < n; i ← i + 1 do
7: T[8i] ← i
8: for k ← 0; k < n; k ← k + 8 do
9: for i ← 0; i < n; i ← i + 1 do

10: T[8i + 1] ← k
11: Acols ← AES128 ECBaesk (T)
12: for i ← 0; i < n; i ← i + 1 do
13: for j ← 0; j < 8; j ← j + 1 do
14: ATcols[j · n + i] ← Acols[8i + j] // Transpose

15: for i ← 0; i < n̄; i ← i + 1 do
16: for � ← 0; � < 8; � ← � + 1 do
17: sum ← 0
18: for j ← 0; j < n; j ← j + 1 do
19: sum ← sum + S′

i,j · ATcols[� · n + j] // Access AT sequentially

20: outi,k+� ← outi,k+� + sum

For this purpose, the elements of A are generated row-wise as opposed to
column-wise. This is done 8 rows at a time in our benchmarked implementation,
as this led to the best performance. However, doing fewer or more is possible
as there is no dependency between different rows (as opposed to columns). For
simplicity, we describe the approach for a single row, as using more rows can be
deduced easily by doing them in parallel. We provide the full description for 8
rows in Algorithm 4.

For a fixed row k, the input to AES128 is generated (sequentially in memory)
as

〈k〉‖〈0〉‖0‖ · · · ‖0‖〈k〉‖〈8〉‖0‖ · · · ‖0‖ · · · ‖〈k〉‖〈n − 8〉‖0‖ · · · ‖0 ,

to which we apply AES128 to obtain

Ak,0‖Ak,1‖ · · · ‖Ak,n−1 .

We then initialize B′(−1) = E′ and iteratively accumulate B′(k) as

B′(k)
i,j = B′(k−1)

i,j + S′
i,kAk,j , (1)

82 J. W. Bos et al.

Algorithm 4. Matrix multiplication in FrodoKEM with row-wise AES128 gen-
eration. The temporary memory buffers used are Arows and T of 8n elements of
Zq each.

Input: Seed seedA ∈ {0, 1}lenseedA and matrices S′,E′ ∈ Z
n̄×n
q .

Output: Zn̄×n
q � B′ = S′ · A + E′.

1: for i ← 0; i < n̄; i ← i + 1 do
2: for j ← 0; j < n; j ← j + 1 do
3: B′

i,j ← E′
i,j

4: Set T to all zeros
5: aesk ← AES128 load key schedule(seedA)
6: for i ← 0; i < n; i ← i + 8 do
7: for j ← 0; j < 8; j ← j + 1 do
8: T[j · n + i + 1] ← i
9: for i ← 0; i < n; i ← i + 8 do

10: for j ← 0; j < 8; j ← j + 1 do
11: for k ← 0; k < n; k ← k + 8 do
12: T[j · n + k] ← i + j
13: Arows ← AES128 ECBaesk (T)
14: for j ← 0; j < n̄; j ← j + 1 do
15: for � ← 0; � < n; � ← � + 1 do
16: sum = B′

j,�

17: for k ← 0; k < 8; k ← k + 1 do
18: sum = sum + S′

j,i+k · Arows[k · n + �] // 16 in parallel (AVX2)

19: B′
j,� ← sum

for all i = 0, 1 . . . , n̄ − 1 and j = 0, 1 . . . , n − 1. One sees that

B′
i,j = B′(n−1)

i,j = E′
i,j +

n−1∑

k=0

S′
i,kAk,j ,

proving correctness of the algorithm. Moreover, the elements of A are accessed in
the same order in which they are generated, making this algorithm very suitable
to on-the-fly generation.

This approach can be combined very efficiently with the available SIMD
extensions. Specifically, one can broadcast the (16-bit) value S′

i,k to the 16 SIMD
slots. This broadcast is done using the AVX instruction mm256 set1 epi16(·)
which puts the 16-bit integer a in all 16 slots of the returned 256-bit vector reg-
ister. These values can be multiplied with 16 matrix elements Ak,j‖ · · · ‖Ak,j+15

using a single instruction: mm256 mullo epi16(·,·). This computes the products
S′

i,kAk,j , . . . ,S′
i,kAk,j+15, for the 16-bit integers S′

i,k and Ak,j , . . . ,Ak,j+15, and
has the additional advantage that the obtained result is automatically reduced
modulo q (or 2q when q = 215 is used). This can be applied in Line 18 of
Algorithm 4. Note that 16 | n for all parameter sets of FrodoKEM, so generating
16 row elements of A at a time is not a problem.

It should be clear that the accumulation step in Eq. (1) can be computed
for multiple rows at the same time by generating those rows simultaneously

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 83

Fig. 1. Graphical representation of processing the elements. In gray the FrodoKEM
approach, which for cache-friendly access requires transposing the blocks of columns
from A, before multiplying with the rows of S. In black the RWCF approach, which
does not require a transpose.

for various k. Although the number of multiplications and additions does not
change in that case, it can be beneficial for the overall run-time by reducing the
overall loads and stores of the B′

i,j . This is especially true when loads and stores
are performed to and from AVX registers. For example, in Line 16 and 19 of
Algorithm 4 there is only a single load and store of B′

j,� for every 8 accumulations.
Note that for AES128-based version it is not actually necessary to generate

a whole row of A: as we apply AES128 to 8 elements at a time, we can gener-
ate exactly those 8 elements (in the same row) on-the-fly (though 16 would be
preferable for compatibility with AVX instructions). In that case we could con-
sider another extreme version of the above algorithm where we process n rows
simultaneously, generating 16 columns on-the-fly and multiplying and accumu-
lating. This would reduce essentially to a column-based approach again, though
the order of multiplications is different from FrodoKEM and a tranposition in
memory is not necessary. However, since this algorithm is not compatible with
SHAKE, which does generate whole rows from a single SHAKE call, we do not
pursue this further here.

To illustrate the high-level difference in the order of accessing A, we present
a simplified representation in Fig. 1. In gray, we see how the columns of A are
processed, which require an additional memory transposition. In black the row-
wise method is shown, which needs no explicit memory transformations.

3.4 FrodoKEM Multiplication Using Strassen

The last multiplication approach we discuss in the context of FrodoKEM is
Strassen, which was already introduced in Sect. 2.2. In [22] it was shown that
Strassen can also be implemented in a cache-friendly manner. The method pre-
sented there can be easily combined with the on-the-fly generation of A.

84 J. W. Bos et al.

Recall that the AVX2 SIMD instructions allow us to process 16 16-bit ele-
ments at the same time, assuming that 16 | n. To apply the same instructions for
Strassen to the submatrices with only n/2 rows, we would require that 16 | (n/2).
This is true for n = 640, 1344 but does not hold for n = 976. This is easily solved
by padding A with zero columns which has a minor effect on the performance
compared to the other parameter sets.

In the following, we only consider one-level Strassen and analyze its per-
formance. That is, we reduce the matrix multiplication to 7 multiplications of
half-size row and column dimensions that we perform with RWCF. More levels
of recursion can of course be considered, but it is not a priori clear that Strassen
will outperform other algorithms for the dimensions of FrodoKEM (even for a
single recursion level), as its improvements are only guaranteed asymptotically.
As we will see in Sect. 4, it outperforms the current FrodoKEM implementation
but does not improve over RWCF itself. Nevertheless, even if Strassen does not
scale fast enough to be relevant for single FrodoKEM, it can still be useful to
explore its application for batching, as we show in Sect. 4.2.

4 Implementation and Benchmark Results

In this section we discuss the comparative performance for the different
approaches of implementing the FrodoKEM matrix multiplication. The perfor-
mance results have been obtained when running on a single core of the 12-core
AMD Ryzen 9 3900XT running at a base clock of 3.8GHz. We consider both the
setting where a single key exchange or encryption is performed, as well as their
batched analogues where multiple keys are handled in parallel. For this section
we focus on the results for AES128 only: as this is much faster on the selected
platform, the significance of the matrix multiplication is higher and therefore so
is the significance of our speed-ups. We expect speed-ups for SHAKE128 can be
obtained on platforms with access to a hardware accelerator, but these are less
significant given that this approach does not have the inefficiency of a matrix
transposition. Both versions have been integrated into the reference implemen-
tation of the FrodoKEM submission.1

4.1 Performance Results

The performance measurements for all three FrodoKEM parameter sets are sum-
marized in Table 2. This shows the performance in 103 cycles of the individ-
ual matrix multiplication routines A · S + E (frodo mul add as plus e) and
S′ ·A+E′ (frodo mul add sa plus e). These routines consist of two computa-
tionally significant steps: generation of the matrix elements of A using AES128
and multiplying the resulting matrix with S or S′. Although a fresh A is gener-
ated for each IND-CPA encryption or key exchange, in a KEM setting where a
static key pair is used one can pre-compute A and store for encapsulation and

1 https://github.com/microsoft/PQCrypto-LWEKE commit 5c3123f.

https://github.com/microsoft/PQCrypto-LWEKE

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 85

decapsulation. Therefore we distinguish two separate cases: excluding (labeled
“pre”) and including the generation time of the matrix elements from A using
AES128. Note that the algorithms described in Sect. 3 only impact the matrix
multiplication step and not the generation, so have relatively more impact when
A is not freshly generated. For completeness, we also include the total cost of
key generation, encapsulation and decapsulation, which generate A on-the-fly
to align with the reference implementation. Again, the impact on encapsulation
and decapsulation is greater by storing A in advance.

Firstly, we highlight an interesting observation about the reference imple-
mentation (using AVX instructions) of FrodoKEM (the “x64” column in Table 2).
When comparing the two matrix multiplication routines, we see that computing
A·S+E is up to 1.4 times faster than S′ ·A+E′ if the generation of A is included,
and up to 1.9 times faster if A is pre-generated. The latter speed-up is almost
fully determined by the matrix multiplication, but is surprisingly large since
the dimensions of the multiplications are exactly the same (though transposed).
Using the RWCF algorithm from Sect. 3.3 for S′ ·A+E′ leads to a speed-up of
up to 1.4 times including generation of A, or of up to 2.0 times excluding it, when
compared to the reference implementation. Indeed, the RWCF approach reduces
the cost of S′ ·A+E′ so that it is essentially equal to computing A ·S+E, which
should be expected for multiplications of equal dimensions. Overall, employing
the RWCF approach leads to an up to 22% improvement in encapsulation or
decapsulation when A is generated on-the-fly, while not affecting key generation
since it only computes A · S + E.

Interestingly, the Strassen implementation also outperforms the ×64 imple-
mentation. This approach uses a single level of Strassen and then reverts to the
RWCF approach for multiplying the smaller sub-matrices. This explains why
Strassen outperforms x64 and not the RWCF approach. For the best overall
performance one should use the RWCF approach. We expect that these results
carry over to other approaches, compared to AES128, to generate the matrix
elements. One such example is when using SHAKE128 as outlined in Sect. 2.1,
but as noted before the relative impact of our method is less significant in this
case.

4.2 Batching

Let us consider the setting of batch cryptography [19]. The main idea is to reduce
the computational burden of an entity which receives multiple (i.e., a batch of)
cryptographic operations. It might be possible to process this batch of compu-
tation and take advantage of some arithmetic or algorithmic advantages that
increase the latency (compared to a single request) but also increase the over-
all throughput (the number of cryptographic operations per second) to ensure
an overall increase of computation on this batch processing system. Many of
such approaches have been proposed such as batch verification of RSA signa-
tures [21], ECDSA batch signature verification [24–26] and batch Diffie-Hellman
key agreement [7].

86 J. W. Bos et al.

Table 2. Performance numbers of the matrix multiplication methods with and without
(“pre”) generation of the elements using AES128. In parentheses the relative perfor-
mance against the reference implementation “×64”. The numbers are reported in 103

cycles and an average over 1000 runs.

Function ×64 Strassen RWCF

FrodoKEM-640

frodo mul add as plus e (pre) 208 212 (1.02) 212 (1.02)

frodo mul add sa plus e (pre) 396 282 (0.71) 202 (0.51)

frodo mul add as plus e 473 477 (1.01) 477 (1.01)

frodo mul add sa plus e 661 547 (0.83) 467 (0.70)

crypto kem keypair 902 902 (1.00) 903 (1.00)

crypto kem enc 1 275 1 174 (0.92) 1 068 (0.84)

crypto kem dec 1 232 1 121 (0.91) 1 025 (0.83)

FrodoKEM-976

frodo mul add as plus e (pre) 507 508 (1.00) 501 (0.99)

frodo mul add sa plus e (pre) 931 759 (0.82) 493 (0.53)

frodo mul add as plus e 1 095 1 096 (1.00) 1 089 (0.99)

frodo mul add sa plus e 1 519 1 347 (0.89) 1 081 (0.71)

crypto kem keypair 1 718 1 727 (1.01) 1 712 (1.00)

crypto kem enc 2 398 2 246 (0.94) 1 955 (0.82)

crypto kem dec 2 310 2 141 (0.93) 1 850 (0.80)

FrodoKEM-1344

frodo mul add as plus e (pre) 1 060 1 031 (0.97) 1 024 (0.97)

frodo mul add sa plus e (pre) 1 888 1 412 (0.75) 1 012 (0.54)

frodo mul add as plus e 2 140 2 111 (0.99) 2 104 (0.98)

frodo mul add sa plus e 2 968 2 492 (0.84) 2 092 (0.70)

crypto kem keypair 3 070 3 023 (0.98) 3 017 (0.98)

crypto kem enc 4 279 3 777 (0.88) 3 363 (0.79)

crypto kem dec 4 130 3 634 (0.88) 3 221 (0.78)

In Frodo, the seed seedA used to generate the large public matrix A (on-the-
fly) is part of the public-key. This means that when Frodo is used as a public-
key encryption scheme multiple devices or clients can encrypt messages to be
sent to the same server which can then perform a batch decryption on all these
ciphertexts which use the same matrix A. Along similar lines multiple clients
can start the key encapsulation mechanism (using FrodoKEM) with the same
clients using the same seedA and corresponding matrix A. This allows for batch
decapsulation on the server. This batching technique enables the server to use
the same public matrix A for multiple requests and increase the dimension in
the matrix multiplication S · A by considering multiple matrices S at once.

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 87

Fig. 2. The performance of the row-wise cache-friendly (RWCF) and Strassen matrix
multiplication (dimensions n̄×n with n×n) when varying n̄. Note that the dimension
n̄ in this case represents n̄/8 batch computations.

88 J. W. Bos et al.

We investigate when (and if) the asymptotic performance gain of the Strassen
algorithm becomes visible in such a batch decryption or batch decapsulation app-
roach. Performance results when batching up to 128 decryptions or decapsula-
tions (and therefore matrix multiplications up to dimension n̄ = 8 · 128 = 1024)
are shown in Fig. 2 for the three parameters sets proposed in FrodoKEM. As
expected eventually Strassen will outperform the FrodoKEM approach in all set-
tings. We see an improvement of 26, 16 and 16% for FrodoKEM-640, FrodoKEM-
976 and FrodoKEM-1344, respectively.

This shows that for the batching use case, performing one-level Strassen
becomes a viable option for the parameter sizes of FrodoKEM. Strassen also
eventually outperforms the RWCF approach in all settings. The cross-over point
is at n equal to 120, 152, 64, for FrodoKEM-640, FrodoKEM-976 and FrodoKEM-
1344, respectively.

This means that for relatively small batch sizes (e.g., using a batch of only
8 computations for FrodoKEM-1344) Strassen already starts to outperform the
straightforward approaches. However, the maximum observed speed-up is rela-
tively small: a 9, 5 or 10% improvement for FrodoKEM-640, FrodoKEM-976 and
FrodoKEM-1344. Of course, the difference between RWCF and Strassen grows
with the batch size used. For even larger batch sizes it should also be checked
whether applying more levels of Strassen is even faster.

5 Conclusions

We evaluated the performance of matrix multiplication approaches in the cryp-
tographic setting of FrodoKEM. We consider both optimized “näıve” matrix
multiplication with cubic complexity (i.e., the straightforward algorithm used
in the FrodoKEM submission and the RWCF approach) as well as the Strassen
multiplication algorithm (using one level).

Our results show that for the proposed parameter sets of FrodoKEM we can
improve over the state-of-the-art implementation with the RWCF approach. For
the matrix multiplication alone we achieve improvements up to 30% over the
straightforward FrodoKEM approach (and are almost twice as fast when the
matrix generation is pre-computed). The impact of these improvements on the
full encapsulation and decapsulation operations are slightly over 20%. Interest-
ingly, performing the encapsulation and decapsulation with the Strassen app-
roach also gains improvements over the FrodoKEM approach, with an improve-
ment of up to 12% for the largest parameter set. We note that the RWCF
approach is to be preferred in practice.

We additionally show that for batching use-cases, where many inputs are pro-
cessed at once, the Strassen approach is already to be preferred for small batches
of size 8. For a practically-relevant batch size of 128 inputs the observed speed-
up is in the range of 5 to 11% over using the efficient RWCF approach, growing
with the batch size. Over the current FrodoKEM approach the improvement is
even in the range of 19 to 35%.

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 89

This work therefore both improves on the FrodoKEM multiplication approach,
and shows that the Strassen method is relevant for FrodoKEM parameter in
practice.

References

1. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 5–17. ACM Press (2015).
https://doi.org/10.1145/2810103.2813707

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC, pp. 99–108. ACM Press (1996). https://doi.org/10.1145/237814.
237838

3. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: 29th ACM STOC, pp. 284–293. ACM Press (1997). https://doi.
org/10.1145/258533.258604

4. Alkim, E., et al.: FrodoKEM: Learning with Errors Key Encapsulations (2021).
https://github.com/microsoft/PQCrypto-LWEKE

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343.
USENIX Association (2016)

6. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication.
In: Marx, D. (ed.) Symposium on Discrete Algorithms - SODA, pp. 522–539. SIAM
(2021). https://doi.org/10.1137/1.9781611976465.32

7. Beller, M.J., Yacobi, Y.: Batch Diffie-Hellman key agreement systems and their
application to portable communications. In: Rueppel, R.A. (ed.) EUROCRYPT
1992. LNCS, vol. 658, pp. 208–220. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-47555-9 19

8. Bernstein, D.J., et al.: NTRU Prime. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

9. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 12

10. Bos, J.W., et al.: Frodo: Take off the ring! Practical, quantum-secure key exchange
from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) ACM CCS 2016, pp. 1006–1018. ACM Press (2016). https://doi.org/10.
1145/2976749.2978425

11. Bos, J.W., et al.: CRYSTALS - kyber: a cca-secure module-lattice-based KEM.
In: 2018 IEEE European Symposium on Security and Privacy - Euro S&P, pp.
353–367. IEEE (2018). https://doi.org/10.1109/EuroSP.2018.00032

12. Bottinelli, P., Lambert, R.: Accelerating V2X cryptography through batch opera-
tions. Cryptology ePrint Archive, Report 2019/887 (2019). https://eprint.iacr.org/
2019/887

13. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM (2012). https://doi.org/10.1145/2090236.2090262

https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/258533.258604
https://doi.org/10.1145/258533.258604
https://github.com/microsoft/PQCrypto-LWEKE
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1007/3-540-47555-9_19
https://doi.org/10.1007/3-540-47555-9_19
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1109/EuroSP.2018.00032
https://eprint.iacr.org/2019/887
https://eprint.iacr.org/2019/887
https://doi.org/10.1145/2090236.2090262

90 J. W. Bos et al.

14. Bundesamt für Sicherheit in der Informationstechnik: Cryptographic mechanisms:
Recommendations and key lengths. Bsi tr-02102-1, Federal Office for Informa-
tion Security (2021). https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf

15. Chen, C., et al.: NTRU. Technical report, National Institute of Standards and Tech-
nology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions

16. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
In: Aho, A. (ed.) 19th ACM STOC, pp. 1–6. ACM Press (1987). https://doi.org/
10.1145/28395.28396

17. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

18. D’Anvers, J.P., et al.: SABER. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

19. Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
175–185. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 17

20. Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw. 34(3) (2008). https://doi.org/10.1145/1356052.1356053

21. Harn, L.: Batch verifying multiple RSA digital signatures. Electron. Lett. 34, 1219–
1220 (1998)

22. Huang, J., Smith, T.M., Henry, G.M., van de Geijn, R.A.: Strassen’s algorithm
reloaded. In: West, J., Pancake, C.M. (eds.) International Conference for High
Performance Computing, Networking, Storage and Analysis - SC, pp. 690–701.
IEEE Computer Society (2016). https://doi.org/10.1109/SC.2016.58

23. Intel: Advanced vector extensions programming reference (2011). https://software.
intel.com/content/dam/develop/external/us/en/documents/36945

24. Karati, S., Das, A.: Faster batch verification of standard ECDSA signatures using
summation polynomials. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS
2014. LNCS, vol. 8479, pp. 438–456. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07536-5 26

25. Karati, S., Das, A., Roychowdhury, D., Bellur, B., Bhattacharya, D., Iyer, A.:
Batch verification of ECDSA signatures. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 1–18. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31410-0 1

26. Karati, S., Das, A., Roychowdhury, D., Bellur, B., Bhattacharya, D., Iyer, A.: New
algorithms for batch verification of standard ECDSA signatures. J. Cryptogr. Eng.
4(4), 237–258 (2014). https://doi.org/10.1007/s13389-014-0082-x

27. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
28. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.

Des. Codes Cryptogr. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-
9938-4

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

30. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1145/28395.28396
https://doi.org/10.1145/28395.28396
https://doi.org/10.1007/978-3-319-89339-6_16
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/0-387-34805-0_17
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1109/SC.2016.58
https://software.intel.com/content/dam/develop/external/us/en/documents/36945
https://software.intel.com/content/dam/develop/external/us/en/documents/36945
https://doi.org/10.1007/978-3-319-07536-5_26
https://doi.org/10.1007/978-3-319-07536-5_26
https://doi.org/10.1007/978-3-642-31410-0_1
https://doi.org/10.1007/s13389-014-0082-x
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31

The Matrix Reloaded: Multiplication Strategies in FrodoKEM 91

31. Naehrig, M., et al.: FrodoKEM. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

32. National Institute of Standards and Technology: Post-quantum cryptography
standardization. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization

33. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.
10(4), 283–424 (2016). https://doi.org/10.1561/0400000074

34. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM
STOC, pp. 461–473. ACM Press (2017). https://doi.org/10.1145/3055399.3055489

35. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quant. Inf. Comput. 3, 317–344 (2003). https://cds.cern.ch/record/602816

36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(2005). https://doi.org/10.1145/1060590.1060603

37. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. Assoc. Comput. Mach 21(2), 120–126
(1978)

38. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

39. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (1994). https://
doi.org/10.1109/SFCS.1994.365700

40. Smith, T.M., van de Geijn, R.A., Smelyanskiy, M., Hammond, J.R., Van Zee,
F.G.: Anatomy of high-performance many-threaded matrix multiplication. In:
IEEE International Parallel and Distributed Processing Symposium, pp. 1049–
1059. IEEE Computer Society (2014). https://doi.org/10.1109/IPDPS.2014.110

41. Strassen, V.: Gaussian elimination is not optimal. Numerische mathematik 13(4),
354–356 (1969)

42. Van Zee, F.G., van de Geijn, R.A.: BLIS: A framework for rapidly instantiating
BLAS functionality. ACM Trans. Math. Softw. 41(3), 14:1-14:33 (2015). https://
doi.org/10.1145/2764454

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1561/0400000074
https://doi.org/10.1145/3055399.3055489
https://cds.cern.ch/record/602816
https://doi.org/10.1145/1060590.1060603
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/IPDPS.2014.110
https://doi.org/10.1145/2764454
https://doi.org/10.1145/2764454

Signatures

BlindOR: an Efficient Lattice-Based Blind
Signature Scheme from OR-Proofs

Nabil Alkeilani Alkadri(B), Patrick Harasser, and Christian Janson

Technische Universität Darmstadt, Darmstadt, Germany
{nabil.alkadri,patrick.harasser,christian.janson}@tu-darmstadt.de

Abstract. An OR-proof is a protocol that enables a user to prove the
possession of a witness for one of two (or more) statements, without
revealing which one. Abe and Okamoto (CRYPTO 2000) used this tech-
nique to build a partially blind signature scheme whose security is based
on the hardness of the discrete logarithm problem. Inspired by their
approach, we present BlindOR, an efficient blind signature scheme from
OR-proofs based on lattices over modules. Using OR-proofs allows us to
reduce the security of our scheme from the MLWE and MSIS problems,
yielding a much more efficient solution compared to previous works.

Keywords: Blind signatures · OR-proof · Lattice-based cryptography

1 Introduction

Blind signature schemes are a fundamental cryptographic primitive. First intro-
duced by Chaum [9] in the context of an anonymous e-cash system, they have
since become an essential building block in many applications such as anony-
mous credentials, e-voting, and blockchain protocols. They have been standard-
ized as ISO/IEC 18370, and were deployed in real-life applications such as
Microsoft’s U-Prove technology and smart card devices produced by Gemalto.

In a blind signature scheme, a user holding a message m interacts with a
signer to generate a blind signature on m under the signer’s secret key. The
scheme is required to satisfy two security properties called blindness and one-
more unforgeability [16,19]. Informally, the first condition means that the signer
gets no information about m during the signing process, while the latter ensures
that the user cannot generate signatures without interacting with the signer.

In an effort to develop practical blind signature schemes from a diverse range
of assumptions (in particular, those conjectured to be secure against quantum
attacks), various schemes based on lattice problems have been proposed. The first
such scheme by Rückert [20] can be seen as an important step in carrying the core
design of classical constructions based on the discrete logarithm problem [19] over
to the lattice setting. The same design principle was then adopted in subsequent
works, e.g., by Alkeilani Alkadri et al. [3,4], where the scheme BLAZE and its
successor BLAZE+ have been proposed and shown to be practical.

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 95–115, 2021.
https://doi.org/10.1007/978-3-030-92548-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_6

96 N. Alkeilani Alkadri et al.

Recently, Hauck et al. [15] pointed out that the proof of the one-more unforge-
ability property, originally by Pointcheval and Stern for a discrete logarithm
based construction [19] and later reproposed by Rückert for his lattice-based
scheme [20], has not been adapted correctly to this new setting. Indeed, the
main idea of the reduction in [19] is to select a secret key sk and then run the
forger with the related public key pk, which represents an instance of a computa-
tionally hard problem that admits more than one solution. In other words, pk is
related to more than one sk, and the forger cannot distinguish which sk is used
by the reduction. Note that it is crucial for the reduction to know a secret key
because, unlike standard signature schemes, the signer cannot be simulated with-
out one (otherwise the scheme would be universally forgeable [19]). After running
the forger and obtaining an element z, the reduction rewinds the forger with the
same random tape and partially different random oracle replies to obtain z′. The
proof in [19] then uses a subtle argument to ensure that z �= z′ with noticeable
probability, which yields a solution to the underlying hard problem.

In lattice-based schemes, the hardness assumption underpinning security is
usually the Short Integer Solution (SIS) problem or its ring variant RSIS. In
this context, after obtaining z and z′, the reduction simply returns z − z′ as a
non-zero solution to (R)SIS. The problem, as discussed in [15], is that Rückert’s
argument is not sufficient to ensure that z �= z′ with high probability, and
further assumptions are required to guarantee that a transcript of the scheme
with a given key sk can be preserved with high probability when switching to a
different valid secret key. Based on this observation, Hauck et al. [15] extended
the modular framework for blind signatures from linear functions given in [14]
to the lattice setting, and provided a proof that covers the missing argument.

Unfortunately, as stated by the authors themselves, their work is mostly
of theoretical interest. Indeed, the solution presented in [15] entails increasing
the parameter sizes, so that their framework applies and yields a correct proof.
In particular, the RSIS-based instantiation given in [15] has public and secret
keys of size 443.75 KB and 4275 KB, respectively, and generates signatures of
size 7915.52 KB. This leaves us in the regrettable position where all known (three-
move) lattice-based blind signature schemes are either not backed by a correct
security proof, or need impractically large parameters to achieve security.

Our Contributions. In this paper we make a significant progress towards con-
structing efficient and at the same time provably secure lattice-based blind sig-
nature schemes. We present BlindOR, a new blind signature scheme based on
lattices over modules. Our scheme uses the OR-technique of Cramer et al. [10],
a feature which allows us to sidestep the missing security argument pointed
out in [15]. At a high level, an OR-proof is a Sigma protocol that proves the
knowledge of a witness for one of two statements, without revealing which one.
Therefore, the public key of our scheme consists of two statements (two instances
of a hard lattice problem), and the secret key includes a witness for one of them.
Consequently and for the first time, the hardness assumption underlying the
public key does not have to “natively” admit multiple solutions, because the

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 97

OR-technique already forces there to be more than one (and thus simulation of
signatures is still possible).

In particular, the public key of BlindOR consists of two instances of the Mod-
ule Learning with Errors (MLWE) problem, which results in a much more efficient
scheme. Signing is carried out by proving the possession of the witness included
in the secret key. A user interacting with the signer blinds the two transcripts
generated by the signer without being able to distinguish for which instance the
signer holds a witness. We capture these blinding steps in a set of algorithms
and show that BlindOR is statistically blind. The one-more unforgeability of our
scheme is proven in the random oracle model (ROM) assuming the hardness of
both MLWE and MSIS (the module version of SIS). The reduction creates one
instance of the hard problem with a witness in order to simulate the signing
oracle, and tries to solve the other instance, which is given to the reduction
as input. That is, the reduction does not know a witness for its input. This is
analogous to the security proof of standard lattice-based signature schemes, and
hence no further conditions are required to ensure the correctness and success of
the reduction with high probability. This is in contrast to previous lattice-based
constructions of blind signatures, as observed in [15].

BlindOR uses techniques from prior works in order to reduce or even remove
the number of restarts inherent in lattice-based schemes. More precisely, it uses
the partitioning and permutation technique introduced in [3]. Given a hash func-
tion taking values in the challenge space of the underlying Sigma protocol, it
allows to blind the hash values without having to carry out any security check
or potential restart. Another advantage of this technique is that it can be used to
construct OR-proofs based on lattice assumptions, because it allows to use a spec-
ified challenge space that has an abelian group structure, a crucial requirement
for OR-proofs. This is in contrast to the typical challenge space used in current
lattice-based schemes, which consists of polynomials from the ring Z[X]/〈Xn+1〉
with coefficients in {−1, 0, 1} and a given Hamming weight. We also use the trees
of commitments technique from [4] to remove the restarts induced by the user
when blinding the signature generated by the signer. We extend this technique
in BlindOR to reduce the potential restarts induced by the signer when comput-
ing signatures, which must be distributed independently from the secret key.

To demonstrate the efficiency of our scheme, we propose concrete parameters
for BlindOR targeting 128 bits of security. The related key and signature sizes, the
communication cost, and a comparison with the corresponding metrics for the
scheme proposed by Hauck et al. [15] are given in Table 1. In summary, although
our scheme requires twice as many public key and signature parts, which is
inherent to using OR-proofs, it yields smaller sizes compared to the provably
secure construction from [15], resulting in a more efficient scheme overall.

We remark that the security of our scheme can easily be extended to the
stronger security notions of selective failure blindness [8] and honest-user unforge-
ability [21]. This is established by signing a commitment to the message instead
of the message itself [12,21]. However, and similar to [15], it is still unclear how
to prove the blindness property under a maliciously generated key pair [11].

98 N. Alkeilani Alkadri et al.

Table 1. A comparison between BlindOR and the scheme introduced in [15] in terms of
key and signature sizes and communication cost. Numbers are given in kilobytes (KB).
The related parameters are given in Table 3 and [15, Figure 9].

Scheme Public key Secret key Signature Communication

BlindOR 10.3 1.7 17.2 375.6

[15] 443.75 4275 7915.52 34037.25

Related Work. Our construction is inspired by the work of Abe and
Okamoto [1], who used OR-proofs to build partially blind signatures with secu-
rity based on the hardness of the discrete logarithm problem. Observe that we
cannot simply convert their scheme to the lattice setting, as this would force us
to use MSIS (instead of MLWE) and result in an inefficient scheme. The change
to MLWE is possible because there is no common information to consider in our
case.

Hauck et al. [15] showed that all lattice-based constructions of blind signa-
tures from Sigma protocols (or canonical identification schemes) prior to their
framework, such as [3,20], do not have a valid security argument. Furthermore,
Alkeilani Alkadri et al. [3] showed that all two-round lattice-based blind signa-
ture schemes based on preimage sampleable trapdoor functions are insecure.

Recently, Agrawal et al. [2] made a step towards practical two-round lattice-
based blind signatures. They improved the two-round construction of Garg
et al. [13] which is based on general complexity assumptions, and degraded it
to rely on the ROM. This allows them to avoid complexity leveraging, the main
source of inefficiency in [13]. However, as pointed out by the authors, there are
some challenges left before this approach becomes practical. For instance, the
scheme requires the homomorphic evaluation of a specific signing algorithm that
relies on the ROM. In practice, this must be instantiated with a cryptographic
hash function that can be evaluated homomorphically. Finding such a function is
still an open problem. We refer to [2, Section 6.3] for more details and discussions
on the limitations of their construction.

2 Preliminaries

Notation. We denote by N, Z, and R the sets of natural numbers, integers,
and real numbers, respectively. If k ∈ N, we let [k] := {1, . . . , k}. For q ∈
N, we write Zq to denote the ring of integers modulo q with representatives
in

[− q
2 , q

2

)∩Z. If n is a fixed power of 2, we define the ring R := Z[X]/〈Xn +1〉
and its quotient Rq := R/qR. Elements in R and Rq are denoted by regular
font letters. Column vectors with coefficients in R or Rq are denoted by bold
lower-case letters, while bold upper-case letters are matrices. We let Ik denote
the identity matrix of dimension k, and T

n
κ the subset of Rq containing all

polynomials with coefficients in {−1, 0, 1} and Hamming weight κ. The �2 and �∞

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 99

norms of an element a =
∑n−1

i=0 aiX
i ∈ R are defined by ‖a‖ := (

∑n−1
i=0 |ai|2)1/2

and ‖a‖∞ := maxi |ai|, respectively. Similarly, for b = (b1, . . . , bk)t ∈ Rk, we
let ‖b‖ := (

∑k
i=1 ‖bi‖2)1/2 and ‖b‖∞ := maxi ‖bi‖∞. All logarithms are to

base 2.
If D is a distribution, we write x ←$ D to denote that x is sampled according

to D. For a finite set S, we also write x ←$ S if x is chosen from the uniform
distribution over S. The statistical distance between two distributions X and Y
over a countable set S is defined by Δ(X,Y) := 1

2

∑
s∈S |Pr[X = s]−Pr[Y = s]|.

For ε > 0 we say that X and Y are ε-statistically close if Δ(X,Y) ≤ ε.
We denote the security parameter by λ ∈ N, and abbreviate probabilistic

polynomial-time by PPT and deterministic polynomial-time by DPT. For a
probabilistic algorithm A, we write y ←$ AO(x) to denote that A returns y
when run on input x with access to oracle O, and y ∈ AO(x) if y is a pos-
sible output of AO(x). To make the randomness r ∈ RSA on which A is run
explicit, we use the notation y ← AO(x; r). If A and B are interactive algorithms,
we write (x, y) ←$ 〈A(a),B(b)〉 to denote the joint execution of A and B in an
interactive protocol with private inputs a for A and b for B, as well as private
outputs x for A and y for B. Accordingly, we write A〈·,B(b)〉k

(a) if A can invoke
up to k executions of the protocol with B.

The random oracle model (ROM) [7] is a model of computation where all
occurrences of a hash function are replaced by a random oracle H, i.e., a function
chosen at random from the space of all functions {0, 1}∗ → {0, 1}�H for some �H ∈
N, to which all involved parties have oracle access. This means that, for every
new oracle query, H returns a truly random response from {0, 1}�H , and every
repeated query consistently yields the same output.

Relations, Sigma Protocols, and OR-Proofs

Definition 1. A relation is a tuple R = (R.PGen,R.RSet,R.Gen), where:

R.PGen is the parameter generation algorithm which, on input the security
parameter λ ∈ N, returns public parameters pp.

R.RSet is the relation set, a collection of sets indexed by pp ∈ R.PGen(1λ).
R.Gen is the instance generator algorithm which, on input pp ∈ R.PGen(1λ)

and b ∈ {0, 1}, returns a pair (x,w) ∈ R.RSet(pp) if b = 1 (where x is
called a yes-instance for R w.r.t. pp and w a corresponding witness), and an
element x if b = 0 (called a no-instance for R w.r.t. pp).

We now define the OR-relation ROR on a relation R. Informally, for λ ∈ N and
public parameters pp ∈ R.PGen(1λ), a yes-instance for ROR w.r.t. pp is a pair of
values (x0, x1), each a yes-instance for R w.r.t. pp. A witness for such an instance
is a witness for one of the two coordinates, i.e.a pair (d,w) with d ∈ {0, 1} and w
a witness for xd. In contrast, a no-instance for ROR consists of a pair (x0, x1),
where at least one coordinate is a no-instance for R w.r.t. pp.

Definition 2. Let R be a relation. The OR-relation on R is the relation ROR

whose parameter generation algorithm is ROR.PGen := R.PGen, whose relation
set is ROR.RSet(pp) := {((x0, x1), (d,w)) | (xd, w), (x1−d, ·) ∈ R.Gen(pp, 1)}, and
whose instance generator ROR.Gen is given in Fig. 1.

100 N. Alkeilani Alkadri et al.

Fig. 1. Definition of the instance generator ROR.Gen of the OR-relation on R. Note that
in line 13 we slightly abuse notation: If d′ = 1, we only consider the first component
of the output, and ignore the witness in the second coordinate.

Definition 3. Let R be a relation. A Sigma protocol for R is a tuple of algo-
rithms Σ = (Σ.P, Σ.V, Σ.Sim, Σ.Ext, Σ.ComRec), where:

Σ.P is an interactive algorithm, called prover, that consists of two algorithms
Σ.P = (Σ.P1, Σ.P2), where:
– Σ.P1 is a PPT algorithm which, on input a set of public parameters pp

and an instance-witness pair (x,w), returns a message cm, called the
commitment, and a state stΣ.P.

– Σ.P2 is a DPT algorithm which, on input a set of public parameters pp,
an instance-witness pair (x,w), the state information stΣ.P, and a verifier
message ch, outputs a message rp, called the response.

Σ.V is an interactive algorithm, called verifier, that consists of two algorithms
Σ.V = (Σ.V1, Σ.V2), where:
– Σ.V1 is a PPT algorithm which, on input a set of public parameters pp,

an instance x, and a prover message cm, returns a message ch (called the
challenge) sampled uniformly at random from a finite abelian group C(pp)
(called the challenge space), as well as a state stΣ.V = (cm, ch) consisting
only of the received message and the sampled challenge.

– Σ.V2 is a DPT algorithm which, on input a set of public parameters pp,
an instance x, the state information stΣ.V = (cm, ch), and a prover mes-
sage rp, outputs a pair (b, int) with b ∈ {0, 1} and int ∈ Z. We say that
the verifier accepts the transcript if b = 1, and that it rejects if b = 0.

Σ.Sim is a PPT algorithm, called simulator. On input a set of public param-
eters pp, an instance x, and a challenge ch, it outputs a pair of mes-
sages (cm, rp).

Σ.Ext is a DPT algorithm, called extractor. On input a set of public param-
eters pp, an instance x, and two transcripts (cm, ch, rp) and (cm, ch ′, rp′)
such that ch �= ch ′ and Σ.V2 returns the same output (1, int) in both cases,
Σ.Ext outputs a string w such that (x,w) ∈ R.RSet(pp).

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 101

Σ.ComRec is a DPT algorithm, called commitment recovering algorithm. On
input a set of public parameters pp, an instance x, a challenge ch, and a
response rp, it returns a message cm.

If R is a relation, the Sigma protocols for R we consider must satisfy a few
properties which we briefly describe in the following. The first one is correctness,
saying that an honest protocol execution is likely to be accepted by the verifier.
Next, there is a variant of the zero-knowledge property, where we require that on
input an instance x and a randomly chosen challenge ch, the simulator be able
to provide an authentic-looking transcript. Finally, we have soundness, saying
that if the commitment recovering algorithm succeeds in finding a commitment,
this commitment verifies for the given challenge and response.

We now consider the OR-combination of two Sigma protocols (OR-proof). It
enables a prover P to show that it knows the witness of one of several statements,
or that one out of many statements is true. Here, we restrict ourselves to the
case where a prover holds two statements (x0, x1) and one witness w for xd,
with d ∈ {0, 1}. The prover’s goal is to convince the verifier that it holds a
witness for one of the two statements, without revealing which one. This problem
was first solved by Cramer et al. [10], and we now recall their construction.

Let R be a relation and Σ0, Σ1 be two Sigma protocols for R. The
construction of [10] allows to combine Σ0 and Σ1 into a new Sigma proto-
col ΣOR = OR[Σ0, Σ1] for the relation ROR. The key idea of the construction
is that the prover ΣOR.P splits the challenge ch received by ΣOR.V into two
random parts ch = ch0 + ch1, and is able to provide accepting transcripts for
both statements x0 and x1 for the respective challenge share. In more detail,
for a given security parameter λ ∈ N, public parameters pp ∈ R.PGen(1λ), and
instance-witness pair ((x0, x1), (d,w)) ∈ ROR.Gen(pp, 1), the execution of ΣOR

proceeds as follows:

(a) The prover ΣOR.P1 starts with computing (cmd, stΣd.P) ←$ Σd.P1(pp, xd, w)
and samples a challenge ch1−d ←$ C(pp). Next, it runs (cm1−d, rp1−d) ←$

Σ1−d.Sim(pp, x1−d, ch1−d) to complete the transcript of x1−d. In case the
simulation fails (i.e.(cm1−d, rp1−d) = (⊥,⊥)), the prover re-runs the simu-
lator. Finally, it sets stΣOR.P ← (stΣd.P, ch1−d, rp1−d) and sends (cm0, cm1)
to the verifier ΣOR.V1.

(b) Upon receiving the commitments (cm0, cm1), ΣOR.V1 samples a random
challenge from the challenge space, i.e.ch ←$ C(pp), and sends it to ΣOR.P2.
Finally, it sets its state to stΣOR.V ← (cm0, cm1, ch).

(c) After receiving the challenge ch, ΣOR.P2 sets chd ← ch − ch1−d and com-
putes a response for xd as rpd ← Σd.P2(pp, xd, w, stΣd.P, chd). In case this
computation fails (i.e.rpd = ⊥), it also sets rp1−d ← ⊥. Otherwise, the
prover sends the split challenges and responses to the verifier.

(d) After receiving (ch0, ch1, rp0, rp1) from the prover, ΣOR.V2 accepts if and
only if the shares satisfy ch = ch0+ch1 and both transcripts verify correctly.

For the remainder of the paper, we are interested in the situation where
a Sigma protocol is combined with itself, i.e., we obtain a new Sigma proto-
col ΣOR = OR[Σ,Σ] for the relation ROR. One can show that this protocol

102 N. Alkeilani Alkadri et al.

inherits many properties of Σ, such as correctness and special honest-verifier
zero-knowledge. An important property of ΣOR is that it is witness indistin-
guishable, meaning that the verifier does not learn which particular witness was
used to generate the proof.

Blind Signatures. We define blind signatures following the exposition of Hauck
et al. [15], where the interaction between signer and user consists of three moves.

Definition 4. A blind signature scheme is a tuple of polynomial-time algo-
rithms BS = (BS.PGen,BS.KGen,BS.S,BS.U,BS.Verify) where:

BS.PGen is a PPT parameter generation algorithm that, on input the security
parameter λ ∈ N, returns a set of public parameters pp. We assume that the
set pp identifies the message space M(pp) of the scheme.

BS.KGen is a PPT key generation algorithm that, on input a set of public param-
eters pp ∈ BS.PGen(1λ), returns a public/secret key pair (pk, sk).

BS.S is an interactive algorithm, called signer, that consists of two algorithms:
– The PPT algorithm BS.S1 takes as input a set of public parameters pp

and a key pair (pk, sk), and returns the signer message s1 and a state stS.
– The DPT algorithm BS.S2 takes as input a set of public parameters pp, a

key pair (pk, sk), the state information stS, and the user message u1, and
returns the next signer message s2.

BS.U is an interactive algorithm, called user, that consists of two algorithms:
– The PPT algorithm BS.U1 takes as input a set of public parameters pp,

a public key pk, a message m ∈ M(pp), and a signer message s1, and
returns a user message u1 and a state stU.

– The DPT algorithm BS.U2 takes as input a set of public parameters pp,
a public key pk, a message m, a user state stU, and a signer message s2,
and outputs a signature sig. We let sig = ⊥ denote failure.

BS.Verify is a DPT verification algorithm that, upon receiving a set of public
parameters pp, a public key pk, a message m, and a signature sig as input,
outputs 1 if the signature is valid and 0 otherwise.

Let pp ∈ BS.PGen(1λ). We say that BS is corrBS-correct w.r.t. pp if BS.Verify
validates honestly signed messages under honestly created keys with probability
at least 1 − corrBS. The security of blind signatures is defined by the notions
blindness and one-more unforgeability [16,19].

Definition 5. Let BS be a blind signature scheme, λ ∈ N and pp ∈ BS.PGen(1λ).
We say that BS is (t, ε)-blind w.r.t. pp if, for every adversarial signer S∗ run-
ning in time at most t and working in modes find, issue, and guess, we have
AdvBlind

BS,S∗(pp) := 2 · |Pr[ExpBlind
BS,S∗(pp) = 1] − 1

2 | ≤ ε, where the game ExpBlind
BS,S∗

is depicted in Fig. 2. BS is ε-statistically blind if it is (t, ε)-blind for every t.

Definition 6. Let BS be a blind signature scheme, λ ∈ N and pp ∈ BS.PGen(1λ).
We say that BS is (t, qSign, ε)-one-more unforgeable w.r.t. pp if, for every adver-
sarial user U∗ running in time at most t and making at most qSign signing
queries, we have AdvOMUF

BS,U∗ (pp) := Pr[ExpOMUF
BS,U∗ (pp) = 1] ≤ ε, where the

game ExpOMUF
BS,U∗ is depicted in Fig. 2.

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 103

Fig. 2. Definition of the experiments ExpBlind
BS,S∗ and ExpOMUF

BS,U∗ .

Lattices and Gaussians

Definition 7. Let L ⊂ R
m be a lattice, σ ∈ R>0, and c ∈ R

m. The discrete
Gaussian distribution over L with standard deviation σ and center c is the prob-
ability distribution DL,σ,c which assigns to every x ∈ L the probability of occur-
rence given by DL,σ,c(x) := ρσ,c(x)/ρσ,c(L), where ρσ,c(x) := exp(−‖x−c‖2

2σ2)
and ρσ,c(L) :=

∑
x∈L ρσ,c(x). We will omit the subscript c when c = 0.

Next we recall a special version of the rejection sampling lemma related to
the discrete Gaussian distribution [18, Theorem 4.6].

Lemma 8. Let T ∈ R>0, and define V := {v ∈ Z
m | ‖v‖ ≤ T}. Let σ := αT for

some α ∈ R>0, and let h : V → R be a probability distribution. Then there exists
a constant M ∈ R>0 such that exp(12α + 1

2α2) ≤ M , and such that the following
two algorithms are within statistical distance of at most 2−100/M :

(a) v ←$ h, z ←$ DZm,σ,v, output (z,v) with probability DZm,σ(z)
M ·DZm,σ,v(z)

, and ⊥
otherwise.

(b) v ←$ h, z ←$ DZm,σ, output (z,v) with probability 1/M , and ⊥ otherwise.

Moreover, the probability that the first algorithm returns a value different from ⊥
is at least 1−2−100

M .

We let Rej denote an algorithm that carries out rejection sampling on z,
where z ←$ DZm,σ,v, with v ∈ Z

m such that ‖v‖ ≤ T , and σ = αT . It outputs 1
if z is accepted and 0 if rejected.

Finally, we recall the definitions of the two lattice problems relevant to our
work, the Module Short Integer Solution (MSIS) and the decisional Module
Learning With Errors (D-MLWE) problems. In both cases, we assume that there
is an algorithm that, on input 1λ, generates a set of public parameters pp. Note
that D-MLWE can be defined w.r.t. an arbitrary distribution; here we only focus
on the case where the witness is sampled from the Gaussian distribution.

104 N. Alkeilani Alkadri et al.

Fig. 3. Definition of the experiments ExpMSIS
A∗ and ExpD-MLWE

D∗ .

Definition 9. Let pp = (n, q, k1, k2, β), where n, q, k1, k2 ∈ Z>0, and β ∈ R>0.
We say that the Hermite normal form of the module short integer solution prob-
lem (MSIS) is (t, ε)-hard w.r.t. pp if, for every algorithm A∗ running in time
at most t, we have AdvMSIS

A∗ (pp) := Pr[ExpMSIS
A∗ (pp) = 1] ≤ ε, where the

game ExpMSIS
A∗ is depicted in Fig. 3.

Definition 10. Let pp = (n, q, k1, k2, σ,A), where n, q, k1, k2 ∈ Z>0, σ ∈ R>0,
and A ←$ Rk1×k2

q . We say that the decisional module learning with errors prob-
lem (D-MLWE) is (t, ε)-hard w.r.t. pp if, for every algorithm A∗ running in time
at most t, we have AdvD-MLWE

A∗ (pp) := 2 · |Pr[ExpD-MLWE
A∗ (pp) = 1] − 1

2 | ≤ ε,
where the game ExpD-MLWE

A∗ is depicted in Fig. 3.

Additional Preliminaries. In the full version of this paper [5] we provide
a description of the partitioning and permutation technique [3], trees of com-
mitments technique [4], and a minor modified version of the general forking
lemma [6], which is used in the security proof of BlindOR. Here, we only give the
required definitions.

We define by T := {(−1)b ·Xi |b ∈ {0, 1}, i ∈ Z} the set of signed permutation
polynomials, which represent a rotation multiplied by a sign. The set T has
an abelian group structure with respect to multiplication in R. The inverse
of any p = (−1)b · Xi ∈ T is given by p−1 = (−1)1−b · Xn−i ∈ T. When
constructing OR-proofs, we will use the abelian group T

κ as the challenge space
rather than T

n
κ, since the latter does not have a group structure.

Let F : {0, 1}∗ → {0, 1}�F be a cryptographic hash function, where �F ≥ 2λ
for F to be collision resistant. We consider the following algorithms:

HashTree is an algorithm that computes an (unbalanced) binary hash tree of
height h ≥ 1. On input � ≤ 2h strings v0, . . . , v�−1, it returns a pair (root , tree),
where root is the root of the hash tree whose leaves are hashes of v0, . . . , v�−1,
and tree is the sequence of all the other nodes in the tree.

BuildAuth is an algorithm that, on input an index 0 ≤ k ≤ � − 1, a sequence of
nodes tree, and a height h, returns the authentication path auth for k.

RootCalc is an algorithm that computes the root of a hash tree given a leaf and
its authentication path.

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 105

3 BlindOR: a New Blind Signature Scheme

Sigma Protocol. In lattice-based cryptography, it is common to prove in zero-
knowledge the possession of a witness s with small entries such that b = As,
given a matrix A and a vector b over some ring (typically Zq or Rq). One app-
roach to do so is the so-called Fiat-Shamir with Aborts technique [17]. However,
rather than proving knowledge of s itself, this method allows to prove knowl-
edge of a pair (s̄, c̄) satisfying bc̄ = As̄, where the entries of s̄ are still small but
slightly larger than those of s, and c̄ is small as well. More precisely, the Fiat-
Shamir with Aborts technique allows to prove possession of a witness of the
form (s̄, c̄) ∈ B1 × B2, where B1 and B2 are some predefined sets, even though
the prover actually holds a witness of the form (s, 1) ∈ B′

1 ×B2, where B′
1 ⊆ B1.

This relaxation is known to be sufficient for many cryptographic applications,
e.g., digital signatures [18]. Here we extend this line of applications to blind
signatures.

BlindOR is built on a variant of the Sigma protocol introduced in [17], so we
briefly recall this construction before presenting our modified protocol. Given
a public matrix A ∈ Rk1×k2

q and an instance b ∈ Rk1
q , the prover holds a

witness (s, 1) ∈ B′
1 × B2 ⊆ Rk1+k2 × Rq such that b = [Ik1 | A] · s (mod q). An

execution of the protocol allows him to prove knowledge of a witness (s̄, c̄) ∈
B1 × B2, with B′

1 ⊆ B1 ⊆ Rk1+k2 , such that bc̄ = [Ik1 | A] · s̄ (mod q). The
commitment message is given by v = [Ik1 |A] ·y (mod q), where y is a masking
vector with small entries. Upon receiving a challenge c ∈ T

n
κ, the response is

computed as z = y + sc, and is sent to the verifier only if it follows a specified
distribution, typically the Gaussian distribution Dk1+k2

Zn,σ for some σ > 0 or the
uniform distribution over a small subset of Rk1+k2 . This ensures that y masks
the secret-related term sc and that z is independently distributed from s. If z
does not follow the target distribution, the prover restarts the protocol with a
fresh y. The verifier accepts if v = [Ik1 |A]·z−bc (mod q) and if ‖z‖p is bounded
by some predefined value. Note that p ∈ {2,∞}, depending on the distribution
of z.

We now turn our attention to our modified Sigma protocol, built on top of the
protocol recalled above, and start by introducing the relation R it is associated
to. The algorithm R.PGen generates a set of public parameters of the form

pp = (1λ, n, k1, k2, q, ω, κ, σ′, σ∗, S,Bs, Bz∗ , Bz, δ
∗,A) ←$ R.PGen(1λ) ,

subject to the constraints given in Table 2, where the matrix A ∈ Rk1×k2
q fol-

lows the uniform distribution. In Table 3 we propose a concrete tuple of such
parameters targeting 128 bits of security. The relation set is then given by

R.RSet(pp) :=
{
(b, (s̄, c̄)) ∈ Rk1

q × (Rk1+k2 × Rκ
q)

∣
∣
∣ (bc̄ = [Ik1 | A] · s̄ (mod q))

∧ (c̄ = (c̄1, . . . , c̄κ) ∈ C) ∧ (c̄ =
κ∑

j=1

c̄j) ∧ (‖s̄‖ ≤ 2Bz)
}

, (1)

106 N. Alkeilani Alkadri et al.

where C = {c− c′ = (c1 − c′
1, . . . , cκ − c′

κ) | c, c′ ∈ T
κ, c �= c′}, and the instance

generator is given in Fig. 4. The actual witness the prover possesses is of the
form (s, 1), where ‖s‖ ≤ Bs < Bz and b = [Ik1 | A] · s (mod q). The challenge
space of the protocol is T

κ, and its other algorithms are given in Fig. 4.
At a high level, the protocol can be seen as a generalized version of the one

given in [17] and briefly recalled above. In particular, it is optimized to work
for BlindOR. Rather than computing only one commitment to a masking vector
in Σ.P1, the prover computes commitments to ω ≥ 1 such vectors and sends
them to the verifier all at once. Choosing ω > 1 allows to reduce the number of
restarts, since the chance of masking the secret-related term without restarting
the protocol is increased. More concretely, increasing ω allows to compute a
response such that there is no need to trigger a protocol restart with some
fixed probability. The masking vectors are chosen according to the Gaussian
distribution Dk1+k2

Zn,σ∗ . Upon receiving the challenge c ∈ T
κ, the prover sends

the first response z for which rejection sampling accepts, i.e., for the masking
vector y(i) such that Rej(pp, z) = 1 and i is chosen from the uniform distribution
over the set T ⊆ {0, . . . , ω−1}. The random choice of the index i ensures that the
simulator Σ.Sim returns (v, z) �= (⊥,⊥) with the same probability as the prover.
Note that each of the ω commitments consists of κ components, where κ defines
the challenge space T

κ. This allows to use the partitioning and permutation
technique in BlindOR. To verify a transcript (v, c, z), the verifier first finds out
which of the ω commitments is related to the response. The index i of the
corresponding commitment is part of the verifier’s output.

Theorem 11. Given the parameters in Table 2, the protocol depicted in Fig. 4
is a Sigma protocol for relation R given in Eq. (1).

The proof is provided in the full version of this paper [5]. We remark that
when constructing the Sigma protocol ΣOR = OR[Σ,Σ], where Σ is the protocol
introduced above, we must consider the group operation defined on the challenge
space T

κ. More precisely, ΣOR.P1 samples c1−d = (c1,1−d, . . . , cκ,1−d) ←$ T
κ

and then runs Σ1−d.Sim on c1−d. Upon receiving a challenge c = (c1, . . . , cκ)
from ΣOR.V1, ΣOR.P2 computes cd = (c1c−1

1,1−d, . . . , cκc−1
κ,1−d) and runs Σd.P2

on cd. Therefore, we have c = cd · c1−d = (c1,dc1,1−d, . . . , cκ,dcκ,1−d).

Description of BlindOR. Let BS be a blind signature scheme as defined
in Sect. 2. Recall how signing and verification of such a scheme works. The signer
computes and sends a commitment cm∗ to the user. The user blinds cm∗ to
obtain a blind commitment cm and computes a challenge ch, which is generated
by evaluating a hash function H on input (cm,m), i.e.ch = H(cm,m) with m
being a message. After that, the user unblinds ch to obtain a challenge ch∗

and sends it to the signer. The signer computes a response rp∗ and sends it
back to the user. Finally, the user blinds rp∗ to obtain a blind response rp
and outputs sig = (ch, rp). Verifying the validity of sig is established by com-
puting a commitment cm corresponding to ch and rp, and then checking if ch
matches H(cm,m). Observe that while the steps carried out by the signer are
actually what a prover in a Sigma protocol does when proving the possession of

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 107

Fig. 4. The Sigma protocol underlying BlindOR. Prover restarts Σ if Σ.P2 returns ⊥.

108 N. Alkeilani Alkadri et al.

a witness for a statement, the steps performed by the user consist of blinding
the transcript (cm∗, ch∗, rp∗) during interaction. In BlindOR, we capture these
blinding steps by algorithms Com,Cha, and Rsp, which we describe next.

For the remainder of this section we let Σ be the Sigma protocol depicted
in Fig. 4. Furthermore, let h = �log(ω�)� and define the bijective map-
ping IntIdx : {0, . . . , ω − 1} × {0, . . . , � − 1} → {0, . . . , ω� − 1}, (i, k) �→ k + i�.
IntIdx converts the pair (i, k) to a unique positive integer. This is used in BlindOR
to build authentication paths via the algorithm BuildAuth. Let pp be a set of
public parameters for BlindOR and x = b ∈ Rk1

q be an instance for R. We define
the following algorithms, which are formally described in Fig. 5:

Com is a PPT algorithm that, on input pp, x, and a commitment cm∗ = v∗ gener-
ated by Σ.P1, returns a blind commitment cm = root and a state (p, tree, e).

Cha is a DPT algorithm that, on input pp, a randomness p ∈ T
κ, a chal-

lenge ch∗ = c∗ ∈ T
κ, and an auxiliary bit b ∈ {0, 1}, returns a chal-

lenge ch = c ∈ T
κ. Observe that b determines if c∗ will be blinded using p or

using its inverse with respect to the group operation defined on T
κ.

Rsp is a DPT algorithm that, on input pp, a state (p, tree, e), a response rp∗ =
z∗ generated by Σ.P2, and an integer i ∈ {0, . . . , ω − 1}, returns a blind
response rp = (z, auth), where rp = (⊥,⊥) is possible.

Rec is a DPT algorithm that, on input pp, the statement x, a challenge ch, and
a response rp, returns a commitment cm, where cm = ⊥ is possible.

Note that the blinding algorithms depicted in Fig. 5 can be seen as a general-
ized version of the blinding steps implicitly presented in the lattice-based blind
signature scheme BLAZE+ [4]. Unlike BLAZE+, the algorithms shown in Fig. 5
are defined for lattices over modules rather than over rings. This complies with
the module structure of Σ and allows for more flexibility when choosing concrete
parameters. Furthermore, these blinding algorithms employ the partitioning and
permutation technique, which allows to use the abelian group T

κ as a challenge
space rather than the set T

n
κ, which does not have a group structure. Moreover,

the algorithm Com blinds ω commitments v∗(0), . . . ,v∗(ω−1) rather than only
one commitment generated by Σ.P1. More precisely, the trees of commitments
technique employed in BLAZE+ is extended to further include ω commitments
created by the prover. These ω commitments are then combined with � com-
mitments generated within Com to compute the root related to a tree of ω�
commitments. We require � to be chosen large enough so that Rsp returns a
blind response (z, auth) = (⊥,⊥) with probability close to zero, e.g., 2−80. This
is crucial for BlindOR since otherwise, we would need an extra move between the
signer and user, which would allow the user to request a restart of the signing
protocol in case the algorithm IterateRej returns (⊥,⊥). This extra move would
increase the communication complexity and force the signer to carry out almost
all computations performed by the user before triggering a protocol restart. More-
over, this extra move would not allow the use of Gaussian distributed masking
vectors e since a blind signature could be correctly verified even if rejection sam-
pling does not accept. This would enable the user to request a protocol restart

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 109

Fig. 5. A formal description of algorithms Com,Cha,Rsp, and Rec.

and obtain two different signatures. The advantage of using the Gaussian dis-
tribution for masking is that it allows to generate blind signatures with a size
smaller than signatures generated using masking vectors that are uniformly dis-
tributed over a small subset of R.

Next, we describe BlindOR. Let ΣOR = OR[Σ,Σ] and F : {0, 1}∗ → {0, 1}�F ,
H : {0, 1}∗ → T

κ be hash functions, where �F ≥ 2λ and T
κ is the challenge space

of Σ. The algorithm BS.PGen generates and returns a set of public parameters
pp = (1λ, n, k1, k2, q, ω, �, h, κ, σ′, σ∗, σ, S,M,Bs, Bz∗ , Bz, �F,A). The description
of the parameters is summarized in Table 2. The matrix A is chosen from the uni-
form distribution over Rk1×k2

q . We remark that pp includes the public parameters
of the relation R for which Σ is defined, i.e., BS.PGen may first run R.PGen(1λ)
and then generates the remaining parameters of the scheme. For simplicity, the
input of the algorithms of Σ includes pp. The remaining algorithms of BlindOR
are formalized in Fig. 6.

In Table 3, we propose concrete parameters for BlindOR targeting 128 bits of
security. Next, we state the correctness, blindness, and one-more unforgeability

110 N. Alkeilani Alkadri et al.

Fig. 6. A formal description of BlindOR. Signer restarts the protocol if (z∗
0, z

∗
1) = (⊥, ⊥).

of BlindOR. We provide the description of the parameter selection as well as the
proof of correctness in the full version of this paper [5].

Theorem 12. Given the parameters in Table 2, BlindOR is corrBS-correct w.r.t.
pp, where corrBS = δ∗+2ε∗+2δ+2ε, δ∗ is the probability that algorithm ΣOR.P2

returns ⊥, ε∗ is the probability that algorithm Σ.V2 returns (0, i), δ is the prob-
ability that algorithm Rsp returns ⊥, and ε is the probability that Rec returns ⊥.

Theorem 13. Let F : {0, 1}∗ → {0, 1}�F and H : {0, 1}∗ → T
κ be two hash func-

tions modeled as random oracles. Given the parameters in Table 2, BlindOR is ε-
statistically blind w.r.t. pp in the ROM, where ε = max{∗}(2n)−κ, 2−100/U .

Proof. Let S∗ be an adversarial signer in the blindness experiment ExpBlind
BS,S∗

defined in Fig. 2. Then, S∗ selects two messages m0,m1 and interacts with the
honest user twice. The goal is to show that after both interactions, the messages

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 111

Table 2. A review of the parameters of BlindOR.

Parameter Description Bounds

n, k1, k2 Dimension n = 2n′
, n′, k1, k2 ∈ Z≥1

q Modulus prime, q = 2p + 1 (mod 4p), n ≥ p > 1, p = 2p′
,

p′ ∈ Z≥1, q1/p > 2κ

ω, � No. masking vectors ω, � ∈ Z≥1

h Tree height h = �log(ω�)�
κ Specifies the set T

κ |Tκ| = (2n)κ ≥ 2λ

σ′ Standard deviation of in sk σ′ > 0

σ∗ Standard deviation in Σ σ∗ = α∗√
κBs, S = exp(12

α∗ + 1
2α∗2),

(1 − 1−2−100

S
)ω ≤ δ∗, δ∗ > 0

σ Standard deviation in BS.U σ = αη
Bz∗
η∗ , U = exp(12

α
+ 1

2α2),

(1 − 1−2−100

U
)� ≤ δ, δ > 0

M No. restarts of BS.S M = 1/(1 − δ∗)

Bs Bound of ‖s‖ in sk Bs = η′σ′√(k1 + k2)n, η′ > 0

Bz∗ Bound of ‖z‖ in Σ Bz∗ = η∗σ∗√
(k1 + k2)κn, η∗ > 0

Bz Bound of ‖z‖ in BS.U Bz = ησ
√

(k1 + k2)n, η > 0

�F Output length of F �F ≥ 2λ

Table 3. Concrete parameters of BlindOR targeting 128 bits of security.

n k1 k2 q ω � h κ σ′ α∗ σ∗ α σ M �F

256 5 4 ≈ 233 1 8 3 15 4 11 8344 41 71230016 3 384

output by the user, i.e., two blind challenges of the form c∗ ∈ T
κ together

with two blind signatures of the form sig = (c0, c1, z0, z1, auth0, auth1), are
independently distributed and do not leak any information about the signed
messages and the respective interaction.

The authentication paths auth0, auth1 include hash values that are uniformly
distributed over {0, 1}�F . The challenge c∗ as well as the signature part (c0, c1)
are uniformly distributed over T

κ, and hence they do not leak any information.
Moreover, [3, Lemma 4] ensures that c∗ is independently distributed from c =
c0 · c1, and S∗ can link c to the correct c∗ only with probability (2n)−κ over
guessing. The blind vectors z0, z1 have the form z = e+

∑κ
j=1 z

∗
jpj (see Fig. 5).

By Lemma 8, both vectors completely mask
∑κ

j=1 z
∗
jpj and are independently

distributed within statistical distance of 2−100/U from Dk1+k2
Zn,σ .

Finally, if a protocol restart is triggered by S∗, then BS.U generates fresh
random elements. Therefore, the protocol restarts are independent of each other,
and hence S∗ does not get any information about the message being signed. ��
Theorem 14. Let F : {0, 1}∗ → {0, 1}�F and H : {0, 1}∗ → T

κ be two hash func-
tions modeled as random oracles. Given the parameters in Table 2, BlindOR
is (t, qSign, qF, qH, ε)-one-more unforgeable w.r.t. pp in the ROM if D-MLWE
is (t′, ε′)-hard w.r.t. ppMLWE = (n, q, k1, k2, σ

′,A) and MSIS is (t′′, ε′′)-hard w.r.t.
ppMSIS = (n, q, k1, k2+1, 2

√
B2

z + κ2). More precisely, if there exists a forger A∗

112 N. Alkeilani Alkadri et al.

against BlindOR w.r.t. pp that returns qSign + 1 blind signatures in time t and
with probability ε, and after making qF, qH queries to F,H, respectively, then A∗

can be used to solve D-MLWE w.r.t. ppMLWE in time t′ ≈ t and advantage ε′ ≈ ε,
or A∗ can be used to solve MSIS w.r.t. ppMSIS in time t′′ ≈ 2t and probability

ε′′ ≈ (
1
2

− ε′) · (1
qSign + 1

) · acc · (acc
(qSign + 1)ω�

− 1
|Tκ|) ,

where acc = (ε − q2
F+qF
2�F

− qSign+1
|Tκ|)

/
q

qSign+1
H .

Proof. First we observe that the hardness of D-MLWE is required to protect
against key recovery attacks, i.e., being able to determine the yes-instance
of MLWE included in the public key pk = (b0,b1) allows to compute the
secret key, and hence forgeries. Therefore, in what follows we assume the hard-
ness of D-MLWE w.r.t. ppMLWE, and construct a reduction algorithm R that
solves MSIS w.r.t. ppMSIS as given in the theorem statement.

Given ppMSIS and a matrix A′ ∈ R
k1×(k2+1)
q , R chooses a bit d ←$ {0, 1}, and

writes A′ = [A | b1−d] ∈ Rk1×k2
q × Rk1

q . Then, it generates the remaining public
parameters pp of BlindOR, and sets C = {c1, . . . , cqH}, where c1, . . . , cqH ←$ T

κ.
Afterwards, R runs R.Gen(pp, 1) to obtain (bd, s). Then, R sets pk = (b0,b1),
sk = (d, s), and runs A∗ on input (pp, pk). The random oracle and signing queries
that A∗ make are answered by R as follows:

Random Oracle Query. R maintains a list LH initialized by the empty set. It
stores pairs of queries to H and their answers. If H was previously queried
on some input, then R looks up its entry in LH and returns its answer c.
Otherwise, it picks the first unused c ∈ C and updates the list. Furthermore,
R initializes an empty list LF to store pairs of queries to F and their answers.
The queries to F are answered in a way that excludes collisions and chains.
Excluding collisions rules out queries x �= x′ such that F(x) = F(x′), and
excluding chains guarantees that the query F(F(x)) will not be made before
the query F(x). This ensures that each node output by HashTree has a unique
preimage, and prevents spanning hash trees with cycles. Simulating F this
way is within statistical distance of at most q2

F+qF
2�F

from an oracle that allows
collisions and chains.

Signature Query. Upon receiving a signature query from A∗, R runs the sign-
ing protocol of BlindOR. Furthermore, R updates both lists LH and LF accord-
ingly.

After qSign successful invocations, A∗ returns qSign + 1 pairs of distinct messages
and their signatures, where one of these pairs is not generated during the inter-
action. If H was not programmed or queried during invocation of A∗, then A∗

produces a c ∈ T
κ that validates correctly with probability 1/|Tκ|. Therefore,

the probability that A∗ succeeds in a forgery such that all qSign + 1 signatures
correspond to random oracle queries made by A∗ is at least ε − qSign+1

|Tκ| .
Afterwards, R guesses an index i∗ ∈ [qSign + 1] such that ci∗ =

cj∗ for some j∗ ∈ [qH]. Then, R records the pair (mi∗ , sig i∗ =

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 113

(c0, c1, z0, z1, auth0, auth1)) and invokes A∗ again with the same random
tape and the random oracle queries C ′ = {c1, . . . , cj∗−1, c′

j∗ , . . . , c′
qH

},
where c′

j∗ , . . . , c′
qH

∈ T
κ are freshly generated by R. After rewinding, A∗

returns qSign+1 pairs of distinct messages and their valid signatures. The poten-
tial two valid forgeries (before and after rewinding) output by A∗ at index i∗

have the form

(m, (c0, c1, z0, z1, auth0, auth1)) and (m ′, (∗)c′
0, c

′
1, z

′
0, z

′
1, auth

′
0, auth

′
1) ,

where ci = (c1,i, . . . , cκ,i) and c′
i = (∗)c′

1,i, . . . , c
′
κ,i, i ∈ {0, 1}. By the verification

algorithm we obtain

w1−d = [Ik1 | A] · z1−d − b1−dc1−d (mod q) ,

w′
1−d = [Ik1 | A] · z′

1−d − b1−dc
′
1−d (mod q) ,

root1−d = RootCalc(w1−d, auth1−d), root ′
1−d = RootCalc(w′

1−d, auth
′
1−d) ,

c0 · c1 = c = H(root0, root1,m), c′
0 · c′

1 = c′ = H(root ′
0, root

′
1,m

′) ,

By the forking lemma (see the full version [5]) we have root0 = root ′
0, root1 =

root ′
1, m = m ′, c �= c′, and k1−d = k′

1−d, where k1−d, k
′
1−d ∈ {0, . . . , ω� − 1} are

the indices included in auth1−d, auth ′
1−d, respectively. Observe that simulating

the hash queries to F as described above ensures that both auth1−d, auth ′
1−d

include the same sequence of hash values, and hence auth1−d = auth ′
1−d

and w1−d = w′
1−d. If c1−d �= c′

1−d, then we have

[Ik1 | A] · z1−d − b1−dc1−d = [Ik1 | A] · z′
1−d − b1−dc

′
1−d (mod q),

where c1−d =
∑κ

j=1 cj,1−d and c′
1−d =

∑κ
j=1 c′

j,1−d. In this case, R runs Σ.Ext
on input (pp,b1−d, (v, c, z), (v, c′, z′)), where

v = (v(0), . . . ,v(ω−1)), v(0) = (w1−d,0, . . . ,0) ∈ (Rk1
q)κ,

v(i) = (0, . . . ,0) ∈ (Rk1
q)κ for all i ∈ [ω − 1], z = (z1−d,0, . . . ,0) ∈ (Rk1

q)κ,

z′ = (z′
1−d,0, . . . ,0) ∈ (Rk1

q)κ, ‖z1−d‖ ≤ Bz, ‖z′
1−d‖ ≤ Bz.

The output of Σ.Ext is the pair (z1−d − z′
1−d, c1−d − c′

1−d), which gives the non-
trivial solution [z1−d −z′

1−d | c′
1−d − c1−d]
 to MSIS w.r.t. ppMSIS and the matrix

[Ik1 | A | b1−d] = [Ik1 | A′].
Next, we analyze the success probability of R. The probability that R answers

the correct sequence of qSign +1 random oracle queries to H that are used by A∗

in the forgery is at least 1/q
qSign+1
H . Since one of the qSign + 1 pairs output by A∗

is by assumption not generated during the interaction with R, the probability
of correctly guessing the index i∗ corresponding to this pair is 1/(qSign + 1).
The success probability of the forking is given by frk ≥ acc · (acc

(qSign+1)ω� − 1
|Tκ|),

where acc = (ε − q2
F+qF
2�F

− qSign+1
|Tκ|)

/
q

qSign+1
H . By Lemma 15, the probability that

c1−d �= c′
1−d is given by 1

2 − ε′. This deduces the probability ε′′ that is given in
the theorem statement. ��

114 N. Alkeilani Alkadri et al.

Lemma 15. Assume that after rewinding the forger A∗ by the reduction R given
in Theorem 14, the two forgeries output by A∗ satisfy c1−d = c′

1−d with probabil-
ity 1/2+ε′, where d corresponds to the yes-instance of MLWE included in the pub-
lic key and ε′ is noticeably greater than 0. Then, there exists a distinguisher D∗

that uses A∗ to win the experiment ExpD-MLWE
D∗ with the advantage ε′.

The proof is provided in the full version of this paper [5].

Acknowledgments. We thank Marc Fischlin for helpful discussions. This work was
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– SFB 1119 – 236615297.

References

1. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6_17

2. Agrawal, S., Yadav, A.L.: Towards practical and round-optimal lattice-based
threshold and blind signatures. Cryptology ePrint Archive, Report 2021/381

3. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: BLAZE: practical
lattice-based blind signatures for privacy-preserving applications. In: Bonneau, J.,
Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 484–502. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51280-4_26

4. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: On lattice-based inter-
active protocols: an approach with less or no aborts. In: Liu, J.K., Cui, H. (eds.)
ACISP 2020. LNCS, vol. 12248, pp. 41–61. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-55304-3_3

5. Alkeilani Alkadri, N., Harasser, P., Janson, C.: BlindOR: an efficient lattice-
based blind signature scheme from or-proofs. Cryptology ePrint Archive, Report
2021/1385

6. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: ACM CCS 2006

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 93

8. Camenisch, J., Neven, G., Shelat: Simulatable adaptive oblivious transfer. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72540-4_33

9. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology. LNCS, pp. 199–203. Springer,
Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-4_18

10. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5_19

11. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_4

12. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1_17

https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-540-72540-4_33
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-00468-1_17

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 115

13. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signa-
tures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_36

14. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4_12

15. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8_24

16. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052233

17. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7_35

18. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

19. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

20. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8_24

21. Schröder, D., Unruh, D.: Security of blind signatures revisited. J. Cryptology, 30(2),
470–494 (2017)

https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24

Efficient Threshold-Optimal ECDSA

Michaella Pettit(B)

nChain AG, Zug, Switzerland
m.pettit@nchain.com

Abstract. This paper proposes a threshold-optimal ECDSA scheme
based on the first threshold signature scheme by Gennaro et al. with
efficient non-interactive signing for any t + 1 signers in the group, pro-
vided the total group size is more than twice the threshold t. The scheme
does not require any homomorphic encryption or zero-knowledge proofs
and is proven to be robust and unforgeable with identifiable aborts tol-
erating at most t corrupted participants. The security of the scheme is
proven in a simulation-based definition, assuming DDH and that ECDSA
is existentially unforgeable under chosen message attack. To evaluate the
performance of the protocol, it has been implemented in C++ and the
results demonstrate the non-interactive signing phase takes 0.12 ms on
average meaning over 8000 signatures can be created per second. With
pre-signing phase, it takes 3.35 ms in total, which is over 144 times faster
than the current state of the art.

Keywords: ECDSA · Multiparty computation · Threshold signatures

1 Introduction

A (t,N) threshold signature scheme is a method for a group of N participants
to generate a signature on a message, without any individual participant having
knowledge of the private key. A valid signature cannot be created by less than
t + 1 participants. A benefit of using a threshold signature scheme is that the
private key never exists at any point in time. There is no single point of failure,
which mitigates against attack or loss of a private key.

One of the first threshold ECDSA schemes was proposed by Gennaro, Jarecki,
Krawczyk, and Rabin [1]. A private key with threshold t is split between partici-
pants such that a subset of 2t+1 participants are required to create a signature.
This protocol is fast during signing, in which a participant can compute their
share of the signature upon request without knowledge of other signers. This
absence of back-and-forth communication is known as non-interactive signing.

The drawback of [1] is that the threshold of participants required to create a
signature is 2t, which is twice that of computing the private key. The multipli-
cation of two shared secrets, each with threshold t, requires 2t + 1 participants.
In the context of [1] the shared secrets are the private and ephemeral key.

Further work focused on achieving threshold-optimality in which the private
key and signing threshold are the same, initially for two signers [2–5]. In 2016,
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 116–135, 2021.
https://doi.org/10.1007/978-3-030-92548-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_7

Efficient Threshold-Optimal ECDSA 117

a scheme by Gennaro et al. [6] was the first to achieve threshold-optimality for
any threshold t and group size N in theory. It required a distributed generation
of an RSA modulus, which cannot efficiently involve more than two parties. As
a consequence, [6] cannot achieve more than (1, N) in practice.

The first practical (t,N) threshold-optimal scheme for any threshold t and
group size N was published in 2018 by Gennaro and Goldfeder [7]. This scheme
was based on [6] and achieves optimality by turning multiplication of two secrets
into an addition of secrets using homomorphic encryption, along with zero-
knowledge proofs to ensure security of the scheme. This leads to multiple rounds
of communication and an increase in computation, particularly during signing.
The signing protocol requires one-to-one communication with every other sign-
ing participant, limiting the scaling capability of the scheme. If a participant
drops offline during signing, the signing protocol must be restarted.

Recently, there have been many (t,N) threshold-optimal schemes proposed
[8–12]. Their use of homomorphic encryption and zero-knowledge proofs means
that they still require expensive computation and interactive signing.

In 2020, Canetti et al. [13] and Gennaro and Goldfeder [14] each proposed a
non-interactive threshold-optimal scheme, with the latter including identifiable
abort. However, both schemes still rely on homomorphic encryption and zero-
knowledge proofs. Another property of these schemes is that the participants who
must collaborate during the non-interactive signing process is predetermined.

In spite of recent advances in threshold ECDSA, to the best of the author’s
knowledge, current schemes have only achieved threshold-optimality with expen-
sive computation such as homomorphic encryption and zero-knowledge proofs.
Additionally, the signing must be interactive or involve a set of participants that
is decided before the message has been received, and either case results in a large
number of communication rounds and a high demand on overall computation.

Contributions. This paper proposes an efficient threshold-optimal ECDSA
scheme.

– Low computational complexity: this is the first scheme to achieve threshold
optimality without expensive computation like homomorphic encryption or
zero-knowledge proofs on discrete logarithms, ranges of discrete logarithms,
or others. Results show that it is over 144 times faster than [14] and almost
240 times faster than [13].

– Low number of communication rounds: the scheme requires four rounds in the
signing protocol with identifiable abort where only the first requires secure
one-to-one communication, equivalent to [1]. This is the same number of
rounds as[13] and three rounds fewer than the protocol with identifiable abort
in [14]. There are two rounds of communication in key generation which one
round fewer than [14] and [13].

– Non-interactive threshold-optimal signing: the scheme is split into a pre-
signing phase and a non-interactive signing phase once the message is known,
similar to [14] and [13]. The signers are not predetermined in the signing step,

118 M. Pettit

unlike [14] and [13]. Therefore, any failures by less than N − t participants
does not affect the ability to complete the final round.

– Identifiable corrupted participants: participants that deviate from the protocol
can be identified, in line with the recent proposal in [14].

– Provably secure: a simulation-based security proof is provided to show that
the scheme is robust and unforgeable.

2 Preliminaries

2.1 Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman. Let G be a cyclic group of prime order n generated
by G. The following are computationally indistinguishable: (aG, bG, abG) with
a, b ∈R Zn and (aG, bG, cG) with a, b, c ∈R Zn.

2.2 ECDSA

The Digital Signature Algorithm is a digital signature scheme proposed by
Kravitz [15] in 1991.1 The public parameters PP in the scheme are an ellip-
tic curve group G with points over the field Fp, generator G, and order n.

– DSKeyGen: On input of a security parameter 1l, this outputs a random private
key a

$← Z
∗
n and the corresponding public key P = aG where aG is notation

for point multiplication on an elliptic curve.
– DSSign: In order to calculate the signature on a message m using the private

key a, the following steps are taken.
1. Calculate the hash of the message e ← hash(m).

2. Randomly generate an ephemeral key k
$← Z

∗
n.

3. Calculate (x, y) ← kG then r ← x mod n. If r = 0 return to Step 2.
4. Calculate s ← k−1(e + ar) mod n. If s = 0 return to Step 2, otherwise

output the signature as (r, s).
– DSVerify: In order to verify a signature (r, s) on a message m with a given

public key P , the following steps are taken.
1. Calculate the hash of the message e ← hash(m).
2. Calculate (x′, y′) ← s−1(eG + rP).
3. Check if r

?= x′ mod n.

2.3 Threshold Signature Scheme

A threshold signature scheme is a tuple of protocols.

1 The method can be applied to elliptic curve groups as given here, but it is understood
that it may be applied to generic cyclic groups used in the standard DSA.

Efficient Threshold-Optimal ECDSA 119

– TSKeyGen: The key generation algorithm takes public parameters PP as
input. The output is composed of private outputs ai known only to participant
i for i = 1, . . . , N , forming a (t,N) shared secret scheme corresponding to
shared private key a, and a public output known to all participants which is
the public key P corresponding to the shared private key.

– TSSign: The signing algorithm takes private key shares ai and a message m
in the message space M and outputs a signature sig.

– TSVerify: The verification algorithm has the public key P , signature sig, and
message m as input, and outputs 1 if the signature is valid, or 0 otherwise.

2.4 Communication Model

In a scheme with N participants, it is assumed that they are connected by one-
to-one secure communication channels and a broadcast channel. If participant i
broadcasts a message, it is identifiable as being from that participant.

2.5 Adversary Model

It is assumed that an adversary can corrupt at most t participants in a threshold
signature scheme, where t+1 shares are required to reconstruct the private key.
It is also assumed that the adversary has computational power that can be
modelled by a probabilistic polynomial time (PPT) machine. There are three
subtypes of adversaries:

– Eavesdropping adversary: this is a passive adversary that learns all informa-
tion stored at corrupted nodes and all broadcasted messages.

– Halting adversary: this is an active adversary that is eavesdropping and may
also stop corrupted participants from sending messages at each step.

– Malicious adversary: this is an active adversary that may cause any corrupted
participant to deviate from the protocol.

A halting or malicious adversary may also be a rushing adversary, which is one
that ensures corrupted participants speak last in any rounds of communication
and may reorder any messages that are sent.

Definition 1. As defined in [1], the view of the adversary is the knowledge of
the adversary in a protocol. That is, the computational history of all corrupted
participants and public communications, including the output of the protocol.

The definitions of unforgeability and robustness are now given. These will enable
a secure threshold signature scheme to be defined.

Definition 2. A (t,N) threshold signature scheme is unforgeable if no mali-
cious PPT adversary can produce a valid signature on a previously unsigned
message m with non-negligible probability, where the adversary has knowledge of
the following: the output of the key generation protocol a1, . . . , at and P , and the
output of the signature generation protocol sig1, . . . , sigν on messages m1, ...,mν ,
which the adversary chose.

120 M. Pettit

Definition 3. A threshold signature scheme is robust if TSKeyGen and TSSign
produce the expected outputs even in the presence of a halting or malicious adver-
sary. An expected output of TSKeyGen is one in which ai for i = 1, . . . , N are
shares of a (t,N) shared secret that corresponds to the public output P . For
TSSign, an expected output is one that is accepted by verification using TSVerify.

For robustness, it does not matter if more than t participants are corrupted by
an eavesdropping adversary, the protocol will still produce an expected output.

Definition 4. A (t,N) threshold signature scheme is secure if it is robust and
unforgeable in the presence of an adversary who corrupts at most t participants.

In order to prove the unforgeability of the threshold scheme, it is necessary to
be able to simulate the scheme. This is the definition from [1].

Definition 5. A threshold signature scheme is simulatable if:

1. The key generation protocol TSKeyGen is simulatable. That is, there exists
a simulator that can simulate the view of an adversary in an execution of
TSKeyGen given the input of the public key and the public output generated
by an execution of TSKeyGen.

2. The signing protocol TSSign is simulatable. That is, there exists a simula-
tor that can simulate the view of the adversary on an execution of TSSign
that takes the public key, message, t shares of a shared private key, and the
signature on the message as input, and generates sig as an output.

The security is proven by comparing the view of the adversary in the protocols
TSKeyGen and TSSign to an ideal setting. This ideal setting is a simulation that
is secure by definition. Therefore, showing that the view is indistinguishable to
the attacker proves that the protocols TSKeyGen and TSSign are secure.

2.6 Verifiable Random Secret Sharing [16]

The TSKeyGen and TSSign protocols require a (t,N) secret sharing protocol,
which has been chosen to be the scheme in [16] and has two rounds of commu-
nication.

– VRSS: This is the shared secret generation algorithm that takes the index i
of each participant and the threshold t as input and outputs a share ai of a
shared secret for each participant i.
1. Each participant i randomly generates integers ail, bil

$← Zn for l =
0, . . . , t, where ail, bil are the coefficients for the degree-l term in the
polynomials fi(x) and f ′

i(x), respectively. Each participant i computes
and broadcasts Cil = ailG + bilH for each l, where H is a generator of
the group and it is assumed an adversary cannot compute logGH. Each
participant i sends fi(j), f ′

i(j) via a one-to-one communication channel
to participant j for each j �= i.

Efficient Threshold-Optimal ECDSA 121

2. Each participant j verifies if fi(j)G+f ′
i(j)H

?=
∑t

l=0(j)
lCil , for all i �= j.

If any i fails, participant j broadcasts a complaint against participant i.
3. Each participant i who was the subject of a complaint in the previous

step broadcasts the values fi(j), f ′
i(j) satisfying the equation in Step 2.

4. The set of non-disqualified parties Q are those that received t or fewer
complaints in Step 2, or answered the complaints with correct values.

5. Each participant i ∈ Q calculates their secret share ai ← ∑
j∈Q fj(i).

6. Each participant i ∈ Q calculates and broadcasts ailG for each l.
7. Each participant j verifies if fi(j)G

?=
∑t

l=0(j)
l(ailG), for all i �= j. If

any i that passed the check in Step 2 fails this verification, participant
j broadcasts a complaint against that participant by sharing the values
fi(j), f ′

i(j) they received.
8. Each participant i reconstructs the values aj0 and aj0G for each partic-

ipant j who receives a valid complaint, that is, those values that satisfy
the equation in Step 2 and not in Step 7. Each participant constructs
P ← ∑

i∈Q ai0G.

Shares ai allow operations on the shared secret values to be computed whilst
keeping the value of the shared secrets hidden, even to the participants of the
scheme. That is, the shared secret values never exist and cannot be computed by
any participant unless the threshold is passed. Note in Feldman’s verifiable secret
sharing scheme [17], an adversary can change the distribution of the public key.
Therefore, it can be used for shared secrets in which the corresponding public
key is fixed or not used, or if the corrupted participants are eavesdropping only.

2.7 Verifiable Zero Secret Sharing [1]

It will be required to create shares of zero, using (t,N) verifiable zero secret
sharing VZSS. This uses Feldman’s verifiable secret sharing scheme [17] as the
corresponding public key is fixed, so an adversary cannot change the distribution.

– VZSS: This is the shared secret generation algorithm that takes the index i
of each participant and the threshold t as input and outputs a share ai of a
zero-valued shared secret for each participant i.
1. Each participant i randomly generates integers ail

$← Zn for l = 1, . . . , t
and sets ai0 ← 0, where ail is the coefficient for the term of degree l
in the polynomial fi(x). Each participant i sends fi(j) via a one-to-one
communication channel to participant j for each j �= i.

2. Each participant i calculates their secret share ai ← ∑N
j=1 fj(i) .

3. Each participant i calculates and broadcasts their obfuscated coefficients
ailG for each l = 1, . . . , t.

4. Each participant j calculates fi(j)G using the value received in Step 2 and
verifies if fi(j)G

?=
∑t

l=1(j)
l(ailG) , for all i �= j. Participant j broadcasts

a complaint for any i whose values do not satisfy the equation.

By adding zero-shares to computations with shared secrets, a randomization of
the shares is achieved without changing the result of the computation.

122 M. Pettit

2.8 Operations on Shared Secrets

Given multiple shared secrets where the shares are points on a polynomial, it is
possible to directly compute operations such as addition of secrets, multiplication
of secrets, multiplication by a constant, or a combination of these simultaneously,
provided enough shares of each shared secret are available. The shares k−1

i that
correspond to the inverse of a (t,N) shared secret with shares ki are computed
using the following protocol as given in [1].

– SSInverse: This takes shares ki for i = 1, . . . , N as input and outputs the
corresponding inverse shares k−1

i for each i.
1. All participants execute a (t,N) shared secret scheme, where the share of

participant i is denoted by αi.
2. Each participant i computes μi ← αiki and broadcasts the result.
3. All participants calculate μ ← interpolate(μ1, . . . , μ2t+1), where the nota-

tion interpolate(. . .) is Lagrange interpolation evaluated at x = 0 over
shares μ1, . . . , μ2t+1.

4. Each participant i calculates their inverse share k−1
i ← μ−1αi.

3 Efficient Threshold-Optimal Scheme

Threshold ECDSA signature generation involves the multiplication of two shared
secrets, each with a threshold of t. The present scheme illustrates that it is possi-
ble to precalculate all multiplications prior to receiving a message without the use
of expensive computation. The signature generation on the message is threshold-
optimal and non-interactive, with no restriction on the t + 1 participants that
sign. While the number of participants required to calculate the multiplication
in precalculation is 2t + 1, the signature threshold during the non-interactive
signing phase is now the same as the threshold t of the private key.

Observe that a signature in ECDSA has the form (r, s), where

s = k−1e + k−1ar. (1)

Here, e is the hash of the message, a is the private key, and r is derived from the
public key corresponding to the ephemeral key k. The second term is independent
of the message, meaning that it can be calculated prior to receiving a message
in a pre-signing phase. However, if the value k−1a itself is known, as soon as the
signature is calculated it is trivial to calculate the private key a. To secure the
result k−1a, another (t,N) shared secret β is added into this computation.

Explicitly, the signature is

s = k−1e + r(σ − β), (2)

where σ = k−1a+β is precalculated. The signature is now an addition of k−1 and
β which are both (t,N) shared secrets, therefore only t + 1 shares are required.

While at least 2t+1 participants are required to execute the full scheme, dur-
ing the final step once the message is known the number of participants required

Efficient Threshold-Optimal ECDSA 123

t + 1 is the same as the number required to calculate the private key and this
may be any subset of the group. Therefore, threshold-optimality is achieved in
the non-interactive signing phase without requiring expensive computations like
homomorphic encryption or zero-knowledge proofs. Due to the absence of these
expensive computations, it is feasible for multiple k, σ, and corresponding r val-
ues to be precalculated in parallel and stored until required. Benchmarking shows
an average time of this pre-computation in a scheme with three participants, 2
of which are required to compute a signature, is 3.22 ms before any parallelisa-
tion, meaning that over 310 values could be calculated per second. One of these
precalculated values is used with each signature and then discarded.

If optimised, the rounds of communication may be as low as three prior
to receiving the message and there will be only one round during signature
generation. Similarly, after the initial round during VRSS, which has one-to-
one communication, the remaining rounds are broadcasts, including signature
generation. The implication of this is that the scheme is easily scalable.

3.1 Distributed Key Generation

The following protocol is a known result. TSKeyGen takes the public param-
eters PP as input and outputs a secret share ai only known to participant i
that corresponds to a share of a (t,N) shared private key a and a public output
that is the public key P . The protocol has two rounds of communication since it
uses VRSS. Assume all participants have agreed on each other’s unique, non-zero
integer i, usually chosen to be i = 1, . . . , N .

TSKeyGen
Input: public parameters PP , index i for i = 1, . . . , N , threshold t
Output: shares ai for i = 1, . . . , N , public key P

1. All participants execute a (t,N) shared key generation VRSS where partici-
pant i obtains the secret output ai and public output P .

At the end of this protocol, each participant i stores a share ai and the public
key P where P = aG is the same for all participants.

3.2 Signature Generation

The signature generation protocol TSSign allows for precalculation which has
3 rounds of communication. The participants compute all the possible values
that are independent of the message and store until it is required to calculate a
signature on a message m in the final round.

TSSign
Input: private key shares ai for i = 1, . . . , N , message m
Output: signature (r, s)

124 M. Pettit

1. All participants calculate the ephemeral key shares and corresponding public
key using a (t,N) execution of VRSS, where participant i’s share is ki and the
public key is (x, y) ← ∑N

i=1 ki0G. All participants calculate r ← x mod n.
2. All participants create two (t,N) shared secrets using two instances of VRSS

with resulting shares denoted by αi and βi corresponding to participant i.
Each participant i also calculates the commitment of αj and βj

αjG ←
N∑

l=1

t∑

m=0

jm(αlmG) , (3)

βjG ←
N∑

l=1

t∑

m=0

jm(βlmG) , (4)

for each participant j �= i, where αlmG and βlmG are received during Step 6
of VRSS, and stores αjG and βjG.

3. All participants create a zero-valued (2t,N) shared secret with shares denoted
by κi for participant i using VZSS.

4. Each participant i calculates μi ← αiki +κi and λi ← αiai +βi, and αi(kG),
(αiP + βiG) and broadcasts these.

5. Each participant i verifies

interpolate(μi, . . . , μi′)G ?= interpolate(αi(kG), . . . , αj′(kG)) , (5)

interpolate(λi, . . . , λi′)G ?= interpolate((αiP + βiG), . . . , (αj′P + βj′G)) ,
(6)

where i′ = (i+2t+1) and j′ = (i+ t+1). If the index i′ is larger than N , the
values wrap around to index 1 again. If any of these are found to be different,
the adversaries are identified by interpolating over all possible sets of shares
and all sets which result in the same values contain only honest participants.
Corrupted participants are identified as those not contained in these sets.

6. If the equalities hold for all participants, each participant i sets

μ ← interpolate(μ1, . . . , μ2t+1) (= αk) , (7)
λ ← interpolate(λ1, . . . , λ2t+1) (= αa + β) . (8)

7. Each participant i calculates their inverse shares k−1
i ← μ−1αi of the shared

ephemeral key and their precalculated shares σi ← rμ−1(λ − βi).
8. Each participant i stores (r, k−1

i , σi) for use in the signature computation and
(αjG, βjG) for all participants j for verification of the signature.

The pre-signing phase can be executed prior to receiving any message. The
non-interactive signing phase takes the message m and precalculated values
(r, k−1

i , σi) as input and output the signature (r, s).

9. At least t + 1 participants compute the hash the message e = hash(m),
calculate their signature share si ← k−1

i e + σi, and broadcast.

Efficient Threshold-Optimal ECDSA 125

10. Participants set s ← interpolate(s1, . . . , st+1) and the signature is (r, s).

A signature has been computed using only t+1 shares after precalculation. Note
that TSVerify is the same as DSVerify described in Sect. 2.2 and is not repeated
here. If the signature is found to be incorrect using TSVerify, the corrupted
participants are identified using CorruptID.

3.3 Identifiable Abort

If the signature generated with TSSign is found to be incorrect, the following
protocol is executed. Assume the participants that have signed are those with
indices i = 1, . . . , t + 1, without loss of generality.

CorruptID
Input: obfuscated shares αiG, βiG for i = 1, . . . , t + 1
Output: identity of corrupted participants j

1. Each participant i calculates k−1
j G ← (kα)−1αjG and σjG ← rμ−1(λG −

βjG) for each participant j who executed Step 9 to 10 in TSSign.

2. Each participant then checks sjG
?= e(k−1

j G) + (σjG) for each j. If this does
not hold for a given j, that share is incorrect.

3.4 Discussion

In TSSign, a signature has been created with the same threshold as that of the
shared private key, after the precalculation steps have been completed. The s
value of the signature can be written as

s = μ−1αe + rμ−1(λ − β) , (9)

where α and β are (t,N) shared secrets, and μ = αk and λ = αa + β are
precalculated. By replacing μ and λ, this becomes s = k−1(e + ar), as required.

The computation of λ may be considered a method to calculate the multi-
plication of two shared secrets whilst hiding the result. With each shared secret
having a threshold t, the computation of λ requires 2t + 1 shares. Interpolation
over t + 1 shares of σi will result in k−1a as the β terms will cancel. This share
σi may be seen as a share of k−1a with a threshold of t. Therefore, after Step 6
the threshold of the multiplication of the two shared secrets is reduced to t.

While 2t + 1 participants are required until Step 8 of TSSign, after this only
t + 1 of the N participants are required. There may be multiple parallelized
computations running up to Step 8, at which point these σi, k

−1
i , r values may

be stored until required for use. Once a value is used for signing, these are not
to be used again.

No expensive computation such as homomorphic encryption or zero-
knowledge proofs are required as in all previous threshold-optimal constructions
[6–14,18]. Instead of homomorphic encryption and zero-knowledge proofs, this

126 M. Pettit

protocol has three additional executions of VRSS compared to other threshold-
optimal protocols, however it will be shown to be 144 times faster than [14]
which also proposes precomputation. Additionally, by not using homomorphic
encryption and zero-knowledge proofs, the proposed scheme has fewer commu-
nication rounds even with additional VRSS and VZSS executions compared to
other schemes. Although 2t + 1 participants are required for precomputation,
with all these other efficiency improvements it is still more practical than previ-
ous schemes.

Verification of αi(kG) and (αiP + βiG) in Steps 4 and 5 ensure robustness.
Without these, it is possible for an unidentifiable corrupted participant j to send
incorrect values for μj or λj , which would prevent a signature from being created.
If a corrupted participant attempts to send an incorrect value for the multipli-
cation of shares, there is no value that will pass the verifications aside from the
correct value. This is because every participant is interpolating over a different
set of shares and knows that all participants receive the same broadcasted values.
The same logic is applied to the verification of λi and αiP .

Note that in the non-interactive signing phase of the scheme, the signature
is calculated assuming the participants are honest, but the result is verified
for correctness. If the signature is found to be invalid, the shares are checked
individually to identify the incorrect share. This does not require any further
rounds of communication, since all participants already have enough knowledge
to verify shares. While this could be executed prior to calculating the signature,
it would slow down those rounds which are executed correctly and is therefore
more efficient to perform these verification steps only if necessary.

4 Security Proof

In this section, the following theorem is proven, assuming it is infeasible to forge
a signature in ECDSA [19].

Theorem 1. The threshold signature scheme in Sect. 3 is secure in the presence
of d participants corrupted by an eavesdropping adversary and h participants
corrupted by a halting or malicious adversary, if the total number of participants
is N > 2t + h and number of corrupted participants is d + h ≤ t.

The proof is split into proving robustness and then unforgeability.

Lemma 1. The threshold signature scheme in Sect. 3 is robust, if the number of
participants in the scheme is N > 2t + h where h is the number of participants
corrupted by a halting (or malicious) adversary.

Proof. The scheme will be shown to be robust in the presence of 2t + 1 par-
ticipants who do not deviate from the protocol, such that the signature that is
generated will always be accepted by an execution of TSVerify. Note that these
participants may include d eavesdropping participants. Shares that belong to
participants who do not deviate from the protocol will be referred to as correct

Efficient Threshold-Optimal ECDSA 127

shares. Specifically, the requirement of 2t + 1 correct shares is due to the mul-
tiplications of (t,N) shared secrets in Step 4 of TSSign. After this point, only
t + 1 correct shares are required to be robust.

There are three rounds of communication in which there is scope for partic-
ipants to send values that deviate from the protocol. Each of these rounds are
followed by verifications and it is these steps that identify correct shares.

– Step 2 and Step 7 of VRSS executed in TSKeyGen and TSSign: if shares of
any fi(j) are not received or invalid before Step 4, all shares of that private
polynomial are removed from the calculation. The values that do not validate
correctly in Step 7 are recovered by the honest participants using the values
received in Step 1 to compute the public key corresponding to the shares.
There will be at most h private polynomials removed, with at least 2t + 1
remaining. Therefore, there will still be at least 2t + 1 shares ai output from
VRSS due to the requirement of N > 2t + h.

– Step 5 of TSSign: there must be 2t + 1 shares of μ or λ, since they are a
multiplication of (t,N) shared secrets. This is the case as there are at least
2t + 1 participants who do not deviate from the protocol. These shares can
be detected as those which are contained in sets that find the equalities in
this step hold. Therefore, enough correct shares exist and can be identified.
The calculations of μ and λ use these correct shares.

– Steps 1 and 2 in CorruptID: the shares si which agree with the obfuscated
shares calculated from the execution of VRSS are used in the computation of
the signature. Since there are at least 2t + 1 participants that do not deviate
from the protocol, and there are t + 1 required for this calculation, there will
always enough shares to calculate the signature. These shares can be detected
using CorruptID.

It has been illustrated that incorrect shares can always be detected and there
will always be enough correct shares remaining for each computation. Hence,
TSKeyGen and TSSign will produce expected outputs given N > 2t + h and the
scheme described in Sect. 3 is robust. ��

The proof of unforgeability is given by proving each protocol can be simu-
lated in a way which the adversary cannot distinguish the simulation from the
real protocol. In order to prove that TSSign is indistinguishable from its simula-
tion, it is necessary to generate an elliptic curve point (x, y) from the r value in
a signature such that the point appears uniformly random among the set of all
candidates of (x, y). Recall that r in a signature (r, s) is an x value of an elliptic
curve point modulo n and the elliptic curve is defined over Fp.

ECPointDerivation
Input: r
Output: k̂G

1. To calculate the x value
– If n ≥ p, set x ← r.

128 M. Pettit

– If n < p and
• r ≥ (p − n), set x ← r.
• r < (p − n), calculate (r + n) mod p. Check which of r and (r + n)

correspond to x values on the elliptic curve.
∗ If only one is an x value on the elliptic curve, set that to x.
∗ If both are x values, randomly choose one to set to x.

2. Calculate a y′ value corresponding to x according to the elliptic curve equa-
tion. If there is only one unique y′ value, set y ← y′, otherwise calculate −y′

and randomly select y ← y′ or y ← −y′.
3. Set the point to be k̂G ← (x, y).

This derivation ensures that the distribution of points kG remains uniform
when derived from r. The point that r was derived from does not need to be the
same as the point that is found with this method.

Each protocol in the scheme described in Sect. 3 is now shown to be simulat-
able and indistinguishable from that simulation. In each step of the simulations,
the action in the brackets describe the steps the adversary takes. It is assumed
that the adversary generates the values corresponding to the corrupted partici-
pants. This is stronger than assuming that the adversary only learns the shares
of the corrupted participants and so subsumes this case. Note that to ensure the
steps in the simulation coincide with the steps in the protocol, some of simulation
steps require that the simulator wait for the adversary to execute computations.
These steps are written as ‘go to next step’, or ‘end protocol’ if it is the last step
in the protocol.

VRSS is proven to be secure in [16], which is used in both the key generation
simulation and in the signature generation simulation, denoted VRSS-sim. The
input to the simulation is the public key P , indices i, and threshold t.

Lemma 2. The TSKeyGen protocol described in Sect. 3.1 is simulatable and is
indistinguishable from its simulation from the point of view of the adversary.

Proof. Assume that the indices i of participants have been generated already
and, without loss of generality, that the adversary has corrupted participants
i = 1, . . . , t. The steps in the following simulation coincide with the steps in the
protocol in Sect. 3.1.

TSKeyGen-sim
Input: public key P , index i for i = 1, . . . , N , threshold t
Output: shares âi for i = 1, . . . , N , public key P

1. The simulator invokes VRSS-sim outputting ai for i = t + 1, . . . , N and P .
(The adversary executes VRSS to calculate ai for i = 1, . . . , t and P .)

It has been shown in [16] that VRSS is indistinguishable from VRSS-sim. The
signature that is to be generated can be verified against this public key and the
verification will be accepted. These steps are therefore indistinguishable to the
adversary from TSKeyGen. ��

Efficient Threshold-Optimal ECDSA 129

In order to simulate TSKeyGen, VZSS is first shown to be unforgeable.

Lemma 3. The VZSS protocol described in Sect. 2.7 is simulatable and is indis-
tinguishable from its simulation from the point of view of the adversary.

Proof. The simulation of VZSS is given below.

VZSS-sim
Input: index i, threshold t
Output: shares âi for i = 1, . . . , N

1. The simulator generates uniformly random values ηji ∈ Z
∗
n for j = t+1, . . . , N

and i = 1, . . . , t and shares f̂j(i) ← ηji with the adversary and receives f̂i(j)
for j = t+1, . . . , N . (The adversary generates coefficients âil of f̂i(x) for i, l =
1, . . . , t, shares f̂i(j) and receives f̂j(i) from the simulator for j = t+1, . . . , N .)

2. Go to next step. (The adversary calculates âi for i = 1, . . . , t.)
3. The simulator calculates

f̂j(x) ←
t∑

l=1

f̂j(l)
∏

1≤j≤t+1,
j �=i

(x − j)(l − j)−1 mod n , (10)

that satisfy the above values. The simulator uses these values to calculate
âj , âjlG for j = t + 1, . . . , N and stores âj . The simulator shares âjlG and
receives âilG from the adversary. (The adversary shares âilG and receives
âjlG from the simulator.)

4. End protocol. (The adversary verifies fi(j).)

In Step 1 above, the adversary receives shares f̂i(j) from the simulator which
are randomly generated and therefore uniformly distributed. Compare this to
VZSS, where the adversary receives shares fi(j) which are calculated from the
addition of values which are uniformly distributed. To an adversary, these sets
of values are indistinguishable.

Similarly, in Step 3 of VZSS-sim, the adversary receives coefficients âjlG
which are calculated from the addition of randomly generated values ηji, hence
are uniformly distributed across the set. This ensures they are indistinguishable
from the values ajlG that are received in VZSS.

Finally, the verifications in Step 4 will be accepted by the adversary due to
the way that the coefficients are generated in Step 3 of the simulation. ��
Lemma 4. The TSSign protocol described in Sect. 3.2 is simulatable and is
indistinguishable from its simulation from the point of view of the adversary.

Proof. The steps in the following simulation coincide with those in the protocol
in Sect. 3.2.

TSSign-sim
Input: shares â1, . . . , ât, public key P , message m, signature (r, s)
Output: ⊥

130 M. Pettit

1. The simulator executes ECPointDerivation that outputs k̂G ← (x, y) with r

as input. The simulator invokes VRSS-sim using input k̂G, outputting k̂i for
i = 1, . . . , t. (The adversary executes VRSS to obtain k̂i, k̂G and computes
r.)

2. The simulator randomly generates α̂, β̂, μ̂ and calculates λ̂ ← r−1(μ̂s−α̂e+
β̂r) mod n, where e = hash(m). The simulator executes two instances of
VRSS-sim to calculate α̂i and β̂i for j = 1, . . . , N , using α̂ and β̂ as input.
(Adversary calculates α̂i and β̂i for i = 1, . . . , t using two instances of VRSS,
α̂jG, β̂jG and stores.)

3. The simulator executes VZSS-sim outputting κ̂i for i = 1, . . . , t. (The adver-
sary calculates κ̂i using VZSS for i = 1, . . . , t.)

4. The simulator takes the following steps.
– Calculate μ̂i ← α̂ik̂i + κ̂i for i = 1, . . . , t. Calculate μ̂i for i = t+1, . . . , 2t

such that μ̂i for i = 1, . . . , 2t defines a polynomial f̂(x) such that f̂(0) = μ̂.
Calculate μ̂i ← f̂(i) for i = 2t + 1, . . . , N .

– Calculate λ̂i ← α̂iâi + β̂i for i = 1, . . . , t. Calculate share λ̂i for i =
t + 1, . . . 2t such that λ̂i for i = 1, . . . , 2t define a polynomial ĝ(x) such
that ĝ(0) = λ̂. Calculate λ̂i ← ĝ(i) for i = 2t + 1, . . . , N .

– Calculate α̂i(k̂G), and (α̂iP + β̂iG) for i = 1, . . . , t, and calculate μ̂G and
λ̂G. Compute

α̂j(k̂G) ← interpolate(μ̂G, α̂1(k̂G), . . . , α̂t(k̂G)) , (11)

(α̂jP + β̂G) ← interpolate(λ̂G, (α̂1P + β̂1G), . . . , (α̂tP + β̂tG)) , (12)

for j = t + 1, . . . , N and where μ̂G and λ̂G are the points at x = 0.
– The simulator broadcasts μ̂i, λ̂i, α̂i(k̂G), and (α̂iP + β̂iG) for each i =

t+1, . . . , N and receives values for i = 1, . . . , t. (The adversary calculates
μ̂i, λ̂i, α̂i(k̂G), and (α̂iP + β̂iG) and broadcasts.)

5. Go to next step. (The adversary verifies μ̂i, λ̂i and α̂i(k̂G), (α̂iP + β̂iG)
interpolate to the same result.)

6. Go to next step. (The adversary sets values μ̂, λ̂.)
7. Calculate k̂−1

i ← μ̂−1α̂i and σ̂i ← rμ̂−1(λ̂ − β̂i) for all i = t + 1, . . . , N

given α̂i, β̂i calculated in Step 2. (The adversary calculates k̂−1
i and σ̂i for

i = 1, . . . , t.)
8. Go to next step. (The adversary stores values.)
9. The simulator calculates ŝi ← k̂−1

i e+ σ̂i for t+1 randomly selected values of
i within the range i = t + 1, . . . , N and shares these values. (The adversary
calculates ŝi for i = 1, . . . , t.)

10. End protocol. (The adversary calculates (r, s).)

While the signature (r, s) will be accepted if verified with the public key, the
adversary can still ensure the shares generated by the simulator are also correct.

CorruptID-sim
Input: shares ŝ1, . . . , ŝt+1, message m
Output: ⊥

Efficient Threshold-Optimal ECDSA 131

1. Go to next step. (The adversary calculates k̂−1
j G and σ̂jG for each participant

j that took part in the signature.)
2. End protocol. (The adversary verifies that these obfuscated values were used

to generate the signature shares ŝi by comparing to ŝiG.)

In Step 1 to 3, the simulation of VRSS is used multiple times. It has been
already shown that the simulation is indistinguishable from VRSS itself in [16].
Moreover, the public key k̂G that is calculated by the adversary in Step 1 is
uniformly distributed across the set of elliptic curve points as it uses ECPoint-
Derivation. Therefore, the first three steps are indistinguishable to the adversary
from the first three steps in TSSign.

The values μ̂, α̂, β̂ are randomly generated from a uniformly distributed set of
values. All values in Step 4 of the simulation are derived from these, including μ̂i,
λ̂i, α̂i(k̂G), and (α̂iP + β̂iG), which the adversary receives. Therefore, the values
that the adversary receives also appear uniformly distributed. On the other hand,
in TSSign, the corresponding values μi, λi, αi(kG), and (αiP + βiG) that an
adversary receives are similarly uniformly distributed, by the same reasoning.
Therefore, an adversary will not be able to distinguish between the two sets.

Note that the values μ̂ and λ̂−β̂ are not equivalent to α̂k̂ and α̂a. If they were,
a and k̂ could be revealed, since the values α̂, β̂ must be known to ensure that
ŝi are accepted in CorruptID-sim. This contradicts the assumption that ECDSA
is unforgeable. As a result of this, the DDH assumption is required as described
in Sect. 2.1, similar to [1]. However, due to the construction of the values, the
verifications by the adversary are still accepted in the simulation.

In Step 5 to 9, the adversary is executing their own calculations. In Step 10
the simulator shares the values ŝi. Since ŝi are calculated from values that are
uniformly distributed themselves, the result is that the set of signature shares
are also uniformly distributed. Again, this is the same as the protocol TSSign
and so the adversary will have the same view within the two protocols. The
calculations executed by the simulator in Step 4 ensure that the shares will
result in the correct signature. Step 4 also ensures that the signature shares will
individually pass the checks in CorruptID-sim, as stated previously.

As a result, the calculations executed by the adversary will be accepted and
have the same probability distribution. Therefore, the adversary will not be able
to identify that it is in the simulation. ��
Lemma 5. The view of an adversary in the protocol described in Sect. 3 is indis-
tinguishable from the view of the adversary in a simulation from the point of view
of the adversary.

Proof. It has been shown that both TSKeyGen and TSSign are simulatable and
indistinguishable from their simulation in Lemma 2 and Lemma 4. Therefore,
the view of the adversary in the scheme described in Sect. 3 is indistinguishable
from the simulation from the point of view of the adversary. ��
Lemma 6. The threshold signature scheme described in Sect. 3 is unforgeable if
the total number of participants is N > 2t+h and there are number of corrupted

132 M. Pettit

participants is d + h ≤ t, where d and h are the number of participants cor-
rupted by an eavesdropping adversary and by a halting (or malicious) adversary,
respectively.

Proof. If the total number of corrupted participants is more than t, that the
(t,N) shared secret can be calculated and therefore also a signature. On the
other hand, by assuming that d + h ≤ t, the shared private key, and therefore
signature, cannot be calculated. This has been shown in that the view of the
adversary in TSKeyGen and TSSign is indistinguishable from their simulations.
Since the simulations are unforgeable by definition, this means that TSKeyGen
and TSSign are also unforgeable. ��

5 Benchmarking

TSKeyGen and TSSign have been implemented assuming there are only eaves-
dropping adversaries in TSSign. That is, it uses Feldman secret sharing as in [17]
and excludes Step 5 of TSSign and CorruptID. The implementation is compared
data given for schemes [14] and [13] which are also non-interactive. The imple-
mentation was written in C++ and was run on a 2018 MacBook Pro with a
2.6 GHz Intel Core i7 processor and 32GB RAM. Participants were run as sepa-
rate processes on a single machine using a single core. In practice, calculation by
different participants is executed in parallel and so the timings will be reduced
further. The data for [14] is chosen to be the scheme without identifiable abort
to compare fairly with the implementation of the scheme in Sect. 3. The data for
[13] was only available for precalculation of the signature and up to t = 8.

The scheme was run 20 times for each threshold and group size up to t = 9
and N = 20 in line with [14] and [13]. TSSign was split to measure the aver-
age time for the precalculation in Step 1 to 8, and the average time for the
non-interactive signing in Step 9 to 10. Even if there are failures by at most t
participants, this does not impact the progression of the protocol.

While the main benefit of this scheme is lost if precalculation is executed after
the message has been received, in the effort of fair comparison, the whole TSSign
protocol is compared to other schemes. It was found that the majority of time
is taken with precalculation, as expected, and so the time to run TSSign from
Sect. 3 was roughly constant even as the threshold increased for the same group
size. This is expected because all participants are required in precalculation
for any threshold. Choosing the group sizes to be N = 2t + 1 for Sect. 3, the
comparison with [14] and [13] are shown in Fig. 1.

All data excludes network latency time for equal comparison with [14] and
[13], since the connection speed is independent of the protocol. Table 1 compares
rounds of communication in the three schemes. Since Sect. 3 has fewer commu-
nication rounds, it will be even faster than [14] and [13], when including network
latency. By avoiding use of complex protocols such as homomorphic encryption
and zero-knowledge proofs, the communication rounds have been reduced.

Figure 2 shows the speed of signing after precalculation for the scheme pre-
sented in Sect. 3. That is, Step 9 to 10 in TSSign, taking N = 2t + 1 for each t.

Efficient Threshold-Optimal ECDSA 133

Fig. 1. Comparison of signing timings (including precalculation) of Sect. 3 with [14]
and [13] for t up to 9. [13] includes only precalculation and t up to 8.

Table 1. Table showing the number of rounds of communication in key generation and
signing comparing Sect. 3 in the presence of eavesdropping adversaries, [14], and [13].

Communication rounds Sect. 3 [14] [13]

Key generation 2 3 3

Signing protocol 4 6 4

Given a non-interactive signing time of 0.12ms for t = 1, the number of signa-
tures that can be generated per second with this scheme is over 8000.

Finally, the size of communications is compared in Fig. 3. The data is given
in kB and compared to precalculation in [13] (the data is not available in [14]).
The size of communications given for Sect. 3 includes both precalculation and
the non-interactive signing step.

The communication size in [13] increases linearly in the group size, whilst the
data for Sect. 3 increases quadratically with the group size. This is because all
participants are required during precalculation steps in signing for the scheme
in Sect. 3. This impacts the precalculation stage but has the benefit that any
participant can execute the non-interactive phase. In the non-interactive phase,
the communication in Sect. 3 increases linearly with the number of signers.

There is also timing and communication size in [13] for part of the key gen-
eration algorithm, which has a significant overhead. The data is for generating
Pallier keys (required in both [14] and [13]), which are not needed for the scheme
in Sect. 3, and therefore not comparable. This is additional time and computa-
tional complexity in [14] and [13] that is not in the scheme in Sect. 3.

134 M. Pettit

Fig. 2. Time taken to create a signature after precalculation given in milliseconds (ms)
for Sect. 3.

Fig. 3. Size of communication transmitted in kilobytes (kB). The data in [13] is the
precalculated data only, and the data for Sect. 3 includes data for the whole signing
protocol.

Acknowledgements. The author thanks Owen Vaughan, Wei Zhang, Mehmet Sabir
Kiraz, and Katharine Molloy for useful comments on the paper. The author also thanks
John Murphy and Josie Wilden for implementing the scheme.

References

1. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 31

https://doi.org/10.1007/3-540-68339-9_31

Efficient Threshold-Optimal ECDSA 135

2. MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. Int. J. Inf.
Secur. 2(3–4), 218–239 (2004)

3. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 21

4. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ecdsa from
ecdsa assumptions. In: 2018 IEEE Symposium on Security and Privacy (SP), pp.
980–997. IEEE (2018)

5. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 191–221. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 7

6. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 9

7. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ecdsa with fast trustless
setup. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1179–1194 (2018)

8. Lindell, Y., Nof, A.: Fast secure multiparty ecdsa with practical distributed key
generation and applications to cryptocurrency custody. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pp. 1837–
1854 (2018)

9. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ecdsa from ecdsa assump-
tions: the multiparty case. In: 2019 IEEE Symposium on Security and Privacy
(SP), pp. 1051–1066. IEEE (2019)

10. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-
efficient threshold EC-DSA. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020. LNCS, vol. 12111, pp. 266–296. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45388-6 10

11. Battagliola, M., Longo, R., Meneghetti, A., Sala, M.: Threshold ecdsa with an
offline recovery party. arXiv preprint arXiv:2007.04036 (2020)

12. Gagol, A., Straszak, D.: Threshold ecdsa for decentralized asset custody (2020)
13. Canetti, R., Makriyannis, N., Peled, U.: Uc non-interactive, proactive, threshold

ecdsa. IACR Cryptol. ePrint Arch. 2020, 492 (2020)
14. Gennaro, R., Goldfeder, S.: One round threshold ecdsa with identifiable abort.

IACR Cryptol. ePrint Arch. 2020, 540 (2020)
15. Kravitz, D.W.: Digital signature algorithm (Jul 27 1993), uS Patent 5,231,668
16. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-

tion for discrete-log based cryptosystems. J. Cryptology 20(1), 51–83 (2007)
17. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:

28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pp.
427–438. IEEE (1987)

18. Damg̊ard, I., Jakobsen, T.P., Nielsen, J.B., Pagter, J.I., Østerg̊ard, M.B.: Fast
threshold ecdsa with honest majority. IACR Cryptol. ePrint Arch. 2020, 501
(2020)

19. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/978-3-030-45388-6_10
https://doi.org/10.1007/978-3-030-45388-6_10
http://arxiv.org/abs/2007.04036

GMMT: A Revocable Group Merkle
Multi-tree Signature Scheme

Mahmoud Yehia, Riham AlTawy(B), and T. Aaron Gulliver

Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, Canada
raltawy@uvic.ca

Abstract. G-Merkle (GM) (PQCrypto 2018) is the first hash-based
group signature scheme where it was stated that multi-tree approaches
are not applicable, thus limiting the maximum number of supported sig-
natures to 220. DGM (ESORICS 2019) is a dynamic and revocable GM-
based group signature scheme that utilizes a computationally expensive
puncturable encryption for revocation and requires interaction between
verifiers and the group manager for signature verification. In this paper,
we propose GMMT, a hash-based group signature scheme that provides
solutions to the aforementioned challenges of the two schemes. GMMT

builds on GM and adopts a multi-tree construction that constructs new
GM trees for new signing leaves assignment while keeping the group
public key unchanged, Compared to a single GM instance which enables
220 signature, GMMT allows growing the multi-tree structure adaptively
to support 264 signatures under the same public key. Moreover, GMMT

has a revocation mechanism that attains linkable anonymity of revoked
signatures and has a logarithmic verification computational complex-
ity compared to the linear complexity of DGM. The group manager in
GMMT requires storage that is linear in the number of members while
the corresponding storage in DGM is linear in the number of signatures
supported by the system. Concretely, for a system that supports 264 sig-
natures with 215 members and provides 256-bit security, the required
storage of the group manager is 1 MB (resp. 108.7 TB) in GMMT(resp.
DGM).

Keywords: Digital signatures · Hash-based signature schemes · Group
signature schemes · Post-quantum cryptography · Merkle trees

1 Introduction

A Group Signature Scheme (GSS) is a signature scheme where N members
share one public key and any member is allowed to sign anonymously on behalf
of the whole group [19]. Such a scheme designates a group manager that is
responsible for setup, revealing the signer’s identity when needed, and revok-
ing the membership of group members when required. Group signature schemes
are usually adopted by applications in which the signer’s identity is required to
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 136–157, 2021.
https://doi.org/10.1007/978-3-030-92548-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_8

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 137

be maintained private while attaining accountability when required. Relevant
applications include vehicle safety communication systems in which authorized
vehicles share their status information with other nearby vehicles while keep-
ing their identity private in order to prevent tracking [31]. Remote attestation
protocols benefit from group signatures where the identities of the attested plat-
forms should be kept private to thwart dedicated platform vulnerability-based
attacks[13]. Other applications of group signatures include e-voting and privacy
preserving applications on blockchains [4,13]. Several group signature schemes
have been proposed [11,13,17,18,29,30]. However, the security of most of these
algorithms rely on the hardness of finding discrete logarithms and factoring in
finite groups which are solved by Shor’s algorithm in polynomial time and thus,
they are not post quantum secure [36].

In 2010, Gordon et al. proposed the first post quantum (PQ) lattice-based
group signature scheme [23]. Later, several theoretical lattice-based construc-
tions were developed [26–28,32,33]. In 2018, the first lattice-based group signa-
ture scheme with an experimental implementation was proposed [20]. Although
lattice-based signature scheme candidates have been deemed suitable in the cur-
rent NIST post-quantum cryptography standardization competition (PQC) [34],
their group signature constructions are not efficient [40]. Code-based group sig-
nature schemes were introduced as a quantum resilient alternative [2,3,22], but
they have much larger signature sizes on the order of Megabytes [7]. Moreover,
the size of the associated public keys and signatures increases with the number
of group members.

Hash-based group signature schemes [14,21] have recently attracted research
interest due to recent advances in the design of stateless hash-based signa-
ture schemes and the confidence in their PQ security [1,6,9,10]. In 2018, El
Bansarkhani and Misoczki introduced Group Merkle (GM), the first post-
quantum stateful hash-based group signature scheme [21]. GM is a one-layer
Merkle tree construction which limits the maximum achievable tree height and
thus restricts the maximum number of signatures that can be issued by the
group under one public key. The authors claimed that multi-tree approaches are
not applicable for group hash-based schemes without justification and stated
that the required storage for each member is a limiting factor. Dynamic Group
Merkle (DGM) is a recent hash-based group signature scheme where the group
manager can assign signing keys to group members who have used all their keys
and add new group members after the group public key has been generated [14].
Additionally, the group manager stores the indexes of the assigned leaves for
each user in order to reveal their identity and revoke their membership when
required. Challenges to the practical adoption of DGM such as the fact that a
verifier needs to interact with the group manager to ensure the validity of the
signature were discussed. Moreover, the revocation mechanism utilizes a punc-
turable encryption algorithm [37] for membership verification with a computa-
tional cost that is linear in the number of revoked signatures of the members.
The authors of DGM claim that anonymity of revoked signatures is maintained.
However, linkability of revoked signatures is possible if the adversary have two
subsequent states of the revocation list. Privacy-preserving group membership
revocation for PQ schemes is still an open research problem. The works in [38,39]

138 M. Yehia et al.

enable members revocation without compromising their anonymity or requiring
a trusted third party. However, the protocols either have linear proving com-
plexity in the number of revocations or rely on history-dependent accumulators
through updated certificates. Camenisch et al. proposed member revocation by
periodically updating member credentials in which a specific attribute encodes a
validity period [16]. Unfortunately, the technique would place extra effort on the
group manager who would be essentially running a periodic updates setup phase.
All the aforementioned works are also not quantum secure as they rely on non-
interactive discrete logarithm based zero knowledge (zk) proofs. The adoption of
zk-based revocation schemes in PQ group signature schemes may be attainable
if research on generic PQ zk proofs enable their practical implementation.

Our Contributions . The contributions of this work are as follows.

– We propose GMMT, a hash-based group signature scheme that enables 264

signatures per group public key. It utilizes an adaptively growing multi-tree
Merkle approach which periodically creates a new GM tree. Consequently,
GMMT enables the group members to renew their signing leaves without
changing the group public key.

– We introduce a revocation algorithm that maintains the anonymity of revoked
members while enabling the linkability of their revoked signatures. GMMT

relies on symmetric encryption and hashing such that the membership verifi-
cation cost is logarithmic in the number of revoked signatures and the required
storage at the group manager is linear in the number of members.

– We provide detailed comparisons between GMMT and both GM and DGM.
To demonstrate the validity of GMMT, we implement its procedures using
the C language and present the performance in terms of the number of clock
cycles.

2 Preliminaries

A Group Signature Scheme (GSS) is a tuple of five polynomial-time algorithms
GS = (GKGen,GSign,GV erify,GRevoke,GOpen), which are given as follows.

– GKGen(1n, N): The group key generation Alg. takes as inputs the security
parameter n and the number of the group members N . It outputs the group
public key GPK, the group members secret keys ski for 1 ≤ i ≤ N , and the
group manager secret key skgm that is used to reveal signer identities.

– GSign(M, ski): The group signing Alg. takes as inputs a message M and a
group member secret key ski. It outputs the signature Σ of the message.

– GV erify(M,Σ, GPK,RevList): The group verification Alg. is a determinis-
tic algorithm that takes as inputs a message M and the corresponding sig-
nature Σ, the group public key GPK, and the revocation list RevList. It
outputs 1 for a valid signature and 0 otherwise.

– GRevoke: The revocation Alg. updates the revocation list based on the
revoked members/signatures to revoke their ability to generate valid signa-
ture.

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 139

– GOpen(Σ, skgm): The open Alg. takes as input the signature Σ and the group
manager secret key skgm, and outputs the identity of the signer.

In what follows, we provide definitions of the standard security notions for
analyzing group signature schemes.

Definition 1 (Correctness). A group signature scheme GS with a group public
key GPK achieves correctness if for an honest signer with a secret key ski

Pr[GV erify(GSign(M, ski),M,GPK) = 0] < negl(n)

Other notions that capture the required GSS security include unforgeability,
anonymity, unlinkability, collusion resistance, exculpability, and framing resis-
tance. It was shown in [8] that full-anonymity and full-traceability ensures that
a given GSS achieves all the aforementioned security requirements. The notion
of full-anonymity [8] is very strong as it assumes that an adversary has access
to the secret keys of all members and the group manager. Camenisch and Groth
introduced a relaxed type of anonymity in which an adversary cannot corrupt
the group manger and at least two group members, i.e., challenge identities in the
anonymity experiment in Fig. 1. In our scheme, we follow the anonymity notion
introduced by Camenisch and Groth [15] because in our scheme, only secret keys
of the group manager are used to reveal signer identities, and knowledge of the
signing keys along with the associated signatures also uncovers the correspond-
ing identities. Such a security notion is formally defined in ExpAnon−b

GS,A (n,N) in
Fig. 1. Hence in our analysis, we focus on the anonymity and full-traceability
security definitions. In their security experiments, we assume an adversary is
allowed a training phase where they can call the following oracles.

– Corrupt(idi): The adversary A has access to all secret keys of member idi.
– chalb(id0, id1,M): The oracle returns the signature of message M for a ran-

domly chosen group member idb for b ∈ {0, 1}.
– Sign(M, idi): The oracle returns the signature of a message M for a randomly

chosen group member idi where 1 ≤ i ≤ N .
– Open(Σ, GPK,M): The oracle returns the identity idi of the member who

issued the valid signature Σ of message M .

Following [14,21], we present the security definitions and analysis in the clas-
sical setting, i.e., PPT adversaries. For quantum security we consider the Quan-
tum Accessible Random Oracle Model (QROM) [12], where all legitimate users
and oracles perform classical computations while adversaries have quantum capa-
bilities. Given that the security of GMMT relies on the standard assumptions of
hash functions, it is assumed that Grover’s search algorithm is used to acceler-
ate exhaustive search in an unstructured space. In such a case, a QPT adversary
achieves a maximum of quadratic speed over the considered PPT adversary. The
work in [25] gives more details on the generic security of hash function security
notions with respect to QPT adversaries in QROM.

Anonymity. In the security experiment ExpAnon−b in Fig. 1, the adversary A is
allowed a training phase, train, with unrestricted access to both the signing and

140 M. Yehia et al.

opening oracles and they have the ability to corrupt some of the group members.
At the end, A returns an un-queried random message, M and the identities of
two uncorrupted members, id0 and id1. Then in the challenge phase, challange,
A calls chalb(id0, id1,M) which return the signature on M signed by one of two
uncorrupted users i0 or i1. A wins if they are able to identify the signer’s identity
with a non-negligible advantage.

Definition 2 (Anonymity [15]). A group signature scheme GS achieves
anonymity if a probabilistic polynomial time (ppt) adversary A who is not the
group manager but has access to the signing and opening oracles and is able
to corrupt all but two group members i0 and i1, is not able to reveal the iden-
tity of the signer when challenged with a signature of a message that is signed
by either i0 or i1. A has a negligible advantage in the experiment ExpAnon−b

GS ,
where b = {0, 1} denotes the index of the identity of the signer.

AdvAnon−b
GS,A (n,N) =| Pr[ExpAnon−0

GS,A (n,N) = 1] − Pr[ExpAnon−1
GS,A (n,N) = 1] |≤ negl(n)

Fig. 1. Anonymity experiment

Full-traceability. This security notion requires that the group manager is
always able to reveal the identity of a signer of a valid signature and trace back
every signature to the corresponding signer. Moreover, full-traceability ensures
that even if an adversary is capable of corrupting some group members, they are
not able to generate a valid signature which is traced by the group manager to
an uncorrupted member.

Definition 3 (Full-traceability [8]). A group signature scheme GS satisfies full-
traceability if a ppt adversary A that is given unrestricted access to the signing
and opening oracles and is able to corrupt some of the group members is not
able to generate a valid signature which cannot be opened or traced back by the
group manager to an uncorrupted member. A has a negligible advantage in the
experiment ExpFull−Trace

GS,A as defined in Fig. 2

AdvFull−Trace
GS,A (n,N) =| Pr[ExpFull−Trace

GS,A (n,N) = 1] |≤ negl(n)

3 GMMT Hash-Based Group Signature Scheme

GMMT is a revocable hash-based group signature scheme that is constructed
using a multi-tree approach and utilizes a One Time Signing Scheme (OTS) as

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 141

Fig. 2. Full-traceability experiment

the underlying signing scheme. It is designed as a generic construction such that
any stateful hash-based Merkle signing scheme with an OTS leaves can be used.
However, we recommend instantiating GMMT with XMSS-T [25], to mitigate
multi-target and path attacks. For more details on the security analysis of hash-
based group signature schemes instantiated by XMSS-T, the reader is referred
to [41]. GMMT provides a flexible setup phase where the group manager generates
the group public key independent of the parameters of the group members (OTS
public keys and their indexes). Figure 3 shows that GMMT can be regarded as
a hybrid construction that encompasses several Group Merkle (GM) signature
trees (denoted by clusters) at layer 0, and one stateful hash-based signature
scheme consuming all higher layers, i.e., layers 1 to d − 1. Each GM tree at
layer 0 contains a subset of the OTSs of all group members while the multi-
tree stateful hash-based signature scheme is used by the group manager to sign
the roots of the GM trees at layer 0. The group public key, GPK, is the root
of the top layer tree which is generated using the group manager’s secret key.
Such a construction allows layer 0 GM trees to be constructed adaptively as
the signing leaves are used up. Specifically, all group members signing leaves
are clustered into GM trees where each GM tree has a subset of the signing
leaves of all members. This allows the group manager to manage leaf assignment
for all members in a clustered manner. Hence, the scheme enables a practical
setup phase with less storage requirements for each group member compared
to GM [21] because not all the signing leaves for each group member have to
be assigned upfront, and a member can reuse the storage that was allocated to
their used leaves. In the following, we give detailed specifications of the setup,
signing ,verifying, membership revocation, and opening procedures in GMMT. An
algorithmic description of these procedures is provided in Algorithm 1. Table 1
gives the parameters and notation used in the specification of GMMT.

3.1 Setup Phase and Key Generation

The setup phase is an interactive procedure that involves communication between
the group members and group manager for signing leaves assignment. However,
since GMMT is a multi-tree structure, the group public key is computed by the
group manager independent of the inputs from members. Hence, the setup phase is
divided into two procedures, group public key generation and signing leaves assign-
ment. The former is performed once during initial group setup while the latter is
repeated periodically with the addition of new cluster trees at layer 0.

142 M. Yehia et al.

Fig. 3. A simplified Ex. of the GMMT initial setup phase. The gray nodes and the first
red node in cluster 0 are the auth. path for signing with the first yellow leaf in cluster
0, while the black leaves are the group manager signing leaves. (Color figure online)

Table 1. GMMTparameters and notation.

n Security parameter

N Initial number of group members

B Initial number of signing indexes for each group member

BCmax Maximum number of signing leaves for a member in a GM tree (cluster)

Bumax Maximum number of signing leaves for a member in the scheme

d Number of tree layers

h Maximum tree height

hc GM/cluster tree height

hgm Group manager tree height, hgm = h − hc

w Winternitz parameter of the used OTS

l Number of elements, each of length n bits, in the OTS signature

GPK Group public key which is the root of the top layer tree

Key Generation Algorithm . The algorithm randomly samples the secret
keys SK = (sk.encgm, sk.seedgm) ∈ {0, 1}n × {0, 1}n, where sk.encgm is the
group manager encryption secret key that is used to reveal the signer identity
and sk.seedgm is used to generate the trees of the multi-tree signing scheme, e.g.,
XMSS-T scheme [25], at layers 1 to d − 1 (the top layer). Each tree has height
hgm/(d − 1). In an actual instantiation, sk.seedgm may be used in a manner
similar to the random secret seed in [25]. The root of the top layer tree is the
group public key GPK.

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 143

Signing Leaves Assignment . This procedure adds a new GM cluster tree
containing a subset of the signing leaves of all N members to the construction.
The trees at layer 0 are GM trees, each of height hc = h − hgm, and the first
tree (cluster 0), contains B signing leaves of each group members so there are
NB = 2hc signing leaves in total. Note that each cluster tree contains an equal
number of signing leaves for each member. However, GMMTallows revocation
and hc is a constant, so the number of leaves assigned per member in the i-th
cluster, 0 < i < 2hgm , B, may increase because N may decrease. The assignment
procedure is the interactive part of the setup phase and involves the following
three steps.

– Label Assignment. The group manager sets the maximum number of leaves
that can be assigned to a member for the lifetime of the scheme, and assigns to
each member a sequence of numbers corresponding to their identity, denoted
as labels. Specifically, let BCmax > B be the maximum number of leaves that
can be assigned to a group member in a cluster, so the maximum number
of signatures that a group member can sign is Bumax = 2hgm × BCmax.
Consequently, the i-th group member is assigned Bumax labels denoted by
b0,i, b1,i, . . . , bBumax−1,i = iBumax, iBumax+1, . . . , iBumax+Bumax−1 where
0 ≤ i ≤ N − 1. Since GMMT provides member revocation, BCmax is chosen
to be greater than B to simplify label assignment, so all labels dedicated to
a member may not be assigned. Hence, we use the term label to differentiate
from a cluster signing leaf index because unlike indexes, not all labels may
be assigned. However, each cluster leaf signing index assigned to a member
is associated with a label in the dedicated range. Finally, the group manager
stores the last assigned label for each group member in the users list, UList.
Henceforth, the last assigned label of the i-th member is denoted by la =
UList[i] and it is used to evaluate their identity by �UList[i]/Bumax� = i.
When a new cluster is being generated, the group manager retrieves the last
assigned label, la = UList[i], for each group member, i, and a new range of
labels, B, is dedicated to their new cluster signing leaves starting from the
next value from the last stored label. More precisely, for a new cluster, the
i-th member is given B labels b0,i, b1,i, . . . , bB−1,i = UList[i] + 1, UList[i] +
2, . . . , UList[i] + B. The group manager then updates the stored label in
UList with the last label in the new range, i.e., UList[i] = UList[i] + B.

– Signing keys generation. Each group member, i, generates B OTS public keys
(pk0,i, pk1,i, . . . , pkB−1,i) using their own secret key ski, and sends them to
the group manager, where pkj,i denotes the j-th public key of the i-th group
member within a cluster for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ B − 1.

– Shuffling and clustering. The group manager retrieves the last assigned
label for each group member and assigns the next set of labels
to their public keys (the cluster leaves), in ascending order i.e.
(pk0,0, b0,0), (pk1,0, b1,0), . . . , (pkB−1,0, bB−1,0), , (pk0,N−1, b0,N−1),
(pk1,N−1, b1,N−1), . . . , (pkB−1,N−1, bB−1,N−1), where pkj,i is the j-th public
key of group member i, and bj,i is the corresponding label for 0 ≤ i ≤ N − 1

144 M. Yehia et al.

and 0 ≤ j ≤ B − 1. The group manager then updates the last assigned label
for each member.

Let E(k,M) denote a symmetric encryption of a plaintext M
using the key k. The group manager encrypts the labels assigned to
the members by sk.encgm and generates the corresponding encrypted
labels (Eb0,0, . . . , EbB−1,0), , (Eb0,N−1, . . . , EbB−1,N−1), where Ebj,i =
E(sk.encgm, bj,i). The group manager then generates the cluster leaves,
L0,0, L1,0, . . . , LB−1,0, , L0,N−1, L1,N−1, . . . , LB−1,N−1, by hashing the
concatenation of each group member public key and its corresponding encrypted
label, i.e. Lj,i = H(pkj,i||Ebj,i) is the j-th leaf node of group member i. Next, the
group manager permutes the group members leaves by reordering their encrypted
labels in ascending order. Then, the group manager builds the cluster tree, and
signs its root, rootc, by the corresponding upper tree leaf node and this continues
until the top layer. Finally, the group manager broadcasts to the group members
2hc tuples of the encrypted labels, cluster tree leaves, and the corresponding sig-
nature of its root. Each member, i, identifies their leaf nodes using their public
keys, the corresponding encrypted labels, and authentication paths, all of which
are referred to by group member parameters, parami.

After a specific time determined by the group manager, by which the group
members are expected to have used up almost all their current cluster leaves, the
signing leaves assignment procedure is repeated and a new cluster is generated.
This is continued until the last cluster is constructed. Figure 3 depicts a simplified
example of the initial setup phase. It shows a d layer GMMT with 4 clusters
in the bottom layer. It is assumed that the group has N = 4 members and
each member has two signing leaves colored blue, green, yellow, and red in each
cluster. Cluster1 is generated after some time period (when the Cluster0 leaves
are almost all used up), to provide new signing leaves to the members.

3.2 Signing Algorithm

The signing algorithm takes as input a message M of arbitrary length, the
signer’s secret key (ski), which contains the state of the signer (i-th member),
which is the signing index t. The algorithm outputs the signature Σ that contains
the OTS signature σOTS,0 of the message M and the corresponding authentica-
tion path Auth0 = (Eb,A0,0, A0,1, . . . , A0,hc−1) from the cluster tree in layer 0.
Moreover, Σ contains the signature of the group manager on the cluster root,
σrootc = σOTS,1, Auth1, . . . , σOTS,d−1, Authd−1, where σOTS,j is the OTS sig-
nature of the lower layer tree root, rootj−1, and Authj is the corresponding
authentication path Authj = (Aj,0, Aj,1, . . . , Aj,

hgm
d−1 −1

). The GMMT signature is

then given by Σ = σOTS,0, Auth0, . . . , σOTS,d−1, Authd−1.

3.3 Verification Algorithm

The verification algorithm takes as input the message M , the signature Σ, the
public key GPK, and the revocation list RevList. It first checks if the received

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 145

signature has been revoked (see Sect. 3.4). If the signature has not been revoked,
the algorithm continues with verification by calculating the OTS public key, pk′,
from the message digest and the signature element σOTS,0 Next, the leaf node is
calculated by hashing the concatenation of this OTS public key and the signature
element Eb of Auth0, i.e., L′ = H(pk′||Eb). Then, the leaf node, L′, leaf index,
and (A0,0, A0,1, . . . , A0,hc−1) from Auth0 are used by the Root Computation
Algorithm, RCA, (cf. Algorithm 1 in [25] for details) to calculate the cluster
root that is used with σOTS,1 to get the OTS public key at layer 1. Next, this
public key and its index along with the authentication path Auth1 are used to
calculate the tree root at layer 1 using RCA. This procedure is repeated until
the top layer tree root is calculated, GPK ′. If it is equal to the public root,
GPK ′ = GPK, the algorithm outputs 1 for a valid signature, and 0 otherwise.

Algorithm 1 GMMT Algorithm. Red (resp. blue) denotes the procedures which are performed by the group manager
(resp. member) .

Setup Phase
Input: n, N, d, hgm, hc, BCmax

(sk.seedgm, sk.encgm, GPK) ← GKGen(1n)
Bumax = hgm × BCmax

for 0 ≤ i ≤ N − 1 do
UList[i] = (i × Bumax) − 1

end for
for 0 ≤ i ≤ N − 1 do

idi : ski
R←− {0, 1}n

end for
Return: sk.seedgm, sk.encgm, GPK, UList

Cluster Generation
Input: N, hc, UList, sk.encgm, and Bumax

for 0 ≤ i ≤ N − 1 do
idi : (pki,0, . . . , pki,B−1) ← OTS.KGen(1n, ski)

end for
for 0 ≤ i ≤ N − 1 do

b = UList[i] + 1
for 0 ≤ j ≤ B − 1 do

Ebi,j ← E(sk.encgm, b + j)
TupleList[iB + j, 0] = (pki,j)
TupleList[iB + j, 1] = (Ebi,j)

end for
UList[i] = b + B − 1

end for
SortedList ← sort(TupleList)
for 0 ≤ p < NB do

leaf [p] = H(SortedList[p, 0]||SortedList[p, 1])
end for

rootc ← MerkleTree(leaf)
σrootc ← Sign(rootc, sk.seedgm)

for 0 ≤ i < N do
for 0 ≤ j < B do

p = 0
while p < NB do

if pki,j = SortedList[p, 0] then
param1i[j, 0] = p
param1i[j, 1] = SortedList[p, 1] = Ebi,j
param1i[j, 2] = Auth
Break

end if
end while

end for
param2i = σrootc

end for

Signing Algorithm
Input: M, param1i, param2i, ski, statei
σOTS,0 ← OTS.Sign(M, ski, statei)
GMMT.Σ = M, indx, σOTS,0, Eb, Auth0, param2i

statei = statei + 1
Return: GMMT.Σ

Verification Algorithm
Input: M, GPK, Σ, RevList
if Eb ∈ RevList then

Return 0
else

pk′ ← OTS.V erify(σOTS,0)
L′

indx ← H(pk′||Eb)
root′

c ← RCA(indx, L′, Auth0)
for 1 ≤ i ≤ d − 1 do

L′ ← OTS.V erify(root′
i−1, σOTS,i)

root′
i ← RCA(indx, L′, Authi)

end for
if root′

d−1 = GPK then
Return 1

else
Return 0

end if
end if

Revocation Algorithm
Input: UList, Bumax, RevList, sk.encgm, i
j = UList[i]
while j ≥ i × Bumax do

Add E(sk.encgm, j) to RevList
j−−

end while
RevList ← sort(RevList)
Return RevList

Opening Algorithm
Input: Σ, sk.encgm, Bumax, N, UList
b′ ← D(sk.encgm, Eb)
if b′ ≥ N · Bumax ∨ b′ > Ulist[�b′/Bumax�] then

return ⊥
else

Return �b′/Bumax�
end if

146 M. Yehia et al.

3.4 Revocation Algorithm

The group manager retrieves the last assigned label of the revoked i-th mem-
ber, la = UList[i], and then regenerates all the encrypted labels which were
assigned to that member, i.e., for the i-th member, the manager generates
E(sk.encgm, iBumax), E(sk.encgm, iBumax + 1), . . . , E(sk.encgm, la). The gen-
erated encrypted labels are added to the revocation list, RevList, which is then
permuted using a sorting algorithm so that successive entries in the revocation
list are not grouped by members.

Revocation Check: The verifier checks if the received signature is revoked or
not by first extracting the encrypted label, Eb, from the signature and checking
if it exists in the revocation list, RevList. If Eb ∈ RevList, then the received
signature has been revoked, otherwise the verifier continues the verification steps.

3.5 Opening Algorithm

The opening algorithm takes as input a message M , a signature Σ, and the
group manager secret key sk.encgm, and outputs the identity of the signer
i. The algorithm first decrypts the signature element Eb to recover the label
b = D(sk.encgm, Eb). Next, the manager calculates the member’s identity
i = �b/Bumax� and checks that b is less than the last assigned label to the
i-th group member, b ≤ Ulist[i], if not it aborts.

3.6 Recommended Parameters

GMMT parameterization follows the NIST PQC requirements which state that a
given signing key pair should produce up to 264 signatures while maintaining the
claimed security [35]. Thus, we recommend that GMMT be instantiated with a
four layer (d = 4) XMSS-T where the tree height in the bottom layer (clusters),
hc, has three possible values, hc = {16, 18, 20}, depending on the number of
group members and their signing requirements and storage capabilities. The
height of the group manager trees in layers 1 to 3 is 16. The GMMT signature size
depends on the required security level. More precisely, the GMMT signature size
is d× l+h+2 elements, each of length n bits, where n is the security parameter,
n = {128, 192, 256}, and l is the number of OTS signature elements, i.e., XMSS-
T utilizes WOTS, then l = {35, 51, 67} for the respective aforementioned security
parameters [25]. Table 2 gives our recommended parameters for GMMT such that
it supports at least 264 signatures under the same group public key and the
corresponding signature size in bytes (B).

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 147

Table 2. GMMT recommended parameters and signature sizes.

Instance Bit security d h hc hgm N B l w Signature (B)

GMMT-128a 128 4 64 16 48 2 < N ≤ 26 210 < B ≤ 215 35 16 3296

GMMT-128b 128 4 66 18 48 26 < N ≤ 210 28 < B ≤ 212 35 16 3328

GMMT-128c 128 4 68 20 48 210 < N ≤ 216 24 < B ≤ 210 35 16 3360

GMMT-192a 192 4 64 16 48 2 < N ≤ 26 210 < B ≤ 215 51 16 6480

GMMT-192b 192 4 66 18 48 26 < N ≤ 210 28 < B ≤ 212 51 16 6528

GMMT-192c 192 4 68 20 48 210 < N ≤ 216 24 < B ≤ 210 51 16 6576

GMMT-256a 256 4 64 16 48 2 < N ≤ 26 210 < B ≤ 215 67 16 10688

GMMT-256b 256 4 66 18 48 26 < N ≤ 210 28 < B ≤ 212 67 16 10752

GMMT-256c 256 4 68 20 48 210 < N ≤ 216 24 < B ≤ 210 67 16 10816

4 Security Analysis

In this section we show that GMMTsatisfies the security requirements of correct-
ness, anonymity [15], and full-traceability [8]. We also analyze the security of
the proposed revocation mechanism and discuss the drawbacks of adopting a
dynamic approach.

Theorem 1 (Correctness). Let GMMT be the multi-tree group Merkle signa-
ture algorithm described in Sect. 3. Then GMMT achieves correctness as defined
in Definition 1.

Proof (Sketch). GMMTutilizes a multi-tree Merkle signing scheme for gen-
erating signatures and only uses extra shuffling and clustering procedures to
assign the signing leaves to different members. Thus, the correctness of GMMT

is achieved by the correctness of the underling Merkle signature scheme.

Theorem 2 (Anonymity). Let GMMT be the multi-tree group Merkle signa-
ture algorithm provided in Sect. 3 with secure hash function H and encryption
algorithm E. Then GMMT achieves anonymity for each cluster as defined in
Definition 2.

Proof. We adopt the ExpAnon−b
GS,A game (see Fig. 1) on the group members. The

proof follows the strategy in [21]. Assume that each group member is assigned
B signing leaves in each cluster, i.e., each group member is assigned a total of
B × 2hgm signing leaves over all clusters. An adversary A is given access to the
signing and opening oracles, and can corrupt some group members. Assume there
are only two members i0 and i1 that are uncorrupted. Moreover, A queries the
signing and opening oracles for a maximum of 2hgm × (B − 1) messages for each
uncorrupted member such that the signing oracle replies with B − 1 signatures
from each cluster for the two members, i.e., each member has the ability to sign
at least one more message with a leaf from any cluster of the 2hgm clusters.
Recall that the opening oracle when queried by a signature Σ replies with the
decryption of the encrypted label Eb in the signature, b = D(sk.encgm, Eb),
which directly reveals the signing identity i. Thus, A has B − 1 labels and their

148 M. Yehia et al.

corresponding ciphertext pairs (bj,ig , Ebj,ig) for each group member ig from each
cluster where g = {0, 1} and Ebj,ig = E(sk.encgm, bj,ig), 0 ≤ j ≤ B − 2.

A queries the signing oracle with an arbitrary message M of their choice such
that the signing oracle replies with the signature for either i0 or i1. From this
signature, A retrieves the encrypted label EbB−1,ig . Moreover, they are able to
determine the signing cluster, and thus the corresponding B − 1 label-encrypted
label pairs (bj,ig , Ebj,ig), 0 ≤ j ≤ B − 2, for each group member ig collected
in the query phase. Then, A is required to correctly guess the identity of the
signer. Since the labels for each group member are set sequentially, and A knows
the first B − 1 labels for each group member, then A knows with certainty the
B-th labels for both group members, i.e., bB−1,i0 and bB−1,i1 . Accordingly, A
must determine which label is the plaintext corresponding to the encrypted label
EbB−1,ig received in the queried signature. In other words, the adversary needs
to win a distinguishability game that distinguishes the encryption of different
plaintexts. As the encryption algorithm used is semantically secure, A has a
negligible advantage in winning the ExpAnon−b

GS,A game.

Theorem 3 (Full-traceability). Let GMMT be the multi-tree group Merkle sig-
nature algorithm specified in Sect. 3 with secure hash function H, encryption
algorithm E, and an underlying existentially unforgeable Merkle signing scheme.
Then, GMMT achieves full-traceability as in Definition 3.

Proof. Recall that the group manager opens a signature by decrypting the
encrypted label Eb in the signature. Assume that an adversary A collects all
the signatures from all clusters. i.e., A knows (Ebt, pkt) where pkt is the OTS
public key at leaf index t for 0 ≤ t ≤ 2h − 1. Assuming A corrupts a set of
members C, then A wins the traceability game ExpFull−Trace

GS,A in Fig. 2 if they
are successful in either of the following scenarios.

– A generates a valid signature of the i-th member where i ∈ N ∧ i /∈ C. Since
opening a signature depends on the signature element Eb, then A should
include in the signature an element Eb� from one of the signatures of any of
the uncorrupted members so that it decrypts to a valid label assigned to an
uncorrupted member. Furthermore, A should pair Eb� with one of the OTS
public keys of a corrupted member so that they can sign using the correspond-
ing secret key. More precisely, A must find a pair (pkj,ic , Eb�) that is a second
preimage of the pair (pkj,ic , Ebj,ic), i.e., H(pkj,ic ||Eb�) = H(pkj,ic ||Ebj,ic)
where pkj,ic is the j-th OTS public key of a corrupted member ic and Ebj,ic

is the corresponding encrypted label. The existence of such an adversary con-
tradicts the assumption of a secure hash function. Conversely, A does not use
any of the OTS public keys of the corrupted members, but rather uses some
Eb� with a forged signature of the underlying Merkle signature scheme such
that it passes verification and then decrypts to a valid assigned label. However,
this contradicts the existential unforgeability assumption of the underlying
signature scheme.

– A generates a valid signature which the group manager cannot open. In this
case, A includes in the signature an encrypted label Eb′ that is not equal to

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 149

any of the valid encrypted labels which were collected in the query phase.
Then following the steps in the previous scenario, A needs to either pair Eb′

with an OTS public key of a corrupted member, or include it with a forgery of
the underlying signature scheme. In both cases, the existence of A contradicts
the assumptions of a secure hash function and an existentially unforgeable
signing scheme.

4.1 Revocation Security

For revoking a member with identity i, our revocation mechanism updates
a revocation list, Revlist, by adding the member’s encrypted labels that
were assigned to their signing leaves, i.e., Eb0,i, Eb1,i, . . . , Ebla−iBumax,i =
E(sk.encgm, iBumax), E(sk.encgm, iBumax+1), . . . , E(sk.encgm, la), where la =
Ulist[i] denotes the last assigned label. Each of these encrypted labels is part of
a signature. Hence, an adversary A is able to recover the new set of encrypted
labels that is added to Revlist with updates by comparing the contents of Revlist
before and after the update. If A has collected signatures generated by the sys-
tem before an update of the revocation list, then A can check if the encrypted
labels in some of the collected signatures are in the newly revoked set. Accord-
ingly, if such a set belongs to one revoked member, then A is able to link these
signatures to the same revoked member. Otherwise, the signatures are for more
than one revoked member and A is required to distinguishes the signatures
over a small anonymity set (the newly revoked members). In all cases, only the
encrypted labels of the revoked members are added to the revocation list, hence,
it is infeasible to reveal the identities associated with these labels because they
are encrypted. Note that if A is given only the last updated revocation list, then
A cannot distinguish the newly revoked signatures from the old ones, and hence
cannot link a set of signatures to one signer.

Theorem 4 (Revocation). Let GMMT be the multi-tree Merkle group signa-
ture algorithm provided in Sect. 3 with secure hash function H and encryption
algorithm E. Then, GMMT maintains the anonymity of revoked members and
linkability of their signatures.

Proof. Assume an adversary A has the previous and current states of the revoca-
tion list, and a set of signatures that has been collected between two updates of
the revocation list. Then, A is able to recover the set of newly revoked signatures
by running the revocation check on the collected signatures against the previous
and current states of Revlist. If the update of Revlist corresponds to revoking
one member, then A is able to link these revoked signatures to this member
without revealing their identity. However, if the current states are updated by
revoking more than one member, then we adopt an anonymity game for the
revoked members which can be seen as a variant of the ExpAnon−b

GS,A game that
allows A to be challenged with a set of revoked encrypted labels instead of a
signature of their choice. A wins the game if they are able to attribute a subset
of the challenge set to a given revoked signer out of two possible revoked signers.

150 M. Yehia et al.

Precisely, A is given access to the opening algorithm for B − 1 signatures from
each cluster signed by each of two newly revoked members, i.e., A gets B − 1
(label, encrypted label) pairs from each cluster for each revoked member. Then,
they are challenged with the B-th encrypted label from each cluster for each
revoked member and are required to determine which encrypted label belongs
to which set of B − 1 (label-encrypted label) pairs. If A is able to attribute the
challenge encrypted labels to a given signer, then they can build another adver-
sary that is able to distinguish between ciphertexts corresponding to a given
plaintext, which contradicts the assumption of a secure encryption algorithm.

4.2 Security of Dynamic GMMT

Our scheme can be adapted to allow adding new members at each cluster gen-
eration. In this case, the number of leaves assigned to each group member
decreases because the maximum number of leaves in a cluster is 220 and the
number of group members is increased. A drawback of dynamic GMMT is that
the anonymity game cannot be played on all clusters. More precisely, if the two
challenge identities in ExpAnon−b

GS,A given in Fig. 1 are for a newly joined member
and an older member, then the game must be played on the clusters which con-
tain signing leaves for both members. This is because if A is given a signature
from clusters created before the new member has joined the group, then A can
determine that this signature is signed by the older member. On the other hand,
if the signature comes from clusters created with both members, the anonymity
security is the same as that for static group construction given in Theorem 2.

5 Comparison with GM and DGM

In this section, we compare GMMT with the hash-based group signature schemes
GM [21] and DGM [14]. Due to the multi-tree construction, GMMT has a larger
signature size than either that of GM or DGM, for example, for 256-bit security,
the signature size of GMMT instance of largest signature size, GMMT-256c, is
10.816 KB whereas that of GM (resp. DGM) is 2.88 KB (resp. 2.72 KB).

5.1 GMMT and GM

Unlike GM, GMMT provides a revocation algorithm and is a multi-tree Merkle
construction. Both schemes require comparable computations from the group
manager for the opening and setup phase. Hence, we focus on their maximum
number of signing leaves and the storage requirements for each group member.

Maximum Number of Signing Leaves. GM is a one layer tree with a static
group construction and the maximum number of signing leaves has been stated
to be 220 [21]. On the other hand, GMMTallows the multi-tree structure to grow
once the initial signing leaves are consumed by repeating the last two steps of

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 151

the setup phase. Thus, the group members renew their signing keys each time
a new cluster is generated while keeping the group public key unchanged. For
a 4-layer GMMTconstruction, up to 264 signing leaves are created for the group
depending on the tree height h.

Member Storage Requirements. In GM, the storage required for each group
member is reported to be B(1 + log N) nodes [21]. Note that since the first
node of each authentication path and each leaf node contains an OTS public
key and an AES-256 ciphertext, the required storage is in fact B(3 + log N)
n-bit elements. In GMMT, for a cluster of N members, the required storage is
B(2+log N)+(d−1)l+hgm n-bit elements. More precisely, a member stores the
B nodes at the (log N)-th level, each of which is n bits, and B(1 + log N) n-bit
elements for the authentication paths. Note that in GM, a group member stores 3
n-bit values per leaf node, while in GMMT a group member stores 2 n-bit values
for each leaf node. Additionally, in GMMT each group member needs to store the
signature of the group manager for the cluster tree root, which is composed of
d−1 OTS signatures, along with the corresponding authentication paths. Table 3
gives the required storage for each group member in GM and GMMT. We compare
GMMT and GM when the total number of supported signatures is 220 for the
GM tree and GMMT cluster, which is the maximum number of signatures for
GM, and with N = 210 group members, so the number of signing leaves for each
member is B = 210. We choose GMMT-256 instances for the comparison as it
has the highest storage requirements among all instances. The results show that
GMMT-256c saves at least 5.8% of the required storage compared to GM-256.
Note that the values in Table 3 are for 256-bit security where l = 67. Thus, the
above percentages will increase for lower bit security requirements, i.e., for 128
and 192 bit security with l = 35 and 51, respectively. Given the recommended
parameters in Table 2, the total required storage for each group member in GMMT

is B(2 + log N) + 3l + 48 n-bit elements.

Table 3. Group member storage for GM and GMMT with N = B = 210.

Algorithm B = N = 210

Required storage (number of n-bit elements)

GM B(3 + log N) 210 · 13 = 13312

GMMT -256c B(2 + log N) + 3l† + 48 210 × 12 + 3l + 48 = 12537
† The values are for l = 67 and 256-bit security.

5.2 GMMT and DGM

Both DGM and GMMT are revocable GSSs, but DGM is a dynamic GSS that
allows new members to be added to the group after the group public key is
generated. Unlike GMMT, DGM requires interaction between verifiers and the

152 M. Yehia et al.

group manager to validate the authentication path for each signature verifica-
tion. Moreover, the group manager in DGM generates the signing keys for the
members and thus can sign on their behalf, so it does not satisfy exculpability [5].
A limitation of our scheme is that all group members simultaneously renew their
signing keys periodically. Thus, a group member who has used all their signing
leaves cannot renew them before a specific time as they need to wait until the
new cluster generation occurs. On the other hand, DGM allows new leaves to be
assigned on request. In what follows, we compare GMMTwith DGM with respect
to the efficiency of the revocation mechanism.

Revocation Efficiency. DGM utilizes symmetric puncturable encryption [37]
in its revocation mechanism. With each new revoked member, the group manager
punctures the encrypted indexes of the signing leaves of all revoked members.
Hence, the group manager is required to store all the indexes assigned to all mem-
bers. In GMMT, the corresponding storage required is for the last assigned label
of each member because all the encrypted labels assigned to a member can be
regenerated from this label. For example, consider a GMMT-256c instance which
has 215 members, supports 264 signatures, and provides 256-bit security. The
required storage in GMMT (resp. DGM) is 215×28= 1 MB (resp. 264×28 ≈ 108.7

TB). Both schemes have equal sized revocation lists and the revocation compu-
tational complexity of the group managers are comparable (linear in the size of
the revocation list). However, for a revocation check in DGM, the verifier invokes
a hash function for 3 times the number of revoked positions in the revocation
list [37]. On the other hand, in GMMT, the verifier must search for an n-bit sig-
nature element (the encrypted label, Eb) in a sorted revocation list, RevList,
which has logarithmic complexity. Hence, our revocation algorithm reduces the
computational complexity for verification compared to DGM. Nevertheless, the
revocation list is large, so in Appendix A we provide an alternative revocation
mechanism where the size of the revocation list is linear in the number of revoked
members. The alternative mechanism is equivalent to traditional revocation by
key, and may be suitable for some applications that do not require anonymity
of the revoked members.

6 Implementation

In this section, we provide an unoptimized implementation of the main proce-
dures of GMMT for the purposes of performance evaluation. This C language
implementation uses the XMSSMT/WOTS standard implementation given in
RFC 8391 [24], [25] employing SHA2-256 as a hash function, and AES256 for
encryption. Shuffling the signing of leaf nodes is done by reordering the leaf
nodes in ascending order using the sorting algorithm for 256 bit integers.

Table 4 provides the performance in kilocycles and the corresponding mil-
liseconds when the code is executed on an Intel(R) Core(TM) i5-5200U CPU
at 2.20 GHz. The values in the table are the average of 100 runs. This table
gives the performance for group public key generation, group member OTS

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 153

public keys generation, (cluster) label encryption, leaf shuffling, cluster root
generation, cluster root signing, signature opening, message signing, and sig-
nature verification. The reported numbers are for the three instances GMMT-
256a with (hc, N,B) = (16, 26, 210), GMMT-256b with (hc, N,B) = (18, 28, 210),
and GMMT-256c with(hc, N,B) = (20, 210, 210). Other parameters are possible
according to the application and member storage capabilities. A process is per-
formed by a user (U) or the group manager (GM).

Table 4. GMMT Performance results in kilocycles (kc) and millisecond (ms).

Process GMMT-256a GMMT-256b GMMT-256c

(hc, N,B) = (16, 26, 210) (hc, N,B) = (18, 28, 210) (hc, N,B) = (20, 210, 210)

Public key gen. (GM) 1,245,539,484 kc - 566,154.3ms

OTS public keys gen. (U) 6,147,667 kc - 2,794.4ms

Label encryption (GM) 170,471 kc - 77.5ms 680,758 kc - 309.5 ms 2,721,486 kc - 1,237.1ms

Shuffling (GM) 48,436 kc - 22.1ms 205,428 kc - 93.4ms 854,614 kc - 388.5ms

Cluster root gen. † (GM) 3,364,756 kc - 1,529ms 13,450,764 kc - 6,113ms 53,427,148 kc - 24,285ms

Cluster root signing (GM) 33,064 kc - 15.1ms

Message signing (U) 2,957 kc - 1.4ms

Signature verification (U) 12,174 kc - 5.6ms 15,124 kc - 6.9ms 19,326 kc - 8.8ms

Signature opening (GM) 46 kc - 0.03ms

† The Merkle tree is constructed after the leaf nodes have been computed.

7 Conclusion

We proposed GMMT, a revocable hash-based group signature scheme that
addresses some of the challenges identified by the designers of the GM and DGM
hash-based group signature schemes. Unlike GM, GMMT is a multi-tree construc-
tion that allows up to 264 signatures under one group public key. It was shown
that GMMT saves at least 5.8% of the required storage for each group mem-
ber compared to GM for an GMMT-256c instance with 210 group members each
assigned 210 signing leaves. Unlike DGM, GMMT verification procedures do not
require interaction with the group manager. Moreover, the required storage for
the group manager in GMMT is linear in the number of members, while in DGM
it is linear in the total number of signatures supported by the scheme. GMMT

also reduces the computation complexity of checking revocations from linear in
DGM to logarithmic in the size of the revocation list. An analysis of GMMT with
respect to anonymity [15] and full traceability [8] was given which shows that its
security relies on the standard security assumptions of hash functions and sym-
metric encryption, and the existential unforgeability of the underlying signing
scheme. Finally, we compared GMMT to both GM and DGM, and presented the
performance of its procedures using an unoptimized C implementation.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable comments that helped improve the quality of the paper.

154 M. Yehia et al.

A Alternative Solution for a Large Revocation List

In this section, we provide a solution for the large revocation list of GMMTwhich
is suitable for some applications that do not require anonymity of revoked mem-
bers. We propose the following modification to the leaf generation procedure.

– The group manager generates a secret key sk∗
i for each group member, for

0 ≤ i ≤ N − 1. This key is different from the group member secret key ski

that is used to generate the WOTS signing keys.
– The encrypted label in GMMT is replaced by the output of hashing the

concatenation of the corresponding WOTS.pk and the group member key
A∗ = H(WOTS.pk||sk∗

i).

The remaining procedures are the same as in GMMTwith the following three
differences in the revocation, verification and opening procedures.

– To revoke the j-th member, the group manager adds their key sk∗
j to the

revocation list, RevList.
– In the verification process, the verifier checks if the calculated WOTS from

the signature and keys in the revocation list gives the value A∗ in the received
signature (which means that the signature has been revoked), if not the ver-
ifier continues with the verification.

– In the opening process, the group manager checks which group member’s
secret key sk∗

i gives the value A∗ in the signature A∗ = H(WOTS.pk||sk∗
i)

for 0 ≤ i ≤ N − 1.

Applying the above modification has the following consequences.

– The revocation list size is linear in the number of revoked members, while in
GMMT it is linear in the number of revoked leaves.

– Revocation does not maintain the anonymity of revoked members.
– The verification complexity is linear in the number of revoked members, while
GMMT verification has logarithmic computational complexity with respect to
the number of revoked leaves.

– The opening complexity is linear in the number of members, while GMMT has
a constant opening complexity, i.e., one decryption operation.

References

1. Alagic, G., et al.: Nistir 8309 status report on the second round of the NIST post-
quantum cryptography standardization process. US Department of Commerce,
National Institute of Standards and Technology (NIST) (2020)

2. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A practical group signature
scheme based on rank metric. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI
2016. LNCS, vol. 10064, pp. 258–275. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-55227-9 18

3. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A code-based group signature
scheme. Des. Codes Crypt. 82(1–2), 469–493 (2017)

https://doi.org/10.1007/978-3-319-55227-9_18
https://doi.org/10.1007/978-3-319-55227-9_18

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 155

4. AlTawy, R., Gong, G.: Mesh: a supply chain solution with locally private blockchain
transactions. Proc. Priv. Enhancing Technol. 2019(3), 149–169 (2019)

5. Ateniese, G., Tsudik, G.: Some open issues and new directions in group signatures.
In: Franklin, M. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48390-X 15

6. Aumasson, J.-P., Endignoux, G.: Improving stateless hash-based signatures. In:
Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 219–242. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76953-0 12

7. Ayebie, B.E., Assidi, H., Souidi, E.M.: A new dynamic code-based group signature
scheme. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS, vol. 10194,
pp. 346–364. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55589-8
23

8. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

9. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

10. Bernstein, D. J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.:
The sphincs+ signature framework. In: ACM SIGSAC CCS (2019), pp. 2129–2146

11. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

12. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

13. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
CCS, pp. 168–177 (2004)

14. Buser, M., Liu, J.K., Steinfeld, R., Sakzad, A., Sun, S.-F.: DGM: a dynamic and
revocable group merkle signature. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11735, pp. 194–214. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29959-0 10

15. Camenisch, J., Groth, J.: Group signatures: better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9 9

16. Camenisch, J., Kohlweiss, M., Soriente, C.: Solving revocation with efficient update
of anonymous credentials. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS,
vol. 6280, pp. 454–471. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15317-4 28

17. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

18. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

19. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

https://doi.org/10.1007/3-540-48390-X_15
https://doi.org/10.1007/978-3-319-76953-0_12
https://doi.org/10.1007/978-3-319-55589-8_23
https://doi.org/10.1007/978-3-319-55589-8_23
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-29959-0_10
https://doi.org/10.1007/978-3-030-29959-0_10
https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22

156 M. Yehia et al.

20. Del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-
knowledge proofs of automorphism stability. In: ACM SIGSAC CCS, pp. 574–591
(2018)

21. El Bansarkhani, R., Misoczki, R.: G-Merkle: a hash-based group signature scheme
from standard assumptions. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018.
LNCS, vol. 10786, pp. 441–463. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-79063-3 21

22. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: Provably secure group
signature schemes from code-based assumptions. IEEE Trans. Inf. Theory 66(9),
5754–5773 (2020)

23. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

24. Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., Mohaisen, A.: Xmss: extended
merkle signature scheme. In: RFC 8391. IRTF (2018)

25. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

26. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

27. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

28. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

29. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 34

30. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4
36

31. Lin, X., Sun, X., Ho, P.-H., Shen, X.: GSIS: a secure and privacy-preserving pro-
tocol for vehicular communications. IEEE Trans. Veh. Technol 56(6), 3442–3456
(2007)

32. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 19

33. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 18

34. NIST. Post quantum crypto project. http://csrc.nist.gov/groups/ST/post-
quantum-crypto

https://doi.org/10.1007/978-3-319-79063-3_21
https://doi.org/10.1007/978-3-319-79063-3_21
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-662-46447-2_18
http://csrc.nist.gov/groups/ST/post-quantum-crypto
http://csrc.nist.gov/groups/ST/post-quantum-crypto

GMMT: A Revocable Group Merkle Multi-tree Signature Scheme 157

35. NIST. Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process. https://csrc.nist.gov/Projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/Call-for-Proposals

36. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: IEEE SFCS, pp. 124–134. IEEE (1994)

37. Sun, S.-F., et al.: Practical backward-secure searchable encryption from symmetric
puncturable encryption. In: ACM SIGSAC CCS, pp. 763–780 (2018)

38. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable anonymous cre-
dentials: Blocking misbehaving users without ttps. In: CCS, CCS ’07, pp. 72–81.
ACM (2007)

39. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: PEREA: towards practical TTP-
free revocation in anonymous authentication. In CCS, CCS ’08, pp. 333–344. ACM
(2008)

40. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

41. Yehia, M., AlTawy, R., Gulliver, T.A.: Security analysis of DGM and GM group
signature schemes instantiated with XMSS-T. In: Insecrypt. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-3-030-88323-2 4

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-88323-2_4

Issuer-Hiding Attribute-Based
Credentials

Jan Bobolz1, Fabian Eidens1, Stephan Krenn2(B), Sebastian Ramacher2,
and Kai Samelin3

1 Paderborn University, Paderborn, Germany
{jan.bobolz,fabian.eidens}@uni-paderborn.de

2 AIT Austrian Institute of Technology, Vienna, Austria
{stephan.krenn,sebastian.ramacher}@ait.ac.at

3 Heidelberg, Germany

Abstract. Attribute-based credential systems enable users to authenti-
cate in a privacy-preserving manner. However, in such schemes verifying
a user’s credential requires knowledge of the issuer’s public key, which
by itself might already reveal private information about the user.

In this paper, we tackle this problem by introducing the notion of
issuer-hiding attribute-based credential systems. In such a system, the
verifier can define a set of acceptable issuers in an ad-hoc manner,
and the user can then prove that her credential was issued by one of
the accepted issuers – without revealing which one. We then provide a
generic construction, as well as a concrete instantiation based on Groth’s
structure preserving signature scheme (ASIACRYPT’15) and simulation-
sound extractable NIZK, for which we also provide concrete benchmarks
in order to prove its practicability.

The online complexity of all constructions is independent of the num-
ber of acceptable verifiers, which makes it also suitable for highly feder-
ated scenarios.

Keywords: Cryptographic protocols · Issuer-hiding ·
Privacy-preserving · Anonymous credentials · Authentication

1 Introduction

Anonymous credential systems and their attribute-based extensions (ABCs)
allow users to receive digital certificates (credentials) certifying certain pieces
of personal information (attributes) from issuers. A user can then present her
credential to a verifier in a way that respects the user’s privacy while giving
high authenticity guarantees to the verifier. That is, the user can decide, on a
fine-granular basis, which information about her attributes she wants to disclose
to the verifier, while no further information, including metadata, is revealed. In

K. Samelin—Independent.

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 158–178, 2021.
https://doi.org/10.1007/978-3-030-92548-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_9

Issuer-Hiding Attribute-Based Credentials 159

particular, different actions of the same user can only be linked through the dis-
closed information. In the most general case, the verifier can publish arbitrary
predicates (Boolean formulas) over attribute values that users need to satisfy
for authentication (e.g., a user is older than 21, comes from a specific country,
or has a certain name), and receives cryptographic evidence that such attribute
values were certified by the given issuer. Anonymous credential systems were
first envisioned by Chaum [24,25]. Besides well-known systems like Microsoft’s
U-Prove [11,43] and IBM’s Identity Mixer [18–20,22], a large body of work
with different optimizations and functionalities can be found in the literature,
e.g. [7,8,15–17,27,37,44].

All of the aforementioned ABC systems have in common that the privacy
guarantees only hold with respect to a single issuer key: whilst not being able to
link actions of a single user, a verifier learns the public key of the issuer of the
underlying credential. Even though this seems to be a natural property at first
glance, it turns out that this approach leads to a tradeoff between scalability and
user privacy. As an example, consider a state-wide electronic identity system with
millions of users. In order to give users the highest level of privacy, all citizens’
personal credentials need to be issued under the same public key. In case of a
compromise of the secret key, all previously issued keys need to be invalidated,
potentially requiring millions of certificates to be re-issued under a new key.
Alternatively, different keys could be used for groups of citizens, e.g., randomly,
per time period, or per administrative region. However, as the issuer’s public
key is revealed upon presentation, this approach dramatically reduces the size
of the anonymity set of a specific user.

Furthermore, many scenarios would benefit from a dynamic and ad-hoc def-
inition of a set of issuer keys accepted by a verifier. For instance, universities
may issue electronic student IDs to their students. Depending on the concrete
scenario, students may need to prove that they are enrolled at a specific uni-
versity (e.g., to enter the campus), or that they are enrolled at any university
without needing to reveal the university (e.g., to be granted an online student
discount). Similarly, citizens may receive electronic identities from their nation
state, which they can then use to prove that they are eligible, e.g., for participa-
tion in opinion polls in their country. However, they might want to use the same
credential to also prove that they are living in any country of a specific region
(e.g., the European Union) for cross-country citizen engagement processes which
do not require to reveal the specific citizenship.

In vehicular ad-hoc networks (VANETs) [32] or vehicle-to-infrastructure net-
works (V2I), such a solution allows each car manufacturer to use their own secret
keys (e.g., per model), while avoiding to reveal unnecessary information (e.g.,
the model) when authenticating towards other parties.

Finally, Cloudflare recently announced a replacement of CAPTCHAs by
cryptographic attestation of personhood using, e.g., FIDO tokens.1 The idea is
that instead of solving a puzzle, users click a physical button on an accepted hard-
ware token, which responds to a cryptographic challenge. However, as pointed

1 https://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/.

https://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/

160 J. Bobolz et al.

out by Cloudflare, a user’s key “looks like all other keys in the batch”, meaning
that the anonymity set of a user shrinks to the number of devices in a batch. It
would thus be desirable to dynamically add additional batches to this anonymity
set, without users needing to obtain new credentials for their existing devices.

Related Work. Different mitigation strategies for these challenges exists. For
instance, approaches for decentralizing the issuer have been proposed, e.g.,
by fully avoiding the need for a trusted issuer leveraging public append-only
ledgers [33,48], or by deploying threshold cryptography to require multiple
issuers to contribute to the credential issuance process [14,41,47]. While such
approaches reduce the risk of compromised issuer keys, they do not directly
allow to dynamically adjust the set of issuers among which a user should remain
private.

Delegatable credentials [4,7,13,23,27] offer an alternative solution, where
users can issue credentials derived from their own credentials to other users. All
credentials eventually trace back to a root authority’s public key, yet the verifier
does not learn the precise issuer within the delegation “tree”. While delegatable
credentials are a valuable tool, e.g., for managing privileges within organizations,
they do not solve the issues addressed in this paper as they assume a single root
authority, which will typically not exist in the federated scenarios sketched above.
They also do not allow for ad-hoc definitions of accepted issuers. Furthermore,
revocation of sub-issuers within the delegation tree is computationally expensive,
while it can be achieved for free in our construction.

Closely related to anonymous credentials, also in self-sovereign identity (SSI)
systems multiple issuers will participate. In such systems, e.g., [2,3,38], users can
join by presenting some form of credential to one or multiple verification nodes.
In eSSIF2, which is the European Union’s attempt to build a large scale SSI
system, these credentials are issued by national authorities run by each member
state. If the credential is accepted by the nodes, they record their decision on
a distributed ledger. Even if these systems are not built from ABCs, they can
be designed to mimic some of their functionalities. Indeed, whenever the user
wants to present attributes included in their credential to a service provider,
a presentation of some of the attributes can be computed with respect to the
information stored on the ledger. Due to the trust put into the distributed ledger
and the verification nodes, it is thereby not necessary to show the issuer public
key to the verifier. Hence, this additional layer, i.e. the ledger and verification
nodes, provides some level of mitigation against identification attempts based on
the issuer. Yet, the issuer is known to the verification nodes responsible for the
initial joining of the system. Especially when the system is built from a public
ledger, a service provider could also run such a node and therefore information
on the issuers could potentially be gathered. Also, the authenticity guarantees
are no longer end-to-end, but partially rely on the verification nodes and the
consensus mechanism employed for the distributed ledger.

2 https://decentralized-id.com/government/europe/eSSIF/.

https://decentralized-id.com/government/europe/eSSIF/

Issuer-Hiding Attribute-Based Credentials 161

Our Contributions. In this paper we address the discussed challenges by pre-
senting an issuer-hiding attribute-based credential system. That is, our system
allows a user to hide the issuer of her credential among a set of issuers. More
specifically, the verifier may issue a policy defining the issuers he is willing to
accept for a certain presentation session, and the user may then prove that she
indeed owns a credential issued by one of those issuers.

Firstly, this approach allows a user to use her credential in various contexts,
as described in the examples above. Secondly, the revocation of issuers becomes
efficient in the sense that credentials issued by a specific issuer can be revoked
by simply no longer including this issuer in the policy. Finally, additional issuers
can be added in a seamless fashion by adding them to the policy.

Overview of Our Approach. To explain the technicalities of our construction let
us first solve the hiding of public keys during authentication straightforwardly. As
already mentioned, a user’s credential on attributes m = [age, name, state,
reputation] by issuer Ij is a signature cred on the message vector m valid
under the issuer’s public key ipk j . To authenticate at a verifier Vk the user
U proves validity of cred under the public key ipk j . More formally, U sends
a non-interactive proof NIZK[(x = ipk j , w = {m, cred}) : Verify(ipk j , cred ,m)].
Public common input to the NIZK is ipk j . The witness, hence private input
by the user are cred and m. The NIZK deals with the privacy of the witness,
but ipk j is publicly known. As a feature this lets verifiers interpret attributes
and credentials with respect to the issuer, e.g. reputation has potentially more
weight if ipk j belongs to a government agency. In other cases, this is a detriment
to user privacy, e.g. the attribute state certified in cred is never revealed by the
user, nonetheless the verifier may learn state implicitly by looking at ipk j .

An idea to hide ipk j in the above NIZK is to build a structure reminiscent
of ring signatures. For authentication, the user collects an appropriate set of
issuer public keys PK := {ipk1, . . . , ipk j , . . . , ipkn}. Then we change the NIZK
statement to NIZK[(x = PK , w = {ipk j ,m, cred}) : ∨n

i=1 Verify(ipk i, cred ,m)].
We solved our problem, the or-statement in the NIZK hides under which ipk the
user’s credential is valid.

The downside is that naively the proof size and verification cost is now linear
in n := |PK | which limits the practicability of this approach. Hence, the next
essential step is to avoid the or-statement in the NIZK.

This can be achieved by letting the verifier sign the public keys of the accepted
issuers, by computing σj

$← Sign(vsk , ipk j) for all ipk j ∈ PK , where (vsk , vpk)
is the verifier’s key pair. Instead of performing an or-proof, the user can now
show that she knows a signature, issued by the verifier, on the public key of
the issuer that issued the user’s credential. That is, the user can now send
NIZK[(x = vpk , w = (σ, ipk , cred ,m) : Verify(ipk , cred ,m) ∧ Verify(vpk , σ, ipk)],
which is independent of the number of accepted issuers, i.e., |PK |.

A remaining technicality is now that the same verifier may accept differ-
ent issuers for different scenarios, which is why every σj needs to be bound
to the specific scenario. Using ephemeral signature keys (vpk , vsk) in each pre-
sentation session would require linear computation for computing and verifying

162 J. Bobolz et al.

ExpEUF−CMA
Adv (λ)

pp $← Σ.ParGen(1λ)

(sk , pk) $← Σ.KGen(pp)
Q ← ∅
(m∗, σ∗) $← AdvOsign(pk)
return 0, if m∗ ∈ Q
return 1, if Σ.Verify(pp, pk , σ∗, m∗) = 1
return 0

where:
Osign(m):

σ $← Σ.Sign(pp, sk , m)
Q ← Q ∪ {m}
return σ

Exp. 1: EUF-CMA experiment for digital signatures.

the signatures; alternatively, a unique key pair per verifier could be used, and
σj

$← (vsk , (ipk j , domain)) could be bound to a specific application domain. We
finally opted for a combination, where the verifier is still key-less, yet signatures
on public keys can be reused. This is done by letting the verifier define policies
where a policy consists of signatures on all ipk ’s for a specific domain, but differ-
ent signing keys are used for different domains, and thus the respective signing
keys can be discarded after publishing a policy.

We formalize the above intuition through a generic construction, for which
we provide formal security proofs. We then give a concrete instantiation based on
Groth’s structure preserving signature scheme [36]. To ease readability, our basic
construction focuses on the core functionality of anonymous credential systems;
however, we finally also discuss how to achieve advances functionalities including
non-frameability, revocation of credentials, and fine-granular linkability.

2 Preliminaries

We denote the main security parameter by λ. We write a $← A to denote that a is
the output of a potentially randomized algorithm A and v $← S to denote that v
is uniformly sampled at random from a set S. If not explicitly stated otherwise,
all algorithms are assumed to be polynomial-time (PPT).

Digital Signatures. A digital signature scheme consists of four algorithms:

– pp $← Σ.ParGen(1λ) generates public parameters pp.
– (sk , pk) $← Σ.KGen(pp) generates a secret key sk and a public key pk .
– σ $← Σ.Sign(pp, sk ,m) creates a signature σ on message m.
– b ← Σ.Verify(pp, pk , σ,m) verifies the signature.

Following Goldwasser et al. [34], we require a digital signature scheme to
be existentially unforgeable, meaning that no adversary can efficiently come up
with a valid signature on a new message of the adversary’s choice, even if it is
given access to a signing oracle that may sign an arbitrary number of messages
chosen by the adversary:

Issuer-Hiding Attribute-Based Credentials 163

Definition 1. A digital signature scheme is EUF-CMA secure if and only if for
every PPT adversary Adv there exists a negligible function negl such that:

Pr
[
ExpEUF−CMA

Adv (λ) = 1
]

≤ negl(λ),

where the experiment is as defined in Experiment 1.

Structure-Preserving Signatures. We recall the randomizable structure-
preserving signature scheme by Groth [36]. While the scheme is able to sign
matrices of group elements, we only require it to sign a single group element.
Similar to Camenisch et al. [13], we consider the scheme in two variants: Groth1
signs elements of G1 (and its public keys live in G2), and Groth2, which signs
elements of G2 (with public keys in G1). We describe Groth1. The other scheme,
Groth2, can be obtained easily by switching the roles of G1 and G2.

– Groth1.ParGen(1λ) generates public parameters pp consisting of a bilinear
group (G1, G2, GT, e, p,G, G̃) of prime order p with generators G ∈ G1, G̃ ∈
G2, and a random element Y $← G1.

– Groth1.KGen(pp) generates a secret key sk sps = v $← Z
∗
p and the corresponding

public key pk sps = Ṽ = G̃v.
– Groth1.Sign(pp, sk sps,M) chooses r $← Z

∗
p and outputs the signature σ =

(R̃, S, T) = (G̃r, (Y · Gv)1/r, (Y v · M)1/r).
– Groth1.Rand(pp, σ) chooses r′ $← Z

∗
p and outputs σ′ = (R̃′, S′, T ′) = (R̃r, S1/r,

T 1/r).
– Groth1.Verify(pp, pk sps, σ,M) checks that e(S, R̃) = e(Y, G̃) · e(G, Ṽ) and

e(T, R̃) = e(Y, Ṽ) · e(M, G̃).

This construction is EUF-CMA secure in the generic group model [36].

Zero-Knowledge Proofs. A non-interactive zero-knowledge proof of knowl-
edge (NIZK) allows a prover to generate a cryptographic proof that he knows a
secret witness w such that (x,w) ∈ R for some binary relation R and a public
statement x, without revealing any additional information about w than what
is already revealed by x. We denote the language associated with R by L.

Formally, a NIZK consists of three algorithms:

– pp $← Π.ParGen(1λ) generates the public parameters pp.
– π $← Π.Prove(pp, x, w, ctx) generates a non-interactive zero-knowledge proof

of knowledge π of w such that (x,w) ∈ R bound to ctx.
– b ← Π.Verify(pp, x, ctx, π) verifies a proof π.

Besides correctness, we will require zero-knowledge and simulation-sound
extractability from all NIZKs.

Informally, the zero-knowledge property ensures that the receiver of a NIZK
does not learn anything beyond what is already revealed by the statement itself.

164 J. Bobolz et al.

Expzero−knowledge
Adv (λ)

(pp, τ) $← Sim1(1
λ)

b $← {0, 1}
b∗ $← AdvOb(pp)
return 1, if b = b∗

return 0

where:
O0(x, w, ctx):

return π $← Π.Prove(pp, x, w, ctx), if (x, w) ∈ R
return ⊥

O1(x, w, ctx):

return π $← Sim2(pp, τ, x, ctx), if (x, w) ∈ R
return ⊥

Exp. 2: Zero-knowledge experiment for NIZKs.

ExpSimSoundExt
Adv (λ)

(pp, τ, ζ) $← Ext1(1
λ)

Q ← ∅
(x∗, ctx∗, π∗) $← AdvOSIM(pp)

w∗ $← Ext2(pp, ζ, x∗, ctx∗, π∗)
return 1, if:

Π.Verify(pp, x∗, ctx∗, π∗) = 1,
(x∗, w∗) /∈ R, and
(x∗, ctx∗) /∈ Q

return 0

where:
OSIM(x, ctx):

π $← Sim2(pp, τ, x, ctx)
Q ← Q ∪ {(x, ctx)}
return π

Exp. 3: Simulation-sound extractability experiment for NIZKs.

Definition 2. A non-interactive proof system Π satisfies zero-knowledge for
a relation R, if and only if for every PPT adversary Adv there exists a PPT
simulator Sim = (Sim1,Sim2) such that there exists negligible functions negl1
and negl2 such that:

∣∣∣∣ Pr
[
Adv(pp) = 1 : pp $← Π.ParGen(1λ)

]

− Pr
[
Adv(pp) = 1 : (pp, τ) $← Sim1(1λ)

]∣∣∣∣ ≤ negl1(λ) ,

and ∣∣∣∣Pr
[
Expzero−knowledge

Adv (λ) = 1
]

− 1
2

∣∣∣∣ ≤ negl2(λ) ,

where the experiment is as defined in Experiment 2.

Intuitively, simulation-sound extractability requires that any adversary that
can generate a valid proof must also know a valid witness for this statement, even
if it has previously seen arbitrarily many (simulated) proofs of potentially false
statements. Note that the original definition of Groth [35], combining simulation-
soundness [45] and proofs of knowledge [28], is stronger than ours in the sense
that the adversary also gets access to the extraction trapdoor; however, similar
to previous work [1,29,30] the following slightly weaker definition is sufficient
for our purposes. Furthermore, the inclusion of a context ctx essentially makes
the NIZK a signature of knowledge [23].

Issuer-Hiding Attribute-Based Credentials 165

Definition 3. A zero-knowledge non-interactive proof system Π satisfies
simulation-sound extractability for a relation R, if and only if for every PPT
adversary Adv there exists a PPT extractor Ext = (Ext1,Ext2) such that there
exists a negligible function negl such that:

∣∣∣∣ Pr
[
Adv(pp, τ) = 1 : (pp, τ) $← Sim1(1λ)

]

− Pr
[
Adv(pp, τ) = 1 : (pp, τ, ζ) $← Ext1(1λ)

]∣∣∣∣ = 0 ,

and
Pr

[
ExpSimSoundExt

Adv (λ) = 1
]

≤ negl(λ) ,

where the experiment is as defined in Experiment 3 and Sim = (Sim1,Sim2) is
as in Definition 2.

For notational convenience, we use the following notation for NIZKs, initially
introduced by Camenisch and Stadler [21]. In this notation, a statement like

NIZK
[
(α, β, γ) : y1 = gα

1 gβ
2 ∧ y2 = gα

1 gγ
3 ∧ α ≥ γ

]
(ctx)

denotes a non-interactive zero-knowledge proof of knowledge, bound to the con-
text ctx, of values α, β, γ such that the relation on the right hand side is satisfied.
We also omit the public proof parameters pp.

3 Framework for Issuer-Hiding ABCs

We next define the syntax for issuer-hiding attribute-based credential systems,
and then formalize the security properties required from such a system.

3.1 Syntax

An issuer-hiding ABC system is specified by eight algorithms. Initially, the
parameters are generated by ParGen. Having generated a key pair using IKGen,
an issuer can then issue credentials on attributes to a user by means of Issue;
users can verify the received credential locally by VfCred in order to detect mal-
formed credentials. To define the set of accepted issuers, a verifier generates a
policy using PresPolicy, which can be checked for well-formedness using VfPolicy
by everyone. Finally, holding a credential from an issuer and a policy from the
verifier, a user uses Present to derive a presentation token, which is verified by
Verify. The inputs and outputs of the algorithms are introduced in the following:

Parameter Generation. The public parameters are generated as:

pp $← ParGen(1λ).

The public parameters are assumed to be implicit input to all algorithms pre-
sented in the following. We assume pp in particular specifies the number L of
attributes that may be certified per credential, as well as the attribute space A.

166 J. Bobolz et al.

Key Generation. Issuers compute their respective private and public keys as:

(isk , ipk) $← IKGen(pp).

Issuance. The issuer creates a credential cred on attributes �a as follows:

cred $← Issue(isk , �a).

For the sake of simplicity, this process is modeled as a non-interactive algorithm
as opposed an interactive protocol between the issuer and the user.

Credential Verification. The validity of a credential can be checked as follows:

b $← VfCred(cred , �a, ipk).

Presentation Policies. Verifiers can define presentation policies defining sets of
issuers they are willing to accept for certain presentation sessions:

pol $← PresPolicy({ipk i}).

Note that pol only defines the sets of issuers accepted by a verifier, but not,
e.g., which attributes a verifier needs to disclose. By this, pol can be reused for
multiple contexts, reducing the number of policies.

Policy Verification. Presentation policies can be checked for validity as follows:

b ← VfPolicy(pol , {ipk i}).

Presentation. For practical reasons, we only focus on non-interactive presenta-
tion protocols. Having agreed on a presentation policy which has been verified
by the user, she computes a presentation token:

pt $← Present(ipk , cred , φ, �a, pol , ctx).

The verifier then validates the token as:

b ← Verify(pt , φ, pol , ctx).

Here, φ : A
L → {0, 1} is a predicate over the user’s attributes that needs to be

satisfied in order to pass verification, i.e., verification only passes if φ(�a) = 1.
For instance, φ might require that some ai equals some previously agreed value,
corresponding to the disclosure of this attribute, or that ai ∈ [l, r] for some
bounds l and r. Finally, the purpose of ctx is to define a context in which the
presentation token is accepted, e.g., a session identifier or a random nonce to
avoid replay attacks or similar.

Policies will typically be long-lived, and it thus not necessary for a user to
verify the policy every time before computing a presentation token. We thus do
not consider these computational costs as part of the verification algorithm.

Issuer-Hiding Attribute-Based Credentials 167

3.2 Security Definitions

We next define necessary security properties for an issuer-hiding ABC system.

Correctness. We omit a formal definition here, as the requirements are what one
would expect: if all parties follow the protocol specifications during all phases,
any presentation token computed by the user will be accepted by the verifier.

Unforgeability. Unforgeability requires that it is infeasible for an adversary to
generate a valid presentation token, if it has not previously received a credential
on attributes satisfying φ from one of the accepted issuers, or a presentation
token for the same (ctx, φ, pol).

In the following definition, note that while the challenge policy pol∗ may only
include honest issuers’ keys, the adversary may request presentation tokens for
arbitrary sets of ipk ’s from the presentation oracle Opresent, covering the case of
adversarial issuers.

ExpUnforgeability
Adv (λ, nI)

pp $← ParGen(1λ)
Qissue ← ∅, Qpresent ← ∅, Qreveal ← ∅
(isk i, ipk i)

$← IKGen(pp) for i = 1, . . . , nI

(I∗, st) $← AdvOissue,Opresent,Oreveal(pp, {ipk i}nI
i=1)

pol∗ $← PresPolicy(I∗)
(pt∗, φ∗, ctx∗) $← AdvOissue,Opresent,Oreveal(st , pol∗)

where the oracles are defined as follows:
Oissue(ij ,
aj)

cred j
$← Issue(isk ij ,
aj)

add (ij ,
aj) to Qissue

Opresent(j, pol , φ, ctx)
add (pol , φ, ctx) to Qpresent

return pt $← Present(cred j , ipk ij
,
aj , φ, pol , ctx)

Oreveal(j)
add (ij ,
aj) to Qreveal

return cred j

return 1 if:
I∗ ⊆ {ipk i}nI

i=1

Verify(pt∗, pol∗, φ∗, ctx∗) = 1
(pol∗, φ∗, ctx∗) /∈ Qpresent

�(ij ,
aj) ∈ Qreveal such that φ∗(
aj) = 1 and ipk ij
∈ I∗

return 0

Exp. 4: Unforgeability experiment

Definition 4. An issuer-hiding ABC system satisfies unforgeability, if and only
if for every PPT adversary Adv and every number of issuers nI there exists a
negligible function negl such that:

Pr
[
ExpUnforgeability

Adv (λ, nI) = 1
]

≤ negl(λ),

where the experiment is as defined in Experiment 4.

168 J. Bobolz et al.

ExpUnlinkability
Adv (λ)

b $← {0, 1}
pp $← ParGen(1λ)

({cred l,
al, il}1
l=0, pol , φ, {ipk i}, ctx, st) $← Adv(pp)

pt∗ $← Present({ipk i}, credb, φ,
ab, pol , ctx)

b∗ $← Adv(pt∗, st)
return 1 if and only if:

b = b∗,
VfCred(cred l,
al, ipk il

) = 1 for l ∈ {0, 1},

φ(
al) = 1 for l ∈ {0, 1}, and
VfPolicy(pol , {ipk i}) = 1

return b′ $← {0, 1}
Exp. 5: Unlinkability experiment

Unlinkability. Unlinkability requires that no two user actions can be linked by an
adversary. This even needs to hold if the adversary has full control over verifiers,
issuers, and the user’s credential. In the experiment (cf. Experiment 5), we thus
let the adversary output two sets of credentials, attributes, and respective issuers,
as well as a presentation policy pol , a predicate φ, and the issuers’ public keys.
Upon receiving a presentation token derived from one of the two credentials, the
adversary must not be able to decide which underlying credential was used, as
long as both credentials are valid and consistent with φ.

Definition 5. An issuer-hiding ABC system satisfies unlinkability, if and only
if for every PPT adversary Adv there exists a negligible function negl such that:

∣∣∣∣Pr
[
ExpUnlinkability

Adv (λ) = 1
]

− 1
2

∣∣∣∣ ≤ negl(λ),

where the experiment is as defined in Experiment 5.

4 A Generic Construction

The following section describes a generic construction of issuer-hiding attribute-
based credentials, and gives a formal security analysis of its security.

4.1 Construction

Let ΣI = (Σ.ParGen, ΣI.KGen, ΣI.Sign, ΣI.Verify) and ΣV = (Σ.ParGen, ΣV.KGen,
ΣV.Sign, ΣV.Verify) be digital signature schemes (cf. Sect. 2) with a common
parameter generation algorithm.

Our generic construction is now depicted in Construction 1. We refer to
Sect. 1 for a detailed description of the intuition underlying this construction.

Issuer-Hiding Attribute-Based Credentials 169

ParGen(1λ). Return pp $← Σ.ParGen(1λ).

IKGen(pp). Return (isk , ipk) $← ΣI.KGen(pp).

Issue(isk ,
a). Return cred $← ΣI.Sign(pp, isk ,
a).

VfCred(cred ,
a, ipk). Return 1 if ΣI.Verify(pp, ipk , cred ,
a) = 1. Otherwise, return 0.

PresPolicy({ipk i}). Generate a signature key pair (vsk , vpk) $← ΣV.KGen(pp) and com-

pute the signature σi
$← ΣV.Sign(pp, vsk , ipk i). Return

pol = (vpk , {(ipk i, σi)}) .

VfPolicy(pol , {ipk i}). Parse pol as (vpk , {(ipk i, σi)}). Return 1 if and only if

ΣV.Verify(pp, vpk , σi, ipk i) = 1 for all i .

Otherwise, return 0.

Present(cred , ipk ,
a, φ, pol , ctx). Parse pol as (vpk , {(ipk i, σi)}). Set j such that ipk j =
ipk . Return a presentation token pt as follows:

pt $← NIZK[(σj , ipk j , cred ,
a) :ΣV.Verify(pp, vpk , σj , ipk j) = 1 ∧ (1)
ΣI.Verify(pp, ipk j , cred ,
a) = 1 ∧
φ(
a) = 1](pol , φ, ctx)

Verify(pt , pol , φ). Return 1 if and only if pt verifies correctly. Otherwise, return 0.

Construction 1: Generic construction of issuer-hiding ABCs.

4.2 Security Analysis

Theorem 1. If ΣI and ΣV are EUF-CMA secure and the NIZK is zero-
knowledge and simulation-sound extractable, then Construction 1 is unforgeable.

Intuitively, the adversary has two potential ways of breaking unforgeability: (1)
he can forge a ΣV signature on his own public key ipk ′ (that is not part of the
challenge policy pol∗), or (2) he can forge a credential by forging a ΣI signature
w.r.t. some honest issuer’s public key ipk i.

Proof. Let Adv be a PPT adversary. We first modify the unforgeability game by
simulating all NIZK pt output by Opresent. Because the NIZK is zero-knowledge,
this increases the winning probability by at most a negligible amount. In the
following, we argue that Adv’s winning probability in the modified game is neg-
ligible.

In the (modified) unforgeability game, Adv outputs pol∗ and (pt∗, φ∗).
If Adv wins, we can apply the NIZK extractor to pt∗ to extract a witness
(σ, ipk , cred , �a). Let extractfail be the event that Adv wins but the extractor
fails to output a valid witness. Let polforge be the event that Adv wins, the
extractor does not fail, and the extracted ipk is not any honest issuer’s public
key, i.e. ipk /∈ {ipk i}. Let credforge be the event that Adv wins, the extractor

170 J. Bobolz et al.

does not fail, and the extracted ipk is one of the honest issuer’s public keys, i.e.
ipk ∈ {ipk i}.

It holds that Pr[Adv wins] ≤ Pr[Adv wins ∧ ¬extractfail] + Pr[extractfail] =
Pr[polforge] + Pr[credforge] + Pr[extractfail]. Because the NIZK is simulation-
sound extractable, Pr[extractfail] is negligible. We now show that both
Pr[polforge] and Pr[credforge] are negligible, which will conclude this proof.

Type 1 Adversaries. We construct an adversary B against ΣV’s EUF-CMA secu-
rity.

– B gets pp, pk as input and access to a signing oracle Osign.
– B generates (isk i, ipk i)

$← IKGen(pp) for i = 1, . . . , nI and runs (I∗, st) $←
AdvOissue,Opresent,Oreveal(pp, {ipk i}nI

i=1). It answers oracle queries honestly using
{isk i}.

– B queries Osign for signatures σi on ipk i ∈ I∗. It sets pol∗ = (pk , {(ipk i, σi)})
and runs (pt∗, φ∗, ctx∗) $← AdvOissue,Opresent,Oreveal(st , pol∗).

– If Adv’s winning condition is not fulfilled, B aborts.
– Otherwise, B extracts a witness (σ, ipk , cred , �a) from pt∗.
– If ipk /∈ {ipk i}, B, it outputs (ipk , σ) as a forgery.

By construction, Pr[B wins] = Pr[polforge] (note that if polforge occurs,
B has not queried for a signature on ipk). Because ΣV is EUF-CMA secure,
Pr[polforge] is negligible.

Type 2 Adversaries. We construct an adversary B against ΣI’s EUF-CMA secu-
rity.

– B gets pp, pk as input and access to a signing oracle Osign.
– B chooses a random k $← {1, . . . , nI}.
– B sets ipkk = pk and generates (isk i, ipk i)

$← IKGen(pp) for i ∈ {1, . . . , nI} \
{k}. It runs (I∗, st) $← AdvOissue,Opresent,Oreveal(pp, {ipk i}nI

i=1).
• It answers Oissue(ij , �aj) by adding (ij , �aj) to Qissue (but not generating

a credential).
• It answers Opresent(j, pol , φ, ctx) by creating a simulated NIZK pt (unless

φ(�aj) = 0).
• It answers Oreveal(j) with cred j as follows: if ij = k, it queries cred j

$←
Osign(�aj). Otherwise, it computes cred j

$← ΣI.Sign(pp, isk ij , �aj). Repeat
reveal queries for j are answered with the same value cred j every time.

– B generates pol∗ $← PresPolicy(I∗). Afterwards, it runs (pt∗, φ∗, ctx∗) $←
AdvOissue,Opresent,Oreveal(st , pol∗).

• B answers oracle queries as above.
– If Adv’s winning condition is not fulfilled, B aborts.
– Otherwise, B extracts a witness (σ, ipk , cred , �a) from pt∗.
– If ipk = pk , B outputs (�a, σ) as a forgery.

Issuer-Hiding Attribute-Based Credentials 171

Note that the way B answers oracle queries is consistent with the way the
(modified) unforgeability experiment does so.

If credforge ∧ ipk = pk , then (�a, σ) is a valid forgery. σ is a valid signature
on �a by guarantee of the NIZK extractor. Furthermore, B has not queried for a
signature on �a (because φ∗(�a) = 1 by guarantee of the extractor, but the winning
condition guarantees that φ∗(�a ′) = 0 for all signatures revealed through Oreveal).
Hence Pr[B wins] ≥ Pr[credforge ∧ ipk = pk] = 1

nI
· Pr[credforge]. Because ΣI is

EUF-CMA secure, Pr[credforge] is negligible. 	

Theorem 2. If NIZK is zero-knowledge, then Construction 1 is unlinkable.

Proof. Because the property follows almost immediately from the zero-
knowledge property, we omit a full proof. Note that the unlinkability experi-
ment ensures that the witnesses used when computing pt∗ are valid for both
b = 0 and b = 1 (for cases where the adversary does not output valid values, the
experiment ends up outputting a random bit, not providing any advantage to
the adversary). This means that the unlinkability experiment is computationally
indistinguishable from one where pt∗ is created by the NIZK simulator. In the
latter, the view of Adv is independent of b. 	

5 Concrete Instantiation

One possible instantiation of Construction 1 in Sect. 4 is with Groth’s structure-
preserving signatures (Sect. 2). This instantiation is inspired by delegatable cre-
dentials [13] where the issue of proving knowledge of a hidden signature on the
hidden public key of another hidden signature also comes up (though in a dif-
ferent scenario).

Concretely, in this instantiation, the issuer signs attributes using hash-then-
sign with the Pedersen hash H(�a) =

∏L
i=1 Hai

i and the structure-preserving
signature scheme Groth1. The verifier signs valid issuer public keys using Groth2.
A presentation token is a Schnorr-style proof of knowledge [46] turned non-
interactive using the Fiat-Shamir heuristic [31] which gives us a simulation-sound
extractable NIZK. We assume that the statement and public values are included
in the computation of the challenge in order to avoid malleability issues [6].

With these choices, the scheme works as specified in Construction 2.

5.1 Security Analysis

Theorem 3. If Groth1 and Groth2 are EUF-CMA secure and the NIZK is zero-
knowledge and simulation-sound extractable, then the concrete instantiation in
Construction 2 is unforgeable and unlinkable.

Unforgeability and unlinkability follow from the generic construction’s unforge-
ability and unlinkability, which we’re instantiating.

If Groth1 is EUF-CMA secure, then also the hash-then-sign version of it
(which is what we are effectively using in the concrete construction) is EUF-CMA

172 J. Bobolz et al.

ParGen(1λ). For e : G1 × G2 → GT as in Groth1.ParGen, choose Y, Hi
$← G1 and

Ỹ $← G2. Define the hash function H : Z
L
p → G1, H(
a) =

∏L
i=1 Hai

i . Return

pp = (G1, G2, GT, e, p, G, G̃, Y, Ỹ , (Hi)
L
i=1).

IKGen(pp). Generate a Groth1 key pair (isk , ipk) = (v, Ṽ) $← Groth1.KGen(pp).

Issue(isk ,
a). Return cred = (R̃, S, T) $← Groth1.Sign(pp, v, H(
a)).

VfCred(cred ,
a, ipk). Return whatever Groth1.Verify(pp, Ṽ , cred , H(
a)) returns.

PresPolicy({ipk i}). Generate (vsk , vpk) = (u, U)
$← Groth2.KGen(pp) and σi =

(Ri, S̃i, T̃i)
$← Groth2.Sign(pp, u, ipk i). Return pol = (U, {(ipk i, σi)}).

VfPolicy(pol , {ipk i}). Parse pol as (vpk , {(ipk i, σi)}). Return 1 if
Groth2.Verify(pp, vpk , σi, ipk i) = 1 for all i. Otherwise, return 0.

Present(cred , ipk ,
a, φ, pol , ctx). Parse pol as (vpk , {(ipk i, σi)}). Let j be the index of
the credential’s issuer’s public key, i.e., ipk j = ipk . Randomize cred and σj as

(R̃, S, T) $← Groth1.Rand(pp, cred) and (Rj , S̃j , T̃j)
$← Groth2.Rand(pp, σj) .

Choose random blinding values α, β, γ, δ
$← Z

∗
p and compute

– the blinded credential (R̃, S′, T ′) := (R̃, S1/α, T 1/β) on H(
a) under the
issuer’s key ipk j

– the issuer’s blinded key ipk ′
j := ipk

1/γ
j

– the blinded policy signature (Rj , S̃j , T̃
′
j) := (Rj , S̃j , T̃

1/δ
j) on Vj under the

verifier’s public key vpk
Compute a Schnorr-style proof π:

π $← NIZK[(α, β, γ,δ,
a) :

Groth1 credential check: e(S′, R̃)α = e(Y, G̃) · e(G, ipk ′
j)

γ ∧

Groth1 credential check: e(T ′, R̃)β = e(Y, ipk ′
j)

γ · e(
L∏

i=1

Hai
i , G̃) ∧

Groth2 policy check: e(Rj , S̃j) = e(G, Ỹ) · e(vpk , G̃) ∧
Groth2 policy check: e(Rj , T̃

′
j)

δ = e(vpk , Ỹ) · e(G, ipk ′
j)

γ ∧
Attribute check: φ(
a) = 1](pol , φ, ctx)

Finally, return pt = ((R̃, S′, T ′), ipk ′
j , (Rj , S̃j , T̃

′
j), π).

Verify(pt , pol , φ). Return 1 if and only if pt verifies correctly. Otherwise, return 0.

Construction 2: Concrete instantiation of our generic construction.

secure (under the discrete logarithm assumption, which is implied by security
of Groth1, the hash function H is collision-resistant). It remains to argue that
Present is a good instantiation of the NIZK specified in the generic construction.

For the zero-knowledge property, pt = ((R̃, S′, T ′), ipk ′
j , (Rj , S̃j , T̃

′
j), π) can

be simulated by choosing random S′, T ′, ipk ′
j

$← G1 and R̃, T̃ ′
j

$← G2, setting

Issuer-Hiding Attribute-Based Credentials 173

(Rj , S̃j) = (Rr
1, S̃

1/r
1) for random r $← Z

∗
p (where (R1, S̃1, ·) = ipk1), and then

simulating a corresponding π using the NIZK simulator.
For the proof of knowledge property, note that from π one can extract

α, β, γ, δ, �a with properties that guarantee that cred := (R̃, (S′)α, (T ′)β) is a valid
Groth1 signature on H(�a) under ipk j := (ipk ′

j)
γ and that σj := (Rj , S̃j , (T̃ ′

j)
δ) is

a valid Groth2 signature on ipk j under vpk , and that φ(�a) = 1. This means that
we can extract a valid witness σj , ipk j , cred , �a from pt , as required.

Table 1. Performance of Construction 2 on a Macbook Pro (i9-9980HK) with
BN254 as the bilinear group. Other columns show the (device-independent) num-
ber of group operations (multiply and square operations, including those hap-
pening within exponentiations) and pairings performed.

Runtime G1 G2 GT Pairings

PresPolicy (10 issuers) 14 ms 3 027 11 448 0 100

PresPolicy (100 issuers) 115 ms 27 666 115 430 0 0

VfPolicy (10 issuers) 3 ms 0 0 20 60

VfPolicy (100 issuers) 27 ms 0 0 200 600

Issue 2 ms 1 684 278 0 0

Present 4 ms 3 327 1 206 4 7

Verify 3 ms 2 398 0 901 12

Table 2. Number of group elements for the different keys and tokens in Con-
struction 2, where I is the number of issuer keys accepted by a verifier, and L
is the number of attributes certified in the credential.

G1 G2 GT Zp

Issuer secret key (isk) – – – 1

Issuer public key (ipk) – 1 – –

Credential (cred) 2 1 – –

Presentation policy (pol) I + 1 3I – –

Presentation token (pt) 3 4 – L + 5

5.2 Performance Evaluation

To practically evaluate our construction, we have implemented3 a benchmarking
prototype of Construction 2 using the Cryptimeleon library [9]. The results are
shown in Table 1. For credentials, we are considering L = 10 random attributes,
3 Code available at https://github.com/cryptimeleon/issuer-hiding-cred.

https://github.com/cryptimeleon/issuer-hiding-cred

174 J. Bobolz et al.

none of which are disclosed during presentation (which is the most expensive case
of partial attribute disclosure). The policy consists of 10 or 100 valid issuers. This
does not affect token verification, which is independent of policy size. Overall,
performance is practical, especially given that VfPolicy only has to be run once
for each new policy and can be delegated to a trusted party.

The sizes of all keys and tokens can be found in Table 2.

6 Extensions

To simplify presentation, our main construction only focuses on the key func-
tionality of an issuer-hiding ABC system. In the following, we discuss in detail
how to achieve non-frameability and anonymity revocation, controlled linkabil-
ity and pseudonyms, and credential revocation. Further extensions like updating
of credentials [8] or advanced predicates over attributes [5,40] are omitted here
because of space limitations.

Anonymity Revocation and Non-frameability. While ABCs are important to pro-
tect the users’ privacy and related fundamental rights, the high anonymity guar-
antees may lead to misuse of credentials and associated rights. In order to pre-
vent such misuse, anonymity revocation (or inspection) is an important advanced
functionality. Anonymity revocation allows a predefined opener (or inspector) to
identify the originator of a given presentation token pt [12,18]. Closely related to
this is the notion of non-frameability, which guarantees that even if issuers and
the opener collude, it is infeasible for them to convince any third party that a
specific user computed a given pt unless she indeed did so. This notion is closely
related to non-frameability for group signatures [10,26,39].

This feature is achieved by letting the user generate a secret private key
(upk , usk) $← UKGen(pp), and the opener a key pair (opk , osk) $← Γ.KGen(pp)
for an encryption scheme Γ. Upon issuance, the user would now embed upk
as an additional attribute which is signed by the issuer. When computing a
presentation token, the user would treat upk as an undisclosed attribute, yet still
prove that she knows the corresponding usk . Furthermore, she would encrypt upk
under the opener’s key as enc $← Γ.Enc(upk , opk), and prove that enc contains
the same upk which is also certified in the credential.

Controlled Linkability. In the case of stateful applications, for instance, users
may wish to be recognized yet not identified by a verifier. This can be achieved
by using scope-exclusive pseudonyms [16], in which pseudonyms can be linked
within a given scope, but not across different scopes. For a pseudonym system
Ψ with user secret key usk , the users’ public key would be upk ← Ψ.Gen(usk , ε),
which similar to before is embedded into the credential. For a given scope sc,
the user now shares nym = Ψ.Gen(usk , sc) with the verifier, and proves that this
is consistent with the (undisclosed) upk .

Issuer-Hiding Attribute-Based Credentials 175

Revocation. In case of misuse, loss of privileges, or compromise of a credential,
it may become necessary to invalidate an issued credential. Many approaches
for revocation of anonymous credentials can be found in the literature. In the
following we show how to incorporate an approach along the lines of Nakanishi
et al. [42] into our solution. Their work follows a black-listing approach, where
each credential contains a revocation handle rh which is never disclosed upon
presentation. The revocation authority, holding a signature key pair (rpk , rsk),
issues intervals [ai, bi] of currently still valid revocation handles, together with
signatures αi

$← ΣR.Sign(pp, rsk , ai) and βi
$← ΣR.Sign(pp, rsk , bi). When com-

puting a presentation token, the user now proves that the revocation handle
embedded in her credential lies in some interval [ai, bi] for which she knows
corresponding signatures αi and βi. However, it may be the case that multiple
revocation authorities, e.g., one per issuer, exist in our setting. We thus not only
embed the rh but also the revocation authority’s public key rpk as attributes in
our credentials, and the user shows that the known signatures on the interval
boundaries verify under this (undisclosed) signature key.

7 Conclusion and Future Work

We introduced the notion of issuer-hiding anonymous credential system, which
allows for a dynamic and ad-hoc definition of sets of issuers among whose cre-
dentials a user may stay anonymous during presentation—a feature with vari-
ous application domains, ranging from student identities over national eIDs to
remote attestation. We provided a generic construction where the communica-
tion and computational complexity during presentation is independent of the
number of issuers, as well as an efficient instantiation.

Nevertheless, we identified some open research questions. While our construc-
tion requires a minor joint setup across different issuers to define some group
generators and the number of attributes L, in real applications, e.g., different
nation states may wish to include different numbers of attributes in their cre-
dentials, vary the order of attributes, or use alternative generators for security
reasons. It would be interesting to see whether this can be achieved more effi-
ciently than via the generic or-composition discussed in Sect. 1. Also, the size of
verifier policies is currently linear in the number of accepted issuers. One app-
roach to overcome this limitation could be to add the accepted public keys to an
accumulator, for which users, knowing all accumulated values, could compute the
witnesses themselves, resulting in constant-size policies if the ipk ’s are assumed
to be known. Instead of proving knowledge of a signature from the verifier, users
would now prove that they know a witness for the public key that issued the cre-
dential. However, we are not aware of any accumulator and compatible signature
scheme allowing for an efficient instantiation.

Acknowledgments. This work was in parts supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 871473
(KRAKEN) and 830929 (CyberSec4Europe), and by the German Research

176 J. Bobolz et al.

Foundation (DFG) within the Collaborative Research Centre On-The-Fly Computing
(GZ: SFB 901/3) under the project number 160364472.

References

1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7 20

2. Abraham, A., Hörandner, F., Omolola, O., Ramacher, S.: Privacy-preserving eID
derivation for self-sovereign identity systems. In: Zhou, J., Luo, X., Shen, Q., Xu,
Z. (eds.) ICICS 2019. LNCS, vol. 11999, pp. 307–323. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-41579-2 18

3. Abraham, A., Theuermann, K., Kirchengast, E.: Qualified eID derivation into a
distributed ledger based iDM system. In: TrustCom/BigDataSE (2018)

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

5. Bemmann, K., et al.: Fully-featured anonymous credentials with reputation system.
In: ARES (2018)

6. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

7. Blömer, J., Bobolz, J.: Delegatable attribute-based anonymous credentials from
dynamically malleable signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS
2018. LNCS, vol. 10892, pp. 221–239. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93387-0 12

8. Blömer, J., Bobolz, J., Diemert, D., Eidens, F.: Updatable anonymous credentials
and applications to incentive systems. In: ACM CCS 2019 (2019)

9. Bobolz, J., Eidens, F., Heitjohann, R., Fell, J.: Cryptimeleon: a library for fast
prototyping of privacy-preserving cryptographic schemes. IACR ePrint (2021)

10. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

11. Brands, S.: Rethinking public key infrastructure and digital certificates - building
in privacy. Ph.D. thesis, Eindhoven Institute of Technology (1999)

12. Camenisch, J.: Concepts around privacy-preserving attribute-based credentials. In:
Hansen, M., Hoepman, J.-H., Leenes, R., Whitehouse, D. (eds.) Privacy and Iden-
tity 2013. IAICT, vol. 421, pp. 53–63. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-55137-6 4

13. Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure delegatable
credentials with attributes and their application to blockchain. In: ACM CCS 2017
(2017)

14. Camenisch, J., Drijvers, M., Lehmann, A., Neven, G., Towa, P.: Short threshold
dynamic group signatures. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS,
vol. 12238, pp. 401–423. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-57990-6 20

https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-030-41579-2_18
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-642-55137-6_4
https://doi.org/10.1007/978-3-642-55137-6_4
https://doi.org/10.1007/978-3-030-57990-6_20
https://doi.org/10.1007/978-3-030-57990-6_20

Issuer-Hiding Attribute-Based Credentials 177

15. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: definitions and practical constructions. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 11

16. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 1

17. Camenisch, J., Lehmann, A., Neven, G., Rial, A.: Privacy-preserving auditing for
attribute-based credentials. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8713, pp. 109–127. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11212-1 7

18. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

19. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

20. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

21. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

22. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: ACM CCS 2002 (2002)

23. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

24. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

25. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

26. Chen, L., Pedersen, T.P.: New group signature schemes. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053433

27. Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from mercurial
signatures. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 535–555.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 27

28. De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion (extended abstract). In: 33rd FOCS (1992)

29. Derler, D., Krenn, S., Samelin, K., Slamanig, D.: Fully collision-resistant
chameleon-hashes from simpler and post-quantum assumptions. In: Galdi, C.,
Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 427–447. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57990-6 21

30. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-11212-1_7
https://doi.org/10.1007/978-3-319-11212-1_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/BFb0053433
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-030-57990-6_21
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35

178 J. Bobolz et al.

31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

32. de Fuentes, J.M., González-Manzano, L., Serna-Olvera, J., Veseli, F.: Assessment
of attribute-based credentials for privacy-preserving road traffic services in smart
cities. Pers. Ubiquitous Comput. 21(5), 869–891 (2017)

33. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS
2014 (2014)

34. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

35. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

36. Groth, J.: Efficient fully structure-preserving signatures for large messages. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 239–259.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 11

37. Haböck, U., Krenn, S.: Breaking and fixing anonymous credentials for the cloud. In:
Mu, Y., Deng, R.H., Huang, X. (eds.) CANS 2019. LNCS, vol. 11829, pp. 249–269.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31578-8 14

38. Khovratovich, D., Law, J.: Sovrin: digital signatures in the blockchain area (2016).
https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf

39. Krenn, S., Samelin, K., Striecks, C.: Practical group-signatures with privacy-
friendly openings. In: ARES (2019)

40. Lipmaa, H.: On Diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 26

41. Moreno, R.T., et al.: The OLYMPUS architecture - oblivious identity management
for private user-friendly services. Sensors 20(3), 945 (2020)

42. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 26

43. Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1.1 (revision2).
Technical report, Microsoft Corporation (2013)

44. Ringers, S., Verheul, E., Hoepman, J.-H.: An efficient self-blindable attribute-based
credential scheme. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 3–20.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7 1

45. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS (1999)

46. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

47. Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., Danezis, G.: Coconut:
threshold issuance selective disclosure credentials with applications to distributed
ledgers. In: NDSS 2019 (2019)

48. Yang, R., Au, M.H., Xu, Q., Yu, Z.: Decentralized blacklistable anonymous cre-
dentials with reputation. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol.
10946, pp. 720–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93638-3 41

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/978-3-030-31578-8_14
https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-319-70972-7_1
https://doi.org/10.1007/978-3-319-93638-3_41
https://doi.org/10.1007/978-3-319-93638-3_41

Report and Trace Ring Signatures

Ashley Fraser1,2(B) and Elizabeth A. Quaglia1

1 Information Security Group, Royal Holloway, University of London, Egham, UK
Elizabeth.Quaglia@rhul.ac.uk

2 Department of Computer Science, University of Surrey, Guildford, UK
a.fraser@surrey.ac.uk

Abstract. We introduce report and trace ring signature schemes, bal-
ancing the desire for signer anonymity with the ability to report malicious
behaviour and subsequently revoke anonymity. We contribute a formal
security model for report and trace ring signatures that incorporates
established properties of anonymity, unforgeability and traceability, and
captures a new notion of reporter anonymity. We present a construc-
tion of a report and trace ring signature scheme, proving its security
and analysing its efficiency, comparing with the state of the art in the
accountable ring signatures literature. Our analysis demonstrates that
our report and trace scheme is efficient, particularly for the choice of
cryptographic primitives that we use to instantiate our construction.

Keywords: Ring signatures · Accountability · Security model ·
Construction

1 Introduction

Group signatures [8] and ring signatures [21] provide signers with anonymity
within a set of users. Anonymity is a sought-after property, yet, under certain
circumstances, it is also desirable to provide a guarantee of traceability, which
means that anonymity can be revoked. This presents an interesting problem:
how does a group or ring signature guarantee anonymity and traceability?

Group signatures rely on a trusted group manager to achieve these conflicting
aims. The group manager determines the members of the group and issues key
pairs to group members. Signers are anonymous within the group, but the group
manager can learn the identity of signers and revoke anonymity. On the other
hand, ring signatures do not rely on a trusted manager. In fact, signers generate
their key pairs and select the group of users, known as the ring, within which the

A. Fraser—The author conducted the majority of this work at Royal Holloway, Univer-
sity of London and was supported by the EPSRC and the UK government as part of the
Centre for Doctoral Training in Cyber Security at Royal Holloway under grant num-
ber EP/P009301/1. This work was also partly supported by the EPSRC Next Stage
Digital Economy Centre in the Decentralised Digital Economy (DECaDE) under grant
number EP/T022485/1.

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 179–199, 2021.
https://doi.org/10.1007/978-3-030-92548-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_10

180 A. Fraser and E. A. Quaglia

signer is anonymous. The solution to achieving anonymous and traceable ring
signatures is accountable ring signatures [6,26], which define a designated tracer
who can identify signers. Accountable ring signatures retain the versatility of
ring signatures, allowing signers to generate their keys and select the anonymity
ring, and additionally allow signer anonymity to be revoked.

In practice, to begin the tracing process, the designated tracer in an account-
able ring signature will often receive a report of malicious behaviour from a
reporter. However, the reporter is outside the scope of the syntax and security
model of accountable ring signatures. Consequently, it is implicit that the tracer
must be trusted not to revoke anonymity without first receiving a report. More-
over, by omitting the role of the reporter from the security model, it is not
possible to make any formal statements about the privacy of the reporter.

To address this, we introduce report and trace ring signatures. The underlying
idea of report and trace is that a designated tracer can revoke anonymity of a
signer if and only if a report of malicious behaviour is made by a user. In other
words, a user reports a malicious message to the tracer, and the tracer must
receive a report to revoke anonymity of the signer. Accordingly, report and trace
achieves the balance between anonymity and traceability of accountable ring
signatures, ensuring that the anonymity of a signer is preserved until tracing is
complete. Additionally, report and trace incorporates a reporting system that
preserves the anonymity of the signer and the reporter.

1.1 Related Work

Group signatures were introduced in [8], and the first security models were pre-
sented in [2,3]. Generally, the group manager can revoke the anonymity of a
signer and must be trusted to preserve signer anonymity in the absence of mali-
cious behaviour. Several variants of group signatures have been proposed to limit
trust in the group manager. For example, accountable tracing signatures [16]
require that the group manager produce a proof of correct tracing and, if tracing
occurred, a proof denying tracing cannot be produced. Traceable signatures [15]
define a designated authority that can trace all signatures produced by a par-
ticular signer if the group manager provides the authority with a tracing token
for that signer. Furthermore, group signatures with message dependent open-
ing (MDO signatures) [22] allow the group manager to revoke the anonymity
of all signers that produced a signature for a particular message if and only
if a reporter first produces a report related to that message. Our report and
trace ring signature provides a similar distributed tracing function, but, in our
setting, the report is attached to a signature rather than a message. Addition-
ally, MDO signatures define the reporter to be a fixed entity with a secret key
generated during setup. Report and trace ring signatures, on the other hand,
model reporters as system users, and our security model ensures anonymity of
the reporter. Finally, we note that report and trace is a variation of a ring sig-
nature and, as such, does not rely upon a trusted group manager to issue key
pairs to users and allows users to select their anonymity ring.

Report and Trace Ring Signatures 181

Ring signatures were first formally defined in [21] and a security model was
presented in [4]. Following this, numerous variations of ring signatures have
appeared (see, for example, [25] for a survey of some of these variations), a
number of which offer some notion of traceability. For instance, linkable [18] and
traceable [12] ring signatures provide limited tracing functionality, allowing two
signatures generated by the same signer to be linked. Moreover, accountable ring
signatures, introduced in [26] and formalised in [6], allow revocation of signer
anonymity by a designated tracer and are, as a result, most closely related to
our work. In fact, report and trace ring signatures can be viewed as an extension
of accountable ring signatures, where the role of the tracer is distributed and
the reporter is modelled as an anonymous system user.

A closely related line of work is purpose-built reporting systems [1,17,20].
Analogously to our work, these systems allow a user to report another user and
subsequently allow revocation of anonymity by a designated tracer. However,
unlike our report and trace scheme, these systems are stand-alone reporting
systems. Specifically, their design allows a user to identify an individual that has,
for example, harassed or assaulted the user, hiding the identity of the accused
and reporter until a threshold of reports related to the accused are submitted,
at which point a tracer reveals the identity of the accused and the reporter(s).
We note that, critically, these systems require a threshold of reports to revoke
anonymity of the accused. This design decision empowers reporters, allowing
them to submit accusations with the confidence that they will remain anonymous
unless (or until) a number of other reporters have come forward. Finally, in [24],
a report and trace scheme was introduced in the context of end-to-end encrypted
messaging. In such systems, a message receiver can report a malicious message
to a designated tracer, and the tracer can revoke anonymity of the sender. The
tracer learns nothing about the sender unless a report is provided by the recipient
of that message, and the identity of the reporter is revealed only to the tracer,
albeit the reporter’s identity is known to the tracer before tracing is complete.

1.2 Our Contributions

We define syntax and a security model for report and trace (R&T) ring sig-
natures (Sect. 2). Our syntax defines a reporting user who provides the tracer
with a reporter token, recovered from a signature, and a designated tracer who
uses the reporter token to revoke anonymity of the signer. Our security model
extends the generic definitions of correctness, anonymity and unforgeability for
ring signatures defined in [4] to capture ring signatures with a report and trace
functionality. Furthermore, we define traceability, adapting the security proper-
ties of an accountable ring signature to our setting. We complete our security
model with a new definition of reporter anonymity for report and trace ring
signatures, which ensures that the reporter is anonymous even after tracing is
complete.

We demonstrate feasibility of report and trace by providing a construction of
an R&T ring signature scheme that relies on standard cryptographic primitives
(Sect. 3). Briefly, the signer provably encrypts their identity under the tracer’s

182 A. Fraser and E. A. Quaglia

public key for a public-key encryption scheme and then encrypts the resulting
ciphertext using a one-time key-pair for a public-key encryption scheme. Addi-
tionally, the signer provably encrypts the one-time decryption key (which we call
the reporter token) to all potential reporters. Then, the reporter decrypts their
token, and the tracer requires the reporter token to recover the signer’s identity.
Our construction is based on the accountable ring signature of [6] in which the
signer provable encrypts their identity under the tracer’s public key and the
tracer can revoke the signer’s anonymity by decrypting the resulting ciphertext.
We choose this construction due to its efficiency and because its security relies
upon standard, well-understood cryptographic hardness assumptions (namely,
the decisional Diffie-Hellman assumption). We provide a sketch proof that our
construction satisfies our security model. Our full proof of security, which we
present in the full version of this paper [11], relies on standard notions of secu-
rity for the cryptographic primitives used in our construction.

We analyse the efficiency of our construction (Sect. 3.3), summarising the
computational and communication costs associated with signing, reporting
and tracing for our scheme. We provide an instantiation of our construction
(Sect. 3.2), which demonstrates that it can be implemented efficiently. In fact,
for the cryptographic primitives we select, our construction performs favourably
to the accountable ring signature of [6], and the additional cost of reporting is
small.

Finally, we extend our construction to support multiple reporters (Sect. 4)
using threshold publicly verifiable secret sharing [23]. We provide each potential
reporter with a share of the reporter token, and a threshold of shares are required
to recover the reporter token. We conclude with an efficiency analysis for our
multiple reporter construction.

1.3 Contextualising R&T Ring Signatures

In this paper, we introduce a new primitive, an R&T ring signature, and provide
a way to achieve it. We are also interested in placing this primitive in the context
of related schemes and in highlighting the advantages it brings. We explore this
next and summarise our findings in Table 1.

Revoking Anonymity of the Accused. All primitives with tracing functionality
discussed so far [1,6,15–17,20,22,24,26] hide the identity of the accused (i.e.,
the signer in an R&T ring signature schemes) until tracing is complete, at which
point, anonymity of the accused is revoked. We note that [1,17,20,24] reveal
the identity of the accused only to the tracer. However, for accountable ring
signatures schemes [6,26], group signature variants [15,16] and our R&T ring
signature, anonymity of the accused is publicly revoked to allow for public ver-
ification of the tracing process. Accordingly, the tracer is accountable for their
actions and can only (provably) revoke the anonymity of a real accused user.

Entities Revoking Anonymity. Every primitive we consider [1,6,15–17,20,22,
24,26] requires a designated tracer. In some systems, e.g., [1,17,26], the tracer

Report and Trace Ring Signatures 183

is distributed. Whilst our R&T ring signature construction (Sect. 3), and our
multiple reporter construction (Sect. 4), model the tracer as a single entity, we
remark that we can also distribute the tracer, thus distributing trust amongst a
set of tracers. Trust in the tracer can be further reduced by requiring a reporter.
Our R&T ring signature and [1,17,20,22,24] define a reporter such that the
reporter and tracer must cooperate to revoke anonymity. Additionally, purpose-
built tracing systems [1,17,20] require a threshold of reports to trigger the tracing
process. We provide both options: our R&T ring signature construction (Sect. 3)
requires a single report; our multiple reporter construction (Sect. 4) requires a
threshold of reports.

Anonymity of the Reporter. Our (single reporter) R&T scheme ensures that
the reporter is anonymous even after tracing. This is not true of MDO signa-
tures [22], where the reporter is a fixed, publicly-known, entity. Also, for end-to-
end encrypted messaging [24], the tracer learns the identity of the reporter before
starting the tracing process. Moreover, purpose-build reporting systems [1,17,20]
intentionally reveal the identity of reporters after tracing. Recall that reporting
systems allow reporters to communicate the identity of an accused person (e.g.,
a person accused of assault or illegal activity). Therefore, to follow up on alle-
gations, revealing the reporter’s identity is necessary. As the tracer in our R&T
scheme does not require the identity of the reporter to follow up on an allegation
(in fact, the allegation is that the message signed by the accused is malicious,
and the message is public), we can protect the reporter’s anonymity even after
tracing.

Table 1. Contextualising R&T ring signatures.

Publicly verifiable

tracing

Entities revoking

anonymity

Reporter

Anonymity

Integrated

functionality

Group signature variants [15,16] ✓ Tracer N/A Signature

Group signature with message

dependent opening [22]
✗

Reporter

Tracer
✗ Signature

Accountable ring

signatures [6,26]
✓ Tracer N/A Signature

Traceable E2E encrypted

messaging [24]
✗

Reporter

Tracer
✗ Encryption

Reporting systems [1,17,20] ✗
Reporter (threshold)

Tracer
✓∗ None

R&T ring signatures (This work) ✓
Reporter

Tracer
✓ Signature

R&T ring signatures (multiple

reporters) (This work)
✓

Reporter (threshold)

Tracer
✗ Signature

* denotes anonymity only holds until tracing is complete.

Application. We describe a potential application of report and trace. Consider a
forum platform and a set of registered users that can post messages to the forum.
Users may wish to post messages anonymously, while also providing a signature

184 A. Fraser and E. A. Quaglia

proving that they are a registered user. Moreover, if a user posts a malicious mes-
sage, the platform may wish to hold the signer accountable. Standard group and
ring signature facilitate the ability of a user to sign a message anonymously. Fur-
thermore, group signatures and accountable ring signatures balance anonymity
and traceability. However, we believe that R&T ring signatures provide a unique
solution to this scenario. Firstly, R&T ring signatures (and group signatures with
message dependent opening) do not rely solely on a designated tracer to revoke
anonymity and, as such, provide additional protection for the signer’s identity
above that provided by accountable ring signatures and group signatures. More-
over, distributing the tracing function reduces the burden on the tracer to check
for malicious messages. Indeed, the tracer need only check messages for which
the tracer receives a report. Additionally, our R&T signature allows the tracer to
revoke anonymity only for the reported signature. That is, the signer preserves
their anonymity with respect to all other signatures and no other signer who
posts the same message will be de-anonymised. In our forum scenario, it may
not be desirable to revoke anonymity for all signatures produced by the signer of
a single malicious message. Moreover, it may be the case that a signed message
is malicious in the context of which it is reported, but may be entirely innocuous
in a different context. Consequently, R&T ring signatures are more appropriate
than traceable signatures or MDO signatures for this setting. Finally, R&T ring
signatures retain the versatility of ring signatures and define the reporter to be
a system user, which can foster a sense of community responsibility for forum
content, and provide a unique guarantee of anonymity for the reporter which
can empower users to report malicious behaviour without fear of repercussions.

2 Syntax and Security

We introduce the syntax of a report and trace (R&T) ring signature scheme
and accompanying security model. In a standard ring signature, users digitally
sign messages with respect to a set of users, known as a ring. Ring signatures
ensure that the signer cannot be identified; any ring member is equally likely to
have produced the signature. R&T ring signatures extend this notion, allowing
a signer to be identified if an anonymous report is made to a designated tracer,
who then traces the signer. Alongside a set of users U , an R&T ring signature
scheme involves the following entities. A reporter produces a report. Within our
syntax and security model, reporters are ring members, though this need not be
the case. A designated tracer, denoted T, revokes the signer’s anonymity if the
tracer received a report for the signature in question. Anybody can verify the
correctness of the report and trace by running a public verification algorithm.
Formally, we define an R&T ring signature in Definition 1.

Definition 1 (R&T ring signature). An R&T ring signature scheme is a tuple
of algorithms (Setup, T.KGen, U.KGen, Sign, Verify, Report, Trace, VerTrace)
such that

– Setup(1λ): On input security parameter 1λ, Setup outputs public parameters
pp.

Report and Trace Ring Signatures 185

– T.KGen(pp): On input pp, T.KGen outputs a tracer key pair (pkT, skT). We
write that pkT ← T.KGen(pp; skT).

– U.KGen(pp): On input pp, U.KGen outputs a user key pair (pkU, skU). We
write that pkU ← U.KGen(pp; skU).

– Sign(pp, skU, pkT,m,R): On input pp, skU, pkT, message m and ring R, Sign
outputs a signature σ.

– Verify(pp, pkT,m,R, σ): On input pp, pkT, m, R and σ, Verify outputs 1 if σ
is a valid signature on m with respect to R, and 0 otherwise.

– Report(pp, pkT, skU,m,R, σ): On input pp, pkT, skU, m, R and σ, Report out-
puts a reporter token Rep.

– Trace(pp, skT,m,R, σ, Rep): On input pp, skT, m, R, σ and Rep, Trace outputs
the signer’s identity pkU, auxiliary information Tr consisting of the reporter
token, and a proof of correct trace ρt.

– VerTrace(pp, pkT,m,R, σ, pkU, Tr, ρt): On input pp, pkT, m, R, σ, pkU, Tr and
ρt, VerTrace outputs 1 if the trace is valid, and 0 otherwise.

We define correctness for our syntax as the property that honestly generated
signatures are verifiable.

Definition 2 (Correctness). An R&T ring signature is correct if, for any
n = poly(λ), j ∈ [n] and message m, there exists a negligible function negl such
that,

Pr

⎡
⎢⎢⎣

pp ← Setup(1λ);
(pkT,skT) ← T.KGen(pp);
for i = 1,...,n : (pkUi

,skUi
) ← U.KGen(pp);

R = {pkU1 ,...,pkUn};
σ ← Sign(pp,skUj

,pkT,m,R);

b ← Verify(pp,pkT,m,R,σ)

: b = 1

⎤
⎥⎥⎦ ≥ 1 − negl(λ) .

2.1 Security Model

We present a security model for our syntax that incorporates accepted security
properties from the ring signature literature. Firstly, we extend well-established
definitions of anonymity and unforgeability for standard ring signature schemes,
presented in [4], to our setting. Then, we cast the security requirements of an
accountable ring signature into our syntax. Namely, we define traceability, which
captures notions of trace correctness, non-frameability and tracing soundness
defined in [6]. Finally, we present a definition of reporter anonymity, a new
security property for our report and trace setting.

In Fig. 1, we define a number of oracles for our security experiments. We
write OX(y1,...,yn)(z1, . . . , zn) to denote oracle X that has access to parameters
and sets y1, . . . , yn and takes as input z1, . . . , zn. Oracles Oreg, Ocorrupt and
Osign operate as expected: they model registration of users, corruption of users,
and signature generation respectively. Moreover, Oreport is called to obtain a
reporter token for a message and Otrace is called to trace the signer of a message.

186 A. Fraser and E. A. Quaglia

Our security model considers entities (i.e., users, reporters and tracers) that
are honest, corrupt, or under the attacker’s control. In detail, honest entities
do not provide an attacker with secret keys; corrupt entities generate their keys
honestly, but may later provide the attacker with their secret keys; the attacker
can generate keys on behalf of controlled entities. An attacker with credentials of
users, reporters or tracers can generate signatures, reports or traces respectively.

Fig. 1. Oracles used in the experiments for anonymity, unforgeability, traceability and
reporter anonymity of an R&T ring signature scheme.

Anonymity. Anonymity is the property that a signature does not reveal the
identity of the signer unless the signature is reported and the signer traced.
Our formal definition of anonymity captures anonymity against adversarially
generated keys as defined in [4]. As such, we assume that the adversary can
corrupt and control users and reporters, but that the tracer is honest. We require
that the adversary, when provided with a challenge signature, cannot determine
which of two potential honest signers generated the signature, on the condition
that the adversary does not obtain a trace for the challenge signature.

Definition 3 (Anonymity). An R&T ring signature is anonymous with
respect to adversarially generated keys if, for any probabilistic, polynomial-time
(PPT) adversary A = (A1,A2), there exists a negligible function negl such that,

Pr

⎡
⎢⎢⎢⎢⎣

pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport, Qtrace ← ∅;
(pkT,skT) ← T.KGen(pp);

(m,R,pkU0 ,pkU1 ,st) ← AO
1 (pp,pkT);

b ← {0,1};
σ ← Sign(pp,skUb

,pkT,m,R ∪ {pkU0 ,pkU1});
b′ ← AO

2 (σ,st)

: b′ = b ∧ (m,R,σ) /∈ Qtrace
∧ {pkU0 ,pkU1} ⊆ Qreg\Qcorr

⎤
⎥⎥⎥⎥⎦

≤ 1
2 + negl(λ)

where O = {Oreg,Ocorrupt,Osign,Oreport,Otrace} are the oracles defined in
Fig. 1.

Report and Trace Ring Signatures 187

Unforgeability. We require that signatures are unforgeable. That is, an attacker
cannot output a valid signature on behalf of an honest user, even if an attacker
can trace the identity of honest signers through the report and trace functionality.
Formally, we consider an unforgeability definition similar to that presented in [4].
Thus, in our unforgeability experiment, we assume that the adversary controls
the tracer and can corrupt and control users and reporters. We require that the
adversary cannot output a valid signature for a ring of honest users, where the
signature is not the output of the signing oracle.

Definition 4 (Unforgeability). An R&T ring signature scheme is unforgeable
if, for any PPT adversary A, there exists a negligible function negl such that,

Pr
[

pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ) ← AO(pp)

:
Verify(pp,pkT,m,R,σ) = 1
∧ R ⊆ Qreg\Qcorr
∧ (pkT,·,m,R,σ) /∈ Qsign

]
≤ negl(λ)

where O = {Oreg,Ocorrupt,Osign,Oreport} are the oracles defined in Fig. 1.

Traceability. R&T signatures must satisfy traceability. In other words, it must be
possible to identify the signer of a message. Traceability comprises three condi-
tions: trace correctness, non-frameability and trace soundness. Trace correctness
requires that an honestly generated signature must be traceable to the correct
signer. Accordingly, any trace output by the tracer must be valid. We capture
trace correctness in an experiment that requires an honestly generated report
and trace for an honestly generated signature to verify. Non-frameability states
that a report and trace mechanism cannot identify a non-signer as the signer. To
this end, our non-frameability definition requires that the adversary, with con-
trol of the tracer and a subset of users, cannot output a valid trace such that the
trace identifies a non-signer. Finally, trace soundness, defined in [6], stipulates
that the signer identified by the report and trace mechanism is unique. That is,
it is not possible to verifiably identify two users as the signer of a single message.
The trace soundness definition in [6], which we cast into our syntax, considers
an adversary that controls the tracer and can corrupt and control users and
reporters. Trace soundness requires that the adversary cannot output two valid
traces that identify two different signers for the same message.

Definition 5 (Traceability). An R&T ring signature satisfies traceability if
the following conditions are satisfied:

1. Trace correctness: for any n = poly(λ), j, k ∈ [n] where j �= k, and message
m, there exists a negligible function negl such that,

Pr

⎡
⎢⎢⎢⎢⎢⎣

pp ← Setup(1λ);
(pkT,skT) ← T.KGen(pp);
for i = 1,...,n : (pkUi

,skUi
) ← U.KGen(pp);

R = {pkU1 ,...,pkUn};
σ ← Sign(pp,skUj

,pkT,m,R);

Rep ← Report(pp,pkT,skUk
,m,R,σ);

(pkU,Tr,ρt) ← Trace(pp,skT,m,R,σ,Rep);
b ← VerTrace(pp,pkT,m,R,σ,pkU,Tr,ρt)

: b = 1

⎤
⎥⎥⎥⎥⎥⎦

≥ 1 − negl(λ) .

188 A. Fraser and E. A. Quaglia

2. Non-frameability; for any PPT adversary A, there exists a negligible function
negl such that,

Pr

[
pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ,pkU,Tr,ρt) ← AO(pp);
b ← VerTrace(pp,pkT,m,R,σ,pkU,Tr,ρt)

:
b = 1 ∧ pkU ∈ Qreg\Qcorr
∧ Verify(pp,pkT,m,R,σ) = 1
∧ (pkT,pkU,m,R,σ) /∈ Qsign

]
≤ negl(λ)

3. Trace soundness: for any PPT adversary A, there exists a negligible function
negl such that,

Pr

⎡
⎢⎣

pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ,pkUi

,Tri,ρti
,pkUj

,Trj ,ρtj
) ← AO(pp)

b1 ← VerTrace(pp,pkT,m,R,σ,pkUi
,Tri,ρti

);

b2 ← VerTrace(pp,pkT,m,R,σ,pkUj
,Trj ,ρtj

)

: b1 = 1 ∧ b2 = 1
∧ pkUi

	= pkUj

⎤
⎥⎦ ≤ negl(λ)

where O = {Oreg,Ocorrupt,Osign,Oreport} are the oracles defined in Fig. 1.

Reporter Anonymity. We define reporter anonymity, a new property that
requires that a report does not reveal the ring member that produced it. We
formally define reporter anonymity as the property that an adversary, when pro-
vided with a report for a signature, cannot determine which of two potential
reporters produced the report. Our definition captures an adversary that can
corrupt and control users and reporters, and controls the tracer. We require that
the adversary does not corrupt either of the potential reporters and does not
obtain a report through access to oracles.

Definition 6 (Reporter anonymity). An R&T ring signature is reporter
anonymous if, for any PPT adversary A = (A1,A2), there exists a negligible
function negl such that,

Pr

⎡
⎢⎢⎣

pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ,pkU0 ,pkU1 ,st) ← AO

1 (pp);

b ← {0,1};
Rep ← Report(pp,pkT,skUb

,m,R,σ);

b′ ← AO
2 (σ,st)

:
b′ = b
∧{pkU0 ,pkU1} ⊆ (R ∩ Qreg)\Qcorr
∧ (m,R,σ,pkU0) /∈ Qreport
∧ (m,R,σ,pkU1) /∈ Qreport

⎤
⎥⎥⎦

≤ 1
2 + negl(λ)

where O = {Oreg,Ocorrupt,Osign,Oreport} are the oracles defined in Fig. 1.

3 A Report and Trace Ring Signature Construction

We present an R&T ring signature construction, formally defined in Fig. 2.
Our construction requires a one-way function f : X → Y such that, given
y = f(x), it is hard to compute x, and a standard public key encryp-
tion scheme PKE = (PKE.KGen,PKE.Enc,PKE.Dec) that is secure against
chosen plaintext attacks (IND-CPA) [13]. We require a zero-knowledge proof
system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) that satisfies complete-
ness, knowledge soundness and zero-knowledge where such security definitions
are drawn from [14]. Finally, we utilise a signature of knowledge SOK =

Report and Trace Ring Signatures 189

(SoK.Setup,SoK.Sign,SoK.Verify) [7], that satisfies correctness, simulatability
and extractability, all of which are defined in [6].

The idea behind our construction is as follows. The tracer and users obtain
a key pair for a PKE scheme. The signer generates a fresh key pair for a PKE
scheme, and the freshly generated decryption key (known as the reporter token
in our construction) is encrypted to all members of the ring using a PKE scheme.
The signer then uses a double layer of encryption to encrypt their public identity,
which is generated via one-way function f . That is, the signer encrypts their pub-
lic identity under the public key of the tracer, and encrypts the resulting cipher-
text under the freshly generated encryption key. In this way, a reporter and the
tracer are required to recover the identity of the signer. Indeed, any ring mem-
ber can decrypt the reporter token, and the tracer requires the reporter token,
along with their own decryption key, to remove the double-layer of encryption
and revoke anonymity of the signer. Our construction additionally employs NIZK
proofs and an SOK to ensure that operations are performed correctly, i.e., that
the signer encrypts the correct public identity and reporter token, and that the
reporter and tracer identify the correct signer.

Our construction is similar to the construction in [6], which provides an
efficient accountable ring signature scheme that allows a designated tracer to
revoke signer anonymity. In [6], the signer uses a PKE scheme to encrypt their
public identity under the tracer’s public key, and the tracer recovers the signer’s
identity by decrypting the ciphertext. This construction also relies on an SOK
that allows the signer to prove that they have encrypted a public identity for
which they know a corresponding secret, and a NIZK proof such that the tracer
can prove correct decryption, i.e., that they traced the correct signer. Our R&T
construction differs from [6] in the following way. We require the encryption of
a token to a set of reporters and provide a NIZK proof of correct encryption.
Additionally, we use a double-layer of encryption, which is crucial to ensuring
that the tracer cannot decrypt the signer’s identity without a reporter token.

3.1 Description of Our Construction

We now describe the details of our construction. A trusted third party runs
Setup, performing setup for the PKE, NIZK and SOK schemes. We assume that
the public parameters generated for each scheme defines the public/secret key,
randomness and message spaces (which we denote respectively as PK, SK, Rand
and M) as appropriate. T.KGen generates a tracer key pair for a PKE scheme,
and U.KGen is run to generate user key pairs. In particular, users generate a
signing/verification key pair (pkRS, skRS) using one-way function f , and a key
pair (pkPKE, skPKE) for a PKE scheme.

To sign a message m with respect to a ring R, the signer runs algorithm Sign.
The signer generates a key pair (pkSign, skSign) for a PKE scheme and encrypts the
reporter token skSign to each ring member (i.e., encrypts skSign under the public
encryption key of each ring member). The signer proves that each PKE ciphertext
encrypt the reporter token skSign associated with pkSign, which is included in the
signature. That is, the signer provides a NIZK proof for the following relation:

190 A. Fraser and E. A. Quaglia

REnc =
{
(pp,(pkSign,pkPKEi

,c1),(r1,1,...,r1,|R|,skSign)) : pkSign := PKE.KGen(ppPKE;skSign)

∧ {∀ i ∈ 1,...,|R| : c1,i := PKE.Enc(ppPKE,pkPKEi
,skSign;r1,i)}

}
(1)

Then, the signer’s verification key pkRS is encrypted under the tracer’s public key,
resulting in ciphertext c2, which is then encrypted under the freshly generated
public key pkSign, giving ciphertext c3. Finally, the signer produces a signature
of knowledge, which proves that c3 encrypts a verification key in the ring such
that the signer knows the associated signing key. The signature of knowledge is
associated with the following relation:

RSOK =
{
(pp,(pkT,pkSign,R,c3),(r2,r3,skRS),m) : c3 := PKE.Enc(ppPKE,pkSign,c2;r3)

∧ c2 := PKE.Enc(ppPKE,pkT,pk;r2) ∧ pk := f(skRS) ∈ R

}
(2)

Fig. 2. Our R&T ring signature construction.

To report a message, a ring member runs Report to decrypt the reporter token.
The reporter also provides a proof of correct decryption, without revealing which

Report and Trace Ring Signatures 191

member of the ring decrypted the token. This is given by the following relation:

RDecr
=

{
(pp,(R,c1,skSign),skPKE) : skSign := PKE.Dec(ppPKE,skPKE,c1,i)

∧ c1,i ∈ c1 ∧ pkPKE := PKE.KGen(ppPKE;skPKE) ∈ R

}
(3)

On receipt of a report, the tracer runs Trace to decrypt ciphertexts c3 and
c2 and reveal the signer’s verification key. As skSign is included in the report,
anyone can decrypt c3, hence checking correct decryption directly. As such, the
tracer need only prove correct decryption of c2, which is given by the following
relation:

RDect
=

{
(pp,(pkT,c2,pkRS),skT) : pk := PKE.Dec(ppPKE,skT,c2)

∧ pkT := PKE.KGen(ppPKE;skT)

}
(4)

Our construction additionally provides a public signing verification algorithm
Verify, which ensures that the signer provides an encryption of their own pub-
lic key, enabling tracing if the message is malicious. Moreover, a public trace
verification algorithm VerTrace ensures that the correct signer is traced.

We prove that our construction satisfies correctness, anonymity, unforgeabil-
ity, traceability and reporter anonymity as defined in Sect. 2. We obtain Theo-
rem 1, which we formally prove in [11] and provide a proof sketch here.

Theorem 1. The construction in Fig. 2 satisfies correctness, anonymity, unforge-
ability, traceability and reporter anonymity as defined in Definitions 2– 6.

Proof (Sketch). Correctness and tracing correctness of our construction follows
trivially from the correctness of the building blocks. Unforgeability follows from
extractability of the SOK and the fact that f is a one-way function. In fact, if
our construction is not unforgeable, the adversary can break the one-wayness of
function f , or can be used to construct an adversary against the extractability
property. To prove non-frameability, we show that, if our construction is not
unforgeable, the adversary can be used to construct an adversary against the
soundness property of the NIZK scheme or the extractability property of the
SOK. Else, the construction does not satisfy unforgeability. Soundness is proven
by showing that, if the construction is not sound, then the adversary can be used
to construct an adversary against the soundness of the NIZK scheme.

To prove anonymity and reporter anonymity, we proceed via a series of game
hops, demonstrating that each hop is indistinguishable to the adversary. Our
final game hop result in a game for which the view of the adversary is identical
for β = 0 and β = 1 and the proof holds. In our anonymity proof, we simulate
the setup and proofs for the NIZK and SOK systems, which is an indistinguish-
able game hop if the NIZK scheme satisfies the zero-knowledge property and the
SOK satisfies simulatability. Then, we extract the plaintext from the ciphertexts,
rather than running the decryption algorithm. By the knowledge extractability
property of the NIZK and extractability of the SOK, this hop is also indistin-
guishable. Finally, we encrypt the identity of the same signer, regardless of β,
which is indistinguishable by the IND-CPA property of the PKE scheme. Our
proof of reporter anonymity is similar. We simulate the setup and proofs for the
NIZK proof system and then extract the plaintext from the ciphertexts, rather

192 A. Fraser and E. A. Quaglia

than running the decryption algorithm when generating a reporter token. These
game hops are indistinguishable if the NIZK scheme satisfies the zero-knowledge
and knowledge extractability properties.

3.2 Instantiating Our Construction

We instantiate our construction with ElGamal encryption and the signature of
knowledge of [6], modified to account for the double layer of encryption of the
signer’s identity. Additionally, we instantiate our NIZK protocols for signing,
reporting and tracing with various Σ-protocols. For our choice of primitives, our
instantiation is secure. We provide full details of our instantiation and a sketch
proof of its security in [11]. Here, we present an overview of our instantiation.

Setup and Key Generation. We let ppPKE = ppNIZK = (G, g, q) where G is a
cyclic group of order q with generator g. Moreover, ppSOK = (ek, ck) where ek
is an ElGamal encryption key and ck is a key for a commitment scheme. We
define one-way function f to perform group exponentiation such that f(x) = gx

for some x ∈ Zq. We write pp = (ppPKE, ppSOK) as the output of algorithm Setup.
We write the key pair for the tracer as (pkT = gskT , skT) and the key pair for the
user as (pkU, skU) = ((gskRS , gskPKE), (skRS, skPKE)) where skT, skRS, skPKE ∈ Zq.

Sign. We use a standard ElGamal encryption scheme to generate ciphertext
c1 and to double-encrypt the signer’s identity in algorithm Sign. That is, we
define ciphertexts c2 = (A2, B2) = (gr2 , pkr2

T · pk) and c3 = (A2, A3, B3) =
(gr2 , gr3 , pkr3

Sign · pkr2
T · pk). To generate proof ρ for the relation in Eq. 1, we use

the Σ-protocol of [23], which shows that c1 encrypts the discrete log of a public
element pkSign and can be transformed into a NIZK proof using the Fiat-Shamir
transform [10]. Finally, we modify the SOK of [6] to generate σSOK, which proves
that the signer knows skRS such that pkRS = gskRS is an element of the ring. Our
modification accounts for the double-layer of encryption used in our construc-
tion, rather than the single ElGamal encryption required in the accountable ring
signature construction of [6].

Report and Trace. The reporter runs PKE.Dec to generate skSign. For our instan-
tiation, the reporter need not generate a proof of knowledge of correct decryption
for the relation in Eq. 3. In fact, as G is a cyclic group, gi = gj if i = j mod q.
Therefore, pkSign is uniquely defined by gskSign . The tracer (and any public veri-
fier) can trivially check correct decryption of the reporter token by computing
a single group exponentiation, i.e., check gskSign = pkSign where skSign is returned
by the reporter and pkSign is included in the signature. The tracer decrypts the
signer’s identity by computing B3/(AskT

2 A
skSign

3) for c3 = (A2, A3, B3). The tracer
proves correct decryption of c2 using a standard Σ-protocol as in [6].

3.3 Efficiency of Our Construction

Here, we discuss the efficiency of our construction, showing that it incurs rea-
sonable costs with respect to the functionality provided and that our proposed

Report and Trace Ring Signatures 193

Table 2. Computation (comp.) and communication (comm.) costs of generic construc-
tions. We write (enc) and (dec) to indicate a proof of correct encryption or decryption
respectively. For our multiple reporters construction, we provide costs relative to a ring
of size |R| and a threshold of t.

Accountable

ring signature [6]

Our R&T construction

(Fig. 3)

R&T with multiple

reporters (Sect. 5)

Sign
Comp.

1 PKE.Enc

1 SoK.Sign

|R| + 2 PKE.Enc

1 NIZK.Prove (|R| enc)

1 SoK.Sign

|R| + 2 PKE.Enc

|R| NIZK.Prove (enc)

1 SoK.Sign

|R| public share gen

Comm.

1 PKE ciphertext

1 SOK

|R| + 1 PKE ciphertext

1 NIZK proof (|R| enc)

1 SOK

1 element pkSign

|R| + 1 PKE ciphertext

|R| NIZK proof (enc)

1 SOK

|R| PVSS public shares

1 element S

Verify
Comp.

1 SoK.Verify 1 SoK.Verify

1 NIZK.Verify (|R| enc)

1 SoK.Verify

|R| NIZK.Verify (enc)

1 SS.Verify

Comm. N/A N/A N/A

Report
Comp.

N/A 1 PKE.Dec

1 NIZK.Prove(dec)

1 PKE.Dec

1 NIZK.Prove(dec)

Comm.
N/A 1 token skSign

1 NIZK proof (dec)

1 sub-token si

1 NIZK proof (dec)

Trace
Comp.

1 PKE.Dec

1 NIZK.Prove (dec)

2 PKE.Dec

1 NIZK.Prove (dec)

1 NIZK.Verify(dec)

2 PKE.Dec

1 NIZK.Prove (dec)

t NIZK.Verify(dec)

1 SS.Combine

Comm.

1 pk of signer

1 NIZK proof (dec)

1 pk of signer

1 token skSign

1 PKE ciphertext

2 NIZK proof (dec)

1 pk of signer

t sub-tokens s1, . . . , st

1 PKE ciphertext

2 NIZK proof (dec)

VerTrace
Comp.

1 NIZK.Verify (dec) 2 NIZK.Verify (PKE dec)

1 PKE.Dec

t + 1 NIZK.Verify (dec)

1 PKE.Dec

1 SS.Combine

Comm. N/A N/A N/A

instantiation is practical. We also highlight the additional costs associated with
our report and trace functionality by comparing with the accountable ring signa-
ture in [6]. We show that our construction compares favourably to the account-
able ring signature construction of [6]: we require additional computation, but
these computations are minimal considering the extra functionality provided by
our R&T construction. We summarise the computation and communication costs
of our generic construction and instantiation in Tables 2 and 3, respectively. We
now briefly describe the costs incurred by the signer, reporter, tracer and verifier.

Signer. The signer’s computation costs are dominated by the SOK and PKE
computations, both of which grow linearly in the size of the ring. In comparison
to the accountable ring signature of [6], we see that encrypting a reporter token
doubles the computation costs for the signer. Moreover, the size of the signa-
ture also increases, requiring the communication of a number of group and field

194 A. Fraser and E. A. Quaglia

Table 3. Computation (comp.) and communication (comm.) costs of instantiations.
We present costs relative to a ring of size |R|. Our computation costs are given in
terms of the number of group exponentiations required, and our communication costs
are presented in terms of the number of group elements from G and field elements from
Zq.

Accountable ring signature [6] Our R&T instantiation (Sect. 3.2)

Sign Comp 4|R| + 14 8|R| + 19

Comm. 14G + (|R| + 7)Zq (3|R| + 19)G + (2|R| + 7)Zq

Verify Comp 3|R| + 19 6|R| + 23

Comm. N/A N/A

Report Comp N/A 1

Comm. N/A 1Zq

Trace Comp 3 5

Comm. 3G + 1Zq 5G + 2Zq

VerTrace Comp 4 6

Comm. N/A N/A

elements that grow linearly in the size of the ring (whereas the accountable ring
signature communicates a constant number of group elements).

Reporter. The computation and communication costs incurred by the reporter,
which is unique to our construction, are minimal. In fact, for our instantiation,
the reporter need only perform a single decryption (i.e., 1 group exponentiation)
and a report consists of a single field element. This demonstrates that, though
our generic construction allows for a reporter who proves correct decryption, by
using cyclic group operations, it is possible to provide an efficient instantiation
in which the computation costs of the reporter are minimised.

Tracer. The tracer’s costs are small and compare favourably to accountable
ring signatures. Indeed, computation of the trace requires a constant number
of group exponentiations, calling for only 2 additional group exponentiation
when compared to accountable ring signatures. In particular, to verify correct
decryption of the reporter token, the tracer need only perform a single group
exponentiation, rather than verifying a NIZK proof (cf. Sect. 3.2). Furthermore,
the size of a trace is constant and requires only 1 extra field element and 2 extra
group elements, when compared to accountable ring signatures.

Verifier. As for signature generation, signature verification costs are dominated
by the SOK and PKE scheme. Specifically, our PKE computations require compu-
tation costs similar to those required to verify the SOK, which means verification
of an R&T ring signature incurs double the computational costs of an account-
able ring signature. On the other hand, verification of the trace requires only 6
group exponentiations, only 2 more than accountable ring signatures.

Potential Efficiency Improvements. Our instantiation builds upon the account-
able ring signature of [6] but techniques from group signature literature (e.g.,

Report and Trace Ring Signatures 195

[15,16,22]) could be used to provide a more efficient construction. We opt to
build upon the construction of [6] to clearly demonstrate the additional costs
associated with reporting. Indeed, our instantiation presents worst-case efficiency
results and can perform reasonably for a small ring.

Our instantiation could use a broadcast encryption (BE) scheme [9] to encrypt
the reporter token to all members of the ring. Potentially, by using a BE scheme
that is based on bilinear maps (as, for example, [5] and subsequent works), our
costs would be similar to those of the accountable ring signature construction [6].
Our reasons for not following this approach are twofold. First, in contrast with BE
schemes based on bilinear maps, our construction does not require an interactive
key generation protocol. Accordingly, our instantiation retains the benefit of
ring signatures with respect to non-interactive key generation. Second, NIZK
proofs of correct encryption for schemes based on bilinear maps are currently
unknown [19]. Our construction, on the other hand, requires Σ-protocols to prove
correct encryption and decryption of the reporter token. Moreover, by relying
on cyclic groups, our instantiation does not require a proof of correct decryption
for the reporter token, and the tracer can efficiently verify correct decryption.

We note two further modifications that lead to a more efficient, yet more
limited, protocol. Firstly, during setup, the signer could choose a static set of
possible reporters that share a secret key for a PKE scheme. Then, the reporter
share is encrypted under the corresponding public key. Though this approach
is more efficient, we opt to allow the signer to dynamically choose the reporter
set, fostering a sense of user empowerment and capturing the functionality of
a user posting entries in different fora. Secondly, if reporter anonymity is not
a concern and a proof of correct decryption is required by the reporter, the
reporter can produce a proof that indicates which reporter decrypted the token,
which would decrease the computation costs incurred by the reporter. However,
we opt to provide a construction that meets a strong security model, ensuring
that reporters can produce reports without the concern of their identity being
leaked.

4 Extending R&T to Multiple Reporters

In our construction, we assume that the reporter and tracer do not col-
lude and, hence, if a reported message is not malicious, the tracer does not
reveal the identity of the signer. We can further mitigate against a mali-
cious reporter by requiring that the tracer receive multiple reports to trig-
ger the tracing process. We describe an extension of our construction to mul-
tiple reporters that requires a (t, n)-publicly verifiable secret sharing scheme
PVSS = (SS.Gen,SS.Verify,SS.Combine), with syntax drawn from [23], where
n = |R| is the size of the ring and t is the number of shares required to recon-
struct the secret. The PVSS scheme is used to generate |R| shares of the reporter
token, i.e., reporter token s = (s1, . . . , s|R|). Each share is encrypted under a ring
member’s public key for a PKE scheme, rather than encrypting a single reporter
token to all members of the ring. This extension requires minimal changes to
our construction, which we outline here.

196 A. Fraser and E. A. Quaglia

Fig. 3. Algorithm Sign for our construction with multiple reporters.

To sign a message, the signer uses the PVSS scheme to produce |R| reporter
sub-tokens. Each sub-token si is encrypted under the public key of a ring member
and accompanied with a NIZK proof of correct encryption and a public version of
the sub-token, Si. For clarity, we outline the changes to the signing algorithm in
Fig. 3. As before, our construction provides public verification algorithm Verify,
which additionally requires that the verifier run algorithm SS.Verify to verify
the secret sharing operations. A ring member reports a message by decrypting
their sub-token and sending the sub-token to the tracer, accompanied with a
proof of correct decryption. Once the tracer has received a threshold number of
sub-tokens, the tracer runs algorithm SS.Combine to recover the reporter token,
then decrypts the signer’s identity as per the original construction.

Anonymity of Reporters. In our multiple reporter construction, each reporter
produces a unique sub-token, and public versions of each sub-token are published
to verify correctness of the PVSS scheme. In this way, when a reporter produces
a report, i.e., their sub-token, anyone can check which share (denoted Share)
this belongs to. Thus, it is possible to determine the reporter’s identity. For
this reason, reporter sub-tokens should be treated carefully by the tracer before
tracing. That is, the sub-tokens should not be revealed by the tracer until tracing
is completed. In this way, the identities of reporters are known to the tracer
before tracing but are not made public until after tracing.

Efficiency of Multiple Reporters. Our construction with multiple reporters is less
efficient than our generic construction with a single reporter, where the commu-
nication and computation costs are outlined in Table 2. Specifically, producing a
signature requires the additional computation and communication of |R| reporter
sub-tokens, and the computation and communication costs of the tracer grow
linearly in the size of the threshold. Moreover, the computation costs associated
with signature and trace verification grow linearly in the size of the ring and

Report and Trace Ring Signatures 197

threshold, respectively. However, these costs can be minimised. In particular,
secret share generation and combination, for efficient PVSS schemes (e.g., [23]),
simply requires the computation of group exponentiations and the addition of
field elements respectively [23]. Additionally, the NIZK proofs associated with
these extra costs can be instantiated with efficient primitives, as in our single
reporter construction. That being said, we note that the size and computation
costs of a report are identical to our single reporter construction, consisting of a
single reporter sub-token, and requiring a single decryption of a PKE ciphertext.

5 Conclusion

We introduced and defined report and trace ring signatures, and presented an
accompanying security model. We presented an R&T ring signature construction
that satisfies our security model, and extended our construction to the multiple
reporter setting. Additionally, we provided an instantiation of our single reporter
construction and compared its efficiency with accountable ring signatures [6],
demonstrating the additional costs associated with our report and trace func-
tionality, and showing that our proposed instantiation is practical. Though our
construction can be efficiently instantiated, the costs incurred by the signer and
the verifier grow linearly in the size of the ring. An interesting area of future
research is to define an efficient, yet (efficiently) verifiable, broadcast encryption
scheme that can be used to instantiate our construction. Moreover, our multiple
reporter setting could be formalised by extending our existing security model to
capture multiple reporters.

References

1. Arun, V., Kate, A., Garg, D., Druschel, P., Bhattacharjee, B.: Finding safety in
numbers with secure allegation escrows. In: NDSS’20. Internet Society (2020)

2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

3. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

5. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

6. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13

198 A. Fraser and E. A. Quaglia

7. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

8. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

9. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

10. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

11. Fraser, A., Quaglia, E.A.: Report and trace ring signatures. In: IACR ePrint
Archive Report (2021)

12. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-71677-8 13

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

14. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

15. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

16. Kohlweiss, M., Miers, I.: Accountable metadata-hiding escrow: a group signature
case study. PoPETs 2015(2), 206–221 (2015)

17. Kuykendall, B., Krawczyk, H., Rabin, T.: Cryptography for #metoo. PoPETs
2019(3), 409–429 (2019)

18. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

19. Phan, D.-H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive CCA
broadcast encryption with constant-size secret keys and ciphertexts. Int. J. Inf.
Secur. 12(4), 251–265 (2013)

20. Rajan, A., Qin, L., Archer, D.W., Boneh, D., Lepoint, T., Varia, M.: Callisto: a
cryptographic approach to detecting serial perpetrators of sexual misconduct. In:
COMPASS’18, pp. 1–4. Association for Computing Machinery (2018)

21. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

22. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group
signatures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pair-
ing 2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36334-4 18

23. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68339-9 17

24. Tyagi, N., Miers, I., Ristenpart, T.: Traceback for end-to-end encrypted messaging.
In: CCS’19, pp. 413–430. Association for Computing Machinery (2019)

https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-68339-9_17

Report and Trace Ring Signatures 199

25. Wang, L., Zhang, G., Ma, C.: A survey of ring signature. Front. Electric. Electron.
Eng. China 3(1), 10–19 (2008)

26. Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In:
Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) CARDIS
2004. IIFIP, vol. 153, pp. 271–286. Springer, Boston, MA (2004). https://doi.org/
10.1007/1-4020-8147-2 18

https://doi.org/10.1007/1-4020-8147-2_18
https://doi.org/10.1007/1-4020-8147-2_18

Selectively Linkable Group
Signatures—Stronger Security
and Preserved Verifiability

Ashley Fraser1, Lydia Garms2,3(B), and Anja Lehmann4

1 University of Surrey, Guildford, UK
a.fraser@surrey.ac.uk

2 Royal Holloway, University of London, Egham, UK
3 IMDEA Software Institute, Madrid, Spain

lydia.garms@imdea.org
4 Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany

anja.lehmann@hpi.de

Abstract. Group signatures allow group members to sign on behalf of
the group anonymously. They are therefore well suited to storing data in
a way that preserves the users’ privacy, while guaranteeing its authen-
ticity. Garms and Lehmann (PKC’19) introduced a new type of group
signatures that balance privacy with utility by allowing to selectively
link subsets of the group signatures via an oblivious entity, the con-
verter. The conversion takes a batch of group signatures and blindly
transforms signatures originating from the same user into a consistent
representation. Their scheme essentially targets a setting where the entity
receiving fully unlinkable signatures and the converted ones is the same:
only pseudonyms but not full signatures are converted, and the input to
the converter is assumed to be well-formed. Thus, the converted outputs
are merely linkable pseudonyms but no longer signatures.

In this work we extend and strengthen such convertibly linkable group
signatures. Conversion can now be triggered by malicious entities too,
and the converted outputs can be publicly verified. This preserves the
authentication of data during the conversion process. We define the
security of this scheme and give a provably secure instantiation. Our
scheme makes use of controlled-malleable NIZKs, which allow proofs to
be mauled in a controlled manner. This allows signatures to be blinded,
while still ensuring they can be verified during conversions.

A. Fraser—The author was supported by the EPSRC Next Stage Digital Econ-
omy Centre in the Decentralised Digital Economy (DECaDE) under grant number
EP/T022485/1.
L. Garms—The author was supported by the EPSRC and the UK government as part
of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University
of London (EP/K035584/1) and by the InnovateUK funded project AQuaSec, as well
as by a research grant from Nomadic Labs and the Tezos Foundation.

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 200–221, 2021.
https://doi.org/10.1007/978-3-030-92548-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_11

Selectively Linkable Group Signatures 201

1 Introduction

Group signatures allow members of a group to sign messages anonymously [4,
7,8,13,18,30,37]. A valid group signature attests that it was signed by a group
member, without revealing the signer’s identity, or whether signatures stem from
the same user. They are therefore useful when data is collected that should be
authenticated while preserving the privacy of the data sources. However, full
anonymity might be undesirable. It may be necessary to know the correlation
among some data events. For instance, several high value blood pressure mea-
surements might not be critical unless they originate from a single user.

To address the balance between privacy and utility, several linkability mech-
anisms have been introduced. Standard group signatures [4,5,7,8,18,37] have an
opening mechanism, that allows a trusted opener to de-anonymise signatures.
Less privacy invasive forms exist, where the opener no longer fully de-anonymises
users, but merely tests whether two signatures stem from the same one [20,32–
34,40]. Another line of work avoids the trusted entity for opening and rather
supports pseudonymous group signatures where users can choose to sign either
with a fresh, and unlinkable pseudonym or re-use an established one, making all
signatures under the same pseudonym publicly linkable [6,9–11,14,23,24].

Group Signatures with Selective Linkability. Garms and Lehmann [28] argue that
none of these schemes provides the flexibility and privacy needed in practice, as
they either require the user to decide upon the desired linkability when signatures
are computed, or the usage of the linkability gradually erodes the users’ privacy.

To overcome these limitations, they proposed a more flexible variant of link-
ability in the form of the CLS scheme [28]. While all group signatures therein are
fully unlinkable per default, i.e. each pseudonym is fresh, certain subsets can be
converted into a linked representation. The conversion is performed obliviously
by a trusted converter that blindly transforms a batch of pseudonyms, mapping
different pseudonyms stemming from the same user into the same one. To avoid
the erosion of privacy, due to a user’s signatures gradually being linked together
as a result of successive convert queries, converted pseudonyms obtained through
different queries remain unlinkable, i.e., conversions are strictly non-transitive.

Trusted Data Lakes and Data Processors. However, [28] assumes the party
receiving/verifying fully unlinkable signatures (the data lake) and the one obtain-
ing the converted linked ones (the data processor) to be the same entity, or belong
to the same trust domain. In their scheme the data lake only inputs pseudonyms
to the converter but not the actual signatures, the authenticity of data gets lost
in the conversion process. Therefore, a data processor only receives converted
pseudonyms from the converter and must trust the data lake that converted data
originates from actual user data. It also assumes inputs from the data lake to
the converter to be well-formed. The security guarantees only hold when “valid”
pseudonyms are converted for which correct group signatures exist. As the con-
verter in [28] receives blinded pseudonyms and no signatures, this assumption is
impossible to enforce other than by considering honest requests only.

202 A. Fraser et al.

For many applications, this assumption may not be realisable and security
from a malicious data lake is vital. For example, in the US the Regional Health
Information Organization (a data processor) has the role of integrating the med-
ical records of many hospitals. In practise, this data is often stored by a third
party (a data lake) that is not trusted by the hospitals or research organisations
that process the data [19]. As discussed above, correlation of data by user can
provide additional insights to the data processor in terms of medical analysis.
However, to protect the user’s privacy, correlated data should not be revealed
to the data lake. Additionally, the data processor will want assurances that the
data processed is authentic user data. Also, Google (a data lake) has been collect-
ing anonymised location data during the COVID-19 pandemic to monitor social
distancing [1]. In this case the correlation of data by user is valuable for anal-
ysis, such as to gain insights into how behaviour changes based on restrictions.
However, this comes with a threat to the user’s privacy. Ideally, data should be
stored anonymously to preserve the users’ privacy, but data processors, such as a
governmental public health organisation, might be allowed to request to blindly
link the data, for example, to provide insight into distances travelled which is
only possible if data is correlated by user. Such data processors may not fully
trust Google as a data lake. Therefore, the data processor may want assurance
that security and privacy holds even if the data lake acts maliciously.

Our Contributions. In this work we strengthen the concept of convertibly
linkable group signatures (CLS+) to capture the scenario that the data lake and
data processor do not belong to the same trust domain. That is, we guarantee
the desired security even when conversion is triggered by malicious data lakes.
Further, we leverage the trusted converter to not only blindly transform the
pseudonyms but also blindly re-authenticate the associated messages, preserving
the authenticity of the data during conversions. We start by lifting the security
and privacy definition given in [28] to this stronger setting. Our security model
grants the adversary the power to request conversions of arbitrary and blinded
inputs. We propose a construction that provably satisfies the desired properties.

Our CLS+ Construction. In the CLS+ model, an issuer joins users to the group.
A data lake holds a set of users’ (message, pseudonym, signature) tuples. They
blind a subset of these to the converter for conversion with respect to the intended
data processor’s public key. The resulting converted (message, pseudonym, signa-
ture) tuples are output to the data processor for unblinding. After unblinding the
pseudonyms should be consistent, i.e. pseudonyms from the same conversion and
from the same user should be the same. As conversions should be non-transitive,
pseudonyms should be unlinkable by user across conversion queries.

A user’s and issuer’s key pair is that of an automorphic signature scheme [26],
a structure–preserving signature scheme [2] where the verification keys lie within
the message space. When joining the group, the issuer signs the user’s verification
key, yielding the user’s membership credential. During signing, the user encrypts
its verification key under an encryption public key held by the converter to form
the pseudonym, and proves knowledge of a valid automorphic signature on the

Selectively Linkable Group Signatures 203

message with respect to this verification key, and of a valid credential for this key.
In order to blind signatures yet still allow verification during conversions, we use
zero-knowledge proofs (NIZKs) that are controlled malleable [16], which can be
realised with Groth-Sahai proofs [31]. This allows to encrypt the pseudonym and
message under an encryption public key held by the data processor (the blinding
public key), and transform the proof accordingly. Because the malleability is
controlled, this does not affect the unforgeability of the signatures.

The converter then removes the layer of encryption under the converter’s
encryption public key. The resulting pseudonym is re-randomised under the
blinding public key and then transformed under a random value r. This value
is chosen fresh for every conversion query to ensure non-transitive conversions,
but re-used within this query to ensure the resulting pseudonyms are consistent.
The converter signs the converted pseudonym and message to attest that they
originate from a valid query containing verifiable signatures. As we assume the
converter is at most honest-but-curious, the authentication of converted signa-
tures is carried over from that of the blinded signatures. During unblinding,
the data processor decrypts the message and converted pseudonym under the
blinding secret key. The original output of the converter is included in the signa-
ture, along with a proof of correct unblinding. We prove that our construction
is secure, assuming the security of the automorphic signatures, standard digital
signatures and the controlled malleable NIZKs, as well as the SXDH assumption.

Other Related Work. In [35] group signatures can be converted into standard
signatures, but all of a user’s signatures are de-anonymised. In [36,38], the power
of the opener is reduced. In [36], they avoid the need for an opener, by allowing
users to prove or deny authorship of a signature. The opener can also prove that
two signatures originate from the same user without revealing user identities.
In [38], another entity is introduced, the admitter. They have the power to
specify messages, so that only signatures on those messages can be opened.

2 Syntax and Security Model for CLS+

We define the syntax and security model for CLS+ signatures, an extension of
the CLS model [28] that no longer requires the assumption that conversion of sig-
natures is triggered by honest verifiers. Whereas CLS only converts pseudonyms,
our CLS+ scheme preserves the validity of the associated signatures.

As in CLS, our CLS+ scheme assumes an issuer I, a set of users U = {uidi},
and a converter C. The issuer I joins new users to the group, who can sign
pseudonymously. While signatures are fully unlinkable by default, they can
be linked in a controlled manner by the converter C, who blindly converts
pseudonym-message-signature tuples into a consistent (now) authenticated form.

In contrast to CLS, we split the verifier role into a data lake L and data
processor P. The data lake (or any verifier) can collect and verify the unlinkable
signatures w.r.t the group’s public key. Additionally, the data lake can request

204 A. Fraser et al.

conversions by blinding signatures for a particular data processor P in a con-
version request to the converter. The data processor can unblind and verify
the converted signatures output by the converter. Once unblinded, any verifier
can check the validity of the converted signature. In this way, we capture the
setting where a data processor (in a separate trust domain from the data lake)
can verify converted group signatures, whereas, CLS assumed that unlinkable
and converted signatures are used by the same entity (or within the same trust
domain). Any verifier can take the data lake role, as there are no dedicated keys.

2.1 Syntax of CLS+

We closely follow the notation from the framework for CLS [28], but extend the
blinding, conversion and unblinding procedures to transform signatures, as well
as pseudonyms. Verification is extended to also handle transformed and linkable
signatures. More precisely, a convertibly linkable group signature scheme with
preserved verifiability CLS+ consists of the following algorithms:

Setup and Key Generation. Each central entity generates their individual key
pair.

CLS+.Setup(1τ) → pp: on input a security parameter, outputs the public
parameters pp.

CLS+.IKGen(pp) → (ipk, isk): performed by the issuer I, outputs the issuer
secret key isk, and the issuer public key ipk.

CLS+.CKGen(pp) → (cpk, csk): performed by the converter C, outputs the
converter secret key csk, and the converter public key cpk.

CLS+.BKGen(pp) → (bpk, bsk): performed by the data processor P, outputs
the blinding public key bpk and blinding private key bsk.

We write the group public key gpk to refer to (pp, ipk, cpk) and BK to denote
the public/private key space induced by CLS+.BKGen.

Join, Sign and Verify. A user must join the group via an interactive protocol
with the issuer, as is standard in group signatures [5]. Our construction requires
that the user already specifies the data processor’s key bpk when creating signa-
tures, and thus we reflect this in the syntax. While this limits the flexibility of
the data lake (it has to adhere to the choice of the user) it gives the users strong
control over the usage of their data, as only they can choose who can unblind the
converted (linkable) signatures. Signers still do not need to decide which data
should be linked, but only which data processors they trust to process their data.

CLS+.Verify takes as input type = {tier-1, tier-2} that indicates the
type of signature. We denote standard, fully unlinkable signatures produced by
CLS+.Sign as tier-1 signatures, and converted ones (from processing a tier-1
signature with CLS+.Blind ´ CLS+.Convert ´ CLS+.Unblind introduced below)
as tier-2 signatures.

Selectively Linkable Group Signatures 205

xCLS+.Join(gpk),CLS+.Issue(isk, gpk)y: an interactive protocol performed by
the joining user uid and the issuer I, who perform CLS+.Join and CLS+.Issue
respectively. If successful, CLS+.Join outputs gsk[uid]. During the proto-
col, each algorithm inputs a state and an incoming message, and outputs
an updated state, an outgoing message, and a decision cont/accept/reject.

CLS+.Sign(gpk, bpk,gsk[uid],m) → (μ, σ): performed by user uid for a data
processor with key bpk, outputs pseudonym μ and signature σ. For ease of
expression we treat the pseudonym μ as a dedicated part of the signature.

CLS+.Verify(type, gpk, bpk,m, μ, σ) → {0, 1}: performed by the data lake (or
any verifier), outputs 1 if σ is a valid {tier-1, tier-2}-signature.

Blind Conversion. As in the CLS model, to allow for blind conversions of signa-
tures, there are the CLS+.Blind, CLS+.Convert and CLS+.Unblind algorithms for
the data lake, converter and data processor respectively. The CLS+.Convert algo-
rithm, on input blinded unlinkable pseudonyms, outputs converted pseudonyms
that after unblinding are identical when from the same user. Now, all three of
these algorithms are extended to handle the signatures as inputs and outputs.

CLS+.Blind(gpk, bpk, (μ, σ,m)) → (cμ, cσ, c): performed by the data lake, out-
puts a blinded pseudonym, signature and message.

CLS+.Convert(gpk, bpk, csk, {(cμi, cσi, ci)}k) → {(cμi, cσi, ci)}k: performed by
the converter, on input k blinded tuples, outputs k converted tuples.

CLS+.Unblind(bsk, (cμ, cσ, c)) → (μ, σ,m): performed by the data processor,
outputs an unblinded, converted (tier-2) tuple.

2.2 Security Properties of CLS+

We need the CLS+ model to capture (roughly) the same security properties as
the CLS model, without the assumption that conversion is triggered by honest
parties and such that converted data is verifiable. We describe the properties
that CLS+ schemes must satisfy in the table below. The first three constitute
the privacy related properties and the final three constitute the unforgeability
properties. We no longer include the join anonymity requirement from the CLS
model, which ensures the corrupted issuer and converter cannot trace signatures
to a user’s join session. As the converter is corrupted, this requirement only offers
weak privacy guarantees, and so we believe this requirement is less important
than the positives of a simple modular construction. In all experiments the key
generation stage is performed honestly, as standard for group signatures [5].

Our CLS+ schemes still rely on the converter being honest-but-curious. We
believe this is an acceptable assumption in practice, as the converter is a central
entity that can undergo more scrutiny than the many verifiers and data lakes.
In Sect. 6 of the full version [25], we discuss how our work could be adapted to
achieve security with respect to a fully malicious converter.

206 A. Fraser et al.

Requirement Corrupted entities Overview

Anonymity Issuer, Data Lake, Data

Processor

Group signatures which have not

been linked through a conversion

request should not leak any

information about the signer’s

identity

Non-transitivity Issuer, Data Lake, Data

Processor

While conversion guarantees

linkability within a batch of

converted signatures, the data

processor(s) should not be able to

link the outputs of different convert

queries

Conversion blindness Issuer, Converter, Data Lake The converter should learn no

information about the blinded

messages and pseudonyms that are

input to a conversion

Traceability Converter, Data Lake, Data

Processor

An adversary should not be able to

create more (blinded) tier-1

signatures that remain unlinkable in

an (honest) conversion than they

control corrupt users. We show in

the full version [25] this implies the

same for tier-1 signatures that are

not blinded

Conversion unforgeability Issuer, Data Lake, Data

Processor

All valid tier-2 signatures should

originate from an honest conversion

Non-frameability Issuer, Converter, Data Lake,

Data Processor

An adversary should not be able to

output a (blinded) tier-1 signature

that would be linked to the signature

of an honest user. We show in the

full version [25] this implies the same

for tier-1 signatures that are not

blinded

Oracles and State. As in the CLS model, our security requirements make use
of oracles which keep joint state. We follow the notation of [4,5] and give the
adversary oracle access to honest users, the issuer and the converter (depending
on the corruption setting in each game). All oracles have access to the following
maintained as global state: a list HUL of uids of honest users, a list CUL of
uids of corrupt users (where the issuer is honest), a list SL of requests to the
SIGN oracle, and a list UBL containing inputs to the CONVERT oracle and
the corresponding unblinded, converted pseudonyms/messages. We provide an
overview of all oracles below.

ADDU (join of honest user & honest issuer) Creates an honest user uid, by
internally running a join protocol between the honest user and honest issuer.
As a result, the oracle stores the secret key gsk[uid] for later use.

SNDU (Send to User) (join of honest user & corrupt issuer) Creates
an honest user uid, by running the join protocol on behalf of the honest user
with the corrupt issuer. If the join session is successful, the oracle stores the
user’s secret key gsk[uid] for later use.

SNDI (Send to Issuer) (join of corrupt user & honest issuer) Creates a
corrupt user uid, by running the join protocol on behalf of the honest issuer
with the corrupt user.

Selectively Linkable Group Signatures 207

SIGN Outputs signatures on behalf of honest users that have successfully joined
(via ADDU or SNDU, depending on whether the issuer is corrupt).

CONVERT The oracle returns a set of converted signatures. In the CLS+ model,
the CONVERT oracle is input blinded pseudonym, signature, message tuples
instead of tier-1 tuples that must be verified and honestly blinded in the
oracle. This is because we no longer assume honest inputs from the data
verifier. The adversary must input the blinding secret key, which is necessary
for our privacy-related security notions, e.g., to ensure that the adversary
does not input a re-randomisation of the challenge signature.

Aside from the CONVERT oracle, the oracles are minor adaptations of the
oracles in the CLS model. The full description is deferred to the full version [25].

Helper Algorithms. In the CLS model, helper algorithms allow for notational
simplicity when defining security. Indeed, the algorithms Identify and UnLink
respectively test whether a signature originated from a particular user secret key
and determine whether signatures would be linked upon conversion. We adapt
the helper algorithms for the CLS+ model. These now take as input signatures,
because they make use of CLS+.Convert. Identify tests whether a blinded signa-
ture belongs to a certain user uid, by creating a second signature for gsk[uid]
and using the converter’s secret key to test whether both signatures are linked.
This algorithm uses our second helper algorithm UnLink internally, which takes
a list of blinded pseudonym-message-signatures pairs and returns 1 only if they
are all unlinkable after being converted and unblinded. The tier-2 signatures
output as a result of the linking are also now verified. Full details are given in
the full version [25].

Adapting Our Unforgeability Requirements to the CLS+ Setting. As well as
tier-1 signatures, we now must ensure our unforgeability guarantees for tier-2
signatures, as well as signatures input to and output from conversions. We intro-
duce conversion unforgeability, a new security property that ensures all valid
tier-2 signatures stem from an honest conversion. In doing so, our unforgeability
guarantees carry over to tier-2 signatures, under the assumption of an honest-
but-curious converter. Moreover, in the CLS traceability and non-frameability
requirements, the adversary outputs tier-1 signatures, which are then verified
and blinded honestly. We update these requirements for the CLS+ setting, so
that blinded tier-1 signatures are output by the adversary. In the case that
conversions are honest, the traceability and non-frameability guarantees carry
through to tier-2 signatures. When the converter is corrupted no unforgeability
guarantees hold for tier-2 signatures anyway.

We need to ensure that our traceability and non-frameability requirements
ensure the CLS definitions, meaning that our unforgeability guarantees hold for
tier-1 signatures. In the full version of this paper [25], we give reductions that
show this is the case. For traceability, we show that if an adversary can output
more valid tier-1 signatures that are unlinkable after conversion than they
control corrupt users then, by blinding these tier-1 signatures, we can win in
our CLS+ traceability game. For non-frameability, we show that if an adversary

208 A. Fraser et al.

can output a tier-1 signature that links to that of an honest user in a conversion
then, by blinding this signature, we can win in our CLS+ non-frameability game.

To make several of our requirements realisable, we require that the adver-
sary outputs the blinding secret key. We do this for notational simplicity, but
alternatively we could add a mechanism for the bsk to be extracted from the
bpk. Due to the fact that the adversary outputs blinded tier-1 signatures in
our traceability and non-frameability requirements, this is necessary to deter-
mine whether signatures are linked. Even if the adversary was to output tier-2
signatures, then the blinding secret key would still be necessary to enforce that
the tier-2 signatures originate from an honest conversion.

Correctness and Consistency. As in CLS, correctness consists of correctness of
sign, which ensures that signatures generated honestly will be valid, and correct-
ness of conversion, which ensures that honest blinding, conversion and unblind-
ing will result in valid and consistent messages, pseudonyms and signatures.

As in CLS, we require consistency, which for CLS+ we relabel consistency of
linking. This ensures that linking is consistent across multiple convert queries,
i.e. if after conversion cμ1 and cμ2 are linked, and after conversion cμ2 and cμ3

are linked, then cμ1 and cμ3 are also linked after conversion. We additionally
introduce consistency of verification. This is necessary as the verifiability of
signatures is now preserved throughout the conversion process. This requirement
ensures that a set of valid tier-1 signatures will result in valid tier-2 signatures
for the same set of messages after blinding, conversion and unblinding.

We give the full correctness and consistency definitions in the full version [25].
We now provide an overview of all CLS+ security requirements. We present

these in full in the full version [25].

Anonymity. This requirement ensures that an adversary that has corrupted
the issuer, data lake and data processor, while the converter remains honest,
cannot link an honest user’s signatures or trace them to their join session. The
adversary outputs two honest users uid∗

0 and uid∗
1, a message m∗, and a blinding

public key bpk∗ (as this is fixed in signing), and must guess which user authored
the resulting tier-1 signature.

The adversary has access to the SNDU and SIGN oracles to create honest
users and obtain their signatures, as well as the CONVERT oracle. The CLS
notion assumed the data lake to be honest, and so the conversion oracle only
took unblinded tuples as input, allowing the oracle to check the validity of the
input, before blinding and converting them. The adversary was prevented from
submitting the challenge signature along with a signature authored by user uid∗

0

or uid∗
1, which would allow them to trivially win.

Here we enable the data lake to ask for the conversion of blinded tuples. To
prevent trivial wins, we still must be able to detect whether the adversary tries to
convert the challenge signature. As signatures will be re-randomisable to satisfy
non-transitivity, we opt for an RCCA-style of definition [15]. The CONVERT
oracle checks whether any of the blinded signature-tuples would link via Identify

Selectively Linkable Group Signatures 209

to either of the challenge users and match the challenge message m∗. To do so,
we require the adversary to input the blinding secret key to the oracle. This key
is used to check whether the inputs can be traced to a challenge user, but there
are no checks that enforce that the inputs are well-formed.

As in CLS, our privacy related requirements do not yield forward anonymity,
because the secret keys of honest users cannot be corrupted. It seems difficult
to achieve this whilst also ensuring the non-transitivity of conversions [28].

Non-transitivity. Non-transitivity ensures that the outputs of separate convert
queries cannot be linked together across multiple queries, further than what is
already possible due to the messages queried. Otherwise, data processor(s) could
gradually re-recover the linkability among all signatures. This must hold when
the issuer, data lake and processor can be fully corrupt.

As in the CLS model, our non-transitivity definition follows a simulation-
based approach, where the adversary must distinguish between the real and
ideal world. As the issuer is corrupted, the adversary has access to the SNDU
and SIGN oracles for honest users. In the real world, the adversary interacts
with the CONVERT oracle, which converts the blinded message-pseudonym-
signature tuples that are input. In the ideal world, they interact with the
CONVSIM oracle which, for inputs that originate from honest users, uses a
simulator SIM that outputs converted pseudonyms/signatures. SIM only learns
which blinded messages belong to the same honest users, without learning the
pseudonyms/signatures input. As in CLS, the CONVSIM oracle generates con-
verted pseudonyms/signatures for corrupt users normally via CLS+.Convert.

In contrast to the original CLS model, we now allow the data lake to trigger
conversions on blinded inputs. Similarly to the anonymity game, the adversary
must also input the blinding (secret) key with each query to the conversion
oracle. Here the key is used to internally unblind the inputs and determine
the correlation among the signatures. This is necessary to obtain a security
definition that is realisable, as the CONVSIM oracle is still expected to provide
consistently transformed outputs within a query. Further, the ideal CONVSIM
oracle first internally runs the real conversion algorithm and aborts if it fails.
This is again necessary to avoid trivial wins where the adversary might input
malformed tuples—which the simulator never gets and thus cannot verify.

Conversion Blindness. In the original CLS model, conversion blindness
ensures that the converter learns nothing about the pseudonyms and messages
it converts. In the CLS+ model, the converter now receives and outputs signa-
tures, which must also be converted obliviously. This must hold when all the
entities, except for the data processor, can be fully corrupt. The adversary out-
puts two pseudonym-message-signature tuples and receives a blinded version of
one of them. They must guess which tuple was blinded. We must ensure the
adversary’s outputs are valid to avoid trivial wins. In the CLS model, no oracles
are required because blinding is a public-key operation. However, CLS+.Unblind
now outputs a tier-2 signature, and so we must ensure that this does not leak

210 A. Fraser et al.

anything that might allow for the unblinding of other converted signatures. We
therefore give the adversary access to an UNBLIND oracle that blinds, converts
and unblinds signatures. We stress that this requirement only provides CPA–
level security as in CLS, because the oracle both blinds and unblinds signatures.

Conversion Unforgeability. As converted data is authenticated in the CLS+
model, we introduce the conversion unforgeability requirement. This ensures that
all valid tier-2 signatures originate from an honest conversion when all enti-
ties other than the converter are corrupt. This carries over the traceability and
non-frameability guarantees for blinded tier-1 signatures, ensuring that both
properties hold for tier-2 signatures, provided the converter remains honest-
but-curious.

We do not differentiate between honest and corrupt users in this requirement,
so the adversary only has access to the CONVERT oracle. The adversary must
output a valid tier-2 signature that does not originate from the CONVERT
oracle. In order to check whether the tier-2 signature output by the adversary
stems from an honest conversion, the adversary must input the blinding secret
key to the conversion oracle. The oracle can then unblind all converted outputs
and store tier-2 pseudonyms/messages in the UBL list, to compare with the
adversary’s output.

Traceability. This requirement formalises that an adversary cannot output
more unlinkable signatures that the number of corrupted users, when the issuer
is honest but the converter, data lake, data processor and some users are corrupt.

As the issuer is honest, the adversary has access to the ADDU and SNDI
oracles to create honest and corrupt users respectively, and the SIGN oracle.
To lift the CLS traceability notion to the setting where malicious parties can
trigger conversions, the adversary outputs a list of blinded signatures. As we still
assume the converter to be honest-but-curious, the signatures are then honestly
converted and unblinded by the challenger. For the traceability requirement to
be achievable we must ensure that all signatures originate from the same convert
query, due to the non-transitivity property. Therefore, it is natural to require
the adversary to output a set of blinded tier-1 signatures, that are honestly
converted. The blinding secret key must then be output by the adversary to
determine whether signatures are linked.

In the CLS model, the adversary needed to output more unlinkable tier-1
signatures than the number of corrupted users. As the adversary now outputs
blinded signatures, we can no longer check if they originate from the signing
oracle. Instead, we allow the adversary to output the signatures of honest users.
However, for each honest user that could have authored a message, we increase
by 1 the number of unlinkable signatures the adversary is required to output.
The adversary wins if they output more unlinkable signatures than the number
of corrupted users plus the number of signing queries for distinct users.

Our traceability guarantee carries forward to tier-2 signatures when the
converter is honest. This is because, conversion unforgeability ensures that all

Selectively Linkable Group Signatures 211

valid tier-2 signatures originate from a blinded tier-1 signature that is input
to the honest converter, even when the data processor is corrupted. With a
corrupted converter, no guarantees can be made for tier-2 signatures anyway.

Non-frameability. This notion prevents the impersonation of an honest user,
whereby an adversary generates signatures that will link to those of this user,
when the issuer, converter, data lake and data processor are corrupt.

As the issuer is corrupt, the adversary has access to the SNDU and SIGN
oracles to create honest users and obtain their signatures. The adversary out-
puts a blinded message-pseudonym-signature tuple, along with a blinding public
and secret key. As in the CLS model, we use the Identify algorithm to check
whether signatures stem from an honest user. On input a blinded tier-1 signa-
ture, this creates a second blinded tier-1 signature, and converts and unblinds
both, checking if they are linked. Identify now checks the validity of the tier-2
signature which is necessary for a framing attack to occur.

When defining the non-frameability of tier-2 signatures, firstly consider that
the converter is corrupted. As the security guarantees for tier-2 signatures
depend on the converter being honest-but-curious, in this case the adversary
can trivially forge tier-2 signatures and so we can only prevent framing attacks
via blinded tier-1 signatures. If the converter remains honest, the conversion
unforgeability requirement ensures that an adversary can only impersonate an
honest user via a blinded signature that is honestly converted and unblinded.
Therefore, both cases are captured by the adversary outputting a blinded signa-
ture that is converted honestly in the experiment, as in our requirement.

The blinding secret key must be output by the adversary to determine the
linkage between signatures. Although in our requirement unblinding is honest,
the conversion unforgeability requirement ensures that all valid tier-2 signature
can be traced to a conversion assuming the converter is honest. Even if the
requirement was formulated so that tier-2 signatures were output, the blinding
secret key would still need to be output by the adversary to check that this
signature originated from an honest conversion. Therefore, the adversary must
output the blinding secret key for our definition to be realisable.

As in the CLS model, we must prevent trivial wins via the signing oracle.
Due to the re-randomisability of CLS+ signatures to allow for non-transitivity,
instead of not allowing signatures output by SIGN, we consider whether the
attached message was input to the signing oracle. As the adversary outputs a
blinded tuple, we must convert and unblind their output to obtain this message.

3 Preliminaries

We now present the building blocks required in this work.

Bilinear Maps. Let G1, G2, GT be cyclic multiplicative groups with prime order
p. A bilinear map e : G1 ˆ G2 → GT must satisfy: bilinearity, i.e., e(gx

1 , gy
2) =

e(g1, g2)xy; non-degeneracy, i.e., for generators g1 P G1 and g2 P G2, e(g1, g2)

212 A. Fraser et al.

generates GT ; and efficiency, i.e., there exists efficient algorithms G(1τ) that
outputs a bilinear group (p,G1, G2, GT , e, g1, g2) and to compute e(a, b) for all
a P G1, b P G2. We use type-3 pairings in this work and do not assume G1 = G2

or an efficiently computable isomorphism between groups [27]. Type-3 pairings
benefit from the most efficient curves, when balancing the cost of pairings and
group operations, the size of the representation of an element of G2 and the
flexibility of parameter choice [17,27].

Standard and Automorphic Signatures. We use digital signatures which satisfy
Existential Unforgeability against Chosen Message Attacks (EUF-CMA), con-
sisting of: SIG.Setup outputs the parameters ppsig, SIG.KeyGen(ppsig) outputs
the signing and verification keys (sk, vk), SIG.Sign(sk,m) outputs a signature
Ω, SIG.Ver(Ω, vk,m) checks the signature is valid.

An automorphic signature [26] over a bilinear group is an EUF-CMA secure
signature whose verification keys are contained in the message space. Moreover,
the messages and signatures consist of elements of G1 and G2, and the verifica-
tion predicate is a conjunction of pairing-product equations over the verification
key, the message and the signature. They consist of the following algorithms:
ASetup(1τ) outputs the parameters ppauto; AKeyGen(ppauto) outputs the sign-
ing and verification keys, (apk, ask); ASign(ask,m) outputs a signature Ω; and
AVerify(Ω, apk,m) checks that Ω is a valid signature.

ElGamal Encryption. We use the ElGamal encryption scheme [22], which is
chosen-plaintext secure under the DDH assumption. We will use the homomor-
phic property of ElGamal, i.e., if C1 P Enc(pk,m1), and C2 P Enc(pk,m2), then
C1 d C2 P Enc(pk,m1 · m2). ElGamal ciphertexts c = Enc(pk,m) are publicly
re-randomisable in the sense that a re-randomised version c′ of c looks indistin-
guishable from a fresh encryption of the plaintext m.

Proof Protocols. When referring to zero-knowledge proofs of knowledge of dis-
crete logarithms, PK{(a, b, c) : y = gahb ^ ỹ = g̃ah̃c} denotes a proof of knowl-
edge of integers a, b and c such that y = gahb and ỹ = g̃ah̃c hold, as in the
notation of [12]. SPK denotes a signature proof of knowledge, a non-interactive
transformation of a proof PK. We require the proof system to be sound and
zero-knowledge.

Controlled Malleable NIZKs. A controlled malleable proof [16] for a relation R
and transformation class T consists of three algorithms constituting a regular
non-interactive proof. CRSSetup(1τ) generates a common reference string σcrs;
P(σcrs, x, w): takes as input σcrs, a statement x and a witness such that (x,w) P
R, and outputs a proof π; V(σcrs, x, π) outputs 1 if π is valid for statement x.
Such a proof is called zero knowledge (NIZK) if there exists a PPT simulator
(S1, S2) such that an adversary cannot distinguish between proofs formed by
the prover and simulator, and a proof of knowledge (NIZKPoK) if there exists a
PPT extractor (E1, E2) that can produce a valid witness from any valid proof.

Selectively Linkable Group Signatures 213

The fourth algorithm, specific to malleable proof systems, is: ZKEval
(σcrs, T, x, π): which on input σcrs, a transformation T = (Tinst, Twit) (in trans-
formation class T), an instance x, and a proof π, outputs a mauled proof π′ for
instance Tinst(x).

The controlled-malleable simulation-sound extractability requirement recon-
ciles malleability with simulation-sound extractability [21,29]. It requires that,
for any instance x, if an adversary can produce a valid proof π that x P R then an
extractor can extract from π either a witness w such that (x,w) P R or a previ-
ously proved instance x′ and transformation T P T such that x = Tinst(x′). This
guarantees that any proof that the adversary produces is either generated from
scratch using a valid witness, or formed by applying a transformation from the
class T to an existing proof. The full definition is detailed in the full version [25].

In [16] strong derivation privacy for such proofs is also defined. This ensures
simulated proofs are indistinguishable from those formed via a transformation,
as defined formally in the full version [25]. Putting this together, a cm-NIZK is a
proof system that is CM-SSE, strongly derivation private, and zero knowledge.

4 Our CLS+ Construction

Our CLS+ construction uses automorphic signatures, ElGamal encryption, con-
trolled malleable NIZKs, a digital signature scheme, and a signature proof of
knowledge as building blocks. Automorphic signatures are structure-preserving
signatures, for which the verification key lies within the message space.
Controlled-malleable NIZKs allow proofs to be mauled to blind signatures, but
because the malleability is controlled the unforgeability properties are still sat-
isfied.

High-Level Idea. We now present a high-level overview of our CLS+ construc-
tion, demonstrating how our construction differs from the CLS scheme presented
in [28]. The issuer’s key pair is that of an automorphic signature [26] as recalled
in Sect. 3. The converter’s key pair is an ElGamal encryption key pair and a key
pair for a signature scheme. The blinding key pair, held by the data processor,
is an ElGamal encryption key pair. Unlike [28], when joining, a user generates a
key pair of an automorphic signature as their secret and public key (usk, upk).
The issuer signs the user’s public key to form a credential, which is possible
due to the automorphic property. An automorphic signature is used, instead of
a BBS+ signature in [28], to generate credentials, for compatibility with the
cm-NIZK proofs, which are necessary to allow signatures to be blinded.

When a user signs a message m, as in [28] they encrypt their public key upk
under the converter public key to form a pseudonym, and must prove knowledge
of a secret key relating to a valid credential. In the CLS+ scheme to do so,
they “normally” sign the message using the automorphic signature. The latter is
never revealed, but is only used to generate a cm-NIZK, which proves knowledge
of a signature of m under its public key, an issuer’s credential on its public key
and correctness of the pseudonym. To ensure that conversion queries cannot be

214 A. Fraser et al.

used to de-anonymise honest users’ signatures, we include upk′ as witness such
that e(g1, upk) = e(upk′, g2). The blinding public key must be fixed in signing,
as it must be part of the statement proved by the cm-NIZK. This allows for the
proof to be transformed in blinding, because cm-NIZKs are defined for relations
that are closed under all allowable transformations. However, this allows users
to have control when signing over the data processors that can use their data.

Blinding proceeds as in [28] for the pseudonym and message. The pseudonym
is re-randomised, and an extra layer of encryption under the blinding public key
is added. The message is encrypted under the blinding public key. In the CLS+
model, we need to use the malleability of the cm-NIZK to update the signature.
This ensures that the new traceability and non–frameability requirements are
satisfied, where the adversary outputs blinded signatures. The mauled proofs still
ensure that the user holds a valid secret key corresponding to the public key that
is encrypted in the pseudonym to provide non–frameability, and a valid credential
on this public key to provide traceability. The strong derivation privacy of the
cm-NIZK ensures that the modified conversion blindness requirement holds.

During conversions, each blinded pseudonym, message and now signature
is verified. Like [28], the encryption is re-randomised on the message and
pseudonym. The converter decrypts the pseudonym using the converter secret
key and raises the resulting pseudonym to the power of r which is chosen afresh
in every convert query, but used consistently within. Unlike [28], the resulting
pseudonym is transformed to the target group to prevent anonymity attacks, and
the converter now outputs a standard signature on the converted pseudonym and
message.

During unblinding, as in [28], the tier-2 pseudonyms and messages are
retrieved, by decrypting under the blinding secret key. In the CLS+ scheme,
tier-2 pseudonyms are of the form e(g1, upk)r, and so signatures can be linked
by author. The final tier-2 signature is the blindly signed tuple from the con-
verter and a proof of correct unblinding by the data processor, which can both
be publicly verified. This ensures that our new requirement conversion unforge-
ability is satisfied. To ensure that the converter only blindly signs messages that
were authenticated via a group signature, we use that mauled cm-NIZKs can be
verified. As the converter is assumed to be honest-but-curious, this transmits
the authentication guarantees from the original group signatures to converted
ones.

Additional Structural Assumptions of Automorphic Signatures. We make the
following assumptions satisfied by our instantiation in Sect. 5. The automorphic
signature scheme can be simplified so either messages are elements of G1 and
the verification key is an element of G2 (ASetup1,AKeyGen1,ASign1,AVerify1),
or messages are elements of G2 and the verification key is an element of G1

(ASetup2,AKeyGen2,ASign2,AVerify2). We assume our automorphic signatures
are in the type-3 setting, ASetup is input the bilinear group, and the signing key
and verification key are of the form sk P Z

∗
p and vk = gsk

j when vk P Gj .

Selectively Linkable Group Signatures 215

4.1 Detailed Description of CLS–CM

Setup and Key Generation. In CLS+.Setup, parameters for all building blocks are
generated. The issuing keypair is the keypair of an automorphic signature. The
converter’s keypair is an ElGamal key pair in G2 and a keypair for a signature
scheme. The blinding keypair is an ElGamal key pair in both G1 and G2.

CLS+.Setup(1τ)

(p,G1,G2,GT , e, g1, g2) ← G(1τ)

ppauto1 ← ASetup1(p,G1,G2,GT , e, g1, g2), ppauto2 ← ASetup2(p,G1,G2,GT , e, g1, g2)

g ←$G1, ĝ ←$G2, σcrs ← CRSSetup(1τ), ppsig ← SIG.Setup(1τ)

return ((p,G1,G2,GT , e, g1, g2), ppauto1, ppauto2, g, ĝ, σcrs, ppsig)

CLS+.IKGen(pp)

(ipk, isk) ← AKeyGen2(ppauto2)

return (ipk, isk)

CLS+.BKGen(pp)

bsk1, bsk2 ←$Z
∗
p

bpk1 ← gbsk1 , bpk2 ← ĝbsk2

return ((bpk1, bpk2), (bsk1, bsk2))

CLS+.CKGen(pp)

csk1 ←$Z
∗
p, cpk1 ← ĝcsk1

(cpk2, csk2) ← SIG.KeyGen(ppsig)

return ((cpk1, cpk2), (csk1, csk2))

Join. We give the join protocol of our CLS–CM construction in Fig. 1. When
joining, the users generate a key pair (usk, upk) for an automorphic signature and
obtain the issuer’s signature on their public key. They also compute upk′ = gusk

1 .

Fig. 1. Join protocol of our CLS–CM construction.

Sign and Verication of tier -1 Signatures. When signing, the user’s public key
is encrypted under the converter public key to form the pseudonym μ = (ĝα, 1 P
G2, upk · cpkα

1). The pseudonym can also be seen as an encryption under the
blinding key with encryption randomness 0. The ciphertext encrypting m under
the blinding key with encryption randomness 0, is of the form (1 P G1,m). This
means that blinding encryption can be added by re-randomising both ciphertexts
in CLS+.Blind, while maintaining the ability to update the associated proof.

216 A. Fraser et al.

The user then signs m with their user secret key to output Ω. The signature
Ω is never output, but instead a cm-NIZK is computed which proves that μ is an
encryption of upk, c is an “encryption” of m (with randomness 0), and knowledge
of a correct Ω. The latter comprises showing that Ω is a valid signature on m
under upk, and it knows a credential cred that is a valid signature on upk
under ipk. We also prove knowledge of upk′ such that e(upk′, g2) = e(g1, upk) to
prevent attacks on anonymity via conversion queries. This is because usk can no
longer be included as a witness as in [28], as it is not a group element. Instead we
include upk′, which due to the DDH assumption in G2 and the pairing setting, is
hard to derive from upk. This prevents the following attack against anonymity:
the adversary uses the upk of an honest user uid to create a new signature
with user public key upka using a known a P Z

∗
p. They could then test whether

another signature belongs to this honest user uid by submitting it alongside the
signature they created to the converter. If any of the tier-2 pseudonyms are of
the form P , P a for any P , then they know the signature belongs to uid. The
final signature simply consists of the cm-NIZK.

More formally we define the relation R such that ((cpk1, bpk1, bpk2, ipk, μ, c),
(upk′, upk, cred,Ω, gα

1 , gβ
1 , gγ

2 ,m)) P R if and only if:

e(g1, μ1) = e(gα
1 , ĝ), e(g1, μ2) = e(gβ

1 , ĝ), and (1)

e(g1, μ3) = e(g1, upk)e(gα
1 , cpk1)e(g

β
1 , bpk2), and (2)

AVerify1(Ω, upk,m) = 1, AVerify2(cred, ipk, upk) = 1, and (3)
e(c1, g2) = e(g, gγ

2), e(c2, g2) = e(m, g2)e(bpk1, g
γ
2), and (4)

e(upk′, g2) = e(g1, upk). (5)

We define the allowable set of transformations for this relation to be:
T = {(renc1, renc2, renc3) : renc1, renc2, renc3 P Z

∗
p}, such that for T =

(renc1, renc2, renc3), the transformation Tinst(cpk1, bpk, ipk, μ, c) = (cpk1, bpk, ipk,
(μ1ĝ

renc1 , μ2ĝ
renc2 , μ3 ·cpkrenc1

1 bpkrenc2
2), (c1grenc3 , c2bpkrenc3

1)) and Twit(upk′, upk, cred,

Ω, gα
1 , gβ

1 , gγ
2 ,m) = (upk′, upk, cred,Ω, gα

1 grenc1
1 , gβ

1 grenc2
1 , gγ

2 grenc3
2 ,m). We show

later that this relation and transformation can be instantiated as a cm-NIZK.
In more detail, CLS+.Sign and CLS+.Verify are defined as follows:

CLS+.Sign(gpk, bpk,gsk[uid],m)

parse gsk[uid] = (usk, upk, upk′, cred), α ←$Z
∗
p, μ ← (ĝα, 1, upk · cpkα

1)

β ← 0, γ ← 0, c ← (1, m), Ω ← ASign1(usk, m)

σ ← cm-NIZK{(upk′, upk, cred, Ω, gα
1 , gβ

1 , gγ
2 , m) : e(g1, μ1) = e(gα

1 , ĝ) e(g1, μ2) = e(gβ
1 , ĝ)

e(g1, μ3) = e(g1, upk)e(gα
1 , cpk1)e(g

β
1 , bpk2) AVerify1(Ω, upk, m) = 1

AVerify2(cred, ipk, upk) = 1 e(c1, g2) = e(g, gγ
2) e(c2, g2) = e(m, g2)e(bpk1, g

γ
2)

e(upk′, g2) = e(g1, upk)}
return (μ, σ)

CLS+.Verify(tier-1, gpk, bpk,m, μ, σ)

Check μ2 = 1, Verify σ with respect to (cpk1, bpk, ipk, μ, (1, m))

Selectively Linkable Group Signatures 217

Blind Conversions. During blinding, the pseudonym and message are encrypted
under the blinding public key, and the encryption under the converter public
key is re-randomised. The cm-NIZK is transformed with ZKEval so that it is
consistent with the blinded pseudonym, and message, which also re-randomises
the proof due to the derivation privacy.

In CLS+.Convert, blinded signatures are now input and verified, leverag-
ing the fact that even fully blinded inputs can be checked for their correct-
ness. The pseudonyms, and blinded messages are re-randomised to ensure non-
transitivity. The encryption under the converter public key is then removed
from the pseudonyms and they are converted by raising them to the power
of r and transforming them into the target group, to ensure non-transitivity.
The converted signature is simply a digital signature on the blinded converted
pseudonym and message, with respect to the converter’s verification key.

In CLS+.Unblind the converted pseudonym and ciphertext are now decrypted
under the blinding secret key. The blinded then converted pseudonym, message
and signature are output, along with a proof that the unblinding has been done
correctly. During tier-2 verification, the converter’s signature on the blinded
values and the proof of unblinding are verified.

CLS+.Blind(gpk, bpk, (m,μ, σ))

if CLS+.Verify(tier-1, gpk, bpk, m, μ, σ) = 0 return ⊥
α′, β′, γ′ ←$Z

∗
p, cμ ← (μ1ĝ

α′
, μ2ĝ

β′
, μ3cpkα′

1 bpkβ′
2)

c ← (gγ′
, m · bpkγ′

1), cσ ← ZKEval(σcrs, (α
′, β′, γ′), (cpk1, bpk, ipk, μ, (1, m)), σ)

return (c, cμ, cσ)

CLS+.Convert(gpk, bpk, csk, {(cμi, cσi, ci)}k)

r ←$Z
∗
p, for i = 1, . . . k : Verify cσi with respect to cμi, ci, gpk and bpk

α′, β′, γ′ ←$Z
∗
p, cμ′

i ← (cμi,1ĝ
α′

, cμi,2ĝ
β′

, cμi,3cpkα′
1 bpkβ′

2), c′
i ← (ci,1g

γ′
, ci,2bpkγ′

1)

cμ′′
i ← (cμ′

i,2, cμ
′
i,3 · cμ′ csk1

i,1), cμ′′′
i,1 ← e(g1, cμ

′′
i,1)

r, cμ′′′
i,2 ← e(g1, cμ

′′
i,2)

r

σ′
i ← SIG.Sign(csk2, (c

′
i, cμ

′′′
i , bpk))

choose random permutation Π, for i = 1, . . . , k : (cμi, ci, cσi) ← (cμ′′′
Π(i), c

′
Π(i), σ

′
Π(i))

return ((cμ1, c1, cσ1)), ..., (cμk, ck, cσk)))

CLS+.Unblind(bsk, (cμ, cσ, c))

μ ← cμ2 · cμ bsk2
1 , m ← c2c

bsk1
1

πub ← SPK{(bsk1, bsk2) : μ = cμ2 · cμ bsk2
1 m = c2c

bsk1
1 bpk1 = gbsk1 bpk2 = ĝbsk2}

σ ← (cμ, cσ, c, πub) return (μ, m, σ)

CLS+.Verify(tier-2, gpk, bpk,m, μ, σ)

parse σ = (cμ, cσ, c, πub), Verify πub holds for cμ, μ, c, m, bpk

if SIG.Ver((cμ, c, bpk), cpk2, cσ) = 1 return 1 else return ⊥

218 A. Fraser et al.

4.2 Security of CLS–CM.

In the full version [25], we show that our scheme satisfies all security properties
defined in Sect. 2. More precisely, we show that the following theorem holds.

Theorem 1. The CLS–CM construction presented in Sect. 4.1 is a secure CLS+
as defined in Sect. 2 if: the automorphic signatures schemes are EUF-CMA
secure and satisfy the additional structural assumptions given in Sect. 4; the
cm-NIZK is zero knowledge, strongly derivation private and controlled-malleable
simulation-sound extractable (cm-SSE); the SPK is a sound zero-knowledge
proof; the DDH assumption holds in G1 and G2; and the SIG is EUF-CMA
secure.

5 Concrete Instantiation of CLS–CM construction

We show the building blocks of our CLS–CM construction can be instantiated.

Automorphic Signatures and Standard Signatures. An instantiation of automor-
phic signatures that is EUF-CMA secure based on the Asymmetric Double Hid-
den SDH (ADHSDH) assumption is given in [26]. It is easy to see that this scheme
satisfies the additional structural assumptions needed for our construction. For
the digital signature scheme, we will make use of Schnorr signatures [39].

Controlled Malleable NIZKs. We demonstrate that cm-NIZKs for the relation R,
and set of allowable transformations T defined above can be instantiated. It is
shown in Theorem 4.5 in [16] that cm-NIZKS for (R, T) can be instantiated if
(R, T) are CM-friendly, which we show in the full version [25]. This instantiation
makes use of Groth Sahai proofs [31] to build malleable NIWIPOKs and structure
preserving signatures (SPS) based on the DLIN assumption. However for our
instantiation, we make use of Groth Sahai proofs [31] in the type-3 setting based
on the SXDH assumption, that the DDH assumption holds in both groups G1

and G2. We make use of a different Structure Preserving Signature scheme [3] in
the type 3 setting, with better efficiency and based on the SXDH assumption.

Instantiating the Proof of Unblinding. For transforming interactive into non-
interactive zero-knowledge proofs we rely on the Fiat-Shamir heuristic that
ensures security in the random oracle model.

Efficiency. We compare the computational cost of our construction to that of [28]
in Fig. 2. We denote k exponentiations in group Gi by kexpGi

, k pairing opera-
tions by kpair, and k exponentiations in Z

∗
n2 by kexpZ∗

n2
. In Fig. 3, we compare

the combined sizes of pseudonyms and signatures in terms of the amount of
group elements to [28]. We denote the length required to represent k elements
in Gi as kGi, k elements in Zp as kZp and k elements in Z

∗
n2 as kZ∗

n2 . Our con-
struction is significantly less efficient than that of [28], particularly in terms of
the signing, verification and size of tier-1 signatures. However, we demonstrate
that stronger security can be achieved and the assumption of trusted data lakes
can be avoided.

Selectively Linkable Group Signatures 219

Fig. 2. Computational costs.

Fig. 3. Sizes of pseudonyms and signatures.

References

1. Helping public health officials combat covid-19. https://blog.google/technology/
health/covid-19-community-mobility-reports/

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

3. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 19

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

6. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013).
https://doi.org/10.1007/s10207-013-0191-z

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

8. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM CCS
(2004)

https://blog.google/technology/health/covid-19-community-mobility-reports/
https://blog.google/technology/health/covid-19-community-mobility-reports/
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/s10207-013-0191-z
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7

220 A. Fraser et al.

10. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust
2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3 1

11. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8 10

12. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized Schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 25

13. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

14. Canard, S., Schoenmakers, B., Stam, M., Traoré, J.: List signature schemes. Dis-
crete Appl. Math. 154(2), 189–201 (2006)

15. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

16. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

17. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings- the role of ψ revisited. Discrete Appl. Math. 159(13), 1311–1322 (2011)

18. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

19. Chow, S., Lee, J., Subramanian, L.: Two-party computation model for privacy-
preserving queries over distributed databases. In: NDSS (2009)

20. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239 12

21. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

23. Emura, K., Hayashi, T.: Road-to-vehicle communications with time-dependent
anonymity: a lightweight construction and its experimental results. IEEE Trans.
Veh. Technol. 67(2), 1582–1597 (2017)

24. Franklin, M., Zhang, H.: Unique group signatures. In: Foresti, S., Yung, M., Mar-
tinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 643–660. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33167-1 37

25. Fraser, A., Garms, L., Lehmann, A.: Selectively linkable group signatures - stronger
security and preserved verifiability. Cryptology ePrint Archive 2021/1312 (2021).
https://eprint.iacr.org/2021/1312.pdf

26. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to
round-optimal blind signatures. Cryptology ePrint Archive 2009/320 (2009)

27. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-662-49387-8_10
https://doi.org/10.1007/978-3-662-49387-8_10
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/11958239_12
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-642-33167-1_37
https://eprint.iacr.org/2021/1312.pdf

Selectively Linkable Group Signatures 221

28. Garms, L., Lehmann, A.: Group signatures with selective linkability. In: Lin, D.,
Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 190–220. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17253-4 7

29. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

30. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-76900-2 10

31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

32. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Short group signatures
with controllable linkability. In: Workshop on Lightweight Security & Privacy:
(LightSec) (2011)

33. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Group signatures with
controllable linkability for dynamic membership. Inf. Sci. 222, 761–778 (2013)

34. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

35. Kim, S.J., Park, S.J., Won, D.H.: Convertible group signatures. In: Kim, K., Mat-
sumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 311–321. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0034857

36. Krenn, S., Samelin, K., Striecks, C.: Practical group-signatures with privacy-
friendly openings. In: ARES (2019)

37. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 36

38. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing
2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36334-4 18

39. Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 68

40. Slamanig, D., Spreitzer, R., Unterluggauer, T.: Adding controllable linkability to
pairing-based group signatures for free. In: Chow, S.S.M., Camenisch, J., Hui,
L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 388–400. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13257-0 23

https://doi.org/10.1007/978-3-030-17253-4_7
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/BFb0034857
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/3-540-46885-4_68
https://doi.org/10.1007/978-3-319-13257-0_23

Cryptographic Schemes and Protocols

FO-like Combiners and Hybrid
Post-Quantum Cryptography

Löıs Huguenin-Dumittan(B) and Serge Vaudenay(B)

EPFL, Lausanne, Switzerland
{lois.huguenin-dumittan,serge.vaudenay}@epfl.ch

Abstract. Combining several primitives together to offer greater secu-
rity is an old idea in cryptography. Recently, this concept has resurfaced
as it could be used to improve trust in new Post-Quantum (PQ) schemes
and smooth the transition to PQ cryptography. In particular, several ways
to combine key exchange mechanisms (KEMs) into a secure hybrid KEM
have been proposed. In this work, we observe that most PQ KEMs are
built using a variant of the Fujisaki-Okamoto (FO) transform. Thus, we
propose several efficient combiners that take OW-CPA public-key encryp-
tion schemes (PKEs) and directly build hybrid IND-CCA KEMs. Our con-
structions are secure in the ROM and QROM and can be seen as gen-
eralizations of the FO transform. We also study how the hash functions
(ROs) used in our transforms can be combined in order to improve effi-
ciency and security. In a second part, we implement a hybrid KEM using
one of our combiners as a proof-of-concept and benchmark it. More pre-
cisely, we build a hybrid IND-CCA KEM from the CPA-secure versions
of HQC and LAC, two NIST Round 2 PQ proposals. We show that the
resulting KEM offers comparable performances to HQC, thus improving
security at a small cost. Finally, we discuss which PQ schemes should be
combined in order to offer the best efficiency/security trade-off.

Keywords: Hybrid cryptography · Combiners · Fujisaki-Okamoto
transform

1 Introduction

Redundancy is one of the most important concepts of computer science, mostly
used to prevent the failure of one component affecting the whole system. In
cryptography, the same idea has been used under different terms and in differ-
ent forms. For instance, increasing the security of DES by performing multi-
ple encryptions was studied by Merkle and Hellman in 1981 [16] and in 2005,
Herzberg [12] studied so-called tolerant encryption schemes, which remain secure
even if one or several of their components are broken. However, the topic became
popular in the last few years, following the launch of the post-quantum (PQ)
standardization process.

As promising developments have been made in the development of quantum
computers, the need for secure post-quantum public-key cryptography (PKC)
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 225–244, 2021.
https://doi.org/10.1007/978-3-030-92548-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_12

226 L. Huguenin-Dumittan and S. Vaudenay

primitives is pressing. This led the US National Institute of Standards and Tech-
nology (NIST) to launch a post-quantum standardization process for public-key
encryption (PKE), key-exchange mechanisms (KEMs) and signatures in 2017.
In the second round, 26 proposals were retained and only 7 have been selected
for the third round of this process (+8 “alternate candidates”).

Most of the assumptions the PQ schemes are based on (e.g. learning with
errors, syndrome decoding) have been less extensively studied than their classical
counterparts (e.g. factorization, discrete logarithm). Thus, combining several
of these schemes into one is considered a sound idea. For example, one could
combine both a standard PKE/KEM scheme with a PQ one, and ideally the
resulting cryptosystem should be secure as long as one of the underlying schemes
is secure. Such systems have been popularized under the term hybrid schemes
and the way the underlying systems are combined is called a combiner. Moreover,
if the resulting hybrid scheme is secure as long as one of the underlying systems
is secure, the combiner is said to be robust.

When it comes to PQ cryptography, hybrid schemes have many advantages,
such as:

1. Guaranteeing security as long as practical quantum computers do not exist
as discussed above.

2. Fulfilling the standards requirement by combining a standardized scheme with
another one which is not. This possibility is actively considered by NIST1.

3. Allowing a smooth transition between classical and PQ cryptography in prac-
tice. Hybrid cryptography would allow support of both classical and PQ
schemes, allowing compatibility between older and newer systems.

4. Combining multiple PQ schemes together might offer better confidence as
most of the problems/assumptions are newer and less studied. Such hybrid
schemes would come at the cost of efficiency, however combining two efficient
schemes might result in a more efficient scheme than one inefficient one. Such
ideas and issues were briefly discussed on the NIST PQ forum2. We focus
mostly on this application of hybrid systems in this work.

Unfortunately, hybrid schemes do not offer much improvement in terms of
theoretical security. Indeed, if both underlying schemes require 2λ operations to
be broken, the hybrid system would be broken in 2λ+1 operations (i.e. we gain
only 1 bit of security). In practice however, the security gain might be better,
depending on the underlying schemes. Indeed, one might reasonably argue that
the probability of a major breakthrough in two different problems believed to
be hard by the community is lower than the probability of one (but even more
devastating) breakthrough. In any case, while the practical security offered by
hybrid cryptosystems obviously depends on many parameters, we think that
such schemes offer a greater security boost than what can be deduced from the
theoretical bounds only.

1 https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs.
2 https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/

msRrR13muS4.

https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/msRrR13muS4
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/msRrR13muS4

FO-like Combiners and Hybrid Post-Quantum Cryptography 227

Fig. 1. Solid arrows indicate results implied by our combiners, bold arrows indicate
QROM security. The dashed arrow indicates results from Hofheinz et al. [13].

Our Contributions
Several authors have considered KEM or signature combiners targeting post-
quantum systems in recent years [3,4,10]. However, all the combiners introduced
in these papers work in a black-box manner on IND-CCA KEMs. That is, com-
biners that take two KEMs (or signature schemes) as inputs and output the
hybrid construction. Yet, most PQ KEM proposals share a very similar struc-
ture: an OW/IND-CPA secure PKE is introduced and then the Fujisaki-Okamato
(FO) transform or a variant (e.g. [8,9,13,19]) is applied to give an IND-CCA
KEM. Therefore, one could try to directly combine the IND-CPA schemes to
give an IND-CCA KEM, hopefully getting better performances. Therefore, we
present in this report several hybrid FO-like transforms which combine two OW-
CPA PKEs into one IND-CCA KEM. We also generalize these constructions to
n schemes (i.e. n PKEs are combined into one KEM).

Compared to previous work, our combiners are simpler as they do not require
extra primitives such as special types of PRFs or MACs. As a result, they are
slightly more efficient by removing calls to these primitives and by optimizing
the use of hash functions. Finally, our combiners follow a different paradigm as
they replace FO transforms. Thus, they would likely be implemented in cryp-
tographic libraries directly, whereas previous combiners would likely be imple-
mented in applications/protocol libraries (e.g. openssl). Hence, our constructions
offer another approach that might be useful to implementors, for example for
optimization or security purposes.

The main disadvantage of FO transforms is that they are only secure in the
random oracle model (ROM) and we prove the security of our FO-like hybrid
combiner in the ROM as well. However, as all PQ IND-CCA KEM submitted to
the NIST process are only proven secure in the ROM, it does not add an extra
assumption. We also prove that one of our combiners is secure in the Quantum
Random Oracle Model (QROM). The results are summarized in Fig. 1.

At a high level, our combiners share the same structure as a system that
would apply a robust PKE combiner (e.g. concatenating ciphertexts) followed
by a FO-like transform to get a KEM. However, having one scheme for the
whole process allows a fine-grained control over the way key derivation and de-
randomization are performed, in turn offering better flexibility. For instance, we
study how one can combine hash functions (i.e. random oracles) s.t. our main FO-
like combiner is more efficient or secure. More precisely, we define the properties
the functions g (used to derive random coins in our construction) and h (used

228 L. Huguenin-Dumittan and S. Vaudenay

to derive the shared key) should have in order for our construction to be secure.
Such theoretical analysis is important, as it was demonstrated that Random
Oracles in FO transforms are easily misimplemented in practice [1]. Therefore,
by presenting generic n-PKEs-to-KEM combiners with detailed security proofs
and several examples of ROs combinations, we hope to offer clear flexibility and
security guarantees to implementors.

As a proof of concept, we implemented a hybrid KEM based on the IND-CPA
version of HQC and LAC, two round 2 proposals to the NIST PQ standardisation
process. We call this hybrid KEM hqc lac 128 and we report and analyse how
this scheme compares to the other round 2 proposals3. In particular, we show
that the performance of the hybrid scheme is comparable to the performance
of the least efficient underlying scheme (i.e. HQC in this case). Moreover, as
our combiner is highly parallelizable, our tests show that a parallelized version
of hqc lac 128 is as efficient as HQC in term of speed, excluding a negligible
overhead (mainly due to the creation of an additional thread). We think this
demonstrates that using a hybrid PQ system in place of a single PQ scheme
may increase significantly the security at a small cost.

Finally, we compute the theoretical performance (based on the data from
eBACS [2]) of every possible hybrid scheme based on two PQ IND-CPA schemes
that are based on assumptions of a different type (e.g. a lattice-based scheme with
a code-based scheme). We discuss the performance of the most efficient ones in
two metrics, namely public key/ciphertext size and encapsulation/decapsulation
speed. This analysis shows that a given hybrid scheme struggles to perform as
well as an efficient non-hybrid one in both metrics. Due to space constraint, we
defer this analysis to the full version of the paper [14].

Related Work
Many authors have considered robust combiners for different primitives, like
combiners for PKE [5,20], hash functions [6,7], commitment schemes [12], PQ
signatures [4], AEAD [17]. Recently, robust combiners for KEM have also been
considered by Giacon et al. in [10]. In that work, they propose various robust
combiners in the standard model and in the random oracle model that take
two IND-CCA KEM and output another IND-CCA KEM. Similarly, Bindel
et al. [3] propose similar robust KEM combiners which are secure against quan-
tum adversaries. Our combiners differ from these as we aim at building a mono-
lithic IND-CCA KEM based on several IND-CPA (or OW-CPA) PKEs. In a
way, we bypass the intermediate KEM constructions, as many KEMs are based
on FO-transformed IND-CPA schemes.

Another related line of work is the construction of Fujisaki-Okamoto (FO)-
like transforms [8,9], which have been a hot topic these last years. Several vari-
ants meant to be secure in the quantum random oracle (QROM) have been
proposed along with tighter security proofs [13,15,18,19]. Our combiner can be
seen as a generalization of a FO-like transform as it takes multiples CPA-secure
PKEs and outputs a robust IND-CCA KEM.

3 At the time of the tests, round 3 proposals were not announced.

FO-like Combiners and Hybrid Post-Quantum Cryptography 229

2 Notation

Let A be a randomized algorithm, then we write b ←$A to indicate b is assigned
the value output by A. Similarly, if Ψ (resp. X) is a distribution (resp. a set),
then x ←$Ψ (resp. x ←$X) means that x is sampled uniformly at random from
Ψ (resp. X). We denote by 1P the indicator function which returns 1 if the
predicate P is fulfilled and 0 otherwise. We write [n] the set {0, 1, . . . , n − 1}.

Let A be an algorithm. Then, we write A ⇒ b to denote the event A outputs
b. Finally, in an algorithm (or game) abort means the algorithm is stopped and
“output b” means the algorithm is stopped and b is returned.

3 PKC and KEM

We recall several standard definitions in Public-Key Cryptography, namely PKE
and KEM.

3.1 Public-Key Encryption Scheme

Definition 1 (Public-Key Encryption). A Public-Key Encryption scheme
is composed of four algorithms setup, gen, enc, dec:

• pp ←$ setup(1λ): The setup algorithm randomly generates the public parame-
ters pp according to a security parameter λ.

• (pk, sk) ←$ gen(pp): The key generation algorithm takes the public parameters
as inputs and outputs the public key pk and the secret key sk.

• ct ←$ enc(pp, pk, pt): The encryption algorithm takes as inputs the public
parameters pp, the public key pk and a plaintext pt ∈ M and it outputs a
ciphertext ct.

• pt′ ← dec(pp, sk, ct): The decryption procedure takes as inputs the public
parameters pp, the secret key sk and the ciphertext ct ∈ C and it outputs
a plaintext pt′ ∈ M ∪ {⊥}.

The setup, gen and enc are probabilistic algorithms that can be made determinis-
tic by adding random coins as inputs. The decryption procedure is deterministic.
Finally, for the sake of simplicity, we omit the public parameters in the inputs
from now on.

Correctness. We define the δ(qH)-correctness in the random oracle model (ROM)
as in [13], using the game CORR defined in Fig. 2. We say a PKE scheme is δ(qH)
correct if for any ppt adversary A making at most qH adversary to the random
oracle H, we have

Pr[CORRPKE(A) ⇒ 1] ≤ δ(qH , λ)

where λ is the security parameter, we omit it from now on for the sake of sim-
plicity. That is, no adversary can find with probability greater than δ(qH) a
plaintext such that its encryption does not decrypt to the original plaintext.
The correctness δ might depend on the number of queries to the RO, thus it is
represented as a function of qH . The correctness in the standard model is the
same except δ is fixed.

230 L. Huguenin-Dumittan and S. Vaudenay

Fig. 2. Correctness game.

Fig. 3. Indistinguishability games.

Definition 2 (IND-CPA/CCA/CCA1). We consider the game defined in
Fig. 3, where the oracles given in each game are defined as in the left of
Table 1. A PKE scheme PKE = (setup, gen, enc, dec) is IND-ATK for ATK ∈
{CPA,CCA,CCA1} if for any ppt adversary A we have

Advind-atkA,PKE =
∣
∣Pr

[

IND-ATK1
PKE(A) ⇒ 1

] − Pr
[

IND-ATK0
PKE(A) ⇒ 1

]∣
∣ = negl(λ)

where Pr
[

IND-ATKb
PKE(A) ⇒ 1

]

is the probability that A wins the IND-

ATKb
PKE(A) game defined in Fig. 3.

Plaintext and Validity Checking. We also recall three less common security def-
initions: One-Wayness under Plaintext-Checking Attacks (OW-PCA)/Validity
Checking Attacks (OW-VA)/Plaintext and Validity Checking Attacks (OW-
PVCA). These notions are useful when proving the security of FO-like trans-
forms, as shown by Hofheinz et al. [13]. All these notions are weaker than IND-
CCA but they model the concept of reaction attacks, that is when an adversary
can observe whether a decryption is successful or not.

Definition 3 (One-Wayness and Plaintext/Validity Checking). Let M
be the message space, PKE a PKE scheme and we consider the games defined in
Fig. 4 with the different oracles as defined on the right in Table 1. Then, PKE is
OW-ATK, for ATK ∈ {CPA,PCA,VCA,PVCA}, if for any ppt adversary A we
have

Advow-atk
PKE (A) = Pr [OW-ATKPKE(A) ⇒ 1] = negl(λ)

FO-like Combiners and Hybrid Post-Quantum Cryptography 231

Table 1. Oracles for IND and OW games.

ATK CPA CCA1 CCA

OATK1 ⊥ ODec ODec

OATK2 ⊥ ⊥ ODec

ATK CPA PCA VCA PVCA

OATK ⊥ OPCO OVCO OPCO, OVCO

Fig. 4. One-Wayness games.

where Pr [OW-ATKPKE(A) ⇒ 1] is the probability that the adversary wins the
OW-ATK game.

3.2 Key Encapsulation Mechanism (KEM)

Definition 4 (Key Encapsulation Mechanism). A KEM is a tuple of four
algorithms setup, gen, encaps, decaps:

• pp ←$ setup(1λ): The setup algorithm takes the security parameter λ as input
and outputs the public parameters pp.

• (pk, sk) ←$ gen(pp): The key generation algorithm takes as inputs the public
parameters and it outputs the public key pk and the secret key sk.

• ct,K ←$ encaps(pp, pk): The encapsulation algorithm takes as inputs the pub-
lic parameters pp, the public key pk and it outputs a ciphertext ct ∈ C and a
key K ∈ K.

• K ′ ← decaps(pp, sk, ct): The decapsulation procedure takes as inputs the public
parameters pp, the secret key sk and the ciphertext ct ∈ C and it outputs a
key K. If the KEM allows explicit rejection, the output is a key K ∈ K or
the rejection symbol ⊥. If the rejection is implicit, the output is always a key
K ∈ K.

The setup, gen and encaps are probabilistic algorithms that can be made deter-
ministic by adding random coins as inputs. The decapsulation function is deter-
ministic. For the sake of simplicity, we omit the public parameters in the inputs
from now on.

232 L. Huguenin-Dumittan and S. Vaudenay

Fig. 5. Indistinguishability games.

Definition 5. We consider the games defined in Fig. 5. The oracles the adver-
sary has access to are defined on the left in Table 1 and K is the key space.
A KEM scheme KEM = (setup, gen, encaps, decaps) is IND-ATK if for any ppt
adversary A we have

Advind-atkKEM (A) =
∣
∣
∣
∣
Pr [IND − ATKKEM(A) ⇒ 1] − 1

2

∣
∣
∣
∣
= negl(λ)

where Pr [IND-ATKKEM(A) ⇒ 1] is the probability that A wins the IND-
ATKKEM(A) game defined in Fig. 5.

4 FO-like Combiners

We wish to design constructions that take two (or more) IND/OW-CPA schemes
instead of one and output an IND-CCA KEM. Compared to black-box combin-
ers, this approach allows for lower-level combiners, which in turn can be more
efficient. As more precise examples, we consider KEM combiners proposed by
Bindel et al. [3]. These 3 constructions, namely XtM, dualPRF and N are based
on special kinds of MAC and PRF. In the XtM combiner, the keys must be
split and a tag on the ciphertexts is computed. Similarly, in the dualPRF and
N combiners, multiple passes on the keys and ciphertext must be performed to
derive the key (see Bindel et al. [3] for more details). All these operations add
complexity and/or increase the ciphertext length while being redundant if the
underlying KEMs are built using a FO-like transform. Thus, one could hope to
remove several superfluous computations and primitives by looking at the actual
implementation of the underlying KEMs. We apply this idea to construct sev-
eral new combiners, which we call FO-like combiners. In addition of not being
black-box, these combiners differ from other proposals in the fact that they take
several PKEs as inputs and output a KEM.

FO-like Combiners and Hybrid Post-Quantum Cryptography 233

Fig. 6. T‖ combiner.

Fig. 7. U⊥ and U�⊥ transforms of [13].

4.1 T‖ Combiner

For our first construction, the idea is to apply twice the T transform of
Hofheinz et al. [13] to obtain an OW-PCA PKE from two OW-CPA PKEs
PKEi = (setupi, geni, enci, deci), i ∈ {1, 2}. We call this FO-like combiner T‖ and
we present it in Fig. 6 (we omit the setup algorithm, which is trivial). Then, one
can apply the U�⊥ transform (see Fig. 7) and Theorem 3.4 of Hofheinz et al. [13]
to obtain an IND-CCA KEM. The message space M of the resulting PKE is
M1 × M2 (i.e. the space product of the two message spaces). This construction
is actually a useful intermediary step towards a more general OW-CPA to KEM
IND-CCA combiner we present in the next section.

The following theorem shows that T‖ is a robust combiner (as long as one of
the two underlying PKEs is OW-CPA, the resulting PKE is OW-PCA).

Theorem 1. Let PKE be the PKE resulting from applying T‖ on PKE1 and
PKE2, which are respectively δ1 and δ2 correct. In addition, let G be a hash
function modelled as a random oracle. Then, for all ppt OW-PCA adversary A
making at most qG queries to G and qP queries to the plaintext-checking oracle,
there exists adversaries B1 and B2 such that

Advow−pca
PKE (A) ≤ (qG + qP) · (δ1 + δ2) + (qG + 1) · min{Advow−cpa

PKE1
(B1),Adv

ow−cpa
PKE2

(B2)}

where B1 and B2 run in about the same time as A.

234 L. Huguenin-Dumittan and S. Vaudenay

Fig. 8. Trivial PKE combiner C.

Fig. 9. OW-PCA game against PKE for the proof of Theorem 1.

Proof. We first show that the trivial PKE combiner C in Fig. 8 is a robust OW-
PCA combiner. Let PKE = C(PKE1,PKE2) be the PKE resulting from applying
C on two PKEs PKE1 and PKE2. We show w.l.o.g. that the OW-PCA security of
PKE reduces to the OW-PCA security of PKE1. The OW-PCA game against PKE
is presented in Fig. 9. One can see that the plaintext-checking oracle can easily be
simulated by an adversary having access to a plaintext-checking oracle for PKE1

and holding the secret key sk2. Thus, we can easily build an adversary B against
the OW-PCA security of PKE1. This adversary generates itself pk2, sk2, ct∗2, runs
A and simulates perfectly the PCO oracle with its own oracle and sk2. When A
returns (pt′1, pt

′
2), B returns pt′1 and wins with at least the same advantage as

A. Hence,

Advow−pca
PKE (A) ≤ min{Advow−pca

PKE1
(B1),Adv

ow−pca
PKE2

(B2)} .

To conclude the proof, one can just observe that T‖(PKE1,PKE2) =
C(T(PKE1),T(PKE2)), where T is the OW-CPA to OW-PCA transform from
Hofheinz et al. [13]. �	

Corollary 1. Let KEM be the KEM resulting from applying U�⊥ ◦ T‖ onto two
PKE schemes PKE1 and PKE2, which are δ1-correct and δ2-correct, respectively.
Then, for any IND-CCA adversary A making at most qH and qG queries to the
ROs H and G, respectively, and qD queries to the decapsulation oracle, there
exists OW-CPA adversaries B1 and B2 such that

Advind−cca
KEM (A) ≤ qH

|M1||M2| + (qG + qD) · (δ1 + δ2)

+ (qG + 1) · min{Advow−cpa
PKE1

(B1),Adv
ow−cpa
PKE2

(B2)}

FO-like Combiners and Hybrid Post-Quantum Cryptography 235

Fig. 10. OW-CPA adversary for the proof of Theorem 1.

where Mi is the message space of PKEi and Bi runs in about the same time as
A (Fig. 10).

Proof. This is a simple consequence of Theorem 3.4 of Hofheinz et al. [13] and
Theorem 1. �	

Discussion. Let UT�⊥
‖ be the combiner resulting from composing U�⊥ and T‖.

One could wonder whether combining two PKEs in a trivial way (i.e. encrypting
pt1, pt2 as (enc1(pt1), enc2(pt2)) and decrypting both ciphertexts independently)
and then applying a FO-like transform would hold a robust IND-CCA KEM. In
fact, this would give a combiner similar to UT�⊥

‖ , except the random coins would
be split into two parts (G(pt1, pt2))λ1 and (G(pt1, pt2))λ2 for each encryption
procedure, where λi is the number of coins needed by the encryption of PKEi.
As G is a RO, both shares would be independent and the result would be similar
to the coins G(pti) in our UT�⊥

‖ transform. We preferred the latter solution as it
is possible to compute the coins in parallel and we think it makes the separation
between both sets of coins clear. One could also wonder whether setting the
coins to G(pt1, pt2) would work. This, in turn, creates a correlation between
both ciphertexts, which cannot be dealt with in the security proof.

The choice of computing the deterministic coins for cti based on σi only
(instead of σ1 and σ2) has positive and negative impacts on the resulting scheme.

Efficiency: Both ciphertexts are totally independent and can be computed in
parallel. In turn, this would allow to keep a key share static for a period of time
while varying the other one. This could improve consequently the efficiency of
hybrid schemes in protocols.

Malleability and Misuse Resistance: The ciphertexts of the resulting KEM
ct∗ = (ct∗1, ct

∗
2) are somewhat malleable. Indeed, it is easy to modify a cipher-

text into another one s.t. the decryption is valid. For instance, ct′ = (ct∗1, ct
′
2),

for a valid ct′2, will decapsulate properly to the key H(σ∗
1 , σ

′
2, ct

′). This has no
consequence in the ROM as the RO hides perfectly σ∗

1 , but this does not neces-
sarily seem a desired property. In particular, due to this malleability effect, the
key must be derived as H(σ1, σ2, . . .) and other KDFs that would seem intuitive
lead to security flaw. For instance, computing the key as H(σ1) ⊕ H(σ2) in the
transform makes a trivial IND-CCA attack possible.

236 L. Huguenin-Dumittan and S. Vaudenay

Fig. 11. UT‖ combiner.

Efficiency. One can see that the main cost of the combiner is to compute two
hash values on the two plaintexts (i.e. seeds) and then a hash on the two plain-
texts and ciphertexts. This already seems slightly more efficient than the XtM
(XOR-then-MAC) combiner proposed by Bindel et al. [3]. Indeed, XtM doubles
the size of the keys returned by the underlying KEMs, split them and compute
a MAC on the ciphertexts using two halves of the keys.

Now, as the ciphertexts in post-quantum cryptography can be large (usually
a few kilobytes), computing a hash on two ciphertexts can be an expensive
operation. Our combiner presented in the next section fixes this drawback.

4.2 UT‖

We now propose an FO-like combiner similar to T‖ that combines two OW-CPA
PKEs into an IND-CCA KEM. In a way, we skip the U�⊥ transform to get directly
a KEM. The idea is to encrypt two seeds (i.e. plaintexts) σ1, σ2 using the PKE
resulting from T‖ and then compute the key as H(σ1 ⊕σ2). However, in order to
avoid the malleability issue described in the previous section, the deterministic
coins are computed as G(i, σ1, σ2). This links both ciphertexts together and
makes tampering one of the two more difficult. Note that in order to compute
the XOR, we assume that the seeds σi are binary strings or that there exists an
efficient and unique encoding of these objects as binary strings. Alternatively,
one can take the hash of a plaintext to get a binary seed. All these options are
compatible with our combiner and the choice of an approach depends on the
underlying PKEs. We present the combiner in Fig. 11.

Now, the following theorem formally states the security of the UT‖ combiner.

Theorem 2. Let KEM be the KEM resulting from applying UT‖ on PKE1 and
PKE2, which are respectively δ1 and δ2 correct, and γ1 and γ2-spread. In addition,
let G and H be hash functions modelled as a random oracle. Then, for all ppt
IND-CCA adversary A making at most qG, qH and qD queries to G,H and ODec,
respectively, there exists adversaries B1 and B2 such that

FO-like Combiners and Hybrid Post-Quantum Cryptography 237

Advind−cca
KEM (A) ≤(qD + qG + 1) · (δ1 + δ2) + qD · (2−γ1 + 2−γ2)

+ (qG + qH) · min{Advow−cpa
PKE1

(B1),Adv
ow−cpa
PKE2

(B2)}
where B1 and B2 run in about the same time as A and make the same number
of queries.

Proof. Due to space constraint, the proof is deferred to the full version of the
paper [14].

Generalisation to n PKEs. While the UT‖ combiner presented in Fig. 11
takes two PKEs as input, it is straightforward to generalise it to n PKEs. Each
of the n ciphertexts will simply be computed as enci(pki, σi;G(i, σ1, . . . , σn)) and
the key as H(⊕n

i σi). Then, the security of such a combiner (we call it UTn
‖) can

be stated in the following Theorem, which is a generalization of Theorem 2.

Theorem 3. Let KEM be the KEM resulting from applying UTn
‖ on

PKE1, . . . ,PKEn, which are respectively δ1, . . . , δn correct, and γ1, . . . , γn-spread.
In addition, let G and H be hash functions modelled as a random oracle. Then,
for all ppt IND-CCA adversary A making at most qG, qH and qD queries to G,H
and ODec, respectively, there exists adversaries B1, . . . ,Bn such that

Advind−cca
KEM (A) ≤(qD + qG + 1) ·

n∑

i=1

δi + qD ·
n∑

i=1

2−γi

+ (qG + qH) · min{Advow−cpa
PKE1

(B1), . . . ,Adv
ow−cpa
PKEn

(Bn)}
where B1, . . . ,Bn run in about the same time as A and make the same number
of queries.

Proof Idea. The proof is exactly the same as the one for the security of UT‖
with two PKEs except we consider n schemes. In particular, the probability of
having a correctness or spreadness error in some query is upper bounded by
∑n

i=1 δi and
∑n

i=1 2−γi , respectively. Also, the reductions Bi from the OW-CPA
of the PKEs still work the same, as an adversary Bi picks all σ∗

j s.t. j �= i. That
is, if (i, σ∗

1 , . . . , σ
∗
n) is queried, Bi can recover σ∗

i , otherwise we can replace the
deterministic coins by random ones. Similarly, if σ∗ = ⊕n

j σ∗
j is queried by the

adversary to H, Bi can recover σ∗
i by computing σ∗ ⊕j �=i σ∗

j . �	

Security in the Quantum Random Oracle Model (QROM). We discuss
the security of combiners in the QROM in the full version of the paper [14]. In
particular, the security of the T‖ combiner follows from the QROM security of
the T transform.

4.3 Other Combiners

It has been shown that the implementation of ROs in FO-like transforms, in
particular in the de-randomization step (i.e. computation of the deterministic

238 L. Huguenin-Dumittan and S. Vaudenay

coins), is particularly vulnerable to implementation mistakes [1]. Thus, it is of
interest to study how these coins can be computed without compromising the
security of the resulting scheme. We show in this section how hash functions
(i.e. ROs) can be combined s.t. the de-randomization step is secure and efficient.
Many combinations of hash functions are possible and we propose a few of those
below, offering flexibility to implementors. Finally, we consider using different
hash functions to increase the security at no (or very small) cost. This relates to
the notion of hash combiner [6,7], which constructs a hash function that fulfils
certain security properties as long as one of the underlying hash functions has
this property. In our case, we want the hash functions to behave as random
oracles, thus we can combine two different functions to make the whole scheme
secure as long as one of the hash functions is indistinguishable from a RO.

How to Combine Hash Functions. From now on, in order to distinguish
(random) functions from random oracles, we denote a function by a small letter
and a RO by a capital letter (e.g. g(x) is a function evaluated on x and G(x) is a
RO queried on x). Note that in our case, the functions are defined using random
oracles (e.g. g(x) := G(1, x) ⊕ G(2, x)). We consider replacing the RO G in our
combiners by such a random function g (but still in the ROM).

One can see from the proofs of security of both T‖ and UT‖ that we want
the deterministic coins to be indistinguishable from random ones until we can
recover the seeds (or plaintexts) from the list of queries. In addition to this
property, one also wants the values g(i, σ1, σ2) to be close to uniform. Indeed,
in the proof of Theorem 2, we extensively use the fact that the correctness
and spreadness property hold with probability at least δ and 2−γ , respectively,
even when the coins are not random but computed as g(i, σ1, σ2). Obviously,
if the values g(1, σ1, σ2) are not sampled uniformly at random, this may not
hold anymore. In other words, we want g(i, σ1, σ2) to be either computable by
the adversary using its queries to G or distributed uniformly at random. We
developed formal definitions (called Extractable Random Function (ERF) and
Indistinguishable unless Queried (IUQ)) capturing these properties, they are
presented in the full version of the paper [14]. We give two examples of such
functions g satisfying these properties in Table 2. Note that these are based on
a RO G.

Replacing H. As we did for G, one can also replace the key derivation function
H by another random function h. The function h(σ1, σ2) = H(σ1) ⊕ H(σ2) is
one example. More details can be found in the full version [14].

Then, one can show the following theorem.

Theorem 4 (Informal). Let g be a function from Table 2. Let h(σ1, σ2) :=
H(σ1, σ2) or h(σ1, σ2) := H(σ1) ⊕ H(σ2). Then, the UT‖ transform where the
deterministic coins for encrypting the seed σi are computed as g(i, σ1, σ2) instead
of G(i, σ1, σ2) and the key is derived as h(σ1, σ2), is still a robust combiner.

A formal version of this result is stated in the full version of the paper [14].

FO-like Combiners and Hybrid Post-Quantum Cryptography 239

Table 2. Different g functions, where G, Gi are ROs.

g(i, σ1, σ2)

G(σ1 ⊕ σ2) ⊕ G(i, σi)

G1(i, σ1) ⊕ G2(i, σ2)

Hash Combiners. As some of the proposed functions g use more than one
hash functions, these functions are themselves hash combiners. Thus, it is of
interest to study the robustness of such constructions. That is, if one of the
underlying hash functions is broken (i.e. shown not to behave as a RO), is the
g function (thus the whole FO-like combiner) still secure? As one of the main
security concerns of the use of FO-like transforms is that the proofs are in the
ROM, using robust hash combiners may improve the trust in such constructions.

The last function g in Table 2 is actually a robust combiner with respect to
the RO property and one of the seeds. That is, G1(i, σ1) ⊕ G2(i, σ2) is indis-
tinguishable from a RO, even if G1 (or G2) is any function. Hence, if we take
both g(i, σ1, σ2) = G1(i, σ1) ⊕ G2(i, σ2) and h(σ1, σ2) = H1(σ1) ⊕ H2(σ2) in the
FO-like combiner, we will obtain a secure KEM as long as Gi and Hi and PKEi

are secure for some i ∈ [2].

Proposition 1 (Informal). Let g(i, σ1, σ2) = G1(i, σ1) ⊕ G2(i, σ2) and
h(σ1, σ2) = H1(σ1)⊕H2(σ2). We call a tuple (Gi,Hi,PKEi) secure if Gi, Hi are
ROs and PKEi is OW-CPA. Let KEM be the hybrid KEM resulting from applying
UT‖ on PKE1 and PKE2 with g and h to derive the deterministic coins and key,
respectively. Then, KEM is IND-CCA if (G1,H1,PKE1) or (G2,H2,PKE2) (or
both) is secure.

Proof Sketch. We assume w.l.o.g. that the tuple (G1,H1,PKE1) is secure and
G2,H2 can be any functions and PKE2 might not be OW-CPA. In addition,
we assume G1,H1, G2,H2 are mutually independent functions (e.g. this can
be implemented by RO separation). The result follows simply from the fact
that in the IND-CCA game against KEM, as long as G1 is a RO, the coins
G1(i, σ1) ⊕ G2(i, σ2) are indistinguishable from uniform unless (i, σ1) is queried,
irrespectively of the value G2(i, σ2). But in turn such a query would break the
OW-CPA assumption on PKE1 (or happens with negligible probability). The
same argument for h(σ1, σ2) = H1(σ1) ⊕ H2(σ2) holds that the key will always
be indistinguishable from uniform if H1 is a RO and PKE1 is OW-CPA. �	

5 Implementation

As a proof of concept, we implemented a fully PQ hybrid KEM using two IND-
CPA proposals that passed to the Round 2 of the standardization process and
our combiner. As the main goal of our combiner is to increase the security while
still offering good performances, we chose HQC and LAC since

240 L. Huguenin-Dumittan and S. Vaudenay

1. LAC is one of the most efficient schemes in term of speed and public-
key/ciphertext size but it has been attacked recently in [11]. More generally, it
seems LAC is more vulnerable to failure attacks than other schemes and that
led this scheme to be dropped for Round 3. Thus, using it along another cryp-
tosystem does not imply a large overhead while preventing a failure attack
alone against LAC to break the whole scheme.

2. HQC is a code-based scheme that offers good performance, although the
hardness assumption it is based on has not been extensively studied as of
yet. Thus, combining it with another efficient scheme might provide more
confidence in this scheme at the expense of a small overhead.

3. HQC is code-based while LAC is lattice-based. Therefore, one can hope that
any progress in breaking the assumption of one does not lead to a better
cryptanalysis of the other.

5.1 Design Choices

We used the reference IND-CPA implementations provided by the authors in the
second round for both schemes. Then, we applied our UT‖ combiner. In practice
we implemented G(1, ·, ·) as SHA256(·), G(2, ·, ·) as the AES-based expansion
function provided by the NIST and H(·) as SHA512(·). These choices made the
implementation easier as we could stick to most of the author’s choices. For
example, HQC encryption function in the original FO transform is using a seed
output by the AES-based expander and our choice of G(2, σ1, σ2) makes the
reuse of most of the code possible.

We implemented two versions of the hybrid cryptosystem, a standard
version that we are calling hqc lac128 and a parallel version denoted by
hqc lac128 par, both using the Level 1 (i.e. aiming at 128 bits of classical secu-
rity) reference implementations of LAC and HQC. The parallel implementation
uses the pthread library and is implemented without any other optimization. In
particular, only the encryption of the seeds is parallelized in the encapsulation
function (i.e. the encryption functions of LAC and HQC are called in different
threads) and only the decryption and reencryption is parallelized in the decap-
sulation procedure.

5.2 Results and Efficiency

We tested both our hybrid schemes on a laptop running Ubuntu 14.04 with
an Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz. The results for our hybrid
schemes, the original schemes and reference implementations of two other pop-
ular lattice-based schemes (Frodo and Kyber) are reported in Table 3. The sizes
are in bytes and the times are given in microseconds (10−6s) and are averaged
over 10000 runs. Obviously, the size of the public/secret key and ciphertext are
the addition of the corresponding ones in LAC and HQC, except for the cipher-
text, which is a bit smaller. This follows from the fact that the ciphertext in HQC
contains a confirmation hash that we omit in our FO-like combiner. One can see
that compared to a proposal with large keys and ciphertexts (i.e. Frodo), our

FO-like Combiners and Hybrid Post-Quantum Cryptography 241

Table 3. Performance of hqc lac128 and hqc lac128 par compared to other schemes.
The size of the public/secret key and ciphertext are in bytes. The time for key gener-
ation, encapsulation, decapsulation is in microseconds.

Scheme SK (B) PK (B) CT (B) KeyGen (μs) Encaps (μs) Decaps (μs)

frodo640 19888 9616 9720 847.553 4650.037 4602.284

hqc128 3165 3125 6234 144.166 298.120 528.624

kyber512 1632 800 736 154.077 210.857 263.194

lac128 1056 544 712 115.308 199.776 311.709

hqc lac128 4221 3669 6882 260.032 484.969 813.452

hqc lac128 par 4221 3669 6882 162.502 315.137 549.516

hybrid compares well. In addition, as LAC produces small outputs, the increase
compared to HQC is small. That is, the size of the secret key, public key and
ciphertext is increased by roughly 33%, 17% and 10%, respectively.

Considering the speed, the non-optimized hybrid hqc lac128 performs
slightly better than both LAC and HQC run one after the other. However, all pro-
cedures are still much faster than the ones of a slower scheme, like Frodo. On the
other hand, the parallelized hybrid hqc lac128 par offers very good performance
as one could expect from such a parallelizable design. In particular, we observe
only a 13%, 6% and 4% increase of latency compared to HQC, for key genera-
tion, encapsulation and decapsulation, respectively. Therefore, hqc lac128 par
can perform nearly as good as HQC on systems that offers efficient paralleliza-
tion, such as laptops or any machine with regularly idle processors.

We give on Fig. 12 a visualisation of the performance of hqc lac128 com-
pared to other round 2 candidates with security Level 1. Most of the data comes
from the SUPERCOP [2] benchmarking system (we picked the results of a test
performed on a 2018 Intel Core i7-8809G). All round 2 proposals are represented,
except for BIKE, Round 5 and LEDACrypt, which did not have an IND-CCA
version benchmarked at the time of the test. We still added the keys and cipher-
text sizes of BIKE as they are similar to the ones of HQC.

For the hybrid scheme hqc lac128, we computed the cycles needed for key
generation, encapsulation and decapsulation as the sum of the corresponding
cycles needed by LAC and HQC. Note that this is a pessimistic approximation
as the hybrid system requires less instructions than the sum of both underlying
schemes (e.g. we apply some hash functions only once), this is confirmed in
practice by the results shown in Table 3. We do not plot the parallelized version
hqc lac128 par as the sizes are the same as in hqc lac128 and the time is upper
bounded by the latter as well.

Analysis. From all three graphs in Fig. 12, we can deduce that our hybrid does
not perform particularly well compared to other schemes in these metrics. How-
ever, one can see that the bottleneck is the use of HQC here. In particular,
hqc lac128 performs nearly as well as HQC in the metrics considered. This
confirm what we wanted to show, that is boosting security by combining a very

242 L. Huguenin-Dumittan and S. Vaudenay

Fig. 12. Visualisation of the performance of hqc lac128 compared to several Level 1
implementation of NIST round 2 proposals.

FO-like Combiners and Hybrid Post-Quantum Cryptography 243

efficient scheme with one that is less so does not worsen much the performance
of the latter one. In other words, if one is willing to use HQC, one can as well
use the hybrid hqc lac128 for a very small overhead but arguably much better
security.

Finally, one can wonder what is the speedup of our combiners compared to
existing ones. We take as an example the XtM combiner from Bindel et al. [3],
which applies a special kind of MAC to the ciphertexts and keys. It is proposed
to implement this primitive as the concatenation (or the XOR) of two standard
MACs. This computation is the main overhead compared to our construction
and we simulated it as two calls to SHA256 on both ciphertexts and keys. This
takes approximately 40µs on our setup, hence the speedup when considering
hqc lac128 par is slightly over 10% for encapsulation. This obviously depends
on many factors like hardware, hash functions, parallelization and the underlying
schemes. For example, for small ciphertexts the speedup will be negligible while
for large ones it will be more important. Finally, we note that PQ schemes are
not optimized thus the gain might be more noticeable in the future.

Acknowledgements. Löıs Huguenin-Dumittan is supported by a grant (project No

192364) of the Swiss National Science Foundation (SNSF).

References

1. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
Oracle cloning and read-only indifferentiability. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 3–32. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2 1

2. Bernstein, D.J., (editors), T.L.: eBACS: ECRYPT benchmarking of cryptographic
systems. https://bench.cr.yp.to. Accessed 14 May 2020

3. Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encap-
sulation mechanisms and authenticated key exchange. In: Ding, J., Steinwandt, R.
(eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 206–226. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7 12

4. Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-
resistant public key infrastructure. Cryptology ePrint Archive, Report 2017/460
(2017). https://eprint.iacr.org/2017/460

5. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30576-7 11

6. Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 21

7. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash
functions revisited. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 655–666.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 53

8. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://bench.cr.yp.to
https://doi.org/10.1007/978-3-030-25510-7_12
https://eprint.iacr.org/2017/460
https://doi.org/10.1007/978-3-540-30576-7_11
https://doi.org/10.1007/978-3-540-78524-8_21
https://doi.org/10.1007/978-3-540-70583-3_53
https://doi.org/10.1007/3-540-48405-1_34

244 L. Huguenin-Dumittan and S. Vaudenay

9. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J.Cryptology 26(1), 80–101 (2013). https://doi.org/10.1007/s00145-
011-9114-1

10. Giacon, F., Heuer, F., Poettering, B.: KEM Combiners. Cryptology ePrint Archive,
Report 2018/024 (2018). https://eprint.iacr.org/2018/024

11. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors
against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 4

12. Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) CT-
RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30574-3 13

13. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 12

14. Huguenin-Dumittan, L., Vaudenay, S.: FO-like combiners and hybrid post-
quantum cryptography. Cryptology ePrint Archive, Report 2021/1288 (2021).
https://ia.cr/2021/1288

15. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-rewind-
measure: tighter quantum random oracle model proofs for one-way to hiding and
CCA security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 703–728. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 24

16. Merkle, R.C., Hellman, M.E.: On the security of multiple encryption. Commun.
ACM 24(7), 465–467 (1981). https://doi.org/10.1145/358699.358718

17. Poettering, B., Rösler, P.: Combiners for aead. IACR Trans. Symmetric Cryptol-
ogy, 121–143 (2020)

18. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random Oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

19. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

20. Zhang, C., Cash, D., Wang, X., Yu, X., Chow, S.S.M.: Combiners for chosen-
ciphertext security. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS,
vol. 9797, pp. 257–268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42634-1 21

https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://eprint.iacr.org/2018/024
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-540-30574-3_13
https://doi.org/10.1007/978-3-540-30574-3_13
https://doi.org/10.1007/978-3-319-70500-2_12
https://ia.cr/2021/1288
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1145/358699.358718
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-319-42634-1_21
https://doi.org/10.1007/978-3-319-42634-1_21

Linear-Time Oblivious Permutations
for SPDZ

Peeter Laud(B)

Cybernetica AS, Tartu, Estonia
peeter.laud@cyber.ee

Abstract. In this paper, we present a secure multiparty computation
(MPC) subroutine for obliviously permuting elements in a private vector.
The subroutine makes use of the private data representations used in the
SPDZ protocol set; it can be composed with other privacy-preserving
operations in this set and it also provides active security with abort. The
online computation and communication complexity of the subroutine is
linear in the length of the permuted vector.

1 Introduction

Large secure multiparty computation (MPC) protocols are constructed on top of
MPC frameworks supporting a small number of primitive operations with private
data—input, output, addition, multiplication, conversions between integers and
bit-strings. These operations do not hide, which memory locations they access,
thus only supporting data-oblivious computations.

Certain frameworks support oblivious permutations that shuffle a vector of
private values in a manner that keeps the reordering private as well. Efficient
oblivious permutations are a useful subroutine for certain non-data-oblivious
algorithms, in particular the fast algorithms for sorting [6,11], as well as for the
declassification of certain values without leaking their location in memory [1,5].

Currently, truly efficient oblivious permutations (number of primitive oper-
ations being linear in the length of the vector, with small multiplicative over-
head) are supported only by MPC protocol sets with passive security and honest
majority [16]. In this short paper, we show how to add them to the well-known
SPDZ [10] protocol set, which supports dishonest majority, as well as fail-stop
security (active attacks are detected). In SPDZ, the computation is split into
input-independent offline and efficient online phases. We describe the online
phase of oblivious permutations, state which offline precomputations our proto-
col requires, and discuss the possible implementations of the offline phase. We
state the security properties of both the online and offline phase, and argue the
security of our protocol.

State of the Art. Applying a sorting network to a random vector is the folk
method for random permutations. Laur et al. [16] gave the most widely used

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 245–252, 2021.
https://doi.org/10.1007/978-3-030-92548-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_13

246 P. Laud

permutation protocol for passively secure MPC; it’s (communication) complexity
is O(m) · 2O(n) (elements of vectors), where m is the length of the vector and n
the number of parties in the MPC protocol. The protocol is very efficient for a
small n. Asharov et al. [2] gave a protocol with O(m log m) complexity, based
on techniques used for ORAM.

Oblivious (extended) permutations are needed for private function evalua-
tion. Mohassel et al. [17] achieve active security through a combination of MPC
and Mix-nets. Laud et al. [14] obtain it through post-execution verification, using
precomputed permutation tuples. Such tuples form one half of our solution.

Encodings of RAM computations for zero-knowledge proofs requires stating
that certain vectors describing memory accesses are permutations of each other.
Here, besides the earlier permutation network based solutions [4], Bootle et al. [7]
proposed a linear-time construction based on showing the equality of polynomials
that have the elements of one of the vectors as its roots [18]. Such polynomial
equality checking forms the second half of our solution.

Our approach is also an instance of first performing the computations with
passive security (but with privacy also against active attackers), and then veri-
fying the results using an actively secure protocol [12,15].

Notation. The elements of a vector �v are denoted v1, v2, Given a vector �v of
length m, and a permutation π ∈ Sm (where Sm is the symmetric group of all per-
mutations on m elements), we let π(�v) denote the vector (vπ(1), vπ(2), . . . , vπ(m)).
We write �w ← �u + �v to denote that �w is the pointwise sum of �u and �v; other
operations may be used similarly. We use [m] to denote the set {1, . . . , m}.

SPDZ [10] is an MPC protocol for n parties, tolerating up to (n − 1)
static active corruptions, and providing fail-stop security, i.e. misbehaviour by
a corrupted party is detected, but the party is not ousted. Also, the misbe-
haviour does not impact the privacy of honest parties. The protocol executes
an arithmetic circuit over a large finite field F, with all values secret-shared
among the parties. The protocol works has offline (input-independent) and online
phases; in the offline phase each party Pi has selected a private value αi (denote
α = α1+· · ·+αn), and parties have executed “heavyweight” protocols to generate
correlated values usable for linearizing all operations of the arithmetic circuit. In
online phase, the private representation �x� of a value x is a tuple of random val-
ues ((�x�1, γ(x)1), . . . , (�x�n, γ(x)n)), with the i-th party knowing �x�i and γ(x)i,
and with the values satisfying �x�1+· · ·+�x�n = x and γ(x)1+· · ·+γ(x)n = α·x
(this is called the “MAC of �x�”). Linear computations with private values can
be done locally by parties. Multiplication triples generated during the offline
phase are used for multiplication; the opening of values creates obligations to
check that the MAC of the opened value is correct. MAC checks can be done
without revealing α. Several MAC checks cost the same as one.

2 Offline Phase

In Fig. 1 we present our additions to the ideal functionality Fprep for the offline
phase of SPDZ. They allow each pair of parties to obtain additive shares of a

Linear-Time Oblivious Permutations for SPDZ 247

Fig. 1. Addition to the ideal functionality Fprep of the offline phase

permutation of a vector, with the first party providing the permutation π ∈ Sm

and the second party also learning the vector. The correctness of the outputs is
not guaranteed if the parties are corrupt, but privacy still is. We call (π, �z; �x, �y)
a permutation tuple. A possible corresponding real implementation Πprep is dis-
cussed by Chase et al. [8] under the name Permute-and-Share, including the
trade-offs for executing the protocol several times in parallel with the same π.

3 Online Phase

In the online phase, when evaluating an arithmetic circuit, we want to take a
number of already computed values, treat them as a vector, apply an oblivious
permutation to them, and continue computations with the permuted values.
Existing algorithms [11,13] use oblivious permutations in a couple of different
ways. The operations we present below as additions to the SPDZ protocol set
Πonline cover all these ways.

3.1 Randomly Permuting a Vector

There is a private vector ��v� of length m, the elements of which we want to
permute, with no party, or a coalition of up to (n − 1) parties learning anything
about the permutation. The protocol for this operation is given in Fig. 2.

We see that during the i-th iteration of the main loop, the current share of
each party Pj (j �= i) gets permuted with πi and then additively shared between
Pi and Pj . Here the share of Pj is �y

(i,j)
1 (for the “value itself”) and �y

(i,j)
2 (for the

MAC), while the share for Pi is �rij and �sij [14]. Having obtained such shares
from every other party, Pi defines his share for the next round be adding them
all up (step 1.3). In step (1.1.1), Pj sends his current shares to Pi, but they
are masked with random vectors �x

(i,j)
k , hence there is no leakage. All parties

contribute to the resulting permutation π = π1 ◦ · · · ◦ πn, hence it stays private.
After the n-th iteration, parties obtain the shares of the output vector ��v(n)�.

In steps (2)–(3), the parties verify that �v(n) is indeed a permutation of �v(0).
For any vector �u ∈ F

m, define the polynomial f�u(X) ∈ F[X] by f�u(X) =

248 P. Laud

Fig. 2. Obliviously shuffling a private vector

∏m
i=1(X −ui). Two polynomials f�u, f�u′ are equal if �u and �u′ are permutations of

each other [18]. In steps (2)–(3), this polynomial equality is tested by evaluating
f�v(0) and f�v(n) at a random point r and making sure that their difference is 0
(masking the result with r′ before opening it). We know that if the polynomial
f�v(n) − f�v(0) is non-zero, then it has at most m roots, hence the probability of
test (2)–(3) falsely accepting is at most m/|F|.

The equality check for polynomials involves a number of multiplications,
whose implementation includes the check of MACs on the multiplicands. Obvi-
ously, all these MAC checks have to pass before the value f�v(n)(r) − f�v(0)(r) is
revealed in the equality check.

Complexity. With n computing parties and a vector of length m, the round
complexity (of the online phase) of the protocol is O(n+log m). Here O(n) comes
from the loop (1) and O(log m) comes from the computation of the products of
length m in (3). The log m term can be removed at the cost increasing the
number of (binary) multiplications several times [3].

The communication complexity of the online phase is O(n2m), when we con-
sider the elements of F to have constant size. This holds, because at each itera-
tion of the loop (1), one party exchanges O(m) elements of F with every other
party. The communication complexity of the offline phase is somewhat larger
than O(n2m), because an implementation of a single invocation of Fprep.Shuffle
needs somewhat more than O(m) communication [8].

3.2 Creating a Random Permutation and Applying It

We may also want to “create and store” a random oblivious permutation, such
that it can be applied to several vectors during the later steps of the computation.

Linear-Time Oblivious Permutations for SPDZ 249

For the creation, we pick a vector �u(0) ∈ F
m, where all elements are different,

classify it, and apply the protocol in Fig. 2 to it. To represent this permutation
π, each party stores his πi. Also, the protocol stores both ��u(0)� and ��u(n)�.

Fig. 3. Applying a private permutation to a private vector

The protocol for applying a stored π to a private vector ��v(0)� is given in
Fig. 3. It assumes that the identity of the permutation we want to apply is
already known during the offline phase. This is a natural assumption, if, during
the offline phase, we already know the computation that we want to do once
we have the data. Even if the assumption does not hold, the protocol in Fig. 3
can still be used, because a permutation tuple (ρ, �z; �x, �y) for parties Pi, Pj with
a random permutation ρ can easily be converted to another permutation tuple
with an arbitrary permutation τ known to Pi by Pi sending ρ−1 ◦ τ to Pj , which
the parties then apply to �z and �y. If ρ is a random permutation then it is a
sufficient mask for that message, preserving the privacy of τ from Pj .

The functionality and privacy arguments of this protocol are the same as for
the protocol in Fig. 2. For the correctness check, consider the bivariate polyno-
mial g�u,�v ∈ F[X,Y] for �u,�v ∈ F

m, defined by g�u,�v(X,Y) =
∏m

i=1(X − vi − uiY).
By our arguments in Sect. 3.1, two polynomials g�u,�v and g�u′,�v′ are equal iff the
vector of polynomials (v1 + u1Y, . . . , vm + umY) is a permutation of the vector
(v′

1 + u′
1Y, . . . , v′

m + u′
mY). But this is only possible if �u′ is a permutation of �u,

and �v′ is the same permutation of �v. In Fig. 3, we check the equality of g�u(n),�v(n)

and g�u(0),�v(0) by evaluating their difference at a random point (r, s) and checking
that it is zero (again masking with r′). We thus obtain that the permutation
that brings �v(0) into �v(n) is the same that brought �u(0) into �u(n).

3.3 Applying the Inverse of a Random Permutation

After creating and storing the representation ��u(0)�, ��u(n)� of a random permu-
tation π, we may want to apply π−1 to a private vector ��v(0)� [13]. The protocol
for this application is basically the same as the one given in Fig. 3, with the

250 P. Laud

following differences: (a) the offline phase is executed with inputs π−1
1 , . . . , π−1

n ,
(b) the main loop (iterations indexed by i) runs from n down to 1, and (c) the
test in step (3) swaps �v

(n)
i � and �v

(0)
i �.

3.4 Optimizations

As remarked by Chase et al. [8], running in parallel several instantiations of the
implementation of Fprep.Shuffle with the same permutation π may have better
communication complexity than running them independently. Our online phase
requires several permutation tuples with the same permutation, if the overlaying
privacy-preserving computation invokes the protocol in Fig. 3 many times, hence
the parallel execution is a natural fit.

In the offline phase, we generate permutation tuples of the form (π, �z; �x, �y).
When applying the inverse of a permutation, we need permutation tuples that
contain π−1. We can anticipate that need and create these tuples separately.
However, we can also transform the tuple (π, �z; �x, �y) into the permutation tuple
(π−1, π−1(−�z); �y, �x) with no interaction between the parties.

4 Security Analysis

In previous section, we presented our additions to the protocol Πonline. The
extended Πonline is required to be at least as secure as the extended ideal func-
tionality Fonline. The extensions to latter consist of idealized versions to permute
a vector, make a random permutation, and apply it, all working with handles to
private values, and all abortable by the adversary. For space reasons, we omit
precise descriptions.

Security is proved by giving a simulator between Fonline and Πonline. The
simulator runs a copy of the real protocol inside, using real inputs of corrupted
parties (which the adversary gave to the machines implementing the protocol
on behalf of those parties), and dummy inputs for honest parties. The adver-
sary cannot tell the difference between Πonline and Fonline‖Sonline, because all
messages the honest parties send to corrupted parties are uniformly random.
Whenever a value y is revealed, which may happen at the end of the protocol,
or at other steps of the overlaying algorithm (e.g. after comparisons in a non-
data-oblivious sorting algorithm), Fonline tells Sonline, what the value of y is.
The simulator then obtains the shares of corrupted parties from the adversary,
and adjusts the shares of the honest parties, such that they add up to y. The
same additive correction is applied to honest parties’ shares of γ(y) (the sim-
ulator knows α). If the subsequent MAC check between the simulator and the
adversary fails, then the simulator tells Fonline to stop.

The evaluation of the check in step (3) of Figs. 2, 3 does not involve Fonline.
It is performed by Sonline and the adversary. If it fails (the MACs do not pass
the check, or the computed difference is non-zero), then Sonline tells Fonline to
stop. Again, the view of the adversary during this check consists of uniformly
randomly distributed values in F.

Linear-Time Oblivious Permutations for SPDZ 251

5 Conclusions

This paper gives the first presentation of an efficient permutation protocol for
secure MPC, with security against active adversaries, and with compatibility
towards the well-known SPDZ protocol set. Both the communication complexity
and the round complexity of the online phase of the protocol are highly attractive
in the context of a small number of computing parties, which is expected to be
the most frequent use-case. This opens up a large body of efficient algorithms,
built on top of passively secure, honest-majority MPC systems, for conversion
onto systems with active security.

Our future work involves the choice of implementation details for both the
online and offline phases of our protocols. It is also worthwhile to study, to which
extent our protocols are adaptable to other rings, similarly to SPDZ [9].

Acknowledgements. This work has been supported by Estonian Research Council,
grant no. PRG920, and by European Regional Development Fund through the ICT
Centre of Excellence EXCITE.

References

1. Abidin, A., Aly, A., Cleemput, S., Mustafa, M.A.: An MPC-based privacy-
preserving protocol for a local electricity trading market. In: Foresti, S., Persiano,
G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 615–625. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48965-0 40

2. Asharov, G., Chan, T.H., Nayak, K., Pass, R., Ren, L., Shi, E.: Bucket oblivious
sort: an extremely simple oblivious sort. In: Farach-Colton, M., Gørtz, I.L. (eds.)
3rd Symposium on Simplicity in Algorithms, SOSA 2020, Salt Lake City, UT, USA,
6–7 January 2020, pp. 8–14. SIAM (2020)

3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Rudnicki, P. (ed.) Proceedings of the Eighth
Annual ACM Symposium on Principles of Distributed Computing, Edmonton,
Alberta, Canada, 14–16 August 1989, pp. 201–209. ACM (1989)

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs
to delegatable succinct constraint satisfaction problems: extended abstract. In:
Kleinberg, R.D. (ed.) Innovations in Theoretical Computer Science, ITCS 2013,
Berkeley, CA, USA, 9–12 January 2013, pp. 401–414. ACM (2013)

5. Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: Rmind: a tool for cryptographically
secure statistical analysis. IEEE Trans. Dependable Secur. Comput. 15(3), 481–495
(2018)

6. Bogdanov, D., Laur, S., Talviste, R.: A practical analysis of oblivious sorting algo-
rithms for secure multi-party computation. In: Bernsmed, K., Fischer-Hübner, S.
(eds.) NordSec 2014. LNCS, vol. 8788, pp. 59–74. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11599-3 4

7. Bootle, J., Cerulli, A., Groth, J., Jakobsen, S., Maller, M.: Arya: nearly linear-time
zero-knowledge proofs for correct program execution. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 595–626. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 20

https://doi.org/10.1007/978-3-319-48965-0_40
https://doi.org/10.1007/978-3-319-11599-3_4
https://doi.org/10.1007/978-3-319-11599-3_4
https://doi.org/10.1007/978-3-030-03326-2_20

252 P. Laud

8. Chase, M., Ghosh, E., Poburinnaya, O.: Secret-shared shuffle. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 342–372. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64840-4 12

9. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 26

10. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

11. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5 15

12. de Hoogh, S., Schoenmakers, B., Veeningen, M.: Certificate validation in secure
computation and its use in verifiable linear programming. In: Pointcheval, D.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 265–284.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1 14

13. Laud, P.: Parallel oblivious array access for secure multiparty computation and
privacy-preserving minimum spanning trees. Proc. Priv. Enhancing Technol.
2015(2), 188–205 (2015)

14. Laud, P., Pankova, A., Jagomägis, R.: Preprocessing based verification of multi-
party protocols with honest majority. Proc. Priv. Enhancing Technol. 2017(4),
23–76 (2017)

15. Laud, P., Pettai, M.: Secure multiparty sorting protocols with covert privacy. In:
Brumley, B.B., Röning, J. (eds.) NordSec 2016. LNCS, vol. 10014, pp. 216–231.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47560-8 14

16. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 18

17. Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evalu-
ation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
486–505. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 26

18. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Reiter,
M.K., Samarati, P. (eds.) CCS 2001, Proceedings of the 8th ACM Conference on
Computer and Communications Security, Philadelphia, Pennsylvania, USA, 6–8
November 2001, pp. 116–125. ACM (2001)

https://doi.org/10.1007/978-3-030-64840-4_12
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.1007/978-3-319-31517-1_14
https://doi.org/10.1007/978-3-319-47560-8_14
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/978-3-662-45608-8_26
https://doi.org/10.1007/978-3-662-45608-8_26

On the Higher-Bit Version
of Approximate Inhomogeneous Short

Integer Solution Problem

Anaëlle Le Dévéhat(B), Hiroki Shizuya, and Shingo Hasegawa

Tohoku University, Sendai, Japan
anaelle.le.devehat.s8@dc.tohoku.ac.jp

Abstract. We explore a bitwise modification in Ajtai’s one-way func-
tion. Our main contribution is to define the higher-bit approximate inho-
mogeneous short integer solution (ISIS) problem and prove its reduction
to the ISIS problem. In this new instance, our main idea is to discard
low-weighted bits to gain compactness.

As an application, we construct a bitwise version of a hash-and-sign
signature in the random oracle model whose security relies on the (Ring)-
LWE and (Ring)-ISIS assumptions. Our scheme is built from the hash-
and-sign digital signature scheme based on the relaxed notion of approxi-
mate trapdoors introduced by Chen, Genise and Mukherjee (2019). Their
work can be interpreted as a bitwise optimization of the work of Mic-
ciancio and Peikert (2012). We extend this idea and apply our technique
to the scheme by discarding low-weighted bits in the public key. Our
modification brings improvement in the public key size but also in the
signature size when used in the right setting.

However, constructions based on the higher-bit approximate ISIS save
memory space at the expense of loosening security. Parameters must be
set in regards with this trade-off.

1 Introduction

1.1 Background

Since Peter Shor’s breakthrough work in 1994 [25], it became clear that quantum
computers are able to break usual cryptographic primitives based on number
theory assumptions. For instance, a quantum computer can break factoring-
based cryptography in polynomial time of the security parameter. This results
threaten usual cryptography and reveal a need for efficient post-quantum secure
cryptography. In 2017, NIST launched its still ongoing post-quantum cryptog-
raphy (PQC) standardization process [22]. It illustrates the necessity of finding
efficient and realistic post-quantum secure cryptographic constructions in order
to guarantee the confidentiality and integrity of digital communications.

One high potential candidate for PQC is lattice-based cryptography. It has
been an active area of research since Ajtai’s groundbreaking work in 1996 which

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 253–272, 2021.
https://doi.org/10.1007/978-3-030-92548-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_14

254 A. Le Dévéhat et al.

demonstrates strong worst-case to average-case reductions on lattices problems
[2,3]. Worst-case to average-case hardness is very important in cryptographic
constructions since it needs to be hard to attack a construction for random
instances. Moreover, underlying lattice problems provide strong security even
for quantum adversaries (no polynomial attack is known).

The attractiveness of lattice-based cryptography comes from its elegant con-
structions and efficiency improvements obtained using lattices with algebraic
structure [14,20]. It also enjoys great versatility afforded by the learning with
errors (LWE) problem [24]. A lot of lattice-based cryptographic primitives
has been studied such as fully homomorphic encryption schemes [12], public-
key encryption [14,15] but also attribute-based encryption and (hierarchical)
identity-based encryption [1,7].

In this work, we focus on lattice-based signatures among lattice-based cryp-
tographic schemes. Even if there has been early attempts at lattice-based digital
signatures, it is only in 2008 that the first direct constructions of lattice-based
signatures appeared. A “hash-and-sign” signature scheme was constructed by
Gentry, Peikert and Vaikuntanathan [13]. At the same time, a provably secure
one-time signature using ideal lattices was constructed by Lyubashevsky and
Micciancio [17]. Both schemes enjoys security based on the hardness of worst-
case lattice problems. Even if both schemes achieved short signatures, they
still had several disadvantages. These constructions led the way to two lines
of research. First, Lyubashevsky used the Fiat-Shamir transform to improve
the one-time signature [17] in several subsequent works [16]. Several of the best
candidates in NIST PQC standardization procedure are based on the rejection
sampling method [4,10,22]. On the other hand, the GPV “hash-and-sign” sig-
nature scheme [13] is not very practical. In their work, Gentry, Peikert and
Vaikuntanathan show how to sample solutions following a distribution simulat-
able without knowing the secret to avoid any information leakage. In order to
do so, they use a gaussian sampler which leads to various difficulties and com-
plexity. A more satisfactory solution to this problem was given by Micciancio
and Peikert [21]. Their work brought several improvements both for security and
efficiency in GPV scheme line of work.

1.2 Related Work

In this work, we study constructions based on Ajtai’s one-way function and trap-
door [3]. In lattice-based hash-and-sign GPV signature [13], a signer is assigned
a uniformly random public matrix A ∈ Z

n×m
q along with a trapdoor S ∈ Z

m×m
q

which verifies AS = 0 (mod q). The trapdoor S is usually a basis of short lattice
vectors solution to the SIS problem with regards to A. Thus, using S, one can
find short preimages for the Ajtai’s function defined by A and sign a message.
The resulting signature’s norm depends on the norms of the columns in S. In
order to further optimize and improve this kind of digital signature, it is highly
relevant to improve the algorithms for trapdoor and key generation.

At first, improvements of Ajtai’s trapdoor generation algorithm [5,23] were
rather complex and inefficient. Only in 2012, the introduction by Micciancio

On the Higher-Bit Version of Approximate ISIS 255

and Peikert of their elegant G-trapdoor construction [21] enabled faster and
shorter signatures. However, even using the G-trapdoor construction, hash-and-
sign signature based on Ajtai’s function is still impractical due to large keys
and signatures sizes. For instance, when compared to lattice-based signatures
candidates of NIST PQC standardization process [4,10,11], the hash-and-sign
signature instantiated with G-trapdoors has about six times larger public keys
and signatures sizes for a same level of security.

In order to reduce this difference, Chen, Genise and Mukherjee constructed
a F -trapdoor [9] from the G-trapdoor [21]. The innovation in their work is the
definition of the approximate ISIS problem which reduces to the ISIS problem.
It allows a certain error when sampling a preimage for Ajtai’s function. By
allowing a little error, the G-trapdoor is reduced to an approximate version
called F -trapdoor. The hash-and-sign signature instantiated with F -trapdoors
enjoys sEU-CMA security and much smaller public keys and signatures sizes
than the one with G-trapdoors. However, these sizes are still too large when
compared with state-of-the-art digital signatures based on NTRU lattices [11]
or on the rejection sampling approach [4,10].

1.3 Contributions

Our main contribution is the definition of the higher-bit approximate ISIS prob-
lem along with its reduction to the ISIS problem. This newly defined problem
permits improvements in constructions based on the ISIS problem. It is based
on discarding low-weighted bits of coefficients in the matrix A which defines
Ajtai’s function. As an application of the higher-bit approximate ISIS problem,
we adapt the hash-and-sign signature by Chen, Genise and Mukherjee [9]: we
construct a sEU-CMA secure hash-and-sign digital signature along with adapted
trapdoor generation and preimage sampling algorithms.

In our application, the public key A is constructed from the high-weighted
bits of the public key in [9]. This idea fits in the approximate setting. Further-
more, with the right parameters setting, discarding low-weighted bits in the
public key allows for a possible similar optimization of the signature. Our con-
struction seems like a natural following of the F -trapdoor signature scheme [9].
Indeed, the gadget matrix F is basically defined as the gadget matrix G [21] but
without low-weighted bits entries.

With our modification, the public key belongs to Z
n×m
q

bd
rather than Z

n×m
q

(where q = bk, d < k). This is a direct consequence of using the higher-bit
approximate ISIS problem as the underlying hardness problem. Moreover, the
signature is in Z

m
q

bd
rather than Z

m
q . Applying our technique to the F -trapdoor

signature scheme allows to save n × m × d�log2 b� bits in the public key and
m × d�log2 b� bits in the signature.

However, this setting implies a trade-off between security and memory space.
This trade-off is due to the reduction loss when using the higher-bit approximate
ISIS rather than the approximate ISIS. In order to assess this trade-off, we give
some concrete parameters and results. We expect our construction to reduce the

256 A. Le Dévéhat et al.

public key size by about half and significantly reduce the signature size at the
expense of a reasonable drop in the security level. Moreover, providing a higher
security parameter, we estimate 140-bit security level rather than 88-bit security
as given in [9] for about the same key sizes. We may note that optimization
based on discarding low-weighted bits can be seen in the lattice-based signature
CRYSTALS-Dilithium [10].

We note that our hash-and-sign signature construction in the random oracle
model can translate to the Ring setting under Ring-LWE and Ring-SIS assump-
tions [18].

1.4 Organization

In Sect. 3, we define and study the higher-bit approximate ISIS problem and
its reduction to the ISIS problem. In Sect. 4, we introduce our main idea for
a new construction based on the higher-bit approximate ISIS. In Sect. 5, we
construct new trapdoor generation and preimage sampling algorithms and study
the resulting distributions. Finally, in Sect. 6, we instantiate a sEU-CMA secure
hash-and-sign signature using our algorithms.

2 Preliminaries

2.1 Notations and Linear Algebra

We denote the set of real numbers by R, the set of integers by Z and the set of
positive integers by N. Denote Z/qZ by Zq. We use the notation x ← U(S) when
a variable x is drawn uniformly at random from the set S. Moreover, we use ≈s

as the abbreviation for statistically close. A vector v is always in column form
and represented in lower-case bold letters. A matrix A is always represented in
upper-case bold letters. For a vector v, we denote the ith component of v as
vi. We do the same for a matrix A and denote the ith component of the jth

column of A as ai,j . We denote the lp-norm of a vector v as ‖v‖p := (
∑

vp
i)

1
p .

The norm of a matrix is the norm of its longest column: ‖A‖p := maxi‖ai‖p.
By default we use l2-norm. A short vector is a vector whose norm is small but
not necessarily its dimension.

If a symmetric matrix Σ ∈ R
n×n verifies that for all x ∈ R

n, xtΣx > 0
(≥0) then Σ is positive (semi)-definite. For two positive (semi)-definite matrices
Σ1 and Σ2, we note Σ1 > Σ2 (≥) if Σ1 − Σ2 is positive (semi)-definite.

√
Σ

designates any full rank matrix T such that Σ = TT t.

2.2 Lattices Background

A m-dimensional lattice Λ of rank k ≤ m is a discrete additive subgroup of R
m.

It is generated by all linear combinations with integers coefficients of k linearly
independent basis vectors B = {b1, ..., bk}.

On the Higher-Bit Version of Approximate ISIS 257

In many cryptographic work, we use q-ary integer lattices. For some positive
integers m,n ∈ N, q ≥ 2, u ∈ Z

n
q and A ∈ Z

n×m
q we can define the following

m-dimensional full rank q-ary lattices :

Λ⊥(A) = Λ⊥
q (A) := {x ∈ Z

m : A.x = 0 (mod q)};

Λ⊥
u (A) := {x ∈ Z

m : A.x = u (mod q)}.

In this work, we study vectors distributions obtained when sampling in q-ary
lattices. To do so, we first need to define what is a discrete Gaussian distribution
over a lattice Λ.

Definition 1 (Gaussian function on R
n with parameter s: ρs [9]). For

any s > 0,
∀x ∈ R

n, ρs(x) = e−π||x||2/s2

Definition 2 (Discrete Gaussian distribution DΛ+c,s [9]). For any c ∈ R
n,

real s > 0, and n-dimensional lattice Λ,

∀x ∈ Λ + c, DΛ+c,s(x) =
ρs(x)

∑
a∈Λ+c ρs(a)

When omitted, s and c are taken to be 1 and 0 respectively.

This definition of discrete Gaussian distribution can be extended to non-
spherical Gaussians [9]. However we do not make use of this definition in our
work, thus we omit it here.

Moreover, in this work, some conditions on the parameters are set in regards
with the smoothing parameter. We recall its definition.

Definition 3 (Smoothing parameter [19]). For any lattice Λ and positive
real ε > 0, the smoothing parameter ηε(Λ) is the smallest real s > 0 such that
ρ1/s(Λ∗{0}) ≤ ε.

Definition 4 ([9]). For a positive semi-definite Σ = TT t, ε > 0, and lattice Λ
with span(Λ) ⊆ span(Σ), we say ηε(Λ) ≤ √

Σ if ηε(T+Λ) ≤ 1.

2.3 LWE, SIS, ISIS and Approximate ISIS

First we recall the definition of the learning with errors problem.

Definition 5 (Decisional learning with errors [24]). For n,m ∈ N and
modulus q ≥ 2, distributions θ, π, χ ⊆ Zq. An LWE sample is obtained from
sampling secret vector s ← θn, public matrix A ← πn×m, and error vector
e ← χm, and outputting (A,yt := stA + et (mod q)).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Zm

q) with probability
greater than 1/2 plus non-negligible.

258 A. Le Dévéhat et al.

Lemma 1 ([6]). For n,m, q, s chosen as LWE hardness is based on GapSVP
and SIVP,

LWEn,m′,q,DZ,s,U(Zq),DZ,s
is as hard as LWEn,m,q,U(Zq),U(Zq),DZ,s

for m′ ≤
m − (16n + 4 log log q).

Now we recall the SIS and ISIS problems.

Definition 6 (SIS [2]). For any n,m ∈ N, q ∈ Z and β ∈ R, define the short
integer solution problem SISn,m,q,β as follows: Given A ∈ Z

n×m
q , find a non-zero

vector x ∈ Z
m such that ‖x‖ ≤ β, and

Ax = 0 (mod q)

Definition 7 (ISIS). For any n,m ∈ N, q ∈ Z and β ∈ R, define the inhomo-
geneous short integer solution problem ISISn,m,q,β as follows: Given A ∈ Z

n×m
q ,

y ∈ Z
n
q , find a vector x ∈ Z

m such that‖x‖ ≤ β, and

Ax = y (mod q)

In their work, Chen, Genise and Mukherjee introduce a relaxed notion of the
ISIS problem. We will be using their approximate setting in our work.

Definition 8 (Approx.ISIS [9]). For any n,m ∈ N, q ∈ Z and α, β ∈
R, define the approximate inhomogeneous short integer solution problem
Approx.ISISn,m,q,α,β as follows: Given A ∈ Z

n×m
q , y ∈ Z

n
q , find a vector x ∈ Z

m

such that ‖x‖ ≤ β, and there is a vector z ∈ Z
n satisfying

‖z‖ ≤ α and Ax = y + z (mod q)

With the right parameters, we have the following reductions [9]:

– LWEn,m,q,θ,U(Zq),χ ≤p Approx.ISISn,m,q,α,β

– ISISn,n+m,q,β ≥p Approx.ISISn,m,q,α+β,β

– ISISn,n+m,q,α+β ≤p Approx.ISISn,m,q,α,β

An approximate trapdoor for a public matrix A ∈ Z
n×m
q is a string that

allows one to solve efficiently the Approx.ISIS and LWE problems w.r.t A.

2.4 Recall: F-Trapdoors [9]

The work of Chen, Genise and Mukherjee is itself based on the gadget-based
trapdoor generation and preimage sampling algorithms of Micciancio and Peikert
[21]. In their work on approximate trapdoors, Chen, Genise and Mukherjee create
a new gadget matrix F which is an adaptation of the G-gadget matrix from [21]
where the l lower-orders entries are dropped.

The integer b ≥ 2 defines the base for the F -lattice and q the modulus
(k = �logb q�).

The gadget matrix F is chosen such that it is easy to sample a short approx-
imate preimage from Λ⊥

u (F). To do so, the approximate gadget-vector is set as

On the Higher-Bit Version of Approximate ISIS 259

f t := (bl, bl+1, ..., bk−1)t ∈ Z
(k−l)
q . Let w = n(k − l) be the number of columns of

the approximate gadget matrix F := In⊗f t ∈ Z
(n×w)
q . The numbers of columns

of A as defined below is m := 2n + w. (To sample approximately from Λ⊥
u (F),

we first sample from Λ⊥
u (G) as described in [21].)

Recall that the public matrix A is defined as:

A = [Ā|F − ĀR] ∈ Z
n×m
q with Ā = [In, Â] ∈ Z

n×2n
q

where R is a secret, trapdoor matrix with small random entries. R is sampled
from the distribution χ2n×w where χ ⊆ Z is chosen to be a distribution such
that LWEn,n,q,χ,U(Zq),χ is hard. Â is sampled from U(Zn×n

q). Doing so, A is
pseudorandom.

In order to sample a short approximate preimage of u, we use the trapdoor R
to map short approximate coset representatives of Λ⊥(F) to short approximate
coset representatives of Λ⊥(A) by the relation

A

[
R
I

]

= F

However, using this relation alone would leak information about the secret trap-
door R. To avoid this, the perturbation-based Gaussian sampler technique of
[21] is used. The covariance of the perturbation p is defined as the positive def-

inite matrix Σp := s2Im − σ2

[
RRt R
Rt I

]

where σ is at least ηε(Λ⊥(G)) and s is

a parameter. This perturbation can be computed offline as p ← D
Zm,

√
Σp

.

To approximately sample from Λ⊥
u (A), first define v = u − Ap and sample

a vector z following the distribution DΛ⊥
v (F),σ as described in [21]. Finally, the

approximate preimage is set to be:

y := p +
[
R
I

]

z.

3 Hardness of Higher-Bit Version Problems

In this work, we aim at optimizing the memory space used to store elements in
cryptographic constructions based on Ajtai’s function upon some slight approxi-
mation. Our main idea is to use the base decomposition of elements in Zq. Using
this decomposition, we discard low-weighted bits and only keep high-weighted
ones.

To create such bitwise setting, we define the higher-bit approximate inhomo-
geneous short integer problem as well as the higher-bit near collision resistance
of Ajtai’s function. These instances are defined in regard to a higher-bit version
of Ajtai’s function.

260 A. Le Dévéhat et al.

3.1 Notations - High/Low Order Bits Functions

Let b ≥ 2 be the base used in decomposition and q ∈ Z (k = �logb q�). Let d be
an integer s.t 0 ≤ d < k. d is chosen as the turning point exponent between high
order and low order bits.

Definition 9 (Decomposition in base b). For z ∈ Zq, define the decomposi-
tion in base b of z as the elements {αz,r}k−1

r=0 in [|0, b − 1|] s.t :

z =
k−1∑

r=0

αz,rb
r

Definition 10 (HighBits and LowBits functions). For z ∈ Zq,

HighBitsd(z) =
k−1∑

r=d

αz,rb
r

LowBitsd(z) =
d−1∑

r=0

αz,rb
r

In introducing these definitions, our goal is to apply them to matrices in
Z

n×m
q and vectors in Z

m
q (n,m ∈ N). Thus, we extend these definitions as in the

following.

Definition 11. For y ∈ Z
n
q ,

yH = (HighBitsd(yi))0≤i<n and yL = (LowBitsd(yi))0≤i<n

For A ∈ Z
n×m
q ,

AH = (HighBitsd(ai,j))0≤i<n;0≤j<m and AL = (LowBitsd(ai,j))0≤i<n;0≤j<m

3.2 Hardness of Higher-Bit Approximate ISIS

Let b ≥ 2 be the base used in decomposition.

Definition 12. For any n,m ∈ N, q ∈ Z, α, β ∈ R and d ∈ N (d < �logb q�),
define the higher-bit approximate inhomogeneous short integer solution problem
H.Approx.ISISn,m,q,d,α,β as follows :

Given A ∈ Z
n×m
q

bd
, y ∈ Z

n
q , find a vector x ∈ Z

m such that ‖x‖ ≤ β and there
is a vector z ∈ Z

n satisfying :

‖z‖ ≤ α and bdAx = y + z (mod q).

On the Higher-Bit Version of Approximate ISIS 261

We show that the higher-bit approximate ISIS problem is as hard as the
standard ISIS. We know that the approximate ISIS is as hard as the standard
ISIS under the right parameters setting (see Sect. 2). Thus, we only need to show
the reductions between the higher-bit approximate ISIS and the approximate
ISIS.

Lemma 2.

Approx.ISISn,m,q,α,β ≥p H.Approx.ISISn,m,q,d,α,β ;
H.Approx.ISISn,m,q,d,α,β ≥p Approx.ISISn,m,q,α+

√
nbdβ,β.

Proof. The first reduction is straightforward.
Suppose there is a polynomial time algorithm A that solves H.Approx.

ISISn,m,q,d,α,β , we build a polynomial time algorithm B that solves
Approx.ISISn,m,q,α+

√
nbdβ,β . Given an Approx.ISIS instance (A ∈ Z

n×m
q , y ∈

Z
n
q), B passes (AH

bd
∈ Z

n×m
q

bd
, y) to A and get x ∈ Z

m
q such that:

AHx = y + z (mod q) with ‖x‖ ≤ β, ‖z‖ ≤ α.

We do :

Ax = y + z + ALx (mod q)

Moreover,

‖z + ALx‖ ≤ ‖z‖ + ‖ALx‖
≤ α + ‖AL‖‖x‖
≤ α +

√
nbdβ

since all coefficients in AL are less than bd.
So x is a valid solution to Approx.ISISn,m,q,α+

√
nbdβ,β .

��
Theorem 1.

ISISn,n+m,q,β ≥p H.Approx.ISISn,m,q,d,α+β,β ;
H.Approx.ISISn,m,q,d,α,β ≥p ISISn,n+m,q,α+(

√
nbd+1)β.

Proof. We can prove this Theorem by using both Lemma 2 above and reductions
from [9] (see Sect. 2). ��

3.3 The Near Collision Resistance of Higher-Bit Ajtai’s Function

Let b ≥ 2 be the base used in decomposition.

262 A. Le Dévéhat et al.

Lemma 3. (The near-collision-resistance of Ajtai’s function [9]). For
any n,m, q ∈ N and α, β ∈ R,

If there is an efficient adversary A that given A ← U(Zn×m
q), finds x1 �=

x2 ∈ Z
m such that:

‖x1‖ ≤ β and ‖x2‖ ≤ β and ‖Ax1 − Ax2 (mod q)‖ ≤ 2α

Then there is an efficient adversary B that solves SISn,n+m,q,2(α+β).

Lemma 4. For any n,m, q ∈ N, α, β ∈ R and d ∈ N (d < �logb q�),
If there is an efficient adversary A that given A ← U(Zn×m

q

bd
), finds x1 �=

x2 ∈ Z
m such that:

‖x1‖ ≤ β and ‖x2‖ ≤ β and ‖bdAx1 − bdAx2 (mod q)‖ ≤ 2α

Then there is an efficient adversary B that given A ← U(Zn×m
q), finds

x1 �= x2 ∈ Z
m such that:

‖x1‖ ≤ β and ‖x2‖ ≤ β and ‖Ax1 − Ax2 (mod q)‖ ≤ 2(α +
√

nbdβ)

Proof. Suppose B gets A ∈ Z
n×m
q . B sends AH

bd
to A and gets back x1 �= x2 ∈ Z

m

such that:

‖x1‖ ≤ β and ‖x2‖ ≤ β and ‖AHx1 − AHx2 (mod q)‖ ≤ 2α

We define z = AHx1 − AHx2 (mod q),

Ax1 − Ax2 = z + ALx1 − ALx2 (mod q)

Thus ,

‖Ax1 − Ax2 (mod q)‖ ≤ ‖z‖ + ‖ALx1‖ + ‖ALx2‖
≤ 2(α +

√
nbdβ)

��
Theorem 2. (The near collision resistance of higher-bit Ajtai’s func-
tion). For any n,m, q ∈ N, α, β ∈ R and d ∈ N (d < �logb q�),

If there is an efficient adversary A that given A ← U(Zn×m
q

bd
), finds x1 �=

x2 ∈ Z
m such that:

‖x1‖ ≤ β and ‖x2‖ ≤ β and ‖bdAx1 − bdAx2 (mod q)‖ ≤ 2α

Then there is an efficient adversary B that solves SISn,n+m,q,2[α+(
√

nbd+1)β]

Proof. We can prove this Theorem using both Lemma 3 [9] and Lemma 4 above.
��

On the Higher-Bit Version of Approximate ISIS 263

4 New Construction - Main Idea

We construct an application of the higher-bit approximate ISIS problem. Our
goal is to reduce the sizes of both the matrix A ∈ Z

n×m
q generated with an

approximate trapdoor as in the algorithms of [9], and of the sampled approximate
preimage y ∈ Z

m
q by Ajtai’s Function defined by A.

Let b be the base for the matrix F of [9] with parameter l. As mentioned
above, we will be using the decomposition in base b (k = �logb q�). Let d be an
integer s.t 0 ≤ d ≤ l.

4.1 Modification in the Public Matrix A

Modification in the Construction
We recall that in [9], the public matrix A is defined as:

A := [Ā|F − ĀR] ∈ Z
n×m
q

where F is the public approximate gadget matrix and R is the approximate
trapdoor associated with the Ajtai’s Function defined by A (see Sect. 2.4).

The selected modification on A is straightforward. We construct Anew ∈
Z

n×m
q

bd
by doing the same as above and applying the HighBits function on A.

Anew =
AH

bd
where AH = [ĀH |(F − ĀR)H]

In the following work, we need to isolate F . We observe that F is already in a
higher-bit form since F = In ⊗ (bl, bl+1, ..., bk−1)t and d ≤ l.

We use this property to express AH while keeping F untouched:

AH = [ĀH |F + (−ĀR)H]

It is easy to see that Anew ∈ Z
n×m
q

bd
.

Optimization in the Public Matrix Size. Using this modification, we save n ×
m × d�log2 b� bits in the public matrix Anew memory space.

4.2 Repercussion on the Security and Underlying Problem

This change in the public matrix A implies a modification in the hardness of
the underlying problem. In this construction, security relies on the higher-bit
approximate ISISn,m,q,d,α,β problem. As seen in Theorem 1, there is a reduction
from this problem to the SISn,m,q,α+

√
nbdβ problem. For same α and β as in the

original construction from [9], we need to deal with an additional
√

nbd factor
in the SIS problem solution length.

264 A. Le Dévéhat et al.

5 New Construction - Algorithms

Let n,m, q, k and d be defined as in Sect. 4.
In the following section, we present our compact approximate trapdoor gener-

ation algorithm and approximate preimage sampling algorithm. Our algorithms
use those from [9]. Our method generates a pseudorandom A ∈ Z

n×m
q

bd
along with

an approximate trapdoor R which allows to sample an approximate preimage
y ∈ Z

m
q

bd
for higher-bit Ajtai’s function defined by A.

5.1 The Higher-Bit Version Algorithms

We consider that HIGHBITS and LOWBITS are two functions implemented as
described in Sect. 3.1.

Fig. 1. Pseudocode for the higher-bit version approximate trapdoor generation and
approximate preimage sampling algorithms. The distribution χ is chosen so that
LWEn,n,q,χ,U(Zq),χ is hard. For the sake of optimization in Algorithm 2, we need to

set q = bk.

Algorithm 1. This algorithm is instantiated such as described in Sect. 4. The
overall goal is to use only the high-weighted bits of the previous public matrix
A0 as our new public key. Doing so, we induce a bd-approximation on every
coefficient of the resulting public key A when compared to A0.

One should note that this algorithm does not only generate a matrix-
approximate trapdoor pair. It also returns the low-weighted bits of the origi-
nal matrix A0. This information is given to the approximate preimage sampling

On the Higher-Bit Version of Approximate ISIS 265

algorithm. We should notice that information on AL
0 leaks through the error dis-

tribution. However this is not a problem because it does not leak information on
the secret trapdoor R since AL

0 is pseudorandom as we will see in Subsect. 5.2.

Algorithm 2. This algorithm samples an approximate preimage y ∈ Z
m
q

bd
of

u ∈ Z
n
q by the higher-bit Ajtai’s function A ∈ Z

n×m
q

bd
.

First, we sample an approximate preimage y0 ∈ Z
m
q of the Ajtai’s function

defined by A0 using the algorithm from [9].
Secondly, in order to reduce the signature size, we use a little trick. It relies

on the following lemma:

Lemma 5. For z ∈ Zq, q = bk, and integers d, j such that j ≥ d,

bjz = bjLowBitsk−d(z) (mod q)

Proof.

bjz = bj−d
k−1∑

r=d

αz,r−db
r (mod q) = bj

k−1−d∑

r=0

αz,rb
r (mod q)

��
Using Lemma 5 and the fact that bdA is in a higher-bit form, we see that

the d highest bits of y0 have no impact on the product bdAy0.

Theorem 3. For A ∈ Z
n×m
q

bd
and y0 ∈ Z

m, q = bk,

bdAy = bdAy0 (mod q) where y = LowBitsk−d(y0)

Therefore, our modification in the public key A allows for an optimization
in the approximate preimage.

Remark 1. The norm of the approximate preimage is decreased by this modifi-
cation. Thus, if y0 is short then y is too.

Remark 2. This optimization needs the additional condition q = bk. If this con-
dition is not met, we should use the approximate preimage y0 from [9].

Optimization in the Preimage Size. Using this modification, we save m×d�log2 b�
bits in the approximate preimage memory space.

Remark 3. An idea to optimize the preimage size even more would be to apply
the HighBits function on y in the same way as for A. However, doing so would
increase a lot more the error term and thus impact security. We decide not to
add such modification as a trade-off between size and security.

266 A. Le Dévéhat et al.

Error Term. We define the error e ∈ Z
n
q as e = u − bdAy (mod q). e0 defines

the error term induced by y0 i.e. e0 = u − A0y0 (mod q).
The error term e can be expressed as:

e = e0 + enew (mod q) where enew = AL
0 y0 (mod q)

Proof.

e = u − bdAy (mod q)

= u − AH
0 y0 (mod q) Theorem 3

= u − (A0 − AL
0)y0 (mod q)

= u − A0y0︸ ︷︷ ︸
e0

+AL
0 y0︸ ︷︷ ︸

enew

(mod q)

��
Remark 4. If we had chosen to calculate y0 with regard to bdA rather than A0,

the error term e would be e = e0 + AL
0

[
R
I

]

z (z is an approximate preimage

for F). We observe that AL
0

[
R
I

]

= Ā
L
R +(−ĀR)L +F . Thus, information on

the secret R would leak from the distribution of e. Even though the norm of e
is decreased by this method, the security is compromised.

5.2 Study of the Resulting Distributions

The results of this subsection are summarized in the following Theorem.

Theorem 4. There exist probabilistic, polynomial time algorithms HIGHBITS.
APPROX.TRAPGENχ and HIGHBITS.APPROX.SAMPLEPRE satisfying the
following :

1. HIGHBITS.APPROX.TRAPGENχ(λ) returns a matrix-approximate trap-
door pair (A,R)∈ Z

n×m
q

bd
× Z

2n×n(k−l) along with a matrix AL
0 ∈ Z

n×m
bd

.

The matrices A and AL
0 are pseudorandom assuming the hardness of

LWEn,n,q,χ,U(Zq),χ.
2. Let ((A,R),AL

0) be generated by HIGHBITS.APPROX.TRAPGENχ(λ).
The following two distributions are statistically indistinguishable:

{(A,y,u,e) :u ← U(Zn
q),

y ← HIGHBITS.APPROX.SAMPLEPRE(A,AL
0 ,R,u, s),

e = u − bdAy (mod q)}

On the Higher-Bit Version of Approximate ISIS 267

and

{(A,y,u,e) :y0 ← DZm,s,e0 ← D
Zn,σ

√
(b2l−1)/(b2−1)

(mod q),

y = LowBitsk−d(y0),e = e0 + AL
0 y0 (mod q),

u = bdAy + e (mod q)}

for any σ ≥ √
b2 + 1.w(

√
log n) and s �

√
b2 + 1 s2

1(R)
s2n(R)ηε(Znk).

Proof. The proof is described in the end of this section. We use the distributions
study results in Theorem 4 from [9]. ��

Distributions of A and AL
0 .

Lemma 6. For any matrix M with distribution U(Zn×m
q),

M H

bd
follows the distribution U(Zn×m

q

bd
) and ML follows the distribution

U(Zn×m
bd

). The distributions of M H

bd
and ML are independent.

Proof. Let i,j be two integers s.t 0 ≤ i ≤ n and 0 ≤ j ≤ m. Let x be an integer
in [|0, q

bd
− 1|].

P

(
mH

i,j

bd
= x (mod

q

bd
)

)

= P(HighBitsd(mi,j) = bdx (mod q))

=
∑

l0∈[|0,bd−1|]
P(mi,j = bdx + l0 (mod q))

=
∑

l0∈[|0,bd−1|]

1
q

=
bd

q
=

1
q
bd

Using the same kind of reasoning, we can find that for any x ∈ [|0, bd − 1|],
P(mL

i,j = x (mod bd)) = 1
bd

MH and ML do not share any random sources thus their distributions are
independent.

��
We know that A0 is computationally indistinguishable from random assum-

ing LWEn,n,q,χ,U(Zq),χ [9].
Thus, using Lemma 6, we deduce that A ≈s U(Zn×m

q

bd
) and AL

0 ≈s U(Zn×m
bd

).

Distribution of y. We know that the distribution of y0 ← APPROX.
SAMPLEPRE(A0,R,u, s) is statistically indistinguishable from y0 ← DZm,s

for a random target. Since y = LowBitsk−d(y0), we can say that the distribution
of y is statistically indistinguishable from {y0 ← DZm,s,y = LowBitsk−d(y0)}
for a random target.

268 A. Le Dévéhat et al.

Thus, the distribution of y is simulatable without knowing the secret R nor
the public key A.

Distribution of e. We know that the distribution of
{
y0 ← APPROX.

SAMPLEPRE(A0,R,u, s),e0 = u − A0y0

}
is statistically indistinguishable

from {y0 ← DZm,s,e0 ← D
Zn,σ

√
(b2l−1)/(b2−1)

(mod q)} for a random target

u. Since e = e0 + AL
0 y0 (mod q), we can say that the distribution of e is

statistically indistinguishable from {y0 ← DZm,s,e0 ← D
Zn,σ

√
(b2l−1)/(b2−1)

(mod q),e = e0 + AL
0 y0 (mod q)} for a random target.

Thus, the distribution of e is simulatable without knowing the secret R.
Compared to [9], we need to know AL

0 to simulate e. However, as seen in 5.2,
AL

0 is computationally indistinguishable from random and thus do not leak infor-
mation about R.

6 Hash-and-Sign Signature

This section is dedicated to the construction of a sEU-CMA secure [9] hash-and-
sign signature scheme instantiated with the algorithms and parameters from
Fig. 1. Let σ, s ∈ R

+ be the discrete Gaussian widths of the distributions over
the cosets of Λ⊥

q (G) [21] and approximate Λ⊥
q (A0) [9] respectively. We choose a

distribution χ to sample R so that LWEn,n,q,χ,U(Zq),χ is hard.

6.1 Construction of a Hash-and-sign Signature

The following construction is written in the same way as the one in Sect. 5 from
[9]. This shows how it is adjusted to fit the “higher-bit setting”.

Construction 1. Given the algorithms from Theorem 4, a hash function H =
{Hλ : {0, 1}∗ → Z

n
q } modeled as a random oracle, we build a signature scheme

as follows.

– Gen(1λ): The key-generation algorithm samples A ∈ Z
n×m
q

bd
together with its

(α, β)-approximate trapdoor R and the matrix AL
0 ∈ Z

n×m
bd

from
HIGHBITS.APPROX.TRAPGENχ(λ). It outputs A as the verification key,
keeps R as the secret signing key and gives AL

0 to the signing algorithm.
– Sig(R,m): The signing algorithm checks if the message-signature pair

(m,xm) has been produced before. If so, it outputs xm as the signature of
m; if not, it computes u = H(m), and samples an approximate preimage
xm ← HIGHBITS.APPROX.SAMPLEPRE(A,AL

0 ,R,u, s). It outputs
xm as the signature and stores (m,xm) in the list.

– Ver(A,m,x): The verification algorithm checks if ‖x‖ ≤ β and ‖bdAx −
H(m)‖ ≤ α. If so, it outputs accept; otherwise, it outputs reject.

6.2 Correctness

It is straightforward to verify that construction 1 is correct with overwhelming
probability by the settings of the parameters and definitions of our algorithms.

On the Higher-Bit Version of Approximate ISIS 269

6.3 Proof of Security

For a random target, the preimage and error term are simulatable from distri-
butions without knowing the secret key R (see Theorem 4). We denote these
distributions by Dpre and Derr. To prove that our construction satisfies sEU-
CMA security, we rely on Theorem 2 about “higher-bit near-collision-resistance”
property for Ajtai’s function. We use the same definition for sEU-CMA security
as defined in [9].

Theorem 5. Construction 1 is strongly existentially unforgeable under a
chosen-message attack in the random oracle model assuming the hardness of
SISn,n+m,q,2[α+(

√
nbd+1)β] and LWEn,n,q,χ,U(Zq),χ.

Proof. Assume that there is an adversary A which breaks the sEU-CMA security
of construction 1 in polynomial time. We describe a polynomial time adversary B
invoking A that breaks the higher-bit near-collision-resistance of Ajtai’s function,
which is as hard as SISn,n+m,q,2[α+(

√
nbd+1)β] (Theorem 2).

B receives the matrix A as a challenge for “the higher-bit near-collision-
resistance of Ajtai’s function”. B runs A on input pk A. B answers hash queries
to random oracle H and signing queries as follows. We note that its answers are
indistinguishable from the real ones due to the properties of Dpre and Derr, and
that a real public key is indistinguishable from random under LWEn,n,q,χ,U(Zq),χ.

Simulation of Hash Queries. We assume that B has chosen a random AL
0 to

calculate Derr. A’s hash query H(m) on a message m is answered by B as
follows : B samples x ← Dpre, gives u := bdAx + Derr (mod q) to A as H(m).

B stores (m,u) in the random oracle storage, (m,x) in the message-signature
pair storage.

Simulation of Signing Queries. Assume that on A’s signature query m, m has
been queried to the random oracle before. B generates the signature x by finding
(m,x) in the message-signature pair storage.

Forgery. Generality is equivalent to assumption that before A’s attempt to forge
a signature on m∗, A has queried H on m∗. We denote (m∗,u∗) and (m∗,x∗)
as the pairs prepared by B in the random oracle storage and message-signature
pair storage respectively. A forges a signature x on m∗. By the definition of a
correct signature, we have ‖bdA(x − x∗) (mod q)‖ ≤ 2α.

In the case where m∗ has been queried to the signing oracle, x �= x∗ by
the definition of a successful forgery. Otherwise, we know that DZm,s is set
with high min-entropy. Thus, Dpre is also with high min-entropy since Dpre

means compressing bd points to one point when using DZm,s. So, x �= x∗ with
overwhelming probability. ��

6.4 Implementation and Analysis

The results in Theorem 4 induce the following length bounds on the signature
x and error term e: ||x|| ≤ s and ||e|| ≤ blσ +

√
nbds.

270 A. Le Dévéhat et al.

We need to respect these bounds to set the parameters α and β of the
underlying security problem. Thus, combining with the results in Theorem 5,
we observe a trade-off between security and memory space. This trade-off is due
to the increase in the norm of a solution to the SIS problem. It is summarized
in Fig. 2 for the matrix setting.

F -trapdoor [9] This work

Norm of a short solution in the
 underlying SIS problem

2(s + blσ) 2(s + blσ) + 4
√

nbds

Signature size (in bits) m × k × log2(b) m × (k − d) × log2(b)
Public key size (in bits) m n k log2(b) m n (k d) log2(b)

Fig. 2. The parameters are for a fixed lattice dimension n, vector dimension m, a base
b, a modulus q where k = �logb q�. Parameters l, s and σ are the same as in [9].

Proof-of-Concept Implementation. Due to this trade-off, we need to analyse the
benefits of our construction for different parameters sets. To do so, we imple-
ment our construction for different concrete parameters. The code used in this
implementation is provided by Dr. Chen [8]. We get our security assuming the
hardness of Ring-LWE and Ring-SIS. Our goal in doing this implementation is
to compare our construction for different parameters choices with the two best
reference implementations from [9]. In Fig. 3, we list three groups of parameters.

Fig. 3. Some concrete parameters. The size of PK is measured in kB. LWE and AISIS
refers to the security levels of breaking the associated problems. ||x|| and ||e|| are the
norms of the preimage and error term. τ is the gaussian width of R.

Figure 3 shows that for a same security parameter n, we can expect our
construction to reduce the public key size to half and significantly reduce the

On the Higher-Bit Version of Approximate ISIS 271

signature size at the expense of a reasonable drop in the security level. Thus, our
modification allows us to find interesting results for achieving different levels of
security than those given by the original construction from [9]. Our implemen-
tation shows that an estimation of 75-bit security could be achieved for a public
key size of 2.56 kB, and an estimation of 140-bit security could be achieved for
a public key size of 5.12 kB.

Moreover, it is noteworthy to observe that if we increase the security parame-
ter n compared to [9], we might obtain a better security while keeping somewhat
equivalent public key size and better preimage norm. For example, we obtain
an estimation of 140-bit security for about the same key sizes than the 88-bit
security reference implementation of [8]. However, the security parameter n is
doubled in our construction which can lead to bigger algorithms running times.

Acknowledgments. We would like to thank Yilei Chen, Nicholas Genise and Pratyay
Mukherjee for kindly sharing with us their implementation of Hash-and-Sign signature
based on F-trapdoors. We are especially grateful to Yilei Chen for his invaluable advice
to our work.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC 1996. ACM, New York (1996). https://doi.org/10.1145/237814.237838

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

4. Alkim, E., Barreto, P.S.L.M., Bindel, N., Krämer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qTESLA. In: Conti, M., Zhou, J.,
Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 441–460.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4 22

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theor.
Comp. Sys. 48(3), 535–553 (2010). https://doi.org/10.1007/s00224-010-9278-3

6. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC 2013. ACM, New York (2013). https://doi.org/
10.1145/2488608.2488680

7. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2011). https://doi.org/10.1007/s00145-
011-9105-2

8. Chen, Y.: Private communication (2021)
9. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices

and smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-34618-8 1

10. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptographic Hardware Embedded Syst. (1), 238–268 (2018).
https://doi.org/10.13154/tches.v2018.i1.238-268

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1145/237814.237838
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-030-57808-4_22
https://doi.org/10.1007/s00224-010-9278-3
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.13154/tches.v2018.i1.238-268

272 A. Le Dévéhat et al.

11. Fouque, P.-A., e.a.: Falcon: fast-Fourier lattice-based compact signatures over
NTRU (2018). https://falcon-sign.info/

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009.
ACM (2009). https://doi.org/10.1145/1536414.1536440

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008. ACM (2008). https://doi.org/10.
1145/1374376.1374407

14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

15. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

16. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

17. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 3

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

19. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th IEEE Symposium on FOCS, pp. 372–381 (2004). https://doi.
org/10.1109/FOCS.2004.72

20. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. In: FOCS 2002. IEEE
(2002). https://doi.org/10.1109/SFCS.2002.1181960

21. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

22. Moody, D., et al.: Status report on the second round of the NIST post-quantum
cryptography standardization process (2020). https://doi.org/10.6028/NIST.IR.
8309

23. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6) (2009). https://doi.org/10.1145/1568318.1568324

25. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: SFCS 1994. IEEE Computer Society (1994). https://doi.org/10.1109/
SFCS.1994.365700

https://falcon-sign.info/
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-540-78524-8_3
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/SFCS.2002.1181960
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700

Practical Continuously Non-malleable
Randomness Encoders in the Random

Oracle Model

Antonio Faonio(B)

EURECOM, Biot, France
antonio.faonio@eurecom.fr

Abstract. A randomness encoder is a generalization of encoding
schemes with an efficient procedure for encoding uniformly random
strings. In this paper we continue the study of randomness encoders that
additionally have the property of being continuous non-malleable. The
beautiful notion of non-malleability for encoding schemes, introduced
by Dziembowski, Pietrzak and Wichs (ICS’10), states that tampering
with the codeword can either keep the encoded message identical or pro-
duce an uncorrelated message. Continuous non-malleability extends the
security notion to a setting where the adversary can tamper the code-
word polynomially many times and where we assume a self-destruction
mechanism in place in case of decoding errors. Our contributions are:
(1) two practical constructions of continuous non-malleable randomness
encoders in the random oracle model, and (2) a new compiler from con-
tinuous non-malleable randomness encoders to continuous non-malleable
codes, and (3) a study of lower bounds for continuous non-malleability
in the random oracle model.

1 Introduction

Non-malleable codes (Dziembowski, Pietrzak and Wichs [18]) find applications
to cryptography, for example, for protecting arbitrary cryptographic primitives
against related-key attacks [18] and commitments (Agrawal et al. [4]). Limita-
tions on the nature of the tampering functions must be imposed, as otherwise
NMCs are impossible to achieve [18]. One of the most studied settings for which
NMCs are achievable is the split-state model [2,9,17], see also [3,14,27,29,30].
In this model we assume that the codeword is divided into two pieces, and that
the tampering functions can alter the two pieces independently.

Continuous Non-malleability. In the definition of non-malleable codes, the prop-
erty is guaranteed as long as a single tampering function is applied to a target
codeword. In particular, no security is guaranteed if an adversary can tamper
multiple times with the target codeword. Faust et al. [22] introduced a nat-
ural extension of non-malleable codes where the adversary is allowed to tam-
per a target codeword by specifying polynomially-many tampering functions;
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 273–291, 2021.
https://doi.org/10.1007/978-3-030-92548-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_15

274 A. Faonio

As argued in [22], such continuously non-malleable codes allow to overcome
several limitations of one-time non-malleable codes, and further led to new
applications where continuous non-malleability is essential [10,12]. Continuous
non-malleability requires a special “self-destruct” capability that instructs the
decoding algorithm to always output the symbol ⊥ (meaning “decoding error”)
after the first invalid codeword is decoded, otherwise generic attacks are possi-
ble [22,24].

Randomness Encoders. A randomness encoder consists of an encoding procedure
which can produce a codeword for a random message and the relative decoding
algorithm. Kanukurthi, Obbattu and Sekar [25] introduced the concept of non-
malleable randomness encoders (NMREs) as a relaxation of NMCs. As shown
by [25], NMREs are already sufficient for many of the applications of NMCs. For
example, in the typical application of NMCs to tamper-resilient cryptography,
the encoded messages are randomly generated secret keys. Moreover, they gave
a construction of a NMC from a NMRE and (one-time) authenticated secret key
encryption.

1.1 Our Contributions

As our main contribution, we present two practical CNMREs in the random ora-
cle model. Our randomness encoders can encode random messages of size λ bits,
where λ is the security parameter. The size of the codewords in the first ran-
domness encoder is approximately 12λ bits, and the decoding function computes
two cryptographic hash evaluations and an inner product between two vectors
in Z

4
p for a prime p ≥ 2λ. The second randomness encoder has shorter codewords

(the size of the codewords is approximately 8λ bits), but it has a more expen-
sive decoding function which consists of four cryptographic hash evaluations and
an inner product between two vectors in Z

4
p. Compared to the state-of-art for

CNMC (the construction of Ostrovsky et al. [30]) both our randomness encoders
are thousands of times more efficient. Comparing with state-of-art for practical
NMC (the construction of Fehr, Karpman and Mennick [23]), our randomness
encoders are comparably similarly efficient both in terms of sizes of the code-
words and in terms of the computational complexities of the algorithms. (We
give more details in the next section.)

As second contribution, we show how to construct CNMCs from CNMREs,
thus extending the result of [25] to the continuous setting. We consider the
compiler of Coretti, Faonio and Venturi [11]. Although our compiler and their
compiler are similar, their analysis does not apply directly to our setting (we
elaborate further in the next section). As third contribution, we extend the
lower bounds of [22] to the case of continuous non-malleability in the random
oracle model. We show that we can have information-theoretic security, as long
as the number of random oracle queries made by the adversary is bounded.

Practical Continuously Non-Malleable Randomness Encoders 275

1.2 Technical Overview

In the continuous non-malleability experiment, the adversary receives two mes-
sages μ0, μ1 and gets oracle access to a target codeword (c0, c1) for the message
μb with the goal of guessing the bit b. The adversary can submit tampering
functions (f0, f1) receiving back the value Dec(f0(c0), f1(c1)). If the output of
the decoding algorithm is ⊥ then the adversary loses access to the tampering
oracle. In the very same vein, in the continuous non-malleability experiment
for randomness encoders, the adversary gets input two uniformly random keys
κ0 and κ1 (one of which is sampled using the randomness encoder) and gets
oracle access to a target codeword (c0, c1). We proceed in two steps to con-
struct our CNMREs. In the first step we reduce continuous non-malleability
to leakage resilience. In particular for this step, we first define the notion of
noisy leakage-resilient randomness encoders (LRREs, for short), then we show
an efficient compiler from LRREs to CNMREs. In the second step, we give con-
structions of leakage-resilient randomness encoders. In the security game for the
notion of LRREs the adversary has access to a leakage oracle to the codeword.
The adversary can submit queries of the form (g0, g1) receiving back the values
g0(c0), g1(c1). In our definition we consider the so-called noisy-leakage model [5]
where the leakage is measured as the drop of min-entropy of the codeword.

The compiler from LRREs to CNMREs is very similar to the original con-
struction of CNMC of [22], and its proof of security follows a proof technique
similar to [11,20,21]. Our LRREs are inspired by the leakage-resilient storage of
Davi, Dziembowski and Venturi [15] based on the inner-product extractor (see
also Dziembowski and Faust [16]). In more detail, let Π ′ = (REncode′,Dec′)
be a LRRE and let RO be a random oracle, we construct a CNMRE Π =
(REncode,Dec) where the encoding function samples a codeword c′

0, c
′
1 from

REncode′ and then outputs (c′
0, h1), (c′

1, h0) where hβ = RO(β‖c′
β). The decoding

function on input a codeword (c′
0, h1), (c′

1, h0) first checks that the hash values
match, namely that hβ = RO(β‖c′

β) for β ∈ {0, 1}, and if so it decodes the
codeword using Dec′. The main idea behind the security of the scheme is that
if an adversary can tamper, let say c′

0, in a non-trivial way obtaining a value c̃′
0

then it must already know the tampered value c̃′
0, as otherwise the adversary

would not be able to compute correctly RO(0‖c̃′
0). (Recall that the adversary

can only tamper c′
0 and h0 independently, as they are in two different shares.)

The latter implies that the output of the tampering oracle is predictable, and
therefore we can simulate it using a leakage function that does not decrease the
(average conditional) min-entropy of the target codeword.

The second step is to construct practical LRREs. Our first leakage-resilient
randomness encoder encodes a random message by sampling two random vectors
from a field with large enough cardinality, the decoding function outputs the
inner product between the two vectors. Previous works considered the encoding
scheme where, on input a message μ, the two vectors were sampled conditioned
on their inner product being equal to μ. The proofs of security in the previous
works relied on (1) the fact that the inner product is a two-source extractor and
then (2) a complexity leveraging argument to break the dependence between the

276 A. Faonio

two vectors. By downgrading to randomness encoders, our proof of security does
not need the complexity leveraging argument. This simple observation allows a
significant gain in the concrete parameters of the scheme. The second scheme
exploits the power of the random oracle. In fact, instead of sampling two vectors,
we could sample two seeds which fed to the random oracle would produce the
required vectors. By setting the parameters properly, the second randomness
encoder has more compact codewords then our first one.

Compiler from Randomness-Encoders to Codes. Similar to [1,11,25], the idea
for our compiler is to encode a random key for an authenticated secret key
encryption scheme using a CNMRE and then to encrypt the message we want
to encode, thus obtaining a ciphertext γ. As proposed by [11], we store the
resulting ciphertext in both sides of the codeword and check for equality of the
two copies of the ciphertext when decoding. The proof of security of [11] relies on
the leakage resilience of the inner CNMC. We show that leakage resilience is not
necessary. In fact, any adversarially generated codeword (c̃0‖γ̃0, c̃1‖γ̃1) (for the
compiled code) that successfully decodes must have γ̃0 = γ̃1. Our novel idea is to
use this correlated information to synchronize the tampering functions performed
by the reduction and to extract the adversarially generated ciphertext. In more
detail, when reducing to the continuous non-malleability of the CNMRE, we
additionally sample two valid codewords for two distinct keys κ0, κ1. Upon a
tampering query for the compiled code, suppose that the tampered codeword is
(c̃0‖γ̃, c̃1‖γ̃), we first extract, bit-by-bit, the ciphertext γ̃ by sending tampering
queries that output either κ0 or κ1 according to the bits of γ̃, and then we send
an extra query that allows to decode c̃0, c̃1, thus obtaining the secret key for the
chipertext γ̃.

Lower Bounds on Continuous Non-malleability in the ROM. Very roughly speak-
ing, the proof of the impossibility result of [22] shows that any CNMC musts have
(at least) two special codewords. The strategy is to hardwire such codewords in
their adversary and to use them to extract, bit-by-bit, all the information about
the target codeword. However, in the random oracle model, the codeword space
is a random variable that depends on the random oracle. Thus an adversary
cannot simply have hardwired these two specials codewords, but it needs first
to compute them. In other words, the complexity of the generic attack of [22],
in our framework, depends on the random-oracle-query complexity of finding
such two special codewords. Additionally, we show that, even if these two spe-
cial codewords do not exist, we can still break continuous non-malleability when
the adversary can query the random oracle enough time and de-randomize the
full codeword space.

Lastly, we give a lower bound specific to our CNMRE construction. The
number of random oracle queries that an adversary needs in order to break the
security of our construction depends both on the random-oracle query complexity
of the inner leakage-resilient randomness encoder and on the classical birthday-
paradox lower bound.

Practical Continuously Non-Malleable Randomness Encoders 277

1.3 Related Work

In the Table 1 we compare our results with the most relevant related works. We
compare with the work of Kiayias, Liu and Tselekounis [26] (resp. the work of
Fehr, Karpman and Mennink [23]) which showed a practical construction of NMC
in the CRS model (resp. plain model), the work of Dachman-Soled and Kulkarni
[13] which showed a construction of CNMRE in the CRS model and a general
compiler from CNMREs to 1-bit messages CNMCs, and the work of Ostro-
vsky, Persiano, Visconti and Venturi [30] which showed a construction of CNMC
in the standard model. The result of [30] makes use of a statistically binding
commitment scheme and of the leakage-resilient (one-time) non-malleable code
of Aggarwal et al. [3]. While, we could implement very efficiently the former
ingredient in the random oracle model (by hashing the message together with
some randomness), the latter ingredient is the bottleneck of their construction.
In fact, the codeword size needs to be at least O(λ7) to encode a message of
size λ. Without diving into the details, if we don’t consider the cryptographic
hash computations, for both our and their scheme the computational complex-
ity of the decoding function is at least super-linear in the size of the codeword,
which implies that our schemes are asymptotically faster than [30] of at least
7 orders of magnitude. We could obtain such a speed up because our schemes
rely on the random-oracle methodology, on the other hand, the scheme of Ostro-
vsky et al. is in the standard model. We stress that the goal of this paper
is, indeed, to construct very efficient schemes which could be already used in
practice. Dachman-Soled and Kulkarni [13] give a compiler from CNMRE to
CNMC. The idea of their compiler is to sample from the encoding procedure of
the CNMRE until we obtain a valid codeword of the message to be encoded. The
scheme DK192 in Table 1 is the result of applying their compiler to their scheme
DK191. The codeword size is approx. 14λ2 while the codeword size of DK191
is approx. 14λ3. The reason is that the compiler works only for 1-bit messages.
This limitation is due to the complexity-leveraging argument needed to prove
the security of their compiler and the computational security of their scheme
DK191. We notice that a natural extension to multi-bit messages of their com-
piler would work when applied to our scheme Π∗

1 because our scheme is secure
against unbounded adversaries in the random oracle model. However, the size of
the codeword would have a multiplicative blow up in the security parameter1.
On the other hand, our compiler has only an additive security loss, thus the
resulting scheme is more efficient. Additionally, in terms of assumptions, Π∗

3 is
computationally secure when k, the length of the message, is such that k > λ,
however, it can be information-theoretically secure when k ≤ λ/2.

Non-malleability in the multi-tampering [8,28] model is related to the notion
of continuous non-malleability. In the former notion, the number of tampering
queries is a priori bounded, however there is no need for self-destruct mecha-
nisms.

1 The proof of security would work through a complexity-leveraging argument.

278 A. Faonio

2 Preliminaries

We use standard notations for strings, sampling from sets, randomized algo-
rithms, negligible functions and noticeable functions. We denote with λ ∈ N

the security parameter. Throughout the paper, if not differently specified, we
let RO be a uniformly random function from {0, 1}∗ to {0, 1}2λ. The min-
entropy of a random variable X over a set X is denoted with H∞(X) :=
− log maxx∈X P [X = x], the conditional average min-entropy of a random
variable X given a random variable Z ∈ Z is denoted as ˜H∞(X|Z) :=
− logEz∈Z maxx∈X P [X = x|Z = z].

Table 1. Comparison with related work. In the table λ is the security parameter
and k is the length of the message; R stands for randomness encoders and E for
encoding schemes; inj. OWF stands for injective one-way functions, Ext-HF stands for
extractable hash functions, LR-PRP (resp. RK-PRP) stands for leakage-resilient (resp.
related-key secure) pseudorandom permutation. OWF stands for one-way functions.

Scheme Non-Malleability Codeword Size Type Model Assumption

[13] DK191 continuous ≈ 14λ3 R CRS inj. OWF

Π∗
1 continuous 6λ R ROM -

Π∗
2 continuous 4λ R ROM -

[23] FKM18 one-time 2λ + k E - LR-PRP, RK-PRP

[26] KLT16 one-time 9λ + 2 log2 λ + k E CRS Ext-HF

[30] OPVV18 continuous Ω(λ6k) E - inj. OWF

[13] DK192 continuous ≈ 14λ2 E CRS inj. OWF

Π∗
3 continuous 8λ + k E ROM OWF

2.1 Split-State Codes and Randomness-Encoders in the ROM

Definition 1 (Split-State Encoding Scheme in the ROM, [11]). Let
k(λ) = k ∈ N and n(λ) = n ∈ N be functions of the security parameter λ ∈ N.
A (k, n)-split-state-code is a tuple of algorithms Σ = (EncRO,DecRO) specified as
follows: (1) The randomized algorithm EncRO takes as input a value s ∈ {0, 1}k,
and outputs a codeword (c0, c1) ∈ {0, 1}2n; (2) The deterministic decoding algo-
rithm DecRO takes as input a codeword (c0, c1) ∈ {0, 1}2n, and outputs a value
s ∈ {0, 1}k ∪ {⊥} (where ⊥ denotes an invalid codeword).

Practical Continuously Non-Malleable Randomness Encoders 279

We say that Σ satisfies correctness if for all values s ∈ {0, 1}k, P
[

DecRO

(EncRO(s)) = s
]

= 1.

We introduce the notion of split-state randomness-encoders in the ROM.

Definition 2 (Split-State Randomness Encoders in the ROM). Let
n(λ) = n ∈ N be functions of the security parameter λ ∈ N. A n-split-
state-randomness-encoder is a tuple of algorithms Π = (REncodeRO,DecRO)
specified as follows: (1) The randomized algorithm REncodeRO (with the only
input the security parameter) outputs a value κ ∈ {0, 1}λ and a codeword
(c0, c1) ∈ {0, 1}2n; (2) The deterministic decoding algorithm DecRO takes as
input a codeword (c0, c1) ∈ {0, 1}2n, and outputs a value κ ∈ {0, 1}λ ∪ {⊥}
(where ⊥ denotes an invalid codeword). We say that Σ satisfies correctness if
for all λ the following holds:

P

[

κ = κ′ ∧ (κ, c) ←$ REncodeRO(1λ) ∧ κ′ ← DecRO(c)
]

= 1.

The contributions of this paper focus on split-state encoding schemes and split-
state randomness encoders. To avoid redundancy, we therefore omit the adjec-
tive “split-state” whenever it is clear from the context. Many of the algorithms
described in this paper make use of a random oracle, we avoid to upper script
them with the oracle RO whenever it is clear from the context.

2.2 Continuous Non-malleability in the ROM

Because we consider schemes in the random oracle model, we enlarge the class of
possible tampering functions considering functions that additionally can query
the random oracle RO. Consider the following class of tampering functions
parameterized by two values n(λ), q(λ):

Fn,q =
{

(f0, f1)|∀b : fb : {0, 1}n(λ) → {0, 1}n(λ)

fb makes at most q(λ) RO queries
, λ ∈ N

}

Definition 3 (Continuously non-malleable codes and randomness
encoders in the ROM). Let k(λ), n(λ), q(λ), qT (λ), qRO(λ) ∈ N and let
ε(λ) ∈ R.

Let Σ = (Enc,Dec) be a (k, n)-encoding scheme. We say that Σ is (ε, q, qRO)-
continuously non-malleable code, (ε, q, qRO)-CNMC for short, if for all messages
μ0, μ1, for all qT = poly(λ), and for all unbounded adversaries A making up to
qT tampering oracle queries from the class of tampering functions Fn,q and up to
qRO random oracle queries, we have:

Advcnmc
Σ,A (λ) := |P [

Gcnmc
Σ,A (λ, μ0, μ1) = 1

] − 1/2| ≤ ε(λ). (1)

Let Π = (REncode,Dec) be a n-randomness encoder. We say that Π is
(ε, q, qRO)-continuously non-malleable randomness encoder, (ε, q, qRO)-CNMRE

280 A. Faonio

Fig. 1. Experiment defining continuously non-malleable codes and randomness-
encoders in the split-state model, and leakage-resilient randomness encoders. The tam-
pering oracle Otamp is implicitly parameterized by the flag stop, the codeword c0, c1
and the set M. Similarly, the leakage oracle is implicitly parameterized by the code-
word c0, c1. If Π (resp. Σ) is in the random oracle model, then all the procedures and
functions (including the adversary A, the leakage functions g0, g1 and the tampering
functions f0, f1) implicitly have oracle access to RO.

for short, if for all qT = poly(λ), and for all (possibly unbounded) adversaries A
making up to qT tampering oracle queries from the class of tampering functions
Fn,q and up to qRO random oracle queries, we have:

Advcnmre
Π,A (λ) := |P [

Gcnmre
Σ,A (λ) = 1

] − 1/2| ≤ ε(λ). (2)

The experiments Gcnmc
Σ,A (λ) and Gcnmc

Σ,A (λ, μ0, μ1) are described in Fig. 1.

Remark 1 (On the choice of qT). We could prove security of our constructions
even when qT = Ω(2λ). However, in the definitions above we limit the number
of tampering queries to be a polynomial in the security parameter. The reason
is that for each tampering query there is an associated call to the decoding
algorithm of the attacked device. We can assume that the attacked device runs
in polynomial time.

Practical Continuously Non-Malleable Randomness Encoders 281

2.3 Noisy-leakage Resilient Randomness Encoders

As in previous works [6,11,20,21], we use the notion of admissibility to define
noisy-leakage resilience. We extend this notion to the ROM.

Definition 4 (Admissible adversaries for randomness encoders). Let
n(λ),
(λ), qRO(λ) ∈ N such that
(λ) ≤ n(λ), let Π = (REncode,Dec) be a n-
randomness-encoder. An adversary A is (
, qRO)-admissible for Π if it outputs a
sequences of (adaptively-chosen) leakage functions that can make random oracle
queries (g(i)0 , g

(i)
1)i∈[q] for q ∈ N and it outputs a sequences of (adaptively-chosen)

random oracle queries (xi)i∈[qRO], such that:

˜H∞
(

cβ |c1−β ,(g
(i)
β (cβ))i∈[q], (xi,RO(xi))i∈[qRO])

)

≥ ˜H∞(cβ |c1−β ,RO)−� (3)

where (c0, c1) is the joint random variable corresponding to REncode(1λ) and RO
is a shortcut for (RO(x))x∈{0,1}∗ .

Definition 5 (noisy-leakage resilient randomness encoders). Let n(λ),

(λ), qRO(λ) ∈ N and ε(λ) ∈ R, and let Π = (REncode,Dec) be a n-randomness
encoder. We say that Π is (ε,
, qRO)-noisy-leakage resilient randomness encoder
in the ROM, (ε,
, qRO)-LRRE for short, if for all (
, qRO)-admissible adversaries
A, we have that:

Advlrs
Π,A(λ) :=

∣

∣P
[

Glrre
Σ,A(λ) = 1

] − 1/2
∣

∣ ≤ ε(λ), (4)

where experiment Glrre
Σ,A(λ) is depicted in Fig. 1.

3 Our Continuous Non-malleable Randomness Encoder

Let Π = (REncode,Dec) be a n′-randomness-encoder, and let RO be a random
oracle. Consider the following construction of a n-randomness-encoder Π∗ =
(REncode∗,Dec∗) where n := n′ + 2λ:

REncode∗(1λ): Sample κ, (c0, c1) ←$ REncode(1λ), compute hβ ← RO(β‖cβ) and
set the codeword c∗

β := (cβ , h1−β) for i ∈ {0, 1}. Return κ, (c∗
0, c

∗
1).

Dec∗(c∗
0, c

∗
1): Execute the following steps:

1. For β ∈ {0, 1}, parse c∗
β as (cβ , h1−β);

2. (Hash Values Check.) If h0 �= RO(0‖c0) or h1 �= RO(1‖c1) output ⊥;
3. Else output Dec(c0, c1).

We give the following definition to simplify the notation in the statement of
the theorem.

Definition 6. Let Π be a n-randomness encoder, we define with αΠ(λ) :=
minβ{H∞(cβ) − ˜H∞(cβ |c1−β ,RO)} where c0, c1 ←$ REncode(1λ).

282 A. Faonio

Theorem 1 (LRREs ⇒ CNMREs in ROM). For any qT := qT (λ), q :=
q(λ), and for any adversary A that does up to qT tampering oracle queries from
the class of tampering functions Fn,q and up to qRO := qRO(λ) random oracle
queries there exists a (
, qRO)-admissible adversary B where
 = 2 log qRO+log qT

such that:

Advcnmre
Π∗,A(λ) ≤ Advlrs

Π,B(λ) + qT

22λ + (qRO+q·qT)2

22λ + (qRO+q·qT)λqT

2αΠ (λ)−1 .

If Π is (negl(λ), O(λ), poly(λ))-LRRE then Π∗ is (negl(λ), poly(λ), poly(λ))-
CNMRE.

Proof. We give a reduction to the noisy-leakage resilience of Π. Before describing
the reduction we introduce a sub-routine.

Procedure Leak(g0, g1)
– Let gβ,i be the restriction of the function gβ to the i-th bit.
– For i ∈ [λ] send the leakage oracle query (g0,i, g1,i):

– let z0,i, z1,i be the output of the oracle,
– if z0,i �= z1,i output ⊥,
– if z0,i = z1,i = � output �.

– Output z = z0,0, . . . , z0,l.

We are now ready to describe an adversary for Π2

We will keep track of the random oracle queries made by the adversary and
by the tampering functions. We denote with QA,Q0,Q1 the lexicographically
ordered set of tuple x,RO(x), and with Q̄A, Q̄0, Q̄1 the lexicographically ordered
set of oracle queries (i.e., the inputs to the RO without the outputs).

Adversary B(κ0, κ1)
1. Hash values h0, h1. Sample hβ ←$ {0, 1}2λ for β ∈ {0, 1}.
2. Run the adversary A with input (κ0, κ1).
3. Random oracle queries. Whenever A sends a query x to the ran-

dom oracle, forward the query to random oracle RO. Add the query
(x,RO(x)) in the set QA.

4. Tampering oracle queries. When the adversary A sends its j-th
tampering query (f (j)

0 , f
(j)
1), if the flag stop = 1 return ⊥, else run

the sub-routine Leak(g(j)0 , g
(j)
1), where the leakage functions g

(j)
β is

described below:
Leakage function g

(j)
β (cβ) :

(a) Compile the set Qβ of random oracle query made by the previous
tampering functions by running f

(j′)
β (cβ , h1−β) for any j′ < j and

collecting the queries. Whenever one of the tampering functions
calls RO on (β‖cβ) answer with hβ .

2 Notice that Π might be a randomness encoder in the standard model (i.e. no random
oracle), whilst our reduction makes random oracle queries. In this case we could
assume that RO is a lazy-sampled, locally-stored random function, therefore B would
be a standard-model adversary for Π.

Practical Continuously Non-Malleable Randomness Encoders 283

(b) Compute (c̃β , h̃1−β) ← f
(j)
β (cβ , h1−β) and forward all the RO

queries made by f
(j)
β to the RO (but whenever the tampering func-

tion calls RO on β‖cβ answer with hβ , instead of querying the RO).
(c) If (c̃β , h̃1−β) = (cβ , h1−β) then output �.
(d) If there is a tuple (1 − β‖c�

1−β , h̃1−β) ∈ QA ∪ Qβ ,
– if β = 0 then output Dec(c̃0, c�

1),
– if β = 1 then output Dec(c�

0, c̃1),
else output ⊥.

Let μ̃ be the output of the Leak procedure, if μ̃ = ⊥ then set the flag
stop ← 1. Return μ̃.

5. Eventually the adversary returns a bit b′. Output b′.

Claim. The adversary B is (log λ + log qT + 1, qRO)-admissible.

The proof of the lemma follows an argument almost identical to [6,21] and can
be found in the full version [19].

We now analyze the advantage of B. First notice that by the claim above
and taking an union bound over the elements in Q̄A ∪ Q̄1−β we have that for
β ∈ {0, 1}:

P
[

cβ ∈ Q̄A ∪ Q̄1−β

] ≤ (qRO + q · qT)2−αΠ(λ)+log λ+log qT +1.

We condition on the event that ∀β : cβ �∈ Q̄A ∪ Q̄1−β . Under this condition
the distributions of (hβ)β∈{0,1} and (RO(cβ))β∈{0,1}, given the full view of the
adversary, are exactly the same, because the adversary could query cβ to the
random oracle only inside the tampering functions (f (j)

β)j∈[qT], but in this case
the reduction would answer with hβ .

We further condition on the event that no collisions are found in RO on an
execution of B. Notice that the probability of finding a collision is upper bounded
by (qRO+q·qT)2

22λ .
The adversary B simulates almost perfectly the experiment to A. Indeed, if

the adversary B returns a message μ̃ �= ⊥ to A at the j-th tampering query
then, since we assumed that there aren’t collisions in the RO, it musts be that
c�
β = c̃β , where the former is computed by the leakage function g

(j)
β and the

latter is computed by the leakage function g
(j)
1−β .

The only difference between the simulation of B and the real experiment
is that, at step 4 it could happen that B returns ⊥ but the tampering query
in the real experiment would output a message different than ⊥. Let j be the
index when this event happens for the first time. If B returns ⊥ then either the
procedure Leak finds two mismatching outputs from the leakage oracle or ∃β

s.t. the leakage function g
(j)
β outputs ⊥.

The first case reduces to the event of finding a collision in the RO which we
assumed that cannot happen, in fact, Dec(c̃0, c�

1) �= Dec(c�
0, c̃1) but RO(β‖c̃β) =

RO(β‖c�
β) for β ∈ {0, 1}. The second case instead is more interesting. In fact,

284 A. Faonio

QA∪Qβ might not cover the full set of random oracle queries that the adversary
A can do through the tampering queries, thus, in principle, it could happen that
the reduction cannot find a tuple (1−β‖c�

1−β , h̃1−β) ∈ QA∪Qβ but, nevertheless,
the adversary queried c̃1−β = c�

1−β to the random oracle in one of the tampering

queries f
(j′)
1−β for j′ ≤ j, i.e., (1 − β‖c̃1−β) ∈ Q̄1−β . We show that the adversary

cannot guess, using the tampering query f
(j)
β , the valid value for h̃1−β that would

make pass the consistency check of the decoding algorithm Dec∗. Recall that we
condition on j being the first index where the bad event described before could
happen. Thus we have that for all j′ < j the output of the leakage functions
g
(j′)
0 and the output of g

(j′)
1 agree. Also, as just said above, we condition on

(1−β‖c̃1−β) ∈ Q̄1−β ∧ (1−β‖c�
1−β , h̃1−β)) �∈ Qβ ∪QA, and we want to compute

the probability that h̃1−β = RO(1 − β‖c̃1−β).
We compute the average conditional min-entropy of RO(1 − β‖c̃1−β) given

the full view of the j-th leakage function g
(j)
β :

˜H∞(RO(1 − β‖c̃1−β)|QA,Qβ , (μ̃(j′))j′<j , cβ , h1−β)

= ˜H∞(RO(1 − β‖c̃1−β)|QA,Qβ , cβ , h1−β)

= ˜H∞(RO(1 − β‖c̃1−β)|cβ , h1−β) = 2λ.

First we notice that the tuple (QA,Qβ , (μ̃(j′))j′<j , cβ , h1−β) is indeed the full
view of the leakage function g

(j)
β , as all the randomness in the experiment

comes from the random oracle queries, the challenge codeword and, pos-
sibly, the outputs of the leakage oracle. In the derivation above, the first
equation holds because (μ̃(j′))j′<j can be computed as deterministic func-
tion of QA,Qβ , cβ , h1−β , the second equation holds because we assumed that
(1−β‖c�

1−β , h̃1−β) �∈ QA∪Qβ . This shows that the probability that g
(j)
β computes

h̃1−β at the j-th query equal to RO(1−β‖c̃1−β) is 2−2λ, even when (1−β‖c̃1−β) ∈
Q̄1−β . We can prove that the same holds when (1 − β‖c̃1−β) �∈ Q1−β , in this
case the value was never queried to the RO, thus the adversary can guess it with
probability 2−2λ. Taking an union bound over all the tampering oracle queries
made by A the probability that B outputs ⊥ but the real experiment would have
not is bounded by qT 2−2λ.

Putting all together, we can conclude that the advantage of B is bigger or
equal to

Advcnmre
Π∗,A(λ) − qT

22λ + (qRO+q·qT)2

22λ .

We can easily show that B is (2λ + 2 log qRO + log qT , qRO)-admissible. See
the full version [19] for the details. ��
Remark 2. Similarly to [25,26,30], we do not consider leakage resilience for our
continuous non-malleable randomness encoder. Nevertheless, our reduction can
easily handle leakage functions by hardcoding the hash values h0, h1 and for-
warding the leakage queries to its own oracle. However, there is a catch: the

Practical Continuously Non-Malleable Randomness Encoders 285

leakage queries sent by the adversary cannot have access to the random oracle.
In fact, an attacker could forward leakage functions that make random-oracle
queries on behalf of the adversary. These obfuscated random oracle queries could
not be seen by our reduction thus invalidating our observability-based argument.

The Theorem 1 gives an upper bound to the advantage of any adversary
against the continuous non-malleability of Π∗. To give a full picture, in Sect. 6
(Corollary 1) we give a lower bound based on the random-oracle query com-
plexity and randomness complexity of the underlying randomness encoder Π.
Informally, the theorem states the existence of an adversary whose random-oracle
query complexity is Ω(2λ), tampering-oracle complexity is O(n) and advantage
is at least (1/e)8.

4 Compiler from Randomness Encoders to Code Schemes

In this section we recall the compiler of Coretti, Faonio and Venturi [11]. The
compiler makes use of an authenticated encryption scheme. A (k,m)-SKE scheme
Ω encrypts k-bit messages and outputs ciphertexts of size m. We consider the
standard security property of authenticity whose security game is denoted by
Gauth

Ω , and the standard security property of indistinghuishability which security
game is denoted by Gind

Ω . Let Π = (REncode,Dec) be a n-randomness-encoder,
and Ω = (AEnc,ADec) be a (k,m)-SKE scheme. Consider the following con-
struction of a (k, n′)-code Σ′ = (Enc′,Dec′), where n′ := m + n.

Enc′(s): Upon input a value s ∈ {0, 1}k, compute c0, c1 ←$ REncode(1λ), let κ ←
Dec(c0, c1), and compute γ ←$ AEnc(κ, s); return c′

0, c
′
1 where c′

β = (cβ , γ) for
β ∈ {0, 1}.

Dec′(c′
0, c

′
1): Parse c′

β := (cβ , γβ) for β ∈ {0, 1}. If γ0 �= γ1, return ⊥ and self
destruct; else let κ̃ = Dec(c0, c1). If κ̃ = ⊥, return ⊥ and self destruct; else
return the same as ADec(κ̃, γ0).

The difference between the compiler Σ described above and the compiler of [11]
is that our compiler starts from a CNMRE, while their construction starts from
a noisy-leakage-resilient CNMC. A similar strategy to ours was recently used
by Brian, Faonio and Venturi in the context of continuous non-malleable secret
sharing schemes [7].

Theorem 2. For any adversary A which makes at most qT := qT (λ) tamper-
ing oracle queries there exist adversaries B which makes at most (m + 1) · qT

tampering oracle queries, and adversaries B′ and B′′ such that Advcnmc
Σ,A (λ) ≤

2Advcnmre
Π,B (λ) + qT · Advauth

Ω,B′(λ) + Advind
Ω,B′′(λ).

5 Our Leakage-Resilient Randomness Encoders

We give two constructions Π1 and Π2 of LRREs, due to space constraints the
proofs of security of Π1 and Π2 appear in the full version [19]. Notably the ran-
domness encoder Π2 has optimal leakage parameter, namely the leakage param-
eter is only λ bits smaller than the size of the codeword.

286 A. Faonio

Let p be a prime such that p ≥ 2λ and let m ∈ N. Consider the following
(m log p)-randomness-encoder Π1 = (REncode1,Dec1):

REncode1(1λ): Sample column vectors x0,x1 ←$ Z
m
p . Output c0, c1 where cβ is

the binary representation of xβ

Dec1(c0, c1): Parse cβ as a vector xβ ∈ Z
m
p . Return the binary representation of

xT
0 · x1 ∈ Zp.

Theorem 3. Let
 ≤ m log p, for any q, the Π1 scheme is (O(2−λ),
, q)-noisy-
leakage resilient for
 ≤ (m + 1) log p/2 − 2λ. In more detail, for any (
, q)-
admissible adversary A: Advlrs

Π1,A(λ) ≤ 2−(m−1) log p/2+	.

Let (m−1) log p/2 ≥ n and let RO be a random oracle3 with output Zm
p . Consider

the following n-randomness-encoder Π2 = (REncode2,Dec2).

REncode(1λ): Sample and output c0, c1 ←$ {0, 1}n.
Dec(c0, c1): Compute xi ← RO(ci) for i ∈ {0, 1} and return the binary represen-

tation of xT
0 · x1.

Theorem 4. Let
 + λ ≤ n, for any qRO(λ) ∈ N, the encoding scheme Π2

is (O(2−λqRO),
, qRO)-noisy-leakage resilient. In more detail, for any (
, qRO)-
admissible adversary A: Advlrs

Π2,A(λ) ≤ 2	−n(2qRO + 2).

The idea for the proof is that the adversary can either leak from ci or directly
from RO(ci). The former kind of leakage cannot give any advantage to the adver-
sary, since the adversary should be able to guess n −
 ≥ λ bits to obtain any
information about RO(ci), the latter form of leakage is protected by the same
argument of the leakage resilience of Π1.

5.1 Instantiations

We present two instantiations for our continuous non-malleable randomness
encoders. By joining together the results of Theorem 1 and Theorem 3 we obtain
a (m log p + 2λ)-randomness-encoders scheme Π∗

1 with concrete security being:

max
A

Advcnmre
Π∗

1 ,A(λ) ≤ exp(−(m − 1) log p/2 + log λ + log qT + 1)

+ qT +(qRO+q·qT)2

22λ + (qRO+q·qT)λqT

2m log p−1 .

For concreteness, suppose that an adversary can make qRO+q ·qT = 240 random-
oracle queries and qT = 220 tampering-oracle queries, then to have ≈128-bits of
security we need to set (m − 1) log p ≥ 312 and p ≥ 2128, for example we can set
we m = 2 and p ≥ 2312. Instantiating the random oracle using SHA256 then the
codeword size would be approximately 2 × 880 bits. The time complexity of the
decoding algorithm would be approximately the same as two SHA256 functions
plus an inner-product between two vectors in Z

m
p . Our second instantiation is

3 It can be easily realized using a RO′ with codomain {0, 1}2λ.

Practical Continuously Non-Malleable Randomness Encoders 287

derived by joining together the results of Theorem 1 and Theorem 4. We obtain
a n + λ-randomness-encoders scheme Π∗

2 with concrete security being:

max
A

Advcnmre
Π∗

2 ,A(λ) ≤ exp(−n + log λ + log qT + log qRO + 2)

+ qT +(qRO+q·qT)2

22λ + (qRO+q·qT)λqT

2m log p−1 .

Assuming the same setup of before, to get ≈128-bits of security we need to set
n ≥ 128 + 69. Using SHA256 the codeword size would be approximately 2 × 453
bits. The time complexity of the decoding algorithm would be the same of 8
SHA256 functions. In particular, the size of the codeword is in total only ≈ 7
times bigger than the size of the derived key.

6 Lower Bounds for CNMREs in the ROM

Definition 7. Given a n-randomness encoder Π, an algorithm A is a (ε, qRO)-
finder for Π if A(1λ) makes at most qRO(λ) random oracle queries and if:

P

[⊥ �= Dec(c0, c1) �= Dec(c0, c′
1) �= ⊥

(c0 = c′
0) ∨ (c1 = c′

1)
: (c0, c1, c′

0, c
′
1) ← ARO(1λ)

]

≥ ε(λ)

In the next theorem first we show that the existence of a finder is sufficient to
break continuous non-malleability, then we show that even if there is no finder, we
still can break continuous non-malleability given enough random oracle queries.

Theorem 5. Let n(λ) ∈ N and let Π be a n-randomness encoder:

1. If there exists a (ε, qRO)-finder for Π then for any ε
2 ≥ δ > 0, Π is not a

(ε
2 − δ, 0, qRO)-CNMRE. Namely, there exists an adversary A′ making up to

qRO random oracle queries and n + 1 tampering queries from Fn,0, such that
ε
2 ≤ Advcnmre

Π,A′ (1λ).
2. Suppose that Enc(1λ) makes at most qEncRO (λ) random oracle queries and uses

r(λ) random bits. If for any ε, q′
RO, there does not exist a (ε, q′

RO)-finder then
for any δ > 0 any qRO, q such that qRO + q ≥ 2r · qEncRO the scheme Π is
not a (1/2− δ, q, qRO)-CNMRE. Namely, there exists an adversary A′ making
up to qRO random oracle queries and 1 tampering query from Fn,q such that
Advcnmre

Π,A′ (1λ) = 1/2.

Proof (Sketch). For the first part of the theorem let the adversary A′ first run
the finder algorithm. For simplicity, let us assume that the finder outputs a
tuple (c0, c1, c′

0, c
′
1) where c0 = c′

0. If the output of the finder is not valid then
the adversary A′ outputs a random bit. Else, for i = 0, . . . , n − 1 sends the
tampering query (f (i)

0 , f
(i)
1) where f

(i)
0 returns c0 and f

(i)
1 (c∗

1) returns either c1
or to c′

1 depending on the on the i-th bit of c∗
1. After this process, the adversary

can extract in full the value c∗
1 of the target codeword, thus it can send a last

tampering query that breaks non-malleability. It is clear that the adversary wins
the game Gcnmre with probability at least ε + (1 − ε) 12 .

288 A. Faonio

For the second part of the theorem, for simplicity we consider first the case
where q = 0. Since no finder exists, then for any c0 there exists unique c1 such
that (c0, c1) ∈ {Enc(1λ; ρ) : ρ ∈ {0, 1}r}. Thus the adversary A′ can compile a
bijection L0 such that L0(c0) = c1, also let L1 be the inverse of L0. To compile
such bijections the adversary A′ needs at most 2r · qEncRO random oracle queries.
Then given such bijections, the adversary sends the tampering queries f0, f1
where fβ(cβ) computes c1−β ← Lβ(cβ), decodes κ ← Dec(c0, c1), and if κ = κ0

sets the codeword to ⊥, else leaves the codeword untouched. It is clear that the
adversary wins the game Gcnmre with probability 1.

For the case q > 0, we can consider an adversary that computes first partially
the bijection L0 using the budget of random-oracle queries qRO and then finishes
to computes the bijection L0 using the budget of random-oracle queries that the
tampering function can use.

Corollary 1. Let Π = (REncode,Dec) be a randomness-encoder where
REncode(1λ) makes up to qREncodeRO (λ) queries to the random oracle and uses
at most r(λ) bits of randomness, and Dec makes up to qDec

RO (λ) queries to the
random oracle. Also, let Π be (ε,
, 2r(qREncodeRO + qDec

RO))-noisy leakage resilient in
the ROM, for any ε,
 where
 ≥ 2.

Consider Π∗ be our CNMRE from Sect. 3 instantiated with the randomness
encoder Π. There exists an adversary A that makes up to 2r(qREncodeRO +qDec

RO)+2λ

random oracle queries and up to n+1 tampering oracle queries from Fn+2λ,0 such

that: (1/e)((
1
2−ε)2λ−1)2/22λ−1 ≤ Advcnmre

Π∗,A(λ). In particular, when ε(λ) ∈ negl(λ)
then (1/e)8 ≤ Advcnmre

Π∗,A(λ).

Proof. We describe an ((1/e)((
1
2−ε)2λ−1)2/22λ−1

, 2r(qREncodeRO + qDec
RO) + 2λ)-finder

for Π∗.

Finder FRO(1λ) :
1. Compute for any c0 the set E(c0) = {c1|∃ρ : (c0, c1) = Π.EncRO(1λ; ρ)};
2. Compute for any c0 the set M(c0) = {Π.Dec(c0, c1)|c1 ∈ E(c0)};
3. Find c∗

0 such that |M(c∗
0)| = maxc0 |M(c0)|;

4. Find c
(1)
1 , c

(2)
1 ∈ E(c∗

0) s.t. RO(c(1)1) = RO(c(2)2) and Π.Dec(c∗
0, c

(1)
1) �=

Π.Dec(c∗
0, c

(2)
1).

5. If such tuple does not exist output ⊥,
else output (c̄0, c̄1, c̄′

0, c̄′
1) such that:

c̄0 = c̄′
0 := (c∗

0,RO(c(1)1)) c̄1 := (c(1)1 ,RO(c∗
0)) c̄′

1 := (c(2)1 ,RO(c∗
0)).

Claim. For any ε(λ) ∈ R,
(λ) ∈ N, if Π is a (ε,
, 2r(qREncodeRO + qDec
RO))-noisy-

leakage resilient randomness encoder then |M(c∗
0)| ≥ (12 − ε)2λ.

Proof (of the Claim). Suppose that for any c0 we have |M(c0)| < (12 − ε)2λ.
Consider the following attacker against noisy-leakage resilience.

Practical Continuously Non-Malleable Randomness Encoders 289

Adversary B(κ0, κ1) :
1. Send the leakage function that on input c0 outputs:

– 1 if κ1 ∈ M(c0) but κ0 �∈ M(c0),
– 0 if κ0 ∈ M(c0) but κ1 �∈ M(c0),
– ⊥ if κ0 ∈ M(c0) and κ1 ∈ M(c0).

let b′ be the output of the leakage function;
2. If b′ = ⊥ output a random bit, else output b′.

Let b be the challenge bit, the probability of κ1−b ∈ M(c0) is strictly smaller
than (12 − ε)2λ/2λ. Notice that κb ∈ M(c0), thus the adversary B successfully
guesses the challenge bit whenever the output of the second leakage function is
not ⊥. We can conclude that the advantage of B is strictly greater then ε.

By the claim above there exists at least (12 − ε)2λ different values c1 that
decodes correctly with c∗

0 and whose decoded messages are pairwise different.
Thus applying the birthday-paradox bound the probability that the finder suc-

cessfully outputs a valid tuple is at least (1/e)((
1
2−ε)2λ−1)2/22λ−1

. Finally, notice
that the number of random oracle queries made by F are:

– 2r(qEncRO + qDec
RO) to compute the sets E(c0) for any c0;

– At most 2λ to compute the step 4.

By applying Theorem 5 point 1 we have the statement of the theorem.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 15

2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: ACM STOC, pp. 774–783 (2014)

3. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 17

4. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47989-6 26

5. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 6

6. Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing for
general access structures. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II.
LNCS, vol. 11892, pp. 211–232. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36033-7 8

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1007/978-3-030-36033-7_8

290 A. Faonio

7. Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing:
joint tampering, plain model and capacity. Cryptology ePrint Archive, Report
2021/1128 (2021). https://ia.cr/2021/1128

8. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: 48th ACM STOC (2016)

9. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

10. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 306–335. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 13

11. Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously
non-malleable codes. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M.
(eds.) ACNS 2019. LNCS, vol. 11464, pp. 3–23. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21568-2 1

12. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 22

13. Dachman-Soled, D., Kulkarni, M.: Upper and lower bounds for continuous non-
malleable codes. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442,
pp. 519–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-
4 18

14. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 18

15. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 9

16. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product
extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
702–721. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 38

17. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

18. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS 2010 (2010)
19. Faonio, A.: Practical continuously non-malleable randomness encoders in the ran-

dom oracle model. Cryptology ePrint Archive. https://ia.cr/2021/1269
20. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable

codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 121–139. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93387-0 7

21. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting:
adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 448–479.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 16

https://ia.cr/2021/1128
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-030-17253-4_18
https://doi.org/10.1007/978-3-030-17253-4_18
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-642-15317-4_9
https://doi.org/10.1007/978-3-642-25385-0_38
https://doi.org/10.1007/978-3-642-25385-0_38
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://ia.cr/2021/1269
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-030-26951-7_16

Practical Continuously Non-Malleable Randomness Encoders 291

22. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

23. Fehr, S., Karpman, P., Mennink, B.: Short non-malleable codes from related-key
secure block ciphers. IACR Trans. Symm. Cryptol. (1) (2018)

24. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
Tamper-Proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

25. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders
and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 589–617. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 19

26. Kiayias, A., Liu, F.-H., Tselekounis, Y.: Practical non-malleable codes from l-more
extractable hash functions. In: ACM CCS 2016 (2016)

27. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: ACM STOC, pp. 1144–1156 (2017)

28. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: 49th ACM STOC (2017)

29. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

30. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 608–639.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 21

https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-319-96878-0_21

Attacks and Counter-Measures

Countermeasures Against Backdoor
Attacks Towards Malware Detectors

Shintaro Narisada1(B), Yuki Matsumoto2, Seira Hidano1,
Toshihiro Uchibayashi3, Takuo Suganuma4, Masahiro Hiji5,

and Shinsaku Kiyomoto1

1 KDDI Research, Inc., Fujimino, Japan
{sh-narisada,se-hidano,kiyomoto}@kddi-research.jp

2 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
matsumoto@ci.cc.tohoku.ac.jp

3 Research Institute for Information Technology, Kyushu University, Fukuoka, Japan
uchibayashi.toshihiro.143@m.kyushu-u.ac.jp

4 Cyberscience Center, Tohoku University, Sendai, Japan
suganuma@tohoku.ac.jp

5 Graduate School of Economics and Management, Tohoku University, Sendai, Japan
hiji@tohoku.ac.jp

Abstract. Attacks on machine learning systems have been systematized
as adversarial machine learning, and a variety of attack algorithms have
been studied until today. In the malware classification problem, sev-
eral papers have suggested the possibility of real-world attacks against
machine learning-based malware classification models. A data poisoning
attack is an attack technique in which an attacker mixes poisoned data
into the training data, and the model learns from the poisoned training
data to cause misclassification of specific (or unspecified) data. Although
various poisoning attacks that inject poison into the feature space of
malware classification models have been proposed, Severi et al. proposed
the first backdoor poisoning attack in the input space towards malware
detectors by injecting poison into the actual binary files in the data accu-
mulation phase. They achieved an attack success rate of more than 90%
by adding only 1% of the poison data to approximately 2% of the entire
features with a backdoor. To the best of our knowledge, no fundamental
countermeasure against these attacks has been proposed. In this paper,
we propose the first countermeasure based on autoencoders in a realistic
threat model such that a defender is available for the contaminated train-
ing data only. We replaced all potentially attackable dimensions with
surrogate data generated by autoencoders instead of using autoencoders
as anomaly detectors. The results of our experiments show that we suc-
ceeded in significantly reducing the attack success rate while maintaining
the high prediction accuracy of the clean data using replacement with
the autoencoder. Our results suggest a new possibility of autoencoders
as a countermeasure against poisoning attacks.

Keywords: Backdoor poisoning attack · Malware detection ·
Autoencoder

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 295–314, 2021.
https://doi.org/10.1007/978-3-030-92548-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_16

296 S. Narisada et al.

1 Introduction

In order to detect unknown malware that cannot be detected by conven-
tional pattern-matching-based malware detection techniques, research on mal-
ware detection using machine learning is progressing. The malware classification
task can be divided into two major categories: dynamic analysis and static analy-
sis [13]. Dynamic analysis builds malware detection models by learning execution
log files obtained by the behavior of malware and benign software [7,9,14,22]. In
static analysis, machine learning models learn the features extracted by analyzing
the software’s binary itself [14,25]. There are two main techniques for extracting
features from binaries: heuristic methods parsing general file information such
as header information and byte histograms [1,24], and automatically extracting
features from binaries using neural networks [21]. As an alternative to simple
linear classifiers such as SVMs, highly accurate DNN-based malware detectors
are also emerging [24,28,31].

While machine learning enables highly accurate classification, machine learn-
ing systems are also exposed to a variety of security risks from attackers. Attacks
on machine learning systems are known as adversarial machine learning and have
been shown to be possible under a variety of circumstances [12]. Adversarial
examples are a type of attack in the test phase that aims to cause misclassifica-
tion by adding small noises to the test data [3]. Poisoning attacks are stronger
attacks during the learning phase that aim to create a model that misclassifies
the attacker’s data by mixing poisoned data into the training data [4]. Poison-
ing attacks towards image classification problems [19,34] and malware detection
problems [19] against neural networks have been proposed. Recently, poisoning
attacks on multi-task learning (MTL) [35] and graph neural networks (GNN) [5]
have been also studied. Model inversion attacks recover private training data
by exploiting information obtained from the middle layer of a trained model [8].
Model extraction attacks steal a the model’s structure using the confidence values
of the targeted model [29].

There have been various studies on countermeasures against these threats.
For adversarial examples, reducing the feature dimension has been shown to
be effective in decreasing the attack success rate [2]. On the other hand, there
is a trade-off between the number of reduced dimensions and the classification
accuracy. Principal component analysis (PCA) is also used to detect adversarial
inputs [11]. For poisoning attacks, studies on extracting poison triggers by solving
a loss minimization problem for the output of the model [32] or reducing neurons
that are activated only by poisoned data [16] have been performed.

To address the malware classification problem, strong backdoor attacks have
recently been proposed by Severi et al. [26]. Backdoor attacks inject poisoning
data using a trigger called a backdoor into the training data, causing the predic-
tion model to misclassify only the backdoored data. The unique aspect of their
algorithms is that the backdoor is not injected in the feature space but rather in
the input file (binary) itself so the attacker can plant poisoning data during the
data accumulation phase. As a result, only the contaminated training data are

Countermeasures Against Backdoor Attacks Towards Malware Detectors 297

available to the defender, and he must take countermeasures based on them. To
the best of our knowledge, there is no effective countermeasure for these attacks.

1.1 Related Works

We will introduce several countermeasures relevant to this paper.

Mitigation of Backdoor Attacks. Isolation Forest [15] is a standard unsuper-
vised learning method for anomaly detection, and can also be used for backdoor
detection. Decision trees constructed from the feature values of a contaminated
dataset are used to detect outliers. The spectral signatures proposed by Tran
et al. [30] detect outliers by performing SVD on latent representations for the
last layers in a (poisoned) neural network. In Severi’s paper, these mitigation
techniques were applied to backdoor attacks but were not shown to be effective
against all attack algorithms.

Defenses by Generative Networks. Autoencoders, which are mainly used
for dimensionality reduction, are used as anomaly detectors. Madani et al. [18]
applied autoencoders as anomaly detectors for label contamination attacks.
Their algorithm outperforms conventional PCA-based detectors in terms of the
detection rate. There are also defenses using generative adversarial networks
(GANs) to disable adversarial examples [23]. In their method, test data is
replaced before input to the prediction model by surrogate data generated by
a GAN. They show that adversarial noise can be sanitized by filtering through
a GAN, thereby reducing the attack success rate. Note that the data used to
generate the GAN needed to be clean.

1.2 Contributions

In this paper, we first consider effective countermeasures against backdoor poi-
soning attacks towards the malware classifier proposed by Severi et al. in the
realistic threat model. Our defensive method is based on autoencoders not as
anomaly detectors but as surrogate data generator to eliminate backdoors. We
show that autoencoders are very effective at sanitizing backdoor attacks, even in
attacker-favorable situations where the defender can only obtain contaminated
training data. To the best of our knowledge, this is the first attempt to achieve
this, especially in the following two points:

1. We applied autoencoders as pseudodata generators for defenses against back-
door attacks and showed that backdoors are actually removed by passing
them through an autoencoder.

2. We show that even autoencoders generated from contaminated datasets are
effective at sanitizing poisoned data. In other words, there is no need to
assume the existence of a clean dataset as in existing supervised anomaly
detection.

298 S. Narisada et al.

The experimental results show that our proposed method significantly
reduces the attack success rate of the two backdoor attacks proposed by Severi
et al. and the stronger variant combining the label flip attack and fast gradient
sign method proposed in this work. In addition, we confirmed that the prediction
accuracy of the surrogate model did not degrade much compared to the original
model.

2 Preliminaries

2.1 Notation

We consider a binary classification from an (normalized) input x ∈ X = [−1, 1]
to an output y ∈ Y = {0, 1}. The goal of the binary classification is to learn a
classifier f that maps f : X �→ Y. Let � be a loss function. In this paper, we
assume that the model is a neural network, and � is the binary cross entropy
loss. We denote the training data set as Dtr and the validation set as Dval.

2.2 Threat Model

In this paper, we consider a general malware classification task using machine
learning based on static analysis. First, binary files are aggregated on threat
intelligence platforms. Honeypots and sensors are being used to collect mal-
ware/benign files. Users (including attackers) can also provide binary files to
the platform. The aggregated binary files are automatically labeled through
dynamic analysis using existing antivirus engines. In this way, a pretraining
dataset Dpre = {(bi, yi)}n

i=1 consisting of a binary file bi and its label yi is
generated. We assume the existence of an attacker with either of the follow-
ing capabilities: (1) modify only the binary file bi → b̂i (clean label attacks) or
(2) modify both the binary file and the label (bi, yi) → (b̂i, ŷi) (label flipping
attacks). Then, the attacker mixes an attacker’s dataset Apre = {(b̂i, ŷi)}p

i=1

consisting of p poisoned data into the pretraining dataset: D̂pre = Dpre ∪ Apre.
For the (poisoned) pretraining dataset, some feature extraction algorithms are
applied to the binary files. In this paper, we use the EMBER feature extractor,
which is commonly used for feature extraction in malware classification. Each
binary file b is transformed into a 2351-dimensional feature vector v by EMBER.
A model is trained on a (poisoned) dataset D̂tr consisting of a pair of feature
vectors and labels (v, y), and it will classify the feature vectors extracted from
the unknown binary file.

We assume that the attack is targeted since the attacker’s objective is to
misclassify the specific malware as benign software. As for the attack algorithm,
we consider backdoor poisoning attacks as described in previous research. A
backdoor (also called a trigger or watermark) is inserted into the input space
(binary) of the attacker’s pretraining data so that some dimension of the fea-
ture vector v changes to a certain value. Then, the poisoned model misclassifies
the backdoored malware as goodware in the testing phase. In order to consider

Countermeasures Against Backdoor Attacks Towards Malware Detectors 299

stronger defensive methods against the attacks, the attacker is assumed to have
knowledge of all the feature extraction algorithms, the structure of the model,
the learning algorithm, and a part of the pretraining dataset (white box attacks).

3 Backdoor Attacks Towards Malware Classifier

Backdoor attacks on malware classifier differ from the usual feature space-based
attacks in that they assume the injection of a backdoor in the input space (binary
file). The attacker’s objective is to construct a poisoned classifier f̂ that dif-
fers from a clean classifier f by injecting backdoored binary b̂ into the training
dataset. For binaries b with no backdoor inserted, f and f̂ output the same
prediction; whereas for backdoor binaries b̂, the prediction of f̂ is the targeted
label ytarget = 0 (benign software):

f(v) = f̂(v), f(v̂) = y, f̂(v̂) = ytarget �= y, (1)

where v ← Feat(b) and v̂ ← Feat(b̂) for some feature extraction function Feat. In
backdoor generation, the optimal backdoor value is first calculated in the feature
space. Then, it is projected into the binary space through the inverse function
Feat−1. In the following, the term backdoor is used to denote a backdoor in the
feature space. A backdoor is denoted by a pair of two lists (F, V) of length N .
For 1 ≤ i ≤ N , F [i] denotes the i-th backdoor dimension and V [i] denotes the
backdoor value for F [i]. Namely, for a clean feature vector v, the i-th backdoor
is generated by v[F [i]] = V [i]. The key of the backdoor generation algorithm is
the choice of F and V and how to project the backdoor in input space.

3.1 Clean Label Backdoor Attacks [26]

Severi et al. used a model explanation technique called SHAP (SHapley Additive
exPlanations) [17] for backdoor generation. SHAP can quantify the contribution
of an input (feature vector) to the output of machine learning models by building
a surrogate explanation model. Let g be an explanation model. For the original
prediction model f and its input v, g approximates f(v) as follows:

g(z) = φ0 +
n∑

i=1

φizi, (2)

where zi ∈ {0, 1} and φi ∈ R. φi represents the contribution of the i-th feature
of the input v to f(v) and f(v) ≈ ∑n

i=1 φi is satisfied. z = (z1, · · · , zn) is a
simplified input of v. zi = 1 means that vi is used for the prediction of f , and
zi = 0 means that vi is not used for the prediction. In malware classification,
φi < 0 means that vi contributes to the direction of benign software, and φi > 0
means that vi contributes to the malware. The magnitude of the contribution
for vi is obtained by |φi|. Originally, SHAP is used to quantify the contribution
of a specific feature of the input to the output, but it can also be used for feature
vectors by constructing an explainable model g with a feature vector as input
of g. Hereafter, we introduce two backdoor generation algorithms using the φi

proposed by Severi et al..

300 S. Narisada et al.

Independent Selection. First, we construct the list F consisting of the
dimensions of the backdoor. For prediction model f , the SHAP values of the
training data Dtr are computed. Namely, a SHAP matrix S is generated such
that S[i, j] = φ

(j)
i ,where φ

(j)
i =̂ (v(j), y(j)) ∈ Dtr. In the independent selec-

tion, the sum of the absolute values of the SHAP values is computed by
Sabs[i] =

∑n
j=1 |S[i, j]| for each dimension i. This allows us to obtain the mag-

nitude of the contribution to the prediction for each dimension. Then, the first
backdoor dimension is computed by F [1] = arg maxi Sabs. By taking the max-
imum, the most important dimension for the prediction is extracted, ignoring
the directionality. The entire F is constructed by computing the second to N -th
backdoor dimensions in the same way.

Regarding the value selection algorithms, one of the their algorithms inserts
backdoor points in sparse and weak-confidence areas, aiming for the backdoor
points to gain high leverage in the prediction. To do so, the value with the lowest
frequency of occurrence in dimension F [i] is chosen as the backdoor value, i.e.,
V [i] = arg maxa(1/ca) for a ∈ A = {vF [i] | ∀(v, y) ∈ Dtr}, where ca is the
frequency of occurrence of the value a. Finally, for a randomly selected feature
vector v of a benign software (v, y = 0) ∈ Dtr, a backdoor is inserted into the
binary file in the input space so that v[F [i]] = V [i] is satisfied in the feature
space using the inversion Feat−1. The details of the inversion will be described
later. In the testing phase, the same backdoor (F, V) is inserted into the malware,
causing it to be predicted as benign.

Greedy Combined Selection. Another strategy is to choose the dimension
with the highest contribution to the benign direction as F and choose the most
benign value in F as V . For the SHAP matrix S, greedy combined selection
computes the sum of the SHAP values Ssum[i] =

∑n
j=1 S[i, j] for each dimension

i. Then, the first backdoor dimension is determined by taking the minimum for
Ssum, i.e., F [1] = arg mini Ssum. The first backdoor value V [1] is obtained by
V [1] = arg mina(1/ca) +

∑
j∈J S[i][j] for a ∈ A = {vF [1] | ∀(v, y) ∈ Dtr}, where

j is the index of the training data satisfying vF [1] = a. In order to blend the
backdoor with background benign data, the frequency terms are combined in
the equation to choose high frequency values. When considering (F [2], V [2]), we
exclude the training data that do not satisfy v[F [1]] = V [1] from the candidates.
This is repeated until the N -th backdoor is reached. This method guarantees
that there is at least one background point with the backdoor in the training
data. This causes poisoning data with backdoors to be easily mixed in with the
training data. The backdoor injection scheme is the same as the independent
selection algorithm.

Inversion from Feature Space to Input Space. Once the backdoor (F, V) in
the feature space is ready, we want to project (F, V) into the input space (binary
file) considering the inversion of the feature extraction algorithm. Although the
inversion method varies for feature extraction algorithms, Severi et al. showed
that it is indeed possible in several dimensions for the EMBER feature extractor.

Countermeasures Against Backdoor Attacks Towards Malware Detectors 301

They identified that 35 out of 2351 dimensions in EMBER are invertible and
directly manipulable. In these dimensions, either values or counts of specific bit
strings in the binary file are directly extracted. For instance, the 2240 dimension
of EMBER is major operating system version, where the OS version is stored
as an integer. 2349 is urls, which stores the number of strings that may contain
URLs. Thus, the location to be edited in the binary is identified and can be mod-
ified directly so that the corresponding feature vector has the backdoor value.
Furthermore, they confirmed that the result of labeling the backdoored binary
via dynamic analysis is identical to the original label. However, they stated that
it is difficult to perform the inversion for the remaining 2316 dimensions due to
the feature hashing function used in the EMBER extractor.

3.2 Stronger Label Flip Backdoor Attacks

Severi’s backdoor attacks are practical but assume some limitations for an
attacker: the attacker cannot modify labels, and the backdoor must be selected
from the values present in the training dataset. However, assuming a stronger
backdoor attack without these constraints is important from the defender’s per-
spective to validate the upper limit (worst case) of the defense performance. If
an attacker has the capability to manipulate labels besides the data itself, we can
consider a label-flip variant of the backdoor attacks as in the standard poisoning
attacks. We propose a new backdoor attack based on Severi’s attacking scheme,
which combines the Fast Gradient Sign Method (FGSM) [10], a type of adversar-
ial examples; and the label flip attack. In our method, the initial poisoning data
are malware randomly selected from the training data as in the conventional
poisoning attacks. Its label is flipped to 0 (goodware). In feature selection, N
dimensions with the highest contribution to the goodware are stored in F as in
the greedy combined selection. The value of backdoor V [i] is obtained by the
following equation for 1 ≤ i ≤ N :

V [i] = v[F [i]] − εsign(∇v �(f(v), ltarget)[F [i]]), (3)

where ε is a weight parameter and ltarget = 0. In our experiments, we used the
MSE loss for the loss function �. Since the attack is targeted, v is updated so
that the loss of ltarget decreases for the backdoor dimension F [i]. Note that V
is dependent on the backdoored initial vector v. Finally, the malware binary
b and its label y = 1 are modified in the input space as (b̂, ȳ = 0) using the
backdoor (F, V) and injected into the training data Dtr. The difference between
the proposed algorithm and the standard FGSM is that the FGSM adds adver-
sarial noise to all feature dimensions at the testing phase. On the other hand,
our algorithm adds adversarial noise to only the backdoor dimension during the
training phase. In addition, to increase the probability that backdoor malware
is misclassified as goodware during the testing phase, we flipped the label of
backdoor malware in the training data to 0.

302 S. Narisada et al.

4 Defenses Against Malware Classification Models

As mentioned in the threat model, the training data in malware classification
may be contaminated with poison since binary files are collected from public
resources. However, many existing countermeasures against backdoor attacks
assume the availability of clean training data for anomaly detection models.
Previous research has shown that unsupervised anomaly detection is not always
effective against backdoor attacks [26]. Our goal is to devise a comprehensive
countermeasure against backdoor attacks under the assumption that the train-
ing data are contaminated. We focused on the fact that an attacker injects a
backdoor into the input space (the actual binary) rather than the feature space
in malware classification. Then, we verify the invertibility of each dimension for
the feature extractor and investigate the possibility of attacks on each dimen-
sion of the feature space from the input space. We prevent attacks by applying
countermeasures to the dimensions that are potentially attackable.

4.1 Invertibility of Backdoor

We extend the discussion between the feature space and the input space in
Sect. 3.1 in terms of backdoor invertibility. In the EMBER extractor, a feature
hashing function is used for 1708 out of 2351 dimensions (for details, see [1] or
the implementation of the EMBER). In these dimensions, the LIEF parser [27]
directly extracts the value or count of a particular bit string from a binary file
as a dictionary. The extracted dictionary {name : x} with name associated with
the some name on the binary file (function name, etc.) and value x is transformed
into feature vector v of length m using the feature hashing function as follows:

v[i] =
{

+x (hs mod 2 = 0)
−x (hs mod 2 = 1), (4)

where i = h mod m for a hashing function h = hash(name) and a sign hash
function hs = hashs(name) for the feature name. Since the attacker has knowl-
edge of the feature extraction algorithm, he can obtain both {name : x} and the
hash function. Thus, an attacker has the ability to invert the backdoor into the
input space for these dimensions. For example, we assume that an attacker wants
to modify the value x of a feature vector v[i] to v[i] = a. The attacker’s purpose
is to obtain name in order to modify binary strings associated to name in the
input space. If the attacker has knowledge about the feature extraction algo-
rithm, he should also know the set of name to be extracted by the algorithm
(e.g., by viewing the source code of the extractor). Then, he can identify the
name associated with i by checking i = hash(name) mod m for each name. For
the remaining 608 dimensions, except for the 35 dimensions shown in Sect. 3.1,
the statistics of the entire file, such as histograms, are used. Therefore, it is phys-
ically impossible to modify the dimensions to arbitrary values without affecting
the binary functionality or the other feature vectors for these dimensions. Based
on the above discussion, Table 1 summarizes the results for each dimension along

Countermeasures Against Backdoor Attacks Towards Malware Detectors 303

Table 1. Invertibility of the backdoor for the EMBER extractor.

Dimension Feature group Directly manipulable Feature hashed Invertible

1–256 ByteHistogram × × ×
257–512 ByteEntropyHistogram × × ×
513–767 SectionFileInfo � � �
768–2047 ImportsInfo × � �
2048–2175 ExportsInfo × � �
2176–2185 GeneralFileInfo � × �
2186–2247 HeaderFileInfo � � �
2248–2351 StringExtractor � � �

with feature groups regarding the possibility of the invertibility of the backdoor.
We determined the attackable dimension of a feature vector to be a dimension
that satisfies at least one of the following three conditions: (1) it can be directly
manipulated from the input space, (2) it is extracted by using a feature hashing
function, and (3) it is invertible to the input space. Table 1 shows that there
is a possibility of inversion in the 513–2351 dimensions of EMBER. Although
we focus on the EMBER extractor here, it is also plausible that an attacker is
incapable of controlling all feature space if the input space and the feature space
are separated for other domains. We are now ready to develop countermeasures
against these potentially attackable dimensions.

4.2 Countermeasures Against Input-Space Backdoor Attacks

For a clean dataset Dtr = {(vi, yi)}n
i=1 and an attacker’s dataset Atr =

{(v̂i, ŷi)}p
i=1 consisting of p backdoored points, the dataset available to the

defender is only the poisoned dataset D̂tr = Dtr ∪ Atr. Suppose a feature vector
is represented as v = (s,x) with uncontrollable feature vector s and controllable
vector x. The uncontrollable feature vector s is a vector that cannot be modi-
fied to desired value by an attacker through a backdoor attack. In this paper, we
define s to be a vector that does not satisfy all of the following conditions: (1) it
can be manipulated directly from the input space, (2) it is generated by a feature
hashing function, and (3) it is invertible to the input space. The definition of the
controllable feature vector x is the complement of the definition of s. Then, we
assume that the attacker manipulates the invertible vector x and/or its label y in
the input space. Thus, the defender should apply countermeasures to the vector
x. We propose the following defense algorithms based on data transformation
on x.

Dimensionality Reduction. The naivest method to prevent the attack is to
not use the vector x itself for model training. That is, we set the feature vector
v = s. This approach reduces the success rate of attacks by data modifica-
tion except for label flipping to zero. However, the prediction accuracy of the

304 S. Narisada et al.

model for correct data also decreases by discarding the feature vectors neces-
sary for training. In [20], the prediction accuracy decreased by 24.6% when only
ByteHistogram (1–256 dimensions) was used to train the lightGBM model. This
increases the false negative rate of the malware, which may lead to misclassifica-
tion of the backdoored malware. The prediction model is trained on the reduced
dataset {(si, yi)}n+p

i=1 , and the input in the testing phase is also reduced to s.

Surrogate Data Generation by Autoencoder. Another approach is to
replace the vector x with surrogate one x′, aiming for a trade-off between the
prediction accuracy and the attack success rate. To generate surrogate data,
GANs are used in the field of privacy for fair data generation [6,33] and as
anomaly detection against adversarial examples [23]. Autoencoders are also used
as anomaly detectors [18]. The drawbacks of these methods are that they assume
GAN or autoencoders generated from a clean dataset. However, the size of the
backdoor is very small compared to the entire feature vector and can be regarded
as noise. We expected that the autoencoder could learn the clean data distribu-
tion while ignoring the backdoor from the poisoned dataset by setting hyperpa-
rameters such as the compression ratio and batch size appropriately.

We construct an autoencoder as a surrogate data generator for the vector
x. An autoencoder consists of two neural networks: Enc with an n-dimensional
input and m-dimensional output, and Dec with an m-dimensional input and
n-dimensional output. The dimensionality of the input x is reduced by Enc(x),
and the compression ratio is denoted by m/n. Dec(Enc(x)) recovers the encoded
data Enc(x) to the original feature space. The training parameter of our autoen-
coder θAE is learned so that the reconstructed input is close to the original input
for the controllable feature in the poisoned dataset:

θAE := arg min
θAE

1
|D̂tr|

∑

(s,x)∈D̂tr

‖Dec(Enc(x)) − x‖22. (5)

Note that θAE is learned in a different way than the usual autoencoder where
the objective function is

∑
(s,x)∈D̂tr

‖Dec(Enc(s,x)) − (s,x)‖22. After the con-
struction of the autoencoder, each x in the poisoned training dataset is replaced
by x′ = Dec(Enc(x)) using the autoencoder, and the surrogate training point
becomes (s,x′, y). Although setting x′ = Enc(x) without the decoder may seem
to be appropriate from the viewpoint of reducing the computational costs, our
experimental results show that the success rate of the attack is reduced more
when the decoder is used. The prediction model is trained on the reconstructed
dataset {(s,x′, y)}n+p

i=1 . In the testing phase, it was observed that replacing x
with x′ is more effective for reducing the attack success rate than using x as is.

Countermeasures Against Backdoor Attacks Towards Malware Detectors 305

Table 2. Hyperparameters for our networks.

Model Learning rate Epochs Batch size

linearNN 0.1 100 512

surrogateNN 0.01 300 512

reducedNN 0.01 300 512

autoencoder 0.1 50 128

5 Experiments

We evaluated the effectiveness of backdoor attacks and their countermeasures
against a neural network-based malware detector. We compared the defense
performances of proposed methods against three backdoor poisoning algorithms
in terms of attack success rate and prediction accuracy. In addition, we analyzed
how the surrogate feature vectors generated from the contaminated autoencoder
affect their contribution to the prediction and the distribution of values.

5.1 Setup

Dataset. We used part of the EMBER dataset, which consists of 2351-
dimensional features extracted from 1.1 million PE (Portable Executable) files.
We sampled 10000 data points from the entire EMBER dataset so that the num-
bers of goodware and malware items were evenly split and randomly divided
them into the training and test dataset at a ratio of 8 : 2. That is, the train-
ing dataset consists of 4000 malware and goodware, the test dataset consists of
1000 malware and goodware. The attacker’s validation data is 1000 malware ran-
domly chosen from the EMBER dataset, and the attack success rate is the per-
centage classified as goodware. The uncontrollable features of the attacker in the
EMBER dataset are the ByteHistgram and the ByteEntropyHistgram from the
analysis in Sect. 4, and the attacker chooses backdoor features between 513–2351
dimensions. Since our goal is to establish countermeasures supposing a stronger
attacker, we do not consider inverting the backdoor into the input space, and the
attacker is assumed to be capable of inserting a backdoor into the controllable
features. The initial data of the attacker’s dataset is randomly selected good-
ware from the training data for the independent selection and greedy selection
attacks and malware for our FGSM-based attack. All values in feature vectors
are normalized to the range [−1, 1].

Implementation Details. For the malware classifier, we implemented a lin-
ear neural network model (linearNN) similar to the EmberNN model in previ-
ous research [26]. Our neural network consists of four 2351-dimensional densely
connected linear layers. For the activation function, we used the ReLU for the
first three layers and the sigmoid for the last layer. Batch normalization and
dropout were also applied between the linear layers to improve the prediction

306 S. Narisada et al.

Table 3. Accuracy, false-positive rate and false-negative rate of each model trained on
the clean training data.

Model Accuracy False-positive False-negative

linearNN 0.968 0.029 0.035

surrogateNN 0.943 0.048 0.065

reducedNN 0.915 0.071 0.099

accuracy. The dropout ratio is fixed at 0.5. The network used to train the sur-
rogate data generated by the autoencoder (surrogateNN) has the same network
as the linearNN. The network for dimensionality reduction (reducedNN) is the
same as linearNN except that the dimensionality is reduced from 2351 to 512.
The architecture of the autoencoder to sanitize the backdoor and generate the
surrogate data is composed of an encoder and decoder with two linear layers.
Dropout is applied after the last layer of the encoder to prevent overfitting.
We set the compression ratio to 44% (1024/2351). We show the hyperparame-
ters used in our models in Table 2. These parameters were calculated using the
grid search. Our algorithms were implemented in Python with PyTorch.1 All
experiments were conducted in Ubuntu 18.04 with an NVIDIA Tesla P100 GPU
(CUDA Version: 11.2).

5.2 Results

First, we measured the prediction accuracy of each model trained on the clean
training data. The results are shown in Table 3. The false positive rate is the per-
centage of goodware misclassified as malware, and the false negative rate is the
percentage of malware that was not detected. Note that the attack success rate is
the false negative rate against the attacker’s validation dataset. For all metrics,
the results of the linearNN are the highest since the model learned the entire
feature vector. The accuracy of the surrogateNN, which learned feature vectors
with 512–2351 dimensions replaced by surrogate data from the autoencoder, is
2.5% less than that of the linearNN. However, the accuracy of the surrogateNN
is 2.8% higher than that of the reducedNN, where the corresponding dimension
is completely removed.

In the following, we will examine the prediction accuracy and the attack
success rate of these models constructed on the poisoned training data with
backdoor produced by each backdoor generation algorithm. We varied the num-
ber of backdoored dimension N and the number of poisoning point p between
4 (0.17%) ≤ N ≤ 64 (2.7%) and 0 ≤ p ≤ 1600 (20%) to observe the effect of
contamination on the accuracy and the success rate. When varying N , we fix
p = 80 (1%) and fix N = 8 when we vary p. Note that p = 0 corresponds to the
evasion attack (adversarial example) since we do not modify the training data
1 Our implementation is available on https://github.com/mlearning-security/

countermeasures-against-backdoor-attacks.

https://github.com/mlearning-security/countermeasures-against-backdoor-attacks
https://github.com/mlearning-security/countermeasures-against-backdoor-attacks

Countermeasures Against Backdoor Attacks Towards Malware Detectors 307

Fig. 1. The attack success rate (top) and the prediction accuracy (bottom) for each
countermeasure against the independent selection attack.

itself but we inject N backdoor into the attacker’s validation data at the testing
phase. We are interested in how the attack success rate behaves with respect
to variations in p when we consider backdoor attacks to be a generalization of
evasion attacks.

Independent Selection. We show the results in Fig. 1. The attack success
rate for the attacker’s validation data increases as N and p increase when the
defender has no countermeasures (No Defense in Fig. 1, 2 and 3). This is similar
to the Severi’s previous result. However, we found that the attack succeeded
even though p = 0. This indicates that the backdoor attack can work as an
evasion attacks when the training data is not contaminated with poisoning data.
Furthermore, the prediction accuracy for the base network linearNN did not
change.

When we use the reducedNN (Deletion in Fig. 1, 2 and 3) or surrogateNN (AE
in Fig. 1, 2 and 3), the attack success rate is drastically reduced to approximately
10%. In the case of the reducedNN, the attack success rate is just the false
negative rate of the malware since the backdoor has been completely removed
via the dimensionality reduction. As for the surrogateNN, the attack success rate
is reduced almost as much as that of the reducedNN, although the model was
trained on the surrogate data from the autoencoder generated by the poisoned
training data. The accuracy is almost the same as that of the clean dataset,

308 S. Narisada et al.

Fig. 2. The attack success rate and the prediction accuracy for each countermeasure
against the greedy combined selection.

regardless of the size of N and p. Therefore, the surrogateNN has an advantage
over the reducedNN in terms of the attack success rate and the accuracy.

Greedy Combined Selection. The results are given in Fig. 2. The attack
success rate for the linearNN is lower than that of the independent selection.
This is due to the constraint of the algorithm: there must be a background point
in the training data that has the same value as the backdoor. In contrast, it
was shown that existing countermeasures were ineffective against the algorithm
because it is hard to distinguish the well blended backdoor points [26]. Against
such advanced attacks, the surrogateNN can reduce the attack success rate as
with the reducedNN. The prediction accuracies for the three models were almost
the same as that of independent selection.

FGSM-Based Attack. Figure 3 shows the results of our FGSM-based attack.
In our experiment, we set the weight parameter for gradients ε = 1.5. The attack
success rate for the linearNN is saturated to 100% at N = 16 or p = 10%. It is
much higher than that of independent or greedy selection for the same parameter.
This is because the algorithm has no constraints on the value of the backdoor
(except for selecting a value from the feasible range [−1, 1]). Another reason is
that the attacker has the capability to modify the label added to the data. There

Countermeasures Against Backdoor Attacks Towards Malware Detectors 309

Fig. 3. The attack success rate and the prediction accuracy for each countermeasure
against the FGSM-based label flip attack.

is a trade-off between the attack success rate and attacker capability. Even when
p = 0 and N = 8, the attack succeeded by approximately 40%. Considering
that the FGSM was originally proposed as a adversarial example, this result is
plausible.

For the defender, the surrogateNN is still effective in decreasing the attack
success rate. However, the protection performance drops sharply as the poisoning
rate grows. The false negative rate for the reducedNN also increases as p increases
due to the label-flipping of the training data. The prediction accuracy is stable
as N varies but slightly decreases as p increases since neither the surrogateNN
nor the reducedNN consider whether the labels are flipped. It is necessary to
study how to defend against stronger backdoor attacks that combine label flip
attacks.

Table 4 and Table 5 show the average attack success rate and the prediction
accuracy for each backdoor generation algorithm and defensive strategy. We also
show the results for large p (30% and 40%). From Table 4, we can observe a slight
increase of the attack success rate of the surrogateNN for p = 30% and 40%.
From Table 5, it is clear that there is no significant effect between the increase
of p or N and the prediction accuracy of the clean data.

310 S. Narisada et al.

Table 4. Attack success rate (averaged) for each backdoor generation algorithm and
defensive strategy.

Backdoor Defensive N p

algorithm strategy 4 8 16 32 64 0% 1% 2% 10% 20% 30% 40%

Independent NoDefense 41.1 57.6 86.6 98.0 99.7 31.4 64.5 73.4 88.6 96.8 97.3 97.4

AE 8.8 8.0 11.3 16.4 15.8 7.4 8.3 9.2 15.5 14.7 23.6 18.8

Deletion 8.6 5.3 8.3 10.2 7.4 8.2 10.4 9.1 7.8 8.5 12.9 8.4

Greedy NoDefense 22.4 27.8 36.0 44.7 56.9 23.4 29.7 30.2 35.1 42.5 52.5 54.6

AE 7.7 10.3 10.2 10.3 11.2 8.7 8.0 10.6 12.0 10.5 23.9 10.4

Deletion 7.9 8.8 9.2 7.3 8.9 11.5 7.9 10.3 11.3 11.0 16.6 11.3

FGSM NoDefense 80.9 94.5 98.7 99.5 99.8 41.0 93.7 96.8 99.4 99.7 99.7 99.8

AE 19.5 21.1 42.6 49.4 55.7 12.1 30.3 46.3 81.0 94.0 95.7 97.2

Deletion 7.2 8.4 7.1 9.7 8.3 7.7 9.9 8.4 16.7 17.4 8.45 11.5

Table 5. Prediction accuracy (averaged) for each backdoor generation algorithm and
defensive strategy.

Backdoor Defensive N p

Algorithm Strategy 4 8 16 32 64 0% 1% 2% 10% 20% 30% 40%

Ind. NoDefense 96.5 96.5 96.6 96.7 96.4 96.4 96.7 96.6 96.4 96.5 96.4 96.6

AE 94.0 93.6 93.5 93.6 93.7 94.3 93.9 94.6 94.0 93.6 94.1 92.3

Deletion 91.6 87.4 88.1 90.3 85.9 91.5 89.6 91.2 91.3 92.3 90.0 91.7

Greedy NoDefense 96.5 96.3 96.5 96.5 96.3 96.6 96.5 96.5 96.6 96.6 96.6 96.5

AE 93.9 94.1 93.2 94.0 94.2 93.0 94.4 94.5 93.1 94.1 92.7 93.3

Deletion 91.3 91.9 91.2 90.8 91.0 90.7 91.2 91.8 91.5 91.5 88.7 90.6

FGSM NoDefense 96.5 96.4 96.5 96.4 96.7 96.5 96.4 96.8 96.4 96.4 96.2 96.5

AE 93.0 93.4 94.4 94.4 94.1 93.4 94.4 93.5 88.1 92.2 92.4 93.7

Deletion 91.4 91.1 91.7 91.1 91.5 90.9 91.2 91.3 89.2 89.0 88.4 88.6

Fig. 4. Comparison of the sum of the absolute SHAP values for the training data (left)
and the surrogate data (right).

Analysis. The above experimental results show that the autoencoder can
weaken the power of the backdoor generated by using SHAP even if the autoen-
coder is learned from the poisoned dataset. To verify why this is possible, we
conducted additional experiments on the surrogate data generated by the poi-
soned autoencoder. First, we compared the contribution of the true feature vec-
tor to the original model linearNN and that of the pseudo feature vector to the

Countermeasures Against Backdoor Attacks Towards Malware Detectors 311

Fig. 5. Heatmap of histograms for the distribution in the clean training dataset (top)
and the surrogate dataset (bottom) in 513–2351 dimensions.

surrogate model surrogateNN. If the autoencoder has not learned the backdoor,
then backdoor dimensions should not contribute much to the prediction of the
surrogateNN.

Figure 4 compares the contributions of true vectors and surrogate vectors to
the prediction of the each model. In the experiment, we summed the absolute
SHAP values in the training dataset for each dimension. The linearNN and
the clean training dataset were used to create the left graph. The surrogateNN
and surrogate training dataset were used to create the right graph. The purple
lines show the backdoor dimensions chosen by the independent selection for
N = 8. The backdoored dimensions are 637, 618, 642, 621, 692, 622, 641 and
658 (ordered by the sum of absolute SHAP values). The dotted line represents the
512 dimension. From the left figure, the backdoor is chosen from the dimensions
whose contribution is very high. However, after the data replacement by the
autoencoder, the contribution of the backdoor to the surrogateNN is reduced
by approximately 100 times. Examining all dimensions, the contribution in 1–
512 dimensions increases, where no data replacement occurred. Furthermore,
the contribution in the remaining dimensions appears to be evenly distributed at
approximately 10−1. Therefore, we consider that autoencoders have the ability to
equalize the contribution, and the incorrect contribution caused by the backdoor
may be absorbed by the correct dimensions.

Finally, we compared the distribution of the true data and that of the sur-
rogate data generated by the autoencoder and found that our autoencoder has
the ability to remove noise (including the backdoor). Figure 5 compares the his-
tograms for the distribution of feature vectors computed from clean dataset and
surrogate dataset as heatmaps. The higher the brightness of the heatmap, the
greater the frequency of feature vectors with values in the range. The y-axis
represents the feature value. The number of bins = 16. It seems that the autoen-
coder learns by ignoring infrequent values or equates them with other frequent
values since the purple bins in the upper figure disappear in the lower figure. In
fact, we have confirmed that the autoencoder reconstructs a clean distributed
point from a backdoored point for several backdoor dimensions.

312 S. Narisada et al.

Discussing from the point of view of the structure of the autoencoder, we
found that the backdoor noise generated by the Severi’s backdoor attacks can
be removed by setting an appropriate compression ratio. In the Severi’s backdoor
attacks, backdoor is inserted in the N dimensions out of 2351 feature dimensions
for p poisoning data. Feature values in 2351 − N dimensions are all clean dis-
tributed, and the remaining N dimensions are also clean distributed except for
the p poisoning data. Therefore, when dimensionality is appropriately reduced
by the encoding, the distribution that is considered as noise for the autoencoder
is likely to be removed in the latent space. Then, the decoder decompresses only
the major distribution of the entire dataset D̂tr into the input space. This is the
main reason why replacing surrogate data generated by autoencoder can reduce
the attack success rate. In our experiments, the higher the compression ratio, the
greater the effect of removing backdoor noise and reducing the success rate of
attacks. However, at the same time, the classification accuracy also decreased for
too high compression ratio, so we needed to search an appropriate compression
ratio.

6 Conclusion

In this work, we propose the first countermeasures against backdoor poison-
ing attacks towards the malware classifier presented by Severi et al. in a realistic
threat model. In their attacks, an attacker injects a backdoor into the input space
(binary file) during the data accumulation phase, and a defender is available only
for the poisoned training dataset. In this favorable attack situation, we exploit
the irreversibility between the input space and the feature space and identify the
feature dimensions over which the attacker has no control. Then, we sanitize the
backdoor for potentially attackable dimensions using the dimensionality reduc-
tion and an autoencoder as a pseudodata generator. In our experiments, our
autoencoder generated from the contaminated dataset drastically reduced the
attack success rate while retaining the high prediction accuracy of the clean data.
For future works, analysis on the network structures of contaminated autoen-
coders and concrete comparison to the existing nonsupervised anomaly detec-
tion are needed. It is also necessary to verify the existence of adaptive backdoor
attacks that are effective against the proposed countermeasures.

References

1. Anderson, H.S., Roth, P.: EMBER: an open dataset for training static PE malware
machine learning models. arXiv preprint arXiv:1804.04637 (2018)

2. Bhagoji, A.N., Cullina, D., Mittal, P.: Dimensionality reduction as a
defense against evasion attacks on machine learning classifiers. arXiv preprint
arXiv:1704.02654 2 (2017)

3. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Bloc-
keel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS
(LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40994-3 25

http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1704.02654
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25

Countermeasures Against Backdoor Attacks Towards Malware Detectors 313

4. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. arXiv preprint arXiv:1206.6389 (2012)

5. Chang, H., et al.: A restricted black-box adversarial framework towards attacking
graph embedding models. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 3389–3396 (2020)

6. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.F., Sun, J.: Generating multi-
label discrete patient records using generative adversarial networks. In: Machine
Learning for Healthcare Conference, pp. 286–305. PMLR (2017)

7. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behav-
ior. In: Proceedings of the the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 5–14 (2007)

8. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 1322–1333
(2015)

9. Gavriluţ, D., Cimpoeşu, M., Anton, D., Ciortuz, L.: Malware detection using
machine learning. In: 2009 International Multiconference on Computer Science
and Information Technology, pp. 735–741. IEEE (2009)

10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

11. Hendrycks, D., Gimpel, K.: Early methods for detecting adversarial images. arXiv
preprint arXiv:1608.00530 (2016)

12. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.D.: Adversarial
machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, pp. 43–58 (2011)

13. Idika, N., Mathur, A.P.: A survey of malware detection techniques. Purdue Uni-
versity 48 (2007)

14. Ijaz, M., Durad, M.H., Ismail, M.: Static and dynamic malware analysis using
machine learning. In: 2019 16th International Bhurban Conference on Applied
Sciences and Technology (IBCAST), pp. 687–691. IEEE (2019)

15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422. IEEE (2008)

16. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring
attacks on deep neural networks. In: Bailey, M., Holz, T., Stamatogiannakis, M.,
Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 273–294. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00470-5 13

17. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30,
pp. 4765–4774. Curran Associates, Inc. (2017)

18. Madani, P., Vlajic, N.: Robustness of deep autoencoder in intrusion detection
under adversarial contamination. In: Proceedings of the 5th Annual Symposium
and Bootcamp on Hot Topics in the Science of Security, pp. 1–8 (2018)

19. Muñoz-González, L., et al.: Towards poisoning of deep learning algorithms with
back-gradient optimization. In: Proceedings of the 10th ACM Workshop on Arti-
ficial Intelligence and Security, pp. 27–38 (2017)

20. Oyama, Y., Miyashita, T., Kokubo, H.: Identifying useful features for malware
detection in the ember dataset. In: 2019 Seventh International Symposium on
Computing and Networking Workshops (CANDARW), pp. 360–366. IEEE (2019)

21. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.: Mal-
ware detection by eating a whole exe. arXiv preprint arXiv:1710.09435 (2017)

http://arxiv.org/abs/1206.6389
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1608.00530
https://doi.org/10.1007/978-3-030-00470-5_13
http://arxiv.org/abs/1710.09435

314 S. Narisada et al.

22. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)

23. Samangouei, P., Kabkab, M., Chellappa, R.: Defense-GAN: protecting clas-
sifiers against adversarial attacks using generative models. arXiv preprint
arXiv:1805.06605 (2018)

24. Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimen-
sional binary program features. In: 2015 10th International Conference on Mali-
cious and Unwanted Software (MALWARE), pp. 11–20. IEEE (2015)

25. Schmidt, A.D., et al.: Static analysis of executables for collaborative malware detec-
tion on android. In: 2009 IEEE International Conference on Communications, pp.
1–5. IEEE (2009)

26. Severi, G., Meyer, J., Coull, S., Oprea, A.: Explanation-guided backdoor poison-
ing attacks against malware classifiers. In: 30th USENIX Security Symposium
(USENIX Security 21) (2021)

27. Thomas, R.: LIEF: Library to instrument executable formats (2017)
28. Tobiyama, S., Yamaguchi, Y., Shimada, H., Ikuse, T., Yagi, T.: Malware detection

with deep neural network using process behavior. In: 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 577–
582. IEEE (2016)

29. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIs. In: 25th USENIX Security Symposium
(USENIX Security 16), pp. 601–618 (2016)

30. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: Advances
in Neural Information Processing Systems, pp. 8000–8010 (2018)

31. Vinayakumar, R., Soman, K.: DeepMalNet: evaluating shallow and deep networks
for static PE malware detection. ICT Express 4(4), 255–258 (2018)

32. Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in
neural networks. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
707–723. IEEE (2019)

33. Xu, D., Yuan, S., Zhang, L., Wu, X.: FairGAN: fairness-aware generative adver-
sarial networks. In: 2018 IEEE International Conference on Big Data (Big Data),
pp. 570–575. IEEE (2018)

34. Yang, C., Wu, Q., Li, H., Chen, Y.: Generative poisoning attack method against
neural networks. arXiv preprint arXiv:1703.01340 (2017)

35. Zhao, M., An, B., Yu, Y., Liu, S., Pan, S.: Data poisoning attacks on multi-task
relationship learning. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 32 (2018)

http://arxiv.org/abs/1805.06605
http://arxiv.org/abs/1703.01340

Free by Design: On the Feasibility
of Free-Riding Attacks Against

Zero-Rated Services

Julian Fietkau(B), David Pascal Runge, and Jean-Pierre Seifert

Berlin Institute of Technology, Berlin, Germany
{fietkau,david.p.runge,jpseifert}@tu-berlin.de

Abstract. With free-riding attacks against zero-rated services, an
attacker can avoid expenses by transmitting wrongly labeled zero-rated
network traffic. When applied on large scale, these attacks impact net-
work quality and revenue of network operators. Hence, various solutions
are proposed to protect networks against this growing threat. While these
protections cure some of the symptoms, they do not solve the underly-
ing issue. In this paper, we argue that secure web services with high
bandwidth requirements will increase the chances of free-riding attacks,
when services are zero-rated by network operators. Therefore we show
how tunnel-based free-riding attacks can be designed and implemented
for secure services, such as instant messaging, cloud storage, and video
chats. Furthermore, we evaluate these tunnels in terms of usability and
performance and judge their feasibility. In addition, we also discuss the
existing countermeasures and how they can be improved. As part of our
work, we want to point out that free-riding attacks are a self-imposed
problem created by Internet Service Providers that try to create artifi-
cial walls within a system that is free and open by design, such as the
Internet. To tackle this issue, we publish the created tools to support
those that are opposed to any form of zero-rating, censorship, and other
forms of traffic discrimination.

1 Introduction

Internet access is a crucial aspect of modern life. Consequently, mobile Inter-
net access is established in many parts of the world, and infrastructure costs are
shared among users depending on how much everyone is using. Zero-rating is the
practice of Internet Service Providers (ISPs) to either exclude traffic of specific
applications from the user’s data plan or even offer specific applications for free
[15]. Various types and business models have become established in recent years.
These can range from self-sponsored zero-rating, where an ISP independently
decides to zero-rate a service, up to compound zero-rating, where multiple Con-
tent Providers (CPs) bundle their services into one zero-rated product of an ISP
[3]. However, each practice of zero-rating is in heavy conflict with the idea of
net neutrality [26]. As defined by the EU, the idea of net neutrality is to ensure
equal and nondiscriminatory Internet access among all Internet users. This way,
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 315–333, 2021.
https://doi.org/10.1007/978-3-030-92548-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_17

316 J. Fietkau et al.

innovation without obstacles can be preserved, and discrimination by the ISPs
can be prevented. Without net neutrality, a Content Provider (CP) could pay
an ISP to prioritize its traffic to gain an advantage over its competitors.

One of the most prominent examples for zero-rating is the Free Basics ini-
tiative by Facebook [10]. This service aims to connect the world with essential
online services, especially those who can not afford internet access so far. As
of April 2018, 100 million people were using internet.org [10]. While the goal
of the Free Basics service appears to be noble, the freely accessible service is
very limited to a specific set of services and does not include Facebook’s com-
petitors. The initiative drew much criticism for this, and the Indian telecom
regulator has even banned the service, seeing it as digital colonialism [24]. More-
over, other examples are not too different. For instance, Deutsche Telekom has
offered its Stream On service until the EU court (EuGH) classified this practice
as illegal [19]. Today, the debate about net neutrality is still not settled and will
keep us busy for some years to come also, because traffic prioritization is now
even part of 5G, the next generation of mobile networks [26].

Another way to think about zero-rating services is to use zero-rated traffic
to enable free and unlimited Internet access via free-riding attacks. As the name
suggests, the goal of a free-riding attack is to avoid the billing of Internet traffic
by ISPs. In the context of zero-rating, an attacker tries to trick the ISP to
zero-rate traffic that would be charged otherwise. Recent works on free-riding
attacks against zero-rated services show that numerous attack approaches exist
[11,15,20,22]. Furthermore, the damages by some of these attacks have already
reached a critical level. For example, with a single free-riding attack against
a Chinese ISP, damage of half a million US dollars loss has been created by
creating 71 TB of wrongly labeled traffic [15]. These numbers show that free-
riding attacks are real threats that ISPs and CPs should consider. As we see
i) free-riding attacks are a real threat that is growing ii) they cause financial
damage to network and content providers and impair network quality; and iii) the
next generation of mobile networks will amplify this evolution by standardizing
traffic prioritization

This work will explain how zero-rated services work and present a threat
model for free-riding attacks. Based on that, we analyze the different types of
zero-rated services to implement our free-riding attacks. This includes attacks
via instant messaging, cloud storage, and VoIP services. Afterward, we evaluate
the different approaches with respect to usability and performance. According
to that, we will discuss existing countermeasures and their effectiveness. In sum-
mary, this paper makes the following contributions:

– We demonstrate the feasibility of tunnel-based free-riding attacks against
three secure Internet services.

– We evaluate the presented free-riding attacks with respect to usability and
performance with real-world applications.

– We discuss the effectiveness of existing countermeasures against free-riding
attacks and explain why they fail.

Free by Design 317

– We point out how the concurrent adoption of zero-rating and secure web
services with large bandwidth requirements can amplify free-riding attacks.

– We make our research tools and data accessible via:
https://bit.ly/freebydesign

2 Background

This section introduces the necessary knowledge about free-riding attacks, zero-
rating services, net neutrality and introduces the most related work in this field.

2.1 Zero Rating Services

Zero-rating is “a practice that exempts Internet traffic generated through certain
applications or access to certain websites from usage charges” as defined by the
European Commission [1]. Technically, this is realized by excluding the zero-
rated traffic from the customer’s data plan. In some cases, zero-rating will even
“allow users to access content without having subscribed to a data plan at all”
[1]. The various types of zero-rating are largely discussed in two publications by
the European Commission [1] and in the work of Carillo [3]:

– Single-Service Zero-Rating: The ISP offers free access to one site or service.
The CP has a contract with at least one ISP, e.g., Facebook Zero [6] or
Wikipedia Zero [27].

– Sponsored Zero-Rating: The CP pays the ISP to offer its services at no charge,
e.g., T-Mobile’s Music Freedom, where some music streaming services are
zero-rated [25].

– Compound Zero-Rating: A CP bundles services with an ISP, payments are
not automatically implied, e.g., the Free Basics Service by Facebook, which
includes Facebook, healthcare, news, and weather services [10].

– Faux/Non-Selective Zero-Rating: The CP partners the ISPs to exclude spe-
cific action from the user data volume, e.g., download specific apps, adver-
tisements, or order a specific product such as data volume.

2.2 Net Neutrality

Net neutrality describes the idea to ensure equal and nondiscriminatory treat-
ment of all Internet traffic. Accordingly, ISPs should treat every communication
equally and not discriminate “based on IP addresses, domain name, cookie infor-
mation, TCP port, and others” [28]. One can summarize net neutrality as the
idea of treating every packet equally [23]. Without it, an ISP can throttle, prior-
itize or charge connections arbitrarily. Net neutrality is a fundamental property
for fair competition and innovation. When not enforced, wealthy CPs can pay
ISPs to prioritize or charge their traffic differently than a competitor’s traffic.
This will, above all, harm new CPs with new and alternative services. On the
other hand, net neutrality is in the way of efficient traffic management and can
even create inequality between customers and their different data demands [12].
In the end, net neutrality and zero-rating contradict themselves because the ISP
treats the traffic differently in terms of costs, bandwidth, or latency.

https://bit.ly/freebydesign

318 J. Fietkau et al.

2.3 Free-Riding Attacks

Free-riding attacks try to avoid the billing of Phone and Internet traffic. The
first Free-riding attacks date back to the 1950s when phones were manipulated to
enable free long-distance calls. Back then, the first attacks replayed 2600 Hz tone
or the sound of dropping coins to avoid charging. Later on, the term “Phreak-
ing” was coined [13], and after becoming too popular, countermeasures were
implemented.

Today’s networks are very different and more complex, but the underlying
issues are still the same. Internet traffic is billed on a volume basis and has a
limited data allowance; hence attacks try to avoid these limits. For example, DNS
tunnelings allow a user to get free internet access via Wifi-Hotspots of Deutsche
Telekom [22] and some US network providers as shown by Peng et al. [20]. The
traffic will be encapsulated in DNS messages, and sent to a tunnel endpoint
with unlimited Internet access. The endpoint resolves the tunneled request and
sends the answer back via DNS messages. Besides this technique, many other
ways to attack ISPs are known, e.g., spoofed TCP retransmission headers [7] or
manipulated VoLTE signaling messages [14].

The first attack against zero-rated services was built for T-Mobile’s BingeOn
service and used manipulated HOST headers [11]. Based on this work, Liu et al.
have developed more ways to do the same, for instance, by spoofing the Server
Name Indication field [15]. As we see, various free-riding attacks have been built
to establish free internet access by abusing the protocols that underlie those
network services.

2.4 Countermeasures

With zero-rated services becoming more popular in recent years, free-riding
attacks also got more attention; hence, industry and academia created several
countermeasures.

One of the most recent solutions is ZFree, published by Liu et al. [15]. The
solution proposes the cooperation of the CP, ISP, and an ISP assistant. Ini-
tially, the CP and the ISP assistant will establish a secure connection between
each other. To check the network traffic for free-riding traffic, the CP will hash
each network packet and send a message to the ISP over the origin network
connection. In parallel, a hash of each packet is sent from the ISP to the ISP
assistant. To verify the validity of the traffic, the ISP assistant compares the
received hashes. As these hashes are generated at different places and sent over
different channels, the packet’s integrity is considered protected by Liu et al.
The authors claim to prevent each known injection attacks that are used for
free-riding attacks and state that “ZFree is formally verified and secure against
free-riding attacks [15]”.

Another work of Dusi et al. [5] focuses on the detection of tunnel-based
free-riding attacks. The paper describes a traffic fingerprinting mechanism to
identify tunnels in network traffic. The core idea is to integrate a statistical
characterization mechanism at the IP layer to characterize traffic by observing

Free by Design 319

network packets’ length and inter-arrival time. In their evaluation, the approach
achieves a detection rate of almost 100% by analyzing HTTP and SSH traffic
[5]. Since their approach works without DPI, it can be used by ISPs and CPs.

The presented frameworks propose to secure zero-rating against free-riding
attacks. However, in Sect. 6 we will point out the fundamental misconception of
these solutions when applied in the context of secure Internet services.

3 The Threat of Free-Riding Attacks

To built upon previous research, we have adopted the threat model created by
Liu et al., describing mainly three parties and how they interact [15]:

– The user accessing the Internet and specific applications that are zero-rated.
A user can profit if she avoids costs by exploiting zero-rated services with
free-riding attacks.

– The ISP providing the Internet access and facilitating zero-rating on a tech-
nical level. The ISP profits if no user can execute a free-riding attack and they
have to pay their bills. Thus, ISPs want to mitigate all free-riding attacks and
increase their profits.

– The CP providing a zero-rated service that wants to improve its performance
to profit from a growing user base. A CP is interested in zero-rating to out-
perform its competitors but needs protection from free-riding attacks.

In reality, things can be quite different, e.g., ISP and CP can be the same
entity, or in other cases, ISP and CP do not want to protect each other. Hence,
motivational aspects of establishing zero-rating practices play an essential role
when looking at each party’s willingness to secure a service. With respect to the
user role, several use cases can be conceived to substantiate the user’s motivation
to execute an attack, e.g., when we imagine the following scenarios:

– A user in a developing country without mobile Internet access has zero-rated
Facebook access via Free Basics [6].

– A user abroad downloads a large file over a limited data connection but has
zero-rated access to a cloud service provider.

– A user on an airplane wants to browse the web but only has limited access
to instant messaging service.

– A user in China cannot access foreign internet contents but has unrestricted
access to a secure instant messaging service.

– A user has limited or restricted Internet access at work but unrestricted access
to a VoIP call service.

As we see, various use cases for free-riding attacks can be conceived and might
resonate with some of our own experiences. Moreover, free-riding attacks do not
only exist to avoid billing but also due to political and economic restrictions.

320 J. Fietkau et al.

4 Building Free-Riding Tunnels

This section will explain how tunneling can be utilized to build free-riding attacks
via secure Internet services. We explain how tunneling works in general, what
devices are used for a real attack setup, and how we implemented the tunnel for
messaging, cloud storage, and VoIP services.

4.1 General Tunneling Technique

The core idea of tunneling is to encapsulate application traffic into another appli-
cation’s traffic. This way, the tunneled application can be hidden from controlling
network devices between the tunnel entry and endpoint. While only a specific
protocol is allowed for the tunnel entry, the tunnel endpoint needs unrestricted
or less limited Internet access.

To draw a more concrete picture, we can imagine a user accessing a WIFI
hotspot. Without paying the hotspot provider, the HTTP traffic will be blocked.
Nevertheless, DNS messages can be exchanged because they are necessary to
establish communication. Hence, the real traffic can be encapsulated and sent to
a self-hosted DNS service with unrestricted Internet access using DNS messages.
This endpoint resolves the tunneled requests and sends the response to the user
within a DNS response message.

This idea of tunneling data through other layers can also be applied to create
unrestricted Internet access in mobile networks via zero-rated services. Like a
DNS tunnel, the solution requires a specific setup that needs preparation.

4.2 Attack Setup

The attacker needs at least one device with some form of zero-rated access and
a tunnel endpoint device, e.g., at home, with unrestricted Internet access. For
our attacks, we used the following devices and services:

– 1x Samsung Galaxy S3 mini running Android 4.1.2.
– 2x HP Elitebook 840 (Intel Core i5-6300 (2.40 GHz), 16 GB DDR4 RAM, 256

GB SSD, Ubuntu 18.04.5 LTS)
– 1x pre-paid sim card with zero-rating options
– 1× 8 Mbit unrestricted DSL connection “at home”

These components will be arranged as depicted in Fig. 1. In our setup, all
devices are located in our office. The mobile device has full 4G connectivity, and
the home client is connected via cable to a 1 Gbit internet connection. Depend-
ing on the targeted service, a specific mobile network must be selected, and a
SIM card must be available. In our case, we have chosen a Portuguese network
provider that offers five zero-rating packages called: Video, Social, Music, Mes-
saging, and Cloud. Moreover, the provider also zero-rate its own cloud, TV, and
navigation services free of charge. To book one of the packages, the user needs
to i) access a specific website of the network service provider, ii) enter his mobile

Free by Design 321

Fig. 1. A basic setup for a free-riding attack against a zero-rated service.

phone number, and iii) select a package. In our case, we selected the Messaging
package for e4.99 per month, which includes 12 different messaging services, e.g.,
Skype, WhatsApp, Telegram, WeChat, etc. In addition, we booked the Cloud
package for e4.99 per month, including Google Drive, Microsoft OneDrive, and
Apple iCloud. In comparison, a general data plan costs e9.99 for 1 GB or e14.99
for 5 GB useable within a month. As requested by the network provider, we will
not publish the name of the affected company.

4.3 Free-Riding via Instant Messaging

In the following, we explain how to build a free-riding attack via a zero-rated
instant messaging service. We use the Telegram chat in our example, which we
chose for its open and simple API. To establish the communication via Telegram
we used the TDLib (Telegram Database Library), a cross-platform library to
automate Telegram clients. Based on the Telegram chat, we built a document-
based HTTP proxy that can transport even large files of up to 1.5 GB. A general
overview of our implementation is depicted in Fig. 2.

Tunnel Entry Point. The tunnel entry point is built out of two components:
an HTTP proxy and a server application to send and receive messages over
the tunnel. The HTTP proxy allows a user to access the tunnel. A user only
needs to add a proxy to the browser configuration; after the tunnel is initiated,
and the communication is routed automatically through the zero-rated tunnel.
We implemented the proxy using the Python Flask framework [18]. The tunnel
interface is implemented using the python modul python-pytun [17]. The user
provides credentials for two user accounts of the corresponding tunnel entry and
endpoint to initiate the tunnel. The login will be verified with the registered
mobile device. Afterward, the tunnel interface will be assigned to a static IP. To
connect the tunnel interface to the unrestricted Internet, the tunnel entry-point
has to route the traffic accordingly. Usually, the default route goes to the tunnel
interface and IP of the tunnel endpoint, which acts as a gateway. Additionally,
another route needs to be added to pass the Telegram traffic through the regular
connection. From this point on, all packets received at the tunnel interface are

322 J. Fietkau et al.

Fig. 2. HTTP tunnel through a zero-rated instant messaging service.

sent to the sender. The sender encodes each message with Base64 and sends the
instant messages via send message() to the tunnel endpoint.

After a message is sent, the message handler waits for the corresponding
answer. To receive a message, the message handler needs to be registered to
TDlib. The handler is called every time a new notification arrives via Telegram.
This includes messages and notifications of other users’ online status or the
creation of new chats. The implemented message handler filters all the relevant
messages decodes them and passes them back to the tunnel entry.

To receive a message, the message handler is registered to TDlib as well and
will be called whenever a new notification arrives. At one point in time, a notifi-
cation is pushed to the message handler by the instant messaging servers. In our
case, the notification includes a caption and ID of the new message that needs to
be fetched by the message handler of TDlib using the downloadFile() function
and the corresponding ID. When receiving the file, the message handler delivers
the caption and document back to the HTTP proxy. The caption contains the
HTTP response string, headers, and the document containing the payload of the
HTTP response. In the end, the HTTP proxy compiles the valid HTTP response
from this and pass it to the tunnel entry point.

Tunnel End Point. The tunnel endpoint components appear similar to the
entry point. Instead of the HTTP proxy, it uses a request executor that for-
wards each HTTP request received from the tunnel interface. The execution is
implemented using the Pythons requests module.

Based on the presented approach, any HTTP request can be passed between
tunnel entry and endpoint to allow web browsing via a zero-rated Telegram
chat. For our proof-of-concept implementation, we only support the HTTP GET
method. Furthermore parallel, and out-of-order execution is not considered. To
lower the number of requests over the tunnel, the request executor can resolve
all external page elements of a website on its own. To do this, we request and
merge all website elements into a single HTML file using the Python module
webpage2html.

Free by Design 323

Fig. 3. HTTP tunnel through a zero-rated cloud storage service.

4.4 Free-Riding via Cloud Storage

Another example for free-riding attacks against zero-rated services can be created
via cloud storage services such as Google Drive. To build a tunnel, the Google
Drive API needs to be automated, e.g., by using a dedicated Python library such
as google-api-python-client [8]. To initiate the Google Drive API, a Google
Cloud project has to be created. In this project, we activated the Google Drive
API to retrieve our personal API key. The API is limited to one billion queries
per day and 10 queries per second for each project user. Instead of sending
direct messages, like in the previous solution, the two devices will communicate
by up- and downloading files through the cloud storage service. Hence, a shared
storage location for the two user devices has to be created. We decided to use
two separate accounts and two shared folders to reduce the risk of reaching the
API limits. Each folder is assigned to one tunnel point and hence appears like a
unidirectional communication channel. To send messages, a file is uploaded to the
respective folder connected to the tunnel entry or endpoint. To receive messages,
each tunnel point will regularly poll its respective folder for new content. Each
new file that appears is considered as an incoming message. Thus, a simple
communication through the cloud storage service has been established.

The implemented modules and how their interaction can be seen in Fig. 3.
In general, we have refactored large parts of our Telegram solution since both
solutions are very similar. The main differences are an additional pull mechanism
and adopting the new API functions and limits for the cloud storage service.
For example, to send files, the files need to be prepared and created on the
cloud storage beforehand, using files().create(). Like the HTTP proxy and
request executor, other components did not change and work like described in
the previous solution. The polling mechanism is implemented on both sides. It
will send out eight requests per second, which is closely below the API limits
and can be adjusted by the user. On occurring changes, the polling mechanism
will notify and forward a file ID to a downloading component. It will download

324 J. Fietkau et al.

the file with the files().get media() function. Depending on which side of
the tunnel, the file will be forwarded to the request executor or passed to the
HTTP proxy. Similar to the previous solution, the created tunnel can be used
for HTTP communication, but also allows the user to download large media files
through the zero-rated connection.

4.5 Free-Riding via VoIP Calls

In our third free-riding attack, we create a tunnel using the UDP payloads of a
VoIP call service without modifying the VoIP client. As requested by the service
provider, we can not publish the name of the affected product and company.

In general, VoIP calls will be executed via peer-to-peer connections. However,
when the user devices are behind a NAT service, a so-called TURN server will
relay the communication between the two parties. For our attack, we use this
communication to pass through the traffic by rewriting the contents of the sent
packets. The created application flow is shown in Fig. 4.

The biggest challenge when creating the tunnel setup is to enable the two
endpoints to rewrite the package contents in an automated way, since both ends
need to know the IP and UDP port of the established connection. To do this, we
extract the connection details from the SIP messages exchanged during the call
establishment. On the caller side, the REMOTE ADDRESS attribute of the STUN
messages is extracted, while for the callee, the X-MAPPED-ADDRESS attribute from
the Allocate Success Response message is used. This procedure can be dif-
ferent when using another service provider. To extract these details we use the
Python scapy package [21]. After collecting the required session details, the
injecting devices can manipulate parts of the UDP data stream and tunnel the
traffic through the VoIP connection. To differentiate between the modified and
the unmodified UDP packets, a 4-byte magic number is added to the payload.
Using iptables, the injecting devices can filter the network packets to find the
manipulated ones.

The tunnel entry and endpoints are very different from those of the previous
two approaches. The sender receives the packet from a tunnel interface and
forges a UDP packet with the corresponding TURN server IP, port, the magic
number, and the packet contents. Afterward, the sender sends the packet to the
TURN server. To improve the performance of the components, a raw socket is
used to send the packets, while scapy provides the packet forging template. To
receive packets, the receiver uses a socket as well. This socket is bound directly
to the network interface with a Berkeley Packet Filter (BPF). The BPF checks
for the appropriate IP addresses, ports, and identifier sequence. This way, the
injected traffic can be filtered. The BPF is implemented in assembly based on
an example created by Allan Boll [2]. Overall, the created interface allows very
efficient packet injections into the active VoIP connection to arbitrary tunnel
data through a zero-rated VoIP connection. Since VoIP applications need to be
robust, we assume that the manipulated packets are simply ignored and dropped
by the VoIP clients. However, even if the packets get validated by the client, our
tool supports a feature to manipulate only the media contents of a data stream.

Free by Design 325

Fig. 4. Layer 3 tunnel through a zero-rated VoIP service.

When establishing the tunnel interfaces, an application can be configured to
use the created communication link. To implement this, we used QUICHE, an
open QUIC implementation with a low-level API that already provides an easy-
to-use example for our use case [4]. For the sake of comparability, we hosted a
QUIC HTTP server on our home client that runs HTTP via UDP and can be
accessed through the proxy with any compatible browser, such as Chromium.

5 Evaluation

After we presented how free-riding attacks against zero-rated services can be
implemented, we now evaluate how the tunnels perform in terms of usability
and performance.

For all experiments, we used the setup as defined in Sect. 4.2. However,
the measurements will also depend on other factors, like network connectiv-
ity, devices, network stacks, ISP provider, communication distance, etc. Hence,
the presented results can only give a limited impression of the tunnel perfor-
mance. Another setup might cause other results. Nevertheless, the measurements
allow us to compare the different approaches of the tunnel with each other and
understand their limitations. The experiments described here took place between
January and mid-February 2021.

5.1 Usability

This work discusses three HTTP tunnels for three different service types: instant
messaging, cloud storage, and VoIP. First, we will discuss the usability of the
tunnels and, secondly, measure their performance. To examine the usability, the
Alexa top 50 websites of the United States and their basic functionality are
tested using the implemented HTTP proxy. Without any optimization, the total
loading time of a website was very high due to the high number of requests.
To improve this, merging the contents before transmission through the tunnel
is recommended. Another way to reduce the load time is to disable JavaScript.
Of course, this will remove a lot of functionality, but also reduce the amount of

326 J. Fietkau et al.

third-party content. Concerning the paper’s goal, we will focus on the results that
have been created when loading and merging the website before transmitting it
through the tunnel.

In general, we can state, that the most basic web functionality can be used
through the tunnel, such as wikipedia.org or online search via google.com or
bing.com. Some of the advanced features like search suggestions did not work,
but besides that, the websites are usable. Furthermore, e-commerce websites like
amazon.de, social media networks like facebook.com, and twitter.com or news
media like nytimes.com and cnn.com are working as usual. Some other popular
services we tested in addition, such as youtube.com or maps.google.com, could
not be loaded successfully, most probably due to their heavy use of JavaScript.

We measured an average load time for the top 50 websites of 12.65 s using
an automated browsing session. This load time will vary depending on various
factors such as content size, connection setup, user location, etc. The average
load time for the 50 websites without an active tunnel though the same mobile
connection was 1.83 s, which is approx. 1

10 of the time required by a tunneled
connection.

Besides web browsing, the HTTP tunnels can also be used to download large
files. We successfully downloaded a Linux image (650 MB) and a set of MP3
files (52 MB in total) for our usability test. For each case, the download time
increased by a multiple of the non-tunneled download duration. Compared to
the non-tunneled test, the Google Drive tunnel took approx. 3× as long, while
the Telegram and VoIP chat took approx. 2.2× as long when using the same
mobile connection. The long delays result from the fact that each file has to be
downloaded by the tunnel endpoint first, and only then will it be available for
transmission through the tunnel. Nevertheless, while the data transfer takes more
time, it is free of charge and hence represents a practical application considering
the use cases from Sect. 3.

5.2 Performance

Since the created tunnels underly different properties, we want to figure out the
technical limits of each tunnel.

First, we will analyze the Google Cloud tunnel. To evaluate its performance,
we created 1000 random files of 1 KB and sent them through the tunnel. Thereby
we measured upload, notification, and download time. The results of these mea-
surements are shown in Fig. 5. As we see, the notification time is the bottleneck
of this approach due to the polling every 125ms. On the right-hand side, the
average time to download a file through the tunnel is shown. Downloading is
much quicker than uploading, which stays roughly below 1 s. In total, the aver-
age overhead to transfer a 1KB message is around two seconds. In summary,
the Google Drive tunnel does not allow low latency communication but allows
parallel file transfer and is well suited for large data transmissions.

We can not create such a detailed measurement for Telegram and the VoIP
tunnel because we do not control the individual components. For Telegram, the
used TDLib library will handle the file transfer on its own. Hence, as shown

Free by Design 327

Fig. 5. Measuring the transmission time of 1000 random 1KB messages through the
Google Drive (left), Telegram and VoIP tunnel (right). Whisker lengths for the Google
Drive case are Q3+1.5∗ IQR (upper) and Q1−1.5∗ IQR (lower). Whisker lengths for
the Telegram and VoIP case are Q3 + 1.5 ∗ IQR (upper) and Q1 − 1.5 ∗ IQR (lower).

in Fig. 5, we can only measure the full transmission time, which starts when a
message is sent and stops when the other end is notified. As shown in Fig. 5,
the transmission time is on average beneath 100 ms. Since we can disable the
secret chat option, we tried, in addition, to measure what difference this makes.
Interestingly, the secret chat results are slightly lower than those of the default
chat. However, this difference should not be overrated because network properties
represent the most dominant factor.

Likewise, we measured the full transmission time of the VoIP tunnel. As we
see in Fig. 5, the VoIP latency is even lower compared to the Telegram tunnel and
approx. 400 times smaller compared to the Google Drive case. When comparing
the cloud service, we can observe that the time overhead is measurable higher
than the other two services. This confirms our expected performance difference.
As it was mentioned, instant messaging and VoIP services are built to deliver
content very quickly and with low latency. Unlike the other approaches, the
VoIP tunnel does not induce a remarkable overhead because packets are sent
and immediately forwarded by the TURN server without further processing.
Moreover, the TURN server is optimized for fast packet forwarding to enable
low latency for seamless VoIP connections. Hence, the VoIP tunnel has the lowest
latency among all tunnel approaches.

We evaluated the download speed for the Google Drive, Telegram, and VoIP
tunnels with another measurement. We created 10 random files with a size of
100 MB on a remote web server. Afterward, we requested each of the files from
the mobile user device through the tunnels. During the measurement, all other
network connectivity was disabled.

As we can see in Fig. 6, we can approximate that a file download takes more
than twice as long as it will take to download the file directly. In some cases, it
will even take roughly 3× as long compared to a non-tunneled setup. This result
depends on the setup since our Lab is connected to a 10 Gbit Internet connection.
This allows us to up- and download files to the tunnel end device very fast. Hence,

328 J. Fietkau et al.

Fig. 6. Measurements for the download duration through each of the tunnels for a set
of 100 MB files with random file contents. At t = 0 the download has been initiated
by the mobile client.

in our case, the bottleneck is the download speed of the mobile network. With
another setup, the upload speed of the tunnel end device might impair the results
much more than it has done in our setup. This is because Internet connections
at home are often asynchronous (download >> upload speed) which impairs the
file transfer. However, the task of up-and downloading files via zero-rated tunnels
is an excellent use-case for the presented attacks when assuming the tunnel end
device is connected to a high-speed internet connection.

6 Discussion

In the following, we will discuss and interpret our findings. We discuss the limi-
tations and also elaborate on some advanced ideas.

6.1 All Tunnels are Different but Useful

Given the results from the previous section, we can see that each of the free-riding
attacks enables Internet connectivity, but also comes with specific limitations and
features. One of the easiest setups appears to be the Telegram tunnel; however,
download file size and latency are only mediocre. The best solution to download
large files via zero-rated connections seems to be the Cloud Storage approach.
However, it suffers from the highest latency compared to all other solutions.
The VoIP tunnel appears to be a universal solution; however, there are various
obstacles to overcome, and much expertise is required to create and maintain the
setup. Overall, the presented tunnels are maybe not the most novel, innovative
or robust solutions, but they exist to prove a point. Secured Internet services
combined with zero-rating can be used to smuggle arbitrary data, allowing cheap
and unrestricted mobile communication. With just a little effort and some future
developments, e.g., 5G networks, the presented solutions can be leveraged into
many applications and enable people to get unrestricted internet access.

6.2 Countermeasures

During our experiments, we have not experienced any substantial impairment by
the ISP or CP. Therefore, we either assume that there are no countermeasures in

Free by Design 329

place, or they are not effective. Moreover, the affected provider does not answer
our questions if countermeasures are in place to mitigate free-riding attacks like
presented. Nevertheless, we want to describe how countermeasures, such as API
limits, bandwidth limits, and traffic fingerprinting techniques, can be established
to mitigate the proposed attacks.

API limits ensure that a user can make only a fixed number of requests in
a specific time frame to the API. The limits are created to limit the number of
resources used through the API, but also to mitigate risk, e.g., prevent denial-
of-service attacks. In many cases, these limits will enforce a boundary on the
tunnel’s efficiency and render various tunnel approaches unreasonable. Hence,
we designed the tunnels to stay slightly beneath the limits. For the VoIP tunnel
those API limits do not exist, but other sanitation mechanisms can be in place.
In conclusion, API limits can provide a very useful measurement against the
effectiveness of tunnels, but they can not mitigate them entirely.

Bandwidth limits can be established by the ISP and the CP to enforce a
maximum throughput on the zero-rated connection. Nevertheless, just like API
limits, they can limit the tunnels’ effectiveness while also creating issues for
benign operations. For example, VoIP audio calls require way less bandwidth
than VoIP. Hence, when strictly enforcing appropriate bandwidth limitations
can easily protect some implementations. On the other hand, VoIP video services
with high-quality demands are good targets since bandwidth requirements are
very high.

Traffic fingerprinting is the process of analyzing the application traffic of
each user to identify fraudulent patterns or anomalies to detect malicious users.
For our research, we had a closer look at two solutions, introduced in Sect. 2.4.

The first solution, called Tunnel Hunter, is proposed by Dusi et al. [5]. The
authors claim to identify tunnels using a statistical fingerprinting mechanism
at the IP layer that will analyze the inter-arrival time of network packets [5].
Since their approach works without DPI, it can be used by ISPs as well as CPs.
Given the proposed attacks, we see two major disadvantages with this approach.
First, Tunnel Hunter will bind many resources and cannot deal with long-living
sessions in real-time. Secondly, the communication is cryptographically secured;
hence packet contents will be padded to mitigate side-channel attacks. This will
greatly impair any traffic analysis and hence blind the Tunnel Hunter analysis
as well.

Another solution is called ZFree and has been introduced by Liu et al. [15].
In summary, ZFree will try to find tunnels by fingerprinting the transferred
traffic between ISP and CP. While this integrity check allows to detect attacks
that rewrite packet contents, such as the request masquerading and response
modification attacks, it can not mitigate tunnels via secured Internet services.
The application traffic does not change on its route through the network and is
only de- and encapsulated on the user’s end devices.

In summary, the proposed countermeasures can not be effective since they
typically rely on the detection of malformed traffic. They assume exploitation of
lower-level protocols, while free-riding attacks via secure services will keep the

330 J. Fietkau et al.

integrity of the application traffic and use features on a higher level, which are
in most cases confidential.

6.3 Effective Protection Against Secured Free-Riding Attacks

As diverse as the presented tunnels are, as diverse the mitigations have to be
designed to prevent free-riding attacks. For some specific types of zero-rating
services, a collaboration between ISP and CPs can be considered to detect mali-
cious traffic. One example is the Google Drive tunnel because the CP has the
right and possibility to examine the user’s content. However, such a counter-
measure will be in great conflict with the user trust, privacy, and goals of secure
Internet services. Furthermore, this implies that the CP wants to collaborate
with the ISP, which is not always the case. However, the ISP can enforce rules
or policies that force CPs to mitigate free-riding attacks as best as they can.
We think one of the best solutions will be to implement certain thresholds and
limits for each user to render most free-riding attacks useless. Based on this,
the affected vendor has already implemented the volume for each zero-rating
package to a maximum amount of 10 GB. However, the zero-rated volume is still
cheaper than the general data volume, and the cloud services of the ISP itself
are still available without any limitation.

Maybe, mitigations alone will not solve the underlying issue. New ways will
be found to create similar attacks, as we have learned from the times of Phreak-
ing. In the future, new attacks will be executed by injecting data into video
streams or into 5G high-bandwidth channels dedicated to special functions, such
as car-to-car communications or emergency services. Hence, another solution to
counter the growing thread of free-riding attacks can be found on an economic
and political level. Mobile communication networks should not be restricted by
artificial paywalls that only exist for monetary interest. Just like the flat-pricing
models have become the default for cabled Internet connections, a similar model
should be implemented for mobile networks. The ISPs can still profit from the
volume-based tariffs, ensuring an equal distribution of costs to all users.

7 Conclusion

On our route to overcome the zero-rating practice of ISPs, we have evaluated
several free-riding attacks. These attacks are intended to provide a technical
argument against the growing adoption of zero-rating services. As we see, the
large diversity of Internet services create various ways to bypass and exploit
zero-rating offers to get unlimited Internet access for little money.

The extensive adoption of cryptography has further exaggerated this problem
because countermeasures that maybe worked so far are now rendered ineffective.
When the communication between the user device and the CP is secure, the
ISP alone can not detect and defend against zero-rating attacks that are driven
through the application layer. The only way to identify such an attack will be to
cooperate with the CP if he is willing to help. However, for many applications,

Free by Design 331

such as messaging services or VoIP applications, the communication will even
be end-to-end encrypted, making the detection very difficult. As we see, the
concurrent adoption of zero-rating services and secure web services with large
bandwidth requirements can heavily amplify free-riding attacks and make them
almost inevitable.

With our work, we don’t want to discuss the presented attacks only; we want
to shed light on the general conflict between zero-rating practices and secure
Internet services. In our opinion, the best solution to this problem is not on a
technical level. When net neutrality policies are enforced, the ISP cannot treat
Internet traffic differently, which keeps the freedom of information exchange and
fosters competition and innovation. This was essential for the growth of the
Internet, and it will be necessary for its future. Likewise, this problem should
not be imported into the future generation of networks, like 5G network slicing,
which allows the creation of isolated networks with different priorities. A paying
client can dynamically allocate the virtual slices to improve their service. In the
end, prioritizing one application also means another one will be deprioritized [16].
We assume that free-riding attacks, as implemented in this work, can be used
to abuse features, such as network slicing, to drive traffic through virtual high-
speed networks. As we see, the issue is already adopted into the next generation
of mobile networks and might create just another way for free-riding attacks.

The underlying reason why free-riding attacks exist is not only due to vul-
nerable protocols. It is a self-imposed issue created by Internet Service Providers
that try to create artificial walls within a system that is free and open by design,
such as the Internet.

Acknowledgement. The authors want to thank the Review Committee for the valu-
able feedback and comments. The project has received funding from the European
Union’s Horizon 2020 research and innovation program under grant agreement No
952684. Opinions, views, and conclusions are those of the authors and do not reflect
the views of anyone else.

References

1. Aetha, DotEcon Ltd, European Commission, Directorate-General for Competition,
Oswell Vahida: Zero-Rating Practices in Broadband Markets: Final Report (2017).
http://dx.publications.europa.eu/10.2763/002126

2. Allan Riordan Boll: Allan’s Blog: Raw sockets with BPF in Python (2011). http://
allanrbo.blogspot.com/2011/12/raw-sockets-with-bpf-in-python.html

3. Carrillo, A.J.: Having Your Cake and Eating it Too? Zero-Rating, Net Neutrality
and International Law (2016). https://papers.ssrn.com/abstract=2746447

4. Cloudflare Inc.: QUICHE an implementation of the quic transport protocol and
http/3 as specified by the IETF. https://github.com/cloudflare/quiche

5. Dusi, M., Crotti, M., Gringoli, F., Salgarelli, L.: Tunnel Hunter: Detect-
ing application-layer tunnels with statistical fingerprinting 53(1), 81–97
(2009). https://doi.org/10.1016/j.comnet.2008.09.010. http://www.sciencedirect.
com/science/article/pii/S1389128608003071

http://dx.publications.europa.eu/10.2763/002126
http://allanrbo.blogspot.com/2011/12/raw-sockets-with-bpf-in-python.html
http://allanrbo.blogspot.com/2011/12/raw-sockets-with-bpf-in-python.html
https://papers.ssrn.com/abstract=2746447
https://github.com/cloudflare/quiche
https://doi.org/10.1016/j.comnet.2008.09.010
http://www.sciencedirect.com/science/article/pii/S1389128608003071
http://www.sciencedirect.com/science/article/pii/S1389128608003071

332 J. Fietkau et al.

6. Facebook: Fast and Free Facebook Mobile Access with 0.facebook.com (2010).
https://web.archive.org/web/20140116060937/, http://www.facebook.com/
notes/facebook/fast-and-free-facebook-mobile-access-with-0facebookcom/
391295167130

7. Go, Y., Jeong, E., Won, J., Kim, Y., Kune, D.F., Park, K.: Gaining Control of Cel-
lular Traffic Accounting by Spurious TCP Retransmission. In: NDSS Symposium
2014 (2014). https://doi.org/10.14722/ndss.2014.23118

8. Google: Googleapis/google-api-python-client (2020). https://github.com/
googleapis/google-api-python-client

9. Internet.org: Free Basics by Facebook - Apps on Google Play (2020). https://play.
google.com/store/apps/details?id=com.freebasics&hl=en

10. Internet.org: Internet.org - Our Mission (2020). https://info.internet.org/en/
mission/

11. Kakhki, A.M., Li, F., Choffnes, D., Katz-Bassett, E., Mislove, A.: BingeOn under
the microscope: understanding T-mobiles zero-rating implementation. In: Proceed-
ings of the 2016 Workshop on QoE-Based Analysis and Management of Data Com-
munication Networks, Internet-QoE 2016, pp. 43–48. Association for Computing
Machinery (2016). https://doi.org/10.1145/2940136.2940140

12. Kraemer, J., Wiewiorra, L., Weinhardt, C.: Net neutrality: A progress report 37(9),
794–813. https://doi.org/10.1016/j.telpol.2012.08.005, http://www.sciencedirect.
com/science/article/pii/S0308596112001450

13. Lapsley, P.: Exploding the Phone. Grove Press (2014)
14. Li, C.Y., et al.: Insecurity of voice solution VoLTE in LTE mobile networks. In:

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2015, pp. 316–327. Association for Computing Machinery.
https://doi.org/10.1145/2810103.2813618

15. Liu, Z., Zhang, Z., Cao, Y., Xi, Z., Jing, S., Roche, H.L.: Towards a Secure Zero-
rating Framework with Three Parties, pp. 711–728 (2018). https://www.usenix.
org/node/217562

16. Lohninger, T.: 5G and Net Neutrality (2019). https://media.ccc.de/v/36c3-10711-
5g neutrality

17. montag451: Montag451/pytun (2020). https://github.com/montag451/pytun
18. Online, H.: Eugh: Zero rating verletzt netzneutralitaet (2020). https://www.heise.

de/news/EuGH-Zero-Rating-verletzt-Netzneutralitaet-4894216.html
19. pallets: The python micro framework for building web applications (2020). https://

github.com/pallets/flask
20. Peng, C., Li, C.y., Tu, G.H., Lu, S., Zhang, L.: Mobile data charging: New attacks

and countermeasures. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS 2012, pp. 195–204. Association for Computing
Machinery. https://doi.org/10.1145/2382196.2382220

21. Philippe Biondi: Secdev/scapy (2020). https://github.com/secdev/scapy
22. ProSec GmbH: Die schwachstelle in fast allen hotspots!—prosec (2017). https://

www.prosec-networks.com/blog/nach-wannacry-prosec-wannasurf/
23. Service, C.R.: The Net Neutrality Debate: Access to Broadband Networks. Cre-

ateSpace Independent Publishing Platform, crs report r40616–2018 edition edn
24. Solon, O.: ‘It’s digital colonialism’: How Facebook’s free internet service has

failed its users (2017). https://www.theguardian.com/technology/2017/jul/27/
facebook-free-basics-developing-markets

25. T-Mobile: Free Unlimited Streaming — Music Freedom Simple Choice Plan —
T-Mobile (2020). https://www.t-mobile.com/offers/free-music-streaming

https://web.archive.org/web/20140116060937/
http://www.facebook.com/notes/facebook/fast-and-free-facebook-mobile-access-with-0facebookcom/391295167130
http://www.facebook.com/notes/facebook/fast-and-free-facebook-mobile-access-with-0facebookcom/391295167130
http://www.facebook.com/notes/facebook/fast-and-free-facebook-mobile-access-with-0facebookcom/391295167130
https://doi.org/10.14722/ndss.2014.23118
https://github.com/googleapis/google-api-python-client
https://github.com/googleapis/google-api-python-client
https://play.google.com/store/apps/details?id=com.freebasics&hl=en
https://play.google.com/store/apps/details?id=com.freebasics&hl=en
https://info.internet.org/en/mission/
https://info.internet.org/en/mission/
https://doi.org/10.1145/2940136.2940140
https://doi.org/10.1016/j.telpol.2012.08.005
http://www.sciencedirect.com/science/article/pii/S0308596112001450
http://www.sciencedirect.com/science/article/pii/S0308596112001450
https://doi.org/10.1145/2810103.2813618
https://www.usenix.org/node/217562
https://www.usenix.org/node/217562
https://media.ccc.de/v/36c3-10711-5g_neutrality
https://media.ccc.de/v/36c3-10711-5g_neutrality
https://github.com/montag451/pytun
https://www.heise.de/news/EuGH-Zero-Rating-verletzt-Netzneutralitaet-4894216.html
https://www.heise.de/news/EuGH-Zero-Rating-verletzt-Netzneutralitaet-4894216.html
https://github.com/pallets/flask
https://github.com/pallets/flask
https://doi.org/10.1145/2382196.2382220
https://github.com/secdev/scapy
https://www.prosec-networks.com/blog/nach-wannacry-prosec-wannasurf/
https://www.prosec-networks.com/blog/nach-wannacry-prosec-wannasurf/
https://www.theguardian.com/technology/2017/jul/27/facebook-free-basics-developing-markets
https://www.theguardian.com/technology/2017/jul/27/facebook-free-basics-developing-markets
https://www.t-mobile.com/offers/free-music-streaming

Free by Design 333

26. Lohninger, T., et al.: Report: The Net Neutrality Situation in the EU (2019).
https://epicenter.works/sites/default/files/2019 eu-epicenter.works-r1.pdf

27. Wikimedia Foundation: Wikipedia Zero - Wikimedia Foundation Governance Wiki
(2018). https://foundation.wikimedia.org/wiki/Wikipedia Zero

28. Wu, T.: Network Neutrality, Broadband Discrimination (2003). https://
scholarship.law.columbia.edu/faculty scholarship/1281

https://epicenter.works/sites/default/files/2019_eu-epicenter.works-r1.pdf
https://foundation.wikimedia.org/wiki/Wikipedia_Zero
https://scholarship.law.columbia.edu/faculty_scholarship/1281
https://scholarship.law.columbia.edu/faculty_scholarship/1281

Function-Private Conditional Disclosure
of Secrets and Multi-evaluation

Threshold Distributed Point Functions

Nolan Miranda1,3, Foo Yee Yeo2, and Vipin Singh Sehrawat1(B)

1 Seagate Technology, Fremont, CA, USA
2 Seagate Technology, Singapore, Singapore

3 Stanford University, Stanford, USA

Abstract. Conditional disclosure of secrets (CDS) allows multiple par-
ties to reveal a secret to a third party if and only if some pre-decided
condition is satisfied. In this work, we bolster the privacy guarantees
of CDS by introducing function-private CDS wherein the pre-decided
condition is never revealed to the third party. We also derive a func-
tion secret sharing scheme from our function-private CDS solution. The
second problem that we consider concerns threshold distributed point
functions, which allow one to split a point function such that at least
a threshold number of shares are required to evaluate it at any given
input. We consider a setting wherein a point function is split among a
set of parties such that multiple evaluations do not leak non-negligible
information about it.

1 Introduction

In 1994, De Santis et al. [1] introduced the concept of function secret sharing
(FSS) as a special case of secret sharing [2,3] wherein a class F of efficiently
computable and succinctly described functions fi : {0, 1}� −→ G, where G is
a group, is shared among a set of parties. FSS allows a dealer to randomly
split an arbitrary function f ∈ F into n ≥ 2 shares {fi}n

i=1 such that only
authorized subsets of shares can be combined to evaluate or to reconstruct f . In
2014, Gilboa and Ishai [4] considered a specialization of FSS called distributed
point functions (DPF), which is an FSS scheme for a family of point functions
P(A, B) = {pa,b : a ∈ A, b ∈ B}, whose members are defined as:

pa,b(x) =
{

b x = a,

0 otherwise.

A DPF scheme is said to be threshold if for some fixed t ≤ n, all subsets
of function shares {pi}n

i=1 with cardinality at least t can be used to reconstruct
pa,b. DPF has found applications in privacy-preserving primitives such as private
information retrieval [4] and private contact tracing [5].

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 334–354, 2021.
https://doi.org/10.1007/978-3-030-92548-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_18

Function-Private Conditional Disclosure of Secrets 335

The second topic whose existing solutions we improve upon is called condi-
tional disclosure of secrets (CDS) [6], which allows two or more parties, holding
some input, to share a secret s with an external party Carol such that s is revealed
only if some fixed condition holds on the joint input and shared randomness of
the parties. The condition is often encoded as some Boolean condition function
h : C → {0, 1}. The parties are allowed to send a single message to Carol which
may depend on their “shares” and shared randomness. CDS has found mul-
tiple applications in cryptography, including private information retrieval [6],
attribute-based encryption [7], priced oblivious transfer [8] and secret sharing
for uniform/general/forbidden/graph access structures [9–13].

1.1 Our Contributions

Function-Private CDS. Content-based filtering is a tried and tested sub-
routine used in generating content recommendations. It generates the intended
information for users by comparing representations of information search to
those of the contents extracted from user profiles, indicating users’ interests.
Recently, streaming services have been establishing collaborations wherein they
provide services and content recommendations based on their combined data.
For instance, Spotify, Hulu and Showtime announced such a collaboration in
2018 [14]. Moreover, almost all major streaming services have migrated to the
cloud [15–17]. We know from [18–20] that it is possible for these streaming ser-
vices to encode their content recommendations generating content-based filter-
ing as Boolean functions, which reveal the recommendations for various demo-
graphics only when the function evaluates to “true”. Since multiple collaborating
service providers use the same cloud for their data and recommendations’ gen-
eration, the third-party cloud service provider serves as Carol in these settings.
Hence, CDS fits well in such settings. However, with their services outsourced
to the cloud, the service provides may want to hide information about their
recommendations suggesting algorithms. Hence, it is desirable to have a CDS
scheme that hides the condition function(s) from Carol, even after the secret,
i.e., recommendations for the target demographic, are revealed.

We address this requirement by introducing function-private CDS, which we
define as follows: let h belong to a family H : C → {0, 1} of Boolean condition
functions, then a function-private CDS scheme satisfies the following conditions:

1. Correctness: for every c ∈ C, if it holds that h(c) = 1, then the correct secret
s is revealed to Carol with probability 1. Else, if h(c) = 0, then Carol rejects
with probability 1.

2. Secrecy: for any c ∈ C such that h(c) = 0, it holds that Carol cannot gain any
information about the secret.

3. Function privacy: for certain conditions on the parties’ inputs, it holds that
no party has any non-negligible advantage in distinguishing the Boolean con-
dition function h ∈ H from every h′ ∈ H, where h′(c) = h(c).

4. Input privacy: for any c, c′ ∈ C such that h(c) = h(c′), it holds that Carol has
no non-negligible advantage in distinguishing between c and c′.

336 N. Miranda et al.

Function privacy has been studied in the context of functional encryption [21–
26] but ours is the first scheme to achieve it for CDS. For an introduction to
functional encryption, we refer the interested reader to [27].

Function-Private CDS to FSS. Given a function-private CDS scheme for k
parties P1, . . . , Pk (excluding Carol) for the family of Boolean condition functions
H, secret domain S, and randomness r, we prove that there exists a k-out-of-k
function secret sharing scheme for the family H. To the best of our knowledge,
this is the first derivation of FSS from CDS.

Multi-evaluation Threshold DPF. In an example in [28], Beimel et al. intro-
duced threshold function secret sharing of a family of point functions P(A, B).
We identify a weakness in that example. Specifically, their example approach
leaks information about the point function pa,b ∈ P(A, B) if multiple evalu-
ations are performed. We rectify this issue by extending their solution such
that repeated evaluations do not leak non-negligible information about pa,b.
Our scheme, called multi-evaluation threshold DPF, uses a key-homomorphic
pseudorandom function (PRF) family.

Key-Homomorphic PRF: In a PRF family [29], each function is specified by
a key such that it can be evaluated deterministically given the key whereas it
behaves like a random function without the key. For a PRF Fk, the index k is
called its key/seed. A PRF family F is called key-homomorphic if the set of keys
has a group structure and if there is an efficient algorithm that, given Fk1(x)
and Fk2(x), outputs Fk1⊕k2(x), where ⊕ is the group operation [30].

Organization. The remaining text is organized as follows: Sect. 2 recalls the
concepts required for the rest of the paper. In Sect. 3, we present our multi-
evaluation threshold DPF scheme. In Sect. 4, we define function-private CDS
and introduce the first scheme to realize it. In the same section, we provide a
mechanism to extend any function-private CDS scheme into an FSS scheme.

2 Preliminaries

Definition 1 (Negligible Function). For security parameter λ, a function
ε(λ) is called negligible if for all c > 0, there exists a λ0 such that ε(λ) < 1/λc

for all λ > λ0.

Definition 2 (Computational Indistinguishability [31]). Let X =
{Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles, where Xλ’s and Yλ’s are probabil-
ity distributions over {0, 1}κ(λ) for λ ∈ N and some polynomial κ(λ). We say
that {Xλ}λ∈N and {Yλ}λ∈N are polynomially/computationally indistinguishable

Function-Private Conditional Disclosure of Secrets 337

if the following holds for every (probabilistic) polynomial-time algorithm D and
all λ ∈ N: ∣∣∣ Pr[t ← Xλ : D(t) = 1] − Pr[t ← Yλ : D(t) = 1]

∣∣∣ ≤ ε(λ),

where ε is a negligible function.

Remark 1 (Perfect Indistinguishability). We say that {Xλ}λ∈N and {Yλ}λ∈N are
perfectly indistinguishable if the following holds for all t:

Pr[t ← Xλ] = Pr[t ← Yλ].

Consider adversaries interacting as part of probabilistic games. For an adver-
sary A and two games G0,G1 with which it can interact, A′s distinguishing
advantage is: AdvG0,G1(A) :=

∣∣∣ Pr[A accepts in G0] − Pr[A accepts in G1]
∣∣∣. For

security parameter λ and a negligible function ε, the two games are said to be
computationally indistinguishable if it holds that: AdvG0,G1(A) ≤ ε(λ).

Definition 3 (PRF). Let A and B be finite sets, and let F = {Fk : A → B}
be a function family, endowed with an efficiently sampleable distribution (more
precisely, F , A and B are all indexed by the security parameter λ). We say that F
is a PRF family if the following two games are computationally indistinguishable:

1. Choose Fk ∈ F and give the adversary adaptive oracle access to Fk(·).
2. Choose a uniformly random function U : A → B and give the adversary

adaptive oracle access to U(·).
Numerous PRF families with various useful properties have been con-

structed [30,32–43]. For a detailed introduction to PRFs and review of the note-
worthy results, we refer the interested reader to [44].

3 Multi-evaluation Threshold DPF

In this section, we introduce multi-evaluation threshold DPFs, and present a
scheme to realize it.

Definition 4. Given a string a ∈ {0, 1}� and a value α ∈ F, a computational
multi-evaluation distributed point function scheme for a t-out-of-n threshold
structure is defined as a collection of three algorithms (Gen,Eval,Rec) such that:

– A randomized algorithm Gen takes three inputs, a ∈ {0, 1}�, α ∈ F and a
security parameter λ ∈ Z

+, and generates n keys {fi}n
i=1, representing secret

shares of a dimension-2� vector v that has value α ∈ F only at the a-th
position and is zero at every other position.

– A deterministic algorithm Eval that takes three inputs, a key fi (i ∈ [n]),
x ∈ {0, 1}� and some r ∈ R, and outputs a share si.

– A deterministic algorithm Rec that takes the outputs of Eval from t parties
and outputs an element of F.

338 N. Miranda et al.

These algorithms satisfy the following three conditions:

– Computational Correctness: for all strings a ∈ {0, 1}�, output values α ∈ F,
λ ∈ Z

+, r ∈ R, keys {fi}n
i=1 ← Gen(a, α, λ) and subsets T ⊆ [n] of size t, it

holds that: Pr [Rec ({Eval(fi, a, r)}i∈T) = α] = 1, and for all strings x ∈ {0, 1}l

such that x 	= a, Pr [Rec ({Eval(fi, x, r)}i∈T) = 0] > 1 − negl(λ).
– Perfect Secrecy: for all strings a, b ∈ {0, 1}�, output values α, β ∈ F, λ ∈ Z

+,
keys {fi}n

i=1 ← Gen(a, α, λ) and {f ′
i}n

i=1 ← Gen(b, β, λ) and subset S ⊂ [n] of
size < t, it holds that {fi}i∈S and {f ′

i}i∈S are perfectly indistinguishable.
– Computational Multi-evaluation: for all strings a, b ∈ {0, 1}�, output values

α, β ∈ F, λ ∈ Z
+, keys {fi}n

i=1 ← Gen(a, α, λ) and {f ′
i}n

i=1 ← Gen(b, β, λ),
it holds for all strings x1, x2, . . . , xm 	= a, b and r1, r2, . . . , rm ∈ R distinct,
and subset S ⊂ [n] of size < t, that:({fi}i∈S , {Eval(fi, xh, rh)}i∈[n],h∈[m]

)
,
({f ′

i}i∈S , {Eval(f ′
i , xh, rh)}i∈[n],h∈[m]

)
are computationally indistinguishable w.r.t λ.

3.1 n-out-of-n Multi-evaluation DPF

Here, we describe an n-out-of-n computational multi-evaluation DPF for the
class of point functions P ({0, 1}�,F

)
, where F = Fq is the finite field with

cardinality q. Let F = {F (λ) : K(λ) × R → F
2�+λ+1} be a family of key-

homomorphic PRFs such that the advantage of any polynomial-time adver-
sary in distinguishing F (λ) from random is negligible in λ, and such that
F (λ)(k1 + k2, r) = F (λ)(k1, r) + F (λ)(k2, r) for all k1, k2 ∈ K(λ) and r ∈ R. Write
F (λ) = (F (λ)

1 , F
(λ)
2) with F

(λ)
1 : K(λ) × R → F

2�+λ and F
(λ)
2 : K(λ) × R → F. For

conciseness, we write F for F (λ) (and Fk for F
(λ)
k , K for K(λ)) when λ is clear

from context.
We make the assumption that K(λ) is an abelian group and that the order of

any element in K(λ) is bounded by some polynomial γ(λ). (This is often the case;
in particular, this holds when K(λ) = (Z/h(λ)Z)g(λ), where g(λ) is an arbitrary
function of λ and h(λ) is polynomially bounded.) Since |K(λ)| is superpolynomial
in λ, if the above conditions hold, then there exists λ0 such that γ(λ)2�n

|K(λ)| < 1 − 1
λ

for all λ ≥ λ0. Hence, by replacing λ by a larger λ′ if needed and truncating the
output, we may assume that γ(λ)2�n

|K(λ)| < 1 − 1
λ holds for all λ.

Remark 2. If F has characteristic p, then for any k ∈ pK, r ∈ R,

F (k, r) = F (pk′, r) = pF (k′, r) = 0.

Thus, any key k ∈ pK is a “weak key”, and since F is a secure PRF, |K/pK|−1

must be a negligible function of λ. By the fundamental theorem of finite abelian
groups, we can write

K ∼= Z/(pn1
1 Z) × Z/(pn2

2 Z) × · · · × Z/(pnl

l Z)

Function-Private Conditional Disclosure of Secrets 339

where p1, . . . , pl are (not necessarily distinct) primes. Assume pi = p for 1 ≤ i ≤
l′ and that pi 	= p for l′ < i ≤ l. Then K/pK ∼= (Z/pZ)l′ and thus |K/pK|−1 =
1/pl′ must be a negligible function of λ.

Our scheme is a collection of three algorithms, (Gen(a, α, λ), Eval(fi, x, r),
Rec(s1, . . . , sn)), which are defined as:

Gen(a, α, λ)

1. Choose 2� random vectors v0, v1, v2, . . . , v2�−1 from F
2�+λ.

2. Choose 2�n random vectors vi,j ∈ F
2�+λ (1 ≤ i ≤ n, 0 ≤ j ≤ 2� − 1) subject

to the condition vj =
∑n

i=0 vi,j for all j.
3. Let a = a1a2 . . . a� and compute θ =

∑�−1
j=0 v2j+aj

. This sum includes either
v2j or v2j+1 depending on whether the j-th bit of a is 0 or 1 respectively.

4. Choose 2� random elements α0, α1, . . . , α2�−1 ∈ F subject to the condition
α =

∑�−1
j=0 α2j+aj

.
5. Choose 2�n random elements αi,j ∈ F (1 ≤ i ≤ n, 0 ≤ j ≤ 2� − 1) subject to

the condition that αj =
∑n

i=1 αi,j for all j.
6. Choose 2�n linearly independent keys ki,j (1 ≤ i ≤ n, 0 ≤ j ≤ 2� − 1).
7. Compute k =

∑n
i=1

∑�−1
j=0 ki,2j+aj

.
8. Output fi = (vi,0, . . . , vi,2�−1, θ, αi,0, . . . , αi,2�−1, ki,0, . . . , ki,2�−1, k).

Eval(fi, x, r)

1. Parse fi as (vi,0, . . . , vi,2�−1, θ, αi,0, . . . , αi,2�−1, ki,0, . . . , ki,2�−1, k).
2. Let x = x1x2 . . . x�. Compute si,0 =

∑�−1
j=0

(
vi,2j+xj

+ F1(ki,2j+xj
, r)

)
.

3. Compute si,1 =
∑�−1

j=0
(
αi,2j+xj

+ F2(ki,2j+xj
, r)

)
.

4. Output si = (si,0, si,1, r, θ, k)

Rec(s1, . . . , sn)

1. Parse si as (si,0, si,1, r, θ, k).
2. Compute

∑n
i=0 si,0. If this equals θ+F1(k, r), output

∑n
i=0 si,1−F2(k, r) else

output 0.

Remark 3. In the above scheme, each party has a share size of

(4�2 + 2λ� + 4� + λ) log |F| + (2� + 1) log |K|,
and the output of Eval for each party has size

(4� + 2λ + 1) log |F| + log |K| + log |R|,
both of which are independent of the number of parties.

Theorem 1. The above scheme is an n-out-of-n computational multi-evaluation
DPF scheme for sharing the class of point functions P ({0, 1}�,F

)
.

340 N. Miranda et al.

Proof. Computational Correctness: We first prove that evaluation at x = a gives
the correct result with probability 1, i.e., Rec

({Eval(fi, a, r)}i∈[n]
)

= α. Note
that: ∑n

i=0si,0 =
∑n

i=0
∑�−1

j=0
(
vi,2j+aj

+ F1(ki,2j+aj
, r)

)
=

∑�−1
j=0

∑n
i=0vi,2j+aj

+
∑n

i=0
∑�−1

j=0F1
(
ki,2j+aj

, r
)

=
∑�−1

j=0v2j+aj
+ F1

(∑n
i=0

∑�−1
j=0ki,2j+aj

, r
)

= θ + F1(k, r),

hence, the output of Rec is:∑n
i=0si,1 − F2(k, r) =

∑n
i=0

∑�−1
j=0

(
αi,2j+aj

+ F2(ki,2j+aj
, r)

) − F2(k, r)

=
∑�−1

j=0
∑n

i=0αi,2j+aj
+

∑n
i=0

∑�−1
j=0F2(ki,2j+aj

, r) − F2(k, r)

=
∑�−1

j=0α2j+aj
+ F2

(∑n
i=0

∑�−1
j=0ki,2j+aj

, r
)

− F2(k, r)

=α + F2(k, r) − F2(k, r) = α.

Next, we prove that evaluation at x 	= a is correct except with probability
negligible in λ. Let uj = vj +F1(kj , r) for j = 0, . . . , 2�−1, where kj =

∑n
i=1 ki,j .

A simple calculation shows that:∑�
j=0u2j+aj

=
∑�−1

j=0
(
v2j+aj

+ F1(k2j+aj
, r)

)
= θ + F1(k, r).

Since F1 is a PRF and k0, k1, . . . , k2�−1 are linearly independent, the vectors
u0, u1, . . . , u2�−1 cannot be distinguished from random vectors in F

2�+λ except
with probability negligible in λ. The probability that 2� random vectors are
linearly independent in F

2�+λ is:
∏2�−1

j=0

(
q2l+λ−qj

q2�+λ

)
=

∏2�−1
j=0

(
1 − qj

q2�+λ

)
> 1 − ∑2�−1

j=0

(
qj

q2�+λ

)
= 1 − 1

q2�+λ

(
q2�−1
q−1

)
> 1 − 1

qλ = 1 − negl(λ).

If the vectors u0, u1, . . . , u2�−1 are linearly independent, then there is no other
linear combination of the uj ’s that result in θ + F1(k, r), and thus, Rec outputs
0 when given as inputs the outputs of Eval evaluated at x 	= a. Therefore, the
output of Rec is 0 except with probability negligible in λ.

Perfect Secrecy: Recall that Gen(a, α, λ) outputs (f1, f2, . . . , fn), where:

fi = (vi,0, . . . , vi,2�−1, θ, αi,0, . . . , αi,2�−1, ki,0, . . . , ki,2�−1, k).

For fi’s supplied by n−1 parties, which we assume, without loss of generality, to
be the first n − 1 parties, note that vi,j (1 ≤ i ≤ n − 1, 0 ≤ j ≤ 2� − 1) and θ are
independent elements (in the probabilistic sense) from the uniform distribution
on F

2�+λ, αi,j (1 ≤ i ≤ n − 1, 0 ≤ j ≤ 2� − 1) are independent elements from
the uniform distribution on F, while ki,j (1 ≤ i ≤ n − 1, 0 ≤ j ≤ 2� − 1) and
k are 2�(n − 1) + 1 linearly independent elements picked uniformly at random

Function-Private Conditional Disclosure of Secrets 341

from K. Thus, (f1, . . . , fn−1) has the same distribution regardless of the value
of a ∈ {0, 1}� and α ∈ F.

Computational Multi-evaluation: Let S ⊂ [n] such that |S| < n. We have already
established that {fi}i∈S has the same distribution for all a ∈ {0, 1}� and α ∈ F.
Assume that x1, x2, . . . , xm 	= a and r1, r2, . . . , rm ∈ R are distinct. Then, we
get

Eval(fi, xh, rh) =
(∑�−1

j=0
(
vi,2j+xh,j

+ F1(ki,2j+xh,j
, rh)

)
,∑�−1

j=0
(
αi,2j+xh,j

+ F2(ki,2j+xh,j
, rh)

)
, rh, θ, k

)
=

(∑�−1
j=0vi,2j+xh,j

+ F1

(∑�−1
j=0ki,2j+xh,j

, rh

)
,∑�−1

j=0αi,2j+xh,j
+ F2

(∑�−1
j=0ki,2j+xh,j

, rh

)
, rh, θ, k

)
.

Since {fi}i∈S has the same distribution regardless of the choice of a and α, the
same holds for

({fi}i∈S , {Eval(fi, xh, rh)}i∈S,h∈[m]
)
.

We observe that, since xh 	= a for all 1 ≤ h ≤ m, for any fixed h, the set

{ki,j : i ∈ S, 0 ≤ j ≤ 2� − 1} ∪ {k} ∪ {∑�−1
j=0ki,2j+xh,j

: i 	∈ S}

is a set of random linearly independent elements in K. Hence, any non-zero linear
combination of {∑�−1

j=0ki,2j+xh,j
: i 	∈ S} is a uniformly random element in K that

lies outside the span of {k} ∪ {ki,j : i ∈ S, 0 ≤ j ≤ 2� − 1}.
Since, by assumption, any element in K has order at most γ(λ), the span

of 2�(n − 1) + 1 elements has size at most γ(λ)2�(n−1)+1 < γ(λ)2�n. By our
assumption, γ(λ)2�n

|K(λ)| < 1 − 1
λ , so the advantage of an adversary in distinguishing

the PRF F from random when the key is selected from outside the span of
{k} ∪ {ki,j : i ∈ T, 0 ≤ j ≤ 2� − 1} is increased by a factor of at most λ, and
hence this advantage is still negligible in λ.

Hence, given {fi}i∈S , the set {F (
∑�−1

j=0ki,2j+xh,j
, rh)}i�∈S,h∈[m] cannot be dis-

tinguished from uniformly random except with negligible probability. It follows
that for all i 	∈ S and h ∈ [m],

∑�−1
j=0vi,2j+xh,j

+ F1

(∑�−1
j=0ki,2j+xh,j

, rh

)
and∑�−1

j=0αi,2j+xh,j
+F2

(∑�−1
j=0ki,2j+xh,j

, rh

)
are indistinguishable from independent

uniform random elements of F2�+λ and F respectively, except with probability
negligible in λ. �

3.2 t-out-of-n Multi-evaluation DPF

In this section, we introduce the idea of an F-key-homomorphic PRF. By assum-
ing the existence of such PRFs, we extend the n-out-of-n scheme in the previ-
ous subsection to a t-out-of-n computational multi-evaluation threshold DPF
scheme.

342 N. Miranda et al.

Definition 5 (F-key-homomorphic PRF). Let F be a field, K and L be
extension fields of F, and F : K×X → L

m be an efficiently computable function.
We say that F is an F-key-homomorphic PRF if the following properties hold:

1. F is a secure PRF,
2. ∀k1, k2 ∈ K, x ∈ X : Fk1+k2(x) = Fk1(x) + Fk2(x),
3. ∀c ∈ F, k ∈ K, x ∈ X : Fck(x) = c · Fk(x).

Remark 4. Note that if K and L are fields with the same prime subfield Fp,
then a key-homomorphic PRF F : K × X → L

m satisfying (2) is always Fp-key-
homomorphic. Furthermore, since K is a finite field, we know that (K, +) ∼= F

l
p′

for some prime p′. Then, it follows from Remark 2 that:

|K/pK|−1 =
{

1/pl if p = p′,
1 otherwise.

Since F is a secure PRF, |K/pK|−1 is a negligible function of λ, thus it must be
the case that p′ = p, i.e. char(K) must be equal to char(L).

We will use an F-key-homomorphic PRF family to produce a computa-
tional multi-evaluation threshold DPF scheme for the class of point functions
P ({0, 1}�,L

)
, where L = Fq is the finite field with cardinality q. Assume

|F| ≥ n + 1, and fix an injection ι : {0, 1, . . . , n} → F. We will use this injection
to identity elements in {0, 1, . . . , n} with elements of F. Note that this injection
need not be a homomorphism. Let F = {F (λ) : K(λ) × R → L

2�+λ+1} be a fam-
ily of F-key-homomorphic PRFs such that the advantage of any polynomial-time
adversary in distinguishing F (λ) from random is negligible in λ. As above, we
write F (λ) = (F (λ)

1 , F
(λ)
2).

Again, we will make the assumption that the order of any element in K(λ)

is bounded by some polynomial γ(λ), from which it follows, without loss of
generality, that γ(λ)2�n

|K(λ)| < 1− 1
λ holds for all λ. Our scheme is a collection of three

algorithms, (Gen(a, α, λ),Eval(fi, x, r),Rec({si : i ∈ T})), which are defined as:

Gen(a, α, λ)

1. Choose 2� random vectors v0, v1, v2, . . . , v2�−1 from L
2�+λ.

2. Compute Shamir shares vi,j ∈ L
2�+λ (1 ≤ i ≤ n, 0 ≤ j ≤ 2� − 1) for vi. To be

precise, for each 0 ≤ j ≤ 2�−1, randomly choose polynomials rj,h(X) ∈ L[X]
(1 ≤ h ≤ 2� + λ), each of degree ≤ t − 1, such that rj,h(0) is equal to the h-th
coordinate of vj , and let the h-th coordinate of vi,j be rj,h(i).

3. Let a = a1a2 . . . a� and compute θ =
∑�−1

j=0 v2j+aj
.

4. Choose 2� random elements α0, α1, . . . , α2�−1 ∈ L subject to the condition
α =

∑�−1
j=0 α2j+aj

.
5. Compute Shamir shares αi,j ∈ L (1 ≤ i ≤ n, 0 ≤ j ≤ 2� − 1) for αj , as in

Step 2 above.
6. Choose 2�n linearly independent keys ki,j (1 ≤ i ≤ n, 0 ≤ j ≤ 2� − 1).

Function-Private Conditional Disclosure of Secrets 343

7. Choose random polynomials pi,j(X) ∈ K[X] (1 ≤ i ≤ n, 0 ≤ j ≤ 2�−1), each
of degree ≤ t − 1 such that pi,j(0) = ki,j , and let ki,j,l = pi,j(l) (1 ≤ l ≤ n).
Let k(l) = {(i, j, ki,j,l) : 1 ≤ i ≤ n, 0 ≤ j ≤ 2� − 1}.

8. Compute k =
∑n

i=1
∑�−1

j=0 ki,2j+aj
.

9. Output fi = (i, vi,0, . . . , vi,2�−1, θ, αi,0, . . . , αi,2�−1, ki,0, . . . , ki,2�−1, k(i), k).

Eval(fi, x, r)
1. Parse fi as (i, vi,0, . . . , vi,2�−1, θ, αi,0, . . . , αi,2�−1, ki,0, . . . , ki,2�−1, k(i), k).
2. Let x = x1x2 . . . x�. Compute si,0 =

∑�−1
j=0

(
vi,2j+xj

+
∑n

l=1F1(kl,2j+xj ,i, r)
)

.

3. Compute si,1 =
∑�−1

j=0
(
αi,2j+xj

+
∑n

l=1F2(kl,2j+xj ,i, r)
)

.
4. Output si = (i, si,0, si,1, r, θ, k)

Rec({si : i ∈ T })
1. Parse si as (i, si,0, si,1, r, θ, k).
2. Compute S0,1(X), . . . , S0,2�+λ(X) and S1(X), polynomials of degree ≤ t − 1

such that S0,h(i) is equal to the h-th coordinate of si,0 and S1(i) = si,1 for
all i ∈ T .

3. If (S0,1(0), . . . , S0,2�+λ(0)) equals θ + F1(k, r), output S1(0) − F2(k, r) else
output 0.

Remark 5. Each party has a share size of

log n + (4�2 + 2λ� + 4� + λ) log |L| + (2�n + 2� + 1) log |K|
(assuming we fix an ordering for the elements in k(l), and replace (i, j, ki,j,l) by
ki,j,l) and the output of Eval has size

log n + (4� + 2λ + 1) log |L| + log |K| + log |R|.
Theorem 2. The above scheme is an t-out-of-n computational multi-evaluation
DPF scheme for sharing the class of point functions P ({0, 1}�,L

)
.

Before proving the above theorem, we prove two useful lemmas:
Lemma 1. Let x0, x1, . . . , xt ∈ F be distinct, K be an extension field of F and let
p(X) ∈ K[X] be a polynomial of degree ≤ t−1. Then there exists c1, c2, . . . , ct ∈ F

such that
p(x0) = c1p(x1) + · · · + ctp(xt).

Proof. By Lagrange interpolation,

p(X) = p(x1) ·
∏

i�=1(X − xi)∏
i�=1(x1 − xi)

+ · · · + p(xt) ·
∏

i�=t(X − xi)∏
i�=t(xt − xi)

,

so
p(x0) = p(x1) ·

∏
i�=1(x0 − xi)∏
i�=1(x1 − xi)

+ · · · + p(xt) ·
∏

i�=t(x0 − xi)∏
i�=t(xt − xi)

.

It is clear that cj =
∏

i�=j
(x0−xi)∏

i�=j
(xj−xi)

lies in the subfield F since x0, x1, . . . , xt ∈ F. �

344 N. Miranda et al.

Lemma 2. Let F : K×X → L be an F-key-homomorphic PRF, x0, x1, . . . , xt ∈
F be distinct, and p(X) ∈ K[X] be a polynomial of degree ≤ t − 1. Then
(a) F (p(x0), r) is an F-linear combination of F (p(xi), r) (1 ≤ i ≤ t),
(b) there exists a polynomial δ(X) ∈ L[X] of degree ≤ t − 1 such that δ(xi) =

F (p(xi), r) for all 0 ≤ i ≤ t.

Proof.(a) Since F is F-key-homomorphic,

F (p(x0), r) = c1 · F (p(x1), r) + · · · + ct · F (p(xt), r),

where c1, . . . ct ∈ F are as in Lemma 1.
(b) Let δ(X) be the polynomial

δ(X) = F (p(x1), r) ·
∏

i�=1(X − xi)∏
i�=1(x1 − xi)

+ · · · + F (p(xt), r) ·
∏

i�=t(X − xi)∏
i�=t(xt − xi)

.

It is clear that δ(xi) = F (p(xi), r) for 1 ≤ i ≤ t. And, by the proof of (a),

F (p(x0), r) = F (p(x1), r) ·
∏

i�=1(x0 − xi)∏
i�=1(x1 − xi)

+ · · · + F (p(xt), r) ·
∏

i�=t(x0 − xi)∏
i�=t(xt − xi)

= δ(x0).

�
Proof (of Theorem 2) Computational Correctness: Let T be a subset of [n] of
size t. Without loss of generality, let us assume T = [t]. We start by proving that

Rec ({Eval(fi, a, r)}i∈T) = α.

Note that for all 1 ≤ i ≤ t and 1 ≤ h ≤ 2� + λ,

S0,h(i) = si,0[h] =
∑�−1

j=0
(
vi,2j+aj

[h] +
∑n

l=1F1(kl,2j+aj ,i, r)[h]
)

=
∑�−1

j=0r2j+aj ,h(i) +
∑�−1

j=0
∑n

l=1F1(pl,2j+aj
(i), r)[h]

=
∑�−1

j=0r2j+aj ,h(i) + F1(
∑�−1

j=0
∑n

l=1pl,2j+aj
(i), r)[h].

Let p(X) =
∑�−1

j=0
∑n

l=1 pl,2j+aj
(X), a polynomial of degree ≤ t − 1. By Lemma

2(b), there exists a polynomial δh(X) ∈ L[X] of degree ≤ t−1, such that δh(i) =
F1(p(i), r)[h] for all 0 ≤ i ≤ t. Since S0,h(X) agrees with

∑�−1
j=0 r2j+aj ,h(X) +

δh(X) at the t points X = 1, 2, . . . , t, and both of them are polynomials of
degree ≤ t−1, they must be identical, i.e. S0,h(X) =

∑�−1
j=0r2j+aj ,h(X)+ δh(X).

Therefore,

S0,h(0) =
∑�−1

j=0r2j+aj ,h(0) + δh(0)

=
∑�−1

j=0v2j+aj
[h] + F1(p(0), r)[h]

=
∑�−1

j=0v2j+aj
[h] + F1(

∑�−1
j=0

∑n
l=1pl,2j+aj

(0), r)[h]

= θ[h] + F1(
∑�−1

j=0
∑n

l=1kl,2j+aj
, r)[h]

= θ[h] + F1(k, r)[h],

Function-Private Conditional Disclosure of Secrets 345

i.e., (S0,1(0), . . . , S0,2�+λ(0)) = θ + F1(k, r). The output of Rec is thus S1(0) −
F2(k, r), which, by a similar argument as above, is equal to:

(
∑�−1

j=0α2j+aj
+ F2(k, r)) − F2(k, r) =

∑�−1
j=0α2j+aj

= α.

Next, we prove that evaluation at x 	= a is correct except with probability
negligible in λ. Let uj = vj +F1(kj , r) for j = 0, . . . , 2�−1, where kj =

∑n
i=1 ki,j .

Again, by a similar argument as above,∑�−1
j=0u2j+aj

=
∑�−1

j=0
(
v2j+aj

+ F1(
∑n

l=1kl,2j+aj
, r)

)
= θ + F1(k, r),

and evaluation at x 	= a gives:

(S0,1(0), . . . , S0,2�+λ(0)) =
∑�−1

j=0
(
v2j+xj

+ F1(
∑n

l=1kl,2j+xj
, r)

)
=

∑�−1
j=0u2j+xj

.

The result now follows by following the proof for computational correctness in
Theorem 1.

Perfect Secrecy: Gen(a, α, λ) outputs (f1, f2, . . . , fn), where

fi = (i, vi,0, . . . , vi,2�−1, θ, αi,0, . . . , αi,2�−1, ki,0, . . . , ki,2�−1, k(i), k)

and k(i) = {(i′, j′, ki′,j′,i) : 1 ≤ i′ ≤ n, 0 ≤ j′ ≤ 2� − 1}.
Suppose we are given fi from t − 1 parties, which we will assume, without

loss of generality, to be the first t − 1 parties. Any t − 1 Shamir shares of a
t-out-of-n threshold scheme are independently and uniformly distributed. Thus,
vi,j (1 ≤ i ≤ t − 1, 0 ≤ j ≤ 2� − 1) and θ are independently and uniformly
distributed. The same holds for αi,j (1 ≤ i ≤ t − 1, 0 ≤ j ≤ 2� − 1). ki,j

(1 ≤ i ≤ t−1, 0 ≤ j ≤ 2�−1) and k are 2�(t−1)+1 linearly independent elements
picked uniformly at random from K, while ki′,j′,i (1 ≤ i′ ≤ n, 0 ≤ j′ ≤ 2� − 1,
1 ≤ i ≤ t−1) are independently and uniformly distributed. Thus, the distribution
of (f1, . . . , ft−1) does not depend on a or α.

Computational Multi-evaluation: Let S ⊂ [n] such that |S| < t. Assume
x1, x2, . . . , xm 	= a, and r1, r2, . . . , rm ∈ R are distinct. We get

Eval(fi, xh, rh) =
(

i,
∑�−1

j=0
(
vi,2j+xh,j

+
∑n

l=1F1(kl,2j+xh,j ,i, rh)
)

,∑�−1
j=0

(
αi,2j+xh,j

+
∑n

l=1F2(kl,2j+xh,j ,i, rh)
)

, rh, θ, k
)

=
(

i,
∑�−1

j=0vi,2j+xh,j
+ F1(

∑�−1
j=0

∑n
l=1kl,2j+xh,j ,i, rh),∑�−1

j=0αi,2j+xh,j
+ F2(

∑�−1
j=0

∑n
l=1kl,2j+xh,j ,i, rh), rh, θ, k

)
.

Let S ⊆ U ⊆ [n]. We shall prove by induction on |U | that the distribu-
tion of

({fi}i∈S , {Eval(fi, xh, rh)}i∈U,h∈[m]
)

is computationally indistinguishable
regardless of the choice of a and α. The base case simply follows from perfect
secrecy; since the distribution of {fi}i∈S is independent of the choice of a and
α, so is the distribution of

({fi}i∈S , {Eval(fi, xh, rh)}i∈S,h∈[m]
)
.

346 N. Miranda et al.

Suppose, for some S ⊆ U ′ ⊂ [n], that
({fi}i∈S , {Eval(fi, xh, rh)}i∈U ′,h∈[m]

)
is computationally indistinguishable regardless of the choice of a and α. Let
u 	∈ U ′, and let U∗ = U ′ ∪ {u}. We consider the following three cases.
Case 1: |U ′| < t − 1, i.e. |U∗| < t. It follows from perfect secrecy that the
distribution of

({fi}i∈S , {Eval(fi, xh, rh)}i∈U∗,h∈[m]
)

is independent of a and α.
Case 2: |U ′| = t − 1, i.e. |U∗| = t. Assume we are given:({fi}i∈U ′ , {Eval(fi, xh, rh)}i∈U ′,h∈[m]

)
,

whose distribution is independent of a and α by perfect secrecy.
Fix some h ∈ [m]. Note that

∑�−1
j=0

∑n
l=1kl,2j+xh,j ,i (i ∈ U∗) are Shamir shares

of
∑�−1

j=0
∑n

l=1kl,2j+xh,j
, which is randomly and uniformly distributed as an ele-

ment of K outside the span of {ki,j : i ∈ U ′, 0 ≤ j ≤ 2�−1}∪{k}. It follows that
the advantage of an adversary in distinguishing F (

∑�−1
j=0

∑n
l=1kl,2j+xh,j

, r) from
random is negligible in λ, thus the same holds for F (

∑�−1
j=0

∑n
l=1kl,2j+xh,j ,u, r)

(which, by Lemma 2(a), is an F-linear combination of F (
∑�−1

j=0
∑n

l=1kl,2j+xh,j
, r)

and F (
∑�−1

j=0
∑n

l=1kl,2j+xh,j ,i, r) for i ∈ U ′).
Thus, even with knowledge of

({fi}i∈U ′ , {Eval(fi, xh, rh)}i∈U ′,h∈[m]
)
, both

the distribution of
∑�−1

j=0vu,2j+xh,j
+ F1(

∑�−1
j=0

∑n
l=1kl,2j+xh,j ,u, rh) and the dis-

tribution of
∑�−1

j=0αu,2j+xh,j
+F2(

∑�−1
j=0

∑n
l=1kl,2j+xh,j ,u, rh) are indistinguishable

from uniformly random, except with probability negligible in λ.
Case 3: |U ′| ≥ t, i.e. |U∗| > t. Assume we are given:({fi}i∈S , {Eval(fi, xh, rh)}i∈U ′,h∈[m]

)
,

whose distribution is computationally independent of a and α by the induc-
tion hypothesis. Since

∑�−1
j=0vi,2j+xh,j

+F1(
∑�−1

j=0
∑n

l=1kl,2j+xh,j ,i, rh) are Shamir
shares of

∑�−1
j=0v2j+xh,j

+ F1(
∑�−1

j=0
∑n

l=1kl,2j+xh,j
, rh), by Lemma 1, for any

u1, . . . , ut ∈ U ′, there exists c1, . . . , ct ∈ F such that∑�−1
j=0vu,2j+xh,j

+ F1(
∑�−1

j=0
∑n

l=1kl,2j+xh,j ,u, rh)

=c1 ·
(∑�−1

j=0vu1,2j+xh,j
+ F1(

∑�−1
j=0

∑n
l=1kl,2j+xh,j ,u1 , rh)

)
+ · · · + ct ·

(∑�−1
j=0vut,2j+xh,j

+ F1(
∑�−1

j=0
∑n

l=1kl,2j+xh,j ,ut
, rh)

)
.

A similar argument shows that
∑�−1

j=0αu,2j+xh,j
+ F2(

∑�−1
j=0

∑n
l=1kl,2j+xh,j ,u, rh)

(i.e., Eval(fu, xh, rh)) is determined by
({fi}i∈S , {Eval(fi, xh, rh)}i∈U ′,h∈[m]

)
. �

4 Function-Private CDS

In this section, we introduce the concept of a function-private CDS (FPCDS)
scheme. We start with an informal description. Suppose we have k parties
P1, . . . , Pk. Let h : C → {0, 1}, where C = C1 × C2 × . . . × Ck, be a Boolean

Function-Private Conditional Disclosure of Secrets 347

condition function that lies in a family of Boolean condition functions H. An
FPCDS scheme for h ∈ H with secret domain S consists of a dealer D, k parties
P1, . . . , Pk and a third party, called Carol, which possesses an algorithm, Carol.

The dealer runs a randomized Gen algorithm with the inputs h and s, and
obtains w1, w2, . . . , wk. For 1 ≤ j ≤ k, D sends Pj the output portion wj .
Then, each player Pj chooses some cj ∈ Cj as their portion of the condition.
Next, Pj sends some message mj to Carol where mj = Pj(cj , wj) is the out-
put of some party-specific algorithm run on their part cj of the input c and
their part wj of the Gen output. Upon receiving the messages mj , Carol runs
Carol(m1, m2, . . . , mk); it accepts (and outputs the secret) or rejects based on the
output of its Carol algorithm. This scheme satisfies certain correctness, privacy
and secrecy properties, as detailed in the following definition:

Definition 6. Let H be a family of Boolean condition functions, where each
h ∈ H is a function from C = C1 × · · · × Ck to {0, 1}. A function-private CDS
scheme for the family H of condition functions and secret domain S is defined
as a collection of algorithms (Gen,P1, . . . ,Pk,Carol) such that:

– Gen is a randomized algorithm that takes two inputs, h ∈ H and s ∈ S, and
generates k shares {wi}k

i=1.
– For each i ∈ [k], Pi is a deterministic algorithm that takes two inputs, a share

wi and ci ∈ Ci, and outputs a message mi.
– Carol is a deterministic algorithm that takes as inputs m1, . . . , mk and outputs

either an element of S or ⊥.

These algorithms satisfy the following four conditions:

– Perfect Correctness: For every h ∈ H, s ∈ S, and c = (c1, c2, . . . , ck) ∈ C,
when Gen(h, s) = (w1, w2, . . . , wk) and mj = Pj(cj , wj),

Carol(m1, m2, . . . , mk) =
{

s if h(c) = 1,

⊥ if h(c) = 0.

– Perfect Secrecy: Fix h ∈ H. For every c = (c1, c2, . . . , ck) ∈ C, and any
pair of secrets s, s′ ∈ S, let Gen(h, s) = (w(s)

1 , w
(s)
2 , . . . , w

(s)
k), Gen(h, s′) =

(w(s′)
1 , w

(s′)
2 , . . . , w

(s′)
k), m

(s)
j = Pj(cj , w

(s)
j) and m

(s′)
j = Pj(cj , w

(s′)
j). If

h(c) = 0, then (m(s)
1 , m

(s)
2 , . . . , m

(s)
k) and (m(s′)

1 , m
(s′)
2 , . . . , m

(s′)
k) are per-

fectly indistinguishable.
– Perfect Input Privacy: Let h ∈ H and s ∈ S. Let c = (c1, c2, . . . , ck) ∈ C and

c′ = (c′
1, c′

2, . . . , c′
k) ∈ C. Let Gen(h, s) = (w1, w2, . . . , wk), mj = Pj(cj , wj)

and m′
j = Pj(c′

j , wj). If h(c) = h(c′), then (m1, . . . , mk) and (m′
1, . . . , m′

k)
are perfectly indistinguishable.

– Perfect Function Privacy: Fix c = (c1, c2, . . . , ck) ∈ C, s ∈ S and i ∈ [k]. Let
h, h′ ∈ H such that h(c) = h′(c) and such that for every c′

i ∈ Ci,

{h(c′
1, c′

2, . . . , c′
k) : c′

j ∈ Cj for j 	= i} = {h′(c′
1, c′

2, . . . , c′
k) : c′

j ∈ Cj for j 	= i}.

348 N. Miranda et al.

Let Gen(h, s) = (w(h)
1 , w

(h)
2 , . . . , w

(h)
k) and Gen(h′, s) = (w(h′)

1 , w
(h′)
2 , . . . ,

w
(h′)
k). For all j = 1, . . . , k, let m

(h)
j = Pj(cj , w

(h)
j) and m

(h′)
j = Pj(cj , w

(h′)
j).

Then, (ci, s, w
(h)
i , m

(h)
1 , . . . , m

(h)
k) and (ci, s, w

(h′)
i , m

(h′)
1 , . . . , m

(h′)
k) are per-

fectly indistinguishable.

4.1 A Simple FPCDS Scheme

In this section, we present the first FPCDS scheme. Our scheme works with
the family H = {h(a,b) : a, b ∈ {0, 1}n} of Boolean condition functions, where
h(a,b) : {0, 1}2n → {0, 1} is defined as:

h(a,b)(α, β) =
{

1 if (α, β) = (a, b),
0 otherwise,

and with secret domain S = G where G is a finite Abelian group. Let mi[j] be
the jth element of mi with index starting at 0.

1. D chooses a secret element s ∈ G and runs Gen(h(a,b), s). To do so, D samples
six random elements t, r1, r2, u, v1, v2 ← G such that u, v1, v2 are distinct. D
sends w1 = (a, s, t, r1, u, v1) to P1 and w2 = (b, s, t, r2, u, v2) to P2.

2. P1 chooses α ∈ {0, 1}n. If α = a, then P1 sends m1 = (u, s ⊕ t) to Carol;
otherwise, it sends m1 = (v1, r1). P2 chooses β in {0, 1}n. If β = b, then P2
sends m2 = (u, t) to Carol; otherwise, it sends m2 = (v2, r2).

3. Carol rejects if m1[0] 	= m2[0]; else it returns g = Carol(m1, m2) = m1[1] ⊕
m2[1].

Remark 6. The communication complexity between the dealer and party Pj is
|wj | = n + 5|s|, while the communication complexity between any party Pj and
Carol is |mj | = 2|s|.
Theorem 3. The above scheme is a function-private CDS scheme.

Proof. We prove that the scheme satisfies Definition 6 for FPCDS.

Perfect Correctness: Suppose the dealer chooses a secret s ∈ G and computes
Gen(h(a,b), s) = (w1, w2), where w1 = (a, s, t, r1, u, v1) and w2 = (b, s, t, r2, u, v2).
Suppose further that P1 chooses α ∈ {0, 1}n and P2 chooses β ∈ {0, 1}n. Let
m1 = P1(α, w1) and m2 = P2(β, w2). Suppose h(a,b)(α, β) = 1, i.e., (α, β) =
(a, b). Then, m1 = (u, s ⊕ t) and m2 = (u, t). Since m1[0] = u = m2[0], Carol
outputs:

g = m1[1] ⊕ m2[1] = s ⊕ t ⊕ t = s.

Else, suppose h(a,b)(α, β) = 0, i.e., (α, β) 	= (a, b). Then,

(m1[0], m2[0]) = (u, v2), (v1, u) or (v1, v2).

By the choice of u, v1, and v2, all three elements are distinct. Hence, Carol rejects
in all three cases.

Function-Private Conditional Disclosure of Secrets 349

Perfect Secrecy: Let s, s′ ∈ G, Gen(h(a,b), s) = (w1, w2) and Gen(h(a,b), s′) =
(w′

1, w′
2), where w1 = (a, s, t, r1, u, v1), w2 = (b, s, t, r2, u, v2), w′

1 =
(a, s′, t′, r′

1, u, v1) and w′
2 = (b, s′, t′, r′

2, u′, v′
2). For α, β ∈ {0, 1}n, let m1 =

P1(α, w1), m2 = P2(β, w2), m′
1 = P1(α, w′

1) and m′
2 = P2(β, w′

2). Suppose
h(a,b)(α, β) = 0, i.e., (α, β) 	= (a, b). We show that (m1, m2) and (m′

1, m′
2) are

perfectly indistinguishable. For the first case, suppose α = a and β 	= b. Then
(m1, m2) = ((u, s⊕t), (v2, r2)) and (m′

1, m′
2) = ((u′, s′ ⊕t′), (v′

2, r′
2)). In this case,

since u, u′, t, t′, r2, r′
2 are drawn uniformly, and v2, v′

2 are drawn uniformly to be
not equal to u, u′, respectively, (m1, m2) and (m′

1, m′
2) are both indistinguishable

from ((γ, δ), (ζ, η)), where γ, δ, ζ, η
$←− G such that γ 	= ζ. The case where α 	= a

and β = b is analogous to this case.
For the final case, suppose α 	= a and β 	= b. Then, it follows that

(m1, m2) = ((v1, r1), (v2, r2)) and (m′
1, m′

2) = ((v′
1, r′

1), (v′
2, r′

2)). Again, (m1, m2)
and (m′

1, m′
2) are both indistinguishable from ((γ, δ), (ζ, η)), where γ, δ, ζ, η

$←−
G such that γ 	= ζ.

Perfect Input Privacy: Let s ∈ G and Gen(h(a,b), s) = (w1, w2) with w1 =
(a, s, t, r1, u, v1) and w2 = (b, s, t, r2, u, v2). Suppose α, α′, β, β′ ∈ {0, 1}n sat-
isfy the condition that h(a,b)(α, β) = h(a,b)(α′, β′). Let m1 = P1(α, w1), m′

1 =
P1(α′, w1), m2 = P2(β, w2) and m′

2 = P2(β′, w2). We wish to show that (m1, m2)
and (m′

1, m′
2) are indistinguishable. The only case where h(a,b)(α, β) = 1 =

h(a,b)(α′, β′) is when (a, b) = (α, β) = (a′, b′), so this case is trivial. We now
consider h(a,b)(α, β) = 0 = h(a,b)(α′, β′). For the first case, suppose α = α′ = a.
Then, β 	= b 	= β′, and hence m1 = m′

1 = (u, s ⊕ t) with m2 = m′
2 = (v2, r2).

Thus, (m1, m2) and (m′
1, m′

2) are identical.
For the second case, suppose α = a and α′ 	= a while β 	= b and β′ = b.

Then, (m1, m2) = ((u, s ⊕ t), (v2, r2)) while (m′
1, m′

2) = ((v1, r1), (u, t)). Since
u, t, v1, v2, r1, and r2 are all drawn uniformly, both (m1, m2) and (m′

1, m′
2) are

indistinguishable from ((γ, δ), (ζ, η)), where γ, δ, ζ, η
$←− G such that γ 	= ζ. The

rest of the cases are similar, and therefore the scheme satisfies perfect input
privacy.

Perfect Function Privacy: Let s ∈ G and α, β ∈ {0, 1}n. Let h = h(a,b) and
h′ = h(c,d) ∈ H be point functions such that h(α, β) = h′(α, β) and such
that for every c1 ∈ {0, 1}n, {h(c1, c2) : c2 ∈ C2} = {h′(c1, c2) : c2 ∈ C2}.
Let Gen(h, s) = (w1, w2), Gen(h′, s) = (w′

1, w′
2) where w1 = (a, s, t, u, r1, v1),

w2 = (b, s, t, u, r2, v2), w′
1 = (c, s, t′, u′, r′

1, v′
1) and w′

2 = (d, s, t′, u′, r′
2, v′

2). Let
m1 = P1(h, w1), m2 = P2(h, w2), m′

1 = P1(h′, w′
1) and m′

2 = P2(h′, w′
2). We wish

to show that (α, s, w1, m1, m2) and (α, s, w′
1, m′

1, m′
2) are indistinguishable. If

h(α, β) = h′(α, β) = 1, then the functions are identical point functions. Thus,
suppose h(α, β) = h′(α, β) = 0 so that (a, b) 	= (α, β) 	= (c, d). The condition
that {h(c1, c2) : c2 ∈ C2} = {h′(c1, c2) : c2 ∈ C2} for all c1 ∈ {0, 1}n means that
a = c.

First, suppose a 	= α 	= c and b 	= β 	= d. Then, (m1, m2) = ((v1, r1), (v2, r2))
and (m′

1, m′
2) = ((v′

1, r′
1), (v′

2, r′
2)). Since u, v1, v2, r1, r2, u′, v′

1, v′
2, r′

1, r′
2 are all

drawn uniformly from G subject to the restrictions that u, v1, v2 and u′,

350 N. Miranda et al.

v1, v′
2 are distinct, respectively, it follows that both (α, s, (a, s, t, u, r1, v1),

(v1, r1), (v2, r2)) and (α, s, (a, s, t′, u′, r′
1, v′

1), (v′
1, r′

1), (v′
2, r′

2)) are indistinguish-
able from (α, s, (a, s, θ, λ, δ, γ), (γ, δ), (ζ, η)), where γ, δ, ζ, η, θ, λ

$←− G such that
γ, ζ and λ are distinct.

Next, suppose a 	= α 	= c and b = β 	= d. This gives (m1, m2) =
((v1, r1), (u, t)) and (m′

1, m′
2) = ((v′

1, r′
1), (v′

2, r′
2)). This case is similar to the

one discussed above.
Finally, suppose a = α = c and b 	= β 	= d. In this case,

(m1, m2) = ((u, s ⊕ t), (v2, r2)) and (m′
1, m′

2) = ((u′, s ⊕ t′), (v′
2, r′

2)). Then,
both (α, s, (a, s, t, u, r1, v1), (u, s⊕t), (v2, r2)) and (α, s, (a, s, t′, u′, r′

1, v′
1), (u′, s⊕

t′), (v′
2, r′

2)) are indistinguishable from (α, s, (a, s, δ, γ, θ, λ), (γ, s ⊕ δ), (ζ, η)),
where γ, δ, ζ, η, θ, λ

$←− G such that γ, ζ and λ are distinct. �

Remark 7. In the above scheme, secrecy, input privacy and function privacy may
no longer hold if P1 and P2 repeat Step 2 of the protocol with the same shares
w1 and w2. However, we can remove this limitation if we allow P1 and P2 to
“refresh” their shares.

To do so, we fix a PRF F : K × G → G, a PRP P : K × G → G and a
PRF F ′ : K′ × {0, 1}� → K, and assume that the dealer D deals a common key
k′ ∈ K′ to both parties P1 and P2. Each of the parties also keeps a counter c of
the number of times Step 2 of the protocol has been performed. After each run
of Step 2, Pi updates the share wi by doing the following:

1. Compute k1,i = F ′(k′, c||1||i) and kj = F ′(k′, c||j) for j = 2, 3.
2. Replace ri, t, vi and u by F (k1,i, ri), F (k2, t), P (k3, vi) and P (k3, u), respec-

tively.
3. Increment c.

Note that the keys k1,1, k1,2, k2 and k3 are unique to each run of the protocol.
This is necessary as otherwise, if |G| is small, the elements ri, t, vi and u could
end up in a cycle, repeating after a limited number of runs.

4.2 From FPCDS to FSS

Let there be an FPCDS scheme for k parties P1, . . . , Pk for the family of Boolean
condition functions H, condition domain C = C1 × . . .×Ck, and secret domain S.
Let D be the dealer for the FPCDS scheme and Gen be the randomized algorithm
from the FPCDS scheme. We demonstrate that there exists a k-out-of-k FSS
scheme for the family of functions H. Let D′ be the dealer and P ′

1, . . . , P ′
k be

the k parties for the FSS scheme. Our scheme is defined as a collection of three
algorithms (KeyGen(h),Eval(kj),Rec(m1, . . . , mk)), which are defined as:

KeyGen(h)

1. For the chosen condition function h ∈ H, D′ samples a random secret s ∈ S
and runs Gen(h, s) to generate the tuple (w1, w2, . . . , wk).

Function-Private Conditional Disclosure of Secrets 351

2. D′ distributes to each P ′
j the key kj = wj .

Eval(kj)

1. Each party P ′
j , given kj = wj , chooses an input cj ∈ Cj .

2. Each P ′
j runs the party algorithm mj = Pj(cj , wj) from the FPCDS scheme.

Rec(m1, . . . , mk)

1. The k parties publish the messages m1, m2, . . . , mk.
2. The k parties simulate Carol and compute Carol(m1, m2, . . . , mk). If the Carol

algorithm rejects, then the parties output 0; otherwise, if the Carol algorithm
outputs the correct secret, s, the parties output 1.

Correctness and Privacy. Our scheme satisfies the correctness and function
privacy requirements for an FSS scheme.

Perfect Correctness: For the chosen condition function h ∈ H, suppose D′ sam-
ples s ∈ S and runs Gen(h, s) = (w1, w2, . . . , wk). Then, each P ′

j chooses cj ∈ Cj

so that mj = Pj(cj , wj). Now, if h(c1, c2, . . . , ck) = 1, then by perfect correctness
of FPCDS, Carol(m1, m2, . . . , mk) returns the correct secret s. Hence, the parties
output 1 during the reconstruction step. Similarly, when h(c1, c2, . . . , ck) = 0,
Carol(m1, m2, . . . , mk) always rejects, and hence the parties output 0.

Function Privacy: Fix c = (c1, c2, . . . , ck) ∈ C and i ∈ [k]. Let h, h′ ∈ H
such that for every c′

i ∈ Ci, the sets {h(c′
1, c′

2, . . . , c′
k) : c′

j ∈ Cj for j 	= i}
and {h′(c′

1, c′
2, . . . , c′

k) : c′
j ∈ Cj for j 	= i} are equal. Select s ∈ S, and let

Gen(h, s) = (w1, w2, . . . , wk), Gen(h′, s) = (w′
1, w′

2, . . . , w′
k). Suppose mi =

Pi(ci, wi) and m′
i = Pi(ci, w′

i). During evaluation and reconstruction, P ′
i can

observe (ci, wi, m1, m2, . . . , mk) and (ci, w′
i, m′

1, m′
2, . . . , m′

k), which are perfectly
indistinguishable by the function privacy property of the FPCDS scheme.

Note that the given procedure is an FSS scheme for H with the following two
caveats:

1. The input ci must remain private to party P ′
i .

2. For each party P ′
i , function privacy only holds for h, h′ ∈ H such that:

{h(c′
1, c′

2, . . . , c′
k) : c′

j ∈ Cj for j 	= i} = {h′(c′
1, c′

2, . . . , c′
k) : c′

j ∈ Cj for j 	= i}

for every c′
i ∈ Ci.

References

1. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: STOC, pp. 522–533 (1994)

2. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

352 N. Miranda et al.

3. Blakley, G.R.: Safeguarding cryptographic keys. Am. Feder. Inf. Process. 48, 313–
318 (1979)

4. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35

5. Dittmer, S., et al.: Function secret sharing for psi-ca:with applications to private
contact tracing (2020)

6. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.G.: Protecting data privacy in
private information retrieval schemes. In: STOC (1998)

7. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7_24

8. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_8

9. Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes for
forbidden graph access structures. Cryptology ePrint Archive, Report 2017/940
(2017). Accessed 2020, https://eprint.iacr.org/2017/940

10. Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes for
forbidden graph access structures. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS,
vol. 10678, pp. 394–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70503-3_13

11. Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing schemes
for general and uniform access structures. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11478, pp. 441–471. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17659-4_15

12. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier
for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 567–596. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9_21

13. Applebaum, B., Beimel, A., Nir, O., Peter, N.: Better secret sharing via robust
conditional disclosure of secrets. In: STOC, pp. 280–293 (2020)

14. Spotify expands its $4.99 per month student bundle with Hulu to include showtime
(2018). https://tcrn.ch/2Pik9j4

15. Spotify: The future of audio. putting data to work, one listener at a time. https://
cloud.google.com/customers/spotify

16. Completing the Netflix cloud migration. https://about.netflix.com/en/news/
completing-the-netflix-cloud-migration

17. Hulu’s move into live television makes amazon a surprise winner. https://fortune.
com/2017/08/15/hulu-live-tv-amazon-aws/

18. Anick, P.G., Brennan, J.D., Flynn, R.A., Hanssen, D.R., Alvey, B., Robbins, J.M.:
A direct manipulation interface for boolean information retrieval via natural lan-
guage query. In: ACM SIGIR, pp. 135–150 (1989)

19. Lee, J.H., Kim, M.H., Lee, Y.J.: Ranking documents in thesaurus-based boolean
retrieval systems. Inf. Process. Manag. 30(1), 79–91 (1994)

20. Verhoeff, J., Goffman, W., Belzer, J.: Inefficiency of the use of boolean functions
for information retrieval systems. Commun. ACM 4(12), 557–558 (1961)

21. Agrawal, S., et al.: Functional encryption and property preserving encryption:
New definitions and positive results. Cryptology ePrint Archive, Report 2013/744
(2013). https://eprint.iacr.org/2013/744

https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1007/3-540-44987-6_8
https://eprint.iacr.org/2017/940
https://doi.org/10.1007/978-3-319-70503-3_13
https://doi.org/10.1007/978-3-319-70503-3_13
https://doi.org/10.1007/978-3-030-17659-4_15
https://doi.org/10.1007/978-3-030-17659-4_15
https://doi.org/10.1007/978-3-319-78381-9_21
https://doi.org/10.1007/978-3-319-78381-9_21
https://tcrn.ch/2Pik9j4
https://cloud.google.com/customers/spotify
https://cloud.google.com/customers/spotify
https://about.netflix.com/en/news/completing-the-netflix-cloud-migration
https://about.netflix.com/en/news/completing-the-netflix-cloud-migration
https://fortune.com/2017/08/15/hulu-live-tv-amazon-aws/
https://fortune.com/2017/08/15/hulu-live-tv-amazon-aws/
https://eprint.iacr.org/2013/744

Function-Private Conditional Disclosure of Secrets 353

22. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1_26

23. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42033-7_14

24. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_12

25. Fan, X., Tang, Q.: Making public key functional encryption function private, dis-
tributively. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp.
218–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_8

26. Abdalla, M., Pointcheval, D., Soleimanian, A.: 2-step multi-client quadratic func-
tional encryption from decentralized function-hiding inner-product. Cryptology
ePrint Archive, Report 2021/001 (2021). https://eprint.iacr.org/2021/001

27. Ahmad, K.A.B., Ahmad, K., Dulhare, U.N. (eds.): Functional Encryption. EICC,
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-60890-3

28. Beimel, A., Burmester, M., Desmedt, Y., Kushilevitz, E.: Computing functions of
a shared secret. SIAM J. Discret. Math. 13(3), 324–345 (2000)

29. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
JACM 33, 792–807 (1986)

30. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_23

31. Goldwasser, S., Micali, S.M.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: STOC, pp. 365–377 (1982)

32. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4_23

33. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2_20

34. Parra, J.R., Chan, T., Ho, S.-W.: A noiseless key-homomorphic PRF: application
on distributed storage systems. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016.
LNCS, vol. 9723, pp. 505–513. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40367-0_34

35. Kim, S.: Key-homomorphic pseudorandom functions from LWE with small modu-
lus. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp.
576–607. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_20

36. Sehrawat, V.S., Desmedt, Y.: Bi-homomorphic lattice-based PRFs and unidirec-
tional updatable encryption. In: Mu, Y., Deng, R.H., Huang, X. (eds.) CANS 2019.
LNCS, vol. 11829, pp. 3–23. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-31578-8_1

37. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7_1

https://doi.org/10.1007/978-3-642-40084-1_26
https://doi.org/10.1007/978-3-642-42033-7_14
https://doi.org/10.1007/978-3-642-42033-7_14
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-319-76581-5_8
https://eprint.iacr.org/2021/001
https://doi.org/10.1007/978-3-030-60890-3
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-319-40367-0_34
https://doi.org/10.1007/978-3-319-40367-0_34
https://doi.org/10.1007/978-3-030-45724-2_20
https://doi.org/10.1007/978-3-030-31578-8_1
https://doi.org/10.1007/978-3-030-31578-8_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1

354 N. Miranda et al.

38. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard lat-
tice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7_15

39. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2_10

40. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_16

41. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lat-
tice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7_17

42. Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security via
extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 335–366. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8_11

43. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assump-
tions: public marking and security with extraction queries. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03810-6_24

44. Bogdanov, A., Rosen, A.: Pseudorandom functions: three decades later. In: Tutori-
als on the Foundations of Cryptography. ISC, pp. 79–158. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57048-8_3

https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-03810-6_24
https://doi.org/10.1007/978-3-319-57048-8_3

How Distance-Bounding Can Detect
Internet Traffic Hijacking

Ghada Arfaoui1, Gildas Avoine3, Olivier Gimenez2,3(B), and Jacques Traoré2

1 Orange Labs, 4 rue du Clos Courtel, 35510 Cesson Sévigné, France
ghada.arfaoui@orange.com

2 Orange Labs, 42 rue des Coutures, 14000 Caen, France
{olivier.gimenez,jacques.traore}@orange.com

3 INSA Rennes, University of Rennes, IRISA, CNRS, Rennes, France
gildas.avoine@irisa.fr

Abstract. We propose a two-party cryptographic protocol for detect-
ing traffic hijacking over the Internet. Our proposal relies on a distance-
bounding mechanism that measures the round-trip time of packets to
decide whether an attack is ongoing. The protocol requires only two cryp-
tographic operations per execution which leads to very few additional
workload for the users. We demonstrate the efficiency of the protocol
using large-scale experiments and we discuss the choice of the decision
function w.r.t. the false positive and negative cases.

1 Introduction

Hijacking attacks on Internet consist in deviating the traffic on a given route to
make it travel through unexpected nodes. Two main motivations could justify
this kind of attack. The first one is denial of service: the attacker stops the
communication for some reason and prevents packets to reach their recipient.
This attack can be quickly detected and may be due to a routing error. The
second one is relay attack : the attacker aims to spy on industries, governments
or individuals by forcing a flow of data to change its legitimate path and take
a new one, involving nodes he owns or being under his control, hence, enabling
him to have a capture of this flow. Such attacks may also have a political or
ideological dimension.

Many instances of hijacking attacks occurred since the 2000s. On February
2008, Youtube became unreachable for two hours after Pakistan Telecom falsely
claimed being the better route for joining it1. On April 2010, China Telecom
advertised wrong traffic routes in the same fashion. For approximately 20 min,
no less than 15% of the Internet traffic adopted those routes, including some
traffic of the US government, military sites and commercial sites like Yahoo!

1 https://www.ripe.net/publications/news/industry-developments/youtube-

hijacking-a-ripe-ncc-ris-case-study.
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 355–371, 2021.
https://doi.org/10.1007/978-3-030-92548-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_19&domain=pdf
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://doi.org/10.1007/978-3-030-92548-2_19

356 G. Arfaoui et al.

and IBM2. More recently, in June 2019, the same kind of incident with China
Telecom occurred for about 2 h3. Although a portion of these attacks are per-
haps caused by human mistakes and do not bear a malicious purpose, the fact
remains that, such attacks do not come without consequences, from important
slowdowns to potential leaks of sensitive information. Denial of services attacks
are inconvenient for the victim, but they are, by nature, instantly detected.
To the contrary, relay attacks may be established by a stealth attacker in the
long term. If, nowadays, an overwhelming portion of communications is secured
through TLS protocol, such an attacker still is able to gather potentially critical
metadata.

For instance, Apostolaki, Zohar, and Vanbever showed in [1] that hijacking
bitcoin messages can lead to severe impact on the bitcoin system, i.e., isolating
parts of the network or delaying block propagation, entailing financial losses.
Furthermore, for a government or an industry, allowing this kind of control from
another structure is somehow an admission of weakness. In other words, this is
also (and some might say mainly) the geopolitical and economical reputation
which is at stake.

A large vector to lead this kind of attack lies on a major flaw of the Border
Gateway Protocol (BGP) inherent to its construction. In a nutshell, this pro-
tocol is the backbone of the Internet routing, it allows macro-networks called
Autonomous Systems (AS) to communicate with one another by announcing
which set of IP adresses they can directly reach. By advertising and spreading
those announcements to their neighbors, any connected device is able to reach
any other one from all over the world. The issue with that procedure is that it
fully relies on trust. Hence, a malicious AS could as well be lying on the set of
machines it can reach, resulting in a modified path traveled by all the packets
sent to this set.

Since July 1994, when BGP-4 was first described [13], a lot of proposals
tried to enhance the protocol [8,9,15,16]. All these contributions aimed to
strengthen BGP by working on the possibility to authenticate and authorize
BGP updates between ASes. The Internet Engineering Task Force (IETF) ini-
tiated the BGPSec standardization project [10] based on Secure-BGP [9]. The
key idea is to use the RPKI public-key infrastructure to certify ASes signatures.
Hence a BGPSec update will contain the reachable set of IP addresses along with
the list of all the ASes that received the update where all participating AS signed
its own pre-path. Other attempts using techniques for anomaly detection, local-
ization, and mitigation are to be found with different levels of efficiency [7,12,14],
searching for strategies like alternative routes creation, or hijacked BGP routes
announcement analyses. According to [11], these attempts target only specific
subproblems and does not provide a complete detection.

2 https://arstechnica.com/information-technology/2010/11/how-china-swallowed-

15-of-net-traffic-for-18-minutes/.
3 https://arstechnica.com/information-technology/2019/06/bgp-mishap-sends-

european-mobile-traffic-through-china-telecom-for-2-hours/.

https://arstechnica.com/information-technology/2010/11/how-china-swallowed-15-of-net-traffic-for-18-minutes/
https://arstechnica.com/information-technology/2010/11/how-china-swallowed-15-of-net-traffic-for-18-minutes/
https://arstechnica.com/information-technology/2019/06/bgp-mishap-sends-european-mobile-traffic-through-china-telecom-for-2-hours/
https://arstechnica.com/information-technology/2019/06/bgp-mishap-sends-european-mobile-traffic-through-china-telecom-for-2-hours/

How Distance-Bounding Can Detect Internet Traffic Hijacking 357

We address the hijacking attack in this article without relying on the rout-
ing protocol specificities. Instead, we propose an original application-layer app-
roach that relies on a two-party cryptographic-based anomaly detection protocol,
which measures the communication time between users. It performs statistical
analysis upon these measurements and a trusted sample. Our protocol accu-
rately distinguishes an hijacked set of packets with a genuine one. We believe
our solution to be practical, because it is independent of the routing protocol
in use and requires minimal involvements from the end-points. Our protocol is
applicable in stable environments as it relies on time measurements stability, and
between close collaborators frequently exchanging data flows. To the best of our
knowledge, our protocol is the first to detect routing anomalies using time mea-
surements. Previous works on specific protocols like BGP would become obsolete
if the classical routing procedures were to drastically change. To the contrary,
our protocol relies uniquely on the stability of the measures, and would still be
useable whatever the protocol in use.

The remaining of the paper is organized as follows. In Sect. 2, we present
the necessary background for our construction. Then we describe our protocol
in Sect. 3, where we also elaborate on the protocol security. We also introduce
a statistical decision function in Sect. 3.3, that can be used to detect traffic
hijacking. We finally provide experimental results in Sect. 4, and conclude on
the efficiency of our approach.

2 Preliminaries

In this section, we introduce the background that will be used in the paper.

2.1 Time Measurement

We distinguish two ways for measuring the time between two machines. The One
Way Transit Time (OWTT) represents the time measured between the send-
ing of a packets and the arrival to the destination. This approach attempts to
capture the real time separating two endpoints but demands a precise clock syn-
chronisation of those points and to send the timestamp along with the measured
packet. The Round Trip Time (RTT) is measuring the time between the sending
and the reception of a response. As this is a one-sided measure, there is no need
of a clock synchronisation. The approximation OWTT = RTT

2 is often made but
there is no insurance that the transit times in both directions are comparable.
It is then preferable to consider RTT as a stand-alone metric rather than a way
to measure OWTT.

2.2 Distance-Bounding Protocols

To the best of our knowledge, the strongest example of countermeasure to relay
attacks using time measurements are the distance-bounding protocols, a.k.a.
proximity checks. They have been massively studied [2] in the context of Radio

358 G. Arfaoui et al.

Fig. 1. Brands and Chaum’s distance-bounding protocol based on the Fiat-Shamir
zero-knowledge authentication

Frequency IDentification (RFID), and they are implemented in some contactless
smartcards, e.g., Mifare Plus4 and Mifare DESfire5. Given that the signal prop-
agation cannot be faster than the speed of light, a verifier considers that there is
no relaying adversary if the RTTs between the verifier and the prover are below
a given upper bound.

A well-known relay attack is the mafia fraud introduced by Desmedt, Goutier
and Bengio in 1987 [4], and applied to the Fiat-Shamir Zero-Knowledge authen-
tication protocol [5]. This protocol is based on the complexity of the quadratic
residuosity problem and allows to prove the knowledge of a number x such that
x2 = X mod n, where X and n are public, with n = p1p2 and p1, p2 two
large and distinct primes. The attack name comes from Shamir’s claim that
Fiat-Shamir protocol remains secure even in a scenario where the prover is a
mafia-owned store, which is contradicted by [4]. The mafia fraud actually allows
the attacker to get authenticated by simply relaying the exchange between the
genuine prover and the verifying device. Such an attack especially makes sense
in contactless authentication that needs the prover (card, transit pass, or else)

4 https://www.nxp.com/docs/en/data-sheet/MF1P(H)x2 SDS.pdf.
5 https://www.nxp.com/docs/en/data-sheet/MF3DHx3 SDS.pdf.

https://www.nxp.com/docs/en/data-sheet/MF1P(H)x2_SDS.pdf
https://www.nxp.com/docs/en/data-sheet/MF3DHx3_SDS.pdf

How Distance-Bounding Can Detect Internet Traffic Hijacking 359

to be in the proximity of the verifying device. Brands and Chaum introduced
in 1994 [3] a countermeasure to this fraud. They indeed added to the Fiat-
Shamir protocol a feature to bound the distance from which is standing the
genuine prover and to dismiss the authentication if it concludes that the prover
is standing further than a given distance. This countermeasure is so-called a
distance-bounding protocol, and it uses a series of rapid bit-exchanges to mea-
sure the round trip time between the prover and the verifier, and so the distance,
using the speed of light as an upper bound. We illustrate the protocol of Brands
and Chaum in Fig. 1. In this protocol, P proves to V that he knows x such that
x2 = X mod n in three steps:

– Initialisation: P picks k nonces ri, computes their squares Ri = r2i mod n,
then picks k random bits cP

i . He then sends the Ri’s and a commitment
(typically a hash) of the cP

i s. The prover V then also computes k random bits
cV
i .

– Fast bit-exchange: for i = 1 . . . k, V creates a timestamp ti, sends cV
i , receives

the responses cP
i and immediately creates another timestamp t′i, and stores

(t′i − ti).
– Verification: P computes all the ci = cP

i ⊕ cV
i , zi = rix

ci mod n and sends
zi to V. The latter checks (i) if the commited cP

i s in the initialisation phase
are the same than those he received in the fast bit-exchange phase, (ii) com-
putes the ci similarly, (iii) checks if z2i is equal to RiX

ci and (iv) checks if
max ({t′i − ti}) is below a given upper bound.

Brands and Chaum’s seminal work paved the way to many other distance-
bounding protocols. One could for example cite Hancke and Kuhn’s protocol [6]
that uses only symmetric-key cryptography. Although describing the body of
literature related to distance-bouding protocols is out of the scope of this arti-
cle, interested readers will find a complete analysis of distance-bounding pro-
tocols in [2]. It is worth noting that these protocols are well suited for RFID
authentication because communications are end-to-end (from the physical layer
perspective) and the computations performed by the RFID tag are lightweight,
which implies that the RTTs are very stable. However, it is important to raise
that distance-bounding protocols does actually not detect relays: they detect
abnormally long RTTs, and guess that this is due to a relay attack. However, a
fast enough relay attack might remain undetected if the technology to perform
the relay is faster than the technology to measure the RTTs.

The key difference between Internet communications and RF communications
is that the former involve physical relays, namely routers, and routes dynamically
evolve over time. In spite of that, RTTs are pretty stable as showed later in this
article. Consequently, instead of comparing RTTs with a reference time bound
as done with RF communications, our protocol compares RTTs with a reference
profile defined during a learning phase.

360 G. Arfaoui et al.

3 Our Protocol to Detect Traffic Hijacking

3.1 Description

Our protocol, described in Fig. 2, runs between a sender S and a receiver R. A
full run of a protocol allows S to gather one sample of k RTTs, k being a public
parameter. To do so, when a run is initiated, S marks k upcoming6 packets pi
by a random bit si, creates a timestamp ti and sends pi||si to R. In each marked
round, R responds with a random bit ri. Upon reception of ri, S creates a new
timestamp t′i. The RTT of the current round is actually the time difference t′i−ti.

Fig. 2. Distance-bounding protocol to detect Internet traffic hijacking

Once the k rounds have been performed, R signs the hash of the pi’s along
with the si’s and the ri’s; this hash is denoted HR and the signature σR. Finally,
S verifies that σR is a valid signature on HS and let the collected sample of RTTs
be analyzed by a decision function called Verify Time. Our protocol differs from
RFID Distance Bounding in the manner this RTT sample will be analyzed.
As stated in Sect. 2.2, the Internet does not fit accurate distance computation,
hence Verify Time must work differently on the time analysis. This function can
be seen as an interchangeable black box for this protocol, although we propose
in Sect. 3.3 a suitable example of decision function that is based on a statistical
analysis to decide whether some traffic is trustworthy or not. It is worth noting
that the collected RTTs should be gathered from similar experiences in order
to minimize latency effects. We analyze in Sect. 4 the impact of different factors
such as the time of the day, day of the week, or packet size. Also the protocol
can either be applied as so upon a punctual exchange or upon a data stream by
repeating sequentially the protocol every k measures.
6 For the sake of clarity, we assume that the k packets are consecutive, but this assump-

tion is actually not necessary.

How Distance-Bounding Can Detect Internet Traffic Hijacking 361

3.2 Security Analysis

Our protocol is called secure if it detects any hijacking attack. We call a success-
ful hijacking attack, an attacker who deviates the routing path of an exchange
between two end users S and R without raising an alarm from our protocol.

Threat Model. We assume that the attacker A is able to punctually change
the path taken by any packet traveling from S to R and from R to S so that
this packet gets to its destination through a node owned by A. This implies that,
A is also able to drop or modify these packets. Finally, he can precisely deduce
when to send a packet to a specific destination so that this packet arrives at an
accurate target time

Attacker Strategies. An attacker A aims at relaying messages between S
and R over the course of one run of the protocol without being detected. To
do so, he can send to S his own responses r̃i at the right time to match the
accepting results of Verify Time. As R signs his view of the exchange at the end,
the attacker will have to guess correctly the ri’s that R intends to use, otherwise,
when S will verify the signature of R, the verification will fail, and the attacker
will be detected. A can guess the correct ri’s with a 1

2k
probability, hence k

should be chosen greater than 80. The attacker could also try to gather the true
ri’s by playing the protocol in advance with R, but then, he will have to guess
with the same probability the si’s.

3.3 Decision Function

We describe in this section a statistical decision function, Verify Time, that
decides whether an hijacking attack is ongoing. For that, the function com-
pares a sample of RTTs, denoted samp and collected during an execution of
the protocol between two parties R and S, with a reference sample denoted ref
also collected between R and S during a learning phase. This reference sam-
ple contains a large amount of measures that have been collected under trusted
circumstances and can be seen as a fingerprint of the expected RTT behaviour.

Notations. We use the following notations throughout the next sections.

– Given a sample samp of integer values, we refer to its mean by the notation
μsamp./and to its ith centile by the notation qi(samp).

– We call p%-density interval the smallest interval containing p% of the values
of samp by the notation Ip(samp).

– Given an interval of integers I bounded between a and b (a < b), we refer to
its length by the notation len(I) = b − a

362 G. Arfaoui et al.

Reference Sample. The reference sample ref consists of a large set of measures
gathered in advance during a learning phase performed between R and S. It
represents the standard values one can expect when measuring RTTs between
R and S. It is worth noting that the learning phase should take place when there
is no ongoing attack, that is, when the route taken by the packets during the
measurements has not been altered by a malicious party.

The reference sample should be updated when the genuine RTTs deviate
from their reference due, for example, to modifications in the network topology.
Experiments presented in Sect. 4.2 show, though, that RTTs are quite stable
even over long periods, e.g., several months.

In environments where RTTs are not stable, dynamically updating the refer-
ence sample may improve the reliability of the protocol. For example, any new
execution of the protocol provides 256 fresh RTTs that can be concatenated
to ref while the 256 oldest ones can be removed from ref . Automatic updates
should be monitored, though, because an attacker would be able to slightly delay
packets in every run of the protocol to stay undetected by the decision function,
hence accepting a slightly modified sample and updating the reference sample.
By repeating this process, the attacker gets to a point where the reference sam-
ple has been sufficiently poisoned to make the decision function accept relayed
packets.

Statistical Test. To select an efficient decision function, we considered 5 differ-
ent statistical tests and we performed about 500 protocol executions: 250 genuine
executions and 250 executions while a relay was ongoing7. We then analyzed the
results for each test, i.e., the rate of false negatives and false positives, and we
selected the most convincing one8.

Given a sample samp to be tested, a reference sample ref , we denote μsamp

(resp. μref) the average RTT of the tested sample (resp. reference sample). The
selected statistical test is as follows:

Compute the difference Δ = |μsamp − μref |.
Compute the 80%-density interval I80(ref).
If Δ < len(I80(ref)):

Return 1
Else:

Return 0

The use of the mean is justified by the overall stability of RTTs for a genuine
sample and the impact of the presence of an intermediary node on the path over
it. We choose the threshold value to be the length of the 80%-density interval of
ref which allows the test to ignore the extreme values.

7 We elaborate on how a relay node was implemented on Sect. 4.
8 We describe the four other tests in Appendix A and we show how they perform in

Appendix B.

How Distance-Bounding Can Detect Internet Traffic Hijacking 363

4 Experimental Results

We present in this section the results of our experiments, and provide figures to
evaluate the efficiency of our protocol to detect internet traffic hijacking.

4.1 Setup

We measured RTTs for UDP traffic between two parties, S the Sender and R the
Receiver, sometimes relayed by A the attacker. We used four nodes connected on
the Internet, under different Internet Service Providers and in the same country,
this implies that we had no control over the route between S and R. For this
reason, we simulate the presence of a relay by sending directly the packets from S
to A then from A to R. This simulation of relay attack may obviously differ from
what happens in reality, however it seems fair to assume that the presence of a
relay implies a raise of the measured times. The more impacting factor in RTT
evaluation lies in the processing delay of every router the packets will encounter.
We used the traceroute command to estimate the numbers of hops separating
each nodes9 on our setup, we also used Wireshark to observe the Time To Live
of our UDP packets at arrival. Table 1 shows the route length with A, B, C and
D denoting these four nodes. We want to emphasis that these routes length are
only stated to bring a more reliable sense of distance between our nodes than
geographical distance, as our protocol does not use this information.

Table 1. Number of traversed routers obtained with traceroute command

Receiver Sender

A B C D

A – 13 13 13

B 14 – 7 14

C 12 9 – 14

D 15 14 16 –

All the following measures have been collected by making S send random
char strings of specified length and waiting for a constant length response then
computing the RTT value before sending the next char string. The date and
hour of the exchange, the size of packets, and the locations of the two end points
are readable on every figure. To simulate a relay attack performed by A on the
communication, we made S directly send packets to A. To reduce the delay to
its minimum, A does not apply any kind of treatment to the relayed message,
he does not print neither he stores it. He immediately transfers it to the original
receiver R and wait his response which he will transfer in the exact same fashion.
9 Note that traceroute can only deliver a probable and punctual estimation of the

route between two points, such a route can change over time.

364 G. Arfaoui et al.

For all our experiments, the Sender, Receiver, and Attacker always belong to this
set {A,B,C,D}.

4.2 Observation

Our experimental studies aim to give a neat view of the global behavior of
RTTs for UDP packets. We focus our experiments, which have been performed
over several months, on four main indicators: (1) behavior of RTT during a
fast exchange, (2) Behavior of RTT over several days, (3) Impact of the packet
size over RTT, (4) Impact of the presence of an intermediary party relaying the
messages. The next figures show standard and compelling examples of all our
observations, which consists in several thousands samples collected.

Fig. 3. A single sample of RTT

Figure 3 shows a sample, collected between A and B, containing 1024 RTTs
for packets of size 1024 bytes. We observe that the majority of the measures
stands around 17.5 ms and very few values goes higher than 21 ms. Figure 4
shows 3 samples collected in December 2020, January 2021, and March 2021
at different hours of the day between parties A and C. It illustrates that, even
though the measures are separated from several weeks, the RTTs remain on
the same interval, which seems to indicate a stability over a long period of
time. These observations gives credit to the use of a static reference sample, as
discussed in Sect. 3.3. Figure 5 shows two genuine samples of 256 RTTs between
parties A and B, gathered 1 hour apart, and suffering from a time difference of
about 10 ms. Indeed, it is fair to highlight that samples collected in a very short
time can provide significantly different RTTs. This difference is likely caused by
internal route management like load-balancing, multi-path, etc. Hopefully, even
these alternative behaviours remain highly distinguishable from the latencies
caused by an hijacking attack. Figure 6 displays two collected samples, whose

How Distance-Bounding Can Detect Internet Traffic Hijacking 365

Fig. 4. Evolution of RTTs between two parties over several months

Fig. 5. Two samples a few minutes apart

one matches an hijacked traffic. The intermediary party is in this case C, and
we can observe a large gap of more than 30 ms between the hijacked traffic and
the genuine one. Figure 7 shows the RTTs measured in relation to the size of the
packets sent. We so sent packets of every byte size by increasing it successively
by 1 byte at each sending. This shows an impact on the RTT, with a variation
of about 5 ms between a 1 byte message and a 4096 bytes message. This results
indicates that applying our protocol while ignoring the size of the packets to
be measured could reduce the precision of our statistical test. Figure 8 finally
compares a sample gathered from an exchange between C and B using packets
of random sizes in [896; 1152] and another with length fixed to 1024. The random
size sample appears to be a little more spread out but stable enough to be
efficiently analyzed by our function.

366 G. Arfaoui et al.

Fig. 6. Two samples: one genuine, the other issued from a relay

To conclude, the key point of these results is that the highest possible per-
turbations over RTTs occur only when a relay is ongoing, and the difference
between a genuine traffic and an hijacked one is significant. To confirm that
this difference can be exploited by our protocol, we present in the next part the
results of our statistical tests.

4.3 Testing the Decision Function

In this section, we experimentally challenge the decision function described in
Sect. 3.3. We define the false positive rate to be the percentage of genuine sam-
ples identified by the decision function as being hijacked samples, and the false
negative to be the percentage of hijacked samples detected as being genuine
samples.

Methodology. We define below the key points of our experiments.

– Parties. Tests are realized between two pairs of parties, being (D,C) with
measures gathered on D’s side, and (A,B) with measures gathered on A’s
side. The number of routing equipments on the route provided by traceroute
command is summarized in Table 1.

– Hijacked traffic. When the traffic is hijacked, the traffic between A and B
(resp. C and D) is deviated through C (resp. B).

– Reference Sample. As reference samples, we used about 10 samples of 256
measures that we concatenated for each category. These 10 samples were
collected over one single day at different time of the day.

– Packet size. We tested the cases of both fixed and variable sizes for the packets
sent to see if the tests did better on one category or the other. For the fixed
size we choosed 512 bytes, and for variable size, between 480 and 544 (i.e.,
512 ± 32) bytes. The collected samples are all made of 256 measures.

How Distance-Bounding Can Detect Internet Traffic Hijacking 367

Fig. 7. Evolution of RTT for packets of size 1 to 4096 bytes

Fig. 8. Evolution of RTT for packets of size between 896 to 1152

We collected a large amount of samples to be tested (detailed in Table 2). All
of them were collected over 4 to 5 consecutive days. About half of them being
genuine, the rest being issued from a simulated relay.

368 G. Arfaoui et al.

Table 2. Number of analysed samples

Genuine Relayed Total

(A,B) const. size 240 238 478

(A,B) var. size 190 188 378

(D,C) const. size 286 286 572

(D,C) var. size 249 251 500

Results. Table 3 gives the overall success rates for each category.

Table 3. Results of the test for our decision function

False positive rate (%) False negative rate (%) Accuracy (%)

(A,B) const. size 0 0 100

(A,B) var. size 0.526 0 99.735

(D,C) const. size 3.846 0 98.077

(D,C) var. size 2.008 0 99.0

We can first observe that no false negative appear during the tests. As stated
earlier, the impact of a relay over the sample is high and very perceptible. Though
we emphasize on the false positive rate which shows inequal results in the two
categories (almost none for A to B and actually none for the constant size
experiment, and about 3% for D to C). This disparity might be caused by a
difference of representativity of the reference samples. Hence we recommend
to choose even larger reference samples. Based on these results the users can
expect the protocol to raise an alarm any time a significative path change occurs,
allowing them to check if that change is legitimate or not. One could argue that
the protocol is likely to detect any kind of time-impacting routing anomaly, even
if not issued from a relay attack. However, our experimental results showed that
the occurrence of an attack is characterized by an extreme RTT raise. A punctual
routing anomaly, if consistent enough, will indeed create a false positive but we
believe such an event to be rare enough to be dealt with manually. Finally the
function shows slightly better results when the samples are created from constant
size packets, but keep an acceptable rate of false rejection otherwise, which makes
our protocol suitable to realistic contexts.

5 Conclusion

We introduce in this article an innovative approach to detects internet traffic
hijacking. Our protocol is based on a distance-bounding mechanism that detects
abnormally long round trip times. Up to our knowledge, this is the first time

How Distance-Bounding Can Detect Internet Traffic Hijacking 369

such an approach is used in this context. We experimentally showed that our
protocol was able to detect all deviated traffic. The false positive rate is low, and
it could be made still lower by tightly tuning the decision function. This requires
to perform large-scale experiments, what we expect to setup in the short future.
It is worth noting that our protocol can be easily deployed: application-oriented,
it does not require any update of the routers and it can be used by partners
without following a long standardization process.

A Description of Other Candidates for the Decision
Function

We initially selected 4 other candidates for potential decision function. We did
identical experiments to decide which one was the most efficient. Some test
showed acceptable results but none was as precise as the one presented in
Sect. 3.3. We present here the tests and their results.

A.1 Average Position

This test computes the mean of samp μsamp and computes the 80%-density
interval I80(ref) of ref. It returns 1 if μsamp ∈ I80(ref), 0 otherwise.

A.2 10%-Minimum Overlap

This test computes the first decile of the both samples q10(samp),
q10(ref) and consider the intervals I = [min(samp), q10(samp)] and I ′ =
[min(ref), q10(ref)]. It returns 1 if at least 50% of I overlaps I ′, that is to
say if: len(I∩I′)

len(I) > 0.5. It returns 0 otherwise.

A.3 50%-Minimum Overlap

This test computes the median of the both samples q50(samp), q50(ref) and con-
sider the intervals I = [min(samp), q50(samp)] and I ′ = [min(ref), q50(ref)].
It returns 1 if at least 50% of I overlaps I ′, that is to say if: len(I∩I′)

len(I) > 0.5. It
returns 0 otherwise.

A.4 Density Match

This test computes 80%-density interval I80(ref) and checks the proportion p
of elements of samp being in this interval. It returns 1 if p > 0.5 , 0 otherwise

370 G. Arfaoui et al.

B Experiments for all the Tests

(See Tables 4, 5, 6 and 7)

Table 4. Tests results between A and B for constant length

False positive
rate (%)

False negative
rate (%)

Success rate (%)

Average pos. 2.5 0 98.745

10%-Min overlap 34.583 0 82.636

50%-Min overlap. 2.419 0 98.536

Density match 1.25 0 99.372

Table 5. Tests results between A and B for variable length

False positive
rate (%)

False negative
rate (%)

Success rate (%)

Average pos. 3.684 0 98.148

10%-Min overlap 44.211 0 77.778

50%-Min overlap. 1.053 0 99.47

Density match 1.053 0 99.47

Table 6. Tests results between D and C for constant length

False positive
rate (%)

False negative
rate (%)

Success rate (%)

Average pos. 7.343 0 96.329

10%-Min overlap 0.699 0 99.65

50%-Min overlap. 0.35 0 99.825

Density match 0.35 0 99.825

Table 7. Tests results between D and C for variable length

False positive
rate (%)

False negative
rate (%)

Success rate (%)

Average pos. 4.016 0 98

10%-Min overlap 0.803 0 99.6

50%-Min overlap. 0.402 0 99.8

Density match 0.401 0 99.8

How Distance-Bounding Can Detect Internet Traffic Hijacking 371

References

1. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
375–392. IEEE (2017)

2. Avoine, G., et al.: Security of distance-bounding: a survey. ACM Comput. Surv.
(CSUR) 51(5), 1–33 (2018)

3. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 30

4. Desmedt, Y., Goutier, C., Bengio, S.: Special uses and abuses of the Fiat-Shamir
passport protocol (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987.
LNCS, vol. 293, pp. 21–39. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-48184-2 3

5. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

6. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: 1st Interna-
tional Conference on Security and Privacy for Emerging Areas in Communications
Networks, SECURECOMM 2005, pp. 67–73 (2005)

7. Holterbach, T., Vissicchio, S., Dainotti, A., Vanbever, L.: SWIFT: predictive fast
reroute. In: . SIGCOMM 2017, pp. 460–473, Association for Computing Machinery,
New York (2017). https://doi.org/10.1145/3098822.3098856

8. Karlin, J., Forrest, S., Rexford, J.: Pretty good BGP: improving BGP by cautiously
adopting routes. In: ICNP, pp. 290–299 (December 2006). https://doi.org/10.1109/
ICNP.2006.320179

9. Kent, S., Lynn, C., Seo, K.: Secure border gateway protocol (S-BGP). IEEE J. Sel.
Areas Commun. 18(4), 582–592 (2000)

10. Lepinski, M., Sriram, K.: BGPsec Protocol Specification. RFC 8205 (September
2017). https://doi.org/10.17487/RFC8205. https://rfc-editor.org/rfc/rfc8205.txt

11. Mitseva, A., Panchenko, A., Engel, T.: The state of affairs in BGP security: a
survey of attacks and defenses. Comput. Commun. 124, 45–60 (2018)

12. Qiu, T., Ji, L., Pei, D., Wang, J., Xu, J.: TowerDefense: deployment strategies for
battling against IP prefix hijacking. In: The 18th IEEE International Conference
on Network Protocols, pp. 134–143 (2010). https://doi.org/10.1109/ICNP.2010.
5762762

13. Rekhter, Y., Li, T., Hares, S., et al.: A border gateway protocol 4 (BGP-4) (1994)
14. Sermpezis, P., et al.: ARTEMIS: neutralizing BGP hijacking within a minute.

IEEE/ACM Trans. Netw. 26(6), 2471–2486 (2018)
15. Wan, T., Kranakis, E., van Oorschot, P.C.: Pretty secure BGP, psBGP. In: NDSS.

Citeseer (2005)
16. White, R.: Securing BGP through secure origin BGP (soBGP). Bus. Commun.

Rev. 33(5), 47 (2003)

https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/3-540-48184-2_3
https://doi.org/10.1007/3-540-48184-2_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/3098822.3098856
https://doi.org/10.1109/ICNP.2006.320179
https://doi.org/10.1109/ICNP.2006.320179
https://doi.org/10.17487/RFC8205
https://rfc-editor.org/rfc/rfc8205.txt
https://doi.org/10.1109/ICNP.2010.5762762
https://doi.org/10.1109/ICNP.2010.5762762

SoK: Secure Memory Allocation

Bojan Novković(B) and Marin Golub

Faculty of Electrical Engineering and Computing,
University of Zagreb, Zagreb, Croatia

{bojan.novkovic,marin.golub}@fer.hr

Abstract. Heap-related memory corruption vulnerabilities are a severe
threat that continues to wreak havoc in widespread software despite a few
decades of research. Research in hardening memory allocation yielded
several proposed designs and a large number of techniques designed
to mitigate common heap-related vulnerabilities. However, rigid perfor-
mance requirements imposed by the majority of vulnerable workloads
are a severe hindrance to the practical use of secure memory allocation
techniques and systems.

This paper aims to systematically analyze and classify all secure heap
allocation techniques and systems implementing them which emerged in
the last two decades, and compare their performance to conventional sys-
tems. We provide a concise overview of heap-related vulnerabilities and
construct a threat model to identify previously overlooked and unmiti-
gated threats.

We analyze the root causes of performance overheads observed in the
existing literature and identify practical issues hindering the adoption of
secure memory allocation systems in practice. We conduct fine-grained
and coarse-grained benchmarks on real-life workloads and well-known
benchmark suites to compare and analyze the overall performance of
secure memory allocation systems to conventional ones.

Using the aforementioned benchmark results, we compare different
designs of secure memory allocation systems and provide guidelines for
striking a balance between security and performance in future designs.

Keywords: Memory allocation · Systems security · Memory safety

1 Introduction

Although less popular than their stack-based counterparts, heap-related memory
corruption bugs are a severe threat and have caused many catastrophic vulnera-
bilities over the past two decades [1,18]. Over the last couple of years, the number
of heap-related vulnerabilities encountered in the wild is steadily growing. We
support this claim with an extensive survey of memory corruption vulnerabili-
ties reported through the last couple of years. We classify publicly available data
provided by MITRE [9] based on the type of heap-related memory corruption
vulnerabilites. Figure 1 represents the result of our classification and indicates
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 372–391, 2021.
https://doi.org/10.1007/978-3-030-92548-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_20&domain=pdf
http://orcid.org/0000-0002-8414-7960
http://orcid.org/0000-0002-8042-7076
https://doi.org/10.1007/978-3-030-92548-2_20

SoK: Secure Memory Allocation 373

a steady growth of heap-related memory corruption vulnerabilites throughout
the years. Moreover, we found that a large number of heap-related vulnerabili-
ties were found in widespread software written in C/C++ such as the Chrome
web browser and the Linux kernel. This steady increase can be attributed to
increased use of active vulnerability discovery techniques and platforms (e.g.,
OSS-Fuzz) and an increasing number of mitigations for other attack vectors.

The majority of these vulnerabilities stem from human errors in languages
without memory safety mechanisms. Their exploitation can lead to a wide range
of misbehaviors and security risks, from denial of service to arbitrary code execu-
tion and information leaks [18]. Their exploitation is often made possible or facil-
itated by the deterministic behavior exhibited by conventional or performance-
oriented memory allocation systems. This deterministic behavior is often a cru-
cial part of larger exploit chains and is leveraged in few payload delivery tech-
niques [17]. However, memory allocation systems are not the only part of the
computing environment that has an impact on heap safety. Many tools aiming
to harden the heap have been introduced throughout the whole computing stack,
ranging from new hardware-based techniques and architectures (e.g. CHERI) to
programming languages designed with memory safety in mind (e.g. Rust). How-
ever, they can often be unavailable or impractical to apply to legacy and modern
applications written in C/C++ due to a variety of reasons (e.g. missing source
code). Due to this, memory allocation systems are often the only practical way
to retrofit heap safety to unsafe applications.

Many secure heap memory allocation techniques and systems have been pro-
posed throughout the years. Although most of these systems aim to harden all
aspects of memory allocation, some proposed systems focused on preventing spe-
cific types of heap-based vulnerability exploitation. However, these systems and
techniques often impose non-negligible performance and memory overheads that
hinder their adoption despite the security benefits they provide [15].

With a recent resurgence of interest in secure heap memory allocation
research [1,3,19,20], this paper aims to provide the following contributions:

– a systematic analysis of existing secure heap memory allocation systems and
techniques along with practical issues hindering their adoption

– an extended threat model identifying threats and vulnerabilities which are
unmitigated in state-of-the-art systems

– a detailed coarse-grained and fine-grained performance analysis on real-life
workloads, compared with conventional memory allocation systems and sug-
gestions for future work

– a comparison of different secure memory allocation system designs with guide-
lines for future designs

https://google.github.io/oss-fuzz/

374 B. Novković and M. Golub

Fig. 1. Number of registered heap-related vulnerabilities per year.

2 Conventional Memory Allocation

The primary task of a memory allocation system is to partition the available
free memory space and serve chunks of requested sizes in a timely manner while
aiming to minimize internal and external fragmentation [13]. Memory allocation
systems are usually rated by several important criteria: execution time, frag-
mentation rates, multithreaded scalability, and data locality. The most common
approaches used for partitioning free space are:

– Binning,
– Coalescing.

The binning technique partitions the available space into fixed-size blocks
while coalescing dynamically joins and splits memory regions depending on the
requested chunk size. The free space management aspect can be further broken
down as most memory allocation systems manage “small” and “large” memory
chunks differently.

Each memory allocation system must maintain a certain amount of meta-
data describing the state of the memory pool. Based on the way free memory
is tracked, conventional dynamic memory allocation systems fall into several
categories:

– Freelist allocators,
– Bitmap allocators.

Freelist allocators utilize linked lists (freelists) to manage and track freed
and currently used objects of varying sizes, often embedding metadata before
the actual chunk or inside unused chunks to facilitate memory tracking and
increase allocation performance. The second type of free memory management
utilizes bitmaps to track states of fixed-size chunks in the memory pool. Although

SoK: Secure Memory Allocation 375

easily conflated with binning, this approach can be used with the coalescing
technique. Multiple fixed-size chunks tracked by the bitmap can be merged into
a larger chunk, depending on the requested chunk size (e.g., buddy allocator).
This approach is more memory efficient, but its main drawback is slower chunk
allocation since the bitmap needs to be sequentially scanned [13].

Traditionally, the heap is treated as a contiguous region of virtual memory,
which is expanded through system calls such as brk, sbrk, and mmap. This view
of the heap serves as a basis for various memory allocation algorithms utilizing
binning or coalescing for managing free space (e.g., first-fit). However, the so-
called Big Bag Of Pages (BiBOP) approach employs a non-sequential allocation
approach using several pages as a “bag,” which holds multiple objects of the
same size [13]. Free space within each bag is managed using freelists or bitmaps
and is grown on demand, usually by fetching additional pages from the kernel.

A ubiquitous conventional memory allocation system is ptmalloc [4], used
as the default allocator in the GNU C library [8]. The system tracks memory
chunks using inline metadata and manages free space using several “bins”, each
of which implements one or more free space management techniques.

3 Vulnerabilities

Programmer-induced errors in memory-unsafe programming languages cause
heap-based memory corruption vulnerabilities. A lot of research has been devoted
to detecting or preventing these vulnerabilities before any significant damage can
occur [18]. However, security analyses often overlook the potential risk stemming
from the memory allocation system. Since memory allocation systems run as a
part of the executed program, they contribute to the resulting attack surface,
albeit harder to exploit due to the constrained nature of memory allocation
systems. Therefore, heap-related vulnerabilities fall into two main categories,
memory-corruption vulnerabilities caused by user memory mismanagement and
vulnerabilities present in the memory allocation system itself.

3.1 Heap-Based Memory Corruption Vulnerabilities

One of the most common heap-based memory corruption vulnerabilities is the
heap-based buffer overflow caused by spatial memory safety violations. Attack-
ers can exploit this vulnerability to overwrite an adjacent heap object, leading
to unexpected program behavior, abrupt program termination, or in the most
severe cases to arbitrary code execution. Heap-based buffer overreads are a sim-
ilar and equally dangerous vulnerability as they enable the attacker to leak
potentially sensitive memory contents, leading to the compromise of the entire
system.

Another common vulnerability is the Use-After-Free (UAF) [13] vulnerability.
It is caused by temporal memory safety violations, usually through dangling
pointers, which point to a previously freed memory chunk. Referencing freed

376 B. Novković and M. Golub

memory can cause various misbehaviors in the vulnerable program, ranging from
unexpected crashes to code execution.

Interaction with uninitialized memory due to a lack of explicit initialization
of allocated memory can lead to various vulnerabilities ranging from information
leaks to code execution.

Another class of heap-related vulnerabilities tied to the underlying mem-
ory allocation system are invalid and double free vulnerabilities. The scope and
impact of these vulnerabilities greatly depend on the implementation of the
underlying memory allocation system and the robustness of mechanisms used
to detect invalid free operations. Failure to detect invalid and double freeing
results leads to inconsistencies in memory management metadata. The attacker
can abuse this to reuse memory chunks he controls or use to perform arbitrary
memory writes.

3.2 Allocator Vulnerabilities

Vulnerabilities in memory allocation systems can be exploited as standalone vul-
nerabilities or used as a means of facilitating or enabling the exploitation of
another memory corruption vulnerability present in the program. They are pri-
marily caused by abusing allocator-specific metadata used to track free memory
space, causing the system to misbehave.

Although highly efficient, this approach is extremely susceptible to malicious
manipulation via heap-based spatial and temporal memory violations as embed-
ded metadata can be conveniently overwritten, leading to unwanted behavior.
Malicious metadata manipulation is often paired with subtle implementation
errors found while calculating chunk offsets and coalescing. These miscalculations
can be used to create overlapping chunks, even with very restricted off-by-one
miscalculations.

BiBOP-style allocator designs improve allocation security by dealing with
metadata differently. Contrary to the freelist-based approach, metadata for allo-
cated objects is stored in a separate area. While isolating the metadata from
the objects enhances security, some implementations of BiBOP-style allocators
store metadata at the beginning of each page, leaving room for spatial memory
violations via adjacent objects [13].

Additionally, the historical record of vulnerabilities discovered in memory
allocation systems utilizing the coalescing technique [20] indicates the approach
itself is very error-prone.

Aside from vulnerabilities caused by erroneous implementations, the deter-
ministic workflow of conventional memory allocation systems can often result
in predictable behavior, which can be used to mount attacks on programs with
heap-based memory corruption vulnerabilities.

The earliest attack technique leveraging deterministic memory allocation is
known as heap-spraying [13]. A malicious actor with the ability to freely inter-
act with the memory management system can allocate a significant number of
chunks containing a malicious payload. These chunks can subsequently be used
after other memory corruption vulnerabilities present in the program have been

SoK: Secure Memory Allocation 377

exploited. This approach facilitates the exploitation of other memory-corruption
vulnerabilities by raising the likelihood of encountering the payload at a random
heap address, thus removing the need to place the payload at fixed memory loca-
tions. Additionally, this technique can help circumvent modern defenses against
memory-corruption attacks utilizing randomization, such as ASLR.

Another frequently encountered technique that leverages deterministic behav-
ior, known as heap feng shui [17], takes a different approach. This technique relies
on the fact that an attacker who can allocate and free memory has a significant
influence on the state and layout of the heap. Sotirov [17] showed that this fact
is sufficient to coerce the memory allocation system to behave predictably. For
instance, if we observe a hypothetical memory allocation system that uses a
freelist-based approach to track free memory chunks, an attacker can allocate
an arbitrary chunk of memory, populate it with malicious data, and free the
chunk. The subsequent allocation request of the same size is then guaranteed
to return the block previously used by the attacker. When paired with memory-
corruption vulnerabilities caused by uninitialized variables, this approach can
have devastating consequences.

3.3 Threat Model

To thoroughly compare and evaluate various secure memory allocation tech-
niques, we evaluate common exploitation scenarios found in real-life exploits
and form a corresponding threat model.

To remain consistent with most threat models various authors used for secu-
rity evaluations of their systems [7,13,15], we assume that the attacker can freely
interact with the vulnerable program and launch successive attacks through a
domain-specific channel (e.g., via network requests for web-facing services). For
example, a network-facing service that stores and processes user-provided data
on the heap is potentially vulnerable as the attacker indirectly controls some heap
allocations. Moreover, to account for potential vulnerabilities in the memory allo-
cation system, we assume that the attacker also can invoke an arbitrary number
of memory management calls (malloc, free). Although highly dependent on
the functionality of the vulnerable program, this assumption is necessary to
account for attack vectors in various web browsers. In this scenario, the attacker
controls all memory allocations through the browser’s scripting engine and can
trigger various vulnerabilities present in the browser itself. A prime example of
this attack scenario among many real-life cases is CVE-2020-6449 [11], a use-
after-free vulnerability in the Chromium browser which allowed the attacker to
execute arbitrary code via a specially crafted web page. This particular vulner-
ability is especially relevant as its exploitation was paired with improper chunk
freeing in a partitioning memory allocation system used to allocate objects in
the browser’s audio subsystem.

We assume that the underlying operating system is trusted. The attacker
cannot leak or manipulate the metadata of memory allocation systems through
channels other than malloc and free. We assume the possible presence of all

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-644

378 B. Novković and M. Golub

previously enumerated heap-based memory corruption vulnerabilities and vul-
nerabilities present in the memory allocation system.

However, we found that existing models fail to consider certain threats stem-
ming from improper memory management. More specifically, we form a stricter
model by including abuse of memory leak bugs into the list of possible vulner-
abilities. Commonly overlooked or unnoticed, memory leak bugs are a common
occurrence whose abuse can seriously harm the availability of network services.
One of many reported examples of an abusable memory leak vulnerability is
CVE-2020-27753 [10], where several memory leak bugs were found in ImageMag-
ick, a widely used image manipulation library. Using a specially crafted header
in an image file, an attacker could abuse the memory leak to cause a denial of
service.

Although existing research yielded sanitizers [16] and garbage-collection tech-
niques [5] as a means of finding and preventing memory leak bugs, these mea-
sures are enforced in the development process or as a part of the programming
environment and may not be applicable in some case. Thus, memory allocation
systems represent a final safeguard and should incorporate some form of memory
leak detection or mitigation. Moreover, Ainsworth et al. [1] demonstrated that
tracking techniques similar to those found in garbage collection algorithms can
be successfully used to combat temporal safety violations. We believe that, with
further research, this model could be extended or adapted to provide a feasible
mitigation against denial of service attacks caused by memory leaks.

4 Secure Memory Allocation Techniques

4.1 Metadata Segregation
Malicious metadata manipulation can be prevented by moving all metadata into
a separate area, away from user-controlled data [13]. While this dramatically
increases the security of the memory allocation system, a new issue must be
carefully considered to retain or minimize potential performance impacts, the
issue of mapping metadata to chunks. It should be noted that this approach
increases cache pressure as the often-used metadata blocks are no longer adjacent
to the allocated blocks, possibly leading to a drop in performance. A common
approach used for mapping metadata utilizes a hash map to track allocated
chunks.

Moreover, the metadata memory space should be protected from potential
memory leaks as a single leaked pointer can circumvent all security guarantees
provided by this technique. Most modern secure memory allocation systems
rely on ASLR combined with the mmap system call to avoid predictable mem-
ory addresses when requesting additional pages from the underlying operating
system [12,14].

4.2 Randomized Allocation
Randomized allocation features in BiBOP-style memory allocation systems or
those using the binning technique can be augmented by incorporating a degree

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27753

SoK: Secure Memory Allocation 379

of redundancy. This usually means that the corresponding memory pool must be
adaptively grown to maintain a fixed redundancy rate. All prior research evalu-
ated this feature by using the allocation entropy metric defined as log2(i), where
i denotes the number of chunks available for allocation in a specific memory
pool or bag. This approach can significantly improve the security properties of
a given memory allocation system or even provide guarantees about allocation
entropy values [13,15].

The performance impact of increased system calls required for fetching addi-
tional memory pages can be minimized through acquiring larger batches of pages
or caching unused pages. However, the latter optimization can potentially lead
to chunk reuse, thereby reducing randomization guarantees.

4.3 Overprovisioning

The overprovisioning technique augments overflow protection through the selec-
tive use of allocated memory chunks. A certain amount of allocated memory
chunks are marked and never considered for future allocations and deallocations.
Depending on the rate of unused chunks, there is a significant chance that most
overflows will corrupt unused chunks and will have no impact on the under-
lying program. However, this approach comes with a significant memory over-
head since a potentially large number of memory chunks are never considered
for allocation, which can be detrimental for systems with constrained memory
resources [7].

4.4 Delayed Reuse

Delaying reuse of freed chunks is a technique used for thwarting use-after-free
attacks. It can be realized through randomized chunk selection during alloca-
tion [13,15], or explicit “quarantining” or tracking recently freed chunks [1]. A
notable approach called Fast-Forward Allocation was conceived by Wickman
et al. [19], explicitly aimed at preventing use-after-free attacks by never reusing
freed memory.

4.5 Overflow Mitigation

Guard Pages: Memory allocation systems can leverage the paging memory
model to enhance overflow mitigation. Placing unmapped pages around the tar-
get chunk ensures that every overflowed memory access generates a page fault,
provides a valuable detection mechanism, and mitigates information leaks by
preventing overreads. However, this approach comes with a significant perfor-
mance overhead due to the system call required to place such pages and must be
used sparsely to maintain acceptable performance [7]. Existing secure memory
allocation systems utilize guard pages by placing them randomly within a mem-
ory range using a fixed ratio [14,15] or deferring their placement until a memory
pool has to be expanded [7].

380 B. Novković and M. Golub

Canaries: This staple technique for overflow detection places random canary
values on the boundaries of allocated chunks [13,15]. These values are usually
checked upon freeing an allocated memory chunk, similar to the widespread stack
canary technique.

Canary management also plays a key role in secure memory allocation sys-
tems. Depending on their mutability, canary values can be dynamic or static.
Static canary values offer increased protection against overflows and incur a neg-
ligible performance overhead. However, fixed canary values enable an attacker
to completely circumvent overflow detection through a single leaked pointer.
Dynamic canary values circumvent this issue but require more complex handling
and careful design to avoid performance and memory overhead.

It should be noted that canary values tend to increase internal memory frag-
mentation in BiBOP-style systems as the memory allocation system adds addi-
tional bytes to the requested chunk size [7]. This can cause the allocation request
to be served from the next bag, which manages objects of the following size class,
resulting in wasted memory.

4.6 Invalid Pointer Detection

Proper detection of invalid pointers passed to free calls must be enforced to pre-
vent metadata injection through forged chunks [7]. Memory allocation systems
can enforce invalid pointer detection on several levels of granularity:

– Detecting addresses which do not point inside the heap,
– Detecting unallocated addresses,
– Detecting unallocated addresses inside a specific size class.

The first level of granularity is present in most memory allocation systems.
However, subsequent finely granulated levels are either not present in memory
allocation systems or produce false positives and fail to detect some invalid
pointers [14].

4.7 Information Leak Prevention

Performance-oriented memory allocation systems often reuse freed memory
chunks to avoid the relatively expensive metadata traversal. However, contents
of freed memory chunks are usually not sanitized (destroyed) by the memory
allocation system as this can harm performance, leaving the sanitization to the
programmer. Memory sanitization can be incorporated into a memory allocation
system by overwriting chunk data with a predefined value when it is freed [13].
However, this is usually left as an optional feature that is not enabled by default,
due to a significant performance impact [14].

SoK: Secure Memory Allocation 381

5 Overview of existing Secure Memory Allocation
Systems

When comparing different secure memory allocation systems designed in the
last decade, a set of core design criteria, in addition to those found in conven-
tional memory allocation systems, can be identified. The clash between a strong
focus on mitigating well-known vulnerabilities and stark performance demands
rewards simpler designs. All designs focus on mitigating common heap-related
vulnerabilities while increasing randomization and removing deterministic
behavior.

As a result, a few notable “tried-and-true” traits shared among all systems
listed in Table 1 have emerged. First off, each reviewed system “physically” seg-
regates metadata from the memory chunks which are passed to the user, that is,
avoids the use of chunk-adjacent metadata. Furthermore, none of the reviewed
systems use the coalescing technique for free space management. Combined
with the track record of vulnerabilities found in conventional memory allocation
caused by faulty coalescing implementations, this technique’s implementation is
much more error-prone and thus unfit for security-oriented memory allocation
systems.

A condensed comparison of existing secure memory allocation systems
obtained through existing literature and source code analysis can be found in
Table 1. The first part of the table tracks free space management and metadata
techniques, while the second part tracks the implementation of several secure
memory allocation techniques.

It should be noted that, as seen in Table 1, not all systems implement all
previously described secure memory allocation techniques. Several systems [1,19]
have focused on preventing a specific class of heap-based memory corruption
vulnerabilities. However, none of the reviewed systems implement memory leak
detection, apart from MarkUs [1] which can be configured to track allocations
due to the design of the prototype system.

Dieharder: Novark et al. [13] conducted the first formal analysis of memory
allocation system designs and their security. Taking all shortcomings and issues
of existing systems unearthed by their analysis into account, they proposed a
new memory allocator dubbed DieHarder [13]. The proposed design is one of the
first memory allocation systems with strong spatial and temporal randomization
guarantees and mitigations for heap-related memory corruption vulnerabilities.
However, DieHarder was later criticized for omitting specific protective mech-
anisms and imposing a non-negligible performance overhead using the bitmap
chunk management approach, and overuse of system calls [14].

FreeGuard/Guarder: Silvestro et al. [14] conducted a detailed analysis of con-
temporary memory allocation systems found in commodity operating systems,
analyzing their security features, flaws, and properties. Their proposed design,

382 B. Novković and M. Golub

named FreeGuard [14], aims to balance performance and security by incorpo-
rating a majority of existing security features, excluding those which incur a
significant performance overhead. This is accomplished by reducing the number
of memory-related system calls, adopting freelist-based chunk management, and
utilizing memory shadowing [14]. FreeGuard’s design was subsequently improved
with the introduction of a novel allocator design named Guarder [15], which
increased randomization guarantees and gave users the ability to configure the
system to their desired level of security, adjusting to available resources [15].

MarkUs: Ainsworth et al. [1] developed a memory allocation system that
focuses on preventing the exploitation of use-after-free vulnerabilities through
the use of explicit memory chunk tracking and delayed chunk freeing instead of
the common non-deterministic allocation approach. Freed chunks are placed in
a quarantine list and are deallocated when no existing pointers point to those
chunks. A traversal of several process memory regions is periodically performed
during process execution to find memory chunks that are in use. Due to similar-
ities with garbage collection systems, the Boehm-Demers-Weiser garbage collec-
tor was used as a basis for a prototype implementation of MarkUs.

OpenBSD Ottomalloc: The default memory allocation system used in
OpenBSD’s implementation of the C library, ottomalloc [12], was one of the
first widespread, default memory allocation systems, which was designed with
security in mind. Its design primarily focused on removing predictable allocation
behavior while maintaining performance similar to conventional memory alloca-
tion systems. It was also one of the first memory allocation systems to fully
segregate metadata from memory chunks, using a hash table to track addresses
of allocated chunks and the corresponding metadata.

FFmalloc: Wickman et al. [19] proposed a novel memory allocation system,
called FFMalloc, designed to prevent use-after-free vulnerabilities by revisiting
the concept of one-time-allocation. Although eliminating memory reuse prevents
use-after-free attacks, a naive approach would run into severe performance issues
due to an increased need for new memory. The authors implemented and evalu-
ated several possible approaches for eliminating this issue with a detailed exper-
imental overview of various options used for acquiring and releasing memory.
FFMalloc deals with these issues through lazy memory freeing using the madvise
system call.

SlimGuard: Liu et al. [7] proposed SlimGuard, a comprehensive memory allo-
cation system that tackles the problem of unacceptable memory overhead in
state-of-the-art secure memory allocation systems. Due to the observed increase
in memory fragmentation caused by power-of-two size classes, SlimGuard fea-
tures many fine-grained size classes to deal with this problem. Its memory foot-
print is further reduced by using on-demand creation of data and metadata and
combining randomized allocation and overprovisioning into a single feature.

SoK: Secure Memory Allocation 383

Table 1. Classification of existing secure memory allocation systems

Feature DieHarder Guarder MarkUs ottomalloc FFmalloc SlimGuard

Coalescing ✗ ✗ ✗ ✗ ✗ ✗

Binning � � � � � �
Freelists ✗ � ✗ ✗ � �
Bitmaps � ✗ � � � �
BiBOP � � ✗ � ✗ ✗

Multithreaded design ✗ � � � � �
Metadata segregation � � � � � �
Overprovisioning � � ✗ ✗ ✗ �
Randomized allocation � � ✗ � ✗ �
Delayed reuse � � � � � �
Overflow detection � � ✗ � ✗ �
Invalid pointer detection � � � � � �
Memory sanitization ✧ ✧ � ✧ ✗ ✧

Memory leak detection ✗ ✗ ✧ ✗ ✗ ✗

� Present ✗ Not implemented ✧ Optional, disabled by default

6 Benchmarking

Although various authors have performed detailed evaluations of their proposed
systems [7,13,15], there is a lack of a broader, more general performance evalu-
ation of state-of-the-art secure memory allocation systems.

To provide insight into the viability of secure memory allocation techniques
and proposed designs of such systems, we compare the performance of well-
known and state-of-the-art secure memory allocation systems to ptmalloc. We
place a strong emphasis on using real-life scenarios for each identified workload.
In addition to high-level, workload-specific benchmarks, which usually rate sys-
tems using a single metric (e.g., throughput, number of operations per second),
we collect several low-level hardware and kernel events during the execution of
macro-benchmarks. This enables us to gain insight into the performance of dif-
ferent secure memory allocation systems. Additionally, we track several metrics
related to the runtime state of the tested systems to verify various non-security-
related guarantees offered by these systems.

Through these benchmarks, we investigate the following questions:

– Are existing secure memory allocation systems viable for the most vulnerable
workloads?

– What are the root causes of previously observed performance overheads?
– How do different designs of secure memory allocation systems fare in compar-

ison to each other?

6.1 Macro-benchmarks

We extend our initial classification of heap-related vulnerabilities to determine
the most vulnerable and performance-sensitive workloads. The identified work-

384 B. Novković and M. Golub

loads serve as a basis for evaluating the performance of existing secure memory
allocation systems.

The analysis identified browsers, scripting language interpreters, web servers,
and media manipulation workloads as the workloads most affected by heap-
related memory corruption vulnerabilities. A suitable benchmark resembling real-
life scenarios as close as possible was selected for each identified workload, as
listed in Table 2. We considered popular benchmarks for the domain of each
workload and selected one of them based on the intensity of heap allocations.

However, web browsers were left out from the benchmark due to many con-
sistent misbehaviors and crashes during preliminary testing. Most of the crashes
were caused by triggering various mitigation or detection mechanisms present in
the tested systems, for instance, a caught attempt to free invalid pointers when
using Guarder with the Chromium web browser. We made no efforts to ascer-
tain the cause and validity of these crashes as the misbehaving software is far
too complex. Instead, we took a crucial component used in many web browsers,
the V8 JavaScript engine, and used it as a standalone program for benchmark-
ing browser performance. We use the Octane JavaScript benchmarking suite1 to
compare web browser performance for different memory allocation systems.

We use the nginx webserver to serve static content of increasing sizes for the
webserver benchmark, using only one worker process. We use the wrk2 tool to
simulate 400 concurrent connections. The multimedia manipulation benchmark
uses the ffmpeg tool to encode a video file from the HD h.264 format to the NTSC
DV format. It measures the time required for the encoding process to finish. The
scripting language benchmark uses a suite of tests to evaluate the performance
of the php language interpreter. The benchmark result is an abstract score, with
higher values indicating better performance.

Table 2. Selected benchmarks

Workload Selected benchmark Benchmark metric
Web browsers Octane JavaScript benchmark1 Abstract score
Web servers Nginx static webpage Request throughput
Language interpreters Phoronix phpbench [6] Abstract score
Media manipulation Phoronix ffmpeg [6] Execution time

6.2 Micro-benchmarks

Given the vital role memory allocation systems play during the runtime of user-
space processes and a lack of detailed profiling analyses, we conduct a detailed

1 https://chromium.github.io/octane/.
2 https://github.com/wg/wrk.

https://chromium.github.io/octane/
https://github.com/wg/wrk

SoK: Secure Memory Allocation 385

analysis of low-level hardware and kernel events generated during the execution
of each secure memory allocation system to gain insight into the root causes
of the performance overhead of these systems previously observed by several
authors. We track several low-level events generated by each malloc and free
call and compare them to the values generated by the standard GNU libc mem-
ory allocation system, ptmalloc. We use the well-defined workloads in the PAR-
SEC benchmarking suite [2] for profiling individual secure memory allocation
systems. We use two specific tests from the “data-parallel” and “pipeline” cate-
gory, blackscholes and ferret [2]. Moreover, we track each system’s memory
overhead during runtime to determine metadata size using the pidstat tool.

6.3 Experimental Setup

We conduct the evaluation of previously listed secure memory allocation systems
on a system featuring an Intel Core i5-8265U CPU and 16 GB of DDR4 RAM,
running the Manjaro Linux operating system with Linux v5.10. We used the
2.32 version of the GNU C library [8].

We evaluate all systems enumerated in Table 1, using the authors’ latest pub-
licly available source code. Additionally, we modify the default OpenBSD user-
space memory allocation system, ottomalloc [12], for use with the GNU/Linux
environment. Individual secure memory allocation systems were compiled as
ELF shared libraries and loaded before execution using weak symbols and the
LD_PRELOAD environment variable. Additionally, we gather low-level hardware
and kernel events using a small shared library built for intercepting memory
allocation calls and low-level event data gathering via the perf Linux kernel
subsystem.

7 Results

Although most of these systems are not production-ready, it should be noted
that there were few consistent misbehaviors of the tested systems, ranging from
outright crashes upon the first allocation request to various runtime misbehav-
iors. For instance, both SlimGuard and Guarder failed to execute the nginx
benchmark due to failed allocation requests and had to be left out from the
benchmarking results.

As seen in Table 3, the worst performing system overall is DieHarder, with the
worst score on the phpbench benchmark and second-worst score on the ffmpeg
benchmark. However, it fares reasonably well on the nginx benchmark, as seen
in Table 4.

However, the most interesting result for the phpbench benchmark is
Guarder ’s and ottomalloc’s performance. These systems achieved scores very
similar to ptmalloc’s in the phpbench benchmark, demonstrating that secure
memory allocation systems can match conventional memory allocation systems
for some workloads. The link between the workload type and system perfor-
mance also manifests in the ffmpeg benchmark, with ottomalloc demonstrating
the performance difference between different workloads.

386 B. Novković and M. Golub

The nginx benchmark results show significant dispersion for the 1kB file
size test, as shown in Fig. 2 and Table 4. This is where the differences in the
design of various memory allocation systems show, with MarkUs serving as a
prime example of the detrimental effect of overly complex designs. Similar to
the phpbench results, the nginx benchmark results show that some systems can
match ptmalloc’s performance for this workload. However, the results converge
to similar values as the file size increases, especially in the 100 kB file size test
where the time required for I/O operations dominates the total execution time.

The overall performance of secure memory allocation systems on the Octane
benchmark (Table 3) was somewhat lower than other workloads with the best
performing system, Guarder, coming in at ~96% of ptmalloc’s score.

Table 3. Macrobenchmark results for the phpbench, ffmpeg and Octane tests. A cross
denotes a crash.

phpbench
(avg. score)

ffmpeg
(seconds)

Octane
(avg. score)

ptmalloc 546092.18 8.86 36710.7
ffmalloc 536603.64 9.16 34621.4
MarkUs 539101.64 ✗ 31725.0
SlimGuard 533577.45 ✗ ✗

Guarder 542540.64 9.29 35396.7
ottomalloc 540195.00 14.010 35042.9
DieHarder 422306.00 11.22 ✗

Table 4. Averaged macrobenchmark results for the nginx tests. A cross denotes a
crash.

Request size
1 kB 10 kB 100 kB

ptmalloc 71871.69 10942.62 1128.87
ffmalloc 68754.68 10943.65 1128.89
MarkUs 47795.66 10836.04 1128.20
ottomalloc 69060.45 10942.31 1128.48
DieHarder 67607.20 10930.23 1128.79

SoK: Secure Memory Allocation 387

Fig. 2. Averaged macrobenchmark results for the nginx test with 1 kB file size.

As seen in Table 5, the average cycle count for a single malloc or free call is
similar for all tested systems, except for Guarder which has the highest average
cycle count for malloc calls and the lowest average cycle count for free calls.
Increased cycle counts for the ferret test are accompanied by a high rate of
page faults, mmap system calls, and high miss rates for some hardware caches.

However, results for the data-parallel blackscholes test (Table 6) show that
average cycle counts are no longer uniform and vary greatly. Due to the parallel
nature of the blackscholes test and increased memory consumption, there is a
higher rate of hardware cache misses as well as higher rates of page faults and
memory-related system calls for all tested systems.

Table 5. Averaged microbenchmark results for the PARSEC ferret test.

Memory usage (MB) malloc free

Virtual Physical Cycles Page
faults

mmap
syscalls

dTLB
miss rate

LL cache
miss rate Cycles

Page
faults

dTLB
miss rate

LL cache
miss rate

ffmalloc 1195.66 125.24 7.04e+3 2.65e–4 1.76e–2 9.55e–6 3.2e–2 7.16e+3 0.e+0 1.33e–5 5.58e–2
ptmalloc 508.61 95.11 7.12e+3 2.73e–2 3.50e–5 5.3e–6 1.79e–2 6.96e+3 5.4e–3 1.95e–5 1.35e–1
SlimGuard 1295060.08 142.69 7.51e+3 3.51e–2 1.70e–3 6.12e–5 5.96e–2 7.52e+3 2.27e–2 3.87e–4 1.84e–1
DieHarder 182.89 129.80 7.29e+3 9.01e–4 9.92e–4 1.81e–5 1.89e–2 7.38e+3 0.e+0 2.26e–5 1.98e–2
OpenBSD 137.84 96.21 7.19e+3 1.49e–3 3.3e–2 5.23e–6 1.57e–2 7.36e+3 0.e+0 6.53e–6 9.09e–3
Guarder 16983210.26 237.24 2.11e+5 2.76e–2 8.78e–6 5.89e–5 1.10e–1 1.34e+3 4.06e–4 9.23e–6 5.86e–2
MarkUs 194.96 121.02 7.8e+3 1.32e–1 5.16e–2 1.63e–4 6.92e–2 7.06e+3 0.e+0 9.89e–6 5.36e–2

The multithreaded workload clearly outlined the differences in approaches
used for managing metadata as overly complex or non-scalable systems (MarkUs
and DieHarder) had a significantly higher average cycle count when compared
to the rest of the tested systems (seen in Table 6).

However, DieHarder ’s result is somewhat anomalous and, at first glance,
inexplicable as it has the highest average CPU cycle count despite average scores
for other metrics, as seen in Table 6. Combined with the fact that the tests in
Table 3 are multithreaded and that the nginx test is performed using a single

388 B. Novković and M. Golub

Table 6. Averaged microbencghmark results for the PARSEC blackscholes test.

Memory usage (MB) malloc free

Virtual Physical Cycles Page
faults

mmap
syscalls

dTLB
miss rate

LL cache
miss rate Cycles

Page
faults

dTLB
miss rate

LL cache
miss rate

ffmalloc 1658.18 604.72 8.09e+3 6.20e–2 5.17e–3 6.23e–4 2.17e–1 5.63e+4 1.36e–3 8.25e–5 5.16e–1
ptmalloc 598.25 568.61 7.98e+3 1.95e–2 5.19e–3 2.67e–4 1.51e–1 5.60e+4 0.e+0 5.87e–5 5.28e–1
SlimGuard 40306.80 596.56 1.02e+4 1.65e–1 6.74e–2 1.22e–3 2.95e–1 7.29e+4 9.73e–1 8.89e–4 4.3e–1
DieHarder 605.29 574.32 7.68e+5 1.22e+0 4.67e+0 4.72e–5 1.56e–2 8.06e+5 0.e+0 5.88e–5 3.88e–2
OpenBSD 598.25 568.56 8.92e+3 1.69e–2 2.98e–2 8.60e–4 2.10e–1 5.74e+4 1.36e–3 9.51e–5 5.12e–1
Guarder 16983678.98 570.96 2.69e+4 7.29e+0 5.17e–3 1.69e–3 3.72e–1 5.78e+4 1.23e–2 2.27e–4 5.17e–1
MarkUs 626.69 591.07 8.14e+5 2.04e+2 2.07e–1 1.54e–3 5.48e–1 4.78e+4 1.21e–1 4.65e–5 1.96e–1

thread, this indicates that the main culprit for DieHarder ’s low scores is its lack
of multithreaded design, as noted in Table 1. This can once again be found in
the microbenchmark tests, seeing as its average CPU cycle count in Table 5 is
somewhat lower due to the single-threaded nature of the ferret benchmark [2].

There is also a clear link between stronger randomization guarantees, vir-
tual memory usage, and increased data TLB miss rates. Results for Guarder and
SlimGuard in Tables 5 and 6 show high virtual memory usage and a high rate
of dTLB misses. This can be attributed to the randomized allocation and over-
provisioning techniques, namely, the lack of constraints on the available virtual
address ranges, leading to increased misses due to frequent access to previously
uncached areas.

Large amounts of metadata and increased randomization guarantees have a
negative impact on the total cycle count, as evidenced by Guarder ’s result in
Table 5. Moreover, the high LL cache miss rate indicates that a larger amount
of metadata increases cache pressure, probably due to polluting the cache state
of the workload interacting with the memory allocation system.

Furthermore, both microbenchmark results indicate another major factor
contributing to higher cycle counts, a high rate of page faults per call. This
can be observed in both microbenchmark test results and especially in the mul-
tithreaded blackscholes test and is accompanied by a high rate of physical
memory usage. Thus, the page fault rate metric can be interpreted as an indica-
tor for complex or large metadata structures or increased memory fragmentation.
The case of increased memory fragmentation in BiBOP-style memory allocation
systems was observed by Liu et al. [7] and SlimGuard’s results in Table 5 show
that its primary design goal - reducing memory fragmentation, succeeded. Of
course, avoiding kernel execution as much as possible has its apparent benefits,
and a high rate of mmap system calls directly contributes to a higher average
cycle count.

A general cycle count analysis of the microbenchmark results leads to an
important observation - systems with lower miss rates for hardware caches tend
to have a lower cycle count. Moreover, if the microbenchmark and macrobench-
mark results are compared, a link between the former statement and higher
performance can be observed. This leads to an important property that can
be formulated as a design principle - all memory allocation systems should be

SoK: Secure Memory Allocation 389

designed to minimize their cache footprint, as cache pollution causes significant
performance issues for the invoking program.

However, a significant issue that can potentially invalidate all security bene-
fits provided by secure memory allocation systems exists in some workloads due
to a common practice of implementing custom memory allocation systems in
performance-critical applications. Although crucial for performance, this prac-
tice can degrade or completely invalidate all security features provided by secure
memory allocation systems.

8 Conclusion

This paper presented a systematic overview of deficiencies present in conventional
memory allocation systems and techniques to increase their security and mitigate
common heap-related memory corruption vulnerabilities.

A systematic performance evaluation of several state-of-the-art secure mem-
ory allocation systems outlined several important factors which play a key in
building performant, secure memory allocation systems. We found that some sys-
tems suffered performance overheads due to complex designs, a lack of explicit
multithreaded design, and overuse of system calls. Furthermore, we have shown
that systems with a smaller hardware cache footprint fared better in terms of
performance overall. Strong randomized allocation guarantees coupled with a
high overprovisioning rate can be detrimental to memory usage and overall per-
formance as they increase hardware cache pressure.

A systematic analysis of existing secure memory allocation systems found
that no existing system offers mitigation against memory leaks. We believe that
this attack vector should not be overlooked as it can cause severe availability
issues and that its detection should be addressed through future research. The
analysis also unearthed the practice of application built-in custom memory allo-
cation algorithms as a significant hindrance to the adoption of secure memory
allocation techniques and systems.

Tests on vulnerable, real-life workloads have shown that most systems have
a reasonably low performance overhead compared to conventional memory allo-
cation systems, with some secure memory allocation systems closing the perfor-
mance gap. Our findings indicate that secure memory allocation systems are a
viable method for securing user programs and that state-of-the-art systems are
ready to be deployed in real-life workloads.

Existing research has split up into two viable paths for improving the over-
all safety of memory allocation systems: using memory allocation systems that
implement secure memory allocation techniques and autonomous exploration
and uncovering vulnerabilities in conventional memory allocation systems [3,20].

The former path can combat specific vulnerabilities or provide a compre-
hensive secure memory allocation system. As we have shown through a set of
benchmarking tests, some of these systems have an acceptable performance over-
head while providing an all-around secure allocation system. However, only a few
of these systems have seen relatively widespread use and critical evaluation. Fur-
thermore, their adoption is hindered as some workloads cannot benefit from

390 B. Novković and M. Golub

the increased security guarantees offered by existing secure memory allocation
systems. Thus, reconciling the common practice of custom, in-program mem-
ory allocation algorithms with secure memory allocation techniques is a crucial
step towards eliminating the exploitability of heap-related memory corruption
vulnerabilities.

Although the latter path seems more practical given its very low or nonexis-
tent performance impact and overall labor required, it still cannot address the
problems which arise from the deterministic behavior of conventional memory
allocation systems.

Acknowledgment. This work has been carried out within the AIPD2, Digital plat-
form for personal data lifecycle management protection project, funded by the Euro-
pean Regional Development Fund.

References

1. Ainsworth, S., Jones, T.M.: Markus: drop-in use-after-free prevention for low-level
languages. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 860–860
(2020)

2. Bienia, C.: Benchmarking Modern Multiprocessors. Ph.D. thesis, Princeton Uni-
versity (2011)

3. Eckert, M., Bianchi, A., Wang, R., Shoshitaishvili, Y., Kruegel, C., Vigna, G.:
Heaphopper: bringing bounded model checking to heap implementation secu-
rity. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 99–
116. USENIX Association, Baltimore (2018). https://www.usenix.org/conference/
usenixsecurity18/presentation/eckert

4. Gloger, W.: ptmalloc: a memory allocator 2006 (2006). http://malloc.de/en/
5. Jump, M., McKinley, K.S.: Cork: dynamic memory leak detection for garbage-

collected languages. In: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 31–38 (2007)

6. Larabel, M., Tippett, M.: Phoronix test suite. Phoronix Media (2011). https://
www.phoronix-test-suite.com/, Accessed Feb 2020

7. Liu, B., Olivier, P., Ravindran, B.: Slimguard: a secure and memory-efficient heap
allocator. In: Proceedings of the 20th International Middleware Conference, pp.
1–13 (2019)

8. Loosemore, S., Stallman, R., McGrath, R., Oram, A., Drepper, U.: The GNU C
Library Reference Manual, for version 2.32. Free Software Foundation. https://
www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html

9. Mitre: Common vulnerabilities and exposures (2020). https://cve.mitre.org/data/
downloads/index.html

10. Mitre: Cve-2020-27753 (2020). https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2020-27753

11. Mitre: Cve-2020-6449 (2020). https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2020-6449

12. Moerbeek, O.: A new malloc (3) for openbsd. In: Proceedings of the 2009 European
BSD Conference, EuroBSDCon, vol. 9 (2009)

13. Novark, G., Berger, E.D.: Dieharder: securing the heap. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 573–584 (2010)

https://www.usenix.org/conference/usenixsecurity18/presentation/eckert
https://www.usenix.org/conference/usenixsecurity18/presentation/eckert
http://malloc.de/en/
https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://cve.mitre.org/data/downloads/index.html
https://cve.mitre.org/data/downloads/index.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27753
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27753
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6449
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6449

SoK: Secure Memory Allocation 391

14. Silvestro, S., Liu, H., Crosser, C., Lin, Z., Liu, T.: Freeguard: a faster secure heap
allocator. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2389–2403 (2017)

15. Silvestro, S., Liu, H., Liu, T., Lin, Z., Liu, T.: Guarder: a tunable secure allocator.
In: 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 117–133
(2018)

16. Song, D., et al.: Sok: sanitizing for security. In: 2019 IEEE Symposium on Security
and Privacy (SP), pp. 1275–1295. IEEE (2019)

17. Sotirov, A.: Heap feng shui in javascript. Black Hat Eur. 2007, 11–20 (2007)
18. Szekeres, L., Payer, M., Wei, T., Sekar, R.: Eternal war in memory. IEEE Secur.

Priv. 12(3), 45–53 (2014)
19. Wickman, B., Hu, H., Jang, I.Y.D., Kashyap, J.L.S., Kim, T.: Preventing use-after-

free attacks with fast forward allocation (2020)
20. Yun, I., Kapil, D., Kim, T.: Automatic techniques to systematically discover new

heap exploitation primitives. In: 29th {USENIX} Security Symposium ({USENIX}
Security 20), pp. 1111–1128 (2020)

Toward Learning Robust Detectors
from Imbalanced Datasets Leveraging

Weighted Adversarial Training

Kento Hasegawa1(B), Seira Hidano1, Shinsaku Kiyomoto1,
and Nozomu Togawa2

1 KDDI Research, Inc, 2-1-15 Ohara, Fujimino, Saitama, Japan
{kt-hasegawa,se-hidano,kiyomoto}@kddi-research.jp

2 Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, Japan
ntogawa@waseda.jp

Abstract. Machine learning is an attractive technique in the security
field to automate anomaly detection and to detect unknown threats.
Most of the real-world training samples to learn with neural networks
are imbalanced from the viewpoint of their distribution and importance
priority on each class. In particular, datasets for security problems are
imbalanced in most cases. Learning from an imbalanced dataset may
cause the degradation of a classifier’s performance, especially in the
minority but important classes. We thus propose a new robust learning
method for imbalanced datasets using adversarial training. Our proposed
method leverages adversarial training to expand classification areas of
minority classes. Specifically, we design weighted adversarial training,
where the perturbation size of adversarial examples is weighted accord-
ing to the number of samples in each class. We conducted experiments
with real-world datasets, and the results demonstrate that our proposed
method increases classification performance in both binary and multi-
class classifications. Namely, our proposed method makes classifiers more
robust even if the dataset is imbalanced, which is useful for us to apply
machine learning to security tasks.

Keywords: Neural networks · Adversarial training · Imbalanced
datasets · Detection

1 Introduction

Machine learning is an attractive technique in the security field to automate
anomaly detection and to detect unknown threats. They also provide us with a
significant benefit in various applications, such as complex classification tasks,
object recognition, and speech recognition. Toward the real-world applications
leveraging machine learning techniques, how to collect high-quality training data-
sets is a serious concern. For example, the datasets of security-related tasks are
imbalanced in most cases [13]. Carefully dealing with such an imbalanced dataset
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 392–411, 2021.
https://doi.org/10.1007/978-3-030-92548-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_21

Toward Learning Robust Detectors from Imbalanced Datasets 393

is difficult. Although evaluation of a deep neural network and its generalization
are performed with balanced datasets, imbalanced datasets must be well consid-
ered for real-world applications.

Many samples but not so important

Few samples but important

Unacceptable

Acceptable

Fig. 1. An example of misclassification of an imbalanced dataset.

In the real-world application of machine learning, collecting a large number
of samples to sufficiently train a classifier is essential in the practical use of
machine learning. MNIST and CIFAR-10 datasets are well known to evaluate a
classifier, in which the numbers of samples in each class are nearly even. However,
collecting samples as the numbers of samples in each class become nearly even
in the real world is quite difficult. As an example of an intrusion detection
system (IDS), malicious traffic rarely appears in an ordinary situation. Moreover,
malicious traffic is more remarkable than regular traffic because detecting all
malicious traffic is the most important task for the IDS. In this case, we must
avoid missing malicious traffics during classification. Figure 1 shows an example
of misclassification. As shown in Fig. 1, we consider that misclassifying minority
class samples is unacceptable. As exemplified above, considering the importance
of each class is needed to classify imbalanced samples.

The existing study [12] investigates how to deal with imbalanced datasets
and provides categories of the methods to learn imbalanced datasets. Sampling-
based methods [4,11] and cost-sensitive learning methods [6,16] are the major
approaches to tackle the imbalanced learning problem. Although several learning
algorithms for imbalanced datasets have been developed, most of them focus
on specific datasets and situations. Here, we study how to learn imbalanced
datasets in order to apply machine learning techniques effectively to security
tasks. Specifically, we aim to catch attacked samples as much as possible while
keeping the total accuracy high enough.

In this paper, we leverage adversarial training [8,22] that is a defense learn-
ing method against adversarial examples. This method makes a classifier robust
by replacing a part of training samples with adversarial examples. Adversarial
examples, which are crafted by adding perturbation to original samples, are used
to alter decision boundaries to desirable shapes. Although this concept can be
applied to overcome the issues on imbalanced datasets, there is no detailed dis-
cussion on combining adversarial training with imbalanced datasets in the secu-
rity field. Therefore, we propose a new method leveraging adversarial training for
imbalanced datasets and evaluate its effectiveness empirically. The contributions
of this paper are summarized as follows:

394 K. Hasegawa et al.

1. We design weighted adversarial training to expand classification areas of
minority classes in a given imbalanced dataset. It is based on adversarial
training [17] and performed with the distribution of perturbation weights.
Our proposed method optimizes the perturbation weights on the basis of the
number of training samples of each minority class.

2. Our proposed method takes two approaches, called the untargeted and tar-
geted adversarial training. We apply both approaches to binary and multiclass
classifications and discuss the difference between them based on the experi-
mental results.

3. We applied weighted adversarial training to an IDS using a traffic flow data-
set, which is a security-related task. The experimental results demonstrate
that our proposed method successfully works for both binary and multiclass
classification tasks.

4. We further analyze the classification results by visualizing the classification
area using the t-SNE algorithm.

This paper is organized as follows: Sect. 2 shows some of the related
works with our study. Section 3 describes preliminary definitions and equations.
Section 4 proposes a robust learning algorithm for imbalanced datasets lever-
aging weighted adversarial training. Section 5 shows the experiments and their
results of our proposed method. Section 6 gives concluding remarks.

2 Related Works

Machine learning is now being leveraged in the security field for various purposes,
such as malware detection and abnormal traffic detection. In order to effectively
apply a machine learning technique to such an anomaly detection system, col-
lecting high-quality and high-quantity training samples is important. In general,
we rarely obtain abnormal samples in the real world, except for the large vol-
ume of an attack such as a distributed denial-of-service (DDoS) attack. When
we try to collect attack samples from network traffic in an ordinal way, only a
few attacked samples might exist. Therefore, the samples collected from the real
world could be imbalanced. To effectively leverage machine learning techniques
for security, we should carefully deal with such an imbalanced dataset.

How to deal with imbalanced datasets for machine learning has been dis-
cussed in recent studies. There are mainly two approaches in training imbal-
anced datasets: 1) a data-level approach and 2) an algorithm-level approach [12].
A data-level approach balances the number of samples in each class by over-
or under-sampling the datasets. The Synthetic Minority Over-sampling TEch-
nique (SMOTE) method [4], ADAptive SYNthetic Sampling (ADASYN) method
[11], and their improved variety of methods have often been adopted to imbal-
anced learning problems. In the over-sampling methods, new samples are gen-
erated next to the original samples that are likely to be classified mistakenly.
However, effectively choosing the samples, which would be mistakenly classi-
fied, is difficult. Recently, generative adversarial networks (GANs) have been
often used for sample generation [5,18,20]. An algorithm-level approach often

Toward Learning Robust Detectors from Imbalanced Datasets 395

utilizes a loss function that considers the weights of each class in a dataset [6,16].
Some cost-sensitive methods are also leveraged to learn imbalanced datasets [14].
Margin-based methods have also been proposed in recent years [3,10].

Although the sampling-based approach is a simple way to learn imbalanced
datasets, there are several drawbacks. In an over-sampled training approach, the
generated samples might be redundant to improve classification performance. In
an under-sampled training approach, the distribution of the dataset might be
altered by sampling, which might lose potential representation. When we use a
sampling-based approach, we should take care of the problems above.

Adversarial training is one of the approaches to make a classifier robust.
This approach is essentially to enhance the robustness against adversarial exam-
ples [22]. Adversarial example images look natural for humans, but unsophisti-
cated classifiers may misclassify them. The empirical description of adversarial
examples is introduced by [8]. Recent attack methods such as Fast Gradient Sign
Method (FSGM) [8] and Projected Gradient Descent (PGD) [17] have enabled
to generate deceptive adversarial examples. Adversarial examples may become
severe threats against physical world systems such as autonomous vehicles and
robot vision [1]. In order to tackle the problem of adversarial example attacks,
the first defense method has been proposed by [8]. PGD-based adversarial train-
ing [17] is one of the methods to defeat adversarial examples by learning them.
The PGD-based method makes a classifier robust against adversarial examples
by training adversarial examples generated during a training iteration. Other
adversarial training methods, such as [24] and [25], have recently been proposed.
Due to the detailed investigation of adversarial examples, the mechanism of deep
neural networks has been well studied and becomes clarified. That will improve
performance and enhance the robustness of deep neural networks [9].

As mentioned above, adversarial training helps us to improve the robustness
of a classifier. As a result, that should enhance the classification performance as
well as defend the classifier against adversarial attacks. From the perspective of
improving classification performance, adversarial training is one of the promising
approaches. Recently, as a new approach, adversarial training has been used for
an imbalanced classification task [23]. The authors have proposed a new algo-
rithm, the Wasserstein PGD (WPGD) model, which deals with the imbalanced
dataset and manages the trade-off between the accuracy and robustness of the
classifier. The WPGD model utilizes a Wasserstein distance to evaluate the dif-
ference between the genuine and predicted class. Based on the idea, the WPGD
model introduces the Wasserstein loss function when generating perturbation.
However, the WPGD model could not consider the borderline between the neigh-
bor classes, particularly in multiclass classification. Another study [15] addresses
the imbalanced classification task by translating some majority class samples to
the target minority class. The translation of majority class samples is performed
by adding a small noise to the majority class samples toward the target minor-
ity class, and the translated samples are re-labeled as the target minority class.
From the recent studies, adversarial training is one of the promising approaches
to cope with imbalanced classification.

In this paper, we proposed a new method addressing imbalanced classification
with a PGD-based approach.

396 K. Hasegawa et al.

3 Preliminaries

This section introduces the backgrounds and notations necessary for our pro-
posed method.

3.1 Machine Learning

Let x ∈ R
d be a d-dimensional feature vector, and let y = [y1, . . . , ys] ∈ {0, 1}s be

a one-hot vector that indicates the class of the feature vector x. If x belongs to a
class i ∈ [s], yi = 1, otherwise yi = 0. We denote by D a training dataset consist-
ing of N pairs of a feature vector x and the class label y. In supervised learning,
an s-class classifier F : Rd → R

s is generated from a training dataset D. The
classifier F is parameterized by θ, and θ is chosen to minimize an expected loss
function Lθ(D) of the training dataset D. Given a loss function lθ(x,y) of a train-
ing sample (x,y) ∈ D, Lθ(D) can be written as Lθ(D) = 1

N

∑
(x,y)∈D lθ(x,y).

In this paper, we especially focus on a deep neural network whose final layer
has a softmax function. Let o(·) denote the output of the last layer before the
softmax layer. The model’s output is expressed as F (x) = softmax(o(x)). When
the number of samples in a training dataset D is greatly different for each class,
we call D an imbalanced dataset. We also call learning a robust classifier F from
an imbalanced dataset imbalanced learning.

3.2 Adversarial Examples

Adversarial examples are used to deceive a classifier and induce misclassification.
Let r ∈ R

d be a small perturbation. Given a sample x, an adversarial example x′

is generated by x′ = x+ r. However, optimizing the perturbation r is a difficult
problem in terms of computational complexity. Thus the focus of interest of early
studies was to generate adversarial examples effectively.

The PGD [17] method is a well-known solution for generating adversarial
examples. This method is optimized for the L∞ norm of the perturbation. The
perturbation is iteratively updated K times. Let α be the step size of the per-
turbation at each iteration, and let ε be the maximum size of the perturbation.
Given a sample (x,y), the PGD method generates the adversarial example with
the following update function:

{
x′(0) = x
x′(t+1) = clipx,ε

[
x′(t) + α sign(∇x′(t) lθ(x′(t),y))

]
,

(1)

where clipx,ε[a] projects each element ai ∈ a onto the range [xi − ε, xi + ε].
If it is required to misclassify a sample with a label i ∈ [s] to a specific class

j ∈ [s] \ i, the update function at t-th iteration can be written as follows:

x′(t+1) = clip
x,ε

[
x′(t) − α sign(∇x′(t) lθ(x′(t),yj))

]
, (2)

where yj is a vector that indicates a class j. We call the method with the Eq. (1)
(resp. the Eq. (2)) the untargeted (resp. targeted) PGD method.

Toward Learning Robust Detectors from Imbalanced Datasets 397

Expand the classification area
of the minority (but important) class

Fig. 2. The concept of the proposed method. (Color figure online)

3.3 Adversarial Training

The basic idea of adversarial training is to inject adversarial examples themselves
into the training dataset to make the model robust to adversarial examples. For
instance, the expected loss function Lθ(D) for adversarial training using the
untargeted PGD method can be written as follows:

Lθ(D) =
1
N

∑

(x,y)∈D

[

lθ(x,y) + max
r∈S(x)

lθ(x + r,y)
]

, (3)

where S(x) is the perturbation constraint for a given sample x. In contrast,
different loss functions can be defined for adversarial training with the targeted
PGD method based on the purpose. We thus design a special loss function to
imbalanced learning in Sect. 4.2. Hereinafter, we call adversarial training with
the untargeted (resp. targeted) PGD method the untargeted (resp. targeted)
adversarial training.

4 Method

In this section, we propose a robust learning method for imbalanced datasets
leveraging adversarial training.

4.1 Overview

Our proposed method aims to expand the classification area of the minority
but important classes as much as possible. Figure 2 illustrates how to determine
a decision boundary between the majority and the minority classes in binary
classification. In Fig. 2, the blue samples belong to the majority class, while the
green samples belong to the minority class. The red line is the decision boundary
formed by a classifier. The green shaded area shows the ideal distribution of the
minority class samples. In the left figure, while the orange sample originally
belongs to the minority class, it is outside the red line; therefore, the classifier
misclassifies it as the majority class. We thus consider expanding the decision
boundary towards the majority class in order to avoid such misclassification.

398 K. Hasegawa et al.

The right figure in Fig. 2 shows an example of the expansion. Our proposed
method actualizes this kind of manipulation by introducing weighted adversarial
training to imbalanced learning.

4.2 Problem Settings

We formally define the problem for our proposed method and provide the loss
function for our imbalanced learning. Here let us consider an ideal training data-
set D∗. Let D∗

i be the set of training samples (x∗,y) ∈ D∗ such that y indi-
cates a class i ∈ [s]. Given an imbalanced training dataset D, we assume that
D∗

i ≈ {(x∗,y) | ‖x∗ − x‖∞ ≤ ε′
i, (x,y) ∈ Di}, where Di is the set of training

samples (x,y) ∈ D such that y indicates the class i, and ε′
i is the perturbation

size for the class i. ‖ · ‖∞ is the L∞ norm. In other words, we assume that any
ideal training sample (x∗,y) ∈ D∗ can be represented by adding an appropriate
d-dimensional perturbation r satisfying ‖r‖∞ ≤ ε′

i to a training sample x in an
imbalanced dataset.

However, in order to generate the ideal training dataset D∗ from a given
training dataset D, the maximum perturbation size ε′

i should be optimized for
each class i. The values of ε′

i for minor classes will be larger than those for major-
ity classes. To simplify the problem, we thus assume that ε′

i can be represented
as a function g of the number of training samples for each class i, ni = |Di|,
i.e., ε′

i = ξ · g(ni), where ξ is a positive parameter. Examples of the function
g are given in Sect. 5.1. In addition, it is difficult to involve all samples in D∗

in the training of a classifier F , as the number of feature vectors x∗ satisfying
‖x∗ − x‖∞ for a given sample x is exponentially large. We thus suggest adding
only samples that change the shape of the decision boundary. The classification
area expanded with such samples will cover many other samples that are not
included in a training dataset D and are inside the added samples. We finally
define an expected loss function for a given imbalanced dataset D as follows:

Lθ(D) =
1
N

∑

i∈[s]

∑

(x,y)∈Di

{lθ(x,y) + max
r

lθ(x + r,y)}, (4)

s.t. ‖r‖∞ ≤ ξ · g(ni). (5)

The Eq. (5) is formulated as untargeted adversarial training. It should be
noted that untargeted adversarial training might cause label leaking effect [17].
Because of this effect, we expect that untargeted adversarial training will expand
more classification area than targeted adversarial training. Therefore, untargeted
adversarial training gains better classification performance in terms of recall.

Our proposed learning method generates a classifier F that minimizes the
loss function Lθ while optimizing the parameter ξ. This optimization problem
is similar to the problem for adversarial training shown by the Eq. (3). The
key differences are that (1) the maximum size of perturbation, ε′

i (= ξ · g(ni)),
is different between classes, and that (2) it is required to find out the optimal
values of ε′

i that improve the accuracy of minority classes while keeping that

Toward Learning Robust Detectors from Imbalanced Datasets 399

of majority classes. Since the perturbation for adversarial examples should be
sufficiently small for avoiding detection, a fixed small value of ε is used for
adversarial training. However, in imbalanced learning, it is preferable to enlarge
the classification area as much as possible. Therefore, our proposed method
optimizes the values of ε′

i by exploring an optimal solution of ξ.

Application to Multiclass Classification. In imbalanced learning for mul-
ticlass classification, the classification area of each minority class should be
expanded in the directions of multiple neighbor classes. However, there is a
possibility that training only a single adversarial example for a training sample
cannot realize this purpose due to the inappropriate structure of classification
areas. We thus suggest generating multiple adversarial examples for a training
sample. Each adversarial example is used for expanding the classification area
towards the corresponding neighbor class. In Sect. 5.3, we show through exper-
iments that imbalanced learning with multiple adversarial examples has higher
performance than that with a single adversarial example. The loss function for
multiclass classification can be written as follows:

Lθ(D) =
1
N

∑

i∈[s]

∑

(x,y)∈Di

{lθ(x,y) +
∑

j∈[s]\i

max
rj

−lθ(x + rj ,yj)},

s.t. ‖rj‖∞ ≤ ξ · g(ni), (6)

where yj is a vector that indicates a class j, and rj is a perturbation for the
class j.

Unlike the Eq. (5), the Eq. (6) is formulated as targeted adversarial training.
This is because untargeted adversarial training cannot generate multiple differ-
ent adversarial examples for a training sample. Our proposed learning method
for multiclass classification seeks the optimal multiple perturbations rj that min-
imize the Eq. (6).

4.3 Algorithm

We then consider an algorithm to solve θ minimizing the Eq. (5) with fixed values
of ε′

i. Our proposed algorithm is based on the PGD method shown in Sect. 3.
While the PGD method uses the non-weighted parameters α and ε for all classes,
we introduce weight vectors α′ ∈ R

s and ε′ ∈ R
s. In the PGD method, α is used

to control the perturbation size at each iteration, and ε indicates the maximum
perturbation size. α′ and ε′ have nearly the same meanings as α and ε, yet
both of the parameters consider the weights of the corresponding classes. α′Ty
obtains the perturbation size at an iteration corresponding to a class i ∈ [s].
Similarly, ε′Ty obtains the maximum perturbation size corresponding to the
class i. Therefore, given a training sample (x,y), the update function of the
weighted adversarial training is expressed as follows:

⎧
⎪⎨

⎪⎩

x′(0) = x
x′(t+1) =
clipx,ε′Ty

{
x′(t) + α′Ty sign(∇x′(t)Lθ(x′(t),y))

}
.

(7)

400 K. Hasegawa et al.

Fig. 3. An example of the weighted adversarial training. (Color figure online)

Algorithm 1. Imbalanced leaning by weighted adversarial training
Inputs: Classifier F , training dataset D, minibatch size m, number of iterations of

generating adversarial examples K, and ratio of trained adversarial examples p.
1: Initialize the classifier F .
2: repeat
3: Obtain m samples from a training dataset D so that the number of samples of

each class is even, and store them as a minibatch B.
4: Iterate adversarial training steps according to the Eq. (7) for K times, and

generate adversarial examples.
5: Replace p% of the samples in B with the generated adversarial examples and

store them as a minibatch B′.
6: Perform one training step of the classifier F using the minibatch B′.
7: until training converged.

Figure 3 depicts the proposed method. The blue sample x1 belongs to the
majority class, and the green sample x2 belongs to the minority class. Here, we
define weight vectors α′ and ε′ as ε′ = (ε′

1, ε
′
2) ∈ R

2, and α′ = (α′
1, α

′
2) ∈ R

2,
where the first class is the majority class and the second class is the minor-
ity class. Since we regard that the minority class is more important than the
majority class, we set variables as ε′

1 < ε′
2 and α′

1 < α′
2. Then, the distribution

of the perturbation is illustrated as the blue and green shaded areas shown in
Fig. 3. Based on the PGD-based adversarial example generation and training,
the adversarial examples are generated as x′

1 and x′
2. As a result, the decision

boundary can be described as the orange curve in Fig. 3. Since the classification
area for the minority class is expanded, the classification performance of the
minority class is expected to be improved by the proposed method. Note that,
in case of a multiclass classification problem, we define ε′ = (ε′

1, · · · , ε′
s) ∈ R

s

and α′ = (α′
1, · · · , α′

s) ∈ R
s.

The entire learning process is described in Algorithm 1. To balance the learn-
ing dataset during the training epoch, we draw the samples from the training
dataset so that the number of samples in each class is even in the minibatch. In
order to further enhance the classification performance for imbalanced datasets,
the perturbation of the generated adversarial examples in the proposed method
is weighted based on α′ and ε′ as shown in the Eq. (7).

Toward Learning Robust Detectors from Imbalanced Datasets 401

5 Experiments

In this section, we evaluate the effectiveness of our proposed method through
experiments with real-world datasets related to security tasks. We compare with
well-known sampling methods for imbalanced learning and show that our pro-
posed method improves the classification performance of minority classes.

5.1 Setup

Dataset. We use multiple datasets included in CICIDS2017 [21], which is
designed to evaluate network-based IDSs. CICIDS2017 has benign and attacked
network traffic samples. Each record consists of the statistics of network traffics.
In the experiments, we perform both binary and multiclass classification with
the datasets.

Specifically, CICIDS2017 contains seven datasets for a machine-learning pur-
pose. Each dataset includes statistical samples of network packets with different
times and different attacks. Some datasets have binary-class labels that show
benign or attacked, and others have multiclass labels that show benign or one of
the attack types. In order to deal with the imbalanced classification, we use the
five datasets: Bot, Infiltration, DoS, Patataor, and WebAttacks, out of the
seven ones in CICIDS2017. In the selected five datasets, the ‘Benign’ class is the
largest (i.e., it is the majority class), and the other attacked classes are smaller
than the ‘Benign’ class (i.e., they are the minority classes). The two datasets Bot
and Infiltration contain binary-class labels, and the other three datasets DoS,
Patataor, and WebAttacks contain multiclass labels. Table 1 summarizes the
contents of the datasets we use in this paper. Each sample consists of 78 feature
values and a label. The feature values represent the statistical characteristics of
the packet flow, such as a destination port, the total length of the packets, the
flow packets per second. The label shows the attack types, including benign.

In the experiments, we standardize the dataset so that the mean of each
column is 0 and the variance of that is 1. Note that we replace ‘NaN’ and
infinity values with 0 in the pre-processing phase because they appear in the
‘Flows per second’ and ‘Packets per second’ columns at ‘0’ duration time.

After the standardization, we use 80% of the dataset as training samples and
the rest as test samples.

Models. To evaluate the classification performance, we perform experiments
with several models. The model used in this paper is summarized as follows:

1. Normal: A normal classifier with a cross-entropy without any balancing
methods is used.

2. B.B. (Balanced mini-Batch): The ‘Normal’ model is used, but the trainer
draws the training samples so that the number of samples in each class is
equal in a minibatch (only the third step in Algorithm 1).

3. SMOTE: The training samples are over-sampled by the SMOTE [4] method
beforehand.

402 K. Hasegawa et al.

Table 1. Contents of CICIDS 2017 Dataset.

File names Classes Samples

Patator: Tuesday-WorkingHours.pcap ISCX.csv

Benign 432,074

FTP-Patator 7,938

SSH-Patator 5,897

DoS: Wednesday-workingHours.pcap ISCX.csv

Benign 440,031

DoS Hulk 231,073

DoS GoldenEye 10,293

DoS slowloris 5,796

DoS Slowhttptest 5,499

Heartbleed 11

WebAttacks: Thursday-WorkingHours-Morning-WebAttacks.pcap ISCX.csv

Benign 168,186

Web Attack Brute Force 1,507

Web Attack XSS 652

Web Attack Sql Injection 21

Infiltration: Thursday-WorkingHours-Afternoon-Infilteration.pcap ISCX.csv

Benign 288,566

Infiltration 36

Bot: Friday-WorkingHours-Morning.pcap ISCX.csv

Benign 189,067

Bot 1,966

4. ADASYN: The training samples are over-sampled by the ADASYN [11]
method beforehand.

5. WPGD: A robust classification method employing a Wasserstein loss [23].
6. UT-wPGD: Our proposed method is applied to the classifier with

UnTargeted Weighted PGD-based perturbation. The perturbation is gen-
erated with the untargeted adversarial training. Its amount is weighted based
on the cardinality of the class where the sample belongs.

7. T-wPGD: Our proposed method is applied to the classifier with Targeted
Weighted PGD-based perturbation. The perturbation is generated with the
targeted adversarial training toward another class. Its amount is weighted
based on the cardinality of the class where the sample belongs.

We use a multi-layer perceptron model to train and classify the dataset. The
structure and hyper-parameters of the multi-layer perceptron are the same in all
the models above. The model has three middle layers with [64, 32, 32] units. We
use sigmoid activation functions in the middle layers and a soft-max function in
the output layer. The optimization method is Adam. We train a model for 50
epochs with a minibatch size of 256.

We tune the hyper-parameters of the PGD models by changing them. The
weighting functions determine the weighting values with the cardinality of each
class as an argument. Here, we set the maximum size of the perturbation vector

Toward Learning Robust Detectors from Imbalanced Datasets 403

Table 2. Weighting function. nmax = maxi ni in the dataset D.

Name Function

ln g ln(ni) = ln(nmax)/ln(ni)

lnm g lnm(ni) = ln(nmax/ni)

sqrt g sqrt(ni) =
√

nmax/ni

4thr g 4thr(ni) = 4
√

nmax/ni

ε′ as k · α′ and the number of iteration K as 3/2 · k so that ε′ = k · α′ will clip
too large perturbation generated by K · α′. In the experiments, we set k = 10.
As shown in Sect. 4.2, the weight of the i-th class ε′

i can be represented as a
function g with the cardinality of the class ni = |Di|, i.e., ε′

i = ξ · g(ni). In the
experiments, we set ξ to 0.001, 0.005, 0.01, and 0.05. Also, for comparison, we
set the weights of the Wasserstein matrix according to g(ni). Table 2 describes
the weighting functions used in the experiments.

5.2 Evaluation Metrics

In the experiments, we evaluate the experimental results with several metrics.
In the evaluation, we focus on not missing any attacked samples. In other

words, our top priority is to catch attacked samples as much as possible while
keeping the total accuracy high enough. We introduce the evaluation metrics
from the viewpoint of this priority.

A classifier classifies the samples in a training dataset as either a majority
class or a minority class in binary classification. Let D− be a set of majority
class samples, and D+ be a set of minority class samples in a dataset. Then, the
classifier classifies the two-class dataset D = D− ∪ D+ as either the majority
or minority class. We denote by E− a dataset classified as the majority class
and denote by E+ a dataset classified as the minority class by the classifier. To
see the overall classification performance, we can use the accuracy. However, the
accuracy puts weight to the majority class. Therefore, we also refer to the recall
to evaluate whether we have detected a minority class of attacked samples. Then,
the accuracy and recall values are expressed as follows:

Accuracy =
|D− ∩ E−| + |D+ ∩ E+|

|D| (8)

Recall =
|D+ ∩ E+|

|D+| (9)

where | · | is a cardinality of a class.
In multiclass classification, we obtain the average score for each class. Here,

let Ei be the dataset labeled as the i-th class by the classifier. Then, we define
the overall accuracy, AccuracyM as follows:

AccuracyM =

∑
i∈[s] |Di ∩ Ei|

|D| (10)

404 K. Hasegawa et al.

Table 3. CICIDS2017 binary classification results.

Dataset Model Parameters Accuracy Recall

Bot

Normal 0.996 0.648

B.B. 0.984 0.988

SMOTE 0.978 0.990

ADASYN 0.984 0.990

WPGD g lg, ξ = 0.01 0.981 0.990

UT-wPGD g lgm, ξ = 0.01 0.974 0.995

T-wPGD g lg, ξ = 0.05 0.981 0.993

Infiltration

Normal 1.000 0.778

B.B. 0.996 0.778

SMOTE 1.000 0.889

ADASYN 1.000 0.889

WPGD g lg, ξ = 0.01 0.996 0.778

UT-wPGD g lgm, ξ = 0.01 0.996 1.000

T-wPGD g 4thr, ξ = 0.005 0.998 0.889

There are two averaging methods in terms of the recall score: micro-averaging
and macro-averaging [7]. The micro-averaging is an average weighted by the class
distribution, and it is equivalent to the overall accuracy. The macro-averaging is
an arithmetic mean of the recall score for each class, and it would consider the
recall of each class fairly. In this paper, we use the macro-averaged recall score
for evaluation. The recall RecallM used for evaluating multiclass classification
are expressed as follows:

RecallM =
1
s

∑

i∈[s]

Recalli (11)

where Recalli = |Di ∩ Ei|/|Di| . Note that the RecallM score is also known as
the balanced accuracy [2].

In the following section, we evaluate the classification results based on accu-
racy and recall scores. When evaluating imbalanced datasets, the accuracy tends
to become high enough because the classifier may classify most of the samples as a
majority class. If the samples in minority classes are misclassified, it does not affect
the accuracy significantly. As mentioned at the top of this section, our goal is to
classify the minority-class samples correctly. In this sense, we use the recall scores
to see how many samples a model correctly classifies as their original classes.

5.3 Experimental Results

First, we explore the weighting function and parameter ξ with which we can
obtain the best classification performance for each model. Then, we pick up the
best classification results over the explored parameters for each model.

Toward Learning Robust Detectors from Imbalanced Datasets 405

Table 4. CICIDS2017 multiclass classification results.

Dataset Model Parameters AccuracyM RecallM

DoS

Normal 0.997 0.961

B.B. 0.998 0.964

SMOTE 0.998 0.964

ADASYN 0.995 0.994

WPGD g ln, ξ = 0.01 0.997 0.964

UT-wPGD g lnm, ξ = 0.05 0.997 0.997

T-wPGD g 4thr, ξ = 0.01 0.996 0.997

Patator

Normal 0.999 0.992

B.B. 0.999 0.997

SMOTE 0.999 0.996

ADASYN 0.992 0.867

WPGD g ln, ξ = 0.01 0.999 0.997

UT-wPGD g sqrt, ξ = 0.05 0.997 0.997

T-wPGD g 4thr, ξ = 0.05 0.998 0.997

WebAttack

Normal 0.994 0.502

B.B. 0.992 0.709

SMOTE 0.991 0.758

ADASYN 0.990 0.721

WPGD g ln, ξ = 0.01 0.992 0.723

UT-wPGD g ln, ξ = 0.005 0.978 0.774

T-wPGD g 4thr, ξ = 0.005 0.989 0.775

Binary Classification Results. Table 3 shows the parameters and results of
binary classification. The ‘Parameters’ column shows the weighting function (see
Table 2) and the parameter ξ used for each PGD model. We show the two metrics:
Accuracy and Recall as shown in the Eqs. (8) and (9) for binary classification.
As shown in Table 3, we use Bot and Infiltration datasets to evaluate binary
classification. They contain benign and attacked samples, and attacked samples
are in the minority class. From the results in Table 3, the Normal model obtains
the best accuracy in all the models in both Bot and Infiltration datasets. How-
ever, a high accuracy score in imbalanced classification means that a classifier
correctly classifies most of the majority class samples, not the minority class
samples. Actually, the recall scores of both Bot and Infiltration datasets are the
lowest in all the models. In contrast, our proposed method, the UT-wPGD
and T-wPGD models obtain the first and second highest recall scores in all the
models for each dataset. It should be noted that the B.B. model itself improves
the recall score compared to the Normal model. Combining the B.B. model and
weighted PGD-based perturbation could further improve the recall score. Our
proposed method successfully works in the two datasets.

406 K. Hasegawa et al.

Multiclass Classification Results. Table 4 shows the results of multiclass
classification. The evaluation metrics used in this table are as shown in the Eqs.
(10) and (11). To see the detailed classification results in each dataset, Table 5
shows the number of correctly classified samples for each class. In multiclass
classification, we evaluate the classification results based on the AccuracyM and
RecallM scores. In the multiclass classification, we aim to maximize the recall
scores of the minority classes; therefore a high RecallM score is the desired result.

In the DoS dataset, the UT-wPGD and the T-wPGD models obtain the
highest RecallM scores. As shown in Table 5, the UT-wPGD and T-wPGD
models correctly classify more samples of DoS GoldenEye, DoS Slowhttptest,
DoS slowloris, and Heartbleed classes than the Normal model. These classes
include fewer samples than the other classes. From the viewpoint of classify-
ing minority class samples (especially the bottom three classes), the T-wPGD
model outperforms the other models.

In the Patator dataset, the difference between the models is slight. However,
our proposed models successfully obtain equal to or better classification results
than the existing methods.

In the WebAttack dataset, the T-wPGD model outperforms other models.
This is because the T-wPGD model successfully classifies the minority classes
with good balance. In particular, the ‘Web Attack Brute Force’ and ‘Web Attack
XSS’ classes have similar features, and most of the classifiers are prone to mis-
classify them. A recent study [19] has also shown that the accuracy and recall
score of ‘Web Attack XSS’ is not so high when those of ‘Web Attack Brute Force.’
Moreover, detecting ‘Web Attack Sql Injection’ is also difficult because it con-
tains a tiny number of samples. In this paper, as shown in Table 5, the numbers
of correctly classified samples in the ‘Web Attack Brute Force’ and ‘Web Attack
XSS’ classes are unstable. Actually, the ‘Web Attack Brute Force’ class contains
293 test samples, and the ‘Web Attack XSS’ class contains 128 test samples. The
Normal model could not consider the class distribution, and therefore classifica-
tion borderline is not well constructed. The UT-wPGD model adds perturba-
tion toward the direction where the loss is most increased. In other words, the
model cannot control the direction of the perturbation directly. Consequently,
the perturbed sample might invade another smaller class, whereas we expect to
invade a larger class. In contrast, the T-wPGD model controls the direction of
the perturbation directly, decreasing the loss as much as possible, as mentioned
in Sect. 4.2 with the Eq. (6). As a result, the perturbed samples would not invade
another class any more than necessary. Therefore, the T-wPGD model success-
fully classifies them considering class weights, and the RecallM score becomes
the best in all the models.

In conclusion, the UT-wPGD and T-wPGD models successfully classify
the real-world imbalanced datasets. When the dataset is a binary-class set, the
UT-wPGD model would be more effective due to the label leaking effect. Other-
wise, the T-wPGD model would effectively work considering the class weights.

Toward Learning Robust Detectors from Imbalanced Datasets 407

Table 5. CICIDS2017 correctly classified samples.

Dataset Class Normal UT-wPGD T-wPGD

DoS

Benign 87,714 87,760 87,594

DoS Hulk 46,120 46,059 46,094

DoS GoldenEye 2,008 2,024 2,023

DoS slowloris 1,141 1,148 1,148

DoS Slowhttptest 1,109 1,112 1,114

Heartbleed 4 5 5

Patator

Benign 86,305 86,097 86,144

FTP-Patator 1,585 1,588 1,588

SSH-Patator 1,235 1,254 1,255

WebAttacks

Benign 33,569 33,163 33,466

Web Attack Brute Force 291 35 122

Web Attack XSS 2 127 114

Web Attack Sql Injection 0 5 4

t-SNE Analysis. In order to analyze the class distribution obtained by the
classifier, we visualize the test samples and their classes with the t-distributed
Stochastic Neighbor Embedding (t-SNE) method. The t-SNE method is com-
monly used to reduce the dimension of the dataset. Specifically, it is useful to
visualize the distribution of high-dimensional data as a two-dimensional scatter
plot. Using the scatter plot obtained with the t-SNE method, we visually analyze
the data distribution calculated by the classifier.

To visualize the classification results of binary classification, Fig. 4 shows the
t-SNE plots of the results using the Infiltration dataset. The plot area has been
enlarged to make it easy to see the notable areas. The blue points belong to
the ‘Benign’ class (the majority class), and the red points belong to the ‘Bot’
class (the minority class). The depth of the color shows the probability of being
classified into the color’s class, with a deep color indicating a high probability.

Figure 4(a) illustrates the distribution of each class in the training dataset.
As shown in the figure, there are quite a few attacked samples, and the samples
are intricately distributed, with some majority and minority class samples over-
lapping. Figure 4(b) illustrates the distribution of each class in the test dataset.
There are fewer red points (= minority class samples) compared to the training
dataset. Figures 4(c)–(f) illustrate the classification results of the test dataset.
Figure 4(c) illustrates the classification result by the Normal model. In the figure,
the sample circled in red in (b) is misclassified as the majority class. Figure 4(d)
is obtained by ADASYN. Compared to the Normal model, minority class sam-
ples are correctly classified. Figure 4(e) is obtained by the UT-wPGD classifier.
Due to the small perturbation of our proposed method, the classification area of

408 K. Hasegawa et al.

Fig. 4. The t-SNE plots of the classification results (Infiltration dataset). The blue
points are the majority class samples, and the red ones are the minority class samples.
(Color figure online)

the minority class is expanded. However, more majority class samples are mis-
classified as the minority class. The misclassified samples are distributed around
the minority class samples in the training dataset. Therefore, the UT-wPGD
classifier expands the classification area of the minority class, but it seems too
large. Figure 4(f) is obtained by the T-wPGD classifier. Because the perturba-
tion direction is targeted toward the other class, the classification area is not
expanded compared to the UT-wPGD classifier. However, the sample circled
in red is misclassified as the majority class, whereas the UT-wPGD classifier
successfully classifies. From the results above, our proposed models UT-wPGD
and T-wPGD successfully work for the binary classification. In particular, the
UT-wPGD model expands more classification area than the T-wPGD. As
mentioned in Sect. 4.2, untargeted adversarial training would cause label leaking
effect [17]. We can observe this effect from the results, and the UT-wPGD
model performs more effectively.

To visualize the classification results of multiclass classification, we select
the WebAttack dataset. This dataset is difficult to classify, as shown in Table 5,
because the samples of the Brute Force and XSS classes have similar features.
Figure 5 shows the t-SNE plots of the results using the WebAttack dataset. There
are four colors: blue, orange, green, and red. Different from Fig. 4, the depth of
the face color is fixed. The blue points are the majority class, and the others
are the minority classes. The green (resp. yellow or red) samples correspond to
the Brute Force class (resp. XSS or Sql Injection). The number of red samples
is quite small compared to the other classes. It should be noted that the green

Toward Learning Robust Detectors from Imbalanced Datasets 409

Fig. 5. The t-SNE plots of the classification results (WebAttack dataset). (Color figure
online)

and yellow class samples are overlapped because their features are quite similar.
In the figures, green samples are on top of yellow samples.

Similar to Fig. 4, Fig. 5(a) illustrates the distribution of the training data-
set, and Fig. 5(b) illustrates the distribution of the test dataset. Figures 5(c)–(f)
illustrate the classification results of the test dataset. Figure 5(c) illustrates the
classification result by the Normal model, which fails to classify red class sam-
ples. Figure 5(d) is obtained by the ADASYN method. Compared to the Normal
model, minority class samples are correctly classified, and it seems to have a sim-
ilar distribution to the test dataset. Figure 5(e) is obtained by the UT-wPGD
classifier. Although the classification areas of the minority classes are success-
fully expanded, some samples in the red circle are misclassified. Figure 5(f) is
obtained by the T-wPGD classifier. Ideally, green and yellow samples should
be distributed in the plot area. However, ADASYN and the UT-wPGD model
could not classify green samples. In contrast, the T-wPGD classifier successfully
classifies several green samples, as shown in the red circle in the figure.

From the discussion in this section, we find out the following results. Firstly,
balancing class distribution in a minibatch successfully expands the classification
area of the minority class. Secondly, our proposed method outperforms conven-
tional over-sampling methods such as SMOTE and ADASYN. The SMOTE and
ADASYN models can certainly contribute to improving the recall score of the
minority class. However, those models might strongly misclassify the major-
ity class samples in the neighborhood of the minority class. Compared to the
SMOTE and ADASYN models, the UT-wPGD and T-wPGD expand the

410 K. Hasegawa et al.

classification area of the minority class, but the misclassified samples have low
probability. Thirdly, the T-wPGD model tends to classify higher probability
near the genuine minority-class samples than the UT-wPGD model. Although
the targeted and untargeted perturbation have similar meanings in binary clas-
sification, they result in different classification areas. While the UT-wPGD
model obtains the best results in the experiment, the T-wPGD model is more
stable in classification.

6 Conclusion

In this paper, we propose an imbalanced training method leveraging an adver-
sarial training algorithm, which is useful for security tasks such as an IDS. In
order to realize robust learning for imbalanced datasets, we leverage weighted
adversarial training that makes it possible to spread or shrink the classification
area according to the weighting vector that is determined by the importance of
each class. We perform several experiments with real-world imbalanced datasets.
The experimental results demonstrate that our proposed method successfully
enhances the robustness of the classifier for imbalanced training datasets, and
effectively increases the classification performance for a security task. Further-
more, we visually analyze the classification area of our proposed method.

While our proposed method gives a significant contribution to imbalanced
learning, some points are still remained to be further considered. In order to
appropriately set the maximum perturbation size ε′

i for each class i, optimizing
the function g(x) is one of the most challenging problems, and this will be our
future work.

References

1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer
vision: a survey. IEEE Access 6(AUGUST), 14410–14430 (2018)

2. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accu-
racy and its posterior distribution. In: International Conference on Pattern Recog-
nition (ICPR), pp. 3121–3124 (2010)

3. Cao, K., Wei, C., Gaidon, A., Aréchiga, N., Ma, T.: Learning imbalanced data-
sets with label-distribution-aware margin loss. In: Neural Information Processing
Systems, pp. 1565–1576 (2019)

4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

5. Douzas, G., Bação, F.: Effective data generation for imbalanced learning using
conditional generative adversarial networks. Expert Syst. Appl. 91, 464–471 (2018)

6. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Con-
ference on Artificial Intelligence, pp. 973–978 (2001)

7. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res. 3(Mar), 1289–1305 (2003)

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations (ICLR) (2015)

Toward Learning Robust Detectors from Imbalanced Datasets 411

9. Goswami, G., Ratha, N., Agarwal, A., Singh, R., Vatsa, M.: Unravelling robustness
of deep learning based face recognition against adversarial attacks. In: Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 6829–6836
(2018)

10. Hayat, M., Khan, S., Zamir, W., Shen, J., Shao, L.: Max-margin class imbalanced
learning with gaussian affinity (2019). http://arxiv.org/abs/1901.07711v1

11. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling app-
roach for imbalanced learning. In: 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–
1328 (2008)

12. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9), 1263–1284 (2009)

13. Kaur, H., Pannu, H.S., Malhi, A.K.: A systematic review on imbalanced data
challenges in machine learning - applications and solutions. ACM Comput. Surv.
52(4), 79:1–79:36 (2019)

14. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F., Togneri, R.: Cost-sensitive
learning of deep feature representations from imbalanced data. IEEE Trans. Neural
Netw. Learn. Syst. 29(8), 3573–3587 (2017)

15. Kim, J., Jeong, J., Shin, J.: M2m: imbalanced classification via major-to-minor
translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 13893–13902 (2020)

16. Kukar, M., Kononenko, I.: Cost-sensitive learning with neural networks. In: Pro-
ceedings of the 13th European Conference on Artificial Intelligence, pp. 445–449
(1998)

17. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. In:
International Conference on Learning Representations (ICLR) (2017)

18. Lee, J., Park, K.: Gan-based imbalanced data intrusion detection system. Personal
Ubiquit. Comput. 25(1), 121–128 (2021)

19. Maseer, Z.K., Yusof, R., Bahaman, N., Mostafa, S.A., Foozy, C.F.M.: Benchmark-
ing of machine learning for anomaly based intrusion detection systems in the
CICIDS2017 dataset. IEEE Access 9, 22351–22370 (2021)

20. Montahaei, E., Ghorbani, M., Baghshah, M.S., Rabiee, H.R.: Adversarial classifier
for imbalanced problems (2018). http://arxiv.org/abs/1811.08812v1

21. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: International Confer-
ence on Information Systems Security and Privacy (ICISSP), pp. 108–116 (2018)

22. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Con-
ference on Learning Representations (ICLR) (2014)

23. Terzi, M., Susto, G.A., Chaudhari, P.: Directional adversarial training for cost sen-
sitive deep learning classification applications. Eng. Appl. Artif. Intell. 91, 103550
(2020)

24. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.:
Ensemble adversarial training: attacks and defenses. In: International Conference
on Learning Representations (ICLR) (2018)

25. Vivek, B.S., Mopuri, K.R., Babu, R.V.: Gray-box adversarial training. In: Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp. 213–228
(2018)

http://arxiv.org/abs/1901.07711v1
http://arxiv.org/abs/1811.08812v1

Towards Quantum Large-Scale Password
Guessing on Real-World Distributions

Markus Dürmuth1 , Maximilian Golla2 , Philipp Markert1 ,
Alexander May1 , and Lars Schlieper1(B)

1 Ruhr University Bochum, Bochum, Germany
{markus.duermuth,philipp.markert,alex.may,lars.schlieper}@rub.de

2 Max Planck Institute for Security and Privacy, Bochum, Germany
maximilian.golla@csp.mpg.de

Abstract. Password-based authentication is a central tool for end-user
security. As part of this, password hashing is used to ensure the security
of passwords at rest. If quantum computers become available at sufficient
size, they are able to significantly speed up the computation of preim-
ages of hash functions. Using Grover’s algorithm, at most, a square-root
speedup can be achieved, and thus it is expected that quantum pass-
word guessing also admits a square-root speedup. However, password
inputs are not uniformly distributed but highly biased. Moreover, typi-
cal password attacks do not only compromise a random user’s password
but address a large fraction of all users’ passwords within a database of
millions of users.

In this work, we study those quantum large-scale password guessing
attacks for the first time. In comparison to classical attacks, we still gain
a square-root speedup in the quantum setting when attacking a constant
fraction of all passwords, even considering strongly biased password dis-
tributions as they appear in real-world password breaches. We verify the
accuracy of our theoretical predictions using the LinkedIn leak and derive
specific recommendations for password hashing and password security for
a quantum computer era.

Keywords: Passwords · Quantum computing · Hash function · Zipf.

1 Introduction

Despite its significant weaknesses, password-based authentication continues to
be widely used. An average user may have hundreds of password-protected online
accounts [38,51], needs to enter a password for decrypting and booting the com-
puter, or accessing the Wi-Fi and VPN. Reasons for the continued use of pass-
words include their intuitive and simple usage and an “ecosystem” of coping
strategies (such as password reuse [16,21,37] and choosing passwords with pre-
dictable patterns [45–47]) to work around limitations of passwords.

Password hashing is a central building block for ensuring the security of
passwords at rest: for passwords stored in databases or hard disk encryption, it
is recommended to use a salted, iterated, and memory-hard cryptographic hash
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 412–431, 2021.
https://doi.org/10.1007/978-3-030-92548-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_22&domain=pdf
http://orcid.org/0000-0001-5048-3723
http://orcid.org/0000-0003-2204-2132
http://orcid.org/0000-0002-9232-4496
http://orcid.org/0000-0001-5965-5675
http://orcid.org/0000-0002-4870-1012
https://doi.org/10.1007/978-3-030-92548-2_22

Quantum Large-Scale Password Guessing 413

function [4]. Hashed passwords can be attacked by an offline guessing attack:
an attacker generates password candidates that a human user likely chooses, in
decreasing order of likelihood. Then, the attacker hashes the password candidates
and compares them against the stored password hash, revealing if the tested
password candidate matches the real password [19,34]. Considering the heavily
skewed distribution of human password choice, consumer-grade hardware such
as gaming GPUs can already pose a threat for password security [15,23], except
for very slow password hashes such as Argon2i [3].

With the availability of quantum computers, many cryptographic primitives
are at high risk [26,29,32,33,39,40]. Specifically, popular public-key cryptogra-
phy that is in use today and based on the factorization or discrete logarithm prob-
lem, such as the RSA cryptosystem, can be broken by Shor’s algorithm [43]. In
symmetric cryptography, the situation is different. For many symmetric ciphers,
it is assumed that the only impact in a quantum setting is the Grover square-
root speedup, which can be countered by doubling the key length. Similarly,
Grover’s algorithm gives a square-root speedup for finding preimages of cryp-
tographic hash functions. A straight-forward application of Grover’s algorithm
to uniformly distributed N passwords displays a similar speedup: quantum com-
puters can find preimages for hashed passwords faster (in

√
N steps) than tradi-

tional computers [12]. For more realistic human-chosen passwords that are not
uniformly distributed but highly skewed, it is unknown if a square-root speedup
can also be realized.

Our Contribution. In this work, we investigate the impact of quantum comput-
ers on password guessing. To the best of our knowledge, our work is the first
to consider realistic (non-uniform) password distributions, as well as quantum
attackers guessing passwords for more than a single password hash. Our contri-
bution is three-fold:

1. We investigate how an attacker equipped with a quantum computer (of suf-
ficient size) can use Grover’s algorithm to guess non-uniformly distributed
human-chosen passwords. We realize square-root speedups in two different
attack scenarios: targeting a single (fixed) user and large-scale attacks target-
ing a whole password database at once. Both scenarios are commonly found
in password research and password security practice.

2. As a central tool, we use a Zipf distribution to model human password
choices. We provide analytic bounds for the required number of evaluations
of the password hashing function that holds both in the classical and the
quantum world, which may be of independent interest.

3. We use the well-known LinkedIn password leak to check the accuracy of our
Zipf model, verifying the applicability of our results. We then discuss the
implications and consequences for real-world practices. Even though quan-
tum computers of the required size for our attack might not yet be available
today, we discuss the possible consequences of our results on the required
increase in password strength. Moreover, we address possible solutions based
on alternative password hash functions.

414 M. Dürmuth et al.

Overall, we believe that our work allows for a better understanding of the long-
term impact of quantum computers on the security of password hashing and
provides a first step in taking appropriate steps to mitigate problems.

Related Work. A first step towards modeling user-chosen password distributions
with Zipf’s law has been done by Malone and Maher [35]. They conclude that
Zipf’s law may not allow for an exact yet good approximation of the frequencies
in which users choose passwords. Bonneau [6] and Wang et al. [49] came to a
similar conclusion. The latter also refined accuracy by independently modeling
less and more frequent passwords. A subsequent work by Wang et al. [48] revised
the approach even further, also utilizing it to measure password dataset security.

Corrigan-Gibs et al. [12] discussed how the security of hashed passwords
changes in the presence of quantum computers. For this purpose, they assume a
10-character password that is randomly chosen from the space of all 95 printable
ASCII characters. By applying Grover’s algorithm [25], the security of such a
password reduces from 9510 ≈ 266 to only

√
9510 ≈

√
266 = 233. Hence, Corrigan-

Gibs et al. conclude that quantum computers would put hashed passwords at
risk, which are currently perceived as secure.

Moreover, the quantum scenario also allows for identity authentication proto-
cols with improved privacy and security properties [13]. However, these protocols
require all communicating parties to have quantum computer access, which is
not the scenario we are considering.

2 Password Guessing

In the following section, we provide a brief introduction to password guessing
and the real-world password datasets we are using. Moreover, we describe how
human password choice can be approximated by Zipf’s law and introduce our
overall attack setting.

2.1 Threat Model

Passwords are typically stored in salted hashed form, i. e., instead of storing the
password pwd in plain text, one stores (s, h(pwd |s) for a hash function h and a
random salt s. Due to the strong bias and the resulting low entropy of human-
chosen passwords, effective attacks against such password hashes are guessing
attacks. Here an attacker enumerates password candidates by their likelihood,
and for each candidate tests if it is the correct password. In an online guessing
attack, the attacker tests potential password candidates directly with the service
provider. These attacks can be reasonably mitigated on the server-side, e. g., by
rate-limiting. A more pronounced threat is offline guessing attacks, where the
attacker is in possession of the database with the password hashes and is thus
only limited by the available computational resources, as the correctness of the
passwords can be tested locally. This offline scenario is the threat model we
consider in the remainder of this work.

Quantum Large-Scale Password Guessing 415

In order to minimize the number of hashing operations for the guessing
attack, an attacker will try to guess the most frequent passwords first. For our
work, we consider the strongest threat model possible in form of a perfect knowl-
edge attacker that uses the actual password distribution and guesses passwords
in order of decreasing probability.
We distinguish between the following two attack scenarios:

Scenario A: Fixed User Attack. This is the simplest attack scenario, where
the attacker targets a certain fixed password hash by testing a list of common
passwords in decreasing probability. A typical example for Scenario A is when an
attacker is interested in a single user in a password file (e. g., law enforcement).
Another important use case is (software-based) hard disk encryption, where the
content of the disk is encrypted using a symmetric key. This key needs to be
stored on the hard disk as well (unless supported by specialized hardware), pro-
tected by a password. To this end, the password is the input to a key derivation
function (KDF), which typically uses hash functions (e. g., PBKDF2) or similar
cryptographic constructions to derive a cryptographic key from the password.
This key is not directly used to encrypt the hard disk but to encrypt a keystore,
which facilitates key management, e. g., to allow for changing the password or for
multiple users. Such a keystore construction enables the attacker to verify a pass-
word candidate by feeding the candidate password through the KDF, decrypting
the keystore, and testing if it has the correct form.

Scenario B: Large-Scale Attack. An often even more relevant attack scenario
is when an attacker tries to recover a certain fraction of all of the password hashes
froma large number of accounts.A typical example for this ScenarioB are breached
databases, like the one from LinkedIn (as described in Sect. 2.2), of which 98 % of
the passwords were recovered as they were hashed using SHA-1 and no salt [23]. In
order to optimize the attack, the attacker will guess passwords based on decreasing
likelihood and test each password for all hashes before continuing with the next
guess. The recovered passwords can then be used in a variety of ways: they can
be further weaponized in a credential stuffing attack [36,37], in a targeted pass-
word guessing attack [50], they can be monetized on black markets [17], or used
for further illegal activities such as sending spam emails. Moreover, they can be
of interest for password security research [4,16,20,35,47] or for enthusiasts that
crack passwords out of fun or as a sort of competition [14,23].

2.2 Password Datasets

When analyzing human-chosen passwords, one must consider that password
choice is contextual and influenced by many factors [2,18,38]. While it is difficult
to adjust for all factors, we will analyze the impact of these influencing factors
and describe our used comparison metrics in Sect. 2.3.

An overview of our used datasets that are described in the following is given
in Table 1. We selected the datasets to allow for easy verification and to generate
reproducible results based on publicly available data.

416 M. Dürmuth et al.

Table 1. Evaluated password datasets

Name Service Year Policy # Accounts

LinkedIn Social network 2012 6+ 160.8 million

RockYou Social games 2009 5+ 32.6 million

000Webhost Web hosting 2016 6+ [a–Z][0–9] 15.3 million

To reason about the strength of a password distribution considering a perfect
knowledge attacker, we use the partial guessing entropy (α-guesswork) Gα for
α = 0.25 as described by Bonneau [6]. Our datasets are:

– LinkedIn: The social networking website LinkedIn was hacked in June 2012.
It consists of a database dump of approx. 163 million unsalted SHA-1 hashes.
We use a 98.68 % recovered plaintext version of the leak, as we expect the bias
introduced by ignoring 1.32 % of (presumably strong) passwords to be low.
We include LinkedIn because we consider those passwords to be a reasonable
candidate for medium-strong passwords (G̃0.25 = 19 bits).

– RockYou: This is a well-established leak used extensively in previous work.
The 32 million plaintext passwords leaked from the RockYou web service in
December 2009 via an SQL injection attack. Its passwords are considered
relatively weak (G̃0.25 = 16 bits).

– 000Webhost: This leak occurred in October 2015 and contains 15 million
plaintext passwords from a free web space provider. We include this leak
because of its enforcement of a stricter password composition policy, which
results in a different password distribution containing relatively strong pass-
words (G̃0.25 = 21 bits).

2.3 Approximating Human Password Choice by a Zipf Distribution

Real-world datasets allow researchers to study human password choice, and it
has been realized that real-world distributions DPw typically follow a Zipf dis-
tribution. The Zipf distribution was originally formulated in the context of
quantitative linguistics based on the frequency of words in English text [53] but
has since been shown to be a good model for human password choice as well. It is
well documented that real-world password distributions (roughly) follow a Zipf
distribution (cf. Wang et al. [48,49], Malone and Maher [35], and Bonneau [6]).

Let P = {pwd1, . . . , pwdN} be an ordered set of N passwords, and let s ≥ 0.
We define the generalized harmonic number as

Hs(N) :=
N∑

i=1

1
is

.

Let X be a ZipfN,s-distributed random variable over P with steepness parameter
s (the larger s, the steeper). Then

pi := P[X = pwd i] =
1

Hs(N)
· 1
is

,

Quantum Large-Scale Password Guessing 417

where Hs(N) normalizes the distribution. Throughout the paper, we use that
partial sums of Zipf probabilities can be easily expressed as

k∑

i=1

pi =
1

Hs(N)

k∑

i=1

1
is

=
Hs(k)
Hs(N)

. (1)

Notice that for s = 0 we have H0(N) = N and pi = P[X = pwd i] = 1
N . Thus,

ZipfN,0 is the uniform distribution on all passwords. For 0 ≤ s < 1, the following
lemma shows that Hs(N) ≤ N1−s, and therefore p1 ≥ Ns−1.

For example, for steepness s = 3
4 the most likely password pwd1 has probabil-

ity p1 ≥ N− 1
4 � N−1. This already implies that on expectation we can identify

a user with password pwd1 with at most N
1
4 tries.

Lemma 1. For 0 ≤ s < 1 we have

N1−s

1 − s
− 1

1 − s
< Hs(N) ≤ N1−s

1 − s
.

In particular, Hs(N) = Θ(N1−s).

Proof.

N1−s

1 − s
− 1

1 − s
=

∫ N

1

i−s di <

N∑

x=1

1
is

= Hs(N)

≤ 1 +
∫ N

1

i−s di = 1 +
N1−s

1 − s
− 1

1 − s
≤ N1−s

1 − s
. ��

In order to determine typical steepness values s in practical settings, let us
provide an explicit approximation using the Zipf distribution. As a first exam-
ple, we take the LinkedIn database [23], with roughly 160 · 106 ∼ 227 users and
N ∼ 60 · 106 ∼ 226 different passwords P = {pwd1, . . . , pwdN}. We choose s so
that ZipfN,s is the best approximation of the password-distribution DPw of the
database. For this, we use the coefficient of determination R2 from Definition
1 between ZipfN,s and the password distribution of the database, and select s
so that R2 is maximized. This is the case for s ∼ 0.777 with a coefficient of
determination of R2 = 0.781. A log/log-scaled plot of a ZipfN,0.777 distribution
and DPw can be seen in Fig. 1a. The results of analog calculations for the Rock-
You and 000Webhost leak are shown in Fig. 1b and 1c. In the following, we will
use the LinkedIn leak as our main dataset, since it is by far the largest publicly
available dataset that includes medium-strong passwords (G̃0.25 = 19 bits).

Definition 1 (Coefficient of Determination (R2)). We define the coef-
ficient of determination between two datasets D = {y1, . . . , yn} and D̂ =
{ŷ1, . . . , ŷn} as

R2 = 1 −
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − y)2

,

where y = 1
n

∑n
i=1 yi is the mean of the dataset D.

418 M. Dürmuth et al.

Fig. 1. Approximation of password leaks by the Zipf distribution.

In the following, we show that the complexity of password guessing attacks
in the fixed user case can be described by a random variable X distributed
according to some Zipf distribution. Therefore, we are interested in the expec-
tation of X. The following Lemma 2 shows that the expectation is linear in the
number N of passwords.

Lemma 2. Let X be a ZipfN,s distributed random variable with 0 ≤ s < 1.
Then

E[X] =
1 − s

2 − s
· N (1 ± o (1)) .

Proof. By definition of expectation, we have

E[X] =
N∑

i=1

i ·P[X = pwd i] =
N∑

i=1

i · 1
Hs(N)

· 1
is

=
1

Hs(N)

N∑

i=1

1
is−1

=
Hs−1(N)
Hs(N)

.

Using Lemma 1, we show the upper and lower bound for E[X], starting with the
upper bound.

Quantum Large-Scale Password Guessing 419

E[X] =
Hs−1(N)
Hs(N)

≤
N2−s

2−s

N1−s

1−s − 1
1−s

=
1 − s

2 − s
· N ·

(
N1−s

N1−s − 1

)

=
1 − s

2 − s
· N ·

(
1 +

1
N1−s − 1

)
=

1 − s

2 − s
· N · (1 + o (1)) .

Analogously, we derive the lower bound

E[X] =
Hs−1(N)
Hs(N)

≥
N2−s

2−s − 1
2−s

N1−s

1−s

=
1 − s

2 − s
· N ·

(
N1−s − 1

N1−s

)

=
1 − s

2 − s
· N ·

(
1 − 1

N1−s

)
=

1 − s

2 − s
· N · (1 − o (1)) .

��

2.4 Password Guessing Scenario

Let U = {u1, . . . , uw} be a set of w users and P = {pwd1, . . . , pwdN} a set of N
passwords. We denote by g : U
→ {1, . . . , N} a function that maps each u ∈ U
to its password index, i. e., u has password pwdg(u). Further, we define for each
user u a random salt su.

We denote by L a leaked database of |U | triples (u, su, h(pwdg(u)|su)), where
h is a cryptographic hash function. In other words, the leaked database L reveals
for each user u its salt su and a salted hash of its password.

As in the previous Sect. 2.3, the set of password follows a ZipfN,s distribution.
Hence, a uniformly random user u ∈ U has pwd i ∈ P with probability

pi := Pu∈U [g(u) = i] =
1

Hs(N)
· 1
is

.

Let us define a password verification function V : L × P
→ {0, 1} as

Vu,su,h(pwdg(u)|su)(pwd) :=

{
1 if h(pwdg(u)|su) = h(pwd |su),
0 else

. (2)

By the definition of V , a password guess pwd is correctly linked to user u with
entry (u, su, h(pwdf(u)|su)) ∈ L if pwd has the correct salted hash value. We call
every user for which our guesser finds a correctly linked password compromised.

We check the correctness of our password guesses via function evaluation
of V . Notice that each evaluation requires a hash evaluation of h, which is our
unit cost measure. Thus, we define the average cost of password guessing as

C :=
#Evaluations of h

#Compromised Users
. (3)

Notice that our cost measure is independent of the underlying hash function. In
Sect. 6.2, we discuss the effects of taking the run time of hash function evaluations
into account.

In the following, we show that for both scenarios described in Sect. 2.1 (i. e.,
attacking a fixed user or large-scale attacks), the average cost of a quantum
attacker is only the square-root of the average cost of a classical attacker.

420 M. Dürmuth et al.

2.5 Quantum Password Guessing

While previous applications of quantum algorithms to the problem of password
guessing considered uniform password distribution [12], we generalize to a Zipf
distribution, which more accurately captures real-world password distributions.
As in previous work [12], we consider error-free quantum computations [1,10,31].

When attacking a fixed user u (Scenario A), the key advantage of quantum
computations is that we check the correctness of all passwords on u in a parallel
superposition. In the large-scale Scenario B, first studied quantumly in our work,
the key advantage of quantum computation is that we can check the correctness
of a single password on all users in parallel.

Grover’s Algorithm. The key to many square-root speedups in quantum com-
putation is Grover’s algorithm [25] and its generalizations [7,8].

Theorem 1 (Grover [7,8,25]). Let Ω be a finite search space with solutions
T ⊆ Ω. Let f : Ω
→ {0, 1} be an efficiently computable target function with
f(x) = 1 iff x ∈ T .

1. In the single solution case |T | ≤ 1, Grover’s algorithm computes the unique
solution x ∈ T with c · √|Ω| f-queries, where c = π

4 ·
(
1 + o

(
|T |
|Ω|

))
∼ 0.785,

or outputs FAIL if |T | = 0.
2. In the general case, Grover’s algorithm computes a random solution x ∈ T

after O
(√

|Ω|
|T |

)
f-queries, or outputs FAIL if |T | = 0.

For illustrative purposes, let us first consider the case of uniformly distributed
passwords.

Fixed User Attack. Let L be our database with entries �u = (u, su,
h(pwdf(u)|su)). Consider some fixed �u, and take our password verification func-
tion
V : L × P → {0, 1} from Eq. (2). We define the Grover target function

f�u : P → {0, 1}, pwd
→ V (�u, pwd). (4)

Since a unique password pwd ∈ P verifies correctly for user u (unless we find
collisions in h), we are in the single solution case |T | = 1 of Theorem 1. Thus,
Grover’s algorithm recovers the correct password with c · √|P | ∼ 0.785 · √

N
hash evaluations.

Large-Scale Attack. We check for all users in U = {u1, . . . uw} the correctness of
a single fixed password pwd . To this end, define the Grover function

fpwd : U → {0, 1}, u → V (�u, pwd). (5)

Since many users may use the same password pwd , we are in the general case of
Theorem 1. Let T ⊆ U be the number of users that share pwd . Then Grover’s

algorithm recovers a random user u ∈ T within O(
√

|U |
|T |) hash evaluations. In the

following sections, we also take the effects of our Zipf distribution into account.

Quantum Large-Scale Password Guessing 421

3 Scenario A: Fixed User Attack

Classical. First, we study how the Zipf distribution affects an optimal classical
attacker targeting a fixed user u with leaked data �u = (u, su, h(pwdf(u)|su)) ∈ L.

A classical attacker’s optimal strategy is to try passwords pwd1, pwd2, . . . in
order of decreasing probability. Let X be a random variable for the number of
hash evaluation. Then the attacker succeeds with a single hash evaluation with
probability P[X = 1] = p1 = P[u has password pwd1]. In general, X is ZipfN,s-
distributed. By Lemma 2 and neglecting low order terms, the expected number
of hash evaluations is

E[X] =
N∑

i=1

i · pi =
1 − s

2 − s
· N. (6)

This implies that for the uniform distribution with s = 0, we need to test on
expectation half of the passwords. For the typical value of s = 3

4 from Figs. 1a
and 1b, on expectation it suffices to try only 1

5N passwords.

Quantum. In the quantum setting, we use Grover’s theorem (Theorem 1) with
target function f�u : P → {0, 1}, f�u(pwd) := V (�, pwd) from Eq. (4). Moreover,
we split our search space P at the mean μ := E[X] of our ZipfN,s distribution
from Eq. (6). Our quantum attack first checks whether our desired password is
in P1 = {pwd1, . . . , pwdμ}. By Theorem (1), this first check can be performed
with c

√
μ hash evaluations and succeeds with probability

p1 + . . . + pμ =
1

Hs(N)

μ∑

i=1

1
is

=
Hs(μ)
Hs(N)

.

Using Lemma 2, we have to perform the second check on the remaining search
space P \ P1 with probability at most 1 − Hs(μ)

Hs(N) ≤ √
1 − s. In total the number

of hash evaluations is upper bounded by

c
(√

μ +
√

1 − s ·
√

N − μ
)

= 2c
√

E[X].

Thus, up to a factor of at most 2c ≤ 1.6 our quantum algorithm achieves the
square-root cost of the optimal classical cost from Eq. (6).

Remark 1. A result of similar quality can be achieved by using the Amplitude
Amplification technique of Brassard et al. [8]. However, our Grover-based app-
roach benefits from its simplicity, since in Amplitude Amplification, we have to
create a superposition over all passwords weighted by their ZipfN,s-distribution.
This creates some technical difficulties and unnecessary overhead.

4 Scenario B: Large-Scale Attack

Let us now look at the scenario where an attacker wants to compromise just a
single user with a weak password. In some attack scenarios, this may already
provide an attacker access to an infrastructure, e. g., in a company.

422 M. Dürmuth et al.

4.1 Scenario B.1: Attacking a Single (and All) Weakest User(s)

Classical. To identify a single weakest user, the optimal classical approach is
to try the most likely password pwd1 with success probability p1 on random
users. This takes expected running time 1

p1
. If our passwords followed a uniform

distribution, then this attack still takes expected time 1
p1

= N . However, in the
more general case of a ZipfN,s distribution by Lemma 1 we have

1
p1

= Hs(N) ≤ N1−s

1 − s
.

This implies, for our typical value s = 3
4 from Figs. 1a and 1b, that an attacker

finds a user with a weakest password in time with at most 4N
1
4 hash evaluations.

Quantum. In the quantum setting, we use Grover’s algorithm over a superposi-
tion of all users to identify a user with password pwd1.

Let U = {u1, . . . , uw} be the user set, and L be a our leaked database with
entry �u for user u. We use the Grover function fpwd1

: U → {0, 1}, u →
V (�u, pwd1), as defined in Eq. (5).

Let T be the set of users with weakest password pwd1. Then on expectation
|T | = p1|U |. An application of Theorem 1 shows that we find a random user
from T in time

O
(√

|U |
|T |

)
= O

(√
1
p1

)
= O(

√
Hs(N)) = O(N

1−s
2).

For s = 3
4 , this implies that we quantumly compromise a user with the

weakest password within only O(N
1
8) hash function evaluations.

Using our cost function from Eq. (3), we obtain average classical cost
O(N1−s) respectively quantum cost O(N

1−s
2) for compromising a single user

with weakest password. In the following, we show that with the same average
cost per user, we can also compromise all users with password pwd1.

All Weakest Users. Classically, we simply test for all |U | users the validity
of password pwd1, resulting in expected |T | = p1|U | compromised users. This
implies average cost C = |U |

p1|U | = Hs(N) = O(N1−s).
Quantumly, we use the aforementioned Grover algorithm until we find |T | =

p1|U | different users with password pwd1. Using coupon collector, this takes
|T | · ln |T | runs of the above algorithm. Omitting the low order ln |T |-term, we
obtain average cost

|T | · O
(√

|U |
|T |

)

|T | = O
(√

1
p1

)
= O(N

1−s
2),

giving us again the desired square-root speedup.

Quantum Large-Scale Password Guessing 423

4.2 Scenario B.2: Attacking a Constant Fraction of All Users

Finally, we want to generalize the techniques from the previous Sect. 4.1 to large-
scale adversaries that try to recover a constant fraction c of all users. As an illus-
trating example, we use c = 10% respectively c = 50% of the users. In a nutshell,
in both the classical and quantum setting an attacker recovers those users that
use the k weakest passwords pwd1, . . . , pwdk with probabilities p1, . . . , pk. We
set k such that we obtain the desired c-fraction of all users. Using Eq. (1) and
Lemma 1 we obtain

k∑

i=1

pi =
Hs(k)
Hs(N)

≈
(

k

N

)1−s
!= c,

where ≈ suppresses an (1 + o(1))-factor. This means we can solve the above
relation in k by setting

k = c
1

1−s N. (7)

Classical. Consider an attacker that in a first pass tries on all |U | users password
pwd1, thereby recovering p1|U | users. In a second pass, the attacker tries on all
remaining |U |−p1|U | users pwd2, recovering p2|U | users, etc. The attacker stops
on identifying at least c|U | many user passwords.

The amount of hash function evaluations per pass is clearly upper bounded
by |U |, and lower bounded by (1 − c)|U | = Ω(|U |). Thus, the attacker recovers
c|U | passwords in total time k ·Θ(|U |) = Θ(c

1
1−s N |U |). This gives us an average

cost per password of

C =
Θ(c

1
1−s N |U |)
c|U | = Θ

(
c

s
1−s N

)
. (8)

Let us briefly ignore the small constant hidden in the Θ-notion. For the
uniform distribution with s = 0, the average cost per password is N , as one
would expect. For the typical value s = 3

4 , we obtain the average cost c3N . This
means that ZipfN, 34

gives us a speedup of factor c−3 per compromised password.
Thus, for c = 0.5 we obtain a speedup of 8, and for c = 0.1 we even obtain a
speedup factor of 1000 over the uniform distribution.

Quantum. From Sect. 4.1 we know that we can quantumly recover all pi|U |
users with password pwd i in time O(pi|U | ·

√
|U |

pi|U |) = O(
√

pi|U |). Hence, for all
k passwords pwd1, . . . , pwdk we need a total time of

O
(

k∑

i=1

√
pi|U |

)
= O

(
1

Hs(N)

k∑

i=1

i−
s
2 |U |

)
= O

(
N

s−1
2 · k1− s

2 · |U |
)

= O
(
N

s−1
2 · (c

1
1−s N)1− s

2 · |U |
)

= O
(
c1+

s
2(1−s) N

1
2 · |U |

)
.

424 M. Dürmuth et al.

Since we recover c|U | passwords, this implies an average cost per password of

O
(√

c
s

1−s N
)

,

i. e., the square-root of the classical cost from Eq. (8).

5 Real-World Impact

Let us now check the accuracy of our theoretical predictions for the Zipf distribu-
tion from Sects. 3 and 4, when applied to a real-world password leak distribution
DPw. As described in Sect. 2.2, we take the LinkedIn database for this purpose
because it is a good example for a medium-strong real-world distribution.

Fig. 2. The best approximation of the LinkedIn password leak by a Zipf distribution
(s = 0.777). The dotted lines correspond to a fraction of 10 %, 25 %, 50%, and 75% of
all users.

Notice that we only take the distribution from LinkedIn, see also Fig. 2, but
otherwise stay in our attack model with salted hashes (which is not the case for
the LinkedIn dataset).

Scenario A: Fixed User Attack. Table 2 provides an overview of our results of
the real-world Scenario A. We see that ZipfN,0.777 quite accurately approximates
the number of required hash evaluations for the real-world distribution DPw –
within a factor of 1.3 classically and 1.15 ≈ √

1.3 quantumly.

Quantum Large-Scale Password Guessing 425

Table 2. Scenario A: fixed user attack. Required hash evaluations for finding a fixed
user’s password (using the approaches of Sect. 3 and Grover with c = 1)).

Distribution Required hash evaluations

Classical Quantum

Uniform ∼ ZipfN,0 30 000 000 7 750
ZipfN,0.777 11 100 000 5 560

LinkedIn DPw 14 600 000 6 430

Compared to a quantum attacker for the uniform distribution (ZipfN,0), our
new quantum attacker with knowledge of the human-chosen password distribu-
tion (DPw) only requires 83% of the hash evaluations.

It is also worth stressing the absolute numbers for DPw. While the classical
attacker needs almost 15 million hash evaluations, the quantum attacker succeeds
with roughly 6400 hash evaluations.

Table 3. Attack scenario B: large-scale attack. Required number of hash evaluations
per user for compromising a constant fraction of all users (using the approaches of
Sect. 4 and Grover with c = 1.

Setting Distribution Required hash evaluations per User
10% 25% 50% 75% 100%

Classical
Uniform ∼ ZipfN,0 57 100 000 52 600 000 45 100 000 37 500 000 30 000 000

ZipfN,0.777 33 300 473 000 3 430 000 8 800 000 11 100 000
LinkedIn DPw 38 700 482 000 6 820 000 14 300 000 14 600 000

Quantum
Uniform ∼ ZipfN,0 7 750 7 750 7 750 7 750 7 750

ZipfN,0.777 158 613 1 880 3 710 6 030
LinkedIn DPw 181 622 2 520 4 640 6 380

Scenario B: Large-Scale Attack. Table 3 provides an overview of our results
for large-scale attackers, when compromising a total user fraction of 10%, 25%,
50%, 75%, and 100%.

The values predicted by the ZipfN,0.777 distribution differ only by a factor
of at most 2 from the values for the LinkedIn distribution DPw, again validating
the accuracy of Zipf.

Notice that in comparison to Scenario A, the reduction of the absolute num-
bers through the quantum square-root speedup is even more significant in this
large-scale scenario. Within the weakest 10% of the users, we require only about
180 hash evaluations per user on average. When attacking 50% of the users, we
still require just 2500 evaluations per user. Only if we address the full database,
the average grows to 6400, matching the analysis from Scenario A.

426 M. Dürmuth et al.

Let us put the 10% weakest user scenario into perspective. Assume that, both
classically and quantumly, a hash evaluation takes about 1 s [3]. Then quantumly
we would require only 180 s, i.e. 3 min, whereas a classical attacker would need,
on average, about 10 h per user.

6 Discussion

In light of our new results for the quantum setting, we now discuss recommen-
dations for increasing password security in a post-quantum world.

6.1 Password Strength

A square-root speedup seems moderate from a cryptographic perspective and
merely means doubling the cryptographic keys’ length to achieve the same secu-
rity level. However, from a user’s perspective, this is much more dramatic. To
bring this into perspective, let us consider an 8 character password randomly cho-
sen from the alphabet of all 95 printable ASCII characters (lowercase, uppercase,
digits, symbols) as the minimal level of security. If we want to achieve the same
security in the quantum setting, users would need to remember 16 instead of
8 characters due to the square-root speedup-up from Grover’s algorithm. While
assigning random passwords to users is not recommendable from a usability
perspective, studies showed that users are potentially able to remember random
8 character passwords [28,52,54]. Increasing this to 16 random characters crosses
a threshold where we cannot expect users to be able to memorize such a pass-
word. This is the situation for randomly chosen passwords; let us now focus on
human password choice.

As described earlier, users struggle and often fail to create secure passwords,
resulting in a highly skewed distribution. This worsens the situation because we
demonstrated in Sect. 5 that an attacker with knowledge of the password dis-
tribution is much more effective in guessing the passwords. Hence, if we want
to achieve the security level as described above, users would need to increase
the length of their password beyond 16 characters. While increasing the pass-
word length is recommended by current best practice policies, among others,
NIST [24], they do not require more than 16 characters. This limit ensures that
the created passwords are not only secure but also memorable [41,42,44]. Hence,
we argue that for both random and user-chosen passwords, we are going to face
the problem that we as humans simply can no longer memorize the passwords
for all our accounts.

If we insist on solving the problem by increasing the password length, this
seems only possible with password managers. Using them is already recom-
mended nowadays, but their advantage of generating and storing a long, random
string for each and every account becomes even more apparent in the quantum
setting. Nevertheless, considering their low adoption rates and the goal in mind
not to burden users, it is important to look at alternative solutions.

Quantum Large-Scale Password Guessing 427

6.2 Password Hash Functions

So far, our cost measure used the number of hash function evaluations but
ignored their individual run times. We did this to provide results independently
from actual implementations. Still, for recommendations that tend to increase
security, we remark on the importance of choosing suitable and future-proof
password hashing functions. Currently widely deployed hash functions such as
bcrypt, PBKDF2, or iterated versions of SHA-256 and SHA-512 [9,22], are based
on the idea that the computing power of an adversary is limited. This also holds
for attackers in the quantum setting.

Currently, the biggest limitations of quantum computers are the number of
qubits that can be implemented as well as the time span they can keep their
entangled states, i. e., their information. As of June 2021, the technology scales
up to around 65 qubits [11], with predictions of multiple hundred in the foresee-
able future. Thus, a short-term solution could be the use of an unusually long
salt that does not add complexity but exploits the shortage of available qubits in
a quantum computer. However, a far better approach is memory-hard password
hashes [3,5], which require large amounts of memory to be efficiently computed.
While memory-hard password hashes were originally intended to counter the
massive computing power of ASICs, FPGAs, and GPUs, we believe that they
are also effective in countering quantum computer-based attacks. Still, further
research is necessary to focus on the quantum-hardness of memory-hard pass-
word hash functions.

6.3 Encrypted Passwords and Secret Salts

As an additional layer of protection NIST [24] recommends that service opera-
tors should “perform an additional iteration of a KDF using a salt value that
is secret and known only to the verifier.” This secret salt, sometimes also called
pepper, needs to be stored separately from the password hashes and should ide-
ally reside in a hardware security module (HSM) or similar protected device.
Likewise, passwords could also be encrypted using a quantum-resistant authen-
ticated encryption scheme like NTRU [27]. In both cases, the attacker would
need to obtain or attack (using Grover’s algorithm) the secret salt/encryption
key first. Thus, these protection mechanisms are only applicable to scenarios
where a remote device or rate-limited hardware component like a trusted plat-
form module could be utilized to store the required high entropy key material.

In cases where an HSM is not available, one could use a different notion of
a secret salt in the form of a random value that is not stored but needs to be
rediscovered every time it is needed [30]. However, since the server itself has to
brute-force this value for every authentication attempt, it has to be chosen from
a smaller set than a stored salt. Hence, this countermeasure is only effective
against a large-scale attacker that targets multiple hashes because the slowdown
becomes significant if the individual but negligible brute-force attempts add up.
Finally, a randomly chosen salt only gives a probabilistic guarantee, whereas
iterated hash functions, as described in Sect. 6.2, ensure a fixed slowdown.

428 M. Dürmuth et al.

7 Conclusion

Motivated by the recent advancements in the field of quantum computers, we
analyzed the potential impact of quantum computing on securely stored human-
chosen passwords. We showed how a quantum computer-equipped attacker can
take advantage of the bias in real-world password distributions and still gains a
square-root speedup in the quantum world. We validated our theoretical Zipf
modeling with a real-world distribution from LinkedIn. Our quantum speedup
on real-world data leads to an already small number of 6400 hash evaluations
for attacking a fixed user (Scenario A) and to a frightening number of less than
200 hash evaluations per user among the 10% users with weakest passwords
(Scenario B). Our results underline the necessity of new password protection
mechanisms in a quantum world.

Acknowledgments. This research was supported by the research training group
“Human Centered Systems Security” sponsored by the state of North Rhine-Westphalia
and funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy - EXC 2092 CASA – 390781972.

References

1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant
error rate. SIAM J. Comput. 38(4), 1207–1282 (2008)

2. Bailey, D.V., Dürmuth, M., Paar, C.: Statistics on password re-use and adaptive
strength for financial accounts. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014.
LNCS, vol. 8642, pp. 218–235. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10879-7 13

3. Biryukov, A., Dinu, D., Khovratovich, D., Josefsson, S.: Argon2 Memory-Hard
Function for Password Hashing and Proof-of-Work Applications. RFC 9106, RFC
Editor, September 2021. https://tools.ietf.org/html/rfc9106

4. Blocki, J., Harsha, B., Zhou, S.: On the economics of offline password cracking.
In: IEEE Symposium on Security and Privacy. SP 2018, pp. 35–53. IEEE, San
Francisco, California, USA, May 2018

5. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: a memory-hard
function providing provable protection against sequential attacks. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 220–248. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 8

6. Bonneau, J.: The Science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: IEEE Symposium on Security and Privacy. SP 2012, pp. 538–552.
IEEE, San Jose, California, USA, May 2012

7. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
In: Workshop on Physics and Computation. PhysComp 1996, pp. 493–506, Elsevier,
Boston, Massachusetts, USA, November 1996

8. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Math. 305, 53–74 (2002)

9. Brewster, T.: Why You Shouldn’t Panic About Dropbox Leaking 68 Million Pass-
words, August 2016. https://www.forbes.com/sites/thomasbrewster/2016/08/31/
dropbox-hacked-but-its-not-that-bad/, as of 2021/11/20 18:59:40

https://doi.org/10.1007/978-3-319-10879-7_13
https://doi.org/10.1007/978-3-319-10879-7_13
https://tools.ietf.org/html/rfc9106
https://doi.org/10.1007/978-3-662-53887-6_8
https://www.forbes.com/sites/thomasbrewster/2016/08/31/dropbox-hacked-but-its-not-that-bad/
https://www.forbes.com/sites/thomasbrewster/2016/08/31/dropbox-hacked-but-its-not-that-bad/

Quantum Large-Scale Password Guessing 429

10. Campbell, E.T., Terhal, B.M., Vuillot, C.: Roads towards fault-tolerant universal
quantum computation. Nature 549(7671), 172–179 (2017)

11. Cho, A.: IBM Promises 1000-Qubit Quantum Computer by 2023, Septem-
ber 2020. https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-
quantum-computer-milestone-2023, as of 2021/11/20 18:59:40

12. Corrigan-Gibbs, H., Wu, D.J., Boneh, D.: Quantum operating systems. In: Work-
shop on Hot Topics in Operating Systems. HotOS 2017, pp. 76–81. ACM, Vancou-
ver, British Columbia, Canada, May 2017

13. Crawford, H., Atkin, S.: Quantum authentication: current and future research
directions. In: Who Are You?! Adventures in Authentication Workshop. WAY 2019,
pp. 1–5, USENIX, Santa Clara, California, USA, August 2019

14. Croley (“Chick3nman”), S.: Abusing Password Reuse at Scale: Bcrypt and
Beyond, August 2018. https://www.youtube.com/watch?v=5su3 Py8iMQ, as of
2021/11/20 18:59:40

15. Croley (“Chick3nman”), S.: NVIDIA GeForce RTX 3090 Hashcat Benchmarks,
November 2020. https://gist.github.com/Chick3nman/e4fcee00cb6d82874dace721
06d73fef, as of 2021/11/20 18:59:40

16. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of pass-
word reuse. In: Symposium on Network and Distributed System Security. NDSS
2014, ISOC, San Diego, California, USA, February 2014

17. Digital Shadows Ltd: From Exposure to Takeover: The 15 Billion Stolen Creden-
tials Allowing Account Takeover, July 2020. https://resources.digitalshadows.com/
whitepapers-and-reports/from-exposure-to-takeover, as of 2021/11/20 18:59:40

18. Florêncio, D., Herley, C.: A large-scale study of web password habits. In: The
World Wide Web Conference. WWW 2007, pp. 657–666. ACM, Banff, Alberta,
Canada, May 2007

19. Florêncio, D., Herley, C., Van Oorschot, P.C.: An administrator’s guide to internet
password research. In: Large Installation System Administration Conference, pp.
44–61. LISA 2014, USENIX, Seattle, Washington, USA, November 2014

20. Golla, M., Dürmuth, M.: On the accuracy of password strength meters. In: ACM
Conference on Computer and Communications Security. CCS 2018, pp. 1567–1582.
ACM, Toronto, Ontario, Canada, October 2018

21. Golla, M., et al.: What was that site doing with my Facebook password? Designing
password-reuse notifications. In: ACM Conference on Computer and Communica-
tions Security, pp. 1549–1566. ACM. CCS 2018, Toronto, Ontario, Canada, October
2018

22. Goodin, D.: Once Seen as Bulletproof, 11 Million+ Ashley Madison Pass-
words Already Cracked, September 2015. https://arstechnica.com/information-
technology/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-
passwords-already-cracked/, as of 2021/11/20 18:59:40

23. Gosney (“epixoip”), J.M.: How LinkedIn’s Password Sloppiness Hurts Us
All, June 2016. https://arstechnica.com/information-technology/2016/06/how-
linkedins-password-sloppiness-hurts-us-all/, as of 2021/11/20 18:59:40

24. Grassi, P.A., Fenton, J.L., Burr, W.E.: Digital Identity Guidelines - Authentication
and Lifecycle Management: NIST Special Publication 800–63B, Jun 2017

25. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: ACM
Symposium on Theory of Computing. STOC 1996, pp. 212–219. ACM, Philadel-
phia, Pennsylvania, USA, May 1996

26. Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n + 2 qubits with Toffoli
based modular multiplication. Quantum Inf. Comput. 17(7–8), 673–684 (2017)

https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023
https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023
https://www.youtube.com/watch?v=5su3_Py8iMQ
https://gist.github.com/Chick3nman/e4fcee00cb6d82874dace72106d73fef
https://gist.github.com/Chick3nman/e4fcee00cb6d82874dace72106d73fef
https://resources.digitalshadows.com/whitepapers-and-reports/from-exposure-to-takeover
https://resources.digitalshadows.com/whitepapers-and-reports/from-exposure-to-takeover
https://arstechnica.com/information-technology/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
https://arstechnica.com/information-technology/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
https://arstechnica.com/information-technology/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
https://arstechnica.com/information-technology/2016/06/how-linkedins-password-sloppiness-hurts-us-all/
https://arstechnica.com/information-technology/2016/06/how-linkedins-password-sloppiness-hurts-us-all/

430 M. Dürmuth et al.

27. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

28. Huh, J.H., Kim, H., Bobba, R.B., Bashir, M.N., Beznosov, K.: On the memorability
of system-generated PINs: can chunking help? In: Symposium on Usable Privacy
and Security, pp. 197–209. SOUPS 2015, USENIX, Ottawa, Canada, July 2015

29. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

30. Kedem, G., Ishihara, Y.: Brute force attack on UNIX passwords with SIMD com-
puter. In: USENIX Security Symposium. SSYM 1999, pp. 93–98, USENIX, Wash-
ington, District of Columbia, USA, August 1999

31. Knill, E., Laflamme, R., Zurek, W.H.: Resilient quantum computation: error mod-
els and thresholds. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 454(1969), 365–384
(1998)

32. Kuwakado, H., Morii, M.: Security on the quantum-type even-Mansour cipher. In:
International Symposium on Information Theory and Its Applications. ISITA 2012,
pp. 312–316. IEEE, Honolulu, Hawaii, USA, October 2012

33. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-
construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 6

34. Liu, E., Nakanishi, A., Golla, M., Cash, D., Ur, B.: reasoning analytically about
password-cracking software. In: IEEE Symposium on Security and Privacy. SP
2019, pp. 380–397. IEEE, San Francisco, California, USA, May 2019

35. Malone, D., Maher, K.: Investigating the distribution of password choices. In: The
World Wide Web Conference. WWW 2012, pp. 301–310. ACM, Lyon, France, April
2012

36. Mirian, A., DeBlasio, J., Savage, S., Voelker, G.M., Thomas, K.: Hack for hire:
exploring the emerging market for account hijacking. In: The World Wide Web
Conference. WWW 2019, pp. 1279–1289. ACM, San Francisco, California, USA,
May 2019

37. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing: pass-
word similarity models using neural networks. In: IEEE Symposium on Security
and Privacy. SP 2019, pp. 866–883. IEEE, San Francisco, California, USA, May
2019

38. Pearman, S., et al.: Let’s go in for a closer look: observing passwords in their
natural habitat. In: ACM Conference on Computer and Communications Security.
CCS 2017, pp. 295–310. ACM, Dallas, Texas, USA, Oct 2017

39. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 9

40. Roetteler, M., Svore, K.M.: Quantum computing: codebreaking and beyond. IEEE
Secur. Privacy 16(5), 22–36 (2018)

41. Shay, R., et al.: A spoonful of sugar?: The impact of guidance and feedback on
password-creation behavior. In: ACM Conference on Human Factors in Computing
Systems. CHI 2015, pp. 2903–2912. ACM, Seoul, Republic of Korea, April 2015

https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-70697-9_9

Quantum Large-Scale Password Guessing 431

42. Shay, R., et al.: Can long passwords be secure and usable? In: ACM Conference on
Human Factors in Computing Systems. CHI 2014, pp. 2927–2936. ACM, Toronto,
Ontario, Canada, April 2014

43. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: IEEE Annual Symposium on Foundations of Computer Science. FOCS
1994, pp. 124–134. IEEE, Santa Fe, New Mexico, USA, November 1994

44. Tan, J., Bauer, L., Christin, N., Cranor, L.F.: Definitive recommendations for
stronger, more usable passwords combining minimum-strength, minimum-length,
and blacklist requirements. In: ACM Conference on Computer and Communica-
tions Security. CCS 2020, pp. 1407–1426. ACM, Virtual Event, USA, November
2020

45. Ur, B., Bees, J., Segreti, S.M., Bauer, L., Christin, N., Cranor, L.F.: Do users’
perceptions of password security match reality? In: ACM Conference on Human
Factors in Computing Systems. CHI 2016, pp. 3748–3760. ACM, Santa Clara,
California, USA, May 2016

46. Ur, B., et al.: “I Added ‘!’ at the end to make it secure”: observing password
creation in the lab. In: Symposium on Usable Privacy and Security, pp. 123–140.
SOUPS 2015, USENIX, Ottawa, Ontario, Canada, July 2015

47. Veras, R., Collins, C., Thorpe, J.: On the semantic patterns of passwords and
their security impact. In: Symposium on Network and Distributed System Security.
NDSS 2014, ISOC, San Diego, California, USA, February 2014

48. Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE
Trans. Inf. Forensics Secur. 12(11), 2776–2791 (2017)

49. Wang, D., Wang, P.: On the implications of Zipf’s law in passwords. In: Askoxy-
lakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS,
vol. 9878, pp. 111–131. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45744-4 6

50. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: ACM Conference on Computer and Com-
munications Security. CCS 2016, pp. 1242–1254. ACM, Vienna, Austria, October
2016

51. Wash, R., Radar, E., Berman, R., Wellmer, Z.: Understanding password choices:
how frequently entered passwords are re-used across websites. In: Symposium on
Usable Privacy and Security, pp. 175–188. SOUPS 2016, USENIX, Denver, Col-
orado, USA, July 2016

52. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: empirical results. IEEE Secur. Privacy 2(5), 25–31 (2004)

53. Zipf, G.K.: Human Behavior and the Principle of Least Effort: An Introduction to
Human Ecology. Addison-Wesley Press, Cambridge (1949)

54. Zviran, M., Haga, W.J.: A comparison of password techniques for multilevel
authentication mechanisms. Comput. J. 36(3), 227–237 (1993)

https://doi.org/10.1007/978-3-319-45744-4_6
https://doi.org/10.1007/978-3-319-45744-4_6

Attestation and Verification

Anonymous Transactions with Revocation
and Auditing in Hyperledger Fabric

Dmytro Bogatov1(B) , Angelo De Caro2, Kaoutar Elkhiyaoui2,
and Björn Tackmann3

1 Boston University, Boston, USA
dmytro@bu.edu

2 IBM Research, Zürich, Switzerland
{adc,kao}@zurich.ibm.com

3 DFINITY, Zürich, Switzerland
bjoern@dfinity.org

Abstract. In permissioned blockchain systems, participants are admit-
ted to the network by receiving a credential from a certification authority.
Each transaction processed by the network is required to be authorized
by a valid participant who authenticates via her credential. Use case set-
tings where privacy is a concern thus require proper privacy-preserving
authentication and authorization mechanisms.

Anonymous credential schemes allow a user to authenticate while
showing only those attributes necessary in a given setting. This makes
them a great tool for authorizing transactions in permissioned blockchain
systems based on the user’s attributes. In most setups, there is one dis-
tinct certification authority for each organization in the network. Conse-
quently, the use of plain anonymous credential schemes still leaks the
association of a user to the organization that issued her credentials.
Camenisch, Drijvers and Dubovitskaya (CCS 2017) therefore suggest
the use of a delegatable anonymous credential scheme to also hide that
remaining piece of information.

In this paper, we propose the revocation and auditability—two func-
tionalities that are necessary for real-world adoption—and integrate
them into the scheme. We present a complete protocol, its security def-
inition and the proof, and provide its open-source implementation. Our
distributed-setting performance measurements show that the integration
of the scheme with Hyperledger Fabric, while incurring an overhead in
comparison to the less privacy-preserving solutions, is practical for set-
tings with stringent privacy requirements.

Keywords: Blockchain security and privacy · Anonymity &
pseudonymity · Anonymous credentials · Applied cryptography

1 Introduction

Blockchain systems allow two or more mutually distrustful parties to perform
transactions by appending them to a shared ledger without the need to rely on
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 435–459, 2021.
https://doi.org/10.1007/978-3-030-92548-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_23&domain=pdf
http://orcid.org/0000-0002-9357-8834
https://doi.org/10.1007/978-3-030-92548-2_23

436 D. Bogatov et al.

a trusted third party. The first and still most prominent use of blockchains is
in the area of cryptocurrencies where each transaction transfers fungible tokens
between two or more parties. Blockchain systems used for cryptocurrencies are
usually permissionless, meaning that joining the system does not require the
parties to register their identity; everyone can participate.

Many other application scenarios for blockchains, however, require the par-
ticipants to be registered, and access to the blockchain system to be permis-
sioned. For instance, use cases in the financial domain are restricted by know-
your-customer (KYC) or anti-money-laundering (AML) regulations. Elections
require the set of eligible voters to be known in order to prevent illegitimate vot-
ers from submitting votes or any voter from double-voting. Enterprise blockchain
systems accelerate processing of transactions in business networks with known
participants. All aforementioned use cases require the transactions to be prop-
erly authorized by a member of the network. Note that permissioned does not
mean centralized : the trust is still distributed among the participants of the net-
work, the difference with permissionless networks is that joining the network
becomes an explicit operation. For example, instead of a centralized certification
authority for all participants, a permissioned blockchain network uses multiple
such authorities, one per organization, resulting in a federated model.

Use cases that call for a transaction authorization often still require the iden-
tity of the transaction origin to be hidden. The most salient example is elections,
where re-voting (as a measure against coercion [1]) inherently requires voters to
be anonymous. Financial use cases where the transaction history of a user can
leak sensitive personal information through usage patterns, are another good
example. In such cases, the use of anonymous credential systems like Identity
Mixer [16] allows participants to submit transactions while revealing only the
attributes necessary to authorize that particular transaction (such as being a
registered voter or having passed KYC checks), and keeping all other attributes
(such as name, address or age) hidden.

Unfortunately, even the use of anonymous credentials can be insufficient. The
reason is that each organization has its own certificate authority, and anonymity
is only guaranteed relative to that authority. In other words, the particular cer-
tificate authority that issued a user’s credential still will be leaked from the
authorized transactions. In certain use cases even this leakage is not accept-
able, for example, the leakage of a patient being treated in a particular hospital
department. A näıve approach to tackle this is to have one global certificate
authority issuing anonymous credentials. This, however, means that all creden-
tials are issued by the same central entity, essentially eliminating the federated
management model that permissioned blockchains are supposed to bring.

As first observed in [14], this is where delegatable credentials come in handy:
in a delegatable credential scheme, a root authority delegates issuance of creden-
tials to intermediate authorities in a way that using the credentials only reveals
the root authority. In particular, the issuance of credentials for each organiza-
tion can be delegated to a different certification authority. This helps keeping the
management largely decentralized, while at the same time hides the particular
authority that issued a given credential.

Anonymous Transactions with Revocation and Auditing 437

In this paper, we design practical extensions for revocation and auditing, and
integrate the system into Hyperledger Fabric [2]. Our contributions are three-
fold:

– We propose mechanisms for credentials revocation and authorizations audit-
ing, compatible with a scheme of [14]. The new extensions are efficient as
they are based solely on ElGamal encryption [22] and Schnorr proofs [34].
We also provide a security definition for delegatable anonymous credentials
with revocation and auditing in the UC framework, and prove the full scheme
secure.

– We enable auditable and private transactions via delegatable anonymous cre-
dentials in Hyperledger Fabric. This includes both the design of the relevant
protocol parts and their implementation.

– We present comprehensive benchmarks and evaluation of the scheme and the
proposed extensions. Namely, we design a Fabric prototype that measures
the incurred computational overhead, the gains from our optimizations, and
network usage. Our prototype runs in a fully distributed setting faithfully
executing all parts of the protocol. We open-source the implementation of
the optimized core protocol and our extensions in Go [11].

2 Related Work

The most immediately related work is [14], which our paper builds on. That
paper presents an instantiation of delegatable anonymous credentials, proves its
security, and provides initial performance numbers. It also discusses, but only on
a general and conceptual level, the use of anonymous credentials in permissioned
blockchains. Our paper extends [14] in three main directions: (a) we design and
evaluate practically-relevant functionalities such as revocation and auditing; (b)
we integrate anonymous credentials in the Hyperledger Fabric protocols, which
in fact requires a different approach than described in [14] (for example, ensur-
ing that the creator of the transaction is the one who generates a signature
while maintaining anonymity); (c) we provide an extensive set of benchmarks
and a production-grade implementation, which includes multiple performance
optimizations ([14] implemented just enough to run a simple performance test).

After the publication of [14], two further papers on delegatable credentials
were published, namely [10] and [19]. Both claim stronger security properties
compared to [14] by also supporting an anonymous delegation phase; this fea-
ture is however not required in our setting where the user and the intermediate
authority know each other. On the flip side, the scheme in [10] supports only a
fixed number of attributes that is determined during setup, whereas we want to
be able to dynamically add attributes per intermediate authority. Furthermore,
the paper does not describe a full instantiation of the protocol, which when
instantiated, appears to be less efficient than the one in [14]. The scheme in [19]
does not support attributes, which makes it unsuitable for our application.

438 D. Bogatov et al.

Sovrin [37] also combines anonymous credentials with a permissioned
blockchain system. While we use anonymous credentials to authorize trans-
actions on a blockchain, the Sovrin platform instead leverages the blockchain
to produce anonymous credentials, in the vein of previous work on decentral-
ized anonymous credentials of [23]. The two approaches thus serve two different
purposes. In the context of Sovrin, there is also an implementation of [14] in
Rust [26], which appears to be in its earlier stages.

A growing segment of the research literature on blockchain systems aims
to improve the confidentiality of transactions using techniques such as zero-
knowledge proofs (e.g. [4,8,24,33,39]), different types of state channels (e.g. [3,
21]) or multi-party computation (e.g. [9]). While the underlying cryptographic
machinery, particularly in the work on zero-knowledge proofs, is similar to what
we use here, achieving confidentiality of transactions is orthogonal to achieving
privacy of participants, and eventually privacy-friendly permissioned blockchain
systems will have to combine both.

3 Background: Blockchain and Fabric

The purpose of a blockchain is to implement an immutable append-only ledger
that is maintained by a network of mutually distrustful parties. As a data struc-
ture, the ledger is a chain of blocks such that each block refers to its predecessor
by including its hash, enforcing thus a total order on the blocks. The parties
continuously extend the chain by running a consensus mechanism (e.g., proof of
work or PBFT) to decide on the respective next block. Blocks contain transac-
tions that have been submitted by clients for inclusion in the ledger.

Blockchains are either permissionless or permissioned. In a permissionless
blockchain such as Bitcoin [31] or Ethereum [38], anyone can run a peer that joins
the network, participates in consensus and validates transactions. Clients can sub-
mit their transactions anonymously (or rather: pseudonymously). Trust in such
networks is established via consensus mechanisms that are based on proofs of work
(e.g., [31,38]) or proofs of stake (e.g., [18,29]), which penalize misbehaving par-
ties either by requiring them to expend a lot of computational power in the case
of proof of work or losing their money in the case of proof of stake.

Permissioned blockchains, on the other hand, leverage identity management
to counter misbehavior, foster trust and aid governance. Most permissioned
blockchain systems (e.g., [25,36]) build on variants of the well-studied and
efficient PBFT [17] to reach consensus. Permissioned blockchains are particu-
larly well-suited for applications where participant identities are required either
inherently or by regulation, or those with high performance requirements. This
includes enterprise applications in logistics and supply-chain management, but
also use cases in the financial and governmental domains. Examples of promi-
nent permissioned blockchain platforms include Quorum [27] and Hyperledger
Fabric [2]. We have chosen the latter as the permissioned blockchain to integrate
our protocol into. We refer to the original paper [2] for a detailed description of
the Fabric’s complete protocol and system. We also provide concise description
of the relevant Fabric components in [13, Section III].

Anonymous Transactions with Revocation and Auditing 439

3.1 Authentication, Authorization and Identity Mixer in Fabric

The default Fabric membership service provider (MSP) is based on X.509
certificates—an identity is an X.509 certificate and its validation/revocation
follows the X.509 standard. This approach is efficient, flexible and scalable—
organizations may have hierarchical CAs which translate to hierarchical MSPs.
Each transaction (as a data structure) has two specific fields for transaction
authorization: the Creator (i.e., identity of the client invoking the transaction)
and the Signature (i.e., authorization of the transaction). As each transaction
carries the identity of its origin as a certificate and a signature, the X.509 imple-
mentation compromises the anonymity and the privacy of clients.

To remedy this issue, Fabric uses Identity Mixer (idemix for short), an
anonymous credentials scheme based on the protocols in [15]. The idemix-based
MSP protocol enables clients to sign transactions anonymously. Instead of an
X.509 certificate, an idemix MSP issues a special credential containing a set of
attributes. To sign a transaction, the holder of an idemix identity generates a
non-interactive zero-knowledge (NIZK) proof that she received a credential from
idemix that certifies her attributes. More specifically, if Alice is a member of an
organization Org whose members are authorized to submit certain transactions,
then Alice proves that she possesses an idemix credential from her MSP that
attests that she is a member of Org.

As discussed in the introduction, even the use of anonymous credentials is
sometimes not sufficient from a privacy perspective. Namely, the current imple-
mentation of idemix leaks the identity of the MSP that issued the anonymous
credential. To mitigate this leakage, we provide a Fabric-tailored implementation
of delegatable anonymous credentials based on the work of [14]. This implemen-
tation ensures that the only information leaked by a transaction is the root CA
common to all network participants. Additionally, the implementation supports
efficient revocation and comes with auditing capabilities that allow authorized
parties to trace the transactions back to their authors achieving some level of
accountability.

We provide a brief background on delegatable anonymous credential schemes
in [13, Section IV].

3.2 Notation

Let Zq be the set of natural numbers in [0; q) where q is a large prime. Let G1,
G2 and GT be three groups of order q, such that there exists an efficient bilinear
pairing e : G1×G2 → GT . Let gi be a random generator for Gi for i ∈ {1, 2}. Let
fexp and t̂ be the final exponentiation and Miller’s loop operations respectively,
such that e = fexp ◦ t̂. Let ←$ describe the operation of random sampling.
Let sp denote the public parameters available to all algorithms in the system.
These include the description of the bilinear groups and hash functions. Let
NIZK{w : x} denote a non-interactive zero-knowledge proof for statement x
and witness w (i.e., private input).

440 D. Bogatov et al.

4 Auditability and Revocation

Revocation. Classical mechanisms for revocation are at odds with anonymous
credentials, whereas privacy-friendly alternatives—such as as zero-knowledge
sets [30] or accumulators combined with zero-knowledge proofs [6]—are too com-
putationally prohibitive to be integrated into the blockchain.

To enable efficient and privacy-preserving revocation we couple epoch-based
whitelisting with signatures in a way that yields efficient proofs of non-revocation.
Namely, we divide the timeline into epochs that define the validity periods of
the credentials. For each epoch, a non-revoked participant is issued an epoch
handle (a signature) that binds her public key to the epoch. When a participant
presents her credentials, she provides along with them a proof of non-revocation
that consists of proving in zero-knowledge that she holds a signature linking her
public key to the current epoch. Credentials that are valid for a certain epoch are
automatically revoked the moment the epoch expires. An epoch expires either
naturally (epoch elapses) or manually (authorized parties advance the epoch by
putting a special message on the ledger).

We define epochs in terms of blockchain height, which ensures that transac-
tions of revoked parties are going to be rejected by the verifiers in the blockchain.

For ease of exposition, we assume that only the credentials of users are
revoked (i.e. Level-L credentials). We contend that such an assumption is fair
as organizations in a permissioned blockchain will not be revoked as frequently
as users, who, on the other hand, may have their authorization to submit trans-
actions denied at any moment (e.g., a failure to pay a monthly subscription,
an employee leaving her company, etc.). We note though that the proposed
mechanisms can be generalized to accommodate settings in which intermediate
authorities are also revoked.

Audit. To enable auditing, the transaction author embeds her identifier (the
public key) encrypted under the auditor’s public key into the transaction using
a semantically secure encryption. For this solution to be viable, it must ensure
that the user (1) encrypts her own public key and (2) uses the public key of the
authorized auditor Zero-knowledge proofs such as [34] coupled with ElGamal
encryption [22] allow us to address these challenges relatively efficiently.

For the sake of simplicity, we only focus on settings where just a single auditor
is present for all the users in the system. The proposed solution could be easily
enhanced to support scenarios with multiple auditors. Namely, users will have
their auditor’s public key as an attribute and the proof of correct encryption will
show that the correct public key is being used.

4.1 Security Definition

We define the security of our extended scheme based on the functionality Fdac

from [14]. We model revocation by introducing a message ADVANCE that can
be input by a special party T , and that effects in all last-level delegations as
well as generated proofs becoming invalid. This input models an epoch switch.

Anonymous Transactions with Revocation and Auditing 441

We model audit by providing an input AUDIT to an auditor AU , which upon
input of a credential proof p outputs the party P that presented p. Properly
modeling audit also requires to account for the case where AU is corrupted.
This is achieved by allowing A to input the parameters pp′ so that Present can
include the identity of the origin of each proof p, which is necessary since a
corrupt auditor will be able to decrypt this information anyway. The complete
functionality Fdac+ is specified in Fig. 1.

4.2 Revocation

We describe two alternative solutions that differ in their generality. The first one
is straightforward but requires revocations being handled by the same authorities
that issue user credentials. The second is more complex but allows revocations
and credentials to be handled by different authorities. See Sect. 6 for performance
analysis of the latter approach.

Epoch as an Attribute. We implement revocation using delegatable creden-
tials in such a way that users in the last level of delegation have epoch identifiers
as attributes. A user thus needs to request new delegatable credentials from her
issuer every time an epoch expires to be able to submit transactions. The proof
of non-revocation in this case uses the proof generation depicted in [13, Algo-
rithm 6] such that one of the disclosed attributes is the identifier of the current
epoch. Note that in this case only the last-level credentials are being regenerated
in each epoch.

Explicit Proof of Non-revocation. The solution above requires no additional
cryptographic implementation, however, it suffers from the limitation that the
credential issuer must always be the same as the revocation authority. To accom-
modate settings where credential issuers are different from revocation authori-
ties, we decouple the credentials for user attributes from epoch credentials. To
obtain authorization for the current epoch, a user contacts the revocation author-
ity with a proof of her public key possession. The revocation authority in turn
responds with a Groth signature of the user’s public key and the epoch iden-
tifier. When the user wishes to submit a transaction, she generates a proof of
non-revocation that shows the knowledge of an epoch handle and the associated
secret key. Verifiers in the blockchain check the non-revocation proof and if valid,
verify the user’s signature on the transaction content. In more formal terms, we
augment the protocol in [14] with the following.

Let g denote a generator of the bilinear group in which the public keys of
users (i.e., public keys associated with Level-L credentials) reside, and let f
denote a generator of the other bilinear group.

Revocation Setup. The revocation authority computes its pair of Groth secret
and public keys (rsk, rpk = f rsk) ←$Groth.KeyGen(Λ�) and publishes rpk.

Generation of Non-revocation Credentials. Upon receipt of a credential request
for public key cpk and current epoch, revocation authority verifies that the
requestor knows the secret key matching cpk, and computes

442 D. Bogatov et al.

ε := gHash(epoch)

σ ←$Groth.Sign(rsk; ε, cpk)

and returns non-revocation credentials (σ, cpk).

Proof Generation. A user signs a message m and proves that she is not revoked
during the current epoch by outputting a tuple (m, 〈ai,j〉(i,j)∈D,P) such that:

P ←$NIZK{(σ1,...,L, cpk1,...,L, 〈ai,j〉(i,j)/∈D, σm, σ) :
L∧

i=2,4,...

Groth1.Verify(cpki−1;σi; cpki, ai,1, . . . , ai,ni
)

L∧

i=1,3,...

Groth2.Verify(cpki−1;σi; cpki, ai,1, . . . , ai,ni
)

∧Schnorr.Verify(cpkL;σm;m)
∧Groth.Verify(rpk;σ; ε, cpkL)}

4.3 Audit

Our auditable anonymous delegatable credentials extension adds an Audit setup
step and enhances the credential presentation with verifiable encryption.

Audit Setup. The authorized auditor computes a pair of ElGamal secret and
public keys (ask, apk = gask) and then announces apk. We assume there are
mechanisms in place to verify that the auditor is legitimate and knows the secret
key ask.

Proof Generation. A user signs a message m in an auditable manner and outputs
a tuple (m, 〈ai,j〉(i,j)∈D, enc,P) such that:

P ←$NIZK{(σ1,...,L, cpk1,...,L, 〈ai,j〉(i,j)/∈D, σm, σ, ρ) :
L∧

i=2,4,...

Groth1.Verify(cpki−1;σi; cpki, ai,1, . . . , ai,ni
)

L∧

i=1,3,...

Groth2.Verify(cpki−1;σi; cpki, ai,1, . . . , ai,ni
)

∧Schnorr.Verify(cpkL;σm;m)
∧Groth.Verify(rpk;σ; ε, cpkL)

∧enc = (cpkL · apkρ, gρ)}

If the auditor decides to learn the identity of the origin of a message m, all she
needs to do is to decrypt ciphertext enc. This process is guaranteed to succeed
and correctly yield the right public key thanks to the soundness of P.

Anonymous Transactions with Revocation and Auditing 443

Details on the implementation of this extension are provided in Algorithms 2
to 4 in Appendix A. Algorithm 1 puts all the components together and includes
elements of the integration with Hyperledger Fabric.

4.4 Security Statement

In AppendixA, we prove that our extended protocol realizes the functionality
specified in Fig. 1.

Delegatable credentials protocol Πdac+ securely realizes Fdac+ in the (Fsmt,
Fca,Fcrs,Fclock)-hybrid model, provided that

– SignNym (Algorithm 2) is a strongly unforgeable signature,
– the auditing encryption is semantically secure,
– NIZK is a simulation-sound extractable non-interactive zero-knowledge proof.

Our instantiated protocol is covered by the security statement since both
Schnorr (used in binding the pseudonym) and Groth signatures are existentially
unforgeable, ElGamal encryption is semantically secure, and Schnorr proofs are
simulation-sound extractable.

The full proof of the theorem could be found in AppendixA.

Fig. 1. Extended credentials functionality Fdac+

444 D. Bogatov et al.

4.5 Optimized Implementation

While implementing our extended protocol, we discovered several enhancements
and optimizations over the scheme in [14]. This section presents our improve-
ments of the base scheme.

Parallelization. We have noticed that the heaviest operation in the code is the
computation of commitments. Moreover, we have found that commitments can
be computed independently of one another, and therefore can be easily paral-
lelized. Instead of computing the commitments eagerly, our program schedules
the computation and puts it in a queue. Before hashing the commitments, the
program waits for the last computation to finish, signaling that the commitment
set is computed. We find this task granularity optimal in this scenario as the
computation takes long enough to neglect a cost of spawning an extra thread and
is small enough that the system can uniformly disperse its load among available
resources.

Miller’s Loop and Final Exponentiation. [14] mention that when computing
a product of pairings it makes sense to compute Miller’s loop first on some pairs,
multiply them and only then apply final exponentiation. However, the authors
used this tactic only on a fraction of computations. We have discovered a way
to extend this optimization and apply it globally.

The idea is to convert every pairing product to a set of Miller’s loops and
apply final exponentiation once per such a product. The trick is to use bilinearity
of Miller’s loop to put exponents inside the pairings. For example, the following
computations are equivalent:

∏

i

e (ai, bi)
ci = fexp

(
∏

i

t̂(aci
i , bi)

)
= fexp

(
∏

i

t̂(ai, b
ci
i)

)

Since exponentiations are cheaper in G1 than in G2 (specifically, when using
AMCL library [35]), we decided to exponentiate elements in G1.

5 Integration with Hyperledger Fabric

This section presents our protocol and explains how the building blocks defined
earlier work together within Fabric. We assume that all parties have access to
system parameters sp and public key cpk0 of the root authority, and that they
have generated their pairs of secret and public keys. The keys are always gener-
ated as sk ←$Zq and pk := gsk where g is a group generator of either G1 or G2

depending on the delegation level.

5.1 Including Pseudonyms in Proof

In Fabric, a transaction has two special fields that are used in tandem to estab-
lish its authenticity. A Creator field that contains the identity of the transaction

Anonymous Transactions with Revocation and Auditing 445

Algorithm 1. Πdac+: delegation, revocation, auditing and transaction submis-
sion protocols
1 : Level-i CA Level-(i + 1) CA

. Repeated for L rounds of delegation (from the Root CA to Intermediate CAs to the User)

2 : cski ←$Zq, cpki := gcski cski+1 ←$Zq, cpki+1 := f cski+1

3 : nonce ←$ {0, 1}λ nonce Ppk ←$ProvePK(cski+1, cpki+1, nonce)

4 : VerifyPK(Ppk, cpki+1, nonce)
Ppk, cpki+1

5 : σi+1 ←$Groth.Sign(cski; cpki+1,ai+1) σi+1 credi+1 := (σi+1,ai+1, cpki+1)

6 : Revocation authority User

. .On each epoch, user requests a non-revocation handle .

7 : rsk ←$Zq, rpk := grsk csk ←$Zq, cpk := gcsk

8 : nonce ←$ {0, 1}λ nonce Ppk ←$ProvePK(csk, cpk, nonce)

9 : VerifyPK(Ppk, cpk, nonce) Ppk, cpk

10 : σ ←$NRSign(rsk; cpk, epoch) σ σ, epoch

11 : Verifier User

12 : (from the delegation stage) cred := (〈σj ,aj , cpkj〉L
j=1)

. User submits a transaction .

13 : enc, ρ := AuditEnc(apk, cpk)

14 : sknym, pknym ←$MakeNym(csk)

15 : Prev ←$NRProve(σ, csk, sknym, epoch)

16 : Paudit ←$AuditProve(enc, ρ, cpk, csk, pknym, sknym)

17 : (no need to sign a message) Pcred ←$CredProve(cred, D, sknym, csk, ⊥)

18 : σnym ←$SignNym(pknym, sknym, csk, tx)

19 : (Pcred,Prev,Paudit, enc, tx, pknym) := m m, σnym m := (Pcred,Prev,Paudit, enc, tx, pknym)

20 : VerifyNym(pknym, tx, σnym)

21 : NRVerify(Prev, pknym, epoch)

22 : AuditVerify(Paudit, enc, pknym)

23 : CredVerify(Pcred, D, pknym, ⊥)

author, and a Signature field that holds a signature of the rest of the trans-
action by its author. Fabric specifications require that Creator and Signature
be validated individually. Integrating delegatable credentials directly introduces
two security flaws: namely, if Creator is a NIZK of the credential validity and
Signature is a regular signature with the author’s secret key, then (1) there is
no guarantee that the keys used to generate the NIZK and the signature are the
same, and (2) the regular signature itself would leak the identity of the signer by
going through all users’ public keys and testing whether the signature verifies.

To solve the above problems, we generate a Pedersen commitment (called
pseudonym) to the secret key and place it in both fields. This pseudonym ensures
that the same secret key is used to produce Creator and Signature fields. Notably,
Creator contains a modified NIZK proof that shows that the prover knows the

446 D. Bogatov et al.

secret key used to construct the pseudonym and that it is the same secret key
underlying the credentials. Signature, on the other hand, is a Schnorr-like proof of
knowledge that leverages the content of the transaction to compute the challenge
and shows knowledge of the secret key committed in the pseudonym.

The verifier first checks whether Creator and Signature include the same
pseudonym. If so, it verifies the validity of the content of those fields indepen-
dently; otherwise it rejects. See Algorithm 2 for more details.

5.2 Submitting Transactions

A user authorizes the execution of a chaincode by providing a NIZK proof and a
linked signature on the proposal, as described in Sect. 5.1. During this process,
the user can decide to selectively disclose attributes, which are made available to
the chaincode so access control can be implemented as needed by the application.
The protocol has the following global stages (see Algorithm1).

At the setup stage (line 2), the parties generate their secret and public keys.
The delegation stage starts by a credential request from the delegatee to the

delegator where the former proves that she knows the secret key corresponding
to her public key, using a classical non-interactive Schnorr proof (see Algorithm
2). To ensure the freshness of the proof the delegator (i.e., verifier) provides a
nonce that would be used to compute the challenge in the proof. If the provided
proof is valid, then the delegator signs, using Groth, the public key and the
attributes of the delegatee. We note that it is up to the delegator to determine the
delegatee’s valid attributes. This process of credential issuance can be repeated
an arbitrary number of times increasing the length of the credential chain. In
more concrete terms, the first level of the delegation corresponds to the root
authority issuing credentials to intermediate authorities that in turn delegate
the credentials further down the hierarchy (lines 2–5). On the last level of the
credential chain, we find users who submit transactions to Fabric.

The transaction stage (lines 13–23) has the user generate randomized proofs
and signatures to authenticate the content of her transactions anonymously.
Namely, the user generates a pseudonym (i.e., Pedersen commitment) to com-
mit to her secret key (see Sect. 5.1). Then she generates a proof in which she
discloses her attributes as needed and shows the following: (1) the user knows
valid credentials, and (2) the pseudonym commits to the secret key matching
the credentials. As part of the transaction the user also includes the proof of
possessing a non-revocation handle (line 15) and an encryption of her public key
under auditor’s key, along with the proof of its correctness (lines 13 and 16).
If the user does not have a non-revocation handle for the current epoch, she
requests it from the authority (lines 8–10). Finally, she signs the content of the
transaction with the secret key in the pseudonym (lines 14 and 18).

Verifiers consequently validate the transaction by checking that the proofs
and signatures refer to the same pseudonym and that they are valid with respect
to the disclosed attributes (lines 20 and 23).

Anonymous Transactions with Revocation and Auditing 447

6 Experimental Evaluation

We provide a generic implementation of improved DAC scheme and our exten-
sions. The scheme produces valid credentials and proofs for any number of levels
and attributes for both groups: G1 and G2, for odd and even levels.

The project is tested with over 470 tests and they cover 100% of the code.
We note that this is a significant improvement over the original code, which was
only a prototype computing a single hard-coded credential. We also note that
the original code is not open-sourced.

All benchmarks (unless otherwise specified) were run on c2-standard-60
GCE VM running Ubuntu 18.04 (60 vCPUs, Intel Cascade Lake 3.1 GHz, 240 GB
RAM). We have used Apache Milagro Cryptographic Library (AMCL) [35] with
a 254-bit Barreto-Naehrig curve [7] for low-level operations such as pairings,
exponentiations and PRG operations.

We design our experiments to answer the following questions:

Question-1 What is the performance benefit of our optimizations?
Question-2 How does the improved core DAC scheme scale with the number of

levels and attributes?
Question-3 What overhead do our extensions impose?
Question-4 How does the system compare to the old non-delegatable idemix?
Question-5 How practical is maintaining a single and possibly distributed revo-

cation authority that we designed?
Question-6 What is the efficacy of the entire blockchain stack using our proto-

col? How efficiently does it use the network? How does it scale with
the number of users, peers and endorsers?

Table 1. Optimizations benchmark for L = 2 and n = 2 (small) and L = 5 and n = 3
(big). The values are in milliseconds.

e-product Parallelization
CredProve CredVerify

Big Small Big Small

Disabled Disabled 2873 843 1523 948

Enabled Disabled 1312 341 853 372

Disabled Enabled 1480 357 890 352

Enabled Enabled 890 191 391 197

Improvement (≈ times) 3.2 4.4 3.9 4.8

Comparing to [14]. We stress that our evaluation results differ from the ones
in [14]. First, the implementations are written in different languages and run on
different processors. These differences are significant when benchmarking cryp-
tographic primitives, which mostly involve bit manipulations. Second, we have
obtained the original code of [14] and we have noticed distinctions in benchmark
methodologies. The code in [14] pre-computes some values (pairings) during the

448 D. Bogatov et al.

signature phase, and therefore this time is not included in the proof generation
and verification stages. Our benchmarks involve no pre-computations to produce
most fair results. Third, our scheme includes pseudonym commitments, which
add noticeable overhead for small values of L and n. Overall, given that our code
is production-ready, generic and open-sourced, we want our benchmarks to be
treated independently of the previous work.

In the following, L stands for the number of delegation levels, n stands for
the number of attributes per level, which we set to be the same for every level for
simplicity. All benchmarked operations were run 100 times. Note that the most
sensitive overhead is due to verification, since it is the operation that will be run
by the entire Fabric network. In Fabric, having L = 2 and n = 2 covers most
use-cases. We noticed that the overhead value is very sensible, thus for fairness
we present the results with the highest overhead.

Question-1: Optimizations. First of all, we wanted to demonstrate the
improvement due to our optimizations. We have run the benchmarks with
all combinations of e-product and parallelization optimizations (see Table 1).
Results show that for the most commonly-used parameter values the improve-
ment is almost fivefold.
Table 2. Parameters benchmark. In each cell from top to bottom: a proof generation
overhead, a proof verification overhead and the proof size.

L
n

0 1 2 3 4

1

41ms 51ms 63ms 72ms 82ms

89ms 110ms 116ms 153ms 173ms

398B 534B 670B 806B 942B

2

94ms 138ms 192ms 255ms 315ms

124ms 158ms 198ms 262ms 310ms

801B 1.2 kB 1.6 kB 2.0 kB 2.4 kB

3

173ms 273ms 367ms 516ms 616ms

188ms 249ms 329ms 387ms 427ms

1.2 kB 1.7 kB 2.3 kB 2.8 kB 3.3 kB

5

333ms 542ms 661ms 891ms 1146ms

276ms 342ms 391ms 500ms 648ms

2.0 kB 2.9 kB 3.9 kB 4.8 kB 5.7 kB

10

822ms 1177ms 1652ms 2115ms 2666ms

457ms 638ms 860ms 1053ms 1234ms

4.0 kB 6 kB 8 kB 10 kB 12 kB

Question-2: Different Parameters. With optimizations enabled we have run
the operations for multiple combinations of levels and attributes. In Table 2 we
put the proof generation and verification times along with the generated proof
size for L ∈ {1, 2, 3, 5, 10} and n ∈ [0; 4]. In all cases all attributes are hidden—
the overhead difference when all attributes are revealed is minimal. We can

Anonymous Transactions with Revocation and Auditing 449

confirm that the overhead and proof size grow linearly with L and n.

Question-3: Extensions. Table 3 depicts the performance results for the helper
methods. Each method was run in both G1 and G2 (judged by the number of
operations in a group). Note that operations in G2 are considerably slower in
AMCL and that revocation routines are relatively slower due to the use of pairing
in proofs. Our future work is to apply the optimizations we used with delegatable
credentials scheme to this procedure as well. Also note that adding pseudonyms,
enabling auditing and proving possession of the secret key incur little overhead
relative to the cost of credential proof generation.

Table 3. Running time of extensions in milliseconds.

Procedure Time Procedure Time

G1 G2 G1 G2

Groth.KeyGen 1.6 4.7 Groth.Sign 16 41

Groth.Randomize 11 23 Groth.Verify 53 62

Schnorr.Sign 1.6 4.8 Schnorr.Verify 2 9.6

AuditEncrypt 3 9.4 NRSign 14 30

AuditProve 5.8 24 NRProve 66 88

AuditVerify 9.2 39 NRVerify 127 149

MakeNym 2.1 9.4 ProvePK 3.1 9.4

SignNym 2.2 9.9 VerifyPK 2 9.5

VerifyNym 3.5 14 KeyGen 1.5 4.2

Question-4: Against Older Idemix. We have run the benchmarks against
the non-delegatable idemix implementation currently in Fabric and against the
Fabric MSP with no anonymity (see Sect. 3.1). The default (non-idemix) Fabric
MSP simply uses X.509 certificates and ECDSA algorithms [32] for signatures
and verifications. The current idemix implementation in Fabric [15] uses BBS+
signatures [5]. A user in this construction proves the knowledge of a signature
on her attributes. This mechanism however, does not support delegation.

We have run a simple workload—generating secrets, signing and verifying
identities—for all three mechanisms. For the default MSP we have run ECDSA
algorithms available in Go crypto module using the P-384 curve—the most
secure option available in Fabric. For the Fabric idemix MSP we have run the
entire workload against the actual Go code in the official Fabric repository using
five attributes. Lastly, we have run the workload with our solution using a single
level and five attributes.

Experimental results show the relative costs of using more privacy-preserving
solutions. Default MSP takes 21 ms, idemix MSP in Fabric takes 108 ms and our
solution takes 210 ms. Reasonably, the more anonymity a solution offers, the
more expensive it is. We believe that this overhead is acceptable, given that
privacy-preserving MSP operations are tailored for applications that see value

450 D. Bogatov et al.

in trading gains in performance for gains in privacy.

Question-5: Revocation Authority Overhead. The revocation functional-
ity requires a single (possibly distributed) revocation authority. A legitimate
concern is that the revocation authority could become a bottleneck in a real-
world deployment, as at the beginning of each epoch users need to update their
revocation credentials to be able to submit transactions. We contend that in
most cases this will not be an issue for the following reasons. First, since the
users require the handle to submit transactions, we can safely assume that they
will only request it when they are about to submit a transaction. Therefore,
the load is more likely to be distributed, especially for long epochs. For short
epochs a user may not even need the handle if she does not wish to submit a
transaction. Second, the overhead of issuing the non-revocation handle is 15 ms
to 30 ms, which is much smaller than the time it takes to process an anonymous
transaction. This means that a faster revocation authority does not necessarily
result in any improvement on the perceived performance of the network (i.e.,
transaction latency and throughput).

To validate our intuition, we have designed a minimalistic server in Go that
uses our library to process requests for non-revocation handles. We observed a
stable 200 requests per second throughput on our testing machine. We note that
the real deployment will likely use a replicated horizontally scalable service.

Question-6: Blockchain Prototype. We have built a standalone Hyperledger
Fabric prototype to empirically assess the computation and network overhead of
our implementation (open-sourced [12]).

Fig. 2. Network architecture

We note that although our pro-
totype faithfully mimics the process-
ing and network components of Fab-
ric, it is still an idealized version of the
latter. Thus, the numbers we present
here are a lower bound of the expected
integration cost.

Our prototype integrates the cryp-
tographic protocols of credentials del-
egation and transaction processing
(recall Algorithm 1). In the trans-
action phase, all users submit a
configured number of transactions—
sequentially for a single user but in
parallel among all users. We wait for
all peers to validate a transaction, not
for 50%+1. We model the chaincode
execution by waiting 50 ms—average time to execute the simplest chaincode. In
the auditing phase, an auditor goes over all transactions decrypting the user
public keys.

Anonymous Transactions with Revocation and Auditing 451

The components (authorities, users and peers) are running each on its own
VM and they transfer the objects over the real network. Experiments were run
on n1-standard GCE VMs running Ubuntu 18.04 (Intel Broadwell 2.2 GHz)
and talking among each other through RPCs. To mimic realistic deployment we
have used three geographically different regions for different components. See
Fig. 2 for the details of the setup, including the sizes and regions of the parties’
VMs, and interzone pings.

Local Simulator. On top of the distributed simulator, we have also built a local
version that runs on a single machine, simulates the transactions and reports a
precise network log. We delineate the setup and discussion in [13, Section VIII
Question-6] and report here the main observation that the use of our revocation
extension does not result in network bottlenecks even for short epochs.

Results. Our default setting is 2 organizations, 5 users, 3 peers, 2 required
endorsements and revocation with auditing enabled (see Fig. 2). In all experi-
ments the users submit 100 transactions each.

In the distributed setting, we started with a hypothetical best-case scenario:
a single user and a single peer. The time it takes to generate, validate and
commit a single transaction is below a second on average (855 ms). Disabling
auditing and revocation saves additional 256 ms, see Fig. 3 minimal category.
Out of this, 164 ms is spent on endorsement, whereas validation takes 432 ms.
The rest is taken by user’s actions: credential proof generation, signing, collecting
and verifying endorsements, etc.

Auditing takes 4574 ms, which corresponds to the decryption of the ElGamal
ciphertexts (500 decryptions, about 9 ms per decryption).

Fig. 3. Distributed experiments results. Average transac-
tion overhead is reported in milliseconds.

We have run the
default experiment (5
users, 3 peers, 2 endorse-
ments, 20 s epochs and
both extensions enabled)
and have studied the
effects of changing the
settings on the transac-
tion processing overhead.
The default experiment
involves 500 transactions
and takes 1555 ms per
transaction. The first group of experiments examines the overheads of exten-
sions. Disabling revocation saves 15%, disabling auditing saves another 8%, see
Fig. 3 extensions.

452 D. Bogatov et al.

We have found that the number of required endorsements does not signif-
icantly affect the overhead, see Fig. 3 endorsements category. This is expected
since endorsements are processed in parallel and take a small fraction of trans-
action processing time.

The number of users influences the overhead substantially, see Fig. 3 users
category. Each new user increases the number of transactions validated by a
single peer at a time. Since each peer eventually validates all transactions, the
number of users is linearly correlated with the overhead regardless of the number
of peers. Figure 3 indeed depicts linear relationship with a difference between 3
and 4 users attributed to different ping times between zones (recall Fig. 2).

Finally, we have found that the number of peers is also positively correlated
with the overhead, see Fig. 3 peers category. This is also expected since a trans-
action is completed when the last peer validates it, and each new peer increases
the variance in validation overhead. The difference between 2 and 3 peers is also
attributed to interzone ping time.

7 Conclusion

The possibility to perform transactions privately and anonymously is crucial
to the use of blockchain technology in many financial and governmental use
cases, as well as all use cases that involve personal data. Anonymous transaction
authorization, as achieved through our implementation and extensions, is a key
enabler for blockchain technology in privacy-sensitive use cases.

The enhanced privacy guarantees incur a price in terms of computational
complexity in the transaction generation and achievable throughput. For this
reason, we identified points for optimization to make the performance of dele-
gatable credentials closer to practical.

Future Work. In our current implementation, the root certificate authority
is still a central party. Although it does not play an active role in the online
protocols and does not issue any certificates to users, we plan to implement a
threshold protocol in which the organizations participating in the blockchain
system jointly produce the first-level signatures, further distributing the trust.

In Fabric, every transaction is executed (endorsed) only by a subset of the
peers, which allows parallel execution and addresses potential non-determinism.
A flexible endorsement policy specifies which peers, or how many of them, need
to vouch for the correct execution of a given smart contract. Currently, the
endorsement policy reveals the identity of the involved peers. A future line of
work would be to remove this leakage. The idea is to equip the peers with
idemix credentials and use commitments to obfuscate the endorsement policy.
Consequently, after collecting all the required endorsements, the client can prove
in zero-knowledge the knowledge of valid signatures that satisfy the obfuscated
endorsement policy.

Anonymous Transactions with Revocation and Auditing 453

Acknowledgments. This work has been supported in part by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 780477
PRIViLEDGE. We thank the authors of [14] for giving us access to their source code.
We also thank the program committees of CANS 2021 for the thorough reviews. Finally,
we thank George Kollios, Leonid Reyzin, Daria Bogatova and Oleksandr Narykov for
their early feedback.

A Security Analysis

Fig. 4. Extended credentials functionality Fdac+ (restated Fig. 1)

Our theorem proving the security of the extended protocol builds directly on the
proof of the core protocol from [14] and extended by [20]. Our extensions that
cover revocation and auditability are as follows. (1) We construct the scheme
as a combination of standard signatures and NIZK, instead of sibling signatures
and NIZK as used in [14,20]. This is possible as we restrict ourselves to the case
where the length of each delegation chain is fixed. (2) We need the NIZK to be
non-malleable, as otherwise Fdac+ cannot identify the correct credential owner
during an auditing query. This, however, is already implied by simulation-sound

454 D. Bogatov et al.

extractability. (3) We use a clock functionality [28] to model the advancement
of epochs for the revocation scheme. We skip the parts of the description of the
protocol Πdac+ and the proof that are identical to [14], and only discuss the
differences that appear due to the revocation and auditing features (Fig. 4).

Setup. In addition to root authority R, auditor AU creates a Diffie-Hellman key
pair and registers the public key. The auditor also registers a proof-of-knowledge
of the private key like root authority R, at functionality Fca. We use the same
scheme for AU as [14] uses for R, so that we also achieve online extractability.

Advance. Upon input, the epoch counter T provides an input to Fclock, which
advances the epoch.1

Delegate. Delegation is almost the same, except for the last delegation step (the
one to the end user) where the delegator includes as one attribute the current
epoch obtained from Fclock. In this step, the delegator also deposits the delegate’s
public key with AU .

Present. There are three modifications during presentation. The first is that the
user generates a new pseudonym and proves consistency. The second is that a
credential proof is only generated if a relevant credential exists for the present
epoch, and the attribute that encodes the current epoch is always disclosed.
The third one is that, as explained in Sect. 4.3, the user encrypts their public
key under the auditor’s public key using AuditEnc and then proves consistent
encryption using AuditProve.

Verify. The changes are dual to the above ones. The receiver, in addition to the
standard credential validation, checks the consistency of the pseudonym, that
the epoch attribute in the credential proof is valid, and the consistency of the
auditing proof.

Audit. Given a credential proof, the auditor first checks its validity. If the cre-
dential proof is valid, the auditor then extracts the ciphertext that encrypts the
user’s key and decrypts it.

Delegatable credentials protocol Πdac+ securely realizes Fdac+ in the (Fsmt,
Fca,Fcrs,Fclock)-hybrid model, provided that

– SignNym (Algorithm 2) is a strongly unforgeable signature,
– the auditing encryption is semantically secure,
– NIZK is a simulation-sound extractable non-interactive zero-knowledge proof.

The proof holds for static corruption of AU .

Proof. We extend the proof of [14] to the functionality we added to the scheme.
In Setup, the additional setup phase of auditor AU is proved analogously to that
of the root authority. This includes the extraction of the private key if AU is

1 Other parties interact with Fclock to read the epoch. They technically also provide
input to Fclock, which is required for modeling a synchrony assumption such as
epochs in the otherwise asynchronous UC framework [28].

Anonymous Transactions with Revocation and Auditing 455

corrupt; in that case the simulator sets pp to include the auditor’s public key
as well as public keys for all parties. If AU is honest, algorithm Param provides
a fresh random key. Advance in Fdac+ means that all issued credential proofs
become invalid, and that the last-level delegations are deleted from Lde. The
same effect appears in the protocol, where the epoch advanced and inputs with
old credential proofs to VERIFY will fail, as will the presentation of credentials
that have been issued in an earlier epoch. Delegate behaves the same as before.

In the presentation phase, the credential proof p returned by the functional-
ity contains multiple additional elements (which in Fdac+ are generated by the
algorithm Present). The first two are pknym and σnym, the pseudonym generated
for this presentation and the signature on m. The next two are enc and Paudit,
the encryption of the user’s public key pk under the auditor’s public key apk, and
the NIZK proving the correctness of this encryption. Algorithm Present gener-
ates the credential proof by building a fresh delegation chain with fresh keys and
only the specified attributes; the only exception is that if AU is corrupt, then
the correct user’s public key, as indicated by the additional argument to Present,
is chosen from pp and encrypted under the auditor’s key. If AU is honest, then
Present includes an encryption of a random message under the simulated audi-
tor’s public key in p. Present sets the additional values as follows: pknym and
σnym are set to a fresh pseudonym and a signature relative to pknym and the also
fresh user public key. If AU is corrupt then the encryption of the user public key
under apk and the corresponding zero-knowledge proof are computed as in the
scheme using the values from pp. If AU is honest, then (as discussed) a random
encryption is chosen and the proof is simulated. This simulation requires that
the encryption scheme is semantically secure and the NIZK is zero-knowledge
to ensure that the consistency proof for the encryption is indistinguishable from
a real proof, and that as in [14] fresh delegations are indistinguishable from the
real world where the same delegations are used for multiple presentations.

In the verification phase, in both the real and the ideal cases, the verification
algorithm is used to verify p. While in the ideal case with honest auditor the
auditing proof is simulated, this will also successfully verify in Verify. The main
difference is that Fdac+ prevents forgeries ideally whereas the protocol merely
relies on the verification of the zero-knowledge proofs. The functionality also
ensures that, for credential proofs that are accepted, their holders are known,
therefore auditing will succeed. In the ideal world, the simulator knows the pri-
vate key of AU (since it is chosen by the simulator if AU is honest, or extracted if
AU is corrupt), and can therefore obtain the public key of the credential holder.
This difference is indistinguishable by the simulation-sound extractability of the
zero-knowledge proofs and the unforgeability of the signature scheme. Note that,
in contrast with [14], we allow verification to succeed only for credential proofs p
that have either been generated by Fdac+ or are valid for corrupt parties. This in
particular means that credential proofs are non-malleable, but non-malleability
is already implied by simulation-sound extractability.

When honest AU inputs a credential proof p, the embedded ciphertext is
decrypted. For credential proofs generated by an honest Pi this will always

456 D. Bogatov et al.

succeed. For those not generated by an honest Pi, the functionality lets the
adversary decide on the identity of the holder; the adversary can choose any
corrupted party. The simulator can decrypt the auditing field of the credential
proofs using the secret key of the auditor (which in case of a dishonest auditor
has been extracted during setup). Indistinguishability again follows by the zero-
knowledge property of the NIZK.

B Algorithms

Algorithm 2. Pseudonym and public key possession proof algorithms

1: procedure MakeNym(csk)
2: sknym ←$Zq

3: pknym := gcskhsknym

4: return sknym, pknym

5: procedure SignNym(pknym, sknym, csk, m)

6: ρ1, ρ2 ←$Zq

7: com := gρ1hρ2

8: c := Hash(com, pknym, m)
9: pcsk := ρ1 + c · csk
10: pskNym := ρ2 + c · sknym
11: return c, pcsk, pskNym

12: procedure VerifyNym(pknym, m, c, pcsk,

pskNym)

13: com = gpcskhpskNympk−c
nym

14: return c = Hash(com, pknym, m)

15: procedure ProvePK(csk, cpk, nonce)
16: ρ ←$Zq

17: com := gρ

18: c := Hash(com, cpk, nonce)
19: p := ρ + c · csk
20: return c, p

21: procedure VerifyPK(c, p, cpk, nonce)

22: com = gpcpk−c

23: return c = Hash(com, cpk, nonce)

Algorithm 3. Non-revocation proof generation and verification algorithms

1: procedure NRProve(σ, csk, sknym, epoch)
2: (r′, s′, t′

1, t′
2) ←$Groth.Randomize(σ)

3: 〈ρ〉1...4 ←$Zq

4: com1 := e
(
r′, g

ρ1
2

) · e
(

g−1
1 , g

ρ2
2

)

5: com2 := e
(
r′, g

ρ3
2

)

6: com3 := g
ρ2
1 hρ4

7: c := Hash(r′, s′, com1, com2, com3, epoch)
8: p1 := g

ρ1
2 t′

1
c

9: p2 := ρ2 + csk · c
10: p3 := g

ρ3
2 t′

2
c

11: p4 := ρ4 + sknym · c
12: return c, 〈p〉1...4, r′, s′

13: procedure NRSign(rsk, cpk, epoch)
14: ε := Hash(epoch)
15: return Groth.Sign(rsk; cpk, gε)

16: procedure NRVerify(c, 〈p〉1...4, r′, s′,
pknym, epoch)

17: if e
(
r′, s′) �= e (g1, y1) · e (rpk, g2) then

18: return false
19: ε := Hash(epoch)

20: com1 := e
(
r′, p1

) · e
(

g−1
1 , g2

)p2 ·
e (rpk, y1)

−c

21: com2 := e
(
r′, p3

) · e (rpk, y2)
−c ·

e (g1, gε
2)

−c

22: com3 := g
p2
1 hp4pk−c

nym

23: c′ := Hash(r′, s′, com1, com2, com3, epoch)
24: return c = c′

Anonymous Transactions with Revocation and Auditing 457

Algorithm 4. Auditing proof generation and verification algorithms

1: procedure AuditProve(enc, ρ, cpk, csk, pknym,

sknym)

2: 〈ρ〉1...3 ←$ Zq

3: com1 := gρ1 apkρ2

4: com2 := gρ2

5: com3 := gρ1hρ3

6: c := Hash(com1, com2, com3, enc, pknym)

7: p1 := ρ1 + c · csk
8: p2 := ρ2 + c · ρ

9: p3 := ρ3 + c · sknym
10: return c, 〈p〉1...3

11: procedure AuditEnc(apk, cpk) � ElGamal

12: ρ ←$ Zq

13: enc := (enc1, enc2) := (cpk · apkρ, gρ)

14: return enc, ρ

15: procedure AuditVerify(c, enc, 〈p〉1...3, pknym)

16: com1 := gp1 apkp2 enc−c
1

17: com2 := gp2 enc−c
2

18: com3 := gp1hp3 pk−c
nym

19: c′ := Hash(com1, com2, com3, enc, pknym)

20: return c = c′

References

1. Achenbach, D., Kempka, C., Löwe, B., Müller-Quade, J.: Improved coercion-
resistant electronic elections through deniable re-voting. In: JETS 2015 (2015)

2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the 13th EuroSys Conference, EuroSys
2018, pp. 30:1–30:15 (2018)

3. Androulaki, E., Cachin, C., De Caro, A., Kokoris-Kogias, E.: Channels: horizontal
scaling and confidentiality on permissioned blockchains. In: Lopez, J., Zhou, J.,
Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 111–131. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99073-6 6

4. Androulaki, E., Camenisch, J., Caro, A.D., Dubovitskaya, M., Elkhiyaoui, K.,
Tackmann, B.: Privacy-preserving auditable token payments in a permissioned
blockchain system. Cryptology ePrint Report 2019/1058 (November 2019)

5. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

6. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, 26–28 April 2017, pp. 301–315 (2017)

7. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

8. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin.
In: IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

9. Benhamouda, F., et al.: Initial public offering (IPO) on permissioned blockchain
using secure multiparty computation. In: IEEE Blockchain. IEEE (2019)

10. Blömer, J., Bobolz, J.: Delegatable attribute-based anonymous credentials from
dynamically malleable signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS
2018. LNCS, vol. 10892, pp. 221–239. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93387-0 12

11. Bogatov, D.: Delegatable anonymous credentials library (2021). https://github.
com/dbogatov/dac-lib

12. Bogatov, D.: Fabric network and crypto simulator (2021). https://github.com/
dbogatov/fabric-simulator

https://doi.org/10.1007/978-3-319-99073-6_6
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1007/978-3-319-93387-0_12
https://github.com/dbogatov/dac-lib
https://github.com/dbogatov/dac-lib
https://github.com/dbogatov/fabric-simulator
https://github.com/dbogatov/fabric-simulator

458 D. Bogatov et al.

13. Bogatov, D., Caro, A.D., Elkhiyaoui, K., Tackmann, B.: Anonymous transactions
with revocation and auditing in hyperledger fabric. Cryptology ePrint Archive,
Report 2019/1097 (2019). https://ia.cr/2019/1097

14. Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure delegatable
credentials with attributes and their application to blockchain. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 683–699. ACM (2017)

15. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust
2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3 1

16. Camenisch, J., van Heerweeghen, E.: Design and implementation of the idemix
anonymous credential system. In: ACM Conference on Computer and Communi-
cation Security, pp. 21–30. ACM (2002)

17. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: 3rd Symposium on
Operating Systems Design and Implementation (1999)

18. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theoret.
Comput. Sci. 777, 155–183 (2019)

19. Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from mercurial
signatures. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 535–555.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 27

20. Drijvers, M.: Composable anonymous credentials from global random oracles.
Ph.D. thesis, ETH Zürich, Zürich, Switzerland (2018)

21. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party virtual
state channels. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11476, pp. 625–656. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2 21

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

23. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS.
Internet Society (2014)

24. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–
98. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 5

25. Golan-Gueta, G., et al.: SBFT: a scalable and decentralized trust infrastructure.
In: DSN, pp. 568–580 (2019)

26. Harchandani, L.: Delegatable anonymous credentials in rust (September 2019).
https://github.com/lovesh/signature-schemes/tree/delegatable/delg cred cdd

27. Harris, O.: Quorum (2020). https://www.goquorum.com/
28. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-

chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

29. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

30. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: 44th Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 80–91 (10 2003)

31. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009)
32. National Institute of Standards and Technology: FIPS PUB 186-4: Digital Signa-

ture Standard. National Institute for Standards and Technology (July 2013)

https://ia.cr/2019/1097
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-662-54970-4_5
https://github.com/lovesh/signature-schemes/tree/delegatable/delg_cred_cdd
https://www.goquorum.com/
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12

Anonymous Transactions with Revocation and Auditing 459

33. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential
assets. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 43–63. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 4

34. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

35. Scott, M.: The Apache Milagro Crypto Library
36. Stathakopoulou, C., David, T., Vukolić, M.: Mir-BFT: high-throughput BFT for

blockchains. arXiv:1906.05552 (June 2019)
37. Windley, P.J.: Sovrin (2020). https://sovrin.org/
38. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2020)
39. Wüst, K., Kostiainen, K., Capkun, V., Capkun, S.: PRCash: fast, private and

regulated transactions for digital currencies. Cryptology archive: 2018/412 (May
2018)

https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/0-387-34805-0_22
http://arxiv.org/abs/1906.05552
https://sovrin.org/

Attestation Waves:
Platform Trust via Remote

Power Analysis

Ignacio M. Delgado-Lozano1(B) , Macarena C. Mart́ınez-Rodŕıguez2 ,
Alexandros Bakas1 , Billy Bob Brumley1 , and Antonis Michalas1

1 Tampere University, Tampere, Finland
{ignacio.delgadolozano,alexandros.bakas}@tuni.fi

2 Instituto de Microelectrónica de Sevilla, CSIC/Universidad de Sevilla,
Sevilla, Spain

macarena@imse-cnm.csic.es

Abstract. Attestation is a strong tool to verify the integrity of an
untrusted system. However, in recent years, different attacks have
appeared that are able to mislead the attestation process with treacher-
ous practices as memory copy, proxy, and rootkit attacks, just to name
a few. A successful attack leads to systems that are considered trusted
by a verifier system, while the prover has bypassed the challenge. To
mitigate these attacks against attestation methods and protocols, some
proposals have considered the use of side-channel information that can
be measured externally, as it is the case of electromagnetic (EM) ema-
nation. Nonetheless, these methods require the physical proximity of an
external setup to capture the EM radiation.

In this paper, we present the possibility of performing attestation by
using the side-channel information captured by a sensor or peripheral
that lives in the same System-on-Chip (SoC) than the processor system
(PS) which executes the operation that we aim to attest, by only sharing
the Power Distribution Network (PDN). In our case, an analog-to-digital
converter (ADC) that captures the voltage fluctuations at its input ter-
minal while a certain operation is taking place is suitable to characterize
itself and to distinguish it from other binaries. The resultant power traces
are enough to clearly identify a given operation without the requirement
of physical proximity.

Keywords: Attestation · Remote power analysis · Side channels ·
ADC · Secure protocols · Secure communications

1 Introduction

In our current network and interconnected world, establishing platform trust
for execution of different security-critical operations is a need in diverse fields:
examples include manufacturing, automation, communications, transport, work,
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 460–482, 2021.
https://doi.org/10.1007/978-3-030-92548-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_24&domain=pdf
http://orcid.org/0000-0002-0003-3318
http://orcid.org/0000-0003-3025-5736
http://orcid.org/0000-0002-0731-1851
http://orcid.org/0000-0001-9160-0463
http://orcid.org/0000-0002-0189-3520
https://doi.org/10.1007/978-3-030-92548-2_24

Attestation Waves: Platform Trust via Remote Power Analysis 461

and finance [5]. One approach is to use attestation mechanisms, which are suit-
able to verify the integrity of several elements such as application binaries, data,
or other internal platform state. Attestation normally consists of presenting a
challenge by a verifier system that is already trusted to a prover system.

Attestation is a powerful concept to verify the integrity of untrusted systems.
Recently, different attacks have appeared that aid in circumventing attestation
by making a copy of the code that generates the checksum expected by the
verifier (memory copy attack) [3,29,30], forwarding the challenge to another
device that is able to compute the checksum properly (proxy attack) [15], or
using return oriented programming gadgets to transiently hide the malicious
code in parts of memory where the verifier cannot find it (rootkit attack) [2].
As a result, what we get are systems that are considered trusted by a verifier
system, while the prover has bypassed the challenge.

To harden against these attacks on attestation methods and protocols, some
proposals have considered the use of side-channel information that can be mea-
sured externally. For example, Sehatbakhsh et al. [28] recently utilized electro-
magnetic (EM) emanation to verify honest checksum computation. Nonethe-
less, these methods require proximity: a local external testbed set up near the
prover in such a way that a carefully-placed probe can capture the EM radiation
(traces) of the prover’s device. Furthermore, this testbed itself must be secured
and trusted. The physical proximity requirement directly contradicts with the
goals of remote attestation, not to mention failure to scale.

Recent trends in offensive cryptanalytic side-channel analysis are towards
remote power analysis [19]. These techniques allow attackers to utilize pre-
existing sensors or peripherals living in the same System-on-Chip (SoC) to
procure traces. Regarding cryptanalytic side-channel attacks, this removes the
physical proximity requirement from the threat model. In practice, these traces
feature granularity reduced by several orders of magnitude when compared to
traces captured with traditional high sampling rate oscilloscopes (e.g. 1MSPS
in Sect. 3 vs. 40GSPS in [17]). Hence, remote power analysis trades this relaxed
threat model for lower quality and higher quantity of traces. Section 2 contains
more background on both remote power analysis and attestation.

In this paper, we propose utilizing remote power analysis for remote dynamic
attestation, eliminating the physical proximity requirement of previous EM-
based attestation proposals. Section 3 describes our testbed, with an application
processor (AP) that executes the binary we aim to attest, by only sharing the
Power Distribution Network (PDN) with the sensor that captures the traces. In
our case, an analog-to-digital converter (ADC) captures the voltage fluctuations
at its input terminal during attestation. Section 4 proposes an attestation proto-
col to establish secure communication between prover and verifier systems in a
platform-agnostic way. Section 5 characterizes the degree to which the resulting
traces captured from ADC vary over different binaries, with the goal of accu-
rately matching traces to a priori applications with signal processing techniques
via templating. In particular, we show that with a sufficient (yet small) number
of traces, parameterized (in part) by various error rates, we are able to achieve

462 I. M. Delgado-Lozano et al.

excellent security levels and also understand the limitations of attestation in this
novel setting. We conclude in Sect. 6.

2 Background

In a typical software-based attestation, a verifier is able to establish the absence
of malware in a prover system with no physical access to its memory. This
is possible because the verifier proposes a challenge to the prover, in which it
must compute a checksum of its memory content. This challenge can only be
correctly replied to if the memory content is not tampered, since the result of
the checksum is only correct if the memory content within the prover system is
exactly as expected by the verifier. For this, the verifier system needs to know
several critical data about the prover, such as the clock speed, the instruction
set architecture, the memory architecture of its microcontroller, and the size
of its memories. This way, if in any moment a malicious prover aims to alter
its memory, it is detectable by the verifier because the prover will present a
wrong checksum result or a delay in the response [31]. This means that the
integrity of the prover is verified, not only matching the checksum result with
the expected result (Responseprover = Responseexpected), but also through a
parameter known as the request-to-response time (tresponse < texpected).

Numerous works focus on software-based attestation [3,29,30]. To threaten
these attestation processes, several attacks have appeared during the last fifteen
years that aim to break this attestation method. Attackers normally attempt to
forge the response with a checksum computed in a different region of the prover
memory that duplicates the code. This allows them to generate the expected
response, which is known as a memory copy attack [3,29,30]. Another possi-
bility is to forward the challenge to another device that is able to compute
the checksum, then send it back to the verifier while satisfying the request-to-
response time requirement, leading to proxy attacks. Li et al. [15] extensively
describe proxy attacks and present attestation protocols to prevent them. The
last option consists of storing the malicious code previous to the checksum calcu-
lation, by hiding it in other parts of the memory, allowing the prover to compute
the correct checksum while the verifier is not able to detect the parts of the code
that have been hidden, called a rootkit attack [2].

Along with software-based attestation processes, hardware-supported
Trusted Execution Environments (TEE) are frequently used to ensure that the
response of the computation is not tampered. Abera et al. [1] allow remote
control-flow path attestation of an application without needing the code. They
utilize ARM’s TrustZone (TZ) in order to avoid memory corruption attacks.
Clercq et al. [4] present a Control Flow Integrity (CFI) mechanism, guard-
ing against code injection and code reuse attacks. They also present Software
Integrity (SI) by storing precomputed MACs of instructions and comparing them
with the MAC of the run-time execution. Moreover, Dessouky et al. [6] monitor
every branch, a mitigation leveraging un-instrumented control-flow instructions.

Attestation Waves: Platform Trust via Remote Power Analysis 463

Besides classical attestation, several recent works have used the EM emana-
tions generated by a monitored system as a consequence of a certain execution
within it, to detect malware in IoT devices. An example of this is EDDIE [21], a
method that studies the spikes on the EM spectrum generated during a program
execution and compares them to other peaks previously learned during a train-
ing stage. Significant differences in the spikes of EM spectrum allow to infer the
introduction of malware in the studied program. Han et al. [13] give a similar
approach, presenting ZEUS. This is a contactless embedded controller security
monitor that is able to ensure the integrity of certain operations, by leveraging
the EM emission produced during their execution, with no additional hardware
support or software modifications. Yang et al. [32] and Liu and Vasserman [18]
present very similar studies. The latter additionally considers the problem in
terms of participants of an attestation protocol, namely, verifier and prover sys-
tems, although they do not develop a complete protocol itself. Msgna et al. [20]
give another proposal that uses side-channel signals to check the integrity of
program executions, where the use of power consumption templates is suitable
to verify the integrity of code without previous knowledge about it. However,
Sehatbakhsh et al. [28] propose the first attestation protocol based on EM signals
with EMMA. The authors observe that execution time is only one of the mul-
tiple examples of using measurable side-channel information to gain knowledge
about a specific computation, providing in many cases much finer-grain infor-
mation than a unique temporal parameter. To develop this idea, they design a
new attestation method based on the EM emanations generated by the prover
while computing the checksum challenge proposed by the verifier, instead of
the request-to-response time. After this, they show the implementation of this
design, and consider and evaluate different attacks on EMMA. On the negative
side, and opposed to classical attestation, this method requires physical proxim-
ity to the setup that captures the emanation, namely, a probe connected to an
oscilloscope or external Software Defined Radio (SDR).

On a separate issue, several recent studies consider the possibility of attack-
ing cryptosystems by using the side-channel information provided by mixed-
signal components, such as ADCs [8,22], or other sensors such as ring oscillators
(ROs) [11,25,33] and time-to-digital converters (TDCs) [9,12,26,27]. In real-
world devices, these components are already placed in the same FPGA or SoC
as a certain cryptographic module that is running some operations with secret
parameters, or available through some interfaces present in processors, e.g. Intel
Running Average Power Limit (RAPL) [16]. However, to the best of our knowl-
edge, no study exists aiming to perform an attestation process by using the
side-channel information captured by said components, leading to what we call
remote power analysis for attestation. This technique features the benefits of the
EM side channel (finer-grain information) without the negative sides (external
setup with physical proximity).

464 I. M. Delgado-Lozano et al.

3 Remote Power Analysis for Attestation

3.1 System Description and Measurements

As mentioned in the previous section, the goal of this work is to attest an oper-
ation run in a system by using the power leakage caused by the operation itself.
In this context, where the power consumption traces can be acquired remotely,
they can be used to attest an operation, because the procurement process can
be automated. Generally, the voltage fluctuations caused by the operation can
be captured by any mixed-signal component, that could be an ADC, a sensor
implemented on the programmable logic (PL), or any power supply monitor.

Figure 1 gives an overview of our system. It contains an AP where the oper-
ation (prover) and attestation (verifier) processes are run. Additionally, it con-
tains the mixed-signal component that measures the supply voltage via ADC
with Direct Memory Access (DMA) while the operation is run. The verification
process saves the power trace captured by the mixed-signal component as binary
data. Since we are using this side-channel trace data as evidence, the data must
be trustworthy. Therefore, in our system, the ADC is inside the trust perime-
ter. Exactly how this happens in practice depends on the TEE technology. For
example, on a platform that supports virtualization, this might be accomplished
by a two-stage Memory Management Unit (MMU), where the hypervisor (or
TEE) removes access from the untrusted High Level Operating System (HLOS)
by simply not mapping the second-stage translation that would allow access to
the ADC’s physical address space or the memory where it stores its data. This is
indeed the scenario that Fig. 1 depicts. On ARM-based SoCs this could also be
accomplished with a Memory Protection Unit (MPU) that would be configured
by a TZ-based TEE. The analogous upcoming technology for RISC-V would be
Physical Memory Protection (PMP) [14]. So while the concrete protection mech-
anism on a given architecture depends on the TEE implementation, in this work
we generically use the Linux kernel to simulate the TEE in terms of trust, and
the kernel gates all userspace access to the ADC with traditional MMU-based
access control.

Specifically, in this paper we conduct our experiments on a PYNQ-Z1 board.
We programmed the FPGA of its Zynq 7000 chip to activate the ADC present
on it, and capture the voltage fluctuations produced due to the execution of
different operations inside the ARM Cortex-A9 processor. With this approach,
we aim to carry out the attestation process of an execution performed within
the processor, simply with the side-channel information, given by the voltage
fluctuations at the input of the ADC. This is present in the PL, and totally
isolated from the AP core, having only a shared PDN as a common element.

The XADC module is a hard macro available in the FPGA of the Zynq 7000
chip. This module is not only an ADC converter of the analog data connected
to the input channel, but it can also be configured to monitor the supply volt-
ages and temperature. The XADC module supports multichannel, however we
configure it with a single channel that monitors the internal core supply voltage.
The output data size of this module is 16-bit data, with 12-bit precision. The

Attestation Waves: Platform Trust via Remote Power Analysis 465

Fig. 1. Block diagram of the attestation process while running the operation.

sample rate is 1MSPS. The 32-bit AXI streaming output of the XADC is used to
transfer as many samples as possible to the AP. The XADC outputs samples on
the AXI Stream for each of its channels when it is enabled, in this case, only one
channel. We use DMA transfer from the PL to the AP to move XADC samples
into the AP memory, and we use an AXI GPIO to set the size of the transfer.
Since the width of the AXI stream is double the output data size, there are two
measurements at each memory position.

During the attestation process, first the number of power measurements to
be captured is set: that is, the buffer size. Just before running the operation,
the DMA is enabled, then we run a trigger operation to indicate in the signal
the beginning of the operation to be attested, then the operation itself is run,
and finally, another trigger operation indicates that it has ended. The XADC
is capturing power data until the DMA transfer is completed. The AP reads
the part of the memory where the measurements are stored and processes it as
needed.

We summarize our procurement process as follows, that saves the power
traces as binary data used in the attestation protocol. (i) Set the buffer size; (ii)
enable the DMA engine; (iii) send the start trigger; (iv) execute the target binary;
(v) send the end trigger; (vi) wait for the DMA to complete; (vii) process the
resulting binary data (trace). In practice, the (untrusted) HLOS executes step
(iv) and the TEE executes all other steps.

Figure 2 shows a power trace captured with the XADC while an operation
is run. The two trigger operations are shown at the beginning and the end of
the operation, determining the operation area. The rest of the trace is the value
of the supply voltage after the operation is finished. This trace is subsequently
processed in the protocol to attest the operation.

466 I. M. Delgado-Lozano et al.

Fig. 2. Example of a power trace captured with the XADC.

4 System Model and Protocol Construction

In this section, we demonstrate how our attestation technique can be applied
and used in real-life deployments and not remain just a lab-concept. To this end,
we present a detailed protocol showing the communication and all the messages
exchanged between the involved entities. Our protocol description includes the
definition of the underlying system model, as well as the presentation of all
the involved entities and their specifications. Finally, we construct our threat
model and show our protocol’s resistance against a powerful malicious adversary
ADV. While this is not the core contribution of this work, we consider it an
important part since it tackles a problem so far only dealt with at a high level in
other similar works (e.g. [28]). We believe our approach can provide an impetus
towards paving the way for the integration of our, or similar, techniques in
existing services.

4.1 System Model

We assume the existence of the following components:

Verifier (V): Here, verifier is a user who wishes to execute a piece of soft-
ware on an untrusted platform. Prior to exchanging the data with the untrusted
platform, the user needs to verify its trustworthiness.

Prover (P): The prover is an untrusted platform that needs to convince a
verifier of its trustworthiness. It consists of an untrusted application and a TEE.

1. Untrusted application: The application handles the communication between
the verifier and the untrusted platform. After proving its trustworthiness, the
application will be responsible for executing software specified by the user.

2. Trusted Execution Environment: We assume the existence of a TEE residing
either on the untrusted platform or in a remote location. The TEE is invoked
by the untrusted application upon receiving an attestation request by a ver-
ifier. TEE’s main responsibility is to measure the power consumption of the
untrusted part of P, while running an application requested by V. (Here we
recall that the TEE also hosts the component that takes the measurements.)

Attestation Waves: Platform Trust via Remote Power Analysis 467

Measurements Tray (MT): MT is an entity residing in the cloud. Its main
responsibility is to store templates and compare them with traces that are
received by V. There are two separate reasons that led us to have MT as an
independent component and not as a part of V. (i) MT residing on V’s side
would result in higher local storage costs, as V would have to keep a copy of
each template locally. (ii) Assuming that MT is an independent cloud compo-
nent, all MT updates are executed centrally. This eliminates the need for separate
updates.

4.2 Attestation Protocol

Having defined our system model, we can now proceed to describe our attestation
protocol. Our construction is divided into three phases: the Setup Phase, the
Trusted Launch Phase (Fig. 3), and the Computations Phase (Fig. 4). For the
rest of this paper, we assume the existence [10] of an IND-CCA2 secure public
key cryptosystem, EUF-CMA secure signature scheme, and a first and second
preimage resistant hash function H(·).
Setup Phase: During this phase, each entity receives a public/private key pair.
More specifically:

– (pkV , skV) - Verifier V’s public/private key pair.
– (pkP , skP) - Prover P’s public/private key pair.
– (pkMT, skMT) - MT’s public/private key pair.

Trusted Launch Phase: In this phase, V wishes to launch a TEE on the
untrusted platform. The TEE will be responsible for measuring the power con-
sumption while P executes applications of V’s choice. To facilitate V, we assume
the existence of a setup function Fs, responsible for setting up the TEE1. Finally,
we further assume that the setup function Fs is publicly known.

This phase commences with the verifier V generating a random number
r1 and sending m1 = 〈r1, A〉 to P, where A is the unique identifier of the
application that V wishes to execute on the TEE. Moreover, V captures the
current time t1. Upon reception, P calculates checksum(r1, Fs), and gets the
result res. After the successful execution of Fs, a new TEE is launched on the
untrusted platform. Upon its creation, the TEE also obtains a public/private key
pair (pkTEE, skTEE) (sealing/unsealing keys). The result of the checksum will be
then sent back to V along with the launched TEE’s public key. More precisely,
P sends the following message to V: m2 = 〈r2,EncpkV (P, res, pkTEE), σP(H1)〉,
where H1 = H(r2||P||res||pkTEE). Upon reception, V captures the time t2 and
calculates Δt = t2 − t1 (possible because V also knows the function Fs). If Δt
is as expected, then V knows that there is a TEE residing on the untrusted
platform. Figure 3 illustrates this phase.
1 The specifications of Fs will be TEE-dependent. However, it must be designed in

such a way that any manipulation will create a noticeable time increase in the
computation of the checksum.

468 I. M. Delgado-Lozano et al.

Fig. 3. Trusted launch phase.

Computations Phase: After the successful execution of the Trusted Launch
Phase, V is convinced that a newly launched TEE is residing on the untrusted
platform. V wishes to run an executable application A on the untrusted part
of P. To ensure that the results will be accurate, V first decides the number of
required traces. This decision depends on the statistical results described later
(Sect. 5). After deciding the number of runs n, V initiates the protocol. To this
end, V first generates a token τ and a fresh random number r3, and contacts
P by sending m3 = 〈r3, n, τ, A, σV(H2)〉, where H2 = H(r3||τ ||A||n) and A is
the unique identifier of the application that V wishes to execute on P. Upon
reception, P starts running application A n times with τ as input, and produces
an output out, and a fingerprint H(τ,A). Simultaneously, the TEE measures
the power consumption of the untrusted part of P to get a sequence of traces
{tr}n

i=1 (one for each execution of A). As soon as P outputs out, it sends an
acknowledgement ack to the TEE. Upon reception, the TEE will reply to P
with m4 = 〈r4,EncpkV ({tr}n

i=1), σTEE(H3)〉, where H3 = H(r4||tr1|| . . . ||trn). P
will finally send m5 = 〈r5,m4,H(τ,A), out, σP(H4), where H4 = H(r5||m4||out).
Upon receiving m5, V verifies the signatures of the TEE and P, and the
freshness of both m4 and m5 messages. After the first successful execution
of the protocol, V commences a fresh run, until she gathers all the required
traces. When V gets the desired number of traces, she generates m6 =
〈r6,EncpkMT

(τ, out, A, {tri}n
i=1), σV(H3)〉, where H3 = H(r6||τ ||A||out||{tri}n

i=1)
and sends it to MT. MT can then check the trust level of P by comparing out
and each tri against its pre-computed list of measurements. Finally, MT outputs
a bit b ∈ {0, 1} and sends m7 = 〈r7,EncpkV (b), σMT (H4)〉, where H4 = H(r7||b)
to V. Figure 4 depicts the Computations Phase.

Attestation Waves: Platform Trust via Remote Power Analysis 469

Fig. 4. Computations Phase: we assume P and the TEE reside on the same platform.

4.3 Threat Model

Our threat model is based on the Dolev-Yao adversarial model [7]. Furthermore,
we assume that ADV can load programs of her choice in the enclaves and observe
their output. This assumption significantly strengthens ADV since we need to
ensure that such an attack will not be detectable from V’s point of view. Finally,
we extend the above threat model by defining a set of attacks available to ADV.

Attack 1 (Measurements Substitution Attack). Let ADV be an adversary
that has full control of the untrusted part of P. ADV successfully launches a
Measurements Substitution Attack if she manages to substitute the measurements
received from TEE by some others of her choice, in a way that is indistinguishable
for V.

Attack 2 (False Result Attack). Let ADV be an adversary that overhears
the communication between V and MT. ADV successfully launches a False Result
Attack if she can tamper with the response sent from MT to V.

While the first two attacks target directly the protocol communication, we
also define a third attack that aims at targeting a false positive (FP) case,
analyzed further in Sect. 5. An adversary could exploit the FP by substituting
V’s application with another of her choice. The resulting trace, even if it comes
from a different application, could still pass as valid by V.

Attack 3 (Application Substitution Attack). Let ADV be an adversary
that overhears the communication between V and P. ADV successfully launches
an Application Substitution Attack if she manages to replace the trace that V is

470 I. M. Delgado-Lozano et al.

expecting with another of her choice, with non-negligible advantage, where the
advantage of ADV is defined to be the following conditional probability:

AdvADV = Pr[V accepts the trace | ADV switched the application]

4.4 Security Analysis

We now prove the security of our protocol in the presence of a malicious adversary
ADV as defined in Sect. 4.3.

Proposition 1 (Measurements Substitution Attack Soundness). Let
ADV be an adversary that has full control of the untrusted part of P. Then
ADV cannot perform a Measurements Substitution Attack.

Proof. For ADV to successfully launch a Measurements Substitution Attack,
she needs to replace the measurements μ, with some other measure-
ments μ′ of her choice. To do so, ADV can either generate a fresh
μ′, or replay an old one. In both cases, ADV must generate a message
m5 = 〈r,m4,H(τ,A), out, σP(H(r||m4||out))〉. It is clear from the message struc-
ture, that the only component that P cannot forge, is the message m4 included
in m5. As m4 is signed by the TEE, and given the EUF-CMA security of the
signature scheme, ADV can only forge the TEE’s signature with negligible prob-
ability. Hence, the only alternative for ADV is to use an older m4 message that
she received from the TEE sometime in the past. Let m4old be the old m4 mes-
sage such that m4old = 〈r4old ,EncpkV (μ), σTEE(H3)〉, where H3 = H(r4old ||μ′).
While this approach solves the problem of forging TEE’s signature, ADV now
needs to further tamper with this message by replacing r4old , with a fresh ran-
dom number. This is important because otherwise, V will not be able to verify
the freshness of the message, and will thus abort the protocol. However, r4old is
included in the signed hash of the TEE, and given the second preimage resis-
tance of the hash function H we have that H(r, μ′) �= H(r′, μ′) ∀r, r′ such that
r �= r′. Hence, V realizes that something is wrong and aborts the protocol.

Proposition 2 (False Result Attack Soundness). Let ADV be a malicious
adversary that overhears the communication between V and MT. Then ADV
cannot successfully perform a False Result Attack.

Proof. For ADV to launch a False Result Attack, she needs to forge the message
m6 sent by MT to V in a way that V will not be able to distinguish any difference.
To do so, ADV has two choices: (i) substitute the encrypted bit, with a bit of
her choice; (ii) replay an older message.

Substituting the encrypted result is feasible since V’s public key is publicly
known. Hence, it is straightforward for ADV to encrypt a bit under pkV and
replace it with the actual encrypted result. However, since the encrypted bit is
also included in the signed hash, V will be able to ascertain that the integrity of
the message has been violated. Thereupon, for ADV to successfully substitute

Attestation Waves: Platform Trust via Remote Power Analysis 471

the encrypted bit, she needs to also forge the MT’s signature. Given the EUF-
CMA security of the signature scheme, this can only happen with negligible
probability and so, the attack fails.

Insomuch as ADV overhears the communication between V and MT, she has
knowledge of the random numbers used to ensure the freshness of the messages.
On that account, ADV could try to forward to V an older m7 message, with
a fresh random number. However, just like in the previous case, the random
number is also included in the signed hash, and consequently ADV would once
again have to forge the MT’s signature, which can only happen with negligible
probability.

The above proofs support our claim that in both cases the attack can only
succeed with negligible probability. As a result, ADV cannot successfully launch
a False Result Attack.

Proposition 3. Let n be the total number of traces captured to perform an
attestation process. Let pα be the probability of an attacker obtaining a success
result with a single trace derived from another operation, and pβ the honest user
success probability, using a single trace coming from the appropriate operation.
Assuming that pβ > pα, there exists a threshold number of traces, xth, required
to pass the attestation process, for which P (α) = 0 and P (β) = 1, using a
sufficiently large number n of traces.

Proof. Let {Xi} be a succession of independent random variables that take one
of two different results:

Xi =

{
0, do not pass the attestation process
1, pass the attestation process

Let x =
∑n

i=1 Xi be the number of times we pass the attestation process. We
know, by the strong law of large numbers (SLLN) that:

P (lim
n→∞

∑n
i=1 Xi

n
= E(Xi)) = 1 (1)

where E(Xi) is the expected value of variable Xi. From the binomial distribution
formula:

P (x) =
(

n

x

)
· px · (1 − p)n−x (2)

Leveraging that, in the binomial distribution, the expected value E(Xi) of a
variable matches with its probability p. We can substitute in Eq. 1, yielding:

P (lim
n→∞

∑n
i=1 Xi

n
= p) = 1 ⇒ P (lim

n→∞
x

n
= p) = 1

Let us consider now the two different cases of pα and pβ . For a sufficiently large
n, we get that:2

2 Notice that “almost surely” is a concept used in probability theory to describe events
that occur with probability 1 when the sample space is an infinite set.

472 I. M. Delgado-Lozano et al.

P (lim
n→∞

xα

n
= pα) = 1 ⇒ lim

n→∞
xα

n
= pα almost surely4 (3)

P (lim
n→∞

xβ

n
= pβ) = 1 ⇒ lim

n→∞
xβ

n
= pβ almost surely (4)

Since pβ > pα by assumption (an essential condition to perform a solid attes-
tation), we can select xth defined as the threshold number of traces such that
pα < xth

n < pβ for which we need a number x
n ≥ xth

n to have a positive result
of the attestation process. Then, from Eq. 3 and the fact that pα < xth

n by
definition, we get:

P (α) = P (lim
n→∞

xα

n
≥ xth

n
) = 0

Analogously, from Eq. 4 and the fact that pβ > xth

n by definition, we get:

P (β) = P (lim
n→∞

xβ

n
≥ xth

n
) = 1

5 Evaluation

With the previous sections explaining how we capture the traces from the ADC
and how we establish security between the prover and the verifier system, we
are in a position to explain our experiments. We open with a description of
our analysis framework, including empirical evaluation (Sect. 5.1). We then close
with a security analysis of the different framework parameters (Sect. 5.2), guiding
selection when instantiating the Sect. 4 protocols.

5.1 Methodology

Our procedure consists of (i) selecting the traces generated by the ADC that
belong to a given program; (ii) generating a template by averaging a large num-
ber of traces; and (iii) comparing this template to different traces, some that
belong and some that do not to the same given program. Our methodology uses
profiling both to build the templates and calculate the correlation threshold that
operations should surpass to complete the attestation, both which vary across
binaries (see Table 2). As an alternative, non-profiled approaches could be an
interesting research direction to potentially improve scalability and agility. We
utilize the Pearson correlation for our comparison metric. These, ultimately, will
lead to statistics about the true positive (TP), true negative (TN), false negative
(FN), and false positive (FP) rates that will allow us to make a concrete analysis
concerning the suitability of the traces retrieved by a given sensor or peripheral
to perform attestation. From this data, we obtain the following parameters,
which are typical in information classification, that give an idea of the accuracy
and relevance of our experiments.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
F1 = 2 · Recall · Precision

Recall + Precision

Attestation Waves: Platform Trust via Remote Power Analysis 473

Fig. 5. Several templates selected, with different number of samples.

This way, precision gives a measure of the number of correct results among all
the returned results, while recall gives a measure of the number of correct results
divided by the number of results that should have been returned. This means
that a low result of precision implies that a high number of incorrect results are
considered as correct, so our system would be yielding many FP. On the other
hand, a low recall implies that we are not considering as correct some results
that indeed are correct, leading then, to a high number of FN. Finally, F1 is the
harmonic mean between recall and precision, and allows us to give an idea of
how good our system is at retrieving results with one single measurement.

Specifically, we utilize the executables in the Bristol Energy Efficiency Bench-
mark Suite (BEEBS) [23,24], providing a broad spectrum of programs3 to pro-
file w.r.t. our methodology. We execute the BEEBS programs and capture their
traces from the ADC in order to perform attestation by comparing each trace
with templates previously obtained for the other BEEBS programs. The aim is
that a trace coming from a certain program only matches (leading to a high
correlation value) with the template belonging to its own program and does not
match (yielding a low correlation value) with other programs’ templates.

To accomplish this, we first capture 1000 traces from each program and
generate templates from them. Then, we apply a Savitzky-Golay filter to obtain
the final template. Figure 5 depicts the final template of five BEEBS programs,
where the trigger operations determine each program operation area (see Fig. 2).
It is important to notice that the amplitude shift in the traces is not a reliable
differentiator, since it depends on the moment the traces are taken.

One observation from Fig. 5 is that the templates associated to each program
take different times, translated into different number of samples, to complete
their execution. The program will be running while the ADC is capturing sam-
ples between the start and the ending trigger. The rest of the trace after the end
trigger is simply noise. Our ADC captures 221 samples for every trace and tem-
plate, but in order to perform the correlations, each program and its template
are separated into different groups according to their lengths ranging from 217

to 221 samples. This way, depending on the length of the different templates, we

3 https://github.com/mageec/beebs.

https://github.com/mageec/beebs

474 I. M. Delgado-Lozano et al.

Fig. 6. Matching of the fasta template (black) with two different traces (fasta, fir).

keep the execution part from the traces and templates by selecting a number
of samples between 217 to 221 samples, trying to catch the relevant information
from said execution. Since the rest of the trace, once the program is executed
and finished, is simply noise, we discard it.

After computing all the templates, our experiment consists of capturing
1000 traces for every program and comparing them against their own template.
To achieve this, we compute the Pearson correlation between every trace of
the program selected and its template. We store this in a correlation vector
corrvector = (corr1, corr2, ..., corr1000), then the components of corrvector are
ordered from smallest to largest, in order to compute the 25th percentile. This
is to say, we compute a threshold value corrthres from which 750 components of
the vector are above it. In practical terms, this means that during the matching
stage, a trace that has a correlation value above the threshold will be considered
as representative of an honest execution from a certain program, while a trace
with a correlation value lower than this threshold cannot certify that the trace
belongs to the program related to the template. This matching stage, in prac-
tical terms, works as a training set for our correlation system where we select
a threshold value that let pass the 75% of the traces from that matching set.
When we move to the evaluation stage, the threshold value is the one that we
previously selected, but it does not need to pass exactly the 75% of the traces,
since the traces from the evaluation stage are not the same as the one from the
matching stage. Nonetheless, it should yield a similar ratio of traces that pass
the attestation. This way, we ensure that the threshold admits a sufficient num-
ber of traces, without allowing a large number coming from other operations. In
Fig. 6, it is visible to the naked-eye how a correct trace matches with its tem-
plate, against a trace that does not belong to the program according to the used
template.

Attestation Waves: Platform Trust via Remote Power Analysis 475

After this, we select a template and compute correlations for all the BEEBS
executables, with a set of 1000 traces from each program. If traces that do not
belong to the program being checked match with the corresponding template,
having a correlation value higher than the threshold, we will have a FP. On the
contrary, if a trace that belongs to this program does not match with its own
template, having a correlation value lower than the threshold, we will have a FN.
From these statistics, we compute recall, precision, and F1 score as previously
defined. To obtain those statistics, we first trim the traces to have the same
number of samples than the template used in each case, in order to be able to
compute the Pearson correlation value between the traces and the given tem-
plate. Figure 7 illustrates the whole process, repeated for the templates obtained
from each program. We verified that this process can be carried out even if the
templates are generated from a set of data from a given board of a certain model,
and the evaluation stage where we compute the correlation of the traces with
the templates previously generated are captured from a different board of the
same model. This characteristic demonstrates the robustness of our attestation
protocol, and its utility in systems where we can have pre-loaded templates for
given binaries coming from different devices.

We present the complete statistics in Table 2. It includes the correlation
threshold value for each program, the name of the program that yields the highest
FP rate, the absolute number out of the 1000 traces that provides a correlation
value higher than the threshold (leading to FP), recall, precision, and F1 score
metrics. From Table 2, we can see that out of 47 programs, 35 have a precision
above 0.90 and 42 above 0.80, while 27 programs have a recall above 0.70 and 44
above 0.60. Thus, our method correctly distinguishes positive results among the
total number of traces, having in general a low FPR, and leading to excellent
precision values. On the contrary, the recall results are lackluster, meaning that
a significant portion of correct results are not retrieved by our system, leading
to an improvable FN rate (FNR).

Another concern is the fact that out of 1000 traces, in the worst FP case
scenario from a specific benchmark, 82 traces from ndes program are considered
as correct results by the nettle-aes template, leading to a FPR of 8.2% from
that specific operation. This means that traces coming from a given operation
are likely useful to attest others. The consequences, at this point, are clear. To
have said 8.2% of FP results, would lead to an inadmissible number of incorrect
traces passing the attestation process. This is especially worrying, taking into
account that the recall (which is equivalent to TPR, the TP rate) is 69%. With
these results, each time we want to use this attestation process, we have roughly
a 3/10 probability of failing even if the computations are carried out properly,
and around a 1/12 probability of having a correct result in cases where the
retrieved trace matches with the template, even if it does not belong to the
correct program. This is far from the aimed numbers to perform solid attestation
using our proposal.

476 I. M. Delgado-Lozano et al.

Fig. 7. Process repeated with every template to obtain statistics.

5.2 Parameterization

To overcome these deficiencies, we can use several traces to perform the attes-
tation. We aim to improve these numbers by requiring that out of n traces, a
minimum number xth must be above the threshold correlation value. Proposi-
tion 3 presents the general case, but now we must assign discrete values to the
various parameters.

For our case, and to obtain a good trade-off between the probabilities of
having FPs that pass the attestation, and having FNs that are not able to pass
even if they belong to the correct template, we consider the following threshold.

Attestation Waves: Platform Trust via Remote Power Analysis 477

It is the midpoint of pα and pβ , recalling those parameters from Proposition 3.

xth, n ∈ N : xth =
⌈
n · pα + pβ

2

⌉
∧ pα <

xth

n
< pβ

It is important to notice that each user can freely select this threshold number
of traces by, for example, giving different weights to pα and pβ or selecting a
totally different relation. As previously indicated, we select this threshold to have
a good trade-off between an attacker trying to cheat the attestation process with
a trace coming from another operation and an honest user.

Table 1. Parameter variations to achieve different security levels.

Security level n xth P (α) P (β)

32-bit 52 21 2.39 · 10−10 ≈ 2−32 1 − 5.43 · 10−6 ≈ 1 − 2−17

64-bit 114 45 5.18 · 10−20 ≈ 2−64 1 − 2.22 · 10−11 ≈ 1 − 2−35

128-bit 243 94 3.72 · 10−39 ≈ 2−128 1 − 6.27 · 10−23 ≈ 1 − 2−74

256-bit 494 191 9.83 · 10−78 ≈ 2−256 1 − 4.14 · 10−44 ≈ 1 − 2−144

Moreover, the user determines the security level by selecting an appropriate
number of total traces n. Here, we understand the security level as a measure
of the probability of passing the attestation protocol using traces coming from
a different operation, given the number of traces required to be above the cor-
relation threshold and the total number of traces n. Larger values of n tend to
minimize the FP probabilities and increase the corresponding TP probabilities
(thus, reducing also FNs). For our worst FP scenario coming from a specific
benchmark, we have 82 traces out of 1000 coming from the ndes benchmark
that yield FP results using the nettle-aes template. On the other hand, the TPR
for nettle-aes is 0.69. In this case, we can identify the FPR from the ndes traces,
with an attacker’s probability to successfully cheat the attestation process of the
nettle-aes operation, thus, pα = 0.082. Analogously, the TPR for nettle-aes is
the success probability of an honest user, thus pβ = 0.69. Iterating, we found
that for n = 243 traces, the threshold needed to pass the attestation is:

xth =
⌈
243 · 0.69 + 0.082

2

⌉
= 94

Combining our results for the obtained threshold with the binomial distribution
(Eq. 2) for n = 243 and pα = 0.082, we get that the probability to cheat the
attestation is:

P (α) = P (x ≥ 94) = P (94) + P (95) + ... + P (243) using pα = 0.082

P (α) = 3.72 · 10−39 ≈ 1
2128

= 2.94 · 10−39

478 I. M. Delgado-Lozano et al.

Table 2. Complete statistics for every BEEBS benchmark used.

Benchmark corrthres Max. FP Precision Recall F1

aha-compress 0.7248 crc32 (23) 0.9617 0.7540 0.8453

bs 0.7096 newlib-sqrt (37) 0.9135 0.7710 0.8362

bubblesort 0.5312 nbody (30) 0.8959 0.7490 0.8159

cnt 0.7112 frac (3) 0.9775 0.6950 0.8124

cover 0.7264 crc (35) 0.9122 0.5820 0.7106

crc32 0.7447 aha-compress (9) 0.9783 0.5410 0.6967

crc 0.7724 duff (4) 0.9947 0.7570 0.8597

ctl-stack 0.6795 sqrt (50) 0.6018 0.8070 0.6895

ctl-vector 0.7070 ns (10) 0.9868 0.8200 0.8957

cubic 0.7232 sqrt (1) 0.9987 0.7890 0.8816

dijkstra 0.5141 nettle-des (1) 0.9986 0.7020 0.8244

duff 0.7318 crc (44) 0.9481 0.8040 0.8701

fasta 0.4935 bs (12) 0.9374 0.7340 0.8233

fibcall 0.6551 newlib-log (73) 0.6986 0.7370 0.7173

fir 0.6268 none 1.0000 0.8010 0.8895

frac 0.7856 crc32, newlib-sqrt (2) 0.9880 0.7420 0.8475

huffbench 0.5608 newlib-log (14) 0.8525 0.6360 0.7285

janne complex 0.4192 crc (19) 0.8014 0.6860 0.7392

jfdctint 0.7598 nettle-des (48) 0.9360 0.7020 0.8023

lcdnum 0.3827 cnt (38) 0.6283 0.7100 0.6667

levenshtein 0.5909 template (4) 0.9904 0.7250 0.8372

matmult-float 0.7009 none 1.0000 0.6520 0.7893

matmult-int 0.4645 several operations (2) 0.9804 0.7520 0.8511

mergesort 0.7296 sglib-hashtable (44) 0.9058 0.6730 0.7722

nbody 0.5610 bubblesort (30) 0.8066 0.7130 0.7569

ndes 0.6663 nettle-aes (80) 0.8638 0.6340 0.7313

nettle-aes 0.6318 ndes (82) 0.8903 0.6900 0.7775

nettle-des 0.7444 cover (21) 0.9613 0.7690 0.8545

newlib-log 0.5017 dijsktra (78) 0.6399 0.6290 0.6344

newlib-sqrt 0.5191 dijkstra (81) 0.4573 0.7170 0.5584

ns 0.7599 none 1.0000 0.7320 0.8453

nsichneu 0.7869 none 1.0000 0.7210 0.8379

picojpeg 0.6009 st (13) 0.9805 0.6540 0.7846

qrduino 0.5639 sglib-listsort (6) 0.9834 0.4740 0.6397

rijndael 0.6470 ndes (5) 0.9927 0.6800 0.8071

select 0.6120 template (27) 0.9415 0.7880 0.8579

sglib-arrayheapsort 0.6372 bs (2) 0.9912 0.6720 0.8010

sglib-arrayquicksort 0.7020 mergesort (11) 0.9807 0.7110 0.8244

sglib-hashtable 0.6919 mergesort (77) 0.8894 0.6350 0.7410

sglib-listinsertsort 0.6251 various (1) 0.9947 0.7540 0.8578

sglib-listsort 0.5108 qrduino (24) 0.9492 0.6540 0.7744

sqrt 0.5113 rijndael (2) 0.9923 0.6470 0.7833

st 0.5812 picojpeg (24) 0.9644 0.6770 0.7955

stb perlin 0.6476 template (3) 0.9833 0.6460 0.7797

tarai 0.6927 wikisort (37) 0.9025 0.7500 0.8192

template 0.6654 select (19) 0.9487 0.6840 0.7949

wikisort 0.7092 sglib-listinsertsort (9) 0.9673 0.7090 0.8182

Attestation Waves: Platform Trust via Remote Power Analysis 479

which is equivalent to a 128-bit security level. Using only 243 traces to complete
the attestation process is a very promising result, especially since this is only a
proof-of-concept of our novel attestation approach.

Considering the TPR, for n = 243 traces and pβ = 0.69, we get that:

P (β) = P (x ≥ 94) = P (94) + P (95) + ... + P (243) using pβ = 0.69

P (β) = 1 − 6.27 · 10−23 ≈ 1 − 1
274

Thus, we achieve an (almost) perfect TPR with the selected number of traces.
It is important to notice that these 243 traces are needed in our worst case
scenario. Concretely, our worst case scenario is that in which a higher number of
traces coming from a different operation passes the attestation process of another
binary. For the rest of binaries, the security level achieved will be equal or better
than this one. Table 1 show similar results about the number n of traces and
the threshold xth required to pass the attestation with various security levels for
this worst case scenario.

Ideally, we would achieve a certain security level by isolating the minimum
number n of traces and the xth required to find a given P (α). However, this is
not possible, since the inverse function of the binomial cumulative distribution
does not exist. In other words, there is not an analytical form to find n starting
from a given P (xth ≥ x). That is the reason why we use the iteration approach,
through readily-available numerical methods that are easily and fastly computed
by any tool or programming language considering the equation from the binomial
distribution.

6 Conclusion

The main contribution of this paper is the proposal of a new method to verify
the integrity of a SoC, by natively capturing the side-channel leakage produced
during the execution of a given operation. In our case, an ADC present in an
FPGA adjacent to the AP carrying out the operation that aims to be verified
is suitable to measure the voltage fluctuations caused by the execution itself.
These voltage fluctuations are able to characterize the performed operation and
to distinguish it from other binaries.

This attestation method does not rely on the request-to-response time, using
instead the power signal generated by the program execution, which provides
more detailed information about what its proper behavior should be. Addition-
ally, our method does not require an external setup with physical proximity to
capture the side-channel vector, rather native components. Thus, it implies no
software or hardware overhead to the system, since it simply internally captures
a power trace while carrying out executions in a normal operating mode.

To end, our attestation protocol completes the work. It describes not only how
our system can capture the power leakage that allows us to characterize a given
operation, but also how to manage the resultant power trace to, realistically,

480 I. M. Delgado-Lozano et al.

verify the integrity of an untrusted system. This achieves our main goal: checking
that an untrusted system is executing programs honestly, without the presence of
any malware. As far as we are aware, our work is the first constructive application
of remote power analysis, identified as an open problem in [19].

Limitations and Future Work. Our proof-of-concept work exhibits a variety
of limitations that should be addressed in future related studies. A brief sum-
mary follows. (i) TP rates are improvable, especially taking into account that
our traces are fairly noisy. Nonetheless, using several power traces we are able
to overwhelmingly detect honest users vs. attackers. (ii) Substitution attacks are
a real threat, in case the ADC resolution is not sufficient to capture malicious
modifications in the instructions from a binary. Future work includes exploring
attacker strategies to modify binaries to produce power traces that pass attes-
tation. (iii) The matching between traces and templates are mainly based in
the duration of the executed operation, since we use the ending triggers as a
distinctive mark in the power traces. However, the fact of using a whole power
trace (vectorial data) instead of the classical request-to-response time (scalar
data) hardens proxy attacks, because an attacker does not only need to solve a
challenge in a given time, but to generate a power trace similar to the template,
which is a difficult challenge. (iv) Consulting Fig. 1, a natural observation is that
requiring a TEE for dynamic attestation seems paradoxical, in the sense that
the target binary could simply be part of the TEE itself. However, a major goal
of TEEs is reducing the Trusted Computing Base (TCB); keeping the target
binaries outside the immediate TCB significantly narrows the attack surface.

Acknowledgments. (i) This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 804476). (ii) This project has received funding
by the ASCLEPIOS: Advanced Secure Cloud Encrypted Platform for Internationally
Orchestrated Solutions in Healthcare Project No. 826093 EU research project. (iii)
Supported in part by the Cybersecurity Research Award granted by the Technology
Innovation Institute (TII). (iv) Supported in part by CSIC’s i-LINK+ 2019 “Advancing
in cybersecurity technologies” (Ref. LINKA20216). (v) The first author was financially
supported in part by HPY Research Foundation. (vi) M. C. Mart́ınez-Rodŕıguez holds
a postdoc that is co-funded by European Social Fund (ESF) and the Andalusian gov-
ernment, through the Andalucia ESF Operational Programme 2014–2020.

References

1. Abera, T., et al.: C-FLAT: control-flow attestation for embedded systems soft-
ware. In: ACM CCS, pp. 743–754. ACM (2016). https://doi.org/10.1145/2976749.
2978358

2. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: ACM CCS, pp. 400–409. ACM
(2009). https://doi.org/10.1145/1653662.1653711

3. Chen, B., Dong, X., Bai, G., Jauhar, S., Cheng, Y.: Secure and efficient software-
based attestation for industrial control devices with ARM processors. In: ACSAC,
pp. 425–436. ACM (2017). https://doi.org/10.1145/3134600.3134621

https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.1145/3134600.3134621

Attestation Waves: Platform Trust via Remote Power Analysis 481

4. de Clercq, R., et al.: SOFIA: software and control flow integrity architecture.
In: DATE, pp. 1172–1177. IEEE (2016). http://ieeexplore.ieee.org/document/
7459489/

5. Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Sec. 10(2), 63–81
(2011). https://doi.org/10.1007/s10207-011-0124-7

6. Dessouky, G., et al.: LO-FAT: low-overhead control flow attestation in hardware.
In: DAC, pp. 24:1–24:6. ACM (2017). https://doi.org/10.1145/3061639.3062276

7. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983). https://doi.org/10.1109/TIT.1983.1056650

8. Gnad, D.R.E., Krautter, J., Tahoori, M.B.: Leaky noise: New side-channel attack
vectors in mixed-signal IoT devices. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2019(3), 305–339 (2019). https://doi.org/10.13154/tches.v2019.i3.305-339

9. Gnad, D.R.E., Krautter, J., Tahoori, M.B., Schellenberg, F., Moradi, A.: Remote
electrical-level security threats to multi-tenant FPGAs. IEEE Des. Test 37(2),
111–119 (2020). https://doi.org/10.1109/MDAT.2020.2968248

10. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017

11. Gravellier, J., Dutertre, J., Teglia, Y., Loubet-Moundi, P.: High-speed ring oscil-
lator based sensors for remote side-channel attacks on FPGAs. In: ReConFig, pp.
1–8. IEEE (2019). https://doi.org/10.1109/ReConFig48160.2019.8994789

12. Gravellier, J., Dutertre, J., Teglia, Y., Loubet-Moundi, P., Olivier, F.: Remote
side-channel attacks on heterogeneous SoC. In: CARDIS. LNCS, vol. 11833, pp.
109–125. Springer (2019). https://doi.org/10.1007/978-3-030-42068-0 7

13. Han, Y., Etigowni, S., Liu, H., Zonouz, S.A., Petropulu, A.P.: Watch me, but don’t
touch me! contactless control flow monitoring via electromagnetic emanations. In:
ACM CCS, pp. 1095–1108. ACM (2017). https://doi.org/10.1145/3133956.3134081

14. Lee, D., Kohlbrenner, D., Shinde, S., Asanovic, K., Song, D.: Keystone: an open
framework for architecting trusted execution environments. In: EuroSys, pp. 38:1–
38:16. ACM (2020). https://doi.org/10.1145/3342195.3387532

15. Li, Y., McCune, J.M., Perrig, A.: VIPER: verifying the integrity of peripherals’
firmware. In: ACM CCS, pp. 3–16. ACM (2011). https://doi.org/10.1145/2046707.
2046711

16. Lipp, M., et al.: PLATYPUS: Software-based power side-channel attacks on
x86. In: IEEE S&P, pp. 1080–1096. IEEE Computer Society (2021). https://doi.
ieeecomputersociety.org/10.1109/SP40001.2021.00063

17. Lisovets, O., Knichel, D., Moos, T., Moradi, A.: Let’s take it offline: boosting brute-
force attacks on iPhone’s user authentication through SCA. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(3), 496–519 (2021). https://doi.org/10.46586/tches.
v2021.i3.496-519

18. Liu, H., Vasserman, E.Y.: Gray-box software integrity checking via side-channels.
In: SecureComm. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol. 238, pp. 3–23. Springer
(2017). https://doi.org/10.1007/978-3-319-78813-5 1

19. Mart́ınez-Rodŕıguez, M.C., Delgado-Lozano, I.M., Brumley, B.B.: SoK: remote
power analysis. In: ARES, pp. 7:1–7:12. ACM (2021). https://doi.org/10.1145/
3465481.3465773

20. Msgna, M., Markantonakis, K., Naccache, D., Mayes, K.: Verifying software
integrity in embedded systems: a side channel approach. In: Prouff, E. (ed.)
COSADE 2014. LNCS, vol. 8622, pp. 261–280. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10175-0 18

http://ieeexplore.ieee.org/document/7459489/
http://ieeexplore.ieee.org/document/7459489/
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1145/3061639.3062276
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.13154/tches.v2019.i3.305-339
https://doi.org/10.1109/MDAT.2020.2968248
https://doi.org/10.1137/0217017
https://doi.org/10.1109/ReConFig48160.2019.8994789
https://doi.org/10.1007/978-3-030-42068-0_7
https://doi.org/10.1145/3133956.3134081
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/2046707.2046711
https://doi.org/10.1145/2046707.2046711
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00063
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00063
https://doi.org/10.46586/tches.v2021.i3.496-519
https://doi.org/10.46586/tches.v2021.i3.496-519
https://doi.org/10.1007/978-3-319-78813-5_1
https://doi.org/10.1145/3465481.3465773
https://doi.org/10.1145/3465481.3465773
https://doi.org/10.1007/978-3-319-10175-0_18
https://doi.org/10.1007/978-3-319-10175-0_18

482 I. M. Delgado-Lozano et al.

21. Nazari, A., Sehatbakhsh, N., Alam, M., Zajic, A.G., Prvulovic, M.: EDDIE: EM-
based detection of deviations in program execution. In: ISCA, pp. 333–346. ACM
(2017). https://doi.org/10.1145/3079856.3080223

22. O’Flynn, C., Dewar, A.: On-device power analysis across hardware security
domains. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(4), 126–153 (2019).
https://doi.org/10.13154/tches.v2019.i4.126-153

23. Pallister, J., Hollis, S.J., Bennett, J.: BEEBS: open benchmarks for energy mea-
surements on embedded platforms. CoRR abs/1308.5174 (2013). arXiv: 1308.5174

24. Pallister, J., Hollis, S.J., Bennett, J.: Identifying compiler options to minimize
energy consumption for embedded platforms. Comput. J. 58(1), 95–109 (2015).
https://doi.org/10.1093/comjnl/bxt129

25. Ramesh, C., et al.: FPGA side channel attacks without physical access. In: FCCM,
pp. 45–52. IEEE Computer Society (2018). https://doi.org/10.1109/FCCM.2018.
00016

26. Schellenberg, F., Gnad, D.R.E., Moradi, A., Tahoori, M.B.: An inside job: remote
power analysis attacks on FPGAs. In: DATE, pp. 1111–1116. IEEE (2018). https://
doi.org/10.23919/DATE.2018.8342177

27. Schellenberg, F., Gnad, D.R.E., Moradi, A., Tahoori, M.B.: Remote inter-chip
power analysis side-channel attacks at board-level. In: ICCAD, p. 114. ACM (2018).
https://doi.org/10.1145/3240765.3240841

28. Sehatbakhsh, N., Nazari, A., Khan, H.A., Zajic, A.G., Prvulovic, M.: EMMA: hard-
ware/software attestation framework for embedded systems using electromagnetic
signals. In: MICRO, pp. 983–995. ACM (2019). https://doi.org/10.1145/3352460.
3358261

29. Seshadri, A., Luk, M., Perrig, A., van Doom, L., Khosla, P.K.: Pioneer: verify-
ing code integrity and enforcing untampered code execution on legacy systems.
In: Malware Detection, Advances in Information Security, vol. 27, pp. 253–289.
Springer (2007). https://doi.org/10.1007/978-0-387-44599-1 12

30. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.K.: SCUBA: secure
code update by attestation in sensor networks. In: WiSe, pp. 85–94. ACM (2006).
https://doi.org/10.1145/1161289.1161306

31. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.K.: SWATT: software-based
attestation for embedded devices. In: IEEE S&P, p. 272. IEEE Computer Society
(2004). https://doi.org/10.1109/SECPRI.2004.1301329

32. Yang, S., Alaql, A., Hoque, T., Bhunia, S.: Runtime integrity verification in cyber-
physical systems using side-channel fingerprint. In: ICCE, pp. 1–6. IEEE (2019).
https://doi.org/10.1109/ICCE.2019.8662071

33. Zhao, M., Suh, G.E.: FPGA-based remote power side-channel attacks. In: IEEE
S&P, pp. 229–244. IEEE Computer Society (2018). https://doi.org/10.1109/SP.
2018.00049

https://doi.org/10.1145/3079856.3080223
https://doi.org/10.13154/tches.v2019.i4.126-153
http://arxiv.org/abs/1308.5174
https://doi.org/10.1093/comjnl/bxt129
https://doi.org/10.1109/FCCM.2018.00016
https://doi.org/10.1109/FCCM.2018.00016
https://doi.org/10.23919/DATE.2018.8342177
https://doi.org/10.23919/DATE.2018.8342177
https://doi.org/10.1145/3240765.3240841
https://doi.org/10.1145/3352460.3358261
https://doi.org/10.1145/3352460.3358261
https://doi.org/10.1007/978-0-387-44599-1_12
https://doi.org/10.1145/1161289.1161306
https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1109/ICCE.2019.8662071
https://doi.org/10.1109/SP.2018.00049
https://doi.org/10.1109/SP.2018.00049

How (not) to Achieve both Coercion
Resistance and Cast as Intended
Verifiability in Remote eVoting

Tamara Finogina1, Javier Herranz2(B), and Enrique Larraia3

1 Scytl Election Technologies, Barcelona, Spain
tamara.finogina@scytl.com

2 Departament de Matemàtiques, Universitat Politècnica de Catalunya,
Barcelona, Spain

javier.herranz@upc.edu
3 nChain, Zug, Switzerland
e.larraia@nchain.com

Abstract. We consider the problem of achieving, at the same time,
cast-as-intended verifiability and coercion resistance, in remote electronic
voting systems where there are no secure channels through which voters
can receive secret information/credentials before the voting phase.

We discuss why some simple solutions fail to achieve the two desired
notions and we propose (a bit) more involved solutions that are satis-
factory. Part of the discussion is closely related to the gap “full versus
honest-verifier” when defining the zero-knowledge property of crypto-
graphic zero-knowledge systems.

Keywords: Electronic voting · Coercion resistance · Cast as intended
verifiability · Zero-knowledge systems

1 Introduction

Consider the following situation, very common in electronic voting. A voter
interacts with a voting device VD (which may be a webpage or a voting terminal)
to cast its intention m. The result of the interaction is typically a public-key
encryption C = Encpk(m; r) of the intention m, computed using randomness r.
This ciphertext will be sent to the ballot box of the election, and then it will be
decrypted (typically after a privacy-preserving operation, like shuffling). Suppose
the voter does not trust the voting device (VD) performing the encryption.
Casting a vote consists of two steps: (1) the voter sends its option m to VD,
(2) VD prepares a ciphertext C and sends it to the ballot box. How can the
voter be sure that C actually contains encryption of its choice m? If the system
provides some way for the voter to be convinced, then it achieves the property of
cast-as-intended verifiability (CAI, for short). One possibility is that the voter

E. Larraia—Work done while the author was at Scytl Election Technologies.

c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 483–491, 2021.
https://doi.org/10.1007/978-3-030-92548-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_25

484 T. Finogina et al.

obtains a proof that its vote has not been changed, that is that C is indeed
correct encryption of m. This proof can be either human-verifiable (e.g. a choice
return code, a tracking number, etc.) or require the help of a verification device
(such a mobile phone, for instance, to run some mathematical/cryptographic
computations). However, in both cases, the sole existence of such proof might
open a door to intentional vote selling or coercion.

In this work we focus on the following scenario: there are no secure chan-
nels that allow voters to receive some secret information or credential, but each
voter has a personal (trusted) device to run mathematical/cryptographic com-
putations, in the voting phase. In such a scenario, is it possible to achieve the
two properties, namely CAI verifiability and coercion resistance? The second
one means a coercer cannot distinguish a (real) execution of the voting phase
between the voter and VD with input m from a (simulated) execution of the
voting phase with any other input m∗, possibly chosen by the coercer, even if
the coercer forces the voter to use some specific (distribution of) values during
the voting phase. Of course, this notion of coercion resistance (CR, for short)
makes sense only if one assumes that the coercer cannot control the voter during
the execution of the voting phase (otherwise, the coercer becomes the voter, and
there is not much to do). Please note, that our informal definition of CR does
not account for forced-abstention attacks (i.e. the coercer forces voter not to
participate in the election), since their mitigation requires [9] anonymous voting
channels, which are hard to achieve in practice.

Contributions and Organization of the Paper. After recalling some necessary
cryptographic notions in Sect. 2, we discuss in Sect. 3 possible solutions to the
CAI+CR problem that are not satisfactory. Then in Sect. 4 we present two
solutions that are satisfactory. The gap between unsatisfactory and satisfac-
tory solutions is closely related to the gap between the honest-verifier and full
zero-knowledge property of cryptographic zero-knowledge systems. In particu-
lar, we show that a solution with one or two rounds of communication between
the voter and the VD cannot be secure. The two solutions of Sect. 4 are generic
and could be described for general binary relations, zero-knowledge systems,
etc. However, for the sake of clarity and simplicity, we directly describe spe-
cific instantiations of the generic solutions, for the particular case where voting
options m are encrypted using the ElGamal.

We want to stress that this (short) paper is intentionally written in a not-fully
formalized way, without detailed definitions of the security notions and without
security proofs at all. Our main goal here is to present the main conclusions of our
study in a clear way, to the broadest possible (maybe non-cryptographic) audi-
ence. The missing details and formalization will be added in a future extended
version of this (ongoing) work.

How (not) to Achieve both Coercion Resistance and Cast 485

2 Cryptographic Preliminaries

2.1 ElGamal Public Key Encryption

ElGamal public key encryption scheme [5] works as follows:

– The key generation protocol takes as input a security parameter κ and gen-
erates a prime number q and a cyclic group G = 〈g〉 of order q. The secret
key sk is chosen at random from Zq, the matching public key is pk = gsk.

– The encryption protocol takes as input a public key pk and a message m ∈ G;
then a random value r ∈ Zq is chosen, and the ciphertext C = (c1, c2) is
computed as c1 = gr and c2 = m · pkr.

– The decryption protocol takes as input the secret key sk and a ciphertext
C = (c1, c2) ∈ G × G, and outputs c2/csk1 = m.

2.2 Zero-Knowledge Proof Systems

In a zero-knowledge interactive system, a prover P has some secret witness w
of the fact that some public element x belongs to some language LR, where
R ⊂ W × X is a binary relation and LR = {x ∈ X | ∃w ∈ W s.t.(x,w) ∈ R}.
In an execution of the protocol, such a prover P and a verifier V interact by
sending and receiving information through a number of rounds. At the end, the
goal is that P convinces V of the fact that P knows a secret witness w such that
(x,w) ∈ R. Typically, three properties are required for such a protocol:

– Completeness: if both P and V are honest and (x,w) ∈ R, then the verifier
always accepts the proof as valid.

– Soundness: if P is dishonest and (x,w) /∈ R, then the verifier does not
accept the proof as valid.

– Zero-Knowledge: the execution of the protocol does not leak any infor-
mation about the secret witness w. This is formalized requiring, for every
verifier V∗, the existence of a polynomial-time simulator MV∗ s.t. ∀(x,w) ∈ R
the output 〈P (x,w) , V∗(x)〉 is identically distributed to the output MV∗(x).

If Zero-Knowledge holds for any possible verifier V∗, then we say the proto-
col achieves full zero-knowledge. However, if it only holds for verifiers V∗ that
correctly follow the prescribed steps of the protocol, then we say the protocol
achieves honest-verifier zero-knowledge. A Σ-protocol is an example of an inter-
active system with honest-verifier zero-knowledge; it is a three-move protocol
producing transcripts with the form (a, e, z), where the first message a is sent
by the prover, e is a value chosen by the verifier uniformly and at random from
a suitable challenge space, and z is the answer computed by the prover.

3 CAI+CR: Discussion of Some Unsatisfactory Solutions

Most e-voting systems are designed to provide CAI verifiability by outputting
some proof, therefore it is assumed that a coercer is quite limited e.g. the voting

486 T. Finogina et al.

or registration is done without a coercer’s control, nor can he obtain private
voter’s data, credentials or impersonate the voter, etc. The only scheme that
focuses on full coercion is Civitas [4], however, it does not deal with CAI as VD
is assumed to be honest.

One of the simplest ways to provide CAI verifiability is via transferable proofs
e.g. QR-codes that store encryption randomness, NIZK proof of encryption ran-
domness knowledge, etc. However CR does not hold when voter is not trusted.

Another approach requires secure channels to deliver some secret information
to a voter and assumes that the voter will not share it with anyone. For example,
return-code based schemes pre-deliver voting cards with the mapping between
choices and return codes to each voter. Similarly, the voter can receive tracking
numbers, secret keys, voting cards with vote-codes, pre-computed ballots, etc.
However, in the settings without secure channels, this strategy would not work.

It seems the only way to achieve both CAI and CR, without trusting voters
to keep CAI proof private or using secure channels, requires interaction. Next
we discuss why some strategies fail in providing both CAI and CR.

Solution U1: Cast-or-Challenge. This technique [3] is used by Helios [2] and its
derivatives to achieve the CAI property: the VD sends to the voter the ran-
domness r that was used to produce the ciphertext C = Encpk(m; r). The voter
can then use another device to re-encrypt m with r and check that the result is
C. This process is repeated a random number k of times, until for the k+1-th
interaction the voter does not require the randomness and casts the ciphertext.

While this solution is quite popular and enjoys CR, however, it does not
provide CAI strictly speaking, since the sent ballot is never audited. True, it
gives some chance to detect VD misbehavior, but a malicious VD may guess the
last verification attempt and cheat or prepare separate ballots for auditing and
sending. Moreover, studies show that users do not understand this verification
method and on average only 43% of users are able to verify their votes [1].

Solution U2: Using Σ-Protocols. A different possibility (not explicitly proposed
anywhere, as far as we know) is to consider an interactive Σ protocol between
VD and the voter, to let VD convince the voter that C encrypts m.

Unfortunately, the zero-knowledge property of a Σ protocol is honest-verifier
only; and in our application, the verifier (the voter) can be under control of a
coercer. If the coercer forces the voter to choose the challenge e in a particu-
lar way, for instance as e = Hash(a), where a is the message voter sees before
introducing the challenge, then the coercer can easily verify if the voter obeyed
and voted for m∗ or not. Note that for such e it is computationally infeasible to
simulate a valid transcript (a′, e′, z′) for a different voting option m∗ �= m that
satisfies the required distribution e′ = Hash(a′) (see for instance [10]), thus the
voter must cast its vote for m∗ in order to satisfy the coercer.

How (not) to Achieve both Coercion Resistance and Cast 487

Solution U3: Using OR-Proofs. There are CAI mechanisms proposed (implicitly
or explicitly) in the literature [6,8], based on the idea of designated verification,
that deal with the problem of coercion.

In the first round of the protocol, V generates an instance (public element
and trapdoor witness) of a hard relation and sends to P the public element.
For instance, if we consider the Discrete Logarithm relation, V chooses x ∈ Zq

at random, computes y = gx and sends y to P. In the second round of the
protocol, P computes a non-interactive zero-knowledge proof π for the language:
“I know r such that C = Encpk(m; r)” OR “I know x such that y = gx”. Such a
non-interactive (one-shot) proof can be computed by applying the Fiat-Shamir
transformation to a Σ-protocol for the OR language above.

CAI verification holds because VD = P has no way of knowing the trapdoor
x, while for CR the voter can use the knowledge of x to generate fake proofs for
the coercer. However, CR approach heavily relies on the fact that an (honest)
V actually knows the witness x as clearly stated in [6,8]. Unfortunately this
assumption is false in a scenario with strong coercion: the coercer can generate
the pair (x, y), give y to V and force it to run the above protocol with that
specific public element y. Since V does not know x, it cannot simulate proofs
and the only valid proof π it can show to the coercer will reveal its vote m.

3.1 On the Necessary Number of Rounds

We omit the rounds where the voter sends its voting option m to the VD and
where VD publishes the ciphertext C. Our study starts at the point, where m
and C are already known to both V and P. In some particular protocols (like
the ones that we will describe in Sect. 4), the exchange of m,C can be integrated
with the rest of the interaction aimed at providing CR and CAI.

One Round is Not Enough. Let us imagine a one-round protocol: it consists of
P sending a single message π to V; for the CR property, it should be impossible
for the coercer to distinguish (C,m, π) from (C,m∗, π∗). But the same holds for
the voter, who has not participated in the protocol at all, which breaks the CAI
property because the voter gets exactly the same conviction for any possible
voting option.

Two Rounds are Not Enough. Essentially the same idea extends to CAI mecha-
nisms with two rounds: V first sends some message a to P, in the first round, and
finally P replies with some message π, in the second round. A coercer may force
V to use a specific â as the first message of the protocol, so that only transcripts
(â, π) will be accepted by the coercer. In such a case, as in the previous situation
with one round, CR property would imply that the protocol does not provide
CAI: if the coercer cannot distinguish if (m,C) ∈ LR or if (m∗, C) ∈ LR, due
to the CR property, then the same holds for V, which breaks the CAI (sound-
ness) property. Here LR = {(C,m) | C is an encryption of m} is the ElGamal
language.

488 T. Finogina et al.

Therefore, at least three rounds of communication between V and P are
needed in order to get both the CR and CAI properties. We have not been able
to find a simple solution with three rounds of communication. In the next section
we describe two solutions which, when implemented in the ElGamal ciphertext
case, involve four rounds of communication.

4 CAI+CR: Two Solutions

We describe in this section two ways of achieving both CAI and CR in our
considered setting for remote e-voting (without secure channels). For each of the
solutions, we first describe it in a generic and informal way, and then we describe
the protocol in detail for the particular case of ElGamal ciphertexts that we are
considering as the illustrative example through all this paper.

Solution S1: Committing to Challenges. The departing point for the solution
S1 is the unsatisfactory solution U2 (using a Σ-protocol). The problem with
solution U2 was that a Σ-protocol is only honest-verifier zero-knowledge, which
opens the door to coercions like the one described when discussing solution
U2. The solution is easy: use an interactive protocol for the ElGamal language
LR = {(C,m) | C is an encryption of m} which is full zero-knowledge, and not
just honest-verifier zero-knowledge. A way of obtaining such a protocol is to
use a well-known technique, described for example in [7]: the verifier V starts
the protocol by committing to the challenge e that he will use later in the Σ-
protocol. The prover P must check that the challenge e is a valid opening of the
commitment previously received from V.

There are different possibilities for the commitment scheme employed in this
generic solution. For our detailed description in the ElGamal case, we will use
Pedersen commitment scheme [11], which needs that an additional generator
h ∈ G = 〈g〉 of the cyclic group G is published as part of the common public
parameters of the election.

Detailed Protocol for ElGamal Ciphertexts. We assume both P and V already
have access to values q,G, g, h such that G = 〈g〉 = 〈h〉 has prime order q. The
sending of m from V to P and of C from P to V can be integrated in the four
rounds of the protocol, which works as follows:

1. V chooses e, w ∈ Zq uniformly at random, computes the commitment Z =
ge · hw and sends Z and the voting option m to P.

2. P chooses r, t ∈ Zq uniformly at random, computes C = (c1, c2) where c1 = gr

and c2 = m · pkr, and also the pair a = (A1, A2) = (gt, pkt). The two pairs C
and a are sent to V.

3. V sends both e and w to P.
4. P checks if Z = ge·hw. If this is not the case, P aborts the protocol. Otherwise,

P computes the value z = t + e · r mod q and sends it to V.

How (not) to Achieve both Coercion Resistance and Cast 489

For the CAI property, the voter will be convinced if the two following equal-
ities hold: gz = A1 · ce1 and pkz = A2 · (

c2
m

)e.
For the CR property, since the value e must be committed before the pair a

is obtained, the problem with unsatisfactory solution U2 does not exist anymore:
the only choices of the voter (or the coercer) are those of e, w in step 1. Even if
the coercer requires some specific distribution for these two values, the voter can
simulate a valid transcript (m∗, e, w,C, a, z) for the real ciphertext C and any
option m∗ (possibly selected by the coercer), by choosing e, w with the required
distribution (by the coercer), then choosing z ∈ Zq at random, computing A1 =
gz · c−e

1 and A2 = pkz · (
c2
m∗

)−e and finally defining a = (A1, A2).
Observe that the above simulator also works for instances (m∗, C) not in

the language (i.e. when C is not an encryption of m∗): the outputs of P and M
are indistinguishable under the DDH assumption. This holds for any language
L = {(C,m) | C is an encryption of m} where the encryption scheme is IND-
CPA secure.

Solution S2: Augmented OR Proofs. The departing point for the solution S2 is
the unsatisfactory solution U3: a non-interactive proof for the OR language “C
is encryption of m OR I know x such that y = gx”. We had already discussed
that this idea provides full CR as long as the voter V really knows the trap-
door x, and convinces the VD of this fact. This proof itself must be simulatable
(a Σ-protocol), it cannot be a non-interactive (one-shot) proof; otherwise, the
coercer could compute in advance the hard instance (x, y) along with a non-
interactive proof of knowledge π1 of x, and give to the voter just y, π1, and not
the trapdoor x (which would forbid the voter from simulating valid transcripts
for coerced voting options).

Detailed Protocol for ElGamal Ciphertexts. We assume that both P and V have
access to values q,G, g such that G = 〈g〉 has prime order q, and a secure hash
function H : {0, 1}∗ → Zq. The protocol works as follows:

1. V chooses the trapdoor x ∈ Zq uniformly at random and computes the asso-
ciated public element y = gx on the one hand. Then he chooses t ∈ Zq

uniformly at random and computes a = gt (first message of the Σ-protocol
to prove knowledge of x) on the other hand. The voter V sends y, a and the
voting option m to P.

2. P chooses r, e ∈ Zq uniformly at random, computes C = (c1, c2) where c1 = gr

and c2 = m · pkr, and sends ciphertext C and the challenge e to V.
3. V computes z = t + x · e mod q and sends z to P.
4. P checks if gz = a·ye. If this is not the case, P aborts the protocol. Otherwise,

P computes a non-interactive zero-knowledge proof π = (z1, z2, h1, h2) for the
OR language, as follows

– choose w1, z2, h2 ∈ Zq uniformly at random and compute A1 = gw1 ,
A2 = pkw1 and Z2 = gz2 · y−h2 ,

– compute the challenge as the hash value h = H(C, y,A1, A2, Z2),
– compute h1 = h − h2 mod q and z1 = w1 + h1 · r mod q.

490 T. Finogina et al.

For the CAI property, the voter V accepts the interaction as convincing if
the OR proof π is valid; that is, if the following equality holds:

h1 + h2 mod q = H

(
C, y, gz1 · c−h1

1 , pkz1 ·
(c2

m

)−h1

, gz2 · y−h2

)

For the CR property, the only influence a coercer can have on the voter is in
the distribution of the two values x and t of step 1. To simulate an execution of
the protocol with the same ciphertext C but for a different voting option m∗,
the voter chooses x and t with that distribution. Steps 2 and 3 are performed
as in the real protocol. Finally, the voter can simulate the proof π for the OR
language by using the knowledge of the trapdoor x, as follows:

– choose z1, w2, h1 ∈ Zq uniformly at random and compute A1 = gz1 · c−h1
1 ,

A2 = pkz1 · (
c2
m∗

)−h1 and Z2 = gw2 ,
– compute the challenge as the hash value h = H(C, y,A1, A2, Z2),
– compute h2 = h − h1 mod q and z2 = w2 + h2 · x mod q.

5 Conclusion and Remaining Work

This short paper presents the main (positive and negative) results that we have
obtained until now when studying the problem of achieving at the same time
coercion resistance and cast as intended verifiability. We are currently working on
the formalization of these two properties and the formal proof that our solutions
in Sect. 4 satisfy them, as well as on post-quantum secure instantiations (based
on lattices) of our solutions.

Acknowledgements. The work is partially supported by the Spanish Ministerio de
Ciencia e Innovación (MICINN), under Project PID2019-109379RB-I00.

References

1. Acemyan, C.Z., Kortum, P., Byrne, M.D., Wallach, D.S.: Usability of voter verifi-
able, end-to-end voting systems: baseline data for Helios, Prêt à Voter, and Scant-
egrity II. In: EVT/WOTE 14 Workshop, San Diego, CA, August 2014. USENIX
Association (2014)

2. Adida, B.: Helios: web-based open-audit voting. In: Proceedings of the 17th
USENIX Security Symposium, pp. 335–348 (2008)

3. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:
USENIX/ACCURATE Electronic Voting Technology Workshop, EVT 2007 (2007)

4. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system.
In: 2008 IEEE Symposium on Security and Privacy, S&P 2008, pp. 354–368 (2008)

5. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

6. Guasch, S., Morillo, P.: How to challenge and cast your e-vote. In: Grossklags, J.,
Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 130–145. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54970-4 8

https://doi.org/10.1007/978-3-662-54970-4_8

How (not) to Achieve both Coercion Resistance and Cast 491

7. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. Techniques and Con-
structions. ISC, Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14303-8

8. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

9. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Chaum, D., et al. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp.
37–63. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3 2

10. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 22

11. Pedersen, Torben Pryds: Non-interactive and information-theoretic secure verifi-
able secret sharing. In: Feigenbaum, Joan (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-642-12980-3_2
https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/3-540-46766-1_9

Subversion-Resistant Quasi-adaptive NIZK
and Applications to Modular Zk-SNARKs

Behzad Abdolmaleki1(B) and Daniel Slamanig2

1 Max Planck Institute for Security and Privacy, Bochum, Germany
behzad.abdolmaleki@csp.mpg.de

2 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. Quasi-adaptive non-interactive zero-knowledge (QA-NIZK)
arguments are NIZK arguments where the common reference string
(CRS) is allowed to depend on the language and they can be very effi-
cient for specific languages. Thus, they are for instance used within the
modular LegoSNARK toolbox by Campanelli et al. (ACM CCS’19) as
succinct NIZKs (aka zkSNARKs) for linear subspace languages. Such
modular frameworks are interesting, as they provide gadgets for a flexi-
ble design of privacy-preserving blockchain applications. Recently, there
has been an increasing interest to reduce the trust required in the gen-
erator of the CRS. One important line of work in this direction is sub-
version zero-knowledge by Bellare et al. (ASIACRYPT’16), where the
zero-knowledge property even holds when the CRS is generated mali-
ciously.

In this paper, we firstly analyze the security of the most efficient QA-
NIZK constructions of Kiltz and Wee (EUROCRYPT’15) and the asym-
metric QA-NIZKs by González et al. (ASIACRYPT’15) when the CRS
is subverted and propose subversion versions of them. Secondly, for the
first time, we construct unbounded (strong) true-simulation extractable
(tSE) variants of them. Thirdly, we show how to integrate our subver-
sion QA-NIZKs into the LegoSNARK toolbox, which so far does not
consider subversion resistance. Our results together with existing results
on (SE) subversion zk-SNARKS represent an important step towards a
subversion variant of the LegoSNARK toolbox.

1 Introduction

Zero-knowledge (ZK) proofs introduced by Goldwasser, Micali and Rackoff [23]
are cryptographic protocols between two parties called the prover and the ver-
ifier with the purpose that the prover can convince the verifier of the validity
of a statement in any language in NP without revealing additional information.
Besides this zero-knowledge property, such a system needs to provide soundness,
i.e., it must be infeasible for the prover to provide proofs for false statements.
While ZK proofs, in general, may require many rounds of interaction, an interest-
ing variant is non-interactive zero-knowledge (NIZK) proofs. They require only a
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 492–512, 2021.
https://doi.org/10.1007/978-3-030-92548-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_26

Subversion-Resistant Quasi-adaptive NIZK and Applications 493

single round, i.e., the prover outputs a proof, and this proof can then be verified
by anybody. A long line of research [22,26,27,30,31,36,40] has led to efficient
pairing-based succinct NIZKs called zero-knowledge Succinct Non-interactive
ARguments of Knowledge (zk-SNARKs), which are NIZK arguments with i) a
stronger notion of soundness called knowledge soundness and, more importantly,
ii) in which proofs, as well as the computation of the verifier, are succinct, i.e.,
ideally a small constant amount of space and computation respectively. Due to
these latter properties, zk-SNARKs are a suitable tool to preserve privacy within
cryptocurrencies and distributed ledger technologies, most notably used within
Zcash [45] and Ethereum [12], and they increasingly attract interest outside of
academia.1,2 In this paper, we are interested in quasi-adaptive NIZK (QA-NIZK)
arguments [33]. These are NIZKs in which the common reference string (CRS)
depends on a language parameter and they have many applications and have
been intensively studied [1,6,7,9,17,21,24,33,35,37–39,44].

For practical applications of (QA-)NIZKs and zk-SNARKs, an important
question is the generation of the CRS. While in theory it is simply assumed that
some mutually trusted party will perform the CRS generation, in many real world
settings (such as fully decentralized systems) there typically does not exist such
a trusted party. Recently, there has been an increasing interest to reduce trust in
the generator of the CRS. One of these lines of work is subversion zero-knowledge
initiated by Bellare et al. in [10], where the zero-knowledge property even holds
when the CRS is generated maliciously, i.e., the CRS generator is subverted.
Following this initial work, Abdolmaleki et al. [2,4] as well as Fuchsbauer [19]
investigated subversion zk-SNARKs. More recently, Abdolmaleki et al. (ALSZ)
in [3] initiated the study of subversion zero-knowledge QA-NIZK (Sub-ZK QA-
NIZK for short). While the latter is an important step, it leaves a number of
open problems such as weakening the requires assumptions, stronger soundness
guarantees and demonstrating impact for real-world applications.

Our Contribution. Our results can be summarized as follows.

Sub-ZK QA-NIZKs. We investigate the most efficient QA-NIZK constructions
of Kiltz and Wee (KW) [37] and the asymmetric QA-NIZKs by González et
al. (GHR) [24] in a subverted setup. We show that for KW we can construct
Sub-ZK QA-NIZK arguments for the most efficient their argument Π ′

as (which
requires a witness samplable distribution [33]) by extending the CRS suitably.
Thereby, compared to the recent Sub-ZK QA-NIZK based upon KW by ALSZ,
we consider a variant where the CRS is subverted, but the language parameter
is chosen honestly. We note that latter does not represent a problem for practi-
cal applications, as these parameters can typically be obtained in a transparent
way such that no trusted setup is needed, e.g., by deriving them using a suit-
able hash function modelled as a random oracle. In contrast to ALSZ, which

1 ZKProof (https://zkproof.org/) being the most notable industry and academic ini-
tiative towards a common framework and standards has been founded in 2018.

2 Zero-knowledge proofs are on the rise, cf. https://www.gartner.com/en/documents/
3947373/hype-cycle-for-privacy-2019.

https://zkproof.org/
https://www.gartner.com/en/documents/3947373/hype-cycle-for-privacy-2019
https://www.gartner.com/en/documents/3947373/hype-cycle-for-privacy-2019

494 B. Abdolmaleki and D. Slamanig

relies on a new non-standard knowledge assumption for their subversion zero-
knowledge property, our Sub-ZK QA-NIZK can be shown to have this property
under the Bilinear Diffie-Hellman Knowledge of Exponents (BDH-KE) assump-
tion [2,4] (being a simple case of the PKE assumption [16] or viewed differently an
asymmetric-pairing version of the KoE assumption [15]). Moreover, we present a
Sub-ZK QA-NIZK version of GHR by relying on the same BDH-KE assumption.

Simulation Extractability of Sub-ZK QA-NIZKs. We investigate the construc-
tion of Sub-ZK QA-NIZK that satisfies the stronger notions of knowledge sound-
ness and in particular a weakened version of simulation extractability (SE) called
true-simulation extractability (tSE) [32]. SE for QA-NIZK has to the best of
our knowledge only been used in the independent concurrent work by Bagh-
ery et al. [9] in a non-subverted setting. We recall that a (QA-)NIZK is called
unbounded SE if knowledge soundness holds even if the adversary is allowed
to adaptively see an arbitrary number of simulated proofs (restricted to state-
ments inside the language for tSE). The strong tSE notion of QA-NIZKs is
important as, similarly to SE, it guarantees non-malleability of proofs thus pre-
vents man-in-the-middle type of attacks, i.e., where an adversary takes a given
proof and alters the proof or proven statement without having access to the
full witness anyways. Our work is the first treatment of tSE Sub-ZK QA-NIZK
and we present unbounded tSE Sub-ZK QA-NIZKs based on KW (also in the
non-subversion setting).

Towards Subversion LegoSNARK. LegoSNARK [13] is a framework for Commit-
and-Prove zk-SNARKs (CP-SNARKs) with the aim of constructing a “global”
SNARK for some computation C via the linking of “smaller” specialized SNARKs
for different subroutines that overall compose to C. The main idea is that by
letting each subroutine of C be handled by a different proof system one can
choose the one that maximizes a metric (e.g., efficiency) that is important for
the concrete application. LegoSNARK uses a knowledge-sound version of the
KW QA-NIZK (with succinct proofs) as the zk-SNARKs for linear subspace
languages and in particular, they use a knowledge-sound version of the KW
QA-NIZK Π ′

as. We will show how to integrate subversion primitives into LegoS-
NARK. In particular, we show how to integrate our Sub-ZK QA-NIZKs instead
of their non-subversion counterparts. Together with the results on subversion
(SE) zk-SNARKs [2,5,8,19,28,41], we thus make an important step towards a
complete subversion (SE) variant of the LegoSNARK framework.3

2 Preliminaries

Let λ ∈ N be the security parameter. By y ← A(x;ω) we denote the fact that A,
given an input x and random coins ω, outputs y. By x ←$D we denote that x
is sampled according to distribution D or uniformly randomly if D is a set. Let
3 We note that there are some tasks, such as fitting existing subversion (SE) zk-

SNARKs into the commit-prove framework remaining that need to be worked out
in detail. However, we do not expect that one faces significant problems there.

Subversion-Resistant Quasi-adaptive NIZK and Applications 495

RND(A) denote the random tape of A, and let ω ←$RND(A) denote the random
choice of the random coins ω from RND(A). We denote by negl(λ) an arbitrary
negligible function. We write a ≈λ b if |a − b| ≤ negl(λ). For algorithms A and
ExtA, we write (y||y′) ← (A||ExtA)(·) as a shorthand for y ← A(·) and y′ ←
ExtA(·). Algorithm Pgen(1λ) returns BG = (p,G1,G2,GT , ê), where G1, G2, and
GT are three additive cyclic groups of prime order p, and ê : G1 × G2 → GT

is a non-degenerate efficiently computable bilinear map (pairing). We use the
implicit bracket notation of [18], that is, we write [a]ι to denote agι where gι is
a fixed generator of Gι. We denote ê([a]1, [b]2) as [a]1[b]2. Thus, [a]1[b]2 = [ab]T .
We denote s[a]ι = [sa]ι for s ∈ Zp and S · [a]ι = [Sa]T for S ∈ G3−ι and
ι ∈ {1, 2}. We freely use the bracket notation together with matrix notation,
e.g., if XY = Z then [X]1[Y]2 = [Z]T . Furthermore in our figures, we will not
explicitly provide return statements for P and Sim, but output all π elements.

Computational Assumptions. We require the following assumptions.

Definition 1 (BDH-KE Assumption [2,4]). We say that BDH-KE holds rela-
tive to K0, if for any PPT adversary A there exists a PPT extractor ExtBDH-KE

A ,
such that

Pr
[
p ←$K0(1λ);ωA ←$RND(A),
([α1]1, [α2]2||a)←(A||ExtBDH-KE

A)(p, ωA)
:[α1]1[1]2=[1]1[α2]2 ∧ a �= α1

]
≈λ 0 .

Where auxR is the auxiliary information related to the relation generator of
R. Note that the BDH-KE assumption can be considered as a simple case of the
PKE assumption of [16]. Also, BDH-KE can be seen as an asymmetric-pairing
version of the original KoE assumption [15].

In the following let Dk be a matrix distribution in Z
(k+1)×k
p .

Definition 2 (Dk-Matrix Diffie-Hellman (Dk-MDDH) Assumption [42]).
The Dk-MDDH assumption for ι ∈ {1, 2} holds relative to K0, if for any PPT
adversary A, |ExpMDDH

A (p) − 1/2| ≈λ 0, where ExpMDDH
A (p) :=

Pr

⎡
⎣p ←$K0(1λ);A ←$Dk;v ←$Z

k
p;

u ←$Z
k+1
p ; b ←$ {0, 1};

b∗ ← A(p, [A]ι, [b · Av + (1 − b) · u]ι)
: b = b∗

⎤
⎦ .

Definition 3 (Dk-KerMDH Assumption [42]). The Dk-KerMDH assumption
for ι ∈ {1, 2} holds relative to K0, if for any PPT A,

Pr
[
p ← K0(1λ);A ←$Dk; [s]3−ι ← A(p, [A]ι) : s �= 0 ∧ A�s = 0k

] ≈λ 0 .

Note that as shown in [42], if Dk-MDDH holds then Dk-KerMDH holds.

Definition 4 (Dk-SKerMDH Assumption [24]). The Dk-SKerMDH assump-
tion holds relative to K0, if for any PPT A,

Pr

[
p ← K0(1λ);A ←$Dk; ([s1]1, [s2]2) ← A(p, [A]1, [A]2) :

s1 − s2 �= 0 ∧ A�(s1 − s2) = 0k

]
≈λ 0 .

496 B. Abdolmaleki and D. Slamanig

Let D�k be a probability distribution over matrices in Z
�×k
p , where � > k.

Next, we define five commonly used distributions (see [18] for references), where
a, ai, aij ←$Z

∗
p: Uk (uniform), Lk (linear), ILk (incremental linear), Ck (cascade),

SCk (symmetric cascade):

Uk : A =
(a11 ... a1k

...
ak1 ... akk

ak+1,1 ... ak+1,k

)
, Lk : A =

⎛
⎝

a1 0 ... 0 0
0 a2 ... 0 0
0 0 ... 0 0
...
0 0 ... 0 ak
1 1 ... 1 1

⎞
⎠,

ILk : A =

⎛
⎝

a 0 ... 0 0
0 a+1 ... 0 0
0 0 ... 0 0
...
0 0 ... 0 a+k−1
1 1 ... 1 1

⎞
⎠, Ck : A =

⎛
⎝

a1 0 ... 0 0
1 a2 ... 0 0
0 1 ... 0 0
...
0 0 ... 1 ak
0 0 ... 0 1

⎞
⎠,

SCk : A =

⎛
⎝

a 0 ... 0 0
1 a ... 0 0
0 1 ... 0 0
...
0 0 ... 1 a
0 0 ... 0 1

⎞
⎠.

Assume that D�k outputs matrices A where the upper k × k submatrix Ā is
always invertible, i.e., D�k is robust [33]. All the above distributions can be
made robust with minimal changes. Denote the lower (� − k) × k submatrix of
A as A and denote Dk = Dk+1,k.

Quasi-adaptive NIZK Arguments. We recall the definition of QA-NIZK
arguments of Jutla and Roy [33]. A QA-NIZK argument provides a proof for
membership of words x with according witnesses w in a language L� defined by
a relation R� which is parametrized by some parameter � chosen from a distri-
bution Dp. The distribution Dp is witness samplable if there exist an efficient
algorithm that samples (�, tc�) so that the parameter � is distributed according
to Dp and membership of the language parameter � can be efficiently verified
with tc�. The CRS of QA-NIZKs depends on a language parameter � and as
mentioned in [33], it has to be chosen from a correct distribution Dp.

A tuple of PPT algorithms Π = (Pgen,P,V,Sim) is a QA-NIZK argument
in the CRS model for a set of witness-relations Rp = {R�}�∈Supp(Dp) with �
sampled from a distribution Dp over associated parameter language Lp, if the
following properties (i-iii) hold. Here, Pgen is the parameter and the CRS gen-
eration algorithm, more precisely, Pgen consists of two algorithms K0 (generates
the the parameter p) and K (generates the CRS), P is the prover, V is the verifier,
and Sim is the simulator.

(i) Completeness. For any λ, and (x,w) ∈ R�,

Pr

[
p ← K0(1λ); � ←$Dp; (crs, tc) ← K(�);π ← P(�, crs, x,w) :
V(�, crs, x, π) = 1

]
= 1 .

(ii) Statistical Zero-Knowledge. For any computationally unbounded adver-
sary A, |εzk

0 − εzk
1 | ≈λ 0, where εzk

b :=

Pr
[
p ← K0(1λ); � ←$Dp; (crs, tc) ← K(�); b ←$ {0, 1} : AOb(·)(�, crs) = 1

]
.

Subversion-Resistant Quasi-adaptive NIZK and Applications 497

Fig. 1. KW QA-NIZK Πas (D̂k = Dk and k̂ = k + 1) and Π ′
as (D̂k = D̄k and k̂ = k).

The oracle O0(x,w) returns ⊥ (reject) if (x,w) �∈ R�, and otherwise it
returns P(�, crs, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) �∈ R�,
and otherwise it returns Sim(�, crs, tc, x).

(iii) Adaptive Soundness. For any PPT A,

Pr

[
p ← K0(1λ); � ←$Dp; (crs, tc) ← K(�); (x, π) ← A(�, crs) :
V(�, crs, x, π) = 1 ∧ ¬(∃w : (x,w) ∈ R�)

]
≈λ 0.

Additionally, we define a stronger soundness version called knowledge soundness.

Computational Knowledge Soundness. For any PPT A there exists a non-
uniform polynomial time extractor ExtA such that,

Pr

[
p ← K0(1λ); � ←$Dp; (crs, tc) ← K(�);ωA ← RND(A);
((x, π);w) ← (A||ExtA)(ωA; �, crs) : V(�, crs, x, π)=1 ∧ (x,w) /∈ R�)

]
≈λ 0.

QA-NIZK Argument for Linear Spaces. Now we recall the two construc-
tions of QA-NIZK arguments of membership in linear spaces given by Kiltz and
Wee (KW) [37] for the language

L[M]1 =
{
[y]1 ∈ G

n
1 : ∃w ∈ Z

m
p s.t. y = Mw

}
.

The corresponding relation is defined as R[M]1 = {([y]1,w) ∈ G
n
1 × Z

m
p : y =

Mw}. This language is useful in many applications (cf. [33] and follow up work).
We recall the full construction of the Kiltz-Wee QA-NIZK arguments for linear
subspaces in the CRS model in Fig. 1. Let D̂k and D̄k be matrix distributions
in Z

k̂×k
p and Z

k×k
p respectively. We denote D̂k = D̄k if k̂ = k, and D̂k = Dk if

k̂ = k + 1.

Theorem 1 (Theorem 1 of [37]). If D̂k = Dk and k̂ = k + 1, Fig. 1 describes
a QA-NIZK argument Πas with perfect completeness, computational adaptive
soundness based on the Dk-KerMDH assumption, perfect zero-knowledge, and
proof size k + 1.

Theorem 2 (Theorem 2 of [37]). If D̂k = D̄k, k̂ = k, and Dp is a wit-
ness samplable distribution, Fig. 1 describes a QA-NIZK argument Π ′

as with per-
fect completeness, computational adaptive soundness based on the Dk-KerMDH
assumption, perfect zero-knowledge, and proof size k.

498 B. Abdolmaleki and D. Slamanig

Asymmetric QA-NIZK for Concatenation Languages. We recall the con-
structions of asymmetric QA-NIZK arguments of membership in different sub-
space concatenations of G

n1
1 × G

n2
2 given by Gonzalez et al. [24] in the full

version.

3 QA-NIZK Arguments in the Subversion Setting

In this section, we investigate QA-NIZK arguments when the CRS is subverted
and propose corresponding Sub-ZK QA-NIZK arguments. First we discuss sub-
version security and then our focus will be on the fundamental and the most
efficient QA-NIZK construction Π ′

as in [37] (cf. Sect. 2). Due to the lack of space
we present the subversion versions of the asymmetric QA-NIZK construction
Π ′

asy in [24] (cf. Sect. 2) for linear languages in the full version.

3.1 Security Definitions for Subversion QA-NIZK Arguments

The notion of subversion security for QA-NIZKs in the CRS model was first
noted by Jutla and Roy in the full version of [33] (cf. [34]). They have shown that
one can obtain both soundness and zero-knowledge (under falsifiable assump-
tions) when the language parameter � is subverted but the CRS is generated
honestly. They showed that such a setting can cover a large family of subspace
languages. Later Abdolmaleki et al. [3] (ALSZ) defined the security of QA-NIZKs
in the bare public-key (BPK) model, when both � and the CRS are subverted.
More precisely, they obtain a version of the Kiltz-Wee QA-NIZK [37] when both
� and CRS are chosen maliciously, but under a new non-falsifiable KWKE knowl-
edge assumption. ALSZ also obtain (knowledge) soundness when only � is chosen
maliciously under a new (non-falsifiable) interactive assumptions KerMDHdl and
SKerMDHdl (cf. [3]).

In this paper, we investigate the missing direction, namely the security of
QA-NIZKs in the CRS model when the CRS is subverted but with honestly
chosen �. This can be viewed as a dual version of Jutla and Roy’s QA-NIZK
in [33,34]. Concretely, we define Sub-ZK QA-NIZKs security with some changes
in the CRS model. The most important properties are completeness (an honest
prover convinces an honest verifier, and an honestly generated CRS passes the
CRS checking), computational (knowledge) soundness, and statistical subversion
zero-knowledge (given a possibly subverted CRS, a proof generated by the hon-
est prover reveals no information about the witness). We additionally consider
introduce a notion of true-simulation extractability (tSE) [32]4. Therefore, we
rely on tag-based QA-NIZKs.

A tuple of PPT algorithms Π = (Pgen,Vcrs,P,V,Sim) is a Sub-ZK QA-NIZK
if properties (i-iii) hold and is a tSE Sub-ZK QA-NIZK if properties (i-ii) and vi
hold. Here, Vcrs is a new algorithm that checks the well-formedness of the CRS.

4 Compared to the one independently introduced by Baghery et al. [9] we use non-
black box extraction and guarantee only tSE.

Subversion-Resistant Quasi-adaptive NIZK and Applications 499

We note that since soundness is proved in the case crs is generated correctly (by
the verifier or a trusted third party) and V does not need to run Vcrs, so the
computational soundness are similar to the original QA-NIZK definitions. We
note that similar to ALSZ by a subversion ZK QA-NIZK argument we mean a
no-auxiliary-string non-black-box zero knowledge subversion ZK QA-NIZK argu-
ment. In this paper for the sake of simplicity we just use subversion ZK QA-NIZK
or Sub-ZK QA-NIZK for short. Subsequently, we recall only the properties that
differ from the definitions of QA-NIZK in Sect. 2 (and in particular we omit (iii)
adaptive soundness and computational knowledge soundness).

(i) Completeness. For any λ, and (x,w) ∈ R�,

Pr

[
p ← K0(1λ); � ←$Dp; (crs, tc) ← K(�);π ← P(�, crs, x,w) :
Vcrs(�, crs) = 1 ∧ V(�, crs, x, π) = 1

]
= 1.

(ii) Statistical Subversion Zero-Knowledge. For any PPT subverter
Z there exists a PPT extractor ExtZ, such that for any computationally
unbounded adversary A, |εzk

0 − εzk
1 | ≈λ 0, where εzk

b :=

Pr

[
p ← K0(1

λ); � ←$Dp;ωZ ←$RND(Z); (crs, auxZ) ← Z(�;ωZ);

tc ← ExtZ(�;ωZ); b ←$ {0, 1} : Vcrs(�, crs) = 1 ∧ AOb(·,·)(�, crs, auxZ) = 1

]
.

The oracle O0(x,w) returns ⊥ (reject) if (x,w) �∈ R�, and otherwise it
returns P(�, crs, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) �∈ R�,
and otherwise it returns Sim(�, crs, tc, x).
(vi) True-Simulation Extractability. For any PPT A there exists a non-
uniform PPT extractor ExtA,

Pr

⎡
⎢⎢⎣
p ← K0(1

λ); � ←$Dp; (crs, tc) ← K(�);ωA ←$RND(A);

(τ ′, x′, π′) ← AO(·,·)(ωA; �, crs);w ← ExtA(ωA; �, crs) : (x′, w) �∈ R�

∧ (τ ′, x′) �∈ Q ∧ V(�, crs, τ ′, x′, π′) = 1

⎤
⎥⎥⎦ ≈λ 0.

where O(τ, (x,w)) outputs Sim(�, crs, τ, x, tc) if (x,w) ∈ R� and adds (τ, x)
to the set Q keeping track of the queries. If (x,w) �∈ R� it outputs ⊥. One can
also define a stronger variant called strong tSE which changes the winning
condition to (τ ′, x′, π′) �∈ Q and O records (τ, x, π) into Q.

3.2 QA-NIZKs with Subverted Setup

In this part, we construct a Sub-ZK QA-NIZK based on the QA-NIZK from
KW [37], where we focus on the most efficient version Π ′

as. Intuitively, for con-
structing such a system, one needs two properties. Firstly one needs to make
the CRS publicly verifiable, and secondly the trapdoor of the CRS should be
extractable under some knowledge assumption (the latter is required to simu-
late proofs in the subversion zero-knowledge game).

We achieve the first property by defining a Vcrs algorithm which takes the
CRS crs and the language parameter � of the QA-NIZK’s language and checks

500 B. Abdolmaleki and D. Slamanig

Fig. 2. Auxiliary procedure MATV from [3] for Dk ∈ {Lk, ILk, Ck, SCk}.

the well-formedness of the crs. If the possibly maliciously generated crs (from
the prover’s point of view) passes the Vcrs algorithm, it is guaranteed that there
exists a trapdoor tc for crs. Then, by using the BDH-KE assumption, we can
extract the trapdoor tc from crs which realizes the second property. As in [2]
in context of subversion zk-SNARKs, we also need to add some extra elements
[Ā]1 ∈ G

k×k
1 and [C]1 ∈ G

n×k
1 to the CRS (assume that Dk outputs matrices A

where the upper k × k submatrix Ā is always invertible). Then, we prove that
the new construction is complete, subversion zero-knowledge and adaptive sound
in Theorem 3. We note, however, that there are also subversion zk-SNARKs [19]
where one can achieve the public verifiability property of the CRS for free, i.e.,
without adding some extra elements to the CRS. We show that this can also be
the case for subversion ZK QA-NIZKs and in particular the asymmetric QA-
NIZKs which we discuss in the full version of this paper.

Before describing the full construction of our Sub-ZK QA-NIZK argument
Πsub, we recall the definition of an efficiently verifiable distribution Dk from
[3]. This guarantees that for A ←$Dk there exists an algorithm MATV([Ā]2)
that outputs 1 if Ā is invertible (we assume that the matrix distribution is
robust) and well-formed with respect to Dk and otherwise outputs 0. Clearly,
the distributions D1, Lk, ILk, Ck, and SCk (for any k) are verifiable, as can be
seen in Fig. 2 that allow one to verify whether [Ā]2 is invertible.

Figure 3 describes Sub-ZK QA-NIZK argument Πsub, which is the subversion
ZK version of the KW QA-NIZK argument Π ′

as [37].
In Lemma 1, we show that from any adversary producing a valid CRS crs it

is possible to extract the trapdoor K (simulation trapdoors). We will use it in
the proof of subversion zero-knowledge in Theorem 3.

Lemma 1. Let BDH-KE assumption hold and let [M]1 ←$Dp. Then for any
PPT adversary A there exists extractor ExtA such that the probability that A
on input [M]1 and randomness ω outputs crs such that Vcrs([M]1, crs) = 1 and
that ExtA on the same input, outputs tc = K, is overwhelming.

Subversion-Resistant Quasi-adaptive NIZK and Applications 501

Fig. 3. Sub-ZK QA-NIZK Πsub: Sub-ZK Π ′
as.

Fig. 4. The extractors and the constructed adversary A for Lemma 1.

Proof. Let adversary A output crs such that Vcrs([M]1, crs) = 1, which guar-
antees that elements from P , Ā and C are consistent and in particular that
[M]�1 [C]2 = [P]1[Ā]2 and Ā is invertible. Beside the main A, we use an inter-
nal subverter ABDH-KE. We note that both the subverter and the adversary
are in connection and separating them is just for readability of the proof. Let
ωA = ωABDH-KE . Let ABDH-KE run A and output ([Ā]1, [Ā]2, [C]1, [C]2). Then
under the BDH-KE assumption, there exists an extractor ExtBDH-KE

ABDH-KE , such that
if Vcrs([M]1, crs) = 1 then ExtBDH-KE

ABDH-KE ([M]1;ωA) outputs (Ā,C).
Let ExtA be an extractor that with input ([M]1;ωA) and running ExtBDH-KE

ABDH-KE
as subroutine, extracts tc = K. For the sake of simplicity, the full description
of the algorithms is depicted in Theorem 4. More precisely, the extractor ExtA
first runs ExtBDH-KE

ABDH-KE ([M]1;ωA) which outputs (Ā,C). Then, ExtA computes K.
Indeed, by having Ā, CM , and the fact that A is invertible, the extractor ExtA
can compute K = CĀ

−1.

Theorem 3. Let Πsub be a Sub-ZK QA-NIZK argument for linear subspaces
from Fig. 3. Let Dp be a witness samplable distribution. (i) Πsub is subver-
sion complete, (ii) if BDH-KE holds, then Πsub is statistically subversion zero-
knowledge, and (iii) if Dk-SKerMDH holds then Πsub is computationally sound.

502 B. Abdolmaleki and D. Slamanig

Proof. (i: Completeness): This is straightforward.

(ii: Subversion Zero-Knowledge:) Let the BDH-KE assumption hold. Let
A be an adversary that computes crs so as to break the subversion zero-
knowledge property of the Sub-ZK QA-NIZK in Fig. 3. That is, A([M]1;ωA)
outputs (crs∗, auxA). Let A be the adversary from Fig. 4 of Lemma 1. Let
RND(A) = RND(ABDH-KE) in Lemma 1. Note that the subverter and the adver-
sary are in connection. Underlying Lemma 1, if Vcrs([M]1, crs∗) = 1 then
ExtA([M]1;ωA) from Fig. 4 outputs K.

Fix concrete values of λ, p ∈ im(K0(1λ)), [M]1 ←$Dp, ([y]1,w) ∈ R[M]1 ,
ωA ∈ RND(A), and run ExtA([M]1;ωA) to obtain K. Thus, it suffices to show
that if Vcrs([M]1, crs∗) = 1 and ([y]1,w) ∈ R[M]1 then

O0([y]1,w) =P([M]1, crs∗, [y]1,w) = [P]�1 w,

O1([y]1,w) =Sim([M]1, crs∗, [y]1,K) = K�[y]1

have the same distribution. This holds since from Vcrs([M]1, crs∗) = 1 it follows
that P = M�K and from ([y]1;w) ∈ R[M]1 it follows that y = Mw. Thus,

O0([y]1,w) = [P]�1 w = [K�Mw]1 = K�[y]1 = O1([y]1,w).

Hence, O0 and O1 have the same distribution and thus, Πsub is Sub-ZK under
the BDH-KE assumption.

(iii: Adaptive Soundness:) The proof is similar to the adaptive soundness
proof of Π ′

as in [3,37] but with some modifications in a way that instead of
KerMDH, similar to [3], the adaptive soundness proof of Π ′

as is based on the Dk-
SKerMDH assumption (due to adding [Ā]1 to the CRS). Assume that A breaks
the adaptive soundness of subversion Π ′

as with probability ε. We will build an
adversary B, that breaks Dk-SKerMDH with probability ≥ ε − 1/p.

Let B([A]1 ∈ G
(k+1)×k
1 , [A]2 ∈ G

(k+1)×k
2) generate M ←$D′

p. Note that the
D′

p exists since Dp is witness sampleable. Let M⊥ be the basis for the kernel of

M� where M�M⊥ = 0. Then it computes [A′]ι =
(

[A]ι
R·[A]ι

)
∈ Z

(n−m+k)×k
p for

ι = {1, 2} where R ←$G
(n−m−1)×(k+1)
ι .

Let [Ā′]ι = [Ā]ι ∈ G
k×k
ι . Define implicitly (we do not know this value)

K ← K′ + M⊥A′Ā
−1 ∈ Z

n×k
p where K′ ←$Z

n×k
p . Thus,

[C]ι = (K′||M⊥)[A′]ι = [K′Ā′ + M⊥A′]ι

= [(K′ + M⊥A′Ā
−1)Ā]ι = [KĀ]ι

and
[P]1 = [M�K′]1 = [M�(K − M⊥A′Ā

−1)]1 = [M�K]1.

Thus, crs′ = ([A,C]2, [A,C,P]1) has the same distribution as the real crs.

Subversion-Resistant Quasi-adaptive NIZK and Applications 503

With probability ε, ([y]1, [π]1) ← A([M]1, crs′) is successful, so, for y �∈
span(M) we have that y�M⊥ �= 01×(n−m). Since A wins, y�C = π�Ā. Thus,

π�Ā − y�C =
(
π�||0�

n−m

)
A′ − y�

(
K′||M⊥

)
A′

=
(
(π� − y�K′)|| − y�M⊥

)
A′ = c�A′ = 0

where [c]�1 ← [(π� − y�K′)|| − y�M⊥]1. Define [c]�1 as [c�
1 ||c�

2]1 with
[c1]1 ∈ G

k+1
1 and [c2]1 ∈ G

n−m−1
1 . Set s2 ←$Z

k+1
p ; [s1]1 ← [c1 + R�c2 + s2]1.

Clearly, s1 − s2 = c1 + R�c2 and

(s�
1 − s�

2)A = (c�
1 + c�

2 R)A = c�A′ = 01×k.

Since c �= 0n−m+k and R leaks only through A′ as RA,

Pr[c1 + R�c2 = 0 | RA] ≤ 1/p,

where the probability is over R ←$Z
(n−m−1)×(k+1)
p . Finally B outputs the pair

([s1]1, [s2]2) as the answer to the Dk-SKerMDH problem.

4 Subversion True-Simulation Extractable QA-NIZK

In this section, we present an unbounded true-simulation extractable Sub-ZK
QA-NIZK (tSE Sub-ZK QA-NIZK) version of the Sub-ZK QA-NIZK. To this
aim, we rely on the discrete logarithm assumption, in the algebraic group model
(AGM) [20]. Roughly speaking, inspired by [37], we first modify the Sub-ZK QA-
NIZK Π ′

as in Sect. 3.2 to make it unbounded tSE, then we add some new elements
in the CRS to make it publicly verifiable. We define a new Vcrs algorithm to
check whether the CRS is well-formed. Then by applying the technique from
Lemma 1, we show the extractability of the CRS. We present the full construction
of unbounded SE Sub-ZK QA-NIZK in Fig. 5. We note that we overcome the
problem in [37] of requiring that n > m and the lack of knowledge soundness,
which does not make then usable within LegoSNARK. So we avoid the n > m
restriction, but for knowledge soundness, the matrix [M]1 must be generated
using a witness sampleable distribution Dp, i.e., there must exist a polynomial
time algorithm that samples M in Zp such that [M]1 has the same distribution
as the one sampled with Dp. However, we note that this is satisfied for the use-
case within LegoSNARK where M includes bases of a Pedersen-like commitment
schemes (cf. Sect. 5). Finally, we discuss how to obtain strong true-simulation
extractability (tSE) for our construction.

In Lemma 2, we show that from any adversary producing a valid CRS crs it
is possible to extract the trapdoor K (simulation trapdoors). We will use it in
the proof of subversion zero-knowledge in Theorem 4.

Lemma 2. Let BDH-KE assumption hold and let [M]1 ←$Dp. Then for any
PPT adversary A there exists extractor ExtA such that the probability that A
on input [M]1 and randomness ω outputs crs such that Vcrs([M]1, crs) = 1 and
that ExtA on the same input, outputs tc = K is overwhelming.

504 B. Abdolmaleki and D. Slamanig

Fig. 5. Unbounded true-simulation extractable Sub-ZK QA-NIZK argument Πutse-sub.

Proof. Let adversary A output crs such that Vcrs([M]1, crs) = 1, which guar-
antees that elements from P , C, and Ā are consistent and in particular that
[M]�1 [C]2 = [P]1[Ā]2. Beside the main A, we use an internal subverter ABDH-KE.
We note that both the subverter and the adversary are in connection and sepa-
rating them is just for readability of the proof. Let ωA = ωABDH-KE . Let ABDH-KE
runs A and outputs ([Ā]1, [Ā]2, [C]1, [C]2). Then under the BDH-KE assump-
tion, there exists an extractor ExtBDH-KE

ABDH-KE , such that if Vcrs([M]1, crs) = 1 then
ExtBDH-KE

ABDH-KE ([M]1;ωA) outputs (Ā,C).
Let ExtA be an extractor that with input ([M]1;ωA) and running ExtBDH-KE

ABDH-KE
as subroutine, extracts tc = K = CĀ

−1. Thus, from the Kronecker-Capelli the-
orem we know that this system has a unique solution. For the sake of simplicity,
the full description of the algorithms is depicted in Fig. 6.

Theorem 4. Let Πutse-sub be the unbounded tSE Sub-ZK QA-NIZK argument
for linear subspaces from Fig. 5. (i) Πutse-sub is subversion complete, (ii) if
BDH-KE holds, then Πutse-sub is Sub-ZK, and (iii) if the discrete logarithm
assumption, in the AGM holds then Πutse-sub is unbounded true-simulation
extractable.

Proof. Completeness and Sub-ZK proofs are straightforward from Theorem 3
(for the Sub-ZK proof, one first extract tc underlying Lemma 2 and then follows
the Sub-ZK proof of Theorem 3).

Subversion-Resistant Quasi-adaptive NIZK and Applications 505

Fig. 6. The extractors and the constructed adversary A for Lemma 2.

(iii: Unbounded True Simulation Extractability:) We show this under the
discrete logarithm assumption in asymmetric bilinear groups in the AGM [20].

Without loss of generality, we consider Πutse-sub for k = 1.
Assume an algebraic adversary A([M]1, crs, aux) against the simulation
extractability of Πutse-sub where aux is an associated auxiliary input and
crs = ([a,C, (Ci)i=1

i=0]2, [a, b,C,P , (Pi)i=1
i=0]1 and she accesses her simula-

tion oracle on the instances ([y1]1, . . . , [yq]1) to obtain the responses
(([π1]1, τ1), . . . , ([πq]1, τq)). Let [ζ]1 be a vector that contains M and the por-
tion of aux that has elements from the group G1 and assume [ζ]1 includes [1]1. A
returns a tuple (τ, [y]1, [π]1 = ([π1]1, [π2]1)) along with coefficients that explain
these elements as linear combinations of its input in the group G1. Let r ←$Zp

and these coefficients be:

[y]1 = Y 0[P]1+Y 1[ζ]1+Y 2[a]1+Y 3[b]1+Y 4i[(Pi)
i=1
i=0]1+Y 5[C]1+

j=q∑
j=0

Y ′
j [yj]1

[π1]1 = Z0[P]1+Z1[ζ]1+Z2[a]1+Z3[b]1+

i=1∑
i=0

Z4,iτ
i[Pi]1r+Z10[C]1+

j=q∑
j=0

Z ′
j [π1j]1

[π2]1 = Z5[P]1 + Z6[ζ]1 + Z7[a]1 + Z8i[(Pi)
i=1
i=0]1 + Z9[b]1r

+ Z11[C]1 +

j=q∑
j=0

Z ′′
j [π2j]1 (1)

Let the extractor ExtA([M]1, crs, aux) be the algorithm that runs A and
returns w = Z0. Then, we have to show that the probability that the output
of (A,ExtA) satisfies verification while y �= Mw is negligible. In other words,
assume that the output of A is such that [y]1 is not queried before, and [y]1 �=
[M]1Z0, and plugged into the verification equation we have:

[y�K + π�
2

i=1∑
i=0

τ iKi − π�
1]1[a]2 = [0]T .

This means that y�K + π�
2

∑i=1
i=0 τ iKi − π�

1 = 0. If it happens with
non-negligible probability, we can construct an algorithm B that on input

506 B. Abdolmaleki and D. Slamanig

([K]1, [K]2) outputs nonzero elements α ∈ Z
n×n
p , β ∈ Z

n
p , and γ ∈ Zp s.t.

K�αK + K�β + γ = 0

and then we can construct an algorithm C against the discrete logarithm assump-
tion in asymmetric bilinear groups, which given elements ([t]1, [t]2) returns the
exponent t ∈ Zp. More precisely B([K]1, [K]2) proceeds as follows:
- Choose ([M]1, aux) from Dp along with its G1 elements (i.e., a vector ζ of

entries in Zp).
- Sample a, b ←$ D̄k, K0,K1 ←$Zp, set (Ci)i=1

i=0 ← aKi, and (Pi)i=1
i=0 ← bKi. Run

A([ζ,P ,C, (Pi)i=1
i=0, a, b]1, [a, aK, (Ci)i=1

i=0]2). We note that A’s input can be
efficiently simulated.

- Once received the output of A, it sets α := Y 0M
�, β := Y 1ζ +Y 2a+Y 3b+

Y 4i(Pi)i=1
i=0 + Y 5C +

∑j=q
j=0 Y ′

jyj − MZ0 and γ := −(Z1ζ + Z2a + Z3b +∑i=1
i=0 Z4,iτ

iPir + Z10C +
∑j=q

j=0 Z′
jπ1j) +

∑i=1
i=0 τ iKi(Z5P + Z6ζ + Z7a +

Z8i(Pi)i=1
i=0 + Z9br + Z11C +

∑j=q
j=0 Y ′′

j π2j)

Notice that K�αK + K�β + γ

= K�Y 0M �K + K�Y 1ζ + K�Y 2a + K�Y 3b + K�Y 4i(Pi)
i=1
i=0 + K�Y 5C

+K�
j=q∑
j=0

Y ′
jyj −K�M Z0−(Z1ζ+Z2a+Z3b+

i=1∑
i=0

Z4,iτ
iPir+Z10C+

j=q∑
j=0

Z ′
jπ1j)

+

i=1∑
i=0

τ iKi(Z5P + Z6ζ + Z7a + Z8i(Pi)
i=1
i=0 + Z9br + Z11C +

j=q∑
j=0

Y ′′
j π2j)

= K�(Y 0M �K + Y 1ζ + Y 2a + Y 3b + Y 4i(P
�
i)i=1

i=0 + Y 5C +

j=q∑
j=0

Y ′
jyj) − π1

+

i=1∑
i=0

τ iKiπ2 = K�y − π1 +

i=1∑
i=0

τ iKiπ2 = 0.

Note that, one among α, β, and γ must be nonzero. Indeed, if they are all
zero then Y 0 = 0 and also Y 1ζ+Y 2a+Y 3b+Y 4i(Pi)i=1

i=0+Y 5C+
∑j=q

j=0 Y ′
jyj −

MZ0 = 0, thus from Eq. (1), we have y = MZ0, which contradicts our assump-
tion on A’s output. If γ = 0 then from Eq. (1), we have π1 = Z0P+

∑i=1
i=0 τ iKiπ2

which means the adversary has output one of the simulated proofs and so the
queried τ , and contradicts our assumption on A’s output.

Finally we show how the above problem can be reduced to discrete logarithm
problem, i.e., the adversary C on input ([t]1, [t]2) returns t. Indeed C samples
r, s ∈ Z

n
p and implicitly sets K = tr + s. We see that ([K]1, [K]2) can be

efficiently simulated with a distribution identical to the one expected by B.
Next, given a solution (α,β, γ) such that K�α + K�β + γ = 0, one can find
e1, e2, e3 ∈ Zp such that:

0 = (tr + s)�α(tr + s)+(tr + s)�β+γ = t2(r�αr)+t(r�αs+s�αr+r�β)

+ (s�αs + s�β + γ) = e1t
2 + e2t + e3

Subversion-Resistant Quasi-adaptive NIZK and Applications 507

In particular, with overwhelming probability (over the choice of s that is infor-
mation theoretically hidden from B’s view) e3 �= 0. From this solution, C can
solve the system and extract t.

On Achieving Strong True-Simulation Extractability. We recall that for
strong tSE we additionally require non-malleability on the proofs π in that
our winning condition is changed to (τ ′, x′, π′) �∈ Q. Now to achieve this we
can use the generic compiler from [32] and in particular we additionally use
a strongly unforgeable (sEUF-CMA-secure) one-time signature (sOTS) scheme
(e.g., Groth’s sOTS [25] or Boneh-Boyen signatures [11]). The prover P is now
changed so that in addition to computing the proof of the tSE Sub-ZK QA-NIZK
it samples a key pair of the sOTS and signs the proof, where the signature and
the verification key are attached to the proof. Moreover, instead of randomly
choosing the tag τ , P uses a collision-resistant hash function and computes the
tag as the hash of the verification key of the sOTS and the word x. Verification
is then straightforward.

5 Integrating Sub-ZK QA-NIZK into LegoSNARK

5.1 The LegoSNARK Framework

We recall that LegoSNARK [13] is a framework for Commit-and-Prove zk-
SNARKs (CP-SNARKs) with the aim of constructing a “global” SNARK for
some computation C via the linking of “smaller” specialized SNARKs for dif-
ferent subroutines that overall compose to C. LegoSNARK denotes these spe-
cialized SNARKs by proof gadgets which form the basic building blocks that
can be reused and composed as required. The main idea is that by letting each
subroutine of C be handled by a different proof system chosen such that one
that maximizes a metric (e.g., efficiency) important for the concrete application.

Therefore, LegoSNARK relies on the commit-and-prove (CP) methodol-
ogy [14], i.e., one proves statements of the form commitment cck(x) contains x
such that R(x,w) = 1. LegoSNARK considers new CP-SNARKs for several basic
relations, where the main one is CPlink for proving that two different commit-
ments (i.e., Pedersen-like commitments) open to the same vector. More precisely,
CPlink proves that a linear relation Fu = x holds for a committed vector u, a
public matrix F and public vector x.

Using CPlink LegoSNARK obtains CP versions of popular efficient zkSNARKs,
such as Groth’s [27], and zkSNARKs for linear subspaces (QA-NZIKs) [37], latter
which can prove statements about data committed using the Pedersen scheme
for vectors [43]. Such commit-and-prove schemes are useful in applications where
one needs to commit before the SNARK keys for a relation are created, e.g., to
post commitments on a blockchain so that one can later prove statements about
the committed data.

508 B. Abdolmaleki and D. Slamanig

5.2 Integration of Sub-ZK QA-NIZK into LegoSNARK

We now show how to integrate our Sub-ZK QA-NIZK (as well as unbounded
tSE Sub-ZK QA-NIZK discussed in Sect. 4) into the LegoSNARK framework of
CP-SNARKs [13]. LegoSNARK uses a knowledge-sound version of the Kiltz-Wee
QA-NIZK Π ′

as. They show how to use this QA-NIZK to construct CP-SNARKs
that work for any commitment scheme whose verification algorithm is the same
as the generalized Pedersen commitment and present two schemes. The first
scheme CPPed

link allows proving that commitments under different keys open to
the same vector and the second more general scheme CPPed

lin allows proving the
correctness of a linear function of a committed vector.

Subsequently, we will show how to transform our Sub-ZK QA-NIZK and
(strong) tSE Sub-ZK QA-NIZK into Sub-CP-SNARKs and (strong) tSE Sub-
CP-SNARKs. Then, we will construct subversion variants of the more general
CPPed

lin which we denote Sub-CPPed
lin and tSE Sub-CPPed

lin respectively. For the Sub-
CPPed

lin version, we note that our result can be applied equivalently to the more
specific first scheme. Technically, we, therefore, need to show that our Πsub based
on Π ′

as is knowledge-sound. With regard to the potentially malicious generation
of the respective commitment keys, as mentioned in [13], for Pedersen commit-
ments they can easily be sampled in a transparent way such that no trusted
setup is needed, e.g., by deriving them using a suitable hash function modelled
as a random oracle. Consequently, we obtain a subversion variant of LegoSNARK
for the QA-NIZK part and stress that using other recent results on subversion
zk-SNARKs in [5,8,29,41], one can further extend the toolbox of a subversion
variant of the LegoSNARK framework.

We now demonstrate how to construct a Sub-CPPed
lin and (strong) tSE Sub-

CPPed
lin for the linear relation RLin, which checks linear properties of some com-

mitted vectors: for a fixed public matrix M ∈ Z
n×m
p , relation RLin

M over public
input [y]1 ∈ G

n
1 and witness w ∈ Z

m
p , with w := (wj)j∈[�] and wj ∈ Z

nj
p , holds

iff [y]1 = [M]1w.
For simplicity, we mostly use the notation in [13]. Let Com be a commitment

scheme such that Com.VerCommit = Ped.VerCommit. Let pk = [h]1 ∈ G
n+1
1 be

the key of the global commitment Com. In our subversion CPPed
lin , the public inputs

of the prover are � commitments (cj)j∈[�] and another commitment c′; the witness
is a set of openings ((wj)j∈[�]; (oj)j∈[�]]) for commitments (cj)j∈[�]] and [y]1. In
particular, the prover must prove: Rlin

ped(y, (cj)�j=1, (wj)�j=1, (oj)�j=1) = 1 ⇐⇒
�∧

j=1

cj = (oj ,wj) · [h[0 .. nj]]ι ∧ y = [M]ι · (w1, . . . ,w�).

Our scheme, called subversion Commit-and-Prove (Sub-CPPed
lin), is quite similar

to CPPed
lin of [13] but it uses a Sub-ZK QA-NIZK in the prove phase. The Sub-

CPPed
lin essentially consists of the following algorithms:

CPPed
lin .K(RLin

M , pk): parse pk = [h]1 ∈ G
m+1
1 . Use [h]1 and RLin

M to construct
[M∗]1 as in Eq. 2. Run (crs, tc) ← Πsub.K([M∗]1). Return (crs, tc).

Subversion-Resistant Quasi-adaptive NIZK and Applications 509

CPPed
lin .Vcrs([M∗]1, crs): return Πsub.Vcrs([M∗]1, crs).

CPPed
lin .P([M∗]1, crs, [y∗]1,w∗): return π ← Πsub.P(M∗, crs, [y∗]1,w∗).

CPPed
lin .V([M∗]1, crs, [y∗]1, π): return Πsub.V([M∗]1, crs,y∗, π).

Notice that the scheme Sub-CPPed
lin considers each wj to be committed using

a Pedersen commitment scheme whose key is pk = [h]1 ∈ G
m+1
1 . The general

idea is to express such a commit-prove relation with the linear subspace relation
R[M ∗]1(x

∗,w∗) that holds iff [y∗]1 = [M∗]1w∗, where [y∗]1 ∈ G
l
1, [M

∗]1 ∈ G
l×t
1 ,

and w∗ ∈ Z
t
p can be built from the inputs of RLin

F for l = � + n and t = m + �,
as follows:

y∗︷ ︸︸ ︷⎛
⎜⎜⎜⎝

c1
...
c�

y

⎞
⎟⎟⎟⎠ =

M ∗︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎝

h0 0 · · · 0 h[1,n1] 0 · · · 0
0 h0 · · · 0 0 h[1,n2] · · · 0
... · · · · ...

... · · · · ...
0 0 · · · h0 0 0 · · · h[1,n�]

0 0 · · · 0 M M · · · M

⎞
⎟⎟⎟⎟⎟⎠

w∗︷ ︸︸ ︷⎛
⎜⎜⎜⎝

o1
...
o�

w

⎞
⎟⎟⎟⎠ (2)

Subsequently, we show that we can obtain a Sub-CP-SNARK suitable for
LegoSNARK when using a suitable knowledge-sound Sub-ZK QA-NIZK Πsub.

Theorem 5. Let M ∈ Z
n×m
p be a matrix from a distribution Dp, and aux be

an auxiliary input distribution. If Πsub is subversion zero-knowledge and knowl-
edge sound, then the Sub-CP-SNARK construction Sub-CPPed

lin given above is (i)
subversion zero-knowledge and (ii) knowledge sound.

We present the proof in the full version. Additionally, we show that we can
obtain a (strong) tSE Sub-CP-SNARK suitable for LegoSNARK when using a
(strong) tSE Sub-ZK QA-NIZK Πutse-sub.

Theorem 6. Let M ∈ Z
n×m
p be a matrix from a distribution Dp, and aux be an

auxiliary input distribution. If Πsub is subversion zero-knowledge and knowledge
sound, then the tSE Sub-CP-SNARK construction is tSE Sub-CPPed

lin given above
is (i) subversion zero-knowledge and (ii) unbounded true-simulation extractable.

Proof. The proof is straightforward from subversion zero-knowledge and
unbounded true-simulation extractability of Πutse-sub in Theorem 4.

Remark. LegoSNARK does not consider the integration of the asymmetric
QA-NIZK (Π ′

asy) by González et al. [24]. We note, however, that this can be
done analogously to Π ′

as, which further helps to increase the expressiveness for
languages supported by QA-NIZKs in LegoSNARK. Furthermore, we want to
remark that our subversion version of Π ′

asy can be integrated into LegoSNARK
analogously to the integration of the subversion version of Π ′

as.

510 B. Abdolmaleki and D. Slamanig

Acknowledgements. We would like to thank Antonio Faonio for helpful discussion.
This work received funding from the European Union’s Horizon 2020 ECSEL Joint
Undertaking under grant agreement n◦ 783119 (Secredas), from the European Union’s
Horizon 2020 research and innovation programme under grant agreement n◦871473
(Kraken), and by the Austrian Science Fund (FWF) and netidee SCIENCE under
grant agreement P31621-N38 (Profet). This work is supported by the German Federal
Ministry of Education and Research BMBF (grant 16K15K042, project 6GEM).

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for Hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6_3

2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_1

3. Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On QA-NIZK in the BPK model.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol.
12110, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45374-9_20

4. Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On Subversion-Resistant
SNARKs. J. Cryptol. 34(3), 1–42 (2021). https://doi.org/10.1007/s00145-021-
09379-y

5. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining simulation
extractable subversion and updatable SNARKs generically. In: ACM CCS 2020
(2020)

6. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11923, pp. 669–699. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8_23

7. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2_21

8. Baghery, K.: Subversion-resistant simulation (knowledge) sound NIZKs. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 42–63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1_3

9. Baghery, K., González, A., Pindado, Z., Ràfols, C.: Signatures of knowledge for
Boolean circuits under standard assumptions. In: Nitaj, A., Youssef, A. (eds.)
AFRICACRYPT 2020. LNCS, vol. 12174, pp. 24–44. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51938-4_2

10. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6_26

11. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

https://doi.org/10.1007/978-3-662-46803-6_3
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/s00145-021-09379-y
https://doi.org/10.1007/s00145-021-09379-y
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-030-51938-4_2
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-540-24676-3_4

Subversion-Resistant Quasi-adaptive NIZK and Applications 511

12. Buck, J.: Ethereum upgrade byzantium is live, verifes’first zk-snark proof
13. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and compo-

sition of succinct zero-knowledge proofs. In: ACM CCS 2019 (2019)
14. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party

and multi-party secure computation. In: 34th ACM STOC (2002)
15. Damgård, I.: Towards practical public key systems secure against chosen ciphertext

attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36

16. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8_28

17. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-
NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 314–343.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_11

18. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for
Diffie-Hellman assumptions. In: CRYPTO 2013, Part II (2013). https://doi.org/
10.1007/s00145-015-9220-6

19. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5_11

20. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

21. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3_1

22. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

23. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18, 186–208 (1989)

24. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6_25

25. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

26. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

27. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

28. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. Cryptology ePrint Archive, Report 2017/540

https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/s00145-015-9220-6
https://doi.org/10.1007/s00145-015-9220-6
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11

512 B. Abdolmaleki and D. Slamanig

29. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0_20

30. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679_21

31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

32. Haralambiev, K.: Efficient Cryptographic Primitives for Non-Interactive Zero-
Knowledge Proofs and Applications. Ph.D. thesis, New York University

33. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. J.
Cryptol. 30(4), 1116–1156 (2016). https://doi.org/10.1007/s00145-016-9243-7

34. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces.
Cryptology ePrint Archive, Report 2013/109

35. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1_17

36. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC (1992)

37. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4

38. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_29

39. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_28

40. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

41. Lipmaa, H.: Simulation-extractable snarks revisited. Cryptology ePrint Archive,
Report 2019/612

42. Morillo, P., Ràfols, C., Villar, J.L.: The Kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–
758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_27

43. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

44. Ràfols, C., Silva, J.: QA-NIZK arguments of same opening for bilateral commit-
ments. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174,
pp. 3–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51938-4_1

45. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy. IEEE (2014)

https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/s00145-016-9243-7
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-030-51938-4_1

THC: Practical and Cost-Effective
Verification of Delegated Computation

Pablo Rauzy(B) and Ali Nehme

Université Paris 8, Saint-Denis, France
pr@up8.edu

Abstract. Homomorphic cryptography is used when computations are
delegated to an untrusted third-party. However, there is a discrepancy
between the untrustworthiness of the third-party and the silent assump-
tion that it will perform the expected computations on the encrypted
data. This may raise serious privacy concerns, for example when homo-
morphic cryptography is used to outsource resource-greedy computations
on personal data (e.g., from an IoT device to the cloud). In this paper we
show how to cost-effectively verify that the delegated computation corre-
sponds to the expected sequence of operations, thus drastically reducing
the necessary level of trust in the third-party. Our approach is based
on the well-known modular extension scheme: it is transparent for the
third-party and it is not tied to a particular homomorphic cryptosystem
nor depends on newly introduced (and thus less-studied) cryptographic
constructions. We provide a proof-of-concept implementation, THC (for
trustable homomorphic computation), which we use to perform security
and performance analyses. We then demonstrate its practical usability,
in the case of a toy electronic voting system.

Keywords: Data and computation integrity · Security and privacy in
the cloud · Usable security

1 Introduction

Delegating computation to a third-party is pretty common nowadays, with the
proliferation of small devices like smartphones and tablets which are mostly
terminal interfaces for cloud services. This tendency is even accelerating with
the so-called Internet of Things. Indeed, a lot of low-power and low-performance
devices are now getting connected together and, most of the time, to centralized
and proprietary cloud services. Most of these devices are supposedly made to
make people’s life better, but part of the process is the monitoring of personal
user data, for example smartwatches may collect the location and the level of
physical activities of their wearer.

Hence, serious privacy concerns need to be addressed. When data only need to
be stored or transmitted from the device to the cloud or from a user to another,
classical cryptography (symmetric and asymmetric) can solve the problem. How-
ever, most of the time users’ data have to be processed, e.g., to generate statistics or
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 513–530, 2021.
https://doi.org/10.1007/978-3-030-92548-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_27

514 P. Rauzy and A. Nehme

to compute quantities that are more informational than the raw values collected by
the devices. Homomorphic cryptography allows users to encrypt their data before
they are sent to the cloud for further processing. Computations can then be per-
formed on the encrypted values, and the result can be sent back to the users, who
are able to decrypt it.

While this may seem to be enough to solve the privacy issue (depending on
the definition of privacy), it is not enough for users to be able to fully trust the
third-party performing the computation on their homomorphically encrypted
data. Indeed, there is no reason to trust the third-party with the execution of
the expected sequence of operations.

For the sake of simplicity, consider this dummy example: an insurance com-
pany offers multiple options (at different prices) to their clients depending
(among other things) on how well they want to be covered for weight-related
diseases. In order to help their clients to choose the option that better suit their
need, the insurance company offers a service that watches their body mass index
(BMI = mass

height2
) over time. However, people do not want their private data such

as mass and height to be sent in clear over the network, nor to be revealed to
their insurance company. This is where homomorphic cryptography can help.
Here, the user’s device would send E(mass) and E(height) the homomorphically
encrypted values of the user’ mass and height to the insurance’s cloud service,
which would perform the BMI computation on the encrypted values and return
it to the user, who would decrypt it and use the information to decide which
insurance plan to choose. In this scenario, the user does not trust the insurance
company with their personal data, but we still assume that the BMI compu-
tation is performed correctly, i.e., the insurance company is trusted with the
computation even if it is not considered trustworthy. Yet, it is in the interest of
the insurance company to sell their more expensive plans, so maybe their service
would instead compute BMI � = E(mass)+20

E(height)2 to influence the user’s choice...
From this dummy example, we understand that in order to be able to delegate

computation to an untrusted third-party, we need to have a way to verify the
integrity of the delegated computation results1.

Related Works. There are existing works on the subject [9,10,13,14]. However,
these attempts at verifiable delegation of homomorphic computation are either
impractical and/or introduce complex cryptographic constructions and rely on
them. They also require the collaboration of the untrusted third-party, which our
method does not. For example, the work of Lai et al. [10], which is the closest
to what we want to achieve ourselves, introduces a new cryptographic primitive
called “homomorphic encrypted authenticator”, and stays at a theoretical level
(it does not provide an implementation). The lack of practical and usable imple-
mentations of related work to benchmark THC against (for both security and

1 Note that in a real-world IoT situation dealing with e.g., complex health or position
data, it is important for the verification to be cost-effective.

THC: Practical and Cost-Effective Verification of Delegated Computation 515

performance) is a real concern. We believe our implementation2 is an important
contribution in this regard.

Contributions. In this paper we present THC, a method to practically and cost-
effectively implement trustable homomorphic computation. Our goal is to provide
a way to verify the integrity of delegated computations generically, in order to
let as much freedom as possible in the choice of the homomorphic cryptosystem
to use. We provide a proof-of-concept implementation (See footnote 2) in Python
that we use to analyze the security and performance of the proposed method.
For demonstration purpose, we also used our THC implementation to build an
electronic voting system that lets a group of agents organize a secret vote using
an untrusted third-party server.

Organization of the Paper. In the next section, we detail modular extension, the
technique on which THC is based. After that, we present our proof-of-concept
implementation in Sect. 3. We then use it to study the security and performance
of the proposed method respectively in Sect. 4 and Sect. 5. In Sect. 6, we demon-
strate THC in a practical use case by building an electronic voting system.
Finally, we draw conclusions and think of perspectives in Sect. 7.

2 Modular Extension

Our goal is to be able to verify the integrity of a computation C performed on
our behalf by an untrusted third-party. Of course, the verification has to be
inexpensive compared to carrying out the computation C by ourselves.

There is another area of cryptography where the same problem with the same
constraint exists: implementation security against physical attacks. One kind of
physical attacks consists in injecting fault during the cryptographic computation
(e.g., using an electromagnetic impulse targeted at the processor performing the
computation) in the hope that the intermediate values that are tampered with
(e.g., the content of a register that gets randomized) will influence the final result
of the computation in such a way that will help breaking the cryptography. Such
attacks have been demonstrated to be feasible since 1997 when Boneh et al.
presented the BellCoRe3 attack [3] which essentially reduces the complexity of
retrieving an RSA private key to computing a gcd instead of solving an integer
factorization problem.

In 1999, Shamir presented a countermeasure [18] to the BellCoRe attack.
Shamir’s idea is based on the principle of modular extension (see Fig. 1). It
consists in lifting the computation into an over-structure (e.g., an overring Zpr)
which allows to quotient the result of the computation back to the original
structure (e.g., Fp), as well as quotienting a “checksum” of the computation to a

2 THC is available at https://code.up8.edu/pablo/thc. It can also be installed directly
with pip3 install thc.

3 The attack is named after the Bell Communication Research labs, where it was
discovered.

https://code.up8.edu/pablo/thc

516 P. Rauzy and A. Nehme

Fig. 1. Sketch of the principle of modular extension.

smaller structure (e.g., Fr). What has just been described is the direct product of
the underlying algebraic structures. If an equivalent computation is performed in
parallel in the smaller structure, its result can be compared with the checksum
of the main computation. If they are the same, we have a high confidence in the
integrity of the main computation.

Although it was originally designed to protect CRT-RSA4, the modular
extension scheme has been successfully ported to elliptic curve scalar multi-
plication [1,2], and has been formally studied in both settings [6,15,16]: the cost
of the countermeasure is minimal, and the non-detection probability is prov-
ably inversely proportional to the security parameter r (the size of the small
structure).

Getting back to our concerns, a nice property of the modular extension
scheme that, to the best of our knowledge, has not been taken advantage of
yet, is that the “small computation” over Fr can be carried out independently
from the “big computation” over Zpr, and can thus be performed on another
machine entirely.

Hence our main idea: leveraging modular extension to verify the integrity of
delegated homomorphic computations. By doing so, we rely on a well-established
tried-and-tested method rather than introducing novel cryptographic construc-
tion that would still have to withstand the test of time. Implementation is
straightforward: delegate the “big computation” over Zpr, locally perform the
“small computation” over Fr, compare the results modulo r and either return
the verified result of the delegated computation modulo p, or signal an error,
according to the modular extension scheme.

3 THC Implementation

In this section, we present our proof-of-concept implementation of THC. We
have multiple goals with this implementation:

– show that THC is generic: the implementation should be able to work with
any homomorphic cryptosystem as long as its ciphertexts live in a modular
structure such as a field or a ring;

4 CRT-RSA is an optimization of RSA using the Chinese Remainder Theorem, which
makes it vulnerable to the BellCoRe attack but is indispensable on low-end devices
such as credit cards (it provides an almost 4× speed-up and allows for security
parameters 2× bigger).

THC: Practical and Cost-Effective Verification of Delegated Computation 517

– show that THC is secure: the probability of not detecting an error in the
delegated computation is inversely proportional to the security parameter;

– show that THC is cost-effective: the verification of delegated computations
using THC should be nearly free;

– show that THC is practical : it should be easy to use in a realistic system.

3.1 The Core

The core of the implementation consists of three classes: the THC implementation
itself, and two interfaces5: HomomorphicCryptosystem and Computation. We
will first present these interfaces and then the THC class.

HomomorphicCryptosystem. This interface requires five methods:

– a constructor, to setup the cryptosystem;
– encrypt, which takes a plaintext as argument and returns a ciphertext;
– decrypt, which does the opposite;
– get modulus, which returns the characteristic of the ring in which the cipher-

texts live; and
– mod, which applies a modulus to a ciphertext6.

Computation. This interface requires two methods:

– local, which takes a modulus and an array of arguments, performs a com-
putation with them and returns the result modulo the given modulus; and

– remote, which is supposed to query the untrusted third-party to perform the
same computation.

THC. This class is where the modular extension scheme is implemented. Apart
from its constructor, where it is given an HomomorphicCryptosystem instance
H a Computation instance C, and the security parameter r, it has two methods:

– compute, which takes a list of arguments 〈ai〉 and
1. encrypts its arguments:

〈ci〉 ← H.encrypt(〈ai〉),
2. does the remote computation in ZNr (where N is obtained using the

H.get modulus()):
resultNr ← C.remote(Nr, 〈ci〉),

3. does the local computation in Fr:
resultr ← C.local(r, 〈ci mod r〉),

4. verifies the result using the second method:
– verify, which takes resultNr and resultr as arguments and, as per the

modular extension scheme presented in Sect. 2: compares resultNr mod r
and resultr for equality, then returns H.decrypt(resultNr mod N) if the
comparison succeeds, or returns ⊥ (i.e., False) otherwise.

5 We use the abc Python lib (see https://docs.python.org/3/library/abc.html) for
that, as Python object-model does not natively support abstract classes or interfaces.

6 This is necessary because some cryptosystems have ciphertexts that are not plain
numbers, e.g., ElGamal uses pairs and the modulus needs to be applied to both
elements independently.

https://docs.python.org/3/library/abc.html

518 P. Rauzy and A. Nehme

A Trivial Example. To explain more clearly how everything interacts and how
THC is used, here is an example of HomomorphicCryptosystem implementa-
tion, which does not actually do any encryption7, followed by an example of
Computation implementation, which allows to instantiate linear polynomials:
class Field (HomomorphicCryptosystem):

def __init__ (self , p):
self._p = p

def get_modulus (self):
return self._p

def encrypt (self , m):
return m % self._p

def decrypt (self , c):
return c % self._p

def mod (self , c, mod):
return c % mod

class Linear (Computation):
def __init__ (self , a, b):

self.a = a
self.b = b

def local (self , mod , args):
return (self.a * args [0] + self.b) % mod

def remote (self , mod , args):
c = Cloud.PolynomialAPI () # imaginary
c.compute_in_ring(mod)
return c.linear([self.a, self.b], args [0])

Given these implementations, the THC class could be used like this, with the
security parameter r = 17:
>>> thc = THC(Field(p=59233) , Linear(42, 51), 17)
>>> y = thc.compute ([2021])

Here, y should be (42 × 2021 + 51) mod 59233, that is 25700. According
to what was explained in Sect. 2, THC will call the Linear.remote method
with 59233 × 17 as mod and the “encrypted” value of 2021 in args, while the
Linear.local method is called with 17 as mod and the “encrypted” value of
2021 modulo 17 (i.e., 15) in args.

We know that the local computation will return (42×15+51) mod 17 = 1. If
our imaginary Cloud Polynomial API gives a wrong result, its comparison with
the local computation modulo 17 will most likely fail8, and THC will return
False. Otherwise the server returns the expected 84933 which satisfies 84933 ≡ 1
mod 17, so THC will return the results modulo 59233 to give the expected
answer: 25700.

3.2 Homomorphic Cryptosystems

For a given homomorphic cryptosystem to work with THC, the condition is
that its ciphertexts live in a field or ring structure. This constraint still leaves a
lot of choices on the table. To demonstrate the genericity of THC, we chose to
implement four different homomorphic cryptosystems (in addition to the trivial
one we already presented), mostly chosen for their simplicity of implementation:

7 Remark that it is quite homomorphic nonetheless ;).
8 In real settings, much bigger security parameters are used.

THC: Practical and Cost-Effective Verification of Delegated Computation 519

RSA, ElGamal, Paillier, and HE1. For illustration purpose, we will present the
first two in details, including their implementation code.

RSA. The first cryptosystem we implemented is RSA [17], which is homomorphic
for multiplications when used without padding (which should really never be the
case when any level of security is required). The implementation of textbook RSA
is quite straightforward (modinv is the modular inverse):
class RSA (HomomorphicCryptosystem):

def __init__ (self , p, q, e):
self._N = p * q
self._e = e
self._d = modinv(e, (p - 1) * (q - 1))

def get_modulus (self):
return self._N

def encrypt (self , m):
return pow(m, self._e, self._N)

def decrypt (self , c):
return pow(c, self._d, self._N)

We do not need to implement the mod method as the trivial version is actu-
ally already provided by the HomomorphicCryptosystem base class. We can test
RSA’s homomorphic property in a Python interpreter where rsa is a properly
instantiated RSA object:
>>> c1, c2 = rsa.encrypt (43), rsa.encrypt (47)
>>> rsa.decrypt(c1 * c2)
2021 # 43 * 47 is 2021

ElGamal. The ElGamal cryptosystem [8] is also homomorphic for multiplica-
tions. In addition to be able to multiply ciphertext, ElGamal can also do scalar
multiplication homomorphically thanks to its malleability. Its implementation
is more complex than that of RSA, but this is an occasion to show that an
HomomorphicCryptosystem implementation can consist of glue code that calls
an existing external cryptographic library (namely PyCryptodome9):
import Crypto.PublicKey.ElGamal as EG
from Crypto.Random.random import StrongRandom as SR
class ElGamal (HomomorphicCryptosystem):

def __init__ (self , p, g, y, x):
self._p = p
self._eg = EG.construct ((p, g, y, x))

def get_modulus (self):
return self._p

def encrypt (self , m):
r = SR.randint(1, self._p - 1)
return self._eg.encrypt(m, r)

def decrypt (self , c):
return self._eg.decrypt(c)

def mod (self , c, mod):
return (c[0] % mod , c[1] % mod)

Since ElGamal ciphertexts are pairs, we also have an example of how the mod
method is used. Again, given a properly instantiated ElGamal object elg in a
Python interpreter, we can test the homomorphic properties of ElGamal:

9 Python Cryptography Toolkit, https://www.pycryptodome.org/.

https://www.pycryptodome.org/

520 P. Rauzy and A. Nehme

>>> def scalar_mul (c, k):
... return (c[0], c[1] * k)
>>> def mul (a, b):
... return (a[0] * b[0], a[1] * c[1])
>>> c1, c2 = elg.encrypt (43), elg.encrypt (47)
>>> elg.decrypt(mul(c1, c2))
2021 # the value of 43 * 47 hasn’t changed
>>> elg.decrypt(scalar_mul(c1, 10))
430

Paillier. The Paillier cryptosystem [12] can do homomorphic additions (the
product of ciphertexts corresponds to the addition of plaintexts) and thus scalar
multiplication. We will use it in Sect. 6 to build an electronic voting system.
>>> def add (a, b):
... return a * b
>>> def scalar_mul (c, k):
... return c ** k
>>> ten = pai.encrypt (10)
>>> three = pai.encrypt (3)
>>> pai.decrypt(add(ten , three))
13
>>> pai.decrypt(scalar_mul(ten , 3))
30

HE1. In their 2017 paper [7], Dyer et al. present several variants of their homo-
morphic encryption over the integers. From the initially proposed version HE1,
they derive variants allowing to mitigate brute force guessing attack even if the
inputs distribution has insufficient entropy, and then variants where they add
dimensions to the ciphertexts to enhance security. For our testing purpose, we
chose to implement the initial version presented in the paper, as it is easy to
code and yet allows for homomorphic additions and multiplications at the same
time, enabling to compute any polynomials homomorphically.
>>> a, b = he1.encrypt (11), he1.encrypt (3)
>>> c, d = he1.encrypt (2), he1.encrypt (9)
>>> he1.decrypt(a * b + c * d)
51

4 Security Analysis of THC

Before looking at experimental data, we start with some theoretical background.
In the following, we call delegated computation the one we ask the third-party
to perform, and remote computation the one the third-party actually performs.

4.1 Theoretical Background

The goal of THC is to verify the integrity of a delegated computation. As such,
its level of security can be defined as its probability of detecting that the remote
computation has been tampered with. This probability is equal to 1−Pnd, where
Pnd is the probability of non-detection.

THC: Practical and Cost-Effective Verification of Delegated Computation 521

The formal study of Pnd is carried out in the third section of Dugardin
et al.’s paper [6] in the case of single and multiple faults in the computation.
The precise value of Pnd depends on the specific computation that is delegated,
but it is shown that Pnd �

1
r where r is the chosen security parameter. In the

appendices of the same paper the authors predict a theoretical upper-bound of
57
r in practical cases. We will not repeat the full proof here but we are still going
to sketch it below.

Computations that concern us are polynomials (i.e., we can do additions and
multiplications) of the input variables (the ciphertexts that we send to the third-
party). We call P (x1, x2, ..., xn) the polynomial corresponding to the delegated
computation, where the xi are the input variables. We give the formal name P �

to the remote computation, i.e., the computation of P that might have been
tampered with. The polynomials P and P � can differ on everything: constant
terms, like terms, and degree.

Let N be the modulus of the homomorphic cryptosystem we are using.
Let r be our security parameter. Let c1, c2, ..., cn be the ciphertexts that we
send to the third-party we delegate the computation P to. THC will detect
an error if P �(c1, c2, ..., cn) �≡ P (c1, c2, ..., cn) mod r. That is, errors will not
be detected if and only if: P �(c1, c2, ..., cn) ≡ P (c1, c2, ..., cn) mod r, while
P �(c1, c2, ..., cn) �≡ P (c1, c2, ..., cn) mod N . Note that if the second condition is
not fulfilled, there is actually no errors in the result of the computation. Hence,
Pnd is the probability of having P (c1, c2, ..., cn) − P �(c1, c2, ..., cn) ≡ 0 mod r.
We call ΔP the polynomial P −P �. For random tampering with the remote com-
putation, we have Pnd = #roots(ΔP)

r , where #roots gives the number of roots of
a given polynomial in Fr.

One could argue that a malicious third-party may not randomly tamper with
our computation. However, we recall that due to the modular reduction by r,
the inputs and coefficients of ΔP are effectively randomized. Thus, it is actually
reasonable to consider ΔP ’s coefficients and its inputs to be random and evenly
distributed over Fr, which allows us to conclude that the probability of non-
detection of errors Pnd is indeed inversely proportional to the security
parameter r.

Moreover, in his 2006 paper [11], Leont’ev demonstrates that “the number
of zeros of a random polynomial lying inside the field Fq has, asymptotically as
q → ∞, a Poisson distribution with parameter λ = 1. In particular, a random
polynomial over Fq has “on the average”, as q increases, exactly one root in Fq”.
This means that the proportionality constant #roots(ΔP) of Pnd is such that
Pnd ≈ 1

r . In particular, when r is a random 32-bit prime number as it would be
the case in most practical situations, we have that Pnd ≈ 10−9.

Nevertheless, a malicious third-party could retrieve the value of r, e.g.,
because in some cases we might need to provide it with the value of Nr, so
that the result of the computation of P does not grow too large, and they obtain
r from that by factorizing Nr. In practice, N is either prime (e.g., in ElGamal)
or the product of two big primes (e.g., in RSA, Paillier, and HE1), and r is

522 P. Rauzy and A. Nehme

prime, but potentially much smaller, typically it is a randomly chosen 32-bit
prime number, so obtaining r this way is realistic.

In such cases, a malicious third-party could easily tamper with our computa-
tion in an undetected manner. However, it would be limited to adding multiples
of r to the final result of the computation. Indeed, only multiples of r can be
added in P � to bypass THC’s verification. Moreover, we recall that this tam-
pering happens on homomorphically encrypted values. This means that there
is no way for a malicious third-party to perform a precise attack on the actual
(i.e., decrypted) result of the computation without breaking the homomorphic
encryption scheme. In practice, a malicious third-party is thus limited to vandal-
ism. In cases where this vandalism is not obvious once the results are decrypted
(e.g., a proposition getting billions of billions of votes when there are only a few
dozens of participants in the vote), it is still possible to detect it by delegating
the same computation twice using different values for r. If both computation
do not return the same seemingly valid result, vandalism is detected. Note that
this strategy requires to retrieve the result of the delegated computation a first
time before delegating the same computation again using a different value for
r. Otherwise, the malicious third-party can tamper with both computations in
the same way by adding a multiple of the product of the two r values (which is
admittedly even more constraining).

Remark that with extremely malleable homomorphic cryptosystems like HE1
which supports scalar additions and multiplications (besides additions and mul-
tiplications between ciphertexts), the decrypted result of an erroneous remote
computation will keep the property of being the actual result of the compu-
tation added to a multiple of r, i.e., ∃k ∈ Z such that D(P �(c1, ..., cn)) =
D(P (c1, ..., cn)) + kr, where D is our homomorphic decryption function. In such
situations, if r is chosen large enough to be bigger than the biggest expected
result, it is possible to detect errors that bypassed THC’s verification and even
to get the correct result back by reducing the erroneous result modulo r.

4.2 Experimental Study

For our experimental study of THC’s security, we wrote several implementations
of Computation specifically for testing and analysis purposes10. These implemen-
tations’ remote method do not actually query a third-party, but rather perform
the same computation as the local method does, except that in order to sim-
ulate a misbehaving third-party, it inserts a random fault in the computation.
Three of these have been used to test the probability of non-detection:

– Product computes the product of its arguments (for RSA, Paillier, HE1);
– PairProduct does the same thing but element-wise on pairs (for ElGamal);
– RandomBinaryPolynomial takes a degree at instantiation and generates a

random binary polynomial of this degree, that we used with HE1.

10 Scripts used to produce and analyze our experimental data are available in our
Python package repository at https://code.up8.edu/pablo/thc.

https://code.up8.edu/pablo/thc

THC: Practical and Cost-Effective Verification of Delegated Computation 523

Each of these computations were tested with random numbers and using ran-
domly chosen r on 2, 4, 8, 16, and 32 bits.

The results are presented in Table 1a. In all cases, the number of missed
error quickly drops as r size increases until it reaches a satisfying 0 when r
is a 32-bit prime. However, we remark that for small r sizes, only the con-
figuration where the HE1 homomorphic cryptosystem is used to perform a
RandomBinaryPolynomial computation (called HE1–poly in the table) corre-
sponds to the theoretically predicted probability of non-detection (i.e., Pnd ≈ 1

r ,
as per Sect. 4.1). This is actually not so surprising. Indeed, Leont’ev’s result [11]
concerns the number of roots for a random polynomial, which is exactly what
we have in HE1–poly. Moreover, Leont’ev’s result is valid in Fr when r → ∞, so
it is expected that it does not hold for very small r. These experimental results
confirm the predicted influence of the security parameter.

Table 1. Experimental results.

Experiment r size (bits) #runs #missed Ratio

RSA–prod 2 1000 810 0.81

4 1000 269 0.269

8 1000 30 0.03

16 50000 6 0.00012

32 100000 0 0.0

ElGamal–prod 2 1000 897 0.897

4 1000 372 0.372

8 1000 56 0.056

16 50000 8 0.00016

32 100000 0 0.0

Paillier–prod 2 1000 896 0.896

4 1000 395 0.395

8 1000 19 0.019

16 50000 6 0.00012

32 100000 0 0.0

HE1–prod 2 1000 904 0.904

4 1000 383 0.383

8 1000 31 0.031

16 50000 7 0.00014

32 100000 0 0.0

HE1–poly 2 1000 376 0.376

4 1000 57 0.057

8 1000 4 0.004

16 50000 1 0.00005

32 100000 0 0.0

(a) Experimentally observed security of THC.

Mean time (µs) Cost

in ZN in ZNr in Fr

77.144±2.54 79.036±2.65 0.485±0.03 3.08%

76.575±2.34 78.550±2.27 0.495±0.04 3.22%

76.465±2.72 78.570±2.42 0.561±0.05 3.49%

76.580±2.96 79.052±3.03 0.655±0.06 4.08%

77.382±3.49 79.349±3.26 0.752±0.07 3.51%

107.400±5.09 108.705±4.74 1.257±0.14 2.39%

107.320±2.49 107.686±2.77 1.236±0.09 1.49%

107.885±3.74 108.948±3.63 1.416±0.18 2.30%

107.666±4.24 108.709±4.64 1.563±0.20 2.42%

109.061±6.07 110.778±6.13 2.164±0.28 3.56%

308.094±68.99 307.876±67.74 0.519±0.12 0.10%

268.897±16.11 269.238±15.29 0.466±0.05 0.30%

269.308±8.96 269.641±8.44 0.533±0.07 0.32%

270.559±12.48 271.879±12.02 0.608±0.08 0.71%

271.324±13.06 272.549±13.66 0.717±0.10 0.72%

117.082±20.80 117.053±20.85 0.661±0.12 0.54%

114.053±22.38 114.033±22.80 0.660±0.13 0.56%

118.745±20.47 118.617±20.33 0.773±0.14 0.54%

122.356±16.44 122.459±16.88 0.923±0.13 0.84%

120.954±17.10 121.104±17.20 1.066±0.15 1.01%

520.025±16.46 518.606±17.36 3.538±0.25 0.41%

515.870±4.64 516.368±5.57 3.666±0.20 0.81%

517.472±9.81 516.168±11.18 4.137±0.29 0.55%

532.335±35.14 531.020±35.19 5.140±0.70 0.72%

531.379±25.29 531.682±23.52 6.345±0.82 1.25%

(b) Experimentally observed time-cost of THC.

524 P. Rauzy and A. Nehme

5 Performance Analysis of THC

Using THC costs both in additional memory usage and computation time. The
additional memory usage strongly depends on the specific application, but is pre-
cisely predictable. Indeed, for each homomorphically encrypted number, THC
needs to keep its residue modulo r, so the additional memory used correspond
to the number of sensible information that are needed for the delegated compu-
tation multiplied by the size of r.

The additional computation time also depends on r. It is possible to get a
sense of it by observing random computations, using the same settings as in
Sect. 4.2, except that the “remote” computation does not insert errors11.

The results are presented in Table 1b. For all configurations, N is a 2048-
bit number. Times are expressed in microseconds and are means computed over
1000 × 1000 runs, that is 1000 random computations that are executed 1000
times each in a loop to get something measurable and averaged. Each mean is
accompanied by its standard deviation. These computations were executed on
an Intel® Core™ i5-6300U CPU @ 2.40 GHz, with Python version 3.7.3.

The cost is defined as the additional time it takes to compute in ZNr instead
of ZN added to the time it takes to perform the local computation in Fr. It is
expressed in percentage of the computation time in ZN .

Note that in most applications, the local computation in Fr can actually be
performed in parallel to the remote computation in ZNr, meaning the time cost
we present is largely overestimated. Indeed, as can be seen in Table 1b, most of
the cost comes from the local computation in Fr. This can be explained by the
fact that the size of N (2048 bits) and Nr (between 2050 and 2080 bits) are very
similar. So much in fact that the standard deviation of the experimental cost is
sometimes bigger than their difference.

These results show that the cost of verifying a delegated computation
using THC is minimal. Indeed, the cost in additional computation time is
on the order of a percent of the unverified computation time, and the cost in
additional memory usage is linear with regard to the number of inputs of the del-
egated computation, with a constant factor depending on the size of the security
parameter (typically 4 bytes). This is particularly encouraging, as computations
delegated on homomorphically encrypted data tend to be expensive, owing to
the size of the ciphertexts.

6 Use Case: Electronic Voting

In this section we sketch an example of THC use case12 to help readers get a
better grasp of both its utility and usability. We start by presenting a scenario,
then a “naive” solution without THC, then we show how to use THC to improve
11 Scripts used to produce and analyze our experimental data are available in our

Python package repository at https://code.up8.edu/pablo/thc.
12 The demo voting client and server are included in the THC Python package available

at https://code.up8.edu/pablo/thc.

https://code.up8.edu/pablo/thc
https://code.up8.edu/pablo/thc

THC: Practical and Cost-Effective Verification of Delegated Computation 525

over this solution. Some explanations are doubled with Python code for clarity.
Note that although the presented code was written for this sole purpose and is
thus extremely simplified, it should still work as expected when executed.

Scenario. A group of agents wants to organize a vote to make some decisions.
It can be a group of people (e.g., an association or a political group) or it can
be some kind of sensor network that need to make a centralized decision. These
agents have secure means of communication between them so they can securely
exchange information or share a common secret. However, the vote has to be
secret in order to avoid influence bias in the case of a group of people, or to
avoid privacy concerns with regard to the data collected by the sensors (which
may be owned by different people).

To keep each vote secret for all participants, votes are cast to a third-party.
This third-party is an untrusted service provider, typically a voting platform in
the cloud. It should not be made aware of any participant’s choice, and is not
trusted with the counting of votes either. In addition, participants should be
able to verify that others votes are valid (no cheating).

We will use homomorphic cryptography to ensure that the voting platform
can store all the votes and count the result without being able to snoop on any
participant’s vote nor on the final result. We will use our proposed trustable
homomorphic computation scheme to ensure the validity of each vote as well as
the integrity of the vote count.

We will see how to implement a cumulative voting system, where each par-
ticipant has a given number of points and freely assign them to each proposition
(or candidates). Cumulative voting is frequently used in federated organizations
to take decision at a federal level, as each of the federated groups usually has a
number of votes that depends non-linearly on its size. We remark that plurality
voting is a particular case of cumulative voting where each participant has a
single point and thus can vote for a single proposition.

Note that a score voting system, where each participant gives a score chosen
among a finite number of possibilities (e.g., an integer between 0 and 10) to each
proposition, can be implemented as an overlay on cumulative voting: it is equiv-
alent to have a plurality vote between the possible scores for each propositions.
Also remark that approval voting is a particular case of score voting where the
score is either 0 or 1.

Threat Model. The third-party (1) should not be able to learn about any of the
participants’ vote, (2) should not be able to learn about the result of the votes,
and (3) should not be able to manipulate the votes. Participants can securely
exchange the secret keys that have to be kept secret from the third-party.

Please note that we are not actually trying to build a production-ready elec-
tronic voting system and that we disregard a lot of security details that would
be mandatory for such an application (e.g., making sure it is not possible to vote
twice, or to vote on behalf of someone else without their consent, etc.).

526 P. Rauzy and A. Nehme

Initial Solution. We need to be able to count votes, so a natural choice is to
use the Paillier cryptosystem, which can perform additions homomorphically, to
encrypt the votes. We call Penc and Pdec the encryption and decryption func-
tions of the Paillier cryptosystem. We have that Pdec(Penc(m1) × Penc(m2)) =
m1 + m2 (for easier reading, we omit the private and public key arguments to
these functions). We also use a symmetric encryption scheme (E ,D), such that
D(E(m)) = m (again, we omit the secret key).

We call p1, ..., pn the propositions for a given vote. A ballot is a pair of the
form ((b1, ..., bn), id) where bi corresponds to the number of votes for pi, and id
uniquely identifies the agent of which it is the ballot. The sum

∑n
i=1 bi must

be less than or equal to the number of votes Vid that the agent id has. For
example, if there are 3 propositions, both ([0, 0, 7], a) and ([1, 2, 3], a) are valid
ballots for a if a has 7 votes, but ([3, 4, 5], a), ([3, 4], a), or ([2, 2, 2, 1], a) are not.
The encrypted version of the ballot (b, id) that is sent to the third-party is the
pair ((c1, ..., cn), hid) where ci = Penc(bi) and hid = E(id).

For each ballot (c, hid), the third-party can compute the product Chid =∏n
i=1 ci and make it public so that each participant can verify that Pdec(Chid) is

at most equal to the number of votes that the agents identified by id = D(hid)
is supposed to have.

Given the list of all submitted ballots B, the encrypted results of the vote
(r1, r2, ..., rn) can be computed by the third-party such that ri =

∏#B
j=1 Bj,i,

where Bj,i is the ci of the jth ballot in B. The participants can retrieve the
results of the vote (P1, ..., Pn) by computing each Pi = Pdec(ri).

Problem. The presented solution is almost sufficient: threats (1) and (2) are
covered by the Paillier cryptosystem. However, threat (3) is still a problem.
Consider the following scenario. A group of people organize a secret vote on the
platform provided by the third-party T . The question is “Should we move away
from T to organize our votes?”, the propositions are “yes” and “no”, and each
participant has one vote. In practice, people who want to chose another voting
platform vote “yes”, i.e. (1, 0), those who want to continue using T vote “no”,
i.e., (0, 1), and those who do not care about the platform either submit a blank
vote, i.e., (0, 0), or do not participate at all.
from thc.crypto.paillier import Paillier
from thc.utils import prime
paillier = Paillier(prime (1024) , prime (1024))
mod = paillier.get_modulus ()
ballots = []
def cast_vote (choice):

if choice == ’yes’:
y, n = paillier.encrypt (1), paillier.encrypt (0)

elif choice == ’no’:
y, n = paillier.encrypt (0), paillier.encrypt (1)

else:
y, n = paillier.encrypt (0), paillier.encrypt (0)

ballots.append((y, n))

Initially, most people do not really care about the voting platform and many do
not participate in the vote. At some point one person decides to dig into the
subject and discovers that T makes use of analytics and advertisements trackers

THC: Practical and Cost-Effective Verification of Delegated Computation 527

on their web interface. This person then decides to loudly campaign in favor
of the “yes”, explaining why using trackers is wrong and how it violates users
privacy. Soon enough, more people participate in the vote.
cast_vote(’yes’), cast_vote(’no’), cast_vote(’blank’)
cast_vote(’no’), cast_vote(’yes’), cast_vote(’no’)
here the campaign for the "yes" happens
cast_vote(’yes’), cast_vote(’yes’), cast_vote(’no’)
cast_vote(’yes’), cast_vote(’blank’), cast_vote(’yes’)

Of course it is not possible to know if the campaign convinced them or merely
reminded them about the vote, before it is counted. When the vote is closed the
platform should compute the result on the encrypted data and return it.
from functools import reduce
def result (votes , m):

return reduce(lambda a, b: (a * b) % m, votes)
res_y = result([b[0] for b in ballots], mod)
res_n = result([b[1] for b in ballots], mod)

Then, the participants can retrieve the results and decrypt them.
yes , no = paillier.decrypt(res_y), paillier.decrypt(res_n)

In our example, yes is 6 and no is 4: the group decided to move away from T .
However, T heard about the campaign against them and because T is clearly
an evil company, they decide to manipulate the vote to have a better chance of
keeping their users. Instead of taking the all the vote into account as they are,
T replaces all the ballots with copies of ballots randomly chosen among those
they received before the campaign against them happened.
from random import randint
for i in range(len(ballots)):

forged_ballots.append(ballots[randint (0 ,5)])
res_y = result([b[0] for b in forged_ballots], mod)
res_n = result([b[1] for b in forged_ballots], mod)

The number of votes stays the same, the Chid for each ballot seems okay (i.e.,
it is either 0 or 1 when decrypted). For the participants, there are no particular
reasons to suspect a manipulation of the vote. Indeed, T cannot know the vote of
any specific person nor the final result thanks to the homomorphic encryption.
However, at least if the campaign for the “yes” was convincing enough, their
manipulation probably biased the results in their favor.

This time, when decrypted by the participants, yes could be 4 and no could
be 7, for example, thereby changing the vote result and the group decision in
favor of T . These results, while manipulated, look totally legit: as explained
before, the campaign for the “yes” may have reminded people to vote without
convincing them.

Using THC. In a parallel universe, the same events happen, except the partic-
ipants of the vote decide to use THC to verify the integrity of the vote count.
At the beginning they choose a small random prime r that they keep along the
other secrets (i.e., the two big primes used for Paillier), then they adapt the
modulus given to T , and they create an instance of THC13.
13 Here we will only use the verify method of THC, so a Computation instance is not

necessary. See Sect. 3.1.

528 P. Rauzy and A. Nehme

r = prime (32) # new
mod = paillier.get_modulus () * r # modified
thc = THC(paillier , None , r) # new

They keep track of the residue modulo r of the votes. These are shared among
participants so that any one of them can verify the results.
ballots_r = [] # new
def cast_vote (choice):

...
ballots_r.append((y % r, n % r)) # new

When the vote is closed, participants compute the results modulo r on their side.
res_y_r = result([b[0] for b in ballots_r], r) # new
res_n_r = result([b[1] for b in ballots_r], r) # new

And when they receive the results from T , they use THC to verify the integrity
of the delegated vote count.
yes , no = thc.verify(res_y , res_y_r), thc.verify(res_n , res_n_r) # modified

This time, if T manipulates the vote, yes and no will be False, otherwise they
will contain the actual result of the vote: threat (3) is no longer a problem.

Note that we do not dwell on it here, but THC could also be used to verify
the integrity of each Chid if thought necessary. More importantly, remark the
practical usability of THC: it only requires a few lines of code on the client
side, and is entirely transparent on the server side.

More Problems. Using THC, we significantly reduced the necessary trust in
third-parties to which computations are delegated. However, we are still far
from having removed the necessity of the trust entirely: THC can only verify
the integrity of computational aspects of the delegated data processing. Logical
aspects are left unverified (e.g., in our scenario, if T publishes the list of ballots,
the secrecy of the vote is broken as any participants can decrypt the ballots14).

7 Conclusions and Perspectives

In this paper, we presented a method for verifying the integrity of delegated com-
putations, targeted in particular at delegated computations on homomorphically
encrypted data. We provide an implementation of this method called THC (for
trustable homomorphic computation) that we used to assess the genericity, the
security, and the cost of the method. We also detailed a practical use case.

We showed both in theory and in practice that THC is secure, cost-effective,
and practically usable. Our implementation itself, or any implementation of the
modular extension, can be used in existing code at minimal cost both in terms
of development and run-time resources, thereby reducing the necessary trust in
third-parties to which computations on sensible data are delegated (e.g., cloud
service providers).
14 Again, we never intended to design a production-ready electronic voting system This

particular problem could be mitigated using the right cryptographic tools, but is still
relevant to illustrate our point here.

THC: Practical and Cost-Effective Verification of Delegated Computation 529

Nonetheless, we did not achieve the goal of not having to trust the third-party
at all. Indeed, logical aspects that must be ensured by the third-party cannot
be verified using THC. In the scenario we develop in Sect. 6 for example, if the
voting platform publishes the encrypted vote count incrementally after each vote
rather than only when the vote is closed, it becomes possible to break the vote
secrecy for anyone who knows when someone else voted.

A state-of-the-art implementation of homomorphic encryption, TFHE [5],
has been used by the CEA-LIST crypto team to build Cingulata [4], a compiler
that translate arbitrary C++ programs into Boolean circuits that are homo-
morphically evaluated using TFHE. With Cingulata, the logic of the program
is protected by design, as it is embedded into the homomorphically encrypted
circuit to be evaluated by a third-party. However, the third-party could still mess
with the evaluation. Since TFHE ciphertexts live on a torus, which should share
the properties necessary for modular extension, it would be interesting to study
the feasibility of using the THC method to verify the integrity of the evaluation
of delegated Cingulata circuits.

References

1. Baek, Y.-J., Vasyltsov, I.: How to prevent DPA and fault attack in a unified way for
ECC scalar multiplication – ring extension method. In: Dawson, E., Wong, D.S.
(eds.) ISPEC 2007. LNCS, vol. 4464, pp. 225–237. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72163-5 18

2. Blömer, J., Otto, M., Seifert, J.-P.: Sign change fault attacks on elliptic curve
cryptosystems. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.)
FDTC 2006. LNCS, vol. 4236, pp. 36–52. Springer, Heidelberg (2006). https://doi.
org/10.1007/11889700 4

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

4. CEA-LIST Crypto Team: Cingulata: a compiler toolchain and RTE for running
C++ programs over encrypted data by means of fully homomorphic encryption
techniques (2018). https://github.com/CEA-LIST/Cingulata

5. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption library (2016). https://tfhe.github.io/tfhe/

6. Dugardin, M., Guilley, S., Moreau, M., Najm, Z., Rauzy, P.: Using modular exten-
sion to provably protect Edwards curves against fault attacks. Cryptology ePrint
Archive, Report 2015/882 (2015). https://eprint.iacr.org/2015/882

7. Dyer, J., Dyer, M.E., Xu, J.: Practical homomorphic encryption over the integers.
Int. J. Inf. Secur. 18, 549–579 (2017). https://doi.org/10.1007/s10207-019-00427-
0. https://arxiv.org/abs/1702.07588

8. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

9. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. Cryptology ePrint Archive, Report 2014/202 (2014). https://eprint.iacr.org/
2014/202

https://doi.org/10.1007/978-3-540-72163-5_18
https://doi.org/10.1007/11889700_4
https://doi.org/10.1007/11889700_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://github.com/CEA-LIST/Cingulata
https://tfhe.github.io/tfhe/
https://eprint.iacr.org/2015/882
https://doi.org/10.1007/s10207-019-00427-0
https://doi.org/10.1007/s10207-019-00427-0
https://arxiv.org/abs/1702.07588
https://doi.org/10.1007/3-540-39568-7_2
https://eprint.iacr.org/2014/202
https://eprint.iacr.org/2014/202

530 P. Rauzy and A. Nehme

10. Lai, J., Deng, R.H., Pang, H., Weng, J.: Verifiable computation on outsourced
encrypted data. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS,
vol. 8712, pp. 273–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11203-9 16

11. Leont’ev, V.: Roots of random polynomials over a finite field. Math. Notes 80(1–2),
300–304 (2006) https://doi.org/10.1007/s11006-006-0139-y

12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

13. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical veri-
fiable computation. Cryptology ePrint Archive, Report 2013/279 (2013). https://
eprint.iacr.org/2013/279

14. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in pub-
lic: verifiable computation from attribute-based encryption. Cryptology ePrint
Archive, Report 2011/597 (2011). https://eprint.iacr.org/2011/597

15. Rauzy, P., Guilley, S.: A formal proof of countermeasures against fault injection
attacks on CRT-RSA. J. Cryptograph. Eng. 4, 173–185 (2014). https://doi.org/
10.1007/s13389-013-0065-3. https://eprint.iacr.org/2013/506

16. Rauzy, P., Guilley, S.: Countermeasures against high-order fault-injection attacks
on CRT-RSA. In: IACR Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy (2014). https://eprint.iacr.org/2014/559

17. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978). https://people.
csail.mit.edu/rivest/Rsapaper.pdf

18. Shamir, A.: Method and apparatus for protecting public key schemes from timing
and fault attacks. US Patent Number 5,991,415 (1999). https://www.google.com/
patents/US5991415

https://doi.org/10.1007/978-3-319-11203-9_16
https://doi.org/10.1007/978-3-319-11203-9_16
https://doi.org/10.1007/s11006-006-0139-y
https://doi.org/10.1007/3-540-48910-X_16
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2011/597
https://doi.org/10.1007/s13389-013-0065-3
https://doi.org/10.1007/s13389-013-0065-3
https://eprint.iacr.org/2013/506
https://eprint.iacr.org/2014/559
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://www.google.com/patents/US5991415
https://www.google.com/patents/US5991415

TIRAMISU: Black-Box Simulation
Extractable NIZKs in the Updatable CRS

Model

Karim Baghery(B) and Mahdi Sedaghat

imec-COSIC, KU Leuven, Leuven, Belgium
karim.baghery@kuleuven.be, ssedagha@esat.kuleuven.be

Abstract. Zk-SNARKs, as the most efficient NIZK arguments in terms
of proof size and verification, are ubiquitously deployed in practice. In
applications like Hawk [S&P’16], Gyges [CCS’16], Ouroboros Crypsi-
nous [S&P’19], the underlying zk-SNARK is lifted to achieve Black-
Box Simulation Extractability (BB-SE) under a trusted setup phase.
To mitigate the trust in such systems, we propose Tiramisu (In Ital-
ian, Tiramisu literally means “lift me up”), as a construction to build
NIZK arguments that can achieve updatable BB-SE, which we define
as a new variant of BB-SE. This new variant allows updating the pub-
lic parameters, therefore eliminating the need for a trusted third party,
while unavoidably relies on a non-black-box extraction algorithm in the
setup phase. In the cost of one-time individual CRS update by the par-
ties, this gets around a known impossibility result by Bellare et al. from
ASIACRYPT’16, which shows that BB extractability cannot be achieved
with subversion ZK (ZK without trusting a third party). Tiramisu uses
an efficient public-key encryption with updatable keys which may be of
independent interest. We instantiate Tiramisu, implement the overhead
and present efficient BB-SE zk-SNARKs with updatable parameters that
can be used in various applications while allowing the end-users to update
the parameters and eliminate the needed trust.

Keywords: zk-SNARKs · Updatable crs · Black-box simulation
extractability · C∅C∅ framework

1 Introduction

Zero-Knowledge (ZK) [34] proof systems, particularly Non-Interactive Zero-
Knowledge (NIZK) arguments [18] are one of the elegant tools in modern cryp-
tography that due to their impressive advantages and practical efficiency, they
are ubiquitously deployed in practical applications [15,41,42,44]. A NIZK proof
system allows a party P (called prover) to non-interactively prove the truth of a
statement to another party V (called verifier) without leaking any information
about his/her secret inputs. For instance, they allow a prover P to convince a
verifier V that for a (public) statement x, he/she knows a (secret) witness w that
satisfies a relation R, (x,w) ∈ R, without leaking any information about w.
c© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 531–551, 2021.
https://doi.org/10.1007/978-3-030-92548-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92548-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-92548-2_28

532 K. Baghery and M. Sedaghat

Typically, a NIZK argument is expected to satisfy, (i) Completeness, which
implies that an honest prover always convinces an honest verifier (ii) Soundness,
which ensures that an adversarial prover cannot convince an honest verifier
except with negligible probability. (iii) Zero-Knowledge (ZK), which guarantees
that an honestly generated proof does not reveal any information about the
(secret) witness w. In practice, it is shown that bare soundness is not sufficient
and it needs either to be amplified [44] or the protocol needs to be supported by
other cryptographic primitives [15]. To deal with such concerns, different con-
structions are proposed that either satisfy one of the following notions, one of
which is an amplified variation of soundness. (iv) Simulation Soundness (SS),
which ensures that an adversarial prover cannot convince an honest veri-
fier, even if he has seen polynomially many simulated proofs (generated by
Sim), except with negligible probability. (v) Knowledge Soundness (KS), which
guarantees that an adversarial prover cannot convince an honest verifier,
unless he knows a witness w for statement x such that (x,w) ∈ R. (vi)
Simulation Extractability (SE) (a.k.a. Simulation Knowledge Soundness), which
guarantees that an adversarial prover cannot convince an honest verifier, even
if he has seen polynomially time simulated proofs, unless he knows a witness w
for statement x.

The term “knowledge” in KS (in item v) and SE (in item vi) means that a
successful prover should know a w. knowing is formalized by showing that there
exists an algorithm Ext, which can extract the witness w (from the prover or
proof) in either non-Black-Box (nBB) or Black-Box (BB) manner. Typically,
nBB extraction can result in more efficient constructions, as it allows ExtA to
get access to the source-code and random coins of the adversary A. Although
the constructions that obtain BB extractability are less efficient, they provide
stronger security guarantees, as it allows us to have a universal extractor Ext for
any A. The term “simulation” in notions SS (in item iv) and SE (in item vi)
guarantees that the proofs are non-malleable and an adversary cannot change
an old (simulated) proof to a new one such that V accepts it. The notion SE
provides the strongest security and also implies non-malleability of proofs as
defined in [27]. Moreover, it is shown [35] that SE is a sufficient requirement for a
NIZK argument to be deployed in a Universally Composable (UC) protocol [22].

zk-SNARKs. In the Common Reference String (CRS) model [18], NIZK argu-
ments require a trusted setup phase. Based on the underlying assumptions, they
are constructed either using falsifiable or non-falsifiable assumptions [49]. At the
beginning of the last decade, a line of research initiated that focused on construct-
ing NIZK arguments with succinct proofs, which finally led to an efficient family
of NIZK arguments, called zero-knowledge Succinct Non-interactive ARgument
of Knowledge (zk-SNARK) [10,17,19,36,37,39,46,47,50]. zk-SNARKs are con-
structed based on knowledge assumptions [24] that allow succinct proofs and
nBB extractability. Gentry and Wichs’s impossibility result [33] confirmed that
succinct proofs cannot be built based on falsifiable assumptions. Beside succinct
proofs, all initial zk-SNARKs were designed to achieve completeness, ZK and
KS (in item v) [17,36,37,46,50]. KS proofs are malleable, thus in practice users

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 533

needed to make extra efforts to guarantee the non-malleability of proofs [15].
Following this concern, in 2017, Groth and Maller [39] presented a zk-SNARK
that can achieve SE (in item vi) with nBB extractability, consequently generates
non-malleable proofs. Recent works in this direction have led to more efficient
schemes with the same security guarantees [9,10,19,47].

Mitigating the Trust in the Setup Phase of zk-SNARKs. In 2016, Bel-
lare et al. [13] studied the security of NIZK arguments in the face of subverted
CRS. They defined (vii) Subversion-Soundness (Sub-SND), which ensures that
the protocol guarantees soundness even if A has generated the CRS, and (viii)
Subversion-ZK (Sub-ZK), which ensures that the scheme achieves ZK even if
A has generated the CRS. Then, they showed that Sub-SND is not achiev-
able with (standard) ZK, and also we cannot achieve Sub-ZK along with BB
extractability. Two follow-up works [1,31] showed that most of zk-SNARKs can
be lifted to achieve Sub-ZK (in item viii) and KS with nBB extraction (nBB-
KS). Baghery [8] showed that using the folklore OR technique [14] any Sub-
ZK SNARK can be lifted to achieve Sub-ZK and SE (in item vi) with nBB
extraction (nBB-SE). Meanwhile, as an extension to the MPC approach [16]
and subversion security, in 2018 Groth et al. [38] introduced a new variation
of the CRS model, called updatable CRS model which allows both prover and
verifier to update the CRS and bypass the needed trust in a third party. Groth
et al. first defined, (ix) Updatable KS (U-KS), which ensures that the protocol
guarantees KS (in item 1) as long as the initial CRS generation or one of CRS
updates is executed honestly, and (x) Updatable ZK (U-ZK), which ensures that
the protocol guarantees ZK as long as the initial CRS generation or one of CRS
updates is done by an honest party1. Then, they presented a zk-SNARK that can
achieve Sub-ZK and U-KS with nBB extraction (U-nBB-KS). Namely, the prover
achieves ZK without trusting the CRS generator and the verifier achieves nBB-
KS without trusting the CRS generator but by one-time CRS updating. Recent
constructions in this direction have better efficiency [32,48]. Recently, Abdol-
maleki, Ramacher, and Slamanig [2] presented a construction, called Lamassu,
and showed that using a similar folklore OR technique [8,14,28] any zk-SNARK
that satisfies Sub-ZK and U-nBB-KS can be lifted to achieve Sub-ZK and U-
nBB-SE. (xi) Updatable nBB-SE (U-nBB-SE), which ensures that the protocol
achieves SE with nBB extraction as long as the initial CRS generation or one of
CRS updates is done honestly. Recently, it is shown that two efficient updatable
universal zk-SNARKs Plonk [32] and Sonic [48] can also achieve U-nBB-SE [43].
Considering the impossibility of achieving Sub-ZK along with BB extraction [13],
such schemes [2,32,48] achieve the strongest notion with nBB extraction.

Using zk-SNARKs in UC-Protocols. A UC protocol [22] does not interfere
with other protocols and can be arbitrarily composed with other protocols. In
2006, Groth [35] showed that a NIZK argument that can achieve BB-SE can
realize the ideal NIZK-functionality FNIZK [40]. In 2015 Kosba et al. [45] proposed

1 Sub-ZK is a stronger notion than U-ZK, as in Sub-ZK A has generated the CRS,
while the later achieves ZK if at least one of CRS updates is done honestly.

534 K. Baghery and M. Sedaghat

a framework called C∅C∅ along with several constructions that allows lifting a
sound NIZK argument to a BB-SE NIZK argument, such that the lifted version
can be deployed in UC-protocols. In summary, given a sound NIZK argument for
language L, the C∅C∅ defines a new extended language L̂ appended with some
primitives and returns a NIZK argument that can achieve BB-SE. We review
the strongest construction of the C∅C∅ in the full version [11].

Unfortunately, the default security of zk-SNARKs is insufficient to be directly
deployed in UC protocols. The reason is that zk-SNARK achieves nBB extraction
and the extractor ExtA requires access to the source code and random coins of A,
while in UC-secure NIZK arguments, the simulator of ideal-world should be able
to simulate corrupted parties. To do so, the simulator needs to extract witnesses
without getting access to the source code of the environment’s algorithm. Due
to this fact, all those UC-secure applications that use zk-SNARKs [41,42,44],
use C∅C∅ to lift the underlying zk-SNARK to achieve BB-SE, equivalently UC-
security [35]. Note that the lifted zk-SNARKs that achieve BB-SE are not witness
succinct any more, but they still are circuit succinct.

Our Contributions. The core of our results is presenting Tiramisu as an
alternative to the C∅C∅ framework but in the updatable CRS model. Technically
speaking, Tiramisu allows one to build simulation extractable NIZK arguments
with updatable parameters that satisfies a variant of black-box extractability
which we define in this work. In the NIZK arguments built with Tiramisu the
parties can update the CRS themselves instead of trusting a third party. The
construction is suitable for modular use in larger cryptographic protocols, which
aim to build SE NIZK arguments with BB extractability, while avoiding to trust
a third party.

To construct Tiramisu, we start with the C∅C∅’s construction and lift it to
a construction that works in the updatable CRS model. Meanwhile, to attain
fast practical performance, we consider the state-of-the-art constructions in the
updatable CRS model and show that we can simplify the construction of C∅C∅
and achieve the same goal, particularly in the updatable CRS model. Technically
speaking, the strongest construction of the C∅C∅ gets a sound NIZK argument for
the language L and lifts it to a new NIZK argument for the extended language L̂,
that can achieve BB-SE. The language L̂ is an extension of L appended with some
necessary and sufficient primitives, including an encryption scheme to encrypt the
witness and a Pseudo-Random Function (PRF) along with a commitment scheme
that commits to the secret key of the PRF (more details in the full version [11] and
Sect. 4). In composing Tiramisu, we show that considering recent developments
in building NIZK arguments with updatable CRS, namely due to the existence
of nBB-SE NIZK arguments with updatable CRS (with a two-phase updatable
CRS [9,10,19,20,37] or with a universal updatable string [2,32,38,48]) we can sim-
plify the definition of L̂ by removing the commitment and PRF and construct more
efficient SE NIZK arguments with (a variant of) BB extractability that also have
updatable CRS. We show that,Tiramisu also can be added as a layer on top of the
construction proposed in [2], called Lamassu, and together act as a generic com-
piler in the updatable CRS model to lift any sound NIZK argument to a SE NIZK

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 535

Fig. 1. Using C∅C∅ and Tiramisu to build BB-SE NIZK arguments in the standard
and updatable CRS models.

argument with a variant of black-box extractability. But, we show that the schemes
built with this approach are less efficient than the ones built with only Tiramisu.
Figure 1 illustrates how one can use C∅C∅ and Tiramisu to build BB-SE NIZKs
in the standard and updatable CRS models, respectively. Similar to C∅C∅ frame-
work, Tiramisu results in NIZK arguments whose proof size and verification time
are (quasi-)linear in the witness size, that is an unavoidable requirement for UC
security [22], but still are independent of the size of the circuit, which encodes L̂.

Bellare et al.’s Negative Result . In [13], Bellare et al. observed that achieving
Sub-ZK and BB extractability is impossible at the same time. As BB extractabil-
ity requires the simulator create a CRS with a trapdoor it withholds, then it can
extract the witness from a valid proof. But Sub-ZK requires that even if A gener-
ates the CRS, it should not be able to learn about the witnesses from the proof.
However, if a NIZK argument achieves BB extractability, an adversary can gen-
erate the CRS like the simulator. So it has the trapdoor and can also extract
the witness and break Sub-ZK. Therefore Tiramisu achieves the best possible
combination with downgrading Sub-ZK (in item viii) to U-ZK (in item x) while
achieving updatable BB extractability, either U-BB-SE or U-BB-KS. U-BB-SE
and U-BB-KS does not need a trusted third party, therefore from the trust
point of view, they are stronger definitions than standard BB-SE and BB-KS,
respectively, which require a trusted setup phase. But, in definitions of U-BB-SE
and U-BB-KS, to bypass the needed trust, we rely on the existence of a nBB
extraction algorithm in the setup phase that can extract the trapdoors from the
(malicious) parameter generator or updaters. This seems to be unavoidable fact
to achieve updatability and BB extractability at the same time.

Key-Updatable Public-Key Cryptosystems. Tiramisu uses a semantically
secure cryptosystem with updatable keys that we define here. We show that such
cryptosystems can be built either in a generic manner from key-homomorphic
encryption schemes [4], or via an ad-hoc approach. Using both generic and ad-hoc
approaches, we present two variations of El-Gamal cryptosystem [29] instanti-
ated in the pairing-based groups which fulfill the requirements of a cryptosystem
with updatable keys. Efficiency of both constructions are evaluated with a proto-
type implementation in the Charm-Crypto framework [3], and seem to be prac-
tical. The new syntax and constructions can be interesting in their own right,
particularly for building other primitives in the updatable CRS model [21,26].

536 K. Baghery and M. Sedaghat

There are some related definitions for encryption schemes that support updat-
ing the keys [23,30], however their definitions do not fit our requirements for
distributing trust across multiple updaters in the updatable CRS model.

Table 1. A comparison of Tiramisu with related works. ZK: Zero-knowledge, SE:
Simulation Extractable, U: Updatable, S: Subversion, nBB: non-Black-Box, BB: Black-
Box. �: Achieves, ×: Does not achieve.

Zero-Knowledge Simulation Extractability
ZK U-ZK S-ZK nBB-SE BB-SE U-nBB-SE U-BB-SE

Tiramisu � � × � � � �
C∅C∅ [7,45] � × × � � × ×

[5,19,39] � × × � × × ×
[8,10,47] � � � � × × ×
[2,19,20] � � �∗ � × � ×

*Theorem 4 in [2] states Lamassu, can achieve U-ZK and U-nBB-SE, but it
can be shown that it can achieve Sub-ZK along with U-nBB-SE which is a
stronger combination.

Table 1 compares NIZK arguments built with Tiramisu with existing
schemes that can achieve a flavour of SE and ZK. Schemes built with C∅C∅
achieve BB extractability, thus they cannot achieve S-ZK, and the constructions
that achieve Sub-ZK [2,8,47] can achieve (U-)nBB-SE in the best case.

Road-Map. The rest of the paper is organized as follows; Sect. 2 presents neces-
sary preliminaries. Section 3 defines the syntax of a key-updatable cryptosystems
and presents efficient variations of the El-Gamal cryptosystem as an instantia-
tion. Our construction, Tiramisu, and its security proofs are described in Sect. 4.
In Sect. 5, we present U-BB-SE NIZK arguments built with Tiramisu.

2 Notations

Throughout, we suppose the security parameter of the scheme be λ and negl(λ)
denotes a negligible function. We use x ←$ X to denote x sampled uniformly
according to the distribution X. Also, we use [1 ... n] to denote the set of integers
in range of 1 to n. Let PPT and NUPPT denote probabilistic polynomial-time
and non-uniform probabilistic polynomial-time, respectively. For an algorithm A,
let im(A) be the image of A, i.e., the set of valid outputs of A. Moreover, assume
RND(A) denotes the random tape of A, and r ←$RND(A) denotes sampling of a
randomizer r of sufficient length for A’s needs. By y ← A(x; r) we mean given an
input x and a randomizer r, A outputs y. For algorithms A and ExtA, we write
(y ‖ y′) ← (A‖ExtA)(x; r) as a shorthand for “y ← A(x; r), y′ ← ExtA(x; r)”.
Two computationally IND distributions A and B are shown with A ≈c B.

We use additive and the bracket notation, i.e., in group Gμ, [a]μ = a [1]μ,
where [1]μ is a generator of Gμ. A bilinear group generator BGgen(1λ) returns

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 537

(p,G1,G2,GT , ê, [1]1 , [1]2), where p (a large prime) is the order of cyclic abelian
groups G1, G2, and GT . Finally, ê : G1×G2 → GT is an efficient non-degenerate
bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2).

3 Public-Key Cryptosystems with Updatable Keys

As briefly discussed in Sect. 1, one of the key building blocks used in Tiramisu
is a cryptosystem with updatable keys that we define next. Similar definitions
are proposed for zk-SNARKs [38], and signatures [2], but considering previous
definitions in [23,30], to the best of our knowledge this is the first time that this
notion is defined for the public-key cryptosystems. In contrast to subversion-
resilient encryption schemes [6] that the key-generation phase might be sub-
verted, here we consider the case that the output of the key-generation phase
is updatable and parties can update the keys. We aim to achieve the standard
security requirements of a cryptosystem as long as either the original key gen-
eration or at least one of the updates was done honestly. Similar to the case
on paring-based subversion resistant NIZK arguments [13], we assume that the
group generator is a deterministic polynomial time algorithm, which given the
security parameter, it can be run by every entity without the need for a trusted
third party.

3.1 Definition and Security Requirements

Definition 1 (Cryptosystems with Updatable Keys). A public-key cryp-
tosystem ΨEnc with updatable keys over the message space M and ciphertext space
C, consists of five PPT algorithms (KG,KU,KV,Enc,Dec), defined as follows,

– (pk0,Πpk0 , sk0) ← KG(1λ): Given the security parameter 1λ returns the cor-
responding key pair (pk0, sk0) and Πpk0 as a proof of correctness.

– (pki,Πpki
) ← KU(pki−1): Given a valid (possibly updated) public key pki−1

outputs (pki,Πpki
), where pki denotes the updated public-key and Πpki

is a
proof for the correctness of the updating process.

– (1,⊥) ← KV(pki,Πpki
): Given a potentially updated pki and Πpki

, checks the
validity of the updated key. It returns either ⊥ if pki is incorrectly formed
(and updated), otherwise it outputs 1.

– (c) ← Enc(pki,m): Given a (potentially updated) public key pki and a message
m ∈ M, it outputs a ciphertext c ∈ C.

– (⊥,m′) ← Dec(ski, c): Given c ∈ C and the secret key ski, returns either
⊥ (reject) or m′ ∈ M (successful). Note that in the standard public-key cryp-
tosystems (and in this definition before any updating) ski = sk0.

Primary requirements for a public-key cryptosystem with updatable keys,
ΨEnc := (KG,KU,KV,Enc,Dec), can be summarized as follows,

538 K. Baghery and M. Sedaghat

Definition 2 (Perfect Updatable Correctness). A cryptosystem ΨEnc with
updatable keys is perfect updatable correct, if we have,

Pr

⎡
⎢⎢⎣
(pk0,Πpk0 , sk0 := sk′

0) ← KG(1λ), rs ←$RND(Sub),

(({pkj ,Πpkj
}i

j=1, ξSub) ‖ {sk′
j}i

j=1) ← (Sub ‖ExtSub)(pk0,Πpk0 , rs),

{KV(pkj ,Πpkj
) = 1}i

j=0 : Dec(ski := {sk′
j}i

j=0,Enc(pki,m)) = m

⎤
⎥⎥⎦ = 1 .

where sk′
j is the individual secret-key of each party and pki is the final public-key.

Definition 3 (Updatable Key Hiding). In a cryptosystem ΨEnc with updat-
able keys, for (pk0,Πpk0 , sk0 := sk′

0) ← KG(1λ) and (pki,Πpki
) ← KU(pki−1), we

say that ΠEnc is updatable key hiding, if one of the following cases holds,

– the original pk0 was honestly generated and KV algorithm returns 1, namely
(pk0,Πpk0 , sk0) ← KG(1λ) and KV(pk0,Πpk0) = 1,

– the original pk0 verifies successfully with KV and the key-update was generated
honestly once, namely KV(pk0,Πpk0) = 1 and
({pkj ,Πpkj

}i
j=1) ← KU(pk0) such that {KV(pkj ,Πpkj

) = 1}i
j=1.

Definition 4 (Updatable IND-CPA). A public-key cryptosystem ΨEnc with
updatable keys satisfies updatable IND-CPA, if for all PPT subvertor Sub, for
all λ, and for all PPT adversaries A,

Pr

⎡
⎢⎢⎣
(pk0,Πpk0 , sk0 := sk′

0) ← KG(1λ), rs ←$RND(Sub),

({pkj ,Πpkj
}i

j=1, ξSub) ← Sub(pk0,Πpk0 , rs), b ←$ {0, 1}, (m0,m1) ←
A(pki, ξSub), b

′ ← A(Enc(pki,mb)) : {KV(pkj ,Πpkj
) = 1}i

j=0 ∧ b′ = b

⎤
⎥⎥⎦ ≈λ

1
2

.

where ξSub is the auxiliary information which is returned by the subvertor Sub.
Note that Sub can also generate the initial pk0 and then an honest key updater
KU updates it and outputs pki and the proof Πpki

.

3.2 Building Key-Updatable Cryptosystems

We first prove a theorem that gives a generic approach for building a cryptosys-
tem with updatable keys using the key-homomorphic cryptosystems. Then, we
use the generic approach and present the first key-updatable cryptosystem.

Theorem 1 (Key-Updatable Encryptions). Every correct, IND-CPA
secure, and key-homomorphic scheme ΨEnc with an efficient extractor ExtSub,
satisfies updatable correctness, updatable key hiding and updatable IND-CPA
security.

The proof is provided in the full version of paper [11].

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 539

A Key-Updatable Cryptosystem from Key-Homomorphic Cryptosys-
tems. Next, we show that the El-Gamal cryptosystem [29] instantiated in a
bilinear group (p,G1,G2,GT , ê, [1]1 , [1]2) can be represented as a key-updatable
encryption scheme constructed from key-homomorphic encryptions. In bilinear
group based instantiation, in contrast to the standard El-Gamal encryption
(reviewed in the full version [11]), the public key consists of a pair ([x]1 , [x]2).
Consequently, the algorithms of new variation can be expressed as follows,

– (pk0,Πpk0 , sk0 := sk′
0) ← KG(1λ): Given 1λ, obtain (p,G1,G2,GT , ê, [1]1 ,

[1]2) ← BGgen(1λ); sample sk′
0 ←$Z

∗
p and return the key pair (pk0, sk0) :=((

pk10, pk
2
0

)
, sk0

)
:=

(([
sk′

0

]
1
,
[
sk′

0

]
2

)
, sk′

0

)
and Πpk0 :=

(
Π1

pk0
,Π2

pk0

)

:=
([
sk′

0

]
1
,
[
sk′

0

]
2

)
as a proof of correctness (a.k.a. well-formedness).

– (pki,Πpki
) ← KU(pki−1): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ);

then for a given pki−1 :=
(
pk1i−1, pk

2
i−1

)
:= ([ski−1]1 , [ski−1]2), for i ≥ 1, sam-

ple sk′
i ←$Z

∗
p and output: (pki,Πpki

) :=
(([

ski−1 + sk′
i

]
1
,
[
ski−1 + sk′

i

]
2

)
,([

sk′
i

]
1
,
[
sk′

i

]
2

))
, where pki :=

(
pk1i , pk

2
i

)
denotes the updated public-key

associated with the secret key ski := ski−1+ sk′
i and Πpki

:=
(
Π1

pki
,Π2

pki

)
:=([

sk′
i

]
1
,
[
sk′

i

]
2

)
is the proof for correctness of the update.

– (1,⊥) ← KV
({pkj}i

j=0,Πpki

)
: Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ←

BGgen(1λ), and then,
– for i = j = 0, given pk0 :=

(
pk10, pk

2
0

)
:= ([sk0]1 , [sk0]2), and the proof

Πpk0 :=
(
Π1

pk0
,Π2

pk0

)
:=

([
sk′

0

]
1
,
[
sk′

0

]
2

)
, checks Π1

pk0
• [1]2

?= [1]1 •
pk20, [1]1 • Π2

pk0

?= pk10 • [1]2 , [1]1 • Π2
pk0

?= Π1
pk0

• [1]2 .

– for i ≥ 1, given pki−1 :=
(
pk1i−1, pk

2
i−1

)
:= ([ski−1]1 , [ski−1]2), a poten-

tially updated pki :=
(
pk1i , pk

2
i

)
:=

([
ski−1 + sk′

i

]
1
,
[
ski−1 + sk′

i

]
2

)
, and

Πpki
:=

(
Π1

pki
,Π2

pki

)
:=

([
sk′

i

]
1
,
[
sk′

i

]
2

)
, checks

(
pk1i−1 + Π1

pki

)
•[1]2 ?=

[1]1 •pk2i , [1]1 •
(
pk2i−1 + Π2

pki

)
?= pk1i • [1]2 and [1]1 • Π2

pki

?= Π1
pki

• [1]2.
in each case, if all the checks pass, it returns 1, otherwise ⊥.

– (c) ← Enc (pki,m): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ) and then
given a (potentially updated) public key pki := ([ski]1 , [ski]2), such that ski :=
ski−1+sk′

i , and a message m ∈ M, samples a randomness r ←$Z
∗
p and outputs

c := (c1, c2) := (m · [rski]T , [r]T) .
– (⊥,m) ← Dec(ski, c): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ) and

then given a ciphertext c ∈ C and a potentially updated secret key ski =
ski−1 + sk′

i it returns, c1
csk2

= m·[rski]T
[rski]T

= m.

In the proposed construction, for the case that {KV({pkj}i
j=0,Πpki

) = 1}i
j=0,

under the BDH-KE knowledge assumption (See the full version [11]) with check-
ing [1]1 • Π2

pkj

?= Π1
pkj

• [1]2 for 0 ≤ j ≤ i, there exists an efficient nBB extractor

540 K. Baghery and M. Sedaghat

ExtSub that can extract all sk′
j from the subvertor Subj . Note that here we con-

sidered the standard version of the El-Gamal cryptosystem, but we could also
take its lifted version, which encrypts gm instead of m.

A More Efficient Key-Updatable Cryptosystem. The technique pro-
posed in Theorem 1, acts as a generic approach but might lead to inefficient
constructions. We present a more efficient key-updatable variant of El-Gamal
cryptosystem.

Hash-Based El-Gamal Cryptosystem in Bilinear Groups. The hash-based varia-
tion of El-Gamal cryptosystem [29], is proven to achieve IND-CPA in the random
oracle model. In the rest, we present a new variation of it, instantiated with bilin-
ear groups, and show that the proposed variation can be represented as a secure
key-updatable encryption scheme. The PPT algorithms (KG,KU,KV) in the new
variation are identical to those in the first variation, while the encryption and
decryption algorithms (Enc,Dec) behave as follows:

– (c) ← Enc(H, pki,m): Given the one-way hash function H, a public key pki :=
(pk1i , pk

2
i) and a message m ∈ {0, 1}n as inputs. It samples r ←$Z

∗
p and returns

c := (c1, c2) := (m ⊕ H((pk1i)
r), [r]1).

– (⊥,m) ← Dec(H, ski, c): Given the hash function H, the secret key ski, cor-
responding to pki, and a ciphertext c := (c1, c2), decrypts c by calculating
m := c1 ⊕ H(cski

2).

Theorem 2 (Hashed El-Gamal Cryptosystem with Updatable Keys).
The proposed variation of Hashed El-Gamal encryption satisfies updatable cor-
rectness, updatable key hiding and updatable IND-CPA if BDH-KE and Extended
asymmetric Computational Diffie-Hellman assumptions hold in (G1,G2), and
the hash function H is a random oracle.

The proof is provided in the full version of paper [11].

3.3 Performance of the Proposed Key-Updatable Cryptosystems

We evaluate practical efficiency of both the proposed key-updatable cryptosys-
tems using the Charm-Crypto framework [3], a Python library for pairing-based
cryptography2. We apply Barreto-Naehrig (BN254) curve, y2 = x3 + b with
embedding curve degree 12 [12] as an SNARK-friendly curve. Benchmarks are
done on a laptop with Ubuntu 20.04.2 LTS equipped with an Intel Core i7-9850H
CPU @2.60GHz and 16GB of memory. As we observed in Sect. 3.2, both the
pairing-based and hash-based constructions have the same (KG,KU,KV) algo-
rithms. In Fig. 2, we plot the running time of key-updating, KU, key-verification,
KV, and the transcript size versus the number of key updates, where transcript
refers to all the keys as well as the proofs generated with all updaters.

2 The source code is publicly available on https://github.com/Baghery/Tiramisu.

https://github.com/Baghery/Tiramisu

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 541

Fig. 2. Key updating, key verification (standard & batched versions) and transcript
size for both the proposed key-updatable cryptosystems.

As it is illustrated in Fig. 2, in both constructions, the key updating, key
verification times and the transcript size are practical and grow linearly with the
number of updates. One time key updating along with generating the underlying
proof requires ≈1millisecond (ms), while to update a key 50 times and provide
proof of correctness only takes ≈36ms. To verify the validity of a key that is
updated 50 times, a verifier requires ≈6 s in the standard form of KV algorithm,
however, using the standard batching techniques [1] this can be done 12× faster,
in ≈0.5 s. In terms of the transcript size, for a key that is updated 10 times, the
verifier requires to store ≈3Kbytes.

Our experiments confirm that the time required for running the encryption
algorithm is constant and takes about ≈32ms and ≈1.2ms in the pairing-based
and hash-based constructions independent of the number of updates, respec-
tively. While the running time for the decryption algorithm are equal to ≈4.5ms
and ≈1ms, respectively. One may notice that the ciphertext size remains con-
stant in our setting they are equal to 1028 and 46bytes in the paring-based and
Hash-based encryption schemes, respectively.

4 TIRAMISU: BB-SE NIZK in Updatable CRS Model
We present Tiramisu, as a protocol that allows one to generically build NIZK
arguments in the updatable CRS model, which achieve U-ZK [38] along with
either Updatable Black-Box Simulation Extractability (U-BB-SE) or Updat-
able Black-Box Knowledge Soundness (U-BB-KS) which we define next. We
first define Updatable Simulation Soundness (U-SS) that is used in Tiramisu.

Definition 5 (Updatable Simulation Soundness). A non-interactive argu-
ment ΨNIZK is updatable simulation soundness for R, if for any subvertor Sub,
and every PPT A, the following probability is negl(λ),

Pr

⎡
⎢⎢⎢⎢⎣

(R, ξR) ← R(1λ), ((crs0, Πcrs0) ‖ ts0 := ts′0) ← Kcrs(R, ξR), rs ←$RND(Sub),

(({crsj , Πcrsj }i
j=1, ξSub) ‖ {ts′j}i

j=1) ← (Sub ‖ExtSub)(crs0, Πcrs0 , rs),

{CV(crsj , Πcrsj) = 1}i
j=0, (x, π) ← AO(tsi,...)(R, ξR, crsi, ξSub) :

(x, π) �∈ Q ∧ x �∈ L ∧ V(R, ξR, crsi, x, π) = 1

⎤
⎥⎥⎥⎥⎦

,

542 K. Baghery and M. Sedaghat

where Πcrs is a proof for correctness of CRS generation/updating, tsi is the
simulation trapdoor associated with the final CRS that can be computed using
{ts′j}i

j=0, and Q is the set of simulated statement-proof pairs returned by oracle
O(.).

Definition 6 (Updatable Black-Box Simulation Extractability). An
argument ΨNIZK is updatable black-box (strong) simulation-extractable for R,
if for every PPT A and subvertor Sub, the following probability is negl(λ),

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(R, ξR) ← R(1λ), ((crs0,Πcrs0) ‖ ts0 := ts′0 ‖ te0 := te′
0) ← Kcrs(R, ξR),

rs ←$RND(Sub), (({crsj ,Πcrsj }i
j=1, ξSub) ‖ {ts′j}i

j=1 ‖ {te′
j}i

j=1) ← ...

...(Sub ‖ExtSub)(crs0,Πcrs0 , rs), {CV(crsj ,Πcrsj) = 1}i
j=0, rA ←$RND(A),

(x, π) ← AO(tsi,...)(R, ξR, crsi, ξSub; rA),w ← Ext(R, ξR, crsi; tei) :
(x, π) ∈ Q ∧ (x,w) ∈ R ∧ V(R, ξR, crsi, x, π) = 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

where ExtSub in a nBB PPT extractor (e.g. based of rewinding or knowledge
assumption), Ext is a black-box PPT extractor (e.g. using a decryption algo-
rithm), Πcrs is a proof for correctness of CRS generation/updating, and tsi, tei

are the simulation and extraction trapdoors associated with the final CRS that
can be computed using {ts′j}i

j=0 and {te′
j}i

j=0, respectively. Here, RND(A) =
RND(Sub) and Q is the set of the statement and simulated proofs returned by
oracle O(.).

Intuitively, the definition implies that under the existence of a nBB extractor
in the he setup phase, the protocol achieves SE with BB extraction, as long as
the initial CRS generation or one of CRS updates is done by an honest party.
Our definition of U-BB-SE is inspired from the standard definition (realized
under a trusted setup) presented by Groth [35], which considers two extrac-
tors, one for the setup phase and the other for the rest of argument. How-
ever, our definition uses a non-black-box extractor in the setup phase, which
seems a unavoidable requirement for building U-BB-SE NIZK argument without
a trusted third party [13]. Indeed, using some arguments or assumptions with non-
black box extraction techniques, e.g. by rewinding [25] or knowledge assumptions
[1,13,38], is a common and practical way to mitigate or eliminate the trust on
the parameters of various cryptographic protocols. We also consider building
NIZK arguments that can achieve U-BB-KS which is a weaker version of U-BB-
SE, where in the former, A would not have access to oracle O(·). Note that in
Definition 5 and Definition 6, it is equivalent for the adversary to batch all its
updates and then think of one honest update. This requires that the trapdoor
contributions of setup and update commute. This is true of known construc-
tions in the updatable CRS model [48]. Therefore, in the underlying NIZK and
key-updatable cryptosystem, we expect that they both satisfy the property that
trapdoors combine and commute.

Our main goal is to construct an alternative to the C∅C∅ framework [45]
but in the updatable CRS model, such that in new constructions the end-users

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 543

can bypass the blind trust in the setup phase by one-time updating the shared
parameters. Our starting point is the strongest construction of the C∅C∅ frame-
work (reviewed in the full version [11]) that gets a sound NIZK argument and
lifts it to a BB-SE NIZK argument. To do so, given a language L with the corre-
sponding NP relation RL, the C∅C∅ framework defines a new language L̂ such
that ((x, c, μ, pks, pke, ρ), (r, r0,w, s0)) ∈ RL̂ iff,

c = Enc(pke,w; r) ∧ ((x,w) ∈ RL ∨ (μ = fs0(pks) ∧ ρ = Com(s0; r0))) ,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random function family,
(KGe,Enc,Dec) is a set of algorithms for a semantically secure encryption scheme,
(KGs,Sigs,Vfys) is a one-time signature scheme and (Com,Vfy) is a perfectly
binding commitment scheme.

As a result, given a sound NIZK argument ΨNIZK for R constructed from PPT
algorithms (Kcrs,P,V,Sim,Ext), the C∅C∅ framework returns a BB-SE NIZK
argument Ψ̂NIZK with PPT algorithms (K̂crs, P̂, V̂, ˆSim, Êxt), where K̂crs is the CRS
generator for new construction and acts as follows,

– (ĉrs ‖ t̂s ‖ t̂e) ← K̂crs(RL, ξRL
): Given (RL, ξRL

), sample (crs ‖ ts) ←
Kcrs (RL̂, ξRL̂

); (pke, ske) ← KGe (1λ); s0, r0 ←$ {0, 1}λ; ρ := Com(s0; r0); and
output (ĉrs ‖ t̂s ‖ t̂e) := ((crs, pke, ρ) ‖ (s0, r0) ‖ ske), where ĉrs is the CRS of
Ψ̂NIZK and t̂s and t̂e, respectively, are the simulation trapdoor and extraction
trapdoor associated with ĉrs.

Considering the description of algorithm K̂crs, to construct an alternative to the
C∅C∅ framework but in the updatable CRS model, a naive solution is to construct
the three primitives above (with gray background) in the updatable CRS model,
and then define a similar language but using the primitives constructed in the
updatable CRS model. But, considering the state-of-the-art ad-hoc constructions
and generic compilers to build NIZK arguments with updatable CRS model, a
more efficient solution is to simplify the language L̂ and construct more efficient
BB-SE NIZK arguments with updatable parameters.

Continuing the second solution, since currently there exist some ad-hoc con-
structions that allow two-phase updating (e.g. [9,10,19,20]) or even a lifting
construction to build nBB-SE zk-SNARKs with universal CRS in the updatable
CRS model (e.g. [2]), therefore we simplify the original language L̂ defined in
C∅C∅ and show that given a simulation sound NIZK argument with updatable
CRS we can construct U-BB-SE NIZK arguments in a more efficient manner than
the mentioned naive way. To this end, we use the key-updatable cryptosystems,
defined and built in Sect. 3.

Let ΨEnc := (KG,KU,KV,Enc,Dec) be a set of algorithms for a semantically
secure cryptosystem with updatable keys (pki, ski). Similar to C∅C∅ framework,
we define a new language L̂ based on the main language L corresponding to
the input updatable nBB-SE NIZK ΨNIZK := (Kcrs,CU,CV,P,V,Sim,Ext). The
language L̂ is embedded with the encryption of witness with the potentially
updated public key pki given in the CRS. Namely, given a language L with the

544 K. Baghery and M. Sedaghat

corresponding NP relation RL, we define L̂ for a given random element r ←$Fp,
such that ((x, c, pki), (w, r)) ∈ RL̂ iff, c = Enc(pki,w; r) ∧ (x,w) ∈ RL.

The intuition behind L̂ is to enforce the P to encrypt its witness with a
potentially updated public key pki, given in the CRS, and send the ciphertext
c along with a simulation sound proof. Consequently, in proving BB-SE, the
updated ski of the defined cryptosystem ΨEnc is given to the Ext, which makes it
possible to extract the witness in a black-box manner. By sending the encryption
of witnesses, the proof will not be witness succinct anymore, but still, it is
succinct in the size of the circuit that encodes L̂.

Fig. 3.Tiramisu, a construction for building BB-SE NIZK argument Ψ̂NIZK with updat-
able CRS.

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 545

In security proofs, we show that due to updatable simulation soundness (in
Definition 5) of the underlying NIZK argument ΨNIZK, the updatable IND-CPA
security (in Definition 4) and perfect updatable completeness (in Definition 2)
of ΨEnc is sufficient to achieve BB-SE in the updatable NIZK argument Ψ̂NIZK
for the language L̂. By considering new language L̂, the modified construction
Ψ̂NIZK := (K̂crs, ĈU, ĈV, P̂, V̂, ˆSim, Êxt) for L̂ can be written as in Fig. 3.

Efficiency . Considering new language L̂, in new argument Ψ̂NIZK the CRS gen-
eration (CRS updating and CRS verification) of the input argument ΨNIZK will
be done for a larger instance, and one also needs to generate (update and ver-
ify) the key pairs of the updatable public-key cryptosystem. The corresponding
circuit of the newly defined language L̂, expands by the number of constraints
needed for the encryption function. Recall that the language L̂ is an appended
form of language L by encryption of witnesses. However, due to our simplifica-
tions in defining language L̂, the overhead in Tiramisu will be less than the
case one uses the C∅C∅ framework. Meanwhile, as we later show in Sect. 5 the
efficiency of final constructions severely depends on the input NIZK argument.

The prover of the new construction Ψ̂NIZK needs to generate a proof for new
language L̂ that would require extra computations. The proofs will be the proof
of input nBB-SE updatable NIZK argument ΨNIZK appended with the ciphertext
c which leads to having proofs linear in witness size but still succinct in the circuit
size. It is a known result that having proofs linear in witness size is an undeniable
fact to achieve BB extraction and UC-security [22,33].

As the verifier is unchanged, so the verification of new constructions will be
the same as NIZK ΨNIZK but for a larger statement.

The proof of Theorems 3–5, are provided in the full version of paper [11].

Theorem 3 (Perfect Updatable Completeness). If the input NIZK argu-
ment ΨNIZK guarantees perfect updatable completeness for the language L, and
the public-key cryptosystem ΨEnc be perfectly updatable correct, then the NIZK
argument constructed in Fig. 3 for language L̂, is perfectly updatable complete.

Theorem 4 (Computationally Updatable Zero-Knowledge). If the
input NIZK argument ΨNIZK guarantees ZK, and the public-key cryptosystem
ΨEnc is updatable IND-CPA and satisfies updatable key hiding, then the NIZK
argument constructed in Fig. 3 for L̂ satisfies computational updatable ZK.

Theorem 5 (Updatable Black-Box Simulation Extractability). If the
input NIZK argument ΨNIZK guarantees updatable correctness, updatable simu-
lation soundness and updatable zero-knowledge, and the public-key cryptosystem
ΨEnc satisfies updatable perfect correctness, updatable key hiding, and updatable
IND-CPA, then the NIZK argument constructed in Fig. 3 for language L̂ satisfies
updatable BB simulation extractability.

Note that to bypass the impossibility of achieving Sub-ZK and BB
extractability in NIZKs [13], one-time honest key generation/updating on pki

is a crucial requirement which does not allow an adversary to obtain the trap-
doors associated with final updated CRS, particularly the extraction keys.

546 K. Baghery and M. Sedaghat

Building U-BB-KS NIZKs with Tiramisu. The primary goal of Tiramisu
is constructing BB-SE NIZK arguments in the updatable CRS model. However,
due to some efficiency reasons, in practice one might need to build an Updatable
Black-Box Knowledge Sound (U-BB-KS) NIZK argument. In such cases, starting
from either an updatable sound NIZK or an U-nBB-KS NIZK (e.g. Groth et al.’s
updatable zk-SNARK [38]), the same language L̂ defined in Tiramisu along
with our constructed updatable public-key cryptosystem allows one to build an
U-BB-KS NIZK argument. Namely, given an updatable cryptosystem ΨEnc :=
(KG,KU,KV,Enc,Dec) with updatable keys (pki, ski), and an updatable sound
NIZK ΨNIZK := (Kcrs,CU,CV,P,V,Sim) for language L with the corresponding
NP relation RL, we define the language L̂ for a given random element r ←$Fp,
such that ((x, c, pki), (w, r)) ∈ RL̂ iff, (c = Enc(pki,w; r)) ∧ ((x,w) ∈ RL).

Corollary 1. If the input ΨNIZK for RL guarantees updatable correctness, updat-
able soundness and updatable zero-knowledge, and the public-key cryptosystem
ΨEnc satisfies updatable perfect correctness, updatable key hiding, and updatable
IND-CPA, then the NIZK argument for language L̂ satisfies updatable correct-
ness, updatable knowledge soundness and updatable zero-knowledge.

The proof can be done similar to the proof of Theorem 5, without providing
the simulation oracle to the adversaries A and B.

Table 2. A comparison of BB-SE NIZK arguments built with the C∅C∅ and Tiramisu.
n′: Number of constraints used to encode language L̂, |pk|: Size of the public key of ΨEnc,
λ: Security parameter, Ei: Exponentiation in Gi, P : Paring, l′: the size of statement
in new language L̂, w : the witness for RL̂.

C∅C∅
(with [37])

Tiramisu
(with [2,38])

Tiramisu
(with [19,20])

Trusted Setup Yes No No
CRS Updatability No One-phase (Universal) Two-phase
CRS Size ≈ 3n′

G1 +n′
G2 ≈ 30n′2

G1 +9n′2
G2 ≈ 3n′

G1 +n′
G2

CRS Verifier — ≈ 78n′2P 14n′P (batchable)

CRS Updater — ≈ 30n′2E1 +9n′2E2 ≈ 6n′E1 +n′E2

Prover ≈ 4n′E1 +n′E2 ≈ 4n′E1 +n′E2 ≈ 4n′E1 +n′E2

Proof Size o(w) + 3G1 +2G2 + λ o(w) + 4G1 +3G2 o(w) + 3G1 +2G2

Verifier 4P + l′E1 6P + l′E1 5P + l′E1

5 Building U-BB-SE NIZK Arguments with TIRAMISU

To build an U-BB-SE NIZK argument with Tiramisu, one needs (1) a key-
updatable cryptosystem ΨEnc that satisfies perfect updatable correctness, updat-
able key hiding, and updatable IND-CPA, and (2) a NIZK argument ΨNIZK that
guarantees updatable simulation soundness or U-nBB-SE. Next, we instantiate

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 547

ΨEnc and ΨNIZK, and obtain two U-BB-SE NIZK arguments. For ΨEnc, one can use
either of the proposed variations of El-Gamal cryptosystem in Sect. 3. Whereas
for ΨNIZK, one can either use an ad-hoc construction (e.g. [32,48] with univer-
sal CRS, or [9,10,19] when their CRS is generated with [20], which will have a
two-phase updating), or a construction lifted with Lamassu [2] (e.g. using [38]).

In BB-SE NIZK arguments built with Tiramisu, the parties have to update
the shared parameters individually once and check the validity of the previous
updates. This is basically the computational cost that the end-users need to
pay to bypass the trust in the standard CRS model. As an important prac-
tical optimization, it can be shown that the prover can only update the CRS
ĉrsi := (crsi, pki) partially, namely only pki. Table 2 summarizes the efficiency of
two BB-SE NIZK arguments built with Tiramisu and compares them with
a construction lifted by the C∅C∅ framework in the standard CRS model.
We instantiate C∅C∅ with the state-of-the-art zk-SNARK [37] and instantiate
Tiramisu with 1) the lifted version of [38] with Lamassu [2], and 2) one of the
constructions proposed in [10] when their CRS is sampled using the two-phase
protocol proposed in [20]. As we observed in Sect. 3.3, in the resulting U-BB-SE
zk-SNARKs, the overhead added by the key updateable encryption schemes add
very little overhead to the CU and CV algorithms.

Both C∅C∅ and Tiramisu constructions result a linear proof in the wit-
ness size, but they keep the asymptotic efficiency of other algorithms in the
input NIZK. Consequently, instantiating Tiramisu with a more efficient nBB-
SE NIZK argument will result in a more efficient BB-SE NIZK argument. There-
fore, as also is shown in Table 2, suitable ad-hoc constructions result in more effi-
cient U-BB-SE NIZK arguments. We found constructing more efficient updatable
nBB-SE zk-SNARKs as an interesting future research direction. Following, the
impossibility result of Gentry and Wichs [33], it is undeniable that achieving BB
extraction will result in non-succinct proof. Consequently, in all the schemes in
Table 2, the proof size is dominated with the size of c which is a ciphertext of
IND-CPA cryptosystem and is o(w).

Acknowledgements. This work has been supported in part by ERC Advanced
Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) under contract No. HR001120C0085, by the Research Council KU Leuven
C1 on Security and Privacy for Cyber-Physical Systems and the Internet of Things with
contract number C16/15/058, and by CyberSecurity Research Flanders with reference
number VR20192203.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the DARPA,
the US Government, or Cyber Security Research Flanders. The U.S. Government is
authorized to reproduce and distribute reprints for governmental purposes notwith-
standing any copyright annotation therein.

548 K. Baghery and M. Sedaghat

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_1

2. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining simulation
extractable subversion and updatable snarks generically. In: Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, CCS
2020, pp. 1987–2005, New York, NY, USA. Association for Computing Machinery
(2020)

3. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems. J.
Cryptogr. Eng. 3(2), 111–128 (2013). https://doi.org/10.1007/s13389-013-0057-3

4. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: Chazelle, B. (ed.) ICS 2011, pp. 45–60. Tsinghua University
Press (January 2011)

5. Atapoor, S., Baghery, K.: Simulation extractability in Groth’s zk-SNARK.
In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J. (eds.)
DPM/CBT -2019. LNCS, vol. 11737, pp. 336–354. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-31500-9_22

6. Auerbach, B., Bellare, M., Kiltz, E.: Public-key encryption resistant to parame-
ter subversion and its realization from efficiently-embeddable groups. In: Abdalla,
M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 348–377. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5_12

7. Baghery, K.: On the efficiency of privacy-preserving smart contract systems. In:
Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol.
11627, pp. 118–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23696-0_7

8. Baghery, K.: Subversion-resistant simulation (knowledge) sound NIZKs. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 42–63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1_3

9. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction and
randomization of Groth’s zk-SNARK. Cryptology ePrint Archive, Report 2020/811
(2020). https://eprint.iacr.org/2020/811

10. Baghery, K., Pindado, Z., Ràfols, C.: Simulation extractable versions of Groth’s
zk-SNARK revisited. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020.
LNCS, vol. 12579, pp. 453–461. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-65411-5_22

11. Baghery, K., Sedaghat, M.: Tiramisu: black-box simulation extractable NIZKs in
the updatable CRS model. Cryptology ePrint Archive, Report 2020/474 (2020).
https://eprint.iacr.org/2020/474

12. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383_22

13. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6_26

14. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interative zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO’89. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990).
https://doi.org/10.1007/0-387-34805-0_19

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/978-3-030-31500-9_22
https://doi.org/10.1007/978-3-030-31500-9_22
https://doi.org/10.1007/978-3-319-76578-5_12
https://doi.org/10.1007/978-3-030-23696-0_7
https://doi.org/10.1007/978-3-030-23696-0_7
https://doi.org/10.1007/978-3-030-35199-1_3
https://eprint.iacr.org/2020/811
https://doi.org/10.1007/978-3-030-65411-5_22
https://doi.org/10.1007/978-3-030-65411-5_22
https://eprint.iacr.org/2020/474
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/0-387-34805-0_19

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 549

15. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press (May 2014)

16. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy, pp. 287–304. IEEE Computer Society Press (May 2015)

17. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
arguments for a von Neumann architecture. Cryptology ePrint Archive, Report
2013/879 (2013). http://eprint.iacr.org/2013/879

18. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: Proceedings of the 20th Annual ACM Symposium on Theory of Com-
puting, pp. 103–112. ACM (1988)

19. Bowe, S., Gabizon, A.: Making Groth’s zk-SNARK simulation extractable in the
random oracle model. Cryptology ePrint Archive, Report 2018/187 (2018). https://
eprint.iacr.org/2018/187

20. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Technical Report 2017/1050, IACR, 26
October 2017

21. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composi-
tion of succinct zero-knowledge proofs. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2075–2092 (2019)

22. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (October
2001)

23. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

24. Damgård, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36

25. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_38

26. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-
NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 314–343.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_11

27. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

28. Derler, D., Slamanig, D.: Key-homomorphic signatures and applications to mul-
tiparty signatures. Cryptology ePrint Archive, Report 2016/792 (2016). http://
eprint.iacr.org/2016/792

29. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2

30. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: a new design for anony-
mous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11921, pp. 649–678. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34578-5_23

http://eprint.iacr.org/2013/879
https://eprint.iacr.org/2018/187
https://eprint.iacr.org/2018/187
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/3-540-44647-8_33
http://eprint.iacr.org/2016/792
http://eprint.iacr.org/2016/792
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-34578-5_23

550 K. Baghery and M. Sedaghat

31. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5_11

32. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of knowledge. Cryp-
tology ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

33. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press (June 2011)

34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

35. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

36. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

37. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

38. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. Part III, volume 10993 of LNCS, pp. 698–
728. Springer, Heidelberg (2018)

39. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0_20

40. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679_21

41. Juels, A., Kosba, A.E., Shi, E.: The ring of Gyges: investigating the future of
criminal smart contracts. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 283–295. ACM Press (October 2016)

42. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros Crypsinous: privacy-
preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy, pp.
157–174. IEEE Computer Society Press (May 2019)

43. Kohlweiss, M., Zajac, M.: On simulation-extractability of universal zkSNARKs.
IACR Cryptol. ePrint Arch. (2021)

44. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839–858. IEEE Computer Society Press
(May 2016)

45. Kosba, A.E., et al.: C∅C∅: a framework for building composable zero-knowledge
proofs. Technical Report 2015/1093, IACR, 10 November 2015

46. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

47. Lipmaa, H.: Simulation-extractable SNARKs revisited. Cryptology ePrint Archive,
Report 2019/612 (2019)

https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-642-28914-9_10

Tiramisu: BB-SE NIZKs in the Updatable CRS Model 551

48. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: Cavallaro, L., Kinder, J., Wang, X.F., Katz, J. (eds.) ACM CCS 2019, pp.
2111–2128. ACM Press, November 2019

49. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4_6

50. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252.
IEEE Computer Society Press (May 2013)

https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6

Author Index

Abdolmaleki, Behzad 492
Alkeilani Alkadri, Nabil 95
AlTawy, Riham 136
Arfaoui, Ghada 355
Armour, Marcel 42
Avoine, Gildas 355

Baghery, Karim 531
Bakas, Alexandros 460
Bobolz, Jan 158
Bogatov, Dmytro 435
Bos, Joppe W. 72
Brumley, Billy Bob 460

Chabanne, Hervé 63
Cid, Carlos 42

De Caro, Angelo 435
Delgado-Lozano, Ignacio M. 460
Dévéhat, Anaëlle Le 253
Dürmuth, Markus 412

Eidens, Fabian 158
Elkhiyaoui, Kaoutar 435

Faonio, Antonio 273
Fietkau, Julian 315
Finogina, Tamara 483
Fraser, Ashley 179, 200

Garms, Lydia 200
Gimenez, Olivier 355
Golla, Maximilian 412
Golub, Marin 372
Gulliver, T. Aaron 136

Harasser, Patrick 95
Hasegawa, Kento 392
Hasegawa, Shingo 253
Hell, Martin 24
Herranz, Javier 483
Hidano, Seira 295, 392
Hiji, Masahiro 295
Huguenin-Dumittan, Loïs 225

Ibarrondo, Alberto 63

Janson, Christian 95
Johansson, Thomas 24

Kiyomoto, Shinsaku 295, 392
Krenn, Stephan 158

Larraia, Enrique 483
Laud, Peeter 245
Lehmann, Anja 200

Markert, Philipp 412
Martínez-Rodríguez, Macarena C. 460
Matsumoto, Yuki 295
Maximov, Alexander 24
May, Alexander 412
Meier, Willi 24
Michalas, Antonis 460
Miranda, Nolan 334

Narisada, Shintaro 295
Nehme, Ali 513
Novković, Bojan 372

Ofner, Maximilian 72
Önen, Melek 63

Pettit, Michaella 116
Preneel, Bart 3

Quaglia, Elizabeth A. 179

Ramacher, Sebastian 158
Rauzy, Pablo 513
Renes, Joost 72
Runge, David Pascal 315

Samelin, Kai 158
Schlieper, Lars 412
Schneider, Tobias 72
Sedaghat, Mahdi 3, 531
Sehrawat, Vipin Singh 334
Seifert, Jean-Pierre 315
Shizuya, Hiroki 253
Slamanig, Daniel 492
Suganuma, Takuo 295

554 Author Index

Tackmann, Björn 435
Togawa, Nozomu 392
Traoré, Jacques 355

Uchibayashi, Toshihiro 295

van Vredendaal, Christine 72
Vaudenay, Serge 225

Yehia, Mahmoud 136
Yeo, Foo Yee 334
Yoshida, Hirotaka 24

	 Preface
	 Organization
	 Contents
	Encryption
	Cross-Domain Attribute-Based Access Control Encryption
	1 Introduction
	2 Preliminaries and Definitions
	3 Cross-Domain Attribute-Based ACE Scheme
	3.1 Security Definitions

	4 Generic Construction
	5 An Efficient CD-ABACE Scheme
	6 Performance Analysis
	7 Conclusion
	References

	Grain-128AEADv2: Strengthening the Initialization Against Key Reconstruction
	1 Introduction
	2 Grain-128AEAD Initialization
	3 Reconstructing the Key
	4 Basic Attempts to Make the Key Re-introduction Stronger
	4.1 Group 1: Push Key Bits into NFSR Instead of LFSR
	4.2 Group 2: Push Key Bits into both NFSR and LFSR
	4.3 Generic Recursive Backtracing Attack
	4.4 The Parallel Option: Parallel XOR of the Whole Key at the End of Initialization

	5 Re-introducing the Key Before A/R Register Initialization
	5.1 New Generic Initialization Steps
	5.2 An Attempt to Keep 384 Clocks in Total, Cn=192
	5.3 What Would Be the Minimum Cn?

	6 A Modified Key Re-introduction
	7 Conclusions
	References

	Partition Oracles from Weak Key Forgeries
	1 Introduction
	1.1 Notation

	2 Background: Polynomial Hashing
	2.1 MACs from Polynomial Hashing
	2.2 AEAD
	2.3 Key Commitment
	2.4 Weak Key Forgeries

	3 Partitioning Oracle Attacks
	3.1 Attack Abstraction: Formal Definition of a Partitioning Oracle
	3.2 Multi-Key Contingent Forgeries

	4 Partitioning Oracle Attacks from Weak Key Forgeries
	4.1 Targeted Key Contingent Forgery Testing l keys
	4.2 Targeted Key Contingent Forgery Passing Format Checks

	5 Partitioning Oracle Attacks Against Shadowsocks
	5.1 Partitioning Oracles from Weak Key Forgeries
	5.2 Other Proxy Servers (VPNs)

	6 Conclusions
	A ChaCha20-Poly1305 AEAD Scheme
	References

	Practical Privacy-Preserving Face Identification Based on Function-Hiding Functional Encryption
	1 Introduction
	2 Preliminaries
	3 Our Solution
	4 Security Analysis
	5 Experiments
	6 Previous Work
	7 Conclusions
	References

	The Matrix Reloaded: Multiplication Strategies in FrodoKEM
	1 Introduction
	2 Preliminaries
	2.1 The FrodoKEM Algorithm
	2.2 The Strassen Algorithm

	3 Matrix Multiplication Strategies for Cryptography
	3.1 Matrix Multiplication for FrodoKEM
	3.2 The FrodoKEM Algorithm
	3.3 The RWCF Approach: Row-Wise Cache-Friendly Multiplication
	3.4 FrodoKEM Multiplication Using Strassen

	4 Implementation and Benchmark Results
	4.1 Performance Results
	4.2 Batching

	5 Conclusions
	References

	Signatures
	BlindOR: an Efficient Lattice-Based Blind Signature Scheme from OR-Proofs
	1 Introduction
	2 Preliminaries
	3 BlindOR: a New Blind Signature Scheme
	References

	Efficient Threshold-Optimal ECDSA
	1 Introduction
	2 Preliminaries
	2.1 Decisional Diffie-Hellman Assumption
	2.2 ECDSA
	2.3 Threshold Signature Scheme
	2.4 Communication Model
	2.5 Adversary Model
	2.6 Verifiable Random Secret Sharing ch7gennaro2007secure
	2.7 Verifiable Zero Secret Sharing ch7gennaro1996robust
	2.8 Operations on Shared Secrets

	3 Efficient Threshold-Optimal Scheme
	3.1 Distributed Key Generation
	3.2 Signature Generation
	3.3 Identifiable Abort
	3.4 Discussion

	4 Security Proof
	5 Benchmarking
	References

	GMMT: A Revocable Group Merkle Multi-tree Signature Scheme
	1 Introduction
	2 Preliminaries
	3 GMMT Hash-Based Group Signature Scheme
	3.1 Setup Phase and Key Generation
	3.2 Signing Algorithm
	3.3 Verification Algorithm
	3.4 Revocation Algorithm
	3.5 Opening Algorithm
	3.6 Recommended Parameters

	4 Security Analysis
	4.1 Revocation Security
	4.2 Security of Dynamic GMMT

	5 Comparison with GM and DGM
	5.1 GMMT and GM
	5.2 GMMT and DGM

	6 Implementation
	7 Conclusion
	A Alternative Solution for a Large Revocation List
	References

	Issuer-Hiding Attribute-Based Credentials
	1 Introduction
	2 Preliminaries
	3 Framework for Issuer-Hiding ABCs
	3.1 Syntax
	3.2 Security Definitions

	4 A Generic Construction
	4.1 Construction
	4.2 Security Analysis

	5 Concrete Instantiation
	5.1 Security Analysis
	5.2 Performance Evaluation

	6 Extensions
	7 Conclusion and Future Work
	References

	Report and Trace Ring Signatures
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Contextualising R&T Ring Signatures

	2 Syntax and Security
	2.1 Security Model

	3 A Report and Trace Ring Signature Construction
	3.1 Description of Our Construction
	3.2 Instantiating Our Construction
	3.3 Efficiency of Our Construction

	4 Extending R&T to Multiple Reporters
	5 Conclusion
	References

	Selectively Linkable Group Signatures—Stronger Security and Preserved Verifiability
	1 Introduction
	2 Syntax and Security Model for CLS+
	2.1 Syntax of CLS+
	2.2 Security Properties of CLS+

	3 Preliminaries
	4 Our CLS+ Construction
	4.1 Detailed Description of CLS–CM
	4.2 Security of CLS–CM.

	5 Concrete Instantiation of CLS–CM construction
	References

	Cryptographic Schemes and Protocols
	FO-like Combiners and Hybrid Post-Quantum Cryptography
	1 Introduction
	2 Notation
	3 PKC and KEM
	3.1 Public-Key Encryption Scheme
	3.2 Key Encapsulation Mechanism (KEM)

	4 FO-like Combiners
	4.1 T"026B30D Combiner
	4.2 UT"026B30D
	4.3 Other Combiners

	5 Implementation
	5.1 Design Choices
	5.2 Results and Efficiency

	References

	Linear-Time Oblivious Permutations for SPDZ
	1 Introduction
	2 Offline Phase
	3 Online Phase
	3.1 Randomly Permuting a Vector
	3.2 Creating a Random Permutation and Applying It
	3.3 Applying the Inverse of a Random Permutation
	3.4 Optimizations

	4 Security Analysis
	5 Conclusions
	References

	On the Higher-Bit Version of Approximate Inhomogeneous Short Integer Solution Problem
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Contributions
	1.4 Organization

	2 Preliminaries
	2.1 Notations and Linear Algebra
	2.2 Lattices Background
	2.3 LWE, SIS, ISIS and Approximate ISIS
	2.4 Recall: F-Trapdoors ch14approxtrap

	3 Hardness of Higher-Bit Version Problems
	3.1 Notations - High/Low Order Bits Functions
	3.2 Hardness of Higher-Bit Approximate ISIS
	3.3 The Near Collision Resistance of Higher-Bit Ajtai's Function

	4 New Construction - Main Idea
	4.1 Modification in the Public Matrix A
	4.2 Repercussion on the Security and Underlying Problem

	5 New Construction - Algorithms
	5.1 The Higher-Bit Version Algorithms
	5.2 Study of the Resulting Distributions

	6 Hash-and-Sign Signature
	6.1 Construction of a Hash-and-sign Signature
	6.2 Correctness
	6.3 Proof of Security
	6.4 Implementation and Analysis

	References

	Practical Continuously Non-malleable Randomness Encoders in the Random Oracle Model
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Split-State Codes and Randomness-Encoders in the ROM
	2.2 Continuous Non-malleability in the ROM
	2.3 Noisy-leakage Resilient Randomness Encoders

	3 Our Continuous Non-malleable Randomness Encoder
	4 Compiler from Randomness Encoders to Code Schemes
	5 Our Leakage-Resilient Randomness Encoders
	5.1 Instantiations

	6 Lower Bounds for CNMREs in the ROM
	References

	Attacks and Counter-Measures
	Countermeasures Against Backdoor Attacks Towards Malware Detectors
	1 Introduction
	1.1 Related Works
	1.2 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Threat Model

	3 Backdoor Attacks Towards Malware Classifier
	3.1 Clean Label Backdoor Attacks ch16severi2021explanation
	3.2 Stronger Label Flip Backdoor Attacks

	4 Defenses Against Malware Classification Models
	4.1 Invertibility of Backdoor
	4.2 Countermeasures Against Input-Space Backdoor Attacks

	5 Experiments
	5.1 Setup
	5.2 Results

	6 Conclusion
	References

	Free by Design: On the Feasibility of Free-Riding Attacks Against Zero-Rated Services
	1 Introduction
	2 Background
	2.1 Zero Rating Services
	2.2 Net Neutrality
	2.3 Free-Riding Attacks
	2.4 Countermeasures

	3 The Threat of Free-Riding Attacks
	4 Building Free-Riding Tunnels
	4.1 General Tunneling Technique
	4.2 Attack Setup
	4.3 Free-Riding via Instant Messaging
	4.4 Free-Riding via Cloud Storage
	4.5 Free-Riding via VoIP Calls

	5 Evaluation
	5.1 Usability
	5.2 Performance

	6 Discussion
	6.1 All Tunnels are Different but Useful
	6.2 Countermeasures
	6.3 Effective Protection Against Secured Free-Riding Attacks

	7 Conclusion
	References

	Function-Private Conditional Disclosure of Secrets and Multi-evaluation Threshold Distributed Point Functions
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Multi-evaluation Threshold DPF
	3.1 n-out-of-n Multi-evaluation DPF
	3.2 t-out-of-n Multi-evaluation DPF

	4 Function-Private CDS
	4.1 A Simple FPCDS Scheme
	4.2 From FPCDS to FSS

	References

	How Distance-Bounding Can Detect Internet Traffic Hijacking
	1 Introduction
	2 Preliminaries
	2.1 Time Measurement
	2.2 Distance-Bounding Protocols

	3 Our Protocol to Detect Traffic Hijacking
	3.1 Description
	3.2 Security Analysis
	3.3 Decision Function

	4 Experimental Results
	4.1 Setup
	4.2 Observation
	4.3 Testing the Decision Function

	5 Conclusion
	A Description of Other Candidates for the Decision Function
	A.1 Average Position
	A.2 10%-Minimum Overlap
	A.3 50%-Minimum Overlap
	A.4 Density Match

	B Experiments for all the Tests
	References

	SoK: Secure Memory Allocation
	1 Introduction
	2 Conventional Memory Allocation
	3 Vulnerabilities
	3.1 Heap-Based Memory Corruption Vulnerabilities
	3.2 Allocator Vulnerabilities
	3.3 Threat Model

	4 Secure Memory Allocation Techniques
	4.1 Metadata Segregation
	4.2 Randomized Allocation
	4.3 Overprovisioning
	4.4 Delayed Reuse
	4.5 Overflow Mitigation
	4.6 Invalid Pointer Detection
	4.7 Information Leak Prevention

	5 Overview of existing Secure Memory Allocation Systems
	6 Benchmarking
	6.1 Macro-benchmarks
	6.2 Micro-benchmarks
	6.3 Experimental Setup

	7 Results
	8 Conclusion
	References

	Toward Learning Robust Detectors from Imbalanced Datasets Leveraging Weighted Adversarial Training
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Machine Learning
	3.2 Adversarial Examples
	3.3 Adversarial Training

	4 Method
	4.1 Overview
	4.2 Problem Settings
	4.3 Algorithm

	5 Experiments
	5.1 Setup
	5.2 Evaluation Metrics
	5.3 Experimental Results

	6 Conclusion
	References

	Towards Quantum Large-Scale Password Guessing on Real-World Distributions
	1 Introduction
	2 Password Guessing
	2.1 Threat Model
	2.2 Password Datasets
	2.3 Approximating Human Password Choice by a Zipf Distribution
	2.4 Password Guessing Scenario
	2.5 Quantum Password Guessing

	3 Scenario A: Fixed User Attack
	4 Scenario B: Large-Scale Attack
	4.1 Scenario B.1: Attacking a Single (and All) Weakest User(s)
	4.2 Scenario B.2: Attacking a Constant Fraction of All Users

	5 Real-World Impact
	6 Discussion
	6.1 Password Strength
	6.2 Password Hash Functions
	6.3 Encrypted Passwords and Secret Salts

	7 Conclusion
	References

	Attestation and Verification
	Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric
	1 Introduction
	2 Related Work
	3 Background: Blockchain and Fabric
	3.1 Authentication, Authorization and Identity Mixer in Fabric
	3.2 Notation

	4 Auditability and Revocation
	4.1 Security Definition
	4.2 Revocation
	4.3 Audit
	4.4 Security Statement
	4.5 Optimized Implementation

	5 Integration with Hyperledger Fabric
	5.1 Including Pseudonyms in Proof
	5.2 Submitting Transactions

	6 Experimental Evaluation
	7 Conclusion
	A Security Analysis
	B Algorithms
	References

	Attestation Waves: Platform Trust via Remote Power Analysis
	1 Introduction
	2 Background
	3 Remote Power Analysis for Attestation
	3.1 System Description and Measurements

	4 System Model and Protocol Construction
	4.1 System Model
	4.2 Attestation Protocol
	4.3 Threat Model
	4.4 Security Analysis

	5 Evaluation
	5.1 Methodology
	5.2 Parameterization

	6 Conclusion
	References

	How (not) to Achieve both Coercion Resistance and Cast as Intended Verifiability in Remote eVoting
	1 Introduction
	2 Cryptographic Preliminaries
	2.1 ElGamal Public Key Encryption
	2.2 Zero-Knowledge Proof Systems

	3 CAI+CR: Discussion of Some Unsatisfactory Solutions
	3.1 On the Necessary Number of Rounds

	4 CAI+CR: Two Solutions
	5 Conclusion and Remaining Work
	References

	Subversion-Resistant Quasi-adaptive NIZK and Applications to Modular Zk-SNARKs
	1 Introduction
	2 Preliminaries
	3 QA-NIZK Arguments in the Subversion Setting
	3.1 Security Definitions for Subversion QA-NIZK Arguments
	3.2 QA-NIZKs with Subverted Setup

	4 Subversion True-Simulation Extractable QA-NIZK
	5 Integrating Sub-ZK QA-NIZK into LegoSNARK
	5.1 The LegoSNARK Framework
	5.2 Integration of Sub-ZK QA-NIZK into LegoSNARK

	References

	THC: Practical and Cost-Effective Verification of Delegated Computation
	1 Introduction
	2 Modular Extension
	3 THC Implementation
	3.1 The Core
	3.2 Homomorphic Cryptosystems

	4 Security Analysis of THC
	4.1 Theoretical Background
	4.2 Experimental Study

	5 Performance Analysis of THC
	6 Use Case: Electronic Voting
	7 Conclusions and Perspectives
	References

	Tiramisu: Black-Box Simulation Extractable NIZKs in the Updatable CRS Model
	1 Introduction
	2 Notations
	3 Public-Key Cryptosystems with Updatable Keys
	3.1 Definition and Security Requirements
	3.2 Building Key-Updatable Cryptosystems
	3.3 Performance of the Proposed Key-Updatable Cryptosystems

	4 Tiramisu: BB-SE NIZK in Updatable CRS Model
	5 Building U-BB-SE NIZK Arguments with Tiramisu
	References

	Author Index

