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Preface

The 20th International Conference on Cryptology and Network Security (CANS 2021)
was held during December 13-15, 2021. CANS 2021 was held in cooperation with
the International Association for Cryptologic Research (IACR) and the AIT Austrian
Institute of Technology. Due to the ongoing COVID-19 pandemic, CANS 2021 was held
as a virtual conference, instead of at the intended venue in Vienna, Austria.

CANS is a recognized annual conference focusing on cryptology, computer and
network security, and data security and privacy, attracting cutting-edge research find-
ings from scientists around the world. Previous editions of CANS were held in Taipei
(2001), San Francisco (2002), Miami (2003), Xiamen (2005), Suzhou (2006), Singapore
(2007), Hong Kong (2008), Kanazawa (2009), Kuala Lumpur (2010), Sanya (2011),
Darmstadt (2012), Parary (2013), Crete (2014), Marrakesh (2015), Milan (2016), Hong
Kong (2017), Naples (2018), Fuzhou (2019), and virtually (2020).

In 2021, the conference received 85 valid submissions. The submission and review
process were completed using the EasyChair Web-based software system. We were
helped by 30 Program Committee members and 63 external reviewers. The submissions
went through a double-blind review process and 28 papers were selected. This volume
collates the revised versions of the accepted papers. The Best Paper Award was given
to the paper “Subversion-Resistant Quasi-Adaptive NIZK and Applications to Modular
zk-SNARKSs” by Behzad Abdolmaleki and Daniel Slamanig.

We would like to thank the AIT Austrian Institute of Technology, as well as the H2020
initiative CyberSec4Europe, for their support during the planning of the conference. We
would also like to thank Springer for their support with producing the proceedings.
We heartily thank the authors of all submitted papers. Moreover, we are grateful to the
members of the Program Committee and the external sub-reviewers for their diligent
work, as well as all members of the Organizing Committee for their kind help. We would
also like to acknowledge the Steering Committee for supporting us.

October 2021 Mauro Conti
Marc Stevens
Stephan Krenn
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Cross-Domain Attribute-Based Access
Control Encryption

Mahdi Sedaghat®™ and Bart Preneel

imec-COSIC, KU Leuven, Leuven, Belgium
{ssedagha,bart.preneel}@esat.kuleuven.be

Abstract. Logic access control enforces who can read and write data;
the enforcement is typically performed by a fully trusted entity. At
TCC 2016, Damgard et al. proposed Access Control Encryption (ACE)
schemes where a predicate function decides whether or not users can read
(decrypt) and write (encrypt) data, while the message secrecy and the
users’ anonymity are preserved against malicious parties. Subsequently,
several ACE constructions with an arbitrary identity-based access pol-
icy have been proposed, but they have huge ciphertext and key sizes
and/or rely on indistinguishability obfuscation. At IEEE S&P 2021,
Wang and Chow proposed a Cross-Domain ACE scheme with constant-
size ciphertext and arbitrary identity-based policy; the key generators
are separated into two distinct parties, called Sender Authority and
Receiver Authority. In this paper, we improve over their work with a
novel construction that provides a more expressive access control policy
based on attributes rather than on identities, the security of which relies
on standard assumptions. Our generic construction combines Structure-
Preserving Signatures, Non-Interactive Zero-Knowledge proofs, and Re-
randomizable Ciphertext-Policy Attribute-Based Encryption schemes.
Moreover, we propose an efficient scheme in which the sizes of ciphertexts
and encryption and decryption keys are constant and thus independent
of the number of receivers and their attributes. Our experiments demon-
strate that not only is our system more flexible, but it also is more
efficient and results in shorter decryption keys (reduced from about 100
to 47 bytes) and ciphertexts (reduced from about 1400 to 1047).

Keywords: Access Control Encryption - Ciphertext-Policy
Attribute-Based Encryption - Structure-Preserving Signature -
Non-Interactive Zero-Knowledge Proofs

1 Introduction

Information Flow Control (IFC) systems enforce which parts of the commu-
nication amongst the users are allowed to pass over the network [23,25]. As
introduced in the seminal work of Bell and LaPadula [5], restrictions have to
be imposed on who can receive a message (enforce the NO-READ rule) and who

© Springer Nature Switzerland AG 2021
M. Conti et al. (Eds.): CANS 2021, LNCS 13099, pp. 3-23, 2021.
https://doi.org/10.1007/978-3-030-92548-2_1
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4 M. Sedaghat and B. Preneel

can send a message (enforce the NO-WRITE rule). Although encryption guaran-
tees users’ privacy by limiting the set of recipients, we need more functionality
to control who can write and transfer a ciphertext. Broadcasting of sensitive
data by malicious senders is a serious threat for companies that handle highly
sensitive data such as cryptocurrency wallets with access to signing keys [8].

Although some advanced cryptographical tools such as Functional Encryp-
tion provide fine-grained access to encrypted data, they do not allow to enforce
the NO-WRITE rule, hence additional functionalities beyond these cryptographic
primitives are required to protect against data leakage.

To achieve this aim, Damgard et al. [10] introduced a novel scheme called
Access Control Encryption (ACE) to impose information flow control systems
using cryptographic tools. They have defined two security notions for an ACE
scheme: the NO-READ rule and the NO-WRITE rule. Unauthorized receivers
cannot decrypt the ciphertext and unauthorized senders are not able to trans-
mit data over the network. The model assumes that all the communications
are transmitted through an honest-but-curious third party, called SANITIZER.
The SANITIZER follows the protocol honestly but it is curious to find out more
about the encrypted message and the identities of the users. The SANITIZER
performs some operations on the received messages before transmitting them
to the intended recipients without learning any information about the message
itself or the identity of the users. More precisely, with a set of senders S and
receivers R, an ACE scheme determines via a hidden Boolean Predicate func-
tion PF : § x R — {0,1} which group of senders (like ¢ € S) are allowed to
communicate with a certain group of receivers (like 7 € R): communication is
allowed iff Pr(7, j) = 1, else the request will be rejected.

Damgard et al. proposed two ACE constructions that support arbitrary poli-
cies. Their first construction takes a brute-force approach that is based on stan-
dard number-theoretic assumptions, while the size of the ciphertext grows expo-
nentially in the number of receivers. The second scheme is more efficient: cipher-
text length is poly-logarithmic in the number of the receivers, but it relies on the
strong assumption of indistinguishability obfuscation (i0) [13]. In a subsequent
work, Fuchsbauer et al. [12] proposed an ACE scheme for restricted classes of
predicates including equality, comparisons, and interval membership. Although
their scheme is secure under standard assumptions in groups with bilinear maps
and asymptotically efficient (i.e., the length of the ciphertext is linear in the num-
ber of the receivers), the functionalities of their construction are restricted to a
limited class of predicates. Tan et al. [31] proposed an ACE scheme based on the
Learning With Error (LWE) assumption [24]. Since their construction follows the
Damgard et al. approach, the ciphertexts in their construction also grow expo-
nentially with the number of receivers. Recently, Wang et al. [34], proposed an
efficient LWE-based ACE construction from group encryptions. Kim and Wu [20]
proposed a generic ACE construction based on standard assumptions such that
the ciphertext shrinks to poly-logarithmic size in the number of receivers and
with arbitrary policies. Their construction requires Digital Signature, Predicate
Encryption, and Functional Encryption schemes to obtain an ACE construc-
tion based on standard assumptions. Recently, Wang and Chow [33] proposed a
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new notion called Cross-Domain ACE in which the keys are generated by two
distinct entities, the Receiver-Authority and the Sender-Authority. Structure
Preserving Signatures, Non-Interactive Zero-Knowledge proofs, and Sanitizable
Identity-Based Encryption schemes constitute the main ingredients in their con-
struction. In [33], the length of the ciphertext is constant, but it fails to preserve
the identity of the receivers and also the decryption key size grows linearly.

Our Contributions. In this paper, we propose a generic Cross-Domain
Attribute-Based Access Control Encryption (CD-ABACE) scheme and then
propose an efficient CD-ABACE scheme with a constant ciphertext size and
constant key length. Next we explain our results in more detail.

This paper re-defines the way to conceive the predicate function in ACE
constructions by considering users’ attributes instead of their identities. Based
on an Attribute-Based predicate function, PF : X x X, — {0, 1}, the senders
with a certain ciphertext index value in Y. are limited to transmit data only to
restricted recipients with a key index Y. In a nutshell, for an attribute space
U, s.t. X, Y. C U, the sender who owns a secret encryption key for ciphertext
index P € X, can transmit data to those receivers with private decryption key
corresponding to key index B € X, iff Pr(B,P) = 1, otherwise, the SANITIZER
bans the communication between them. One of the main differences between
this approach and the identity-based one is that the anonymity of the receivers
corresponds to the level of attribute hiding applied to the underlying Attribute-
Based Encryption (ABE) scheme.

ABE schemes provide a powerful tool to enforce fine-grained access control
over encrypted data; they have been used in several applications [26]. Goyal
et al. in [16], proposed two complementary types of ABE schemes: Key-Policy
Attribute-Based Encryption (KP-ABE) and Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) schemes. In CP-ABE, the sender embeds a (policy) func-
tion f(-) into ciphertext to describe which group of receivers can learn the
encrypted message. In this approach, the ciphertext is labeled by an arbitrary
function f(-), and secret keys are associated with attributes in the domain of
f(-). The decryption algorithm yields the plaintext iff the receivers’ attribute
set A satisfies f(-), i.e., f(A) = 1. Conversely, in KP-ABE the secret keys are
labeled by the function f(-); this label is set in the setup phase and a ciphertext
can only be decrypted with a key whose access structure is satisfied by the set
of attributes. In KP-ABE, the access policy cannot be altered after setup phase,
while in CP-ABE data owners can control the data access.

Hence, we utilize CP-ABE schemes to limit senders to transmit data to a
specific ciphertext index P. While CP-ABE schemes only enable fine-grained
access to the encrypted data, they are not equipped to enforce policies for writing
a message as well; thus we need additional functionalities to cover the latter by
defining secret encryption keys. We utilize a Structure-Preserving Signature to
guarantee the given encryption key is valid and one can only get access with
a valid signature. A signature of this type allows selective re-randomization of
a valid signature, and therefore efficiently proves the validity of this operation.
Additionally, the CP-ABE scheme must also be re-randomizable in order to
achieve the key-less sanitizability.
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Based on realistic application scenarios for ACE constructions, the proposed
scheme follows the Cross-Domain key generation method, proposed by Wang
and Chow in [33]. In an ACE scheme, the users might belong to two distinct
companies with different security levels, so one of them may not be able to grant
access rights to the other. In this context, two entities referred to as Sender
Authority and Receiver Authority locally generate secret keys for senders and
receivers, respectively. Moreover, since users, including senders and receivers,
may need to be added to the system later on, the setup phase will be carried
out independently of the predicate function. Hence, our approach follows this
setup method and we provide a generic construction of a Cross-Domain Access
Control Encryption scheme based on Attribute-Based Encryption constructions.

We finally propose an efficient CD-ABACE construction with constant key
and ciphertext sizes. To obtain a CD-ABACE scheme that is efficient both
in the length of the parameters and the computational overhead, we propose
a novel CP-ABE scheme with AND-gate circuits. More specifically, we say a
Boolean AND-gate circuit is satisfied (i.e., the output is true) iff all the input
gates are true. In particular, we say the set of attributes B C U satisfies the
AND-gate circuit with the set of input constraints P C U iff P is a subset of
B, i.e., P C B. As a simple example, let U = {Uy,Us, Us, Uy}, then the set of
input wires B = {Uy, Us, Uy} satisfies the circuit P = {Uy, Uy}, because P C B.
Identity-based encryptions are special cases of AND-gate ABE schemes with an
attribute universe consisting of the users’ identity and also [B| = 1. Moreover, in
this construction the SANITIZER only requires public parameters, but no secret
or public keys. Our CD-ABACE scheme has the following properties:

— Predicate function takes as inputs user attributes instead of their identities.

— The length of the ciphertext remains constant regardless of the number of
receivers and the number of attributes in the access policy.

— All users’ secret keys for encryption and decryption consist of only one group
element, regardless of the number of attributes of the users.

— As an additional result, we present an efficient CP-ABE scheme with constant
size ciphertexts and keys.

Table1 compares the efficiency of the proposed construction with related
works. As illustrated, in our scheme the lengths of the ciphertext and the key are
improved to a constant size. The computational overhead for decryption grows
linearly with the number of attributes that a receiver owns, while the encryption
cost is constant and completely independent of the number of intended recipi-
ents. Our experiments show that the time required to run the encryption and
decryption algorithm is only ~15ms and ~45 ms, respectively.

Road-map: The rest of the paper is organized as follows: In Sect. 2, we review
the preliminaries and definitions and describe the system architecture. The
formal definition of the CD-ABACE scheme and its security definitions are
described in Sect.3. In Sect.4, we propose the generic construction of CD-
ABACE schemes and discuss their security features. In Sect.5 we present an
efficient CD-ABACE construction based on a novel CP-ABE scheme. The per-
formance of the proposed construction is compared in Sect. 6.
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Table 1. Comparison of Efficiency and Functionality. n is the number of receivers and
the total number of attributes in the system. r < n indicates the maximum number
of receivers that any sender is allowed to communicate with, and s < n denotes the
maximum number of senders that any receiver can receive a message from. ¢ < n
indicates the maximum number of attributes that a sender can transmit data to. The
maximum number of legitimate attributes that any recipients possesses to decrypt a
ciphertext is denoted by w < n. SS, CD, PF, PE, IB, AB are short for Selectively
Secure, Cross-Domain, Predicate Function, Predicate Encryption, Identity-Based and
Attribute-Based, respectively.

Scheme Ciph. size | Enc. key | Dec. key | San. key | Enc. Dec. CD | PF | Assump.
size size size cost cost

[10, t 3] o(2™) O(r) O(1) O(1) O(n) O(n) v IB | DDH/DCR

[10, 1 4] poly(n) O(1) O(1) O(1) O(1) Oo(1) X IB | i0

[12] O(n) O(1) O(1) O(1) O(1) Oo(1) X IB | SXDH

[20] poly(n) Oo(1) Oo(1) Oo(1) O(n) O(n) X PE | DDH/LWE

[33] (SS) O(1) O(1) O(s) 0 O(1) O(s) v IB | GBDP

Ours (SS) | O(1) O(1) O(1) 0 O(1) O(w) v AB | MSE-DDH

2 Preliminaries and Definitions

To detail the CD-ABACE schemes we need to review some preliminaries.
Throu-ghout, we suppose the security parameter of the scheme is A and negl(\)
denotes a negligible function. Let U = {Uy,...,U,} € Z, be a set and for each
subset A C U we denote the i*” component scalar of this subset by A;. We use
Y < F(X) to denote a probabilistic function F' that on input X is uniformly
sampled resulting in the output Y. Also, [n] denotes the set of integers between 1
and n. The algorithms are randomized unless expressly stated. “PPT” refers to
“Probabilistic Polynomial Time”. Two computationally indistinguishable distri-
butions A and B are shown with A ~, B. We assumed a prime order field F and
denote by F.4[X] the set of univariate polynomials with degree smaller than
d. The i'" coefficient of the univariate polynomial f(x) € F_4[X] is denoted
by f; and a polynomial with degree d has at most d + 1 coefficients. The set
{1,X,X2,..., X% forms the standard basis: it is trivial to show that the repre-
sentation of the coefficients for a polynomial with degree d as the coefficients of
powers X is unique. The vector of A is denoted by A.

Definition 1 (Access Structure [/]). For a given set of parties P = {p1, ...,
Pn}, we say a collection U C 27 is monotone if, for all A,B, if A € U and
A C B then B € U. Also, a(n) (monotonic) access structure is a (monotone)
collection U C 27 \ {0}. We call the sets in U authorized sets and the sets that
do not belong to U are called unauthorized.

Definition 2 (Binary Representation of a subset). For a given universe
set U of size n, we can represent each subset A as a binary string of length n.
Particularly, the i*" the element of the binary string for the subset A C U is
equal to 1 (i.e., ali] = 1) if A; = U;. We show a binary representation set as
binary tuple (a[l],...,a[n]) € Zj.
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Definition 3 (Zero-polynomial). For a finite set U = {kq,...,kn}, we define
the zero-polynomial Zx(X) for a nonempty subset of A C U as Zy(X) :=
I, (X - ki)l where ali] is the binary representation of the complement set
A. In other words, this univariate polynomial vanishes on all the elements of the
set U for which the binary representation of the subset A is zero.

Definition 4 (Bilinear Groups [7]). A Type-III' bilinear group generator
BG(X\) returns a tuple (Gy,Ga,Gr,p, é), such that Gy, Gy and Gr are cyclic
groups of the same prime order p, and é : Gy X Gy — G such that é(G,H) # 1
s an efficiently computable bilinear map with the following properties;

- Va,b€Zy, é(G* H®) = é(G,H)® = é(G* H?),

~Va,b€Zy, é(G H) = é(G* H)é(G* H)

We use the bracket notation: for randomly selected generators G € Gy and H €
G2 we denote z - G € Gy with [z];, and we write é (G*, H®) = [a];  [b]s.

System Architecture. The proposed scheme’s architecture is based on the
Cross-Domain ACE technique described in [33]. In a Cross-Domain ACE setting,
two distinct entities generate the keys to determine which group of senders can
send data to a certain group of receivers and control which group of receivers
can read this data. There are five entities in this system as follows:

Receiver Authority (RA) as a trusted third party generates and distributes
system parameters and the secret decryption keys for the Receivers. For this
aim, based on a certified predicate function PF(.,.), it authorizes the claimed
attributes by the receivers and returns the corresponding secret decryption keys.

Sender Authority (SA) as a semi-trusted entity generates the pair of SA’s
public parameters and master secret keys; it publishes the former, while it keeps
the latter secret. Moreover, it generates the secret encryption keys for the Senders
based on a predicate function Pr(.,.) and SA’s master secret keys.

Sanitizer is an honest-but-curious party in the network that checks the validity
of the communication links and acts based on the predicate function PF(.,.).
If the sender does not allow to transmit a message to the recipients, then the
SANITIZER bans the request, else it broadcasts the received ciphertexts. The
SANITIZER is semi-honest which means that it follows the protocol honestly but
tries to infer some sensitive information including the identities of the users
(Senders and Receivers) or compromise the secrecy of a message.

Senders: to share a secret message among a group of receivers, they encrypt
data and send the resulting ciphertext to the SANITIZER along with a proof to
ensure that they possess a valid encryption key generated by the SA.

Receivers: by having access to the ciphertexts, they can recover the plaintexts
using their own attributes and the corresponding secret key for decryption. Con-
versely, if the receiver does not satisfy the access policy then the ciphertext never
reveals any meaningful information about the encrypted message.

! For the two distinct cyclic groups G1 # Go, there is neither efficient algorithm to
compute a nontrivial homomorphism in both directions.
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In a nutshell, RA sets up the global public parameters of the network and
publishes them, while it securely stores its master secret key. After authoriz-
ing the receivers’ attribute set, RA computes the decryption secret keys corre-
sponding to their attribute sets. From the public parameters issued by RA, SA
generates the rest of parameters required for authorization of the senders. Also,
SA uses its master secret key to create the authorized secret encryption keys for
the senders based on the predicate function PF(.,.). Since RA is generating the
main parameters of the system, it can compromise the security requirements,
so we assume this entity is fully-trusted. The sender who wants to share a mes-
sage securely among a group of receivers re-randomizes the signature (to ensure
sender anonymity), then encrypts the plaintext and proves the validity of the
claimed hidden witness. The SANITIZER receives the sender’s request, and checks
the validity of the proof and the signature to decide on rejecting the unauthorized
senders without learning their identities. Otherwise, if the sender — based on the
predicate function — is authorized to communicate with the selected group of
receivers, the SANITIZER re-randomizes the received ciphertext and then passes
the sanitized ciphertext on the recipients. Finally, the receivers who are allowed
to decrypt a ciphertext can run the decryption algorithm and retrieve the mes-
sage, else they learn nothing about it. It is assumed the SANITIZER is honest-
but-curious: while it follows the protocol honestly, it is unable to compromise
the message secrecy and anonymity of the users.

3 Cross-Domain Attribute-Based ACE Scheme

Next we introduce the notion of Cross-Domain Attribute-Based Access Control
Encryption (CD-ABACE) schemes. The high-level idea behind the definition
of a CD-ABACE is that we can generalize the concept of Boolean relations
in the plain CP-ABE schemes (see full version [28]) to the predicate function
in an ACE construction. In this scenario, the encryption key generator allows
the sender to talk to a restricted group of receivers based on a given predicate
function. By contrast with the original approach of specifying the ciphertext
access rights during the encryption phase, in the present approach, the Sender
Authority declares the access right during the encryption key generation phase.
Moreover, the generated encryption keys are signed by the SA, and no one can
convincingly assert ownership unless they have a correct signature.

Definition 5 (CD-ABACE schemes). A CD-ABACE scheme Yep-ABACE
over the message space M, the ciphertext space C and a predicate function PF :
Xy x Y. — {0,1} has the following PPT algorithms:

— (PPyqs Mskrq) — RAgen(U, \): This randomized algorithm takes as inputs the
security parameter A and the universe attribute set U, and outputs the public
parameters pp,., and master secret key mskyq.

— (PPgq> Msksa) < SAgen(A, pp,,): This randomized algorithm takes the security
parameter A and RA’s public parameters pp,, as inputs and generates the pair
of SA’s public parameters pp,, and SA’s master secret key msksg,.
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~ (dkg) < DecKGen(msk,,,B): This randomized algorithm takes RA’s master
secret key msk,, and the authorized set of attributes B € Xy as inputs and
outputs the corresponding private decryption key dkg.

- (ekp, 0, W) «— EncKGen(pp,4; PPsqs MSKsa, P, PF): This algorithm takes the
public parameters pp,, and ppy,, the SA’s master secret key msksq,, autho-
rized ciphertext index P € Y., and predicate function PF(.,.) as inputs. It
returns the secret encryption key ekp that enforces that only the sender can
send a message to those receivers who satisfy P along with the signature o
and its underlying re-randomizing token W.

— (m,%x) < Enc(pp,q; PPsas M, ekp, 0, W): This algorithm takes as inputs the pub-
lic parameters, a message m € M, the encryption key corresponding to the
attribute set of P, a valid signature o and the token W. It returns a request
including a proof ™ along with its underlying public instance x.

- (CNt, J_) — San(pp,.q, PPsq, Ts X, PF): This algorithm takes as inputs the public
parameters pp,, and pps,, a ciphertext along with a proof ™ and its cor-
responding instance x. Afterwards, the algorithm either re-randomizes the
ciphertext to Ct or rejects the request. To this end, it checks the validity of
the proof and, if it allows this flow based on the predicate function PF(.,.), it
transfers the ciphertext Ct € C to the receivers, else it returns L.

~ (m’, L) < Dec(pp, 4, PPsqy; Ct, dks): The decryption algorithm takes as inputs
the public parameters pp,, and pp,,, a re-randomized ciphertext Ct and the
decryption key dkg. If PF(B,P) = 1, then it returns a message m' € M,
otherwise it responds by L. In other words, a recipient with a wrong decryption
key learns nothing from the output of this algorithm.

3.1 Security Definitions

Next we present the required security properties for a CD-ABACE scheme
under only CPA-based definitions, where 4 has access to encryption, encryption-
key generation, and decryption-key generation oracles. Noted that the following
security games are motivated by the notion of co-selective CPA security in [3],
such that A has to declare ¢ decryption key queries before the Initialization
phase, while it can select the target challenge ciphertext, adaptively. We slightly
modify the extended security notions introduced in [33] to adapt them to the
CD-ABACE system model.

Definition 6 (Correctness). For a given attribute universe U and predicate
function PF : X, x X, — {0,1}, we say that Yep-apacE over message space M
and ciphertext space C is correct if we have,

Pr [ Dec (dkg, San(Enc(m, ekp, P))) = m : PF(B,P) = 1] ~ 1

Correctness captures the feature that a sender with an encryption key ekp is
able to deliver a message to those receivers for which the attribute set B satisfies
Pr(B,P) = 1 with a high probability. In this case, the SANITIZER should pass
the information on and a receiver with decryption key dkg should be able to
retrieve the message correctly from a re-randomized ciphertext.
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Definition 7 (No-Read Rule). Consider Ucp-apace over the attribute uni-
verse U, message space M, a ciphertext space C and a predicate function
Pr: Xy x X. — {0,1}. For a security parameter \, we say that a PPT adver-
sary A wins the defined NO-READ rule security game described in Fig. 1 with
access to the oracles in the same table, if she guesses the random bit b better
than by chance. It is assumed that for a challenge access structure P*, A would
not request the decryption key for attribute set B;, such that Pr(B;,P*) = 1.
Yep-ABACE Satisfies the NO-READ rule if for all PPT adversaries A with advan-
tage AdvgCREAD (12 b) = (Pr[A wins the NO-READ game] — 1/2) we have,

WCD—ABA(‘,E 7'A

‘AvaO'READ (12,6 = 0) — AdvFOREAD (1A h = 1)| a0, 0. When we call A, it

Q/CD'ABACE"A lpCD'ABACE "A

wins the defined security game iff b/ == b.

Similar to the ID-based ACE constructions, the NO-READ rule in an
attribute-based model enforces that only eligible recipients who satisfy a certain
access structure, should learn the message while the other participants learn
nothing. In particular, not only should an unauthorized receiver be unable to
read the messages, combining the decryption secret keys of a group of unautho-
rized receivers should not reveal any information about the message. Also, this
property has to hold even if the recipients collude with the SANITIZER.

Definition 8 (Parameterized No-Write Rule). Consider Wep-apacr over
U, a message space M, ciphertext space C and a predicate function PF
Y x Y. — {0,1}. We say a Wep-apacE scheme satisfies the Parameterized
No-WRITE rule, if no PPT adversary A with access to the oracles in Fig. 1
has a non-negligible advantage in winning the NO-WRITE game, i.e., under the
advantage Advy° VR (12 b) = (Pr[A wins NO-WRITE|] — 1/2) we have,

l‘pC]')-ABACFJ "A

Adng-VVRlTE (1>\7 b= 0) _ Adng-VVRITE A(l)\’ b= 1)‘ R~ 0.

CD—ABACE7A CD-ABACE»

We say A wins the defined NO-WRITE game iff b == b under the condition
that for all queried secret encryption keys P; € Qg U {P*} and all requested
private decryption keys B; € Qp, along with the challenge access structure P*,
we have PF(B;,P;) = 0. The function fix(.) accepts a ciphertext Ct as input and
generates auziliary information aux of Ct that is not sanitizable [33]. By seeding
an encryption algorithm with this auzxiliary information, the resulting ciphertext
has also the same auziliary information.

Remark 1. With regard to the security definitions, the anonymity of the sender is
guaranteed and the SANITIZER cannot deduce the identity of the sender while the
receivers’ anonymity relies on the CP-ABE construction. Note that the same type
of property is known as weak attribute hiding in the context of ABE construc-
tions [22]. Although an IND-CPA-secure CP-ABE satisfies the payload hiding
property, a stronger security concept, called attribute-hiding CP-ABE, ensures
that the set of attributes associated with each ciphertext is also obscured [19].
The latter increases the ciphertext size incrementally and the identity-based
encryptions reveal the receivers’ identity in plain.
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NO-READ{D space (1%, U) NO-WRITE¢p_space (1%, U)

1: (pp,,, mskrq) — RAgen(1*, 1) 1: (pp,,, mskyq) — RAgen(1*,U)

2 (ppsa’ mSksa) - SAgen(ppra’RL) 2 (ppsav mSksa) — SAgen(ppr(w R‘L)
30 P"— A(pp,q, PPsa) 30 (77X, P*) — A%(pp, 4, PP.)

41 (mo,m1) — A°(PP,q, PP.,) 4t (mo,%0) i= (7%,x")

5: (ekps,0", W") < EncKGen(P") 5: (ekps,0", W™) < EncKGen(P")
6: b—s{0,1} 6: m" —$M, aux — fix(Cto)

7 (ﬂ—lh Xb) —$ Enc(ppra: PPsas Ek]P’* ) mb) 7 (7T17X1) — Enc(ek]p* ) m*7 aUX)

8: b —$A° (m,x) 8: b<s{0,1},Ct, — San(mp,xs)

9: b —s.A°(Cty)

Oracle Opeckgen(B;) Oracle Ognc(m, P;)

1: Initialize Qp = {0} 1: (ekp,, 04, W;) < EncKGen(P;, PF)
2: ifB; ¢ Op: 2: (m,x) < Enc(ekp,,m)

3: dkg, « DecKGen(B;) 3: return (m,x)

4 return (dkg,) A Qp = Qp U {B;}

5: else : return (dks,;)

Oracle Ognckgen(P)

1: Initialize Qs = {0}

2: ifP; & O :

3 (ekp,, 03, W;) < EncKGen(P;, PF)

4: return (ekp,, 05, Wi) A Q¢ = Q¢ U{P;}
5

else : return (ekp,,o;, W)

Fig. 1. No-READ and NO-WRITE security games

4 Generic Construction

Our generic construction for a general predicate function and universal CP-ABE
is built from following constructions:

1.

An EUF-CMA-secure SPS construction, SPS.(Pgen, KG, Sign, Randz, Vf) (see
full version [28] for formal definition).

A computational Knowledge-Sound NIZK proof, ZK.(Kgs, P, V, Sim) (see full
version for formal definition [28]).

A publicly re-randomizable CP-ABE scheme, rABE.(Pgen, KGen, Col, Enc,
Randz, Dec) (see full version for formal definition [28]).

For a given predicate function PF, message space M and ciphertext space C,

the generic construction consists of the following PPT algorithms:
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— RA setup (RAgen(U, \)): Takes the security parameter A and an attribute
universe U, and runs the r ABE.Pgen()\, U) algorithm to generate the global
and CP-ABE parameters. It outputs RA’s master secret key set msk,, =
(msky4Be) and RA’s public parameters pp,, = (PP,.a5s)-

— SA setup (SAgen(pp,,,Rw)): Takes RA’s public parameters pp,, and rela-
tion Ry, as inputs and runs the ZK.Kqs(Ry,), SPS.Pgen()\) and SPS.KG(pp)
algorithms and returns pp,, = (pp, vk, crs) and msky, = (ts,sk) as outputs.
The underlying relation Ry, is defined corresponding to the NP-language L
for the statement x = (o/,vk’, ek’, Ct) and witness w = (o, ek, m, 7, 1).

— Decryption KGen (DecKGen(msk,,,B)): Takes as inputs RA’s master
secret key msk,, and a key index B € Y. It generates the private decryption
key dkg by executing the algorithm rABE.KGen(msk,.., B).

— Encryption KGen (EncKGen(pp,.,, msks,, P, PF)): Takes as inputs pp,,,
msks, and a ciphertext index P € Y. that indicates to whom the sender
is allowed to talk based on predicate function PF(.,.). It executes the col-
lector algorithm rABE.Col(pp,.,,P) to obtain the aggregated value ekp and
then signs it by running the algorithm SPS.Sign(sk, ekp). It returns both the
encryption key and the underlying signature to the sender.

— Encryption (Enc(pp,, PP,qs ™, ekp,0,W)): Takes as inouts the secret
encryption key ekp and the underlying signature o, the public parameters
and a message m € M. It re-randomizes ¢ under an initial random string u
by running SPS.Randz(pp,,, ekp, o, W; 11). Next it runs the re-randomizable
CP-ABE encryption algorithm r ABE.Enc(pp,,, m, ekp) and proves knowledge
of hidden values by executing the ZK.P(Ry,crs,w,x) algorithm. It returns
the instance and underlying proof (7, x) as outputs.

— Sanitization (San(pp,,, PP,q; T, X)): Takes as inputs the proof = and the
instance x: if SPS.Vf(pp,vk', o', ek’) = 1 and ZK.V(Ry,crs, 7,x) = 1, it runs
the algorithm r.AB€.Randz(pp,,,Ct) and returns the sanitized ciphertext Ct
as output; otherwise it rejects the link and returns L.

— Decryption (Dec(pp,,, PP,,,Ct,dkg)): Takes as inputs the public parame-
ters, a sanitized ciphertext Ct and the decryption key dkg. It returns the
plaintext m € M by executing r.ABE.Dec(pp,,,Ct,dkg) algorithm if and
only if PF(B,P) = 1; otherwise this algorithm returns L.

Theorem 1. The proposed generic CD-ABACE construction is correct.

The proof can be found in the full version [28].

Theorem 2. The proposed generic CD-ABACE scheme satisfies the NoO-
READ rule of Definition 7.

The proof can be found in the full version [28].

Theorem 3. No PPT adversary A can win the NO-WRITE security game of
Definition 8 for the proposed CD-ABACE scheme under a fixed predicate func-
tion PF(.,.).

The proof can be found in the full version [28].
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5 An Efficient CD-ABACE Scheme

In this section, we propose a CD-ABACE scheme such that the key and cipher-
text sizes are constant. It primarily comes from a novel CP-ABE scheme; we
believe that this is a result that is valuable by itself. Following on from Sect. 4,
there are three main cryptographic primitives that are listed below;

Structure-Preserving Signature (SPS): In this paper, we use a variant of
the selectively re-randomizable SPS scheme of Abe et al. [1] (see full version [28])
as an efficient, unified and selectively re-randomizable SPS. Since in the proposed
CD-ABACE construction the generator of the first cyclic group is hidden and
the message is a second group element over the Type-III bilinear groups, we need
to slightly modify this scheme with the following PPT algorithms:

— (pp) « SPS.Pgen(\): This algorithm takes as input the security parameter A
and picks a random integer v «—s Z;, and a group generator Y «—s Go. It returns
the public parameters pp by running a Type-III bilinear group generator
BG(\) = (G1,Gsa,Gr,p,é) and publishes pp = (Gy1,Ga, Gr,p, é, [a2] Y),
while it keeps « secret.

— (sk,vk) «— SPS.KG(pp): Samples v «—s Z,, and publishes the public verification
key vk = [va2] while it securely stores the secret signing key sk = v.

— (o,W) «— SPS&.Sign(pp,sk,m): The signing algorithm takes as inputs the
public parameters pp, the secret key sk and a message m € Go. It samples
r s Zy, computes 0 = (R, S,T) = ([ra?], ,m*/TY/r S/ [1/r],), and out-
puts (o, W = [1/r],).

— (¢!, W'") «— SPS.Randz(pp,o,W): The re-randomizing algorithm takes as
inputs the public parameters pp, a signature ¢ € S along with W, picks
a random integer ¢+«-sZ; and computes the re-randomized signature as
o' = (R,S'T) = (RY', 8", T" W'=Y and returns it along with a new
token W’ = Wt.

— (0,1) « SPS.Vf(pp,vk,o’,m): The verification algorithm takes as inputs pp,
either a plain signature o or a re-randomized signature ¢’, a message m and
the verification key vk. It first checks m,S’,T7' € Go, R’ € G; and then
checks the pairing equations R’ ¢ S = (vk e m)([a2]1 oY) and R 6T’ =
(vk  S")([@?] ®[1],). If both conditions hold, then it returns 1, otherwise it
responds with 0 (rejecting the signature).

1

The proof of correctness is identical to that of Abe et al.’s SPS construction,
where a message is part of the second rather than the first group. As the first
group generator is hidden in the proposed CD-ABACE scheme, we need to take
[042] | instead of [1]; to generate and verify signatures.

Non-Interactive Zero-Knowledge (NIZK) Proofs: As discussed in full ver-
sion [28], Zero-Knowledge proofs [15] allow a prover to convince the verifier about
the validity of a statement without revealing any other information. We use a
standard Schnorr proof [27] to prove the knowledge of exponents in the random
oracle model. To convert an interactive protocol to a non-interactive framework,
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we utilize the Fiat-Shamir heuristic [11]. More precisely, the prover has access to
a hash function, modeled as a random function (O), to generate the challenges
instead of receiving them from the verifier. For a given cyclic group G; of order
p with generator g;, we denote by POK{(w) : Rp,(x,w) = 1}, the proof of knowl-
edge of a hidden witness w that satisfies a given relation Ry,. Figure 2 formalizes
a NIZK in ROM for proof of exponentiation.

Kes(RL, A) PrROVE(RL, x, w) VERIFIER(Ry, 7, X)

1: Instance(x):y€G; 1: Parse (Ry,x,w) 1: Parse (Ri,m,x)

2: Witness(w):z€Z, 2: 1 $Z Computes ¢ = O(y, t)
3: Statement: 3: t:=g; if {y,t€G; N z€Z
4: Knwlof z:=log, vy 4

ot

z:=cx+r modp return (ACCEPT)

2
3
c:=0(y,t) 41 ANyYt==gi}:
5: return (x,w) 5
6

6: return 7 = (,2) else : (REJECT)

Fig. 2. Proof of knowledge of exponents

An Efficient Re-randomizable CP-ABE: In what follows, we define a new
IND-CPA-secure CP-ABE scheme with a constant key and ciphertext size. The
Boolean function of this scheme is applied in AND-gate circuits. Although Guo
et al. in [17] took a similar approach and presented a constant-key size CP-
ABE scheme, the ciphertext size in their scheme increases linearly with the total
number of attributes. The proposed re-randomizable CP-ABE scheme consists
of the following algorithms:

— (pp, msk) «— ABE.Pgen(U, \): Takes as inputs an attribute space U with
size n along with the security parameter A\, and runs a Type-III bilin-
ear group generator BG(A) = (G1,G2,Gr,p,é). It also selects a standard
collision-resistant hash function H «—sH that is modeled as a random ora-
cle in the security proofs. For a randomly selected integer o «—sZj, it com-
putes h; = [0/]2 as the set of monomials in Go and g = [az]l. It returns
the master secret key msk = ([1];,a) and the system’s public parameters
pp = (G1, G2, G, p, €, g2, {hi} iy, [, H).

— (dkg) <« ABE.KGen(msk,B): Takes as inputs msk and generates a secret
decryption key corresponding to attribute set B € Xy, such that |B| < n — 1.

It first computes the Zero-Polynomial Zg(x) = [[;, (z — k;)b[) such that
k; = {H(U;) }v,cv. It returns the secret decryption key dkg = [1/Zg(c)];.

— (Ct) « ABE.Enc(pp, m,P): Takes as inputs the message m € M, the public
parameters pp and an access structure P € X.. It first samples r «sZj,
calculates Zp(z) = Z?:o z;x) and returns the ciphertext as a tuple Ct =
(P,C,C1,C5) = (P,m [TO(]T ) (H;L:() h;ZH)T = [TO‘ZP(O‘)]Q 9y = [_TQQJ 1)'
We define the collector algorithm as Col(pp, P) = [aZp(cv)],.
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— (m/, 1) « ABE.Dec(pp,Ct,dkg): This algorithm takes as input the public
parameters pp, a ciphertext Ct and a secret decryption key dkg. If P C B, it
computes, Fp(x) = [T\ (¢ — ki) = 37 f;27 for c[i] = bli] — p[i] and

-1
returns m’ = C' - ((Co o [T, (hj—1)7*) - (dkg ® C1)) % ; otherwise it responds
with L.

In the full version [28], we evaluated the proposed CP-ABE scheme regarding
its security properties including the correctness and IND-CPA.

Next we modify the re-randomizing phase of our CP-ABE scheme; the other
algorithms are the same, except that the decryption algorithm can take either
Ct or Ct as input.

~ (Ct) « rABE.Randz(pp,Ct): Takes as inputs pp and a ciphertext Ct under
access structure P € Y.. To re-randomize the ciphertext Ct € C, it samples
an initial random integer s «—sZy and computes the Zero-polynomial Zp(x).

Then it outputs Ct = (C, Cy,Cy) = (C - [sal,, C1 - [sZp()]y,Cs - g5 *).

Remark 2. The proposed construction guarantees that no PPT adversary can
obtain the receiver’s identity, deterministically. This is the same as the notion
of “weak attribute-hiding” in the context of Attribute-Based Signatures [30].
Indeed, the access policy corresponding to a ciphertext only reveals the list of
receivers who satisfy a specific set of attributes, even though it never leaks any
information about the identity of the receivers. Under the assumption that there
is more than one user who satisfies a set of certain attributes, the adversary is
unable to deduce for which specific receiver the challenge ciphertext is intended.

Related Works: The first CP-ABE scheme, which allows the data owners to
implement an arbitrary and fine-grained access policy in terms of any mono-
tonic formula for each message was proposed by Bethencourt et al. at IEEE
S&P 2007 in [6]; its security was proven in the Generic Group Model (GGM).
In a subsequent work, Cheung et al. [9] constructed a CP-ABE scheme in the
standard model, which is however restricted to a single AND-gate. Waters [35]
introduced an asymptotically efficient CP-ABE scheme in the standard model,
which is based on a Linear Secret Sharing Scheme (LSSS) to establish an arbi-
trary access policy. Lewko and Waters [21] introduced a secure construction
based on LSSS in which the length of the ciphertext, the size of users’ secret
keys, and the number of required pairings to decrypt a ciphertext correspond to
the size of the Monotone Span Program (MSP) that defines the access structure.
Some recent works have extended the functionality of these schemes for various
applications [18,29]. While these CP-ABE schemes allow to define in an effective
way the right to access data, either the key or the ciphertext size grows linearly
in the number of attributes. Therefore, CP-ABE schemes based on AND-gate
circuits are considered promising candidates to address this downside. In this
approach the sender defines a specific Boolean AND-gate circuit such that a
recipient can learn the encrypted data iff they satisfy all the attributes, other-
wise the decryption algorithm returns nothing. Considering AND-gate circuits
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(PP, Mskrq) < RAgen(U, )

(PPsq> Msksa) < SAgen(A, pp,.,, RL)

1: Run BG(A) = (G1,G2,Gr,p,é) 1: Parse (BG(N),pp,.q)
2: H—$H,a 37, 2: Y «$Go
3. h— [ai] 3: sk:=wv—$Z,
’ 2 v 2
y [az] 4: vk=g5 = [a UL
DG =
g 1 5 (crs,ts) <8 ZK.Kas(A, Ry)
5: mskea = ([1];, ) . (k. ts)
n 6: msks, = (sk,ts
6: PP, = (92, {hi}izo, [@]7, H)
7: pp,, = (Rw,crs, Y, vk)
7: return (mskyq, pp,,) ’
8: return (msksa, pp,,)
(dkg) < DecKGen(msk.q,B) (ekp, o, W) «— EncKGen(pp,.,, PPsqs MSksa, P, PF)
1: Parse (BG(N), mskyq) 1: Parse (BG(N), pp,.q, msksa)
2: Zp(x) :1_‘[(55—]@)W 2: Zp(x) :H(mfkl) e :Zzixi
=1 i=1 j=0
35 dks = [1/Za(a),
3: ekp = Col(pp, it = [aZp(
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Fig. 3. The proposed CD-ABACE scheme
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provides a constant ciphertext length; several CP-ABE schemes are proposed
based on this approach [17,32].

The Proposed CD-ABACE Scheme: At this point, we can wrap up the
construction described in Fig.3 by taking a family of collision-resistant hash
functions H : {0,1}* — Z;. Our CD-ABACE scheme is built under a CP-ABE
scheme based on AND-gate circuits with constant key and ciphertext sizes. The
primary motivation behind this circuit choice is to construct a fully constant
ACE within the context of CD-ABACE schemes. Note that we can build more
universal circuit levels using the generic model discussed in Sect. 4.

Remark 8. While the proposed CD-ABACE scheme achieves a weak notion of
receiver anonymity, it improves Wang and Chow’s weak point where recipients’
identities are public. In order to resolve this issue we can use the existing CP-
ABE schemes with a more universal circuit level, but this compromises the
efficiency. For instance, according to Garg et al. [14], we can fully anonymize
the receiver using our generic construction based on multilinear maps and iO
assumptions. We specify in the full version [28] a CD-ABACE scheme, using
Waters’s CP-ABE [35], which is defined under Linear Secret Sharing Schemes;
we compare it with our proposed CD-ABACE scheme in Sect. 6.

6 Performance Analysis

In this section, we examine how the performance of our proposed fully-constant
CD-ABACE scheme compares to the selectively-secure ACE scheme of Wang
and Chow [33], which is the only implemented ACE construction to date and a
CD-ABACE variant of Waters’s CP-ABE [35] that is described in detail in the
full version [28].

We obtained the benchmarks for our proposed CD-ABACE scheme on
Ubuntu 20.04.2 LTS with an Intel Core i7-9850H CPU @ 2.60 GHz with 16 GB
of memory. We applied the Barreto-Naehrig (BN) curve, type F, y? = 2% + b
over the field F, of order p with embedding curve degree £ = 12 and 1920-bit
DLog security. For simplicity the bit-lengths of expressions of access policies
and computations over Z, are not taken into account. We implemented the pro-
posed construction using the Charm-Crypto framework [2], a Python library
for Pairing-based Cryptography?. Figure4 consists of six graphs depicting the
following relationships:

— Total number of Attributes/Users versus RA Setup time: The top left graph dis-
plays the relationship between the total number of attributes/users and time
required to generate the parameter of the Receiver Authority. As can be seen,
in our scheme and [33] scheme the time required to run this algorithm grows
linearly with the total number of attributes/users, and for a generous consider-
ation of 1000 attributes, it only requires ~200 milliseconds (ms) and ~300 ms,
respectively. However, for an ACE variation of Waters’ CP-ABE [35] construc-
tion (see full version [28]) this time is constant and less than 30 ms.

2 https://github.com/CDABACE.
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Fig. 4. Running time of attribute size dependence algorithms

Maximum number of Attributes/Receivers versus Encryption key size: The
top centre graph of Fig. 4 shows the relationship between the total number of
attributes/receivers that a sender can send to them and the size of the stored
encryption key. As can be seen, this relationship in Waters’” ACE variant is
linear, however the our proposed construction and [33] require a constant
storage. Assuming 1000 attributes/receivers to be the highest number used
by a sender, the required memory for storing this key for [33], Waters’ ACE
variant and our scheme is ~300, ~1200 and ~400 bytes, respectively.
Mazimum number of Attributes/Senders versus Decryption key size: The top
right graph of Fig.4 shows the relationship between maximum the number
of attributes/senders for each receiver and the size of the decryption key.
As can be seen, in Waters’ ACE variant this relationship grows linearly with
number of attributes while in both our scheme and [33] the requires storage is
constant independent of the number of attributes/senders; for instance, this
size for a user having 1000 attributes/senders is equal to ~50, ~100 bytes,
while Waters’” ACE variant is equal to ~1.2 KB.

Number of Attributes/Receivers versus ciphertext size: The bottom left
graph of Fig.4 depicts the relationship between the total number of
attributes/receivers in the policy and the length of ciphertext. As can be
seen, in Waters’ ACE scheme this relationship is linear while our scheme
and [33] achieve a constant ciphertext size. For instance, a ciphertext with
100 embedded attributes/receivers in the policy has a ciphertext of size ~1,
~1.4, ~7KB in our scheme, [33] and Waters’ ACE scheme.
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— Number of Attributes/Receivers versus Encryption time: The bottom cen-
tre graph of Fig.4 shows the relationship between the total number of
attributes/receivers of in the embedded policy and the encryption time. As
can be seen, the time required to encrypt a ciphertext in our scheme and
[33] is constant, while in Waters’s ACE variation it grows linearly with the
total number of attributes. For example, a sender in Waters’ ACE, [33] and
our scheme requires ~2000, ~18, ~15ms to encrypt a message with 1000
embedded attributes/receivers.

— Number of Attributes/Senders versus Decryption time: The bottom right
graph of Fig.4 shows the relationship between the maximum number of
attributes/senders of each receivers and the decryption time. As can be seen,
the time required to decrypt a ciphertext in Waters’ ACE variant grows lin-
early with maximum number of attributes, while this overhead in our scheme
and [33] is constant. For instance, a receiver in [33,35] and our proposed con-
struction requires ~8000, ~60, ~45ms to decrypt a ciphertext with 1000
attributes in the policy.

Overall, our scheme has improved the receivers’ key length and privacy
level from identity-based to attribute-based. The ciphertext size has also been
reduced, along with the number of public parameters. Since the second group
generator is hidden in [33], the SA has to choose a new generator to create the
SPS parameters. In contrast, the proposed variant of Abe et al.’s SPS [1] requires
no new generator for the second cyclic group, and the intended NIZK proof cuts
out the need for a target group proof of exponentiation.

7 Conclusion

In this work, we proposed a generic and an efficient CD-ABACE scheme based
on attribute-based predicate functions. In comparison with earlier works, the
length of the secret decryption keys and the ciphertext size has been substan-
tially reduced to less than ~50 and ~1000 bytes as compared to Wang and Chow
scheme where the size was ~100 and ~1400 bytes, respectively. Moreover, the
computational overhead of encryption and decryption is linear in the number of
the policy attributes and user attributes, respectively. Also, it is formally proved
that the proposed scheme satisfies the NO-READ and the NO-WRITE rules based
on standard assumptions. We leave the construction of a CD-ABACE scheme
based on a Boolean circuit instead of AND-gate circuits with the same perfor-
mance as an interesting open problem. As we discussed, the main downside for
AND-gate circuits is that the attribute sets in plain may reveal some mean-
ingful information about the intended constraints and consequently, applying a
Boolean circuit can result in stronger anonymity guarantees for the receivers.
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Abstract. Properties of the Grain-128AEAD key re-introduction, as
part of the cipher initialization, are analyzed and discussed. We con-
sider and analyze several possible alternatives for key re-introduction
and identify weaknesses, or potential weaknesses, in them. Our results
show that it seems favorable to separate the state initialization, the key
re-introduction, and the A/R register initialization into three separate
phases. Based on this, we propose a new cipher initialization and update
the cipher version to Grain-128AEADv2. It can be noted that previously
reported and published analysis of the cipher remains valid also for this
new version.

Keywords: Stream cipher - Grain - Initialization - Key
reconstruction - Differentials

1 Introduction

Grain-128AEAD is a member of the Grain family of stream ciphers and was
submitted to the NIST lightweight cryptography standardization process. In this
process, NIST aims to standardize cryptographic algorithms that are suitable
for constrained environments. Grain-128AEAD is a stream cipher supporting
authenticated encryption with associated data [17] and was selected as one out of
ten finalists from an initial pool of 57 algorithms. It has so far shown competitive
performance in both hardware [18] and software [15].

The Grain family of stream ciphers has been extensively analyzed since
its introduction in the eSTREAM process, where the 80-bit key variant Grain
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vl [13], together with MICKEY 2.0 [4] and Trivium [6], was selected into the
final portfolio of algorithms (hardware category). Since then, also Grain-128 [12]
and Grain-128a [1], both with 128-bit key and the latter with optional mes-
sage authentication, have been proposed. Grain-128 is considered broken by the
dynamic cube attacks proposed in [7,8], and it has been shown that for Grain-
128a without authentication, there are also attacks more efficient than brute
force.

The design approach, combining one linear and one non-linear shift regis-
ter, has inspired also other lightweight ciphers, aiming at resource constrained
environments, e.g., Fruit-80 [2], Sprout [3] and its successor Plantlet [16], and
Lizard [10].

Compared to the previous variants, Grain-128AEAD modifies the cipher ini-
tialization such that the key is re-introduced at the end of the initialization. The
purpose of this key re-introduction is to not allow the secret key to be immedi-
ately reconstructed in case the states of the LFSR and NFSR are known. This
is a feature inspired by the Lizard stream cipher [10].

Even though any stream cipher would be considered broken if the state can be
recovered in less than 2% computations, where K is the keysize, such additional
precautions provide some practical security in certain cases since only the current
instantiation is broken in case of a state recovery. For a lightweight cipher, it is
important that this key re-introduction is very resource efficient.

Since a key-from-state recovery assumes an already broken cipher, it is not
crucial that the key reconstruction requires 2% computations, but a too efficient
key reconstruction limits the value of this additional precaution.

In [5], Chang and Turan noted that with knowledge of the LFSR and NFSR
states, a message tag, and the corresponding message, it is possible to recon-
struct the secret key with complexity 262. This complexity is probably less than
one would expect from a state-of-the-art cipher and it seems that the Grain-
128AEAD key re-introduction does not provide much added security. Indeed,
any state recovery attack would now only require an additional 262 computa-
tional steps to reconstruct the key.

In this paper, we first briefly outline and discuss the analysis by Chang and
Turan. After analyzing the main issue with the key re-introduction, we present
and discuss a few different main strategies for protecting against key reconstruc-
tion from a known state. In addition to the strategy from [5], we also analyze
differential biases that could be used to reconstruct the key. Our analysis shows
that (1) the key re-introduction should be separated from the initialization of
the authentication registers, denoted A and R, and (2) the existence of differen-
tials in high initialization rounds requires an increased number of initialization
clocks in order to prevent a key-from-state reconstruction. From this we conclude
that an increased number of initialization steps is needed in order to avoid key
information leakage, resulting in an updated algorithm specification, denoted
Grain-128AEADv2.

The paper is outlined as follows. In Sect. 2 we specify the key and nonce ini-
tialization of Grain-128 AEAD. Then, we outline the key reconstruction proposed
by Chang and Turan in Sect. 3. In Sect. 4, we discuss several options for avoiding
similar and more advanced key reconstruction algorithms and show that they
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are inadequate. Then, in Sect. 5 we provide a generic initialization approach and
use the derived differentials in order to motivate suitable parameters for the
initialization. These parameters are then derived in Sect.6, before the paper is
concluded in Sect. 7.

2 Grain-128 AEAD Initialization

Similar to all previous versions, Grain-128AEAD uses three main functions
together with an LFSR and an NFSR. If authentication is used, which is optional
in Grain-128a and mandatory in Grain-128AEAD, there are also two additional
registers for supporting this, denoted A and R. A schematic overview of the
initializations is given in Fig. 1. We will adopt the notation as used in [5] for the
shift register bits, i.e., let (By, St, A¢, Rt) be the full state of Grain-128AEAD at
time ¢, where,

= (b, ..., bty127) denotes NFSR state at t > 0,
St = (St,--.,8t+127) denotes LFSR state at ¢ > 0,
(ab, ..., aks) denotes the Accumulator bits at ¢ > 384,
(

i, ..., 1t3) denotes the Register bits at ¢ > 384.

The functions for updating the LFSR and NFSR are given by

St4128 = St 1 5t47 + St438 + 5t470 + St+81 1+ St496
=8¢+ [ (St47..4496), (1)
bit12s = St + b + bri26 + bets6 + beyor + brio6 + bei3biier + ber11bit13
+ bip17bi418 + bit27bits59 + beraobiras + biy610i465 + bitesbitsa
+ bit20bty24bti25 + bri70bi+ 7801482 + by 8sbit92bt+9301495
=8¢+ b+ g (bis3.1496), (2)
where the functions f’() and ¢’() are introduced in order to simplify notation

in our analysis in later sections. The output of Grain-128AEAD uses a nine-
variable, degree three Boolean function h,

h(z) = zoz1 + Tox3 + TaZ5 + TT7 + ToTaTs, (3)
and is given by
Yt = St493 + byyo + byy15 + bpyz6 + bpgas + bigea + biprz + bigs (4)

+ h(bt412, St+8, St4+135 St-+205 Dt-+955 St442, St4605 St+79, St4+94)
!
= biyo + W' (be12.0495, St48.t494), (5)
where, again, h’() is introduced for later convenience. The key and nonce

(IV) are 128 and 96 bits respectively and we denote them as ko, ..., k127 and
IVy, ..., IVys. To initialize the cipher, let
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Fig. 1. Overview of the initialisation of Grain-128AEAD

By = (ko, ..., ki27), (6)
So = (IVo, ..., IVes,1,1,...,1,0). (7)

Then, for 256 clocks, the LFSR and NFSR are updated according to

Si4128 = St + f'(Se47.0406) + Y, 0 <t < 255, (8)
biv12s = St + by + ' (bigs.1496) + s, 0 <t < 255. 9)

Then, in the next 128 clocks, the key is re-introduced into the LFSR while the
NFSR is updated as in regular keystream mode,

St+128 = St + f'(St47.1496) + ki—2s6, 256 <t < 383, (10)
bit12s = St + by + ¢ (biys.1406), 256 < ¢ < 383. (11)

In parallel to this key re-introduction, the A and R registers are initialized with
the generated y;. At the end of the initialization, we thus have

Ssg4 = (8384, .-, 5511),
Bsgq = (bsga, - -, bs11),
Asgy = (y256, .- -ay319)7

Rsgqs = (Y320, - - -, Y3s83)-

Note that this notation is slightly different from the design document, but con-
sistent with [5]. Starting at ¢ = 384, the generated y; is used for encryption
and message authentication. The details here are left out as we will only be
considering the cipher initialization.
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3 Reconstructing the Key

In this section, we outline the key reconstruction approach proposed by Chang
and Turan in [5]. We use the term reconstruct in order to distinguish the approach
from key recovery, which is a well established attack goal. Key recovery typically
uses information known to an attacker, such as keystream or some side channel
information. In the approaches considered in this paper, we additionally assume
that the internal state is known, but not the key. Thus, the reconstruction attacks
discussed in this paper are always preceded by a state recovery attack. This is
implicit in the paper and, in this context, the key recovery attack consists of a
state recovery attack followed by a key reconstruction. This does, however, not
imply that all key recovery attacks must start with a state recovery.

For Grain-128AEAD (and similarly for the other ciphers in the Grain family),
the LFSR/NFSR can always be clocked backward during the running phase
(t > 384). Thus, if the state is recovered at any time ¢ > 384, it is straightforward
to obtain the state Bsgq and Ssgq. Thus, knowing one state, we can assume that
the attacker has knowledge of b;,t > 384 and s;,t > 384. However, finding Bsgs
and Ssgsz, which includes bszgs and ssg3 requires knowing the key bit k127, as

8511 = S383 + S390 + S421 + S453 + Sa64 + Sarg + k127 (12)

Thus, we have two unknowns. Combining this with the update for b511, we have

bs11 = 5383 + b3s3 + bagg + bazg + bara + barg + b3gebaso + b394b396
+ ba00bao1 + ba10b442 + baozbazr 4 baaabass + bas1bas7 (13)

+ baosbaorbaos + baszbacibass + bar1barsbarebars.

Adding this equation gives another unknown, b3g3. However, if we assume that
also the register R is known at time ¢ = 384, i.e., R3g4 = [Y320, - - - Y3s3] is known,
then we can add the expression

Y381 = h(b393, 5389, 5394, 5401, D476, 5423, 5441, 5460, S475) + Sa7a + D3s3

14
+ b39s + ba17 + bz + baas + basa + baro, (14)

which includes the unknown term bsg3. Thus, we now have 3 equations and 3
unknown variables that are linearly added in this equation. All key bits can
now be recovered by continuing to clock backwards. The pre-output bits in the
accumulator

Assa = [Y256, Y257, - - - Y319)
can be computed as
L—1
Assa =T+ > mi- Ryiyssa, (15)
i=0
where mg, m1, ..., my is a known message with the corresponding authentication

tag T. With both the state (Sss4 and Bsgs) and the register contents known,
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we can easily reconstruct the secret key. Since the keystream does not depend
on the registers A and R, a state recovery attack is more likely to recover only
the LFSR and NFSR states. Then, as y3g2 and y3g3 can be directly determined
from Ssgs and Bsgs, a key reconstruction requires 262 computational steps, i.e.,
guessing the bits y390, ..., Y381-

4 Basic Attempts to Make the Key Re-introduction
Stronger

In this section, we analyze alternative approaches for key re-introduction in
parallel with the initialization of A /R registers while maintaining 384 clocks for
initialization. We take a conservative approach and assume that the contents of
all four registers (B, S, A, R) are known to an adversary at time ¢ = 384. As will
be shown, virtually any solution in this model fails to protect the key if the state
is recovered.

4.1 Group 1: Push Key Bits into NFSR Instead of LFSR

There are a number of initialization options that fall into the same category,
where the derivation of unknown bits is immediately possible without any extra
effort.

Let us first consider what happens if we XOR, the key bits into the NFSR
instead of the LFSR, i.e., the updates given by Eqs. (10) and (11) are replaced
by

Se4128 = St + ' (Se47..4496)s (16)
bit12s = St + by + ¢ (bets..4496) + Ke—256- (17)

Considering the equations for computing the same bits as before (yss1, s511 and
bs11), we have

S511 = S383 + f(8390..479) (18)
bs11 = S3s83 + bass + 9 (bsse..a79) + Kia7, (19)
y3s1 = bsss + h'(b3os..476, S389..475)- (20)

As seen, we end up in the same situation with three equations and three
unknowns that can easily be solved explicitly.

Summary: Any initialization option that leads to a linearly independent system
of 3 equations on 3 unknowns is easily broken.
4.2 Group 2: Push Key Bits into both NFSR and LFSR

Another approach could be to make the above vulnerable system of 3 equations
linearly dependent. There are also several options in this category, but we give
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just one example where we XOR the key bits into both the LFSR and the NFSR,
i.e., the update given by Eq. (11) is replaced by

bit128 = St + by + ¢ (begs..4496) + ke—256- (21)

The corresponding expressions for ysg1, 511 and bs1; are then

S511 = S383 + k127 + f'(8390..479), (22)
bs11 = s383 + b3ss + k1o7 + ' (b3se..a79), (23)
yss1 = bsss + h'(bsos..a76, S389..475), (24)

which is a linearly dependent system of equations. At first glance, this seems to
be a better key re-introduction, as it is not possible to determine both s3g3 and
k127, but only their sum s3g3 + k127. However, this does leak information. It is
possible to guess the value of s3g3 and verify this guess in a time offset manner
as follows.

Let us first generalize Eqs. (22-24),

St4128 = (8¢ + ki—256) + ['(St47..1496), (25)
bir12s = (¢ + ki—256) + b + ' (bet3..t496), (26)
Yi—8 = bi—¢ + byyas; + el(bt+4..t+877 St4+5..4486), (27)

where ¢’ is the function h’ without the zgx; term (here represented by byy48¢).
As for the key reconstruction algorithm, we will run a recursion starting from
t = 383 and clocking the cipher backward. On each step of the recursion we
assume that all values s;y1.,biy1.. are known (or guessed), and we want to
recover the three new bits of s¢, by, ki_o56.

From Egs. (25-26) we can derive b; and (s; + ki—256). Then, we can guess s;
and from that derive k;_o56. This guess can then be verified just only 6 recursion
steps later at time (¢ — 6) by using Eq. (27) since it involves the guessed bit s,
and the newly derived bit b;_g, while y;_g here serves as a known value taken
from the A/R states and is used as the verification value for the guessing paths
along the recursion. Note that the derived b; is also correct only if all previous
guesses of the involved bits were correct.

Summary: Re-introduction of the key bits such that the 3 equations become
linearly dependent does not help, since the previous guesses may be verified at
a later stage of a recursion backtracing algorithm.

4.3 Generic Recursive Backtracing Attack

An even simpler and generic backtracing recursion that covers attacks on any
tweak from both groups listed above, would be to just guess the s; in each step
t, derive by, ki _256, and simply compute the value of y; and verify it against the
known correct value taken from the A/R state. In this case, we do not even
need to go deeper into the structure of the Boolean functions involved, and
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the recursion will automatically return one step backward once it detects that
some previous guess was wrong. The complexity of the key reconstruction can
be summarized in Theorem 1.

Theorem 1 (Backtracing complexity). For all considered initializations
from the groups 1 and 2, one can organize a recursion starting from t = 383
and going down to t = 256, where the expressions on byiiss, Sty128 “nvolve 3
unknowns sy, by, ky_o56. At every step of recursion, the attacker guesses the value
of sy (or by depending on the initialization) and directly derives the other two
unknowns, then clocks the cipher backward by 1 step and decrements the time
istance t by 1.

In the above recursion, if the guessed value sy can be verified (against some
other equation or a new constraint, e.g., y-values) only after the recursion depth
d (i.e., in time t — d), then the overall backtracing complexity will be O(2%).

Proof. The depth of the recursion is 128, and if every guess would be correct, then
the complexity of each node would be O(1) resulting in O(1) overall. However,
in each node of the recursion, we have to make O(2%) other guesses before the
current node can be verified and resolved. Therefore, the overall complexity is
multiplied by O(2%).

Simulation Results. We implemented the above backtracing recursion algo-
rithm and applied it on two different initialization options that belong to the
second group of initializations (see Sect.4.2). We were able to reconstruct the
whole 128-bit key quite efficiently within some milliseconds, and the time com-
plexity matched well the results of Theorem 1.

Summary: The main problem with these approaches is that the key is re-
introduced while initializing the registers A and R. Thus, it is possible to use
the values of y in these registers for verification in the reconstruction algorithm.

4.4 The Parallel Option: Parallel XOR . of the Whole Key at the End

of Initialization

A straightforward approach, and one that is inspired by [9], is to simply XOR
all key bits into one of the registers as a final step in the initialization. This is
also a tweak that was suggested in [5].

First of all, this has a significant drawback of adding to the hardware foot-
print, since, for 128 register cells, we need to add one XOR gate and one mul-
tiplexer, i.e., at least 256 new gates. This makes the hardware footprint much
larger and we would still prefer to explore options where the key is serially
inserted into one or both registers.

Secondly, this approach seems also vulnerable to the generic backtracing
recursion or similar, since y-values stored in A/R can again be used for verifi-
cation at some backward time instances of the recursion against the guessing
paths. Moreover, the order of guessing in this scenario can be chosen freely by
an attacker.
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Conclusions: Any tweak where the A/R bits are initialized in parallel or before
the key re-introduction can be broken. From this, we conclude that the initial-
ization of the registers A and R must be done after the key re-introduction. In
the next section, we will consider new approaches for initialization that are more
resistant to key reconstruction when the state is known.

5 Re-introducing the Key Before A/R Register
Initialization

Separating key re-introduction and A/R initialization removes the possibility to
verify guesses against the A/R content. In this section, we will consider various
options for a new tweak in initialization that meet these new requirements.

5.1 New Generic Initialization Steps

Considering the above analysis, it becomes clear that the initialization should
consist of 3 clearly separated phases. We believe these phases should be as fol-
lows:

— (), standard initialization clocks, like in Grain-128a, where the pre-output y;
is added to both LFSR and NFSR, i.e., for t = [0,...,C, — 1]:

Stv128 = St + [/ (Se47.4496) + Yt (28)
bir12s = St + by + ¢ (begs.1496) + Yt (29)

— C}, clocks where the key is re-introduced (to be defined later);

— Cp, clocks where the pre-output y; is used to initialize the registers A/R,
while the LFSR and NFSR are updated in the standard keystream mode,
ie, fort =[Cp, + Ck,...,Cp + Cr + Cp, — 1]:

St+128 = St + f'(St47.44+96), (30)
biyi2s = 5t + b + ¢ (beys.t+96), (31)
A/R — y;. (32)

In a straightforward approach, one could select Cy = 128 to re-introduce the
key bits serially in 128 clocks into either (or both) the LFSR and/or NFSR.
However, we can compress this stage to Cy = 64 clocks by splitting the key into
two parts, adding each part to one of the registers,

st128 = 5t + f'(St47.1196) + Y + koo, vo4, (33)
biyi2s = st + b + g (beys.tr96) + e + ki, (34)
for 64 time instances t = [Cl,...,C, + 63]. This solution is efficient in both

hardware and software. We fix the two initialization parameters to Cy = 64 and
C,, = 128, and it remains to decide C,,, i.e., the duration of the initial phase.
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5.2 An Attempt to Keep 384 Clocks in Total, C,, = 192

To keep the original 384 initialization clocks, we explore the possibility to re-
introduce the key bits in clocks [192,...,255]. Assume a state recovery attack,
where the state Bsgy, S3g4 after initialization is recovered. Since the key is intro-
duced earlier, we can clock backward and recover Bssg, Sosg. The content of
A/R can be recovered immediately since they are initialized at 256 < ¢ < 383
using yo56, - - - , Y3s3. However, now these bits cannot be used for verification of
the guessing paths. The last key bits, kg3 and kq27 are introduced through

S383 = So55 + [ (S262..351) + Yas5 + K127, (35)
bass = Sos5 + bass + ¢ (bass..351) + Yas5 + ke, (36)

where sao55, boss, ke3, k127 are unknowns, and other terms can be derived; there-
fore, the pre-outputs y; in time ¢ > 256 are now useless for key reconstruction
(unlike the approaches in Sect. 4).

The only remaining possibility for an attacker to verify the guesses, or to
recover key bits, is to link somehow the known state Basg, Sas6 to the initial
state By, Sy, i.e., to the original Key, IV values.

Differential Analysis. We now show that if C), is too small, then the initializa-
tion as defined by Egs. (33) and (34) leaks key information through a differential
attack. Consider the following sum of variables, denoted by z,

Ze4128 = biy128 + St128 + 9 (De3.4406) + [ (St47..496)
= (8¢ +b¢ + ¢ (begs..t+96) + Y + ki—102)
+ (s¢ + f'(St47..0496) + y¢ + ki_128) (37)
+ ' (bi+3..1496) + ' (St47..4496)
= by + ki—102 + ki —108-

Since we know b; and s; for ¢ > 256, we can compute 21128 for ¢t > 253 (since
t + 3 is the lowest used index in the ¢’ and f’ functions). Thus, we can find a
differential

AZtJrng = A(bt + kt7256 + ktflgg) = Abt, for t 2 253. (38)

A Possible Scenario for Key Bit Reconstruction with Conditional Dif-
ferentials. In a simple scenario we would like to recover some key bit k,,
based on the conditional differential distributions Dy = (Abk, = 0) and
Dy = (Ab¢|k, = 1), for some AIV. If these distributions have different biases,
then by collecting many samples Ab;, we can determine the key bit k. This
way, we can recover one key bit. The differential should be introduced, ideally,
by some AI'V while keeping the same Key, and we would then collect r pairs of
the form (Key, I'V;) and (Key, IV;+ AIV), for i = 1,...,r, some fixed Key and
random IV;s. Then, for each pair Az 108 (that is equal to Ab;) is computed and
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the empirical distribution D is constructed. Finally, we compute the distances
from D to both Dy and D;, and the shorter distance decides on the key bit
value k.

Of course, the above procedure for recovering k, requires applying a state
recovery attack on 2r keystreams, recovering 2r states of (Basg, S256). These
states are used for collecting the z;y128 samples and the construction of the
empirical distribution D. However, when, for example, the two key bits kg3, k127
are recovered, it is possible to clock further backward, and all those recovered
states can be used to collect differential samples to recover some other key bit.

One approach could be to collect many samples with a number of differentials
AIVy, ..., AIVi57 — one for each key bit, not necessarily to be used at the same
time instance t. Then, depending on the time instance ¢ and the target key bit
k., we could derive differential samples from one of the ith group of the recovered
states. As soon as it becomes possible (i.e., when certain key bits are recovered),
the attacker clocks all states backward by one or more clocks, which opens up
for applying other A;s and thus to recover other key bits.

Differential Probabilistic Model. In order to study conditional and/or dif-
ferential probabilities, we have adopted the following model for a binary signal
x, where the signal x is associated with two probabilities:

pe = Pr{z =1},
par = Pr{z &2’ =1},

where 2’ is the same signal but may have a different value, i.e., Av =z ® ’.
For two independent signals x and y we derive expressions for the resulting
probabilities of XOR and AND gates:

Pz@y = Pz + Py — 2DaDy,
PA@@y) = PAx T PAy — 2DAzP Ay,
Doty = DaPy
PA(&y) = PAzPAy(2(1 — pz)(1 = py) — 1) + papay + pypac-

By this, we can configure the initial state of Grain with these signals, where
some of the signals will be random values, constants 0 or 1, or differential bits.
Then we clock the cipher and derive probabilities for the resulting signals. In
the end, we check if some bit of the state or its differential has a detectable bias
and if yes then we can try to use it in an attack.

Note that this method is expected, in most cases, to give a lower bound for
these biases since above we consider = and y as independent. In reality, many of
those signals will be dependent. For example, z = abc and y = bed are dependent
as they share b and ¢ signals. Also, if some term a is added in a Boolean expression
twice then it should be canceled out, while in this model it will be treated as two
different independent signals, thus making the resulting biases smaller than in
reality. Therefore, this method is suitable for first searching statistical anomalies,
but the actual bias can be verified and refined through, e.g., real simulations.
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The state of Grain is thus initialized as follows:

Constant 0 — pg =0, pao =0,
Constant 1 — p; =1, pa; =0,
Key bits — pr =0.5, pax =0,
Fixed randomIV bits — pj, = 0.5, pa, =0,
Differential A IV bits — p;, =0o0r 1, pas = 1.

Examples of Conditional Differentials. We have not managed to find a
complete path for the sketched conditional differential attack, but we have found
at least some examples where some of the key bits can be recovered by looking
into Azoss4128-

The best approach found is to initialize the cipher with a difference in a single
IV-bit. If Pr(Azsgs) = Pr(Abgss) = 0.5(1+¢) we can distinguish the cipher from
random using about ¢~2 such samples. By utilizing the differential probabilistic
model, we find that such a difference can be observed with a differential in IVsg,
whenever all other Key and IV bits are random:

AlVss|Keyig9 = 0 — (Abass) = 9673,

39
AlVss|Keyioo = 1 — £(Abass) = 0. (39)
The above biases were refined through real simulations by collecting 224 samples,
resulting in:
AIV56|K€y109 =0— 5(Ab255) _ 273.23’

(40)
AlVss|Keyrog = 1 — €(Abass) = 0.

It is hard to say exactly how these distributions will behave for a concrete
fixed key, but let us assume that for all or most keys the above is true. Then,
recovering kigg would proceed as follows. Collect differential samples Azsgs for
AlVsg, i.e., the cipher is initialized with many random IV pairs where we flip only
the bit IVs6. Then, based on the empirical distribution of Azzg3 we can determine
the value of kigg. This will require around 2 - 2646 = 27-46 initializations, each
followed by a state recovery attack. Recovering all key bits in this way requires
finding biases similar to Eq. (40) (where we can also utilize any other ¢ > 253).
While this might not be feasible for all key bits, recovering some key bits in this
way could be followed by an exhaustive search for the rest. We stress that this
requires a state recovery for each initialization and is thus always more expensive
than a state recovery attack. Still, the relatively large biases found here question
the suitability of re-introducing the key in this way as early as ¢ = 192 since a
state recovery attack gives information about the state already at ¢t = 256.

Conclusion: In the presented example we only show that such a conditional
differential exists to some extent. This approach for key reconstruction can be
investigated further, and we leave it for future research. What is clear is that for
C,, = 192 there is at least some leakage of information about the key, although
the exact attack scenario is not easy to find.
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Other Differentials Detected. The differential probabilistic model was also
used to detect some other biases. For example, we were fixing the key to a random
state and were running the model to see how far we can get a bias with that
model. We found that in ~ 9.4% of random keys, where we also set IV,g 96 = 0
while IV} 47 are random, we get for AIVy9 the differential Absgg to have the
bias around 2799129,

Through real simulations, we collected 230 samples for each random key, and
received the refined bias in the range 279 ~!1, but with a higher success rate of
~ 12.5% for 2600 random keys tested. For these simulations we used a PRNG
with high entropy. Simulation results are given in Fig. 2.

Distribution of the differential bias log,(g(Ab,gg))
for a random key and 23°1Vs

random

biased

relative probabilities per quantile

-25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9

'
0o

log,(e(Ab,gg)) with quantization=0.2

Fig. 2. Refining simulation results for the bias of Absss.

Le., for about one key out of 8 random keys, we can distinguish Azags 128
from random by collecting around 2822 TV-differential samples. However, the
result of the distinguisher may leak up to 5 bits of information about the key
in connection to 4 possible answers: random, or one of the 3 biased peaks. To
be more precise, reverse-engineering of the random keys led to the four different
answers resulting in the following key information:

if Abzsg is biased then k73 = k’lgz = 0, k’lgg = 1,
if E(Abggg) ~ 279 then k77 = k112 = 0,
if €(Ab288) ~ 2710 then k77 + ]{7112 = 1,
if E(Abggg) ~ 2_11 then k77 = ]{}112 = 1,

which means that Az416 can be used to get some information about the key.
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5.3 What Would Be the Minimum C,,?

From Differential Attacks Perspectives. Recall the previously derived
expression for Az, 108,

Aziy19s =A(brr12s + Si128 + 9 (bit3.1496) + [/ (Se47..0496)) = Aby,

and the first (smallest) ¢ for which the above differential is available, right after
the set of state recovery attacks, is t = C,, +Cj, —3 (see Eq. (37)), where C}, = 64
but C), is not yet known. Thus, if there is a weakness in Ab; then the lower bound
for C,, to mitigate such a weakness would be

Cp >t —60.

In [14], the authors managed to recover 18 key bits after 169 clocks of ini-
tialization, but there they were looking at y; values instead of the state bits. In
a naive approximation, this would translate to having some (differential) bias in
at most S169+94, b169+95 state bits, where 169 + 95 = 264 is the highest index
of the state bits involved in y;69. Thinking purely theoretically one could, per-
haps, collect some statistics on up to Abygs. This leads to the first lower bound
C, > 204. Clearly, C,, = 192 looks too low — the case we first considered in
Sect. 5.2 in order to keep 384 clocks of initialization.

However, in our simulations, we were able to find highly biased differentials
up to around Absgg (see Sect. 5.2), which means that C,, must be at least C,, >
228 in order to prevent these differentials as well.

Finally, we would like to note that the mentioned paper [14] also provides
a distinguishing attack after 195 initialization rounds, by again looking into y;.
Note that in the case of a state recovery attack a distinguishing attack is not
relevant at all — if the attacker can recover the state of a given keystream then,
certainly, we have a distinguisher. What only matters for this type of analysis is
the possibility to reconstruct at least some key bits given available expressions
and values. Nevertheless, if we could anyways get some biased conditional dis-
tribution on Abjgs495 then that assumption translates into the hardest lower
bound C,, > 230.

Although we make here a very strong assumption that some key bits can
still be recovered by looking at Abogy, there is great uncertainty about how
large the bias would be, and therefore how many samples one has to collect.
The complexity of such an attack is then at least the number of samples needed
multiplied by the complexity of a single state recovery attack. There is also
uncertainty about how many and which key bits can be statistically detected,
and whether this leads to any additional backward clocks of the collected states.
The order of determining key bits is important for the backtracing ability.

Summary: Given the current state-of-the-art analysis of Grain, and making the
most strict (and, perhaps, unrealistic) assumptions, we conclude that we have a
lower bound C,, > 230. This means that we cannot really stay with 384 clocks
for the initialization (starting to re-introduce the key at ¢ = 192), but should
increase it by at least 38 (plus some added margin), even if these strong attack
models are hard to achieve.
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Combining State Recovery, Guess-and-determine, and Distinguishing
Attacks. Let us again consider the distinguishing attack in [14] using y-terms
after 195 initialization clocks. This means that there could also exist a distin-
guisher on Abigs495, since yig5 involves bigsigs. So, if C), = 229 then we can
sample Azy18 = Abogg and distinguish that from random. Though a pure distin-
guishing attack itself is not interesting in key reconstruction, such a distinguisher
can be used for verifying guessed key bits.

Assume that, based on the previous discussion, we adopt C,, = 256. Then, we
can collect r pairs of keystreams, each pair with one keystream generated with
some random IV, and one using a differential IV + AIV for some fixed AIV.
Then we apply a state recovery attack on each of the 2r keystreams, recovering
r pairs of states (Bé;)o, S:glz)o) and (Bg(;()), Sé(;(%), fori=1,...,r.

Then, by guessing the first 54 key bits, we can reverse 27 initialization steps,
recovering (Bélg)?), Ség)s) and (B;(QZ%, Sé(gg) Thus, we reach C,, = 229. At this point,
for each pair of states in time ¢ = 293, we compute r samples Azég)oﬂzg, ie.,

Abgg)o, see Eq. (38). With many states, we can use the empirical distribution for
Abggg and distinguish it from random. If the 54 key bits were correctly guessed,
we get a biased empirical distribution, otherwise, the guess was incorrect. Note
that, for every key guess we can use the same set of the recovered states for
sampling.

Example. Let us give an example of the complexity of this attack. Assume
that there is a AIV that makes Abggy being biased with ¢ = 2719, With 254
distributions, to distinguish the correct key guess, we need about (54-21n 2)-22° =
226-2 sgamples, i.e., 2272 keystreams are needed [11]. If the state recovery attack
has complexity 2¢ then the total attack complexity would be O(2¢ - 2272 4 254 .
2272) = O(2¢127-2 + 281-2) Note also, if the bias of Abagy would be too small,
the attacker can guess a few more key bits and reach a lower index of Ab; where
the bias is larger. For example, guessing 2 more key bits makes it possible to
backtrace one more step.

Conclusion: The sketched attack is purely theoretical at the moment, and we
leave further investigations for future research. However, to mitigate such kinds
of more advanced attacks, the lower bound on C),, should be increased by 64,
i.e., C,, > 294. In this case, all key bits need to be guessed in order to reach the
time instance where one can collect biased samples and use them for verification.
And, of course, future research might reveal biases in Ab; with ¢ > 290. For these
reasons, C,, = 256 also looks too low in the context of key reconstruction from
known states.

6 A Modified Key Re-introduction

From the analysis in the previous sections, we can conclude:

1. The key should not be re-introduced while also initializing the A and R
register, or in parallel after;



Grain-128AEADv2: Strengthening the Initialization 39

2. Introducing the key as early as ¢t = 256 is questionable due to rather large
biases found in some differentials.

Based on our analysis done in the previous sections, we propose to increase
the initialization by 128 extra clocks and to adopt C,, = 320,Cy = 64,C,, = 128
in the generic description given in Sect.5.1. We believe that this tweak makes
the key re-introduction secure against the attacks discussed in this paper. The
cipher using this new initialization is denoted Grain-128AEADv2. To summarize
the result of this new initialization, we highlight the following aspects.

— Both Grain-128a and Grain-128AEAD have 256 clocks of initialization, and
no attack was found on that so far. In the proposed tweak we do C),, = 320
initialization clocks, in order to protect the key re-introduction phase in case
the whole state is recovered from the keystream. After that we re-introduce
the key, followed by the A/R initialization. This amounts to a total of 512
initialization steps, adding 33% to the 384 steps in Grain-128AEAD. In the
proposed design we have security not worse than in the previous instances of
Grain, which in turn were analyzed for many years;

— We use only 64 clocks for the key re-introduction phase, which is a compromise
between a parallel XOR of the key (that is more expensive in hardware) and
the introduction of the key bits in 128 clocks (that is more expensive in time).
Moreover, we believe that serialized key re-introduction is more secure than
the parallel, since then an attacker has much less freedom to exploit available
Boolean expressions;

— The attacks on the key re-introduction, similar to the one in [5] are no longer
possible. The three initialization phases are now clearly separated;

— With the proposed tweak we prevent key reconstruction from known states
also with more advanced and comprehensive types of attacks, though some of
them are currently theoretical and speculative, and also under strong assump-
tions.

As noted, we believe that the choice of C;,, = 320 provides a good security
margin against key reconstruction from conditional differentials.

7 Conclusions

The security property found in [5] of the key re-introduction of Grain-128AEAD
shows that the key can be reconstructed with low complexity if the state is
known. In this paper, we analyze the initialization, and in particular the key re-
introduction further by considering several different possible approaches for key
reconstruction. We also analyze these approaches, both in relation to a previously
published reconstruction technique, but also by considering more sophisticated
methods. As a result, we suggest a modification to the cipher initialization that
is both more secure, but also maintains the validity of previous analysis of the
initialization algorithm. The new cipher version is denoted Grain-128AEADv2.
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Authenticated Encryption (AE) schemes are designed to provide the core prop-
erties of confidentiality and message integrity against chosen-ciphertext attacks
(CCA). A particularly important practical class of AE schemes offer Authen-
ticated Encryption with Associated Data (AEAD); AEAD schemes are widely
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against low entropy keys (e.g. those derived from passwords).

Weak key forgeries were given a systematic treatment in the work of
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standardised and implemented due to their efficiency and security. As a result
of their widespread adoption, AEAD schemes have in some cases been used
in contexts that require additional properties beyond standard CCA security.
One particular property that has attracted recent attention is key-commitment
[3,18,24], also known as robustness [21], which (informally) states that a cipher-
text will only decrypt under the key that was used to encrypt it.

A lack of key-commitment in particular AEAD schemes was exploited by
Len et al., who introduced a new class of attack they call “partitioning oracle
attacks” [31]. Conceptually, a partitioning oracle takes as input a ciphertext
and outputs whether the decryption key belongs to some known subset of keys.
Len et al. first construct so-called “splitting ciphertexts” for AES-GCM and
ChaCha20Poly1305 that decrypt under every key in a set of target keys. This
splitting ciphertext is submitted to a decryption oracle; on observing whether
the ciphertext is accepted or rejected, the adversary learns whether or not the
decryption key is in the set of target keys. As a result, the adversary is able to
query multiple keys simultaneously, speeding up a brute force attack. Combin-
ing this with low entropy keys, such as those derived from passwords, results in
practical attacks. Len et al. give a number of examples including against Shad-
owsocks [1], a censorship evasion tool, where the attack results in key recovery.

The concept of weak keys shares some similarities with that of partition-
ing oracles. Whilst there is no precise definition in the literature, the concept
is intuitively clear; Handschuh and Preneel [25] describe a weak key as a key
that results in an algorithm behaving in an unexpected way (that can easily be
detected) — the idea is that a weak key can be tested for with less effort than
brute force. Procter and Cid [36] give a framework that neatly captures weak
key forgeries (forgeries that are valid if the key is “weak”), which generalised
previous attacks against polynomial hash based message authentication codes
(MACs) by Handschuh and Preneel [25] and Saarinen [37]. Procter and Cid’s
results showed that for these cases the term is a misnomer: in fact, for a poly-
nomial hash based MAC, any set of keys can be considered weak using their
forgery techniques.

Abstractly, weak key forgeries and splitting ciphertexts share the same struc-
ture: ciphertexts whose successful decryption is contingent on the user’s key
being in a set of target keys. This suggests that weak key forgeries are a good
candidate to carry out partitioning oracle attacks; we show that this is indeed
the case. We first generalise the attack formalisation of Len et al. to allow
the adversary to act as a machine-in-the-middle, in a more realistic reflection
of an attacker’s capabilities. As a result we obtain a more abstract definition
that encompasses weak key forgeries and splitting ciphertexts. We show how to
carry out a partitioning oracle attack using weak key forgeries, and discuss some
practical applications of the attack. An advantage of our attack is the control
that an adversary obtains over underlying plaintexts, allowing for partitioning
oracle attacks in settings that are resistant to the attack of [31], in particular
where there are format requirements on underlying plaintexts — including format
requirements that are designed to render schemes key-committing. Our results
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reinforce the conclusions of [31], especially on the danger of deriving encryp-
tion keys from user-generated passwords. Furthermore, our results suggest that
resistance to weak key forgeries should be considered a related design goal to
key-commitment, particularly in settings that are vulnerable to partitioning ora-
cle attacks. Concretely, our results demonstrate — in contrast to the suggestions
of prior work — that adding structure to underlying plaintexts (e.g. packet head-
ers that prefix every plaintext message, or an appended block of all zeros) is not
a sufficient mitigation against partitioning oracle attacks.

Related Work. Bellovin and Merritt introduced partition attacks against
encrypted key exchange: trial decryption of intercepted traffic allowed multiple
keys to be eliminated at once [11]. Other oracle attacks include padding oracles
[16,38] or other format oracles [4,6,23]; these attacks are similar to but distinct
from partitioning oracles as they recover information regarding plaintexts rather
than secret keys. Subverted decryption oracles that reveal information about
secret keys were considered in [8,9].

Structure. This paper is structured as follows. After describing our notation
below, we provide the relevant background material on polynomial hash based
schemes in Sect. 2. Partitioning Oracle Attacks are introduced in Sect.3, and
our extension based on Weak Key Forgeries in Sect.4. Section5 describes our
experiments with Shadowsocks, as well as other protocols. We close the paper
with our conclusions in Sect. 6.

1.1 Notation

We refer to an element « € {0,1}* as a string, and denote its length by |z|; €
denotes the empty string. The set of strings of length ¢ is denoted {0, 1}*. In addi-
tion, we denote by L ¢ {0,1}* a reserved special symbol. For two strings z, z’
we denote by x || 2’ their concatenation. A block cipher E is a family of permuta-
tions on {0, 1}", with each permutation indexed by a key k € K, where the key
space K = {0,1}* for some fixed key length ¢. The application of a block cipher
to input = € {0,1}" using key k will be denoted by Ej(z). Arbitrary finite fields
are denoted by F, or when we specify its characteristic by Fy-, with p prime.
We use code-based notation for probability and security experiments. We
write « for the assignment operator (that assigns a right-hand-side value to
a left-hand-side variable). If S is a finite set, then s <4 S denotes choosing s
uniformly at random from S. We use superscript notation to indicate when an
algorithm (typically an adversary) is given access to specific oracles. If A is a
randomised algorithm, we write y <5 A(z) to indicate that it is invoked on
input x (and fresh random coins), and the result is assigned to variable y. An
experiment terminates with a “stop with z” instruction, where value x is under-
stood as the outcome of the experiment. We write “win” (“lose”) as shorthand
for “stop with 17 (“stop with 07). We write “require C”, for a Boolean con-
dition C, shorthand for “if not C: lose”. (We use require clauses typically to
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abort a game when the adversary performs some disallowed action, e.g. one that
would lead to a trivial win.) We use Iverson brackets [-] to derive bit values from
Boolean conditions: For a condition C' we have [C] = 1 if C holds; otherwise we
have [C] = 0. In security games we write A%1+% = 1 to denote the event that
the adversary outputs 1 after being given access to the ¢ oracles.

2 Background: Polynomial Hashing

MACs are a symmetric cryptographic primitive that allows two parties sharing a
secret key to communicate with the assurance that their messages have not been
tampered with. Many popular MAC schemes are constructed from universal
hash functions that are realised by polynomial evaluation; such MACs based on
polynomial hashing are discussed in Sect. 2.1. They are often used to provide the
authentication component for AEAD schemes, which are discussed in Sect. 2.2,
where we give an overview of the two most widely used polynomial hash based
AEAD constructions, McGrew and Viega’s Galois/Counter Mode (GCM) [32]
and Bernstein’s ChaCha20-Poly1305 [12].

2.1 MACGCs from Polynomial Hashing

A polynomial hash based authentication scheme is built on a family of univer-
sal hash functions that are based on polynomial evaluation. It takes as input
an authentication key H and message M (consisting of plaintext or cipher-
text blocks depending on context). Let M = M; || --- || M, || Mpq1 with
Mp41 =len(M) and all M; considered as elements of a field F (typically Fan),
and gar(z) be the polynomial in Fz] defined as gar(z) = 205" Myap+2=i 1t
we also consider H € F, the polynomial hash hy (M) of M is calculated by
evaluating gy (z) at H, i.e.

p+1
hi (M) == gy (H) = ZMin”_i eF.

i=1

The hash value is usually encrypted with a pseudo-random one-time pad, to
provide the output authentication tag.

The underlying properties of polynomials are inherited by the hash function
and thus the authentication scheme; in particular, the fact that adding a zero
valued polynomial will not change the value of the hash (which gives rise to
“weak key” forgeries, discussed in Sect.2.4) and the fact that it is possible to
construct a polynomial that passes through a set of given points (giving rise to
multi-key collisions, discussed in Sect. 2.3).

2.2 AEAD

Let AEAD = (AuthEnc, AuthDec) be an AEAD scheme, and let its key space
be the set K. Encryption takes as input a key k € K, together with a tuple
of nonce, associated data and plaintext (N, D, P) and returns a ciphertext and
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authentication tag. We write (C,T) « AuthEncy (N, D, P). Similarly, decryption
takes as input a key k € K together with a tuple (N, D,C,T) of nonce, asso-
ciated data, ciphertext and authentication tag and returns either a message or
the error message | to indicate that the decryption was not successful. Correct-
ness requires that for all N, D, P not exceeding the scheme’s length restrictions,
AuthDec (N, D,C,T) = P with (C,T) = AuthEnci (N, D, P).

A common paradigm for constructing AEAD schemes is to use an Encrypt-
then-MAC (EtM) construction with a stream cipher for encryption and an
authentication component from a polynomial based universal hash function. We
give a brief overview of the most widely adopted and standardised schemes:
McGrew and Viega’s AES Galois/Counter Mode (AES-GCM) [32] below and
Bernstein’s ChaCha20-Poly1305 [12,35] in Appendix A.

AES-GCM. AES-GCM encryption takes as input: an AES key k, a nonce NV,
plaintext P = Py || --- || P, and associated data D = D1 || --- || Dq. The key is
128, 192 or 256 bits long, the nonce IV should preferably be 96 bits long although
any length is supported. For each 7, |P;| = |D;| = 128 except for perhaps a partial
final block. With this input, AES-GCM returns a ciphertext C = Cy || --- || C,
(the same length as the plaintext) and an authentication tag 7. From here on,
we will omit associated data for simplicity. The plaintext is encrypted using an
instance of the AES in counter mode, under key k with counter value starting
at CTR;. If the nonce is 96 bits long the initial counter value (CTRg) is NV || 0311,
otherwise it is a polynomial evaluation-based hash of N after zero padding (using
the hash key described below). For each i, CTR; = inc(CTR;_1), where inc()
increments the last 32 bits of its argument (modulo 232).

The authentication tag is computed from GHASH, a polynomial evalua-
tion hash (in Fai2s). The ciphertext C' is parsed as 128-bit blocks (with partial
final blocks zero padded) and each block is interpreted as an element of Fgizs.
We denote by L an encoding of the length of the (unpadded) ciphertext and
additional data. The hash key H is derived from the AES block cipher key:
H = E;(0'28). The hash function is then computed as:

huy(C)=L-H®C) -H* ®Cypy -H*®---®Co- HP ® Cy - HPT', (1)

where all operations are in Foi2s, and € denotes the zero-padded last block.
The authentication tag is given by: T' = E;,(CTRg) ® hy (C).

2.3 Key Commitment

A committing AE scheme is one which satisfies the property of key commitment,
which (informally) states that a ciphertext will only decrypt under the key that
was used to encrypt it. Equivalently, for a committing AE scheme, it should be
infeasible to find a ciphertext that will decrypt under two different keys. Security
goals for committing AE were first formalised by Farshim et al. [21] under the
name “robustness”. Although key commitment is not part of the design goal
of AE schemes, there are natural scenarios where a lack of key commitment
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results in security issues. Dodis et al. [18] and Grubbs et al. [24] show how
to exploit non-committing AE schemes in the context of abuse reporting in
Facebook Messenger. Albertini et al. [3] give some further practical examples
where a lack of key commitment leads to practical attacks, e.g. in the setting
of paywalled subscription material where a malicious publisher might prepare a
ciphertext that decrypts to different content for different users.

The partitioning oracle attack of Len et al. [31] exploits the inherent lack
of key commitment for polynomial hash based AEAD schemes. They construct
a ciphertext C that decrypts under every key in a set of target keys K* =
{k1,--- ,k¢} by constructing a linear equation whose variables are the blocks of
ciphertext; C is the solution to the equation. We describe the technique using
AES-GCM for concreteness.

Given K* and nonce N, first derive the associated GHASH key H; = E, (0™)
for each k; € K*. Then construct the linear equation

T=C -H '@ --¢C,-H ®L-H ®E (N | 0%1),

which is arrived at by assigning H; to H in Eq. (1) and substituting the result
into the expression for the tag T' = hy (C)@®Ey, (CTRg). The result is a system of
¢ equations in £ unknowns which can be solved; this can be done more efficiently
using a clever trick (fixing 7" and adding one block of ciphertext as a new variable,
giving a Vandermonde matrix). We refer the reader to [31] for further detail.

Generic AE solutions, the so-called generic composition constructions such
as Encrypt-then-MAC, can provide key-commitment, as shown by Farshim et al.
[21] who suggested using a keyed hash function such as HMAC [10] for authen-
tication. However, if a key-committing scheme is required for security in some
particular setting, then performance considerations may mean that switching to
e.g. encrypt-then-HMAC is not practical. This is illustrated by the choice of
Facebook Messenger to use AES-GCM to encrypt message attachments despite
work showing that this was insecure. Albertini et al. [3] propose two generic fixes
that minimise the changes needed to add key-commitment to widely deployed,
highly efficient schemes such as AES-GCM:

1. Padding Fix. Prepend a constant string to messages before encrypting;
check for the presence of the constant string after decrypting. This fix is
also given in an early draft of an OPAQUE protocol RFC [30], and discussed
in [31]. This solution — essentially adding redundancy to the message — is
not generically secure and must be analysed per scheme. Albertini et al. [3]
perform this analysis for AES-GCM and ChaCha20-Poly1305, showing that
in both cases the resulting scheme is key-committing.

2. Generic Fix. From a given key k, derive an encryption key kene = Fenc(k)
and a commitment to the key kcom = Feom (k). Here Fone and Feom are col-
lision resistant hash functions. Ciphertexts for the resulting key-committing
scheme counsist of a regular ciphertext (for the underlying AEAD scheme)
together with the commitment to the key. Albertini et al. [3] show that this
construction provides key-commitment, if the functions Fu,. and Feon used
to derive the encryption key and commitment are collision resistant pseudo-
random functions.
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2.4 Weak Key Forgeries

In symmetric cryptography, a class of keys is called a weak key class if the
algorithm behaves in an unexpected way when operating under members of that
class, and this behaviour is easy to detect. In addition, identifying that a key
belongs to such a weak key class should require trying fewer than N keys by
exhaustive search (or verification queries), where N is the size of the class [25].
In the context of polynomial hash based authentication schemes, e.g. the GCM
mode, Handschuh and Preneel [25] and Saarinen [37] identified several weak
key classes. In [36], Procter and Cid proposed a generic framework to mount
forgery attacks against polynomial-based MAC schemes based on weak keys.
Their framework encompasses the previous forgery attacks from [25] and [37], as
well as the earlier Joux’s Forbidden Attack [27], and is based on a malleability
property present in polynomial-based MAC schemes.

If hy is a polynomial hash under key H and M is a message input, let
hir(M) = ga(H), where gar(z) = S P4 Myapt2~i € Flz] and H € F (as in
Sect. 2.1). Now let ¢(z) = Zf:ll ¢;xPT2~" € F[z] be a polynomial with constant
term zero, such that ¢(H) = 0. Then

hag(M) = gu(H) = gu(H) +q(H) = guyq(H) = hg(M + Q),

where Q@ = q1 || g2 || ... || ¢ and the addition M + @ is done block-wise!. Tt
follows that given a polynomial ¢(z) satisfying these properties, it is straightfor-
ward to construct collisions for the hash function. In fact, we have that ¢(z) is
in the ideal (2 — Hz), and any polynomial in this ideal can be used to produce
collisions. On the other hand, collisions in the hash function correspond to MAC
forgeries, by substituting the original message for the one that yields a collision
in the polynomial hash. Thus this method allows an adversary to create forg-
eries when they have seen a tuple of (nonce, message, tag), by simply modifying
the message, as above. Saarinen’s cycling attacks [37] are a special case of this
attack. Forgeries for GCM and variants are presented in [36]. Later, an efficient
method for constructing forgery polynomials which have disjoint sets of roots
(i.e. keys) was proposed in [2].

3 Partitioning Oracle Attacks

Partitioning oracles, introduced by Len et al. [31] are a class of decryption error
oracles which, conceptually, take a ciphertext and return whether the decryption
key belongs to some known subset of keys. This allows an adversary to speed up
an exhaustive search by querying multiple keys at once; in effect, partitioning
the key space. The approach of [31] relies on two conditions: (1) the non-key
committing property of polynomial hash based AE schemes is exploited to craft
targeted “splitting” ciphertexts that will decrypt under multiple keys; and (2) a
decryption oracle that reveals whether decryption (with the user’s key) of such
a splitting ciphertext succeeds or not.

! The shorter message is zero-padded if required.
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Abstractly, a partitioning oracle will (in the optimal case) allow a binary
search of the key space, giving a logarithmic improvement over naive exhaustive
search. This requires being able to query half the keys in the key space. In
practice however, there is a limit to the number of keys that can be queried at
once — e. g. for AES-GCM, messages are required to be less than approx. 64GB
(239 — 256 bits [20]), and applications may impose further restrictions depending
on context. Nevertheless, as shown in [31], it is still possible to launch practical
attacks by combining partitioning oracles with knowledge of non-uniform key
distributions, which arise in particular when human memorable passwords are
used to derive keys, and can be estimated from password breaches [33].

We note that the conditions for a partitioning oracle attack can be satis-
fied with weak key forgeries, following the work of Procter and Cid [36] (see
Sect. 2.4). Weak key forgeries require a valid ciphertext to construct the forgery;
a crucial difference to [31], which considers adversaries that only have access to a
decryption oracle. In practice this is a limitation of the adversary that does not
tally with observed adversarial strategies against censorship evasion [14,39]. We
thus extend the model by allowing an adversary to obtain valid ciphertexts from
chosen plaintexts, a standard adversarial model for AE. In fact, this assumption
is stronger than required; as we later show, adversaries with only “machine-in-
the-middle” capabilities can carry out effective partitioning oracle attacks using
weak key forgeries. Known and chosen plaintext capabilities lead to more pow-
erful attacks, as we briefly describe in Sect.5.1.

Example: Generic Encryption. Consider a client and server communicating
with end-to-end encryption, using an AEAD scheme and a shared key k derived
from password pw. The client encrypts message P (together with any associated
data D), using key k and nonce N to obtain a ciphertext tag pair (C,T) «—
AuthEncg (N, D, P). The conditions for a partitioning oracle attack are met if the
server reveals whether or not decryption succeeds; it might for example output
an observable error message, or reveal the information via a side-channel.

Example: Password-Authenticated Key Exchange. A Password Authen-
ticated Key Exchange (PAKE) is a cryptographic key exchange protocol in which
a client authenticates to a server using a password pw that the server has stored
(as the equivalent of a hash). Len et al. show how to launch a partitioning ora-
cle attack against OPAQUE, a modern PAKE protocol currently undergoing
standardisation. OPAQUE uses an AEAD scheme as a component, and Len et
al. show the necessity of the AEAD scheme being key-committing by consider-
ing deviations from the specification in some early prototype implementations.
OPAQUE works by composing an oblivious PRF with an authenticated key
exchange; Len et al. s attack relies on the fact that the server sends a cipher-
text C encrypted using the password during an execution of the protocol.
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3.1 Attack Abstraction: Formal Definition of a Partitioning Oracle

Following [31], we consider settings in which an attacker targets AE and seeks
to recover a user’s key k € K, where the key is deterministically derived from
secret password pw € D. We write K (D) C K for the set of keys derived from
passwords and k(pw) € K(D) to denote a key derived from password pw. The
attacker is given access to an interface that takes as input ciphertext C', and
outputs whether or not the ciphertext decrypts correctly (passing any format
checks) under the user’s key k(pw). The attacker is further given access to an
interface that will encrypt plaintexts of the attacker’s choosing and return the
ciphertext. This set-up represents a “partitioning oracle” if it is computationally
tractable for the adversary, given any set K C K (D), to compute a value C
that partitions K into two sets K* and K\ K*, with |K*| < |K\ K*|, such that
AuthDec;,(C) # L for all k € K* and AuthDec,(C) = L for all k € K\ K*.
We call such a C' a splitting ciphertext and refer to |K*| as the degree of C.
We distinguish between targeted splitting ciphertexts, where the adversary can
select the secrets in K*, and untargeted attacks.

In general, the definition can be applied to arbitrary cryptographic function-
alities by considering a Boolean function f that takes as input a string and a
key, returning 1 if some cryptographic operation succeeds and 0 otherwise. The
attacker has access to an interface that takes as input a bit string V', and uses it
plus k to output the result of some Boolean function fi : {0,1}* — {0,1}. Here
fr is an abstraction of some cryptographic operations that may succeed or fail
depending on k and V; set fi.(V) =1 for success and f (V) = 0 for failure. We
note that partitioning oracles may output more than two possible outputs, for
example if there are multiple distinguishable error messages, following [17].

3.2 Multi-Key Contingent Forgeries

Central to launching a partitioning oracle attack is the ability to craft splitting
ciphertexts. This is formalised in the notion of “Targeted Multi-Key Contingent
Forgeries”, which quantifies an adversary’s advantage in crafting splitting cipher-
texts against a particular AEAD scheme, with oracle access to encryption. Our
definition is a slight generalisation of the “Targeted Multi-Key Collision” notion
from [31]; their notion can be obtained from ours by removing the adversary’s
encryption oracle.?

Targeted multi-key contingent forgery resistance (TMKCR) security is
defined by the game given in Fig. 1 (left). It is parameterised by a scheme AEAD
and a target key set K* C K. A possibly randomised adversary A is given input
a target set K* and must produce nonce N*, associated data D* and cipher-
text C* such that AuthDecy(N*, D*,C*) # L for all k € K*. We define the
advantage via

AdvAEAS k- (A) = Pr [TMKCRAgAD g+ = 1] (2)

2 We hope the reader forgives our abuse of nomenclature; although we refer to both
notions as TMKCR, ours is a (slight) generalisation of Len et al. ’s, and we use the
term “key contingent forgery” to encompass both.
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where “TMKCR“A“EAD’K* = 1”7 denotes the event that A succeeds in finding
N*, D*, C* that decrypt under all keys in K*. The event is defined over the
coins used by A.

We can define a similar untargeted multi-key contingent forgery resistance
goal, called MKCRX‘EAD’N. The associated security game, given in Fig.1 (right),
is the same except that the adversary gets to output a set K* of its choosing in
addition to the nonce N*, associated data D*, and ciphertext C'*. The adversary
wins if |K*| > & for some parameter £ > 1 and decryption of N*, D* C* succeeds
for all k € K*. We define the advantage via

AdV?é(/_\CDr,n(A) =Pr [MKCRZ\‘lEAD,n = 1] (3)

where “MKCRA“EAD’ .. = 1”7 denotes the event that A succeeds in finding K* and
N*, D*, C* that decrypt under all keys in K*. The event is defined over the coins
used by A.

Game TMKCRAEAD x+ Game MKCRAtap,

require K* C K K* s A(k); require K* C K and |K*| > &

ks KN« 0 k+s KN <0

(N*,D*,C") = A% (K*) (N*,D*,C*) + A®Bne(K*)

stop with [AuthDecy(N*, D*,C™) # 1] stop with [AuthDecy(N™, D*,C™) # 1]
Oracle Ogn(N, D, P) Oracle Ogn.(N, D, P)

require N ¢ N require N ¢ N/

N &N N &N

return AuthEncy (N, D, P) return AuthEnci (N, D, P)

Fig. 1. Games modelling (targeted) multi-key contingent forgery resistance for an
AEAD scheme. Note that in both cases, an adversary that can produce a cipher-
text C™ that decrypts under every key in K* will win the game with probability 1.
Left: Targeted Multi-Key Collision Resistance. Right: Multi-key contingent forgery
resistance, a weaker notion which lets the adversary choose the set of target keys K*.

4 Partitioning Oracle Attacks from Weak Key Forgeries

At a high level, our attack works as follows: Construct key-contingent forgeries
from captured ciphertexts using weak-key forgery techniques and submit these
to a decryption oracle; that is, an oracle that reveals whether a ciphertext is
accepted or rejected. The weak key forgery ensures that the ciphertext will only
be accepted if the user’s key is in the set of weak keys.

More specifically: (1) In an offline phase, the adversary pre-computes a set
of ciphertext masks. Each mask corresponds to a set of passwords to be tested.
(2) In an online phase, the adversary intercepts a ciphertext and, using a cipher-
text mask, constructs a key-contingent forgery which it forwards to the parti-
tioning oracle. Observing whether or not the key-contingent forgery is accepted
reveals whether or not the user’s key is in the set of target keys corresponding to
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the ciphertext mask. Our attack relies on the ability of the adversary to act as a
“machine-in-the-middle” between sender and receiver. We first give an abstract
description of a key contingent forgery consisting of ¢ ciphertext blocks which
encompasses two special cases: a targeted key-contingent forgery testing £ keys,
(Sect.4.1); and a targeted forgery passing format requirements on underlying
plaintexts, (Sect.4.2).

1. Offline phase. The attack takes a set of target keys K* = {K3,...,Ky_1}
as input and outputs a ciphertext mask. We note that one key is lost per

ciphertext block that is not a free variable.
(a) First derive the associated authentication (GHASH) keys by setting H* =

{Ek(0128)|k: cK'}.
(b) Set q(x Zqz Fi=g [ @oH).

2. Online phase. The online phase takggl as further input a valid nonce, cipher-
text, tag tuple (N,C,T) and outputs a key-contingent forgery consisting of
tuple (N, C, T). The key-contingent forgery is forwarded to the partitioning
oracle. In what follows, we assume that £ — 1> p = flen(C/lZSﬂ
(a) First parse the captured ciphertext as C'= Cy || --- || Cj, i.e., as blocks

of the appropriate length. Let a = len(C) @ len(C) and [ be constants.
Now set ¢/(z) = Y2001 ¢ - 27271 = (a @ bx) - ¢(x), with

a=a-q, andbzﬂ-q51®a-q1-qgl-q[1. (4)

Set Q" =¢q) || --- || ¢;- Note that ¢, , = qo-a = a and ¢} = a-q1Db-q2 = f3.
This step can take place offline if len(C) is known in advance.

(b) Let ¢ = C* @ @', where C* = 028 || ... | 0'28 || Cy || --- | C, denotes

the ciphertext C' padded (pre-pended) with blocks of zeros to match the
length of Q’. As ¢ > p + 1, at least one block of padding is pre-pended.
Note that if the user key k € K* U {K,} U {0}, where K, = a - b~ !, then
for H = E;(01%8),

hg(C)=1en(C)-HaCl -H*@Coy -H? @ -0 Cy - H'H
=(a@len(0) Ho (Cyoq) -H @ @ (0 @q) H
= q/(H) @ hy(C).

Consequently, the tag is a valid forgery and AuthEncy (N, e, C’) # 1

4.1 Targeted Key Contingent Forgery Testing £ keys

We first consider key contingent ciphertext forgeries that test ¢ keys with no
restrictions on the format of the underlying plaintext. Setting 8 =a-qo- H, lg
a-q in Eq. (4) for Hy = Ek,(0'%8) gives a = b- H,. Thus,

¢(x)=b-(x+ Hy) x- H (xr®dH)=0bz- H (x® H).

HeH HEH*U{H,}

The ciphertext forgery C is a valid forgery if k € K* U K, U{0}. Thus, we are in
effect able to test target key sets of size |[K*| +1 = ¢.
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Performance. The attack description above is for a fixed set of target keys
K*; in practice, an attacker would prepare a collection of ciphertext masks cor-
responding to disjoint target key sets {K}};cr, such that p;1 > p; for all 4,
where p; denotes the aggregate success probability of target key set K!. Given
n = |K*| hashing keys, the coefficients of the polynomial ¢(z) can be computed
using O(n?) time and O(n) space. We note that the offline phase need only occur
once, allowing the adversary to amortise the upfront cost of pre-computation over
multiple targets. This is especially useful in cases where generating target keys
from passwords is particularly slow.

In the online phase, splitting ciphertexts are then submitted in order until
a query is successful; we note that a negative result is returned immediately.
For a successful query, we know that the key k € K} for some particular 4.
As our result relies on pre-computation to be practical, in order to perform a
binary search on K} appropriate forgery masks would have to be pre-computed
— this would require O(nlogn) space. In most cases it is probably more efficient,
once an adversary knows that £ € K, to perform the first few iterations of
a binary search (having precomputed the necessary values) before switching to
trial decryption of C with each key in K}. We assume that the cost of querying
a ciphertext is low and that either (1) there is a steady supply of ciphertexts to
intercept or (2) it is possible to reuse the same nonce — the server may or may
not enforce unique nonces depending on context. Regarding point (1), we note
that a common adversarial model introduced by the BEAST attack [19] gives
an attacker the ability to inject arbitrary plaintexts via client-side JavaScript in
some window in the user’s browser (see e.g. [5,6,15]).

Our attack is limited to scenarios where keys are deterministically derived
from passwords; that is, if passwords are salted (using randomly generated salts)
then pre-computation is no longer feasible. This highlights the fact that whilst
salts are not secret values, they should be unpredictable when used to derive
encryption keys from passwords, in a direct analogue to password storage. Better
security in any case is obtained by using password authenticated key exchange
protocols such as [26], rather than deriving session keys statically from pass-
words.

4.2 Targeted Key Contingent Forgery Passing Format Checks

The targeted multi-key contingent forgery attack from the previous section
results in ciphertexts that decrypt under the user’s key to plaintexts that are
“garbage”. This is a problem in cases where plaintexts are required to meet
some format check. The most common form of format check will be a header
field containing (for example) protocol data, sender and receiver addresses, serial
numbers or integrity check values. The weak key forgery method of [36] allows
full control over the underlying plaintext, with the caveat that the ciphertext
forgery represents an (untargeted) multi-key contingent forgery — for every block
of underlying plaintext that is part of the format check, the number of targeted
keys being tested will decrease by one, with one extra untargeted key gained.
In practice this will not make much difference: usually, the prefix is designed
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to be as short as possible, which means one or at most two blocks. We would
typically expect splitting ciphertexts of degree ~500 so that losing one or two
blocks represents only a small fraction of the total.

Let us assume that the captured nonce, ciphertext, tag tuple (N, C,T') corre-
sponds to some underlying plaintext matching the (known) required format. For
concreteness, assume that the first block of plaintext (respectively, ciphertext)
corresponds to the format to be checked. This means that we need to leave the
first block of plaintext unchanged. We thus set 8 = C; @ 0 in Eq. (4) and note
that the method may easily be adapted to “flip bits” in the underlying plaintext
by using a suitable value of 8 = Cy @ §; furthermore, it is straightforward to
extend the method to deal with multiple blocks. By construction, C’l =q¢; =5,
which gives C = Cy || Cy || --- || Cy, i.e., a ciphertext forgery C' with the
same first block of ciphertext (and thus underlying plaintext) as the original
intercepted ciphertext C. Note that we gain K, = a - b~! as an untargeted key.

Len et al. [31] show how to craft (untargeted) multi-key collisions to pass for-
mat checks with fixed prefixes, however their method is impractical for prefixes
longer than a couple of bytes; in contrast, our method can easily be applied to
arbitary prefixes and is targeted. Lastly, we observe that this method circum-
vents the key committing “padding fix” discussed in Sect. 2.3, i. e., to prepend a
constant string to messages before encrypting. The ability to control underlying
plaintexts in this way allows an attacker to apply partitioning oracle attacks
using weak key forgeries where attacks based on exploiting non-committment
are infeasible.

5 Partitioning Oracle Attacks Against Shadowsocks

Originally written by a pseudonymous developer, Shadowsocks [1] is an
encrypted proxy for TCP and UDP traffic, based on SOCKS5. Shadowsocks
was first built to help evade censorship in China, and it underlies other tools
such as Jigsaw’s Outline VPN. To use Shadowsocks, a user first deploys the
Shadowsocks proxy server on a remote machine, provisions it with a static pass-
word and chooses an encryption scheme to use for all connections. The most
up-to-date implementations only support AEAD schemes for encryption, with
the options consisting of AES-GCM (128-bit or 256-bit) or ChaCha20/Poly1305.
Next the user configures the Shadowsocks client on their local machine, and can
then forward TCP or UDP traffic from their machine to the Shadowsocks proxy
server.

Len et al. [31] showed how to build a practical partitioning oracle attack
against Shadowsocks proxy servers. At a high level, their attack exploited the
non-key committing property of the AEAD schemes used, making it possible to
craft ciphertexts which decrypt correctly under a set of target keys. Furthermore,
the attack exploits the fact that the proxy server opens an ephemeral UDP port
in response to a valid request (and otherwise does not) which reveals whether
a ciphertext has been accepted or rejected. The attack depends on a particular
configuration: password derived keys and UDP traffic. As a response to [31],
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users are advised to mitigate against the attack by generating good quality
passwords and disabling UDP mode [7]. In this section, we first describe the
Shadowsocks protocol and the partitioning oracle attack of Len et al. , before
going on to describe how weak key forgeries can be used to launch a partitioning
oracle attack. We note that whilst our attack is rendered impractical by the per-
message salt used in the Shadowsocks protocol, a description of a hypothetical
attack still offers a useful case study, which we describe below.

The Shadowsocks Protocol. The client starts by hashing the user pass-
word pw to obtain a key k = h(pw). The client then samples a random sixteen-
byte salt s and computes a session key ks «— HKDF(k, s, info) using HKDF [29],
where info is the string ss-subkey. A new salt and session key are generated
for every message. The client encrypts its plaintext payload P by computing
C — AuthEncy_(Z, ¢, flag || ip || port || payload) where Z denotes a nonce set to a
string of zero bytes (12 for AES-GCM); the value ¢ empty associated data; and
flag is a one-byte header indicating the format of ip with the following conven-
tion: flag = 01 indicates that ip is a 4-byte IPv4 address, flag = 03 indicates that
ip consists of a one byte length and then hostname, and flag = 04 indicates that
ip is a 16-byte IPv6 address. The port field port is two bytes long. The client
sends (s, C) to the server via UDP. If the client is using TCP, the process is the
same except that the ciphertext is prefixed with a two-byte encrypted length
(and authentication tag) before being sent to the server via TCP.

When the Shadowsocks server receives (s, C), it extracts the salt and uses it
together with pw to re-derive the session key k. It decrypts the remainder of the
ciphertext with k. If decryption fails, no error message is sent back to the client.
If decryption succeeds, the plaintext’s format is checked by verifying that its first
byte is equal to a valid flag value. If that check passes, the next bytes are inter-
preted as an appropriately encoded address ip, and two-byte port number port.
Finally, the rest of the payload is sent to the remote server identified by ip and
port. The proxy then listens on an ephemeral source UDP port assigned by the
kernel networking stack for a reply from the remote server. When Shadowsocks
receives a reply on the ephemeral port, the server generates a random salt and
uses it with pw to generate a new session key. It then encrypts the response, and
sends the resulting salt and ciphertext back to the client. The same encryption
algorithm is used in both directions.

The Attack of Len et al. The proxy server opens an ephemeral UDP port in
repsonse to a valid request (and otherwise not). One can view this as a remotely
observable logical side-channel that reveals whether decryption succeeds. The
attacker starts with knowledge of a password dictionary D and an estimate p
of the probability distribution over keys in the dictionary. The attack has two
steps, a pre-computation phase and an active querying phase.

In the pre-computation phase, the attacker chooses an arbitrary salt s and
derives a set of session keys K = K(D) by k% « HKDF(h(pw,), s, ss-subkey)
for all pw,; € D; the nonce is set as a string of all zeroes. The adversary then
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outputs a ciphertext C of length 4093 (to meet the length restriction imposed
by Shadowsocks servers) and a set K* of 4091 keys such that C decrypts under
every key in S to give a plaintext with first byte 01. We gloss over the details of
how C'is constructed and refer the reader to [31]; we note that the construction
is not a targeted multi-key collision.

In the querying phase, the attacker then submits (s*, C*) to the proxy server.
Should the user’s key be in the set of target keys, k(pw) € K*, the server will
interpret the decrypted plaintext as a 01 byte followed by a random IPv4 address,
destination port, and payload. The IPv4 and destination port will be accepted
by the server’s network protocol stack with high probability, and so the server
will send the payload as a UDP packet and open a UDP source port to listen
for a response, which the attacker can observe by port scanning.

5.1 Partitioning Oracles from Weak Key Forgeries

We now describe how to launch a partitioning oracle attack using weak key
forgeries against Shadowsocks (in the same configuration as the attack of Len
et al. described above). As noted above, our attack is impractical as session
keys are salted on a per-message basis in the Shadowsocks protocol, making pre-
computation of forgery masks infeasible. Nevertheless, a weak key forgery parti-
tioning oracle attack against Shadowsocks is an instructive case study, demon-
strating the feasibility of the approach and allowing us to point out some interest-
ing features; in particular, we are able to construct targeted multi-key contingent
forgeries that meet arbitrary format requirements as we explain below.

Basic Version. We separate the attack into two steps, a computation phase
and an active querying phase. The attacker starts with knowledge of a password
dictionary D and an estimate p of the probability distribution over keys in the
dictionary and then intercepts a salt, ciphertext tuple (s, C).

In the computation phase, the attacker first chooses a set of passwords D*
with |D*| = 4092, such that the set has the maximum aggregate probability
according to p. The attacker then derives a set of session keys K* from the salt s
and set of passwords D* by k! «— HKDF(h(pw,), s, ss-subkey); the nonce is
set as a string of all zeroes. Using the weak key forgery method described in
Sect. 4.2, the attacker outputs a ciphertext C of length 4093 (to meet the length
restriction imposed by Shadowsocks servers) such that C decrypts under the
users key k if k € K*. Furthermore, the underlying plaintext P « AuthDecy (C’)
passes the format check.

In the querying phase, the attacker then submits (s, C*) to the proxy server.
Should the user’s key be in the set of target keys, the server will interpret the
decrypted plaintext as flag || ip || port || payload; that is, an IP address, destina-
tion port and payload. Note that these are unchanged from the original plaintext
that was sent by the user, so will be accepted by the server’s network protocol
stack. The server will send the payload as a UDP packet and open a UDP source
port to listen for a response, which the attacker can observe by port scanning.



Partition Oracles from Weak Key Forgeries 57

Extension 1: Redirection (Known Plaintext Attack). If the attacker
knows the first 7 bytes of an underlying plaintext, which we write as prefiz,
then they can use the weak key forgery technique to redirect the user’s payload
to arbitrary destinations. In particular, the first 7 bytes can be modified to give
01 || ip’ || port', with ip’ a four-byte IPv4 address, and port' a two-byte desti-
nation port. This is the idea behind Peng’s “redirect attack” [22,34], discovered
in February 2020, which exploited the use of stream ciphers without integrity
protection in the Shadowsocks protocol. Obtaining plaintexts with known prefiz
is relatively easy in the server to client direction, as many common server proto-
cols start with the same bytes (e.g. HTTP/1. for HTTP). In the client to server
direction, underlying plaintexts will be in the format [destination][payload], so
that the adversary needs to know the target address (and its encoding), per-
haps through injecting plaintexts via client-side JavaScript in some window in
the user’s browser [5,6,15,19]. Note that if an adversary is able to launch cho-
sen plaintext attacks, they could target the TCP configuration of Shadowsocks
(the recommended option) by crafting plaintexts with the maximum length to
overcome the fact that for TCP the length is sent encrypted together with the
encrypted payload.

The adversary intercepts a ciphertext C from server to client, and using
weak key forgery techniques modifies C' to give a splitting ciphertext C' whose
underlying plaintext begins with prefir’ = 01 || ip’ || port, i.e., an address that
the adversary controls. The splitting ciphertext is then sent to the Shadowsocks
server: if the splitting ciphertext is accepted, the payload is sent to the adver-
sary, revealing that the user’s key is in the set of target keys associated to C. To
produce C, we modify the basic attack above as follows: when it comes to con-
structing the weak key forgery mask, following the technique outlined in Sect. 4.2,
we use a non-zero value of 3 in Eq. (4); specifically, 3 = prefiz® (01 || ip’ || port'),
interpreted as an element of Foi2s. The effect is to flip some bits in the 7-byte
prefix prefiz, so that we obtain the attacker’s address prefir’.

We note that this attack allows the adversary to efficiently and reliably deter-
mine whether the ciphertext has been accepted; it is no longer necessary to scan
the server for open ports, which is time consuming and not necessarily com-
pletely reliable. Furthermore, if the splitting ciphertext is accepted, the adver-
sary receives the payload payload which means that it can efficiently test target
keys against the ciphertext by encrypting one block of plaintext and checking
whether it matches. Without this, the adversary would need to calculate the
authentication tag of the captured ciphertext for each target key.

Extension 2: Bypassing the Padding Fix. As discussed in Sect. 2.3, prior
work on non-key committing AEAD schemes showed that applying a “padding
fix”, that is prepending a fixed constant string to underlying plaintexts, trans-
forms the scheme to be key-committing. Applying a padding fix is recommended
by Len et al. as a way to mitigate against partitioning oracle attacks; however, a
partitioning oracle attack using weak key forgeries will still be successful despite
that mitigation. To see this, we simply modify the description of the “basic
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attack version” in the previous subsection to leave one further block unaltered,
at the cost of testing one less key per ciphertext C. We note that the reason that
our attack impractical is due to the salting of passwords to derive per-message
ephemeral keys, rather than because of the non-key committing property of the
AEAD scheme used.

5.2 Other Proxy Servers (VPNs)

Virtual Private Networks (VPNs) are often used to achieve similar objectives to
Shadowsocks (allowing a user to access the internet via a proxy server), although
Shadowsocks was designed specifically to circumvent internet censorship, which
is not part of the threat model for VPNs. VPNs allow users to interact with what
appears to be a private network, despite the interaction taking place over a public
network (typically, the internet). This is achieved by encrypting packets in transit
so that the contents are hidden from the public network. VPNs have a number
of applications, including enabling users to remotely access local resources, or
allowing individuals to improve their anonymity and privacy online (by masking
their IP and hiding their traffic). Users connect to a proxy server via an encrypted
tunnel, and the proxy server acts as an intermediary for the client and the
internet (or a portion thereof). The most widely used protocols for VPNs are
TLS and the IPsec protocol

At a high level, IPsec works as follows: the user first composes a TLS packet
that will be sent to the end destination. This is encapsulated in an IPsec Encapsu-
lating Security Payload (ESP) packet in tunnelling mode, which essentially adds
a header and encrypts the whole packet to give a ciphertext C'. This encrypted
packet C' is sent to the proxy server, where it is decrypted to recover the under-
lying TLS packet. The proxy server now forwards the TLS packet to its intended
destination. There are many configuration options for how the user and proxy
server authenticate and/or encrypt the ESP packets, including to provision the
user and proxy server with static keys [28]. This is known as “manual man-
agement”, and is suited to small static environments. However, the standard
does not allow AES-GCM (or ChaCha20-Poly1305) with manual keys, although
they are available in other configurations, due to concerns over the brittleness
when a nonce/key combination is reused. AES with HMAC is preferred, which
happens to be both key-committing and not vulnerable to weak key forgeries.
Similarly, OpenVPN disallows AEAD cipher mode with static keys to avoid the
insecurity of potential nonce/key reuse. We have thus not been able to find any
vulnerable applications “in the wild”, but note that partitioning oracle attacks
are theoretically possible against implementations incorrectly deviating from the
specification.

6 Conclusions

Prior work demonstrated that key commitment is an important security property
of AEAD schemes. Our results suggest that resistance to weak key forgeries
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should be considered a related design goal to key-commitment, particularly in
settings that are vulnerable to partitioning oracle attacks. Concretely, our results
demonstrate — in contrast to the suggestions of prior work — that structured
underlying plaintexts (e.g. packet headers that prefix every plaintext message, or
an appended block of all zeros) is not a sufficient mitigation against partitioning
oracle attacks. Lastly, our results reinforce the message that weak passwords
should never be used to derive encryption keys.
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A ChaCha20-Poly1305 AEAD Scheme

Poly1305 is similar to GHASH, and to form AEAD schemes it is most commonly
combined with the ChaCha20 stream cipher [13], although Poly1305-AES is also
an option [12]. For concreteness, we will give a description of ChaCha20-Poly1305
and note that the differences are trivial.

ChaCha20-Poly1305 encryption takes as input: a 32-byte ChaCha20 key k, a
12-byte nonce NNV, plaintext P and additional data D. With this input, ChaCha20-
Poly1305 returns a ciphertext C (the same length as the plaintext) and an
authentication tag T of length 16 bytes. From here on, we will omit the asso-
ciated data for simplicity. First, the plaintext is divided into 64 byte blocks,
except perhaps for a partial final block, and encrypted using the ChaCha20
stream cipher, under key k.

The authentication tag is next computed from a polynomial evaluation hash
in the finite field Fois0_5. The ciphertext to be hashed is divided into 16-byte
blocks with any partial final block zero-padded to 16 bytes. We denote by L
an encoding of the (unpadded) ciphertext and additional data. Each block is
encoded as an integer modulo 2'3° — 5 by first appending 0x01 to each block,
and interpreting the resulting block as a little-endian integer X;.

The authentication tag is computed from a polynomial evaluation hash (in
Fais0_5). First we derive the hashing key r and the pseudo-random one time
pad s: the first 32 bytes of H = E(Np || N) is divided into two 16-byte strings
and s. Here Ny represents 0 encoded as a 4-btye little-endian integer.

The hashing key r is obtained from the string 7 by setting some of the bits
to zero in a process referred to as “clamping”; we gloss over the specific details.
The hash function is then computed as

h(C)=L-1®Ch -1 @Cpy -1 @ ®Co 1P ®Cy - 1P

where all operations are in Fais0_5, and C}; denotes the last zero-padded block.
The authentication tag is given by:

T =(s®h.(C)) mod 28,
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where s and h,.(C) are interpreted as elements of Foizs, and the result as an

integer modulo

2128
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Abstract. Leveraging on function-hiding Functional Encryption (FE)
and inner-product-based matching, this work presents a practical
privacy-preserving face identification system with two key novelties:
switching functionalities of encryption and key generation algorithms
of FE to optimize matching latency while maintaining its security guar-
antees, and identifying output leakage to later formalize two new attacks
based on it with appropriate countermeasures. We validate our scheme
in a realistic face matching scenario, attesting its applicability to pseudo
real-time one-use face identification scenarios like passenger identifica-
tion.

Keywords: Biometric matching - Face identification *+ Functional
encryption - Privacy-preserving technologies

1 Introduction

The field of Biometrics studies physical and behavioral human characteristics to
digitally identify a person. The most commonly used biometric traits are face,
iris and fingerprint [16]. Biometrics are used in modern identification systems
such as personal (mobile and laptop) authentication, identification for public
administration, or border control/passenger identification in the travel industry.

However, biometric data acquisition and processing raises privacy concerns.
Since biometric traits cannot be modified or re-issued, its protection is deemed
indispensable. Furthermore, data protection regulations enforce strict limitations
over usage and storage of biometrics data. While standard cryptography allows
secure storage and transmission, secure processing requires advanced crypto-
graphic techniques such as Fully Homomorphic Encryption (FHE) [9], Multi-
party Computation (MPC) [17,19] and Functional Encryption (FE) [4].

This work uses FE to protect the biometric matching step with local out-
put decryption. While FE is costly for arbitrary function evaluations, the inner
product computed for a matching can be efficiently implemented using FE.
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We present a face identification solution built on FE-based private inner prod-
uct matching, with the key novelties of optimizing matching latency by switching
functionalities of encryption and key generation FE algorithms, and identifying
two attacks based on inner product output leakage coupled with suitable coun-
termeasures. The paper is outlined as follows. Section 2 describes the Biometric
Matching and FE preliminaries. Section 3 details the proposed solution, architec-
ture and characteristics. Section 4 covers a security analysis. Section 5 comprises
implementation and experiments. Section6 addresses previous work and posi-
tions our contribution.

2 Preliminaries

Biometric systems are pattern recognition systems that establish the authen-
ticity of a specific physiological or behavioral user’s characteristic. To do so, they
scan and compress biometric traits into succinct representations called biometric
templates, and perform comparisons between templates.

Enrollment Matching

T(? Reference Live Biometric Q
) . . . .
oy Biometric trait _ trait

M=

s [ Sensor
DO Sensor | RN 2 ensor
L pre—— Feat. Extr. |&:
Feature Similarity
® extractor l:lor 1N Live biometric ("3
v (biggest)| score template
e 2 1 Reference Reference
LQJ biometric template * Template DB >4 <6
Match Reject

Fig. 1. Diagram of a standard biometric system

Biometric systems present two distinct phases, illustrated in Fig.1. The
enrollment phase, where reference templates are acquired and stored in a
database, and the matching phase, when a live template is captured and matched
with the reference templates yielding a positive result if the similarity score is
higher than a fixed threshold d. Depending on the number of reference templates,
we can have two scenarios: Verification (a.k.a. Authentication) for 1:1 matching,
and Identification for 1:N matchings. Receiving its input image from a capture
sensor, the feature extractor component for face biometrics is nowadays based
on Deep Learning models applied to Vision [2,7,8]. The resulting templates are
normalized and matched using an inner product as similarity metric.

The face identification scenario we study on this work leads to two practical
considerations. First, high numerical precision is paired with low error rates
but privacy-preserving techniques support only integer operations. Secondly, NV
identities in the DB imply N similarity score computations for a matching,
creating a natural bound to IV so that an end-to-end identification be performed
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in pseudo real time, which we set to up to 5s. We exemplify the applicability of
this work in a use-case of identification for transport boarding, requiring one-
time-per-passenger identification of tens to low hundreds of individuals.

A Functional Encryption (FE) [4] scheme is a public-key encryption
scheme where a “master” secret key msk is used to derive “functional” secret
keys sky, allowing decryption for a certain function evaluation F'(k,x) on inputs
x previously encrypted with public key pk without revealing anything else about
them. Only a handful of functions F' efficiently are supported by FE schemes.
The inner dot product x - y between two vectors x,y € ZX is one of them [1].

We remark that there is no restriction to what the functional secret keys sky
reveal about the function parameters k. For inner products where F(k,x) = x -
Y&, ski reveal yi, one of the two biometric templates. We thus resort to Function-
Hiding inner product encryption (FHIPE) schemes [12], which guarantees that
sky, hide the underlying vectors yi. These are its four algorithms:

pp, msk «— FE.setup(1?) generates public parameters pp and master
secret key msk given security parameter A

sky «— FE.keygen(msk,y) generates functional secret keys sk, for input
y using master secret key msk

¢z — FE.encr(msk,x) encrypts message x with master secret
key msk into ciphertext c
z «— FE.decr(pp, sky, cz) evaluates z = x - y from ciphertext ¢, and

functional secret key sk, using pp

3 Our Solution

Security Goals. We begin by establishing the security goals of our solution:

— Privacy of all templates. The enrollment phase should store reference tem-
plates in a privacy preserving manner still allowing inner products. Likewise,
extracted live templates should support the inner product computation while
remaining private for any other use. This is a standard by-design security
goal of FE, already covered by the FHIPE scheme [12] of our solution.

— Protection against inner product leakage. FE schemes do not treat
the inherent leakage of the reference template when computing several inner
product operations with it. We formalize the newly identified output leakage
below, and develop two practical leakage-based attacks in Sect. 4: full refer-
ence template extraction and brute-force impersonation. Usually overlooked in
the secure computation literature, we stress the importance of this leakage in
our face identification scenario, where multiple inner products are computed
over the same reference template. To protect against them, we establish a
carefully selected limit to the total number of identification requests in our
solution.
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Definition 1 (Inner Product Leakage). For a single call to x -y, an inner
product of two vectors in Z¥, we define function leakage v as the inverse of
the minimum number p of calls required to unequivocally determine an unknown
input y from known inputs x; and known outputs z; = x; -y Vj € N;j < p.
As an extension, for n inner product calls we define accumulated leakage to be
I=mnx*xt Withi>1, the unknown input y is revealed.

Threat Model. We consider a semi-honest adversary corrupting the similarity
score operation and all steps after that, seeking to obtain as much information as
possible from the inputs but preserving their integrity. We consider the adversary
to have oracle access to the matching phase, thus being able to submit chosen
live biometric samples. Our system is built with trust on the enrollment and the
capture modules, for they receive the msk which can decrypt any ciphertext.

T T R e e e e e e e e i\
Sensor @ ;
rea ! FE.keygen(msk,y; : 3
‘ . & OFE. keygen(msk, y;) 3
- Feature LY o
Reference extractor Reference ; 3
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Fig. 2. Architecture of our secure face identification system based on FE

Swapping FE.encr with FE.keygen. The original FHIPE scheme (Sect. 5.1
of [12]) and posterior works based on it [11] use the function-hiding F'E.keygen
functionality to protect the live template (step 3 in Fig. 2), keeping F'E.encr for
the stored templates (step 2 in Fig. 2). We observe that, given the dual nature of
the FHIPE scheme, the same security properties hold if we were to swap them.
This observation is grounded on remark 3.4.5. of [5]: in the game-based IND-CPA
security definition of FHIPE (Fig. 3.10 of [5] or definition 2.1) the adversary and
the oracle follow a perfectly equivalent game. To optimize the matching latency
we employ the fastest functionality for this phase, which happens to be F E.encr
(see Sect. 5), thereby swapping FE.encr = FE.keygen with respect to [11,12].

Limiting the Number of Requests. For templates with K [-bit elements
in Z;, (L ~ 20=1), we limit the number N of identification requests of our
solution to N < K, in order to prevent full reference template extraction due
to output leakage (keeping ¢ < 1, detailed in Sect. 4). We enforce this limit
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via an access control step with open instantiation, which could materialize as
an agent-controlled checkpoint or a one-time token generated in the enrollment.
Furthermore, we add a security margin of 80 bits to hinder brute-force imper-
sonation attacks identified in Sect. 4, leading to a final limit of N < (K — 80/1)
requests.

System Description. We display our solution in Fig.2. In the enrollment
phase, the enrollment module acts as trusted authority to generate msk & pp
and protect N ref. templates by converting them into functional keys sk;. msk
is sent to the capture module, and all sk; along with pp are sent to the matching
module. The matching phase starts with the access control step. The capture
module then gets a live template x and encrypts it into ¢ using msk. Afterwards,
the matching module takes sk; and ¢, computes their privacy-preserving inner
product z; = x - y;, compares the highest score maz(z;) to the threshold J, and
returns a match with the ID/index ¢ of the highest score, or nothing if rejected.

The feature extractor outputs normalized templates t € R{f L1 easily pro-

jected into the FHIPE discrete space Zy by scaling with factor 2! and a trun-
cation to [ bits. The subsequent inner product is naturally up-scaled twice:

f(Xfizayfiw) = foloat * QlJl : Lyfloat * QlJl ~ 22l * f(Xa y)

To compare against the threshold § € [0,1] we upscale 6 twice: 0 = 0 *
221 obtaining an equivalent comparison. This fixed-point translation imposes a
minimum ring size of 2/ bits to avoid overflows. The approximation impacts the
accuracy, since more bits yield more precision, but at the cost of bigger primitives
in the FE scheme and thus worse latency. We study this trade-off in Sect. 5.

4 Security Analysis

This section first covers the template privacy with FHIPE security, then identifies
two novel attacks based on output leakage (Definition 1), proposing countermea-
sures.

Theorem 1. Our system preserves the privacy of the live template and the ref-
erence templates while allowing the inner product similarity computation.

Proof. The security of FE sits upon game-based definitions that prove Indis-
tinguishability against Chosen Plaintext Attacks a.k.a. IND-CPA (IND [1,4])).
The FHIPE scheme of our solution is proven to hold strong SIM-based security
guarantees as per theorem 3.1 of [12], which implies IND-CPA secure in Remark
2.5 of [12]. This directly ensures the privacy of the biometric templates inside
ciphertexts and functional secret keys of our solution. a
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Protection Against Output Leakage. The inner product function, and by
extension all IPE schemes, suffer from output leakage of « = 1/K, for input
vectors of K elements. This leads to a full reference template extraction
attack, where the attacker launches N chosen identification requests and uses
the results to reconstruct a hidden reference template. Indeed the system of NV
linear equations {z; = Zfil X?] xyll j € {1,2,..,N}} for known z; and x;
has a unique, non-trivial solution for the K unknown variables y!! when all
the equations are linearly independent and N > K. In our system (Sect. 3) we
propose the countermeasure of limiting the number N of calls to F to N < K,
ensuring I < 1. This way, the above system of equations is underdetermined; for
yil ez, ={-L,---,-1,0,1,--- L} there are exactly (2% L+1)5~N) solutions.

In addition, IPE-based biometric matching schemes with up to N < K
requests can be subject to a brute-force impersonation attack, where a par-
tially extracted (I < 1) reference template § is used to impersonate its owner.
The attacker first sets the remaining K — N unknown values of ¥ to arbitrary
values and launches several identification requests, so that the FHIPE result
z = ¥ -y might yield z > §, thus matching positive for the identity of y. Beyond
this, the attacker could also resort to prior knowledge of the template space
(obtainable from feature extractors with similar characteristics) and project the
partially extracted template to it, further increasing the chances of a successful
impersonation. To thwart these attacks, we set an additional security margin 7
to the number N of calls to F in our solution (see Sect. 3), so that N < (K —7).
Seeking to increase the number of possible solutions of the above system of equa-
tions to 280 (80 bits), we fix 7 ~ 80/ for template values of I bits (L ~ 2(—1).

125 ibit; in sﬁm: 100% 1 51
J— 1 4 % 1
3 9 < 30% 4]
100 — 4 10 s
= —5 11 o 10% 4 I
- l—c 12 & > 31
:::: 751, 5 39 1 é
® 50/ L 1%d &2 FRR(%) for
z FAR=1075(/ bits)
o — 4.073 (4)
o 1
2.51 +03% ! — 1.998 (5)
1% 4 1.724 (6)
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N = # of ref. templates | = #bits in template element N

Fig. 3. Experimental results on Latency vs number N of identities (left), on precision
vs template element size | (center), and practical trade-off between parameters (right).

Table 1. Latency (seconds) for single-core FE.decr with template elements of ! bits.

l 2 4 6 8 10 |12 |14 |16
FE.decrypt (s) |0.180.18 1 0.19]0.25|0.40 | 1.08 | 3.81 | 14.86
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5 Experiments

We implement our Cython-based solution using the CiFEr [15] library, an Arc-
Face based [7] feature extractor with templates of size K’ = 128. The experiments
were run in an Intel(R) Core(TM) i7-7800X CPU and averaged over 10 runs.
Latency optimization in the matching phase is essential to make our system
practical. Using a single core, we measure FE.setup (step 1) to take 0.35s,
FE.keygen (step 2) requires 0.19s per key, and F E.encr (step 3) demands 0.082s;
thus our proposed swapping reduces the latency of live template protection by
55%. As the only F'E operation depending on the template element size, F'E.decr
latency is recorded in Table 1. The feature extractor clocks 36 + 1 ms. We disre-
gard the latency of the access control step, as its instantiation is left open; and
the max, the comparison with ¢ and the secure transmission for being negligible
compared to the F'E operations. Additionally, we analyze the matching module
in the left Fig. 3 based on the number NNV of identities in our system for a one-time
identification scenario. As per Sect. 4, N is limited to strictly less than the tem-
plate vector length (N < 128) to avoid full leakage of the stored templates, and
a red area marks the additional security margin to thwart brute-force attacks.

Precision is measured with face identification benchmarks using the Labeled
Faces in the Wild (LFW) dataset [10] consisting of 13233 112 x 112pz real face
images of famous people. We employ the widespread False Acceptance Rate
(FAR) and False Rejection Rate (FRR) as metrics'. Typically, robust identifica-
tion systems enforce FAR < 10~*, obtaining a corresponding higher FRR. In the
central graph of Fig. 3, we remark that highly compressed templates maintain
high precision, with little improvement beyond [ = 6.

To close up, the right Fig. 3 presents the best trade-offs in two scenarios:

— Higher precision: Optimizing for low F'RR, setting [ = 5 bits per template
element to support up to 70 identities, with slower matching of up to 5s.

— Many identities, optimizing for high N (up to 100 identities) by setting
I = 4 bits, at the cost of +2% FRR but with faster matching (~4s).

6 Previous Work

The study of IPE started off with selective security in [1], already envisioning
biometric use-cases, and reaching full security with [6,18]. The function-hiding
properties for IPE were introduced in [12], applied to biometric authentication
based on Hamming weight (I = 1). Further works in function-hiding approaches
include [13] and [11]. [3] covers an overhaul of efficient techniques.

The use of FE for privacy-preserving biometrics has also been subject to
intense scrutiny, from [20] for biometric authentication using threshold predi-
cate encryption, to the extreme efficiency of [14]. Whereas these works employ
Hamming-weight based matchings that do not require approximations (typical

! More info in https://en.wikipedia.org/wiki/Biometrics# Performance.
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from fingerprint or iris), our work tackles the cosine-similarity based matching
of face biometrics. [2] covers an exhaustive revision of face recognition, which
includes the LFW dataset [10] and the foundations of our feature extractor [7].

Among the most recent works, [11] proposes a useful acceleration trick for
the FE scheme of [12], by caching all the repetitive computation depending
only of the stored templates, obtaining up to 30% speedups. Much like the
original [12], their function-hiding approach uses F'E.encr for the stored tem-
plates and F'E.keygen for the live templates. Our function-hiding solution swaps
FE.encr = FE.keygen to optimize the latency of the system.

Finally, where all previous works focus on the privacy provided by FE, we
identify and address the IPE output leakage, often overlooked and not covered
by the security guarantees of FE schemes.

7 Conclusions

This work proposes an efficient, precise and privacy-preserving face identification
system based on function-hiding functional encryption. We highlight the inherent
leakage of inner product schemes and identify novel reference template extraction
and brute force attacks. To counter them, we set a hard limit with a security
margin to the number N of identities in the system, adding an access control step
to enforce it. In addition, we optimize the matching phase latency by swapping
FFE.encr and FFE.keygen usage, speeding up the live template protection by
55% while maintaining the FE security guarantees. Finally, we implemented
this system, showing that 4/5 bits per template element are enough to obtain
precise setups that compute matchings against a database of up to 100 identities
in pseudo real-time, applicable to passenger identification use-cases.
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Abstract. Lattice-based schemes are promising candidates to replace
the current public-key cryptographic infrastructure in wake of the loom-
ing threat of quantum computers. One of the Round 3 candidates of the
ongoing NIST post-quantum standardization effort is FrodoKEM. It was
designed to provide conservative security, which comes with the caveat
that implementations are often bigger and slower compared to alternative
schemes. In particular, the most time-consuming arithmetic operation of
FrodoKEM is the multiplication of matrices with entries in Z,.

In this work, we investigate the performance of different matrix mul-
tiplication approaches in the specific setting of FrodoKEM. We consider
both optimized “naive” matrix multiplication with cubic complexity, as
well as the Strassen multiplication algorithm which has a lower asymp-
totic run-time complexity. Our results show that for the proposed param-
eter sets of FrodoKEM we can improve over the state-of-the-art imple-
mentation with a row-wise blocking and packing approach, denoted as
RWCEF in the following. For the matrix multiplication in FrodoKEM, this
results in a factor two speed-up. The impact of these improvements on
the full decapsulation operation is up to 22%. We additionally show that
for batching use-cases, where many inputs are processed at once, the
Strassen approach can be the best choice from batch size 8 upwards. For
a practically-relevant batch size of 128 inputs the observed speed-up is
in the range of 5 to 11% over using the efficient RWCF approach and
this speed-up grows with the batch size.

Keywords: Post-quantum cryptography - Matrix multiplication -
Software implementation - Strassen

1 Introduction

The security of nearly all our digital assets as well as our online activities relies
on the hardness of the underlying cryptographic primitives. Public-key cryptog-
raphy, most notably RSA [37] and Elliptic Curve Cryptography [27,30], is one of
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the fundamental components to establish a secure cryptographic infrastructure.
With the steady progress in the development of quantum computers, the long-
term security of this infrastructure, including encrypted information and digital
signatures, is being threatened. When a full-scale quantum computer becomes
available, all the currently standardized and widely-used public-key algorithms
are vulnerable to polynomial-time attacks using a quantum computer [35,39].

As a reaction to this imminent threat on our currently deployed public-
key infrastructure, the USA’s National Institute of Standards and Technology
(NIST) initiated a process to solicit, evaluate, and standardize one or more
quantum-resistant public-key cryptographic algorithms in 2016 [32] where a new
replacement standard is expected in 2024. These algorithms are known as post-
quantum or quantum-safe algorithms. Arguably the most promising family of
post-quantum secure cryptographic approaches are the lattice-based schemes.
From its inception with Ajtai’s seminal works [2,3], the field has grown to an
active area of research (see e.g., [33] for a comprehensive overview).

Among the lattice-based family, the learning with errors (LWE) problem is
a common foundation on which to construct practical and post-quantum secure
schemes. It was first introduced by Regev in [36] and subsequently gained trac-
tion due to its hardness reduction proofs; the hardness of LWE (for certain
parameterizations) can be reduced to the hardness of various worst-case lattice
problems. To improve efficiency, multiple variants of the original LWE problem
have been proposed. These use additional structures in the lattice to realize a
faster and more compact version of LWE-based schemes. Notable examples are
the Ring-LWE [29,34] and the Module-LWE [13,28] versions. While these vari-
ants indeed offer schemes with better performances, they are more removed from
the original hardness proof of LWE.

In this paper, we focus on the NIST Round 3 candidate FrodoKEM [10,31]. It
is derived from the base LWE problem and was designed to provide a practical
post-quantum key exchange mechanism with conservative security. In particular,
it is based on a carefully parameterized LWE problem, which is closely related to
the conjectured-hard problems on generic, “algebraically unstructured” lattices.
This makes it a very conservative and secure choice in practice.

The downside, of course, is that practical realizations of FrodoKEM are often
bigger and slower compared to the algebraically structured alternatives, i.e.,
Kyber [11,38], NTRU [15], NTRU Prime [8,9] and Saber [17,18]. Still, the
advance to the third round of the ongoing NIST standardization effort as well as
being one of two post-quantum algorithms recommended by the German Federal
Office for Information Security (BSI) as cryptographically suitable for long-term
confidentiality [14] underline the practical relevance of FrodoKEM.

From a performance perspective, the most costly operations in FrodoKEM
are the (pseudo-random) generation, multiplication and addition of large inte-
ger matrices. Hence, from an arithmetic point of view the main bottleneck
and, therefore, focus of optimization is the implementation of the matrix mul-
tiplication. The main matrix used in these computations is a square integer
matrix of dimension n € {640,976,1344} depending on the used parame-
ter set of FrodoKEM. In the reference and optimized implementations of [31],
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this is achieved (if available) using the Advanced Vector Extensions (AVX)
instructions on the x64 platform. For matrix dimensions n, the implementations
of [31] use a naive matrix multiplication approach, i.e. of asymptotic complex-
ity O(n3). This is motivated by “street wisdom” that the asymptotically faster
matrix multiplication algorithms only provide benefits for much larger values
of n than used in FrodoKEM. Examples of such algorithms are the Strassen
algorithm [41] (O(nl°82 (M) = O(n?8073%5)) the Coppersmith-Winograd algo-
rithm [16] (O(n?37477)) and the most recent improvements by Alman and
Williams [6] (O(n?3728596)),

The concept of batch cryptography was first introduced by Fiat in [19]. He
proposed to perform multiple encryptions or signature generations simultane-
ously in order to reduce the total complexity. This is achieved by batching the
operations instead of performing them one-by-one (see Sect. 4.2 for more details
and references). For certain use cases, which require the rapid processing of a
large number of cryptographic operations, this approach can be very beneficial,
e.g., one of the recent emerging technologies with such requirements is vehic-
ular communication [12]. In the setting of FrodoKEM, batching could be used
to decapsulate multiple encapsulated keys with the same private key, e.g., a
server processing a multitude of client requests. In effect, this batch decapsula-
tion would increase one dimension of the multiplied matrices in function of the
processed queries.

Contributions. In this work, we investigate the validity of this “street wisdom”.
This is motivated and in line with the results from Huang, Smith, Henry, and
van de Geijn [22] where they dispel some of the preconceived notions regarding
the practicality of the Strassen matrix multiplication algorithm. They introduce
various implementation strategies to make Strassen a viable alternative to and
even outperform the naive O(n?) approach for much smaller dimensions than
previously assumed. We apply the learnings from [22] to the cryptographic set-
ting of FrodoKEM: matrix multiplication where one of the inputs is significantly
smaller (dimension 7 x n = 8 x n) compared to the other (dimension n x n
matrix) with the added aspect that one matrix can be generated on-the-fly.

To this end, we first implement FrodoKEM with various approaches for matrix
multiplication. In particular, we explore variations of naive matrix multiplication
and Strassen matrix multiplication. We show that using a row-wise blocking and
packing approach, denoted as RWCF, combined with on-the-fly generation of
the FrodoKEM matrix outperforms the current FrodoKEM matrix multiplication
implementation by almost a factor two. When the RWCF approach is used in
FrodoKEM decapsulation, we show an improvement of up to 22%.

Furthermore, we investigate the viability of Strassen for the batching use case.
To this end, we benchmark the performance of FrodoKEM when computing batch
operations. We show that for batch sizes as small as 8 (for FrodoKEM-1344),
using the Strassen algorithm can provide better performances than the naive
multiplication and even the RWCF approach. For batch sizes 128 and upward,
we show that we can expect improvements in the range 19 to 35% compared to
the FrodoKEM matrix-multiplication method and of 5 to 11% over the RWCF
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Table 1. The relevant FrodoKEM parameters for matrix multiplication for the various
security levels.

Parameter set | NIST security level |¢ |7 |n

FrodoKEM-640 |1 21518 | 640
FrodoKEM-976 |3 21618 976
FrodoKEM-1344 | 5 216 18 11344

approach. As expected, the benefit of using Strassen becomes more significant
as the batch size increases.

Outline. The remainder of this paper is structured as follows. In Sect.2, we
provide the necessary background on FrodoKEM and recursive matrix multipli-
cation, in particular the Strassen algorithm. In Sect. 3, we outline the application
of the different matrix multiplication approaches in the context of FrodoKEM.
These are then benchmarked for FrodoKEM and batched FrodoKEM in Sect. 4,
and the paper is concluded in Sect. 5.

2 Preliminaries

In this section we outline the basics of the FrodoKEM algorithm [10,31], with
a focus on the generation of the public matrix A € Zg*". We also recall the
Strassen [41] matrix multiplication algorithm.

Notation. We denote the ring of integers modulo ¢ with Z, = Z/qZ. Matrices
are denoted with upper case boldface letters, e.g., B € Z7**", and its matrix
element in the ¢-th row and j-th column as B; ; (with 0 <i <mand 0 < j <n).

2.1 The FrodoKEM Algorithm

FrodoKEM was derived from the Frodo key agreement protocol proposed in [10].
The security of Frodo reduces to the hardness of the standard Learning With
Errors (LWE) problem with a short secret. In this section, we only recall the
aspects of FrodoKEM relevant to our contribution. For further information, we
refer the interested reader to the specification of FrodoKEM [31].

Table 1 contains the FrodoKEM parameters related to the matrix multipli-
cation and their associated security levels. The NIST security levels 1, 3 and
5 correspond to the brute-force security of AES128, AES-192 and AES-256,
respectively.

As can be seen from Table 1, the LWE integer modulus ¢ < 216 is always
a power of two in FrodoKEM. This was chosen for efficiency reasons: reduction
modulo ¢ is “for free” on modern computer architectures.

During the FrodoKEM key generation, secret and public keys are generated
from an initial secret and public seeds. In particular, the public matrix A € Zy*"
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Algorithm 1. Frodo.Gen using AES128 (algorithm taken from [31]).

Input: Seed seeda € {0,1}"=a.
Output: Matrix A € Zy*".
1: for (i=0;i<n;i—i+1)do
2: for(j=0;j<n;j—j+8)do
b (i) [[(5)]|0---0 € {0,1}'** where (i), () € {0,1}'°
(cii){cign)ll -~ {cig47) — AES128sedn (b) where each (ci) € {0,1}'°
for (k=0; k<8 k—k+1)do
A jtk < Cij+k mod g
7: return A

is created by calling FrodoKEM.Gen (seed ) for the public seed seeda. Given A
and the secret matrix S € Z7*", a second public matrix B € Z*" is computed
as

B—A.-S+E,

where E is randomly drawn from a (small) distribution . FrodoKEM security in
this context relies on the hardness of recovering S from B and A. The public key
pk is then derived from B and seed s, while the secret key sk further contains the
secret seeds and matrices. Note that A is not part of any key and it is assumed
to be always generated on-the-fly using seedp .

Apart from error sampling and calls to symmetric primitives (i.e., AES128
or SHAKE128), the main operations in FrodoKEM are matrix operations. In the
remainder of this section we focus on these operations.

To perform encryption FrodoPKE.Enc with respect to the matrix A one gen-
erates a secret matrix 8" € Z7*" and computes B’ € Z*" as

B =S A+FE,

where E’ is another matrix randomly drawn from a (small) distribution x.
Since encryption is a subroutine of both encapsulation and decapsulation, this
matrix multiplication operation is also a critical component of FrodoKEM.Enc
and FrodoKEM.Dec.

Generation of the Public Matrix A. To reduce the size of public keys and
accelerate encryption, the public matrix A € Zj*" could be set to a fixed
value. However, the designers of FrodoKEM chose to assign the public matrix A
dynamically and pseudorandomly generate it for every generated key. Following
previous work in this area [5,10], using dynamic matrices A helps to avoid the
possibility of backdoors and all-for-the-price-of-one attacks [1].

Let us recall how the matrix is constructed following the FrodoKEM spec-
ification [31]. The algorithm FrodoKEM.Gen takes as input the modulus ¢, a
seed seedp € {0,1}e"«¢a and a dimension n € Z, and outputs a pseudorandom
matrix A € Zy*". There are two options for instantiating FrodoKEM.Gen. The
first method uses AES128; the second instead uses SHAKE128.
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Algorithm 2. Frodo.Gen using SHAKE128 (algorithm taken from [31]).

Input: Seed seeda € {0, 1}'*"da .
Output: Pseudorandom matrix A € Zg*".

1: for (1 =0;i<n;i<—i+1)do

2. Aeio)|{cin)| - I{cin—1) «— SHAKE128(seeda, 16n, 2% + i) where each (c; ;) €
{0, 1}1S.

3 for (j=0;j<n;j—j+1)do

4: A;j —ci; modq

5: return A

When using AES128, the matrix A € Zy*" is generated 8 elements at-a-
time. For each row and each block of 8 elements (in different columns), the
algorithm generates a 128-bit block of predefined input based on the location in
the matrix. This input is encrypted using the seeda as the AES128 key. This
process is outlined in Algorithm 1. More specifically, the input blocks to AES128
are ()| (5)]|0]| --- |0 € {0,1}'28, where i, j are encoded as 16-bit integers (see
Line 3). It then splits the 128-bit AES128 output block into eight 16-bit elements,
which it interprets as non-negative integers ¢; j, for k =0,1,...,7 (see Line 4).
Finally, it sets A; j4+r = ¢ j4+r mod ¢ for all k. This modular reduction is “for
free” by dropping the most significant bits whenever ¢ < 2'6.

The second method uses SHAKE128 instead of AES128 to generate the rows
of the matrix A € Zg*™. This process is shown in Algorithm 2. In this case, each
entire row is generated with a SHAKE128 call. Its input consists of seeda and a
customization value 2% +i to produce a 16n-bit output (see Line 2). The output
is then split into 16-bit integers ¢; ; € {0,1}!6 (for j =0,1,...,n— 1), and used
to set the corresponding matrix entries A;; = ¢; ; mod ¢q in Line 4. Note that
the offset of 28 in the customization value is used for domain separation where
for details we refer to the specification [31] of FrodoKEM.

2.2 The Strassen Algorithm

In this section we consider the application of the Strassen algorithm to the
FrodoKEM multiplication B’ = S’ A+E’, where B', S, E' € Z7*" and A € Zj*".
The schoolbook approach of computing this sum would be to compute

n—1
B, =E, + Z S} kA%
k=0
for each i = 0,1,...,A—1 and j = 0,1,...,n — 1. This requires an? multi-

plications of coefficients in Z,, and therefore is of complexity O(in?). In the
remainder we will refer to this specific multiplication method as the straight-
forward approach, while we will refer to O(fn?) methods in general as naive
approaches.

In 1969, Strassen introduced an algorithm for matrix multiplication [41]
asymptotically faster compared to the straightforward approach. The Strassen



78 J. W. Bos et al.

algorithm works as follows. First the matrices S’, A and E’ are split into four
sub-matrices of equal size:

Sto Si Agp A E), E;
g — (D00 S01) A _ (4200 01> E — ( 00 01>
< 10 '11> ’ <A10 An)’ Eio En )’
where the sub-matrices of S’ and E’ are of dimension 7/2 x n/2 and the sub-
matrices of A of dimension n/2 x n/2 each. The straightforward method would

then be to compute
B}, B
B = ( 00 01) 7
Bl B}

where

Bio = Ego + Sto - Aoo + Soy - Ao,

Bi; = Egy + Sgo - Aor + Sy - Aur,

10 =Ejg + 810 Ao + Si; - Ado,

Bl =E}; + S} Ao + 81, - Aqr .
This split computation consists of eight products of dimension 71/2 X n/2 sub-
matrices with dimension n/2 x n/2 sub-matrices, and does not decrease the

overall number of multiplications compared to the straightforward approach.
The idea by Strassen is to compute this instead as

My = (Sgo + S11) - (Ao + A1), By = Egg + Mo + Mz — My + Mg,

M, = (S}o+ S11) - Ago, B{, = Ej; + Ms + My,
M, = Sg, - (Ao — An) Bl = Ejg + M + M3,
M3:S/11-(A10—A00), B/11:E/11+M0—M1+M2+M5.

My = (Sgo + Sp1) - Aur,
M; = (S}o — Soo) - (Ao + A1),
Mg = (Sp; — S11) - (Ao + Any),

This requires only seven multiplications of dimension 7/2xn/2 sub-matrices with
dimension n/2 x n/2 sub-matrices, but has an increased number of additions
and subtractions compared to the naive method. Strassen’s algorithm applies
this splitting recursively, which asymptotically outperforms the straightforward
block-by-block computation. For example, applying the recursion log, 7 times
leads to a complexity of O(72'°82 7=2.7n2), which is asymptotically better than the
complexity of O(fAn?) of naive methods. The optimal number of recursion levels
will depend on the various parameters and the platform on which the algorithm
is implemented. In [22] it was shown that different strategies can reduce the
overhead of Strassen and that the algorithm can show good results for smaller
dimensions than previously known.
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3 Matrix Multiplication Strategies for Cryptography

In this section, we present different strategies to realize efficient and practical
implementations of matrix multiplication algorithms. These methods have been
studied extensively in the literature before and are not new. The cryptographic
application to FrodoKEM, however, which comes with the different setting of
integer matrices where one of the operands is generated on-the-fly, has as far
as we are aware not been considered in detail before. We use the techniques as
proposed in the BLAS-like Library Instantiation Software (BLIS) framework [42].
BLIS is a software framework and gives the infrastructure for instantiating Basic
Linear Algebra Subprograms (BLAS) functionality. The core design idea of BLIS
is that virtually all BLAS operations (such as matrix-vector and matrix-matrix
multiplications) can be expressed and optimized in terms of very simple kernels.
Moreover, we use and describe the optimizing strategies as summarized and
studied in [40].

3.1 Matrix Multiplication for FrodoKEM

In the setting of FrodoKEM we are particularly interested in the matrix prod-
uct with accumulation. That is, we consider the operations B = A -S + E and
B’ =8 A+ E where S;E € Z7*" and S, E’' € Z}*" are sampled from a
rounded continuous Gaussian distribution and A € Zj*" is generated pseudo-
randomly from a seed seedp according to Algorithm 1 or Algorithm 2. For
simplicity, and as it is the case in which the approach of Sect. 3.3 has the most
impact, we only focus on the generation of A with AES128 in this section. How-
ever, the application when using SHAKE128 is straightforward. In the proposed
parameter sets in [31], one uses @ = 8 and n € {640,976, 1344} (see Table1)
and therefore the public matrix A is quite large: 800, 1860 and 3528 kilobytes,
respectively.

We begin with a brief discussion on the multiplication B = A - S + E, which
is the most straightforward. In the FrodoKEM submission this is performed with
the naive (schoolbook) matrix multiplication B, ; = ZZ;; A; 1Sy ; +E; ;. Note
that this works particularly well with on-the-fly matrix generation: since each
B, ; only depends on the i-th row of A, and since A is generated row-wise (see
Sect. 2.1), one can generate a row of A and use it to generate all 2 elements in the
same row of B. This also sets itself up well for using 16-way SIMD 16-bit integer
instructions (like AVX and AVX2 [23]), but hand-optimizing those results in
only a one percent performance improvement due to the compiler being able to
generate such optimized code very well [31, Sect. 3.2.1]. Hence, in this work we
make no improvements to the multiplication B= A - S + E.

Instead, we consider the matrix operation B’ = S’ - A + E’. In this case, the
naive computation B; ; = Z;é S xAk,; + Ej ; relies on the j-th column of A.
This leads to a non-trivial problem for on-the-fly computation, as the matrix A
is generated row by row. In the case of AES128 the situation is actually slightly
simpler, as A is really only generated 8 row-elements at a time. However, we
shall see that the choice of algorithm still has significant impact on performance.
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In the remainder of this section we compare various algorithms to compute
B =S -A+E.

3.2 The FrodoKEM Algorithm

The idea of FrodoKEM for computing B’ = S’ - A + E’ is simple to describe:
since elements of a row of A are generated 8 columns at a time, the elements of
B’ are also generated 8 columns at a time. That is, for a fixed j one generates

Aijll Al A7 — AES128seea, ((0)[1(7)]0- - []0)

for all i = 0,1,...,n — 1 according to Algorithm 1. These elements can then be
used to compute B;C’j, - ’B;w'+7 for k=0,1,...,n— 1.

The most straightforward way to implement this, which is done by
FrodoKEM, is to store the input to AES128 as a sequence of n blocks of 128-bit

each
O OISO -~ [[off - - I{n = Y[ [O]] - - ][0,

to which AES128 can be applied independently. As a result, the elements of the
8 columns of A are stored sequentially as

Aol [[Ao sl Al (AL 7l A=l | A1, g7 -

However, to compute By ; one would need to access Ag j, Ay j, ..., Ay_1,; which
are not stored sequentially in memory. To solve this, FrodoKEM explicitly con-
verts the representation to

Aol N[An—1 A0 1l - [[An—1 g1l - [Ao gl | An—1,547,

which is essentially a transpose of the columns of A. We observe that this memory
re-organization does have a significant impact on the efficiency of the algorithm
(cf. Table 2 in Sect. 4). For completeness, we summarize the matrix multiplication
algorithm of FrodoKEM in Algorithm 3, where the transposition is performed
in Lines 12 to 14. The authors of FrodoKEM made an efficient implementation
of Algorithm 3 available where the multiplications and additions of the matrix
elements are computed using the 256-bit Advanced Vector Extensions (AVX)
16-way SIMD 16-bit integer instructions [4].

3.3 The RWCF Approach: Row-Wise Cache-Friendly Multiplication

In this paper we look at an alternative approach to implement the same straight-
forward matrix multiplication algorithm with asymptotic run-time O(n?n). We
follow the blocking and packing approach as outlined in [20,42] which does not
seem to have been considered for the FrodoKEM submission. Note that the mul-
tiplication with this complexity still falls under the naive matrix multiplication
methods. The idea is to avoid the expensive transposition in memory required
by the FrodoKEM algorithm, which leads to an improvement in performance.
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Algorithm 3. Matrix multiplication as implemented in the official FrodoKEM
submission when using AES128. The temporary memory buffers used are
Al T and AT of 8n elements of Zq each.

Input: Seed seeda € {0,1}*=¢a and matrices S',E’ € Z*".
Output: Z;"" Sout =S - A + E".
1: fori—0;i<n;i—i+1do
2: forj—0;j<n;j«—j+1do
out; ; < E;’j
Set T to all zeros
aesy < AES128 load key_schedule(seeda )
fori—0;i<n;i<—i+1do
T[8i] — i
for k—0;k<n; k—k+8do
fori—0;i<n;i—i+1do
10: T[&i+ 1] — k
11:  A®™"* « AES128 ECBacs, (T)
12: fori<—0;i<n;i<—i+1do

©

13: for j < 0;j<8 j«—j+1do

14: AT®[j - n + ] «— A°S[8 + j] // Transpose
15: fori<—0;i<n;i<—i+1do

16: for ¢ —0; ¢ <8 ¢+—{+1do

17: sum « 0

18: for j—0;j<n;j<—j+1do

19: sum «— sum + S} ; - AT"[( - n + j] // Access AT sequentially
20: out; g4e < outy gie + sum

For this purpose, the elements of A are generated row-wise as opposed to
column-wise. This is done 8 rows at a time in our benchmarked implementation,
as this led to the best performance. However, doing fewer or more is possible
as there is no dependency between different rows (as opposed to columns). For
simplicity, we describe the approach for a single row, as using more rows can be
deduced easily by doing them in parallel. We provide the full description for 8
rows in Algorithm 4.

For a fixed row k, the input to AES128 is generated (sequentially in memory)
as

(R[OOI - - [ofl I BIOI] - - - [0} - - - [[{R) [ = 8)[[O]] - - ]|,
to which we apply AES128 to obtain

A ollAka

RN LV
We then initialize B/(-1) = E’ and iteratively accumulate B/(¥) as

B =B/* YV 18 Ay, (1)

4] i,J
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Algorithm 4. Matrix multiplication in FrodoKEM with row-wise AES128 gen-
eration. The temporary memory buffers used are A™"5 and T of 8n elements of
Zg4 each.

Input: Seed seeda € {0,1}*™=a and matrices S',E’ € ZI*".
Output: Z;"">B' =S - A+ E".
1: fori—0;i<n;i+—i+1do
2: forj—0;j<n;j«—j+1do
B;yj — E;J
Set T to all zeros
aesy < AES128 load key_schedule(seeda )
fori«—0;i<n;i<—i+8do
for j —0;j<8;j—j+1do
T -n+i+1] —i
9: fori«—0;i<mn;i«—1i+8do
10: forj«—0;j<8 j—j+1do
11: for k—0;k<n; k—k+8do
12: T[j-n+kl—i+tj
13: A" — AES128_.ECBaes, (T)
14: forj«—0;j<n;j«<—j+1do

15: for { —0; ¢ <n;{—{+1do

16: sum = B;',Z

17: for k—0; k<8 k—k+1do

18: sum = sum + S ;- ATk - n+ (] // 16 in parallel (AVX2)
19: B, < sum

foralli=0,1...,n—1and j=0,1...,n— 1. One sees that

n—1
1 _ pl/n=1) /
B, =B V=E[;+) SiiA,,
k=0

proving correctness of the algorithm. Moreover, the elements of A are accessed in
the same order in which they are generated, making this algorithm very suitable
to on-the-fly generation.

This approach can be combined very efficiently with the available SIMD
extensions. Specifically, one can broadcast the (16-bit) value S . to the 16 SIMD
slots. This broadcast is done using the AVX instruction mm256_set1_epil6(-)
which puts the 16-bit integer a in all 16 slots of the returned 256-bit vector reg-
ister. These values can be multiplied with 16 matrix elements Ay ;|| - - - || Ak j+15
using a single instruction: mm256 mullo_epil6(-,-). This computes the products

g,kAk,jv el S;,kAk7j+15’ for the 16-bit integers Sé,k and Agj,...,Ag j+15, and
has the additional advantage that the obtained result is automatically reduced
modulo ¢ (or 2¢ when ¢ = 2% is used). This can be applied in Line 18 of
Algorithm 4. Note that 16 | n for all parameter sets of FrodoKEM, so generating
16 row elements of A at a time is not a problem.

It should be clear that the accumulation step in Eq. (1) can be computed
for multiple rows at the same time by generating those rows simultaneously
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Fig. 1. Graphical representation of processing the elements. In gray the FrodoKEM
approach, which for cache-friendly access requires transposing the blocks of columns
from A, before multiplying with the rows of S. In black the RWCF approach, which
does not require a transpose.

for various k. Although the number of multiplications and additions does not
change in that case, it can be beneficial for the overall run-time by reducing the
overall loads and stores of the B’ . This is especially true when loads and stores
are performed to and from AVX registers. For example, in Line 16 and 19 of
Algorithm 4 there is only a single load and store of B , for every 8 accumulations.

Note that for AES128-based version it is not actually necessary to generate
a whole row of A: as we apply AES128 to 8 elements at a time, we can gener-
ate exactly those 8 elements (in the same row) on-the-fly (though 16 would be
preferable for compatibility with AVX instructions). In that case we could con-
sider another extreme version of the above algorithm where we process n rows
simultaneously, generating 16 columns on-the-fly and multiplying and accumu-
lating. This would reduce essentially to a column-based approach again, though
the order of multiplications is different from FrodoKEM and a tranposition in
memory is not necessary. However, since this algorithm is not compatible with
SHAKE, which does generate whole rows from a single SHAKE call, we do not
pursue this further here.

To illustrate the high-level difference in the order of accessing A, we present
a simplified representation in Fig. 1. In gray, we see how the columns of A are
processed, which require an additional memory transposition. In black the row-
wise method is shown, which needs no explicit memory transformations.

3.4 FrodoKEM Multiplication Using Strassen

The last multiplication approach we discuss in the context of FrodoKEM is
Strassen, which was already introduced in Sect.2.2. In [22] it was shown that
Strassen can also be implemented in a cache-friendly manner. The method pre-
sented there can be easily combined with the on-the-fly generation of A.
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Recall that the AVX2 SIMD instructions allow us to process 16 16-bit ele-
ments at the same time, assuming that 16 | n. To apply the same instructions for
Strassen to the submatrices with only n/2 rows, we would require that 16 | (n/2).
This is true for n = 640, 1344 but does not hold for n = 976. This is easily solved
by padding A with zero columns which has a minor effect on the performance
compared to the other parameter sets.

In the following, we only consider one-level Strassen and analyze its per-
formance. That is, we reduce the matrix multiplication to 7 multiplications of
half-size row and column dimensions that we perform with RWCF. More levels
of recursion can of course be considered, but it is not a priori clear that Strassen
will outperform other algorithms for the dimensions of FrodoKEM (even for a
single recursion level), as its improvements are only guaranteed asymptotically.
As we will see in Sect. 4, it outperforms the current FrodoKEM implementation
but does not improve over RWCF itself. Nevertheless, even if Strassen does not
scale fast enough to be relevant for single FrodoKEM, it can still be useful to
explore its application for batching, as we show in Sect. 4.2.

4 Implementation and Benchmark Results

In this section we discuss the comparative performance for the different
approaches of implementing the FrodoKEM matrix multiplication. The perfor-
mance results have been obtained when running on a single core of the 12-core
AMD Ryzen 9 3900XT running at a base clock of 3.8GHz. We consider both the
setting where a single key exchange or encryption is performed, as well as their
batched analogues where multiple keys are handled in parallel. For this section
we focus on the results for AES128 only: as this is much faster on the selected
platform, the significance of the matrix multiplication is higher and therefore so
is the significance of our speed-ups. We expect speed-ups for SHAKE128 can be
obtained on platforms with access to a hardware accelerator, but these are less
significant given that this approach does not have the inefficiency of a matrix
transposition. Both versions have been integrated into the reference implemen-
tation of the FrodoKEM submission.*

4.1 Performance Results

The performance measurements for all three FrodoKEM parameter sets are sum-
marized in Table2. This shows the performance in 10 cycles of the individ-
ual matrix multiplication routines A - S + E (frodomul_add as_plus_e) and
S’- A+ E' (frodomul_add_sa_plus_e). These routines consist of two computa-
tionally significant steps: generation of the matrix elements of A using AES128
and multiplying the resulting matrix with S or S’. Although a fresh A is gener-
ated for each IND-CPA encryption or key exchange, in a KEM setting where a
static key pair is used one can pre-compute A and store for encapsulation and

! https://github.com /microsoft /PQCrypto-LWEKE commit 5c3123f.
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decapsulation. Therefore we distinguish two separate cases: excluding (labeled
“pre”) and including the generation time of the matrix elements from A using
AES128. Note that the algorithms described in Sect. 3 only impact the matrix
multiplication step and not the generation, so have relatively more impact when
A is not freshly generated. For completeness, we also include the total cost of
key generation, encapsulation and decapsulation, which generate A on-the-fly
to align with the reference implementation. Again, the impact on encapsulation
and decapsulation is greater by storing A in advance.

Firstly, we highlight an interesting observation about the reference imple-
mentation (using AVX instructions) of FrodoKEM (the “x64” column in Table 2).
When comparing the two matrix multiplication routines, we see that computing
A-S+E is up to 1.4 times faster than S’- A+E’ if the generation of A is included,
and up to 1.9 times faster if A is pre-generated. The latter speed-up is almost
fully determined by the matrix multiplication, but is surprisingly large since
the dimensions of the multiplications are exactly the same (though transposed).
Using the RWCF algorithm from Sect. 3.3 for S’ - A 4+ E’ leads to a speed-up of
up to 1.4 times including generation of A, or of up to 2.0 times excluding it, when
compared to the reference implementation. Indeed, the RWCF approach reduces
the cost of S’- A +E’ so that it is essentially equal to computing A -S + E, which
should be expected for multiplications of equal dimensions. Overall, employing
the RWCF approach leads to an up to 22% improvement in encapsulation or
decapsulation when A is generated on-the-fly, while not affecting key generation
since it only computes A - S + E.

Interestingly, the Strassen implementation also outperforms the x64 imple-
mentation. This approach uses a single level of Strassen and then reverts to the
RWCF approach for multiplying the smaller sub-matrices. This explains why
Strassen outperforms x64 and not the RWCF approach. For the best overall
performance one should use the RWCF approach. We expect that these results
carry over to other approaches, compared to AES128, to generate the matrix
elements. One such example is when using SHAKE128 as outlined in Sect. 2.1,
but as noted before the relative impact of our method is less significant in this
case.

4.2 Batching

Let us consider the setting of batch cryptography [19]. The main idea is to reduce
the computational burden of an entity which receives multiple (i.e., a batch of)
cryptographic operations. It might be possible to process this batch of compu-
tation and take advantage of some arithmetic or algorithmic advantages that
increase the latency (compared to a single request) but also increase the over-
all throughput (the number of cryptographic operations per second) to ensure
an overall increase of computation on this batch processing system. Many of
such approaches have been proposed such as batch verification of RSA signa-
tures [21], ECDSA batch signature verification [24-26] and batch Diffie-Hellman
key agreement [7].
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Table 2. Performance numbers of the matrix multiplication methods with and without
(“pre”) generation of the elements using AES128. In parentheses the relative perfor-
mance against the reference implementation “x64”. The numbers are reported in 103
cycles and an average over 1000 runs.

Function ‘ x 64 ‘ Strassen ‘ RWCF
FrodoKEM-640

frodomul_add_as_plus_e (pre) | 208| 212 (1.02)| 212 (1.02)
frodomul_add_sa plus_e (pre)| 396| 282 (0.71) 202 (0.51)
frodomul_add_as_plus_e 473 | 477 (1.01) | 477 (1.01)
frodomul_add sa plus_e 661 | 547 (0.83) | 467 (0.70)
crypto_kem keypair 902 | 902 (1.00) | 903 (1.00)
crypto_kem_enc 1275 11174 (0.92) | 1068 (0.84)
crypto_kem_dec 1232|1121 (0.91) | 1025 (0.83)
FrodoKEM-976

frodomul_add_as_plus_e (pre)| 507 | 508 (1.00) 501 (0.99)
frodomul_add _sa plus_e (pre)| 931| 759 (0.82) 493 (0.53)
frodomul_add as_plus_e 1095 1 1096 (1.00) | 1089 (0.99)
frodomul_add_sa plus_e 1519 11347 (0.89) 1 1081 (0.71)
crypto_kem keypair 1718 | 1727 (1.01) | 1712 (1.00)
crypto_kem_enc 2398 | 2246 (0.94) | 1955 (0.82)
crypto_kem_dec 2310 | 2141 (0.93) | 1850 (0.80)
FrodoKEM-1344

frodomul_add_as_plus_e (pre) 1060 | 1031 (0.97) | 1024 (0.97)
frodomul_add_sa plus_e (pre) 1888 | 1412 (0.75) | 1012 (0.54)
frodomul_add_as_plus_e 2140 | 2111 (0.99) | 2104 (0.98)
frodomul_add sa plus_e 2968 | 2492 (0.84) | 2092 (0.70)
crypto_kem keypair 3070 | 3023 (0.98) | 3017 (0.98)
crypto_kem_enc 4279 3777 (0.88) | 3363 (0.79)
crypto_kem_dec 4130 | 3634 (0.88) | 3221 (0.78)

In Frodo, the seed seeda used to generate the large public matrix A (on-the-
fly) is part of the public-key. This means that when Frodo is used as a public-
key encryption scheme multiple devices or clients can encrypt messages to be
sent to the same server which can then perform a batch decryption on all these
ciphertexts which use the same matrix A. Along similar lines multiple clients
can start the key encapsulation mechanism (using FrodoKEM) with the same
clients using the same seeda and corresponding matrix A. This allows for batch
decapsulation on the server. This batching technique enables the server to use
the same public matrix A for multiple requests and increase the dimension in
the matrix multiplication S - A by considering multiple matrices S at once.
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Fig. 2. The performance of the row-wise cache-friendly (RWCF) and Strassen matrix
multiplication (dimensions 7 X n with n X n) when varying 7i. Note that the dimension
7 in this case represents 71/8 batch computations.
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We investigate when (and if) the asymptotic performance gain of the Strassen
algorithm becomes visible in such a batch decryption or batch decapsulation app-
roach. Performance results when batching up to 128 decryptions or decapsula-
tions (and therefore matrix multiplications up to dimension 7 = 8 - 128 = 1024)
are shown in Fig.2 for the three parameters sets proposed in FrodoKEM. As
expected eventually Strassen will outperform the FrodoKEM approach in all set-
tings. We see an improvement of 26, 16 and 16% for FrodoKEM-640, FrodoKEM-
976 and FrodoKEM-1344, respectively.

This shows that for the batching use case, performing one-level Strassen
becomes a viable option for the parameter sizes of FrodoKEM. Strassen also
eventually outperforms the RWCF approach in all settings. The cross-over point
is at @ equal to 120, 152, 64, for FrodoKEM-640, FrodoKEM-976 and FrodoKEM-
1344, respectively.

This means that for relatively small batch sizes (e.g., using a batch of only
8 computations for FrodoKEM-1344) Strassen already starts to outperform the
straightforward approaches. However, the maximum observed speed-up is rela-
tively small: a 9, 5 or 10% improvement for FrodoKEM-640, FrodoKEM-976 and
FrodoKEM-1344. Of course, the difference between RWCF and Strassen grows
with the batch size used. For even larger batch sizes it should also be checked
whether applying more levels of Strassen is even faster.

5 Conclusions

We evaluated the performance of matrix multiplication approaches in the cryp-
tographic setting of FrodoKEM. We consider both optimized “naive” matrix
multiplication with cubic complexity (i.e., the straightforward algorithm used
in the FrodoKEM submission and the RWCF approach) as well as the Strassen
multiplication algorithm (using one level).

Our results show that for the proposed parameter sets of FrodoKEM we can
improve over the state-of-the-art implementation with the RWCF approach. For
the matrix multiplication alone we achieve improvements up to 30% over the
straightforward FrodoKEM approach (and are almost twice as fast when the
matrix generation is pre-computed). The impact of these improvements on the
full encapsulation and decapsulation operations are slightly over 20%. Interest-
ingly, performing the encapsulation and decapsulation with the Strassen app-
roach also gains improvements over the FrodoKEM approach, with an improve-
ment of up to 12% for the largest parameter set. We note that the RWCF
approach is to be preferred in practice.

We additionally show that for batching use-cases, where many inputs are pro-
cessed at once, the Strassen approach is already to be preferred for small batches
of size 8. For a practically-relevant batch size of 128 inputs the observed speed-
up is in the range of 5 to 11% over using the efficient RWCF approach, growing
with the batch size. Over the current FrodoKEM approach the improvement is
even in the range of 19 to 35%.
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This work therefore both improves on the FrodoKEM multiplication approach,

and shows that the Strassen method is relevant for FrodoKEM parameter in
practice.
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Abstract. An OR-proof is a protocol that enables a user to prove the
possession of a witness for one of two (or more) statements, without
revealing which one. Abe and Okamoto (CRYPTO 2000) used this tech-
nique to build a partially blind signature scheme whose security is based
on the hardness of the discrete logarithm problem. Inspired by their
approach, we present BlindOR, an efficient blind signature scheme from
OR-proofs based on lattices over modules. Using OR-proofs allows us to
reduce the security of our scheme from the MLWE and MSIS problems,
yielding a much more efficient solution compared to previous works.

Keywords: Blind signatures - OR-proof - Lattice-based cryptography

1 Introduction

Blind signature schemes are a fundamental cryptographic primitive. First intro-
duced by Chaum [9] in the context of an anonymous e-cash system, they have
since become an essential building block in many applications such as anony-
mous credentials, e-voting, and blockchain protocols. They have been standard-
ized as ISO/IEC 18370, and were deployed in real-life applications such as
Microsoft’s U-Prove technology and smart card devices produced by Gemalto.
In a blind signature scheme, a user holding a message m interacts with a
signer to generate a blind signature on m under the signer’s secret key. The
scheme is required to satisfy two security properties called blindness and one-
more unforgeability [16,19]. Informally, the first condition means that the signer
gets no information about m during the signing process, while the latter ensures
that the user cannot generate signatures without interacting with the signer.
In an effort to develop practical blind signature schemes from a diverse range
of assumptions (in particular, those conjectured to be secure against quantum
attacks), various schemes based on lattice problems have been proposed. The first
such scheme by Riickert [20] can be seen as an important step in carrying the core
design of classical constructions based on the discrete logarithm problem [19] over
to the lattice setting. The same design principle was then adopted in subsequent
works, e.g., by Alkeilani Alkadri et al. [3,4], where the scheme BLAZE and its
successor BLAZE™ have been proposed and shown to be practical.
© Springer Nature Switzerland AG 2021
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Recently, Hauck et al. [15] pointed out that the proof of the one-more unforge-
ability property, originally by Pointcheval and Stern for a discrete logarithm
based construction [19] and later reproposed by Riickert for his lattice-based
scheme [20], has not been adapted correctly to this new setting. Indeed, the
main idea of the reduction in [19] is to select a secret key sk and then run the
forger with the related public key pk, which represents an instance of a computa-
tionally hard problem that admits more than one solution. In other words, pk is
related to more than one sk, and the forger cannot distinguish which sk is used
by the reduction. Note that it is crucial for the reduction to know a secret key
because, unlike standard signature schemes, the signer cannot be simulated with-
out one (otherwise the scheme would be universally forgeable [19]). After running
the forger and obtaining an element z, the reduction rewinds the forger with the
same random tape and partially different random oracle replies to obtain z’. The
proof in [19] then uses a subtle argument to ensure that z # z’ with noticeable
probability, which yields a solution to the underlying hard problem.

In lattice-based schemes, the hardness assumption underpinning security is
usually the Short Integer Solution (SIS) problem or its ring variant RSIS. In
this context, after obtaining z and z’, the reduction simply returns z — 2’ as a
non-zero solution to (R)SIS. The problem, as discussed in [15], is that Riickert’s
argument is not sufficient to ensure that z # 2’ with high probability, and
further assumptions are required to guarantee that a transcript of the scheme
with a given key sk can be preserved with high probability when switching to a
different valid secret key. Based on this observation, Hauck et al. [15] extended
the modular framework for blind signatures from linear functions given in [14]
to the lattice setting, and provided a proof that covers the missing argument.

Unfortunately, as stated by the authors themselves, their work is mostly
of theoretical interest. Indeed, the solution presented in [15] entails increasing
the parameter sizes, so that their framework applies and yields a correct proof.
In particular, the RSIS-based instantiation given in [15] has public and secret
keys of size 443.75 KB and 4275 KB, respectively, and generates signatures of
size 7915.52 KB. This leaves us in the regrettable position where all known (three-
move) lattice-based blind signature schemes are either not backed by a correct
security proof, or need impractically large parameters to achieve security.

Our Contributions. In this paper we make a significant progress towards con-
structing efficient and at the same time provably secure lattice-based blind sig-
nature schemes. We present BlindOR, a new blind signature scheme based on
lattices over modules. Our scheme uses the OR-technique of Cramer et al. [10],
a feature which allows us to sidestep the missing security argument pointed
out in [15]. At a high level, an OR-proof is a Sigma protocol that proves the
knowledge of a witness for one of two statements, without revealing which one.
Therefore, the public key of our scheme consists of two statements (two instances
of a hard lattice problem), and the secret key includes a witness for one of them.
Consequently and for the first time, the hardness assumption underlying the
public key does not have to “natively” admit multiple solutions, because the
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OR-technique already forces there to be more than one (and thus simulation of
signatures is still possible).

In particular, the public key of BlindOR consists of two instances of the Mod-
ule Learning with Errors (MLWE) problem, which results in a much more efficient
scheme. Signing is carried out by proving the possession of the witness included
in the secret key. A user interacting with the signer blinds the two transcripts
generated by the signer without being able to distinguish for which instance the
signer holds a witness. We capture these blinding steps in a set of algorithms
and show that BlindOR is statistically blind. The one-more unforgeability of our
scheme is proven in the random oracle model (ROM) assuming the hardness of
both MLWE and MSIS (the module version of SIS). The reduction creates one
instance of the hard problem with a witness in order to simulate the signing
oracle, and tries to solve the other instance, which is given to the reduction
as input. That is, the reduction does not know a witness for its input. This is
analogous to the security proof of standard lattice-based signature schemes, and
hence no further conditions are required to ensure the correctness and success of
the reduction with high probability. This is in contrast to previous lattice-based
constructions of blind signatures, as observed in [15].

BlindOR uses techniques from prior works in order to reduce or even remove
the number of restarts inherent in lattice-based schemes. More precisely, it uses
the partitioning and permutation technique introduced in [3]. Given a hash func-
tion taking values in the challenge space of the underlying Sigma protocol, it
allows to blind the hash values without having to carry out any security check
or potential restart. Another advantage of this technique is that it can be used to
construct OR-proofs based on lattice assumptions, because it allows to use a spec-
ified challenge space that has an abelian group structure, a crucial requirement
for OR-proofs. This is in contrast to the typical challenge space used in current
lattice-based schemes, which consists of polynomials from the ring Z[X]/(X"+1)
with coefficients in {—1,0,1} and a given Hamming weight. We also use the trees
of commitments technique from [4] to remove the restarts induced by the user
when blinding the signature generated by the signer. We extend this technique
in BlindOR to reduce the potential restarts induced by the signer when comput-
ing signatures, which must be distributed independently from the secret key.

To demonstrate the efficiency of our scheme, we propose concrete parameters
for BlindOR targeting 128 bits of security. The related key and signature sizes, the
communication cost, and a comparison with the corresponding metrics for the
scheme proposed by Hauck et al. [15] are given in Table 1. In summary, although
our scheme requires twice as many public key and signature parts, which is
inherent to using OR-proofs, it yields smaller sizes compared to the provably
secure construction from [15], resulting in a more efficient scheme overall.

We remark that the security of our scheme can easily be extended to the
stronger security notions of selective failure blindness [8] and honest-user unforge-
ability [21]. This is established by signing a commitment to the message instead
of the message itself [12,21]. However, and similar to [15], it is still unclear how
to prove the blindness property under a maliciously generated key pair [11].
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Table 1. A comparison between BlindOR and the scheme introduced in [15] in terms of
key and signature sizes and communication cost. Numbers are given in kilobytes (KB).
The related parameters are given in Table 3 and [15, Figure9].

Scheme | Public key | Secret key | Signature | Communication
BlindOR | 10.3 1.7 17.2 375.6
[15] 443.75 4275 7915.52 | 34037.25

Related Work. Our construction is inspired by the work of Abe and
Okamoto [1], who used OR-proofs to build partially blind signatures with secu-
rity based on the hardness of the discrete logarithm problem. Observe that we
cannot simply convert their scheme to the lattice setting, as this would force us
to use MSIS (instead of MLWE) and result in an inefficient scheme. The change
to MLWE is possible because there is no common information to consider in our
case.

Hauck et al. [15] showed that all lattice-based constructions of blind signa-
tures from Sigma protocols (or canonical identification schemes) prior to their
framework, such as [3,20], do not have a valid security argument. Furthermore,
Alkeilani Alkadri et al. [3] showed that all two-round lattice-based blind signa-
ture schemes based on preimage sampleable trapdoor functions are insecure.

Recently, Agrawal et al. [2] made a step towards practical two-round lattice-
based blind signatures. They improved the two-round construction of Garg
et al. [13] which is based on general complexity assumptions, and degraded it
to rely on the ROM. This allows them to avoid complexity leveraging, the main
source of inefficiency in [13]. However, as pointed out by the authors, there are
some challenges left before this approach becomes practical. For instance, the
scheme requires the homomorphic evaluation of a specific signing algorithm that
relies on the ROM. In practice, this must be instantiated with a cryptographic
hash function that can be evaluated homomorphically. Finding such a function is
still an open problem. We refer to [2, Section 6.3] for more details and discussions
on the limitations of their construction.

2 Preliminaries

Notation. We denote by N, Z, and R the sets of natural numbers, integers,
and real numbers, respectively. If k € N, we let [k] := {1,...,k}. For q €
N, we write Z; to denote the ring of integers modulo ¢ with representatives
in [—2,4)NZ. If n is a fixed power of 2, we define the ring R := Z[X]/(X™ +1)
and its quotient R, := R/qR. Elements in R and R, are denoted by regular
font letters. Column vectors with coefficients in R or R, are denoted by bold
lower-case letters, while bold upper-case letters are matrices. We let I, denote
the identity matrix of dimension k, and T}, the subset of R, containing all
polynomials with coefficients in {—1,0, 1} and Hamming weight . The ¢5 and £
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norms of an element a = 2?2—01 a; X" € R are defined by ||a|| := (E?;Ol ai|?)'/?
and ||a| s := max; |a;|, respectively. Similarly, for b = (by,...,bx)! € R*, we
let ||b|| = (Zle 6:]12)1/% and ||b||oe := max; ||b]|sc. All logarithms are to
base 2.

If D is a distribution, we write = <—s D to denote that z is sampled according
to D. For a finite set S, we also write z < S if x is chosen from the uniform
distribution over S. The statistical distance between two distributions X and Y
over a countable set S is defined by A(X,Y) := 13 _o|Pr[X = s]—Pr[Y = s]|.
For £ > 0 we say that X and Y are e-statistically close if A(X,Y) <e.

We denote the security parameter by A € N, and abbreviate probabilistic
polynomial-time by PPT and deterministic polynomial-time by DPT. For a
probabilistic algorithm A, we write y «s A°(z) to denote that A returns y
when run on input x with access to oracle O, and y € A°(z) if y is a pos-
sible output of A°(z). To make the randomness r € RSy on which A is run
explicit, we use the notation y «— A° (z;r). If A and B are interactive algorithms,
we write (x,y) <s (A(a),B(b)) to denote the joint execution of A and B in an
interactive protocol with private inputs a for A and b for B, as well as private
outputs x for A and y for B. Accordingly, we write A<"B(b)>k(a) if A can invoke
up to k executions of the protocol with B.

The random oracle model (ROM) [7] is a model of computation where all
occurrences of a hash function are replaced by a random oracle H, i.e., a function
chosen at random from the space of all functions {0, 1}* — {0, 1}** for some ¢y €
N, to which all involved parties have oracle access. This means that, for every
new oracle query, H returns a truly random response from {0,1}%, and every
repeated query consistently yields the same output.

Relations, Sigma Protocols, and OR-Proofs
Definition 1. A relation is a tuple R = (R.PGen, R.RSet, R.Gen), where:

R.PGen is the parameter generation algorithm which, on input the security
parameter X € N, returns public parameters pp.

R.RSet is the relation set, a collection of sets indexed by pp € R.PGen(1?).

R.Gen is the instance generator algorithm which, on input pp € R.PGen(1%)
and b € {0,1}, returns a pair (z,w) € R.RSet(pp) if b = 1 (where z is
called a yes-instance for R w.r.t. pp and w a corresponding witness), and an
element x if b =0 (called a no-instance for R w.r.t. pp).

We now define the OR-relation Rog on a relation R. Informally, for A € N and
public parameters pp € R.PGen(1*), a yes-instance for Rogr w.r.t. pp is a pair of
values (zg, 21), each a yes-instance for R w.r.t. pp. A witness for such an instance
is a witness for one of the two coordinates, i.e.a pair (d, w) with d € {0,1} and w
a witness for z4. In contrast, a no-instance for Ror consists of a pair (xg,x1),
where at least one coordinate is a no-instance for R w.r.t. pp.

Definition 2. Let R be a relation. The OR-relation on R is the relation Ror
whose parameter generation algorithm is Ror.PGen := R.PGen, whose relation
set is Ror-RSet(pp) := {((xo, x1), (d, w)) | (x4, w), (x1-4,") € R.Gen(pp, 1)}, and
whose instance generator Ror.Gen is given in Fig. 1.
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Ror-Gen(pp, b):

11: if b =0 then
12: d, d s {0,1}
13: x4 +s R.Gen(pp,0), z1_q s R.Gen(pp,d")

14 return (zo, x1)

15:  else

16: d<s{0,1}

170 (zo,wo) s R.Gen(pp, 1), (z1,w1) +s R.Gen(pp, 1)
18: w <— Wy

19: return ((zo, 1), (d, w))

Fig. 1. Definition of the instance generator Rogr.Gen of the OR-relation on R. Note that
in line 13 we slightly abuse notation: If d = 1, we only consider the first component
of the output, and ignore the witness in the second coordinate.

Definition 3. Let R be a relation. A Sigma protocol for R is a tuple of algo-
rithms ¥ = (X.P, X.V, X.Sim, ¥ .Ext, ¥.ComRec), where:

X).P is an interactive algorithm, called prover, that consists of two algorithms
Y.P=(X.P1, X.Ps), where:

— X.Py is a PPT algorithm which, on input a set of public parameters pp
and an instance-witness pair (x,w), returns a message cm, called the
commitment, and a state stxp.

— X.P5 is a DPT algorithm which, on input a set of public parameters pp,
an instance-witness pair (x,w), the state information stx p, and a verifier
message ch, outputs a message 1p, called the response.

2.V is an interactive algorithm, called verifier, that consists of two algorithms
YV = (X\Vy,X\V,), where:

— XY.V1 is a PPT algorithm which, on input a set of public parameters pp,
an instance ., and a prover message cm, returns a message ch (called the
challenge) sampled uniformly at random from a finite abelian group C(pp)
(called the challenge space), as well as a state stx;y = (¢cm, ch) consisting
only of the received message and the sampled challenge.

- XY.Vg is a DPT algorithm which, on input a set of public parameters pp,
an instance x, the state information stxv = (cm, ch), and a prover mes-
sage rp, outputs a pair (b,int) with b € {0,1} and int € Z. We say that
the verifier accepts the transcript if b =1, and that it rejects if b = 0.

2..Sim is a PPT algorithm, called simulator. On input a set of public param-
eters pp, an instance x, and a challenge ch, it outputs a pair of mes-
sages (cm, p).

Y .Ext is a DPT algorithm, called extractor. On input a set of public param-
eters pp, an instance x, and two transcripts (cm,ch,rp) and (cm,ch’,rp’)
such that ch # ch’ and X No returns the same output (1,int) in both cases,
Y .Ext outputs a string w such that (z,w) € R.RSet(pp).
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Y.ComRec is a DPT algorithm, called commitment recovering algorithm. On
input a set of public parameters pp, an instance x, a challenge ch, and a
response rp, it returns a message cm.

If R is a relation, the Sigma protocols for R we consider must satisfy a few
properties which we briefly describe in the following. The first one is correctness,
saying that an honest protocol execution is likely to be accepted by the verifier.
Next, there is a variant of the zero-knowledge property, where we require that on
input an instance x and a randomly chosen challenge ch, the simulator be able
to provide an authentic-looking transcript. Finally, we have soundness, saying
that if the commitment recovering algorithm succeeds in finding a commitment,
this commitment verifies for the given challenge and response.

We now consider the OR~combination of two Sigma protocols (OR-proof). It
enables a prover P to show that it knows the witness of one of several statements,
or that one out of many statements is true. Here, we restrict ourselves to the
case where a prover holds two statements (xg,z1) and one witness w for xg4,
with d € {0,1}. The prover’s goal is to convince the verifier that it holds a
witness for one of the two statements, without revealing which one. This problem
was first solved by Cramer et al. [10], and we now recall their construction.

Let R be a relation and Xy, X; be two Sigma protocols for R. The
construction of [10] allows to combine X, and X into a new Sigma proto-
col Yor = OR[Xy, 2] for the relation Ror. The key idea of the construction
is that the prover Yogr.P splits the challenge ch received by Yogr.V into two
random parts ch = chg + chy, and is able to provide accepting transcripts for
both statements zg and xz; for the respective challenge share. In more detail,
for a given security parameter A\ € N, public parameters pp € R.PGen(1*), and
instance-witness pair ((zg, 1), (d,w)) € Ror-Gen(pp, 1), the execution of Yog
proceeds as follows:

(a) The prover X'or.P; starts with computing (¢mg, stx, p) < Xq.P1(pp, xq, w)
and samples a challenge chy_4 < C(pp). Next, it runs (emi_q, rp;_y) <
X1-aq.Sim(pp, x1_4, ch1—4) to complete the transcript of x1_4. In case the
simulation fails (i.e.(¢cmq_g, rp;_y4) = (L, 1)), the prover re-runs the simu-
lator. Finally, it sets stxy..p < (sts,.p, ch1—q, 7P1_4) and sends (cmg, cmy)
to the verifier YoRr.V;.

(b) Upon receiving the commitments (cmg, cmi), Xor-V1 samples a random
challenge from the challenge space, i.e.ch «—s C(pp), and sends it to Xogr.Ps.
Finally, it sets its state to stsg,.v < (¢mo, cmq, ch).

(c) After receiving the challenge ch, Yor.P2 sets chq «— ch — ch;_4 and com-
putes a response for x4 as rp,; — Xq.Pa(pp, 24, w, stx, p, chq). In case this
computation fails (i.e.rp; = L), it also sets mp;_,; < L. Otherwise, the
prover sends the split challenges and responses to the verifier.

(d) After receiving (chg, ch1, 7Dy, rp1) from the prover, Yor.Va accepts if and
only if the shares satisfy ch = chg+ chy and both transcripts verify correctly.

For the remainder of the paper, we are interested in the situation where
a Sigma protocol is combined with itself, i.e., we obtain a new Sigma proto-
col Xor = OR[X, X] for the relation Ror. One can show that this protocol
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inherits many properties of Y, such as correctness and special honest-verifier
zero-knowledge. An important property of Yogr is that it is witness indistin-
guishable, meaning that the verifier does not learn which particular witness was
used to generate the proof.

Blind Signatures. We define blind signatures following the exposition of Hauck
et al. [15], where the interaction between signer and user consists of three moves.

Definition 4. A blind signature scheme is a tuple of polynomial-time algo-
rithms BS = (BS.PGen, BS.KGen, BS.S, BS.U, BS.Verify) where:

BS.PGen is a PPT parameter generation algorithm that, on input the security
parameter X € N, returns a set of public parameters pp. We assume that the
set pp identifies the message space M(pp) of the scheme.

BS.KGen is a PPT key generation algorithm that, on input a set of public param-
eters pp € BS.PGen(1*), returns a public/secret key pair (pk, sk).

BS.S is an interactive algorithm, called signer, that consists of two algorithms:

— The PPT algorithm BS.Sy takes as input a set of public parameters pp
and a key pair (pk, sk), and returns the signer message s1 and a state sts.

— The DPT algorithm BS.Ss takes as input a set of public parameters pp, a
key pair (pk, sk), the state information sts, and the user message uy, and
returns the next signer message So.

BS.U is an interactive algorithm, called user, that consists of two algorithms:

— The PPT algorithm BS.U; takes as input a set of public parameters pp,
a public key pk, a message m € M(pp), and a signer message si, and
returns a user message uy and a state sty.

— The DPT algorithm BS.Uy takes as input a set of public parameters pp,
a public key pk, a message m, a user state sty, and a signer message Sz,
and outputs a signature sig. We let sig = L denote failure.

BS.Verify is a DPT verification algorithm that, upon receiving a set of public
parameters pp, a public key pk, a message m, and a signature sig as input,
outputs 1 if the signature is valid and 0 otherwise.

Let pp € BS.PGen(1%). We say that BS is corrgs-correct w.r.t. pp if BS.Verify
validates honestly signed messages under honestly created keys with probability
at least 1 — corrgs. The security of blind signatures is defined by the notions
blindness and one-more unforgeability [16,19].

Definition 5. Let BS be a blind signature scheme, A € N and pp € BS.PGen(1*).
We say that BS is (t,e)-blind w.r.t. pp if, for every adversarial signer S* run-
ning in time at most t and working in modes find, issue, and guess, we have
Advgélgé (pp) == 2- |Pr[ExpE§‘f§% (pp) = 1] — 3| < &, where the game Expg'gg(i
is depicted in Fig. 2. BS is e-statistically blind if it is (t,€)-blind for every t.

Definition 6. Let BS be a blind signature scheme, A € N and pp € BS.PGen(1*).
We say that BS is (t, gsign, €)-one-more unforgeable w.r.t. pp if, for every adver-
sarial user U* running in time at most t and making at most gsign signing
queries, we have Advgsl\fﬁiF(pp) = Pr[Exp%\ﬁﬁF(pp) = 1] < &, where the

game Expgsl\fﬁ{F is depicted in Fig. 2.
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Expyg ¢ (pp): Expgs.y+" (pp):

1: b+ {0,1} 311 (pk, sk) <—s BS.KGen(pp)

12: (pk, sk) s BS.KGen(pp) 32: ((ml,sigl),...,(m;,,sigl)) s

130 (Mo, m1, Stind) < S”(find, pp, pk, sk) s U*(BS.S(pp,pk,sk),~>°o(pp,pk)
(-+85.U(pp.pk.mp)) " 33: k< No. successful signing invocations

14 Stissue S*<"BS'U(W”’A’”M1*17))1(issue, Stfind) sa: if Vi, j €], i #j:

150 sig, < BS.U(pp, pk, mp) (mi # mj) A

160 sigq_y, < BS.U(pp, pk, mi_yp) (BS.Verify(pp, pk, m;, sig;) = 1) A

e if (sigg = L) V (sig; = L) then (k+1=1) then

18: (sigg, sigy) + (L, 1) 35: return 1

190 b" <5 S™(guess, sig, $ig;, Stissue) se:  return 0

20: if b=b" then

21: return 1

22:  return 0

Fig. 2. Definition of the experiments Expgéi;il and ExpgSNLU*F.

Lattices and Gaussians

Definition 7. Let L C R™ be a lattice, o € Rsq, and ¢ € R™. The discrete
Gaussian distribution over £ with standard deviation ¢ and center c is the prob-
ability distribution Dy , o which assigns to every x € L the probability of occur-
rence giwen by Dp s c(X) = pgo(X)/poc(L), where pyc(x) = exp(—
and pg.c(L) = ycr Poc(X). We will omit the subscript ¢ when ¢ = 0.

HX*CHZ)
202

Next we recall a special version of the rejection sampling lemma related to
the discrete Gaussian distribution [18, Theorem 4.6].

Lemma 8. Let T € Ryg, and define V :={v € Z™|||v|| < T}. Let o := aT for
some o € Rsq, and let h: V — R be a probability distribution. Then there exists
a constant M € Ry such that exp(% + ﬁ) < M, and such that the following
two algorithms are within statistical distance of at most 27100 /M :

(a) v < h, z < Dzm o, output (z,v) with probability #%7 and L

otherwise.
(b) v s h, z s Dgm ,, output (z,v) with probability 1/M, and L otherwise.

Moreover, the probability that the first algorithm returns a value different from 1

1_g—100

s at least

We let Rej denote an algorithm that carries out rejection sampling on z,
where z «s Dgm ,, with v € Z™ such that ||v]| < T, and o = oT. It outputs 1
if z is accepted and 0 if rejected.

Finally, we recall the definitions of the two lattice problems relevant to our
work, the Module Short Integer Solution (MSIS) and the decisional Module
Learning With Errors (D-MLWE) problems. In both cases, we assume that there
is an algorithm that, on input 1*, generates a set of public parameters pp. Note
that D-MLWE can be defined w.r.t. an arbitrary distribution; here we only focus
on the case where the witness is sampled from the Gaussian distribution.
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Exp)t*(pp): Expp"™ (pp):

u:  parse pp = (n,q, k1, k2, B) 21: parse pp = (n, q, k1, k2,0, A)

12: A s R:l X kg 220 b5 {0,1}, b <+ R:l

130 X s A” (pp, A) 23:  if b =1 then

o if (x € RF1TR2) A 24: S ¢ DgnlJrUkQ, b« [I;, | A] -s (mod q)
(0= [T, | A] - x (mod g)) A 250 b* < D*(pp, b)
(x # 0) A (||| < B) then 2: if b=1b" then

15 return 1 27 return 1

16:  return 0 2s: return 0

Fig. 3. Definition of the experiments Exp,'\('*SIS and ExpB;MLWE.

Definition 9. Let pp = (n,q, k1, ke, 5), where n,q, k1, ke € Zso, and 8 € Rsg.
We say that the Hermite normal form of the module short integer solution prob-
lem (MSIS) is (t,e)-hard w.r.t. pp if, for every algorithm A* running in time

at most t, we have Advi>'®(pp) = Pr[Expy>®(pp) = 1] < e, where the

game Expkﬂfls is depicted in Fig. 3.

Definition 10. Let pp = (n,q, k1, k2,0, A), where n,q, k1, ks € Z~o, 0 € Rso,
and A s R’q“Xk?. We say that the decisional module learning with errors prob-
lem (D-MLWE) is (¢,e)-hard w.r.t. pp if, for every algorithm A* running in time
at most t, we have Advy""E(pp) := 2. | Pr[Expa:M™E(pp) = 1] — il <,
where the game Epr;MLWE is depicted in Fig. 3.

Additional Preliminaries. In the full version of this paper [5] we provide
a description of the partitioning and permutation technique [3], trees of com-
mitments technique [4], and a minor modified version of the general forking
lemma [6], which is used in the security proof of BlindOR. Here, we only give the
required definitions.

We define by T := {(—1)*-X?|b € {0,1}, i € Z} the set of signed permutation
polynomials, which represent a rotation multiplied by a sign. The set T has
an abelian group structure with respect to multiplication in R. The inverse
of any p = (—1)* - X? € T is given by p~! = (=1)!=%. X"~ ¢ T. When
constructing OR-proofs, we will use the abelian group T* as the challenge space
rather than T}, since the latter does not have a group structure.

Let F: {0,1}* — {0,1}*F be a cryptographic hash function, where f¢ > 2\
for F to be collision resistant. We consider the following algorithms:

HashTree is an algorithm that computes an (unbalanced) binary hash tree of
height > 1. On input £ < 2" strings vo, . .., ve_1, it returns a pair (root, tree),
where root is the root of the hash tree whose leaves are hashes of vg, ..., vp_1,
and tree is the sequence of all the other nodes in the tree.

BuildAuth is an algorithm that, on input an index 0 < k < ¢ — 1, a sequence of
nodes tree, and a height h, returns the authentication path auth for k.

RootCalc is an algorithm that computes the root of a hash tree given a leaf and
its authentication path.
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3 BlindOR: a New Blind Signature Scheme

Sigma Protocol. In lattice-based cryptography, it is common to prove in zero-
knowledge the possession of a witness s with small entries such that b = As,
given a matrix A and a vector b over some ring (typically Z, or R;). One app-
roach to do so is the so-called Fiat-Shamir with Aborts technique [17]. However,
rather than proving knowledge of s itself, this method allows to prove knowl-
edge of a pair (8, ¢) satisfying bé = As, where the entries of s are still small but
slightly larger than those of s, and ¢ is small as well. More precisely, the Fiat-
Shamir with Aborts technique allows to prove possession of a witness of the
form (§,¢) € By X By, where By and By are some predefined sets, even though
the prover actually holds a witness of the form (s, 1) € Bf x By, where By C Bj.
This relaxation is known to be sufficient for many cryptographic applications,
e.g., digital signatures [18|. Here we extend this line of applications to blind
signatures.

BlindOR is built on a variant of the Sigma protocol introduced in [17], so we
briefly recall this construction before presenting our modified protocol. Given
a public matrix A € R’(jlx’” and an instance b € R’q“, the prover holds a
witness (s,1) € B} x By C RFitk2 x R, such that b = [Iy, | A] -s (mod g). An
execution of the protocol allows him to prove knowledge of a witness (s,¢) €
By x Ba, with B} C By C RFttk2 such that be = [Ii, | A] - § (mod q). The
commitment message is given by v = [I, | A] -y (mod ¢), where y is a masking
vector with small entries. Upon receiving a challenge ¢ € T}:, the response is
computed as z =y + sc, and is sent to the verifier only if it follows a specified
distribution, typically the Gaussian distribution D;Lﬁfz for some o > 0 or the
uniform distribution over a small subset of RF1*#2. This ensures that y masks
the secret-related term sc and that z is independently distributed from s. If z
does not follow the target distribution, the prover restarts the protocol with a
fresh y. The verifier accepts if v = [I, |A]-z—bc (mod ¢) and if ||z]|,, is bounded
by some predefined value. Note that p € {2, 00}, depending on the distribution
of z.

We now turn our attention to our modified Sigma protocol, built on top of the
protocol recalled above, and start by introducing the relation R it is associated
to. The algorithm R.PGen generates a set of public parameters of the form

pp = (1)‘,n,k‘1,kg,q,w,ﬁ,al,a*757 BSaBz*7BZ76*5A) —$ RPGen(lA) )

subject to the constraints given in Table 2, where the matrix A € R’;lx’” fol-
lows the uniform distribution. In Table3 we propose a concrete tuple of such
parameters targeting 128 bits of security. The relation set is then given by

R.RSet(pp) = {(b, (5,¢)) € RE' x (RFH7 x RY) ‘ (bé = [Ij, | A] - § (mod q))

A@=(,...,c.) €C)A (¢ = Zaj) IN(HES 232)} L)
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where C = {c —c’ = (¢; — ¢},...,c. — ) |c,c’ € T®, ¢ # ¢}, and the instance
generator is given in Fig.4. The actual witness the prover possesses is of the
form (s, 1), where ||s|| < By < B, and b = [Ii, | A] - s (mod ¢). The challenge
space of the protocol is T”, and its other algorithms are given in Fig. 4.

At a high level, the protocol can be seen as a generalized version of the one
given in [17] and briefly recalled above. In particular, it is optimized to work
for BlindOR. Rather than computing only one commitment to a masking vector
in X.Py, the prover computes commitments to w > 1 such vectors and sends
them to the verifier all at once. Choosing w > 1 allows to reduce the number of
restarts, since the chance of masking the secret-related term without restarting
the protocol is increased. More concretely, increasing w allows to compute a
response such that there is no need to trigger a protocol restart with some
fixed probability. The masking vectors are chosen according to the Gaussian
distribution D’g}[”ﬁ“. Upon receiving the challenge ¢ € T", the prover sends
the first responsé z for which rejection sampling accepts, i.e., for the masking
vector y(*) such that Rej (pp,z) = 1 and i is chosen from the uniform distribution
over the set T C {0, ...,w—1}. The random choice of the index i ensures that the
simulator X.Sim returns (v,z) # (L, L) with the same probability as the prover.
Note that each of the w commitments consists of k components, where x defines
the challenge space T*. This allows to use the partitioning and permutation
technique in BlindOR. To verify a transcript (v, c,z), the verifier first finds out
which of the w commitments is related to the response. The index ¢ of the
corresponding commitment is part of the verifier’s output.

Theorem 11. Given the parameters in Table 2, the protocol depicted in Fig. 4
is a Sigma protocol for relation R given in Eq. (1).

The proof is provided in the full version of this paper [5]. We remark that
when constructing the Sigma protocol Yor = OR[Y, X, where X' is the protocol
introduced above, we must consider the group operation defined on the challenge
space T". More precisely, Yor.P1 samples ¢c1_q = (c11-d,---,Cr,1-a) s T"
and then runs Xj_4.Sim on ¢;_4. Upon receiving a challenge ¢ = (¢1,...,¢x)
from Yor.V1, Yor.P2 computes cg = (clcifd, .. .,cncgllfd) and runs Xg.Po
on cg. Therefore, we have c =c¢c4-c1_g = (cl’,dcm_d, ce énjdcﬁ71_d).

Description of BlindOR. Let BS be a blind signature scheme as defined
in Sect. 2. Recall how signing and verification of such a scheme works. The signer
computes and sends a commitment c¢cm* to the user. The user blinds ecm™* to
obtain a blind commitment ¢m and computes a challenge ch, which is generated
by evaluating a hash function H on input (¢m,m), i.e.ch = H(em, m) with m
being a message. After that, the user unblinds ch to obtain a challenge ch*
and sends it to the signer. The signer computes a response rp* and sends it
back to the user. Finally, the user blinds rp* to obtain a blind response rp
and outputs sig = (ch, rp). Verifying the validity of sig is established by com-
puting a commitment cm corresponding to ch and rp, and then checking if ch
matches H(em, m). Observe that while the steps carried out by the signer are
actually what a prover in a Sigma protocol does when proving the possession of
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R.Gen(pp, b): X Va(pp,b, stx.v,z):
101:  if b =0 then 151: if ||z]| > B, then
102: b s R’;l 152: return (0, —1)
Loa: return b 153:  parse stx.y = (v,c)
104:  if b =1 then 154: parse v = (V(0)7 s vV(W71>)
1050 repeat s <s Dk}ﬁ'k;z until ||s]| < B, % parse ¢ = (c1, ..., cx)
zt,o 156:  parse z = (z1,...,2Zx)
106 b+ [Li; | A] -s (mod g) 157: for j =1 to k do
107: return (b, s) 158: wj [Ikl | A] -zj; — be; (mod q)
159: for¢=0tow—1do
X .P1(pp, b, s): 160: int < 0
1n1: fori=0tow—1do 1610 parse vl = (Vi,. - Vi)
112 for j =1 to x do 162: for j =1 to k do
kq+k 163: if w;, = v, then
3 j s D 172 J J
e Yi € Pan g Lo int = int + 1
114 Vi [Ikl | A} Y (mod q) 165t if int = k then
115 v (V1,3 Vi) 166: return (1,1)
s y(i) (e ) 167:  return (0, —1)
117: V 4— (V(O),...,V(w71>)
_ X.Sim ,b,c):
1180 Sty .p (y(o),..,,y(u 1)) (pp )
119:  return (v, stx.p) 171: return (L, 1) with probability 6"
172:  parse ¢ = (¢1,...,Cx)
3% 3 0 e w — 1}
sV b.v): 173r 4 <—s {0, s
1(pp, b, v) 17a: for j =1 to k do
1210 €= (C1,y...,Cq) s T" . 2. s DF1TE2
5: . 1
1220 Sty.v (V,C) ’ e
123 return (c, stx.y) 176 v+ [Ty ‘ Al 'ZJ" —be; (mod q)
ez 4 (Z1,...,2k), V(Z)(—(Vl,”.,vﬁ)
: fork=0tow—1do
X.P b,s, st c): e
2(pp, by, stzp, ©) o if k =i then
131: parse sty p = (y(o), L. ,y(ufl)) 180: continue
132 parse ¢ = (€1,...,Cy) 181 for j =1 to x do
w3 T:={0,...,w—1} Lsa: v s DE1tk2
154 while T # 0 do ! Zh e
s iesT, T« T\ {i} 18 (")-‘f Ly | A] -y (mod q)
. . k
1361 parse y(q') =(¥Y1s---3¥r) e v (v, ve)
137: for j =1 to k do s v (VO vy
138: zj < yj +sc; 1s6:  return (v, z)
139: Z%(zl,...,zﬁ)
140: if Rej(pp,z) = 1 then 5.ComRec(pp, b, ¢, 2):
141 return z
142: return L 201: if ||z]| > B. then
202: return L
203: parse ¢ = (c1,...,¢x), 2= (Z1,...,2
S Ext{pp b, (v, 0,2), (v, 7)): e g T )
101: parse z = (z1,...,2x) 205: v [Ikl ‘ A} -z; —be; (mod q)
’ ! ’
192: parse z = (z1,...,%,) 206: v(® (Vi) Vi)
& 2012 fori=1tow—1do
193: S 4— Z(z]‘ — z;) ) -
=1 ’ 208: v+ (0,...,0) € (qu)
112 €4 c—c 209:  V 4— (V(O),...,V<w71))
195:  return (§,c) 2100 return v

Fig. 4. The Sigma protocol underlying BlindOR. Prover restarts X' if X.Py returns L.
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a witness for a statement, the steps performed by the user consist of blinding
the transcript (cm*, ch®, rp*) during interaction. In BlindOR, we capture these
blinding steps by algorithms Com, Cha, and Rsp, which we describe next.

For the remainder of this section we let X' be the Sigma protocol depicted
in Fig.4. Furthermore, let h = [log(wf)] and define the bijective map-
ping Intldx: {0,...,w — 1} x {0,...,£ =1} — {0,...,wl — 1}, (i,k) — k + il
Intldx converts the pair (4, k) to a unique positive integer. This is used in BlindOR
to build authentication paths via the algorithm BuildAuth. Let pp be a set of
public parameters for BlindOR and x = b € R’qCl be an instance for R. We define
the following algorithms, which are formally described in Fig. 5:

Com is a PPT algorithm that, on input pp, z, and a commitment cm* = v* gener-
ated by X.Py, returns a blind commitment ¢m = root and a state (p, tree, ).

Cha is a DPT algorithm that, on input pp, a randomness p € T*, a chal-
lenge ch® = ¢* € T", and an auxiliary bit b € {0,1}, returns a chal-
lenge ch = ¢ € T*. Observe that b determines if ¢* will be blinded using p or
using its inverse with respect to the group operation defined on T*.

Rsp is a DPT algorithm that, on input pp, a state (p, tree, e), a response rp* =
z* generated by X.Ps2, and an integer i € {0,...,w — 1}, returns a blind
response 1p = (z, auth), where rp = (L, 1) is possible.

Rec is a DPT algorithm that, on input pp, the statement x, a challenge ch, and
a response rp, returns a commitment ¢m, where ¢cm = 1 is possible.

Note that the blinding algorithms depicted in Fig. 5 can be seen as a general-
ized version of the blinding steps implicitly presented in the lattice-based blind
signature scheme BLAZE™ [4]. Unlike BLAZE™, the algorithms shown in Fig.5
are defined for lattices over modules rather than over rings. This complies with
the module structure of X and allows for more flexibility when choosing concrete
parameters. Furthermore, these blinding algorithms employ the partitioning and
permutation technique, which allows to use the abelian group T" as a challenge
space rather than the set T}:, which does not have a group structure. Moreover,
the algorithm Com blinds w commitments v*(o), e ,v*(wfl) rather than only
one commitment generated by X.P;. More precisely, the trees of commitments
technique employed in BLAZE™ is extended to further include w commitments
created by the prover. These w commitments are then combined with ¢ com-
mitments generated within Com to compute the root related to a tree of w/
commitments. We require £ to be chosen large enough so that Rsp returns a
blind response (z, auth) = (L, 1) with probability close to zero, e.g., 278, This
is crucial for BlindOR since otherwise, we would need an extra move between the
signer and user, which would allow the user to request a restart of the signing
protocol in case the algorithm lterateRej returns (L, 1). This extra move would
increase the communication complexity and force the signer to carry out almost
all computations performed by the user before triggering a protocol restart. More-
over, this extra move would not allow the use of Gaussian distributed masking
vectors e since a blind signature could be correctly verified even if rejection sam-
pling does not accept. This would enable the user to request a protocol restart
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Com(pp,b,v™): Rsp(pp, (p, tree, e),z”,1):
n: parse v = (v (@ .y a: parse p = (p1,...,px), 2° = (21,...,2))
12 p=(p1,...,px) s T" , ~,
132 fori=0tow—1do a2z Fzzﬂ’i
i—1
. NO . J

e parse v o (Vi vy) a1 (z,k) < lterateRej(pp, e,z’)
I5: V/(’i) — Zvjpj (mod q) aa: if (z,k) = (L, L) then

i=1 45 return (L, 1)
L6: for k=0to ¢ —1do a6:  auth <— BuildAuth(Intldx(%, k), tree, h)
. RO) s D;}Lt,kQ ar:  return (z, auth)
18: V(i"k) — [I"Tl |A] ‘e<k) +

IterateRej(pp, e,2z’):

+v'@ (mod q)

0 —1
190 (root, tree) < s parse e = (el”, ... ")

522 for k=0to ¢ —1do

< HashTree(v(®? . y@—1E=1) *) ,
o) (e—1) 53: Z < e + z
200 e (e, ... e ) 54: if Rej(pp,z) =1 then
21 return (root, (p, tree, e)) o return (z, k)

s6: return (L, 1)
Cha(pp, p,c”, b):

31: parse p = (p1,...,Px) Rec(pp, b, ¢, z, auth):
« * «
a2 parse " = (c],..., ;) o1 if ||z > B. then
33:  if b =0 then 62: return L
34z ce(efprty o etplh) 632 parse € = (C1,...,Cx)
35:  else

K
64:  C £ E Cj
j=1

650 W< [Ix; | A] -z —bc (mod q)

66: root < RootCalc(w, auth)

* *
361 C (Clp17...7cﬁp,€)
37: return c

¢7: return root

Fig.5. A formal description of algorithms Com, Cha, Rsp, and Rec.

and obtain two different signatures. The advantage of using the Gaussian dis-
tribution for masking is that it allows to generate blind signatures with a size
smaller than signatures generated using masking vectors that are uniformly dis-
tributed over a small subset of R.

Next, we describe BlindOR. Let Yor = OR[Y, X] and F: {0,1}* — {0, 1},
H: {0,1}* — T* be hash functions, where £g > 2) and T* is the challenge space
of X. The algorithm BS.PGen generates and returns a set of public parameters
pp = (17 n, ki, ko, q,w, €, h, K, 0", 0%,0,8, M, B, B., B, {g, A). The description
of the parameters is summarized in Table 2. The matrix A is chosen from the uni-
form distribution over R’;l ¥k2 We remark that pp includes the public parameters
of the relation R for which X is defined, i.e., BS.PGen may first run R.PGen(1*)
and then generates the remaining parameters of the scheme. For simplicity, the
input of the algorithms of X' includes pp. The remaining algorithms of BlindOR
are formalized in Fig. 6.

In Table 3, we propose concrete parameters for BlindOR targeting 128 bits of
security. Next, we state the correctness, blindness, and one-more unforgeability
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BS.KGen(pp): BS.Uz2(pp, pk, m, stu, ¢, €7, 25, 27 ):
11: ((bo,b1), (d,s)) <5 Ror.Gen(pp, 1) si:  parse pk = (bg,b1)
12: pk < (bo,b1), sk« (d,s) 52 parse sty = (po, P1, treeg, treey, eg, €1,
131 return (pk, sk) st):OR,v)

sar (b, (i0,41)) = Zor-Va(pp, (bo, b1),
BS.S1(pp, pk, sk): stZOR‘v,cg,cI,zs,Z;)

s4: if b =0 then

211 parse pk = (bg,b1), sk = (d,s)
22: (Vg s V;, sts) s

s Zor.P1(pp, (bo, b1), (d,s))
230 return (vg, V], sts)

55: return L

56: CQ < Cha(pp,pg,c;,l)
sz ¢y <+ Cha(pp,p1,c],1)
581 (ZU, authg) —

<+ Rsp(pp, (po, treeo, e0), z4, io)

BS.U1(pp, pk, m, vg, vi): so: (21, authy)

s1: parse pk = (bg, b1) « Rsp(pp, (p1, tree1, e1), 27 ,i1)
32 (rooto, (Po, treeg, €g)) s Com(pp, bo, vy) 0 if (z0 =1) Vv (z1 = 1) then
61: return L

3s: (rooty, (p1, treer, e1)) «s Com(pp, b1, vy)
s: ¢ < H(rootg, rooty, m) 620 sig < (co, c1, %0, 21, authg, authy)
s ¢*  Cha(pp, po - P1,¢,0) 63:  return (m, sig)

360 Stxgp.v (vy,vi,ch)

sr: sty < (Po, P1, treeo, treer, o, €1, stsgp.v) BS Verify (pp, pk, m, sig):
3s:  return (c”, sty) n: parse pk = (bg,b1)

72:  parse sig = (co, €1, Zo, 21, authg, authy)

BS.Ss ( k, sk, sts, c*): 73 rootg < Rec(pp, bo, co, 2o, authg)
~>2\PP, PR, 5%, Sts, : 7a:  Tooty < Rec(pp,bi,c1,21, authy)

a:  parse pk = (bo,b1), sk = (d,s) 750 if (rootog = L)V (root; = L) then
a0 (cg,cl,z5,2]) + 76: return 0

“ Zor-Pa(pp, (b, b1), (d,s), sts,e™) 7 € ¢ H(roolo, rooty, m)
i if (2,2]) = (L, L) then 7 if ¢ # co - e then

79: return 0
44: return L
 x x s0: return 1
45:  return (co, Cy,Zg, zl)

Fig. 6. A formal description of BlindOR. Signer restarts the protocol if (z5,2z7) = (L, L).

of BlindOR. We provide the description of the parameter selection as well as the
proof of correctness in the full version of this paper [5].

Theorem 12. Given the parameters in Table 2, BlindOR s corrgs-correct w.r.t.
pp, where corrgg = 6* +2e* + 28 + 2¢, 6 is the probability that algorithm Yor.P2
returns L, €* is the probability that algorithm X .V returns (0,4), § is the prob-
ability that algorithm Rsp returns L, and € is the probability that Rec returns 1.

Theorem 13. Let F: {0,1}* — {0,1}% and H: {0,1}* — T* be two hash func-
tions modeled as random oracles. Given the parameters in Table 2, BlindOR is e-
statistically blind w.r.t. pp in the ROM, where ¢ = max{*}(2n)="%,27100/U.

Proof. Let S* be an adversarial signer in the blindness experiment Expgéig‘i

defined in Fig.2. Then, S* selects two messages mg, m; and interacts with the
honest user twice. The goal is to show that after both interactions, the messages
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Table 2. A review of the parameters of BlindOR.

Parameter | Description Bounds

n, ki, k2 | Dimension n=2",n ki ks € Z>1

q Modulus prime, ¢ =2p+1 (mod 4p), n>p>1,p= 2”',
P € L1, ¢MP > 2%

w, No. masking vectors w,l € ZL>1

h Tree height h = [log(wf)]

K Specifies the set T" |T%| = (2n)~ > 2*

o' Standard deviation of in sk | o’ > 0

o* Standard deviation in X 0" =a*kBs, S =exp(2 + 353),
(p%)wg*,zs»o

o Standard deviation in BS.U =exp(L + 513),
(1-— ﬁ) <6,6>0

M No. restarts of BS.S M=1/(1-14")

Bs Bound of ||s|| in sk B, =1'c’\/(ki + k2)n, 0/ >0

B.- Bound of ||z|| in X B.r = 070" \/(k1 + k2)kn, n° >0

B. Bound of ||z|| in BS.U B. =no+/(k1+k2)n, n >0

le Output length of F le > 2)\

Table 3. Concrete parameters of BlindOR targeting 128 bits of security.

/ * *

n | kilka|q wll h k |ola"|o a |o M | b
2565 |4 |~2%|1|8[3|15[4 |11 8344 |41 |71230016 |3 | 384

output by the user, i.e., two blind challenges of the form c* € T* together
with two blind signatures of the form sig = (co,c1, 20,21, authg, auth;), are
independently distributed and do not leak any information about the signed
messages and the respective interaction.

The authentication paths authg, auth; include hash values that are uniformly
distributed over {0, 1}*F. The challenge c* as well as the signature part (cg,c;)
are uniformly distributed over T*, and hence they do not leak any information.
Moreover, [3, Lemma 4] ensures that c¢* is independently distributed from ¢ =
co - €1, and S* can link ¢ to the correct c¢* only with probability (2n)~" over
guessing. The blind vectors zg, z; have the form z = e + Zj 1 Z;p; (see Fig.5).
By Lemma 8, both vectors completely mask Zj 12;p; and are independently

distributed within statistical distance of 271%0/U from Dk1+k2.

Finally, if a protocol restart is triggered by S*, then BS U generates fresh
random elements. Therefore, the protocol restarts are independent of each other,
and hence S* does not get any information about the message being signed. O

Theorem 14. Let F: {0,1}* — {0,1}% and H: {0,1}* — T* be two hash func-
tions modeled as random oracles. Given the parameters in Table 2, BlindOR
is (¢, gsign, 9F, gn, €)-one-more unforgeable w.r.t. pp in the ROM if D-MLWE
is (t',€")-hard w.r.t. ppyowe = (0, q, k1, k2,0’ A) and MSIS is (t",€")-hard w.r.t.
PPmsis = (1, q, k1, ke + 1,24/ B2 + k2). More precisely, if there exists a forger A*
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against BlindOR w.r.t. pp that returns gsign + 1 blind signatures in time t and
with probability €, and after making qr, qu queries to F,H, respectively, then A*
can be used to solve D-MLWE w.r.t. ppyywe in time t' =t and advantage €’ = ¢,
or A* can be used to solve MSIS w.r.t. ppygis in time ¢ ~ 2t and probability

1 1 acc 1
EII % —_—— ! . — . acc . —_— — — s
(2 gSign + 1) ((qSign + 1)‘*}6 "H‘n| )
2 . .
where acc = (e — qF;FQF - qj'qgl-f[l)/ ﬁs'g“ﬂ.

Proof. First we observe that the hardness of D-MLWE is required to protect
against key recovery attacks, i.e., being able to determine the yes-instance
of MLWE included in the public key pk = (bg,b;) allows to compute the
secret key, and hence forgeries. Therefore, in what follows we assume the hard-
ness of D-MLWE w.r.t. pppwe, and construct a reduction algorithm R that
solves MSIS w.r.t. pppgis as given in the theorem statement.

Given ppygis and a matrix A’ € Rg‘ *(h2H1) R chooses a bit d s {0,1}, and
writes A’ = [A | by_q] € RF'*2 5 RM1. Then, it generates the remaining public
parameters pp of BlindOR, and sets C' = {c1,...,cq,}, where c1,...,¢q, s T".
Afterwards, R runs R.Gen(pp, 1) to obtain (bg,s). Then, R sets pk = (bg, by),
sk = (d,s), and runs A* on input (pp, pk). The random oracle and signing queries
that A* make are answered by R as follows:

Random Oracle Query. R maintains a list Ly initialized by the empty set. It
stores pairs of queries to H and their answers. If H was previously queried
on some input, then R looks up its entry in Ly and returns its answer c.
Otherwise, it picks the first unused ¢ € C and updates the list. Furthermore,
R initializes an empty list L to store pairs of queries to F and their answers.
The queries to F are answered in a way that excludes collisions and chains.
Excluding collisions rules out queries x # x’ such that F(x) = F(x), and
excluding chains guarantees that the query F(F(x)) will not be made before
the query F(x). This ensures that each node output by HashTree has a unique

preimage, and prevents spanning hash trees with cycles. Simulating F this
2
qF +qr

ST from an oracle that allows

way is within statistical distance of at most
collisions and chains.

Signature Query. Upon receiving a signature query from A*, R runs the sign-
ing protocol of BlindOR. Furthermore, R updates both lists Ly and Lg accord-

ingly.

After gsign successful invocations, A* returns gsign + 1 pairs of distinct messages
and their signatures, where one of these pairs is not generated during the inter-
action. If H was not programmed or queried during invocation of A*, then A*
produces a ¢ € T* that validates correctly with probability 1/|T*|. Therefore,
the probability that A* succeeds in a forgery such that all gsign + 1 signatures

. . ianF1
correspond to random oracle queries made by A* is at least € — qs"qgr",: .

Afterwards, R guesses an index i* € [gsign + 1] such that c;» =
c;- for some j* € [gn]. Then, R records the pair (m;,sig;. =
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(co, €1, 20, 21, authg, auth,)) and invokes A* again with the same random

tape and the random oracle queries C' = {c1,...,€jx—1,Ch,...,C 1},
where c;.*,...,cflH € T* are freshly generated by R. After rewinding, A*

returns gsign + 1 pairs of distinct messages and their valid signatures. The poten-
tial two valid forgeries (before and after rewinding) output by A* at index ¢*
have the form

(m, (co, €1, 20, 21, authg, authy)) and (m’, (x)c, €}, 2y, 2}, authy, authy) ,

— ! /
where ¢; = (¢1,4,...,¢x,;) and ¢, = (*)Cl,i’ .
algorithm we obtain

i € {0,1}. By the verification

7/{17

wiqg= I, |A]-21_q—Dbi1_g4c1_4 (mod q) ,
Wiy =[x |A]-2]_4—bi_gc¢]_4 (mod q),
root1_q = RootCalc(wy _g4, authy_g), rooty_, = RootCalc(w_,, auth|_,) ,

co - €1 = ¢ = H(rootg, rooty, m), ¢ -c} =c = H(rooty, root}, m’) ,

By the forking lemma (see the full version [5]) we have rooty = root), Toot; =
rooty, m =m/, c # ¢, and ki_q = k|_,, where k1_q,k]_, €{0,...,wl — 1} are
the indices included in auth;_g4, auth)_,, respectively. Observe that simulating
the hash queries to F as described above ensures that both auth; 4, auth}_,
include the same sequence of hash values, and hence auth;_4 = auth}_,
and wi_q = w)_,. If c1_g4 # ¢|_,, then we have

[T, |A]-2z1-a —bi_gc1a=[Ig, |A]-2]_4 —bi_ac)_4 (mod g),

where ¢4 = Z';:l ¢ji—q and ¢)_, = Z';:l ¢} 14 In this case, R runs X.Ext

on input (pp,b1_g4, (v,c,2),(v,c’,2’)), where

v = (V(O)a - 7V(w71))7 V(O) = (Wl—da o,... 70) € (RSI)K’
v =(0,...,0) € (R¥)" for all i € [w — 1], z=(21-4,0,...,0) € (RE")",
d = (0.0, 0) € (RY), maoall < Be, |4l < B..

The output of X.Ext is the pair (z1_q —2}_,, ¢1—q¢ — ¢} _,), which gives the non-
trivial solution [z1_q—2}_4|c¢|_;,—ci1-a]" to MSIS w.r.t. ppygs and the matrix
[Le, | A [ byg] = L, | A

Next, we analyze the success probability of R. The probability that R answers
the correct sequence of gsjgn + 1 random oracle queries to H that are used by A*
in the forgery is at least 1/ q,‘f‘g"ﬂ. Since one of the gsign + 1 pairs output by A*
is by assumption not generated during the interaction with R, the probability
of correctly guessing the index ¢* corresponding to this pair is 1/(gsign + 1).

The success probability of the forking is given by frk > acc - (W IT“\)

where acc = (e — GEtae _ qSig"H)/qgfig"H. By Lemma 15, the probability that

2t [T*]
C1_q # ¢|_, is given by 3 — ¢’. This deduces the probability ¢” that is given in
the theorem statement. O



114 N. Alkeilani Alkadri et al.

Lemma 15. Assume that after rewinding the forger A* by the reduction R given
in Theorem 14, the two forgeries output by A* satisfy c1_q = ¢ _, with probabil-
ity 1/2+4¢’, where d corresponds to the yes-instance of MLWE included in the pub-
lic key and €' is noticeably greater than 0. Then, there exists a distinguisher D*

that uses A* to win the experiment ExpB;MLWE with the advantage €'

The proof is provided in the full version of this paper [5].

Acknowledgments. We thank Marc Fischlin for helpful discussions. This work was
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
— SFB 1119 — 236615297.

References

1. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271-286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 17

2. Agrawal, S., Yadav, A.L.: Towards practical and round-optimal lattice-based
threshold and blind signatures. Cryptology ePrint Archive, Report 2021/381

3. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: BLAZE: practical
lattice-based blind signatures for privacy-preserving applications. In: Bonneau, J.,
Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 484-502. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51280-4 26

4. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: On lattice-based inter-
active protocols: an approach with less or no aborts. In: Liu, J.K., Cui, H. (eds.)
ACISP 2020. LNCS, vol. 12248, pp. 41-61. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-55304-3 3

5. Alkeilani Alkadri, N., Harasser, P., Janson, C.: BlindOR: an efficient lattice-
based blind signature scheme from or-proofs. Cryptology ePrint Archive, Report
2021/1385

6. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: ACM CCS 2006

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 93

8. Camenisch, J., Neven, G., Shelat: Simulatable adaptive oblivious transfer. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573-590. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72540-4 33

9. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology. LNCS, pp. 199-203. Springer,
Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-4 18

10. Cramer, R., Damgard, 1., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174-187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5_ 19

11. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60-77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4

12. Fischlin, M., Schréder, D.: Security of blind signatures under aborts. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297-316. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 17


https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-540-72540-4_33
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-00468-1_17

13.

14.

15.

16.

17.

18.

19.

20.

21.

BlindOR: An Efficient Lattice-Based Blind Signature Scheme 115

Garg, S., Rao, V., Sahai, A., Schréder, D., Unruh, D.: Round optimal blind signa-
tures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630-648. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 36

Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 345-375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 12

Riickert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASTACRYPT 2010.
LNCS, vol. 6477, pp. 413-430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 24

Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150-164.
Springer, Heidelberg (1997). https://doi.org/10.1007 /BFb0052233

Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598-616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

Lyubashevsky, V.. Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738-755. Springer,
Heidelberg (2012). https://doi.org/10.1007,/978-3-642-29011-4 43

Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361-396 (2000)

Riickert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASTACRYPT 2010.
LNCS, vol. 6477, pp. 413-430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 24

Schréder, D., Unruh, D.: Security of blind signatures revisited. J. Cryptology, 30(2),
470-494 (2017)


https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24

q

Check for
updates

Efficient Threshold-Optimal ECDSA

Michaella Pettit®)

nChain AG, Zug, Switzerland

m.pettit@nchain.com

Abstract. This paper proposes a threshold-optimal ECDSA scheme
based on the first threshold signature scheme by Gennaro et al. with
efficient non-interactive signing for any t + 1 signers in the group, pro-
vided the total group size is more than twice the threshold ¢. The scheme
does not require any homomorphic encryption or zero-knowledge proofs
and is proven to be robust and unforgeable with identifiable aborts tol-
erating at most t corrupted participants. The security of the scheme is
proven in a simulation-based definition, assuming DDH and that ECDSA
is existentially unforgeable under chosen message attack. To evaluate the
performance of the protocol, it has been implemented in C+4 and the
results demonstrate the non-interactive signing phase takes 0.12 ms on
average meaning over 8000 signatures can be created per second. With
pre-signing phase, it takes 3.35 ms in total, which is over 144 times faster
than the current state of the art.

Keywords: ECDSA - Multiparty computation + Threshold signatures

1 Introduction

A (t,N) threshold signature scheme is a method for a group of N participants
to generate a signature on a message, without any individual participant having
knowledge of the private key. A valid signature cannot be created by less than
t 4+ 1 participants. A benefit of using a threshold signature scheme is that the
private key never exists at any point in time. There is no single point of failure,
which mitigates against attack or loss of a private key.

One of the first threshold ECDSA schemes was proposed by Gennaro, Jarecki,
Krawczyk, and Rabin [1]. A private key with threshold ¢ is split between partici-
pants such that a subset of 2t 4 1 participants are required to create a signature.
This protocol is fast during signing, in which a participant can compute their
share of the signature upon request without knowledge of other signers. This
absence of back-and-forth communication is known as non-interactive signing.

The drawback of [1] is that the threshold of participants required to create a
signature is 2¢, which is twice that of computing the private key. The multipli-
cation of two shared secrets, each with threshold ¢, requires 2¢ 4+ 1 participants.
In the context of [1] the shared secrets are the private and ephemeral key.

Further work focused on achieving threshold-optimality in which the private
key and signing threshold are the same, initially for two signers [2-5]. In 2016,
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a scheme by Gennaro et al. [6] was the first to achieve threshold-optimality for
any threshold ¢ and group size N in theory. It required a distributed generation
of an RSA modulus, which cannot efficiently involve more than two parties. As
a consequence, [6] cannot achieve more than (1, N) in practice.

The first practical (¢, N) threshold-optimal scheme for any threshold ¢ and
group size N was published in 2018 by Gennaro and Goldfeder [7]. This scheme
was based on [6] and achieves optimality by turning multiplication of two secrets
into an addition of secrets using homomorphic encryption, along with zero-
knowledge proofs to ensure security of the scheme. This leads to multiple rounds
of communication and an increase in computation, particularly during signing.
The signing protocol requires one-to-one communication with every other sign-
ing participant, limiting the scaling capability of the scheme. If a participant
drops offline during signing, the signing protocol must be restarted.

Recently, there have been many (¢, N) threshold-optimal schemes proposed
[8-12]. Their use of homomorphic encryption and zero-knowledge proofs means
that they still require expensive computation and interactive signing.

In 2020, Canetti et al. [13] and Gennaro and Goldfeder [14] each proposed a
non-interactive threshold-optimal scheme, with the latter including identifiable
abort. However, both schemes still rely on homomorphic encryption and zero-
knowledge proofs. Another property of these schemes is that the participants who
must collaborate during the non-interactive signing process is predetermined.

In spite of recent advances in threshold ECDSA, to the best of the author’s
knowledge, current schemes have only achieved threshold-optimality with expen-
sive computation such as homomorphic encryption and zero-knowledge proofs.
Additionally, the signing must be interactive or involve a set of participants that
is decided before the message has been received, and either case results in a large
number of communication rounds and a high demand on overall computation.

Contributions. This paper proposes an efficient threshold-optimal ECDSA
scheme.

— Low computational complexity: this is the first scheme to achieve threshold
optimality without expensive computation like homomorphic encryption or
zero-knowledge proofs on discrete logarithms, ranges of discrete logarithms,
or others. Results show that it is over 144 times faster than [14] and almost
240 times faster than [13].

— Low number of communication rounds: the scheme requires four rounds in the
signing protocol with identifiable abort where only the first requires secure
one-to-one communication, equivalent to [1]. This is the same number of
rounds as[13] and three rounds fewer than the protocol with identifiable abort
in [14]. There are two rounds of communication in key generation which one
round fewer than [14] and [13].

— Non-interactive threshold-optimal signing: the scheme is split into a pre-
signing phase and a non-interactive signing phase once the message is known,
similar to [14] and [13]. The signers are not predetermined in the signing step,
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unlike [14] and [13]. Therefore, any failures by less than N — ¢ participants
does not affect the ability to complete the final round.

— Identifiable corrupted participants: participants that deviate from the protocol
can be identified, in line with the recent proposal in [14].

— Provably secure: a simulation-based security proof is provided to show that
the scheme is robust and unforgeable.

2 Preliminaries

2.1 Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman. Let G be a cyclic group of prime order n generated
by G. The following are computationally indistinguishable: (aG, bG, abG) with
a,b €g Zy, and (aG,bG, cG) with a,b,c €g Zy,.

2.2 ECDSA

The Digital Signature Algorithm is a digital signature scheme proposed by
Kravitz [15] in 1991." The public parameters PP in the scheme are an ellip-
tic curve group G with points over the field IF,,, generator G, and order n.

— DSKeyGen: On input of a security parameter 1!, this outputs a random private

key a & Zy, and the corresponding public key P = aG where aG is notation
for point multiplication on an elliptic curve.
— DSSign: In order to calculate the signature on a message m using the private
key a, the following steps are taken.
1. Calculate the hash of the message e < hash(m).

2. Randomly generate an ephemeral key k & Zy,.
3. Calculate (x,y) < kG then r — = mod n. If r = 0 return to Step 2.
4. Calculate s <+ k~1(e + ar) mod n. If s = 0 return to Step 2, otherwise
output the signature as (r, s).
— DSVerify: In order to verify a signature (r,s) on a message m with a given
public key P, the following steps are taken.
1. Calculate the hash of the message e < hash(m).
2. Calculate (2/,y') < s~1(eG + rP).

3. Check if r = 2/ mod n.

2.3 Threshold Signature Scheme

A threshold signature scheme is a tuple of protocols.

! The method can be applied to elliptic curve groups as given here, but it is understood
that it may be applied to generic cyclic groups used in the standard DSA.
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— TSKeyGen: The key generation algorithm takes public parameters PP as
input. The output is composed of private outputs a; known only to participant
i for i = 1,..., N, forming a (¢, N) shared secret scheme corresponding to
shared private key a, and a public output known to all participants which is
the public key P corresponding to the shared private key.

— TSSign: The signing algorithm takes private key shares a; and a message m
in the message space M and outputs a signature sig.

— TSVerify: The verification algorithm has the public key P, signature sig, and
message m as input, and outputs 1 if the signature is valid, or 0 otherwise.

2.4 Communication Model

In a scheme with IV participants, it is assumed that they are connected by one-
to-one secure communication channels and a broadcast channel. If participant 4
broadcasts a message, it is identifiable as being from that participant.

2.5 Adversary Model

It is assumed that an adversary can corrupt at most ¢ participants in a threshold
signature scheme, where t + 1 shares are required to reconstruct the private key.
It is also assumed that the adversary has computational power that can be
modelled by a probabilistic polynomial time (PPT) machine. There are three
subtypes of adversaries:

— Favesdropping adversary: this is a passive adversary that learns all informa-
tion stored at corrupted nodes and all broadcasted messages.

— Halting adversary: this is an active adversary that is eavesdropping and may
also stop corrupted participants from sending messages at each step.

— Malicious adversary: this is an active adversary that may cause any corrupted
participant to deviate from the protocol.

A halting or malicious adversary may also be a rushing adversary, which is one
that ensures corrupted participants speak last in any rounds of communication
and may reorder any messages that are sent.

Definition 1. As defined in [1], the view of the adversary is the knowledge of
the adversary in a protocol. That is, the computational history of all corrupted
participants and public communications, including the output of the protocol.

The definitions of unforgeability and robustness are now given. These will enable
a secure threshold signature scheme to be defined.

Definition 2. A (¢,N) threshold signature scheme is unforgeable if no mali-
cious PPT adversary can produce a wvalid signature on a previously unsigned
message m with non-negligible probability, where the adversary has knowledge of
the following: the output of the key generation protocol ay,...,a; and P, and the
output of the signature generation protocol sigy, . . ., Sig, 0N MESSAGES M1, ..., My,
which the adversary chose.
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Definition 3. A threshold signature scheme is robust if TSKeyGen and TSSign
produce the expected outputs even in the presence of a halting or malicious adver-
sary. An expected output of TSKeyGen is one in which a; fori =1,...,N are
shares of a (t,N) shared secret that corresponds to the public output P. For
TSSign, an expected output is one that is accepted by verification using TSVerify.

For robustness, it does not matter if more than ¢ participants are corrupted by
an eavesdropping adversary, the protocol will still produce an expected output.

Definition 4. A (t,N) threshold signature scheme is secure if it is robust and
unforgeable in the presence of an adversary who corrupts at most t participants.

In order to prove the unforgeability of the threshold scheme, it is necessary to
be able to simulate the scheme. This is the definition from [1].

Definition 5. A threshold signature scheme is simulatable if:

1. The key generation protocol TSKeyGen is simulatable. That is, there exists
a simulator that can simulate the view of an adversary in an execution of
TSKeyGen given the input of the public key and the public output generated
by an execution of TSKeyGen.

2. The signing protocol TSSign is simulatable. That is, there exists a simula-
tor that can simulate the view of the adversary on an execution of TSSign
that takes the public key, message, t shares of a shared private key, and the
signature on the message as input, and generates sig as an output.

The security is proven by comparing the view of the adversary in the protocols
TSKeyGen and TSSign to an ideal setting. This ideal setting is a simulation that
is secure by definition. Therefore, showing that the view is indistinguishable to
the attacker proves that the protocols TSKeyGen and TSSign are secure.

2.6 Verifiable Random Secret Sharing [16]

The TSKeyGen and TSSign protocols require a (¢, N) secret sharing protocol,
which has been chosen to be the scheme in [16] and has two rounds of commu-
nication.

— VRSS: This is the shared secret generation algorithm that takes the index i
of each participant and the threshold ¢ as input and outputs a share a; of a
shared secret for each participant 7.

1. Each participant ¢ randomly generates integers a;;, b;; Ll Ly, for I =
0,...,t, where a;;,b; are the coefficients for the degree-l term in the
polynomials f;(z) and f/(z), respectively. Each participant ¢ computes
and broadcasts C;; = a;G + by H for each [, where H is a generator of
the group and it is assumed an adversary cannot compute loggH. Each
participant ¢ sends f;(j), f/(j) via a one-to-one communication channel

to participant j for each j # 7.
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2. Each participant j verifies if f;(j)G+ f!(j )H o) Ci , for all i # j.

If any i fails, participant j broadcasts a complaint against participant 1.
3. Each participant ¢ who was the subject of a complaint in the previous

step broadcasts the values f;(j), f/(j) satisfying the equation in Step 2.
4. The set of non-disqualified parties ) are those that received t or fewer
complaints in Step 2, or answered the complaints with correct values.
Each participant ¢ € Q calculates their secret share a; — >, ¢ f;(i).
Each participant i € Q calculates and broadcabts a;; G for each .

7. Each participant j verifies if f;(j )G El o) (au@), for all i # j. If
any ¢ that passed the check in Step 2 fails this verification, participant
j broadcasts a complaint against that participant by sharing the values
1i(4), f1(j) they received.

8. Each participant 7 reconstructs the values a;o and a;oG for each partic-
ipant j who receives a valid complaint, that is, those values that satisfy
the equation in Step 2 and not in Step 7. Each participant constructs
P~ ZiEQ CLZ‘()G.

Shares a; allow operations on the shared secret values to be computed whilst
keeping the value of the shared secrets hidden, even to the participants of the
scheme. That is, the shared secret values never exist and cannot be computed by
any participant unless the threshold is passed. Note in Feldman’s verifiable secret
sharing scheme [17], an adversary can change the distribution of the public key.
Therefore, it can be used for shared secrets in which the corresponding public
key is fixed or not used, or if the corrupted participants are eavesdropping only.

oo

2.7 Verifiable Zero Secret Sharing [1]

It will be required to create shares of zero, using (¢, N) verifiable zero secret
sharing VZSS. This uses Feldman’s verifiable secret sharing scheme [17] as the
corresponding public key is fixed, so an adversary cannot change the distribution.

— VZSS: This is the shared secret generation algorithm that takes the index
of each participant and the threshold ¢ as input and outputs a share a; of a
zero-valued shared secret for each participant .

1. Each participant ¢ randomly generates integers a;; & Zy forl=1,...,t
and sets a;o <— 0, where a;; is the coefficient for the term of degree [
in the polynomial f;(x). Each participant ¢ sends f;(j) via a one-to-one
communication channel to participant j for each j # i.

Each participant ¢ calculates their secret share a; « Z 1 fi(0) .

3. Each participant ¢ calculates and broadcasts their obfuscated coeflicients
a;G for each I =1,.

4. Each participant ] calculates 1:(4)G using the value received in Step 2 and

verifies if f;(j )G S, (5) (au@) , for all i # 5. Participant j broadcasts
a complaint for any i whose values do not satisfy the equation.

N

By adding zero-shares to computations with shared secrets, a randomization of
the shares is achieved without changing the result of the computation.
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2.8 Operations on Shared Secrets

Given multiple shared secrets where the shares are points on a polynomial, it is
possible to directly compute operations such as addition of secrets, multiplication
of secrets, multiplication by a constant, or a combination of these simultaneously,
provided enough shares of each shared secret are available. The shares k; ! that
correspond to the inverse of a (¢, N) shared secret with shares k; are computed
using the following protocol as given in [1].

— SSinverse: This takes shares k; for ¢ = 1,..., N as input and outputs the
corresponding inverse shares k; ! for each i.

1. All participants execute a (¢, N) shared secret scheme, where the share of
participant ¢ is denoted by «;.

Each participant ¢ computes p; < «;k; and broadcasts the result.

3. All participants calculate p < interpolate(p1, . .., pior+1), where the nota-
tion interpolate(...) is Lagrange interpolation evaluated at = = 0 over
shares p1,..., tory1-

4. Each participant 7 calculates their inverse share &, by .

N

3 Efficient Threshold-Optimal Scheme

Threshold ECDSA signature generation involves the multiplication of two shared
secrets, each with a threshold of ¢. The present scheme illustrates that it is possi-
ble to precalculate all multiplications prior to receiving a message without the use
of expensive computation. The signature generation on the message is threshold-
optimal and non-interactive, with no restriction on the ¢ 4+ 1 participants that
sign. While the number of participants required to calculate the multiplication
in precalculation is 2t + 1, the signature threshold during the non-interactive
signing phase is now the same as the threshold ¢ of the private key.
Observe that a signature in ECDSA has the form (r, s), where

s=kte+k tar (1)

Here, e is the hash of the message, a is the private key, and r is derived from the

public key corresponding to the ephemeral key k. The second term is independent

of the message, meaning that it can be calculated prior to receiving a message

in a pre-signing phase. However, if the value k~'a itself is known, as soon as the

signature is calculated it is trivial to calculate the private key a. To secure the

result k~'a, another (¢, N) shared secret 3 is added into this computation.
Explicitly, the signature is

s:k_le—l—r(o—ﬁ), (2)

where 0 = k~'a+ 4 is precalculated. The signature is now an addition of £~! and
0 which are both (¢, N') shared secrets, therefore only ¢ + 1 shares are required.

While at least 2¢+ 1 participants are required to execute the full scheme, dur-
ing the final step once the message is known the number of participants required
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t 4+ 1 is the same as the number required to calculate the private key and this
may be any subset of the group. Therefore, threshold-optimality is achieved in
the non-interactive signing phase without requiring expensive computations like
homomorphic encryption or zero-knowledge proofs. Due to the absence of these
expensive computations, it is feasible for multiple k, o, and corresponding r val-
ues to be precalculated in parallel and stored until required. Benchmarking shows
an average time of this pre-computation in a scheme with three participants, 2
of which are required to compute a signature, is 3.22 ms before any parallelisa-
tion, meaning that over 310 values could be calculated per second. One of these
precalculated values is used with each signature and then discarded.

If optimised, the rounds of communication may be as low as three prior
to receiving the message and there will be only one round during signature
generation. Similarly, after the initial round during VRSS, which has one-to-
one communication, the remaining rounds are broadcasts, including signature
generation. The implication of this is that the scheme is easily scalable.

3.1 Distributed Key Generation

The following protocol is a known result. TSKeyGen takes the public param-
eters PP as input and outputs a secret share a; only known to participant 4
that corresponds to a share of a (¢, N) shared private key a and a public output
that is the public key P. The protocol has two rounds of communication since it
uses VRSS. Assume all participants have agreed on each other’s unique, non-zero
integer 4, usually chosen to bei=1,...  N.

TSKeyGen
Input: public parameters PP, index i for i =1,..., N, threshold ¢
Output: shares a; for i =1,..., N, public key P

1. All participants execute a (¢, N) shared key generation VRSS where partici-
pant ¢ obtains the secret output a; and public output P.

At the end of this protocol, each participant i stores a share a; and the public
key P where P = a(G is the same for all participants.

3.2 Signature Generation

The signature generation protocol TSSign allows for precalculation which has
3 rounds of communication. The participants compute all the possible values
that are independent of the message and store until it is required to calculate a
signature on a message m in the final round.

TSSign
Input: private key shares a; for ¢ = 1,..., N, message m
Output: signature (r, s)
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1. All participants calculate the ephemeral key shares and corresponding public
key using a (¢, N) execution of VRSS, where participant i’s share is k; and the
public key is (z,y) « Zf\il kioG. All participants calculate r «— z mod n.

2. All participants create two (¢, V) shared secrets using two instances of VRSS
with resulting shares denoted by «; and §; corresponding to participant i.
Each participant ¢ also calculates the commitment of a; and §;

] =
Mﬁ

;G —

"™ (umG) 3)

l 0

)
3
=

M=

BiG — 3" (BumG) 5 (4)

l 0

1m

for each participant j # i, where «y,,,G and [, G are received during Step 6
of VRSS, and stores o;G and §;G.

3. All participants create a zero-valued (2t, N) shared secret with shares denoted
by k,; for participant i using VZSS.

4. Each participant ¢ calculates p; «— a;k; + k; and \; «— «;a; + 55, and «;(kG),
(o; P + 3;G) and broadcasts these.

5. Each participant ¢ verifies

interpolate(p, . . ., i )G < interpolate(a; (kG), ..., a; (kG)) , (5)

interpolate( A, ..., Ai)G L interpolate((a; P + 5;G), ..., (ajy P+ 3y Q)) ,
(6)

where i/ = (i+2t+1) and j' = (i+t+1). If the index 4’ is larger than N, the
values wrap around to index 1 again. If any of these are found to be different,
the adversaries are identified by interpolating over all possible sets of shares
and all sets which result in the same values contain only honest participants.
Corrupted participants are identified as those not contained in these sets.

6. If the equalities hold for all participants, each participant i sets

w «— interpolate(uy, ..., poryr1) (= ak), (7)
A «— interpolate(A1, ..., Aaty1) (=aa+0). (8)

7. Each participant i calculates their inverse shares k;” ! u~'oy of the shared
ephemeral key and their precalculated shares o; « ru=t(A — 3;).

8. Each participant ¢ stores (r, k;” L 0;) for use in the signature computation and
(a;G, B;G) for all participants j for verification of the signature.

The pre-signing phase can be executed prior to receiving any message. The
non-interactive signing phase takes the message m and precalculated values
(r,k;*,0;) as input and output the signature (r, s).

9. At least t + 1 participants compute the hash the message e = hash(m),
calculate their signature share s; «+ k; le + 0;, and broadcast.



Efficient Threshold-Optimal ECDSA 125

10. Participants set s «— interpolate(sy, ..., s;+1) and the signature is (r, s).

A signature has been computed using only ¢+ 1 shares after precalculation. Note
that TSVerify is the same as DSVerify described in Sect. 2.2 and is not repeated
here. If the signature is found to be incorrect using TSVerify, the corrupted
participants are identified using CorruptID.

3.3 Identifiable Abort

If the signature generated with TSSign is found to be incorrect, the following
protocol is executed. Assume the participants that have signed are those with
indices i = 1,...,t+ 1, without loss of generality.

CorruptlD
Input: obfuscated shares o;G, 3;G for i =1,...,t+1
Output: identity of corrupted participants j

1. Each participant 4 calculates kj_lG — (ko) 'a;G and 0;G — ru~'(A\G —
B3;G) for each participant j who executed Step 9 to 10 in TSSign.

2. Each participant then checks s;G < e(k:j_lG) + (0;G) for each j. If this does
not hold for a given j, that share is incorrect.

3.4 Discussion

In TSSign, a signature has been created with the same threshold as that of the
shared private key, after the precalculation steps have been completed. The s
value of the signature can be written as

s=ulactruT (A=), (9)

where a and 8 are (¢, N) shared secrets, and 4 = ak and A = «aa + 8 are
precalculated. By replacing u and ), this becomes s = k~1(e + ar), as required.

The computation of A may be considered a method to calculate the multi-
plication of two shared secrets whilst hiding the result. With each shared secret
having a threshold ¢, the computation of A requires 2t 4+ 1 shares. Interpolation
over t + 1 shares of o; will result in £~ 'a as the 3 terms will cancel. This share
o; may be seen as a share of k~'a with a threshold of t. Therefore, after Step 6
the threshold of the multiplication of the two shared secrets is reduced to t.

While 2t + 1 participants are required until Step 8 of TSSign, after this only
t + 1 of the N participants are required. There may be multiple parallelized
computations running up to Step 8, at which point these oy, k; ! 1 values may
be stored until required for use. Once a value is used for signing, these are not
to be used again.

No expensive computation such as homomorphic encryption or zero-
knowledge proofs are required as in all previous threshold-optimal constructions
[6-14,18]. Instead of homomorphic encryption and zero-knowledge proofs, this
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protocol has three additional executions of VRSS compared to other threshold-
optimal protocols, however it will be shown to be 144 times faster than [14]
which also proposes precomputation. Additionally, by not using homomorphic
encryption and zero-knowledge proofs, the proposed scheme has fewer commu-
nication rounds even with additional VRSS and VZSS executions compared to
other schemes. Although 2t + 1 participants are required for precomputation,
with all these other efficiency improvements it is still more practical than previ-
ous schemes.

Verification of a;(kG) and (a; P + ;G) in Steps 4 and 5 ensure robustness.
Without these, it is possible for an unidentifiable corrupted participant j to send
incorrect values for u; or Aj, which would prevent a signature from being created.
If a corrupted participant attempts to send an incorrect value for the multipli-
cation of shares, there is no value that will pass the verifications aside from the
correct value. This is because every participant is interpolating over a different
set of shares and knows that all participants receive the same broadcasted values.
The same logic is applied to the verification of A\; and «;P.

Note that in the non-interactive signing phase of the scheme, the signature
is calculated assuming the participants are honest, but the result is verified
for correctness. If the signature is found to be invalid, the shares are checked
individually to identify the incorrect share. This does not require any further
rounds of communication, since all participants already have enough knowledge
to verify shares. While this could be executed prior to calculating the signature,
it would slow down those rounds which are executed correctly and is therefore
more efficient to perform these verification steps only if necessary.

4 Security Proof

In this section, the following theorem is proven, assuming it is infeasible to forge
a signature in ECDSA [19].

Theorem 1. The threshold signature scheme in Sect. 3 is secure in the presence
of d participants corrupted by an eavesdropping adversary and h participants
corrupted by a halting or malicious adversary, if the total number of participants
is N > 2t + h and number of corrupted participants is d + h < t.

The proof is split into proving robustness and then unforgeability.

Lemma 1. The threshold signature scheme in Sect. 3 is robust, if the number of
participants in the scheme is N > 2t + h where h is the number of participants
corrupted by a halting (or malicious) adversary.

Proof. The scheme will be shown to be robust in the presence of 2t + 1 par-
ticipants who do not deviate from the protocol, such that the signature that is
generated will always be accepted by an execution of TSVerify. Note that these
participants may include d eavesdropping participants. Shares that belong to
participants who do not deviate from the protocol will be referred to as correct
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shares. Specifically, the requirement of 2¢ + 1 correct shares is due to the mul-
tiplications of (¢, N') shared secrets in Step 4 of TSSign. After this point, only
t 4+ 1 correct shares are required to be robust.

There are three rounds of communication in which there is scope for partic-
ipants to send values that deviate from the protocol. Each of these rounds are
followed by verifications and it is these steps that identify correct shares.

— Step 2 and Step 7 of VRSS executed in TSKeyGen and TSSign: if shares of
any f;(j) are not received or invalid before Step 4, all shares of that private
polynomial are removed from the calculation. The values that do not validate
correctly in Step 7 are recovered by the honest participants using the values
received in Step 1 to compute the public key corresponding to the shares.
There will be at most h private polynomials removed, with at least 2¢ + 1
remaining. Therefore, there will still be at least 2t + 1 shares a; output from
VRSS due to the requirement of N > 2¢ + h.

— Step 5 of TSSign: there must be 2t + 1 shares of p or A, since they are a
multiplication of (¢, N) shared secrets. This is the case as there are at least
2t + 1 participants who do not deviate from the protocol. These shares can
be detected as those which are contained in sets that find the equalities in
this step hold. Therefore, enough correct shares exist and can be identified.
The calculations of p and A use these correct shares.

— Steps 1 and 2 in CorruptID: the shares s; which agree with the obfuscated
shares calculated from the execution of VRSS are used in the computation of
the signature. Since there are at least 2¢ + 1 participants that do not deviate
from the protocol, and there are ¢ 4+ 1 required for this calculation, there will
always enough shares to calculate the signature. These shares can be detected
using CorruptID.

It has been illustrated that incorrect shares can always be detected and there
will always be enough correct shares remaining for each computation. Hence,
TSKeyGen and TSSign will produce expected outputs given N > 2t + h and the
scheme described in Sect. 3 is robust. O

The proof of unforgeability is given by proving each protocol can be simu-
lated in a way which the adversary cannot distinguish the simulation from the
real protocol. In order to prove that TSSign is indistinguishable from its simula-
tion, it is necessary to generate an elliptic curve point (z,y) from the r value in
a signature such that the point appears uniformly random among the set of all
candidates of (z,y). Recall that r in a signature (r, s) is an « value of an elliptic
curve point modulo n and the elliptic curve is defined over Fp,.

ECPointDerivation
Input: r
Output: kG

1. To calculate the x value
—Ifn>p, set x«r.
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— If n < pand
e r>(p—mn), set x—r.
o 7 < (p—n), calculate (r +n) mod p. Check which of r and (r +n)
correspond to = values on the elliptic curve.
* If only one is an = value on the elliptic curve, set that to x.
* If both are x values, randomly choose one to set to x.

2. Calculate a 3’ value corresponding to x according to the elliptic curve equa-
tion. If there is only one unique ¥’ value, set y < 3’, otherwise calculate —3’
and randomly select y « 3 or y «— —v/'.

3. Set the point to be kG «— (z,y).

This derivation ensures that the distribution of points kG remains uniform
when derived from 7. The point that  was derived from does not need to be the
same as the point that is found with this method.

Each protocol in the scheme described in Sect. 3 is now shown to be simulat-
able and indistinguishable from that simulation. In each step of the simulations,
the action in the brackets describe the steps the adversary takes. It is assumed
that the adversary generates the values corresponding to the corrupted partici-
pants. This is stronger than assuming that the adversary only learns the shares
of the corrupted participants and so subsumes this case. Note that to ensure the
steps in the simulation coincide with the steps in the protocol, some of simulation
steps require that the simulator wait for the adversary to execute computations.
These steps are written as ‘go to next step’, or ‘end protocol’ if it is the last step
in the protocol.

VRSS is proven to be secure in [16], which is used in both the key generation
simulation and in the signature generation simulation, denoted VRSS-sim. The
input to the simulation is the public key P, indices 7, and threshold t¢.

Lemma 2. The TSKeyGen protocol described in Sect. 3.1 is simulatable and is
indistinguishable from its simulation from the point of view of the adversary.

Proof. Assume that the indices i of participants have been generated already
and, without loss of generality, that the adversary has corrupted participants
i=1,...,t. The steps in the following simulation coincide with the steps in the
protocol in Sect. 3.1.

TSKeyGen-sim
Input: public key P, index ¢ for i =1,..., N, threshold ¢
Output: shares a; for i =1,..., N, public key P

1. The simulator invokes VRSS-sim outputting a; for i = ¢+ 1,..., N and P.
(The adversary executes VRSS to calculate a; for i = 1,...,t and P.)

It has been shown in [16] that VRSS is indistinguishable from VRSS-sim. The
signature that is to be generated can be verified against this public key and the
verification will be accepted. These steps are therefore indistinguishable to the
adversary from TSKeyGen. O
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In order to simulate TSKeyGen, VZSS is first shown to be unforgeable.

Lemma 3. The VZSS protocol described in Sect. 2.7 is simulatable and is indis-
tinguishable from its simulation from the point of view of the adversary.

Proof. The simulation of VZSS is given below.

VZSS-sim
Input: index ¢, threshold ¢
Output: shares a; fori=1,..., N

1. The simulator generates uniformly random values n;; € Z;, for j = t+1,...,N
and i = 1,...,t and shares fj (1) < nj; with the adversary and receives ()
for j =t+1,..., N. (The adversary generates coefficients a;; of fz(:c) for 4,1l =
1,...,t, shares fl(j) and receives fj(z) from the simulator for j = t+1,...,N.)

2. Go to next step. (The adversary calculates a; for i =1,...,¢.)

3. The simulator calculates

t
F@) =S50 JI @-Hi—-i)~" modn, (10)
=1 1<j<t+1,
J#i
that satisfy the above values. The simulator uses these values to calculate
aj, ;G for j =t 4+ 1,..., N and stores a;. The simulator shares ;G and
receives ;G from the adversary. (The adversary shares a;G and receives
;G from the simulator.)
4. End protocol. (The adversary verifies f;(5).)

In Step 1 above, the adversary receives shares fl (j) from the simulator which
are randomly generated and therefore uniformly distributed. Compare this to
VZSS, where the adversary receives shares f;(j) which are calculated from the
addition of values which are uniformly distributed. To an adversary, these sets
of values are indistinguishable.

Similarly, in Step 3 of VZSS-sim, the adversary receives coeflicients a;G
which are calculated from the addition of randomly generated values 7;;, hence
are uniformly distributed across the set. This ensures they are indistinguishable
from the values a;G that are received in VZSS.

Finally, the verifications in Step 4 will be accepted by the adversary due to
the way that the coefficients are generated in Step 3 of the simulation. a

Lemma 4. The TSSign protocol described in Sect. 3.2 is simulatable and is
indistinguishable from its simulation from the point of view of the adversary.

Proof. The steps in the following simulation coincide with those in the protocol
in Sect. 3.2.

TSSign-sim
Input: shares dy,. .., d, public key P, message m, signature (r, s)
Output: L
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The simulator executes ECPointDerivation that outputs kG «— (z,y) with r
as input. The simulator invokes VRSS-sim using input kG, outputting k; for
i =1,...,t. (The adversary executes VRSS to obtain ]Afi, kG and computes
r.)

The simulator randomly generates &, B , it and calculates A — (s —ae+
Br) mod n, where e = hash(m). The simulator executes two instances of
VRSS-sim to calculate &; and Bi for j =1,..., N, using & and B as input.
(Adversary calculates &; and Bifori=1,...,t using two instances of VRSS,
&, G, BjG and stores.)

. The simulator executes VZSS-sim outputting &; for i = 1,...,t. (The adver-

sary calculates &; using VZSS for i =1,...,t.)

. The simulator takes the following steps.

— Calculate f1; < &;k; + &; fori =1,...,t. Calculate ji; fori =t+1,...,2t
such that fi; fori = 1,..., 2t defines a polynomial f(z) such that f(0) = .
Calculate fi; — f(i) for i =2t +1,...,N.

— Calculate 5\1' — Q;a; + ﬁAl for i = 1,...,t. Calculate share j\l for 1 =
t+1,...2t such that X\; for i = 1,...,2t define a polynomial j(z) such
that §(0) = A. Calculate \; — (i) for i =2t +1,...,N.

— Calculate di(/;:G), and (diP+BiG) fori=1,...,t, and calculate 4G and
A\G. Compute

a;(kG) — interpolate(iG, éy (kG), .. ., & (kG)) (11)
(4; P + BG) — interpolate(AG, (&1 P + £1G), ..., (&P + 3,G)), (12)

for j=t+1,...,N and where 4G and AG are the points at x = 0.

— The simulator broadcasts [i;, A\;, &;(kG), and (&; P + 5;G) for each i =
t+1,..., N and receives values for i = 1,...,t. (The adversary calculates
fii, Ais 63 (kG), and (6;P + 3;G) and broadcasts. )

. Go to next step. (The adversary verifies fi;, A; and &;(kG), (&P + 3;G)

interpolate to the same result.)

Go to next step. (The adversary sets values fi, \.)

Calculate k; ' « g7'@&; and &; « rg= (A — ;) for all i = t +1,...,N
given &;, 0; calculated in Step 2. (The adversary calculates k; L and 6, for
i=1,...,t)

Go to next step. (The adversary stores values.)

. The simulator calculates 3; < k; let+6, for t+1 randomly selected values of

¢ within the range i = ¢+ 1,..., N and shares these values. (The adversary
calculates §; fori=1,...,t.)
End protocol. (The adversary calculates (r,s).)

While the signature (r, s) will be accepted if verified with the public key, the

adversary can still ensure the shares generated by the simulator are also correct.

CorruptID-sim
Input: shares 81, ..., 5,41, message m
Output: L
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1. Go to next step. (The adversary calculates l%j_lG and ;G for each participant
Jj that took part in the signature.)

2. End protocol. (The adversary verifies that these obfuscated values were used
to generate the signature shares §; by comparing to §;G.)

In Step 1 to 3, the simulation of VRSS is used multiple times. It has been
already shown that the simulation is indistinguishable from VRSS itself in [16].
Moreover, the public key kG that is calculated by the adversary in Step 1 is
uniformly distributed across the set of elliptic curve points as it uses ECPoint-
Derivation. Therefore, the first three steps are indistinguishable to the adversary
from the first three steps in TSSign.

The values i, &, B are randomly generated from a uniformly distributed set of
values. All values in Step 4 of the simulation are derived from these, including fi;,
i, di(/%G), and (&; P+ BiG), which the adversary receives. Therefore, the values
that the adversary receives also appear uniformly distributed. On the other hand,
in TSSign, the corresponding values p;, A\;, o;(kG), and («; P + 3;G) that an
adversary receives are similarly uniformly distributed, by the same reasoning.
Therefore, an adversary will not be able to distinguish between the two sets.

Note that the values /i and A— ,6 are not equivalent to ak and &a. If they were,
a and k could be revealed, since the values &, ﬁ must be known to ensure that
§; are accepted in CorruptlD-sim. This contradicts the assumption that ECDSA
is unforgeable. As a result of this, the DDH assumption is required as described
in Sect. 2.1, similar to [1]. However, due to the construction of the values, the
verifications by the adversary are still accepted in the simulation.

In Step 5 to 9, the adversary is executing their own calculations. In Step 10
the simulator shares the values §;. Since §; are calculated from values that are
uniformly distributed themselves, the result is that the set of signature shares
are also uniformly distributed. Again, this is the same as the protocol TSSign
and so the adversary will have the same view within the two protocols. The
calculations executed by the simulator in Step 4 ensure that the shares will
result in the correct signature. Step 4 also ensures that the signature shares will
individually pass the checks in CorruptID-sim, as stated previously.

As a result, the calculations executed by the adversary will be accepted and
have the same probability distribution. Therefore, the adversary will not be able
to identify that it is in the simulation. a

Lemma 5. The view of an adversary in the protocol described in Sect. 3 is indis-
tinguishable from the view of the adversary in a simulation from the point of view
of the adversary.

Proof. 1t has been shown that both TSKeyGen and TSSign are simulatable and
indistinguishable from their simulation in Lemma 2 and Lemma 4. Therefore,
the view of the adversary in the scheme described in Sect. 3 is indistinguishable
from the simulation from the point of view of the adversary. O

Lemma 6. The threshold signature scheme described in Sect. 3 is unforgeable if
the total number of participants is N > 2t + h and there are number of corrupted
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participants is d + h < t, where d and h are the number of participants cor-
rupted by an eavesdropping adversary and by a halting (or malicious) adversary,
respectively.

Proof. If the total number of corrupted participants is more than ¢, that the
(t, N) shared secret can be calculated and therefore also a signature. On the
other hand, by assuming that d + h < t, the shared private key, and therefore
signature, cannot be calculated. This has been shown in that the view of the
adversary in TSKeyGen and TSSign is indistinguishable from their simulations.
Since the simulations are unforgeable by definition, this means that TSKeyGen
and TSSign are also unforgeable. O

5 Benchmarking

TSKeyGen and TSSign have been implemented assuming there are only eaves-
dropping adversaries in TSSign. That is, it uses Feldman secret sharing as in [17]
and excludes Step 5 of TSSign and CorruptlD. The implementation is compared
data given for schemes [14] and [13] which are also non-interactive. The imple-
mentation was written in C++ and was run on a 2018 MacBook Pro with a
2.6 GHz Intel Core i7 processor and 32GB RAM. Participants were run as sepa-
rate processes on a single machine using a single core. In practice, calculation by
different participants is executed in parallel and so the timings will be reduced
further. The data for [14] is chosen to be the scheme without identifiable abort
to compare fairly with the implementation of the scheme in Sect. 3. The data for
[13] was only available for precalculation of the signature and up to t = 8.

The scheme was run 20 times for each threshold and group size up tot =9
and N = 20 in line with [14] and [13]. TSSign was split to measure the aver-
age time for the precalculation in Step 1 to 8, and the average time for the
non-interactive signing in Step 9 to 10. Even if there are failures by at most ¢
participants, this does not impact the progression of the protocol.

While the main benefit of this scheme is lost if precalculation is executed after
the message has been received, in the effort of fair comparison, the whole TSSign
protocol is compared to other schemes. It was found that the majority of time
is taken with precalculation, as expected, and so the time to run TSSign from
Sect. 3 was roughly constant even as the threshold increased for the same group
size. This is expected because all participants are required in precalculation
for any threshold. Choosing the group sizes to be N = 2t + 1 for Sect. 3, the
comparison with [14] and [13] are shown in Fig. 1.

All data excludes network latency time for equal comparison with [14] and
[13], since the connection speed is independent of the protocol. Table 1 compares
rounds of communication in the three schemes. Since Sect. 3 has fewer commu-
nication rounds, it will be even faster than [14] and [13], when including network
latency. By avoiding use of complex protocols such as homomorphic encryption
and zero-knowledge proofs, the communication rounds have been reduced.

Figure 2 shows the speed of signing after precalculation for the scheme pre-
sented in Sect. 3. That is, Step 9 to 10 in TSSign, taking N = 2t + 1 for each t¢.
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Fig. 1. Comparison of signing timings (including precalculation) of Sect.3 with [14]
and [13] for ¢ up to 9. [13] includes only precalculation and ¢ up to 8.

Table 1. Table showing the number of rounds of communication in key generation and
signing comparing Sect. 3 in the presence of eavesdropping adversaries, [14], and [13].

Communication rounds | Sect. 3 | [14] | [13]

Key generation 2 3 3

Signing protocol 4 6

Given a non-interactive signing time of 0.12ms for ¢ = 1, the number of signa-
tures that can be generated per second with this scheme is over 8000.

Finally, the size of communications is compared in Fig. 3. The data is given
in kB and compared to precalculation in [13] (the data is not available in [14]).
The size of communications given for Sect.3 includes both precalculation and
the non-interactive signing step.

The communication size in [13] increases linearly in the group size, whilst the
data for Sect.3 increases quadratically with the group size. This is because all
participants are required during precalculation steps in signing for the scheme
in Sect. 3. This impacts the precalculation stage but has the benefit that any
participant can execute the non-interactive phase. In the non-interactive phase,
the communication in Sect. 3 increases linearly with the number of signers.

There is also timing and communication size in [13] for part of the key gen-
eration algorithm, which has a significant overhead. The data is for generating
Pallier keys (required in both [14] and [13]), which are not needed for the scheme
in Sect. 3, and therefore not comparable. This is additional time and computa-
tional complexity in [14] and [13] that is not in the scheme in Sect. 3.
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Fig. 2. Time taken to create a signature after precalculation given in milliseconds (ms)
for Sect. 3.
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Fig. 3. Size of communication transmitted in kilobytes (kB). The data in [13] is the
precalculated data only, and the data for Sect.3 includes data for the whole signing
protocol.
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Abstract. G-Merkle (GM) (PQCrypto 2018) is the first hash-based
group signature scheme where it was stated that multi-tree approaches
are not applicable, thus limiting the maximum number of supported sig-
natures to 22°. DGM (ESORICS 2019) is a dynamic and revocable GM-
based group signature scheme that utilizes a computationally expensive
puncturable encryption for revocation and requires interaction between
verifiers and the group manager for signature verification. In this paper,
we propose GMMT | a hash-based group signature scheme that provides
solutions to the aforementioned challenges of the two schemes. GMMT
builds on GM and adopts a multi-tree construction that constructs new
GM trees for new signing leaves assignment while keeping the group
public key unchanged, Compared to a single GM instance which enables
220 signature, GMMT allows growing the multi-tree structure adaptively
to support 2% signatures under the same public key. Moreover, GMMT
has a revocation mechanism that attains linkable anonymity of revoked
signatures and has a logarithmic verification computational complex-
ity compared to the linear complexity of DGM. The group manager in
GMMT requires storage that is linear in the number of members while
the corresponding storage in DGM is linear in the number of signatures
supported by the system. Concretely, for a system that supports 24 sig-
natures with 2'5 members and provides 256-bit security, the required
storage of the group manager is 1 MB (resp. 1057 TB) in GMMT (resp.
DGM).

Keywords: Digital signatures - Hash-based signature schemes - Group
signature schemes - Post-quantum cryptography - Merkle trees

1 Introduction

A Group Signature Scheme (GSS) is a signature scheme where N members
share one public key and any member is allowed to sign anonymously on behalf
of the whole group [19]. Such a scheme designates a group manager that is
responsible for setup, revealing the signer’s identity when needed, and revok-
ing the membership of group members when required. Group signature schemes
are usually adopted by applications in which the signer’s identity is required to
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be maintained private while attaining accountability when required. Relevant
applications include vehicle safety communication systems in which authorized
vehicles share their status information with other nearby vehicles while keep-
ing their identity private in order to prevent tracking [31]. Remote attestation
protocols benefit from group signatures where the identities of the attested plat-
forms should be kept private to thwart dedicated platform vulnerability-based
attacks[13]. Other applications of group signatures include e-voting and privacy
preserving applications on blockchains [4,13]. Several group signature schemes
have been proposed [11,13,17,18,29,30]. However, the security of most of these
algorithms rely on the hardness of finding discrete logarithms and factoring in
finite groups which are solved by Shor’s algorithm in polynomial time and thus,
they are not post quantum secure [36].

In 2010, Gordon et al. proposed the first post quantum (PQ) lattice-based
group signature scheme [23]. Later, several theoretical lattice-based construc-
tions were developed [26-28,32,33]. In 2018, the first lattice-based group signa-
ture scheme with an experimental implementation was proposed [20]. Although
lattice-based signature scheme candidates have been deemed suitable in the cur-
rent NIST post-quantum cryptography standardization competition (PQC) [34],
their group signature constructions are not efficient [40]. Code-based group sig-
nature schemes were introduced as a quantum resilient alternative [2,3,22], but
they have much larger signature sizes on the order of Megabytes [7]. Moreover,
the size of the associated public keys and signatures increases with the number
of group members.

Hash-based group signature schemes [14,21] have recently attracted research
interest due to recent advances in the design of stateless hash-based signa-
ture schemes and the confidence in their PQ security [1,6,9,10]. In 2018, El
Bansarkhani and Misoczki introduced Group Merkle (GM), the first post-
quantum stateful hash-based group signature scheme [21]. GM is a one-layer
Merkle tree construction which limits the maximum achievable tree height and
thus restricts the maximum number of signatures that can be issued by the
group under one public key. The authors claimed that multi-tree approaches are
not applicable for group hash-based schemes without justification and stated
that the required storage for each member is a limiting factor. Dynamic Group
Merkle (DGM) is a recent hash-based group signature scheme where the group
manager can assign signing keys to group members who have used all their keys
and add new group members after the group public key has been generated [14].
Additionally, the group manager stores the indexes of the assigned leaves for
each user in order to reveal their identity and revoke their membership when
required. Challenges to the practical adoption of DGM such as the fact that a
verifier needs to interact with the group manager to ensure the validity of the
signature were discussed. Moreover, the revocation mechanism utilizes a punc-
turable encryption algorithm [37] for membership verification with a computa-
tional cost that is linear in the number of revoked signatures of the members.
The authors of DGM claim that anonymity of revoked signatures is maintained.
However, linkability of revoked signatures is possible if the adversary have two
subsequent states of the revocation list. Privacy-preserving group membership
revocation for PQ schemes is still an open research problem. The works in [38,39]
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enable members revocation without compromising their anonymity or requiring
a trusted third party. However, the protocols either have linear proving com-
plexity in the number of revocations or rely on history-dependent accumulators
through updated certificates. Camenisch et al. proposed member revocation by
periodically updating member credentials in which a specific attribute encodes a
validity period [16]. Unfortunately, the technique would place extra effort on the
group manager who would be essentially running a periodic updates setup phase.
All the aforementioned works are also not quantum secure as they rely on non-
interactive discrete logarithm based zero knowledge (zk) proofs. The adoption of
zk-based revocation schemes in PQ group signature schemes may be attainable
if research on generic PQ zk proofs enable their practical implementation.

Our Contributions . The contributions of this work are as follows.

— We propose GMMT | a hash-based group signature scheme that enables 264

signatures per group public key. It utilizes an adaptively growing multi-tree
Merkle approach which periodically creates a new GM tree. Consequently,
GMMT enables the group members to renew their signing leaves without
changing the group public key.

— We introduce a revocation algorithm that maintains the anonymity of revoked
members while enabling the linkability of their revoked signatures. GMMT
relies on symmetric encryption and hashing such that the membership verifi-
cation cost is logarithmic in the number of revoked signatures and the required
storage at the group manager is linear in the number of members.

— We provide detailed comparisons between GMMT and both GM and DGM.
To demonstrate the validity of GMMT, we implement its procedures using
the C language and present the performance in terms of the number of clock
cycles.

2 Preliminaries

A Group Signature Scheme (GSS) is a tuple of five polynomial-time algorithms
GS = (GKGen,GSign,GVerify, GRevoke, GOpen), which are given as follows.

— GKGen(1™,N): The group key generation Alg. takes as inputs the security
parameter n and the number of the group members N. It outputs the group
public key GPK, the group members secret keys sk; for 1 <¢ < N, and the
group manager secret key skg,, that is used to reveal signer identities.

— GSign(M, sk;): The group signing Alg. takes as inputs a message M and a
group member secret key sk;. It outputs the signature % of the message.

- GVerify(M,%, GPK, RevList): The group verification Alg. is a determinis-
tic algorithm that takes as inputs a message M and the corresponding sig-
nature X, the group public key GPK, and the revocation list RevList. It
outputs 1 for a valid signature and 0 otherwise.

— GRevoke: The revocation Alg. updates the revocation list based on the
revoked members/signatures to revoke their ability to generate valid signa-
ture.
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— GOpen(X, skgm): The open Alg. takes as input the signature ¥ and the group
manager secret key skg,, and outputs the identity of the signer.

In what follows, we provide definitions of the standard security notions for
analyzing group signature schemes.

Definition 1 (Correctness). A group signature scheme GS with a group public
key GPK achieves correctness if for an honest signer with a secret key sk;

Pr[GVerify(GSign(M, sk;), M,GPK) = 0] < negl(n)

Other notions that capture the required GSS security include unforgeability,
anonymity, unlinkability, collusion resistance, exculpability, and framing resis-
tance. It was shown in [8] that full-anonymity and full-traceability ensures that
a given GSS achieves all the aforementioned security requirements. The notion
of full-anonymity [8] is very strong as it assumes that an adversary has access
to the secret keys of all members and the group manager. Camenisch and Groth
introduced a relaxed type of anonymity in which an adversary cannot corrupt
the group manger and at least two group members, i.e., challenge identities in the
anonymity experiment in Fig. 1. In our scheme, we follow the anonymity notion
introduced by Camenisch and Groth [15] because in our scheme, only secret keys
of the group manager are used to reveal signer identities, and knowledge of the
signing keys along with the associated signatures also uncovers the correspond-
ing identities. Such a security notion is formally defined in Expggf’j_b(n, N) in
Fig. 1. Hence in our analysis, we focus on the anonymity and full-traceability
security definitions. In their security experiments, we assume an adversary is
allowed a training phase where they can call the following oracles.

— Corrupt(id;): The adversary A has access to all secret keys of member id;.

— chaly(idy,idy, M): The oracle returns the signature of message M for a ran-
domly chosen group member id, for b € {0,1}.

— Sign(M,id;): The oracle returns the signature of a message M for a randomly
chosen group member id; where 1 <7 < N.

— Open(X,GPK, M): The oracle returns the identity id; of the member who
issued the valid signature % of message M.

Following [14,21], we present the security definitions and analysis in the clas-
sical setting, i.e., PPT adversaries. For quantum security we consider the Quan-
tum Accessible Random Oracle Model (QROM) [12], where all legitimate users
and oracles perform classical computations while adversaries have quantum capa-
bilities. Given that the security of GMMT relies on the standard assumptions of
hash functions, it is assumed that Grover’s search algorithm is used to acceler-
ate exhaustive search in an unstructured space. In such a case, a QPT adversary
achieves a maximum of quadratic speed over the considered PPT adversary. The
work in [25] gives more details on the generic security of hash function security
notions with respect to QPT adversaries in QROM.

Anon—b

Anonymity. In the security experiment Fxp in Fig. 1, the adversary A is
allowed a training phase, train, with unrestricted access to both the signing and
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opening oracles and they have the ability to corrupt some of the group members.
At the end, A returns an un-queried random message, M and the identities of
two uncorrupted members, idg and id;. Then in the challenge phase, challange,
A calls chaly(idy, idy, M) which return the signature on M signed by one of two
uncorrupted users ig or 1. A wins if they are able to identify the signer’s identity
with a non-negligible advantage.

Definition 2 (Anonymity [15]). A group signature scheme GS achieves
anonymity if a probabilistic polynomial time (ppt) adversary A who is not the
group manager but has access to the signing and opening oracles and is able
to corrupt all but two group members iy and i1, is not able to reveal the iden-
tity of the signer when challenged with a signature of a message that is signed
by either ig or i1. A has a negligible advantage in the experiment Expggon_b

where b = {0,1} denotes the index of the identity of the signer.

7

Advgg’ojfb(n?N) =| Pr[Empgng{*“(n?N) =1]- Pr[Empégf’ﬁ*l(n, N) = 1] |< negl(n)

Expégif‘”b(n, N)
-be{0,1}
- (GPK, skgm, sk«) < GKGen(1", N)
- (ido, id1, M) + ASt9n(idi).Corrupt(),0pen(,skgm) (train, G PK)
- b« Achalelido,id1, M) (challenge, GPK)
- Return b

Fig. 1. Anonymity experiment

Full-traceability. This security notion requires that the group manager is
always able to reveal the identity of a signer of a valid signature and trace back
every signature to the corresponding signer. Moreover, full-traceability ensures
that even if an adversary is capable of corrupting some group members, they are
not able to generate a valid signature which is traced by the group manager to
an uncorrupted member.

Definition 3 (Full-traceability [8]). A group signature scheme GS satisfies full-
traceability if a ppt adversary A that is given unrestricted access to the signing
and opening oracles and is able to corrupt some of the group members is not
able to generate a valid signature which cannot be opened or traced back by the
group manager to an uncorrupted member. A has a negligible advantage in the
experiment Expggff;Tmce as defined in Fig. 2

Adv§ T (n, N) =| Pr{BapGally 77 (n, N) = 1] |< negl(n)

3 GMMT Hash-Based Group Signature Scheme

GMMT is a revocable hash-based group signature scheme that is constructed
using a multi-tree approach and utilizes a One Time Signing Scheme (OTS) as
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Empg‘gyli‘fT'mzce(n’ N)
- (GPK, skgm, sk+) < GKGen(1™,N)
~ (E/,M/) — ASign(-,idi),Corrupt(-),Open(-,skgm)(GPK)
- Return GVerify(X',M', gpk) == 1 A GOpen(¥') =L
or id;j(non corrupted id;)

Fig. 2. Full-traceability experiment

the underlying signing scheme. It is designed as a generic construction such that
any stateful hash-based Merkle signing scheme with an OTS leaves can be used.
However, we recommend instantiating GMMT with XMSS-T [25], to mitigate
multi-target and path attacks. For more details on the security analysis of hash-
based group signature schemes instantiated by XMSS-T, the reader is referred
to [41]. GMMT provides a flexible setup phase where the group manager generates
the group public key independent of the parameters of the group members (OTS
public keys and their indexes). Figure 3 shows that GMMT can be regarded as
a hybrid construction that encompasses several Group Merkle (GM) signature
trees (denoted by clusters) at layer 0, and one stateful hash-based signature
scheme consuming all higher layers, i.e., layers 1 to d — 1. Each GM tree at
layer 0 contains a subset of the OTSs of all group members while the multi-
tree stateful hash-based signature scheme is used by the group manager to sign
the roots of the GM trees at layer 0. The group public key, GPK, is the root
of the top layer tree which is generated using the group manager’s secret key.
Such a construction allows layer 0 GM trees to be constructed adaptively as
the signing leaves are used up. Specifically, all group members signing leaves
are clustered into GM trees where each GM tree has a subset of the signing
leaves of all members. This allows the group manager to manage leaf assignment
for all members in a clustered manner. Hence, the scheme enables a practical
setup phase with less storage requirements for each group member compared
to GM [21] because not all the signing leaves for each group member have to
be assigned upfront, and a member can reuse the storage that was allocated to
their used leaves. In the following, we give detailed specifications of the setup,
signing ,verifying, membership revocation, and opening procedures in GMM™, An
algorithmic description of these procedures is provided in Algorithm 1. Table 1
gives the parameters and notation used in the specification of GMMT.

3.1 Setup Phase and Key Generation

The setup phase is an interactive procedure that involves communication between
the group members and group manager for signing leaves assignment. However,
since GMMT is a multi-tree structure, the group public key is computed by the
group manager independent of the inputs from members. Hence, the setup phase is
divided into two procedures, group public key generation and signing leaves assign-
ment. The former is performed once during initial group setup while the latter is
repeated periodically with the addition of new cluster trees at layer 0.
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Layer d — 1

Layer 1

GPK

Layer 0
Cluster layer p
L Future clusters «-«--«---

Cluster 0 Cluster 1 Cluster 2 Cluster 3

Fig. 3. A simplified Ex. of the GMMT initial setup phase. The gray nodes and the first
red node in cluster 0 are the auth. path for signing with the first yellow leaf in cluster
0, while the black leaves are the group manager signing leaves. (Color figure online)

Table 1. GMMT parameters and notation.

n Security parameter

N Initial number of group members

B Initial number of signing indexes for each group member

BCraz | Maximum number of signing leaves for a member in a GM tree (cluster)
Bumae | Maximum number of signing leaves for a member in the scheme
d Number of tree layers

h Maximum tree height

he GM/cluster tree height

hgm Group manager tree height, hgm = h — he

w Winternitz parameter of the used OTS

l Number of elements, each of length n bits, in the OTS signature
GPK | Group public key which is the root of the top layer tree

Key Generation Algorithm . The algorithm randomly samples the secret
keys SK = (sk.encgm, sk.seedgm) € {0,1}"™ x {0,1}", where sk.encgp, is the
group manager encryption secret key that is used to reveal the signer identity
and sk.seedg, is used to generate the trees of the multi-tree signing scheme, e.g.,
XMSS-T scheme [25], at layers 1 to d — 1 (the top layer). Each tree has height

hgm /(d —

1). In an actual instantiation, sk.seedgy, may be used in a manner

similar to the random secret seed in [25]. The root of the top layer tree is the
group public key GPK.
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Signing Leaves Assignment . This procedure adds a new GM cluster tree
containing a subset of the signing leaves of all N members to the construction.
The trees at layer 0 are GM trees, each of height h. = h — hgyy,, and the first
tree (cluster 0), contains B signing leaves of each group members so there are
NB = 2"« signing leaves in total. Note that each cluster tree contains an equal
number of signing leaves for each member. However, GMMTallows revocation
and h, is a constant, so the number of leaves assigned per member in the i-th
cluster, 0 < i < 2"sm B may increase because N may decrease. The assignment
procedure is the interactive part of the setup phase and involves the following
three steps.

— Label Assignment. The group manager sets the maximum number of leaves
that can be assigned to a member for the lifetime of the scheme, and assigns to
each member a sequence of numbers corresponding to their identity, denoted
as labels. Specifically, let BC),4, > B be the maximum number of leaves that
can be assigned to a group member in a cluster, so the maximum number
of signatures that a group member can sign is Bumyq: = 2hsm % BCras-
Consequently, the i-th group member is assigned Bu,q, labels denoted by
b0,i3 01,45+ s OBuman—1,i = tBUmag, 1BUmaz+1, ..., iBUmaz+BUmaes—1 where
0 <4< N —1. Since GMMT provides member revocation, BC,q, is chosen
to be greater than B to simplify label assignment, so all labels dedicated to
a member may not be assigned. Hence, we use the term label to differentiate
from a cluster signing leaf index because unlike indexes, not all labels may
be assigned. However, each cluster leaf signing index assigned to a member
is associated with a label in the dedicated range. Finally, the group manager
stores the last assigned label for each group member in the users list, U List.
Henceforth, the last assigned label of the i-th member is denoted by la =
UList[i] and it is used to evaluate their identity by |U List[i]/Bumas] = i-
When a new cluster is being generated, the group manager retrieves the last
assigned label, la = U List][i], for each group member, 4, and a new range of
labels, B, is dedicated to their new cluster signing leaves starting from the
next value from the last stored label. More precisely, for a new cluster, the
i-th member is given B labels by, b1, ...,bp—1,; = UList[i] + 1,U List[i] +
2,...,UList[i] + B. The group manager then updates the stored label in
U List with the last label in the new range, i.e., UList[i] = UList[i] + B.

— Signing keys generation. Each group member, i, generates B OTS public keys
(pko,i, Pk1,is - - -, PkB—1,;) using their own secret key sk;, and sends them to
the group manager, where pk;; denotes the j-th public key of the i-th group
member within a cluster for 0 <i< N—-1land 0<j< B —1.

— Shuffling and clustering. The group manager retrieves the last assigned
label for each group member and assigns the next set of labels
to their public keys (the cluster leaves), in ascending order i.e.
(Pko,0,0,0), (Pk1,0,01,0),- -, (PkB-1,0,0B-1,0)5---- - ; (Pko,N—1,b0,N—1),
(Pk1,N—1,01,8N-1)s- -, (PkB—1,N—1,bB—1,N—1), Where pk;; is the j-th public
key of group member ¢, and b;; is the corresponding label for 0 <7 < N —1
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and 0 < j < B — 1. The group manager then updates the last assigned label
for each member.

Let FE(k,M) denote a symmetric encryption of a plaintext M
using the key k. The group manager encrypts the labels assigned to
the members by sk.encg, and generates the corresponding encrypted

labels (Ebo’o, ey Ebel,O)a ...... s (EbO,Nfl, ey Ebel,Nfl)a where Ebj’i =
E(sk.encgm,bj;). The group manager then generates the cluster leaves,
Loo,L10,---sLB-1,05------ sLon-1,L1,N-1,---,Lp_1,n-1, by hashing the

concatenation of each group member public key and its corresponding encrypted
label, i.e. L;; = H(pk;;||Ebj ;) is the j-th leaf node of group member i. Next, the
group manager permutes the group members leaves by reordering their encrypted
labels in ascending order. Then, the group manager builds the cluster tree, and
signs its root, root., by the corresponding upper tree leaf node and this continues
until the top layer. Finally, the group manager broadcasts to the group members
2he tuples of the encrypted labels, cluster tree leaves, and the corresponding sig-
nature of its root. Each member, ¢, identifies their leaf nodes using their public
keys, the corresponding encrypted labels, and authentication paths, all of which
are referred to by group member parameters, param,;.

After a specific time determined by the group manager, by which the group
members are expected to have used up almost all their current cluster leaves, the
signing leaves assignment procedure is repeated and a new cluster is generated.
This is continued until the last cluster is constructed. Figure 3 depicts a simplified
example of the initial setup phase. It shows a d layer GMMT with 4 clusters
in the bottom layer. It is assumed that the group has N = 4 members and
each member has two signing leaves colored blue, green, yellow, and red in each
cluster. Cluster; is generated after some time period (when the Clusterg leaves
are almost all used up), to provide new signing leaves to the members.

3.2 Signing Algorithm

The signing algorithm takes as input a message M of arbitrary length, the
signer’s secret key (sk;), which contains the state of the signer (i-th member),
which is the signing index ¢. The algorithm outputs the signature X that contains
the OTS signature cors,0 of the message M and the corresponding authentica-
tion path Authg = (Eb, Ao,0, 401, --,A0,n,—1) from the cluster tree in layer 0.
Moreover, ¥ contains the signature of the group manager on the cluster root,
Oroot, = O'OTS,laAUthla .. ~70'OTS,d—1aAUthd—1a where g0T8S,j is the OTS Sig—
nature of the lower layer tree root, root;_;, and Auth; is the corresponding
authentication path Auth; = (Aj 0, Aj1,... ,AL%_l). The GMMT signature is

then given by ¥ = oors,0, Authg,...,00rs,d—1, Authg_1.

3.3 Verification Algorithm

The verification algorithm takes as input the message M, the signature X, the
public key GPK, and the revocation list RevList. It first checks if the received
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signature has been revoked (see Sect. 3.4). If the signature has not been revoked,
the algorithm continues with verification by calculating the OTS public key, pk’,
from the message digest and the signature element oorg,o Next, the leaf node is
calculated by hashing the concatenation of this OTS public key and the signature
element Eb of Authy, i.e., L' = H(pk'||Eb). Then, the leaf node, L', leaf index,
and (Ao,0, A0,15---,A0,n.—1) from Authy are used by the Root Computation
Algorithm, RCA, (cf. Algorithm 1 in [25] for details) to calculate the cluster
root that is used with oporg 1 to get the OTS public key at layer 1. Next, this
public key and its index along with the authentication path Auth; are used to
calculate the tree root at layer 1 using RC'A. This procedure is repeated until
the top layer tree root is calculated, GPK'. If it is equal to the public root,
GPK' = GPK, the algorithm outputs 1 for a valid signature, and 0 otherwise.

Algorithm 1 GMMT Algorithm. Red (resp. blue) denotes the procedures which are performed by the group manager
(resp. member) .

Setup Phase Signing Algorithm
Input: n, N,d, hgm, he, BCrax Input: M, paraml;, param?2;, sk;, state;
(sk.seedgm, sk.encgm, GPK) — GKGen(1") oors,0 — OTS.Sign(M, sk;, state;)
Bimaz = hgm X BCas GMMT S = M, indx, 0ors,0, Eb, Autho, param2;
for0<i<N-1 do state; = state; + 1

UList[i]| = (i X Bumaz) — 1 Return: GMMT.®
end for

Verification Algorithm

Input: M,GPK,X, RevList

if Eb € RevList then
Return 0

else

Cluster Generation pk’ — OTS.Verify(oors,)

' /
Input: N, he, UList, sk.encgm, and Bumaz Lwd/z — H(pk UEb) ,
for0<i< N -1 do root,, «— RCA(indz, L', Authg)

for1<i<d-1do

for0<i<N-1 do
id; : sk < {0,137
end for
Return: sk.seedgm, sk.encgm, GPK,U List

endldflo-r(pkl‘n’ Pt = OTSKGen(t, sh) L' — OTS.Verify(root; 1,007s.)
for0<i<N-1 do root; «— RCA(indx, L', Auth;)
b= UList[i] + 1 end for
for 0<j<B-1do if root;_, = GPK then
Eb;j — E(sk.encgm,b+ j) Return 1
TupleList[iB + j,0] = (pki,;) else
TupleList[iB + j,1] = (Eb; ;) Return 0
end for er.ld if
UListli] =b+ B — 1 end if
end for Revocation Algorithm
SortedList < sort(TupleList) Tnput: UList, Bumas, RevList, sk.encem, i
for 0 <p < NB do j=ULi
leaf[p] = H(SortedList[p,0]||SortedList[p, 1]) while j > i X Bumas do
end for Add E(sk.encgm,j) to RevList
root. « MerkleTree(leaf) G
Oroot, < Sign(root., sk.seedgm) end while
for 0<i<Ndo RevList «— sort(RevList)
for 0 S({ < B do Return RevList
p=
while p < NB do Opening Algorithm
if pk; ; = SortedList[p,0] then Input: ¥, sk.encgm, Bumas, N, U List
paraml;[j,0] = p b« D(sk.encgm, Eb) )
paraml;[j, 1] = SortedList[p, 1] = Eb; ; if b’ > N - Bumaaz Vb > Ulist[[b'/ Bumaz]] then
paraml;[j,2] = Auth return L
Break else
end if Return |b'/Bumaz)
end while end if
end for

param; = Oroot.
end for
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3.4 Revocation Algorithm

The group manager retrieves the last assigned label of the revoked i-th mem-
ber, la = UList[i], and then regenerates all the encrypted labels which were
assigned to that member, i.e., for the i-th member, the manager generates
E(sk.encgm, iBumaz), E(sk.encgm, iBUumaz + 1),. .., E(sk.encgm,ls). The gen-
erated encrypted labels are added to the revocation list, RevList, which is then
permuted using a sorting algorithm so that successive entries in the revocation
list are not grouped by members.

Revocation Check: The verifier checks if the received signature is revoked or
not by first extracting the encrypted label, Eb, from the signature and checking
if it exists in the revocation list, RevList. If Eb € RevList, then the received
signature has been revoked, otherwise the verifier continues the verification steps.

3.5 Opening Algorithm

The opening algorithm takes as input a message M, a signature >, and the
group manager secret key sk.encg,, and outputs the identity of the signer
i. The algorithm first decrypts the signature element Eb to recover the label
b = D(sk.encgm, Eb). Next, the manager calculates the member’s identity
i = |b/Bumas] and checks that b is less than the last assigned label to the
i-th group member, b < Ulist[i], if not it aborts.

3.6 Recommended Parameters

GMMT parameterization follows the NIST PQC requirements which state that a
given signing key pair should produce up to 254 signatures while maintaining the
claimed security [35]. Thus, we recommend that GMMT be instantiated with a
four layer (d = 4) XMSS-T where the tree height in the bottom layer (clusters),
he, has three possible values, h. = {16,18,20}, depending on the number of
group members and their signing requirements and storage capabilities. The
height of the group manager trees in layers 1 to 3 is 16. The GMMT signature size
depends on the required security level. More precisely, the GMMT signature size
is d X [+ h+ 2 elements, each of length n bits, where n is the security parameter,
n = {128,192,256}, and [ is the number of OTS signature elements, i.e., XMSS-
T utilizes WOTS, then I = {35,51, 67} for the respective aforementioned security
parameters [25]. Table 2 gives our recommended parameters for GMMT such that
it supports at least 264 signatures under the same group public key and the
corresponding signature size in bytes (B).
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Table 2. GMMT recommended parameters and signature sizes.

Instance Bit security
GMMT_128a | 128

d\h |he|hgm | N B I |w |Signature (B)
4/64[16 /48 |2 < N < 2° 210 « B <21%(35/16| 3296
GMMT_128b | 128 4166|1848 |26 < N <20 |28 « B <22 |35|16| 3328
GMMT_128¢ | 128 4/68(20 /48 |20 < N < 2'6|2* <« B <20 |35|16| 3360
GMMT_192a | 192 464|116 /48 |2 < N <2 210 « B < 25|51 /16| 6480

4

4

4

4

4

GMMT_192b | 192 661848 |28 < N <210 |28 « B < 2'2 |51|16| 6528
GMMT_192¢ | 192 682048 [2'0 <« N <2'6|2% <« B<2'0 |51|16| 6576
GMMT_256a | 256 6416 48 |2 < N <26 210 « B < 21%/67 1610688
GMMT_256b | 256 661848 |26 < N <2'0 |28 <« B < 2'2 |67|16|10752
GMMT_256¢ | 256 682048 |[2'0 < N <216|2% <« B < 2'0 |67|16|10816

4 Security Analysis

In this section we show that GMMTsatisfies the security requirements of correct-
ness, anonymity [15], and full-traceability [8]. We also analyze the security of
the proposed revocation mechanism and discuss the drawbacks of adopting a
dynamic approach.

Theorem 1 (Correctness). Let GMMT be the multi-tree group Merkle signa-
ture algorithm described in Sect. 3. Then GMMT achieves correctness as defined
in Definition 1.

Proof (Sketch). GMMTutilizes a multi-tree Merkle signing scheme for gen-
erating signatures and only uses extra shuffling and clustering procedures to
assign the signing leaves to different members. Thus, the correctness of GMMT
is achieved by the correctness of the underling Merkle signature scheme.

Theorem 2 (Anonymity). Let GMMT be the multi-tree group Merkle signa-
ture algorithm provided in Sect. 3 with secure hash function H and encryption
algorithm E. Then GMMT achieves anonymity for each cluster as defined in
Definition 2.

Proof. We adopt the Expég’oj*b game (see Fig.1) on the group members. The
proof follows the strategy in [21]. Assume that each group member is assigned
B signing leaves in each cluster, i.e., each group member is assigned a total of
B x 2"sm signing leaves over all clusters. An adversary A is given access to the
signing and opening oracles, and can corrupt some group members. Assume there
are only two members iy and i; that are uncorrupted. Moreover, A queries the
signing and opening oracles for a maximum of 2"sm x (B — 1) messages for each
uncorrupted member such that the signing oracle replies with B — 1 signatures
from each cluster for the two members, i.e., each member has the ability to sign
at least one more message with a leaf from any cluster of the 2"sm clusters.
Recall that the opening oracle when queried by a signature ¥ replies with the
decryption of the encrypted label Eb in the signature, b = D(sk.encgy,, Eb),
which directly reveals the signing identity 7. Thus, A has B — 1 labels and their
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corresponding ciphertext pairs (b;,;,, £b; ;,) for each group member i, from each
cluster where g = {0,1} and Eb;;, = E(sk.encgm,bj,), 0 <j < B —2.

A queries the signing oracle with an arbitrary message M of their choice such

that the signing oracle replies with the signature for either ig or i;. From this
signature, A retrieves the encrypted label Ebg_1 ;,. Moreover, they are able to
determine the signing cluster, and thus the corresponding B — 1 label-encrypted
label pairs (bji,, Ebji,), 0 < j < B — 2, for each group member i, collected
in the query phase. Then, A is required to correctly guess the identity of the
signer. Since the labels for each group member are set sequentially, and A knows
the first B — 1 labels for each group member, then A knows with certainty the
B-th labels for both group members, i.e., bp_1;, and bp_1 . Accordingly, A
must determine which label is the plaintext corresponding to the encrypted label
Ebp_1,, received in the queried signature. In other words, the adversary needs
to win a distinguishability game that distinguishes the encryption of different
plaintexts. As the encryption algorithm used is semantically secure, A has a
negligible advantage in winning the Empé‘g’?ﬁ*b game.
Theorem 3 (Full-traceability). Let GMMT be the multi-tree group Merkle sig-
nature algorithm specified in Sect. 8 with secure hash function H, encryption
algorithm E | and an underlying existentially unforgeable Merkle signing scheme.
Then, GMMT qchieves full-traceability as in Definition 8.

Proof. Recall that the group manager opens a signature by decrypting the
encrypted label Eb in the signature. Assume that an adversary A collects all
the signatures from all clusters. i.e., A knows (Eb, pk:) where pk; is the OTS
public key at leaf index ¢ for 0 < t < 2" — 1. Assuming A corrupts a set of
members C, then A wins the traceability game Empggfi(ﬂace in Fig. 2 if they
are successful in either of the following scenarios.

— A generates a valid signature of the i-th member where i € N A4 ¢ C. Since
opening a signature depends on the signature element FEb, then A should
include in the signature an element Eb* from one of the signatures of any of
the uncorrupted members so that it decrypts to a valid label assigned to an
uncorrupted member. Furthermore, A should pair Eb* with one of the OTS
public keys of a corrupted member so that they can sign using the correspond-
ing secret key. More precisely, A must find a pair (pk; ;. , Eb*) that is a second
preimage of the pair (pk;;,,Eb;;, ), i.e., H(pk;, ||Eb*) = H(pk;.,||Eb;;,)
where pk; ;. is the j-th OTS public key of a corrupted member i, and Eb;;_
is the corresponding encrypted label. The existence of such an adversary con-
tradicts the assumption of a secure hash function. Conversely, A does not use
any of the OTS public keys of the corrupted members, but rather uses some
Eb* with a forged signature of the underlying Merkle signature scheme such
that it passes verification and then decrypts to a valid assigned label. However,
this contradicts the existential unforgeability assumption of the underlying
signature scheme.

— A generates a valid signature which the group manager cannot open. In this
case, A includes in the signature an encrypted label Eb’ that is not equal to
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any of the valid encrypted labels which were collected in the query phase.
Then following the steps in the previous scenario, A needs to either pair Eb’
with an OTS public key of a corrupted member, or include it with a forgery of
the underlying signature scheme. In both cases, the existence of A contradicts
the assumptions of a secure hash function and an existentially unforgeable
signing scheme.

4.1 Revocation Security

For revoking a member with identity ¢, our revocation mechanism updates
a revocation list, Revlist, by adding the member’s encrypted labels that
were assigned to their signing leaves, i.e., Eby;, Ebi, ..., Ebig—iBumaes,i
E(sk.encgm,iBumas ), E(sk.encgm, iBUumaz+1), . .., E(sk.encgm, la), where la =
Ulist[i] denotes the last assigned label. Each of these encrypted labels is part of
a signature. Hence, an adversary A is able to recover the new set of encrypted
labels that is added to Revlist with updates by comparing the contents of Revlist
before and after the update. If A has collected signatures generated by the sys-
tem before an update of the revocation list, then A can check if the encrypted
labels in some of the collected signatures are in the newly revoked set. Accord-
ingly, if such a set belongs to one revoked member, then A is able to link these
signatures to the same revoked member. Otherwise, the signatures are for more
than one revoked member and A is required to distinguishes the signatures
over a small anonymity set (the newly revoked members). In all cases, only the
encrypted labels of the revoked members are added to the revocation list, hence,
it is infeasible to reveal the identities associated with these labels because they
are encrypted. Note that if A is given only the last updated revocation list, then
A cannot distinguish the newly revoked signatures from the old ones, and hence
cannot link a set of signatures to one signer.

Theorem 4 (Revocation). Let GMMT be the multi-tree Merkle group signa-
ture algorithm provided in Sect. 8 with secure hash function H and encryption
algorithm E. Then, GMMT maintains the anonymity of revoked members and
linkability of their signatures.

Proof. Assume an adversary A has the previous and current states of the revoca-
tion list, and a set of signatures that has been collected between two updates of
the revocation list. Then, A is able to recover the set of newly revoked signatures
by running the revocation check on the collected signatures against the previous
and current states of Revlist. If the update of Revlist corresponds to revoking
one member, then A is able to link these revoked signatures to this member
without revealing their identity. However, if the current states are updated by
revoking more than one member, then we adopt an anonymity game for the
revoked members which can be seen as a variant of the E:vpégf’jfb game that
allows A to be challenged with a set of revoked encrypted labels instead of a
signature of their choice. A wins the game if they are able to attribute a subset
of the challenge set to a given revoked signer out of two possible revoked signers.
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Precisely, A is given access to the opening algorithm for B — 1 signatures from
each cluster signed by each of two newly revoked members, i.e., A gets B — 1
(label, encrypted label) pairs from each cluster for each revoked member. Then,
they are challenged with the B-th encrypted label from each cluster for each
revoked member and are required to determine which encrypted label belongs
to which set of B — 1 (label-encrypted label) pairs. If A is able to attribute the
challenge encrypted labels to a given signer, then they can build another adver-
sary that is able to distinguish between ciphertexts corresponding to a given
plaintext, which contradicts the assumption of a secure encryption algorithm.

4.2 Security of Dynamic GM™T

Our scheme can be adapted to allow adding new members at each cluster gen-
eration. In this case, the number of leaves assigned to each group member
decreases because the maximum number of leaves in a cluster is 22° and the
number of group members is increased. A drawback of dynamic GMMT is that
the anonymity game cannot be played on all clusters. More precisely, if the two
challenge identities in Empégfj_b given in Fig. 1 are for a newly joined member
and an older member, then the game must be played on the clusters which con-
tain signing leaves for both members. This is because if A is given a signature
from clusters created before the new member has joined the group, then A can
determine that this signature is signed by the older member. On the other hand,
if the signature comes from clusters created with both members, the anonymity
security is the same as that for static group construction given in Theorem 2.

5 Comparison with GM and DGM

In this section, we compare GMMT with the hash-based group signature schemes
GM [21] and DGM [14]. Due to the multi-tree construction, GMMT has a larger
signature size than either that of GM or DGM, for example, for 256-bit security,
the signature size of GMMT instance of largest signature size, GMMT-256¢, is
10.816 KB whereas that of GM (resp. DGM) is 2.88 KB (resp. 2.72 KB).

5.1 GMMT gnd GM

Unlike GM, GMMT provides a revocation algorithm and is a multi-tree Merkle
construction. Both schemes require comparable computations from the group
manager for the opening and setup phase. Hence, we focus on their maximum
number of signing leaves and the storage requirements for each group member.

Maximum Number of Signing Leaves. GM is a one layer tree with a static
group construction and the maximum number of signing leaves has been stated
to be 220 [21]. On the other hand, GMMTallows the multi-tree structure to grow
once the initial signing leaves are consumed by repeating the last two steps of
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the setup phase. Thus, the group members renew their signing keys each time
a new cluster is generated while keeping the group public key unchanged. For
a 4-layer GMMT construction, up to 2% signing leaves are created for the group
depending on the tree height h.

Member Storage Requirements. In GM, the storage required for each group
member is reported to be B(1 + log N) nodes [21]. Note that since the first
node of each authentication path and each leaf node contains an OTS public
key and an AES-256 ciphertext, the required storage is in fact B(3 4 log N)
n-bit elements. In GMMT | for a cluster of N members, the required storage is
B(2+1og N)+(d—1)l+ hg,, n-bit elements. More precisely, a member stores the
B nodes at the (log N)-th level, each of which is n bits, and B(1 + log N) n-bit
elements for the authentication paths. Note that in GM, a group member stores 3
n-bit values per leaf node, while in GMMT a group member stores 2 n-bit values
for each leaf node. Additionally, in GMMT each group member needs to store the
signature of the group manager for the cluster tree root, which is composed of
d—1 OTS signatures, along with the corresponding authentication paths. Table 3
gives the required storage for each group member in GM and GMM™, We compare
GMMT and GM when the total number of supported signatures is 22° for the
GM tree and GMMT cluster, which is the maximum number of signatures for
GM, and with N = 2'° group members, so the number of signing leaves for each
member is B = 2'9. We choose GMMT-256 instances for the comparison as it
has the highest storage requirements among all instances. The results show that
GMMT_256¢ saves at least 5.8% of the required storage compared to GM-256.
Note that the values in Table 3 are for 256-bit security where | = 67. Thus, the
above percentages will increase for lower bit security requirements, i.e., for 128
and 192 bit security with [ = 35 and 51, respectively. Given the recommended
parameters in Table 2, the total required storage for each group member in GMMT
is B(2 4 log N) + 3l + 48 n-bit elements.

Table 3. Group member storage for GM and GMMT with N = B = 210,

Algorithm |B = N =2
Required storage (number of n-bit elements)
GM B(3 +logN) 210,13 = 13312
GMMT_256¢ | B(2 +log N) + 31T +48 | 2'° x 12 4 31 4 48 = 12537
T The values are for I = 67 and 256-bit security.

5.2 GMMT and DGM

Both DGM and GMMT are revocable GSSs, but DGM is a dynamic GSS that
allows new members to be added to the group after the group public key is
generated. Unlike GMMT, DGM requires interaction between verifiers and the
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group manager to validate the authentication path for each signature verifica-
tion. Moreover, the group manager in DGM generates the signing keys for the
members and thus can sign on their behalf, so it does not satisty exculpability [5].
A limitation of our scheme is that all group members simultaneously renew their
signing keys periodically. Thus, a group member who has used all their signing
leaves cannot renew them before a specific time as they need to wait until the
new cluster generation occurs. On the other hand, DGM allows new leaves to be
assigned on request. In what follows, we compare GMMTwith DGM with respect
to the efficiency of the revocation mechanism.

Revocation Efficiency. DGM utilizes symmetric puncturable encryption [37]
in its revocation mechanism. With each new revoked member, the group manager
punctures the encrypted indexes of the signing leaves of all revoked members.
Hence, the group manager is required to store all the indexes assigned to all mem-
bers. In GMMT | the corresponding storage required is for the last assigned label
of each member because all the encrypted labels assigned to a member can be
regenerated from this label. For example, consider a GMMT-256¢ instance which
has 2'° members, supports 254 signatures, and provides 256-bit security. The
required storage in GMMT (resp. DGM) is 21° x 28= 1 MB (resp. 264 x 2% ~ 10%7
TB). Both schemes have equal sized revocation lists and the revocation compu-
tational complexity of the group managers are comparable (linear in the size of
the revocation list). However, for a revocation check in DGM, the verifier invokes
a hash function for 3 times the number of revoked positions in the revocation
list [37]. On the other hand, in GMMT, the verifier must search for an n-bit sig-
nature element (the encrypted label, Eb) in a sorted revocation list, RevList,
which has logarithmic complexity. Hence, our revocation algorithm reduces the
computational complexity for verification compared to DGM. Nevertheless, the
revocation list is large, so in Appendix A we provide an alternative revocation
mechanism where the size of the revocation list is linear in the number of revoked
members. The alternative mechanism is equivalent to traditional revocation by
key, and may be suitable for some applications that do not require anonymity
of the revoked members.

6 Implementation

In this section, we provide an unoptimized implementation of the main proce-
dures of GMMT for the purposes of performance evaluation. This C language
implementation uses the xMssMT /WOTS standard implementation given in
RFC 8391 [24], [25] employing SHA2-256 as a hash function, and AES256 for
encryption. Shuffling the signing of leaf nodes is done by reordering the leaf
nodes in ascending order using the sorting algorithm for 256 bit integers.
Table4 provides the performance in kilocycles and the corresponding mil-
liseconds when the code is executed on an Intel(R) Core(TM) i5-5200U CPU
at 2.20 GHz. The values in the table are the average of 100 runs. This table
gives the performance for group public key generation, group member OTS
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public keys generation, (cluster) label encryption, leaf shuffling, cluster root
generation, cluster root signing, signature opening, message signing, and sig-
nature verification. The reported numbers are for the three instances GMMT-
256a with (he, N, B) = (16,2¢,210), GMMT_256b with (h., N, B) = (18,28, 210),
and GMMT-256¢ with(h., N, B) = (20,2%°,219). Other parameters are possible
according to the application and member storage capabilities. A process is per-
formed by a user (U) or the group manager (GM).

Table 4. GMMT Performance results in kilocycles (kc) and millisecond (ms).

Process GMMT_256a GMMT_256b GMMT_256¢

(he, N, B) = (16,29,210)|(h., N, B) = (18,28, 210)|(h., N, B) = (20,210, 210)
Public key gen. (GM) 1,245,539,484 kc - 566,154.3 ms
OTS public keys gen. (U) (6,147,667 kc - 2,794.4 ms
Label encryption (GM) 170,471 kc - 77.5 ms 680,758 kc - 309.5 ms 2,721,486 kc - 1,237.1 ms
Shuffling (GM) 48,436 kc - 22.1ms 205,428 ke - 93.4ms 854,614 ke - 388.5 ms
Cluster root gen. U (GM) |3,364,756 kc - 1,529 ms 13,450,764 kc - 6,113 ms |53,427,148 kc - 24,285 ms

Cluster root signing (GM)|33,064 kc - 15.1 ms

Message signing (U) 2,957ke - 1.4 ms

Signature verification (U) [12,174kc - 5.6 ms 15,124 kc - 6.9 ms 19,326 kc - 8.8 ms
Signature opening (GM) |46 kc - 0.03 ms

T The Merkle tree is constructed after the leaf nodes have been computed.

7 Conclusion

We proposed GMMT a revocable hash-based group signature scheme that
addresses some of the challenges identified by the designers of the GM and DGM
hash-based group signature schemes. Unlike GM, GMMT is a multi-tree construc-
tion that allows up to 254 signatures under one group public key. It was shown
that GMMT saves at least 5.8% of the required storage for each group mem-
ber compared to GM for an GMMT-256¢ instance with 2'° group members each
assigned 2! signing leaves. Unlike DGM, GMMT verification procedures do not
require interaction with the group manager. Moreover, the required storage for
the group manager in GMMT ig linear in the number of members, while in DGM
it is linear in the total number of signatures supported by the scheme. GMMT
also reduces the computation complexity of checking revocations from linear in
DGM to logarithmic in the size of the revocation list. An analysis of GMMT with
respect to anonymity [15] and full traceability [8] was given which shows that its
security relies on the standard security assumptions of hash functions and sym-
metric encryption, and the existential unforgeability of the underlying signing
scheme. Finally, we compared GMMT to both GM and DGM, and presented the
performance of its procedures using an unoptimized C implementation.
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A Alternative Solution for a Large Revocation List

In this section, we provide a solution for the large revocation list of GMMTwhich
is suitable for some applications that do not require anonymity of revoked mem-
bers. We propose the following modification to the leaf generation procedure.

— The group manager generates a secret key sk for each group member, for
0 < i < N — 1. This key is different from the group member secret key sk;
that is used to generate the WOTS signing keys.

— The encrypted label in GMMT is replaced by the output of hashing the
concatenation of the corresponding WOT S.pk and the group member key
A* = H(WOTS.pk||sk}).

The remaining procedures are the same as in GMMTwith the following three

differences in the revocation, verification and opening procedures.

— To revoke the j-th member, the group manager adds their key sk7 to the
revocation list, RevList.

— In the verification process, the verifier checks if the calculated WOTS from
the signature and keys in the revocation list gives the value A* in the received
signature (which means that the signature has been revoked), if not the ver-
ifier continues with the verification.

— In the opening process, the group manager checks which group member’s
secret key sk gives the value A* in the signature A* = H(WOTS.pk||sk})
for0<i< N —1.

Applying the above modification has the following consequences.

— The revocation list size is linear in the number of revoked members, while in
GMMT it is linear in the number of revoked leaves.

— Revocation does not maintain the anonymity of revoked members.

— The verification complexity is linear in the number of revoked members, while
GMMT verification has logarithmic computational complexity with respect to
the number of revoked leaves.

— The opening complexity is linear in the number of members, while GMMT has
a constant opening complexity, i.e., one decryption operation.
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Abstract. Attribute-based credential systems enable users to authenti-
cate in a privacy-preserving manner. However, in such schemes verifying
a user’s credential requires knowledge of the issuer’s public key, which
by itself might already reveal private information about the user.

In this paper, we tackle this problem by introducing the notion of
issuer-hiding attribute-based credential systems. In such a system, the
verifier can define a set of acceptable issuers in an ad-hoc manner,
and the user can then prove that her credential was issued by one of
the accepted issuers — without revealing which one. We then provide a
generic construction, as well as a concrete instantiation based on Groth’s
structure preserving signature scheme (ASIACRYPT’15) and simulation-
sound extractable NIZK, for which we also provide concrete benchmarks
in order to prove its practicability.

The online complexity of all constructions is independent of the num-
ber of acceptable verifiers, which makes it also suitable for highly feder-
ated scenarios.

Keywords: Cryptographic protocols * Issuer-hiding -
Privacy-preserving - Anonymous credentials - Authentication

1 Introduction

Anonymous credential systems and their attribute-based extensions (ABCs)
allow users to receive digital certificates (credentials) certifying certain pieces
of personal information (attributes) from issuers. A user can then present her
credential to a wverifier in a way that respects the user’s privacy while giving
high authenticity guarantees to the verifier. That is, the user can decide, on a
fine-granular basis, which information about her attributes she wants to disclose
to the verifier, while no further information, including metadata, is revealed. In
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particular, different actions of the same user can only be linked through the dis-
closed information. In the most general case, the verifier can publish arbitrary
predicates (Boolean formulas) over attribute values that users need to satisfy
for authentication (e.g., a user is older than 21, comes from a specific country,
or has a certain name), and receives cryptographic evidence that such attribute
values were certified by the given issuer. Anonymous credential systems were
first envisioned by Chaum [24,25]. Besides well-known systems like Microsoft’s
U-Prove [11,43] and IBM’s Identity Mixer [18-20,22], a large body of work
with different optimizations and functionalities can be found in the literature,
e.g. [7,8,15-17,27,37,44].

All of the aforementioned ABC systems have in common that the privacy
guarantees only hold with respect to a single issuer key: whilst not being able to
link actions of a single user, a verifier learns the public key of the issuer of the
underlying credential. Even though this seems to be a natural property at first
glance, it turns out that this approach leads to a tradeoff between scalability and
user privacy. As an example, consider a state-wide electronic identity system with
millions of users. In order to give users the highest level of privacy, all citizens’
personal credentials need to be issued under the same public key. In case of a
compromise of the secret key, all previously issued keys need to be invalidated,
potentially requiring millions of certificates to be re-issued under a new key.
Alternatively, different keys could be used for groups of citizens, e.g., randomly,
per time period, or per administrative region. However, as the issuer’s public
key is revealed upon presentation, this approach dramatically reduces the size
of the anonymity set of a specific user.

Furthermore, many scenarios would benefit from a dynamic and ad-hoc def-
inition of a set of issuer keys accepted by a verifier. For instance, universities
may issue electronic student IDs to their students. Depending on the concrete
scenario, students may need to prove that they are enrolled at a specific uni-
versity (e.g., to enter the campus), or that they are enrolled at any university
without needing to reveal the university (e.g., to be granted an online student
discount). Similarly, citizens may receive electronic identities from their nation
state, which they can then use to prove that they are eligible, e.g., for participa-
tion in opinion polls in their country. However, they might want to use the same
credential to also prove that they are living in any country of a specific region
(e.g., the European Union) for cross-country citizen engagement processes which
do not require to reveal the specific citizenship.

In vehicular ad-hoc networks (VANETS) [32] or vehicle-to-infrastructure net-
works (V2I), such a solution allows each car manufacturer to use their own secret
keys (e.g., per model), while avoiding to reveal unnecessary information (e.g.,
the model) when authenticating towards other parties.

Finally, Cloudflare recently announced a replacement of CAPTCHAs by
cryptographic attestation of personhood using, e.g., FIDO tokens.! The idea is
that instead of solving a puzzle, users click a physical button on an accepted hard-
ware token, which responds to a cryptographic challenge. However, as pointed

! https://blog.cloudflare.com /introducing-cryptographic-attestation-of-personhood/.
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out by Cloudflare, a user’s key “looks like all other keys in the batch”, meaning
that the anonymity set of a user shrinks to the number of devices in a batch. It
would thus be desirable to dynamically add additional batches to this anonymity
set, without users needing to obtain new credentials for their existing devices.

Related Work. Different mitigation strategies for these challenges exists. For
instance, approaches for decentralizing the issuer have been proposed, e.g.,
by fully avoiding the need for a trusted issuer leveraging public append-only
ledgers [33,48], or by deploying threshold cryptography to require multiple
issuers to contribute to the credential issuance process [14,41,47]. While such
approaches reduce the risk of compromised issuer keys, they do not directly
allow to dynamically adjust the set of issuers among which a user should remain
private.

Delegatable credentials [4,7,13,23,27] offer an alternative solution, where
users can issue credentials derived from their own credentials to other users. All
credentials eventually trace back to a root authority’s public key, yet the verifier
does not learn the precise issuer within the delegation “tree”. While delegatable
credentials are a valuable tool, e.g., for managing privileges within organizations,
they do not solve the issues addressed in this paper as they assume a single root
authority, which will typically not exist in the federated scenarios sketched above.
They also do not allow for ad-hoc definitions of accepted issuers. Furthermore,
revocation of sub-issuers within the delegation tree is computationally expensive,
while it can be achieved for free in our construction.

Closely related to anonymous credentials, also in self-sovereign identity (SSI)
systems multiple issuers will participate. In such systems, e.g., [2,3,38], users can
join by presenting some form of credential to one or multiple verification nodes.
In eSSIF2, which is the European Union’s attempt to build a large scale SSI
system, these credentials are issued by national authorities run by each member
state. If the credential is accepted by the nodes, they record their decision on
a distributed ledger. Even if these systems are not built from ABCs, they can
be designed to mimic some of their functionalities. Indeed, whenever the user
wants to present attributes included in their credential to a service provider,
a presentation of some of the attributes can be computed with respect to the
information stored on the ledger. Due to the trust put into the distributed ledger
and the verification nodes, it is thereby not necessary to show the issuer public
key to the verifier. Hence, this additional layer, i.e. the ledger and verification
nodes, provides some level of mitigation against identification attempts based on
the issuer. Yet, the issuer is known to the verification nodes responsible for the
initial joining of the system. Especially when the system is built from a public
ledger, a service provider could also run such a node and therefore information
on the issuers could potentially be gathered. Also, the authenticity guarantees
are no longer end-to-end, but partially rely on the verification nodes and the
consensus mechanism employed for the distributed ledger.

2 https://decentralized-id.com/government /europe/eSSIF /.
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Our Contributions. In this paper we address the discussed challenges by pre-
senting an issuer-hiding attribute-based credential system. That is, our system
allows a user to hide the issuer of her credential among a set of issuers. More
specifically, the verifier may issue a policy defining the issuers he is willing to
accept for a certain presentation session, and the user may then prove that she
indeed owns a credential issued by one of those issuers.

Firstly, this approach allows a user to use her credential in various contexts,
as described in the examples above. Secondly, the revocation of issuers becomes
efficient in the sense that credentials issued by a specific issuer can be revoked
by simply no longer including this issuer in the policy. Finally, additional issuers
can be added in a seamless fashion by adding them to the policy.

Overview of Our Approach. To explain the technicalities of our construction let
us first solve the hiding of public keys during authentication straightforwardly. As
already mentioned, a user’s credential on attributes m = [age, name, state,
reputation| by issuer |; is a signature cred on the message vector m valid
under the issuer’s public key ipk;. To authenticate at a verifier Vi the user
U proves validity of cred under the public key ipk;. More formally, U sends
a non-interactive proof NIZK[(x = ipk;,w = {m, cred}): Verify(ipk;, cred, m)].
Public common input to the NIZK is ipk;. The witness, hence private input
by the user are cred and m. The NIZK deals with the privacy of the witness,
but ipk; is publicly known. As a feature this lets verifiers interpret attributes
and credentials with respect to the issuer, e.g. reputation has potentially more
weight if ipk; belongs to a government agency. In other cases, this is a detriment
to user privacy, e.g. the attribute state certified in cred is never revealed by the
user, nonetheless the verifier may learn state implicitly by looking at ipk .

An idea to hide ipk; in the above NIZK is to build a structure reminiscent
of ring signatures. For authentication, the user collects an appropriate set of
issuer public keys PK := {ipky,..., ipkj, ..., ipk, }. Then we change the NIZK
statement to NIZK[(z = PK,w = {ipk;,m, cred}): Vi_, Verify(ipk,, cred, m)].
We solved our problem, the or-statement in the NIZK hides under which ipk the
user’s credential is valid.

The downside is that naively the proof size and verification cost is now linear
in n := |PK| which limits the practicability of this approach. Hence, the next
essential step is to avoid the or-statement in the NIZK.

This can be achieved by letting the verifier sign the public keys of the accepted
issuers, by computing o; < Sign(vsk, ipk;) for all ipk; € PK, where (vsk, vpk)
is the verifier’s key pair. Instead of performing an or-proof, the user can now
show that she knows a signature, issued by the verifier, on the public key of
the issuer that issued the user’s credential. That is, the user can now send
NIZK[(z = wpk,w = (o, ipk, cred, m): Verify(ipk, cred, m) A Verify(vpk, o, ipk)],
which is independent of the number of accepted issuers, i.e., |PK]|.

A remaining technicality is now that the same verifier may accept differ-
ent issuers for different scenarios, which is why every o; needs to be bound
to the specific scenario. Using ephemeral signature keys (vpk, vsk) in each pre-
sentation session would require linear computation for computing and verifying
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EXp§357CMA ()\)

pp & Z.ParGen(lk) where:

(sk, pk) & 2.KGen(pp) Ogign(m):

Q10 o & X.Sign(pp, sk, m)
(m*,0%) & AdvO=e (pk) Q — Qu{m}

return 0, if m* € Q return o

return 1, if X.Verify(pp, pk,o*,m*) =1

return 0

Exp. 1: EUF-CMA experiment for digital signatures.

the signatures; alternatively, a unique key pair per verifier could be used, and
o; < (vsk, (ipk ;, domain)) could be bound to a specific application domain. We
finally opted for a combination, where the verifier is still key-less, yet signatures
on public keys can be reused. This is done by letting the verifier define policies
where a policy consists of signatures on all ipk’s for a specific domain, but differ-
ent signing keys are used for different domains, and thus the respective signing
keys can be discarded after publishing a policy.

We formalize the above intuition through a generic construction, for which
we provide formal security proofs. We then give a concrete instantiation based on
Groth’s structure preserving signature scheme [36]. To ease readability, our basic
construction focuses on the core functionality of anonymous credential systems;
however, we finally also discuss how to achieve advances functionalities including
non-frameability, revocation of credentials, and fine-granular linkability.

2 Preliminaries

We denote the main security parameter by A\. We write a < A to denote that a is
the output of a potentially randomized algorithm A and v & S to denote that v
is uniformly sampled at random from a set S. If not explicitly stated otherwise,
all algorithms are assumed to be polynomial-time (PPT).

Digital Signatures. A digital signature scheme consists of four algorithms:

— pp & X.ParGen(1) generates public parameters pp.

— (sk,pk) < X.KGen(pp) generates a secret key sk and a public key pk.
o < X.Sign(pp, sk, m) creates a signature o on message m.

— b — X Verify(pp, pk, o, m) verifies the signature.

Following Goldwasser et al. [34], we require a digital signature scheme to
be existentially unforgeable, meaning that no adversary can efficiently come up
with a valid signature on a new message of the adversary’s choice, even if it is
given access to a signing oracle that may sign an arbitrary number of messages
chosen by the adversary:



Issuer-Hiding Attribute-Based Credentials 163

Definition 1. A digital signature scheme is EUF-CMA secure if and only if for
every PPT adversary Adv there exists a negligible function negl such that:

Pr [Expf\}jf*CMA(A) = 1} < negl(\),
where the experiment is as defined in Experiment 1.

Structure-Preserving Signatures. We recall the randomizable structure-
preserving signature scheme by Groth [36]. While the scheme is able to sign
matrices of group elements, we only require it to sign a single group element.
Similar to Camenisch et al. [13], we consider the scheme in two variants: Grothy
signs elements of G; (and its public keys live in G3), and Groth2, which signs
elements of Go (with public keys in G;). We describe Groth;. The other scheme,
Groths, can be obtained easily by switching the roles of G; and Go.

— Groth;.ParGen(1%) generates public parameters pp consisting of a bilinear
group (G, Gy, G, e,p, G, Q) of prime order p with generators G € G1,G €
G, and a random element Y & G.

— Groth;.KGen(pp) generates a secret key skeps = v & Z,, and the corresponding

public key pk, =V = G".

sps
— Groth;.Sign(pp, sksps, M) chooses r < Zy and outputs the signature o =

(R’ S’T) = (é/,-v(Y'Gv)l/r’(YU 'M)l/r)' - -

— Groth;.Rand(pp, o) chooses 1’ < Zy and outputs o’ = (R', ", T") = (R", S/
URVA)

— Grothy.Verify(pp, pk,s, 0, M) checks that e(S, R) = ¢(Y,G) - ¢(G,V) and
e(T,R) =e(Y,V)-e(M,G).

This construction is EUF-CMA secure in the generic group model [36].

Zero-Knowledge Proofs. A non-interactive zero-knowledge proof of knowl-

edge (NIZK) allows a prover to generate a cryptographic proof that he knows a

secret witness w such that (z,w) € R for some binary relation R and a public

statement x, without revealing any additional information about w than what

is already revealed by z. We denote the language associated with R by L
Formally, a NIZK consists of three algorithms:

— pp < I1.ParGen(1*) generates the public parameters pp.

— 7 < II.Prove(pp, z, w, ctx) generates a non-interactive zero-knowledge proof
of knowledge 7 of w such that (x,w) € R bound to ctx.

— b« II.Verify(pp, z, ctx, 7) verifies a proof 7.

Besides correctness, we will require zero-knowledge and simulation-sound
extractability from all NIZKs.

Informally, the zero-knowledge property ensures that the receiver of a NIZK
does not learn anything beyond what is already revealed by the statement itself.
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EXPZAQJTknOWIEdgE()\) where:
(pp,T) & Simy (1) Oo(z, w, ctx):
b<&{0,1} return 7 < IT.Prove(pp, z, w, ctx), if (z,w) € R
b <& Adv© (pp) return L
return 1, if b = b~ O1(z, w, ctx):
return 0 return 7 < Sima(pp, 7, z, ctx), if (z,w) € R
return L

Exp. 2: Zero-knowledge experiment for NIZKs.

Expiiér\lSoundExt(A)
(pp,7,¢) <& Exty (1)
Q0 where:
(z*, ctx*, ") & AdyOsm (pp) Osm(z, ctx):
w* & Exta(pp, ¢, %, ctx*, 1) m & Sima(pp, 7, 2, ctx)
return 1, if: Q — QU {(x,ctx)}
I Verify(pp, x*, ctx*, ") = 1, return 7

(z*,w") ¢ R, and
(z",ctx") ¢ Q

return 0

Exp. 3: Simulation-sound extractability experiment for NIZKs.

Definition 2. A non-interactive proof system Il satisfies zero-knowledge for
a relation R, if and only if for every PPT adversary Adv there exists a PPT
stmulator Sim = (Simq,Simg) such that there exists negligible functions negly
and negly such that:

‘Pf [AdV(pp) =1:pp < H.ParGen(l’\)]
= Pr [Adv(pp) = 1: (pp,7) & Sim(l*ﬂ‘ < negl; (M),

and )
P [Bxpse et () = 1] - 4 < negty (1.

where the experiment is as defined in Experiment 2.

Intuitively, simulation-sound extractability requires that any adversary that
can generate a valid proof must also know a valid witness for this statement, even
if it has previously seen arbitrarily many (simulated) proofs of potentially false
statements. Note that the original definition of Groth [35], combining simulation-
soundness [45] and proofs of knowledge [28], is stronger than ours in the sense
that the adversary also gets access to the extraction trapdoor; however, similar
to previous work [1,29,30] the following slightly weaker definition is sufficient
for our purposes. Furthermore, the inclusion of a context ctx essentially makes
the NIZK a signature of knowledge [23].
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Definition 3. A zero-knowledge non-interactive proof system II satisfies
simulation-sound extractability for a relation R, if and only if for every PPT
adversary Adv there exists a PPT extractor Ext = (Exty, Exte) such that there
exists a negligible function negl such that:

Pr [/—\dv(pp,T) =1:(pp,7) < Siml(l/\)}

—Pr [Adv(pp,T) =1:(pp,T,¢) & Ext1(1>‘)H =0,

and _
Pr [Expi'dn\’,s"”"dEXt()\) = 1} < negl(}),

where the experiment is as defined in Experiment 8 and Sim = (Simy, Simg) is
as in Definition 2.

For notational convenience, we use the following notation for NIZKs, initially
introduced by Camenisch and Stadler [21]. In this notation, a statement like

NIZK [(a,ﬂ, V) iy = gigs Aye = g9l A > 7} (ctx)

denotes a non-interactive zero-knowledge proof of knowledge, bound to the con-
text ctx, of values «, 3, such that the relation on the right hand side is satisfied.
We also omit the public proof parameters pp.

3 Framework for Issuer-Hiding ABCs

We next define the syntax for issuer-hiding attribute-based credential systems,
and then formalize the security properties required from such a system.

3.1 Syntax

An issuer-hiding ABC system is specified by eight algorithms. Initially, the
parameters are generated by ParGen. Having generated a key pair using IKGen,
an issuer can then issue credentials on attributes to a user by means of Issue;
users can verify the received credential locally by VfCred in order to detect mal-
formed credentials. To define the set of accepted issuers, a verifier generates a
policy using PresPolicy, which can be checked for well-formedness using VfPolicy
by everyone. Finally, holding a credential from an issuer and a policy from the
verifier, a user uses Present to derive a presentation token, which is verified by
Verify. The inputs and outputs of the algorithms are introduced in the following:

Parameter Generation. The public parameters are generated as:
pp & ParGen(1%).

The public parameters are assumed to be implicit input to all algorithms pre-
sented in the following. We assume pp in particular specifies the number L of
attributes that may be certified per credential, as well as the attribute space A.
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Key Generation. Issuers compute their respective private and public keys as:
(isk, ipk) < IKGen(pp).
Issuance. The issuer creates a credential cred on attributes @ as follows:
cred < Issue(isk, @).

For the sake of simplicity, this process is modeled as a non-interactive algorithm
as opposed an interactive protocol between the issuer and the user.

Credential Verification. The validity of a credential can be checked as follows:
b < VfCred(cred, @, ipk).

Presentation Policies. Verifiers can define presentation policies defining sets of
issuers they are willing to accept for certain presentation sessions:

pol < PresPolicy({ipk,}).

Note that pol only defines the sets of issuers accepted by a verifier, but not,
e.g., which attributes a verifier needs to disclose. By this, pol can be reused for
multiple contexts, reducing the number of policies.

Policy Verification. Presentation policies can be checked for validity as follows:
b — VfPolicy(pol, {ipk,}).

Presentation. For practical reasons, we only focus on non-interactive presenta-
tion protocols. Having agreed on a presentation policy which has been verified
by the user, she computes a presentation token:

pt < Present(ipk, cred, ¢, @, pol, ctx).
The verifier then validates the token as:
b — Verify(pt, ¢, pol, ctx).

Here, ¢ : A¥ — {0,1} is a predicate over the user’s attributes that needs to be
satisfied in order to pass verification, i.e., verification only passes if ¢(@) = 1.
For instance, ¢ might require that some a; equals some previously agreed value,
corresponding to the disclosure of this attribute, or that a; € [l,r] for some
bounds ! and r. Finally, the purpose of ctx is to define a context in which the
presentation token is accepted, e.g., a session identifier or a random nonce to
avoid replay attacks or similar.

Policies will typically be long-lived, and it thus not necessary for a user to
verify the policy every time before computing a presentation token. We thus do
not consider these computational costs as part of the verification algorithm.
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3.2 Security Definitions

We next define necessary security properties for an issuer-hiding ABC system.

Correctness. We omit a formal definition here, as the requirements are what one
would expect: if all parties follow the protocol specifications during all phases,
any presentation token computed by the user will be accepted by the verifier.

Unforgeability. Unforgeability requires that it is infeasible for an adversary to
generate a valid presentation token, if it has not previously received a credential
on attributes satisfying ¢ from one of the accepted issuers, or a presentation
token for the same (ctx, ¢, pol).

In the following definition, note that while the challenge policy pol™ may only
include honest issuers’ keys, the adversary may request presentation tokens for
arbitrary sets of ipk’s from the presentation oracle Opresent, covering the case of
adversarial issuers.

Unforgeability
Expag, (A, )

pp < ParGen(1%)
Qissue — @, Qpresent — 0, Qreveal — (Z)
(isks, ipk,;) < IKGen(pp) for i =1,...,n
(I*, st) & Ady©issue:Opresent; Oreveal (pp, {ipk; 1))
pol* & PresPolicy(I*)
(pt*, @, ctx*) & Ady@issuerOpresent ; Oreveal (st, pol*)
where the oracles are defined as follows:
Oissue(ij7 Zij)
cred; & Issue(isk;, d;)
add (ij, d']) to Qiss“e
Opresent (], p0l7 ¢7 CtX)
add (pol, ¢, ctx) to Qpresent
return pt < Present(cred;, ipkij, aj, ¢, pol, ctx)
Oreveal (])
add (’ij, EJ) to Qreveal
return cred;
return 1 if:
I C {ipk;};L,
Verify(pt*, pol*, ¢, ctx™) = 1
(pOl*, ¢*, CtX*) ¢ Qpresent
#(ij, @) € Qrevear such that ¢*(d@;) = 1 and ipkij el”
return 0

Exp. 4: Unforgeability experiment
Definition 4. An issuer-hiding ABC system satisfies unforgeability, if and only

if for every PPT adversary Adv and every number of issuers n| there exists a
negligible function negl such that:

Pr [ExpRar ™™ (A, ni) = 1] < negl(3),

where the experiment is as defined in Experiment /.
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Exp;}gl/inkability ()\)

b {0,1}

pp & ParGen(1%)

({Credh a, il}l1=07 pol, ¢, {Zpkz}v ctx, St) & AdV(pp)

pt* & Present({ipk,}, credy, ¢, G, pol, ctx)

b* & Adv(pt*, st)

return 1 if and only if:
b=1b",
VfCred(creds, @, ipk;,) = 1 for I € {0, 1},
¢(a;) =1for I € {0,1}, and
VfPolicy(pol, {ipk;}) =1

return b’ & {0,1}

Exp. 5: Unlinkability experiment

Unlinkabsility. Unlinkability requires that no two user actions can be linked by an
adversary. This even needs to hold if the adversary has full control over verifiers,
issuers, and the user’s credential. In the experiment (cf. Experiment 5), we thus
let the adversary output two sets of credentials, attributes, and respective issuers,
as well as a presentation policy pol, a predicate ¢, and the issuers’ public keys.
Upon receiving a presentation token derived from one of the two credentials, the
adversary must not be able to decide which underlying credential was used, as
long as both credentials are valid and consistent with ¢.

Definition 5. An issuer-hiding ABC system satisfies unlinkability, if and only
if for every PPT adversary Adv there exists a negligible function negl such that:

N 1
P [Bxpl () = 1] - 5| < negl(),

where the experiment is as defined in Experiment 5.

4 A Generic Construction

The following section describes a generic construction of issuer-hiding attribute-
based credentials, and gives a formal security analysis of its security.

4.1 Construction

Let X = (X.ParGen, X\.KGen, X|.Sign, X Verify) and Xy = (X.ParGen, Xy, .KGen,
Xy .Sign, Xy .Verify) be digital signature schemes (cf. Sect.2) with a common
parameter generation algorithm.

Our generic construction is now depicted in Construction 1. We refer to
Sect. 1 for a detailed description of the intuition underlying this construction.
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ParGen(1*). Return pp < ¥.ParGen(1%).
IKGen(pp). Return (isk, ipk) < 5.KGen(pp).

Issue(isk, @). Return cred < X.Sign(pp, isk, @).
VfCred(cred, @, ipk). Return 1 if X.Verify(pp, ipk, cred, @) = 1. Otherwise, return 0.

PresPolicy({ipk,}). Generate a signature key pair (vsk, vpk) < Xy.KGen(pp) and com{

pute the signature o; < X .Sign(pp, vsk, ipk;). Return

pol = (vpk, {(ipk;; 0i)}) -

VfPolicy(pol, {ipk,}). Parse pol as (vpk, {(ipk,;,0:)}). Return 1 if and only if

Xv.Verify(pp, vpk, o;, ipk;) = 1 for all 7.

Otherwise, return 0.

Present(cred, ipk, @, ¢, pol, ctx). Parse pol as (vpk, {(ipk;,0:)}). Set j such that ipk, =
ipk. Return a presentation token pt as follows:

pt & NIZK([(0;, ipk;, cred, @) 15\ Verify(pp, vpk, 0, ipk;) =1 A (1
2. Verify(pp, ipk;, cred, @) =1 A
#(a@) = 1](pol, ¢, ctx)

Verify(pt, pol, ®). Return 1 if and only if pt¢ verifies correctly. Otherwise, return 0.

Construction 1: Generic construction of issuer-hiding ABCs.

4.2 Security Analysis

Theorem 1. If X, and Xy are EUF-CMA secure and the NIZK is zero-
knowledge and simulation-sound extractable, then Construction 1 is unforgeable.

Intuitively, the adversary has two potential ways of breaking unforgeability: (1)
he can forge a X\ signature on his own public key ipk’ (that is not part of the
challenge policy pol™), or (2) he can forge a credential by forging a X signature
w.r.t. some honest issuer’s public key ipk;.

Proof. Let Adv be a PPT adversary. We first modify the unforgeability game by
simulating all NIZK pt output by Opresent- Because the NIZK is zero-knowledge,
this increases the winning probability by at most a negligible amount. In the
following, we argue that Adv’s winning probability in the modified game is neg-
ligible.

In the (modified) unforgeability game, Adv outputs pol* and (pt*,¢*).
If Adv wins, we can apply the NIZK extractor to pt* to extract a witness
(0, ipk, cred, @). Let extractfail be the event that Adv wins but the extractor
fails to output a valid witness. Let polforge be the event that Adv wins, the
extractor does not fail, and the extracted ipk is not any honest issuer’s public
key, i.e. ipk ¢ {ipk,;}. Let credforge be the event that Adv wins, the extractor



170 J. Bobolz et al.

does not fail, and the extracted ipk is one of the honest issuer’s public keys, i.e.
ipk € {ipk;}.

It holds that Pr[Adv wins] < Pr[Adv wins A —extractfail] + Pr[extractfail] =
Pr[polforge| + Pr[credforge] + Prextractfail]. Because the NIZK is simulation-
sound extractable, Prlextractfail] is negligible. We now show that both
Pr[polforge] and Pr[credforge] are negligible, which will conclude this proof.

Type 1 Adversaries. We construct an adversary B against X\,’s EUF-CMA secu-
rity.

— B gets pp, pk as input and access to a signing oracle Ogigy.

— B generates (isk;, ipk;) < IKGen(pp) for i = 1,...,n and runs (I*,st) <
Ady Ossene- Opresent: Orevems (1) Lypl: 4™ ) Tt answers oracle queries honestly using
{iSki}.

— B queries Oggy for signatures o; on ipk; € I*. It sets pol™ = (pk, {(ipk;,0:)})
and runs (pt*, ¢*7 CtX*) 3 Advoissueyopresentyoreveal (St, pol*)

— If Adv’s winning condition is not fulfilled, B aborts.

— Otherwise, B extracts a witness (o, ipk, cred, @) from pt*.

— If ipk ¢ {ipk,}, B, it outputs (ipk,o) as a forgery.

By construction, Pr[B wins] = Pr[polforge] (note that if polforge occurs,
B has not queried for a signature on ipk). Because Yy is EUF-CMA secure,
Pr[polforge] is negligible.

Type 2 Adversaries. We construct an adversary B against 3’s EUF-CMA secu-
rity.

— B gets pp, pk as input and access to a signing oracle Ogigy.

— B chooses a random k < {1,...,m}.

— B sets ipk;,, = pk and generates (isk;, ipk;) < IKGen(pp) for i € {1,...,m}\
{k}. It runs (I*, st) & AdyCissues Opresent; Oreveal (pp, {ipk; ™).

o It answers Oissue(ij, @;) by adding (i, ;) to Qissue (but not generating
a credential).

o It answers Opresent (J, P0l, @, ctx) by creating a simulated NIZK pt (unless
o(d,) = 0).

o It answers Oyevea1(j) With cred; as follows: if i; = k, it queries cred; <
Osiga(d;). Otherwise, it computes cred; <~ X.Sign(pp, isk;, , a;). Repeat
reveal queries for j are answered with the same value cred; every time.

— B generates pol® < PresPolicy(I*). Afterwards, it runs (pt*,¢*, ctx*) <&
Ady Oissue: Opresent; Oreveal (5t7 pol*).
e B answers oracle queries as above.
If Adv’s winning condition is not fulfilled, B aborts.
— Otherwise, B extracts a witness (o, ipk, cred, @) from pt*.
If ipk = pk, B outputs (@, o) as a forgery.
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Note that the way B answers oracle queries is consistent with the way the
(modified) unforgeability experiment does so.

If credforge A ipk = pk, then (@, o) is a valid forgery. o is a valid signature
on d by guarantee of the NIZK extractor. Furthermore, B has not queried for a
signature on @ (because ¢*(a@) = 1 by guarantee of the extractor, but the winning
condition guarantees that ¢*(@’) = 0 for all signatures revealed through Oyreyear)-
Hence Pr[B wins] > Prlcredforge A ipk = pk] = L - Pr[credforge]. Because % is

n|

EUF-CMA secure, Pr{credforge] is negligible. O
Theorem 2. If NIZK is zero-knowledge, then Construction 1 is unlinkable.

Proof. Because the property follows almost immediately from the zero-
knowledge property, we omit a full proof. Note that the unlinkability experi-
ment ensures that the witnesses used when computing pt* are valid for both
b=0and b =1 (for cases where the adversary does not output valid values, the
experiment ends up outputting a random bit, not providing any advantage to
the adversary). This means that the unlinkability experiment is computationally
indistinguishable from one where pt* is created by the NIZK simulator. In the
latter, the view of Adv is independent of b. O

5 Concrete Instantiation

One possible instantiation of Construction 1 in Sect. 4 is with Groth’s structure-
preserving signatures (Sect.2). This instantiation is inspired by delegatable cre-
dentials [13] where the issue of proving knowledge of a hidden signature on the
hidden public key of another hidden signature also comes up (though in a dif-
ferent scenario).

Concretely, in this instantiation, the issuer signs attributes using hash-then-
sign with the Pedersen hash H(a) = HiL:1 H/" and the structure-preserving
signature scheme Groth;. The verifier signs valid issuer public keys using Groths.
A presentation token is a Schnorr-style proof of knowledge [46] turned non-
interactive using the Fiat-Shamir heuristic [31] which gives us a simulation-sound
extractable NIZK. We assume that the statement and public values are included
in the computation of the challenge in order to avoid malleability issues [6].

With these choices, the scheme works as specified in Construction 2.

5.1 Security Analysis

Theorem 3. If Groth; and Grothy are EUF-CMA secure and the NIZK is zero-
knowledge and simulation-sound extractable, then the concrete instantiation in
Construction 2 is unforgeable and unlinkable.

Unforgeability and unlinkability follow from the generic construction’s unforge-
ability and unlinkability, which we’re instantiating.

If Groth; is EUF-CMA secure, then also the hash-then-sign version of it
(which is what we are effectively using in the concrete construction) is EUF-CMA
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ParGen(lA). For e : G X Go — G as in Groth;.ParGen, choose Y, H; & G; and
Y & Gs. Define the hash function H : ZL — Gi, H(@) = [[-, H. Return
pp_(GhGQ:GTaevaGYY (H)z 1)

IKGen(pp). Generate a Groth; key pair (isk, ipk) = (v, \7) & Groth;.KGen(pp).
Issue(isk, @). Return cred = (R, S,T) < Groth,.Sign(pp, v, H(&)).

VfCred(cred, @, ipk). Return whatever Grothy.Verify(pp, V, cred, H(d@)) returns.

PresPolicy({ipk,}). Generate (vsk,vpk) = (u,U) < Groths.KGen(pp) and o; =
(Ri, Si, Ti) & Groths.Sign(pp, u, ipk;). Return pol = (U, {(ipk;, 0:)}).

VfPolicy(pol, {ipk,}). Parse  pol as  (vpk,{(ipk;,0:)}). Return 1 if
Grothy . Verify(pp, vpk, 0y, ipk;) = 1 for all i. Otherwise, return 0.

Present(cred, ipk, @, ¢, pol, ctx). Parse pol as (vpk, {(ipk;,0:)}). Let j be the index of|
the credential’s issuer’s public key, i.e., ipk; = ipk. Randomize cred and o; as

(R, S,T) & Groth,.Rand(pp, cred) and (R;,S;,T;) < Grotha.Rand(pp,o;) .

Choose random blinding values «, 3,7, ¢ & Z,, and compute
— the blinded credential (R,S’,T') := (R,SY*,T'?) on H(&) under the
issuer’s key ipk;

— the issuer’s blinded key ipk; := zpklm

~ the blinded policy signature (R;,S;,T}) := (Rj,gj,le/é) on V; under the
verifier’s public key vpk
Compute a Schnorr-style proof :
n & NIZK|(a, B, 7,0, @)
Grothy credential check: e(S',R)a =e(Y, é) -e(G, ipk;)v A
L
Groth; credential check: e(T”, R)? = e(Y, ipk’;)" - e(H HY, G) A
=1
Groths policy check: e(Rj, ~j) =e(G, f/) - e(vpk,é) A
Groths policy check: e(Rj,Tj{)é = e(upk,Y) - (G, ipk)” A

Attribute check: ¢(@) = 1](pol, ¢, ctx)

Finally, return pt = ((R, 5", T"), ipk’;, (Rj, gj,T;),W).
Verify(pt, pol, ®). Return 1 if and only if pt¢ verifies correctly. Otherwise, return 0.

Construction 2: Concrete instantiation of our generic construction.

secure (under the discrete logarithm assumption, which is implied by security
of Grothy, the hash function H is collision-resistant). It remains to argue that
Present is a good instantiation of the NIZK specified in the generic corlstruction.

For the zero-knowledge property, pt = ((R, S” ,T"), ipk' (R, 5 T}),m) can
$
&

be simulated by choosing random S’,T", z'pk & G and R, T Gg, setting
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(R;,S;) = (R5,5/'") for random r & 7 (where (R, S1,-) = ipk,), and then
simulating a corresponding 7 using the NIZK simulator.

For the proof of knowledge property, note that from 7 one can extract
a, 3,7, 0, d with properties that guarantee that cred := (R, (8", (T")?) is a valid
Grothy signature on H (@) under ipk; := (ipk;)" and that o; := (R;, S;, (T]')‘S) is
a valid Grothy signature on ipk; under vpk, and that ¢(@) = 1. This means that
we can extract a valid witness oy, ipk;, cred, @ from pt, as required.

Table 1. Performance of Construction 2 on a Macbook Pro (i9-9980HK) with
BN254 as the bilinear group. Other columns show the (device-independent) num-
ber of group operations (multiply and square operations, including those hap-
pening within exponentiations) and pairings performed.

Runtime | G; Go G | Pairings
PresPolicy (10 issuers) |14 ms 3027 11448 |0 100
PresPolicy (100 issuers) | 115 ms |27 666 1154300 |0

VfPolicy (10 issuers) |3 ms 0 0 20 |60
VfPolicy (100 issuers) |27 ms 0 0 200 | 600
Issue 2 ms 1684 |278 0 0
Present 4 ms 3327 |1206 (4 |7
Verify 3 ms 2398 |0 901 |12

Table 2. Number of group elements for the different keys and tokens in Con-
struction 2, where I is the number of issuer keys accepted by a verifier, and L
is the number of attributes certified in the credential.

G1 G2 |Gr|Z
Issuer secret key (isk) - - |- |1
Issuer public key (ipk) |- 1 |- |-
Credential (cred) 2 1 |- |-
Presentation policy (pol) | I +1 |31 |- |-
Presentation token (pt) |3 4 |- |L+5

5.2 Performance Evaluation

To practically evaluate our construction, we have implemented® a benchmarking
prototype of Construction 2 using the Cryptimeleon library [9]. The results are
shown in Table 1. For credentials, we are considering L = 10 random attributes,

3 Code available at https://github.com/cryptimeleon /issuer-hiding-cred.
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none of which are disclosed during presentation (which is the most expensive case
of partial attribute disclosure). The policy consists of 10 or 100 valid issuers. This
does not affect token verification, which is independent of policy size. Overall,
performance is practical, especially given that VfPolicy only has to be run once
for each new policy and can be delegated to a trusted party.

The sizes of all keys and tokens can be found in Table 2.

6 Extensions

To simplify presentation, our main construction only focuses on the key func-
tionality of an issuer-hiding ABC system. In the following, we discuss in detail
how to achieve non-frameability and anonymity revocation, controlled linkabil-
ity and pseudonyms, and credential revocation. Further extensions like updating
of credentials [8] or advanced predicates over attributes [5,40] are omitted here
because of space limitations.

Anonymity Revocation and Non-frameability. While ABCs are important to pro-
tect the users’ privacy and related fundamental rights, the high anonymity guar-
antees may lead to misuse of credentials and associated rights. In order to pre-
vent such misuse, anonymity revocation (or inspection) is an important advanced
functionality. Anonymity revocation allows a predefined opener (or inspector) to
identify the originator of a given presentation token pt [12,18]. Closely related to
this is the notion of non-frameability, which guarantees that even if issuers and
the opener collude, it is infeasible for them to convince any third party that a
specific user computed a given pt unless she indeed did so. This notion is closely
related to non-frameability for group signatures [10,26,39].

This feature is achieved by letting the user generate a secret private key
(upk, usk) < UKGen(pp), and the opener a key pair (opk, osk) < IKGen(pp)
for an encryption scheme I'. Upon issuance, the user would now embed upk
as an additional attribute which is signed by the issuer. When computing a
presentation token, the user would treat upk as an undisclosed attribute, yet still
prove that she knows the corresponding usk. Furthermore, she would encrypt upk
under the opener’s key as enc < I'.Enc(upk, opk), and prove that enc contains
the same upk which is also certified in the credential.

Controlled Linkability. In the case of stateful applications, for instance, users
may wish to be recognized yet not identified by a verifier. This can be achieved
by using scope-exclusive pseudonyms [16], in which pseudonyms can be linked
within a given scope, but not across different scopes. For a pseudonym system
¥ with user secret key usk, the users’ public key would be upk «— W.Gen(usk,¢),
which similar to before is embedded into the credential. For a given scope sc,
the user now shares nym = W.Gen(usk, sc) with the verifier, and proves that this
is consistent with the (undisclosed) upk.
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Revocation. In case of misuse, loss of privileges, or compromise of a credential,
it may become necessary to invalidate an issued credential. Many approaches
for revocation of anonymous credentials can be found in the literature. In the
following we show how to incorporate an approach along the lines of Nakanishi
et al. [42] into our solution. Their work follows a black-listing approach, where
each credential contains a revocation handle rh which is never disclosed upon
presentation. The revocation authority, holding a signature key pair (rpk, rsk),
issues intervals [a;, b;] of currently still valid revocation handles, together with
signatures «; <~ Yr.Sign(pp, rsk,a;) and 3; < Xr.Sign(pp, rsk,b;). When com-
puting a presentation token, the user now proves that the revocation handle
embedded in her credential lies in some interval [a;,b;] for which she knows
corresponding signatures a; and ;. However, it may be the case that multiple
revocation authorities, e.g., one per issuer, exist in our setting. We thus not only
embed the rh but also the revocation authority’s public key rpk as attributes in
our credentials, and the user shows that the known signatures on the interval
boundaries verify under this (undisclosed) signature key.

7 Conclusion and Future Work

We introduced the notion of issuer-hiding anonymous credential system, which
allows for a dynamic and ad-hoc definition of sets of issuers among whose cre-
dentials a user may stay anonymous during presentation—a feature with vari-
ous application domains, ranging from student identities over national eIDs to
remote attestation. We provided a generic construction where the communica-
tion and computational complexity during presentation is independent of the
number of issuers, as well as an efficient instantiation.

Nevertheless, we identified some open research questions. While our construc-
tion requires a minor joint setup across different issuers to define some group
generators and the number of attributes L, in real applications, e.g., different
nation states may wish to include different numbers of attributes in their cre-
dentials, vary the order of attributes, or use alternative generators for security
reasons. It would be interesting to see whether this can be achieved more effi-
ciently than via the generic or-composition discussed in Sect. 1. Also, the size of
verifier policies is currently linear in the number of accepted issuers. One app-
roach to overcome this limitation could be to add the accepted public keys to an
accumulator, for which users, knowing all accumulated values, could compute the
witnesses themselves, resulting in constant-size policies if the ipk’s are assumed
to be known. Instead of proving knowledge of a signature from the verifier, users
would now prove that they know a witness for the public key that issued the cre-
dential. However, we are not aware of any accumulator and compatible signature
scheme allowing for an efficient instantiation.
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Abstract. We introduce report and trace ring signature schemes, bal-
ancing the desire for signer anonymity with the ability to report malicious
behaviour and subsequently revoke anonymity. We contribute a formal
security model for report and trace ring signatures that incorporates
established properties of anonymity, unforgeability and traceability, and
captures a new notion of reporter anonymity. We present a construc-
tion of a report and trace ring signature scheme, proving its security
and analysing its efficiency, comparing with the state of the art in the
accountable ring signatures literature. Our analysis demonstrates that
our report and trace scheme is efficient, particularly for the choice of
cryptographic primitives that we use to instantiate our construction.

Keywords: Ring signatures - Accountability + Security model -
Construction

1 Introduction

Group signatures [8] and ring signatures [21] provide signers with anonymity
within a set of users. Anonymity is a sought-after property, yet, under certain
circumstances, it is also desirable to provide a guarantee of traceability, which
means that anonymity can be revoked. This presents an interesting problem:
how does a group or ring signature guarantee anonymity and traceability?
Group signatures rely on a trusted group manager to achieve these conflicting
aims. The group manager determines the members of the group and issues key
pairs to group members. Signers are anonymous within the group, but the group
manager can learn the identity of signers and revoke anonymity. On the other
hand, ring signatures do not rely on a trusted manager. In fact, signers generate
their key pairs and select the group of users, known as the ring, within which the
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signer is anonymous. The solution to achieving anonymous and traceable ring
signatures is accountable ring signatures [6,26], which define a designated tracer
who can identify signers. Accountable ring signatures retain the versatility of
ring signatures, allowing signers to generate their keys and select the anonymity
ring, and additionally allow signer anonymity to be revoked.

In practice, to begin the tracing process, the designated tracer in an account-
able ring signature will often receive a report of malicious behaviour from a
reporter. However, the reporter is outside the scope of the syntax and security
model of accountable ring signatures. Consequently, it is implicit that the tracer
must be trusted not to revoke anonymity without first receiving a report. More-
over, by omitting the role of the reporter from the security model, it is not
possible to make any formal statements about the privacy of the reporter.

To address this, we introduce report and trace ring signatures. The underlying
idea of report and trace is that a designated tracer can revoke anonymity of a
signer if and only if a report of malicious behaviour is made by a user. In other
words, a user reports a malicious message to the tracer, and the tracer must
receive a report to revoke anonymity of the signer. Accordingly, report and trace
achieves the balance between anonymity and traceability of accountable ring
signatures, ensuring that the anonymity of a signer is preserved until tracing is
complete. Additionally, report and trace incorporates a reporting system that
preserves the anonymity of the signer and the reporter.

1.1 Related Work

Group signatures were introduced in [8], and the first security models were pre-
sented in [2,3]. Generally, the group manager can revoke the anonymity of a
signer and must be trusted to preserve signer anonymity in the absence of mali-
cious behaviour. Several variants of group signatures have been proposed to limit
trust in the group manager. For example, accountable tracing signatures [16]
require that the group manager produce a proof of correct tracing and, if tracing
occurred, a proof denying tracing cannot be produced. Traceable signatures [15]
define a designated authority that can trace all signatures produced by a par-
ticular signer if the group manager provides the authority with a tracing token
for that signer. Furthermore, group signatures with message dependent open-
ing (MDO signatures) [22] allow the group manager to revoke the anonymity
of all signers that produced a signature for a particular message if and only
if a reporter first produces a report related to that message. Our report and
trace ring signature provides a similar distributed tracing function, but, in our
setting, the report is attached to a signature rather than a message. Addition-
ally, MDO signatures define the reporter to be a fixed entity with a secret key
generated during setup. Report and trace ring signatures, on the other hand,
model reporters as system users, and our security model ensures anonymity of
the reporter. Finally, we note that report and trace is a variation of a ring sig-
nature and, as such, does not rely upon a trusted group manager to issue key
pairs to users and allows users to select their anonymity ring.
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Ring signatures were first formally defined in [21] and a security model was
presented in [4]. Following this, numerous variations of ring signatures have
appeared (see, for example, [25] for a survey of some of these variations), a
number of which offer some notion of traceability. For instance, linkable [18] and
traceable [12] ring signatures provide limited tracing functionality, allowing two
signatures generated by the same signer to be linked. Moreover, accountable ring
signatures, introduced in [26] and formalised in [6], allow revocation of signer
anonymity by a designated tracer and are, as a result, most closely related to
our work. In fact, report and trace ring signatures can be viewed as an extension
of accountable ring signatures, where the role of the tracer is distributed and
the reporter is modelled as an anonymous system user.

A closely related line of work is purpose-built reporting systems [1,17,20].
Analogously to our work, these systems allow a user to report another user and
subsequently allow revocation of anonymity by a designated tracer. However,
unlike our report and trace scheme, these systems are stand-alone reporting
systems. Specifically, their design allows a user to identify an individual that has,
for example, harassed or assaulted the user, hiding the identity of the accused
and reporter until a threshold of reports related to the accused are submitted,
at which point a tracer reveals the identity of the accused and the reporter(s).
We note that, critically, these systems require a threshold of reports to revoke
anonymity of the accused. This design decision empowers reporters, allowing
them to submit accusations with the confidence that they will remain anonymous
unless (or until) a number of other reporters have come forward. Finally, in [24],
a report and trace scheme was introduced in the context of end-to-end encrypted
messaging. In such systems, a message receiver can report a malicious message
to a designated tracer, and the tracer can revoke anonymity of the sender. The
tracer learns nothing about the sender unless a report is provided by the recipient
of that message, and the identity of the reporter is revealed only to the tracer,
albeit the reporter’s identity is known to the tracer before tracing is complete.

1.2 Owur Contributions

We define syntax and a security model for report and trace (R&T) ring sig-
natures (Sect.2). Our syntax defines a reporting user who provides the tracer
with a reporter token, recovered from a signature, and a designated tracer who
uses the reporter token to revoke anonymity of the signer. Our security model
extends the generic definitions of correctness, anonymity and unforgeability for
ring signatures defined in [4] to capture ring signatures with a report and trace
functionality. Furthermore, we define traceability, adapting the security proper-
ties of an accountable ring signature to our setting. We complete our security
model with a new definition of reporter anonymity for report and trace ring
signatures, which ensures that the reporter is anonymous even after tracing is
complete.

We demonstrate feasibility of report and trace by providing a construction of
an R&T ring signature scheme that relies on standard cryptographic primitives
(Sect. 3). Briefly, the signer provably encrypts their identity under the tracer’s
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public key for a public-key encryption scheme and then encrypts the resulting
ciphertext using a one-time key-pair for a public-key encryption scheme. Addi-
tionally, the signer provably encrypts the one-time decryption key (which we call
the reporter token) to all potential reporters. Then, the reporter decrypts their
token, and the tracer requires the reporter token to recover the signer’s identity.
Our construction is based on the accountable ring signature of [6] in which the
signer provable encrypts their identity under the tracer’s public key and the
tracer can revoke the signer’s anonymity by decrypting the resulting ciphertext.
We choose this construction due to its efficiency and because its security relies
upon standard, well-understood cryptographic hardness assumptions (namely,
the decisional Diffie-Hellman assumption). We provide a sketch proof that our
construction satisfies our security model. Our full proof of security, which we
present in the full version of this paper [11], relies on standard notions of secu-
rity for the cryptographic primitives used in our construction.

We analyse the efficiency of our construction (Sect.3.3), summarising the
computational and communication costs associated with signing, reporting
and tracing for our scheme. We provide an instantiation of our construction
(Sect. 3.2), which demonstrates that it can be implemented efficiently. In fact,
for the cryptographic primitives we select, our construction performs favourably
to the accountable ring signature of [6], and the additional cost of reporting is
small.

Finally, we extend our construction to support multiple reporters (Sect.4)
using threshold publicly verifiable secret sharing [23]. We provide each potential
reporter with a share of the reporter token, and a threshold of shares are required
to recover the reporter token. We conclude with an efficiency analysis for our
multiple reporter construction.

1.3 Contextualising R&T Ring Signatures

In this paper, we introduce a new primitive, an R&T ring signature, and provide
a way to achieve it. We are also interested in placing this primitive in the context
of related schemes and in highlighting the advantages it brings. We explore this
next and summarise our findings in Table 1.

Revoking Anonymity of the Accused. All primitives with tracing functionality
discussed so far [1,6,15-17,20,22,24,26] hide the identity of the accused (i.e.,
the signer in an R&T ring signature schemes) until tracing is complete, at which
point, anonymity of the accused is revoked. We note that [1,17,20,24] reveal
the identity of the accused only to the tracer. However, for accountable ring
signatures schemes [6,26], group signature variants [15,16] and our R&T ring
signature, anonymity of the accused is publicly revoked to allow for public ver-
ification of the tracing process. Accordingly, the tracer is accountable for their
actions and can only (provably) revoke the anonymity of a real accused user.

Entities Revoking Anonymity. Every primitive we consider [1,6,15-17,20,22,
24,26] requires a designated tracer. In some systems, e.g., [1,17,26], the tracer
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is distributed. Whilst our R&T ring signature construction (Sect.3), and our
multiple reporter construction (Sect.4), model the tracer as a single entity, we
remark that we can also distribute the tracer, thus distributing trust amongst a
set of tracers. Trust in the tracer can be further reduced by requiring a reporter.
Our R&T ring signature and [1,17,20,22,24] define a reporter such that the
reporter and tracer must cooperate to revoke anonymity. Additionally, purpose-
built tracing systems [1,17,20] require a threshold of reports to trigger the tracing
process. We provide both options: our R&T ring signature construction (Sect. 3)
requires a single report; our multiple reporter construction (Sect.4) requires a
threshold of reports.

Anonymity of the Reporter. Our (single reporter) R&T scheme ensures that
the reporter is anonymous even after tracing. This is not true of MDO signa-
tures [22], where the reporter is a fixed, publicly-known, entity. Also, for end-to-
end encrypted messaging [24], the tracer learns the identity of the reporter before
starting the tracing process. Moreover, purpose-build reporting systems [1,17,20]
intentionally reveal the identity of reporters after tracing. Recall that reporting
systems allow reporters to communicate the identity of an accused person (e.g.,
a person accused of assault or illegal activity). Therefore, to follow up on alle-
gations, revealing the reporter’s identity is necessary. As the tracer in our R&T
scheme does not require the identity of the reporter to follow up on an allegation
(in fact, the allegation is that the message signed by the accused is malicious,
and the message is public), we can protect the reporter’s anonymity even after
tracing.

Table 1. Contextualising R&T ring signatures.

Publicly verifiable | Entities revoking Reporter Integrated
tracing anonymity Anonymity | functionality
Group signature variants [15,16] | v Tracer N/A Signature
Group signature with message Reporter )
X X Signature
dependent opening [22] Tracer
Accountable ring )
v Tracer N/A Signature
signatures [6,26]
Traceable E2E encrypted Reporter 3
X X Encryption
messaging [24] Tracer
Reporter (threshold
Reporting systems [1,17,20] X P ( )| None
Tracer
. . . Reporter X
R&T ring signatures (This work) | v v Signature
Tracer
R&T ring signatures (multiple Reporter (threshold) i
v X Signature
reporters) (This work) Tracer

* denotes anonymity only holds until tracing is complete.

Application. We describe a potential application of report and trace. Consider a
forum platform and a set of registered users that can post messages to the forum.
Users may wish to post messages anonymously, while also providing a signature
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proving that they are a registered user. Moreover, if a user posts a malicious mes-
sage, the platform may wish to hold the signer accountable. Standard group and
ring signature facilitate the ability of a user to sign a message anonymously. Fur-
thermore, group signatures and accountable ring signatures balance anonymity
and traceability. However, we believe that R&T ring signatures provide a unique
solution to this scenario. Firstly, R&T ring signatures (and group signatures with
message dependent opening) do not rely solely on a designated tracer to revoke
anonymity and, as such, provide additional protection for the signer’s identity
above that provided by accountable ring signatures and group signatures. More-
over, distributing the tracing function reduces the burden on the tracer to check
for malicious messages. Indeed, the tracer need only check messages for which
the tracer receives a report. Additionally, our R&T signature allows the tracer to
revoke anonymity only for the reported signature. That is, the signer preserves
their anonymity with respect to all other signatures and no other signer who
posts the same message will be de-anonymised. In our forum scenario, it may
not be desirable to revoke anonymity for all signatures produced by the signer of
a single malicious message. Moreover, it may be the case that a signed message
is malicious in the context of which it is reported, but may be entirely innocuous
in a different context. Consequently, R&T ring signatures are more appropriate
than traceable signatures or MDO signatures for this setting. Finally, R&T ring
signatures retain the versatility of ring signatures and define the reporter to be
a system user, which can foster a sense of community responsibility for forum
content, and provide a unique guarantee of anonymity for the reporter which
can empower users to report malicious behaviour without fear of repercussions.

2 Syntax and Security

We introduce the syntax of a report and trace (R&T) ring signature scheme
and accompanying security model. In a standard ring signature, users digitally
sign messages with respect to a set of users, known as a ring. Ring signatures
ensure that the signer cannot be identified; any ring member is equally likely to
have produced the signature. R&T ring signatures extend this notion, allowing
a signer to be identified if an anonymous report is made to a designated tracer,
who then traces the signer. Alongside a set of users U, an R&T ring signature
scheme involves the following entities. A reporter produces a report. Within our
syntax and security model, reporters are ring members, though this need not be
the case. A designated tracer, denoted T, revokes the signer’s anonymity if the
tracer received a report for the signature in question. Anybody can verify the
correctness of the report and trace by running a public verification algorithm.
Formally, we define an R&T ring signature in Definition 1.

Definition 1 (R&T ring signature). An R&T ring signature scheme is a tuple
of algorithms (Setup, T.KGen, U.KGen, Sign, Verify, Report, Trace, VerTrace)
such that

— Setup(1*): On input security parameter 1%, Setup outputs public parameters
pp.
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T.KGen(pp): On input pp, T.KGen outputs a tracer key pair (pkr, skt). We

write that pkt « T.KGen(pp; skT).

— U.KGen(pp): On input pp, U.KGen outputs a user key pair (pky, sky). We
write that pky < U.KGen(pp; sky).

— Sign(pp, sky, pkt, m, R): On input pp, sky, pkt, message m and ring R, Sign
outputs a signature o.

— Verify(pp, pkt,m, R,0): On input pp, pkt, m, R and o, Verify outputs 1 if o
is a valid signature on m with respect to R, and 0 otherwise.

— Report(pp, pkt, sky, m, R, o): Oun input pp, pkr, sky, m, R and o, Report out-
puts a reporter token Rep.

— Trace(pp, skt,m, R, o,Rep): On input pp, skt, m, R, o and Rep, Trace outputs
the signer’s identity pky, auxiliary information Tr consisting of the reporter
token, and a proof of correct trace py.

— VerTrace(pp, pkt,m, R, o, pky, Tr, pt): On input pp, pkt, m, R, o, pky, Tr and

pt, VerTrace outputs 1 if the trace is valid, and 0 otherwise.

We define correctness for our syntax as the property that honestly generated
signatures are verifiable.

Definition 2 (Correctness). An R&T ring signature is correct if, for any
n = poly(X), j € [n] and message m, there exists a negligible function negl such
that,

pp — Setup(1?);

(pkt,skt) <« T.KGen(pp);

for i = 1,...,n : (pku,,sky;) < U.KGen(pp);
R = {pkuy,---,pku, }; :
o «— Sign(pp,sky; ,pkt,m,R);

b= 1| >1—negl(N).

b «— Verify(pp,pkt,m,R,0)

2.1 Security Model

We present a security model for our syntax that incorporates accepted security
properties from the ring signature literature. Firstly, we extend well-established
definitions of anonymity and unforgeability for standard ring signature schemes,
presented in [4], to our setting. Then, we cast the security requirements of an
accountable ring signature into our syntax. Namely, we define traceability, which
captures notions of trace correctness, non-frameability and tracing soundness
defined in [6]. Finally, we present a definition of reporter anonymity, a new
security property for our report and trace setting.

In Fig.1, we define a number of oracles for our security experiments. We
write OX(y,,....y.) (21, -, 2n) to denote oracle X that has access to parameters
and sets y1,...,y, and takes as input zi,...,z2,. Oracles Oreg, Ocorrupt and
Osign operate as expected: they model registration of users, corruption of users,
and signature generation respectively. Moreover, Oreport is called to obtain a
reporter token for a message and Otrace is called to trace the signer of a message.
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Our security model considers entities (i.e., users, reporters and tracers) that
are honest, corrupt, or under the attacker’s control. In detail, honest entities
do not provide an attacker with secret keys; corrupt entities generate their keys
honestly, but may later provide the attacker with their secret keys; the attacker
can generate keys on behalf of controlled entities. An attacker with credentials of
users, reporters or tracers can generate signatures, reports or traces respectively.

Oreg,, oreg,1)() Ocorrupt 1, ocorry (PU) Osign ,,, 1., osign) (Pku; pkT, M, R)

(pku, sku) < U.KGen(pp) if (pku,-) ¢ L return L if (pky,-) ¢ L return L

Qreg < Qreg U {pky} Qcorr +— Qcorr U {pky} o « Sign(pp, sku, pkt,m, RU {pku})
L+ LU {(pku, sku)} return sky Osign < Qsign U {(pkt, pky, m, R,0)}
return pky return o

Oreport ,,,, kr,L, Qreport) (pku,m, R, 0) Otrace(pp, sy, otrace) (M, R, 0, Rep)

if pky ¢ RV (pky,-) ¢ L return L (pku, Tz, pt) < Trace(pp, skt,m, R, c,Rep)
Rep < Report(pp, pkt, sku,m, R, o) Otrace < Qtrace U {(m, R,0)}
Qreport < Qreport U {(pky, m, R, o)} return (pky, Tr, pt)

return Rep

Fig. 1. Oracles used in the experiments for anonymity, unforgeability, traceability and
reporter anonymity of an R&T ring signature scheme.

Anonymity. Anonymity is the property that a signature does not reveal the
identity of the signer unless the signature is reported and the signer traced.
Our formal definition of anonymity captures anonymity against adversarially
generated keys as defined in [4]. As such, we assume that the adversary can
corrupt and control users and reporters, but that the tracer is honest. We require
that the adversary, when provided with a challenge signature, cannot determine
which of two potential honest signers generated the signature, on the condition
that the adversary does not obtain a trace for the challenge signature.

Definition 3 (Anonymity). An R&T ring signature is anonymous with
respect to adversarially generated keys if, for any probabilistic, polynomial-time
(PPT) adversary A = (A1, As), there exists a negligible function negl such that,

pp — Setup(1*);
L, Qreg, Qcorr, Qsign, Qreport, Qtrace « 0;
(pkr,skr) < T.KGen(pp);

b = b A (m,R,0) ¢ Qtrace
R.pku. ,pku. ,st A (pp,pkt); : Y
Pr l()mH {;z:) T?.p uyst) — AL (pp,pkt) YA {pkug.phy,} C Qreg\Qcorr

o «— Sign(pp,sku, ,pkt,m,R U {pkuy,,pku, });
b — AS(o,st)
<1 +negl(N)
where O = {Oreg, Ocorrupt, Osign, Oreport, Otrace} are the oracles defined in
Fig. 1.
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Unforgeability. We require that signatures are unforgeable. That is, an attacker
cannot output a valid signature on behalf of an honest user, even if an attacker
can trace the identity of honest signers through the report and trace functionality.
Formally, we consider an unforgeability definition similar to that presented in [4].
Thus, in our unforgeability experiment, we assume that the adversary controls
the tracer and can corrupt and control users and reporters. We require that the
adversary cannot output a valid signature for a ring of honest users, where the
signature is not the output of the signing oracle.

Definition 4 (Unforgeability). An R&T ring signature scheme is unforgeable
if, for any PPT adversary A, there exists a negligible function negl such that,

pp — Setup(1*); Verify(pp,pkt,m,R,0) = 1
Pr | L, Qreg, Qcorr, Osign, Qreport «— @; : A R C Qreg\Qcorr < negl(/\)
(phrsm, R.o) — A° (pp) A (phrm.Ro) & Qsign

where O = {Oreg, Ocorrupt, Osign, Oreport} are the oracles defined in Fig. 1.

Traceability. R&T signatures must satisfy traceability. In other words, it must be
possible to identify the signer of a message. Traceability comprises three condi-
tions: trace correctness, non-frameability and trace soundness. Trace correctness
requires that an honestly generated signature must be traceable to the correct
signer. Accordingly, any trace output by the tracer must be valid. We capture
trace correctness in an experiment that requires an honestly generated report
and trace for an honestly generated signature to verify. Non-frameability states
that a report and trace mechanism cannot identify a non-signer as the signer. To
this end, our non-frameability definition requires that the adversary, with con-
trol of the tracer and a subset of users, cannot output a valid trace such that the
trace identifies a non-signer. Finally, trace soundness, defined in [6], stipulates
that the signer identified by the report and trace mechanism is unique. That is,
it is not possible to verifiably identify two users as the signer of a single message.
The trace soundness definition in [6], which we cast into our syntax, considers
an adversary that controls the tracer and can corrupt and control users and
reporters. Trace soundness requires that the adversary cannot output two valid
traces that identify two different signers for the same message.

Definition 5 (Traceability). An R&T ring signature satisfies traceability if
the following conditions are satisfied:

1. Trace correctness: for any n = poly(\), j, k € [n] where j # k, and message
m, there exists a negligible function negl such that,

pp — Setup(1*);
(pkt,skt) «— T.KGen(pp);
for i = 1,..,n : (pku,,sky;) < U.KGen(pp);
R = {pkuy,....pku, }; .
Pri, Sign(pp,sky; ,pkt,m, R); tb=1] 21—negl(}).
Rep « Report(pp,pkt,skuy, ,m,R,0);
(pky,Tr,pt) <« Trace(pp,skt,m,R,o,Rep);
b «— VerTrace(pp,pkt,m,R,o,pky,Tr,pt)
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2. Non-frameability; for any PPT adversary A, there exists a negligible function
negl such that,

pp — Setup(1*); b1 A
. . = pky € Qreg\Qcorr
Pr ?ereg,RQcoll;r, TQslgn), Qriztgt( <—).(B, : A Verify(pp,pkr,m,Ryo) = 1| < negl()\)
PRT,m,v,0,pRy,1r,pt) < pp); A (pkt,pky,m,R,0) ¢ Qsign

b — VerTrace(pp.pkt,m,R,0,pky,Tr,p;)

3. Trace soundness: for any PPT adversary A, there exists a negligible function
negl such that,
pp — Setup(1*);
L, Qreg, Qcorr, Qsign, Qreport «— 0; 1
. . (@) . = =
Pr | (okr,m, Roopky, Triopr, pku; Tejopey) = AZ(p) o 0 oo phy, < negl(X)
b1 « VerTrace(pp,pkt,m,R,0,pky, ,Tri,pt; );
by — VerTrace(pp,pk-r,m,R,a,pkuj ,Trj,ptj)

where O = {Oreg, Ocorrupt, Osign, Oreport} are the oracles defined in Fig. 1.

Reporter Anonymity. We define reporter anonymity, a new pr