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Abstract

The crystal plasticity model is an efficient method to
bridge the mechanical characteristics of a material at the
crystallographic scale to the macroscopic mechanical
responses. However, the relatively large number of model
parameters makes the calibration cumbersome, especially
in systems with hexagonal close-packed (HCP) structures
like magnesium alloys. This work presents a Bayesian
Optimization based approach, which is applied to the
calibration of the viscoplastic self-consistent polycrystal
plasticity model with twinning and de-twinning scheme
(VPSC-TDT) to describe the mechanical behavior of the
rare-earth magnesium alloy ZEK100. The result shows
that Bayesian Optimization can perform well in such a
physical principle-based black-box optimization problem.
Combined with a practical tactic, the total trial number
can be reduced to around 100, efficiently reducing the
time cost. The obtained optimized set of parameters can
successfully reproduce the loading path-dependent
mechanical behavior of the Mg alloy ZEK100.
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Introduction

The development in material mechanics reveals that the
plastic behavior of a crystal alloy is based on the concurrent
operations of plastic deformation mechanisms such as slip
systems, deformation twinning, and phase transformation.
As for alloy systems where multiple mechanisms are active,
the quantitative analysis of the constitutions of the plastic
deformation would be difficult [1–3]. The method is to fit the
respective macroscopic polycrystalline data by a polycrys-
talline model based on crystal plasticity theory. The
well-fitted model can provide the single-crystal properties in
the crystallographic scale, such as slip system activities,
texture evolution, and deformation twin expansion [4–7].
The viscoplastic self-consistent model with twinning and
de-twinning scheme (VPSC-TDT) is an accurate model and
is feasible to describe plenty of alloy systems [5, 7]. How-
ever, the model parameters are hard to be calibrated manu-
ally due to the large number of them, especially in systems
with HCP crystal structures like magnesium alloys. For such
a system where the plastic deformation mechanisms consist
of 3 types of slip systems and extension twinning, the
number of parameters that require calibration can reach at
least 10. To promote the application of the crystal plasticity
models, an effective method to the parameter
auto-calibration is in great demand.

An auto-calibration problem can be transformed into an
optimization problem aimed to minimize the difference
between the model results and the experimental macroscopic
results. However, the relationship between the parameter
inputs and the results of the self-consistent model is not ana-
lytic, therefore the conventional optimization algorithms
based on the gradient method are not efficient enough. To
solve this “black-box” optimization problem, the genetic
algorithm and some variants have been used in previous
works, but hundreds to thousands of trials are needed and it
still costs days to weeks to finish [8–10]. Recently, the algo-
rithm Bayesian Optimization has been widely used in neural
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network-related works and materials science works. It can
initialize its searching domain by small numbers of random
samples but find all possible optima globally. This algorithm
is expected to behave well in such a physical principle-based
black-box optimization problem studied here.

In this work, a Bayesian Optimization algorithm is
adapted to solve the auto-calibration problem in the vis-
coplastic self-consistent polycrystalline plasticity model with
twinning and de-twinning scheme (VPSC-TDT). A rela-
tively complex alloy system, the rare-earth magnesium alloy
ZEK100, is selected to represent the effect of Bayesian
Optimization on the model calibration problem. An extended
Voce hardening law that is proven to be able to describe the
hardening behavior of the Mg alloys is employed. Besides, a
practical tactic is also proposed to contract the searching
domain of the model parameters, resulting in an optimized
auto-calibration procedure.

Problem Formulation and Solution Method

VPSC-TDT

As mentioned previously, the crystal plastic model adopted
here to model the mechanical behavior of the rare-earth
magnesium alloy ZEK100 is the VPSC-TDT model.
Detailed descriptions can be found in the previous works [5,
7]. For a deformation system a related to ZEK100 like a slip
system or a twinning system, the shear rate follows a
power-law form:

_ca ¼ _c0jsa=sacrj
1
masgnðsaÞ ð1Þ

where _c0 is a reference shear rate, sa, sacr, and ma are the
resolve shear stress, the critical resolved shear stress (CRSS),
and the strain rate sensitivity associated with the system a,
respectively. Note that for the deformation twinning system,
Eq. 1 is only adopted with the RSS in the right direction,
otherwise the strain rate will be set as zero. To describe the
twin nucleation, the new grain with a twin orientation
updated via the rotation matrix will be created and serve as
the twinned portion of the original grain. The new grain
(twin) and the original grain (matrix) are treated as inde-
pendent grains that interact with the homogeneous effective
medium. As the distortion proceeds, the twin will evolve
through growth (twinning) or shrinkage (de-twinning) with
their summed volume fraction unchanged.

Considering that a grain is rarely twinned entirely, a
threshold to terminate twinning is defined as

Vth ¼ min 1:0;A1 þA2
Veff

Vacc

� �
ð2Þ

where Vacc and Veff are the weighted volume fraction of the
twinned region and the volume fraction of twin terminated
grains, respectively. A1 and A2 are two material constants
controlling the terminating threshold Vth. More specifically,
A1 essentially controls the strain level before the twinning
mechanism begins to undergo exhaustion, and A2 controls
the rate at which this exhaustion takes place.

For both slip and twinning systems, the CRSS sacr is
updated as

sacr ¼
dŝa

dC

X
b

hab _cb
�� �� ð3Þ

where C is the accumulated shear strain in the crystal and is

calculated as C ¼ P
a

R
_caj jdt, and hab is the latent hardening

coupling coefficients, which empirically account for the
obstacles on system a associated with system b. ŝa is the
threshold stress for the system a defined by an extended
Voce law as

ŝa ¼ sa0 þ sa1 þ ha1C
� �

1� exp � ha0
sa1

C

� �� �
ð4Þ

where sa0 and sa0 þ sa1 are the initial and back-extrapolated
CRSSes, andha0 and ha1 are the initial and asymptotic hard-
ening rates for the system a, respectively.

Model Parameter Calibration Method

The model parameter calibration problem here is to modu-
late the parameters in the Voce hardening law (Eq. 4) to
reach a consistency between the mechanical behavior curves
provided by the VPSC-TDT model and that given by the
experiments. The investigated object, ZEK100 magnesium
alloy (1.3%Zn, 0.2%Nd, 0.25%Zr, and 0.01% Mn), is
studied in the quasi-static tension and compression experi-
ment with the hydraulic servo tensile tester (Instron 1331).
The sample size and specific test procedure can be referred
to in Kurukuri et al. [11]. Mechanical tests were conducted
along four orientations, namely the rolling direction (RD),
transverse direction (TD), 45° with respect to RD and TD
(45), and normal direction (ND), with the strain rate
0.001 s−1 and the maximum strain level 0.2. Seven experi-
mental datasets for ZEK100 sheet (compression along the
RD (C-RD), the transverse direction (C-TD), 45° with
respect to RD (C-45), and the normal direction (C-ND), as
well as tension along the RD (T-RD), the TD (T-TD), and
45° with respect to RD (T-45)) are used.

In the Voce hardening law (Eq. 4), there are 4 parameters
mainly influencing the behavior for each deformation sys-
tem, sa0,s

a
1, h

a
0, and ha1. The system a here refers to one of the

106 X. Sun and H. Wang



main concurrent deformation mechanisms in ZEK100,
including basal slip, prismatic slip, pyramidal slip, and
extension twinning. Among these 16 parameters, ha1 in all
systems are set as zero as this parameter matters at relatively
large deformation. Moreover, in most magnesium alloy
stress–strain curves, the extension twinning usually results in
a plateau. Therefore, it is reasonable to use a zero-hardening
mechanism to approximate the extension twinning to fur-
therly simplify the calibration problem. Consequently, stwin1 ,
htwin0 , and htwin1 are zero, and the total number of parameters
to be calibrated is reduced from 16 to 10.

This 10-dimensional parameter calibration problem can
be converted to an optimization problem to minimize the
difference between the simulation stress–strain curves and
the experimental curves. The normalized root mean square
error (NRMSE) between the stress values in two curves is
adopted to measure the difference. The mean NRMSE for
the stress–strain curves corresponding to the seven loading
cases is calculated as the objective to minimize for the
optimization:

NRMSEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðrexpj � rsimj Þ2
ðrexpmax � rexpminÞ2

vuut
2
4

3
5
case:i

ð5Þ

Objective ¼ 1
N

XN
i¼0

NRMSEi ð6Þ

where i refers to one of the loading cases and N = 7, and j in
Eq. 5 refers to each point in curves.

The algorithm Bayesian Optimization is applied to search
for the optimum to minimize the objective. The detailed
principle and realization can be found in [12] and the
GPyOpt site [13]. A basic concept will be illustrated here.
Based on the initial samples (means the trials of possible
parameter sets) in the searching domain and the corre-
sponding return value (means the objective), a surrogate
model for the VPSC-TDT model using Gaussian Process
(GP) will be established first. An acquisition function is used
to find the potential optimum of the GP model, which will be
the parameter set for the next trial. The additional one
sample and the result will be passed to update the GP model.
Each iteration will generate a more representative GP model
to the VPSC-TDT model and a more reasonable candidate
for the optimum. The optimization process will terminate
when the objective reaches a specified criterion.

The acquisition function selected in this work is the
Expected Improvement (EI) acquisition function. At the nth
iteration, EI is defined as

EInðxÞ ¼ En½½GPðxÞ � f �n ��� ð7Þ

where x refers to a 10-dimensional parameter set, and f �n is
the current optimum at step n. Note that the GP model
provides a Gaussian distribution for a certain x so the
expectation is meaningful. The []− operator filters out the
possible sets resulting in GP(x) larger than f �n . The next
sample is obtained by

xnþ 1 ¼ argminEInðxÞ ð8Þ
Apparently, the EI function will traverse the entire

searching domain at each iteration, and this makes the
Bayesian Optimization a global optimization algorithm.
Moreover, more steps of iteration will be needed for a larger
searching domain. However, the parameter domain won’t be
so specific and a rather large searching domain is usually
possible. To exemplify this, the searching domain of the
parameters based on the papers relevant to the magnesium
alloy [14–17] are given in Table 1, which is also used for
obtaining the optimum for ZEK100. To solve this problem, a
tactic to contract the searching domain based on the Monte
Carlo Markov Chain (MCMC) method will be delivered as
follows.

At the initial 2% of the plastic strain, the stress response
can provide some information about the model parameters,
especially the sa0 s which control the initial yielding. This
knowledge tells that it is expected to use the initial sections
of the curves to determine a more contracted searching
domain of the parameters. After an optimization process
only to minimize the objective based on the initial 2% of
plastic strain and the corresponding stress data in seven
loading cases, the parameter set candidates which have
smaller objectives can be selected. The selected candidates
should be within a range around the target optimum. In this
tactic, each selected candidate is regarded as a sample from a
10-dimensional Gaussian distribution whose mean value is
the optimal solution. To reconstruct this 10-dimensional
distribution, thousands or more samples are necessary so
only the selected candidates are not enough. However, the
MCMC method can be used to generate plenty of samples so
the reconstruction becomes possible.

With each parameter normalized with the parameter
domain listed in Table 1 to the interval [−0.5, 0.5], each
parameter set can be considered as a 10-dimensional vector x
of which the component xm follows the Gaussian distribution
Nðlm; rmÞ. The Gaussian distribution parameters are sup-
posed to follow the uniform prior:

lm �Uniformð�0:5; 0:5Þ; rm �Uniformð0; 1Þ ð9Þ
The selected candidates serve as the observed data. The

No-U-Turn Sampler is used to sample 10,000 reasonable lm
s and rm s from the uniform priors to maximize the proba-
bility that the vector x equals the selected candidates. The
posterior distribution of lm and rm are obtained from the
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10,000 samples. This update is navigated by the probabilistic
programming engine PyMC3 [18]. Then the values for each
lm and rm with maximum probability are adopted and the
distribution of xm is determined. The original interval [−0.5,
0.5] for xm can be updated to the interval
½blm � brm; blm þ brm�, which is reasonable enough. The new
interval for xm is then converted back from the normaliza-
tion. In the contracted searching domain, the Bayesian
Optimization process can be accelerated, and the acceptable
optimum can appear at earlier iteration steps. A schematic
diagram of the whole calibration method is given in Fig. 1,
and the concrete process will be discussed in sec-
tion “Optimization Process”.

Results and Discussion

Mechanical Behavior

The optimum of the parameter sets adopted to model the
ZEK100 mechanical behavior is listed in Table 2. The
simulated stress–strain curves under both tension and com-
pression cases are plotted in Fig. 2 with the corresponding
experimental data points. Good consistency is committed.
Moreover, to evaluate the relative contribution of each
deformation mode to the shear strain, the relative activity is
usually calculated as the ratio of the shear strain rate of the
respective deformation mode to the total shear strain rate.
The relative activities of the deformation systems in all
loading cases are also given in Fig. 3. Clearly, in the tension

cases, pyramidal slip is nearly absent, and basal and pris-
matic slip systems are usually dominating from the begin-
ning. In the compression cases, basal slip and extension
twinning are more active than the other two systems. Pyra-
midal slip participates more at a higher plastic strain level,
but it also helps accommodate a little deformation at the
beginning in C-TD and C-ND cases. Note the discussion
here is related to the tactic to contract the searching domain,
and the relationship will be discussed in section “Opti-
mization Process”.

Optimization Process

The optimization processes in the original searching domain
and the contracted domain are illustrated in Fig. 4. The lines
are the current minimal objective during the optimization
and the scatters are the objective values near the current
minimal objective (within a 5% derivation). The yellow dot
line represents a threshold value for the reasonable objective
0.10. Clearly, it is not stable to reach an objective under the
threshold within 200 trials when searching in the original
domain. While in the domain contracted with the tactic
mentioned previously, solutions with an objective less than
0.10 can be obtained within 30 iterations in all 3 example
processes. Even with a reduced threshold like 0.095, around
100 iterations are completely enough. Therefore, the domain
contracting tactic can drastically promote the convergence of
the Bayesian Optimization to the target optimum.

Table 1 Range of material
parameters for the magnesium
alloy sheets

Mode sa0ðMPaÞ sa1ðMPaÞ ha0ðMPaÞ
Basal 1–40 1–20 10–200

Prismatic 50–150 1–50 30–500

Pyramidal 100–200 100–200 1000–3000

Extension twin 1–70 – –

Fig. 1 Schematic diagram of the
VPSC-TDT model parameter
calibration method
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To obtain the contracted domain, as introduced in sec-
tion “Model Parameter Calibration Method”, an optimiza-
tion process with only the data in the initial 2% of the plastic
strain should be conducted first. After 100 iterations, 10

parameter sets with the minimal objective values are selected
as the candidates. Then the posterior distributions of the
parameters lm and rm are updated based on the selected
candidates. The respective probability density functions are

Table 2 The selected optimum
parameter sets in VPSC-TDT

Mode sa0ðMPaÞ sa1ðMPaÞ ha0ðMPaÞ
Basal 4.44 17.07 152.20

Prismatic 96.17 14.21 333.90

Pyramidal 108.93 111.76 2321.99

Extension twin 54.23 – –

Fig. 2 The initial texture of the studied ZEK100 sheet (a) and the plastic strain–true stress data in compression cases (b) and tension cases
(c) given in experiments (scatters) and VPSC-TDT model (lines)

Fig. 3 The relative activity of the
deformation systems, including
basal slip (a), prismatic slip (b),
pyramidal slip (c), and extension
twinning (d), in all loading cases
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estimated from the MCMC results by the kernel density
estimation (KDE) and the profiles are shown in Fig. 5a, b.
The values with maximum probability are chosen as the
estimated values blm and brm, and the contracted intervals
½blm � brm; blm þ brm� are therefore obtained. For the 3 pro-
cesses in Fig. 4b, the corresponding contracted domains are
also given in Fig. 5c as the updated normalized intervals for
each parameter to optimize.

The performance of the tactic is highly relevant to the
initial 100 iterations. Only the data within the initial 2%
plastic strain are adopted, and they provide more information
about the sa0 s than the other parameters. This is reflected in
Fig. 5a, b as the relatively narrow distributions of lm

corresponding to sa0 s (plotted in solid lines) as well as the
lower values of the rm s. Also, the contracted intervals for sa0
s are more consistent in 3 processes, shown in Fig. 5c,
compared to the more obvious fluctuations in the updated
intervals of the parameters sa1 s and ha0 s. Moreover, as the
basal and prismatic slips dominate in the initial plastic
deformations in these loading cases (Fig. 2), this tactic is

more efficient in contracting the intervals of sbas0 and spri0 than
that of other sa0 s. But as a whole, the searching domain can
be contracted to around 0.1% of the initial domain (evalu-
ated in a 10-dimensional hyperspace), and the updated
intervals in the 3 processes can be regarded as similar. This
proves the efficiency and stability of this tactic.

Fig. 4 The current optimal
objective during the optimization
processes searching in the
original domain (a) and the
contracted domain (b); 3 example
processes in each circumstance
are plotted with the scatters
representing trials with nearly
optimal objective values

Fig. 5 The KDE graphs of lm
and rm (a, b) and the updated
intervals of the VPSC-TDT
model parameters (c)
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Conclusions

In this paper, a new method to calibrate the model param-
eters for a certain alloy system in the polycrystalline crystal
plasticity model is proposed. This method is based on
Bayesian Optimization and is equipped with a practical
tactic based on the MCMC method to efficiently contract the
searching domain of the model parameters. This method
performs well in calibrating the parameters in the
VPSC-TDT model to simulate the magnesium alloy
ZEK100, and the total trial number can be reduced to around
100 or even less. This result can be realized because the
MCMC tactic contracts the parameters’ domain to around
0.1% of the initial guess. In the evaluation provided here,
this method is of great efficiency and stability. This method
does not rely on the constitutive model used and can be
applied to any other crystal plasticity models or hardening
laws. Therefore, it is believed that this method can greatly
accelerate the works relative to crystal plasticity models.
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