
On Elapsed Time Consensus Protocols

Mic Bowman1, Debajyoti Das2(B), Avradip Mandal3, and Hart Montgomery3

1 Intel Labs, Santa Clara, USA
mic.bowman@intel.com

2 imec-COSIC, KU Leuven, Leuven, Belgium
debajyoti.das@esat.kuleuven.be

3 Fujitsu Laboratories of America, Sunnyvale, USA
{amandal,hhmontgomery}@fujitsu.com

Abstract. Proof of Elapsed Time (PoET) is a Nakamoto-style consen-
sus algorithm where proof of work is replaced by a wait time randomly
generated by a trusted execution environment (TEE). PoET was origi-
nally developed by Intel engineers and contributed to Hyperledger Saw-
tooth, but has never been formally defined or analyzed. In particular,
PoET enables consensus on a bitcoin-like scale without having to resort
to mining. Proof of Luck (PoL), designed by Milutinovic et al., is a similar
(but not identical) protocol that also builds a Nakamoto-style consensus
algorithm using a TEE. Like PoET, it also lacks a formal proof.

In this work, we formally define a simplified version of PoET and PoL,
which we call elapsed time consensus (ET) with a trusted timer. We prove
the security of our ET consensus with a trusted timer given an honest
majority assumption in a model that generalizes the bitcoin backbone
model proposed by Garay et al. which we call the elapsed time backbone
model. Our model and protocol aim to capture the essence of PoET and
PoL while ignoring some of the more practical difficulties associated with
such protocols, such as bootstrapping and setting up the TEE.

The PoET protocol also contains a function called the z-test that
limits the number of blocks a player can publish in any particular set
of blocks of some (larger) size. Surprisingly, by improving this z-test we
can prove the security of our ET consensus protocol without any TEEs
with a (slightly stronger) honest majority assumption. This implies that
Nakamoto-style consensus with rate limiting and no proofs of work can
be used to obtain scalable consensus in a permissioned setting: in other
words, “bitcoin without proofs of work” can be made secure without a
TEE for private blockchains.

1 Introduction

In today’s interconnected world, it is important to be able to share data widely
but in a selective manner. Efficient distributed databases have been known
for quite some time and continue to improve [48]. However, basic distributed

D. Das—This work was started during Debajyoti Das’ internship at Fujitsu Laborato-
ries of America and continued during the his PhD studies at Purdue.

c© Springer Nature Switzerland AG 2021
A. Adhikari et al. (Eds.): INDOCRYPT 2021, LNCS 13143, pp. 559–583, 2021.
https://doi.org/10.1007/978-3-030-92518-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92518-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-92518-5_25

560 M. Bowman et al.

databases have a core problem: they have absolutely no protection from mali-
cious users. Since we do not live in a perfect world, we cannot expect database
users to be angels [38], and this leads to many practical issues when using dis-
tributed databases: what happens when two people or entities that do not trust
each other need to share data? What if some participants in the database are
outright malicious?

Almost two decades ago, Castro and Liskov [18] came up with a clever solu-
tion to this problem: the practical byzantine fault tolerant (PBFT) consensus
algorithm. PBFT was a clever and practical invention: it allowed people to
use what were essentially distributed databases that tolerated up to a third
of the users being malicious. This was a big improvement over basic distributed
databases, but still did not allow for truly public databases. In addition, PBFT
protocols require a large amount of communication between participants–O

(
n2

)
,

for n parties [25], which makes them very difficult to scale. So while PBFT pro-
tocols proved to be very useful for many applications of distributed computing,
they did not fully solve the fundamental problem at hand.

In 2008, another new technology radically changed the state of distributed
databases: bitcoin [41]. Someone using the pseudonym Satoshi Nakamoto
designed what amounted to a new distributed database with some pretty incred-
ible properties: the database is fully public, so anyone can participate, and
(probabilistic) consensus in the optimistic case only requires O (n) communi-
cation, meaning that it is easy for tens of thousands of users to participate in
bitcoin at any given time. The ideas behind bitcoin have been further gener-
alized: blockchains enabling smart contracts such as Ethereum constitute even
more powerful types of distributed database.

But bitcoin and other proof of work-based systems have one major drawback:
energy consumption. One source [1] reports that the power consumed for bit-
coin proof-of-work in January 2019 was around 40TWh/year, comparable to the
power use of a small country. In essence, the public trust that bitcoin guarantees
is directly correlated to the energy consumption of the bitcoin miners. To put
it differently, bitcoin’s resiliency to attack is a direct result of consuming large
amounts of power.

This brings us to a fundamental question in modern distributed databases:
can we build systems with many of the good core properties of bitcoin–scalability
and broadly decentralized trust—without the drawbacks associated with mining?

In an attempt to offer a low power but scalable alternative, Intel included in
the Hyperledger Sawtooth [2] distributed ledger platform a form of Nakamoto
consensus that replaced proof-of-work with an alternative called proof of elapsed
time (PoET) [3], which utilizes the security properties provided by a trusted
execution environment (TEE). Several academic works [21,47] point to the effi-
ciency of PoET and its strong performance in large systems. However, PoET
lacks any formal analysis, and we fill that gap in this paper.

1.1 Our Contributions

We generalize the PoET and Proof of Luck protocols into what we call elapsed
time (ET) consensus, where we relax the PoET protocol to focus on the critical

On Elapsed Time Consensus Protocols 561

protocol itself and ignore some of the difficulties faced in practical implementa-
tions, such as bootstrapping, onboarding parties, and dynamic membership. We
provide a formal description of our ET consensus protocol (as per our knowledge,
there is no formal description of PoET available anywhere).

Our model can be considered as a generalization of the bitcoin backbone
model [28,29]—that might be of independent interest.

We focus on elapsed time consensus protocols with two main assumptions on
the TEE: (1) The TEE has access to a trusted timer. (2) No TEEs are present,
or TEEs can be easily compromised [32,34,36,49].

ET Consensus with Trusted Timer. We first define a basic version of our proto-
col: elapsed time consensus with a trusted timer, where the TEE has access to a
trusted timer.1 This protocol captures the essence of PoET [3] and other related
works like proof of luck [40] (which we discuss more later). We show that our
ET consensus protocol with a trusted timer provides similar security guarantees
as bitcoin with the same honest majority assumption.

Elapsed Time Consensus with a z-Test. We modify our basic ET consensus
protocol and include a z-test to avoid the dependency on TEEs. However, our
z-test is quite different than the one proposed by the Intel engineers, as theirs
is not sufficient for our proof.2 Instead of checking the proportion of the total
number of blocks a player produces in a chain, we (essentially) restrict how many
blocks a player can produce over a sliding window of time.

We prove that ET consensus with our z-test is secure in our (permissioned)
model without TEEs and assuming that some constant fraction (> 2

3) of the
participants are Byzantine. In other words, we show that “bitcoin without min-
ing” coupled with some clever rate-limiting (the z-test) is secure in a permis-
sioned network without any hardware security guarantees, even if up to 33%
parties are dishonest.

Until now, PoET, proof of luck, and other elapsed time based consensus
systems have never (to our knowledge) been formally proven secure. Perhaps
the most exciting implication of our proofs, though, is that we can ignore TEEs
completely in these protocols and still maintain relatively good security with our
z-test. This notion of “permissioned bitcoin without mining” will be very useful
for future blockchain developments.

1.2 Related Work

The only current work of which we are aware on the security of PoET is [19]. This
work shows how an adversary that is capable of compromising SGX can attack
PoET up to the bounds of the z-test that PoET currently uses. Unfortunately,
this paper does not offer any formal analysis in the other direction: it does not
include a rigorous security proof that PoET is secure outside of these bounds. As
1 Many TEEs, including SGX [4], have a trusted timer or equivalent functionality.
2 Using the z-test given by the PoET specification would require much stronger param-

eter settings than for which we achieve provable security.

562 M. Bowman et al.

we have mentioned before, we note that Milutinovic et al. [40] define a consensus
protocol called proof of luck (PoL) that functions very similarly to PoET, but
do not offer a security analysis to their protocol or even a comparison to PoET.
Additionally, the authors of [5] show a construction of a proof of stake protocol
using TEEs, but this protocol also lacks a formal security proof.

Improved consensus algorithms and models with exciting new properties
have proliferated recently. Some examples include Thunderella [45], the sleepy
model of consensus [44], Snow White [22], Fruitchain [43], Ouroboros [24,31],
Bitcoin-NG [27], Casper [15], Stellar [39], and ByzCoin [33]. Exciting new work
in the space includes things like proofs of space and storage [9,20,26] and ver-
ifiable delay functions [12]. However, most of these protocols focus on public
blockchains.

Comparatively, the academically-focused work on permissioned blockchains
has been substantially less, but has notably included things like an analysis of
Hyperledger Fabric [6,16] and the Tendermint consensus protocol [35]. Work
on Byzantine fault tolerant consensus has also been done [11], including the
recent an exciting development of [51]. There have also been a number of very
useful papers that have analyzed these consensus protocols and their properties,
including [10,17,30,42,50].

Several consensus protocols in past have leveraged different forms of trusted
hardware. For example, MinBFT [46] proposes a trusted counter to reduce the
number of nodes required from 3F + 1 to 2F + 1 for F faulty nodes. More
recently, FastBFT [37] uses a trusted execution environment to aggregate mes-
sages for latency and throughput improvements. Other protocols use TEEs for
the purposes of sharing on blockchains [23].

2 Elapsed Time Backbone Model

Our model can be considered as a generalization of [28]. Here we provide a
summary and refer to our extended version [13] for a complete description.

2.1 Notations

We assume that the blockchain protocol has a fixed number n of players. We use
H : {0, 1}∗ → {0, 1}κ to represent a cryptographic hash function (modelled as a
random oracle). A block is any tuple of the form B = 〈s, x, π〉, where s ∈ {0, 1}κ

is the hash of the previous block, x ∈ {0, 1}∗ is the content of the block and
π ∈ {0, 1}∗ is the proof of block validity. validblock is the predicate that takes
a block B and a chain C as input, checks validity of the content of B.

A blockchain or chain is a sequence of blocks. The (current) last block of a
blockchain C is called the head of C and is denoted by C.head. For an empty
string or empty blockchain ε, we have ε.head = ε. The length of a chain is
its number of blocks. A chain C can be extended by a block B = 〈s, x, π〉 if
s = H(C.head), ValidBlock(B, C) is true and B.π is a valid proof for the
extended chain C′ = C‖B. For the new chain C′, we have C′.head = B. For any

On Elapsed Time Consensus Protocols 563

chain C = (B1, · · · , B�), Length(C) = � denotes the length of the chain. For any
pair of integers 1 ≤ i ≤ j ≤ �, the chain C̃ = (Bi, · · · , Bj) is called a subchain
of C. C�k denotes the chain resulting from removing the k rightmost blocks, for
a given non-negative integer k. If k ≥ �, then C�k = ε. For two chains C1, C2 the
notation C1 	 C2 denotes that C1 is a prefix of C2.

2.2 Model and Structure

Our model assumes round-based protocols as in [7,28,29]. In our model we have
three top level parameters: the total number of players n, the security parameter
λ and honest parties’ advantage δ. If t is the number of corrupt players then we
require that t

n−t ≤ 1 − δ.

Adversary. We allow the adversary to see all of the global variables in the system,
including the description of all of the algorithms in the protocol. The adversary
can corrupt players at the beginning or during the protocol run, as long as the
total number of corrupted players does not exceed t.

Model Rules. We model communication among protocol parties by having a
global array of queues PLAY ER QUEUE[n] - where PLAY ER QUEUE[i]
represents the queue associated with player i. We let each party send to other
players’ queues, but only read from their own queue.

2.3 Abstractions

In this work we use the following abstractions to simplify our protocol and proof.

Certifications. We use the Cert functionality (Fig. 1) instead of explicitly using
digital signatures - they act as completely unforgeable, perfect digital signatures.

Certu (Statement m): //certificate issued by u attesting validity of m

IsCertValidu (Cert cu,m,Statement m):
Return 1 if cu,m certifies statement m on behalf of user u and 0 otherwise.

Fig. 1. Certification functionality.

Trusted Execution Environment (TEE). In our model, a TEE is an unbreakable
black box (a VBB obfuscator [8]) that runs some code in a way that completely
hides the internals of the code—an adversary can only see the input and output
values of the program being run by the TEE. We note that this is an idealistic
model for a TEE since it presumes perfect security and no side channel attacks.
We represent our abstraction of TEE in Fig. 2.

In some protocols, we will give our TEE a trusted timer functionality. Since
time is approximated by round number in our protocol, we will have the TEE

564 M. Bowman et al.

return the current round number for this function. Additionally, we endow our
TEE with a monotonic counter TEE.Counter which can never be decreased in
value, even if the TEE is reset. We note that many modern TEEs like Intel’s
SGX have both trusted timer and monotonic counter functionalities [4].

TEE.α := null; // Can be set to any program code.
TEE.args := null; // Arguments for α().
TEE.Counter := 0; // monotonic counter inside TEE.

TEE.GetCounterValue()
Return TEE.Counter // Just return the counter value.

TEE.CounterSet(x)
if TEE.Counter < x then TEE.Counter x end if

TEE.Run(Prog, arguments):
// Run the program Prog inside the TEE.
// If there is any currently running program it aborts the current program.

Abort(α); α Prog; args arguments; Run α(args)

TEE.Poll():

// Can be called only after calling TEE.Run()
if α = null then return ⊥ end if
if α() has completed running then

O output of α(args), Return (O,CertTEE (O||α||args))
else return Incomplete end if

Fig. 2. TEE functionality

2.4 Blockchain Properties

We next define three core blockchain properties: the common prefix property,
the chain quality property, and the chain growth property. As argued in [28],
these properties together essentially define what it means to be a functional and
useful blockchain.

Definition 1. Common Prefix Property: Suppose C1 is a chain which has
been accepted by an honest party at round r1 and C2 is another chain which has
been accepted by some honest party at round r2(≥ r1). Then C�k

1 	 C2 holds for
all integers k ≥ �cf , where �cf is the common prefix parameter.

Definition 2. Chain Quality Property: Suppose C is a chain that has been
accepted by some honest party. Any subchain C̃ of C of length �̃ ≥ �q must con-
tain at least μ�̃ many honest blocks. Here �q, μ are the chain quality parameters
(Table 1).

On Elapsed Time Consensus Protocols 565

Table 1. Table of all parameters

n : Total number of players

t : Number of corrupted players

δ : Advantage of honest parties, (t
n−t

≤ 1 − δ)

p : Probability that an honest player creates a block in a given round

f : Probability at least one honest player creates a block in a given round

rend : Total number of rounds in the security game

ε : A security parameter used to bound the “luckiness” of the adversary

See the “typical execution” definition in Sect. 5.1

ε′ : Quality of concentration for z-test (Definition 4)

λ : Security parameter

�cf : Minimum number of blocks in common prefix property

μ : Parameter in chain quality property

�q : Minimum number of blocks for which the chain quality property holds.

τ : Minimum number of blocks in chain growth property.

σ : Maximum number of blocks in chain growth property.

rg : Minimum number of rounds for which the chain growth property holds

A block is an honest block, if it is created by an honest party.

Definition 3. Chain Growth Property: Suppose C1 is a chain of length
�1 which has been accepted by an honest party at round r1 and C2 is another
chain of length �2 which has been accepted by some honest party at round r2. If
r2 − r1 > rg, then �2 − �1 ∈ [τ(r2 − r1), σ(r2 − r1)]. Here rg, τ, σ are the chain
growth parameters.

Block.π:

π.timestamp // Round of “mining.”
π.WaitTime // How many rounds until the block can be issued.
π.WaitCert // Proof that a TEE generated the WaitTime properly.

Fig. 3. Block proof structure

3 Elapsed Time Consensus Protocol with Trusted Timer

Here we construct an elapsed time consensus protocol with a trusted timer.
We start by defining the block validity proof π of a block in Fig. 3. The basic
version of our ET protocol (with trusted timer), denoted by ETtimer, works in
two phases: (1) Initialization phase and (2) Leader election phase.

Initialization Phase. In this phase, the challenger initializes the blockchain by
calling Genesis() (refer to Fig. 4), which in turn creates the genesis block Bgenesis

and initializes all the players.

566 M. Bowman et al.

Genesis(n,λ):
generate the genesis block Bgenesis

P := Geometric Distribution with parameter p
for i = 1 to n; i++ do

PLAY ERS[i].Initialize(i, Bgenesis)
end for

Fig. 4. Initialization of the Blockchain for ETtimer

Leader Election Phase. In this phase, all the players compete with each other
to be elected to generate the next block. Once a block is generated, they start
a fresh competition and repeat the process [3]. We define the leader election
protocol in the RunPlayer() routine defined in Fig. 5. For an honest user, the
challenger runs RunPlayer() exactly once per round.

In every round, RunPlayer() checks if there are new chains in the input
buffer of the player. These chains are generated in the previous round by other
players. Our current player picks the best chain according to PickChain()

chain C := empty; // A chain - an ordered list of blocks.
playerID; // denotes the index of the player provided by the challenger
TEE; // denotes the trusted execution environment specific to the player

Initialize(integer i, the genesis block Bgenesis):

playerID i ; Add Bgenesis to C;
Initialize the TEE for player i
x Collected transactions from users;
TEE.Run(WaitForBlock(),C, x)

RunPlayer():

if PLAY ER QUEUE[playerID] is not empty then
Cnew PickChain(playerID,C) // Defined in Fig 6
if Cnew = C then

C Cnew; x Collected transactions from users
TEE.Run(WaitForBlock,C, x) // Wait on TEE for the next block

end if
else

if TEE.Poll() = Incomplete ∧ TEE.Poll() =⊥ then
// It seems the player is a leader
(B, WaitCert) TEE.Poll(); B.π.WaitCert WaitCert
Add B to C; Broadcast(C)
// Again, repeat for the next leader election
x Collected transactions; TEE.Run(WaitForBlock,C, x)

end if
end if

Fig. 5. Ideal functionality of ET consensus protocol

On Elapsed Time Consensus Protocols 567

(defined in Fig. 6) to replace (if applicable) its own local chain. If PickChain()
updates the local chain, our player stops competing for the last election and calls
TEE.Run(WaitForBlock, C, · · ·) to start a new competition.

PickChain(integer i denoting the player index, current chain C):
for each C∗ in PLAY ER QUEUE[i] do

// Check if the chain is valid and longer than the current chain
// In case of a tie, keep the current chain

if (Length(C∗) > Length(C))∧ IsChainV alid(C∗) then C C∗ end if
end for
return C

IsChainValid(chain C∗ = {B1, B2, . . . B }):

if B1 is not the genesis block then return false end if
for each block Bi in C∗ except B1 do

Ci−1 (B1, · · · , Bi−1)
// Verify that the current block is pointing to the previous block
if (Bi.s = (Bi−1)) then return false
// Verify that the block is not created ahead of its previous block
else if (Bi.π.timestamp < Bi.π.WaitT ime+ Bi−1.π.timestamp)
then return false
// Verify the WaitCert and content for the block
else if !V alidBlock(Bi, Ci−1) ∨ !IsCertValidTEE Bi.π.WaitCert,

Bi.π.WaitT ime WaitForBlock (Ci−1, Bi.x)
then return false
else continue
end if

end for
// Verify that the last block is not created ahead of time
if (B .π.timestamp ≥ current-round) then return false end if
// If z-test is running, verify that the chain satisfies z-test property
if (z ,λ (C, B .π.playerID) = 0) then return false end if
return true

Fig. 6. Chain selection mechanism for ET consensus (the part in red is only applicable
when z-test is used as defined in Definition 4.)

Given an existing chain C, the leader election mechanism works very much
like a lottery algorithm: a player wins an election if their WaitT ime (picked from
a pre-defined probability distribution P) is smallest among all players. The TEE
runs WaitForBlock(C) (defined in Fig. 7) for a player to generate WaitT ime.

Collision Resolution: It is possible that two players get the same WaitT ime. In
that case, both the players broadcast their chains in the same round, each chain
with a newly added block – it is considered a collision.

Each player handles collision locally in the following way (refer to Fig. 6 for
the pseudocode representation): If two chains C1 and C2 are of same length,

568 M. Bowman et al.

and the last blocks in C1 and C2 were generated at rounds t1 and t2 respec-
tively. Among t1 and t2, whichever is smaller the corresponding chain is chosen.
However, if t1 = t2, the collision is not resolved; the player can choose any one
of the chains as the current chain and keeps mining for that chain. If C1 and C2

are of different lengths, the longer chain is chosen by the player.
Note that, since we have a synchronized round based model and the players

have access to a reliable broadcast mechanism, it might seem unlikely to have
t1
= t2. However, a compromised player might choose not to broadcast his chain,
or selectively send the chain to some players.

WaitForBlock(chain C, transactions x)

if (TEE.GetCounterValue() ≥ Length(C)) then return ⊥
else TEE.CounterSet(Length(C)) end if
waitT ime draw an element from P ; sleep(waitT ime)
B CreateBlock(waitT ime,C, x); return B

CreateBlock(time delay t, chain C, transactions x):

create an empty block B; B.x x // Add transactions
B.s (C.head) // Point to the last block of the existing chain
B.π.timestamp current-round; B.π.WaitT ime t
B.π.playerID current player ID; return B

Fig. 7. Function to be run under Trusted Execution Environment (TEE)

Probability Distribution for WaitT ime. In our protocol, the TEE generates the
WaitT ime by sampling from a probability distribution. In our case, we use a
geometric distribution where the probability of success in each round is p.3 The
parameters of the probability distribution are defined by the protocol, and are
globally known. Each WaitT ime is independent of all previous ones and all other
players. We denote the probability distribution with P .

Due to the memorylessness of geometric distribution adversarial parties gain
no information about the sampled wait times until the wait time actually expires
and TEE releases the block. The following lemma captures this fact.

Lemma 1. The event that any party generates a block in a given round happens
with probability at most p over the random coins of that party’s TEE. This event
is independent of all other random coins in the protocol as well as adversarial
choices.

Proof (Proof Sketch for Lemma 1).
The probability of block generation by an honest party can only be influenced

if a new block arrives. However, because the adversary has no knowledge about
3 Here we are considering the version of geometric distribution where trial number

WaitT ime is the first successful trial.

On Elapsed Time Consensus Protocols 569

the current wait times of honest or adversarial parties, drawing a new wait time
is exactly same as drawing a new element from the probability distribution with
replacement, and hence, is independent of the current wait times or any past
wait times.

The memorylessness property of geometric distribution ensures that the prob-
ability of generating a block by an honest party is p in a given round, independent
of if the party has queried a new wait time in that round or not. An adversarial
party can draw a new wait time in two ways:

1. if the party decides to discard the current wait time and draw a new wait
time,

2. or, after the completion of the current wait time.

In the first case, the probability for the adversarial party to generate a block in
a given round still remains p since the wait time is stored inside the TEE and
the party does not see it. In the second case, the probability is trivially p. Note
here, we assume that the adversarial party always generates a block, when the
TEE time expires. ��
With the above lemma in place the security proof for ET consensus with trusted
timer is very similar to that of bitcoin [29] and provides exactly the same security
properties; we skip the detailed proof here and refer to [29]; in Appendix 6.4 we
summarize the security properties achieved by the protocol for completeness.

4 ET Consensus with Z-Test

We already know that operations within a TEE may be subject to attacks [32,
34,36,49]. In PoET, PoL, and ET consensus with TEEs, we are mainly concerned
about two forms of attack: accelerating the trusted timer and impersonating (or
stealing the secret keys from) a TEE. In both cases, an attacker can create an
invalid leadership claim and break the security of the protocol.

To address this issue, PoET implements a “z-test” (or more accurately, it
implements a “1 sample z-test”) that limits the number of blocks any valida-
tor can win in some (large) consecutive set of blocks. The “z-test” is based on
the observation that while any validator can win any block (the fairness princi-
ple), the probability that a particular validator wins a disproportionately large
number of blocks is extremely low.

4.1 Our ET Consensus Protocol with z-Test

While the PoET z-test is an excellent innovation, we cannot prove the security of
any ET consensus protocols using that z-test. We implement a slightly different
z-test—PoET rate-limits what percentage of blocks any given participant can
win on the entire chain, while we rate-limit each participant’s block wins over
a sliding window of time (or, in our protocol, a sliding window of rounds). An
adversary can decide not create blocks for a long time, then create enough in a

570 M. Bowman et al.

short window to violate consensus while bypassing the z-test by PoET; however,
our z-test would catch such attacks. Given the distribution of block creation, we
can figure out the expectation of (and appropriate other statistics around) how
many blocks a player wins over a particular time period. Deviating too far from
this results in future blocks being declared invalid.4

For a consecutive set of rounds S, we denote number of adversarial blocks
in a chain C by ADVC(S). In other words, ADVC(S) = |{B ∈ C : round(B) ∈
S and id(B) is corrupted. }|. For a player i ∈ [1, n], ZC(i, S) denotes the number
of blocks in chain C produced by player i, created in rounds in S, i.e. ZC(i, S) =
|{B ∈ C : round(B) ∈ S and id(B) = i}|. Hence, for a chain C and set of rounds
S, we have ADVC(S) =

∑
i∈[1,n]

i is corrupted

ZC(i, S).

Definition 4. Let C be a chain. For ε′ ∈ (0, 1) and λ > 0 the function zε′,λ :
C × [1, ..., n] → {0, 1} be defined in the following way:

zε′,λ (C, i) =

⎧
⎨

⎩

0 if ∃ set of consecutive rounds S s.t.
|S| ≥ λ and ZC(i, S) > (1 + ε′)p|S|

1 otherwise

⎫
⎬

⎭
(1)

zε′,λ (C, i) = 0 if a party i has contributed more than the allowed number of blocks
in chain C.
We set our z-test parameters so that honest parties will only be affected with
negligible probability, so our z-test has no negative impact on honest blockchain
operation. Our new z-test can effectively stop an adversary from concentrating
a high number of blocks in a very small amount of time and allows us to state
concrete facts about the security of our protocol with the z-test.

4.2 Modification in the Protocol with Z-Test

In this section, we do not assume any integrity of the TEE. Hence, adversarial
parties can generate arbitrarily many valid blocks per round. However, honest
parties apply the ‘z-test’ before accepting a chain, which checks that no single
player is producing substantially more than their fair share of the blocks.

Although we do not assume any security of any TEE (or even the existence
of a TEE), the probability any honest party generates a block in any given round
still remains p. This holds because adversarial parties cannot influence the wait
time distributions of honest parties. We capture this in the following lemma. We
skip the proof here because it is very similar to the proof of Lemma 1.

Lemma 2. The event that any honest party generates a block in a given round
happens with probability p, over the random coins of that party’s TEE. This event
is independent of all other random coins in the protocol as well as adversarial
choices.

4 We also note that this change helps us to address the attacks in [19].

On Elapsed Time Consensus Protocols 571

5 Security of ET Consensus with Z-Test

Even though z-test is a powerful assumption, the adversary can still essentially
allocate their blocks however they want over the given time periods. In addi-
tion, the adversary can also create many different small forks or chains like a
“nothing at stake” attacker [14]. It is important to note that the z-test bounds
the behaviour of the adversary on each chain, not globally. Therefore, we use
a slightly modified honest majority assumption (where we require slightly more
honest parties) compared to bitcoin, and prove that honest parties are “stronger”
than the adversary on each valid chain.

To prove the desired security properties for ETztest, we assume cryptographic
security of the hash function and the signature scheme, and an honest majority
assumption (formally stated below).

Definition 5 (Honest Majority Assumption). Suppose n is the total num-
ber of parties, and out of them t parties are corrupted. Then we require that
t < (1 − δ)(n − t), where max

(
2f+ε+ε′−f2−fε

1+ε′ , 1+ε+2ε′−2ε′f−2εf
2(1+ε′)(1−f)

)
< δ ≤ 1,

ε ∈ (0, 1) and ε′ > 0.

We shall use the following boolean random variables for the proofs:

– HON≥1
i is defined to be 1 if at least one honest party creates a block at round

i and 0 otherwise.
– HON1

i is defined to be 1 if exactly one single honest party creates a block at
round i and 0 otherwise.

– ADVi,j is defined to be 1 if the jth dishonest party creates a block at round
i and 0 otherwise5. We also define, ADVi :=

∑
j ADVi,j .

– HONi,j is defined to be 1 if jth honest player successfully generated a block
at round i and 0 otherwise. We denote HON·,i(S) =

∑
r∈S HONr,i.

Below, we mention an inequality that we will use often.

f < p(n − t) <
f

1 − f
(2)

Note, the first inequality is a straight forward application of Bernoulli’s
inequality which says for real x > −1 and integer r ≥ 0 we have, (1+x)r > 1+rx.
The second inequality is another application of Bernoulli’s inequality after apply-
ing the following inequality (1 − p)−(n−t) > (1 + p)n−t.

5 The adversary actually has a choice to try to mine in a specific round or not. However,
without loss of generality we can consider an adversary who always tries to do so, as
the adversary is always free to discard a successfully mined block. This assumption
helps us in defining random variables ADVi,j in terms of pure probabilistic events.

572 M. Bowman et al.

5.1 Typical Execution

We slightly modify the definition of typical execution from the bitcoin backbone
work [28] and use here. More specifically, we do not impose any condition on
adversarial success, because without integrity of the trusted execution environ-
ment the adversary is free to generate as many valid blocks as it wants (although,
if they generate too many, they will be rejected by honest parties using the z-test
property).

Definition 6 (Typical Execution). An execution of rend rounds, is (ε, ε′, λ)-
typical, for some ε ∈ (0, 1), ε′ > 0, if for any set S of at least λ consecutive rounds
the following hold:

(a) (1 − ε)E[HON≥1(S)] < HON≥1(S) < (1 + ε)E[HON≥1(S)]
and (1 − ε)E[HON1(S)] < HON1(S)

(b) For all honest players i, HON·,i(S) < (1 + ε′)E[HON·,i(S)]

Theorem 1. An execution of rend rounds is (ε, ε′, λ)-typical with probability at
least 1 − rend(e−Ω(ε2λf) + (n − t)e−Ω(ε′2λp)).

Proof (Sketch). Note, there are (n− t) honest parties and for every honest party
i, we have E[HON·,i(S)] = p|S|. The theorem follows with a Chernoff bound. ��

Now, let us look at some more properties of a typical execution under z-test.
Later in this section, we are going to use those properties to analyze the chain
growth and chain quality properties.

Lemma 3. For any set S of at least λ consecutive rounds, the following prop-
erties hold in a typical execution where C is a chain adopted by an honest party.

(a) (1 − ε)f |S| < HON≥1(S) < (1 + ε)f |S|
(b) ADVC(S) < (1+ε′)t

(n−t)(1−f)(1−ε)HON≥1(S)
(c) 2ADVC(S) < HON1(S)
(d) ADVC(S) < (1 − f − ε)f |S|
Proof. Recall, E[HON≥1(S)] = f |S|. Hence, part (a) readily follows from defi-
nition of typical execution (Definition 6). The chain C got adopted by an honest
party, hence it passed the ‘z-test’ for all parties. As |S| ≥ λ, for all players
i ∈ [1, n] we have ZC(i, S) < (1 + ε′)p|S|. Hence,

ADVC(S) =
∑

i∈[1,n]
i is corrupted

ZC(i, S) < (1 + ε′)pt|S| <
(1 + ε′)tf

(n − t)(1 − f)
|S| (3)

The last inequality above uses inequality (2). Now we can prove part (b) by
applying HON≥1(S) lower bound from part (a). For part (c), from the definition
of typical execution we have,

HON1(S) > (1 − ε)E[HON1(S)]

= (1 − ε)(n − t)p(1 − p)n−t−1|S|
> (1 − ε)(n − t)p(1 − p)n−t|S|

On Elapsed Time Consensus Protocols 573

> (1 − ε)(n − t)p(1 − p(n − t))|S| By Bernoulli’s inequality

> (1 − ε)(n − t)p(1 − f

1 − f
)|S| By Inequality 2

=
(1 − ε)(1 − 2f)
(1 + ε′)(1 − f)

(n − t)
t

(1 + ε′)pt|S|

>
(1 − ε)(1 − 2f)
(1 + ε′)(1 − f)

(n − t)
t

ADVC(S) By Inequality 3

>
(1 − ε)(1 − 2f)

(1 + ε′)(1 − f)(1 − δ)
ADVC(S) Definition 5

From the honest majority assumption or Definition 5 we also have

1 + ε + 2ε′ − 2ε′f − 2εf

2(1 + ε′)(1 − f)
< δ < 1,

which in turn implies (1−ε)(1−2f)
(1+ε′)(1−f)(1−δ) > 2. This completes the proof of part (c).

For part (d), from Inequality (3) we have

ADVC(S) < (1 + ε′)pt|S|
< (1 + ε′)(1 − δ)p(n − t)|S| By Definition 5

< (1 + ε′)(1 − δ)
f

1 − f
|S| By Inequality (2)

=
(1 + ε′)(1 − δ)

(1 − f)(1 − f − ε)
(1 − f − ε)f |S|

From honest majority assumption we also have 2f+ε+ε′−f2−fε
1+ε′ < δ < 1, which

in turn implies (1+ε′)(1−δ)
(1−f)(1−f−ε) < 1. This completes the proof of part (d). ��

5.2 Chain Growth Properties

Now, we want to prove the chain growth property for ET consensus with z-
test. However, the property crucially depends upon the fact that in a typical
execution, honestly generated blocks never get rejected because of the ‘z-test’.
We note that this property is easy to achieve with what should be fairly typical
parameter settings: namely, with ε ≤ ε′.

Lemma 4. In a typical execution, let C1 and C2 be two chains which were
adopted by some honest parties. Suppose B1 and B2 are the k-th blocks of chains
C1 and C2 respectively. If id(B1) is an honest user and round(B1) is a uniquely
successful round, then either B1 = B2 or id(B2) is corrupted.

Proof. For contradiction, we assume B1
= B2 and id(B2) is honest. Security
of the signature scheme implies the blocks B1 and B2 are actually created by
id(B1) and id(B2). As, round(B1) is uniquely successful round and both id(B1)

574 M. Bowman et al.

and id(B2) are honest, we have round(B1)
= round(B2). Suppose, round(B1) <
round(B2); as both of the players are honest id(B2) must have received the chain
ending in B1 with length k on or before round(B2). This implies position of the
block B2 must be greater than k, which is a contradiction. The cryptographic
security of the hash function ensures an honest party creates a block at position
k and that adversarial players cannot insert that block at a different position. A
similar argument holds for the case round(B1) < round(B2). ��
Lemma 5 (Chain Growth Lemma). In a typical execution, suppose an hon-
est party has adopted a chain of length � at round r. Then, by round h > r, every

honest party has adopted a chain of length at least � +
h−1∑

i=r

HON≥1
i .

Proof. We prove the above theorem using induction on h ≥ r + 1.
Induction base: The protocol has moved only one round after round r, hence

h = r + 1. If at round r, an honest party has a chain of length �, every honest
party will adopt a chain of length at least � by round r + 1. Additionally, if
HON≥1

r = 0, the statement follows directly. If HON≥1
r = 1, the successful

honest party will broadcast a chain of length �+1 = �+HON≥1
r , and all honest

parties will adopt a chain of at least that length by round h = r + 1.
Inductive step: Let us assume that every honest party has adopted a chain

of length at least �′ = � +
h−2∑

i=r

HON≥1
i by round h − 1.

Now, two things could have happened on round h − 1:

1. HON≥1
h−1 = 0, in which case

h−1∑

i=r

HON≥1
i =

h−2∑

i=r

HON≥1
i . Hence, the state-

ment follows.
2. HON≥1

h−1 = 1, in that case a successful honest party will broadcast a chain of
length at least �′ +1 in round h− 1. By round s, all honest parties will adopt

a chain of length at least �′ + 1 = � +
h−2∑

i=r

HON≥1
i + 1 = � +

h−1∑

i=r

HON≥1
i .

��
Lemma 6 (Chain Growth Upper Bound). Suppose C is a chain adopted
by an honest party during a typical execution. For any k ≥ max(2λf, 4), let
Bm, Bm+1, · · · , Bm+k−1 be k consecutive blocks of the chain C. Then, we have

|[round(Bm), round(Bm+k−1)]| ≥ k

2f
.

Proof. Suppose S′ = [round(Bm), round(Bm+k−1)]. For contradiction let us
assume |S′| < k

2f . Consider the set S of consecutive rounds such that S ⊇ S′

and |S| = � k
2f �. Security of the signature scheme along with the fact chain C

has been adopted by an honest party ensures HON≥1(S′) + ADVC(S′) ≥ k. As

On Elapsed Time Consensus Protocols 575

S′ ⊆ S, this in turn implies HON≥1(S) + ADVC(S) ≥ k. As, |S| ≥ λ, we can
apply Lemma 3 and it implies the following.

HON≥1(S) + ADVC(S)
< (1 + ε)f |S| + (1 − f − ε)f |S|
< (2 − f)f |S|
< (2 − f)f(

k

2f
+ 1) Since |S| = � k

2f
� <

k

2f
+ 1

≤ k − kf

2
+ 2f − f2 < k + f(1 − k/4) < k. Since k ≥ 4

This shows we have a contradiction. ��
Lemma 6 provides us an upper limit on the rate of chain growth. It says that

at least k
2f rounds are required for a valid chain to grow by k blocks. Additionally,

note that, for f > 0.5 the number of rounds to generate k blocks becomes less
than k, which is not possible because multiple blocks in the same round will only
increase forks, not the chain length. That necessarily means any f > 0.5 will not
improve the chain growth, instead only increase the fork rate. That is why we
should always consider f ≤ 0.5.

A corollary to chain growth lemma(Lemma 5), Lemma 3 and Lemma 6 is
the following theorem.

Theorem 2 (chain-growth). In a typical execution, the chain growth property
holds with parameters τ = (1 − ε)f , σ = 2f and rg > λ.

The above theorem provides an upper bound as well as a lower bound on the
total number of blocks added to a chain C given a sequence of rounds S with
a length s > rg. For s rounds, the number of blocks x added to the chain C is
upper bounded by σs and lower bounded by τs.

5.3 Common Prefix Property

Here we prove that honest parties eventually agree on a common chain in our
ET consensus with z-test protocol. The main difference from bitcoin backbone
analysis [28] is the following: In bitcoin, the total number of blocks an adversary
can produce is bounded (with some probability, of course). However, in our ET
consensus with z-test protocol, the z-test only allows us to bound the number
of blocks per chain. So an adversary could create a theoretically infinite number
of chains and generate blocks on all of them. It turns out, though, that this per-
chain restriction is actually pretty strong. Below we present the formal proof.

Lemma 7 (Common Prefix Lemma). In a typical execution, for two chains
C1 and C2 with len(C2) ≥ len(C1), if C1 is adopted by an honest party at round
r, and C2 is either adopted by an honest party or broadcasted by an honest party
at round r, then C�k

1 	 C2 and C�k
2 	 C1, for all k ≥ max(2λf, 4).

576 M. Bowman et al.

Proof. Let us assume, for contradiction, there exists a k > 2λf such that C�k
1
	

C2 or C�k
2
	 C1. Suppose, B∗ be the last block on the common prefix of C1 and

C2 such that id(B∗) is honest. Let us denote round(B∗) = r∗. Note, B∗ can be
genesis block, in which case r∗ = 0.

Now, we define S = {i : r∗ < i < r}. Suppose, Bm, Bm+1, · · · , Bm+k′−1 are
k′ consecutive blocks of the chain C1, where Bm is the next block after B∗ and
Bm+k′−1 is the last block of C1. Clearly, k′ ≥ k ≥ max(2λf, 4) and we can apply
Lemma 6. This implies, |[round(Bm), round(Bm+k′−1)]| ≥ k′

2f ≥ λ. We also
know, S ⊇ [round(Bm), round(Bm+k′−1)]. Hence, |S| ≥ λ (i.e., the execution
during S is a typical execution with overwhelming probability) and Lemma 3
applies for the set of rounds S.

For a uniquely successful round u ∈ S, let ju be the position at which the
uniquely successful honest party created the block. J be the set of positions at
which honest parties created the blocks on uniquely successful rounds. J = {ju :
u ∈ S,HON1

u = 1}. Suppose the maximum value of the set J is max(J). Then,
len(C1) ≥ max(J), since C1 is adopted by an honest party at round r, by which
the honest party has already received a chain of length max(J).

Since, len(C2) ≥ len(C1), jth block exists in both the chains C1 and C2 for
all j ∈ J . We denote such blocks by B1,j and B2,j respectively. Now, we want
to claim for all j ∈ J at least one of the players between id(B1,j) and id(B1,j)
is corrupted. By Lemma 4, if both id(B1,j) and id(B1,j) are honest then we
must have B1,j = B2,j . Cryptographic strength (collision resistance) of the hash
function implies Bj = B1,j = B2,j belongs to the common prefix of chains C1

and C2. However, we also know round(Bj) > round(B∗) and B∗ is the last block
in the common prefix such that id(B∗) is honest. This implies a contradiction.

Now, we have established the fact that for all j ∈ J at least one of the players
between id(B1,j) and id(B2,j) is corrupted. Hence, total number of blocks B
such that id(B) is corrupted, B ∈ C1 ∪C2 and round(B) ∈ S must be more than
or equal to size of set J . Hence,

ADVC1(S) + ADVC2(S) ≥ |{B : B ∈ C1 ∪ C2 and round(B) ∈ S}|
≥ |J | = HON1(S).

However, for a typical execution with |S| ≥ λ, by Lemma 3 we have

ADVC1(S), ADVC2(S) <
HON1(S)

2
.

Hence, contradiction. Therefore, we can say that for all k > 2λf , it holds that
C�k
1 	 C2 and C�k

2 	 C1. ��

Intuitively, if C�k
1
	 C2 or C�k

2
	 C1, the number of adversarial blocks for
both the chains combined is more than the total number of honest blocks, for
the parts of the chains where they don’t have a common honest block. And that
is not possible for a typical execution, because the number of adversarial blocks
for a chain C during a sequence of rounds S is limited by ADVC(S) < HON1(S)

2 .

On Elapsed Time Consensus Protocols 577

Common Prefix Lemma shows that the honest parties eventually agree on
a common chain. Once a transaction is included in a block B, the transaction
becomes irreversible once honest parties have mined enough number of blocks
extending after B. The common prefix lemma directly implies the following
security theorem about the common prefix property.

Theorem 3 (Common Prefix). In a typical execution the common prefix
property holds with parameter �cf ≥ max(2λf, 4).

5.4 Chain Quality Property

Now we want to prove the property that at least a constant fraction of blocks
are added by honest parties in a chain C that is adopted by an honest party.
That eventually ensures, because of common prefix property, that the common
chain agreed on by the honest parties has at least a constant fraction of honest
blocks.

Theorem 4 (Chain Quality). In a typical execution, the chain quality prop-
erty holds with parameters �q ≥ max(2λf, 4) and μ = 1− (1+ε′)t

(n−t)(1−f)(1−ε) for any
chain adopted by any honest party.

Proof. Let us consider a chain C, which has been adopted by an honest party
P at round r, such that len(C) > �q. Suppose C consists of sequence of blocks
(B1, B2, . . . , Blen(C)) and (Bu, Bu+1, . . . , Bu+�q−1) is an arbitrary �q length sub-
sequence of C, such that �q ≥ max(2λf, 4).

Let (Bu′ , Bu′+1 . . . , Bu′+L−1) be the shortest subsequence of C containing
(Bu, Bu+1, . . . , Bu+�q−1) (i.e. u′ ≤ u and L ≥ �q) such that:

1. id(Bu′) is honest
2. there exists an honest party which adopted the chain (B1, B2, . . . , Bu′+L−1)

Observe that B1 is genesis block and id(B1) is honest by definition. We know
that an honest party P adopted the chain C and len(C) > �q. Hence, the whole
chain C trivially satisfies the above properties, except it might not the shortest
one. This shows existence of the shortest subsequence Bu′ , Bu′+1 . . . , Bu′+L−1.
Suppose, r1 = round(Bu′) and the earliest round at which the chain (B1, B2,
. . . , Bu′+L−1) got adopted by an honest party is r2. Let S be the sequence of
rounds defined as S = {r : r1 ≤ r < r2}. Observe that

S ⊇ [round(Bu′), round(Bu′+L−1)] ⊇ [round(Bu), round(Bu+�q−1)].

Hence, by Lemma 6, we have |S| ≥ �q/2f ≥ λ and the properties of typical
execution are applicable (Lemma 3) for the set of rounds S.

Let x be the number of honest blocks in the �q length sequence. In other
words x = |{B ∈ (Bu, Bu+1, . . . , Bu+�q−1)|id(B) is honest}|. For contradiction,
we assume the chain quality property does not hold for this �q length sequence
of blocks (Bu, Bu+1, . . . , Bu+�q−1). Hence, x < μ�q ≤ μL.

578 M. Bowman et al.

As the chain (B1, B2, . . . , Bu′+L−1) got adopted by an honest party in round
r2; for all i ∈ [u′, u′ + L − 1] we have round(Bi) ∈ S. As [u, u + �q − 1] ⊆
[u′, u′ + L − 1], from our contradiction assumption we have

ADVC(S) ≥ |{B ∈ (Bu, Bu+1, . . . , Bu+�q−1)|id(B) is corrupted}|
= L − x > (1 − μ)L

(4)

Now, Lemma 5 implies u′ + L − 1 ≥ u′ + HON≥1(S) or equivalently L >
HON≥1(S). Hence inequality (4) can be rewritten as ADVC(S) > (1 −
μ)HON≥1(S). As we have seen before, |S| ≥ λ. Hence, by Lemma 3

(1 − μ)HON≥1(S) =
(1 + ε′)t

(n − t)(1 − f)(1 − ε)
HON≥1(S) > ADVC(S)

Therefore we have our desired contradiction ADVC(S) > ADVC(S). ��
The chain quality property guarantees that there will be at least μ�q honest

blocks given a chain of length �q. For example, when 20% of the miners are
dishonest, ε′ = ε = 0.2, and f = 0.2, we have μ = 0.53—which means at least
53% blocks in the chain are honest. We refer to Table 2 for more examples.

6 Discussion and Practical Application

6.1 Parameter Choices

We want to set the z-test parameter ε′ in such a way that an honest block
is excluded from a chain only with negligible probability. We therefore recom-
mend setting ε = ε′. In Table 2 we show some examples with possible values of
ε, f, δ and how the parameters τ, σ, �cf , μ corresponding to the security proper-
ties(namely, chain growth, common prefix and chain quality) vary. Table 2 shows
that we can vary (f + ε) up to 1, when δ = 1 (which means all the protocol par-
ties are honest). For ε = 0.2 and f = 0.2, δ can be as low as 0.75, which means
the protocol can tolerate up to 20% dishonest protocol parties. For small values
of ε and f , ET consensus with z-test can tolerate up to 33% dishonest parties.

6.2 Implications of z-Test Security

In addition to lending evidence to support that the actual PoET protocol (and
other similar protocols like proof of luck) is resilient to the compromise of some
TEEs, we show a pretty surprising fact: basic proof of work consensus with a
z-test but no actual proofs of work, just “promises” from users still remains
secure with an honest majority assumption! Table 3 shows that our ET protocol
without TEEs is not terribly worse (in terms of security) than ET consensus
with trusted timer (and, similarly, bitcoin in the bitcoin backbone protocol).

While these numbers are not incredibly tight, the δ factors indicate that our
proofs hold even when the number of adversarial parties is a (relatively large)

On Elapsed Time Consensus Protocols 579

Table 2. How the security property parameters (τ, σ, rg, �cf , �q, μ) of ET consensus
with z-test corresponding to chain growth, common prefix and chain quality properties
vary based on the protocol parameters δ, ε, f, λ. The first column presents the values of
ε and f defined in the honest majority assumption, the second column the minimum
δ (accurate up to two decimal places) to satisfy the honest majority assumption; the
third, fourth, fifth, sixth, seventh, and eighth columns are τ , σ, rg, �cf , �q and μ
respectively as described in Sect. 5. For all the cases, we use ε′ = ε, and λ � 4. Note
that f in our case is actually derived from p, however, to be comparable with similar
works [7,28,29] we use f in the table.

Protocol parameters δ τ σ rg �cf �q μ

ε = 0.05, f = 0.05 0.58 0.0475 0.1 λ 0.1λ 0.1λ 0.51

ε = 0.1, f = 0.1 0.64 0.09 0.2 λ 0.2λ 0.2λ 0.51

ε = 0.2, f = 0.2 0.75 0.16 0.4 λ 0.4λ 0.4λ 0.53

ε = 0.3, f = 0.3 0.85 0.21 0.6 λ 0.6λ 0.6λ 0.60

ε = 0.4, f = 0.3 0.88 0.18 0.6 λ 0.6λ 0.6λ 0.6

ε = 0.4, f = 0.4 0.93 0.24 0.8 λ 0.8λ 0.8λ 0.72

ε = 0.5, f = 0.4 0.95 0.2 0.8 λ 0.8λ 0.8λ 0.65

ε = 0.6, f = 0.4 0.96 0.16 0.8 λ 0.8λ 0.8λ 0.73

ε = 0.5, f = 0.5 1 0.25 1 λ λ λ 1

Table 3. Relationship between f and minimum δ in ET consensus with trusted timer,
ET consensus with z-test. The f and the corresponding minimum δ values are exactly
same for Bitcoin consensus and ET with trusted timer, and therefore, we do not include
a separate column for Bitcoin in the table.

f ET with trusted timer δmin ET with z-test δmin

0.05 0.3 0.58

0.1 0.6 0.64

constant fraction (up to 33%) of the total number of players. This indicates that
current TEE-based consensus systems like PoET that are used “in the wild” are,
at least in theory, secure, although we would need to change the z-test in PoET
in order for our proofs to apply.

Although the security proofs of ET consensus with z-test hold without any
TEE assumptions, as long as the honest majority assumption holds, we recom-
mend using the protocol in combination with TEE (e.g., Intel SGX) to ensure
only a small number of malicious participants.

6.3 Performance Improvement

Even though, in our protocol description, we make ETztest wait on the TEE
to generate a block, the security analysis does not depend on that. And there-
fore, a player can just query the WaitT ime and WaitCert from the TEE, and

580 M. Bowman et al.

still, all the security properties will hold. This can be very useful in practice,
because if each round is small enough querying the TEE every round can be
really inefficient.

6.4 Applications of Our Results

In [28], the authors show that the bitcoin backbone protocol almost immediately
implies a Byzantine fault tolerant consensus protocol and a public ledger. The
same results apply to our protocols, so we omit the full proofs and descriptions
here. An inquisitive reader can refer to Sects. 5 and 6 of [28].

Acknowledgment. We thank the anonymous reviewers for their helpful comments.
We thank Dan Middleton for the useful discussions.

Appendix: Security of ET Consensus with Trusted Timer

Assuming that the hash function and the signature scheme are cryptographically
secure through our Cert () functionality, and assuming integrity of the TEE, we
can prove that the security properties of our ET consensus protocol with trusted
timer are exactly same as that of Bitcoin. This fact is a direct implication of
Lemma 1, and the security proofs are extremely similar to that of Bitcoin. Here
we skip the proofs and present the key security properties.

All of the security guarantees hold if there are enough honest parties in the
system, where the exact amount that is “enough” depends on other parameters
of the system. Below, we formally state the honest majority assumption.

Definition 7 (Honest Majority Assumption). Suppose n is the total num-
ber of parties, and out of them t parties are corrupted. If δ is the advantage of
honest parties, then we require that t < (1 − δ)(n − t), where 3f + 3ε < δ ≤ 1,
where ε is a positive fraction (used in various concentration bounds) and f is the
probability that at least one honest party creates a block at a given round.

For a security parameter λ, total number of parties n ∈ poly(λ), and with
the above honest majority assumption the following security theorems can be
derived about our ET consensus protocol with trusted timer.

Theorem 5 (chain-growth). The chain growth property holds with parame-
ters τ = (1 − ε)f , σ = 2f and rg > λ with overwhelming probability.

Theorem 6 (Common Prefix). The common prefix property holds with
parameter �cf ≥ max(2λf, 4) with overwhelming probability.

Theorem 7 (Chain Quality). With overwhelming probability the chain qual-
ity property holds with parameters �q ≥ max(2λf, 4) and μ = 1 − (1 + δ

2) t
n−t −

ε
1−ε > 1 − (1 + δ

2) t
n−t − δ

2 for any chain adopted by any honest party.

On Elapsed Time Consensus Protocols 581

References

1. Bitcoin energy consumption index. https://digiconomist.net/bitcoin-energy-
consumption

2. Introduction to hyperledger sawtooth. https://sawtooth.hyperledger.org/docs/
core/releases/latest/introduction.html

3. Poet 1.0 specification. https://sawtooth.hyperledger.org/docs/core/releases/1.0/
architecture/poet.html

4. Trusted time and monotonic counters with intel software guard extensions
platform services. https://software.intel.com/sites/default/files/managed/1b/a2/
Intel-SGX-Platform-Services.pdf

5. Andreina, S., Bohli, J.-M., Karame, G.O., Li, W., Marson, G.A.: Pots - a secure
proof of tee-stake for permissionless blockchains. Cryptology ePrint Archive,
Report 2018/1135 (2018). https://eprint.iacr.org/2018/1135

6. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, p.
30. ACM (2018)

7. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

8. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

9. Benet, J., Greco, N.: Filecoin: a decentralized storage network. Protocol Labs
(2018)

10. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:
Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4 10

11. Bessani, A., Sousa, J., Alchieri, E.E.: State machine replication for the masses
with BFT-SMART. In: 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 355–362. IEEE (2014)

12. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

13. Bowman, M., Das, D., Mandal, A., Montgomery, H.: On elapsed time consensus
protocols. https://eprint.iacr.org/2021/086.pdf

14. Brown-Cohen, J., Narayanan, A., Psomas, C.-A., Weinberg, S.M.: Formal barriers
to longest-chain proof-of-stake protocols. CoRR, abs/1809.06528 (2018)

15. Buterin, V., Griffith, V.: Casper the friendly finality gadget. CoRR, abs/1710.09437
(2017)

16. Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on
Distributed Cryptocurrencies and Consensus Ledgers, vol. 310 (2016)

17. Cachin, C., Vukolić, M.: Blockchains consensus protocols in the wild. arXiv preprint
arXiv:1707.01873 (2017)

18. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI, vol.
99, pp. 173–186 (1999)

https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://eprint.iacr.org/2018/1135
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-319-96884-1_25
https://eprint.iacr.org/2021/086.pdf
http://arxiv.org/abs/1707.01873

582 M. Bowman et al.

19. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: On security analysis of proof-
of-elapsed-time (PoET). In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol.
10616, pp. 282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69084-1 19

20. Cohen, B., Pietrzak, K.: The chia network blockchain (2019)
21. Corso, A.: Performance analysis of proof-of-elapsed-time (poet) consensus in the

sawtooth blockchain framework (2019)
22. Daian, P., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. Technical

report, Cryptology ePrint Archive, Report 2016/919, 2016 (2016)
23. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.-C., Lin, Q., Ooi, B.C.: Towards

scaling blockchain systems via sharding. In: Proceedings of the 2019 International
Conference on Management of Data, pp. 123–140 (2019)

24. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

25. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
J. ACM 32(1), 191–204 (1985)

26. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 29

27. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-ng: a scalable
blockchain protocol. In: NSDI, pp. 45–59 (2016)

28. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

29. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

30. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3–16. ACM (2016)

31. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

32. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 40th IEEE
Symposium on Security and Privacy (S&P 2019) (2019)

33. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing. In:
25th USENIX Security Symposium (USENIX Security 2016), pp. 279–296 (2016)

34. Koruyeh, E.M., Khasawneh, K.N., Song, C., Abu-Ghazaleh, N.: Spectre returns!
Speculation attacks using the return stack buffer. In: 12th USENIX Workshop on
Offensive Technologies (WOOT 2018) (2018)

35. Kwon, J.: Tendermint: consensus without mining. Draft v. 0.6, fall (2014)
36. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th

USENIX Security Symposium (USENIX Security 2018), pp. 973–990 (2018)

https://doi.org/10.1007/978-3-319-69084-1_19
https://doi.org/10.1007/978-3-319-69084-1_19
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12

On Elapsed Time Consensus Protocols 583

37. Liu, J., Li, W., Karame, G.O., Asokan, N.: Scalable byzantine consensus via
hardware-assisted secret sharing. IEEE Trans. Comput. 68(1), 139–151 (2019)

38. Madison, J.: Federalist no. 51. The Federalist Papers (1788)
39. Mazieres, D.: The stellar consensus protocol: a federated model for internet-level

consensus. Stellar Development Foundation (2015)
40. Milutinovic, M., He, W., Wu, H., Kanwal, M.: Proof of luck: an efficient blockchain

consensus protocol. In: Proceedings of the 1st Workshop on System Software for
Trusted Execution, p. 2. ACM (2016)

41. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. http://bitcoin.org/
bitcoin.pdf

42. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

43. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, pp. 315–324. ACM (2017)

44. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

45. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 1

46. Santos Veronese, G., Correia, M., Neves Bessani, A., Lung, L.C., Verissimo, P.:
Efficient Byzantine fault-tolerance. IEEE Trans. Comput. 62, 16–30 (2013)

47. Shi, Z., Zhou, H., Hu, Y., Jayachander, S., de Laat, C., Zhao, Z.: Operating permis-
sioned blockchain in clouds: a performance study of hyperledger sawtooth. In: 2019
18th International Symposium on Parallel and Distributed Computing (ISPDC),
pp. 50–57. IEEE (2019)

48. Tamer Özsu, M., Valduriez, P.: Correction to: principles of distributed database
systems. In: Principles of Distributed Database Systems, pp. C1–C2. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-26253-2 13

49. Van Bulck, J., et al.: Foreshadow: extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In: 25th USENIX Security Symposium
(USENIX Security 2016), pp. 991–1008 (2018)

50. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-
cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4 9

51. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT con-
sensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, pp. 347–356. ACM (2019)

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1007/978-3-030-26253-2_13
https://doi.org/10.1007/978-3-319-39028-4_9

	On Elapsed Time Consensus Protocols
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Elapsed Time Backbone Model
	2.1 Notations
	2.2 Model and Structure
	2.3 Abstractions
	2.4 Blockchain Properties

	3 Elapsed Time Consensus Protocol with Trusted Timer
	4 ET Consensus with Z-Test
	4.1 Our ET Consensus Protocol with z-Test
	4.2 Modification in the Protocol with Z-Test

	5 Security of ET Consensus with Z-Test
	5.1 Typical Execution
	5.2 Chain Growth Properties
	5.3 Common Prefix Property
	5.4 Chain Quality Property

	6 Discussion and Practical Application
	6.1 Parameter Choices
	6.2 Implications of z-Test Security
	6.3 Performance Improvement
	6.4 Applications of Our Results

	References

