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Preface

It is with great pleasure that we present the proceedings of the 22nd International
Conference on Cryptology (INDOCRYPT 2021) held in Jaipur, India, during
December 12–15, 2021, as a hybrid conference.

INDOCRYPT is an international cryptography conference held every year in
December, under the aegis of the Cryptology Research Society of India (CRSI). In the
two decades since the inaugural edition in 2000, INDOCRYPT has established itself as
a reputable international venue for publishing cryptology research, as well as a valuable
resource for promoting research in India. It is currently organized in cooperation with
the International Association for Cryptologic Research (IACR).

This year’s conference was organized by a team centered at the LNM Institute
of Information Technology (LNMIIT), Jaipur, India, in association with R C Bose
Center for Cryptology and Security and The Chatterjee Group Centres for Research and
Education in Science andTechnology (TCGCREST), Kolkata, India. Due to the ongoing
COVID-19 pandemic, the conference was organized as a hybrid event to facilitate global
participation. Past editions of INDOCRYPTwere held in various cities in India: Kolkata
(2000, 2006, 2012, 2016), Chennai (2001, 2004, 2007, 2011, 2017), Hyderabad (2002,
2010, 2019), New Delhi (2003, 2009, 2014, 2018), Bangalore (2005, 2015), Kharagpur
(2008), and Mumbai (2013). INDOCRYPT 2020 was organized virtually.

The Program Committee (PC) for INDOCRYPT 2021 consisted of 71 experts from
around the world. About 56% of the PC (including two of the chairs) was based in
Europe, 24% in India (including one chair), and the rest from other countries, including
Australia, Canada, China, Singapore, and the USA.

The conference attracted 66 submissions. Of these, one paper was rejected by the PC
chairs for notmeeting the submission guidelines. The remaining 65 paperswere reviewed
by the PC, with the help of 29 external reviewers and using the HotCRP conference
management system. All papers received between three and five independent reviews in
a double-blind reviewing process. We take this opportunity to thank all the PC members
and the external reviewers for an outstanding job! Despite the short review period, on the
whole, the reviews were rigorous and detailed. In a handful of submissions, the reviews
uncovered subtle errors; at the discretion of the PC, the authors were given a chance
to respond. At the end of the review phase, 27 papers were selected for publication in
these proceedings, seven of which went through a shepherding process to ensure that
various concerns raised by the reviewers were addressed before publication. As usual,
the final uploaded versions were not reviewed by the PC, and the authors bear the full
responsibility for their contents.

The 66 submissions received involved 199 authors from 25 countries. Among the
accepted papers, European authors had a share of about 30%, North American authors
about 13%, Indian authors about 32%, and authors from the rest of Asia about 25%;
the top five countries contributing to this list were India (32%), USA (12%), Germany,
Japan, and China (9% each).
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The program also included three invited talks by Karthik Bhargavan (Inria Paris,
France), María Naya-Plasencia (Inria Paris, France), and Adi Shamir (Weizmann
Institute of Science, Israel), a tutorial by Daniel J Bernstein (University of Illinois at
Chicago, United States and Ruhr University Bochum, Germany), and a rump session to
announce new results and works in progress.

We would like to thank CRSI for entrusting us with putting together the program for
INDOCRYPT 2021. Thanks to the authors of all the submissions, and the contribution
of the entire PC and the external reviewers, we have ended up with a rich and exciting
program. We would also like to acknowledge the major contribution of the organizers,
headed by the General Chair Ravi Prakash Gorthi of LNMIIT Jaipur, India. In particular,
we thank the Organizing Chair, Jayaprakash Kar of LNMIIT Jaipur, India, and his
efficient team for helping us in a range of tasks, including putting together the conference
webpage with all the relevant information and instructions for the authors. We are thank-
ful toMicrosoft, Google, DRDO, the RCBose Center for Cryptology and Security, TCG
CREST and NTRO for providing us the financial support. We also thank Springer for
continuing to support INDOCRYPT by publishing the proceedings as part of the LNCS
series. Finally, we thank all the participants in the conference, including the authors of
all the submissions, the attendees, and the presenters, for their enthusiastic participation.
We hope you enjoyed INDOCRYPT 2021 and find these proceedings to be valuable and
enjoyable!

December 2021 Avishek Adhikari
Ralf Küsters
Bart Preneel
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High-Assurance High-Performance Cryptographic
Software

Karthikeyan Bhargavan

Inria Paris, France
karthikeyan.bhargavan@inria.fr

Every year, many new cryptographic algorithms, constructions, and protocols are
proposed, standardized, and deployed across a variety of platforms. However,
implementing these cryptographic mechanisms remains a challenging and error-prone
task, typically entrusted to a few specialists who understand both the subtleties of
cryptographic design and the intricacies of the target hardware architectures. The result-
ing code is comprehensively tested, fuzzed, and subject to manual reviews and audits by
experts both before and after deployment. Despite all these measures, however, bugs in
cryptographic software are regularly uncovered, often resulting in embarassing attacks.

In this talk, we will show how formal verification can be used to bring higher assur-
ance to cryptographic software development [1]. In particular, we will examine the
HACL* verified cryptographic library, which implements a full suite of modern crypto
algorithms and is used by mainstream software like the Mozilla Firefox web browser,
the WireGuard VPN, the Tezos blockchain, and the ElectionGuard voting software.

We will discuss the verification and compilation methodology used by HACL*
to generate portable C code for each cryptographic algorithm [5]. We will see how
this methodology can be extended to generate verified C code optimized for single-
instruction-multiple-data (SIMD) architectures [3]. We will also show how verified C
code from HACL* can be safely composed with verified assembly code for improved
performance [4]. By combining these techniques, the verified code in HACL* is as fast
as (and sometimes faster than) the unverified hand-optimized C and assembly code in
mainstream cryptographic libraries.

Despite its critical importance, the cryptographic library is only one component in
a cryptographic software stack that typically also includes communication protocols,
key management, and application code. We will conclude by discussing how the formal
verification guarantees of the HACL* cryptographic library can be combined with sym-
bolic protocol analysis to build provably secure implementations of modern real-world
cryptographic protocols like TLS 1.3, Signal, and ACME [2].

References
1. Barbosa, M., et al.: SoK: computer-aided cryptography. In: IEEE Symposium on Security and
Privacy (S&P), pp. 777–795 (2021)

2. Bhargavan, K., et al.: DY*: a modular symbolic verification framework for executable
cryptographic protocol code. In: IEEE European Symposium on Security and Privacy
(EuroS&P) (2021)
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3. Polubelova,M., et al.: HACLxN: verified generic SIMDcrypto (for all your favourite platforms).
In: ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 899–
918 (2020)

4. Protzenko, J., et al.: EverCrypt: a fast, verified, cross-platform cryptographic provider. In: IEEE
Symposium on Security and Privacy (S&P), pp. 983–1002 (2020)

5. Zinzindohoué, J., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a verified mod-
ern cryptographic library. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS), pp. 1789–1806 (2017)



Quantum Safe Symmetric Cryptography

María Naya-Plasencia

Inria Paris, France
maria.naya_plasencia@inria.fr

During this talk we will introduce the context and summarize the state-of-the-art of the main
quantum symmetric cryptanalysis results, providing the details of some particularly interesting
cases. We will also present the scenario of some related open problems that are yet to be solved
or improved.



A New Theory of Adversarial Examples in Machine
Learning

Adi Shamir

Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

The extreme fragility of deep neural networks when presented with tiny perturbations in their
inputs was independently discovered by several research groups in 2013. Due to their mysterious
properties and major security implications, these adversarial examples had been studied exten-
sively over the last eight years, but in spite of enormous effort they remained a baffling phenomenon
with no clear explanation. In particular, it was not clear why a tiny distance away from almost
any cat image there are images which are recognized with a very high level of confidence as cars,
planes, frogs, horses, or any other desired class, why the adversarial modification which turns a
cat into a car does not look like a car at all, and why a network which was adversarially trained
with randomly permuted labels (so that it never saw any image which looks like a cat being called
a cat) still recognizes most cat images as cats. The goal of this talk is to introduce a new theory
of adversarial examples, which we call the Dimpled Manifold Model. It can easily explain in a
simple and intuitive way why they exist and why they have all the bizarre properties mentioned
above. In addition, it sheds new light on broader issues in machine learning such as what happens
to deep neural networks during regular and during adversarial training. Experimental support for
this theory, obtained jointly with Odelia Melamed and Oriel BenShmuel, will be presented and
discussed in the last part of the talk.
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Revisiting the Security of COMET
Authenticated Encryption Scheme

Shay Gueron1,2, Ashwin Jha3, and Mridul Nandi4(B)

1 University of Haifa, Haifa, Israel
2 Amazon Web Services, Seattle, USA

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
ashwin.jha@cispa.de

4 Indian Statistical Institute, Kolkata, India

Abstract. COMETv1, by Gueron, Jha and Nandi, is a mode of oper-
ation for nonce-based authenticated encryption with associated data
functionality. It was one of the second round candidates in the ongo-
ing NIST Lightweight Cryptography Standardization Process. In this
paper, we study a generalized version of COMETv1, that we call
gCOMET, from provable security perspective. First, we present a com-
prehensive and complete security proof for gCOMET in the ideal cipher
model. Second, we view COMET, the underlying mode of operation
in COMETv1, as an instantiation of gCOMET, and derive its concrete
security bounds. Finally, we propose another instantiation of gCOMET,
dubbed COMETv2, and show that this version achieves better security
guarantees as well as memory-efficient implementations as compared to
COMETv1.

Keywords: COMET · ICM · Provable security · Rekeying ·
Lightweight · AEAD

1 Introduction

Lightweight cryptography has seen a sudden surge in demand due to the recent
advancements in the field of Internet of things (IoT). The NIST lightweight
cryptography standardization project [1], henceforth referred as the NIST LwC
project, intends to address this demand by standardizing lightweight authenti-
cated encryption (AE) and cryptographic hash schemes.

The first round of NIST LwC project had 56 candidates, of which 32 were
selected to continue to second round. Among these 32 candidates around 15
schemes were based on (tweakable) block ciphers. In this paper we focus on one
particular block cipher based candidate, called COMET [2] by Gueron et al.,
that uses nonce and position based re-keying and a COFB [3] or Beetle [4] like
feedback operation.

COMET can be viewed as an ideal cipher based alternative for Beetle [4] and
COFB [3]. Indeed, the designers state that the mode of operation can be viewed
c© Springer Nature Switzerland AG 2021
A. Adhikari et al. (Eds.): INDOCRYPT 2021, LNCS 13143, pp. 3–25, 2021.
https://doi.org/10.1007/978-3-030-92518-5_1
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as a mixture of CTR [5] and Beetle. COMET is parameterized by the block size of
the underlying block cipher. Accordingly, COMET-n means COMET with block
size n. It has two versions, one with n = κ, and the other with n = κ/2, where κ
denotes the key size of the block cipher. The concrete submissions using COMET
mode are based on AES-128/128 [6], Speck-64/128 [7,8], CHAM-128/128 [9], and
CHAM-64/128 [9]. Some of the standout features of COMET are as follows:

1. Design Simplicity: The design of COMET is extremely simple. Apart from
the block cipher evaluations, it only requires simple shift and XOR operations.

2. Small State Size: Theoretically, COMET requires only (n + κ)-bit internal
state, which makes it one of the smallest AEAD candidate in the ongoing
NIST LwC project.

3. Efficiency: COMET is single-pass, which makes it quite efficient in both
hardware and software. Apart from the block cipher call, only 1 shift and at
most 2 XOR operations are required per block of input. This places COMET
among the fastest candidates in the ongoing NIST LwC project. In fact,
according to the publicly available software implementation and benchmark-
ing by Weatherley [10], COMET outperforms all other candidates by a signif-
icant margin.

1.1 Motivations and Related Works

In this paper, we concentrate on the provable security of the COMET mode of
operation. The designers made the following claims with respect to the security
of COMET:

– COMET-128 is secure while the data complexity, denoted D, is at most 264

bytes, and the time complexity, denoted T , is at most 2119.
– COMET-64 is secure while D < 245 bytes, and T < 2112.

Note that, the designers make a better claim with respect to the privacy of
COMET-64. However, for the sake of uniformity, we mention the more conser-
vative bound claimed for the integrity of COMET-64. In [11], Khairallah pre-
sented the first cryptanalytic work on COMET. Later, as noted by the designers
[12], Bernstein, Henri and Turan [13] shared two observations on the security
of COMET-64. While these works do not invalidate the security claims due to a
breach in the data complexity limit, they do demonstrate a possible tightness of
the security claims. Shortly after Khairallah’s work, at NIST Lightweight Cryp-
tography Workshop 2019, the designers presented a brief sketch of the security
proof [12] for COMET-128. However, their proof approach was not applicable to
COMET-64. In this paper, we aim to give a comprehensive proof of security for
the COMET mode of operation.

1.2 Our Contributions

Our contributions are twofold:

1. We propose a generalization of COMET, dubbed as gCOMET (see Sect. 3).
We intend to employ the recently introduced proof strategy of Chakraborty
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Table 1. Summary of security bounds for COMET and COMETv2 as per the results
in this paper.

Submissions Data (D) Time (T ) Data-Time (DT ) Trade-off

COMET-128 263 bytes 2125.19 2184.24

COMET-64 242 bytes 2112 2152.24

COMETv2-128 264 bytes 2125.19 2184.24

COMETv2-64 263 bytes 2121.58 2152.24

et al. [14] to prove the security of gCOMET. Consequently, in Sect. 4 and 5,
we extend the tools and results used in [14]. We give a detailed security proof
for gCOMET in Sect. 6.

2. We view COMET as an instance of gCOMET and obtain concrete security
bounds for both versions of COMET. Specifically, we show that

– COMET-128 is secure while: D < 263 bytes and T < 2125.19 and DT <
2184.24.

– COMET-64 is secure while: D < 242 bytes and T < 2112 and DT < 2152.24.
Further, we observe that two simple changes in the design of COMET,
improves the performance and increases the security (by avoiding the attacks
in [11,13]). We call this new version, COMETv2. In terms of security, we show
that

– COMETv2-128 is secure while: D < 264 bytes and T < 2125.19 and DT <
2184.24.

– COMETv2-64 is secure while: D < 263 bytes and T < 2121.58 and DT <
2152.24.

We summarize the concrete security bounds for different variants of COMET
and COMETv2 in Table 1. Our security bounds validate the security claims
for COMET-128, as given in [2]. For COMET-64, our bounds are slightly lower
than the ones claimed by the designers. However, we note that we could not
find any matching attacks. So, the exact security of COMET-64 is still an
open problem.

2 Preliminaries

Notational Setup: Let N denote the set of all natural numbers and N0 :=
N ∪ {0}. Fix some n ∈ N. We write (n] to denote the set {0, . . . , n − 1}. For
m, k ∈ N0, such that m ≥ k, we define the falling factorial (m)k := m!/(m− k)!.
Note that, (m)k ≤ mk. For m,n ∈ N, Am×n denotes an m × n binary matrix
(or simply An, when m = n). The identity matrix of dimension n is denoted In
and the null matrix of dimension m × n is denoted 0m×n. We write rank(An) to
denote the rank of An. For any square matrix An, we define the period of An,
denoted cycle(An), as the smallest integer k such that Ak

n = In. We drop the
dimensions of the matrix, whenever they are understood from the context.
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We use {0, 1}n and {0, 1}+ to denote the set of all n-bit strings, and non-
empty binary strings, respectively. ε denotes the empty string and {0, 1}∗ :=
{0, 1}+ ∪ {ε}. For any string B ∈ {0, 1}+, |B| denotes the number of bits in B,
also referred as the length or size of B. We use little-endian format of index-
ing, i.e., for any B ∈ {0, 1}+, we write and view B as a |B|-bit binary string
b|B|−1 · · · b0, i.e., the most significant bit b|B|−1 lies on the left. For B ∈ {0, 1}+,
(B�−1, . . . , B0)

n←− B, denotes the n-bit block parsing of B into (B�−1, . . . , B0),
where |Bi| = n for 0 ≤ i ≤ � − 2, and 1 ≤ |B�−1| ≤ n. For A,B ∈ {0, 1}+,
and |A| = |B|, A ⊕ B denotes the “bitwise XOR” operation on A and B. For
A,B ∈ {0, 1}∗, A‖B denotes the “string concatenation” operation on A and B.
For A,B ∈ {0, 1}∗ and X = A‖B, A and B are called the prefix and suffix of
X, respectively.

For q ∈ N, Xq denotes the q-tuple (X0, . . . , Xq−1). For q ∈ N and any set X
such that |X | ≥ q, we write (X )q to denote the set of all q-tuples with pairwise
distinct elements from X , i.e., |(X )q| = (|X |)q. For a finite set X , Xq ←$ X
denotes the uniform at random sampling of q variables X0, . . . ,Xq−1 from X in
with replacement fashion.

2.1 Authenticated Encryption: Definition and Security Model

Authentication Encryption with Associated Data: An authenticated
encryption scheme with associated data functionality, or AEAD in short, is a
tuple of algorithms AE = (E,D), defined over the key space K, nonce space N ,
associated data space A, plaintext space P, ciphertext space C, and tag space T ,
where:

E : K × N × A × P → C × T and D : K × N × A × C × T → P ∪ {⊥}.

Here, E and D are called the encryption and decryption algorithms, respec-
tively, of AE. Further, it is required that D(K,N,A,E(K,N,A,M)) = M for
any (K,N,A,M) ∈ K × N × A × P. For all key K ∈ K, we write EK(·) and
DK(·) to denote E(K, ·) and D(K, ·), respectively.

Ideal Block Cipher: For n ∈ N, let Perm(n) denote the set of all permu-
tations of {0, 1}n. For n, κ ∈ N, ICPerm(κ, n) denotes the set of all families of
permutations πK := π(K, ·) ∈ Perm(n) over {0, 1}n, indexed by K ∈ {0, 1}κ.
A block cipher with key size κ and block size n is a family of permutations
IC ∈ ICPerm(κ, n). For K ∈ {0, 1}κ, we denote ICK(·) = IC+

K(·) := IC(K, ·), and
IC−

K(·) := IC−1(K, ·). Throughout this paper, we denote the key size and block
size of the block cipher by κ and n, respectively. In this context, a binary string
X, with |X| ≤ n, is called a full block if |X| = n, and partial block otherwise. A
block cipher is said to be an ideal cipher if for all K ∈ {0, 1}κ, ICK ←$ Perm(n).

AEAD Security in the Ideal Cipher Model (ICM): Let AEIC be an AEAD
scheme, based on the ideal cipher IC, defined over (K,N ,A,P, C, T ). In this
paper, we fix K = {0, 1}κ, N = {0, 1}η, T = {0, 1}τ , and C = P = A = {0, 1}∗,
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for some fixed κ, η, τ ∈ N. Accordingly, we denote the key size, nonce size, and
tag size by κ, η, and τ , respectively. Let

Func := {f : N ×A×P → C ×T : ∀(N, A, M) ∈ N ×A×P, |f(N, A, M)| = |M |+τ},

and Γ ←$ Func. Let ⊥ denote the degenerate function from (N ,A,P, T ) to {⊥}.
For brevity, we denote the oracle corresponding to a function by the function
itself, and bidirectional access to IC is denoted by the superscript ±.

Definition 2.1. The AEAD advantage of any adversary A against AEIC is
defined as,

Advaead
AEIC

(A ) :=

∣
∣
∣
∣
∣
∣

Pr
K ←$ K

IC±

[

A EK,DK,IC±
= 1

]

− Pr
Γ,IC±

[

A Γ,⊥,IC±
= 1

]

∣
∣
∣
∣
∣
∣

, (1)

where A EK,DK,IC±
and A Γ,⊥,IC±

denote A ’s response after its interaction with
(EK,DK, IC±) and (Γ,⊥, IC±), respectively.

In this paper, we assume that the adversary is non-trivial and nonce respecting,
i.e., it never makes a duplicate query, it never makes a query for which the
response is already known due to some previous query, and it does not repeat
nonce values in encryption queries. Throughout, we use the following notations
to parametrize adversary’s resources:

– qe and qd denote the number of queries to EK and DK, respectively. σe and σd

denote the sum of input (associated data and plaintext/ciphertext) lengths
across all encryption and decryption queries, respectively. We also write qc =
qe+qd and σc = σe+σd to denote the combined construction query resources.

– qp denotes the number of primitive queries.

An adversary A that abides by the above resources is referred as a
(qe, qd, σe, σd, qp)-adversary. We remark here that qc and σc correspond to the
online complexity (grouped under data complexity D = qc + σc), and qp corre-
sponds to the offline complexity (grouped under time complexity T = qp) of the
adversary.

2.2 Expectation Method

We discuss the expectation method by Hoang and Tessaro [15] in context of
AEAD security in the ideal cipher model. Consider a computationally unbounded
and deterministic adversary A that tries to distinguish the real oracle R :=
(EK,DK, IC±) from the ideal oracle I := (Γ,⊥, IC±). We denote the query-
response tuple of A ’s interaction with its oracle by a transcript ω. Sometime
this may also include any additional information the oracle chooses to reveal
to the adversary at the end of the query-response phase of the game. We will
consider this extended definition of transcript.
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Let R (res. I) denote the random transcript variable when A interacts with
R (res. I). The probability of realizing a given transcript ω in the security game
with an oracle O is known as the interpolation probability of ω with respect to
O. Since A is deterministic, this probability depends only on the oracle O and
the transcript ω. A transcript ω is said to be attainable if Pr [I = ω] > 0.

Theorem 2.1 (Expectation method [15]). Let Ω be the set of all transcripts.
For some εbad ≥ 0 and a non-negative function εratio : Ω → [0,∞), suppose there
is a set Ωbad ⊆ Ω satisfying the following:

– Pr [I ∈ Ωbad] ≤ εbad;
– For any ω /∈ Ωbad, ω is attainable, and

Pr [R = ω]
Pr [I = ω]

≥ 1 − εratio(ω).

Then, for any adversary A , we have

Advaead
AEIC

(A ) ≤ εbad + Ex [εratio(I)].

A proof of this theorem is available in multiple papers including [15,16]. The
H-coefficient technique due to Patarin [17,18] is a simple corollary of this result,
where εratio is a constant function.

3 Generalized COMET Mode of Operation

COunter Mode Encryption with authentication Tag, or COMET in abbreviation,
is a block cipher mode of operation by Gueron, Jha and Nandi [2] that provides
authenticated encryption with associated data functionality. At a very high level,
it can be viewed as a mixture of CTR [5], Beetle [4], and COFB [3] modes of
operation. In this section, we provide a slightly generalized description of the
COMET mode of operation, that we call gCOMET.

3.1 Parameters and Building Blocks

The gCOMET mode of operation is based on a block cipher IC with n-bit block
and κ-bit key size.

Parameters: In the following, we describe various parameters used in gCOMET
along with their limits:

1. Block size: The block size n of IC also denotes the block size of gCOMET. It
is analogous to the rate parameter used in Sponge-based schemes [4,19].

2. Key size: The key size κ is simply the key size of the underlying block cipher
IC, that follows κ ≥ n.

3. State size: The (n+κ)-bit input size of the underlying block cipher IC denotes
the state size s of gCOMET.
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4. Control and Invariant-prefix size: gCOMET uses a small number of bits, called
control bits (or, control) for separating the various phases of execution, such as
associated data (AD) processing and plaintext processing, and identifying full
and partial block data. We denote the control size by c and it follows c  κ. In
fact, the control bits can be described in very few bits. For instance, COMET
[2] uses c = 5.
On a related note, we also use an auxiliary parameter c′, called the invariant-
prefix size, following the relation c′ ≥ c. For example, COMET uses c′ = κ/2.

5. Nonce size: The nonce size η follows the relation:

η ≤ n if n = κ,
η ≤ κ − c if n < κ.

(2)

6. Tag size: The tag size τ follows the relation τ ≤ n.

From the above discussion, one can see that gCOMET is primarily parameterized
by the block size n and the key size κ, and all other parameters are bounded in
terms of these two. Accordingly, we write fatCOMET and tinyCOMET to denote
gCOMET with n = κ and n < κ, respectively. In each case, the nonce size η
is a fixed number that follows the condition given in Eq. (2). For the sake of
simplicity, we assume η = n for fatCOMET and η = κ − c for tinyCOMET.

Building Blocks: Apart from the block cipher IC, gCOMET has three more
components that are described below:

Control Sequence Generator: We define the control sequence generator as the
function Δ : N0 × N0 → ({0, 1}c)+ such that |Δ(a,m)| = (a + m + 2)c for all
a,m ∈ N0.

Feedback Functions: Let Φ be an invertible linear map over {0, 1}n and Φ′ :=
Φ⊕I, the pointwise sum of Φ and I, where I denotes the identity map over {0, 1}n.
We define the feedback functions as follows:
– Lad : {0, 1}n × {0, 1}n → {0, 1}n is defined by the mapping

(X,A) �−→ X ⊕ A.

– Lpt : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n is defined by the mapping

(X,M) �−→ (X ⊕ M,Φ(X) ⊕ M).

– Lct : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n is defined by the mapping

(X,C) �−→ (Φ′(X) ⊕ C,Φ(X) ⊕ C).

Key-Update Function: Let Ψ be an invertible linear map over {0, 1}κ−c′
. We

define the update function U : {0, 1}κ → {0, 1}κ by the binary matrix

U :=
[

Ic′ 0c′×κ−c′

0κ−c′×c′ Ψ

]

,

where Ψ is viewed as a (κ − c′) square matrix with elements from {0, 1}. The
above definition implies that c′ controls the prefix size of the key that remains
unchanged in the key updation. This motivates our nomenclature for c′ as the
invariant-prefix size parameter.
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3.2 Description of gCOMET

In the following, we describe the main phase of gCOMET’s encryption/decryption
algorithm for a tuple of input (K,N,A, I) where K, N , A, and I denote the
key, nonce, associated data and plaintext (ciphertext in case of decryption),
respectively:

Initialization Phase: This phase computes the initial state for the algorithm.
This is the only phase where the two gCOMET versions, namely fatCOMET and
tinyCOMET differ. Specifically,

In fatCOMET, we have
initn,κ(K, N, A, I) :

1: a ←
⌈ |A|

n

⌉
, m ←

⌈ |I|
n

⌉
, � = a + m

2: δ�+2 ← Δ(a, m)

3: Y0 ← K

4: Z′
0 ← IC+

K(N) ⊕ δ0‖0κ−c

5: return (Y0, Z′
0, δ�+2, a, m, �)

In tinyCOMET, we have
initn,κ(K, N, A, I) :

1: a ←
⌈ |A|

n

⌉
, m ←

⌈ |M|
n

⌉
, � = a + m

2: δ�+2 ← Δ(a, m)

3: Y0 ← IC+
K(0n)

4: Z′
0 ← K ⊕ δ0‖N

5: return (Y0, Z′
0, δ�+2, a, m, �)

Data Processing Phase: This phase consists of two modules corresponding to
associate data processing, denoted proc ad, and plaintext/ciphertext processing,
denoted proc pt/proc ct. Each of these modules only execute for non-empty data.
The modules are identical except for the feedback functions. For non-empty data
the processing is as follows:

proc ad(Y0, Z′
0, A, δ�+2):

1: (Aa−1, . . . , A0)
n←− A

2: for i = 0 to a − 1 do

3: Zi ← U(Z′
i)

4: Xi ← IC+
Z′

i
(Yi)

5: Yi+1 ← Lad(Xi, Ai)

6: Z′
i+1 ← Zi⊕δi+1‖0κ−c

7: return (Ya, Z′
a)

proc pt(Ya, Z′
a, I, δ�+2):

1: (Im−1, . . . , I0)
n←− I

2: for j = 0 to m − 1 do

3: k ← a + j

4: Zk ← U(Z′
k)

5: Xk ← IC+
Zk

(Yk)

6: (Yk+1, Oj) ← Lpt(Xk, Ij)

7: Z′
k+1 ← Zk ⊕ δk+1‖0κ−c

8: O ← (Om−1, . . . , O0)

9: return (Y�, Z′
�, O)

proc ct(Ya, Z′
a, I, δ�+2):

1: (Im−1, . . . , I0)
n←− I

2: for j = 0 to m − 1 do

3: k ← a + j

4: Zk ← U(Z′
k)

5: Xk ← IC+
Zk

(Yk)

6: (Yk+1, Oj) ← Lct(Xk, Ij)

7: Z′
k+1 ← Zk ⊕ δk+1‖0κ−c

8: O ← (Om−1, . . . , O0)

9: return (Y�, Z′
�, O)

Tag Generation Phase: This is the final step and generates the tag.

proc tg(Y�, Z′
�, δ�+1):

1: Z′
� ← Z′

� ⊕ δ�+1‖0κ−c

2: Z� ← U(Z′
�)

3: T := X� ← IC+
Z�

(Y�)

4: return T
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Algorithm 3.1 gives the complete algorithmic description of gCOMET, and Fig. 1
illustrates the major components of the encryption/decryption process.

Algorithm 3.1. Encryption/Decryption algorithm in gCOMET.

1: function gCOMET[IC].E(K, N, A, M)

2: C ← ⊥
3: (Y0, Z′

0, δ�+2, a, m, �) ← initn,κ(K, N, A, M)

4: if a �= 0 then

5: (Ya, Z′
a) ← proc ad(Y0, Z′

0, A, δ�+2)

6: if m �= 0 then

7: (Y�, Z′
�, C) ← proc pt(Ya, Z′

a, M, δ�+2)

8: T ← proc tg(Y�, Z′
�, δ�+1)

9: return (C, T )

1: function gCOMET[IC].D(K, N, A, C, T )

2: (Y0, Z′
0, δ�+2, a, m, �) ← initn,κ(K, N, A, C)

3: if a �= 0 then

4: (Ya, Z′
a) ← proc ad(Y0, Z′

0, A, δ�+2)

5: if m �= 0 then

6: (Y�, Z′
�, M) ← proc ct(Ya, Z′

a, C, δ�+2)

7: T ′ ← proc tg(Y�, Z′
�, δ�+1)

8: if T ′ = T then

9: is auth ← 1

10: else

11: is auth ← 0, M ← ⊥
12: return (is auth, M)

4 Expected Maximum Multicollision Sizes

We briefly revisit some results on the expectation of maximum multicollision size
in a random sample. These results are largely based on the extensive analysis
already given in [14]. We mostly reuse the strategy from [14] to derive some new
results required in case of COMET. For space limitation, we postpone the proofs
of all the propositions in this section to the full version of this paper [20].

Before delving into the results we state a simple observation (also given
in [14]) that will be useful in bounding the expectation of any non-negative
random variable. For any non-negative random variable Y bounded above by q,
and ρ ∈ N, we have

Ex [Y] ≤ ρ − 1 + q × Pr [Y ≥ ρ]. (3)

4.1 For Uniform Random Sample

For n ≥ 1, let Xq ←$ {0, 1}n. We define the maximum multicollision size random
variable, denoted Θq,n, for the sample Xq as follows

Θq,n := max
a∈{0,1}n

|{i ∈ (q] : Xi = a}| ,

and write μ(q, n) to denote Ex [Θq,n].

Proposition 4.1. For n ≥ 2,

μ(q, n) ≤

⎧

⎪⎨

⎪⎩

3 if q ≤ 2
n
2 ,

4n
log2 n if 2

n
2 < q ≤ 2n,

5n
⌈

q
n2n

⌉

if q > 2n.



12 S. Gueron et al.

Fig. 1. Various phases in the encryption/decryption algorithm of gCOMET. Here, i ∈
(a], j ∈ (m] and k = a + j.

For Ideal Cipher Samples. Let (z0, y0), . . . , (zq−1, yq−1) be a q-tuple of dis-
tinct pairs of key and input to an ideal cipher IC with n-bit input block, such
that zi �= zj for all i �= j. For i ∈ (q], let Xi = ICzi

(yi). We define

Θ̂q,n := max
a∈{0,1}n

|{i ∈ (q] : Xi = a}| ,

and write μ̂(q, n) to denote Ex
[

Θ̂q,n

]

. Since all the keys are pairwise distinct,
the sample Xq is statistically indistinguishable from a sample following uniform
distribution. Thus, using Proposition 4.1, we get the following proposition for
ideal cipher generated samples.

Proposition 4.2. For n ≥ 2,

μ̂(q, n) ≤
{

4n
log2 n if q ≤ 2n

5n
⌈

q
n2n

⌉

if q > 2n.

Note that, identical result holds for samples generated through inverse calls to
the ideal cipher as well.

For Linear Post-processing: Consider a variant of the above given problem,
where we are interested in multicollisions on (L(Xi))i∈(q] for some linear map L
over {0, 1}n with rank(L) = r. Obviously, r ≤ n. We define

Θ̂′
q,n,r := max

a∈{0,1}n
|{i ∈ (q] : L(Xi) = a}| ,

and write μ̂′(q, n, r) to denote Ex
[

Θ̂′
q,n,r

]

.
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Proposition 4.3. For n ≥ 2,

μ̂′(q, n, r) ≤
{

4n
log2 n if q ≤ 2r

5n
⌈

q
n2r

⌉

if q > 2r.

4.2 Sum of Ideal Cipher Sample

Let (z0, y0, x′
0), . . . , (zq−1, yq−1, x

′
q−1) be a q-tuple such that (zi, yi) are pairwise

distinct and (zi, x
′
i) are pairwise distinct, where zi ∈ {0, 1}κ and yi, x

′
i ∈ {0, 1}n.

Let L be a linear map over {0, 1}n with rank(L) = r. For i ∈ (q], let z′
i = U(zi)

and Ci = L(IC+
zi

(yi)) ⊕ IC−
z′

i
(x′

i). We define

Θ′
q,n,r := max

a∈{0,1}n
|{i ∈ (q] : Ci = a}|,

and write μ′(q, n, r) to denote Ex
[

Θ′
q,n,r

]

. We want to bound μ′(q, n, r).

Proposition 4.4. For n ≥ 4, we have

μ′(q, n, r) ≤ 2n

⌈
22nq

2r

⌉

.

5 Super-Chain Structure

In [14], Chakraborty et al. proposed the multi-chain structure. They use this
tool to give a tight security bound for Sponge-type AEAD constructions like
Beetle [4] and SpoC [21]. In this section, we give an extension of the multi-chain
structure in our notations. This extended tool will be used later in the security
analysis of gCOMET.

Labeled Directed Graph: Let L = {(zi, yi, xi) : i ∈ (q]} be a list of triples
such that (zi, yi) �= (zj , yj) and (zi, xi) �= (zj , xj) for all i �= j ∈ (q], where zi ∈
{0, 1}κ and xi, yi ∈ {0, 1}n for all i ∈ (q]. We write range(L) = {(zi, xi) : i ∈ (q]}.
Let L be a linear map over {0, 1}n. To L and L, we associate a labeled directed
graph GL

L = (range(L), E) over the set of vertices range(L) with edge set E . For
all edge ((z, x), (z′, x′)) ∈ E with label c ∈ {0, 1}n, denoted (z, x) c→ (z′, x′), we
have L(x) ⊕ c = y′ and U(z) = z′. By extending the notation, a labeled walk
W = (w0, . . . , wk) with label ck is defined as W : w0

c0→ w1
c1→ w2 · · · wk−1

ck−1−→
wk. We usually write it as w0

ck

−→ wk, where k is referred as the length of the
walk. We simply write G, dropping the list L and linear function L, whenever
they are understood from the context.

Definition 5.1 (Chain). A chain, denoted C(ck+1), with label ck+1 in GL
L is

simply a labeled walk (zi0 , xi0)
ck

−→ (zik
, xik

) with an additional parameter called
sink, denoted sink[C(ck+1)], and defined as follows

sink[C(ck+1)] :=

{

xik
if ck = ε

L(xik
) ⊕ ck if ck �= ε.
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We call C(ck+1) a complete (resp. partial) chain if ck = ε (resp. ck �= ε). We
define the source and key of the chain as src[C(ck+1)] := xi0 and key[C(ck+1)] :=
zi0 , respectively. Length of C(ck+1), denoted #C(ck+1), is simply the length of
the walk, i.e., k.

In context of this work, a chain is a graphical representation of (a part of) an
execution of gCOMET encryption/decryption process, where the label of the
chain plays the role of the input string, the key and source of the chain denote
the starting point in the execution and the sink denotes the end point. Looking
ahead momentarily, in our analysis we will need a special collection of chains
starting from a common source and ending in (possibly) distinct sinks.

Definition 5.2 (Super-chain). A t-sink super-chain, denoted S(ck+1), with
label ck+1 in GL

L is a set of chains {C0(d0), . . . , Cl−1(dl−1)} such that

– for i ∈ (k], ci ∈ {0, 1}n and ck = ε.
– for i ∈ (l], di = cj+1 for some j ∈ (k + 1].
– for distinct i, j ∈ (l], src[Ci(di)] = src[Cj(dj)] and key[Ci(di)] �= key[Cj(dj)].
– |{(sink[Ci(di)],#Ci(di)) : i ∈ (l]}| = t.

Size of S(ck+1), denoted |S(ck+1)|, is simply the cardinality of S(ck+1), i.e., l.

A super-chain can be viewed as a collection of parallel chains starting at a
common decryption query block (source of the super-chain), albeit with differ-
ent keys, and ending at any one of the possible encryption query blocks or the
committed tag value. If an adversary succeeds in generating a super-chain of
significant size for a sequence of ciphertext blocks, then it can herd the cor-
responding decryption query to a desired tag value (or intermediate encryp-
tion query block) with significantly high probability. Simply put, a non-trivial1

forgery would imply that the adversary succeeds in herding a decryption query
to one of the chains in the super-chain. As a consequence, we aim to upper bound
the size of the super-chain. Note that the multi-chain structure of [14,22] is a
special case of super-chain structure, where t = 1 and for all i ∈ (l], di = ck+1.
These extra conditions imply that all the chains are of length k, and they end
in a common sink.

5.1 Maximum Size of t-Sink Super-Chain of Length k

Consider a non-trivial adversary A interacting with an ideal cipher oracle IC±.
Suppose, A makes q queries to IC±. For i ∈ (q], let (Ẑi, Ŷi, X̂i, d̂i) denote the
i-th query-response tuple, where Ẑi ∈ {0, 1}κ, Ŷi, X̂i ∈ {0, 1}n, and d̂i ∈ {0, 1}.
If d̂i = 0, A queries (Ẑi, Ŷi) and gets response X̂i := IC+(Ẑi, Ŷi) (forward
query), else it queries (Ẑi, X̂i) and gets response Ŷi := IC−(Ẑi, X̂i) (backward
query). We store the q query-response tuples in a list L. Sometimes, we also
write L′ := ((Ẑ0, Ŷ0, X̂0), . . . , (Ẑq−1, Ŷq−1, X̂q−1)) which drops information about

1 A forgery attack that does not involve exhaustive guessing of internal state or key.
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query direction. Fix a linear map L over {0, 1}n and consider the graph GL
L′ . Let

Wt,k(L′) denote the maximum over the size of all t-sink super-chains of length
k in GL

L′ . Then, Wt,k(L) is a random variable where the randomness is induced
by IC.

Lemma 5.1. Let ν := max
i∈(q]

∣
∣
∣{j : Ẑj = U(Ẑi)}

∣
∣
∣. For any non-trivial adversary A

and an ideal cipher IC, we have

Ex [Wt,k(L)] ≤ 2μ̂(q, n) + (t − 1) · μ̂′(q, n, rank(L)) + k · μ′(qν, n, rank(L)).

The proof of this lemma is postponed to the full version of this paper [20].

6 Security of gCOMET

In this section, we give a detailed security analysis of gCOMET. Theorem 6.1
gives the combined AEAD security of gCOMET in the ideal cipher model.

Theorem 6.1. For N, r > 0, let cycle(Ψ) = N and rank(Φ′) = r. Then, for
n, νed > 0, σc < min

{

N, 2n−2
}

, qp < 2κ−2 and (qe, qd, σe, σd, qp)-adversary A ,
we have

Advaead
gCOMET(A ) ≤

(
2qp

2κ
+

6σc

2κ−c′ +
4σd

2κ−c′+n

)
μ(σc, n) +

4qd

2κ
μ̂(qp, n) +

qc

2κ−c′

+ min

{
2σdσe

2κ
μ̂′(qp, n, r),

2σdσe

2κ−c′ +
2σd

2κ
μ̂′(qp, n, r)

}
+

qp + σc

2κ

+
2σd

2κ
μ′(qpνed, n, r) +

qpσc

νed2κ
+

2qd(σe + qe)

2κ−c′+n
+

4qpσd

2κ+n
+

2qd

2n
. (4)

The proof is given in the rest of this section. In relation to the expectation
method (high level tool used in the proof), we largely reuse the definitions and
notations from Sect. 2.2.

6.1 Initial Setup and Description of Oracles

We denote the query-response tuple of A ’s interaction with its oracle by a
transcript ω = {ωe, ωd, ωp}, where ωe := {(Ni,Ai,Mi,Ci,Ti) : i ∈ (qe]},
ωd := {(N̄j , Āj , C̄j , T̄j , D̄j) : j ∈ (qd]}, and ωp := {(Ẑk, Ŷk, X̂k, d̂k) : k ∈ (qp]}.
Here,

– (Ni,Ai,Mi,Ci,Ti) denotes the i-th encryption query-response tuple, where Ni,
Ai, Mi, Ci, and Ti, denote the nonce, associated data, message, ciphertext,
and tag, respectively. Let

⌈
|Ai|
n

⌉

= ai,
⌈

|Ci|
n

⌉

=
⌈

|Mi|
n

⌉

= mi, and �i = ai+mi.

– (N̄j , Āj , C̄j , T̄j , D̄j) denotes the j-th decryption query-response tuple, where
N̄j , Āj , C̄j , T̄j , and D̄j , denote the nonce, associated data, ciphertext, tag,
and the authentication result, respectively. D̄j equals to a message M̄j when
authentication succeeds, and ⊥ otherwise. Let

⌈
|Āi|
n

⌉

= āj and
⌈

|C̄i|
n

⌉

= m̄j ,

and �̄j = āj + m̄j .
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– (Ẑk, Ŷk, X̂k, d̂k) denotes the k-th primitive query-response tuple, where Ẑk, Ŷk,
X̂k, and d̂k, denote the key, input, output, and direction of query, respectively.
d̂k = 0 if the k-th query is forward, and d̂k = 1 if the k-th query is backward.

In addition, for all (i, j) ∈ (qe] × (�i + 1] and (i′, j′) ∈ (qd] × (�̄i + 1], (Zi
j ,Y

i
j ,X

i
j)

and (Z̄i′
j′ , Ȳi′

j′ , X̄i′
j′) are defined analogous to Fig. 1 and Algorithm 3.1.

Ideal Oracle Description: The ideal oracle works as follows:

– For the i-th primitive query:
return X̂i = IC+(Ẑi, Ŷi) if d̂i = 0, and return Ŷi = IC−(Ẑi, X̂i) otherwise.

– For the i-the encryption query:
• (Xi

0, . . . ,X
i
�i) ←$ {0, 1}n.

• for j ∈ (mi] and k = ai + j, set (Yi
k+1,C

i
j) = Lpt(Xi

k,Mi
j) and Ti = Xi

�i .
• for j ∈ (ai], set Yi

j+1 = Lad(Xi
j ,A

i
j).

• return (Ci,Ti).
– For the i-th decryption query: simply return ⊥.

Note that, the sampling mechanism in the ideal world is slightly indirect in
nature. We compute ciphertext and tag outputs by first sampling X values and
then using operations identical to gCOMET. However, owing to the invertibility
of Φ, the marginal distribution of (C,T) is identical to the case where they are
sampled uniform at random.

Real Oracle Description: The real oracle faithfully responds to A ’s encryp-
tion, decryption, and primitive queries using IC±.

Releasing Additional Information: After the query-response phase is over, the
oracles additionally release (Xi

0, . . . ,X
i
�i) to the adversary. We add (Xi

0, . . . ,X
i
�i)

to the encryption transcript, i.e. Ie in case of ideal oracle and Re in case of real
oracle. Note that, A, M, X tuples completely define (Yi

1, . . . ,Y
i
�i

).

Decryption Blocks Information from Encryption Blocks: Consider a decryption
query i ∈ (qd]. If N̄i �= Ni′

, for all i′ ∈ (qe], then we define the index of longest
common prefix, denoted pi as −1. If there exists a unique index i′ ∈ (qe], such
that N̄i = Ni′

, then we have

pi :=

{

max{j : (Āi
0, . . . , Ā

i
j−1) = (Ai′

0 , . . . ,Ai′
j−1)} if Āi �= Ai′

,

max{āi + j : (C̄i
0, . . . , C̄

i
j−1) = (C̄i′

0 , . . . , C̄i′
j−1)} otherwise.

It is clear that whenever pi ≥ 0, then (Z̄i
0, Ȳ

i
0) = (Zi′

0 ,Yi′
0 ). Further, Ȳi

j , and
X̄i

j are determined for all j ∈ (pi + 1], due to Yi′
j , Xi′

j , and C̄i
j . Note that, this

holds in both the real and ideal world due to the way we define the ideal oracle
responses.

At this point, the transcript random variables, viz. R and I, are completely
defined. For the sake of notational simplicity, we use the same notation to rep-
resent the constituent random variables in the transcripts of both the world.
However, they can be easily separated via their probability distribution which
will be determined from their exact definitions in the two worlds. For any tran-
script ω, we define
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– θb
e := max

c∈{0,1}n
|{(i, j) ∈ (qe] × (mi + 1] : Yi

j = c}|.

– θf
e := max

c∈{0,1}n
|{(i, j) ∈ (qe] × (mi + 1] : Xi

j = c}|.

Definition 6.1 (Useful index and transcript set). For ν > 0, the ν-useful
index set corresponding to some primitive transcript ωp, is defined as the max-

imal set I, such that for all i ∈ I we have
∣
∣
∣{j ∈ (qp] : Ẑj = Ẑi}

∣
∣
∣ ≤ ν, and the

ν-useful transcript set is defined as Qν := {(Ẑi, Ŷi, X̂i) : i ∈ I}.

A useful set signifies the keys that do not occur often in primitive queries. Specif-
ically, our aim is to bound the number of keys that appear in both primitive and
construction queries. Since, the construction key is not released to the adversary
one can get good bounds on ν. Looking ahead momentarily, a useful set will rep-
resent the subset of primitive queries that the adversary can use to herd some
decryption query to the desired tag value.

6.2 Ratio of Interpolation Probabilities

Fix a transcript ω := (ωe, ωd, ωp). Since the transcript is attainable, we must
have ωd = ⊥qd . Analogous to the transcript (ωe, ωd, ωp), we also view I and R
as (Ie, Id, Ip) and (Re, Rd, Rp), respectively.

Ideal World: With respect to the encryption transcript, the ideal oracle sam-
ples exactly σe + qe mutually independent blocks uniformly at random. The
decryption transcript holds with probability 1 as the ideal oracle always responds
with ⊥. Using the independence of construction and primitive transcripts in ideal
world, we have

Pr [I = ω] = Pr [Ie = ωe, Id = ωd, Ip = ωp] = Pr [Ip = ωp] × 1
2n(σe+qe)

. (5)

Consider the multiset, Zp := {Ẑi : i ∈ (qp]}. Let (L0, . . . , Ls−1) denote the tuple
of distinct keys in Zp and λp

i be the multiplicity of Li in Zp for all i ∈ (s]. Then,
in Eq. (5) we have

Pr [I = ω] =
1

∏

i∈(s](2n)λp
i

× 1
2n(σe+qe)

. (6)

Real World: The interpolation probability of ω with respect to the real oracle
R is slightly involved. In particular, we bound the interpolation probability for
a special class of values for the internal transcript (i.e. K, Y0, Z and Z̄) that are
compatible with ω. Loosely, the quadruple (K,Y0,Z, Z̄) is incompatible when
it might result in some inconsistent input/output relations for the underlying
ideal cipher. Formally, we say that (K,Y0,Z, Z̄) is incompatible with the external
transcript ω, if one of the following events hold:

B0 : ∃i ∈ (qp], such that K = Ẑi.
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B1 : ∃(i, j) ∈ (qe] × (�i + 1], such that K = Zi
j .

B2 : ∃(i, j) ∈ (qd] × (�̄i + 1], such that K = Z̄i
j .

B3 : ∃i ∈ (qe], such that Zi
0 = ∗‖0κ−c′

.
B4 : ∃i ∈ (qd], such that Z̄i

0 = ∗‖0κ−c′
.

B5 : ∃(i, j) ∈ (qe] × (�i + 1], (i′, j′) ∈ (qe] × (�i′
+ 1], such that (Zi

j ,Y
i
j) =

(Zi′
j′ ,Yi′

j′).
B6 : ∃(i, j) ∈ (qe] × (�i + 1], (i′, j′) ∈ (qe] × (�i′

+ 1], such that (Zi
j ,X

i
j) =

(Zi′
j′ ,Xi′

j′).
B7 : ∃(i, j) ∈ (qe] × (�i + 1], i′ ∈ (qp], such that (Zi

j ,Y
i
j) = (Ẑi′

, Ŷi′
).

B8 : ∃(i, j) ∈ (qe] × (�i + 1], i′ ∈ (qp], such that (Zi
j ,X

i
j) = (Ẑi′

, X̂i′
).

B9 : ∃(i, j) ∈ (qe] × (�i + 1] such that |{j ∈ (qp] : Ẑj = Zi}| ≥ νed.
B10 : ∃(i, j) ∈ (qd] × (�̄i + 1] such that |{j ∈ (qp] : Ẑj = Z̄i}| ≥ νed.

For brevity we accumulate the incompatibility events in certain compound events
as follows:

Kcoll : B0 ∪ B1 ∪ B2 ∪ B3 ∪ B4.
EEmatch : B5 ∪ B6.
EPmatch : B7 ∪ B8.
PKcount : B9 ∪ B10.

The Kcoll event handles all the scenarios which might lead to key recovery or
internal key collisions. EEmatch handles the event that two encryption query
block states collide, and EPmatch handles a similar scenario for an encryption
query block and a primitive query. The event PKcount is more of a technical
requirement that accounts for the adversarial strategy of exhausting a particular
encryption/decryption block key via primitive queries. If this happens, then the
adversary can guess the block cipher outputs (or inputs) with higher probability.
Let

Comp := ¬ (Kcoll ∪ EEmatch ∪ EPmatch ∪ PKcount) .

Then, in the real world we have

Pr [R = ω] ≥ Pr [R = ω, Comp]

≥
(

1 − Pr [¬Comp]
)

× Pr [R = ω | Comp]

≥
(

1 − Pr [¬Comp]
)

× Pr [Rp = ωp | Comp]

× Pr [Re = ωe | Comp ∧ Rp = ωp]

× Pr [Rd = ωd | Comp ∧ (Rp, Re) = (ωp, ωe)]. (7)

For any compatible quadruple (K,Y0,Z, Z̄), in addition to the multiset Zp, con-
sider the following two multisets,

Ze := {Zi
j : i ∈ (qe] × (mi]} Zd := {Z̄i

j : i ∈ (qd] × (m̄i]}
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We extend (L0, . . . , Ls−1) to (L0, . . . , Ls−1, . . . , Ls′−1) for some s′ ≥ s to denote
the tuple of distinct keys in Zp ∪ Ze and let λt

i be the multiplicity of Li in Zt

for all t ∈ {p, e} and i ∈ (s′]. Then, by continuing Eq. (7) we have

Pr [R = ω] ≥
(

1 − Pr [¬Comp]
)

× 1
∏

i∈(s′](2n)λp
i

× 1
∏

i∈(s′](2n − λp
i )λe

i

× Pr [Rd = ωd | Comp ∧ (Rp, Re) = (ωp, ωe)]

(∗)
≥

(

1 − Pr [¬Comp]
)

× 1
∏

i∈(s](2n)λp
i

× 1
2n(σe+qe)

×
(

1 − Pr [Rd �= ωd | Comp ∧ (Rp, Re) = (ωp, ωe)]
)

Pr [R = ω]
Pr [I = ω]

(∗∗)
≥

(

1 − Pr [¬Comp] − Pr [Rd �= ωd | Comp ∧ (Rp, Re) = (ωp, ωe)]
)

.

(8)

At inequality (∗) we use two facts. First, ωp contains only s distinct keys, and
second,

∑

i∈(s′] λ
e
i = σe + qe. Inequality (∗∗) follows from Eq. (6). In Lemma

6.1 and 6.2 we bound Pr [¬Comp] and Pr [Rd �= ωd | Comp ∧ (Rp, Re) = (ωp, ωe)],
respectively.

Lemma 6.1. For σc < min
{

N, 2n−2
}

and qp ≤ 2κ−2, we have

Pr [¬Comp] ≤ qp + σc + qp(θb
e + θf

e )
2κ

+
qc + 2σe(θb

e + θf
e )

2κ−c′ +
qpσc

νed2κ
.

The proof of this lemma is postponed to the full version of this paper [20].

Lemma 6.2. Let E denote the event Comp ∧ (Rp, Re) = (ωp, ωe). For σc <
min

{

N, 2n−2
}

and qp ≤ 2κ−2, we have

Pr [Rd �= ωd | E] ≤ 2qd(σe + qe) + 4θb
eσd

2κ−c′+n
+

2θb
eqd

2κ−c′ +
4qpσd

2κ+n
+

2qd

2n

+
∑

i∈(qd]

min
{

2W�̄iσe,�̄i(Qνed
)

2κ
,
2�̄iσe

2κ−c′ +
2W�̄i,�̄i(Qνed

)
2κ

}

.

The proof of this lemma is postponed to the full version of this paper [20].
On substituting these bounds in Eq. (8), and applying Theorem 2.1, we get

Advaead
gCOMET(A ) ≤

(
qp

2κ
+

4σc

2κ−c′ +
4σd

2κ−c′+n

)
Ex

[
θb

e

]
+

(
qp

2κ
+

2σe

2κ−c′

)
Ex

[
θf

e

]

+
∑

i∈(qd]

min

{
2Ex

[
W�̄iσe,�̄i(Qνed)

]
2κ

,
2�̄iσe

2κ−c′ +
2Ex

[
W�̄i,�̄i(Qνed)

]
2κ

}

+
qp + σc

2κ
+

qc

2κ−c′ +
qpσc

νed2κ
+

2qd(σe + qe)

2κ−c′+n
+

4qpσd

2κ+n
+

2qd

2n
. (9)
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Note that, θb
e and θf

e correspond to Θσe,n and Θσd,n respectively (see Sect. 4.1).
Thus, Ex

[

θb
e

]

,Ex
[

θf
e

]

≤ μ(σc, n). Further, |Qνed
× Qνed

| ≤ qpνed, as Qνed
is a

νed-useful transcript set. The result follows from these facts and the application
of Lemma 5.1.

6.3 Desired Properties from Ψ and Φ′ Matrices

Theorem 6.1 sheds some light on the properties required from Ψ and Φ′ in order
to get a secure gCOMET instance. Specifically, in a secure gCOMET instance we
must have:

– Large period for Ψ matrix : Let � denote the maximum permissible message
length. For any i > j ∈ (�], and some non zero Z ∈ {0, 1}κ, we want to
avoid Ui(Z) = Uj(Z). In words, this roughly translates to key repetition
within an encryption/decryption query. We can rewrite it as Ui−j = I. Clearly,
if cycle(U) ≥ �, then we are done. Now, due to the nature of U, we have
cycle(U) = cycle(Ψ). Hence, the property cycle(Ψ) ≥ � helps in avoiding key
repetitions within a query.

– Small value for c′: As evident from Theorem 6.1, the value of c′ directly
affects the security bound, as rank(Ψ) = κ − c′. In other words, smaller the
value of c′, higher the rank of Ψ, which directly translates to better security
guarantee for gCOMET.

– High rank for Φ′ matrix : In decryption phase, the rank of Φ′ function quan-
tifies the effect of the previous block cipher output on the next block cipher
input. For example, if Φ′ = 0 (possible when Φ = I), the next input is inde-
pendent of previous output. In other words, the adversary can fully control
the next input. In particular, the adversary can collide the input of a large
number of blocks. This can be verified from Theorem 6.1 as well, where some
multicollision bounds are inversely proportional to rank(Φ′).

7 Instantiating gCOMET

For any S ∈ {0, 1}+ and s ∈ (|S|], S ≫ s denotes the “circular right shift by s”
operation on S. The set {0, 1}κ−c′

can be viewed as the Galois field GF(2κ−c′
)

consisting of 2κ−c′
elements. Let f(x) denote the primitive polynomial used to

represent the field GF(2κ−c′
), and αf denote a fixed primitive element in this

representation. The set {0, 1}κ−c′
can also be viewed as a (κ − c′)-dimensional

vector space over GF(2). In this context, αf can be viewed as an invertible linear
map over {0, 1}κ−c′

. By a slight abuse of notation, we denote the binary matrix
associated with αf by αf itself. It is well-known that cycle(αf ) = 2κ−c′ − 1.

7.1 COMETv1 and Its Security

The NIST LwC candidate COMET, hereafter referred as COMETv1, can be easily
obtained from gCOMET in the following manner:
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Algorithm 7.1. Control sequence generator for COMETv1 (left) and COMETv2
(right).

1: function Δ(A, I)

2: a ←
⌈ |A|

n

⌉
, m ←

⌈ |I|
n

⌉
, � := a + m

3: δ�+2 ← (05)�+2

4: if a 
= 0 then

5: δ0 ← δ0 ⊕ 00001

6: if n � |A| then δa−1 ← δa−1 ⊕ 00010

7: if m 
= 0 then

8: δa ← δa ⊕ 00100

9: if n � |I| then δ�−1 ← δ�−1 ⊕ 01000

10: δ�+1 ← δ�+1 ⊕ 10000

11: return (a, m, �, δ�+2)

1: function Δ(A, I)

2: a ←
⌈ |A|

n

⌉
, m ←

⌈ |I|
n

⌉
, � := a + m

3: δ�+2 ← (05)�+2

4: if a 
= 0 then

5: δ1 ← δ1 ⊕ 00001

6: if n � |A| then δa ← δa ⊕ 00010

7: if m 
= 0 then

8: δa+1 ← δa+1 ⊕ 00100

9: if n � |I| then δ� ← δ� ⊕ 01000

10: δ�+1 ← δ�+1 ⊕ 10000

11: return (a, m, �, δ�+2)

– Key size, κ is set to 128.
– Block size, n is set to 128 and 64 in fatCOMETv1 and tinyCOMETv1, respec-

tively.
– The control size c is set to 5 and the invariant-prefix size c′ is set to κ/2 = 64.
– Δ is defined in Algorithm 7.1 (left).
– Φ is defined by the mapping (X3,X2,X1,X0) �−→ X1‖X0‖(X2 ≫ 1)‖X3,

where (X3,X2,X1,X0)
n/4←− X. One can verify that rank(Φ′) = n − 1.

– The Ψ function is defined as the binary matrix αf , where αf denotes the
primitive element of GF(264) with respect to f(x) = x64 + x4 + x3 + x + 1.

In Corollary 7.1, we apply Theorem 6.1 and relevant multicollision bounds
from Propositions 4.1–4.4, to obtain security bounds for fatCOMETv1 and
tinyCOMETv1.

Corollary 7.1. For n ≥ 4, qp < 2126, and any (qe, qd, σe, σd, qp)-adversary A ,
we have

1. For σc < 264, and νed = 255√
11

:

Advaead
fatCOMETv1(A ) ≤ qp

2125.19
+

σc

259.75
+

σdσe

2120.8
+

qpσc

2180.24
.

2. For σc < 239, and νed = 224√
11

:

Advaead
tinyCOMETv1(A ) ≤ qp

2121.58
+

σc

255.98
+

σdσe

2126
+

qpσd

2149.24
+

qpσeσd

2188.68
.

Corollary 7.1 clearly shows that fatCOMETv1 (or the NIST submission COMET-
128) is secure while σc < 263.75 bytes2 (data complexity), qp < 2125.19 (time com-

2 Each block of fatCOMETv1 is built of 16 bytes.
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plexity), and qpσc < 2184.24 (data-time trade-off). Similarly, under the assump-
tion that σc < 242 bytes3 (data complexity), tinyCOMETv1 (or the NIST submis-
sion COMET-64) is secure while qp < 2112 (time complexity) and qpσc < 2152.24

(data-time trade-off).
In the full version of this paper [20], we summarize the two known crypt-

analytic works [11,13] on COMETv1. Although these works are largely incon-
sequential in relation to the validity of COMETv1’s security claims, they show
that large value of c′ can lead to a large class of weak keys. We observe that
the value of c′ can be reduced significantly without much degradation in perfor-
mance. Particularly, we observe that the Ψ function can be defined over a larger
field which avoids the above given strategies. In fact, a similar remedy has been
also offered in [11].

7.2 COMETv2 and Its Security

We describe a variant of COMETv1, called COMETv2, that differs in the following
components:

– The control size c is set to 5 and the invariant-prefix size c′ is set to 8.
– The Δ function is defined in Algorithm7.1 (right).
– The Ψ function is defined as the binary matrix αf , where αf denotes the

primitive element of GF(2120) with respect to f(x) = x120 +x9 +x6 +x2 +1.

From the above discussion, it is clear that COMETv2 differs from COMETv1 in
just two components, namely Δ and Ψ functions. The modified Δ function helps
in reducing the hardware footprint as the earlier version required an additional
n-bit of memory. Further, the strategies from [11,13] have significantly higher
data/time complexity against COMETv2 due to the small value of c′ and the
updated Ψ function.

In Corollary 7.2, we apply Theorem 6.1 and relevant multicollision bounds
from Propositions 4.1–4.4, to obtain security bounds for fatCOMETv2 and
tinyCOMETv2.

Corollary 7.2. For n ≥ 4, qp < 2126, and any (qe, qd, σe, σd, qp)-adversary A ,
we have

1. For σc < 264, and νed = 255√
11

:

Advaead
fatCOMETv2(A ) ≤ qp

2125.19
+

σc

2115.62
+

σdσe

2120
+

qpσc

2180.24
.

2. For σc < 262, and νed = 224√
11

:

Advaead
tinyCOMETv2(A ) ≤ qp

2121.58
+

σc

263
+

σdσe

2120
+

qpσd

2149.24
.

3 Each block of tinyCOMETv1 is built of 8 bytes.
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On the Benefits of fatCOMETv2 over fatCOMETv1: Note that the advan-
tage expressions for the two versions look similar. However, fatCOMETv2 has
subtle advantages over fatCOMETv1. For instance, when we restrict qp < 2119

(NIST prescribed), the dominating terms are

– for v1: σdσe/2120 + σc/259

– for v2: σdσe/2120

In fact, the additional term σc/259 for v1, is not just an artifact of the proof.
Indeed, the previous works by Khairallah [11] and Bernstein et al. [13] (although
violate the designers’ prescribed limits) achieve a lower bound which almost
matches this term using encryption queries only. On the other hand, our security
proofs guarantee that even such strategies do not work against v2. Clearly, when
σe ≈ 260, σd  260 and qp  2119, v2 has much better security than v1. This
is an improved security feature of v2, in addition to the fact that it has obvious
implementation advantages. Note that, for qp > 2119 or σe, σd ≈ 260, the two
versions enjoy similar security guarantees.

8 Conclusion

In this paper, we proposed a generalization of the COMET mode of operation,
called gCOMET, and gave a detailed security proof of gCOMET. We view COMET
as an instance of gCOMET and derive its security bounds. Finally, we propose a
refinement of COMET, called COMETv2, that seems to have better performance
and security as compared to COMET. We note that our security proofs are not
complemented with matching attacks, and it is possible that the security bounds
can be improved, particularly for the COMET-64 versions.
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Abstract. This paper proposes a lightweight short-tweak tweakable
blockcipher (tBC) based authenticated encryption (AE) scheme tHyENA,
a tweakable variant of the high profile NIST LWC competition submis-
sion HyENA. tHyENA is structurally similar to HyENA, however, proper
usage of short-tweaks for the purpose of domain separation, makes the
design much simpler compact. We know that HyENA already achieves
a very small hardware footprint, and tHyENA further optimizes it. To
realize our claim, we provide NIST API compliant hardware implemen-
tation details and benchmark for tHyENA against HyENA and several
other well-known sequential feedback-based designs. The implementation
results depict that when instantiated with the tBC TweGIFT, tHyENA
achieves an extremely low hardware footprint - consuming only around
680 LUTs and 260 slices while maintaining the full rate and the almost
birthday bound security. To the best of our knowledge, this figure is
significantly better than all the known implementation results of other
lightweight ciphers with sequential structures.

Keywords: Authenticated encryption · Lightweight · tBC · HyENA ·
Feedback based AE · TweGIFT

1 Introduction

In the last few years, lightweight cryptography has seen a growing popularity due
to increasing security demands for lightweight IoT applications such as sensor
networks, healthcare applications, distributed control systems, cyber-physical
systems, etc., where highly resource-constrained devices communicate and need
to be operated with the low hardware area, low power or low energy. Lightweight
cryptography is about developing cryptographic solutions for these resource-
constrained environments and this research direction has been triggered by the
ongoing NIST Lightweight Standardization Competition (LWC) [19] followed by
c© Springer Nature Switzerland AG 2021
A. Adhikari et al. (Eds.): INDOCRYPT 2021, LNCS 13143, pp. 26–48, 2021.
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CAESAR [11]. As a result, in recent years, the cryptographic community has
witnessed a rise in various lightweight authenticated encryption proposals.

One popular approach to design lightweight AE schemes is to use a sequen-
tial structure as it consumes lesser hardware footprint. Blockcipher (BC) based
sequential AE schemes typically use a feedback function on the previous block-
cipher output, an auxiliary secret state, and the current input (message or asso-
ciated data) block. It outputs the next blockcipher feedback, updates the auxil-
iary secret state and the current output block (in case of message blocks). Thus,
blockcipher-based sequential AE schemes can be well described by the underlying
blockcipher, the auxiliary secret state, and the feedback function. Consequently,
the efficiency and the hardware footprint of the AE scheme also largely depend
on these three components (the underlying blockcipher, the feedback function,
and the auxiliary secret state). In the following context, we assume that we have
an ultra-lightweight and efficient primitive to instantiate the AE scheme. The
efficiency of a construction is primarily dependent upon the rate, the number of
data blocks processed per primitive call. It is well known that a trivial upper
bound on the rate is 1. In this paper, we concentrate only on rate-1 authenti-
cated encryptions with a small hardware footprint such that we can achieve a
lightweight construction along with a high throughput.

1.1 Rate-1 Feedback Based Authenticated Encryption

Zhang et al. in [25], proposed a plaintext feedback-based mode iFEED that has
rate 1. However, it requires a large state size of (3n + k) bits, where n is the
underlying blockcipher’s state size, and k is the key size. CPFB by Montes et
al. [18] is a notable scheme that reduces the state size to (2n + k) bits, at the
cost of a reduction in the rate to 3/4. In CHES 2017, Chakraborti et al. [7]
proposed COFB the first feedback-based AE scheme that achieves rate-1 with an
impressive state size of just 1.5n + k bits. The main feature of COFB is a novel
feedback function, called combined feedback.

In [8,9], Chakraborti et al. studied a generalized feedback-based rate-1 AE
scheme and showed that it is a necessity for any rate-1 feedback-based AE mode
to have an auxiliary state of n/2-bit to achieve security up to 2n/2 queries,
depicting the optimality of COFB in the auxiliary state size. However, they have
observed that the use of the combined feedback requires 2.5n-bit XORs, which
could be improved further using a hybrid feedback HyFB, which results in a
hybrid of plaintext feedback and ciphertext feedback. Based on the HyFB feed-
back function, Chakraborti et al. in [5] proposed a rate-1 AE mode called HyENA,
that uses an n/2-bit auxiliary secret state, but significantly reduces the XOR
count from 2.5n-bit to 1.5n-bit. This seems to achieve the smallest footprint
for any rate 1 blockcipher based authenticated cipher owing to the fact that it
requires the optimal auxiliary state, optimal linear operations. The optimality of
the linear operations can be conjectured from the facts that (i) to implement a
feedback function that takes 2n-bit input and produces n-bit output, one needs
at least n-bit binary operation, and (ii) XOR is one of the most simple oper-
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ations, and hence n-bit XORs seem to achieve the trivial lower bound of any
feedback function.

1.2 Our Contribution

In this paper, we primarily focus on highly optimizing HyENA, i.e. significantly
minimizing the hardware footprint. To achieve the goal, we use a short tweak
tweakable blockcipher based on the well-known blockcipher GIFT [1] to propose a
tweakable variant of HyENA, dubbed as tHyENA. This new variant is structurally
much simpler and removes the redundant operations to reduce the hardware
footprint. tHyENA inherits all the desirable properties of HyENA: (i) single-pass
(one primitive call per data block), (ii) inverse-free (no need for blockcipher
decryption), (iii) extremely low state size and XOR count. Precisely, the use of
tweaks for the purpose of domain separation makes the construction simpler and
removes all the constant field multiplications making the mode even lighter. We
instantiate tHyENA with an ultra-lightweight short-tweak tweakable blockcipher
TweGIFT (designed over the blockcipher GIFT [1]). We also provide concrete
hardware implementation details of tHyENA. The hardware results depicts that
tHyENA with TweGIFT consumes the least hardware area among all the feedback
type (tweakable) block cipher based designs.

1.3 tHyENA in DSCI Light-Weight Competition

In 2020, National CoE, the joint initiative of the Data security council of India
and the Ministry of Electronics and IT (MeitY), announced a lightweight cryp-
tography competition named “Lightweight Cipher Design Challenge 2020” [20].
One of the primary objectives of the challenge is to design new lightweight
authenticated ciphers, and the best designs will be considered for developing the
prototype for ready industry implementation. The algorithm tHyENA has been
nominated as one of the top three candidates in the challenge and has been
selected for the final round. Interestingly, the construction achieves the lowest
hardware footprint, making it to be the most light-weight design, in terms of
area, in the competition.

2 Preliminaries

For n ∈ N, we write {0, 1}∗ and {0, 1}n to denote the set of all binary strings
(including the empty string λ), and the set of all n-bit strings, respectively.
Throughout we fix even integer n as the block size in bits, and often refer to n-
bit strings as blocks. For all X ∈ {0, 1}∗, |X|, referred as the length of X, denotes
the number of bits in X. For any X ∈ {0, 1}n, XL and XR denote the most and
least significant n/2 bits of X, respectively. For all practical purposes, we use
the little endian format for representing binary strings, i.e., the least significant
bit is the right most bit. We use the notation ⊕ to denote binary addition. For
two strings X,Y ∈ {0, 1}∗, X‖Y denotes the concatenation of X and Y . We use
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the notation (X�−1, . . . , X0)
n← X to denote parsing of the string X into � blocks

such that for 0 ≤ i ≤ � − 2, |Xi| = n and 1 ≤ |X�−1| ≤ n. For any predicate E ,
the expression E?a : b evaluates to a if E is true, and b otherwise. For any binary
string X with |X| ≤ n, we define the padding function Pad as

Pad(X) =

{
X if |X| mod n = 0
0n−|X|−1‖1‖X otherwise.

For any binary string X, the truncate function Trunci(X) returns the least sig-
nificant i bits of X.

The set {0, 1}n/2 can be viewed as the finite field F2n/2 consisting of 2n/2 ele-
ments. We interchangeably think of an element A ∈ F2n/2 in any of the following
ways: (i) as an n/2-bit string an

2 −1 . . . a1a0 ∈ {0, 1}n/2; (ii) as a polynomial
A(x) = an

2 −1x
n/2−1 + an

2 −2x
n
2 −2 + · · · + a1x + a0 over the field F2; (iii) a non-

negative integer a < 2n/2; (iv) an abstract element in the field. Addition in
F2n/2 is just bitwise XOR of two n/2-bit strings, and hence denoted by ⊕. P (x)
denotes the primitive polynomial used to represent the field F2n/2 , and α denotes
the primitive element in this representation. The multiplication of A,B ∈ F2n/2

is defined as A � B := A(x) · B(x) (mod P (x)), i.e. polynomial multiplication
modulo P (x) in F2.

For a finite set X , X ← X denotes the uniform at random sampling of X
from X . Let γ = (γ[1], . . . , γ[s]) be a tuple of equal-length strings. We define
mColl(γ) = m if there exist distinct i1, . . . , im ∈ [1..s] such that γ[i1] = · · · =
γ[im] and m is the maximum of such integer. We say that {i1, . . . , im} is an
m-multi-collision set for γ.

Tweakable Blockcipher: For n, τ, κ ∈ N, E-n/κ/τ denotes a tweakable block-
cipher family E, parameterized by the block length n, key length κ, and
tweak length τ . For K ∈ {0, 1}κ, T ∈ {0, 1}τ , and M ∈ {0, 1}n, we use
ET

K(M) := E(K,T,M) to denote invocation of the encryption function of E
on key K, tweak T , and input M .

2.1 Authenticated Encryption

An authenticated encryption (AE) is a symmetric-key primitive that provides
both data confidentiality (or privacy), and authenticity of the input plaintext.
Often, practical scenarios additionally require authenticity for some associated
data. In this case, we extend the ambit of AE to AE with associated data func-
tionality or AEAD, which guarantees privacy for the input message and authen-
ticity for the input message and associated data.

Formally, an AEAD scheme AE is a tuple of algorithms (Enc,Dec) defined
over the key space K, nonce space N , associated data space A, message and
ciphertext space M, and tag space T , where:

AE.Enc : K×A×N ×M → M×T AE.Dec : K×N ×A×M×T → M∪{⊥},

and ⊥ denotes the error symbol indicating authentication failure.
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The encryption function AE.Enc instantiated with key K ∈ K, takes a nonce
N ∈ N (which is usually a unique value for each invocation), an associated data
A ∈ A, and a plaintext M ∈ M as input, and outputs a tagged-ciphertext (C, T )
where |C| = |M |. The corresponding decryption function AE.Dec instantiated
with key K, takes (N ′, A′, C ′, T ′) ∈ N × A × M × T , and returns a decrypted
plaintext M ′ when (N,A,C, T ) authenticates successfully, and it returns the
error symbol ⊥ otherwise. For all key K ∈ K, we write AE.EncK(·, ·) :=
AE.Enc(K, ·, ·) and AE.DecK(·, ·, ·) := AE.Enc(K, ·, ·, ·). For correctness in decryp-
tion, it is required that AE.Dec(K,N,A,AE.Enc(K,N,A,M)) = M for all
(K,N,A,M) ∈ K × N × A × M.

In addition to the block size n, we fix positive even integers κ and η to denote
the key size and nonce size, respectively, in bits. Throughout this document, we
fix n = 128, κ = 128, η = 96, and tag size = n.

2.2 Security Definitions

Adversary: A (q, t)-adversary A is an interactive algorithm with access to
an oracle, that runs in time at most t, and makes at most q oracle queries. By
convention, t = ∞ denotes computationally unbounded (information-theoretic)
and deterministic adversaries. Throughout, we make the plausible assumption
that the adversary is non-trivial, i.e., it never makes a duplicate query. Whenever,
the adversarial queries are allowed to be of arbitrary length, we parametrize the
adversary with additional parameters. For example, an adversary that makes
queries of length at most � blocks, and total length of all queries at most σ blocks
is referred as (q, �, σ, t)-adversary. We write AO ⇒ x to denote the compound
operation: “adversary A outputs x after interacting with oracle O”.

Tweakable Blockcipher Security: The security of any tweakable blockci-
pher family is formalized in terms of the notion of tweakable pseudorandom per-
mutation. Formally, the tweakable pseudorandom permutation or TPRP advan-
tage of any adversary A against tweakable blockcipher E is defined as

Advtprp
E (A) :=

∣∣Pr[AEK ⇒ 1] − Pr[AΠ ⇒ 1]
∣∣ ,

where Π is a uniform at random tweakable permutation sampled from the set of
all tweakable permutations over {0, 1}n with tweak space {0, 1}τ . For ε ≥ 0, the
blockcipher E is called a (q, t, ε)-TPRP if

Advtprp
E (q, t) := max

A
Advprp

E (A) ≤ ε,

where the maximum is taken over all (q, t)-adversary.

AEAD Security: The security of any nonce-based AEAD scheme can be
modeled in terms of the NAEAD notion,. In this model, the adversary is nonce-
respecting, i.e., assuming single-key setting, no pair of distinct encryption queries
share the same public nonce value. Formally, the NAEAD advantage of any
adversary A against AEAD scheme AE is defined as

Advnaead
AE (A) :=

∣∣∣Pr[AAE.EncK ,AE.DecK ⇒ 1] − Pr[A$,⊥ ⇒ 1]
∣∣∣ ,
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where $ returns an independent and uniform at random string of length τ + |M |
for each queried message M . Note that, we overload the ⊥ notation to denote
the “always fail” oracle, which returns ⊥ in all cases, except when A makes a
query (N,A,C, T ), such that there exists an earlier query (N,A,M) to $ and
(C, T ) is the corresponding response, in which case the always fail oracle returns
M . For ε ≥ 0, the AEAD AE is called a (qe, qv, �e, �v, σe, σv, t, ε)-NAEAD if

Advnaead
AE (qe, qv, �e, �v, σe, σv, t) := max

A
Advnaead

AE (A) ≤ ε,

where the maximum is taken over all (qe, qv, �e, �v, σe, σv, t)-adversary, i.e., all
adversary A such that

• the number of encryption queries is bounded by qe; each encryption query
length is at most �e blocks; and the total length across all encryption queries
is at most σe blocks.

• the number of decryption queries is bounded by qv; each decryption query
length is at most �v blocks; and the total length across all decryption queries
is at most σv blocks.

In addition, we let q = qe + qv, � = �e + �v and σ = σe + σv.

Note on AEAD Security Conventions: It is worth noting here that the NAEAD
security notion subsumes [13,23] the conventional security notions such as pri-
vacy and integrity, and provides a combined and uniform security argument for
the concerned AEAD scheme. Although our security analysis will follow the
NAEAD notion, we briefly define the conventional notions as we present our
security claims in terms of the conventional notions.

Privacy Security: We define the privacy advantage of any adversary A
against AEAD scheme AE as

Advpriv
AE (A) :=

∣∣∣Pr[AAE.EncK = 1] − Pr[A$ = 1]
∣∣∣ .

Integrity Security: We say that any adversary A forges an AEAD scheme
AE, if A is able to compute a tuple (N,A,C, T ) satisfying AE.DecK(N,A,C, T ) �=
⊥, without querying (N,A,M) for some M to AE.EncK and receiving (C, T ), i.e.,
(N,A,C, T ) is a non-trivial forgery. The forging advantage for A is defined as

Advint-ctxt
AE (A) := Pr[AAE.EncK ,AE.DecK forges].

3 tHyENA Authenticated Encryption Mode

The tHyENA authenticated encryption mode receives an encryption key K ∈
{0, 1}κ, a nonce N ∈ {0, 1}r, an associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗ as inputs, and returns a ciphertext C ∈ {0, 1}|M | and a tag T ∈
{0, 1}n.

The decryption algorithm receives a key K ∈ {0, 1}κ, an associated data
A ∈ {0, 1}∗, a nonce N ∈ {0, 1}r, a ciphertext C ∈ {0, 1}∗ and a tag
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Fig. 1. tHyENA authenticated encryption mode for a block associated data and m
block message.

Fig. 2. tHyENA authenticated encryption mode for a block associated data and empty
message.

T ∈ {0, 1}n as inputs and return the plaintext M ∈ {0, 1}|C|, corresponding to
the ciphertext C, if the tag T authenticates. Complete specification of tHyENA
is presented in Algorithm 5 and the corresponding pictorial description can be
found in Fig. 1, 2, 3, 4. We use the same hybrid feedback function as defined in
[5]. For completeness, we have given the corresponding pictorial representation
in Fig. 6 and 7 (Fig. 5).

3.1 Features and Design Rationale

Here, we summarize the salient features and design rationale of tHyENA:

(i) Inverse-Free: tHyENA is an inverse-free authenticated encryption algo-
rithm. Both encryption and verified decryption of the algorithm do not require
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Fig. 3. tHyENA authenticated encryption mode for empty associated data and m block
message.

Fig. 4. tHyENA authenticated encryption mode for empty associated data and empty
message.

any decryption call to the underlying block cipher. This reduces the overall hard-
ware footprint significantly, especially in the combined encryption-decryption
implementations.
(ii) Optimal: tHyENA requires (a + m + 1) many block cipher invocations
to process an a block associated-data and m block message. In [6], it has been
shown that this is the optimal number of non-linear primitive calls required for
any nonce based authenticated encryption. This feature is particularly important
for short messages from the perspective of energy consumption, which is directly
dependent upon the number of non-linear1 primitive calls.

1 In general, non-linear primitives consume significantly more energy as compared to
linear counterparts.
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Fig. 5. Formal Specification of tHyENA Authenticated Encryption and Decryption
algorithm. For any n-bit string S, we define SL (and SR) as the most (and least)

significant n/2 bits of S i.e. (SL, SR)
n/2← S. We use the notation � to denote values

that we do not care.
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Fig. 6. HyFB+ and HyFB- module of tHyENA for full data blocks.

Fig. 7. HyFB+ and HyFB- module of tHyENA for partial data blocks.

(iii) Low State-Size: tHyENA requires a state size as low as 3n/2-bits along
with the key state.
(iv) Low XOR Count: To achieve optimal, inverse-free authenticated ciphers
with low state, a possible direction is to use the combined feedback approach
where (i) the previous block cipher output is XORed with the plaintext to gen-
erate the ciphertext, and (ii) the next block cipher input is defined as the XOR
of the plaintext with some linear function of the previous block cipher output.
This technique was used in the popular authenticated encryption mode COFB
[7]. It is easy to see that such combined feedback function require at least 2n
bits of XOR operations (when operated on n bit data), along with some addi-
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tional XOR operations required for the linear function mentioned above. On the
contrary, in tHyENA, we use the concept of hybrid feedback or HyFB, where
the block cipher input is defined partially via ciphertext feedback and partially
via plaintext feedback. This reduces the number of the XOR operations to only
n bits.
(v) No Swap or Field Multiplication by 3 or 32: tHyENA does not require
the constant field multiplications by 3 or 32, or the swap operation during final-
ization, as required in HyENA. It uses the short tweaks efficiently to handle all
the necessary domain separations. This is extremely helpful in having very low
area footprint.

3.2 HyENA vs tHyENA

There are two significant changes in the tHyENA design over HyENA [5].

• The first significant difference between tHyENA and HyENA is that tHyENA
uses Tweakable Blockcipher (TBC) whereas HyENA uses Blockcipher (BC).
This change significantly optimizes the hardware area and throughput. It also
improves the proof structure (the proof is more well structured now).

• The second significant difference is the secret internal state update. We are
simplifying the secret state update and can reduce the update overheads
significantly by making the design more compact.

The above-mentioned modifications ensure that the new design tHyENA has the
following advantages over HyENA:

(i) First, HyENA uses 3 : 1 128-bit Multiplexors and other field multiplications
with 3 (68-bit XOR and 1-bit left) or 32 (uses field multiplication by 3 twice in
sequence and this reduces the throughput) that acquire a significant amount of
hardware area and reduce the throughput. The main reason behind this usage
of multiplexors and field multiplication is the domain separation of the inputs
(that means, differentiating nonce, message, associated data, and the number of
data bits in the last input block for each data type). We use a novel technique
of using a TBC instead of a BC (and additional operations). Generally, in most
of the TBC-based algorithms, the tweak is used as a counter. In this design,
we take a completely different approach and we use the tweak to separate the
domains. In general, there are few domains in most of the designs and a small 4-
bit tweak is sufficient to separate the domains (e.g., the 4-bit tweak can separate
24 = 16 domains) and circuit area for tweak updates can be reduced a lot. In
tHyENA, we use a TBC that deals with small 4-bit tweaks and the area for this
tweak processing circuit is very small (only a few 4-bit XORs) as compared to
3 : 1 128-bit Multiplexors plus field multiplication by 3 or 32. This technique,
can significantly reduce the hardware area and increase the throughput a bit.
(ii) Second, using a TBC makes the design simpler and removes several avoid-
able operations (for example, constant field multiplications with 3 or 32, and the
swap operation can be avoided in tHyENA). This makes the construction cleaner,
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more modular (e.g., we can now replace the blockcipher and several avoidable
operations with a simple TBC). The security proof is now much simpler, well
structured, and easily readable. To be precise, we adopt the Coefficient H tech-
nique for the security proof and HyENA has 8 bad cases to consider. However,
due to the simpler structure of tHyENA, we need only 3 bad cases for the security
proof of tHyENA.

3.3 Instantiation of tHyENA with TweGIFT

We instantiate tHyENA with tBC TweGIFT-128, or simply TweGIFT, the 128-bit
tweakable block cipher with 4-bit tweak and 128-bit key. As the name suggests,
it is a tweakable variant of the GIFT [1] block cipher. TweGIFT is composed of
40 rounds and each round is composed of five operations: SubCells, PermBits,
AddRoundKey, AddRoundConstant, and AddTweak. The first four operations are
identical to that of GIFT. In AddTweak, the 4-bit tweak is first expanded to a
32-bit value:

(x1, x2, x3, x4) → (X,X,X,X) , X ← (x1, x2, x3, x4, S ⊕ x1, S ⊕ x2, S ⊕ x3, S ⊕ x4),

where S = x1 ⊕ x2 ⊕ x3 ⊕ x4. Then the 32-bit value is XORed to the state at an
interval of 5 rounds. Technically speaking, it adds the expanded 32-bit tweak to
bit positions 4i + 3, i = 0 . . . 31. A detailed description can be found in [2].

4 On the Security of tHyENA Mode of Operation

In this section, we prove the NAEAD security of tHyENA in shape of the following
theorem.

Theorem 1. Let Q = qe + σe + qv + σv. For Q ≤ 2
n
2 −1, we have

Advnaead
tHyENA(qe, qv, �e, �v, σe, σv, t) ≤ Advtprp

E (Q, t′) +
2σe

2n/2
+

2σ2
e

2n
+

qv

2n
+

2nσv

2n/2
.

where t′ = t + O(Q).

Without loss of generality, we can assume that Q ≤ 2n/2−1, since otherwise
the result is vacuously true. First, we replace the block cipher EK with a uni-
form random tweakable permutation Π using the standard hybrid argument, and
then replace Π with a uniform random tweakable function Γ : {0, 1}τ ×{0, 1}n →
{0, 1}n using the standard TRP-TRF switching lemma. The cost of these tran-
sitions is accounted in the first two terms of our bound. We will employ the
Coefficient-H technique for the rest of the proof. Before delving further into the
proof we briefly describe this technique in the next subsection.

4.1 Coefficient-H Technique

The coefficient-H technique by Patarin [21,22] is a tool to upper bound the
distinguishing advantage of any deterministic and computationally unbounded
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distinguisher A in distinguishing the real oracle R from the ideal oracle I. We
describe the technique in context of the NAEAD security game, i.e., we take
R = (AE.Enc,AE.Dec) and I = ($,⊥).

The collection of all queries and responses that A made and received to and
from the oracle is called the transcript of A, denoted as ω. Let Λre and Λid

denote the transcript random variable induced by A’s interaction with R and I,
respectively. Let Ω be the set of all transcripts. A transcript τ ∈ Ω is said to be
attainable if Pr[Λid = ω] > 0, i.e., it can be realized by A’s interaction with I.

Theorem 2. For ε1, ε2 ≥ 0, suppose there is a set Ωbad ⊆ Ω, that we call the
set of bad transcripts, such that the following conditions hold:

• Pr[Λid ∈ Ωbad] ≤ ε1; and

• For any τ /∈ Ωbad, τ is attainable and
Pr[Λre = τ ]
Pr[Λid = τ ]

≥ 1 − ε2.

Then, for any computationally unbounded and deterministic distinguisher A, we
have

Advnaead
AE (A) ≤ ε1 + ε2.

We skip the proof of Theorem 2 as it is readily available in several previous
works including [10,17].

4.2 Notations and Initial Setup

Fix a (qe, qv, �e, �v, σe, σv,∞)-adversary A that interacts with either the real
oracle, i.e.,

R := (tHyENA.Enc, tHyENA.Dec),

or the ideal oracle, i.e., I := ($,⊥), making at most

1. qe encryption queries (N+
i , A+

i ,M+
i )i=1..qe

, each of length l+i ≤ �e, with an
aggregate of total σe many blocks, and

2. attempts to forge with qv many queries (N−
i , A−

i , C−
i , T−

i )i=1..qv
, each of

length l−i ≤ �v, having a total of σv many blocks.

We assume that for 1 ≤ i ≤ qe, M+
i and A+

i have m+
i and a+

i blocks respectively,
and for 1 ≤ j ≤ qv, C−

j and A−
j have m−

j and a−
j blocks respectively. So,

l+i = m+
i + a+

i and l−j = m−
j + a−

j . We use the notation X,Y to denote the
intermediate variables. Let

(Si[0], Si[1], · · · , Si[l+i −1]) ← (A+
i [0], · · · , A+

i [a+
i −1],M+

i [0], · · · ,M+
i [m+

i −1]).

Let (λ+
i [j] : 1 ≤ i ≤ qe, 0 ≤ j ≤ l+i ) denote the tweak sequence in the encryption

queries. Similarly, we have the tweak sequence (λ−
i [j] : 1 ≤ i ≤ qv, 0 ≤ j ≤ l−i ) in

the decryption queries. Note that, one can easily deduce these tweak sequences
just by observing the query inputs.
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If bitwise representation of n-bit string G is (Gn−1 · · · G0). Then for u > w,
we denote (Gu · · · Gw) by Gu−w which is a u−w +1-bit substring of G from uth

bit to wth bit of G.

4.3 Overview of Attack Transcript

We begin with a description of the ideal oracle which consists of two phases.

• Online phase: For the ith encryption query (N+
i , A+

i = (Ai[0], . . . ,
A+

i [ai − 1]),M+
i = (M+

i [0], . . . , M+
i [mi − 1])), the oracle samples (Y +

i [a+
i ],

. . . , Y +
i [l+i ]) ←$ {0, 1}n(m+

i +1) independently. It next sets the tag T+
i =

Y +
i [l+i ] and C+

i = (C+
i [0], . . . , C+

i [m+
i −1]) where C+

i [j] = Y +
i [j+a+

i ]⊕M+
i [j]

for 0 ≤ j ≤ m+
i − 1 and returns (C+

i , T+
i ) to A.

• Offline phase: After A makes all the queries the oracle samples other Y +

values as Y +
i [j] ←$ {0, 1}n, for 0 ≤ j ≤ ai − 1.

For convenience, we slightly modify the experiment where we reveal to the
adversary A (after A made all its queries and obtains corresponding responses
but before it outputs its decision) the Y +-values and now the adversary can set
all intermediate values X+

i [j] using Si[j] and Y +
i [j]. Note that Δ+

i = �Y +
i [0]�

and Δ−
i = �Y −

i [0]�.
Overall, the transcript of the adversary ω := (ωe, ωv) be the list of queries

and responses of A that constitutes the query response transcript of A, where

• ωe = (N+
i , A+

i ,M+
i ,X+

i , Y +
i , T+

i )i=1..qe
,

• ωv = (N−
j , A−

j , C−
j , T−

j ,⊥)j=1..qv
.

A prefix for a decryption query is defined as the common prefix blocks between
the decryption query input string and an encryption query (if any) output string
prepended with the nonce and the associated data. The length of the longest
common prefix for the ith decryption query is denoted as pi. Note that if the
decryption query uses a fresh nonce (not occurred during encryption queries),
then it does not share any common prefix with any of the encryption queries
then we set pi = −1.

4.4 Identifying and Bounding Bad Events

We say that a transcript is bad if one of the following conditions is satisfied:

B1: mcoll(�X+�) > n, where �X+� := (�X+
i [j]� : 1 ≤ i ≤ qe, 1 ≤ j ≤ l+i ).

B2: there exists (i, j) �= (i′, j′), such that, λ+
i [j] = λ+

i′ [j′] ∧ X+
i [j] = X+

i′ [j′].

B3: there exists i, (i′, j′), such that, λ−
i [pi +1] = λ+

i′ [j′]∧X−
i [pi +1] = X+

i′ [j′].

The following lemma bounds the probability of bad transcripts in ideal oracle.
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Lemma 1. For σe ≤ 2
n
2 −1, we have

Pr[Λid ∈ Ωbad] ≤ 2σe

2n/2
+

2σ2
e

2n
+

nqv

2n/2
.

Proof. By definition of bad transcripts, we have

Pr[Λid ∈ Ωbad] = Pr[B1 ∨ B2 ∨ B3]
≤ Pr[B1] + Pr[B2] + Pr[B3|¬B1]. (1)

Now, we bound the probability terms on the right hand side one by one:

Bounding Pr[B1]: The event B1 is a multicollision event for uniformly chosen
n many n/2-bit strings out of σe many n/2-bit strings. As the Y +-values are
sampled uniformly and independently in the ideal game, we have,

Pr[B1] ≤
(
σe

n

)
2n/2(n−1)

≤
(

2σe

2n/2

)n

≤ 2σe

2n/2
. (2)

The last inequality follows from the assumption that σe ≤ 2
n
2 −1.

Bounding Pr[B2]: For any (i, j) �= (i′, j′), λ+
i [j] = λ+

i′ [j′] and j, j′ > 0, we
have the following two possibilities:
(a) j < l+i , j′ < l+i′ : for any (i, j) �= (i′, j′),the event X+

i [j] = X+
i′ [j′] is

nothing but two non-trivial linear equations. One is on �Y +
i [j − 1]� &

�Y +
i′ [j′ − 1]� and other is on δj � Δ+

i & δj′ � Δ+
i′ for some constants

δj & δj′ . For i �= i′, we have �Y +
i [j − 1]�, �Y +

i′ [j′ − 1]�,Δ+
i and Δ+

i′ are
independent and uniformly distributed. For i = i′, we have δj �= δj′ and
�Y +

i [j−1]�, �Y +
i′ [j′−1]� are independent and uniformly distributed. Hence

this event has probability at most 2−n. Therefore,

Pr[X+
i [j] = X+

i′ [j′]] ≤ (σe − qe)2

2n
.

(b) j = l+i , j′ = l+i′ : This can be handled in a similar manner as case (a). So,
we have

Pr[X+
i [j] = X+

i′ [j′]] ≤ q2e
2n

.

Therefore,

Pr[B2] ≤ (σe − qe)2 + q2e
2n

≤ 2σ2
e

2n
. (3)

Bounding Pr[B3|¬B1]: The condition ¬B1 implies that there are at most n

possible choices for (i′, j′) for any fixed choice of i′. Once we fix (i′, j′), we
get an equality relation in the least significant n/2 bits. Now, we have the
following cases:
(a) pi = −1: This case is actually not possible. As λ−

i [0] = λ+
i′ [j] if and only

if j = 0. But N−
i �= N+

i′ (since pi = −1), whence X−
i [0] �= X+

i′ [j′].
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(b) 0 ≤ pi < l−i − 1: Since pi ≥ 0, we have N−
i = N+

k for some k. Suppose
k �= i′. Then we obtain a non-trivial linear equation on Δ+

i′ . Therefore,
the probability in this case is at most nqv

2n/2 . Now, suppose k = i′. Then we
must have j′ �= pi+1. Otherwise we get C−

i [pi] = C+
k [pi] which contradicts

the definition of pi. Hence we get the probability at most qv

2n/2 .
(c) pi = l−i − 1: In this case, j′ must equal to l+i′ (as λ−

i [pi + 1] = λ+
i′ [j′]).

Following similar line of argument as in case (b), we get a bound of nqv

2n/2 .

Pr[X−
i [l−i ] = X+

i′ [j′] ∧ ¬B1] ≤ nqv

2n/2
.

By accumulating all the cases above, we get

Pr[B3|¬B1] ≤ nqv

2n/2
. (4)

The result follows from Eq. (1)–(4). ��

4.5 Good Transcript Analysis

We fix ω ∈ Ωgood. Let ω = (ωe, ωv), where

ωe = (N+
i , A+

i ,M+
i ,X+

i , Y +
i , T+

i )i=1..qe
,

and
ωv = (N−

i , A−
i , C−

i , T−
i ,⊥)i=1..qv

.

First, it is easy to see that

Pr[Λid = ω] = 1/2n(σe+qe) (5)

Next, we consider the real world. As ¬B2 holds, all the inputs of the tweakable
random function are distinct and hence all the Y +-values are independent and
uniformly distributed. Therefore, Pr[Λree = ωe] = 1

2n(σe+qe) . Now, we have

Pr[Λre = ω] = Pr[(Λree,Λrev) = (ωe, ωv)]
= Pr[Λrev = ωv|Λree = ωe] × Pr[Λree = ωe]

=
1

2n(σe+qe)
× Pr[Λrev = ωv|Λree = ωe]

=
1

2n(σe+qe)
× (1 − Pr[Λrev �= ωv|Λree = ωe]) (6)

Let E be the event that ∀1 ≤ i ≤ qv, pi + 1 < j ≤ l−i , X−
i [j] = X+

i′ [j′] and
λ−

i [j] = λ+
i′ [j′] for some (i′, j′). Here we remark that, in case of HyENA one

needs to consider another type of collision, where X−
i [j] = X−

i [j′′] for some
j′ < j′′. However, this is not required in our case due to dedicated tweak for
tag generation. As the event ¬B3 holds for the good transcript, Y −

i [pi + 1] is
uniformly random. Due to the property of feedback function, X−

i [pi + 2] is also
uniformly random.
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Now we need to calculate Pr[Λrev = ωv|Λree = ωe].

Pr[Λrev = ωv|Λree = ωe] = 1 − Pr[Λrev �= ωv|Λree = ωe]
= 1 − (Pr[Λrev �= ωv, E|Λree = ωe] + Pr[¬E|Λree = ωe])

(7)

Here, Pr[Λrev �= ωv, E|Λree = ωe] is the probability that ∃1 ≤ i ≤ qv such that T−
i

is correct. But T−
i = Y −

i [l−i ] and the event E implies that Y −
i [l−i ] is uniformly

random. Hence Pr[Λrev �= ωv, E|Λree = ωe] is the probability of guessing T−
i

correctly. Therefore,

Pr[Λrev �= ωv, E|Λree = ωe] ≤ qv

2n
(8)

Now, consider Pr[¬E|Λree = ωe]. The event ¬E can be described as: for all 1 ≤
i ≤ qv and pi +1 ≤ j ≤ l−i , X−

i [j] = X+
i1

[j1] for some i1, j1. The event ¬B1 holds
for good transcripts. Hence (i1, j1) can take at most n values. Then for a fixed
i, we have

Pr[X−
i [j] = X+

i1
[j1]] ≤ n.l−i

2n/2 . Since
∑

1≤i≤qv
(l−i ) ≤ σv, summing over all

1 ≤ i ≤ qv, we have

Pr[Λrev �= ωv,¬E|Λree = ωe] ≤ nσv

2n/2
(9)

From Eq. (5)–(9), we get

Pr[Λre = ω] ≥ 1
2n(σe+qe)

×
(

1 − qv

2n
− nσv

2n/2

)

≥ Pr[Λid = ω] ×
(

1 − qv

2n
− nσv

2n/2

)
.

The result follows from Coefficient-H Theorem 2 in combination with Lemma 1.

A Note on the Security of TweGIFT. In our AEAD algorithm, we utilize
the tweakable pseudorandom permutation security of TweGIFT. Since TweGIFT
is an extension of GIFT-128 blockcipher – a well-known and studied cipher – it
benefits from the extensive analysis [12,16,24,26] already present for GIFT-128.
Indeed, for tweak value 0 (the setting for majority of TweGIFT calls made in our
algorithm), TweGIFT is exactly similar to GIFT-128 blockcipher, whence all the
cryptanalytic results directly translate to this case. In addition, TweGIFT-128
has also been analyzed as a dedicated tweakable blockcipher in [2–4].
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Table 1. Clock cycles per message byte for tHyENA

Message length (Bytes)

16 32 64 128 256 512 1024 2048 4096 16384 32768 262144

cpb 10.3125 6.469 4.547 3.586 3.105 2.865 2.745 2.685 2.655 2.633 2.629 2.625

5 Hardware Implementation Results

tHyENA aims to achieve a lightweight implementation on low resource devices.
tHyENA has a simple structure with a blockcipher and a few linear operations.
It has a small state size and the complete circuit size is dominated by the under-
lying blockcipher. In this section we provide hardware implementation details of
tHyENA instantiated with the GIFT blockcipher.

5.1 Clock Cycle Analysis

We provide a conventional way for speed estimation, i.e., the number of clock
cycles to process input bytes. Since tHyENA processes at least one associated
data (AD) block (one dummy block when AD is empty), we calculate the cpb
assuming one AD block and m message blocks. We use 40 round GIFT and need
40 cycles for the GIFT module. We use 2 more cycles to compute the feedback
and update the Δ value. Overall, tHyENA needs (42(m+1)+81) cycles. Table 1
shows the number of average cycles per input message bytes, which we call cycles
per byte (cpb). The cpb is (42(m + 1) + 81)/16m and it converges to 2.625 for
very large m.

5.2 Hardware Architecture

tHyENA is based on E-t-M paradigm and the message blocks are processed along
with the associated data blocks to generate the ciphertext blocks and the tag.
We use the same circuit for both the associated data and ciphertext processing
as they are computed similarly. Only a change in the blockcipher tweak value for
the two types of input data is required to distinguish. We provide the hardware
architecture and briefly describe the individual components of this architecture.
For the sake of simplicity, we remove the control unit from Fig. 8 and present
a separate control unit in Fig. 9. The main components in the hardware circuit
are briefly described below.
State Registers. The hardware circuit consists of two registers. The primary
state register is used to store the internal state, this register is internally used by
the TweGIFT module. The Δ register is used to store the Δ value, this register
is internally used by the X2 module.
Module TweGIFT. The module TweGIFT is used to compute one round of the
underlying tweakable blockcipher. TweGIFT uses an n-bit internal register to
hold the blockcipher internal state. This register is updated with a new state
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Fig. 8. Hardware architecture diagram

value whenever the state is updated with the round function or other opera-
tions. TweGIFT also uses an internal control unit, that we are omitting from the
description for simplicity.
Other Modules. Apart from the above two main components, we have a ||
module that concatenates two strings into one, a SPLIT module that splits the
internal state into two parts, and X2 module that multiplies Δ by 2. The SPLIT
module is mainly used in the hybrid feedback function.

Remark 1. (Combined Encryption and Decryption) In this implementation, we
mainly focus on a combined encryption-decryption circuit. We observe that we
can also implement encryption-only circuits even with a small decrease in hard-
ware area and with the same throughput.

5.3 Control Unit

We also describe the control unit in our implementation. We first list the control
signals and next we describe the states in the control unit.

� Data Signals. The hardware circuit uses several internal data signals con-
trolled by the finite state machine (FSM). The circuit uses the following signals.

• Start: This signal signifies the start of the circuit. This signal makes a tran-
sition from the WAIT to the COMP EK(N) state.

• Rdy: This signal signifies the start of the corresponding module.
• Empty AD: This signal signifies whether the associated data is empty or

not.
• Last AD: This signal signifies whether the current associated data block is

the last or not.
• Last Msg: This signal signifies whether the current message block is the last

or not.



tHyENA: Making HyENA Even Smaller 45

� FSM. This module controls the hardware circuit for tHyENA. FSM generates
and controls signals to operate the state transitions. It generates and sends
signals to different modules and divides the functionalities of the circuit into
several states. This is depicted in Fig. 9. Note that, for the sake of simplicity
we omit the control unit of the TweGIFT module. This module uses its own
architecture and control unit.

RESET WAIT COMP_EK(N) PROCESS AD PROCESS MSG

EMPTY AD

TAG GEN

Start = 0 Rdy = 0 Empty AD = 0
and

Rdy = 1

Last AD = 0

Last AD = 1

Last Msg = 0

Empty AD = 1
and Rdy = 1

Rdy = 0

Rdy = 0

Start = 1

Fig. 9. Finite state machine

• RESET: This state resetss all the circuit parameters.
• WAIT: This state signifies the start of the circuit. COMP EK(N). This

state corresponds to the first blockcipher call
• PROCESS AD: This state corresponds to the processing of the associated

data blocks.
• PROCESS MSG: This state corresponds to the processing of the message

blocks.
• EMPTY AD: This state signifies that the associated data is empty and the

control goes to the message processing phase.
• TAG GEN: This state corresponds to the tag generation phase and the

control goes to this state from the PROCESS MSG state after the last
message is processed.

Note that, for decryption, the process is the same, with just a few changes in
some control signals.

5.4 Implementation Results

We implement tHyENA on Virtex 7 (xc7v585tffg1761-3), using VHDL and
VIVADO. The implementation follows the NIST LWC API. The result includes
all the overheads caused by this API. Table 2 presents the implementation
results. We follow the RTL approach and a basic iterative type architecture
with 128-bit datapath. The areas are provided in the number of LUTs and
slices. Frequency (MHz), Throughput (Gbps), and throughput-area efficiencies
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are also reported in addition to the hardware areas. Table 2 presents the mapped
hardware results of tHyENA.

We have also made our own implementation for the NIST submission HyENA
under the same setup and using the NIST LWC API. The results for HyENA is
given in Table 2 below. The results reveal that both tHyENA and HyENA achieve
the same frequency but tHyENA is significantly better than HyENA in hardware
area.

Table 2. FPGA implementation results of tHyENA and HyENA

Design (Platform) Slice registers LUTs Slices Frequency

(MHz)

Throughput

(Gbps)

Mbps/LUT Mbps/Slice

tHyENA (Virtex 7) 472 679 261 555 1.73 2.548 6.628

HyENA (Virtex 7) 470 725 280 555 1.73 2.386 6.179

5.5 Benchmarking with Feedback Based Constructions

We benchmark our implemented results using the existing FPGA results (note
that, all the other benchmarking candidates are feedback-based similar as
tHyENA) on Virtex 7. We provide comparisons with the implementations from
the references cited in Table 3 below.

Table 3. Comparison of lightweight feedback based AE modes on Virtex 7. ‘-’ denotes
results not available.

Scheme Rate LUT Slices T’put (GBps) Mbps/LUT Mbps/Slice

tHyENA-TweGIFT128 1 679 261 1.73 2.548 6.628

HyENA-GIFT128 1 725 280 1.73 2.386 6.179

COFB[GIFT] [8,9] 1 771 316 2.230 2.892 6.623

COFB[GIFT]-CAESAR-API [8,9] 1 1041 355 1.164 1.174 2.604

COFB[AES] [8,9] 1 1440 564 2.933 2.031 5.191

COFB[AES]-CAESAR-API [8,9] 1 1496 579 2.747 1.842 4.395

ESTATE-TweGIFT128 [4] 1/2 681 263 0.84 1.23 3.20

SUNDAE-GIFT128 [4] 1/2 931 310 0.84 0.90 2.71

CLOC-AES [14] 1/2 3145 891 2.996 0.488 1.724

CLOC-TWINE [14] 1/2 1689 532 0.343 0.203 0.645

CLOC-AES-Optimized [14,15] 1/2 – 595 0.695 – 1.17

SILC-AES [14] 1/2 3066 921 4.040 1.318 4.387

SILC-LED [14] 1/2 1685 579 0.245 0.145 0.422

SILC-PRESENT [14] 1/2 1514 548 0.407 0.269 0.743
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ESTATE: a lightweight and low energy authenticated encryption mode. IACR
Trans. Symmetric Cryptol. 2020(S1), 350–389 (2020)

5. Chakraborti, A., Datta, N., Jha, A., Mitragotri, S., Nandi, M.: From combined to
hybrid: making feedback-based AE even smaller. IACR Trans. Symmetric Cryptol.
2020(S1), 417–445 (2020)

6. Chakraborti, A., Datta, N., Nandi, M.: On the optimality of non-linear computa-
tions for symmetric key primitives. J. Math. Cryptol. 12(4), 241–259 (2018)

7. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authen-
ticated encryption: how small can we go? In: Fischer, W., Homma, N. (eds.) CHES
2017. LNCS, vol. 10529, pp. 277–298. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66787-4 14

8. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authen-
ticated encryption: how small can we go? IACR Cryptol. ePrint Arch. 2017, 649
(2017)

9. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authen-
ticated encryption: how small can we go? J. Cryptol. 33(3), 703–741 (2020)

10. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

11. CAESAR Committee: CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html/

12. Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distinguishers
with ease. In: Cid, C., Jacobson, M.J., Jr. (eds.) Selected Areas in Cryptography
- SAC 2018, Revised Selected Papers. LNCS, vol. 11349, pp. 115–138. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-10970-7 6

13. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-
line authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 196–215. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34047-5 12

14. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC and SILC.
Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/clocsilcv3.
pdf

15. Kumar, S., Haj-Yihia, J., Khairallah, M., Chattopadhyay, A.: A comprehensive
performance analysis of hardware implementations of CAESAR candidates. IACR
Cryptology ePrint Archive 2017:1261 (2017)

16. Liu, Y., Sasaki, Yu.: Related-key boomerang attacks on GIFT with automated
trail search including BCT effect. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019.
LNCS, vol. 11547, pp. 555–572. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21548-4 30

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.1007/978-3-642-55220-5_19
http://competitions.cr.yp.to/caesar.html/
https://doi.org/10.1007/978-3-030-10970-7_6
https://doi.org/10.1007/978-3-642-34047-5_12
https://doi.org/10.1007/978-3-642-34047-5_12
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://doi.org/10.1007/978-3-030-21548-4_30
https://doi.org/10.1007/978-3-030-21548-4_30


48 A. Chakraborti et al.

17. Mennink, B., Neves, S.: Encrypted Davies-Meyer and its dual: towards optimal
security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 556–583. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 19

18. Montes, M., Penazzi, D.: AES-CPFB v1. Submission to CAESAR (2015). https://
competitions.cr.yp.to/round1/aescpfbv1.pdf

19. NIST: Lightweight cryptography. https://csrc.nist.gov/Projects/Lightweight-
Cryptography

20. National Centre of Excellence. Light-weight Cipher Design Challenge. https://
www.dsci.in/ncoe-light-weight-cipher-design-challenge-2020/
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Abstract. In the modern era, lots of resource-constrained devices have
exploded, creating security issues that conventional cryptographic prim-
itives cannot solve. These devices are connected to an unsecured net-
work such as internet. These lightweight devices not only have limited
resources, but also lead to the demand for new lightweight cryptographic
primitives with low cost, high performance, low cost of deployment, and
effective security outcomes. After reviewing various encryption schemes,
designs, and security details, this paper provides a secure cipher Pan-
ther, which performs both encryption and authentication using the best
components. The design of the Panther is based on a sponge structure
using Topelitz matrix and NLFSR (Non-Linear Feedback Shift Regis-
ter) as the main linear and non-linear components, respectively. Security
analysis shows that it is not affected by advanced cryptographic analysis
proposed in recent cryptographic literature.

Keywords: Authenticated Encryption (AE) · Sponge construction ·
Authenticated Encryption with Associated Data (AEAD) · Lightweight
cipher

1 Introduction

The rapid explosion of technological development has created many new devices
like RFID, IoT, sensor networks and smart cards which makes everything
smarter. In addition, these devices operate in a variety of environments. The
device connects to the Internet, disrupting communication with the attacker’s
target and creating various security loop holes. The data should be encrypted
and/or authenticated. There are three challenges with these new devices. 1)
Secure encryption, authentication only or encryption and authentication 2) Cost
of execution, limitation of space and resources 3) Performance latency, power
consumption, available capacity and memory.

Lightweight Cryptography: Lightweight ciphers [18] helps us to achieve
proper security goals like confidentiality, integrity and authenticity in lightweight
environments. Over the past 50 years, symmetric key encryption has come a long
way. During 1970’s DES followed by RC4 competitions were held. Then, in 2005,
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the eSTREAM competition was held. At the end of 2008, the SHA3 hash com-
petition and in 2013, the CAESAR encryption competition were held as shown
in Fig. 1. There are many symmetric key cryptographic primitives existing in the
literature but they cannot meet the security requirements of resource-constrained
devices. Traditional encryption technologies like AES, SHA2, SHA3, and RSA
are suitable for server and desktop environments, but require a lot of processing
and memory. CAESAR and NIST competitions focused on finding new methods
to meet security requirements in lightweight environments like ACORN, ASCON
[9], Elephant [10], WAGE [1]. The main constraints to consider are power, gate
equivalence and cost. Since, the resource constrained devices are operated by
batteries for power and the size of hardware available is less. Lightweight cryp-
tography needs to find a balance of trade-off among them while designing cryp-
tographic primitives for the respective application.

Fig. 1. Development in cryptographic primitives

Authenticated Encryption: Plain encryption differs from Authenticated
Encryption (AE). AE provides both confidentiality and authentication, whereas
plain encryption just provides confidentiality. The integrity and privacy of con-
fidential messages exchanged across an insecure channel should be guaranteed.
The demand for AE arose from the realisation that integrating distinct authenti-
cation and confidentiality of the block cipher operating modes in a secure manner
will be hard and prone to errors. AE [16] provides confidentiality through encryp-
tion, integrity and assurance of message origin will be provided by authentica-
tion. This technique can be used to design a lightweight cryptographic algorithm
which provides essential security in resource constrained environment. There are
few situations where we need to encrypt and authenticate one part of data and
the other part of data requires only authentication which is known as associ-
ated data, like the header in the packet need not to be encrypted but need to
be authenticated and content to be encrypted and authenticated, then we use
the technique AEAD. Since, a single approach will provide all the features of
security, we are opting for AEAD technique.

The algorithm generates ciphertext and an authentication tag from key, plain-
text, and associated data given as input during encryption. When decrypting
the ciphertext, the algorithm takes the key, authentication tag and related data,
which then returns plaintext or an error, if the tag doesn’t match with the
ciphertext.

AEAD: Both AE and AEAD are encryption algorithms which provide data con-
fidentiality and also ensures authenticity. The destination address of a network
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packet is contained in the packet header, which must be publicly accessible in
order to send the packet. As a result, the header should be authenticated rather
than being encrypted. Associated data must be authenticated before being trans-
mitted. Then we will use authenticated encryption with associated data tech-
nique where associated data is not encrypted and the message is encrypted and
a tag used to authenticate both associated data and plaintext.

Sponge Based AEAD: The sponge function [15] has a finite internal state
that accepts a variable length bit stream as input and outputs a specified length
bit stream. It is capable of creating a variety of cryptographic techniques like
MAC, masking functions, hash algorithms, pseudo random generator, Authenti-
cated Encryption, password hashes. For generating authenticated tag a sponge
function is used as defined in Hash-One [17], but does not provides encryption.
Sponge based AEAD can be easily adapted to meet the requirements and do not
require key scheduling. In the CAESAR competition on AE, sponge construction
is used in 10 of the 57 submissions, and in the NIST LWC competition, sponge
construction is utilised in 20 of the 56 submissions. These results indicate that
sponge-based constructions will be beneficial in a range of next-generation cryp-
tographic primitives, not just in the proposed SHA-3 hashing standard.

The sponge function employs a permutation or transformation function that
works with bits of width b. A finite state with size b bits is partitioned into 2
sections in the sponge construction. The capacity c is the inner part, and the
bit rate r is the outer part, where b = r + c bits. Initialization, absorption, and
squeezing phases are used to process the given input, which is divided into r bit
blocks. The state will be populated in initialization phase using the intial vector
(IV) and key as input. During absorption phase, processing of associated data
and plaintext will happen. The input data is divided into r bits and then send to
the processing. The ciphertext will be obtained while processing the plaintext.
In the squeezing phase, the authenticated tag is obtained from the internal state.

1.1 Our Contribution

There is a need for new AE techniques because the conventional techniques are
prone to attacks as they are unrealistic in constrained environments. The main
constraints in lightweight environments are physical implementation area, power
consumption, resources, performance, proper security. An analysis of numerous
authenticated encryption schemes, their designs, and security aspects was con-
ducted as part of a literature review. We propose an approach to design a secure
cipher using sponge based lightweight AEAD technique named Panther. The
inputs for the algorithm are variable length associated data, plaintext and a key.
We send these inputs to the sponge and extract the ciphertext of length equal
to the plaintext and an authentication tag of given length. We have used pan-
ther to transmit real-time traffic in an insecure network like internet. We have
also analyzed panther against few cryptographic attacks to prove the strength of
the cipher. The results showed that panther is immune to various cryptanalytic
attacks which are proposed against other ciphers in the recent cryptographic
literature.
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Outline of the Paper: We formally present a thorough description of our
proposed encryption, Panther, in Sect. 2. In Sect. 3, we describe the benefits of
several components used in the proposed cipher. Security analysis of Panther is
detailed in Sect. 4 followed by conclusion and future scope in Sect. 5.

2 Proposed Cipher

As indicated in Fig. 2, Sponge is a one-for-all cryptography primitive model
created by Bertoni et al. It works in an iterative manner. It comprises of a 328-
bit state divided into 82 blocks of four bits each. The sponge’s state size splits
into two parts r and c. The state’s bit rate sr is 64 bits, collected from the last
four blocks (16 bits) in each register P, Q, R, S, while the remaining blocks are
used to fill the sponge’s capacity sc.

sr = P15||P16||P17||P18||Q16||Q17||Q18||Q19||R17||R18||R19||R20||S18||S19||S20||S21
sc = state − sr

2.1 Notations Used in Panther

All algorithms described in the paper works on the internal state of 328 bits. The
328 bits is splitted into P, Q, R, S registers. The notations mentioned throughout
the paper are listed in Table 1.

2.2 Encryption and Decryption Methods in Panther

The sponge-based AEAD technique is one of the most successful way to develop
an AEAD algorithm. We utilised sponge construction to create ciphertext and a
variable-length authentication tag. The cipher’s internal state is made up of four
NLFSR’s of lengths 19, 20, 21, and 22 over the field F24 and the field polynomial
x4 + x3 + 1. The sponge’s capacity is 264 bits, while the rate is 64 bits. The
length of each key and initial vector (IV) is 128 bits.

We use Panther to acquire ciphertext and tag in the encryption algorithm,
as illustrated in Fig. 2. The key, IV, plaintext (PT) and associated data (AD)
are inputs to the encryption function E, which returns ciphertext (CT) and a
tag for authentication, written as E(key, IV,AD,PT, hashlen) = (CT, tag).

The internal state is iterated 92 times during the initialization and finaliza-
tion phases using state update function, where as the processing of AD, PT, and
CT states are updated four times, as illustrated in Algorithm 1.

Figure 3 depicts the decryption and verification process, which is described
as D(key, IV,AD,CT, tag) ∈ {PT,Error}.

The decryption process in Algorithm 2 is having three phases: The initializa-
tion phase is followed by absorption phase, in which we will perform ciphertext
processing. The input to this phase is ciphertext blocks which will be xored with
rate bits of sponge and produces plaintext as output. The ciphertext block xored
with rate bits of sponge will be forwarded as rate part of the state for further
state updation function. The last phase is finalization phase, in which the tag is
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Table 1. Notations

Notation Description

Key Secret key of size 128 bits

IV Initialization vector of size 128 bits

PT Plaintext of arbitrary length

CT Ciphertext of arbitrary length

AD Associated data of arbitrary length

Error Error, verification of tag is failed

State The internal state of sponge of size 328 bits

Tp Toeplitz matrix

Sb S-Box

fi Feedback polynomial for register i

gi Interconnection polynomial for register i

rc Round constant

F State update function

x Complement of x

sr, sc Bit rate of size 64 bits, capacity of sponge of size 264 bits

P,Q,R, S Size of internal state is 328 bits which splits into P,Q,R, S

⊕ XOR

⊗ Field multiplication over F24

0∗||1 Zeros followed by 1

>> Right Shift

Fig. 2. Sponge based AEAD encryption

Algorithm 1. Encryption
1: function Encryption(key, IV, AD, PT, hashlen)
2: state = 0
3: state = Initialize(key, IV ) � Initialization Phase
4: state = AdProcessing(state, AD) � Absorption Phase � AD Processing
5: state, CT = PlaintextProcessing(state, PT ) � Plaintext Processing
6: tag = Finalization(state, hashlen) � Finalization Phase

return CT, tag
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Fig. 3. Sponge based AEAD decryption

verified. If the result of encryption tag is same as the tag obtained during the
decryption process, the tag is verified, and the plaintext obtained matches the
original message. Otherwise, an error is returned.

Algorithm 2. Decryption
1: function Decryption(key, IV, AD, CT, tag)
2: state = Initialize(key, IV ) � Initialization Phase
3: state = AdProcessing(state, AD) � Absorption Phase � AD Processing
4: state, PT = CiphertextProcessing(state, CT ) � Ciphertext Processing
5: decTag = Finalization(state, hashlen) � Finalization Phase
6: if tag == decTag then

return PT
7: else

return Error

2.3 Panther AEAD

To generate ciphertext and tag, we use sponge-based authenticated encryption.
The decryption method is the inverse of the encryption method. The data is
processed in the absorption phase and does not need to be encrypted. The three
phases of authenticated encryption are initialization phase, absorption phase,
and finalization phase.

2.4 Initialization Phase

The inputs are key and IV, both of which are 128-bit long. The key is loaded first,
then IV. The remaining bits are made up of 64 bits of key complemented bits,
seven 1’s, and a 0 at the end. Using state update function F , state is updated
for 92 times. The initialization process is explained via the Algorithm 3.

2.5 Absorption Phase

The absorption phase partitions both associated data and plaintext into r bit
chunks. The input bits are XORed with state bits and interleaved with state
update function F. The associated data is organised into k 64-bit blocks. Each
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Algorithm 3. Initialization Phase
1: function Initialize(key, IV )
2: for i = 0 to 127 do
3: state[i] = key[i]
4: i + +

5: for i = 0 to 127 do
6: state[i + 128] = IV [i]
7: i + +

8: for i = 0 to 63 do
9: state[i + 256] = key[i]

10: i + +

11: for i = 0 to 7 do
12: state[i + 320] = 1
13: i++

14: state[327] = 0
15: state = F(state, 92) � State update function

return state

of these k blocks is updated four times with function F. Plaintext is divided into
n blocks of 64 bits each after processing k blocks. We will obtain ciphertext while
processing the plaintext. Once all of the input blocks have been processed, the
state is updated 92 times before switching to the squeezing phase. The absorption
mechanism is explained in Algorithm 4.

2.6 Ciphertext Processing

In decryption process we will perform ciphertext processing as shown in the
Algorithm 5. The received ciphertext is divided into blocks of 64 bits and given
to this phase as input. The state bits are XORed with ciphertext. Here, in this
step we will retrieve the PT.

2.7 Finalization Phase

Here, the rate part sr of the internal state of sponge is given as output blocks
which is interlaced with four applications of function F. The user’s hash length
input determines the number of output blocks. The authentication tag is the
result of this phase. The Algorithm 6 describes this phase.

2.8 State Update Function

The cipher’s internal state is made up of four NLFSR of length 19, 20, 21, and 22
over F24 . The state is updated 92 times during the initialization and finalization
stages, and four times during the intermediate rounds. The feedback polynomial
value, the interconnection polynomial value, and the round constants are all
calculated here for each NLFSR feedback. The results of the four NLFSR are
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Algorithm 4. Absorption Phase
1: function AdProcessing(state, AD)
2: adlen = length(AD)
3: if adlen%64! = 0 then
4: pad = 64 − (adlen%64) − 1
5: AD = AD||1||0pad

6: AD1, AD2...., ADk = AD � Dividing into k blocks
7: for i = 1 to k do
8: for j = 0 to 63 do
9: sr[j] = sr[j] ⊕ AD[i][j] � Array of rate bits

10: F (state, 4) � State update function
return state

11: function PlaintextProcessing(state, PT )
12: ptlen = length(PT )
13: if ptlen%64! = 0 then
14: pad = 64 − (ptlen%r) − 1
15: PT = PT ||1||0pad

16: PT1, PT2, · · · , PTn = PT � Dividing into n blocks.
17: ct = 0
18: for i = 1 to n do
19: for j = 0 to 63 do
20: sr[j] = sr[j] ⊕ PT [i][j]
21: CT [ct] = sr[j]
22: ct + +

23: if i < n then
24: F(state, 4) � State update function

return CT, state

Algorithm 5. Ciphertext processing
1: function Ciphertext Processing(state, CT )
2: CT1, CT2...., CTK = CT � Dividing into k blocks of each size r
3: n = 0
4: for i = 1 to k do
5: for j = 0 to 63 do
6: PT [n] = sr[j] ⊕ CT [i][j]
7: sr[j] = CT [i][j]

8: if i < k then
9: F(state, 4) � State update function

return state, PT

then sent to a filter function, which performs linear and nonlinear operations.
Then the registers will be shifted by one block. The P18, Q19, R20, S21 blocks
are updated with the new result. The polynomial x4 + x3 + 1 is used to perform
field multiplication (Figs. 4 and 5).
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Algorithm 6. Finalization Phase
1: function Finalization(state, hashlen)
2: F(state, 92)
3: t = 0
4: if hashlen%64 == 0 then
5: for i = 0 to (hashlen/64) − 1 do
6: for j = 0 to 63 do
7: tag[t] = sr[j]
8: t = t + 1

9: F(state, 4)

10: else
11: for i = 0 to (hashlen/64) − 1 do
12: for j = 0 to 63 do
13: tag[t] = sr[j]
14: t = t + 1

15: F(state, 4)

16: for j = 0 to (hashlen%64) − 1 do
17: tag[t] = sr[j]
18: t = t + 1

return tag

Algorithm 7. State update function
1: function F(state, n)
2: for i = 1 to n do
3: fp = P0 ⊕ P7 ⊕ P10 ⊕ P6 ⊗ P18 � Step 1: Calculate Feedback Polynomial
4: fq = Q0 ⊕ Q4 ⊕ Q6 ⊕ Q7 ⊕ Q15 ⊕ Q3 ⊗ Q7

5: fr = R0 ⊕ R1 ⊕ R15 ⊕ R17 ⊕ R19 ⊕ R13 ⊗ R15

6: fs = S0 ⊕ S1 ⊕ S4 ⊗ S10 ⊕ S11 ⊗ S18

7: gp = Q9 ⊕ R10 ⊕ S12 � Step2: Calculate Interconnection Polynomial
8: gq = P4 ⊕ R2 ⊕ S5

9: gr = P12 ⊕ Q11 ⊕ S16

10: gs = P16 ⊕ Q17 ⊕ R2

11: rc1, rc2, rc3, rc4 = (0111)2, (1001)2, (1011)2, (1101)2 � Step3: Round
Constant selection

12: l1 = fp ⊕ gp ⊕ rc1 � Step4: Creating inputs for filter function
13: l2 = fq ⊕ gq ⊕ rc2
14: l3 = fr ⊕ gr ⊕ rc3
15: l4 = fs ⊕ gs ⊕ rc4
16: [d1, d2, d3, d4]

T = Tp ∗ [l1, l2, l3, l4]
T � Step5: toeplitz multiplication(Tp is

toeplitz matrix)
17: [t1, t2, t3, t4]

T = Tp ∗ [Sb[d1], Sb[d2], Sb[d3], Sb[d4]]
T � Step6: S-box(Sb)

followed by toeplitz multiplication
18: P >> 1, Q >> 1, R >> 1, S >> 1 � Step7: Shift the Registers
19: P18, Q19, R20, S21 = t1, t2, t3, t4
20: n + +

return state
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Fig. 4. fi function

Fig. 5. li −→ ti function

2.9 Toeplitz Matrix

Diffusion layers are constructed using MDS (Maximum Distance Separable)
matrices. It is a square matrix with non-singular submatrices. The toeplitz matri-
ces can be used to reduce the complexity of multiplication by using shift and
xor operations. The field polynomial should be chosen so that fewer gates are
required. As a linear layer, we’re utilising the toeplitz matrix. Toeplitz matrices
have a constant in descending diagonal from left to right. A typical 4×4 toeplitz
matrix looks like
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T =

⎡
⎢⎢⎣

t0 t1 t2 t3
t−1 t0 t1 t2
t−2 t−1 t0 t1
t−3 t−2 t−1 t0

⎤
⎥⎥⎦

We don’t need to keep all of the matrix element, just the first row and first
column will suffice. As a result, we can reduce storage complexity. Diffusion and
confusion attributes are included in every state change. A matrix is said to be
“circulant” if each row is a left circulant shift of the preceeding row. Toeplitz
Matrices that circulate are known as circulant matrices. We are using a 4 × 4
Toeplitz matrix which is both MDS and circulant.

Tp =

⎡
⎢⎢⎣

1 1 t t−1

t−2 1 1 t
1 t−2 1 1

t−1 1 t−2 1

⎤
⎥⎥⎦

Consider the primitive element t, which is a root of t4 + t3 + 1, then the
matrix Tp(t) has an XOR count 10 + 4 × 3 × 4 = 58.

2.10 Substitution Box

S-boxes are the fundamental building blocks of practically all modern stream
ciphers, and they play a critical role in maintaining security. In a cipher, they’re
one of the most important nonlinear components. To make the cipher resistant
to all types of cryptanalytic attacks, they must be carefully developed or chosen.
We have selected a 4 × 4 S-box from well studied and tested Present [8] cipher.

di 0 1 2 3 4 5 6 7 8 9 A B C D E F

Sb[di] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

3 Design Rationale

Our proposed scheme’s goal is to achieve the best possible balance of size, speed
in terms of software, hardware and security. Because of its well-known hard-
ware efficiency, we used an NLFSR in the state update of sponge. To withstand
standard cryptographic attacks and to ensure that every state bit impacts the
entire state, the state is updated in a nonlinear fashion using toeplitz followed
by S-box followed by toeplitz matrix. The majority of our design is based on
well-researched and standard primitives.

Because the message given into the internal state of the sponge, we can get
nearly free authentication security. The huge number of iterations in the initial-
ization is primarily intended to ensure that the secret key is better safeguarded
when IV is repeated.
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The problem is that because we employed nonlinear feedback registers in
our sponge construction for state updation, it is difficult to track differential
propagation in the state, especially if we wish to provide robust security of 128-
bit. Our strategy is to address this issue so that authentication security may
be simply assessed by concatenating four different sized linear feedback shift
registers. This mechanism used to guarantee, if once exists a difference in the
state, the S-box and toeplitz function and tap positions will help to eliminate the
differential propagation. We have chosen the suitable tap points for all NLFSR’s
to guarantee high security.

3.1 Choice of the Mode for Authenticated Encryption

Our authenticated encryption mode design idea is based on the sponge method-
ology [5]. When compared to other available building approaches, such as vari-
ous block cipher or stream cipher modes the sponge-based design offers several
advantages. The sponge construction has been thoroughly researched, examined,
and verified as secure for a variety of applications. Furthermore, the sponge con-
struction is utilised in Keccak, the SHA-3 winner. Other capabilities such as
hash, MAC, and cipher can be added as needed. The design is elegant and sim-
ple, with a large internal state and no need of key scheduling. We can compute
plaintext and ciphertext blocks in parallel without having to wait for the com-
plete message or message length input. Encryption and decryption uses the same
permutation which reduces low implementation overhead. We chose the rate bits
in a non-sequential manner to make the keystream more unpredictable. Our
design includes a 92-round keyed initialization and finalisation phase, which is
more robust than prior sponge-based authenticated encryption designs. Though
an attacker is able to recover the internal state of sponge while data processing,
this does not imply that key will be retrieved completely during trivial forgeries.
Bertoni [6] proved that the sponge’s security is O(2c/2). The security in our
cipher is O(2132).

3.2 Positioning of the Key and IV

The primary objective of loading the initial values into the state is to keep the
different instances separate. In our design, the key is loaded to the first 128 bits
of the state, followed by IV for the following 128 bits, and the remaining bits
are loaded with the complement of 64 bits from beginning then seven 1’s and a
zero. Even though both the key and the IV are zeros, the positioning of key, IV
prevents the whole state undergoing zero.

3.3 Choice of Rate Positions

The internal state consists of a rate component and a capacity part, with the
rate part allowing the attacker to insert messages into the state. The state’s
rate locations are determined by the security and efficiency of the hardware
implementation. From a security standpoint, the chosen rate locations allow the
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feedback polynomial to disperse the input bits as quickly as feasible after absorb-
ing the message into the state, resulting in quicker confusion and diffusion. Using
the shifting property, the length of the process of updating the rate positions is
reduced.

3.4 Substitution Layer Selection

A 4 × 4 S-Box is used in the substitution layer, chosen from the well known
PRESENT cipher and was created to enhance diffusion in lightweight environ-
ments. The direct outcome for hardware efficiency will be attained by employing
a 4×4 S-box which is generally significantly smaller than an 8×8 S-box. Because
this S-box has been thoroughly researched and tested, it will be resistant to both
differential and linear attacks, as well as well-suited to hardware implementation
efficiency. The nonlinear function S-box adds difference noise to the feedback to
reduce forgery attempts success rate.

The characteristics of this S-box are as follows: Nonlinearity = 4, differential
uniformity = 4. The S-box has a balanced output, and there are no fixed points
in the S-box.

3.5 Choice of Linear Layer

A circulant matrix is a matrix in which each row represents one cyclic shift
from the preceding row. Because the entire matrix may be produced from the
initial row, these matrices are useful in hardware design. MDS matrices has been
utilised as the diffusion layer because of the highest diffusion power. For example,
the diffusion layer of AES uses MDS matrix. The toeplitz matrix, which is both
an MDS and a circulant matrix was chosen. We picked the Toeplitz matrix
because it has a lower XOR count, which means less hardware is needed, and
we don’t have to store all of the elements in the matrix as it is circulant, which
decreases storage complexity. For storing the matrix, we just require a single-
dimensional array with (2n − 1) items. The diffusion characteristics of Toeplitz,
which is an MDS matrix, are well known. Under the irreducible polynomial
x4 + x3 + 1, the minimal value of the XOR count of a 4 × 4 MDS matrix over
F24 is 10 + 4 × 3 × 4.

4 Security Analysis

4.1 Linear and Differential Cryptanalysis

Linear Cryptanalysis: It attempts to exploit high possibility of linear expres-
sions with ciphertext bits, plaintext bits, and key bits occurring. This is a known
plaintext attack, which implies that attacker will be aware of few pairs of plain-
text with their corresponding ciphertexts. On the other side, the attacker has no
idea what plaintexts and ciphertexts are exposed. It is plausible to suppose the
attacker is aware of some random pairs of plaintexts and ciphertexts in many
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applications and circumstances. The aim of this attack is to figure out expres-
sions with high or low likelihood of occurrence. When a cipher tends or does not
hold a linear equation, it has weak randomisation capabilities.

We need to calculate the linear probability bias that is the deviation of linear
expression probability from 1/2. If a linear expression holds with probability pL
for some randomly picked plaintexts with associated ciphertexts then probabil-
ity bias is pL − 1/2. If the value of the probability bias is high then more linear
cryptanalysis may be used with some known plaintexts. We take into account the
features of the single non linear component: the S-box to create linear expres-
sions. It is feasible to construct linear approximations among pairs of input and
output bits in the S-box after the non-linearity features of the S-box have been
identified.

The Table 2 depicts all linear approximations of the S-box used in the cipher.

Table 2. LAT table

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 +8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −2 −2 0 0 −2 +6 +2 +2 0 0 +2 +2 0 0

2 0 0 −2 −2 0 0 −2 −2 0 0 +2 +2 0 0 −6 +2

3 0 0 0 0 0 0 0 0 +2 −6 −2 −2 +2 +2 −2 −2

4 0 +2 0 −2 −2 −4 −2 0 0 −2 0 +2 +2 −4 +2 0

5 0 −2 −2 0 −2 0 +4 +2 −2 0 −4 +2 0 −2 −2 0

6 0 +2 −2 +4 +2 0 0 +2 0 −2 +2 +4 −2 0 0 −2

7 0 −2 0 +2 +2 −4 +2 0 −2 0 +2 0 +4 +2 0 +2

8 0 0 0 0 0 0 0 0 −2 +2 +2 −2 +2 −2 −2 −6

9 0 0 −2 −2 0 0 −2 −2 −4 0 −2 +2 0 +4 +2 −2

A 0 +4 −2 +2 −4 0 +2 −2 +2 +2 0 0 +2 +2 0 0

B 0 +4 0 −4 +4 0 +4 0 0 0 0 0 0 0 0 0

C 0 −2 +4 −2 −2 0 +2 0 +2 0 +2 +4 0 +2 0 −2

D 0 +2 +2 0 −2 +4 0 +2 −4 −2 +2 0 +2 0 0 +2

E 0 +2 +2 0 −2 −4 0 +2 −2 0 0 −2 −4 +2 −2 0

F 0 −2 −4 −2 −2 0 +2 0 0 −2 +4 −2 −2 0 +2 0

It is now quite straightforward to create a secure round function. An S-box
layer plus a diffusion layer built on MDS code gives a high security margin
against differential and linear attacks straight away, even when the number of
rounds is minimal.

Differential Cryptanalysis: This is a chosen plaintext attack where the
attacker selects inputs and outputs to infer key. It exploits high likelihood of
few plaintext differences goes into the cipher’s final round. Using this highly
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likely differential characteristic and by utilising information flowing into the last
round of the encryption, we may extract bits from the last layer of sub keys.

It makes use of information from XOR of 2 inputs(input difference) and XOR
of 2 outputs (output difference). The attacker selects an input difference x, and
has several tuples (x1, x2, y1, y2), with x1, x2 as inputs and y1, y2 as outputs.
Attacker guesses the key value of the previous round for each pair of y1 and
y2 and decrypts the XOR at the last but one round. Checks whether the result
matches the most likely outcome and keeps track of the number of matches in a
frequency table for each key. The correct key will have a high frequency.

The distribution table for differences in S-boxes measures how many pairings
with a certain difference of input leads to a certain difference of output. It’s a
crucial step in finding high-probability transitions and building the differential
characteristics, which will be employed later in the attack. The difference distri-
bution table (DDT) of the S-box is provided in Table 3. All iterative differences
are copied to the diagonal of the DDT. The S-box has a differential uniformity
of 4 and a differential branch number of 3.

Table 3. DDT table

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0

2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0

3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0

4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0

5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0

6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4

8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4

9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

A 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0

B 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0

C 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0

D 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0

E 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

F 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

Differential Attack Using ML Technique: Following in the traditions of
Gohr’s [11] work on deep learning-based round reduction cryptanalysis(DL),
Baksi [3] discusses a deep learning-based solution for differential attacks on non-
Markov ciphers by simplifying the differentiating problem into a classification
strategy, they used a range of models with varied widths and numbers of neu-
rons, such as Convolutional Neural Networks (CNN) and MultiLayer Perceptron
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(MLP). We utilized Tensorflow, Keras, and the Adam algorithm as optimizer
function. We trained the model offline by introducing a large number of input
differences (t) into the cipher and storing all of the output differences as training
data. The accuracy of ML model training reports is (α = 0.6) > 1/t. Hence, we
can move on to the next phase. During the online phase, we trained the ML
model by treating it like an oracle and putting it to the test with a variety
of random input differences. The accuracy (α = 0.4) < 1/t is revealed by the
results. We can therefore ensure that the proposed cipher acts as an random
oracle and has good random characteristics.

4.2 Slide Re-synchronization Attack

The attack objective is to discover the related keys and initial values. With
a probability of 2−2, there appears a related (key′, IV ′) pair for each pair
(key, IV ). The slide attack [7] when applied to the stream ciphers initializa-
tion is known as the slide re-synchronization attack. Attacker takes advantage
of this fact and then try to find the related pair

(key′, IV ′) = ((k′
0, k

′
1, · · · , k′

127), (IV ′
0 , IV ′

1 , · · · , IV ′
256, k

′
127))

with a probability of 2−2, this yields the 1-bit shifted keystream sequence. Their
attack strategy is based on two observations:

1. States of the key initialization process are similar to each other.
2. Key set up and keystream generation are similar.

The relationship between (key, IV ) and (key′, IV ′) is key = (k0, k1, · · · , k127)
=⇒ key′ = (k1, k2...., k127, b), where b ∈ {0, 1}, IV = (IV0, IV1, · · · , IV127) =⇒
IV ′ = (IV1, IV2...., IV127, 1). They showed that stream ciphers which have sim-
ilar states in the initialization process and using similar mechanisms for key
setup and keystream generation are vulnerable to slide resynchronization attacks.
While it does not yet produce an effective key recovery attack, it indicates an
initialization vulnerability that may be overcome with a small amount of work.
Our cipher resists this attack as we are using other NLFSR’s data while updat-
ing the state. Some of the initialization bits are a mix of complement of key, so
it won’t undergo slide-resynchronization attack.

4.3 Time Memory Trade-Off Attack

This is one of the general attacks on any cipher. It has mainly two phases

1. Preprocessing Phase
2. Realtime Phase

In preprocessing phase, attacker try to understand the structure of the cipher
design and then creates a summary of all the findings in some tables. Attacker
invests more time in this phase to gather as much information as possible.
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In real time phase, attacker uses the pre-computed tables in the earlier phase
to obtain keys in a quicker way. Hellman [13] is famous for the well-known
time/memory trade-off exploit. It employs any parameter combination that sat-
isfies TM2 = N2, P = N,D = 1. The best T and M options are determined
by the relative costs of these computing resources. Hellman obtains the precise
trade-off T = N2/3 and M = N2/3 for block ciphers by selecting T = M . Bab-
bage [2] and Golic [12] separately described the simplest time memory trade-off
attack which will be referred as BG attack. They reduced preprocessing time to
half (P = M) and also the attack time to half (T = D).

To prevent tradeoff attacks (TMTO attacks) with l bit key and v bit IV, the
internal state size must be at least twice as large as the key size. Then the basic
TMTO attack would have complexity at least O(2l), which is equivalent to the
exhaustive key search.

Assume pre-computation time to be 2p. The attacker observes 2d frames and
mounts an online attack with time 2t and memory 2m to recover the secret key
K of one frame. Then the TMTO attack would satisfy the following constraints.

p = l + v − d

t � d

t + m = l + v

(1)

In the pre-computation phase, we generate keystream sequences, i.e. frames, for
2m random (Key, IV) pairs and store them in a list in memory. Next in the
online phase, we observe 2d frames using which we are trying to recover the
corresponding secret key K. From the birthday paradox, it follows that one of
these frames will be broken when

m = d = (l + v)/2 (2)

From the above Eqs. (1) and (2), it means that the size of IV should be approx-
imately l bits; otherwise the TMTO attack will be faster than the brute-force
attack. In our design, l = v = 128. Assume d = 64, i.e. we could observe 264

frames. Then from (1), we have p = 192, t � 128 and m � 128. This implies
that the complexity of TMTO attack on our design is at least same as that of
brute-force attack.

4.4 Fault Attack

Fault attacks [14] is one of the powerful attacks on any cipher and have shown
to be efficient against various stream ciphers. It’s uncertain whether or not these
attacks are truly possible. Adversary is allowed to flip bits in any of the shift
register is one scenario in a fault attack. However, the attacker will not have
complete control over the amount of defects or their precise position. A much
more powerful assumption is that the opponent can flip precisely one bit, but
at a position that he is unable to control. He also has the ability to reset the
encryption and introduce a new flaw. If the attacker can repeatedly reset the
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encryption, each time generating a new defect in a known place that he can
estimate from the output difference. Given the more realistic premise that the
adversary is unable to control the amount of faults inserted, determining the
induced difference from the output differences appears to be more challenging.
In the NLFSR, it is feasible to introduce flaws. These flaws will propagate non-
linearly in the NLFSR, making their evolution more difficult to forecast. As a
result, it appears that inserting faults into the NLFSR is more challenging than
LFSR.

4.5 Correlation Attack

The proposed architecture passes all structural tests [19], includes key/keystream
correlation test, which evaluates correlation of key and the associated keystream
by fixing an IV. The IV/keystream correlation test is the second test, which
looks at the correlation of IV and related keystream by fixing a key. The next
one is the frame correlation test, which examines the correlation of keystreams
with several IV’s. The results showed the cipher is resilient against correlation
attack.

Correlation attack takes advantage of any correlation between the keystream
and the LFSR output in the cipher. The keystream may be thought of as a
noisy or distorted version of the LFSR output. The issue of determining the
LFSR’s internal state is therefore reduced to a decoding problem, with keystream
representing the received codeword and LFSR internal state representing the
original message. However, unlike LFSR-based ciphers, the recommended state
of the ciphers changes in a non-linear form, making it impossible to determine
how an attacker should combine these equations to retrieve the condition.

4.6 Cube Attack

We investigated the proposed cipher by selecting 100 cubes and generated 1000
keystream bits corresponding to each cube. For computing the equations we have
set the IV vectors to zero at positions other than the cube. Random 128 bit
vector is generated and used as key K. Then for each cube and ith keystream bit
Fi(K, IV ), the polynomial

∑
IV ∈C Fi(K, IV ) is verified for linearity by checking

the relation (3) for sufficient number of random key pairs (X,Y ).
∑

IV ∈C

Fi(X + Y, IV ) =
∑

IV ∈C

Fi(X, IV ) +
∑

IV ∈C

Fi(Y, IV ) +
∑

IV ∈C

Fi(0, IV ) (3)

Note that the nonlinearity of the component functions of S-box is 4 and its
algebraic immunity is 2. Also for the proposed cipher after 92 rounds of the
initialization phase, the degree of the output polynomial is estimated to be very
high. As a result, it would be hard for an attacker to gather low-degree relations
among the secret key bits.
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4.7 Diffusion of Key and IV over the Keystream

This test verifies that every single bit of a key and an IV on the keystream has
been diffused. To meet the diffusion condition, every single bit of key and IV
must have an equal probability of affecting the keystream. Small differences in
key or IV must produce huge change in the keystream. This test begins with the
selection of randomly chosen key and IV and produces a length of keystream (L).
New keystreams are produced by altering key and IV bits. Create a matrix (k +
v)×L by applying XOR on original keystream and bit changed keystreams. This
method is done for N times and resulting matrices are summed up. To evaluate
diffusion property for the matrix entries we apply Chi-Square Goodness of Fit
test. When N is high, the elements in the matrix follows normal distribution of
mean N/2, variance N/4, resulting in a secure cipher.

We have picked [0–498], [499–507], [508–516], [517–525] and [526–1024] as
the category boundaries using these estimated probabilities. To pass the Chi-
square goodness of fit test, which has four degrees of freedom and a significance
threshold of α = 0.01 the resultant chi-square value should be χ2 � 13.277. Here,
the observed and predicted values are compared, and our design passed with a
average chi-square value of χ2 = 4.4 after analyzing various sample sizes.

4.8 Banik’s Key-Recovery Attack

The existence of roughly 230 IV’s for each key in Sprout was originally noted
out in this work [4], so that the LFSR state becomes entirely 0state following
the Key-IV mixing phase. The LFSR does not get feedback from the output bit
during the keystream phase, and so remains in the zero state throughout the
evolution of cipher weaken the cipher’s algebraic structure. Their work was used
to report the following: In practical time, key-IV pairings were discovered that
produced keystream bits with a period of 80. In the multiple IV mode, a key
recovery attack was recorded. The attacker searches keystream for a fixed secret
key and several secret IVs, then waits until one of the IVs is queried, causing the
LFSR to fall into the all zero state after the key-IV mixing. Because the cipher’s
algebraic structure was weakened, simple equations on the key bits could be
derived, which could be solved to discover the secret key.

To overcome this, we used a constant 1 in the last bits of the state in Pan-
ther, so that when the cipher eventually enters keystream generation mode, the
NLFSR state is never all zero because the last bits are 1’s, and it never falls into
the all zero trap.

4.9 Result of NIST Tests

For testing pseudo random sequence generators we can use the Statistical Test
Suite SP800-22 of NIST. It consists of 16 tests that check if the bits produced
by each encryption method are random. 1000 files are used to perform this test,
each of which has a 106 bit sequence and corresponds to a distinct key and IV.
In the parentheses beside each test, the input parameters used for the test are
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Table 4. NIST results

S. No. Statistical tests p-value Proportion

1 Frequency 0 851383 1.0000

2 Block frequency (m = 100000) 0.657933 0.9905

3 Forward cumulative sums 0.062821 0.9815

4 Backward cumulative sums 0.678686 0.9900

5 Runs 0.145326 1.0000

6 Longest runs of ones (M = 1000) 0.657933 0.9900

7 Non-overlapping template (m = 9, B = 000000001) 0.494392 0.9905

8 Universal (L = 9, Q = 5120) 0.419021 1.0000

9 Overlapping template (m = 9) 0.171867 0.9860

10 Spectral DFT 0.202268 0.9968

11 Approximate entropy (m = 10) 0.759756 0.9900

12 Rank 0.699313 0.9853

13 Random excursions (x = ±1) 0.568055 0.9968

14 Random excursions variant (x = −1) 0.534146 0.9880

15 Linear complexity (M = 500) 0.319084 0.9853

16 Serial (m = 16) 0.514124 1.0000

listed in Table 4. If we take a sample data of 1000 binary sequence size, the
minimal passing rate for each statistical test is about equal to 0.980567%. We
may conclude from Table 4 that the suggested cipher passed all NIST randomness
tests since the p-value uniformity of every test is larger than or equal to 0.01.

4.10 Diffusion of Plaintext over Message Authentication Code

This test verifies that each plaintext bit on the hash has been diffused. Each bit
of plaintext should have an equal probability of influencing hash creation to fulfil
the diffusion property. Minor changes in the plaintext should cause the hash to
alter in an unpredictable way. First, a constant key and IV are chosen in the
Diffusion test. We chose the key and IV to be zero, and a 256-bit plaintext is
generated. New hashes are then produced by altering each bit of the plaintext.
The original plaintext hash values are then XORed with these hash values. A
matrix of size msg × L was created using these vectors. This process is iterated
N times and the resultant matrices will be calculated by adding in real numbers.
To evaluate the diffusion of matrix entries apply the Chi-Square Goodness of Fit
test.

When N is high, the elements in the matrix follows normal distribution with
a mean of N/2, variance of N/4, resulting in a secure cipher. We have taken
N = 1024, L = 256, msg = 256 and the limits for each category with these
approximate probabilities are chosen as, [0–498], [499–507], [508–16], [517–525]
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and [526–1024]. To pass the Chi-square goodness of fit test, which has four
degrees of freedom and a significance threshold of α = 0.01 the resultant chi-
square value should be χ2 � 13.277. Here, the observed and predicted values are
compared, and our design passed with a average chi-square value of χ2 = 3.83
after analyzing various sample sizes with random key and IV.

5 Conclusion and Future Work

Because of picking the best components with the least hardware load and ade-
quate security, the suggested sponge based approach can be employed in light-
weight environments. To update the state, the design employs NLFSR and a
toeplitz matrix. The proposed design has good pseudo randomness and diffusion
qualities, which is a criterion for a good design according to the literature. The
suggested technique can be used in resource-constrained devices to achieve ade-
quate security goals at a cheap cost. Panther was used to send real-time traffic via
an unsecured network. We tested the strength of Panther using a variety of cryp-
tography attacks. The future scope is to test the suggested scheme’s resilience
and strength employing more cryptanalytic attacks in a realistic manner.
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Abstract. In CRYPTO 2018, Russell, Tang, Yung and Zhou (RTYZ)
introduced the notion of crooked indifferentiability to analyze the secu-
rity of a hash function when the underlying primitive is subverted. They
showed that the n-bit to n-bit function implemented using enveloped
XOR construction (EXor) with 3n + 1 many n-bit functions and 3n2-bit
random initial vectors can be proven secure asymptotically in the crooked
indifferentiability setting. We identify several major issues and gaps in
the proof by RTYZ, We argue that their proof can achieve security only
in a restricted setting. We present a new proof of crooked indifferen-
tiability where the adversary can evaluate queries related to multiple
messages. Our technique can handle function-dependent subversion.

Keywords: Crooked indifferentiability · Subverted random oracle ·
Simulator · Enveloped XOR Hash

1 Introduction

Blackbox Reduction and Kleptographic Attack. Many of the modern
cryptographic constructions are analyzed in a modular and inherently black-
box manner. The schemes or protocols are built on underlying primitives only
exploiting the functionality of the primitives. While analyzing the security, one
shows a reduction saying, a successful attack on the construction will lead to an
attack against the underlying primitive. Unfortunately, this approach completely
leaves out the implementation aspects. While the underlying primitive may be
well studied, a malicious implementation may embed trapdoor or other sensitive
information that can be used for the attack. Moreover, such implementation
may well be indistinguishable from a faithful implementation [21]. These types
of attacks fall in the realm of Kleptography , introduced by Young and Yung
[21]. While the cryptographic community did not consider kleptography as a
real threat, the scenario has changed in the past few years. The kleptographic
attack has been a real possibility in the post-Snowden world. A line of work has
appeared aiming to formalize and provide security against kleptographic attack
[2,10,17,18]. Specifically, in [2], Bellare, Paterson, and Rogaway showed that it
is possible to mount algorithm substitution attacks against almost all known
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symmetric key encryption schemes to the extent that the attacker learns the
secret key.

Random Oracle and Indifferentiability. The Random Oracle methodol-
ogy is a very popular platform for proving the security of cryptographic con-
structions in the black-box fashion. In this model, all the parties, including the
adversary, are given access to a common truly random function. One proves the
security of a protocol assuming the existence of such a random function. During
the implementation of the protocol, the random function is replaced by a hash
function H. The Indifferentiability framework and the composition theorem [13]
assert that if the hash function H is based on an ideal primitive f , and Indif-
ferentiable from a random function, then the instantiated protocol is as secure
as the protocol in the random oracle model (assuming the security of the ideal
primitive f). Indifferentiability from Random Oracle has been one of the main-
stream security criteria of cryptographic hash functions. Starting from the work
of Coron, Dodis, Malinaud, and Puniya [9], a plethora of results [1,4–7,12,14–16]
have been proven, showing indifferentiability of different constructions based on
different ideal primitives.

Crooked Indifferentiability. In CRYPTO 2018, Russel, Tang, Yung and
Zhou [19] introduced the notion of crooked indifferentiability as a security notion
for hash functions in the kleptographic setting. Like classical indifferentiability,
the game of crooked-indifferentiability challenges the adversary to distinguish
between two worlds. In the real world, the adversary has access to the underlying
ideal primitive f , and the construction C, which has subroutine access to f̃ , the
subverted implementation of f .1 The implementation f̃ on input an element
x, queries the function (possibly adaptively) at maximum q̃ many points and,
based on the transcript, decides the evaluation of x. As the adversary likes the
subversion to go undetected, it is assumed that f̃ differs from f only on some
negligible fraction (ε) of the domain.

In the ideal world, the construction is replaced by a Random Oracle F . The
role of f is played by a simulator with oracle access to F and the subverted
implementation f̃ . The job of the simulator is to simulate f in such a way that
(C f̃ , f) is indistinguishable from (F , SF,f̃ ). To avoid trivial attacks, the frame-
work allows a public random string R to be used as the salt in the construction.
The string R is fixed after the adversary publishes the implementation but stays
the same throughout the interaction. All the parties, including the simulator
and the adversary, get R as part of the initialization input. We note that even
in the weaker setting of Random Oracles with auxiliary input, a random salt is
required to prove security [8,11].

Enveloped Xor Construction and its Crooked-Indifferentiability.
We recall the Enveloped XOR construction. We fix two positive integers n and l.
Let D := {0, 1, . . . , l}×{0, 1}n. Let H be the class of all functions f : D → {0, 1}n.

1 The domain extension algorithms are simple and the correctness of their implemen-
tations are easy to verify.
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For every x ∈ {0, 1}n and an initial value R := (r1, . . . , rl) ∈ ({0, 1}n)l, we define

gR(x) =
l⊕

i=1

f(i, x ⊕ ri) and EXor(R, x) = f(0, gR(x)).

In [19], Russel et al. proved crooked-indifferentiability of the enveloped-xor con-
struction. Their analysis is based on an interesting rejection sampling argument.

1.1 Our Contribution

Another Look at Russel et al.’s Proof. We uncover that the techniques of
[19], while novel and interesting, bear significant shortcomings. The consistency
of the simulator is not proven. Moreover, their technical treatment requires that
the subversion for the final function f(0, ·) be independent of gR. In other words,
the proof is applicable against a restricted class of subversion. Finally, the proof
does not consider the messages queried to F . We elaborate the issues in Sect. 3.

A New Proof of the Crooked-Indifferentiability of Enveloped XOR.
We present a new proof of the crooked-indifferentiability of Enveloped XOR.
Interestingly, our techniques do not involve heavy technical machinery. Rather,
we identify core domain points related to functions and use simple tools like
Markov inequality.

1.2 Overview of Our Technique

We observe the Enveloped XOR (EXoR) construction is in the class of General-
ized Domain Extensions considered in [5]. It is known that for a GDE construc-
tion with independent functions and preimage awareness, the indifferentiability
advantage is bounded by the probability that the final chaining query is not fresh.
However, EXoR construction instantiated with the crooked functions (denoted
by ˜EXor) is not part of GDE. The main issue is that the final output of ˜EXor need
not be the output of f(0, ·) evaluation, as required by the condition of GDE.

We consider an intermediate construction EXor(R,m) = f(0, g̃R(m)). In
other words, the intermediate construction restricts that the finalization func-
tion f(0, ·) is not subverted. EXor is a GDE construction and crooked-
indifferentiability of EXor can be proved following the structure of [5]. In partic-
ular, the generic simulator of [5], adopted for EXor along with access to f̃ work
out here along with the consistency arguments. Our proof is modularized via the
following two claims.

– Claim 3 shows distinguishing advantage for (f,EXoR) and (f, ˜EXoR) is
bounded by probability of hitting a crooked point or domain point for f0
(Bad1).

– Claim 4 shows the distinguishing advantage of intermediate world (f,EXoR)
and the ideal world of crooked indifferentiability is bounded by the probability
of Bad2 event. This event is classified into two main categories. In the first
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category, while responding to a query to the primitive (or the simulator),
input g̃R(m) appeared already in the transcript. In the second category, the
input g̃R(m) appeared in the extended transcript which includes all queries
of a subverted computation f̃(x) of a crooked point x.

The challenge remaining is to bound the probability of the bad events. Our
proof works with a counting approach. We say a point α ∈ {0, 1}n is robust with
respect to a function f , if all points which queries α is not subverted with all
but negligible probability, if the output f(α) is re-sampled. A point is good if it
is queried by only a few robust and un-crooked points. By averaging argument,
we show that for overwhelming fraction of candidate f , R, for every message m,
there will exist an index i such that m ⊕ ri is good for function f(i, ·). Now,
we can say that even though f(i,m ⊕ ri) was queried by other points, they are
robust. If we re-sample at (i,m⊕ri) the subverted outputs of those robust points
will not change. Thus, we can talk about g̃R(m) independently to the outputs
of the function f̃(0, ·).

Finally, we shall show that the output distribution of g̃R(m) is close to uni-
form. We could find a rejection resampling lemma on two or more points, and
argue the uniformity of g̃R(m). However, we simplify things further. We observe
that with high probability over the output values of f(i,m ⊕ ri) for every i for
which m⊕ri is good in f , the transcript of the previous internal queries remains
unchanged. Hence, we consider the conditional probabilities by conditioning on
all possible transcripts and take union bound to show near uniformity of g̃R(m).

Relation of GDE Constructions with Our Results and Further Uses. A
majority of this work focuses on EXor construction which is a GDE construction
(defined in [5]). GDE constructions cover a wide range of domain extension
algorithms. We believe that many ideas developed in this result to deal with the
EXor construction can be extended to investigate the crooked-indifferentiability
of different GDE constructions. However the bad events and their analysis will
depend on the particular construction being investigated.

Revised Proof by Russel et al. After we communicated our findings to the
authors of [19], they acknowledged the issues, and uploaded a major revision in
eprint [20]. Our proof is done independently and significantly differ from their
revised proof in some crucial aspects.

2 Notations and Preliminaries

Notations. Let N = {0, 1, . . .} be the set of natural numbers. If k ∈ N, then
{0, 1}k denotes the set of all k-bit binary strings. If x and y are two strings
xy denote the concatenated string. We write x

$←− S to denote the process of
choosing x uniformly at random from a set S and independently from all other
random variables defined so far. For a positive integer l, we use (l] and [l] to
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denote the set {1, · · · , l} and {0, 1, . . . , l} respectively. The positive integer n is
our security parameter and we write R := {0, 1}n.

Class of Functions. H := HD,n denotes the set of all n-bit functions from D to
R. In this paper we mainly consider D :=: [l]×{0, 1}n and let f : [l]×{0, 1}n →
R denotes a family of l many functions from {0, 1}n to itself. We often use
the shorthand f to denote the family {f0 := f(0, ·), · · · , fl := f(l, ·)} when the
function family is given as oracles.

For any tuples of pairs τ = ((x1, y1), . . . , (xs, ys)) we write D(τ) (called
domain of τ) to denote the set {xi : 1 ≤ i ≤ s}. We say a function f agrees with
τ if for all (x, y) ∈ τ , f(x) = y. For every x ∈ D, α ∈ R, we use f |x→α(or simply
fα whenever x is understood) to denote the following function:

f |x→α(y) =
{

f(y) if x �= y
α if x = y

.

Adversaries and Distinguishing Advantage. An adversary A is an algo-
rithm possibly with access to oracles O1, . . . ,O� denoted by AO1,...,O� . The adver-
saries considered in this paper are computationally unbounded. The complexities
of these algorithms are measured solely on the number of queries they make. An
algorithm A having access to an oracle is called q-query algorithm if it makes at
most q queries to its oracle. Similarly, an oracle algorithm having access to two
oracles is called (q1, q2)-query algorithm, if it makes at most q1 and q2 queries to
its first and second oracles respectively. Adversarial queries and the correspond-
ing responses are stored in a transcript τ . So, D(τ) denotes the list of inputs
(queries) in the transcript.

Definition 1 (Distinguishing Advantage). Let F l and Gl be two l-tuples of
probabilistic oracle algorithms for some positive integer l. We define advantage
of an adversary A at distinguishing F l from Gl as

ΔA(F l ; Gl) =
∣∣Pr[AF1,F2,··· ,Fl = 1] − Pr[AG1,G2,··· ,Gl = 1]

∣∣ .

If A makes a total of q queries, it is called a q-query distinguisher.

2.1 Modeling Subversion Algorithms and Crooked-Indifferentiability

We recall the related terms and notations introduced in [19] in our terminolo-
gies. A (q, q̃) implementor is an q-query oracle algorithm AO. A outputs the
description of another oracle algorithm F̃O (called subversion algorithm) which
makes at most q̃ many queries to its oracle. For a correct subversion algorithm
of a function f ∈ H := HD,n, we must have f̃ := F̃ f = f . However, a crooked-
implementor may not behave correctly.

Definition 2 (crooked implementer). A (q, q̃) implementer A1 is called ε-
crooked for a function family H, if for every f ∈ H and f̃ ← Af

1 ,

Pr
α

$←−D
[f̃(α) �= f(α)] ≤ ε.
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Let τ0 denote the transcript of oracle queries of Af
1 . We may assume that ε is

negligible2 and the transcript τ0 is hardwired in f̃ and all the q̃ queries made by
f̃ are different from D(τ0) (as the response is known from the transcript). The
subversion algorithm f̃ on input x queries γ1(x), γ2(x), . . . , γq̃(x), and based on
the query-responses outputs f̃(x). Without loss of generality, we assume γ1(x) =
x. We write Q(x) := Qf (x) to denote the set of all queries as defined above. We
write

Q−1
f (y) := {x : y ∈ Qf (x)},

the set of all points x, in which the computation of f̃(x) queries y. The set
does not depend on the value of f(x). Mathematically, let fβ = f |y→β then
Q−1

f (y) = Q−1
fβ

(y) for all β.

Crooked Indifferentiability. A crooked distinguisher is a two-stage adversary;
the first stage is a subverted implementor and the second stage is a distinguisher.

Definition 3 (crooked distinguisher). We say that a pair A := (A1,A2) of
probabilistic algorithms ((q1, q̃, ε), q2)-crooked distinguisher for H if

(i) A1 is a ε-crooked (q1, q̃) implementer for H and
(ii) A2(r, τ0, ·) is a q2-query distinguisher where r is the random coin of A1,

and τ0 is the advice-string, the transcript of interaction of A1 with f .

Note that the random coin r of A1 and the transcript of A1 are shared with A2

to emphasis that A1 and A2 are joint adversary working in two different stages.

Definition 4 (H-crooked-indifferentiability [19]). Let F be an ideal prim-
itive and C be an initial value based F-compatible oracle construction. The
construction C is said to be ((q1, q̃), (q2, qsim), ε, δ)-crooked-indifferentiable
from F if there is a qsim-query algorithm S (called simulator) such that for all
((q1, q̃, ε), q2)-crooked distinguisher (A1(r), A2(r, ·, ·)) for H, we have

ΔA2(r,τ0,R)

(
(f, C f̃ (R, ·)) ; (SF,F̃ (τ0, R),F)

)
≤ δ (1)

where τ0 is the advice string of Af
1 and R is the random initial value of the

construction sampled after subverted implementation is set.

Two-Stage Distinguishing Game. Now we explain the distinguishing game.
In the first stage, Af

1 outputs F̃ after interacting with a random oracle f as

2 Given an implementation, one may check the correctness of the algorithm by com-
paring the outputs of the implementation with a known correct algorithm. More

precisely, we sample α1, . . . , αt
$←− {0, 1}m and then for all 0 ≤ i ≤ l, we check

whether f̃(αi) = f(αi) holds. If it does not hold, the implementation would not be
used. It is easy to see that for ε-crooked implementation the subversion would not
be detected with probability at least (1 − ε)t. So for a negligible ε, this probability
would be still close to one for all polynomial function t and so the implementation
can survive for further use.
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Fig. 1. The crooked-indifferentiability notion. In the first phase of real world, A1 inter-
acts with f and returns an oracle algorithm F̃ (which would be accessed by the con-
struction C in the second phase). In the second phase the random initial value R will
be sampled and given to construction C and also to A2. In ideal world, simulator SF

gets the transcript of the first phase as advice string, blackbox access to the subverted
implementation F̃ and the initial value R.

discussed before. A random initial value R, for the hash construction C is sam-
pled. In the real world, A2 interacts with the same f of the first stage and the
construction C f̃ (R, ·). In the ideal world, the simulator S gets the advice-string
τ0, the initial value R and blackbox access to the subverted implementation F̃
and a random oracle F . Simulator is aimed to simulate f so that behavior of
(f, C f̃ ) is as close as (S,F) to the distinguisher A2 (Fig. 1).

Convention on Crooked Distinguishers: Note that there is no loss to
assume that both A1 and A2 are deterministic (so we skip the notation r)
when we consider computational unbounded adversary3. We also assume that
A2 makes all distinct queries and distinct from the queries made by A1 (as the
simulator has the advice string and so it can respond honestly). We skip the
notation τ0 as an input of A2 as it is fixed throughout the game. As the advice
string is fixed, we consider it as part of the transcript. Specifically, the transcript
τ0, view of A2 at the start of the second stage is set as the advice string τ0. We
fix the advise string τ0 throughout the paper. We write f to denote the random
function agreeing on τ0. In other words, f

$←− Γτ0 = {f : f(x) = y, (x, y) ∈ τ0}.

Enveloped XOR Construction. Recall that, in the real world, the distin-
guisher is interacting with the subverted construction ˜EXor which is defined as

˜EXor(R,M) = f̃(0, g̃R(M)) where g̃R(M) =
l⊕

i=1

f̃(i,M ⊕ ri).

We also define a hybrid construction EXor[f ](R,M) = f(0, g̃R(M)). Now con-
sider an adversary A interacting with (f,EXor := EXor[f ]).
3 A1 can fix the best random coin for which the distinguishing advantage of A2 is

maximum.
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Assumption on Adversary. For all primitive queries of the form (j, x) with
j > 0, we return EXor(m) and all responses of all queries (a, αa), a ∈ [l] where
αa = m + Ra and m = x + Rj . Note that simulator can compute m and so
responding EXor(m) honestly for simulator would not be a problem. Moreover,
we assume that adversary disclose all queries for the construction to the simu-
lator.

Transcript of Interaction. For j ≥ 0, let Trj := (R, τj , πj) denote the tran-
script (random variable due to randomness of f only) of A after j queries where
R is the initial value of the construction, and τj , πj denote the query-responses
for the primitive and the construction respectively. Note that τj contains τ0 for
all j.

3 Revisiting the Crooked Indifferenitability Security
of EXoR [19].

A Brief Detour: Classical Indifferentiability Simulator for EXor. Before
describing the crooked indifferentiability simulator, we would like to briefly recall
the principle behind the indifferentiability simulator and proof principles behind
EXor construction in the classical setting.

The goal of the simulator is to simulate each f(i, ·) honestly so that for every
queried message m, it holds that EXor(R,m) = F(m) for all queried m. Without
loss of generality, assume that whenever the adversary makes queries f(i, x) for
i > 0, it also makes queries f(j, x ⊕ ri ⊕ rj) for all j > 0 simultaneously. In
other words, it makes a batch query of the form (f(j,m ⊕ rj))1≤j≤l for some
m ∈ {0, 1}n. We simply say that the adversary A queries m to gR and obtains
responses (f(j,m ⊕ rj))1≤j≤l.

On receiving a batch query gR(m), the simulator will honestly sample outputs
for the corresponding f(i,m ⊕ Ri) queries for all i ∈ (l], and compute gR(m) by
xoring those sampled outputs. Also, the simulator will save the queried m along
with the computed gR(m) in a list L. For a f(0, x) query, the simulator will first
search in L, whether for some m, it has given x = gR(m) as output. If yes, the
simulator simply returns F(m). If no such entry exists, the simulator samples
an output z uniformly at random and returns z.

Now, we briefly recall how the indifferentiability is proved for this simulator.
There are two bad events.

– for distinct m,m′, it holds that gR(m) = gR(m′). In this case, the simulator,
on query f(0, gR(m)) can not be consistent with both F(m) and F(m′) with
any significant probability.

– For a batch query gR(m) the output is such that it matches with a previous
f(0, .) query. In this case, the simulator has already given output to the f(0, .)
query which, with all but negligible probability, is not equal to F(m).

One can indeed summarize these bad events as one; gR(m) ∈ E, where E is
the set of f(0, .) queries made by the adversary.
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The Simulator for Crooked Indifferentiability. We now describe the main
indea behind the simulator in the crooked indifferentiability setting. The same
principle was used in [19]. Note, here the main goal of the simulator is different. It
needs to simulate f

$←− H as honestly4 as possible such that ˜EXor(R,m) = F(m)
for all queried m. Thus the simulator needs to ensure that the output of the
random oracle matches with the subverted implementation of EXor.

The simulator maintains a list L of pairs (α, β) to record f(α) = β for α ∈ D
and β ∈ {0, 1}n. It also maintains a sub-list LA ⊆ L consisting of all those pairs
which are known to the distinguisher. Both lists are initialized to z (the advice-
string in the first stage which we fix to any tuple of q1 pairs). L0 = LA

0 = z. Now
we describe how the simulator responds.

1. (Query f(0, w)) We call this query a Type-1 Query. Type-1 Queries are
returned honestly. If ((0, w), y) ∈ L for some y, the simulator returns the
same y. Otherwise, it samples y uniformly from {0, 1}n, updates the list L
and LA, and returns y.

2. (Query gR(m)) We call this Type-2 Query. For a query gR(m) (i.e. batch
query) the simulator computes f̃(αj) for all j, one by one by executing the
subverted implementation F̃ , where αj = (j,m ⊕ Rj). During this execution,
simulator responds honestly to all queries made by the subverted implemen-
tation and updates the L-list by incorporating all query responses of h. How-
ever, it updates LA list only with (αj , f(αj)) for all j. Let g̃ :=

⊕
j f̃(αj). If

(0, g̃) ∈ D(L), the simulator aborts. If the simulator does not abort, it makes
a query F(m) and adds ((0, g̃),F(m)) into the both lists L and LA.

For f(0, w) made by A2 where w = g̃R(m) for some previous query m to gR, the
simulator responds as F(m).

Cautionary Note. Even though F is a random oracle, we cannot say that the
probability distribution of the response of (0, g̃) in the ideal world is uniform.
Note that, the adversary can choose m after making several consultations with
F . In other words, m can be dependent on F . For example, the adversary can
choose a message m for which the last bit of F(m) is zero. Thus, the response for
the query (0, w) always has zero as the last bit (which diverts from the uniform
distribution). However, the randomness can be considered when we consider joint
probability distribution of all query-responses.

Transcript: Now we describe what is the transcript to the distinguisher and for
the simulator in more detail. First, we introduce some more relevant notations.

1. Let LF denote the set of all pairs (m′, z̃) of query response of F by A2.
2. Let Lg denote the set of all pairs (m,βl) of query response of gR oracle

(batch query) made by A2 to the simulator where βl := (β1, . . . , βl) and
βj = h(j,m ⊕ Rj) for all j. According to our convention all these m must be
queried to F beforehand.

4 By honestly we mean perfectly simulating a random function. If the responses are
already in the list it returns that value, otherwise, it samples a fresh random response
and includes the input and output pairs in the list.
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3. As we described, we also have two lists, namely L and its sublist LA, keeping
the query responses of h oracle.

Now we define the transcript and partial transcript of the interaction. We
recall that q1 is the number of queries in the first stage and A2 is a (qF , q2)-query
algorithm. Let q = q2 + qF For any 1 ≤ i ≤ q, we define the partial transcript
of A and the simulator as τA

i := (LF
i , LA

i ) and τS
i := (Li, L

g
i ) respectively,

where LF
i , LA

i , Li, L
g
i denote the contents of the corresponding lists just before

making ith query of the distinguisher. So when, i = 1, LA
1 = L1 = z and the

rest are empty and when i = q + 1, these are the final lists of transcripts. Let
τi := (τA

i , τS
i ) and τ := (τA, τS) denote the joint transcript on ith query or after

completion respectively. As the adversary is deterministic, the simulator is also
deterministic for a given h and F , and we have fixed z, a (partial) transcript
is completely determined by the choice of R, h and F (in the ideal world). We
write (R, f,F) 
 τS

i if the transcript τS
i is obtained when the initial value is

R, the random oracles are F and f . We similarly define (R, f,F) 
 τA
i and

(R, f,F) 
 τi.

3.1 Techniques of [19]

Overview of the Techniques in [19]. We assume, without any loss of gener-
ality that the second stage adversary A2 queries m to F before it queries to gR

oracle. In addition, like before, we assume that it makes batch queries.
For every query number i, we define a set Ei := D(Li) ∪ subvf where subvf

is the set of all crooked elements for f . The event Badi holds if and only
if (0, g̃R(mi)) ∈ Ei where mi denotes the ith query of A (made to gR ora-
cle of the simulator). So, the crooked indifferentiable advantage is bounded by∑q2

i=1 Pr(g̃R(mi) ∈ Ei). The authors wanted to show that the distribution of
g̃R(mi) is almost uniform. They proposed the following theorem.

(Theorem 5 from [19]). With overwhelming probability (i.e., one minus a neg-
ligible amount) there exists a set Rτ0 ⊆ ({0, 1}n)l and for every i, a set of tran-
scripts T A

i (before ith query) such that for all R ∈ Rτ0 , τi := (LF
i , LA

i ) ∈ T A
i ,

and m �∈ D(Lg
i ),

Pr
f

[(0, g̃R(m)) ∈ Ei | (R, f,F) 
 τi] ≤ poly(n)
√

|Ei| + negl(n).

The authors claimed that crooked indifferentiability of EXor can be derived
from the above theorem. To describe the issues we need to dive into the main
idea which is to show that g̃R(m) behaves close to the uniform distribution over
{0, 1}n. Thus the above probability would be negligible as q1/2n and |subvf |/2n

is negligible. By using Markov inequality, authors are able to identify a set of
overwhelming amount of pairs (R, f), called unpredictable pair, such that for any
unpredictable (R, f) all m, there exists an index i such that
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1. Prβ [αi ∈ subvf | f(αi) = β] is negligible and
2. αj /∈ Q−1

f (αi) for all j �= i, where αj = m ⊕ Ri.

Thus, if we resample β = f(αi) then with overwhelming probability
f̃ |αi→β(αi) = f |αi→β(α) (i.e. αi is not crooked and returned a random value)
and all corresponding values for indices j different from i will remain same. So,
g̃R(m) = β +A where A does not depend on choice of β. Thus, the modified dis-
tribution is close to uniform (as almost all values of β will be good). In particular
the authors made the following claim:

Claim 1. Under the modified distribution (i.e. after resampling), Pr[g̃R(m) ∈
E1] ≤ q1/2n + ε + pn where pn denotes the probability that a random pair (R, f)
is not unpredictable.

As the choice of i depends on the function f and so a new rejection resam-
pling lemma is used to bound the probability of the event under the original
distribution (i.e. before resampling).

Lemma 1 (Rejection Resampling [19]). Let X := (X1, . . . , Xk) be a random
variable uniform on Ω = Ω1 × Ω2 × · · · × Ωk. Let A : Ω → (k] and define
Z = (Z1, . . . , Zk) where Zi = Ai except at j = A(Xk) for which Zj is sampled
uniformly and independently of remaining random variables. Then for any event
S ⊆ Ω, it holds that

|S|/|Ω| ≤
√

k Pr(Z ∈ S)

With this rejection resampling result and the Claim 1, the authors concluded the
following under original distribution:

Pr
h∗

(g̃R(x) ∈ E1) ≤
√

l · Pr
resampled h

(g̃R(x) ∈ E1) ≤
√

l · (q1/2n + ε + pn).

3.2 Issues with the Technique of [19]

Now we are ready to describe the issues and the limitations of the techniques in
[19]. To prove the general case (i.e. for any query), the authors provide a proof
sketch where they argued that with an overwhelming probability of realizable
transcript T and for all τ ∈ T , Pr(g̃R(mi) ∈ Ei | τ) is negligible.

The Number of Queries to F is Essential. An incompleteness of the proof
of [19] comes from the fact that the analysis does not consider the F queries
of the distinguisher. The bound is almost vanishing if q1 = 0 and q2 = 2 and
there is no crooked point. However, a distinguisher can search for m �= m′ such
that F(m) = F(m′). Conditioned on collision at the final output, the event
gR(m) = gR(m′) holds with probability about 1/2. On the other hand, for the
honest simulation of all f values, g value will collide with very low probability.
If the adversary can make 2n/2 many queries to F , the above inconsistency can
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be forced. Hence, the probability upper bound of Theorem 5 of [19] can not be
independent of the number of queries made to F .

Inconsistency for Multiple Queries: Controlling Query Dependencies
for the Same Index. Authors claimed that for all unpredictable (R, h), for
all m, an index i exists on which the resampling can be done without affect-
ing the transcript . Recalling the notion of unpredictable (R, h) we see that the
resampling is done on an index i, that is honest (f̃(i,m ⊕ Ri) = f(i,m ⊕ Ri),
and f(i,m ⊕ Ri) is not queried by f(j,m ⊕ Rj) for any other j. From here,
the authors argued that the transcript of the interaction remains same, if we
resample at such i. This claim is justified for a single message and not for mul-
tiple queries. We note that it is easy to construct a subverted implementation
F̃ for which all inputs of f for a batch response are queried during some other
previous query. For example, if it queries f(i, x ⊕ 1n) for an input (i, x), and
the distinguisher makes two batch queries queries, g̃R(m ⊕ 1n), and g̃R(m). The
simulator, while simulating g̃R(m ⊕ 1n) responds to all the queries made by
f̃(i,m ⊕ 1n ⊕ Ri), and in particular the value of f(i,m ⊕ Ri) is now gets fixed.
So an appropriate analysis was missing in case of multiple queries.

The Bad Event Ei Depends on the Function f . The main technical claim
of [19] that Prresampled f (g̃R(x) ∈ E) is small because g̃R(x) is uniformly dis-
tributed under resampling distribution of f and size of E is negligibly small. How-
ever the crooked set of f(0, ·) may depend on the other functions f(1, ·), . . . , f( ·).
Thus the event E is not independent of g̃R(x). In particular, one cannot upper
bound the Pr(g̃R(x) ∈ E) as |E|/2n . This is one of the crucial observation which
actually makes the crooked security analysis quite a complex task.

4 Basic Setup: Good Pairs and Critical Set

Subverted inputs. For a function f : D → R agreeing on τ0, we define

subvf = {x | x ∈ Dom(τ0) ∨ f̃(x) �= f(x)},

union of the set of all subverted points for the function f and the Dom(τ0). We
consider elements of the domain of τ0 as subverted points as the outputs of those
have no entropy and is hard coded into an implementation. Thus, we treat all
those inputs as subverted points. Clearly, for all function f ,

|subvf | ≤ q1 + ε|D|.

where q1 denotes the size of τ0. Let ε1 := ε + q1/|D|.

Definition 5 (robust point). Let f agree on τ0. A point y is called robust in
f (or the pair (y, f) is called robust) if for all x ∈ Q−1

f (y),

Pr
β

[
x ∈ subvfβ

]
≤ √

ε1

where β
$←− R and fβ := f |y→β.
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Note that robustness of y in f does not depend on the value f(y). In other words,
if y is robust in f then so in f |y→β for all β.

Definition 6 (popular point). A point y �∈ Dom(τ0) is called popular for a
function f if |Q−1

f (y)| > ε
−1/4
1 .

Recall that the subversion algorithm f̃ makes at most q̃ many queries for any
y. So,

∑
y |Q−1

f (y)| ≤ q̃|D|. Using the simple averaging argument the number of

popular points are at most q̃ε
1
4
1 |D|.

Pr
x,f

[x is popular in f ] ≤ q̃ε
1
4
1 (2)

We call the robust pair (y, f) good if (1) y is not popular for f and (2) for all
x ∈ Q−1

f (y), x �∈ subvf . In particular for good (y, f), it holds that y �∈ subvf and
y �∈ subvfβ

with high probability over randomness of β where fβ := f |y→β .

Lemma 2. For a random y
$←− D, we have

Pr
y,f

[(y, f) is not good] ≤ 3q̃ε
1
4
1 .

Proof. We define two indicator functions:

d(x, f) =

{
1, if x ∈ subvf

0, otherwise
dj,β(x, f) =

⎧
⎨

⎩
1, if x ∈ subvf |

γ
(x)
j

→β

0, otherwise.

In other words, d(x, f) simply indicator function for capturing crooked points
and dj,β(x, f) is an indicator function capturing whether a point x becomes
crooked for f after replacing the jth query output by β. For 1 ≤ j ≤ q̃,
let Dj(x, f) = Eβ(dj,β(x, f)). For any function g ∈ Γτ0 , let Sx,g := {(f, β) :
f |

γ
(x)
j →β

= g}. It is easy to see that we have |Sx,g| = 2n. Now, for each j,

E

x,f

(
Dj(x, f)

)
= E

x,f
E

β

(
dj,β(x, f)

)

=
∑

x,f,β

Pr(f) Pr(x) Pr(β) · dj,β(x, f)

= 2−n
∑

(f,β)∈Sx,g

∑

x,g

Pr(g) Pr(x) · d(x, g)

=
∑

x,g

Pr(g) Pr(x) · d(x, g)

= E

x,g
d(x, g) ≤ ε +

q1
|D| := ε1
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Applying Markov inequality, we get for every j ∈ (q̃]

Pr
x,f

[
Dj(x, f) ≥ ε

1
2
1

]
≤

Ex,f

(
Dj(x, f)

)

ε
1
2

≤ ε
1
2
1 (3)

We recall there are three ways x can be not good in f .

Pr
f,x

[(x, f) is not good] ≤ Pr
f,x

[x is popular for f] +

Pr
f,x

[x is queried by some point in subvf ] +

Pr
f,x

[(x, f) is not robust | x is not popular for f]

As there are at most ε1|D| many points in subvf ,

Pr
f,x

[x is queried by some point in subvf ] ≤ q̃ε1.

From the definition of robust points and Eq. 3

Pr
x,f

[x is non robust in f | x is not popular for f] ≤ ε
−1/4
1

q̃∑

j=1

Pr
x,f

[
Dj(x, f) ≥ ε

1
2
1

]

≤ q̃ε
1
4
1

Adding above two inequalities and Eq. 2

Pr
f,x

[x is not good in f] ≤ q̃
(
ε1 + ε

1
4
1 + ε

1
4
1

)
≤ 3q̃ε

1
4
1

��

Critical Set. We consider a set G of pairs (R, f) of initial values R and functions
f satisfying the condition that for every m ∈ {0, 1}n there exists 1 ≤ i ≤ l such
that (αi := (i,m ⊕ Ri), f) is good. The following lemma says that for a uniform
random string R (initial value) and a randomly chosen function f agreeing on
τ0, with high probability (R, f) is in the critical set.

Lemma 3. Let q̃ ≤ 2n/2, ε1 ≤ 1
216 and � > 2n. It holds that

Pr
R,f

((R, f) �∈ G) ≤ 3q̃ε
1/8
1 + 2−n.

Proof. We know that Pr
f

[
Pr
x

[(x, f) is not good] > ε
1/8
1

]
≤ 3q̃ε

1/8
1 . We say f is

convenient if Pr
x

[(x, f) is not good] ≤ ε
1/8
1 . Fix a convenient f

Pr
R

[(R, f) �∈ G]

≤
∑

m

l∏

i=1

(
Pr
Ri

[(i,m ⊕ Ri) is not good in f ]
)

≤ 2n ×
(
ε
1/8
1

)l

≤ 1/2n.
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In the first step, the sum is taken over m ∈ {0, 1}n. The last inequality follows
from l > n, and ε1 ≤ 1

216 . Hence, we have

Pr
R,f

((R, f) �∈ G) ≤ Pr
f

[f is not convenient] + Pr
R

[(R, f) �∈ G|f is convenient]

≤ 3q̃ε
1/8
1 + 1/2n. ��

5 Crooked-Indifferentiability of Enveloped XOR
Construction

In this section we analyze the crooked-indifferentiability security of the EXor
construction. Our main result in this section is Theorem 2.

Theorem 2. Let l = 3n + 1, q̃ ≤ 2n/2 and ε1 = ε + q1
(l+1)2n ≤ 1

16 . Let f : [l] ×
{0, 1}n → {0, 1}n be a family of random functions and EXor : {0, 1}n → {0, 1}n

be the enveloped-xor construction. Then there exists a simulator S such that for
all all ((q1, q̃), (q2, qsim), ε, δ) crooked distinguisher A = (A1,A2)

Advcrooked-indiff
A,(EXor,f) ≤ (4l2q̃)q22/2n + (4q̃ + 2l)q2ε

1/16
1

The simulator is described in Fig. 2 which makes at most q2 query to the random
oracle F and makes q2lq̃ many calls to the subverted implementation f̃ .

Proof. We recall that, in the real world, the distinguisher is interacting with the
subverted construction ˜EXor which is defined as

˜EXor(R,m) = f̃(0, g̃R(m)) where g̃R(m) =
l⊕

i=1

f̃(i,m ⊕ ri).

We also define a hybrid construction EXor[f ](R,m) = f(0, g̃R(m)). Now consider
an adversary A interacting with (f,EXor := EXor[f]) in the second phase.

Bad Events. We consider the bad event happening immediately after ith query
of the adversary which is of the form (j, xi) for j > 0. We write mi = xi + Rj .
We define four bad events.

1. Bad1i holds if (0, g̃R(mi)) ∈ subvf

2. Bad2ai holds if (0, g̃R(mi)) ∈ Dom(τi−1)
3. Bad2bi holds if g̃R(mi) = g̃(mj) for some j < i
4. Bad2ci holds if (0, g̃R(mi)) ∈ Q(x) for some x ∈ Dom(τi) and x ∈ subvf .

Let Bad1 = ∨iBad1i, Bad2 = ∨i(Bad2ai ∨Bad2bi ∨Bad2ci), and Bad =
Bad1 ∨ Bad2.
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Fig. 2. Simulator for EXor: Offline Phase is executed after all the distinguisher queries.

Claim 3

ΔA2(r,τ̃ ,R)

(
(f,EXor(R, ·)) ; (f, ˜EXor(R, ·))

)
≤ Pr(Bad1)

where Bad1 holds while A interacting with (f,EXor).

Proof of the above claim is straightforward as both worlds behave identically
until Bad1 does not hold.

We have defined our simulator SF in Fig. 2 where F : {0, 1}n → {0, 1}n

is a random function. The simulator has also observed the above bad events
in particular, Bad2. Now we claim that the hybrid construction and the ideal
world is indistinguishable provided Bad2 does not hold (in the hybrid world)
while A interacting with (f,EXor).

Claim 4

ΔA2(r,τ̃ ,R)

(
(f,EXor(R, ·)) ; (SF,f̃ (τ̃ , R),F)

)
≤ Pr(Bad2).

We call a transcript good if Bad2 does not hold. In case of simulator world,
whenever Bad2 does not hold, simulator maintains extended transcript which is
consistent with the hybrid world. As the simulator set all outputs of the function
either randomly or through outputs of F , realizing any such good transcript
τ ′ has probability 2−nσ where σ = |τ ′ \ τ0|. We have already seen that the
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probability of realizing a good transcript in the hybrid world is exactly 2−nσ.
In other words, the both worlds behave identically until Bad2 does not hold.
Combining Claims 3 and 4, we get

Advcrooked-indiff
A,(EXor,f) ≤ Pr [Bad ].

The proof of Theorem 2 follows from the following lemma. ��

Lemma 4

Pr[Bad] ≤ (4l2q̃)q22/2n + (4q̃ + 2l)q2ε
1/16
1

The lemma is proved in Sect. 6.

6 Proof of Lemma4

We write f ⇒j Trj to denote the event that after j queries to (f,EXor), an
adversary obtains the transcript Trj . We skip the notation j if it is understood
from the context.

Definition 7. A transcript Tri−1 is good if

Pr((R, f) ∈ G | f ⇒ Tri−1) ≥ 1 − 3q̃ε
1/16
1 .

Applying Markov inequality on Lemma 3, we have Pr(Tri−1 is good) ≥ 1 −
ε
1/16
1 . Let us fix a good transcript Tri−1 (which also determines mi for the ith

query) and a function f agreeing on Tri−1 such that (R, f) ∈ G.

Definition 8. For any fix k, we say that f is called Tri-good if (i) f ⇒ Tri−1

and (ii) (αk, f) is good.

Claim 5. For any Tri-good f there exists a set S of size at least 2n(1 − ε
1/4
1 )

such that for all β ∈ S, fβ := f |α→β is also Tri-good.

Proof. We fix a function f ∈ ΓR,τi−1,πi−1 such that (αk, f) is Tri-good. Now we
identify a set of good values of β such that fβ := f |αk→β ∈ ΓR,τi−1,πi−1 such
that (αk, f) is Tri-good. In other words, setting the output of f on the point
αk to β keeps the pair (αk, fβ) good. For every x ∈ Dom(τi−1) ∩ Q−1

f (αk), let
Bx denote the set of all bad β values for which good condition of (αk, f) gets
violated. By definition, |Bx| ≤ ε

1/2
1 and hence | ∪x Bx| ≤ 2nε

1/4
1 . We define

S = D \ ∪x∈Q−1
f (αk)

Bx.

Note that for all β ∈ S, (αk, fβ) is Tri-good. ��
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Due to the above claim, we have

Pr(f(αk) = z | (αk, f) is Tri-good, ) ≤ 1
|S| ≤ 1

2n(1 − ε
1/4
1 )

≤ 2
2n

.

The last inequality holds because ε1 ≤ 1
16 . Now note that for any event E, we

have

Pr(E|Tri−1) ≤ Pr
f

(E ∧ (R, f) ∈ G|Tri−1) + 3q̃ε1/16
1

≤
l∑

k=1

Pr
f

(E ∧ (αk, f) is Tri−1-good | Tri−1) + 3q̃ε1/16
1

≤
l∑

k=1

Pr
f

(E | (αk, f) is Tri−1-good ) + 3q̃ε1/16
1

For the last inequality we simply use the fact that

Pr
f

((αk, f) is Tri−1-good | Tri−1) ≤ 1.

Now we bound individually each bad events and then we can multiply by l then
add all the terms to get the bound.

Bound of Pr(Bad2ai ∪ Bad2bi). Fix a Tri-good f . Let B2 denote the set of
all elements containing g̃R(mj) (for all j < i) and all elements from D(τi−1) of
the form (0, ∗). Note that the set B2 and

∑
j �=k f̃(mi + Rj) does not depend on

the value f(αk) provided f(αk) ∈ S. Hence,

Pr
f

(Bad2ai ∪ Bad2bi | (αk, f) is Tri−1-good ) ≤ 2i/2n.

Bound of Pr(Bad2ci). We first note that for all β ∈ S and an input x which
queries αk, x is not crooked and a robust point. Let A = D(τi)\({αk}∪Q−1

f (αk)).
Let Ã denote the set of all points queried by the elements of A. Suppose g̃R(mi) �∈
Ã. Then, for every x from the domain of τi querying g̃R(mi) must query αk and
hence Bad2ci does not hold. So, Bad2ci can hold only if g̃R(mi) ∈ Ã. Once
again by randomness of f(αk), we have

Pr(Bad2ci | (αk, f) is Tri−1-good ) ≤ 2q̃il/2n.

Bound of Pr(Bad1i). Clearly, f̃β(x) can be different from f̃(x), only if x ∈
Q−1

f (αk). Moreover for every x ∈ Q−1
f (αk), as both (αk, f) and (αk, fβ) are

good, it holds that x /∈ subvf and x /∈ subvfb
. Thus for any such Tri-good f, fβ ,

we have the following conditions: subvf = subvfβ
. Thus,

Pr[Bad1i | (αk, f) good,Tri good] ≤ 2ε1
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So,

Pr[Badi | Tri−1] ≤ 4l2q2q̃/2n + 2lε1 + 3q̃ε
1/16
1

Finally, we add the probability that we realize a not good transcript Tri−1 and
we obtain bound for Pr(Badi). By taking union bound over i ∈ [q2], we get

Pr[Bad] ≤ 4l2q22 q̃/2n + 2lq2ε1 + 3q̃q2ε
1/16
1 + q2ε

1/16
1

≤ (4l2q̃)q22/2n + (4q̃ + 2l)q2ε
1/16
1

This finishes the proof of Lemma 4. ��
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Abstract. A large proportion of modern symmetric cryptographic
building blocks are designed using the Substitution-Permutation
Networks (SPNs), or more generally, Shannon’s confusion-diffusion
paradigm. To justify its theoretical soundness, Dodis et al. (EURO-
CRYPT 2016) recently introduced the theoretical model of confusion-
diffusion networks, which may be viewed as keyless SPNs using random
permutations as S-boxes and combinatorial primitives as permutation
layers, and established provable security in the plain indifferentiability
framework of Maurer, Renner, and Holenstein (TCC 2004).

We extend this work and consider Non-Linear Confusion-Diffusion
Networks (NLCDNs), i.e., networks using non-linear permutation layers,
in weaker indifferentiability settings. As the main result, we prove that
3-round NLCDNs achieve the notion of sequential indifferentiability of
Mandal et al. (TCC 2012). We also exhibit an attack against 2-round
NLCDNs, which shows the tightness of our positive result on 3 rounds. It
implies correlation intractability of 3-round NLCDNs, a notion strongly
related to known-key security of block ciphers and secure hash functions.
Our results provide additional insights on understanding the complexity
for known-key security, as well as using confusion-diffusion paradigm for
designing cryptographic hash functions.

Keywords: Block ciphers · Substitution-permutation networks ·
Confusion-diffusion · Indifferentiability · Correlation intractability

1 Introduction

Modern block ciphers roughly fall into three classes. The first class consists of
Feistel networks and their generalizations, with DES, LBlock [41], and many
other block cipher standards as popular instances. The second class are the
Lai-Massey structures designed for IDEA [27,28]. This paper focuses on the
last class, namely the Substitution-Permutation Networks (SPNs). Concretely,
an SPN yields an wn-bit block cipher via iterating the following three steps:
c© Springer Nature Switzerland AG 2021
A. Adhikari et al. (Eds.): INDOCRYPT 2021, LNCS 13143, pp. 93–113, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92518-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-92518-5_5


94 Q. Da et al.

1. Key-addition: XOR a round key with the wn-bit state;
2. Substitution: break down the wn-bit state into w disjoint chunks of n bits,

and evaluate a small n-bit permutation, typically called an S-box, on each
chunk;

3. Permutation: apply a keyless permutation to the whole wn-bit state.

The S-boxes are usually highly non-linear. On the other hand, while modern
block ciphers tend to use linear or affine mappings for the Permutation, there
is actually no a priori restriction, and the use and advantages of non-linear
permutations was recently explored [29].

Fig. 1. Comparison of SPN and CDN, with SPN on the left and CDN on the right

The SPNs well fit into the confusion-diffusion paradigm: usually, the substi-
tution is viewed as “confusion”, while the permutation is viewed as “diffusion”.
The idea of confusion-diffusion goes back to the seminal paper of Feistel [17] and
even back to Shannon [37]. Various popular primitives have been built upon this,
including block ciphers such as the AES [13] and RECTANGLE [43] and hash
functions such as the Keccak-f permutations of the SHA [5]. Motivated by this
popularity, SPNs have been the topic of various researches [12,35,40]. In partic-
ular, modeling the S-boxes as random or pseudorandom functions/permutation,
SPNs can be proved as a strong pseudorandom permutation SPRP (i.e., indis-
tinguishability from a truly random permutation), the standard security notion
for block ciphers [7,18,25,33].1 We refer to [18] for a detailed survey of these
SPRP results. In these security proofs, the S-boxes act as the only source of
cryptographic hardness, while the permutation layers only supply auxiliary com-
binatorial properties. This limits the provable security to the domain-size of

1 We remark that, as proving such security for concrete block ciphers such as AES
seems out of the reach of current techniques, it is actually the usual approach to
idealize some underlying primitives and prove that the high-level structure meets
certain security definitions.
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the S-boxes, which is unfortunately as small as 8 bits in, e.g., the AES. Con-
sequently, provable results on SPNs do not relate to any concrete SPN-based
block ciphers. Instead, they should be viewed as theoretical support for the SPN
approach to constructing block ciphers. Indeed, the above results have confirmed
(in a widely recognized theoretical model) that, the use of non-linear permuta-
tion layers ensures more security than linear ones. The provable bounds become
meaningful when the “S-boxes” enjoy sufficiently large domains, e.g., when the
“S-boxes” themselves are block ciphers such as the AES or cryptographic per-
mutations such as the Keccak-f. Therefore, on the practical side, the above
results yield domain extension of block ciphers or permutations.

1.1 Indifferentiability of Confusion-Diffusion Networks

The aforementioned SPRP notion is formalized using the indistinguishability
framework. A generalization of indistinguishability, named indifferentiability,
was introduced by Maurer et al. [32]. Briefly, a construction CF built upon
an ideal primitive F is indifferentiable from the ideal cryptographic primitive G,
if there exists an efficient simulator SG such that the two systems (CF ,F) and
(G,SG) are indistinguishable. The role of the simulator is to imitate the behavior
of F , such that it appears like the “underlying primitives” of the ideal primitive
G. The consistency of the simulation is possible by accessing G.

Indifferentiability comes with a secure composition lemma, meaning that
an indifferentiable cryptographic scheme could safely replace its ideal counter-
part, even in the settings with no secret keys. Unsurprisingly, indifferentiabil-
ity was soon adopted as a standard for evaluating cryptographic constructions,
with applications to hash functions [4,10], block cipher paradigms [1,11,22], and
encryption schemes [3]. Due to this success, the authors won the TCC Test-of-
Time award at TCC 2016-B [31].

The indifferentiability analysis of SPNs was initiated by Dodis et al. [16].
In detail, they introduced the model of Confusion-Diffusion Networks (CDNs),
which may be viewed as SPNs without key-additions. In other words, CDNs is
SPNs without key (see Fig. 1). Their CDN models are purely built upon public
random S-boxes and non-cryptographic “D-boxes” (i.e., permutation layers), and
indifferentiability measures the distance between such CDNs and wide random
permutations. When the “D-boxes” are non-linear (and thus achieve a stronger
diffusion), they showed that 5 rounds are sufficient for indifferentiability, and
the concrete security bounds increase with the number of rounds. When the “D-
boxes” are linear (as in common SPN ciphers), they showed that 9 rounds are
sufficient for indifferentiability. This confirmed (in a widely recognized theoretical
model) that, the use of non-linear diffusion layers ensures more security than
linear ones. Dodis et al. also exhibited an attack against 2-round CDNs with
arbitrarily strong (yet non-idealized) D-boxes [16, Section 3]. These justify the
soundness of using fixed-key block ciphers as “random looking” permutations
for constructing hash functions [36] and other sophisticated cryptosystems [21].
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1.2 Weaker Variants of Indifferentiability

By incorporating different restrictions, the definition of indifferentiability has
been generalized to various variants. Firstly, Yoneyama et al. [42], Dodis et
al. [15], and Naito et al. [34] independently proposed the concept of public
indifferentiability, in which the simulator SG is aware of all queries made by
the distinguisher to the target ideal primitive G. This captures the settings in
which G only evaluated on public inputs, which fits into the use of, e.g., digital
signatures. At TCC 2012, Mandal et al. [30] proposed another weakened vari-
ant named sequential indifferentiability (seq-indifferentiability for short), which
restricts the distinguisher’s queries to be “primitive-construction-sequential”.
Namely, the distinguisher consists of two phases. In the first phase, it queries
the (simulated) “underlying primitive” F or SG in arbitrary, without making
any query to the “construction” CF or SG . In the second phase, it queries the
“construction” CF or G in arbitrary, without making any query to the “primi-
tive” F or SG . It finally outputs the decision. Seq-indifferentiability is actually
equivalent to the aforementioned public indifferentiability for natural construc-
tions [30], while the former is easier to handle in the security analyses. In addi-
tion, seq-indifferentiability implies correlation intractability of Canetti et al. [6],
i.e., there is no “non-trivial” relation between the inputs and outputs of the
construction.

1.3 Our Results

As noted [39], indifferentiability appears imperfect for block cipher paradigms:
security proofs are highly involved, and complexities of provably secure schemes
appear far beyond necessary. In contrast, the notions of seq-indifferentiability
and correlation intractability are directly linked to known-key security of block
ciphers [9,26], and are already sufficient for establishing security for block cipher-
based hash functions. Due to these, several papers have characterized the seq-
indifferentiability and correlation intractability of Feistel networks [30,39] and
variants of Even-Mansour ciphers [8,23]. Though, the natural extension of this
line of works to CD networks remains open.

With the above discussion, we characterize the sequential indifferentiability
of NLCDNs, i.e., CD networks with non-linear D-boxes. [16] investigated full
indifferentiability of CD networks (with both non-linear and linear D-boxes),
while we study the weaker notion of sequential indifferentiability of CD net-
works with non-linear D-boxes only. As mentioned before, the motivation is that
sequential indifferentiability was believed more suitable for known-key security
of block ciphers, to some extent.

In this respect, our first observation is that Dodis et al.’s attack on 2-round
NLCDNs [16, Section 3] is not sequential in any sense, and our first contribution is
a primitive-construction-sequential distinguisher against 2-round NLCDNs with
any (non-idealized) D-boxes. Depending on the D-boxes in use, the running time
of our distinguisher may be exponential. Though, the query complexity is merely
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2, indicating that 2-round CD networks are insecure in the information theoretic
setting.

As positive results, we prove that 3-round NLCDNs are seq-indifferentiable,
as long as the D-boxes satisfy some moderate conditions. The number of rounds
is 40% less than that required for plain indifferentiability.2 In addition, as dis-
cussed, the round complexity is tight in the information theoretic setting. As
mentioned before, these imply that 3-round NLCDNs (tightly) achieve correla-
tion intractability, and are thus sufficient for known-key security of CD networks
(in the sense of correlation intractability).

Interpretations. Since initiated [26], models or adversarial goals for known-key
attacks has incurred intensive discussion. In fact, for the AES, the 7- [26] and 8-
round known-key distinguishers [19, Sect. 4.1] attacked correlation intractability
of the round-reduced ciphers, while the 10-round distinguishers [19, Sect. 4.2] and
beyond [20] are closer to breaking “indifferentiability-like” properties. The mean-
ingfulness and influences of these two sorts of known-key models have incurred
intensive discussion or even debt [19,20].

By our results, for the natural paradigm underlying common block ciphers
including the AES, the complexity for correlation intractability is 40% less than
the complexity for indifferentiability. This matches the aforementioned crypt-
analytic practice. While similar results have been shown with respect to the
iterated Even-Mansour ciphers [8,14], the model of CD network is more fine-
grained (despite the inherently weak bounds), and we thus believe it sheds some
lights on known-key attack model from the perspective of provable security.

1.4 Other Related Work

Certain models for SPNs could be proved secure against certain cryptanalytic
approaches [12,33,35,40]. As a variant of indifferentiability, public indifferen-
tiability is introduced independently by Dodis et al. [15], Naito et al. [34] and
Yoneyama et al. [42]. Mandal et al. [30] introduce a new and simpler variant
of indifferentiability called seq-indifferentiability. Soni and Tessaro [38] intro-
duced another form of seq-indifferentiability called CP-sequential indifferentia-
bility, which restricts the distinguisher’s queries to be “construction-primitive-
sequential”. Some other variants of indifferentiability were introduced in [2,9]
in order to formalize known-key security of block ciphers. Finally, Dodis et
al. [16] shows the first positive results for the indifferentiability security of
the CDNs. Based on this work, we prove that 3-round NLCDNs achieve seq-
indifferentiability.

1.5 Organization

We supply necessary notations and definitions in Sect. 2. Then present our attack
on 2-round NLCDNs in Sect. 3. Our main result, the seq-indifferentiability proofs
for 3-round NLCDNs, is then given in Sect. 4. Finally, Sect. 5 concludes.
2 Recall that 5 rounds are needed for NLCDNs to achieve plain indifferentiability [16].
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2 Preliminaries

2.1 Notations

We write [w] for the set of integers {1, . . . , w}. We denote by bold letters, e.g.,
x, bit strings of length wn, where |x| stands for its length. Using n-bit S-boxes,
such a string x will be divided into w blocks, each of which is of n bits. For
i ∈ [w], the i-th n-bit block of x is denoted x[i] (i.e., |x[i]| = n). We let N = 2n

to simplify notations.
A random (invertible) permutation Z : {+,−} × {0, 1}wn → {0, 1}wn

accepts queries of the form (+, x) (i.e., forward queries) or (−, y) (i.e., back-
ward queries). As our positive result addresses a 3-round CDN with non-
linear diffusion layers (NLCDN for short), we use Aj , Bj , Cj to refer to the
S-boxes in the 1st, 2nd, and 3rd rounds (as sketched in Fig. 3). The ideal-
ized model of such a 3-round NLCDN relies on a tuple of 3w independent
random permutations P = (PA1 , . . . ,PAw

,PB1 , . . . ,PBw
,PC1 , . . . ,PCw

), where
PTj

:= {+,−}×{0, 1}n → {0, 1}n for every T ∈ {A,B,C} and every j ∈ [w]. To
simplify notations, we assume that P provides a single interface P (Tj , δ, x) for
all the 3w permutations, where Tj ∈ {A1, ..., Aw, B1, ..., Bw, C1, ..., Cw} indicates
the S-box being queried, δ ∈ {+,−} indicates the direction of the query, and
x ∈ {0, 1}n indicates the concrete queried value.

2.2 Confusion-Diffusion Networks

The CDN and NLCDN constructions First, we formalize r-round confusion-
diffusion networks. Fix integers w, n, r ∈ N as parameters. Let

P = {Pi,j : (i, j) ∈ {r × w}}

be an array of wr permutations from {0, 1}n to {0, 1}n, i.e., Pi,j is a permutation
from {0, 1}n to {0, 1}n for each i ∈ [r] and each j ∈ [w] and will serve in the
confusion layers. Given x ∈ {0, 1}wn, we denote Pi(x) as

Pi(x) = Pi,1(x[1])‖Pi,2(x[2])‖...‖Pi,w(x[w])

which means the i-th confusion layer. In other words, Pi is a permutation of
{0, 1}wn and can also be defined by setting

P(x)[j] = Pi,j(x[j]).

Let
Π = (π1, . . . , πr−1)

be an arbitrary sequence or r − 1 permutations and each of them from {0, 1}wn

to {0, 1}wn. It will be the diffusion layer, which only has certain (simple) com-
binatorial properties rather than sophisticated cryptographic properties.

With all the above, the function CDN is written as

CDNP
Π(x) = Pr(πr−1(. . . P2(π1(P1(x))) . . . )) = y (1)
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The value w and r will be called width of confusion layer and rounds. As
mentioned, in our primary focus 3-round NLCDNs, we use A,B,C instead of
P1,P2,P3 for the S-boxes.

Combinatorial Properties of the Diffusion Layers. We now use the def-
initions in [16] to formalize the properties that the diffusion layers Π have to
fulfill in order to result in a secure CD network. Given a vector x and two indices
j, j′ ∈ [w], we let πx

j,j′ : {0, 1}n → {0, 1}n be the function from {0, 1}n to {0, 1}n

obtained by restricting the i-th block of input of π to x[i] (i �= j), by replacing
x[j] with the input x ∈ {0, 1}n, and by considering only the j′-th block of out-
put. The properties are defined unidirectionally: π might satisfy a property but
π−1 does not.

Then, the quantity MaxPreEx is defined as

MaxPreEx(π) = max
x,j,h,y

∣
∣{x ∈ {0, 1}n : πx

j,h(x) = y}
∣
∣.

Briefly, it formalizes the maximal number of x ∈ {0, 1}n such that, once
“extended” to a wn-bit string x in a pre-defined manner, the corresponding
wn-bit image y = π(x) has at least one n-bit block equal y ∈ {0, 1}n. We
further define

Then, the quantity MaxColl is defined as

MaxColl(π) = max
x,x′,j,h

∣
∣{x ∈ {0, 1}n : πx

j,h(x) = πx′
j,h(x)}

∣
∣.

Briefly, it formalizes the maximal number of x, x′ ∈ {0, 1}n such that, once
“extended” to a wn-bit strings x and x’, the corresponding wn-bit images y =
π(x) and y′ = π(x′) collide on at least one n-bit block. A concrete non-linear
D-box with MaxPreEx(π) = MaxColl(π) ≈ O(w) was given in [16, Appendix D].

2.3 Sequential Indifferentiability and Correlation Intractability

We first informally introduce indifferentiability, and we concentrate on CDNs to
ease understanding. In this setting, a distinguisher D is trying to distinguish
an idealized CDNP from a random wn-bit permutation Z, with the help of the
underlying random S-boxes P. Hence, in the real world, D is interacting with two
oracles, namely (CDNP ,P). In the ideal world, the “position” of the non-existing
oracle P will be filled by a simulator SZ . By these, CDNP is indifferentiable from
Z, if there exists an efficient simulator SZ making queries to Z, such that the
ideal system (Z,SZ) and the real system (CDNP ,P) are indistinguishable in the
view of any distinguisher D.

The sequential indifferentiability (seq-indifferentiability in short) setting also
considers a distinguisher D trying to distinguish the ideal (Z,SZ) and the real
(CDNP ,P). Unlike the above (plain) indifferentiability, seq-indifferentiability
focuses on sequential distinguishers (seq-distinguishers for short), i.e., a cer-
tain type of distinguishers that issue queries in a strict order. Concretely, a
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seq-distinguisher D is primitive-construction-sequential, if it proceeds with three
steps: (1) D queries the (real or ideal) construction CDNP or Z, without query-
ing the (real or simulated) primitive S or SZ ; (2) D queries the primitive S or
SZ , without querying the construction CDNP or Z; (3) D outputs its decision.
This order is reflected by the numbers in Fig. 2.

Using the notion of seq-distinguishers, the definition of seq-indifferentiability
due to [8] is as follows.

Fig. 2. The definition of sequential indifferentiability. The numbers near the arrows
indicate the order of distinguisher’s query. If the distinguisher first query “1”, it could
query “2” next. If it first query “2”, it could not query “1” any more

Definition 1 (Seq-indifferentiability). The idealized network CDNP with
oracle access to random permutations P is statistically and strongly (q, σ, t, ε)-
seq-indifferentiable from a random wn-bit permutation Z, if there exists a simu-
lator SZ such that for any sequential distinguisher D making at most q queries,
SZ issues at most σ queries to Z and runs in time at most t, and it holds

∣
∣
∣ Pr

[

DCDNP ,P = 1
]

− Pr
[

DZ,SZ
= 1

]
∣
∣
∣ ≤ ε.

As mentioned, seq-indifferentiability already implies correlation intractabil-
ity in the idealized model [8,30]. The notion correlation intractability was intro-
duced by Canetti et al. [6] to capture the feature that there is no exploitable
relation between the inputs and outputs of the function ensembles in question.
It was transposed to idealized models to guarantee similar feature on idealized
constructions. Formally, we first give the definition (from [8]) of evasive relation.

Definition 2 (Evasive Relation). An m-ary relation R over pairs of binary
sequences is said (q, ε)-evasive with respect to the random wn-bit permutation
Z, if for any PPT oracle Turing machine M issuing at most q oracle queries,
it holds

Pr
[

(x1, . . . , xm) ← MZ : ((x1, . . . , xm), (Z(x1), . . . ,Z(xm))) ∈ R
]

≤ ε.
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Definition 3 (Correlation Intractability). Let R be an m-ary relation. The
idealized network CDNS with oracle access to the random S-boxes S is (q, ε)-
correlation intractable with respect to R, if for any oracle Turing machine M
issuing at most q oracle queries, it holds

Pr
[

(x1, . . . , xm) ← MP : ((x1, . . . , xm), (CDNP(x1), . . . ,CDNP(xm))) ∈ R
]

≤ ε.

With the above definitions, the implication of seq-indifferentiability is for-
mally stated as follows [8].

Theorem 1. For an idealized block cipher construction CF which has oracle
access to ideal primitives F and makes at most c queries to F in total, if CF is
(q+cm, σ, ε)-seq-indifferentiable from another ideal primitive G (m is the number
of binary sequences), then for any m-ary relation R which is (σ+m, εR)-evasive
with respect to G, CF is (q, ε + εR)-correlation intractable with respect to R.

3 Attack 2-Round CD

The attack against 2-round CDN is neither primitive-construction-sequential nor
construction-primitive-sequential in [16]. In this section we exhibit a primitive-
construction-sequential distinguisher against 2-round CDN making only 2 oracle
queries to mitigate the gap. The assumption on the D-boxes is that it is an
efficiently computable function rather than an oracle. The running time of our
distinguisher may be exponential O(2n) or even O(2wn). Though, it remains valid
in the information theoretic setting, and confirms the tightness of our positive
result on 3 rounds.

1. Find b, d1, d2 ∈ {0, 1}n such that D(b‖d1)[1] = D(b‖d2)[1];
2. Query the right oracles for A−1

1 (b) → a, A−1
2 (d1) → c1, and A−1

2 (d2) → c2.
3. Query the left oracle P for P (a‖c1) → f1‖h1 and P (a‖c2) → f2‖h2, and

outputs 1 if and only if f1 = f2.

If P is the 2-round CDN oracle, it necessarily holds f1 = f2 since D(b‖d1)[1] =
D(b‖d2)[1], which means the distinguisher always outputs 1. On the other hand,
to simulate consistently in the ideal world, the simulator has to run ahead to find
a pair of inputs/outputs y1 = Z(+, a‖c1) and y2 = Z(+, a‖c2) of the random
permutation Z such that y1[1] = y2[1], the probability of which is O(q2/2n)
within q queries. The distinguishing advantage is thus 1 − O(q2/2n) ≈ 1 for any
simulator making q 	 2n/2 queries to P .

4 Sequential Indifferentiability of 3-Round NLCDNs

The main result of this work is formally stated as follows.

Theorem 2. Assuming that P = (PA1 . . . PAw
,PB1 . . . PBw

,PC1 . . . PCw
) is a

tuple of 3w independent random n-bit permutations, then the 3-round confusion-
diffusion network with oracle access to CDNP is strongly and statistically
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(q, σ, t, ε)-seq-indifferentiable from a wn-bit random permutation Z, where σ =
qw, t = O(qw) and

ε =
4qw(qw + q)
N − qw − q

+
4w(qw + q)2

(

MaxPreEx(π) + MaxCoPr(π)
)

N − qw − q
+

1
Nw

. (2)

As mentioned in Sect. 2.2, a non-linear D-box construction with

MaxPreEx(π) = MaxCoPr(π) ≈ O(w)

was given in [16, Appendix D]. It easy to verify that the other terms in Theorem
2 are all of the order O(q2w/N), which further means

ε = O
(q2w

2n

)

.

By Theorem 1, we have that for any (qw, εR)-evasive relation, the 3-round
NLCDN is (q, εR + O(q2w/2n))-correlation intractable with respect to R. We
stress that MaxPreEx(π) = MaxCoPr(π) ≈ O(w) and thus the above concrete
results are only achievable with non-linear D-boxes [16] (which is not surprising
in turn).

To prove it, we: (1) build a simulator (Sect. 4.1); (2) bound the complexity
of the simulator (Sect. 4.2); (3) introduce the intermediate system for the proof
(Sect. 4.3); (4) prove that the simulator simulates well (Sects. 4.4 and 4.5).

4.1 Overview of the Simulator

We follow the approach of explicit randomness technique of [8,11], namely, let-
ting the simulator S have explicit access to P and query it to obtain necessary
random values. We denote by S(P,Z) the simulator for 3 round CDN which
access P (and Z).

To keep track of previously answered queries, S internally maintains 3w
tables (A1, . . . , Aw, B1, . . . , Bw, C1, . . . , Cw) that have entries in the form of (x, y)
for x, y ∈ {0, 1}n. For T ∈ {A,B,C} and j ∈ [w], we denote by T +

j (x) the n-bit
value such that

(

x, T +
j (x)

)

∈ Tj , and write T +
j (x) = ⊥ if there is no pair of the

form (x, �) in Tj . Similarly by symmetry, we denote by T −
j (y) the n-bit value

such that
(

T −
j (y), y

)

∈ Tj , and write T −
j (y) = ⊥ once no such pair exists. For

δ ∈ {+,−}, we denote by δ̄ the opposite of δ. For example, when δ = +, T δ̄
j

refers to T −
j .

The basic idea is Coron et al.’s simulation via chain completion technique [11],
which has achieved succes in (weaker) indifferentiability proofs of a variety of ide-
alized block ciphers. It requires the simulator S to detect “partial” computation
chains formed by the queries of the distinguisher, and completes the chains in
advance by querying the random permutation Z, so that S is ready for answer-
ing queries in the future. To simulate answers that are consistent with Z, S has
to use the answer from Z to define some simulated answers: this action is called
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adaptation. Specifically, our simulator views every tuple of w queries to the (2nd
round) S-boxes B1, ..., Bw as a partial chain, and completes it by defining entries
in A1, ..., Aw or C1, ..., Cw depending on the context, as depicted in Fig. 3.

S offers an interface Query(Tj , δ, x) to the distinguisher (which is the same as
the interface of P), where T ∈ {A,B,C} and j ∈ [w] indicate the concrete S-box
being queried, δ ∈ {+,−} indicates whether this a direct of inverse query, and
x ∈ {0, 1}n is the actual queried value. Upon a query Query(Tj , δ, x), S checks
the table Tj to see whether the corresponding answer T δ

j (x) is already defined.
When this is the case, it returns T δ

j (x) to finish this response. Otherwise, it
draws a random response y ← P(Tj , δ, x) from the random permutation P and
invokes a private procedure SetTable(T δ

j , x, y). The latter procedure adds (x, y)
to Tj .

Then, if = B, S invokes another private procedure AdaptC (resp. AdaptA)
if δ = + (resp. δ = −) to complete detected partial chains as mentioned before.
In detail, when δ = +, then for every xB [j] = x, S calls AdaptC, which further
computes xC = π2(yB), xA = Block(A,−, π−1

1 (xB)),1 and queries Z(−,xA) →
yC . The procedure AdaptC then adapts: for j = 1, ..., w, it defines (xC [j],yC [j])
as a new entry of the table Cj . Entries to-be-adapted may cause inconsistency
when an entry of the form (xC [j], �) or (�,yC [j]) already exists in Cj . In this
case, our simulator overwrites the existing entries and breaks the bijectivity of
the partially defined maps. This is the major source of inconsistency, and its
unlikeness constitutes a main intermediate goal of our remaining proofs. The
procedure AdaptA is similar to the above by symmetry. The chain completion
strategy is illustrated in Fig. 3. S eventually returns T δ

j (x) as the response. This
means queries of the form (Aj , δ, x) or (Cj , δ, x) won’t trigger chain detection,
and are simply answered with randomness from P. The formal description in
pseudocode is given in Algorithm 1.

4.2 Simulator Efficiency

As the first step, we must prove that the complexity of the simulator S is poly-
nomial in q.

Lemma 1. If the simulator receives at most q queries in total, then for every
j ∈ [w], the tables A1, . . . , Aw, B1, . . . , Bw, C1, . . . , Cw of S has |Bj | ≤ q,

∣
∣Aj

∣
∣ ≤

qw + q, and
∣
∣Cj

∣
∣ ≤ qw + q. The simulator executes AdaptA and AdaptC for at

most qw times, makes at most qw queries to Z and runs in time O(qw).

Proof. For j ∈ [w], it is clear that
∣
∣Bj

∣
∣ only increases by at most 1 when the

distinguisher makes a query to Query(Bj , δ, x), and thus
∣
∣Bj

∣
∣ ≤ q. On the other

hand,
∣
∣Aj

∣
∣ may increase in two cases:

(1) The distinguisher makes a query to Query(Aj , δ, x), and
(2) S executes AdaptA(xB,yB).

1 The private procedure Block(T , δ, t) computes a complete S-box layer on the input
t ∈ {0, 1}wn, where T ∈ {A, B, C} and δ ∈ {+, −}.
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Algorithm 1. Simulator S(Z,P)
1: procedure Query(Tj , δ, x)
2: if T δ

j (x) = ⊥ then
3: y ← P(Tj , δ, x)
4: SetTable(Tj , x, y)
5: if T = B and δ = + then
6: forall xB ,yB s.t. xB [j] = x do
7: AdaptC(xB ,yB)
8: if T = B and δ = − then
9: forall xB ,yB s.t. yB [j] = x do

10: AdpatA(xB ,yB)
11: return T δ

j (x)
12:
13: private procedure AdaptC(xB ,yB)
14: xC = π2(y

B)
15: xA = Block(A, −, π−1

1 (xB))
16: yC = Z(+,xA)
17: forall j ∈ {1, . . . , w} do
18: SetTable(Cj ,x

C [j],yC [j])

19: private procedure AdaptA(xB ,yB)
20: yA = π−1

1 (yB)
21: yC = Block(C, +, π2(y

B))
22: xA = Z(−,yC)
23: forall j ∈ {1, . . . , w} do
24: SetTable(Aj ,x

A[j],yA[j])
25:
26: procedure SetTable(T δ

j , x, y)
27: T δ

j (x) ← y

28: T δ̄
j (y) ← x

29:
30: private procedure Block(T , δ, t)
31: forall j ∈ {1, . . . , w} do
32: if T δ

j (t[j]) = ⊥ then
33: u[j] ← P(Tj , δ, t[j])
34: SetTable(Tj , t[j],u[j])
35: u[j] ← T δ

j (t[j])
36: return u

Fig. 3. Our simulation strategy.
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The procedure AdaptA is executed once for every wn-bit “combined” string
xB ∈ B1×· · ·×Bw detected by S. Therefore, the number of executions is at most
qw. This plus the increment due to the q adversarial queries yield

∣
∣Aj

∣
∣ ≤ qw + q.

The argument for
∣
∣Cj

∣
∣ ≤ qw + q is similar by symmetry. Then, each execution of

AdaptA/AdaptC makes 1 query to Z, which establishes the qw query complexity.
Finally, the simulator computations are clearly dominated by the executions of
AdaptA/AdaptC, and this establishes the O(qw) time complexity. ��

4.3 Intermediate Systems

We follow [8] and use three games to facilitate the proof (see Fig. 4). The
game G1 captures the interaction between the distinguisher and the ideal world
(Z,S(Z,P)). Z is a wn-bit random permutation and P is a tuple of n-bit inde-
pendent random permutation (PA1 . . . PAw

,PB1 . . . PBw
,PC1 . . . PCw

), plays the
role of S-boxes in CDN which is mentioned in Sect. 2.3. The simulator S(Z,P)
has access to both Z and P. Our rules for constructing game strictly follow the
rules constructed in [1,8], and all use random permutation P as source of ran-
domness. The game G3 captures interaction between the distinguisher and the
real world (CDNP ,P). We construct a intermediate system G2. It lies between
G1 and G3 and functions as a bridge to simplify the proof. The intermediate
game G2 captures the interaction between the distinguisher and the system
(CDNS(Z,P),S(Z,P)), i.e., it is modified from G1 by replacing Z with the CDN
construction. In other words, the right oracle is the simulator S(Z,P) with ora-
cle access to random permutation Z, but now the left oracle is CDN construction
with oracle access to S(Z,P).

4.4 Probability of Overwriting

As mentioned before, during executing the procedures AdaptA and AdaptC,
our simulator may overwrite already defined entries and cause inconsistency. In
this section we show this event of overwriting, in fact, happens with a bounded
probability.

The event overwriting only occurs during the execution of SetTable. We
begin by considering the probability of line 4 and line 34. These lines only cause
overwriting when the sampled values collide with the value previously added
by AdaptA or AdaptC. Since the size of Aj and Cj is qw + q by Lemma 1,
the obtained y ← P(Tj , δ, x) is uniform in at least N − qw − q possibilities.
The probability that y already exists is 2(qw+q)

N−qw−q since there are at most qw + q
random assignment in tables Aj and Cj . The procedure AdaptA, resp. AdaptC,
is executed by at most qw times. By these, we have

Pr
[

line 4, 34 overwrite
]

≤ 2qw(qw + q)
N − qw − q

. (3)

Then, we consider the overwriting in AdaptC or AdaptA. During execut-
ing the former AdaptC, the occurrence of overwriting is due to Cj(x) �= ⊥
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Fig. 4. Games and the involved primitives used in our proof.

or C−1
j (y) �= ⊥. Assume that table Cj already have k pairs (k ≤ qw + q)

(xC
1 ,yC

1 ), . . . , (xC
k ,yC

k ) before this execution. By construction (line 14), we define
xC

i = π2(yB
i ) has chance to cause the following two types of overwriting:

– PreEx: xC
i [j] ∈ Cj , (1 ≤ i ≤ k, 1 ≤ j ≤ w)

– Coll: xC
i [j] = xC

i′ [j], (1 ≤ i ≤ i′ ≤ k, 1 ≤ j ≤ w)

where Cj is represented as the domain of table Cj . In other words, Cj = {x ∈
{0, 1}n : Cj(x) �= ⊥}. It is clear that PreEx and Coll includes all the possibilities
of bad events in AdaptC. By Lemma 1, the size of Cj is at most q2 + q. We first
discuss the probability of occurrence of PreEx. As mentioned before, we denoted
πx

j,j′ be the function from {0, 1}n to {0, 1}n. It represents in the D-boxes, we
split the input x and output y into the j-th and j′-th block. We now define:

MaxPreEx(π2) = max
x,j,h,y

∣
∣{x ∈ {0, 1}n : πx

j,h(x) = y}
∣
∣.

Since the size of Cj is at most qw + q, xC
i is uniformly random in a set of

size at least N − qw − q, So we can find the probability of occurrence of PreEx
for xC

i [j] = π2(yB) at most:

MaxPreEx(π2)|Cj |
N − qw − q

.

For all xC , the probability would be at most:

Pr

[
k∏

i=1

w∏

j=1

PreEx

]

≤ wk(qw + q)MaxPreEx(π2)
N − qw − q

. (4)
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Next, we consider the probability of Coll. Coll occurs if and only if xC
i [j] =

xC
i′ [j]. There are two different situations here: if xC

i , xC
i′ are from distinct calls,

the probability of xC
i [j] = xC

i′ [j] is at most:

MaxPreEx(π2)
N − qw − q

.

In this case, the value range of bad event has only one value. |Cj | is replaced by
1. If xC

i , xC
i′ are from the same calls, the probability of xC

i [j] = xC
i′ [j] is at most:

MaxColl(π2)
N − qw − q

,

which we define that:

MaxColl(π2) = max
x�=x′,j,h

∣
∣{x ∈ {0, 1}n : πx

j,h(x) = πx′
j,h(x)}

∣
∣.

We let MaxCoPr(π) = max(MaxPreEx(π),MaxColl(π)), thus:

Pr

[
k∏

i=1

k∏

i′=1

w∏

j=1

Coll

]

≤ wk2MaxCoPr(π2)
N − qw − q

. (5)

Gathering Eqs. (4) and (5), and using k ≤ qw + q, the probability to have
overwriting due to executing AdaptC is bounded by

Pr[AdaptC overwrites] ≤ wk(qw + q)MaxPreEx(π2)
N − qw − q

+
wk2MaxCoPr(π2)

N − qw − q

=
w(qw + q)2

(

MaxPreEx(π2) + MaxCoPr(π2)
)

N − qw − q
.

(6)

Similar reasoning holds for AdaptA executions by symmetry, giving rise to
the same bound

Pr[AdaptA overwrites] ≤ wk(qw + q)MaxPreEx(π1)
N − qw − q

+
wk2MaxCoPr(π1)

N − qw − q

=
w(qw + q)2

(

MaxPreEx(π1) + MaxCoPr(π1)
)

N − qw − q
.

(7)

Gathering Eqs. (3) and (7), we evetually have the probability of overwriting.

Pr
[

Overwriting
]

≤ 2qw(qw + q)
N − qw − q

+
2w(qw + q)2

(

MaxPreEx(π) + MaxCoPr(π)
)

N − qw − q
,

(8)
where MaxPreEx(π), MaxColl(π), and MaxCoPr(π) stand for the maximal quan-
tity among the two diffusion layers π1, π2, i.e.,

MaxPreEx(π) = max
(

MaxPreEx(π1), . . . ,MaxPreEx(π−1
2 )

)

MaxColl(π) = max
(

MaxColl(π1), . . . ,MaxColl(π−1
2 )

)

MaxCoPr(π) = max
(

MaxCoPr(π1), . . . ,MaxCoPr(π−1
2 )

)

.
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4.5 Statistical Distance Between Games

In this section, we will complete the final step of the proof. Recall from Sect. 4.3
that we built three games to imitate real world and ideal world. First, we con-
sider the transition from G1 to G2. Note that both G1 and G2 has the same
pair (Z,P), Z is the random wn-bit permutation and P is a tuple of random
permutations PTj

. The pair is bad, if the simulator overwrites an entry of the
table Tj , specifically, Aj , Cj during G2; otherwise, the pair is good.

We first address the statistical distance between G1 and G2.

Lemma 2. For any distinguisher D making at most q queries, the statistical
distance between G1 and G2 is bounded by

∣
∣
∣ Pr

[

DG1(S(Z,P),Z) = 1
]

− Pr
[

DG2(S(Z,P),CDNS(Z,P))
]
∣
∣
∣ ≤ Pr

[

(Z,P) is bad
]

.

Proof. Since the distinguisher is sequential in the sense of Definition 1, in G1

and G2, it necessarily first queries S(Z,P) and then Z (in G1) or CDNS(Z,P)

(in G2) only. If the pair is good, the answers D received from G1 and G2 are
the same since they stem from the same randomness source. On the other side,
Z is an ideal primitive and CDN is the structure that exists in the real state,
they could not trigger bad event. So, the statistical distance between G1 and
G2 is determined by pair (Z,P) and will not be greater than the pair (Z,P) is
bad. Bad event will not triggered by S unless the pair (Z, P) is bad. Hence, the
statistical distance between G1 and G2 is actually the probability of bad events.

��

Next, we consider the transition from G2 and G3, i.e. the transition from
(Z,P) to P which is the most important part. Thus, we use the randomness
mapping argument of Holenstein et al. [24]. In detail, we define a map Γ on tuples
of random permutations (Z,P). When the pair (Z,P) is bad, Γ (Z,P) = ⊥ which
is a special symbol. Otherwise, Γ (Z,P) is the tuple of 3w tables β = (β1, ..., β3w)
standing at the end of the execution G2(Z,P). It is easy to see such tables
β = (β1, ..., β3w) defines 3w partial permutations and a partial permutation
is a function βi : {+,−} × {0, 1}n → {0, 1}n ∪ {∗} such that for all x, y ∈
{0, 1}n, βi(+, x) = y �= ∗ ⇔ βi(−, y) = x �= ∗. The map Γ is defined for good
pairs (Z,P) as follows: run DG2(Z,P), and consider the tables Tj of the S at the
end of the execution; then fill all undefined entries of the Tj with the special
symbol *.

We say that a tuple of permutation P extends a tuple of partial permutation
β = (β1, ..., β3w), denoted P � β, if for each βi and P agree on all entries such
that βi(δ, x) �= ∗. By the definition of the randomness mapping, for any good
tuple of partial permutation β, the output of DG2(Z,P) and DG3(P) are equal for
any pair (Z,P) such that Γ (Z,P) = β and any tuple of permutations P such
that P � β. We can conclude that for all β, the distance Δ(G2, G3) between G2

and G3 is bounded by
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Δ(G2, G3) =
∣
∣
∣ Pr

[

DG2(Z,P) = 1
]

− |Pr
[

DG3(P) = 1
]
∣
∣
∣

≤ Pr[(Z,P) is bad] +
∑

Pr[Γ (Z,P) = β] −
∑

Pr[P � β]. (9)

For DG3(P), let q̄Tj
be the good execution of P � β, then:

Pr[P � β] =
∏

T

w∏

j=0

|q̄Tj
|−1

∏

l=0

1
N − l

. (10)

For DG2(Z,P), let p̄Tj
be the good pair of Γ (Z,P) = β, then:

Pr[Γ (Z,P) = β] =
( |Z|−1

∏

l=0

1
Nw − l

)

·
(

∏

T

w∏

j=1

|p̄Tj
|−1

∏

l=0

1
N − l

)

. (11)

Lemma 3. Under the conditions of (10) and (11), for T ∈ {B}, |p̄Tj
| = |q̄Tj

|,
and for T ∈ {A,C}, if there exist two non-negative integers a,c such that a+c =
|Z|, then |q̄Aj

| = |p̄Aj
| + a, |q̄Cj

| = |p̄Cj
| + c

Proof. Recall that G3 is the real world, |q̄Tj
| = |Tj | since there is no adapt

mechanism in it. In G2, |Bj | will never be adapted, so |p̄Tj
| = |Tj | = |q̄Tj

| if
T ∈ {B}. |Aj | and |Cj | is adapted when the simulator call procedures AdaptA
or AdaptC. Noted that Z is only called by AdaptA or AdaptC, so the times
AdaptA or AdaptC called is equal to the size of table Z. Assume that AdaptA
is called a times and AdaptC is called c times, so clearly |Z| = a+ c. Due to the
adapt mechanism of G2, |q̄Aj

| = |p̄Aj
| + a, |q̄Cj

| = |p̄Cj
| + c. ��

We divide (10) by (11), and apply Lemma 3:

Pr[P � β]
Pr[Γ (Z,P) = β]

=

∏

T
∏w

j=0

∏|q̄Tj
|−1

h=0
1

N−h
(

∏|Z|−1
h=0

1
Nw−h

)

·
(

∏

T
∏w

j=1

∏|p̄Tj
|−1

h=0
1

N−h

)

≥
a−1∏

h=0

1
(N − h)w

·
c−1∏

h=0

1
(N − h)w

·
a+c−1∏

h=0

(Nw − h)

=
Nw − 1

Nw
·

a−1∏

h=1

1
(N − h)w

·
c−1∏

h=1

1
(N − h)w

·
a+c−1∏

h=2

(Nw − h)

=
Nw − 1

Nw
·
∏a+c−1

h=a (Nw − h)
∏c−1

h=1(N − h)w

≥ Nw − 1
Nw

= 1 − 1
Nw

.

(12)
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Gathering Eqs. (12) and (9), we have

Δ(G2, G3) ≤ Pr[(Z,P) is bad] +
∑

Pr[Γ (Z,P) = β] −
∑

Pr[P � β]

= Pr[(Z,P) is bad] +
∑

Pr[Γ (Z,P) = β]
(

1 − Pr[Γ (Z,P) = β]
Pr[P � β]

)

≤ Pr[(Z,P) is bad] +
∑

Pr[Γ (Z,P) = β] · 1
Nw

≤ Pr[(Z,P) is bad] +
1

Nw
. (13)

Using Lemma 3 again, we eventually have Eq. (2).
∣
∣
∣ Pr

[

DG1(Z,P) = 1
]

− |Pr
[

DG3(P) = 1
]
∣
∣
∣

≤ Δ(G2, G3) + Pr[(Z,P) is bad]

= 2Pr[(Z,P) is bad] +
1

Nw

=
4qw(qw + q)
N − qw − q

+
4w(qw + q)2

(

MaxPreEx(π) + MaxCoPr(π)
)

N − qw − q
+

1
Nw

.

(14)

5 Conclusion

We characterize the sequential indifferentiability of Confusion-Diffusion Net-
works (CDNs). Assuming using random permutations as S-boxes and non-linear
permutations as the diffusion layer, we exhibit a sequential distinguisher against
2-round CDNs (strengthening Dodis et al.’s negative result [16]) and prove
sequential indifferentiability for 3-round CDN. Non-linear D-boxes satisfy cer-
tain combinatorial requirements, and this is crucial for the proof of Sect. 4.4.
This was also central for the full indifferentiability results of [16]: as mentioned
in our Introduction, using non-linear D-boxes 5 rounds are proved indifferen-
tiable, while 9 rounds are needed for linear D-boxes. Hence, to achieve sequential
indifferentiability, the exact number of rounds required by non-linear CDNs is
3, which is better than that (5 rounds) needed for full indifferentiability. These
complement Dodis et al.’s results in the full indifferentiability setting [16] and
deepen the theory of known-key security of block ciphers.
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Abstract. Tweakable block cipher (TBC), a stronger notion than
standard block ciphers, has wide-scale applications in symmetric-key
schemes. At a high level, it provides flexibility in design and (possibly)
better security bounds. In multi-keyed applications, a TBC with short
tweak values can be used to replace multiple keys. However, the exist-
ing TBC construction frameworks, including TWEAKEY and XEX, are
designed for general purpose tweak sizes. Specifically, they are not opti-
mized for short tweaks, which might render them inefficient for certain
resource constrained applications. So a dedicated paradigm to construct
short-tweak TBCs (tBC) is highly desirable. In this paper, as a first con-
tribution, we present a dedicated framework, called the Elastic-Tweak
framework (ET in short), to convert any reasonably secure SPN block
cipher into a secure tBC. We apply the ET framework on GIFT and AES
to construct efficient tBCs, named TweGIFT and TweAES. These short-
tweak TBCs have already been employed in recent NIST lightweight com-
petition candidates, LOTUS-LOCUS and ESTATE. As our second contri-
bution, we show some concrete applications of ET-based tBCs, which
are better than their block cipher counterparts in terms of key size, state
size, number of block cipher calls, and short message processing. Some
notable applications include, Twe-FCBC (reduces the key size of FCBC
and gives better security than CMAC), Twe-LightMAC Plus (better rate
than LightMAC Plus), Twe-CLOC, and Twe-SILC (reduces the number of
block cipher calls and simplifies the design of CLOC and SILC).
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1 Introduction

Since their advent in late 1970’s, block ciphers [1,2] have become the ubiquitous
building blocks in various symmetric-key cryptographic algorithms, including
encryption schemes [3], message authentication codes (MACs) [4], and authenti-
cated encryption [5]. Due to their wide-scale applicability, block ciphers are also
the most well-analyzed symmetric-key primitives. As a result, the cryptographic
community bestows a high degree of confidence in block cipher based designs.
Block cipher structures are more or less well formalized and there are formal
ways to prove the security of a block cipher against the classical linear [6] and
differential [7] attacks. The literature is filled with a plethora of block cipher
candidates, AES [2] being the most notable among them. AES is currently the
NIST standard block cipher [2], and it is the recommended choice for several
standardized encryption, MAC and AE schemes such as CTR [3], CMAC [4],
AES-GCM [8] etc. A recent block cipher proposal, named GIFT [9] has generated
a lot of interest due to its ultra-lightweight nature.

1.1 Some Issues in Block Cipher Based Designs

Key Size of Designs: Several designs use more than one independent block
cipher keys, which could be an issue for storage constrained applications. Some
notable examples of such designs are sum of permutations [10,11], EDM [12],
EWCDM [12], CLRW2 [13], GCM-SIV-2 [14], Benes construction [15]. While some
of these designs have been reduced to single key variants, reducing a multi-keyed
design to single-key design is, in general, a challenging problem.

Auxiliary Secret State: FCBC, a three-key MAC by Black and Rogaway
[16], is a CBC-MAC type construction. CMAC [4], the NIST recommended MAC
design, reduces number of keys from three to one by using an auxiliary secret
state (which is nothing but the encryption of zero block). Though CMAC is
NIST recommended MAC design, it costs an extra block cipher call (compared
to FCBC) and holds an additional state. This may be an issue in hardware
applications, where area and energy consumption are very crucial parameters.
Further FCBC [17,18] allows more number of queries per key, as compared to
CMAC [19].

Simplicity of Designs: Design simplification, is a closely related topic to
the single-keyed vs. multi-keyed debate. A simple design could be beneficial for
real life applications, and better understanding of designs themselves. Often,
the single-keyed variant of a block cipher based design is much more complex
than the multi-keyed version, both in implementation and security analysis. This
is due to the several auxiliary functions used chiefly for domain separation. For
instance CLOC and SILC [20] use several functions depending upon the associated
data and message length. In contrast, the multi-keyed variants of CLOC and SILC
would be much simpler.

Short Message Processing: An essential requirement in lightweight appli-
cations is efficient short input data processing, while minimizing the memory
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consumption and precomputation. In use cases with tight requirements on delay
and latency, the typical packet sizes are small (way less than 1 Kilobytes) as
large packets occupy a link for longer duration, causing more delays to subse-
quent packets and increasing latency. For example, Zigbee, Bluetooth low energy
and TinySec [21] limit the maximum packet lengths to 127 bytes, 47 bytes and
128 bytes, respectively. Similarly, CAN FD [22], a well-known transmission pro-
tocol in automotive networks, allows message length up to 64 bytes. The packet
sizes in EPC tag [23], which is an alternate to the bar code using RFID, is
typically 12 bytes.

Cryptographic designs with low latency for shorter messages could be highly
beneficial for such applications. As it turns out, for many designs short message
performance is not that good due to some constant overhead. For instance CMAC
uses one block cipher call to generate a secret state, and SUNDAE [24] uses the
first call of block cipher to distinguish different possibilities of associated data
and message lengths. So, to process a single block message, SUNDAE requires
two block cipher calls. CLOC and SILC [20] have similar drawbacks. They cost
2 and 4 calls to process a single block message. LightMAC Plus [25], feeds a
counter-based encoded input to the block cipher, which reduces the rate.1

1.2 Motivation of Short-Tweak TBC

Tweakable Block Ciphers: The Hasty Pudding cipher [26], an unsuccessful
candidate for AES competition, was one of the first tweakable block ciphers.2

Later, Liskov et al. in formalized this in their foundational work on tweak-
able block ciphers [27]. Tweakable block ciphers (TBCs) are more versatile and
find a broad range of applications, most notably in authenticated encryption
schemes, such as OCB [28], COPA [29], and Deoxys [30]; and message authen-
tication codes, such as ZMAC [31], NaT [32], and ZMAC+ [33]. TBCs can be
designed from scratch [26,34,35], or they can be built using existing primitives
like block ciphers, and public permutations. LRW1, LRW2 [27], CLRW2 [13], XEX
[36] and XHX[37] are some examples of the former category, whereas Tweakable
Even-Mansour [32] is an example of the latter.

Tweakable block cipher can actually solve most of the aforementioned issues
in block ciphers quite easily. A secure TBC with distinct tweaks is actually
equivalent to independently keyed instantiations of a secure block cipher. This
naturally gives a TBC based single-keyed design for any block cipher based
multi-keyed design. For example, one can use this equivalence to define a single-
keyed version of FCBC which is as secure as FCBC. This resolves the issues with
CMAC. In some cases, TBCs can also avoid the extra block cipher calls. It also
helps to simplify designs like CLOC and SILC.

In all these cases, we observe that a short tweak space (in most of the cases
2-bit or 4-bit tweaks) is sufficient. In other words, a short-tweak tweakable block
cipher (in short we call tBC) would suffice for resolving these issues. An tBC is

1 No. of message blocks processed per block cipher call.
2 It used the term “spice” for tweaks.
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better than large tweak TBCs in two respects: (i) state size for holding tweak is
small, and most importantly (ii) tBC would potentially be more efficient than
large tweak TBCs.

The TWEAKEY Framework: At Asiacrypt’14, Jean et al. presented a generic
framework for TBC construction, called TWEAKEY [38], that considers the
tweak and key inputs in a unified manner. Basically, the framework formalized
the concept of tweak-dependent keys. The TWEAKEY framework gave a much
needed impetus to the design of TBCs, with several designs like Kiasu [39], Deoxys
[30], SKINNY and Mantis [40] etc. As TWEAKEY is conceptualized with general
purpose tweak sizes in mind, it is bit difficult to optimize TWEAKEY for tBC.
For instance, take the example of SKINNY-128. To process only 4-bit tweak,
the additional register is limited but their computation modes must move from
TK1 to TK2, which increases the number of rounds by 8. This in turn affects
the throughput of the cipher. Although, some TWEAKEY-based designs, espe-
cially Kiasu-BC [39] do not need additional rounds, yet this is true in most of the
existing TWEAKEY-based designs. We also note here that Kiasu-BC, which is
based on AES, is weaker than AES by one round, as observed in several previous
cryptanalytic works [41–43].

So, there is a need for a generic design framework for tBC, which (i) can
be applied on top of a block cipher, (ii) adds minimal overheads, and (iii) is as
secure as the underlying block cipher.

XE and XEX: Rogaway [36], proposed two efficient ways of converting a block
cipher into a tweakable block cipher, denoted by XE and XEX. These methods
are widely used in various modes such as PMAC [44], OCB [45], COPA [29],
ELmD [46] etc. However, XE and XEX have several limitations with respect to
a short tweak space, notably (i) security is limited to birthday bound, and (ii)
precomputation and storage overhead to generate the secret state. In addition,
it also requires to update the secret state for each invocation, which might add
some overhead.

1.3 Our Contributions

Our main contributions can be divided into two parts:

1. Elastic-Tweak Framework: In this work, we address the above issues and
propose a generic framework, called the Elastic-Tweak framework (ET in short),
to transform a block cipher into a short tweak TBC. We consider “short tweaks”
of size less than equal to 16 bits and greater than equal to 4 bits. This small size
ensures that the tweak storage overhead is negligible. In this framework, given
the block cipher, we first expand the short tweak using linear code, and then
inject the expanded tweak at intervals of some fixed number of rounds, say r.
Designs under this framework can be flexibly built over a secure block cipher,
and are as secure as the underlying block cipher.

The ET framework distributes the effect of the tweak into the block cipher
state that can generate several active bytes. In particular we choose a linear code
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with high branch number to expand the input tweak. This design is particularly
suitable for short tweaks to ensure the security against differential cryptanalysis
because the small weight of the short input always results in a large weight of
the output.

Another advantage of the framework is the easiness of the security evaluation.
First, for zero tweak value, the plaintext-ciphertext transformation is exactly the
same as the original cipher (i.e. it has backward compatibility feature). There-
fore, to evaluate the security of the new construction, we only need to consider
the attacks that exploit at least one non-zero tweak. Second, the large weight of
the expanded tweak ensures relatively high security only with a small number of
rounds around the tweak injection. This allows a designer to focus on the secu-
rity of the r-round transformation followed by the tweak injection and further
followed by the r-round transformation, which is called “2r-round core”.

We instantiate this framework with several designs over two well known block
ciphers AES [2] and GIFT [9] with different tweak sizes varying from 4 to 16.
Several of these candidates have already been extensively analyzed in [47,48] in
terms of security and performance due to their use in NIST lightweight compe-
tition candidates, LOTUS-LOCUS [49] and ESTATE [50]. However, we refer the
full version [51] for the thorough security analysis (Sect 4, [51]) and performance
evaluation (Sect 3.4 and Appendix C, [51]).

2. Applications of tBC: Here we demonstrate the applicability of tBC in
various constructions:

1. Reducing the Key Size in Multi-Keyed Modes: The primary applica-
tion of tBC is to reduce the key space of several block cipher based modes
that use multiple independently sampled keys. We depict the applicability
of tBC on FCBC MAC, Double Block Hash-then-Sum (DbHtS) paradigm,
Sum of permutations, EDM, EWCDM, CLRW2, GCM-SIV-2 and the Benes
construction.

2. Efficient Processing of Short Messages: tBC can be used to reduce the
number of block cipher calls, which in turn reduces the energy consumption
for short messages. We take the instance of Twe-LightMAC Plus to demon-
strate this application of tBC. Twe-LightMAC Plus achieves a higher rate as
compared to it’s original counterpart LightMAC Plus. In addition, the number
of keys is reduced from 3 to 1. However, this is also applicable to Twe-CLOC
and Twe-SILC (tBC based counterparts of CLOC and SILC [20] respectively).

3. Replacement for XE and XEX. tBC can be viewed as an efficient replace-
ment of XE and XEX especially when we target short messages (say of size
up to 1 MB). In such cases, instead of using a secret state (that we need
to precompute, store and update), one can simply use tBC with the block-
counters as the tweak. The applicability of this paradigm can be depicted
on several MAC modes such as PMAC; encryption mode such as COPE and
AEAD modes such as ELmD, COLM.



Elastic-Tweak: A Framework for Short Tweak Tweakable Block Cipher 119

In addition to the above applications, we show that tBCs can also simplify the
internal structures of various block cipher based authenticated encryption modes.
For example, CLOC, SILC use several auxiliary functions mainly for domain sep-
aration. We propose tBC-based variants for these, named Twe-CLOC and Twe-
SILC, which simplify the original designs (by cleaning up the auxiliary functions)
and reduces the number of block cipher calls. These in turn help in reducing the
area of hardware implementation, and significantly increasing the throughput
for short messages.

2 Preliminaries

Notations: For n ∈ N, [n] denotes the set {1, . . . , n}, and {0, 1}n denotes the
set of all n-bit binary strings. We use {0, 1}+ to denote the set of all non-empty
binary strings. ⊥ denotes the empty string and {0, 1}∗ = {0, 1}+ ∪{⊥}. For any
string X ∈ {0, 1}n, |X| denotes the number of bits in X, and for i ∈ [|X|], xi

denotes the i-th significant bit (x|X| being the most significant bit). For X ∈
{0, 1}+ and n ∈ N, (X)[�] := (X1, . . . , X�)

n← X, denotes the n-bit block parsing
of X into (X)[�], where |Xi| = n for [� − 1], and X� ∈ [n]. For k ≤ n ∈ N, and
X ∈ {0, 1}n, �X�k := X1 . . . Xk. The expression a ? b : c evaluates to b if a is
true and c otherwise.

For n,m ∈ N, Perm(n) denotes the set of all permutations over {0, 1}n, and
Func(m,n) denotes the set of all functions from {0, 1}m to {0, 1}n. For n, κ ∈ N,
TPerm(κ, n) denotes the set of all families of permutations Pk := P (k, ·) ∈
Perm(n) indexed by k ∈ {0, 1}κ. By extending notation, we use TPerm(κ, τ, n)
to denote the set of all families of permutations Pk,t ∈ Perm(n), indexed by
(k, τ) ∈ {0, 1}κ × {0, 1}τ .

(Tweakable) Block Cipher: A block cipher with key size κ and block size
n is a family of permutations E ∈ TPerm(κ, n). For a fixed key k ∈ {0, 1}κ,
we write Ek(·) = E(k, ·), and its inverse is written as E−1

k (·). A tweakable block
cipher with key size κ, tweak size τ , and block size n is a family of permutations
E ∈ TPerm(κ, τ, n). For a fixed key k ∈ {0, 1}κ and tweak t ∈ {0, 1}τ , we write
Et

k(·) = E(k, t, ·), and its inverse is written as E−t
k (·). Throughout this paper we

fix κ, τ, n ∈ N as the key size, tweak size, and block size, respectively, of the
given (tweakable) block cipher.

2.1 Security Definitions

(Tweakable) Random Permutation and Random Function: For any
finite set X , X ←$ X denotes uniform and random sampling of X from X .

We call Π ←$ Perm(n) a (uniform) random permutation, and
˜Π ←$ TPerm(τ, n) a tweakable (uniform) random permutation on tweak space
{0, 1}τ and block space {0, 1}n. Note that, ˜Πi is independent of ˜Πj for all
i 	= j ∈ {0, 1}τ . We call Γ ←$ Func(m,n) a (uniform) random function from
{0, 1}m to {0, 1}n.
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We say that a distinguisher is “sane” if it does not make duplicate queries,
or queries whose answer is derivable from previous query responses. Let A(q, t)
denote the class of all sane distinguishers, limited to at most q queries and t
computations.

Tweakable Strong Pseudorandom Permutation (TSPRP): The
TSPRP advantage of any distinguisher A against ˜E instantiated with key
K ←$ {0, 1}κ, is defined as

Advtsprp
˜E

(A) :=
∣

∣

∣Pr[A˜E±
K = 1] − Pr[A˜Π±

= 1]
∣

∣

∣ .

The TSPRP security of ˜E, is defined as

Advtsprp
˜E

(q, t) := max
A

Advtsprp
˜E

(A). (1)

TPRP or tweakable pseudorandom permutation and its advantage Advtprp
˜E

(q, t)
is defined similarly when adversary has no access of the inverse oracle.

Pseudorandom Function (PRF): The PRF advantage of distinguisher A
against a keyed family of functions F := {FK : {0, 1}m → {0, 1}n}K∈{0,1}κ is
defined as

Advprf
F (A) :=

∣

∣

∣

∣

Pr
K ←$ {0,1}κ

[AFK = 1] − Pr[AΓ = 1]
∣

∣

∣

∣

.

The PRF security of F against A(q, t) is defined as

Advprf
F (q, t) := max

A
Advprf

F (A). (2)

The keyed family of functions F is called weak PRF family, if the PRF security
holds when the adversary only gets to see the output of the oracle on uniform
random inputs. This is clearly a weaker notion than PRF. We denote the weak
prf advantage as Advwprf

F (q, t).

IV-Based Encryption: An IV-Based Encryption ivE scheme is a tuple Ψ :=
(K,N ,M,Enc,Dec). Encryption algorithm Enc takes a key K ∈ K and a message
M ∈ M and returns (iv, C) = Enc(K,M), where iv ∈ N is the initialization
vector and C ∈ M is the ciphertext. Decryption algorithm Dec takes K, iv, C
and returns M = Dec(K, iv, C). Correctness condition says that for all K ∈ K
and M ∈ M Dec(K,Enc(K,M)) = M . The Priv$ advantage [14,52–54] of A is
defined as

Advpriv$
ivE (A) :=

∣

∣

∣ Pr
K

[

AEncK = 1
]

− Pr
Γ

[

AΓ = 1
]

∣

∣

∣

where K ←$ K and Γ is a random function from M → N × M. The Priv$
security of ivE, is defined as

Advpriv$
ivE (q, t) := max

A
Advpriv$

ivE (A). (3)

(Nonce-Based) Authenticated Encryption with Associated Data: A
(nonce-based) authenticated encryption with associated data or NAEAD scheme
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A consists of a key space K, a (possibly empty) nonce space N , a message space
M, an associated data space A, and a tag space T , along with two functions
Enc : K × N × A × M → M × T , and Dec : K × N × A × M × T → M ∪ {⊥},
with the correctness condition that for any K ∈ K, N ∈ N , A ∈ A,M ∈ M, we
must have Dec(K,N,A,Enc(M)) = M . When the nonce space is empty, we call
the AE scheme a deterministic AE or DAE scheme.

Following the security definition in [14,52–54], we define the NAEAD (DAE
for deterministic AE) advantage of A as

Advae
A (A) :=

∣

∣

∣ Pr
K

[

AEncK,DecK = 1
]

− Pr
Γ

[

AΓ,⊥ = 1
]

∣

∣

∣,

where K ←$ K and Γ is a random function from N ×A×M → M×T , and ⊥ is
the reject oracle that takes (N,A,C, T ) as input and returns the reject symbol
⊥. The NAEAD/DAE security of A, is defined as

Advae
A (q, t) := max

A
Advae

A (A). (4)

3 The Elastic-Tweak Framework

In this section, we introduce the Elastic-Tweak framework (illustrated in Fig. 1)
on SPN based block ciphers that allows one to efficiently design tweakable block
ciphers with short tweaks. As the name suggests, Elastic-Tweak refers to elastic
expansion of short tweaks and we typically consider tweaks of size less than or
equal to 16 bits. Using this framework, one can convert a block cipher to a short
tweak tweakble block cipher denoted by tBC. We briefly recall the SPN structure
on which this framework would be applied. An SPN block cipher iterates for rnd
many rounds, where each round consists of three operations:

(a) SubCells (divides the state into cells and substitutes each cell by an s-bit
S-box which is always non-linear),

(b) LinLayer (uses a linear mixing layer over the full state to create diffusion),
and

(c) AddRoundKey (add a round keys to the state).

The basic idea of the framework is to expand a small tweak (of size t) using
a suitable linear code of high distance and then the expanded tweak (of size
te) is injected (i.e. xored) to the internal block cipher state affecting a certain
number of S-boxes (say, tic). We apply the same process after every gap number
of rounds. An important feature of tBC is that it is implemented using very
low tweak state and without any tweak schedule (only tweak expansion). In the
following, we describe the linear code to expand the tweak and how to inject
the tweak into the underlying block cipher state. If BC denotes the underlying
SPN block cipher, we denote the tweakable block cipher as Twe BC [t, te, tic, gap]
where t, te, tic, gap are suitable parameters as described above.
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3.1 Exp: Expanding the Tweak

In this section, we describe our method to expand the tweak T of t bits to an
expanded tweak Te of te bits. We need the parameters to satisfy the following
conditions:

(a) te is divisible by 2t and tic. Let w := te/tic, the underlying word size.
(b) w divides t and w ≤ s.

The tweak expansion, called Exp, follows an “Expand then (optional) Copy”
style as follows:

(i) Let τ := t/w, and we view T = (T1, . . . , Tτ ) as a 1 × τ vector of elements
from F2w . We expand T by applying a [2τ, τ, τ ]-linear code3 over F2w with
the generating matrix Gτ×2τ = [Iτ : Iτ ⊕Jτ ], where Iτ is the identity matrix
of dimension τ and J is the all 1 square matrix of dimension τ over F2w .
Let T ′ = T · G be the resultant code. Note that, T ′ can be computed as
S ⊕ T1‖ · · · ‖S ⊕ Tτ where S = T1 ⊕ · · · ⊕ Tτ .

(ii) Finally, we compute the expanded tweak by concatenating te/2t many
copies of T ′ i.e.

Te = T ′‖ · · · ‖T ′.

Note that, Te can be viewed as an application of [tic, τ, tic/2]-linear code on
T . The main rationale behind the choice of this expansion function is that it
generates high distance codes (which is highly desired from the cryptanalysis
point of view) with a low cost (only (2τ − 1) addition over F2w is required).

Fig. 1. Elastic-Tweak construction.

3.2 Injecting Expanded Tweak into Round Functions

Note that the expanded tweak can be viewed as Te,1‖ · · · ‖Te,tic where each Te,i is
of size w-bits and w ≤ s. Now we xor these tweak in addition to the round keys
in tic number of S-boxes. The exact choices of S-box would be design specific so
that the diffusion due to tweak difference is high.

The tweak injection is optional for each round, the tweak injection starts
from round start and it is injected at an interval of gap rounds and stops at
3 An [n, k, d]-linear code over a field F is defined by a k × n matrix G called the

generator matrix over F such that for all nonzero vectors v ∈ F
k, v · G has at least

d many nonzero elements.
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Fig. 2. Function Exp and tBC. Here, AddTweak[tic](X, Te) represents the xoring tweak
in to the state of the block cipher.

round end. To be precise, we inject tweak at the round number start, start +
gap, start + 2.gap, . . . , end. To have a uniformity in the tweak injection rounds,
we typically choose start = gap and inject the tweaks at an interval of gap rounds.
This implicitly sets end = gap.� rnd−1

gap � (Fig. 2).

Requirements from Twe BC. We must ensure Twe BC should have same
security level as the underlying block cipher.

From the performance point of view, our target is to obtain the above men-
tioned security.

“minimizing te (signifies the area) and te.� rnd−1
gap � (signifies the energy).”

Features of Twe BC.

1. Our tBC is applied to any SPN based block ciphers.
2. Due to linear expansion of tweak, tBC with zero tweak turns out to be same

as the underlying block cipher (note that we keep same number of rounds
as the block cipher). This feature would be useful to reduce overhead due to
nonzero tweak. Later we see some applications (e.g., application on FCBC)
where the nonzero tweaks is only applied to process the last block.

3.3 Tweakable GIFT and AES

In this section, we provide various instantiation of tBC built upon the two pop-
ular block ciphers GIFT and AES. We are primarily interested on tweak size
4, 8, 16, and hence considered t ∈ {4, 8, 16}.

Instantiation of tBC with 4 Bit Tweak. All the recommendations with
4-bit tweaks have extremely low overhead over the original block cipher and
they can be ideal for reducing multiple keys scheme to an equivalent single key
scheme instance with a minuscule loss in efficiency. Detailed description can be
found in Sect. 4.
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(i) GIFT-64[4, 16, 16, 4]. In this case the tweak is expanded from 4 bits to 16 bits
and the expanded tweak is injected at bit positions 4i + 3, for i = 0, . . . , 15.

(ii) GIFT-128[4, 32, 32, 5]. Here we expand the 4 bit tweak to 32 bits and the
expanded tweak is injected at bit positions 4i + 3, for i = 0, . . . , 31.

(iii) AES[4, 8, 8, 2]. Here we expand the 4 bit tweak to 8 bits and the expanded
tweak is injected at the least-significant bits of each of the 8 S-Boxes in the
top two rows.

Instantiation of tBC with 8 and 16 Bit Tweak. tBC with tweak size of
8/16-bits are ideal for replacing the length counter bits (or masking) used in
many constructions. Detailed description can be found in Sect. 4.

(i) AES[8, 16, 8, 2]. For 8 bit tweak, we only use AES. The tweak is first extended
to 16 bits and the tweak is injected at the two least-significant bits of each
of the 8 S-Boxes in the top two rows.

(ii) GIFT-128[16, 32, 32, 4]. Here we expand the 16 bit tweak to 32 bits and the
expanded tweak is injected at bit positions 4i + 3, for i = 0, . . . , 31.

(iii) AES[16, 32, 8, 2]. Here we expand the 16 bit tweak to 32 bits and expanded
tweak is injected at the four least-significant bits of each of the 8 S-Boxes
in the top two rows.

Cryptanalysis of the Proposed Candidates: A detailed security analysis
of all the proposed candidates is given in Sect 4 in the full version [51]. We
remark that several of these candidates have already been analyzed in [47–50].

Performance: Sect 3.4 and Appendix C in the full version [51] summarize the
hardware and software performance of all the proposed candidates.

4 Applications of Short-Tweak Tweakable Block Ciphers

In this section, we present some use cases where an efficient tBC would be
beneficial.

4.1 Reducing the Key Size in Multi-keyed Modes of Operation

Several block cipher based modes of operation employ a block cipher with mul-
tiple independently sampled keys. In general, this is done either to boost the
security, or to simplify the analysis of the overall construction. The number
of keys can be naturally reduced to a single key by replacing the multi-keyed
block cipher with a single keyed tBC where distinct tweaks are used to simulate
independent block cipher instantiations. Proposition 1 below gives the theoret-
ical justification for this remedy. The proof is obvious from the definitions of
(tweakable) random permutation.
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Proposition 1. For some fixed t ∈ N, and k ∈ [2t]. Let (Π1, . . . ,Πk)
←$ (Perm[n])k and ˜Π ←$ TPerm[t, n]. Let OΠ;k and O

˜Π;k be two oracles giving

bidirectional access to (Π1, . . . ,Πk), and (˜Π1, . . . , ˜Πk), respectively. Then, for all
distinguisher A, we have

ΔA(OΠ;k;O
˜Π;k) :=

∣

∣

∣Pr[AOΠ;k = 1] − Pr[AO
˜Π;k = 1]

∣

∣

∣ = 0.

Now, we demonstrate the utility of this idea through some examples.

FCBC MAC: FCBC mode is a 3-key message authentication code, by Black and
Rogaway [16], which is defined as follows:

Σ := EK0

(

Mm−1 ⊕ EK0

(

Mm−2 ⊕ EK0

(

· · · ⊕ (M2 ⊕ EK0(M1))
))

)

,

FCBC[E](M) := EKt

(

Σ ⊕ ozp(Mm)
)

, where t ← (|Mm| = n)? 1 : 2.

FCBC has not received much appreciation in its existing 3-key form, even though
it offers better security, O(q2/2n + q�2/2n + q2�4/22n) in [17,18, Theorem 3
and Remark 5], than CMAC [4,55], O(q2�/2n + q2�4/22n) in [19, Theorem 4.6].
Quantitatively, the number of queries per key increases from 23n/8 to 2n/2 for
message lengths up to 2n/4 blocks. This is mainly due to presence of three keys
which not only costs keys size of the algorithm but it requires to run three key
scheduling algorithms. Keeping these in mind, we define Twe-FCBC, as follows:

Σ := ˜E0
K

(

Mm−1 ⊕ ˜E0
K

(

Mm−2 ⊕ ˜E0
K

(

· · · ⊕ (M2 ⊕ ˜E0
K(M1))

))

)

,

Twe-FCBC[˜E](M) := ˜Et
K

(

Σ ⊕ ozp(Mm)
)

, where t ← (|Mm| = n)? 1 : 2.

It is clear that Twe-FCBC is a variant of FCBC, that follows the principle estab-
lished in Proposition 1, and replaces the 3 block ciphers EK0 , EK1 , EK2 with ˜E0

K ,
˜E1

K and ˜E2
K , respectively. Using Proposition 1 and [18, Theorem 3 and Remark

5], we get the PRF security for Twe-FCBC in a straightforward manner in Propo-
sition 2.

Proposition 2. Assuming all queries are of length � ≤ 2n/4, and σ ≤ q�, we
have

Advprf

Twe-FCBC[˜E]
(t, q, σ) ≤ Advtprp

˜E
(t′, σ) + O

(

q2

2n

)

.

Clearly, Twe-FCBC has two major advantages over CMAC- (i) no need to hold
an additional state for final message block masking, (ii) security bound is free of
length factor for all reasonably sized messages (close to 6 Gigabyte for a 128-bit
block cipher). In addition, Twe-FCBC can also avoid the additional block cipher
call used to generate the masking. Due to backward compatibility, except the
last block we have used the original block cipher. So the performance overhead
due to nonzero tweak only applies to the last block cipher call. This features
ensures to get similar performance (or even better) for long message.



126 A. Chakraborti et al.

Double Block Hash-then-Sum: The very basic version of Double-block
Hash-then-Sum or DbHtS [56], is defined as below

DbHtS(M) := EK1(Σ) ⊕ EK2(Θ),

where H is a 2n-bit output hash function, (Σ,Θ) := HL(M), and L,K1,K2 are all
sampled independently. DbHtS is a generic design paradigm that captures several
popular BBB secure MACs such as PMAC Plus, LightMAC Plus, SUM ECBC and
3kf9. Using a tBC, the two block cipher keys can now simply be replaced by a
single tweakable block cipher key and two distinct tweaks. Formally, we define
Twe-DbHtS as follows

Twe-DbHtS(M) := ˜E1
K(Σ) ⊕ ˜E2

K(Θ).

Moreover, one can also generate the dedicated hash key using the tweak-
able block cipher key itself. Suppose the hash function is block cipher based,
then the tBC key can be used along with a different tweak to replace the
dedicated hash key. In all other cases, the hash key can be derived as L :=
(˜E0

K(0)‖˜E0
K(1)‖ · · · ‖˜E0

K(h − 1)), where |L| = hn. Since ˜E0
K(i)’s are sampled in

without replacement manner, this adds an additional factor of h2

2n due to the
PRP-PRF switching, which can be ignored for small h. One can easily verify
that due to Proposition 1, the result on DbHtS [56, Theorem 2.(iii)] also applies
to Twe-DbHtS. Formally, the security of Twe-DbHtS is given by Proposition 3.

Proposition 3.

Advprf

Twe-DbHtS[H,˜E]
(q, �, t) ≤ 2Advtprp

˜E
(2q, t′) + Advprf

C∗
3 [H,π0,π1,π2]

(q, �, t).

In this way, we have one-key versions of different well known designs PMAC Plus,
LightMAC Plus, SUM ECBC, 3kf9 etc. We note that one key version of
PMAC Plus based on solely block cipher has been proposed [57]. However, one
key version of the other designs either are not known or it can be shown to be
secure up to the birthday bound.4

Sum of Permutations: The sum of permutations is a popular approach of
constructing an n-bit length preserving PRF. Given 2 independent instantia-
tions, EK0 and EK1 , of a secure block cipher over {0, 1}n, the sum of permu-
tations, denoted XOR2, is defined by the mapping x → EK0(x) ⊕ EK1(x). The
XOR2 construction has been proved to be n-bit secure [11]. There is a single
key variant of XOR2, but it sacrifices one bit (i.e. defined from {0, 1}n−1 to
{0, 1}n) for domain separation. Instead, we can use a tBC to simply replace
the two block cipher keys with one tBC key and two distinct tweaks. We define
Twe-XOR2(x) := ˜E0

K(x)⊕ ˜E1
K(x). Again combining Proposition 1 with [11, The-

orem 4], we obtain

4 1kf9 is proposed in the ePrint version [58], which later found to be attacked in
birthday complexity [59].
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Proposition 4. For q ≤ 2n−4,

Advprf
Twe-XOR2(t, q) ≤ Advtprp

˜E
(t′, q) + (q/2n)1.5.

Tweaking Various Other Constructions: In the following list, we apply
similar technique as above to several other constructions with multiple keys.
The security of all the tBC-based variants is similar to the multi-key original
constructions, so we skip their explicit security statements.

1. Encrypted Davis Meyer (EDM) [12]: EDM uses two keys and obtains
BBB PRF security. We define the tBC-based variant as follows:

Twe-EDM(x) := ˜E1
K(˜E0

K(x) ⊕ x).

2. Encrypted Wegman Carter Davis Meyer (EWCDM) [12]: EWCDM is
a nonce-based BBB secure MAC that requires two block cipher keys and a
hash key. The tBC-based variant of EWCDM is defined as:

Twe-EWCDM(N,M) := ˜E2
K

(

˜E1
K(N) ⊕ N ⊕ H

˜E0
K(0)(M)

)

.

3. Chained LRW2 (CLRW2) [13]: The CLRW2 construction is a TBC that
achieves BBB TSPRP security using two independent block cipher keys and
two independent hash keys. We define a tBC-based variant of CLRW2 as
follows:

Twe-CLRW2(M,T ) := ˜E2
K

(

˜E1
K(M ⊕ hL1(T )) ⊕ hL1(T ) ⊕ hL2(T )

)

⊕ hL2(T ),

where L1 and L2 can be easily derived using ˜E with dedicated independent
tweaks. It is easy to see that one can easily extend the idea to obtain single
keyed CLRWr [60] using r distinct tweaks.

4. GCM-SIV-2 [14]. GCM-SIV-2 is an MRAE scheme with 2n/3-bit security. How-
ever, it requires 6 independent block cipher keys along with 2 independent
hash keys. We can easily make it single keyed using a tBC:

V1 := H
˜E0

K(0)(N,A,M), V2 := H
˜E0

K(1)(N,A,M)

T1 := ˜E1
K(V1) ⊕ ˜E2

K(V2), T2 := ˜E3
K(V1) ⊕ ˜E4

K(V2),

Ci := Mi ⊕ ˜E5
K(T1 ⊕ i) ⊕ ˜E6

K(T2 ⊕ i).

Extending the same approach, one can get a single keyed version of GCM-
SIV-r as well.

5. The Benes Construction [15]: The Benes construction is a method to
construct 2n-bit length preserving PRF construction with n-bit security that
uses 8 independent n bit to n bit PRFs. Formally,

L′ := f1(L) ⊕ f2(R)
R′ := f3(L) ⊕ f4(R)
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Benes(L,R) := (f5(L′) ⊕ f6(R′), f7(L′) ⊕ f8(R′)).

Now these fi functions can be constructed using sum of two permutations,
however that would essentially require 16 block cipher keys. With a tBC, we
can reduce the number of keys to one by instantiating fi := ˜E2i

K ⊕ ˜E2i+1
K for

each i ∈ [8].

4.2 Efficient Processing for Short Messages

In energy constrained environments, reducing the number of primitive invoca-
tions is crucial, as for short messages, this reduction leads to efficient energy
consumption. The tBC framework can be used to reduce the number of primi-
tive invocations for many existing constructions such as LightMAC Plus [61].

LightMAC Plus is a counter-based PMAC Plus in which 〈i〉m‖Mi is input to
the i-th keyed block cipher call, where 〈i〉m is the m-bit binary representation
of i and Mi is the i-th message block of n − m bits. The counters ensure that
there is no input collision, which indirectly helps in negating the influence of
�. LightMAC Plus has been shown to have O(q3/22n) PRF security. However, it
has two shortcomings: (i) it requires 3 keys, and (ii) it has rate 1 − m/n which
increases the number of block cipher calls. This is highly undesirable in low
memory and energy constrained scenarios

To resolve these shortcomings specifically for short to moderate length mes-
sages (slightly less than 1 Megabyte), we propose Twe-LightMAC Plus, which can
be viewed as an amalgamation of LightMAC Plus [61] and PMACx [33]. The key
idea is to use the block counters as tweak in hash layer, while having distinct
tweaks for the finalization. The pictorical description of the algorithm is given
in Fig. 3. It is easy to see that Twe-LightMAC Plus is single-keyed and it achieves
rate 1. This reduces the number of block cipher calls by up to 50% for short
messages, which has direct effect on reducing the energy consumption. We claim
that Twe-LightMAC Plus is as secure as LightMAC Plus. Formally, we have the
following security result. We note that similar improvements can also be applied
to PMAC, PMAC Plus.

Fig. 3. Twe-LightMAC construction.

Proposition 5. For q ≤ 2n−1,

Advprf

Twe-LightMAC Plus[˜E]
(t, q, �) ≤ Advtprp

˜E
(t′, q�) + O

(

q3

22n

)

.
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Proof. Twe-LightMAC Plus is an instance of Twe-DbHtS, and hence offers similar
security. The security bound of Twe-DbHtS includes a term

Advprf
C∗

3 [H,π0,π1,π2]
(q, �, t)

from [56]. One can verify from [56, Proof of Theorem 2.(iii)], that this term is
predominantly bounded by two probabilities:

1. Pr[∃ distinct i, j, k such that Σi = Σj , Θi = Θk].
2. Pr[∃ distinct i, j such that Σi = Σj , Θi = Θj ].

Now the hash layer of Twe-LightMAC Plus is exactly same as the PHASHx of
[33]. Using similar arguments as in [33, Proof of Theorem 1] it can be shown
that 1. is upper bounded by O(q3/22n), and 2. is upper bounded by O(q2/22n).
The result follows by combining 1 and 2. ��

4.3 A Note on tBC’s Advantages over XE and XEX

The XE and XEX modes, by Rogaway [36], are two reasonably efficient ways
of converting a block cipher into a tweakable block cipher. These methods are
widely used in various modes such as PMAC [44], OCB [45], COPA [29], ELmD

[46] etc. The XE scheme to generate a TBC ˜E from a BC E is defined as

XE : ˜Ei1,··· ,it

K (M) := EK(Δ ⊕ M)

where Δ = αi1
1 · · · αit

t · L. Here L is generally an n-bit secret state, which is
generated using block cipher call.5 It is sufficient for us to compare XE and tBC,
as XEX is much similar to XE. Now one may think of using XE instead of tBC to
convert multi-keyed modes to single-keyed mode, as above. But in comparison
to tBC, XE lacks two important features:

1. Degradation to Birthday Bound Security: XE (and XEX) is proved
to be birthday bound secure TBC mode. This is not a big issue for birthday
secure multi-keyed modes. In fact, the CMAC mode can be viewed as an
example that uses the XE mode, much in the same way as Twe-FCBC uses
tBC. However, if we use XE in multi-keyed applications such as DbHtS or
XOR2, the security of these constructions would degrade to birthday bound.
So, we cannot use XE or XEX, in a black box fashion, to instantiate the
tweakable variants, without a significant degradation in the security of the
modified mode. In contrast, tBC directly works on the block cipher level, and
hence does not suffer from such degradation unless the block cipher is itself
weak.

2. Additional Computational and Storage Overheads: The XE mode
requires, precomputation of the secret state L, (ii) an additional block cipher
invocation to generate L, and (iii) an additional storage to store L. This

5 Alternative constructions to define Δ can be found in [62,63].
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cannot be neglected in constrained computation and communication environ-
ments, as mentioned earlier. On the other hand, the tBC framework incurs
far less overheads. In this respect, one can easily define simple tBC-variants
of PMAC [36] (based on XE), COPE [29] (based on XEX), COLM [64] (XE like
processing) etc. much along the same line as Twe-LightMAC Plus.

5 Simplification of Authenticated Encryption Schemes

In this section, we demonstrate some AE schemes that achieve a combination of
advantages discussed in Sect. 4.

5.1 Twe-CLOC and Twe-SILC

We propose tBC variant for CLOC and SILC, called Twe-CLOC and Twe-
SILC, respectively. CLOC and SILC are nonce-based authentication encryption
(NAEAD) modes, which aim to optimize the implementation overhead beyond
the block cipher calls, the precomputation complexity, and the memory require-
ment. CLOC is suitable for uses in embedded processors, and SILC aims to opti-
mize hardware implementation cost. Our choices of CLOC and SILC are moti-
vated by two factors (see Subsect. 5.2 below): design simplification and reduction
in block cipher calls.

The three tBC variants are described in Fig. 4. We have made minimal
changes in the original schemes. CLOC and SILC employ Encrypt-then-PRF
paradigm and use a variant of CFB [3] mode in its encryption part and a variant
of FCBC in the authentication part.

Fig. 4. Encryption and algorithm of Twe-SILC and Twe-CLOC. pad uses 10∗ padding
for Twe-CLOC and 0∗ padding for Twe-SILC.
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5.2 Features of the Proposed AE Schemes

The proposed tBC-based AE schemes offer two added features over the existing
block cipher based schemes.

Design Simplification: Twe-CLOC and Twe-SILC simplifies their respective
original algorithms very efficiently. CLOC and SILC require several linear func-
tions (f , g1, g2, h1, h2 for CLOC and g for SILC) for domain separations and bit
fixing operations. Twe-CLOC and Twe-SILC perform all the domain separations
by using distinct tweaks, which significantly simplifies the design.
Table 1. Comparison between the number of (tweakable) block cipher invocations for
original CLOC and SILC, and their tBC counterparts. Here a, and m denote the length
of associated data and plaintext, respectively.

Modes No. of BC calls No. of tBC calls

a �= 0 a = 0 a �= 0 a = 0

CLOC a + 2m + 1 2m + 2 a + 2m 2m

SILC a + 2m + 3 2m + 2 a + 2m 2m

Energy Efficient for Short Inputs: Apart from the simplification of
the original designs, the proposed AE schemes offer another advantage over
the non-tweaked versions. They require lesser number of block cipher calls for
shorter/empty AD or message processing, which essentially makes them more
efficient in terms of energy consumption. The number of block cipher invocations
required to process an associated data of a blocks and message of m blocks are
given in Table 1. As seen from the table, SILC requires 4 block cipher calls to
process 1 block AD and empty message, Twe-SILC requires only 1 block cipher
call.

5.3 Security of the Proposed AE Schemes

Twe-CLOC and Twe-SILC are in essence just the multi-key variants of CLOC and
SILC, respectively. So, intuitively they should be at least as secure as the original
modes, and the security argument for these schemes is relatively easier than the
original schemes. We show in Proposition 6 that our intuitions are correct to a
large extent. For the sake of simplicity, we refrain from giving exact bounds, and
instead give the asymptotic expressions.

We first look at the abstract design paradigm behind Twe-CLOC and Twe-
SILC, which is the so-called Encrypt-then-PRF, or EtPRF.

The EtPRF Paradigm: EtPRF [53, Construction A5] is a design paradigm to
construct NAEAD schemes. It is composed of three stages (illustrated in Fig. 5):
a random IV generator, G that generates iv using the nonce N and (possibly)
the AD A; an IV-based encryption phase, ivE that generates the ciphertext C
using iv as the random IV; and a tag-generation phase, F that generates the tag



132 A. Chakraborti et al.

on the input N,A,C. Formally, for key space K ×L the encryption algorithm of
EtPRF is defined by the following mapping

(K,L,N,A,M) → ivE(K,N,A,M)
∥

∥ F (L,N,A, ivE(K,N,A,M)) ,

for all (L,K,N,A,M) ∈ L × K × A × M. Here, C := ivE(K,N,A,M) ∈ M,
and T := F(L,N,A,C) ∈ M. Note that, for the sake of simplicity we subsumed
the G function within the ivE phase. In [53], Namprempre et al. showed that the
NAEAD security of an EtPRF scheme, A, given by:

Advae
A (q, �, σ) ≤ Advprf

F (q, �, σ) + Advprf
G (q, �, σ) + Advpriv$

ivE (q, �, σ), (5)

where PRIV denotes the Priv$ security (see Sect. 2.1).

Fig. 5. The EtPRF paradigm based on an IV-based encryption scheme ivE for the
encryption phase, and a PRF F for the tag generation phase. The [G] denotes that ivE
internally uses G to generate the random IV.

In case of both Twe-CLOC and Twe-SILC, G and F are variants of Twe-
FCBC, and hence can be shown to have O(σ2/2n) PRF security [16]. ivE phase
is an instance of the CFB mode with random IV, which has been shown to have
O(σ2/2n) security in [65]. Hence, by substituting the relevant bounds in Eq. (5),
we get the following security result for Twe-CLOC and Twe-SILC.

Proposition 6. The security of Twe-CLOC and Twe-SILC is given by:

Advae
Twe-CLOC[˜E]

(t, q, �, σ) ≤ Advtprp
˜E

(t′, q�) + O(
σ2

2n
),

Advae
Twe-SILC[˜E]

(t, q, �, σ) ≤ Advtprp
˜E

(t′, q�) + O(
σ2

2n
).

where t, q, �, σ denote the computational time, query bound, maximum query
length, and the total number of tBC calls across all encryption and decryption
queries, respectively.

Remark 1. The security of CLOC and SILC do not follow from Eq. (5), in a
straightforward way, as the tag generation and encryption share the same key.

6 Further Applications and Future Directions

We think that tBC can have several other applications. For instance, consider
a scenario where two multiple algorithms are running on the same platform,
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sharing the same secret key. We could find several examples where such an
arrangement could be vulnerable. For example, consider a scenario where AES-
GCM and AES-CMAC are running on the same device, sharing the same secret
key. Now, it is easy to see that, an adversary can trivially forge a tag for AES-
CMAC using an encryption query on AES-GCM. tBC can efficiently take care of
such problems by separating these algorithms using different tweak values, i.e.
unique tweak values for each of these algorithms.

We have defined the Elastic-Tweak framework for SPN based block ciphers.
Extending this further for ARX based constructions could be an interesting
problem. Also, it would be interesting to see designs for short-tweak tweakable
public permutations, which might have strong impact on the simplification of
permutation based constructions such as Sponge, Beetle, Minalpher etc.
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Abstract. The linear layer, which is basically a binary non-singular
matrix, is an integral part of cipher construction in a lot of private key
ciphers. As a result, optimising the linear layer for device implementa-
tion has been an important research direction for about two decades.
The Boyar-Peralta’s algorithm (SEA’10) is one such common algorithm,
which offers significant improvement compared to the straightforward
implementation. This algorithm only returns implementation with XOR2
gates, and is deterministic. Over the last couple of years, some improve-
ments over this algorithm has been proposed, so as to make support for
XOR3 gates as well as make it randomised. In this work, we take an
already existing improvement (Tan and Peyrin, TCHES’20) that allows
randomised execution and extend it to support three input XOR gates.
This complements the other work done in this direction (Banik et al.,
IWSEC’19) that also supports XOR3 gates with randomised execution.
Further, noting from another work (Maximov, Eprint’19), we include
one additional tie-breaker condition in the original Boyar-Peralta’s algo-
rithm. Our work thus collates and extends the state-of-the-art, at the
same time offers a simpler interface. We show several results that improve
from the lastly best-known results.

Keywords: Implementation · Block cipher · Linear layer

1 Introduction

With the rapid growth of lightweight cryptography in recent times, it becomes
essential to reduce the cost of the cipher components. The linear layer is respon-
sible for spreading the diffusion to the entire state in a lot of modern ciphers,

This paper combines and extends from [5,6,10]. An extended version of this paper is
available at [3]. The first author would like to thank Sylvain Guilley (Télécom-Paris;
Secure-IC) for providing the gate costs in the STM 130 nm (ASIC4) library.
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thus constituting an integral part in cipher construction. Indeed, together with
an SBox, it constitutes the unkeyed permutation of a cipher, which is then
analysed against the common classical attacks (like differential, linear, algebraic
etc.). Without loss of generality, a linear layer can be expressed as a binary
non-singular matrix (e.g., AES MixColumn can be expressed as a 32 × 32 binary
non-singular matrix), it can be implemented using assignment operations (soft-
ware) or wiring (hardware) with XOR gates only.

While finding the näıve XOR implementation (the so-called d-XOR represen-
tation, see Definition 1), finding an optimal implementation using XOR gates
is a complex problem. The Boyar-Peralta’s algorithm [13] is an important step
in this direction, which aims at finding efficient implementation of a given lin-
ear layer by using XOR2 gates only. The original version is presented over two
decades ago, but there is a renewed interest as can be seen from a number of
recent follow-ups [10,21,24].

The main motivation for this work comes from an observation made in [10]
that using higher input XOR gates may lead to reduced area in certain ASIC
libraries. In particular, the authors in [10] make a randomised variation to the
original Boyar-Peralta’s algorithm and do a post-processing to the output to fit
XOR3 gates.

Continuing in this line, we show a dynamic higher input XOR support to a
randomised variation atop the original Boyar-Peralta’s algorithm (this variation
is taken from [24] and is referred to as RNBP). This allows us for native support
for XOR3, XOR4 etc. gates, while taking care of the individual costs for each
gate. This extends from the XOR3 support in [10] as this modification does not
take into consideration the costs for the XOR3 and XOR2 gates, meaning it will
return the same implementation no matter the costs of the XOR2 and XOR3
gates.

Contribution

In a nutshell, we present the first open-source1 work to support higher input
XOR gates that allows for efficient implementation for the linear layer. As far
we know, this is the first and so-far only available project (other open-source
projects like [20,24,25]) only consider XOR2 operation; and the source-code for
[10] is not public).

Several considerations and design choices are made in our implementation.
The following major changes mark our contribution:

1. We take into account all the patches/updates made to the Boyar-Peralta’s
algorithm [13], namely [10,21,24]. We implement our version of the algorithm
on top of taking ideas from all of those.
(a) It is reported in [21] that, a tie-breaker inside the original Boyar-Peralta’s

algorithm [13] picks only that case which maximises certain condition (see
Sect. 3 for more details), does not (always) result in the lowest cost. It is

1 Available at https://bitbucket.org/vdasu edu/boyar-peralta-xor3/.

https://bitbucket.org/vdasu_edu/boyar-peralta-xor3/
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suggested to use that case which minimises certain condition instead in
[21]. We use both the maximisation and minimisation variants.

(b) In the original Boyar-Peralta’s algorithm, the tie cases are broken based
on lexicography. It results in a deterministic execution, meaning the exact
same representation is returned all the time. Two randomised variations
are presented, in [24] and in [10]. We use the fastest implementation, called
RNBP, from [24] (as the source code is public) and use the randomisation
described in [10] on top of it (the corresponding source code is not public).

2. We adopt the XOR3 support in Boyar-Peralta’s algorithm in [10] and provide
a native interface for it in our implementation2. In addition, we propose a
support for higher input XOR gates (which can directly work with XOR3,
XOR4 etc.). The new higher input XOR support that we present is dynamic
in the sense that it takes into account the exact cost for each gates. This is not
the case for [10], where the same XOR3 implementation is given disregarding
the cost for XOR3 gates.

With our implementation, we present several results that improve the state-
of-the-art bounds with {XOR2, XOR3} gates. In total, we show the costs for five
libraries, namely gate count (GC), STM 90 nm (ASIC1), STM 65 nm (ASIC2),
TSMC 65 nm (ASIC3) and STM 130 nm (ASIC4), see Sect. 2.4 for the respec-
tive costs for the gates in the library. More details on the results can be found
in Sect. 5, here we mention a few which set the new state-of-the-art. For AES
MixColumn, we get the least cost in b2 (see Definition 6) for GC (59 with depth
4, down from 67 with depth 6) and for ASIC4 (258.98 GE). For the TWOFISH [22]
and JOLTIK-BC [16] linear layers, we either touch or improve the benchmarks for
all the five libraries.

2 Background and Prerequisite

2.1 Notions of XOR Count

Three notions for XOR count are mentioned in the literature; namely d-XOR,
s-XOR, and g-XOR [17–19,25]. Those names are shorthand notations for ‘direct
XOR’, ‘sequential XOR’, and ‘general XOR’, respectively. As our aim is to sup-
port higher input XOR gates, we need to generalise the definitions.

In order to do that, first we present the respective definitions in Definitions 1,
2 and 3. Then we extend the definitions of by an additional parameter ε. Instead
of the term general XOR (introduced in [25]), we use the term branch XOR (b-
XOR for short) instead. Since we are generalising the pre-existing definitions, we
argue it sounds better to call ‘generalised branch XOR’ than ‘generalised general
XOR’. The term ‘branch’ indicates that there can be branches (i.e., feed-forward
paths ) in this implementation.

2 The algorithm in [10], with the kind permission from the authors, is available within
our implementation (the relevant source-code is written by us).
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Definition 1 (d-XOR Count). The d-XOR count of the binary matrix Mm×n

is defined as d(M) = HW(M) − m, where HW(·) denotes the Hamming weight.
The corresponding implementation is referred to as the d-XOR representation.

Definition 2 (s-XOR Count). A binary non-singular matrix Mn×n, can be
implemented by a sequence of in-place XOR operations of the form: xi ← xi ⊕xj

for 0 ≤ i, j ≤ n−1. The s-XOR count is defined as the minimum number of XOR
operations of this form. Any representation that conforms to this implementation
is referred to a s-XOR representation.

Definition 3 (g-XOR Count). A given binary Mm×n matrix can be imple-
mented as a sequence of equations either of the form: ai ← bi ⊕ ci (1 XOR oper-
ation is needed), or ai ← bi (no XOR operation is needed). The representation
is called a g-XOR representation and the minimum number of XOR operations
needed is referred to as the g-XOR count of M .

The definitions for s-XOR (to sε-XOR) and g-XOR (to bε-XOR) are given
subsequently in Definitions 5 and 6. To facilitate the definition for sε-XOR, we
define the ‘ε-addition matrix’ in Definition 4. Note that the case for ε = 1 is
referred to as the ‘addition matrix’ in the literature [19].

Definition 4 (ε-addition Matrix). Let In×n be the identity matrix and En×n
i,j

be null matrix except for E[i, j] = 1 for some i, j over F2. Then Aε = I +Ei,j1 +
· · ·+Ei,jε

for distinct {i, j1, . . . , jε}, is defined an ε-addition matrix where ε ≥ 1.

Definition 5 (sε-XOR Count). Given a cost vector c = [c0, c1, . . . , cε] where
ε ≥ 1 and ci ≥ 0 ∀i, the sε-XOR count, of the non-singular matrix Mn×n over
F2, is defined as

min (c0 + c1e1 + · · · + cεeε),

provided M can be expressed as a product of the factor matrices from the multi-
set (with the given multiplicity) in any order:

[P,A1, . . . , A1
︸ ︷︷ ︸

e1 times

, . . . , Aε, . . . , Aε
︸ ︷︷ ︸

eε times

],

where An×n
ε ’s are ε-addition matrices, and Pn×n is a permutation matrix. Here

c0 is the cost for P , and equals to 0 if P is identity.

The sε-XOR notion coincides with s-XOR when ε = 1 and the cost vector
is [0, 1]. Since this is the most common cost vector, it is assumed intrinsically
unless mentioned otherwise. The permutation matrix P can be implemented as
a wire in hardware, which effectively takes zero area, but it can take few clock
cycles in software. Thus to generalize, we consider a non-negative cost for P .

Definition 6 (bε-XOR Count). Given a cost vector c = [c0, c1, . . . , cε] where
ε ≥ 1 and ci ≥ 0 ∀i, the bε-XOR count of the matrix Mm×n over F2 is defined
as

min (c0e0 + c1e1 + · · · + cεeε),



Three Input Exclusive-OR Gate Support for Boyar-Peralta’s Algorithm 145

given M can be expressed by using equations of the following types (with the
frequency for each type as mentioned) in any order:

ti = tj0 } e0 times,
ti = tj0 ⊕ tj1 } e1 times,
...
ti = tj0 ⊕ tj1 ⊕ tj2 ⊕ · · · ⊕ tjε

} eε times.

The notion of bε-XOR coincides with that of general XOR or the g-XOR for
short [25] when ε = 1. Similar to the case of sε, the cost for the assignment
operation can be taken as zero in hardware, but it is likely not zero in software.

Example 1. Consider the binary matrix, M5×5 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

With the modelling in [7, Section 3], we confirm that the s1-XOR count of M
is 5 with one addition matrix having multiplicity of 2. Here, d(M) = 6, s1(M) = 5
and b1(M) = 4 (obtained using the Boyar-Peralta’s algorithm [24]. Hence for this
case, b1(M) < s1(M) < d(M).

It may be noted that the notion of bε covers that of d-XOR as well as sε, thus
bε(M) ≤ min(d(M), sε(M)). Moreover, sε is undefined if the matrix is singular
or rectangular. While we are not aware of use of a singular matrix, rectangular
matrices are used in coding theory, which has application to cryptography.

On the other hand, sε allows to implement in-place [25]. Also, the best known
result on the AES MixColumn takes 92 XOR2 gates (a b1 representation by [21]),
but one s1 representation is also available at the same cost, thanks to [25]. Later,
the authors of [20] manage to reduce the cost to 91 with a b1 representation.

Further, implementations that follow the sε representation will be useful in
the context of reversible computing (this includes quantum computing). There
have been a few research works regarding reversible (including quantum) imple-
mentation of symmetric key ciphers recently, like [4,15].

As for the application of the d-XOR count, one may note that this is the
simplest among all the notions and the fastest to compute. Ergo, it may be useful
when finding the cost for a large number of linear layers with an automated tool.

Results on AES MixColumn. With regard to the state-of-the-art progress on
the AES linear layer (i.e., MixColumn), it can be stated that the Boyar-Peralta’s
algorithm [13] and its variants such as [10,21,24] attempt to find b1 (i.e., returns
a solution in the b1 representation). The FSE’20 paper [25] attempts to find an
s1 representation (best known result in this category); and the CT-RSA’21 paper
[20] uses a b1 representation to get a cost of 91 (also the best known result in
this category). Additionally, the authors of [10] implement the AES MixColumn
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using XOR2 and XOR3 gates, which falls into the realm of b2 representation
with the associated cost vectors [0, 2, 3.25] for STM 90 nm and [0, 1.981, 3.715]
for STM 65 nm CMOS libraries, respectively (these libraries are indicated as
ASIC1 and ASIC2 respectively in this work). An overview of notable works in
recent times that implement AES MixColumn, including our own results, can be
found in Table 1.

Table 1. Summary of recent AES MixColumn implementations

Representation # XOR2 # XOR3 Depth GC

Banik, Funabiki, Isobe [10]
(Available within this work)

b1 95 – 6 95
b2 39 28 6 67

Tan, Peyrin [24] b1 94 – 9 94

Maximov [21] b1 92 – 6 92

Xiang, Zeng, Lin, Bao, Zhang
[25]

s1 92 – 6 92

Lin, Xiang, Zeng, Zhang [20] b1 91 – 7 91

Exclusively in this work b2 12 47 4 59

2.2 Straight Line Program (SLP)

The implementation of the linear circuits is generally shown as a sequence of
operations where every step is of the form: u ← ⊕ε

i=1 λivi where λi ∈ {0, 1} ∀i
are constants and rest are variables. Note that, it inherently captures multi-
input XOR gates. This definition is captured from [13] (it introduces the Boyar-
Peralta’s algorithm). Note that it coincides with the g-XOR representation given
ε = 1 (Definition 3), or with the bε-XOR representation (Definition 6).

Not clear why, but an agreed-upon terminology appears to be non-existent.
The original paper that presents the Boyar-Peralta’s algorithm [13] uses the
term, ‘linear straight line program’; the IWSEC’19 paper [10] uses the term,
‘shortest linear program’; the TCHES’20 paper [24] uses the term ‘short linear
program’ in the title. We use the term ‘straight line program’ (adopting from
[13]) and ‘SLP’ as its abbreviation.

2.3 Depth

The depth of a logical circuit can be defined as the number of combinational logic
gates along the longest path of the circuit. The input variables are at depth 0;
and for an SLP, depth can be computed as the maximum of depths for the
variables in RHS plus 1.

For example, our b2 implementation of Fig. 1 of AES MixColumn has the depth
of 4. The variables at equal depth are shown column-wise from left to right, the
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left-most column has depth of 0. The variables y25, y1, y15, y31, y30, y14 (see Sect. 5
for the interpretation/details) are at depth 4, making the entire implementation
of depth 4.

2.4 Logic Libraries

A total of five logic libraries are used in this paper for benchmarking the imple-
mentations. Shown in Table 2, the libraries contain XOR2 and XOR3 gates.

The gate count library simply counts the number of gates. The first two ASIC
libraries are adopted from [10]. The third ASIC library is the same as the one
used in [8]. The fourth ASIC library is the 130 nm process from STMicroelec-
tronics, HCMOS9GP.

Table 2. Logic libraries with gates and corresponding cost

�������Gate
LibraryGate Count

(GC)

STM 90nm

(ASIC1)

STM 65nm

(ASIC2)

TSMC 65nm

(ASIC3)

STM 130nm

(ASIC4)

XOR2 1 2.00 GE 1.981 GE 2.50 GE 3.33 GE

XOR3 1 3.25 GE 3.715 GE 4.20 GE 4.66 GE

3 Boyar-Peralta’s Algorithm and Its Variants

Before proceeding further, we describe the basic work-flow of the Boyar-Peralta’s
algorithm [13] (Sect. 3.1). Over the years, multiple variants of this algorithm are
proposed, a summary of which is given thereafter (Sect. 3.2).

3.1 Basic Work-Flow of Boyar-Peralta’s Algorithm

The original Boyar-Peralta’s algorithm [13] attempts to implement b1 with the
cost vector [0, 1] for the binary matrix Mm×n. The algorithm works as follows.
Initially, two vectors called the Base vector of size n and Dist vector of size
m are created. The Dist vector is initially assigned one less than the Hamming
weight of each row and the Base vector contains all the input variables, i.e.,
x1, x2, . . . , xn. At any given point, the Dist vector for a given row represents the
number of elements from the Base vector that need to be combined to generate
the implementation of that particular row and the Base vector contains the
implementations that have been generated so far. The following steps are then
performed until the sum of all elements of the Dist vector are 0.

1. Generate all
(
n
2

)

combinations of the Base vector elements and compute their
sum. Create a copy of the Dist vector for each combination. This will be called
DistC for each combination.
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2. For each combination, determine whether it is possible to reduce DistC[i] by
1, where i ∈ [1,m]. To put it explicitly, determine whether it is possible to
implement the sum of the ith row of M and the combination using DistC[i]−1
elements of the Base vector. If it is possible to do so, set DistC[i] to DistC[i]−
1. If it is not possible, leave DistC[i] as is.

3. Determine the most suitable combination (based on a defined heuristic) to
be added to the Base vector. Set the Dist vector with the DistC vector of
the selected combination.

4. If any element Dist[i] = 1, this means that the ith row of M can be imple-
mented by adding two elements of the Base vector. Check every pair of
elements in the Base vector to determine which pair when summed will be
equal to the ith row of M . Once this pair has been found, set Dist[i] to 0.

5. Repeat until Dist[i] = 0 for all i.

Remark 1. Dist[i]+1 at each step of the Boyar-Peralta’s algorithm contains the
number of elements of the Base vector which need to be summed to equal to
the ith row of M .

Choice of Heuristic. In Step 3 of Boyar-Peralta’s algorithm, a heuristic is
to be chosen to break the tie among multiple candidates which give the equal
cost reduction. In the original Boyar-Peralta’s algorithm [13], maximisation of
Euclidean norm on Dist vector is taken (we skip the justification given in [13]
for brevity). Therefore, for multiple Dist vectors which equal sum, the algorithm
picks that one which maximises the Euclidean norm.

This maximisation heuristic is followed as-is in [10,24]. However, it is argued
in [21] that the minimisation of the same will work just fine. Following this, we
run both the maximisation and minimisation variants in our algorithm indepen-
dently of one another.

Role of reachable() Function. The existing literature [10,13,24] tend to
overly explain the initial part of the Boyar-Peralta’s algorithm (up to the
maximisation of Euclidean norm), whereas the later part that contains the
reachable() function seems to be overlooked in the textual description. The
concept of reachable() is arguably more difficult. So, we present a short descrip-
tion here for the sake of completeness and better understanding of the algorithm.

The reachable() function of the Boyar-Peralta’s algorithm determines
whether its possible to implement the ith row of a binary matrix with a new
pair of Base vector elements using Dist[i] − 1 XOR2 operations. For example,
consider the following from the first row of the AES MixColumn matrix (following
the encoding used in, e.g., [10]): y0 ← x7 ⊕x8 ⊕x15 ⊕x16 ⊕x24 The initial Base
vector contains 32 elements, i.e., x0, . . . , x31; and the distance of the first row is
4 since it can be trivially implemented using 4 XOR2 gates. Given a new pair
t0 ← x7⊕x8 of the Base vector, the reachable() function returns true since the
first row can be implemented with three XOR2 gates: y0 ← t0 ⊕x15 ⊕x16 ⊕x24.
However, the reachable() returns false for the pair t1 ← x1⊕x3 since the num-
ber of XOR2 gates required to implement the row does not reduce if this pair
is chosen. Once the new distance corresponding to all possible

(
n
2

)

pairs of the
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initial Base vector is computed, the optimal candidates that are to be added to
the augmented Base vector is determined using the chosen heuristic (like RNBP
[24]).

3.2 Variants of Boyar-Peralta’s Algorithm

In the last couple of years, three variants of the original Boyar-Peralta’s algo-
rithm are proposed in the literature [10,21,24]. The authors of [10] use random
row and column permutations of the target matrix before feeding to the original
Boyar-Peralta’s algorithm. They report a b1 cost of 95. In another direction, the
authors of [24] proposed three types of randomisation, all are internal to the
algorithm and the least b1 cost reported is 943. The best implementation using
the Boyar-Peralta’s algorithm family is reported in [21] with a b1 cost of 92.

4 XOR3 (b2) Support for Boyar-Peralta’s Algorithm

To the best of our knowledge, the only attempt on b2 is reported in [10], where
the authors use a post processing on the output of the algorithm that returns
XOR2 implementation. This algorithm (see Sect. 4.1 for a concise description),
with some amendments is implemented in the overall open-source package we
deliver.

4.1 Modelling for XOR3 (Adopted)

The basic idea of XOR3 support in the IWSEC’19 paper by Banik, Funabiki,
Isobe [10] can be thought of as a post-processing to the original Boyar-Peralta’s
algorithm. It can be concisely described as follows.

Start with the sequence of SLPs returned by the original Boyar-Peralta’s
algorithm (the matrix is fed to the algorithm after the rows and columns are
given random permutations). Then look for an instance where a t or y variable
has the fan-out of 1. For example, assume a snippet of a sequence of SLPs looks
like this:

1 t4 = x0 + x6 // t4 has fan-out of 1

2 t20 = x1 + t4 // t20 is the only variable that uses t4

Then, it can be rewritten by introducing an XOR3 operation as:

1 // t4 = x0 + x6 (omitted)

2 t20 = x1 + x0 + x6 // t4 is substituted, t20 uses an XOR3 operation

3 It may be stated that, we are unable to reduce the cost of AES MixColumn from 95
XOR2 gates by using the source-code for all the three variants (RNBP, A1, A2)
presented in [24], despite dedicated efforts. Apparently, the case of 94 XOR2 gates
reported in [24] happens with a low probability.
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Therefore, one SLP is omitted where the LHS variable has fan-out of 1. The
other variable which uses the variable is now substituted with the RHS of the
omitted SLP, thereby introducing an XOR3 operation. In this way, multiple (if
not all) such variables with 1 fan-out can be substituted. As it can be seen, it
does not take into account the cost vector for XOR2, XOR3. Thus, it is going
to give the same implementation no matter the costs for XOR2 and XOR3.

One thing to note, it may not be always possible to substitute SLPs just like
that. For instance, consider the following snippet:

1 t84 = t0 + t13 // t84 has fan-out of 1

2 t85 = x13 + t10 // t85 has fan-out of 1

3 y7 = t84 + t85 // Either t84 or t85 (but not both) can be substituted

Here, either of the t variables can be substituted, but not both (substituting both
would lead to an XOR4 operation). Either of the implementation will result in
equal cost, but the depth may vary. In our source-code that implements this
algorithm, we explore both cases and pick the one with the least depth (tie is
broken arbitrarily).

4.2 Modelling for XOR3 (New)

Suppose a cost vector with costs for XOR2 and XOR3 is given. Initialization of
the Base vector and Dist vector is identical to the original algorithm (described
in Sect. 3.1). The following steps highlight the changes made:

1. Generate all
(
n
2

)

pairs and
(
n
3

)

triplets of the Base vector elements and com-
pute the XOR. The pairs represent XOR2 combinations and the triplets rep-
resent XOR3 combinations. For each combination, assign the corresponding
cost from the cost vector.

2. For each of the XOR2 combinations, determine whether it is possible to reduce
DistC[i] by 1. Similarly, for each of the XOR3 combinations, first check it is
possible to reduce DistC[i] by 2; if it is not, then check if DistC[i] can be
reduced by 1. If DistC[i] cannot be changed, leave it as-is.

3. Based on the defined heuristic, determine the most suitable combination to
be included to the Base vector. Unlike the original Boyar-Peralta’s algorithm,
the heuristic would account for the distance vector, DistC; and the cost of
the combination.

4. If Dist[i] = 1 or Dist[i] = 2, then the ith row of M can be implemented
by adding two or three elements of the Base vector respectively, i.e., either
XOR2 or XOR3 operations. Check every pair/triplet of the Base vector to
determine the elements which sum to M [i]. Once these elements have been
found, set Dist[i] to 0, and include M [i] to the Base vector.

5. Repeat until Dist[i] = 0 for all i.

Remark 2. The Boyar-Peralta’s algorithm assumes that the cost of XOR2 gates
is 1. Therefore, to incorporate XOR3 support, XOR3 cost needs to be taken
relative to XOR2 (so that the cost for XOR2 remains at 1).
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Remark 3. Because of the way the EasyMove() function in Boyar-Peralta’s algo-
rithm is implemented, an additional hard check (that allows any XOR3 gate only
if its cost is less than or equal to 2× XOR2 gate) would possibly be required.
Otherwise, if the Hamming weight of a row is 2, the algorithm would always
pick an XOR3 gate even if it costs more than 2× XOR2 gate. In our current
implementation, a warning is given if XOR3 is greater than 2× XOR2.

Remark 4. In a similar way, it is possible to extend the support for XOR4 (and
even higher input XOR gates). This is an interesting research direction, but we
skip it here for brevity. Also, support for higher input XOR gates would make
the program taking considerably longer time.

As the source code for [24] is available online4, we decide to implement our
approach (which is described in Sect. 4.2) on top of it. We choose the RNBP
variant due to its efficiency over the other variants proposed in [24].

4.3 Other Aspects Considered

In addition to the incorporation of two types of XOR3 support, the following
amendments are incorporated in our source-code:

• We make continuous numbering for the temporary variables. This appears
not to be the case for the previous works [10,13,24].

• Due to the way the Boyar-Peralta’s algorithm is implemented, it skips the
rows of the given matrix if the Hamming weight is 1 (as the XOR2 imple-
mentation is trivial in this case). While the justification is correct, it leads to
a wrong SLP sequence in this case. We fix this issue.

• As already noted, we make the following enhancements:
◦ Make use of the randomisation inside the algorithm (namely, RNBP)
which is proposed in [24], as well as the row-column permutation of the
matrix before feeding it to the algorithm which is proposed in [10].
◦ Instead of only the tie-breaker based on maximisation of the Euclidean
norm (which is the case for [10,13,24]); we also implement the same but
with minimisation, following [21].
◦ XOR3 support which is proposed in [10] is available as a native interface
(with our implementation of the algorithm, as the source-code for [10] is
not publicly available). Aside from that, we implement the minimisation
tie-breaker. Also we check for depth for all possible implementations with
the same cost (see Sect. 4.1 for more details).

• We provide an easy-to-use Python interface to generate SLPs and the entire
package is available as an open-source project. The user is notified when a
least cost is obtained and all the relevant results are stored in separate files.
The maximum and minimum tie-breakers are internally supported with two
threads in the program.

4 At https://github.com/thomaspeyrin/XORreduce.

https://github.com/thomaspeyrin/XORreduce
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5 Results

In this part, we present a summary of the experimental results. Here x’s and y’s
are the Boolean variables which respectively indicate the input variables and the
output variables. An arbitrary number of temporary variables, t’s, are created
on-the-fly (those are required since this is not an in-place algorithm) to produce
the SLP. So, the RHS can contain all variables while the LHS can only have
the t and y variables. Given the binary matrix Mm×n, Xn×1 = vector of x’s,
Y m×1 = vector of y’s, then it holds that Y = MX. In all the examples that
follow, we only take square matrices, i.e., m = n. Least costs with respect to the
five libraries (described in Sect. 2.4) and depth (described in Sect. 2.3) are given
hereafter.

5.1 16 × 16 Matrices

In general, the execution for the binary 16 × 16 matrices is quite fast in our
implementation. Table 3 shows consolidated results for few well-known ciphers.
All the results reported can be obtained by our implementation, though some
are already reported in [10]. The highlighted entries mark the least cost in the
respective category, which are reported for the first time in the literature.

Table 3. Implementations of few 16 × 16 matrices in b2

Matrix GC ASIC1 ASIC2 ASIC3 ASIC4

JOLTIK-BC [16] 28 (6, 22) 83.0 (9, 20) 91.14 (16, 16) 106.5 (9, 20) 122.50 (6, 22)

MIDORI [9] 16 (0, 16) 45.0 (16, 4) 46.56 (16, 4) 56.8 (16, 4) 71.92 (16, 4)

PRINCE M0, M1 [12] 16 (0, 16) 45.0 (16, 4) 46.56 (16, 4) 56.8 (16, 4) 71.92 (16, 4)

PRIDE L0 – L3 [1] 16 (0, 16) 45.0 (16, 4) 46.56 (16, 4) 56.8 (16, 4) 71.92 (16, 4)

QARMA-64 [2] 16 (0, 16) 45.0 (16, 4) 46.56 (16, 4) 56.8 (16, 4) 71.92 (16, 4)

SMALLSCALE-AES [14] 24 (0, 24) 78.0 (0, 24) 85.93 (19, 13) 100.8 (0, 24) 111.84 (0, 24)

Number of (XOR2, XOR3) gates are given within parenthesis

The algorithm for XOR3 support in [10] (Sect. 4.1) only allows for a fixed
implementation disregarding the costs for XOR2 and XOR3 gates. In contrast,
the new idea we present here takes into account the relative costs and returns
various implementations. One such example is given, which is the case of the
JOLTIK-BC linear layer in Codes 1.1 and 1.2 each as a sequence of SLPs (both
are indicated in Table 3). The former implementation has the least cost so far for
ASIC1 (83.0 GE, with 9 XOR2 and 20 XOR3), and has the depth of 5; the latter
gives the least cost so far for GC (28) and ASIC4 (122.50 GE, with 6 XOR2 and
22 XOR3), and has the depth of 7.
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Code 1.1. JOLTIK-BC linear layer in b2 (83.0 GE in ASIC1) in SLP format

1 t0 = x8 + x13 + x12

2 y3 = x5 + x3 + t0

3 t2 = x0 + x4 + x1

4 y15 = x9 + x15 + t2

5 t4 = x9 + t0

6 t5 = x14 + x2 + t0

7 y5 = x11 + y3 + t5

8 t7 = x5 + t2

9 t8 = x2 + x10 + x12

10 y12 = t7 + t8

11 t10 = x4 + x2 + t4

12 y4 = x10 + t10

13 t12 = x7 + t4

14 y7 = x13 + x1 + t12

15 y9 = x15 + t5 + t12

16 t15 = x6 + x13 + x10

17 y13 = x3 + x11 + t15

18 y8 = t5 + y12 + t15

19 t18 = x14 + x0 + t4

20 y0 = x6 + t18

21 t20 = x11 + t12

22 y2 = x12 + t10 + t20

23 y11 = t7 + y7 + t20

24 y14 = x8 + t18 + t20

25 t24 = y3 + y12 + t10

26 y10 = y15 + t24

27 t26 = x15 + t4 + t15

28 y6 = x1 + t24 + t26

29 y1 = y7 + t26

Code 1.2. JOLTIK-BC linear layer in b2 (28 GC, 122.50 GE in ASIC4) in SLP format

1 t0 = x5 + x4 + x0

2 y11 = x13 + x11 + t0

3 t2 = x8 + x9 + x12

4 y7 = x1 + x7 + t2

5 t4 = x1 + t0

6 t5 = x13 + t2

7 t6 = x10 + x6 + t0

8 y13 = x3 + y11 + t6

9 t8 = x5 + x9

10 y15 = x15 + t4 + t8

11 y3 = x3 + t5 + t8

12 t11 = x14 + x9 + x2

13 y9 = x15 + x7 + t11

14 t13 = x14 + x6

15 y0 = x0 + t5 + t13

16 y8 = x8 + t4 + t13

17 t16 = x14 + y0 + y8

18 y14 = y11 + y7 + t16

19 t18 = t0 + t2 + t11

20 y12 = t6 + y8 + t18

21 y5 = y11 + y3 + t18

22 y2 = x5 + y14 + t18

23 t22 = y15 + t13 + t16

24 y6 = y3 + t22

25 t24 = t6 + t8

26 y1 = x7 + y15 + t24

27 y10 = t2 + y6 + t24

28 y4 = t11 + y0 + t24

5.2 32 × 32 Matrices

Similar to the 16 × 16 matrices, we now show the summarised results for the
32 × 32 binary matrices in Table 4, while the results reported for the first time
are highlighted (the rest are the state-of-the-art results and reported in [10]).
It is to be noted that, we achieve improvement for GC for all the matrices we
experiment with.
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Table 4. Implementations of few 32 × 32 matrices in b2

Matrix GC ASIC1 ASIC2 ASIC3 ASIC4

AES 59 (12, 47) 169.0 (39, 28) 181.28 (39, 28) 215.1 (39, 28) 258.98 (12, 47)

ANUBIS [11] 62 (11, 51) 185.0 (60, 20) 193.16 (60, 20) 234.0 (60, 20) 274.29 (11, 51)

CLEFIA M0 [23] 62 (13, 49) 185.0 (60, 20) 193.16 (60, 20) 234.0 (60, 20) 271.63 (13, 49)

CLEFIA M1 [23] 65 (3, 62) 193.0 (38, 36) 209.00 (38, 36) 246.2 (38, 36) 294.30 (38, 36)

TWOFISH [22] 73 (17, 56) 215.5 (20, 54) 240.23 (20, 54) 276.8 (20, 54) 317.57 (17, 56)

Number of (XOR2, XOR3) gates are given within parenthesis

In terms of the AES MixColumn matrix (with encoding compatible to that of
[24]), our best result is of 59 GC (12 XOR2 and 47 XOR3 gates), depth 4; which
is given in Code 1.3. This improves from the 67 GC, depth 6 implementation of
[10] (all the implementations obtained have a depth of 6). Note that the same
implementation also gives the least known cost for ASIC4 (258.98 GE, which is
an improvement from [10]). A graphical representation for this implementation
grouping variables at same depth in the same column is given in Fig. 1. Further,
an improved implementation of TWOFISH [22] linear layer is given in Code 1.4;
which incurs a GC cost of 73, ASIC4 cost of 317.57 GE, and depth of 9.

Code 1.3. AES MixColumn in b2 with 59 GC/depth 4 in SLP format

1 t0 = x8 + x16

2 t1 = x24 + x0

3 t2 = x28 + x24 + x16

4 t3 = x12 + x8 + x0

5 t4 = x22 + x14 + x7

6 t5 = x23 + x6 + x30

7 t6 = x20 + x27 + x3

8 y19 = x11 + t2 + t6

9 t8 = x11 + x4 + x19

10 y3 = x27 + t3 + t8

11 t10 = x13 + x20 + x28

12 y4 = x5 + t3 + t10

13 t12 = x12 + x4 + x29

14 y20 = x21 + t2 + t12

15 t14 = x18 + x26 + x11

16 y2 = x10 + x3 + t14

17 y10 = x2 + x19 + t14

18 t17 = x18 + x10 + x27

19 y18 = x11 + y10 + t17

20 y26 = x3 + x2 + t17

21 t20 = x22 + x5 + x29

22 y21 = x13 + x30 + t20

23 y13 = x14 + x21 + t20

24 t23 = x18 + x1 + x25

25 y9 = x10 + x17 + t23

26 y17 = x9 + x26 + t23

27 t26 = x6 + x21 + x29

28 y29 = x22 + y21 + t26

29 y5 = x13 + x14 + t26

30 t29 = x24 + x16 + x31

31 y23 = x7 + x15 + t29

32 y22 = x14 + t5 + t29

33 t32 = x2 + y9 + y17

34 y25 = x10 + x1 + t32

35 y1 = x26 + x25 + t32

36 t35 = x8 + x15 + x0

37 y6 = x30 + t4 + t35

38 y7 = x23 + x31 + t35

39 t38 = x23 + t1 + y23

40 y15 = t35 + t38

41 y31 = t29 + t38

42 t41 = x17 + x16 + t1

43 y16 = x25 + t0 + t41

44 y8 = x9 + t41

45 t44 = x1 + x0 + t0

46 y0 = x9 + t1 + t44

47 y24 = x25 + t44

48 t47 = t1 + y6 + y7

49 y30 = t5 + t47

50 t49 = x4 + x21 + t10

51 y12 = t0 + t49

52 t51 = x19 + t0 + t6

53 y11 = x12 + t51

54 t53 = x20 + x5 + t1

55 y28 = t12 + t53

56 t55 = x28 + x3 + t1

57 y27 = t8 + t55

58 t57 = t0 + y23 + y22

59 y14 = t4 + t57
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Fig. 1. AES linear layer (MixColumn) in b2 with 59 GC/depth 4 in graphical form

6 Conclusion

With the renewed interest in the Boyar-Peralta’s algorithm [13] in the last couple
of years, our work combines existing ideas about the algorithm atop our own idea
of incorporating XOR3 support in it. We take an open-source implementation of
the algorithm (provided by the authors of [24]), make several changes to reflect
the state-of-the-art observations [10,21], and finally deliver a complete package
as an easy-to-use and versatile open-source project (that contains our algorithm
for XOR3 support).

Our work achieves the best known results in terms of a logic library com-
prising of {XOR2, XOR3} gates, several of which are reported for the first time
(the rest results that are reported here are tied with [10]). For instance, we
present an implementation of the AES MixColumn matrix with 59 gate count/4
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Code 1.4. TWOFISH linear layer in b2 (73 GC, 317.57 GE in ASIC4) in SLP format

1 t0 = x8 + x9 + x17

2 t1 = x0 + x25 + x1

3 t2 = x24 + x8 + x16

4 t3 = x19 + x27 + t2

5 t4 = x31 + x23 + x15

6 t5 = x26 + x2 + t1

7 y16 = x10 + t2 + t5

8 t7 = x12 + x20 + x0

9 t8 = x18 + x17 + y16

10 y24 = x25 + x10 + t8

11 t10 = x30 + x14 + t2

12 t11 = x13 + x29 + x21

13 t12 = x22 + x6 + t10

14 y6 = x15 + t12

15 t14 = x28 + x4 + x16

16 t15 = x16 + x7 + t4

17 y31 = x17 + t1 + t15

18 y15 = x1 + t0 + t15

19 y23 = t0 + t2 + y31

20 t19 = x9 + x1 + t8

21 y8 = x26 + x25 + t19

22 t21 = x11 + t3 + t11

23 y3 = x12 + x3 + t21

24 t23 = x24 + t7 + t14

25 t24 = x5 + y3 + t23

26 t25 = x9 + t12 + t23

27 t26 = x0 + x23 + y6

28 y22 = t15 + t26

29 y14 = x24 + t26

30 t29 = x5 + t11

31 t30 = x27 + t8 + t14

32 t31 = x25 + t0 + t4

33 y5 = x14 + t29 + t31

34 y7 = x7 + t31

35 t34 = x11 + t19 + t23

36 y2 = x4 + t34

37 t36 = x5 + t1 + t25

38 y20 = x22 + x29 + t36

39 t38 = x13 + y15 + t25

40 y4 = x6 + y23 + t38

41 t40 = x3 + t0 + t5

42 t41 = x27 + x11 + t40

43 y17 = x24 + t41

44 t43 = x26 + x18 + t3

45 y25 = t40 + t43

46 t45 = x22 + x31 + y5

47 y13 = y15 + t31 + t45

48 t47 = x3 + t30

49 y26 = x20 + t3 + t47

50 y18 = x12 + t0 + t47

51 t50 = y6 + y31

52 y29 = t10 + t29 + t50

53 y21 = x25 + t45 + t50

54 t53 = t5 + y8

55 y0 = x17 + t1 + t53

56 t55 = x24 + x21

57 y19 = x20 + t24 + t55

58 t57 = x11 + t43 + t53

59 y1 = t2 + t57

60 t59 = x13 + t2 + t24

61 y27 = x28 + t59

62 t61 = x8 + x15 + t26

63 y30 = x7 + t61

64 t63 = x29 + t14 + t24

65 y11 = x12 + t63

66 t65 = t0 + t36 + t55

67 y28 = x14 + t65

68 t67 = x12 + y16 + t34

69 y9 = y24 + y26 + t67

70 t69 = x19 + t1 + y2

71 y10 = x0 + t14 + t69

72 t71 = x30 + x21 + t38

73 y12 = x9 + t15 + t71

depth/258.98 GE in STM 130 nm process (ASIC4). We are optimistic, these
results can be improved further with more runs of our implementation.

In the future scope, a number of works can be undertaken. First, we may
consider the XNOR gates in the library. Higher input XOR gates (XOR4 and
beyond) can be incorporated. It may be of interest to optimise the depth for the
implementation, as far we know there is no dedicated work in the literature for
studying this metric. The cost for inverse of the matrices for the given libraries
may be an interesting direction to study as well. One may also be interested in
finding a reversible implementation together with XOR3 support.
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Abstract. The area is one of the most important criteria for an S-
box in hardware implementation when designing lightweight cryptogra-
phy primitives. The area can be well estimated by the number of gate
equivalent (GE). However, to our best knowledge, there is no efficient
method to search for an S-box implementation with the least GE. Pre-
vious approaches can be classified into two categories, one is a heuristic
that aims at finding an implementation with a satisfying but not nec-
essarily the smallest GE number; the other one is SAT-based focusing
on only the smallest number of gates while it ignored that the areas of
different gates vary. Implementation with the least gates would usually
not lead to the smallest number of GE.

In this paper, we propose an improved SAT-based tool targeting opti-
mizing the number of GE of an S-box implementation. Given an S-box,
our tool can return the implementation of this S-box with the smallest
number of GE. We speed up the search process of the tool by bit-sliced
technique. Additionally, our tool supports 2-, 3-, and 4-input gates, while
the previous tools cover only 2-input gates. To highlight the strength of
our tool, we apply it to some 4-bit and 5-bit S-boxes of famous ciphers.
We obtain a better implementation of RECTANGLE’s S-box with the
area of 18.00GE. What’s more, we prove that the implementations of
S-boxes of PICCOLO, SKINNY, and LBLOCK in the current litera-
ture have been optimal. When using the DC synthesizer on the circuits
produced by our tool, the area are much better than the circuits con-
verted by DC synthesizers from the lookup tables (LUT). At last, we use
our tool to find implementations of 5-bit S-boxes, such as those used in
KECCAK and ASCON.
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1 Introduction

Lightweight cryptographic primitives are deployed more and more in the source-
constraint devices that manipulate sensitive data. The National Institute of
Standards and Technology (NIST) has initiated a competition to call for a
new lightweight cryptography standard for constrained environments [12]. The
designer of lightweight cryptography needs to consider both the security property
and implementation performance. The hardware implementation performance
includes many criteria, e.g., throughput, area, energy, power, and latency, where
the area is a crucial criterion for the implementation of lightweight ciphers.

Since the area cost of different gates depends on the technology library, mea-
suring and comparing the area cost of implementations requires a standard unit.
A gate equivalent usually stands for the unit of measure which allows specifying
manufacturing-technology-independent complexity of digital electronic circuits.
Practically, the NAND constitutes the unit area commonly referred to as a gate
equivalent while the GE of other gates are measured based on the NAND gates.
For example, in the library of UMC 180nm [8], the GE of some gates are listed
in Table 1.

Table 1. Area cost of typical cell gates under UMC 180nm library [8]. The values are
given in GE.

Techniques AND NOT NAND XOR NAND3 XOR3 MAOI1 MOAI1

OR NOR XNOR NOR3 XNOR3

UMC 180nm 1.33 0.67 1.00 3.00 1.33 4.67 2.67 2.00

To predict the area of a hardware implementation of a given S-box, we com-
monly compute the number of GE of this implementation. As a result, to find
an optimal implementation of an S-box with the smallest area, we need to find
the optimal combination of a set of gates whose number of GE is the smallest.

Before this work, no approach is suitable to find the implementation of an
S-box with the smallest area directly. Here we briefly introduce two main-stream
methods to find the implementation of an S-box.

Heuristic Search. In the domain of logic synthesis, several heuristic algorithms
provide satisfactory solutions, such as BOOM [7] and ESPRESSO [13] which
are probably implemented in many commercial synthesizers. An automated tool
LIGHTER proposed by Jean et al. [9] uses a graph-based meet-in-the-middle search
algorithm under the assumption that every instructions is invertible. Despite of
the efficiency and practical applicability for different S-boxes, these algorithms
rely on some heuristics and are infeasible to prove that their results are optimal
implementation of S-box circuits.
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SAT-Based Search. At FSE 2016, Stoffelen models the problem of finding an
efficient implementation of a lightweight S-box as a SAT problem [15]. Then with
a SAT solver, this tool can find the implementation of S-box with the smallest
number of gates. However, as Table 1 shows, the area costs of different gates are
different. The smallest number of gates will still lead to a large number of GE.

Our Contributions. In this paper, we give the first method to search for the
optimal area implementation of small S-boxes by SAT solver. The main contri-
butions are shown below.

A New Searching Algorithm. Based on the SAT method [15], we propose
an algorithm to find the optimal implementation of a lightweight S-box focusing
on the area. We reduce the search space by a pre-computed algorithm. This
algorithm first searches for the optimal implementation in the terms of number
of gates, then it calculates the lower and upper bounds of the number of gates
and area.

Within this range, we find out the optimal implementation by querying the
SAT solver. The number of variables in the SAT model has a great dependence
on the types and the number of gates. As the number of variables increases,
the efficiency would be lower. Consequently, we use the bit-sliced technique to
reduce the number of variables and then speed up the model.

A Generalization to 2-, 3-, 4-input Gates. In [1], the authors have shown
that replacing several simple gates with two inputs complex gates with multiple
inputs can save the area significantly. Insipred by this, on the basis of the 2-input
gate model [15], our model includes complex gates. Our model gives a unified
expression that can describe gates with 2 inputs, 3 inputs (e.g., XOR3, XNOR3,
OR3, NOR3, AND3, and NAND3) and 4 inputs (e.g., MOAI1 and MAOI1).

Better S-box Implementations. We apply our method to many 4- and 5-bit
S-boxes of popular ciphers such as RECTANGLE [17], PICCOLO [14], SKINNY
[2], LBLOCK [16], KECCAK [3] and ASCON [5].

We manage to find an improved circuit of RECTANGLE’s S-box with 18.00
GE cost which is better than LIGHTER’s and we can verify that the circuits of
PICCOLO, SKINNY and LBLOCK’s S-boxes have the optimal area cost under
the 2-, 3- and 4-input gates we considered. In addition, due to the bit-sliced
technique, our model is also useful in finding the implementation of the 5-bit
S-boxes.

Organization of the Paper. In Sect. 2, we first introduce some preliminary
notions and recall some previous works on the implementation of S-box. We
introduce our new model with the pre-computed algorithm and bit-sliced tech-
nique to search the optimal area implementation of an S-box in Sect. 3. In Sect. 4,
we provide an comparison between our results and previous works. At the end,
we conclude the paper in Sect. 5.
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2 Preliminaries

In this section, we first present some definitions and notions used in this paper.
Then, we briefly recall Stoffelen’s SAT-based tool in [15].

2.1 Notations

Table 2. List of Boolean operators implemented by standard cell gates from the
libraries. ∧,∨,⊕,¬ stand for logical and, or, exclusive or, not [9], respectively.

Operation Function Operation Function

NAND (a, b) → ¬(a ∧ b) XOR (a, b) → a ⊕ b

NOR (a, b) → ¬(a ∨ b) XNOR (a, b) → ¬(a ⊕ b)

AND (a, b) → a ∧ b NAND3 (a, b, c) → ¬(a ∧ b ∧ c)

OR (a, b) → (a ∨ b) NOR3 (a, b) → ¬(a ∨ b ∨ c)

NOT a → ¬a XOR3 (a, b, c) → (a ⊕ b ⊕ c)

MAOI1 (a, b, c, d) → ¬((a ∧ b) ∨ (¬(c ∨ d))) XNOR3 (a, b, c) → ¬(a ⊕ b ⊕ c)

MOAI1 (a, b, c, d) → ¬((a ∨ b) ∧ (¬(c ∧ d)))

The combinatorial cell gates implement classical Boolean operations, whose func-
tional behavior is shown in Table 2. In this paper, we use logical connectives to
denote the types of operations, i.e., let ∧, ∨, ⊕, ¬ denote AND, OR, XOR,
NOT, respectively, and let ↑, ↓, ↔ denote NAND, NOR, XNOR, respectively.
The notations used in this paper are listed in Table 3.

2.2 Stoffelen’s SAT-based Tool

The Boolean satisfiability problem (SAT) is the problem of determining whether
there exists an evaluation for the binary variables such that the value of the given
Boolean formula equals one. Through translating a problem into a SAT problem,
we could then take the off-the-shelf solvers to solve this SAT problem, and finally
get the corresponding answer to the original problem.

Since our tool can be regarded as an improved version of Stoffelen’s SAT-
based tool [15] that aims at finding the implementation with smallest number
of GE rather than only the number of gates, we introduce the basic methods
used in his tool. In [15], Stoffelen explores the feasibility of applying SAT solvers
to optimize implementations of small S-boxes for the criteria including of the
number of gates. He proposed a binary model to solve the following decision
problem: Is there a circuit that implements an S-box S : Fn

2 → F
m
2 and that uses

at most K logic operations?
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Table 3. List of notations in this paper.

Notations Definitions

K K represents the number of gates

G G represents the area cost of a circuit

xi (resp. yj) Boolean variables, represent S-box inputs (resp. outputs)

q2i The i-th gate input , q2i ∈ F2

ti The i-th gate output, ti ∈ F2

ai Coefficient variables ai ∈ F2 represent wiring between gates. (More

details can refer to example 1.)

bi Variables bi ∈ F2 determine the types of gates. (More details can

refer to example 1.)

Cost[i] The array Cost[i] represents the cost of different gate operations

He uses a method in [4,11] to transform the decision problem into a model.
This model encodes each gate as an Algebraic Normal Form (ANF) equation
and can judge the existence of solutions when given the number of gates. To get
the smallest number of gates, it should exhaust K until finding the smallest one
that there exists an implementation of an S-box.

As an example, we give a model of a decision problem whether there is a
circuit implements an 2-bit toy S-box with 2 gates.

Example 1. Given a 2-bit S-box in Table 4 and we encode the model of this S-box
as follows.

Table 4. Lookup table of the 2-bit S-box.

x 0 1 2 3

S(x) 3 2 0 1

Encode the Input and Output of the S-box. We encode the S-box as
Boolean variables xi and yi.

x0 = 0, x1 = 0, y0 = 1, y1 = 1; //denote S(0) = 3
x2 = 0, x3 = 1, y2 = 1, y3 = 0; //denote S(1) = 2
x4 = 1, x5 = 0, y4 = 0, y5 = 0; //denote S(2) = 0
x6 = 1, x7 = 1, y6 = 0, y7 = 1; //denote S(3) = 1

Then, for each x and S(x), this model needs one set of equations as follows to
represent a circuit with K gates and there are a total of 22 sets.
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Encode a Decision of Choosing Two Inputs of a Gate. The Boolean
variables qi represent the inputs of a gate. For example, q0 and q1 are two inputs
of the gate t0, while q2 and q3 are two inputs of the gate t1.

q0 = a0 · x0 + a1 · x1

q1 = a2 · x0 + a3 · x1

q2 = a4 · x0 + a5 · x1 + a6 · t0
q3 = a7 · x0 + a8 · x1 + a9 · t0

One qi must come from one of the S-box’s inputs or the output of a previous
gate. This constraint can be described as that only one of the variables ai in an
equation can be equal to 1.

a0 · a1 = 0.
a2 · a3 = 0.
a4 · a5 = 0 AND a4 · a6 = 0 AND a5 · a6 = 0.
a7 · a8 = 0 AND a7 · a9 = 0 AND a8 · a9 = 0.

Encode the Decision of Choosing a Type of Gate. The variables bi deter-
mine what kind of gate the ti will represent, as can be seen in Table 5. When
the value of the pattern b3i||b3i+1||b3i+2 is different, ti represents different kind
of gate, such as AND, OR, XOR, NAND, NOR, and XNOR.

t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2

t1 = b2 · q2 · q3 + b3 · q2 + b3 · q3 + b4

There are a total of K variables ti to represent K different gates.

Encode the decision of choosing the output of the circuit. The Boolean
variables yi also represent the outputs of the circuit.

y0 = a18 · x0 + a19 · x1 + a20 · t0 + a21 · t1
y0 = a22 · x0 + a23 · x1 + a24 · t0 + a25 · t1

Similar to qi, one yi must come from one of the S-box’s inputs or the output of
a gate. This constraint can be described as that only one of the variables ai in
an equation can be equal to 1 too.

3 Optimizing Implementations for S-Boxes

We measure the gate sizes in terms of Gate Equivalent (GE), which is a normal-
ized ratio using the area of a 2-input NAND gate as a common reference.
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Table 5. Encoding of different types of gates.

b3i||b3i+1||b3i+2 Operations Gate function

0 0 0 0 0

0 0 1 1 1

0 1 0 XOR q2i ⊕ q2i+1

0 1 1 XNOR q2i ↔ q2i+1

1 0 0 AND q2i ∧ q2i+1

1 0 1 NAND q2i ↑ q2i+1

1 1 0 OR q2i ∨ q2i+1

1 1 1 NOR q2i ↓ q2i+1

3.1 Main Idea of Our Model

In this section, we introduce how to improve Stoffelen’s tool for optimizing the
area of an S-box. Stoffelen’s model can produce an implementation with a set of
K gates and we denote this set as I. We can add the cost of each gate up to obtain
the area of this implementation. Let G denote the area of the implementation,
we have

G =
∑

gi∈I

Costgi , (1)

where Costgi is the area of the gate gi in I. Since we want to search for an
implementation of the S-box with G area, Eq. 1 is naturally the objective function
of our new model together with all equations in Stoffelen’s model. This model
can determine whether a circuit can implement an S-box with K gates and G
area.

However, even if there exists a circuit, the area is not the smallest one. It
needs to exhaust K and G and encode the corresponding decision problem to
find the smallest area implementation by querying the SAT solver.

In this term, there are three limitations of Stoffelen’s tool. Firstly, the NOT
operation is not considered, because in his model a NOT gate is always redundant
for it can always be incorperated into a new combinatorial gate. For example, a
NOT gate and an AND gate can be combined into a NAND gate. However, if we
want to consider the area, our model cannot ignore the NOT gate. In addition,
his tool only covers 2-inputs gates, while the complex gates such as 3- and 4-
inputs gates have a great effect on implementations. Secondly, the area costs of
different gates are different and his model could not find the smallest number
of GE of an S-box’s implementation. Finally, as the number of gates increases,
Stoffelen’s model needs more variables, which results in a lower efficiency and
the model does not work for 5-bit S-boxes and even some 4-bit S-boxes.

To overcome these limitations, we first re-encode the ANF equation of an
gate including the NOT gate and 2-, 3-, 4-input gates. Then, we propose a new
decision problem: is there a circuit that implements an S-box so that the area
cost at most G? To solve this problem, we set an array to denote the area cost of



166 Z. Lu et al.

different gates and give an algorithm to determine the upper and lower bounds
of the K and G. In the end, we use a technique called bit-sliced to reduce the
variables in our model and speed up the search.

3.2 Encode the NOT Gate and Complex Gates

In this section, we re-encode the equation of a gate to include the NOT gate
and 2-, 3-, 4-input gates. The 3-input gates include the AND3, OR3, XOR3,
NAND3, NOR3 and XNOR3 gates while the MAOI1 and MOAI1 gates are two
4-input gates.

NOT Gate. Firstly, we re-encode the gates equation from Stoffelen’s model as
follows to add the NOT gate.

t = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2 · q0 + b3 (2)

In this equation, when b2 = 0, the patterns b0||b1||b3 represent the same gates
to the patterns Stoffelen’s model, which can be seen in Table 6.

Table 6. Improve the encoding of different types of gates.

b0||b1||b2||b3 Operations Gate function

0 0 1 1 NOT ¬q0
0 1 0 0 XOR q0 ⊕ q1

0 1 0 1 XNOR q0 ↔ q1

0 1 1 1 NOT ¬q1
1 0 0 0 AND q0 ∧ q1

1 0 0 1 NAND q0 ↑ q1

1 1 0 0 OR q0 ∨ q1

1 1 0 1 NOR q0 ↓ q1

From Table 6, the patterns b0||b1||b2||b3 do not cover the whole space of F4
2.

For example, when b2 equals to 1, b3 should equal to 1 and b0 equal to 0. We
describe this case as a constraint in our model to make sure that each pattern
is corresponding to one gate.

Cst1 = {b3 = 1 and b0 = 0|b2 = 1}.

However, more complex gates, such as 3-input and 4-input operations have a
great effect on the number of GE. For example, two consecutive XOR gates can
be replaced by a XOR3 gate and the XOR3 gate cost 4.67 GE which is smaller
than two XOR gates.
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3-Input Gates. We improve the Equation (2) to add the 3-input gates, such
as AND3, NAND3, OR3, NOR3, XOR3, and XNOR3.

t = b0 · q0 · q1 · q2 + b1 · q0 · q1 + b1 · q0 · q2 + b1 · q1 · q2+
b1 · q0 + b1 · q1 + b1 · q2 + b2 · q0 + b2 · q1 + b2 · q2+
b3 · q0 · q1 + b4 · q0 + b4 · q1 + b5 · q0 + b6.

(3)

This equation adds three bi and one qi to encode the 3-input gates. We propose
the detail of the gate in Table 7.

Table 7. Encoding of different types of 2-input and 3-input gates.

b0||b1||b2||b3|| b4||b5||b6 Operations Gate function

0 0 0 0 0 1 1 NOT ¬q0
0 0 0 0 1 0 0 XOR q0 ⊕ q1

0 0 0 0 1 0 1 XNOR q0 ↔ q1

0 0 0 0 1 1 1 NOT ¬q1
0 0 0 1 0 0 0 AND q0 ∧ q1

0 0 0 1 0 0 1 NAND q0 ↑ q1

0 0 0 1 1 0 0 OR q0 ∨ q1

0 0 0 1 1 0 1 NOR q0 ↓ q1

1 0 0 0 0 0 0 AND3 q0 ∧ q1 ∧ q2

1 0 0 0 0 0 1 NAND3 ¬(q0 ∧ q1 ∧ q2)

1 1 0 0 0 0 0 OR3 q0 ∨ q1 ∨ q2

1 1 0 0 0 0 1 NOR3 ¬(q0 ∨ q1 ∨ q2)

0 0 1 0 0 0 0 XOR3 q0 ⊕ q1 ⊕ q2

0 0 1 0 0 0 1 XNOR3 ¬(q0 ⊕ q1 ⊕ q2)

Similarly, the patterns b0||b1||b2||b3||b4||b5||b6 of this equation do not cover the
whole space of F7

2. When b0 = b1 = b2 = 0, the patterns b3||b4||b5||b6 represent
the gates are the same as the 2-input ones. To make sure each pattern represents
one gate, we add the following constraints in our model.

Cst1 = {b6 = 1 and b3 = 0|b5 = 1}.
Cst2 = {b2 = b3 = b4 = b5 = 0|b0 = 1}.
Cst3 = {b0 = 1|b1 = 1}.
Cst4 = {b0 = b1 = b3 = b4 = b5 = 0|b2 = 1}.

4-Input Gates. The gate functions of the MAOI1 and MOAI1 4-input gates are
listed in Table 8. It is easy to know that MAOI1(a, b, c, d) = ¬MOAI1(a, b, c, d).
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We further improve Equation (3) to add the 4-input gates into our model. Firstly,
we decompose the function of MAOI1 gate as follows

MAOI1(a, b, c, d)
=¬((a ∧ b) ∨ (¬(c ∨ d)))
= (¬(a ∧ b)) ∧ (c ∨ d)
= (b0 · a · b + b0) · (b1 · c · d + b1 · c + b1 · d)
= b0b1 · abcd + b0b1 · abc + b0b1 · abd + b0b1 · cd + b0b1 · c + b0b1 · d
= b∗ · abcd + b∗ · abc + b∗ · abd + b∗ · cd + b∗ · c + b∗ · d.

(4)

Then, we add one bi and one qi to encode all 2-, 3- and 4-input gates.

t = b0 · q0 · q1 · q2 · q3 + b0 · q0 · q1 · q2+
b0 · q0 · q1 · q3 + b0 · q2 · q3 + b0 · q2 + b0 · q3+
b1 · q0 · q1 · q2 + b2 · q0 · q1 + b2 · q0 · q2 + b2 · q1 · q2+
b2 · q0 + b2 · q1 + b2 · q2 + b3 · q0 + b3 · q1 + b3 · q2+
b4 · q0 · q1 + b5 · q0 + b5 · q1 + b6 · q0 + b7.

(5)

In Table 8, we propose the details of the 4-input gate. Besides, to make sure
each pattern represents one gate, we add one more constraint in our model.

Table 8. Encoding of different types of 4-inputgates.

b0 || b1||b2||b3|| b4||b5||b6||b7 Operations Gate function

1 0 0 0 0 0 0 0 MAOI1 ¬((q0 ∧ q1) ∨ (¬(q2 ∨ q3)))

1 0 0 0 0 0 0 1 MOAI1 ¬((q0 ∨ q1) ∧ (¬(q2 ∧ q3)))

Cst5 = {b1 = b2 = b3 = b4 = b5 = b6 = 0|b0 = 1}.

In summary, Fig. 1 gives the framework of our model and the number of the
input variables qi corresponding to each gate ti in the model has become to 4
and a set of equations has a total of 4K inputs variables qi.

We also use the decision problem whether there is a circuit implements an
2-bit toy S-box and that uses at most 3 logic operations as an example. The set
of the equation re-encode as

q0 = a0 · x0 + a1 · x1

q1 = a2 · x0 + a3 · x1

q2 = a4 · x0 + a5 · x1

q3 = a6 · x0 + a7 · x1
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Fig. 1. Illustration of our model.

t0 = b0 · q0 · q1 · q2 · q3 + b0 · q0 · q1 · q2+
b0 · q0 · q1 · q3 + b0 · q2 · q3 + b0 · q2 + b0 · q3+
b1 · q0 · q1 · q2 + b2 · q0 · q1 + b2 · q0 · q2 + b2 · q1 · q2+
b2 · q0 + b2 · q1 + b2 · q2 + b3 · q0 + b3 · q1 + b3 · q2+
b4 · q0 · q1 + b5 · q0 + b5 · q1 + b6 · q0 + b7.

. . .

y0 = a36 · x0 + a37 · x1 + a38 · t0 + a39 · t1 + a40 · t2
y1 = a41 · x0 + a42 · x1 + a43 · t0 + a44 · t1 + a45 · t2

It can be seen from the set of equations, the number of variables including
ai, qi and bi which has grown a lot.

3.3 Searching for the Implementation with the Smallest Area

As mentioned before, we propose a new decision problem: is there a circuit
that implements an S-box with the area cost at most G GE? At first glance, it
seems easy to solve this problem by slightly adjusting Stoffelen’s tool. However,
Stoffelen’s SAT-based model needs to encode the problem based on a determined
K. It could not determine the number of variables in a set of equations without
knowing the K. On the other hand, it is simple to solve a sub-problem, whether
a circuit can implement an S-box that uses determined K logic operations with
G GE.

In this section, we first solve this sub-problem by Algorithm 1. Then we
propose Algorithm 2 to determine the range of the search space to find the
smallest number of GE step by step.
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For the first step, to solve the sub-problem, we encode the area cost of dif-
ferent gates as an array Cost[ ] in our model according to Table 1, Table 7 and
Table 8. The indexes of the array are the different types of gates represented by
the patterns Gatei = b7i||b7i+1||b7i+2||b7i+3||b7i+4||b7i+5||b7i+6. Meanwhile, the
entries of the array represent the number of GE of different types of gates. Note
that the Boolean vector can only represent integers, so we expand all the number
of GE by 3 times simultaneously. For example, the AND gate costs 1.33GE, so
Cost[0bin00001000] = 0bin0100. Next, we sum the cost of all gates and denote
it as G = Cost[Gate0] +Cost[Gate1] + ...+Cost[GateK−1] in our model. Seeing
the pseudo-code of this model in Algorithm 1. Note that this algorithm could
only solve the decision problem and return 0 or 1 when given the target area
cost G and the number K of gates.

Even if there is a solution when giving the number of gates K and the target
area cost G, it could not be the smallest number of GE. The second step is to
determine the search space V(K,G) where the (Kopt, Gopt) of the global optimal
implementation lie in. We can use the model in Sect. 3.2 to find an implementa-
tion with the smallest number of gates Klow, then we give a proposition.

Proposition 1. Klow represents the smallest number of gates of an S-box’s
implementation. We set the area cost Gup of this implementation as the upper
bound of the number of GE. Then, the range of V(K,G) is Klow ≤ K ≤
Gup/1.00GE and 1.00GE × Klow ≤ G ≤ Gup.

Proof. 1.00GE represents the lower area cost of the non-linear operation (e.g.
NAND). Every implementation of an S-box needs several non-linear operations.
Assuming that all Klow gates of an implementation are NAND, the area of
this implementation must be the smallest one. Thus, the lower bound of G is
1.00GE × Klow. In the same way, if the number of gates in an implementation
exceeds Gup/1.00GE, its area must be greater than Gup. 
�

Finally, we propose Algorithm 2 and utilize the Proposition 1 to find a circuit
implementing an S-box with the smallest number of GE.

3.4 Bit-Sliced Technique

Bit-sliced techniques are widely used in the implementation and optimization of
cryptographic primitives [2,5,6,10,17]. We transplanted the idea of bit-sliced into
our model and provide a natural way to optimally encode the relation between
inputs and outputs of the S-boxes.

As can be seen from Example 1, our model needs 2n sets of equations to
encode each input x and output S(x) for an n-bit S-box. Although the coeffi-
cient variables a and b of each set of equations are the same, which determine
the implementation circuit, more intermediate variables q and t are needed. To
reduce the number of variables and then speed up our model, we use the bit-sliced
technique as follows.
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Algorithm 1: Solve the sub-problem: whether a circuit can implement an
S-box uses determined (K) logic operations with (G) GE.
Input: K : Number of gates

G : Target area cost
Sbox[] : an n-bit to n-bit S-box

Output: If the sub-problem has a solution, it returns ”1” and the
implementation of this S-box or other case returns ”0”.

1 //Encode this sub-problem as an SAT-model with equtions.
2 Counterq ← 2K · 2n

3 Countert ← K · 2n

4 Countera ← 2 × (n + (n + K − 2)) × K/2 + n2 + n · K
5 Counterb ← 4K
6 Cost[24] ← each area cost of operations in Table 1
7 for x ← 0 to 2n − 1 do
8 x = x0||x1||...||xn−1;
9 y = S(x) = y0||y1||...||yn−1;

10 for i ← 0 to K − 1 do
11 q2i ← one of S-box’s inputs or outputs of previous gates;
12 q2i+1 ← one of S-box’s inputs or outputs of previous gates;
13 q2i+2 ← one of S-box’s inputs or outputs of previous gates;
14 q2i+3 ← one of S-box’s inputs or outputs of previous gates;
15 ti = ...;

16 end
17 for i ← 0 to n − 1 do
18 yi ← only one of S-box inputs or outputs of previous gates t;
19 end

20 end
21 totalcost ← sum of all the gates’ area cost;
22 //Here is the end of the model.
23 if Solve the model by STP, it returns ”No Solution” then
24 return 0;
25 end
26 else
27 return 1 and the implementations of this S-box;
28 end

Example 2. We give RECTANGLE’s S-box and its corresponding truth table in
Table 9.

Firstly, we re-encode every variables as a 16-bit Boolean vectorial variables
instead of Boolean variables. For example, we use x0, x1, . . . , x63 to encode the
inputs of the S-box and y0, y1, . . . , y63 to encode the outpus of the S-box in our
original model. We re-encode them and only use 8 variables as

X0 = 0x00ff, X1 = 0x0f0f, X2 = 0x3333, X3 = 0x5555;
Y0 = 0x369c, Y1 = 0xe616, Y2 = 0x96c5, Y3 = 0x4bb4;
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Algorithm 2: find the implementation of an S-box with the smallest num-
ber of GE.
Input: Klow : Gates’ number of the optimal gate complexity implementation.

Gup : Total area cost of the optimal gate complexity implementation.
Sbox[] : an n-bit to n-bit S-box.

Output: The optimal GEC implementation and its area cost.
1 Kup ← Gup

2 Glow ← Klow

3 for K ← Klow to Kup do
4 for G ← Gup to Glow do
5 if call the Algorithm 1 return 0 with the input (K,G,S) then
6 Gup = G + 1
7 Kup = Gup

8 break;

9 end

10 end

11 end
12 return (Kup, Gup)

Table 9. Truth table of RECTANGLE S-box.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex

S(x) 6 5 12 10 1 14 7 9 11 0 3 13 8 15 4 2 –

x0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0x00ff

x1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0x0f0f

x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0x3333

x3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0x5555

y0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0x369c

y1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0xe616

y2 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0x96c5

y3 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0x4bb4

Then, we also use 16-bit vectorial Boolean variables Ai, Qi, Bi and Ti to re-
encode the Boolean variables ai, qi, bi and ti.

Q0 = A0 · X0 + A1 · X1 + A2 · X2 + A3 · X3

Q1 = A4 · X0 + A5 · X1 + A6 · X2 + A7 · X3

Q2 = A8 · X0 + A9 · X1 + A10 · X2 + A11 · X3

Q3 = A12 · X0 + A13 · X1 + A14 · X2 + A15 · X3
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T0 = B0 · Q0 · Q1 · Q2 · Q3 + Q0 · Q0 · Q1 · Q2+
B0 · Q0 · Q1 · Q3 + B0 · Q2 · Q3 + B0 · Q2 + B0 · Q3+
B1 · Q0 · Q1 · Q2 + B2 · Q0 · Q1 + B2 · Q0 · Q2 + B2 · Q1 · Q2+
B2 · Q0 + B2 · Q1 + B2 · Q2 + B3 · Q0 + B3 · Q1 + B3 · Q2+
B4 · Q0 · Q1 + B5 · Q0 + B5 · Q1 + B6 · Q0 + B7.

. . .

In this set of equations, we add more constraints on coefficient variables Ai

and Bi as follows

Ai ∈ 0x0000 , 0x1111,
Bi ∈ 0x0000 , 0x1111.

In conclusion, we only need 1 set of equations to encode RECTANGLE’s S-
box instead of 24 sets of equations in our original model above. The bit-sliced
technique would immediately reduce the number of Qi, Ti, Xi, and Yi by a factor
of 2n and speed up the search. For more details about our model before and after
the re-encoding, please refer to the code which are available online at https://
github.com/Zhenyulu-cyber/Sample implementation.

4 Applications to Lightweight S-Boxes

We now give our results related to small S-boxes. Our goal is to find the smallest
circuits implementing those S-boxes with respect to the overall area. All of our
experiments are running on AMD EPYC 7302 CPU 3.0Hz with 8-core. We use
our tool and provide the details on the implementation of RECTANGLE’s S-
box in Table 10. In addition, some implementations of 4-bit and 5-bit S-boxes
from well-known ciphers, such as PICCOLO, SKINNY, LBLOCK, KECCAK,
and ASCON, are listed in AppendixA.

To highlight the strength of our tool, we compare our results with previous
works in [9] and [15] under the UMC 180nm library which is a technology used in
[9]. In Table 11, it can be seen that all of our results are better than Stoffelen’s
and this is expected as Stoffelen’s tool simply minimizes the number of gate.
Meanwhile, we find a circuit of RECTANGLE’s S-box with 18.00GE cost which is
better than LIGHTER’s and we can verify that the circuits of PICCOLO, SKINNY
and LBLOCK’s S-boxes have the optimal area cost under the 2-, 3- and 4-input
gates we considered. In addition, due to the bit-sliced technique, our model can
be used to find the implementation of 5-bit S-box. However, due to the expansion
of the search space, we cannot guarantee that the searched implementation of
5-bit S-box is the optimal one.

Moreover, we also use the state-of-the-art synthesis tool Synopsys Design
Compiler (DC) to synthesize lookup table (LUT) based implementation and
equation based implementation circuits from three tools (e.g. ours, Stoffelen’s
[15] and LIGHTER [9]). We set the compiler being specifically instructed to

https://github.com/Zhenyulu-cyber/Sample_implementation
https://github.com/Zhenyulu-cyber/Sample_implementation
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Table 10. The implementation of RECTANGLE’s S-box.

a b c d Operations

q0 = x0; q1 = x1; q2 = 0; q3 = 0; t0 = NOR(a, b);

q4 = x3; q5 = t0; q6 = x3; q7 = t0; t1 = MOAI1(a, b, c, d);

q8 = x2; q9 = t1; q10 = 0; q11 = 0; t2 = NOR(a, b);

q12 = x0; q13 = t2; q14 = x0; q15 = t2; t3 = MOAI1(a, b, c, d);

q16 = x1; q17 = t3; q18 = x1; q19 = t3; t4 = MOAI1(a, b, c, d);

q20 = x1; q21 = x2; q22 = x1; q23 = x2; t5 = MOAI1(a, b, c, d);

q24 = t1; q25 = t5; q26 = 0; q27 = 0; t6 = AND(a, b)

q28 = t5; q29 = t1; q30 = t5; q31 = t1; t7 = MOAI1(a, b, c, d);

q32 = t4; q33 = t7; q34 = 0; q35 = 0; t8 = NAND(a, b);

q36 = t6; q37 = t3; q38 = t6; q39 = t3; t9 = MOAI1(a, b, c, d);

q40 = t8; q41 = t1; q42 = t8; q43 = t1; t10 = MOAI1(a, b, c, d);

y0 = t7; y1 = t9; y2 = t4; y3 = t10; GEC = 18.00GE

optimize the circuit for area under the TSMC 90nm library. By comparing the
output results of these algorithms, we measure the quality of the synthesis in
the setting where area only should be minimized. We list the results in Table 12.

When using the DC synthesizer on the circuits produced by our tool (equation
based implementation), the area is much better than the circuits produced by
Stoffelen’s tool (equation based implementation) and the circuits converted by
DC synthesizers from the LUT. Especially the performance on RECTANGLE’s
S-box, the results from our tool is much better than LIGHTER.

Note that the choice of standard cell libraries used is almost irrelevant for our
work as we are mainly interested in the quality of the area-optimized synthesis
itself.

Table 11. Comparison of area-optimized on the UMC 180nm.

Sbox LIGHTER [15] Ours

Area Area Area Gate number Optimal Time

PICCOLO 13.00GE 16.66GE 13.00GE 8
√

1 min

SKINNY 13.33GE 16.33GE 13.33GE 8
√

3 min

RECTANGLE 18.33GE 25.66GE 18.00GE 11 – 43 min

LBLOCK S0 16.33GE 23GE 16.33GE 10
√

12 min

KECCAK – – 17.66GE 13 – 6.66 h

ASCON – – 30.00GE 15 – 4.66 h
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Table 12. Comparison of area-optimized on the TSMC 90nm.

Sbox TSMC 90nm Logic Process

DC
(from LUT)

DC
(from Ours)

DC
(from [15])

DC
(from LIGHTER)

PICCOLO 18.25GE 11.25GE 11.25GE 11.25GE

SKINNY 23.00GE 11.00GE 11.00GE 11.00GE

RECTANGLE 23.00GE 16.25GE 18.25GE 18.00GE

LBLOCK S0 17.50GE 14.25GE 14.75GE 14.25GE

KECCAK 17.00GE 16.50GE – –

ASCON 27.75GE 27.00GE – –

5 Conclusion and Future Work

In this article, we have described a new method to improve the implementation
of lightweight cipher S-boxes. Our tool based on SAT-model could search for the
optimal area implementation with 2, 3, and 4 inputs gates. It is very practical
for cryptographic designers. There are still some weakness and future works that
deserve to consider. For example, our tool can only apply to small S-boxes, e.g.,
4-bit and 5-bit S-boxes. When the implementation of an S-box is complex, it is
difficult to find the optimal implementation. The efficiency of our tool depends
heavily on the size and complexity of S-boxes. So, a future work is to reduce the
search space and speed up finding the optimal implementation.
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Appendix A Implementation of Some S-boxes

In this section, we give the implementations of several Sboxes mapped on the
UMC 180nm standard cell libraries used in this paper (Tables 13, 14, 15 and 16).
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Table 13. The implementation of PICCOLO’s S-box.

a b c d Operations

q0 = x2; q1 = x3; q2 = 0; q3 = 0; t0 = OR(a, b);

q4 = x0; q5 = t0; q6 = x0; q7 = t0; t1 = MOAI1(a, b, c, d);

q8 = x1; q9 = t1; q10 = 0; q11 = 0; t2 = NOR(a, b);

q12 = x1; q13 = x2; q14 = 0; q15 = 0; t3 = OR(a, b);

q16 = x2; q17 = t2; q18 = x2; q19 = t2; t4 = MOAI1(a, b, c, d);

q20 = x3; q21 = t3; q22 = x3; q23 = t3; t5 = MOAI1(a, b, c, d);

q24 = t1; q25 = t5; q26 = 0; q27 = 0; t6 = OR(a, b)

q28 = x1; q29 = t6; q30 = x1; q31 = t6; t7 = MOAI1(a, b, c, d);

y0 = t7; y1 = t4; y2 = t5; y3 = t1; GEC = 13.00GE

Table 14. The implementation of SKINNY’s S-box.

a b c d Operations

q0 = x2; q1 = x3; q2 = 0; q3 = 0; t0 = OR(a, b);

q4 = x1; q5 = x2; q6 = 0; q7 = 0; t1 = OR(a, b);

q8 = x3; q9 = t1; q10 = x3; q11 = t1; t2 = MOAI1(a, b, c, d);

q12 = x0; q13 = t0; q14 = x0; q15 = t0; t3 = MOAI1(a, b, c, d);

q16 = x1; q17 = t3; q18 = 0; q19 = 0; t4 = OR(a, b);

q20 = t2; q21 = t3; q22 = 0; q23 = 0; t5 = OR(a, b);

q24 = x1; q25 = t5; q26 = x1; q27 = t5; t6 = MOAI1(a, b, c, d);

q28 = x2; q29 = t4; q30 = x2; q31 = t4; t7 = MOAI1(a, b, c, d);

y0 = t6; y1 = t7; y2 = t2; y3 = t3; GEC = 13.33GE

Table 15. The implementation of LBLOCK’s S-box.

a b c d Operations

q0 = x2; q1 = x3; q2 = 0; q3 = 0; t0 = OR(a, b);

q4 = x0; q5 = t0; q6 = x0; q7 = t0; t1 = MOAI1(a, b, c, d);

q8 = x1; q9 = t1; q10 = x1; q11 = t1; t2 = MOAI1(a, b, c, d);

q12 = x2; q13 = t2; q14 = 0; q15 = 0; t3 = NAND(a, b);

q16 = x0; q17 = t3; q18 = x0; q19 = t3; t4 = MOAI1(a, b, c, d);

q20 = x3; q21 = t4; q22 = x3; q23 = t4; t5 = MOAI1(a, b, c, d);

q24 = t2; q25 = t5; q26 = 0; q27 = 0; t6 = NOR(a, b)

q28 = x3; q29 = t6; q30 = x3; q31 = t6; t7 = MOAI1(a, b, c, d);

q32 = t5; q33 = t7; q34 = 0; q35 = 0; t8 = NAND(a, b);

q36 = x2; q37 = t8; q38 = x2; q39 = t8; t9 = MOAI1(a, b, c, d);

y0 = t2; y1 = t5; y2 = t9; y3 = t7; GEC = 16.33GE
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Table 16. The implementation of KECCAK’s S-box.

a b c d Operations

q0 = x2; q1 = 0; q2 = 0; q3 = 0; t0 = NOT (a);

q4 = x4; q5 = 0; q6 = 0; q7 = 0; t1 = NOT (a);

q8 = x1; q9 = 0; q10 = 0; q11 = 0; t2 = NOT (a);

q12 = x3; q13 = t1; q14 = 0; q15 = 0; t3 = OR(a, b);

q16 = x2; q17 = t3; q18 = x2; q19 = t3; t4 = MOAI1(a, b, c, d);

q20 = x3; q21 = t0; q22 = 0; q23 = 0; t5 = NAND(a, b);

q24 = x0; q25 = t2; q26 = 0; q27 = 0; t6 = OR(a, b)

q28 = x4; q29 = t6; q30 = x4; q31 = t6; t7 = MOAI1(a, b, c, d);

q32 = x1; q33 = t5; q34 = x1; q35 = t5; t8 = MOAI1(a, b, c, d);

q36 = x2; q37 = t2; q38 = 0; q39 = 0; t9 = NAND(a, b);

q40 = x0; q41 = t9; q42 = x0; q43 = t9; t10 = MOAI1(a, b, c, d);

q44 = x0; q45 = t1; q46 = 0; q47 = 0; t11 = NAND(a, b);

q48 = x3; q49 = t11; q50 = x3; q51 = t11; t12 = MOAI1(a, b, c, d);

y0 = t10; y1 = t8; y2 = t4; y3 = t12; y4 = t7; GEC = 17.66GE
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Abstract. Several studies on the resource estimation of quantum key
search attack exploiting Grover on different symmetric ciphers have been
studied in state-of-the-art cryptology research. In this paper, we consider
the popular Feedback Shift Register (FSR) based ciphers like Grain-128-
AEAD, TinyJAMBU, LIZARD, Grain-v1 and study their implementa-
tions in different quantum environments. To evaluate with respect to
NIST’s depth restriction (MAXDEPTH), we design reversible quantum
circuits for these ciphers and provide the QISKIT implementations with
total gate counts. Our results show that quantum cryptanalysis is pos-
sible with gate counts less than 2170/MAXDEPTH. Our results provide
a clear view of the exact status of quantum cryptanalysis against FSR-
based symmetric ciphers.

Keywords: Quantum cryptanalysis · Grover’s algorithm · FSR based
ciphers · QISKIT implementation

1 Introduction

In recent times there has been an extensive study on the impact of Grover’s
search algorithm [8] on block ciphers, especially on AES [5,7,15,22]. Some of
the existing works have shown that classically secure ciphers can be broken with
quantum algorithms [13,16,17,20,21]. Some works also show that the quantum
algorithm can be used to speed up classical attacks [12,18,27]. At the same time,
there are many results on symmetric ciphers in the quantum framework which
suggests that analyzing the ciphers using Grover for the post-quantum world
is necessary. One part of symmetric cipher is stream cipher and most of the
hardware stream ciphers are Feedback Shift Register (FSR) based. In this paper
we look at the FSR based stream ciphers and try to see certain implementation
issues if an adversary is going to explore the quantum attacks on these ciphers.
c© Springer Nature Switzerland AG 2021
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There has been no detailed previous study to evaluate the security of stream
ciphers in the quantum framework. Wu, in his thesis [31], commented that: “The
threat of Grover’s algorithm on stream ciphers can be simply eliminated by dou-
bling the key size”. Though doubling the key length seems to be a good solution,
a more accurate analysis is called for. The structure of a stream cipher is different
from block ciphers and so requires a different analysis in the quantum framework.
As a starting point in this work, we present the application of Grover’s algorithm
for key search on FSR based ciphers. The ciphers Grain-128-AEAD and Tiny-
JAMBU are finalists of NIST’s Lightweight Crypto Standardization [24].

However, the question here is why do we need to implement ciphers in a
quantum domain: the first requirement is whenever there will be any quantum
attack then we need to prepare the quantum circuit. Corresponding to each
cipher we need to implement a quantum circuit and we check the resources
required of the quantum circuit. One very standard attack on the symmetric
ciphers is the Grover’s attack and it requires running several loops of the cipher.
Added to this we also have to run the cipher for several loops to generate the
keystream. Since in quantum circuits there is no concept of loops, i.e., we cannot
feedback the output in the same circuit [23, p. 23], due to the limitations of the
implementation of the quantum circuit, the only option we have is to repeat the
circuit and so this requires a huge amount of resource. After we create the circuit
for the ciphers, we compute the cost for implementation of the cipher. We also
check the implementation in IBMQ interface and compute the number of gates
and the depth of the circuit. To verify that the circuit gate count and depth
estimates computed were correct we implemented these circuits in Microsoft’s
Q# and observed that the values were matching in both the implementations.

Since quantum computers are still in a primary stage, it is difficult to decide
the exact cost for each gate. Most of the previous works had focused on reducing
the number of T gates and the number of qubits in their circuit construction.
This work is more inclined towards reducing the depth and the number of quan-
tum gates used in the circuit to study the security of a cipher under NISTs
MAXDEPTH constraint [25, pp. 16–18] at the cost of a few qubits.

1.1 Contribution and Organization

We mainly focus on FSR based stream ciphers but have included TinyJAMBU
because its state gets updated by a non-linear feedback shift register and so a
similar technique could be used to construct its circuit.

In Sect. 3, we have presented reversible quantum circuits for Grain-128-
AEAD, TinyJAMBU, LIZARD, and Grain-v1 and applied Grover’s search algo-
rithm for key recovery on these ciphers. We estimate the cost of applying Grover
for key recovery in Table 3 and then estimate it under the NISTs MAXDEPTH
constraint in Table 4. We find that implementing Grover’s on ciphers Grain-128-
AEAD and TinyJAMBU is possible with gate count complexity 1.569 · 2123 and
1.155 · 2125, respectively, when MAXDEPTH = 240.

In Sect. 4 we show how the correctness of our resource estimates were verified
by implementing the circuits in IBMQ’s Qiskit as well as Microsoft’s Q#. As
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an example we provide the code for TinyJAMBU’s permutation Pn, n = 1 for
independent verification. We conclude in Sect. 5. The QISKIT codes for all the
circuits are provided in [33].

1.2 Related Works

Since the publication of quantum circuit of AES by Grassl et al. [7], a lot of
research on quantum implementation of symmetric key primitives as well as
the resource estimation required for implementing Grover’s search algorithm
on those ciphers have been published. The readers may refer to, for example,
AES [5,6,15,22,32], SIMON [1], GIMLI [28], SPECK [2,14], RECTANGLE and
KNOT [4]. It is interesting to note here that all the previous works were dedicated
only towards block ciphers.

In this work, we try to construct quantum circuits for FSR-based (stream)
ciphers. As we know that in quantum circuits there is no concept of loops,
i.e., we cannot feedback the output in the same circuit, it becomes difficult to
design an optimized circuit for these ciphers. Every FSR-based cipher makes
use of feedback functions that are used to update the internal state. The naive
approach is to compute the feedback value in an ancilla and use it to update the
internal state. This, however, means we require at least 2 CNOT gates (1 for
uncomputation) which when multiplied by 2k/2, where k is the key size, amounts
to a very large value.

However, a very simple solution to this problem exists in how the FSRs
operate. Consider a FSR of size n, denote its content as S = [s0, s1, · · · , sn−1]
and let fi be the feedback value at ith clocking. Then at the ith clocking the
state gets updated as:

for 0 ≤ j ≤ (n − 2) : sj = sj+1

sn−1 = fi

Then we observe that after n clockings we have s0 = f0, s1 = f1, · · · , sn−1 =
fn−1, i.e. we can store the value of the feedback f0 in s0 and this qubit will not
be operated for the next n − 1 clockings. We use this observation to construct
circuits without use of any ancilla to store the value of the feedback.

2 Preliminaries

2.1 Key Search Using Grover’s Algorithm

Grover’s algorithm searches through the space of N elements, and finds the
marked element in only O(

√
N) iterations. For simplicity, we restrict N = 2k,

where k is the size of the key to be searched. The input to the algorithm is the
superposition |ψ〉 = 2− k

2
∑

x∈{0,1}k |x〉, which is held in a register of k qubits.
It makes use of an operator Uf for evaluating a Boolean function f : {0, 1}k →
{0, 1} which marks f(x0) = 1 if and only if x0 is the required key.
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When we apply the Grover oracle Uf to a state |x〉 |y〉, where |x〉 is a k-qubit
state and |y〉 is a single qubit then it acts as Uf : |x〉 |y〉 → |x〉 |y ⊕ f(x)〉 in the
computational basis. If |y〉 is chosen to be |φ〉 = 1√

2
(|0〉 − |1〉), then we have

Uf : |x〉 1√
2
(|0〉 − |1〉) → (−1)f(x) |x〉 1√

2
(|0〉 − |1〉)

The Grover’s algorithm consists of repeatedly applying the operation G to
the initial state |ψ〉 |φ〉, where G is defined as

G = (2 |ψ〉 〈ψ| − I)Uf .

G is called the Grover’s iteration, an operation that consists of the oracle Uf

followed by the operator 2 |ψ〉 〈ψ| − I and can be viewed as an inversion about
the mean amplitude. Overall G has to be applied a number of O(2

k
2 ) times to

obtain an element x0 such that f(x0) = 1 with a high probability.

Key Search for a Stream Cipher. Let for any key K = {0, 1}k and initial-
ization vector IV = {0, 1}m, denote by SK,IV = ks, the stream cipher which
generates the keystream ks under the key K and initialization vector IV . Since
the initialization vectors are generally assumed to known, thus let SK = ks.
We now aim to apply Grover’s algorithm to find the unknown secret key. The
Boolean function f for the Grover’s oracle Uf , which takes the key K as input
is defined as

f(K) =

{
1 if SK = ks

0 otherwise

Key Search for a Block Cipher. Let C be a block cipher with block length n;
for any key K = {0, 1}k denote by CK(m) = c, the encryption of a plaintext m
under the key K. If we are given r plaintext-ciphertext pairs (mi, ci), we aim to
apply Grover’s algorithm to find the unknown secret key. The Boolean function
f for the Grover’s oracle Uf , which takes the key K as input is defined as

f(K) =

{
1 if CK(mi) = ci, 0 ≤ i ≤ (r − 1)
0 otherwise

2.2 Uniqueness of the Recovered Key

It is possible that there exists other keys which generates the same keystream
(or in case of TinyJambu (block cipher) encrypt the known plaintexts to the
same ciphertexts). So, to increase the success probability of the attack we need
to extend the search for more keystream (or plaintext-ciphertext pairs). Interest-
ingly, the corresponding increase in the circuit size is different for block ciphers
and stream ciphers.

Let us first discuss the scenario for a block cipher. We assume a block cipher
that has been initialized with a key K of size k and has a block size of k bits
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to be a pseudo random permutation (PRP) CK : {0, 1}k → {0, 1}k that takes a
message M of size k bit and outputs a cipher text of the same size. Then if we
generate t-blocks of cipher-text corresponding to a message, then we have the
following collision probability

Pr
K �=K′

(
CK(M1)|| · · · ||CK(Mt) = CK′(M1)|| · · · ||CK′(Mt)

)
≈ (2k − 1)

t∏
i=1

1

2k − i − 1
.

Even if we set t = 2 then we have a negligibly low probability of collision
O (

2−k
)
. However, note that in this case we need to evaluate the cipher to

generate 2k bits of cipher text in each application of the Grover oracle which
adds to the circuit size.

In this regard, an adversary can get an advantage in terms of the circuit size
when applying Grover’s oracle for stream ciphers. Suppose a stream cipher has a
key of size k bits. Then we can design the following function Ĉρ(K) : {0, 1}k →
{0, 1}ρ which takes in the key K and outputs ρ bits of keystream. Then we can
safely assume

Pr
K �=K′

(Ĉρ(K) = Ĉρ(K ′)) ≈ 2k − 1
2ρ

.

Even if we set ρ = k + c for some constant c, the collision probability is approxi-
mately O (2−c). Then even for c = 10 we have a very low probability of collision
and thus less false positives. However, in this case there is an advantage in terms
of the circuit size as we can design the Grover oracle to only generate k + c bits
of keystream each round.

2.3 Grover’s Oracle

As explained above to implement the Grover’s search algorithm we need to
design an oracle that generates ρ-bit keystreams under the same key and then
computes a Boolean value which determines if the resulting keystream is equal to
the given available keystream. The target qubit will be flipped if the keystreams
match. This is called Grover’s oracle. The construction of oracle for the stream
ciphers and TinyJAMBU is slightly different and we discuss these constructions
in detail below.

We denote by ENC, the quantum circuit of the cipher and by ENC† the
uncomputation of the cipher circuit, which is constructed by performing the
quantum gates of the circuit ENC in reverse to restore the initial input state.

Grover’s Oracle for the Stream Ciphers. To construct the oracle for the
stream ciphers we construct the circuit for the cipher which generates ρ = k +
c = (k + 10)-bit long keystream and then this keystream is matched with the
given keystream. The target qubit will be flipped if the keystreams match. The
construction of such an oracle is given in Fig. 1.
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Fig. 1. Grover oracle for stream ciphers. The (=) operator compares the output of the
ENC with the given keystreams and flips the target qubit if they are equal.

Grover’s Oracle for TinyJAMBU. Consider that we are given two plaintext-
ciphertext pairs (M1, C1), (M2, C2)). The oracle is then constructed so that the
given plaintexts are encrypted under the same key and then computes a Boolean
value which determines if all the resulting ciphertexts are equal to the given avail-
able ciphertexts. This can be done by running two encryption circuits in parallel
and then the resultant ciphertexts are compared with the given ciphertexts. The
target qubit will be flipped if the ciphertexts match. In Fig. 2, the construction
of such an oracle is described.

Fig. 2. Grover oracle using two blocks for TinyJAMBU.

2.4 Circuit Design and Resource Estimation

The circuits described in this work operates on qubits and are composed of
commonly used universal fault-tolerant gate set Clifford (NOT and CNOT ) +
T gates. These gates allow us to fully simulate the circuits classically. In this
work the only source of T gates are the Toffoli gates used in the construction of
the circuits.

The NOT gate, also known as flip gate, maps |0〉 → |1〉 or |1〉 → |0〉. The
CNOT (or controlled-X) gate can be described as the gate that maps |a, b〉 →
|a, a ⊕ b〉. The Toffoli gate can be described as the gate which maps |a, b, c〉 →
|a, b, c ⊕ ab〉.

Resource Estimation. It is well known that if a circuit can be implemented
in the classical domain with a polynomial number of gates with respect to its
inputs, then the circuit can be implemented in the quantum domain also with a
polynomial number of quantum gates In the present initiative, we consider the
ciphers whose classical hardware is feasible and try to estimate the resources
for quantum hardware. We construct reversible circuits for implementation of
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all the ciphers. We then provide the resource estimates for these construction in
terms of number of qubits, T gates, CNOT gates, NOT gates, and depth of the
circuit in Table 1.

We have assumed full parallelism while constructing the circuits, i.e., any
number of gates can be applied in the circuit simultaneously if these gates act on
disjoint sets of qubits. We decompose the Toffoli gates into the set of Clifford+T
gates using the decomposition provided by [3] that requires 7 T gates and 8
Clifford gates, a T depth of 4 and total depth 8.

We estimate the cost of constructing the Grover’s oracle in terms of number
of Clifford and T gates, T depth and the full depth (D). The total number of
Clifford gates is computed as

1. for the stream ciphers

2 × Clifford gates in (ENC) (1)

2. for TinyJAMBU

2 × k + 4 × Clifford gates in (ENC) (2)

Now in case of the stream ciphers, the grover oracle consists of comparing
ρ = k + c bits of keystream, which can be done using ρ-controlled CNOT gates.

For a block cipher, the grover oracle consists of comparing the k-bit outputs
of the r cipher instances with the given k-bit ciphertexts, where k is the key-
size,. This can be done using (k × r)-controlled CNOT gates (we neglect some
NOT gates which depend on the given ciphertexts). Following [30], we estimate
the number of T gates required to implement a n-fold controlled CNOT gates
as (32 × n − 84). Since we have assumed r = 2, so the total number of T gates
is computed as

1. for the stream ciphers

(32 × (k + 10) − 84) + 2 × T gates in (ENC) (3)

2. for TinyJAMBU

(32 × (k × 2) − 84) + 4 × T gates in (ENC) (4)

To estimate the full depth and the T -depth we only consider the depths of
the cipher instances. Since we have assumed full parallelism, it can be seen in
Fig. 2 that both cipher instances can be implemented simultaneously as they use
disjoint sets of qubits, and so for both oracles we have

the depth of the oracle = 2 × (Depth of ENC) (5)

These estimates are presented in Table 2.
The cost of running the complete Grover’s key search algorithm can be com-

puted by iterating the oracle π
4 2

k
2 times, where k is the key size and is presented

in Table 3.
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2.5 Resource Estimation Under a Depth Limit

In this work we are focused on estimating the cost of implementing Grover’s
search algorithm under NIST’s MAXDEPTH. Grover’s full algorithm parallelizes
very badly. So, we use the inner parallelization as described by Kim, Han, and
Jeong [19]. In inner parallelization the search space is divided into disjoint subsets
and each subset is assigned to a different machine. Since, each machine’s search
space is smaller, the required number of iterations is smaller.

The original search space has size 2k, where k is the key size. Let us assume
that we use a Grover’s oracle O such that a single Grover’s iteration costs Og

gates and has a depth Od. Also, assume that M = 2m be the number of machines
that are used in parallel by dividing the search space into M disjoint sets.

Since the search space is now reduced to 2k−m for each machine, hence we can
expect that one of the machines will recover the correct key after approximately
ım = π

4 2
k−m

2 iterations, with a very high success probability. Then, the total
depth of ım Grover iterations will be

Dm = ım × Od ≈ π

4
2

k−m
2 Od (6)

Each of the M machines will be using ım × Og gates for ım iterations and thus
the total gate cost over all M machines will be

Gm = 2mım × Og ≈ π

4
2

k+m
2 Og (7)

Now let us fix the depth limit to MAXDEPTH. Then from Eq. 6, we will have

MAXDEPTH =
π

4
2

k−m
2 Od

=⇒ M = 2m =
(π

4

)2

2k O2
d

MAXDEPTH2

(8)

Using this value in Eq. 7, we obtain the total gate cost under the MAXDEPTH
restriction as

GMD =
(π

4

)2

2k OgOd

MAXDEPTH
(9)

We will use these values to compute the cost of implementing Grover’s search
on the ciphers under NISTs MAXDEPTH limit in Table 4.

3 Estimating Resources for Applying Grover
on Grain-128-AEAD, TinyJAMBU, LIZARD,
and Grain-V1

In this section, we provide detailed description of how to construct a reversible
quantum circuit of ciphers Grain-128-AEAD, TinyJAMBU, LIZARD, and
Grain-v1. For detailed description of the ciphers, readers are referred to [9–
11,29].
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3.1 Quantum Circuit for Grain-128-AEAD

In Grain-128-AEAD, the state is of size 256-bits and the length of key is 128, so
we require 256 qubits for the state and 128 qubits for the key. At any time t, the
update function of LFSR denoted by f(St), the update function of the NFSR,
g(Bt), and the pre-output function y(t) can be implemented as described below.

Algorithm 1: Quantum Circuit for Grain-128-AEAD
/* QUANTUM CIRCUIT FOR f(St) */

1 for i ← {7, 38, 70, 81, 96} do
2 CNOT (s(i+t)%128, st%128)

/* QUANTUM CIRCUIT FOR g(Bt) */
3 CNOT (s(t)%128, bt%128)

4 for i ← {26, 56, 91, 96} do
5 CNOT (b(i+t)%128, bt%128)

6 l = [3, 11, 17, 27, 40, 61, 68], m = [67, 13, 18, 59, 48, 65, 84]
7 for i ← {0, 6} do
8 Toffoli (b(l[i]+t)%128, b(m[i]+t)%128, bt%128)

9 toffoli3(b(22+t)%128, b(24+t)%128, b(25+t)%128, ge00, ge01, bt%128)

10 toffoli3(b(70+t)%128, b(78+t)%128, b(82+t)%128, ge10, ge11, bt%128)

11 toffoli4(b(82+t)%128, b(92+t)%128, b(93+t)%128, b(95+t)%128, ge20, ge21, ge22, bt%128)

/* QUANTUM CIRCUIT FOR y(t) */
12 l = [12, 13, 95, 60], m = [8, 20, 42, 79]
13 for i ← 0, 3 do
14 Toffoli (b(l[i]+t)%128, s(m[i]+t)%128, yt)

15 toffoli3(b(12+t)%128, b(95+t)%128, s(94+t)%128, ye0, ye1, yt)

16 CNOT (s(93+t)%128, yt)

17 for i = 2, 15, 36, 45, 64, 73, 89 do
18 CNOT (b(i+t)%128, yt)

The functions toffoli3 and toffoli4 used above are compute-copy-uncompute
method for implementing Toffoli gates on 3 and 4 qubits respectively. These
functions are described in Fig. 3a and Fig. 3b respectively.

Fig. 3. The circuit for (a) toffoli3. (b) toffoli4

Now, using the quantum circuits for f(St),f(Bt), and y(t) we can construct the
circuit for full Grain-128-AEAD. The complete Grain-128-AEAD can be divided
into two phases: the initialization phase and the key generation phase. In the
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keystream generation phase we generate ρ keystream bits for which we require to
clock the cipher 2×ρ times. The keystream is stored in the qubits yt, (0 ≤ t ≤ ρ).
The circuit is constructed as described in Algorithm 2.

Algorithm 2: Quantum circuit of initialization and key generation phase
/* INITIALIZATION */

1 for i ← {0, 127} do
2 CNOT (ki, bi)

3 for i ← {0, 95} do
4 if ivi ← 1 then
5 NOT (si)

6 for i ← {96, 127} do
7 NOT (si)

8 for j ← {0, 1} do
9 for i ← {0, 127} do

10 Implement y(t) replacing yt by s(0+t)%128

11 Implement g(Bt)
12 Implement f(St)

13 for i ← {0, 127} do
14 Implement g(Bt)
15 CNOT (ki, si)
16 Implement f(St)

/* KEY GENERATION */
17 for j ← {0, 1} do
18 for i ← {0, ρ} do
19 Implement y(t)
20 Implement g(Bt)
21 Implement f(St)

3.2 Circuit for TinyJAMBU

In TinyJAMBU the state is updated using the permutation Pn as described
below. The permutation Pn consists of n rounds and in the ith round the state
is updated using the following 128-bit nonlinear feedback shift register:

StateUpdate(S,K, i) :
feedback = s0 ⊕ s47 ⊕ (∼ (s70&s85)) ⊕ s91 ⊕ ki mod k

for j from 0 to 126: sj = sj+1

s127 = feedback
end

where k = {128, 192, 256} is the key length.
This permutation Pn can be implemented as a quantum circuit as described

in Algorithm 3.
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Algorithm 3: Quantum circuit of permutation Pn

/* PERMUTATION Pn */
1 for j ← {0, ( n

128 )} do
2 for i ← {0, 127} do
3 CNOT (k((128∗j+i)%klen), s(0+i)%128)

4 CNOT (s(47+i)%128, s(0+i)%128)

5 Toffoli (s(70+i)%128, s(85+i)%128, anc0)

6 CNOT (anc0, s(0+i)%128)

7 Toffoli (s(70+i)%128, s(85+i)%128, anc0)

8 CNOT (s(91+i)%128, s(0+i)%128)

Now we show the implementation of the three steps (for the cipher with key size
= 128, implementations for other key sizes is similar). We need 128 qubits for
the state all initialized to 0, 128 qubits for the keys and 1 ancilla initialized to 1
required for the implementation of Pn. For our work we assume associated data
of length 96-bits.

Algorithm 4: Quantum circuit TinyJAMBU
/* KEY AND NONCE SETUP */

1 Update the state using P1024
2 for i ← 0, 2 do
3 NOT (s36)
4 Update the state using P640
5 for j ← 0, 31 do
6 if nonce(32i+j) ← 1 then
7 NOT (sj+96)

/* PROCCESSING ASSOCIATED DATA */
8 for i ← 0, 2 do
9 NOT (s36), NOT (s37)

10 Update the state using P640
11 for j ← 0, 31 do
12 if ad(32i+j) ← 1 then
13 NOT (sj+96)

/* ENCRYPTION */
14 for j ← 0, 3 do
15 NOT (s36), NOT (s38)
16 Update the state using P1024
17 for i ← 0, 31 do
18 CNOT (pt32∗j+i, s96+i)

19 for i ← 0, 31 do
20 CNOT (s64+i, pt32∗j+i)

3.3 Quantum Circuit for LIZARD

The state size of LIZARD is 121, so we need 121 qubits for the state, 31 for
NFSR1 (denoted as n1) and 90 for NFSR2 (denoted as n2). The key size is 120



190 R. Anand et al.

and the key is used twice in the state initialization phase so we need 120 qubits
for keys.

We first describe the implementation of the feedback functions of the two
ciphers and the output function in Algorithm 5. The gates toffoli3, toffoli4,
toffoli5, toffoli6 and toffoli7 can be constructed following the circuits described
in Fig. 3 and anc[i], 0 ≤ i ≤ 9 are ancillae.

Algorithm 5: Quantum circuit for output function at time t

/* OUTPUT FUNCTION */
1 for i = 7, 11, 30, 40, 45, 54, 71, 5 do
2 CNOT ((n2[(i + t)%90], y[t])

3 l = [4, 9, 18, 44, 8]
4 m = [21, 52, 37, 76, 82]
5 for i ← 0, 4 do
6 Toffoli (n2[(l[i] + t)%90], n2[(m[i] + t)%90], y[t])

7 toffoli3(n2[(34 + t)%90], n2[(67 + t)%90], n2[(73 + t)%90], y[t])
8 toffoli4(n2[(2 + t)%90], n2[(28 + t)%90], n2[(41 + t)%90],
9 n2[(65 + t)%90], y[t])

10 toffoli5(n2[(13 + t)%90], n2[(29 + t)%90], n2[(50 + t)%90],
11 n2[(64 + t)%90], n2[(75 + t)%90], y[t])
12 toffoli6(n2[(6 + t)%90], n2[(14 + t)%90], n2[(26 + t)%90],
13 n2[(32 + t)%90],
14 n2[(47 + t)%90], n2[(61 + t)%90], y[t])
15 toffoli7(n2[(1 + t)%90], n2[(19 + t)%90], n2[(27 + t)%90],
16 n2[(43 + t)%90], n2[(57 + t)%90], n2[(66 + t)%90], n2[(78 + t)%90], y[t])
17 CNOT ((n1[(23 + t)%31], y[t])
18 Toffoli (n1[(3 + t)%31], n1[(16 + t)%31], y[t])
19 toffoli3(n1[(9 + t)%31], n1[(13 + t)%31], n1[(48 + t)%31], y[t])
20 toffoli4(n1[(1 + t)%31], n1[(24 + t)%31], n2[(38 + t)%90], n2[(63 + t)%90], y[t])

Using the procedures defined in Algorithm 5 and 6 the circuit for full LIZARD
can be constructed. as described below:

– Circuit for Phase 1: The state is initialized by the values of key and IV by
using CNOT gates to copy the values of key to the state and then adequate
number of NOT gates to initialize the state with IV bits. So in this step we
require 120 CNOT gates and a maximum of 66 NOT gates, considering that
IV is all 1′s.

– Circuit for Phase 2: This phase mixes the state in the same way as Grain
family of ciphers. This phase requires 7808 CNOT gates, 12032 Toffoli gates
and 512 NOT gates.

– Circuit for Phase 3: In this phase the key is XORed into the state which can
be implemented using 120 CNOT gates and 1 NOT gate.

– Circuit for Phase 4: This final phase is similar to Phase 2 with the exception
that the feedback is discarded. This phase requires 7552 CNOT gates, 12032
Toffoli gates and 512 NOT gates.

– Circuit for key generation: This step is same as Phase 4, where the keystream
are stored instead of discarding it.
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Algorithm 6: Quantum circuit for feedback functions at time t

/* FEEDBACK FUNCTION OF NFSR1 */
1 for i = 2, 5, 6, 15, 17, 18, 20, 25 do
2 CNOT (n1[(i + t)%31], n1[(t)%31])

3 Toffoli (n1[(14 + t)%31], n1[(19 + t)%31], anc[0])
4 Toffoli (n1[(17 + t)%31], n1[(21 + t)%31], anc[0])
5 CNOT (anc[0], n1[(0 + t)%31])
6 Toffoli (n1[(17 + t)%31], n1[(21 + t)%31], anc[0])
7 Toffoli (n1[(14 + t)%31], n1[(19 + t)%31], anc[0])
8 CNOT (n1[(21 + t)%31], anc[1])
9 NOT (anc[1])

10 Toffoli (n1[(20 + t)%31], n1[(22 + t)%31], anc[1])
11 CNOT (anc[1], n1[(0 + t)%31])
12 Toffoli (n1[(20 + t)%31], n1[(22 + t)%31], anc[1])
13 NOT (anc[1])
14 l = [21, 4, 19], m = [1, 3, 3]
15 for i ← 0, 2 do
16 CNOT (n1[(l[i] + t)%31], anc[m[i]])

17 CNOT (anc[3], anc[2])
18 Toffoli (n1[(12 + t)%31], n1[(22 + t)%31], anc[2])
19 CNOT (anc[2], n1[(0 + t)%31])
20 Toffoli (n1[(12 + t)%31], n1[(22 + t)%31], anc[2])
21 CNOT (anc[3], anc[2])
22 CNOT (n1[(7 + t)%31], anc[4])
23 CNOT (n1[(22 + t)%31], anc[4])
24 Toffoli (anc[3], anc[4], anc[5])
25 NOT (anc[5])
26 Toffoli (n1[(12 + t)%31], n1[(21 + t)%31], anc[5])
27 CNOT (anc[5], n1[(0 + t)%31])
28 Toffoli (n1[(12 + t)%31], n1[(21 + t)%31], anc[5])
29 NOT (anc[5])
30 Toffoli (anc[3], anc[4], anc[5])
31 l = [22, 7, 19, 4, 18, 20], m = [4, 4, 3, 3, 6, 6]
32 for i ← 0, 5 do
33 CNOT (n1[(l[i] + t)%31], anc[m[i]])

34 Toffoli (n1[(8 + t)%31], anc[6], anc[7])
35 CNOT (anc[7], n1[(0 + t)%31])
36 CNOT (n1[(7 + t)%31], anc[8])
37 CNOT (n1[(22 + t)%31], anc[8])
38 Toffoli (n1[(21 + t)%31], anc[8], anc[9])
39 CNOT (n1[(22 + t)%31], anc[9])
40 Toffoli (anc[9], anc[7], n1[(0 + t)%31])
41 CNOT (n1[(22 + t)%31], anc[9])
42 Toffoli (n1[(21 + t)%31], anc[8], anc[9])
43 CNOT (n1[(22 + t)%31], anc[8])
44 CNOT (n1[(7 + t)%31], anc[8])
45 Toffoli (n1[(8 + t)%31], anc[6], anc[7])
46 CNOT (n1[(20 + t)%31], anc[6])
47 CNOT (n1[(18 + t)%31], anc[6])

/* FEEDBACK FUNCTION OF NFSR2 */
48 for i = 24, 49, 79, 84 do
49 CNOT ((n2[(i + t)%90], n2[(t)%90])

50 l = [3, 10, 15, 25, 35, 55, 60] m = [59, 12, 16, 53, 42, 58, 74]
51 for i ← 0, 6 do
52 Toffoli ((n2[(l[i] + t)%90], n2[(m[i] + t)%90], n2[(t)%90])

53 toffoli3(n2[(20 + t)%90], n2[(22 + t)%90], n2[(23 + t)%90], n2[(t)%90])
54 toffoli3(n2[(62 + t)%90], n2[(68 + t)%90], n2[(78 + t)%90], n2[(t)%90])
55 toffoli4(n2[(77 + t)%90], n2[(80 + t)%90], n2[(81 + t)%90], n2[(83 + t)%90], n2[(t)%90])
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3.4 Circuit to Implement Grain-V1

In Grain-v1, the state is of size 160-bits and the length of key is 80, so we require
160 qubits for the state (80 for LFSR denoted by s and 80 for NFSR denoted by
b) and 80 qubits for the key. As a keystream of length 128 is sufficient to obtain
a unique key, so we need 128 qubits for the keystream. Using the Algorithms 7
the complete circuit for Grain-v1 can be constructed following the process used
while constructing Grain-128-AEAD.

Algorithm 7: Quantum circuit for output and feedback functions at any
time t

/* OUTPUT FUNCTION */
1 Toffoli s[(46 + t)%80], b[(63 + t)%80], ye[0])
2 Toffoli s[(3 + t)%80], s[(46 + t)%80], ye[1])
3 for i = 25, 64 do
4 CNOT (s[i%80], ye[2])

5 for i = 3, 46, 64 do
6 CNOT (s[i%80], ye[3])

7 Toffoli ye[2], ye[0], s[(t)%80]), Toffoli ye[2], ye[1], s[(t)%80])
8 Toffoli ye[3], s[(64 + t)%80], s[(t)%80])
9 NOT (ye[1]) , CNOT (ye[1], z[t])

10 CNOT (b[(63 + t)%80], z[t]), NOT (ye[1])
11 for i = 64, 46, 3 do
12 CNOT (s[i%80], ye[3])

13 for i = 64, 25 do
14 CNOT (s[i%80], ye[2])

15 Toffoli s[(3 + t)%80], s[(46 + t)%80], ye[1])
16 Toffoli s[(46 + t)%80], b[(63 + t)%80], ye[0])
17 for i = 1, 2, 4, 31, 43, 56 do
18 CNOT (b[i + t], z[t])

/* UPDATE FUNCTION OF LFSR */
19 for i = 13, 23, 38, 51, 62 do
20 Apply CNOT (s(i+t)%80, st%80)

/* UPDATE FUNCTION OF NFSR */
21 CNOT (s(t)%80, bt%80)

22 for i = 9, 14, 21, 28, 33, 37, 45, 52, 60, 63 do
23 CNOT (b(i+t)%80, bt%80)

24 l = [63, 37, 15], m = [60, 33, 9]
25 for i ← 0, 2 do
26 Toffoli b[(l[i] + t)%80], b[(m[i] + t)%80], b[(t)%80])

27 toffoli3(b[(60 + t)%80], b[(52 + t)%80], b[(45 + t)%80], ge0[0], ge0[1], b[(t)%80])
28 toffoli3(b[(33 + t)%80], b[(28 + t)%80], b[(21 + t)%80], ge1[0], ge1[1], b[(t)%80])
29 toffoli4(b[(63 + t)%80], b[(45 + t)%80],

b[(28 + t)%80], b[(9 + t)%80], ge2[0], ge2[1], ge2[2], b[(t)%80])
30 toffoli4(b[(60 + t)%80], b[(52 + t)%80],

b[(37 + t)%80], b[(33 + t)%80], ge2[0], ge2[1], ge2[2], b[(t)%80])
31 toffoli4(b[(63 + t)%80], b[(60 + t)%80],

b[(21 + t)%80], b[(15 + t)%80], ge2[0], ge2[1], ge2[2], b[(t)%80])
32 toffoli5(b[(63+ t)%80], b[(60+ t)%80], b[(52+ t)%80], b[(45+ t)%80], b[(37+ t)%80], b[(t)%80])
33 toffoli5(b[(33 + t)%80], b[(28 + t)%80], b[(21 + t)%80], b[(15 + t)%80], b[(9 + t)%80], b[(t)%80])
34 toffoli6(b[(52 + t)%80], b[(45 + t)%80],

b[(37 + t)%80], b[(33 + t)%80], b[(28 + t)%80], b[(21 + t)%80], b[(t)%80])
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3.5 Resource Estimation

Cost of Implementing the Ciphers. We estimate the cost of the stream
ciphers when the cipher produces ρ = k + c bits keystream, where k is the key
size and c = 10, and the cost of implementing TinyJAMBU when it encrypts 128
bits of plaintext with 96 bits of nonce and associated data each. In our estimates
we assume that the nonce and the associated data is known. Table 1 gives the
cost estimates of implementing the ciphers.

Table 1. Cost of implementing the ciphers

Cipher Clifford gates T gates T -depth Full depth qubits

Grain-128-AEAD 158679 126812 72464 75951 531

TinyJAMBU (k = 128) 148817 103936 59392 126209 385

TinyJAMBU (k = 192) 161617 112896 64512 137089 449

TinyJAMBU (k = 256) 174417 121856 69632 147969 513

LIZARD (k = 120/80) 314897 253988 145136 210993 392

Grain-v1 (k = 80) 135410 108500 62000 74886 346

Cost of Grover Oracle. Using Eqs. 1, 2, 3, 4, 5 the cost estimates of Grover’s
oracle for all ciphers are presented in Table 2. Og is the sum of Clifford gates
and T gates.

Table 2. Cost of Grover oracle.

Cipher Clifford gates T gates Gate Cost(Og) T -depth Full depth(Od) qubits

Grain-128-AEAD 317358 257956 575314 144928 151902 532

TinyJAMBU (k = 128) 595524 423852 1019376 118784 252418 771

TinyJAMBU (k = 192) 646852 463788 1110640 129024 274178 899

TinyJAMBU (k = 256) 698180 503724 1201904 139264 295938 1027

LIZARD (k = 120/80) 629794 512052 1141846 290272 421986 393

Grain-v1 (k = 80) 270820 219796 490616 124000 149772 347

Cost of Exhaustive Key Search. Using the estimates in Table 2 of the Grover
oracle for the various variants, we provide the cost estimates for the full exhaus-
tive key search Table 3. We consider π

4 2k/2 iterations of the Grover oracle, where
k is the key size. The gate cost G is the sum of the Clifford gates and T gates.
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Table 3. Cost estimates of Grover’s algorithm with π
4
2k/2 oracle iterations

Cipher Clifford gates T gates Gate Cost (G) T -depth Full depth (D) qubits

Grain-128-AEAD 1.902 · 281 1.546 · 281 1.724 · 282 1.737 · 280 1.820 · 280 523

TinyJAMBU (k = 128) 1.784 · 282 1.270 · 282 1.527 · 283 1.423 · 280 1.513 · 281 771

TinyJAMBU ( k = 192) 1.938 · 2114 1.390 · 2114 1.664 · 2115 1.546 · 2112 1.642 · 2113 889

TinyJAMBU (k = 256) 1.046 · 2147 1.509 · 2146 1.800 · 2147 1.669 · 2144 1.773 · 2145 1027

LIZARD (k = 120/80) 1.887 · 278 1.534 · 278 1.711 · 279 1.739 · 277 1.264 · 278 393

Grain-v1 (k = 80) 1.623 · 257 1.317 · 257 1.470 · 258 1.486 · 256 1.795 · 255 347

3.6 Cost of Grover Search Under NISTs MAXDEPTH Limit

In this work we have assumed that an adversary is bounded by a constraint on
the depth of the circuit that (s)he can use for Grover. NIST suggests a parameter
MAXDEPTH as such a bound and the plausible values range from 240 to 296.
From [25]:

1. In, Page 16, it is stated: “In particular, NIST will define a separate category
for each of the following security requirements (listed in order of increasing
strength): 1) Any attack that breaks the relevant security definition must
require computational resources comparable to or greater than those required
for key search on a block cipher with a 128-bit key (e.g. AES128).”

2. In Page 18, it is stated: “NIST provides the estimates for optimal key recovery
for AES128 as 2170/MAXDEPTH.”

In Table 4 we provide the gate counts for Grover’s search on both the ciphers
under the constraint of MAXDEPTH. These counts are computed using Eq. 9.

Table 4. Cost of Grover search on the ciphers under MAXDEPTH, the final column
provides the product of the gate counts in each cell by MAXDEPTH.

GMD for MAXDEPTH

k 240 264 296 GMD × MAXDEPTH

128 NIST[25] 2130 2106 274 2170

Grain-128-AEAD 1.569 · 2123 1.569 · 299 1.724 · 282∗
1.569 · 2163

TinyJAMBU 1.154 · 2125 1.154 · 2101 1.527 · 283∗
1.154 · 2165

AES[15] 1.07 · 2117 1.07 · 293 1.34 · 283∗ ≈ 2157

192 NIST[25] 2193 2169 2137 2233

TinyJAMBU 1.367 · 2189 1.367 · 2165 1.367 · 2133 1.367 · 2229

AES[15] 1.09 · 2181 1.09 · 2157 1.09 · 2126 ≈ 2221

256 NIST[25] 2258 2234 2202 2298

TinyJAMBU 1.596 · 2253 1.596 · 2229 1.596 · 2197 1.596 · 2293

AES[15] 1.39 · 2245 1.39 · 2221 1.39 · 2190 ≈ 2285

120/80 LIZARD 1.081 · 2118 1.081 · 294 1.711 · 279∗
1.081 · 2158

80 Grain-v1 1.319 · 275 1.470 · 258∗
1.470 · 258∗

1.319 · 2115
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Note that ∗ denotes a special case as the attack does not require any paralleliza-
tion and the approximation underestimates the cost.

Remark 1. The best known quantum implementation of AES results in a attack
with complexity 2157/MAXDEPTH [15], instead of 2170/MAXDEPTH as initially
estimated by NIST. The values of gate count by NIST was computed based on
the resources estimated by Grassl [7]. The resource estimate obtained in [7] has
been improved several times, the best being the one obtained in [15].

4 Experience over Different Quantum Simulators

To check the correctness of our computation of resource estimates we imple-
mented our circuits in IBMQ’s Qiskit as well as in Microsoft’s Q#. We observed
that the values of the gate count and the depth of the circuit were same in both
these implementations.

As an example we describe here the circuit of TinyJAMBU’s permutation
P1, i.e., the permutation Pn for n = 1 in IBMQ’s Qiskit as well as in Microsoft’s
Q# for independent verification by the readers.

1 #Importing the required classes and modules

2 from qiskit import QuantumCircuit , QuantumRegister , AER

3

4 def permut(qc,round):

5 for r in range(round):

6 for i in range (128):

7 qc.cx(k[((128*r+i)%klen)],q[(0+i)%128])

8 qc.cx(q[(47+i)%128],q[(0+i)%128])

9 qc.ccx(q[(70+i)%128],q[(85+i)%128], anc [0])

10 qc.cx(anc[0],q[(0+i)%128])

11 qc.ccx(q[(70+i)%128],q[(85+i)%128], anc [0])

12 qc.cx(q[(91+i)%128],q[(0+i)%128])

13

14 q = QuantumRegister (128) #128 qubits for state

15 k = QuantumRegister (128) #128 qubits for key

16 anc = QuantumRegister (1) # 1 ancilla needed to implement

NAND gate

17

18 qc = QuantumCircuit(q,k,anc)

19 rounds = 1

20 permut(qc ,rounds)

21

22 #Estimating resources

23 print (qc.count_ops ())

24 print (qc.width ())

25 print (qc.depth ())

Listing 1.1. Qiskit code for TinyJAMBU permutation P 1
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1 #Importing the required classes and modules

2 open Microsoft.Quantum.Math;

3 open Microsoft.Quantum.Intrinsic;

4 open Microsoft.Quantum.Canon;

5 open Microsoft.Quantum.Measurement;

6 open Microsoft.Quantum.Arrays;

7 open Microsoft.Quantum.Convert;

8 open Microsoft.Quantum.Diagnostics;

9

10 operation permutation(rounds:Int , qs : Qubit[], anc :

Qubit []) : Unit {

11 for(r in 0 .. rounds -1){

12 for(i in 0 .. 128-1){

13 CNOT(qs[47],qs[0]);

14 CCNOT(qs[70],qs[85],anc [0]);

15 CNOT(anc[0],qs[0]);

16 CCNOT(qs[70],qs[85],anc [0]);

17 CNOT(qs[91],qs[0]);

18 }

19 }

20 }

21

22 operation main() : Unit {

23 using ((qubit ,anc) = ( Qubit [128], Qubit [1])){

24 X (anc [0]);

25 let rounds = 1;

26 permutation(rounds ,qubit ,anc);

27 }

28 }

29

30 #Estimating resources

31 %estimate main

Listing 1.2. Q# code for TinyJAMBU permutation P 1

Implementing these two circuits, results in the same values of the gate counts
and circuit depth.

5 Conclusion

In this work we study quantum cryptanalysis of FSR based symmetric ciphers,
along with the FSR based block cipher TinyJAMBU. We construct compact
reversible quantum circuits for popular Feedback Shift Register (FSR) based
ciphers such as Grain-128-AEAD, TinyJAMBU, LIZARD, and Grain-v1. We
study the cost of implementing Grover’s key search algorithm on these ciphers
under the NISTs MAXDEPTH constraint and find that all these ciphers fail to
satisfy the security constraints. We observe that the increase in circuit size to
reduce chances of getting a false positive is lesser for stream ciphers compared
to block ciphers, although the difference is that of a constant factor ≈ 2.
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Abstract. This paper discusses how to analyze the probing security
of masked symmetric primitives against the leakage effects from Faust
et al. in CHES 2018; glitches, transitions, and coupling effects. This is
illustrated on several architectures of ciphers like PRESENT, AES, and
ASCON where we transform glitch-extended probing secure maskings
into transition and/or coupling secure ones. The analysis uses linear
cryptanalytic methods and the diffusion layers of the cipher to efficiently
protect against the advanced leakage effects.

Keywords: Hardware · Linear cryptanalysis · Masking · Robust
probing security · Side-channel analysis

1 Introduction

From the moment a symmetric primitive is implemented on a physical device, it
becomes susceptible to side-channel attacks. The most well-known attack in this
line is differential power analysis where the power consumption of the device is
correlated to its processed secrets [29]. Masking methods form a popular coun-
termeasure against these attacks. Here each secret variable is split into multiple
random shares. A masking method allows for algorithmic protection aiming to
catch vulnerabilities before production. This algorithmic protection is based on
security models trying to capture realistic attacks. The most popular model is
the probing model originally proposed by Ishai et al. [27]. In the dth-order and
single-shot variant of this model, it is stated that any set of d intermediate values
in the computation of a symmetric key primitive need to be independent of any
secret value.

While the probing model is a good step towards finding reliable algorithmic
countermeasures against side-channel attacks, it does not capture all realistic
leakage effects in hardware. Faust et al. [22] formalizes some realistic effects which
are not captured in the probing model and effectively extends the security model.
The three effects discussed are glitches, transitions, and coupling effects. The
extension of the formal probing model allows designers to find effective maskings
to protect hardware implementations even against more advanced leakages.
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We currently succeed in protecting hardware maskings against glitches
thanks to the non-completeness property introduced by Nikova et al. [33]. How-
ever, it still remains an open problem how to efficiently protect against transi-
tion or coupling leakage and, more importantly, against a combination of leakage
sources. While the work from Faust et al. provides a model how to capture these
effects, it remains an open problem how to analyze the security of a masking in
this new model.

In Asiacrypt 2020, Beyne et al. [5] introduced a security analysis based on
linear cryptanalysis. The work shows that by analyzing linear trails through
the masking, where the probed values form the start and end of the trail, one
can show the security of the design. This analysis makes it particularly easy
to analyze leakage on a courser granularity where, for example, the adversary
gets information from different rounds of a cipher. As a result, the security
analysis is particularly useful for the robust probing model where the adversary
will get non-complete information from multiple cells in the computation of the
symmetric primitive. In this work, we investigate the application of the theory
from Beyne et al. to analyze the robust probing security of a masking.

Contributions. This paper introduces an analysis technique to assess the tran-
sition and coupling-extended probing security defined by Faust et al. [22]. The
analysis is based on the work by Beyne et al. [5] and extends it for the advanced
leakage effects. In essence the method transforms a glitch-extended probing
secure masking to a transition and coupling secure one as follows:

– Take a glitch-extended probing secure implementation of a symmetric primi-
tive. For example, using threshold implementations [33] or a masking created
using glitch-extended SNI or PINI secure gates [9,22].

– Use the work by Faust et al. [22] and analyze the architecture of the masking
to determine what an adversary can view. For example, via memory recom-
binations an adversary can view the output of two different masked S-boxes.

– Use the work by Beyne et al. [5] and determine whether there are trails
between the observed values. In case zero-correlation approximations are
found between the probed values, the countermeasure is deemed secure.

In this work we go over the theoretical analysis of several symmetric primi-
tives and over various architectures a designer can use to implement the prim-
itive. The primitives PRESENT, AES, and ASCON are taken as case studies.
As similar primitives would have similar security arguments, these case studies
represent a large class of primitives. The analysis is made as general as possi-
ble by considering black box masked S-boxes. Meaning that our analysis applies
to any masking of the considered primitives as long as that masking is glitch-
extended probing secure. For example, one can apply the analysis to the state
of the art first-order masked architecture of the AES to make it secure against
transition-extended probes using additional randomness.

We explicitly use the diffusion properties of the symmetric primitive to mini-
mize the cost of protecting against transition or coupling leakage. We show that
one typically requires only a total few random bits to protect a masking against
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these effects. This should be compared to the current state of the art where
there is an area and randomness overhead per shared multiplication like the
work by Dhooghe and Nikova [19] and by Cassiers and Standaert [10, Table 2].
In particular, the work by Cassiers and Standaert [10, Table 2] requires several
additional thousands of bits of randomness to secure a first-order glitch-resistant
PRESENT against transition leakage. Instead, our analysis shows their glitch-
resistant masking (for any of their proposed architectures) can be made secure
against transition leakage using at most a single additional random bit.

2 Preliminaries

This work uses the tools of linear cryptanalysis to analyze the security of mask-
ing implementations against probing adversaries which are extended to view
advanced leakage such as glitches, transitions, and couplings. In this section,
we recall the basics of hardware, the probing model, threshold implementations,
and linear cryptanalysis over masked variables.

2.1 The Physical World

This section recalls the basics of hardware and side-channel attacks.

Synchronous Circuits. A synchronous circuit consists of combinatorial gates
(AND, XOR, etc.) and sequential logic (memory, registers). When the circuit
is powered on, all registers, gates, and wires are powered too at which point
they all carry a digital value. There is a clock synchronizing the operations of
different circuit elements. A clock cycle is the time between two clock ticks. Dur-
ing each clock cycle the combinatorial logic is re-evaluated and results are stored
in the registers.

Registers. A register (or memory cell) has one input and one output and its
functionality is controlled by the clock. Registers release a signal by opening
its “out-line” while the “input-line” is closed (only one is open at a time). The
register out-line stays open until the signal in the logic becomes stable, after that
it stores the newly computed value - hence the register closes the output-line and
opens the input-line.

Logical Gates. Logical gates perform simple Boolean operations. They have sev-
eral wires as input and a single wire as output. Each gate can have a different
time to propagate a signal from its inputs to its output and each gate can have a
different power consumption. A change of its inputs causes re-evaluation of the
gate and hence may change the output value.

2.2 The Bounded-Query Probing Model

This section recalls the bounded-query probing model, its expansion considering
the effect of glitches, its security analysis, and a note on key schedules. Later
on, the probing model is further expanded to capture transition and coupling
effects.
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Threshold Probing. A dth-order probing adversary A, as first proposed by Ishai
et al. [27], can view up to d gates or wires in a circuit per query. This circuit
encodes an operation, such as a cipher call, and consists of gates, such as AND
or XOR gates, and wires. The adversary A is computationally unbounded, and
must specify the location of the probes before querying the circuit. However, the
adversary can change the location of the probes over multiple circuit queries.
The adversary’s interaction with the circuit is mediated through encoder and
decoder algorithms, neither of which can be probed.

In the bounded query model, the security of a circuit C with input k against
a dth-order probing adversary is quantified by means of the left-or-right security
game. The challenger picks a random bit b and provides an oracle Ob, to which
adversary A is given query access. The adversary queries the oracle by choosing
up to d wires to probe – we denote this set of probe positions by P – and
sends it to the oracle along with chosen inputs k0 and k1. The oracle responds
with the probed wire values of C(kb). After a total of q queries, the adversary
responds to the challenger with a guess for b. For b ∈ {0, 1}, denote the result of
the adversary after interacting with the oracle Ob using q queries by AOb

. The
left-or-right advantage of the adversary A is then as defined as

Adv-thr(A) = | Pr[AO0
= 1] − Pr[AO1

= 1] | .

Modeling Glitches. Let us consider “basic” combinatorial logic, namely the logic
which connects two layers of registers. When a cycle starts, the output signals
of the registers are inputs for the basic logic and these signals will start prop-
agating through the wires and the gates until they reach the output registers.
Gate evaluation may happen several times until the signals (and hence the gate)
become stable. This can be due to many reasons, we list three of them: a) the
wire signals propagate with different speed; b) the wires have different length;
and c) each gate has different propagation time. We will refer to these value
changes on the wires and gates as glitches.

In a cycle there are two main phases. The first phase is one in which the
wires and gates do not have a stable value. This phase is followed by one in
which all values are stable. The power consumption at a time sample is the sum
of the power consumption of the wires, gates, and registers belonging to this
simple logic. For CMOS technologies, the power consumption during the first
phase is higher and more apt to change because of glitches compared to the
second phase. We stress that glitches occur in the logic between two memory
gates and are stopped by registers. In other words, glitches do not propagate
through memory gates.

Glitches can result in significant leakage that is not accounted for by the
standard probing model, see for example the attacks of Mangard et al. on several
masked AES implementations [31]. Consequently, it is necessary to extend the
capabilities of threshold probing adversaries in order to capture the physical
effect of glitches on a hardware platform. Whereas one of the adversary’s probes
normally results in the value of a single wire, a glitch-extended probe allows
obtaining the values of all wires in a bundle. This extension of the probing
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model has been discussed by several authors, here we give the definition from
Faust et al. [22] who describes it as follows:

“Specific Model for Glitches. For any ε-input circuit gadget G, combinatorial
recombinations (aka glitches) can be modeled with specifically ε-extended probes
so that probing any output of the function allows the adversary to observe all
its ε inputs”.

Security Analysis. The main theoretical result of [5] is that the bounded-query
probing security of a masked cipher can be related to its linear cryptanalysis.
The first step towards this result is provided by Theorem 1 below, which relates
the security of the masked cipher to the Fourier transform of the probability dis-
tribution of wire values obtained by probing. The link with linear cryptanalysis
will be developed in detail in Sect. 2.4.

The Fourier transform of a function V → C, where V is a subspace of Fn
2 ,

can be defined as in Definition 1 below. For the purposes of this section, only
probability mass functions on F

n
2 need be considered. Despite this, Definition 1

considers more general functions on an arbitrary subspace V ⊆ F
n
2 . Since any

vector space over F2 is isomorphic to F
n
2 for some n, this generalization is mostly

a matter of notation. Nevertheless, this extended notation will be convenient in
Sect. 2.4.

Definition 1 ([5], §2.1). Let V ⊆ F
n
2 be a vector space and f : V → C a

complex-valued function on V . The Fourier transformation of f is a function
̂f : Fn

2/V ⊥ → C defined by

̂f(u) =
∑

x∈V

(−1)u�xf(x),

where we write u for u + V ⊥. Equivalently, ̂f is the representation of f in the
basis of functions x �→ (−1)u�x for u ∈ F

n
2/V ⊥.

Recall that the orthogonal complement V ⊥ of a subspace V of F
n
2 is the

vector space V ⊥ = {x ∈ F
n
2 | ∀v ∈ V : v�x = 0}. The quotient space F

n
2/V ⊥

is by definition the vector space of cosets of V ⊥. For convenience, an element
x + V ⊥ ∈ F

n
2/V ⊥ will simply be denoted by x. For x ∈ F

n
2/V ⊥ and v ∈ V , the

expression x�v is well-defined. Consequently, the above definition is proper.
The main theorem on the advantage of an adversary in the bounded-query

probing model can now be stated. It relies on the observation that, for a bounded-
query probing secure circuit, all probed wire values either closely resemble uni-
form randomness or reveal nothing about the secret input.

Theorem 1 ([5], §4). Let A be a t-threshold-probing adversary for a circuit
C. Assume that for every query made by A on the oracle Ob, there exists a
partitioning (depending only on the probe positions) of the resulting wire values
into two random variables x (‘good’) and y (‘bad’) such that

1. The conditional probability distribution py|x satisfies Ex‖p̂y|x − δ0‖22 ≤ ε with
δ0 the Kronecker delta function,
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2. Any t-threshold-probing adversary for the same circuit C and making the
same oracle queries as A, but which only receives the ‘good’ wire values ( i.e.
corresponding to x) for each query, has advantage zero.

The advantage of A can be upper bounded as

Advt-thr(A) ≤
√

2 q ε ,

where q is the number of queries to the oracle Ob.

This work only considers a 1-threshold-probing adversary, but extends the
probing model such that one probe can provide multiple shares even over dif-
ferent rounds. Furthermore, we consider the effect of transitions and couplings
which typically provide shares over two consecutive rounds. As a result, we use
the above theorem only for the ‘bad’ values. Moreover, in this work we are
only interested to find out whether the 2-norm ‖p̂z − δ0‖2 is zero or not. As
potential trails have to be short, the correlation is bound to be high. Thus, we
are interested to see whether the diffusion layers of a masked cipher allow for
zero-correlation approximations.

Key Schedule. This work focuses on the state function of a cipher and considers
the (masked) key to be constant. This focus is based on two reasons.

– To create security arguments independent of the used mode of operation.
Since in some modes the key input can be public, one cannot rely on entropy
coming from the key schedule.

– In practice, the masked key of a block cipher is not frequently re-masked with
fresh randomness. Over several queries, the masked key is thus without fresh
entropy.

The key is thus labeled a ‘good’ variable. Depending on the use case, the designer
can nevertheless opt to include the key schedule for a more in-depth analysis.

2.3 Boolean Masking and Threshold Implementations

In this section, we recall Boolean masking and threshold implementations as
countermeasures against side-channel analysis. We specifically recall threshold
implementations since we require the maskings of the S-box in our case studies
to be uniform and we need the property of non-completeness to protect against
glitches.

Boolean masking, as originally proposed by Goubin and Patarin [23] and
Chari et al. [11], has become a popular countermeasure against side-channel
analysis. Intuitively, each sensitive variable is split in multiple pieces such that
the adversary is forced to recombine those, exponentially increasing the noise
on the data in the number of pieces. Formally, a secret sharing scheme is used.
For Boolean masking, each secret x is split in the variables x̄ = (x1, x2, . . . , xsx)
such that x =

∑sx

i=1 xi where the sum is taken over a binary finite field K. We
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call a random Boolean masking of a fixed secret uniform if all sharings of that
secret are equally likely.

A masking countermeasure shares each intermediate variable of a primitive
such that at no point in time a secret value is directly processed. There are several
methods how to achieve this given in the literature. In this work, we focus on
the method of threshold implementations as introduced by Nikova et al. [33]. A
threshold implementation consists of several layers of Boolean functions. Each
layer is calculated in one clock cycle and stores its output in registers.

Let F̄ be a layer in the threshold implementation corresponding to a part of
the circuit F : Fn

2 → F
m
2 . For example, F might be the linear layer of a block

cipher. The function F̄ : Fnsx
2 → F

msy

2 , where we assume sx shares per input
bit and sy shares per output bit, will be called a sharing of F . A share of a
function is denoted by F i : Fnsx

2 → F
m
2 , for i ∈ {1, .., sy}. The main properties

of threshold implementations are summarized in Definition 2.

Definition 2 (Properties of a threshold implementation [33]). Let F :
F

n
2 → F

m
2 be a function and F̄ : Fnsx

2 → F
msy

2 a sharing of F . The sharing F̄ is
said to be

1. correct if
∑sy

i=1 F i(x1, . . . , xsx) = F (x) for all x ∈ F
n
2 and for all shares

x1, . . . , xsx ∈ F
n
2 such that

∑sx

i=1 xi = x,
2. non-complete if any component function F i depends on at most sx − 1 input

shares,
3. uniform if F̄ maps a uniform random sharing of any x ∈ F

n
2 to a uniform

random sharing of F (x) ∈ F
m
2 .

Recall glitch-extended probes as introduced in Sect. 2.2. Since each compo-
nent function in a threshold implementation works on a non-complete set of
shares and since each function is walled-off by registers, a threshold implemen-
tation is secure even in face of glitch effects. The glitch-extended probing security
of a threshold implementation has been formally proven by Dhooghe et al. [20].
Also we recall from [20, Sect. 4] that every SNI secure gadget is also uniform.
Thus, the secure analysis requirement for a uniform masked S-box is achieved
by most maskings in the literature.

2.4 Linear Cryptanalysis of Threshold Implementations

As discussed in Sect. 2.2, Theorem 1 allows proving the security of higher-order
threshold implementations given an upper bound on the Fourier coefficients of
probability distributions of wire values obtained by probing. This section shows
how such an upper bound can be obtained using linear cryptanalysis.

For any linear masking scheme, there exists a vector space V ⊂ F
�
2 of valid

sharings of zero. More specifically, an F2-linear secret sharing scheme is an algo-
rithm that maps a secret x ∈ F

n
2 to a random element of a corresponding coset

of the vector space V. Let ρ : Fn
2 → F

�
2 be a map that sends secrets to their

corresponding coset representative. For convenience, we denote Va = a + V.
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Let Ḡ be a correct sharing of a function G : Fn
2 → F

n
2 in the sense of Definition

2. Fix any x ∈ F
n
2 and let a = ρ(x) and b = ρ(G(x)). The correctness property

implies that Ḡ(Va) ⊆ Vb. It follows that the restriction F : Va → Vb of Ḡ
defined by F (x) = Ḡ(x) is a well defined function.

Linear cryptanalysis is closely related to the propagation of the Fourier trans-
formation of a probability distribution under a function F : Va → Vb. This leads
to the notion of correlation matrices due to Daemen et al. [13]. The action of F
on probability distributions can be described by a linear operator. The coordi-
nate representation of this operator with respect to the standard basis {δx}x∈V

may be called the transition matrix of F . Following [4], the correlation matrix of
F is then the same operator expressed with respect to the Fourier basis. The cor-
relation matrix of a sharing can be defined as follows. Note that it only depends
on the spaces Va and Vb, not on the specific choice of the representatives a and b.

Definition 3 (Correlation matrix). For a subspace V ⊆ F
�
2, let F : Va → Vb

be a function. The correlation matrix CF of F is a real |Vb| × |Va| matrix with
coordinates indexed by elements u, v ∈ F

n
2/V⊥ and equal to

CF
v,u =

1
|V|

∑

x∈Va

(−1)u�x+v�F (x) .

The relation between Definition 3 and linear cryptanalysis is as follows: the
coordinate CF

v,u is equal to the correlation of a linear approximation over F

with input mask u and output mask v. That is, CF
v,u = 2Pr[v�F (x) = u�x] −

1 for x uniform random on Va. An important difference with ordinary linear
cryptanalysis is that, for shared functions, the masks u and v correspond to
equivalence classes. This formalizes the intuitive observation that masks which
differ by a vector orthogonal to the space V lead to identical correlations.

From this point on, we restrict to second-order probing adversaries. The
description of the link with linear cryptanalysis presented in [5], is completed
by Theorem 2 below. It shows that the coordinates of p̂z are entries of the corre-
lation matrix of the state-transformation between the specified probe locations.
In Theorem 2, the restriction of x ∈ Va to an index set I = {i1, . . . , im} is
denoted by xI = (xi1 , . . . , xim

) ∈ F
|I|
2 . This definition depends on the specific

choice of the representative a, but the result of Theorem 2 does not.

Theorem 2 ([5], §5.2). Let F : Va → Vb be a function with V ⊂ F
�
2 and

I, J ⊂ {1, . . . , �}. For x uniform random on Va and y = F (x), let z = (xI ,yJ ).
The Fourier transformation of the probability mass function of z then satisfies

|p̂z(u, v)| = |CF
ṽ, ũ|,

where ũ, ṽ ∈ F
�
2/V

⊥ are such that ũI = u, ũ[�]\I = 0, ṽJ = v and ṽ[�]\J = 0.

Theorem 2 relates the linear approximations of F to p̂z(u) and hence pro-
vides a method to upper bound ‖p̂z − δ0‖2 based on linear cryptanalysis. Upper
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bounding the absolute correlations |CF
ṽ, ũ| is nontrivial in general. However, the

piling-up principle [32,35] can be used to obtain heuristic estimates.
Importantly, Theorem 2 relates to linear cryptanalysis with respect to V

rather than F
�
2. The differences are mostly minor, but there is a subtle difference

in relation to the important notion of ‘activity’. In standard linear cryptanalysis,
an S-box is said to be active if its output mask is nonzero. The same definition
applies for linear cryptanalysis with respect to V, but one must take into account
that the mask is now an element of the quotient space F

�
2/V

⊥. In particular, if
the mask corresponding to the shares of a particular bit can be represented by
an all-one vector (1, 1, . . . , 1)�, it may be equivalently represented by the zero
vector. It is still true that a valid linear approximation for a permutation must
have either both input masks equivalent to zero or neither equivalent to zero.
More generally, this condition is ensured by any uniform sharing.

3 Analyzing Transition Leakage

This section studies the effect of transition leakage. Consider registers as recalled
in Sect. 2.1. When the register input is open to store the incoming value, the new
value has to overwrite the so far stored value. If these are different values then
the attacker can measure a peak in the power consumption compared to the
case when the values are the same – this is called transition leakage. Similar to
registers, if a new value different from the wire current value starts propagating
through a wire then the power consumption will differ compared to the case
when the new and the current value are the same.

As a result, if in a memory cell the element x is erased and instead y is
stored, transitions can leak both x and y. We integrate such leakage effects in
the probing model following the work by Faust et al. [22]. There the model is
described as follows.

“Specific Model for Transitions. For a memory cell m, memory recombi-
nations (aka transitions) can be modeled with specifically 2-extended probes so
that probing m allows the adversary to observe any pair of values stored in 2 of
its consecutive invocations.”

As mentioned above, transition leakage does not only occur in memory ele-
ments. Thus, we extend the description such that the extended leakage is viewed
in any gate or wire.

The work by Ishai et al. [27] and the publications that followed considered a
circuit model that represents a deterministic circuit as a directed acyclic graph
whose vertices are combinatorial gates and its edges are wires carrying elements
from a finite field. However such a simplification of the circuit model does not
take into account the circuit topology. While the leakage of glitches does not
depend on the circuit architecture/topology, for the transitions and the wire
coupling models the leakage is mainly influenced by the circuit’s architecture.
As a result, we study circuits with loops and a notion of time and consider
particular architectures when discussing the side-channel security of symmetric
primitives.
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Finally, we consider the combined effect of glitches and transition leakage.
According to Faust et al. [22] probing a memory gate is equivalent to probe the
sole input (i.e. the wire) to it which can be considered also as output of the
particular simple logic which ends up with the considered memory gate. In that
regard, leakage caused by glitches might seem stronger than the leakage caused
by transitions. However, in practice the two leakages can manifest differently in
the time interval representing a single cycle, namely the glitches and the logic
transitions will occur in the beginning while the memory transition will occur
only at the end. As illustrated by Faust et al., there could be a time window
between the computational and the storage phases.

We apply the extended probing model to arbitrary glitch-extended probing
secure masking of several architectures of PRESENT, AES, and ASCON to
investigate how to best protect the masked primitives. In our analysis we consider
a black box masking of the S-box to make the analysis more general. We just
assume the linear layers are masked share-wise and that the masked S-boxes do
not share inputs such as recycled randomness.

3.1 PRESENT

We recall the PRESENT cipher from the work of Bogdanov et al. [7]. The input
to PRESENT is a 64-bit plaintext m. Each round comprises an XOR with the
round key, a substitution layer, and a permutation layer. The substitution layer
consists of 16 applications of a four-bit cubic S-box. The permutation layer
of PRESENT is a bit permutation which is depicted in Fig. 1. The following
arguments are also applicable to the GIFT cipher [1].

Round-Based Architectures Require Extra Protection. We first consider a glitch-
extended probing secure masking (such as a threshold implementation) in a
round-based architecture. In such an architecture each masked S-box in the
round function is implemented separately on the device. When an adversary
places a transition-extended probe in an S-box of a round-based architecture,
it can view the computation of the same implemented S-box in two consecutive
rounds. In this architecture, the diffusion layer of PRESENT allows for some
weak points concerning transition leakage. More specifically, bits 0, 21, 42 and 63
are mapped to the same position. As a result, transition leakage from the 0, 5, 10
or 15th masked S-box could reveal information. An example activity pattern is
indicated in dotted blue in Fig. 1. The weakness can be resolved by re-masking
the bits which remain fixed through the diffusion layer. This randomness can
be re-used every round and can be the same over the bits 0, 21, 42 and 63. For
the previously mentioned sharing of the S-box this countermeasure would cost
a total of two random bits for the entire masked cipher.

So far we assumed the shared S-box S̄ was implemented as a rolled-out circuit
on the device. However, the typical threshold implementation of the PRESENT
S-box consists of two degree two maps Ḡ, this sharing is given in Appendix A.
A designer could implement Ḡ and evaluate it twice to compute an S-box. We
denote the two parts of the shared S-box by S̄1 and S̄2. If an adversary uses a
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transition-extended probe on the shared S-box it can view the computation of
both S̄1 and S̄2. This is depicted in blue in Fig. 2.

We give an example that the above explained weakness can constitute a
probing attack for a particular sharing of the S-box. In particular, we consider
the blue activity pattern from Fig. 2. Considering the sharing of the S-box from
Appendix A. Consider, for a secret x, the shares x1, x2, x3 such that

∑3
i=1 xi =

x. An adversary placing a glitch and transition-extended probe P in the first
component of S̄1(x̄, ȳ, z̄, w̄) is given back the shares x1, y1, y2, z1, z2, w1, and w2.
However, from the second part of the shared S-box S̄2 the adversary views the
input values (equivalently S̄1’s output values)

S̄1
1 = w1 + x1y1 + x1y2 + x2y1,

S̄2
1 = w2 + x2y2 + x2y3 + x3y2.

Thus, P = {S̄1
1 , S̄2

1 , x1, y1, y2, z1, z2, w1, w2}. Consider random secrets x, y, z, w,
then we find that

I(x;P) = H(x) − H(x|P) 
= 0,

with I the mutual information and H the Shannon entropy. In other words, a
glitch- and transition-extended probing adversary can break the design.

As a conclusion, a straightforward round-based architecture of PRESENT
could be vulnerable to transition leakage and thus extra costs would be required
to secure the architecture.

Fig. 1. An activity pattern caused by transition leakage in PRESENT. In dotted blue
lines, we find harmful transition leakage using a round-based architecture. In dashed
red lines, we find no such leakage using a serial architecture. (Color figure online)

Serial Architectures are Secure. As a second example, we consider a glitch-
extended probing secure masking in an S-box serial architecture. In this archi-
tecture only one shared S-box is implemented on the device and each S-box in
the cipher is computed in series. Following Fig. 1, the architecture computes the
S-boxes from left to right. Transition leakage from such a design occurs either
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Fig. 2. Transition leakage in the calculation of the shared S-box divided in S̄1 and S̄2.
The dotted blue lines denote leakage in a round-based architecture. The dashed red
lines denote leakage in a serial architecture. (Color figure online)

between two S-boxes in the same round or between the last and first S-box of two
consecutive rounds. Assuming the shared S-boxes are uniform, the former case
never constitutes a weakness. The latter case is harmless thanks to the linear
layer of PRESENT as indicated in red in Fig. 1. We see, no matter which input
or output mask is chosen, the resulting hull will always be a zero-correlation
linear approximation. Thus, no extra precautions need to be made to ensure
security against transition leakage.

In case the shared S-box is calculated over two cycles using the same
resources, the architecture can be secured against transition leakage if all S̄1

are first calculated from left to right and before calculating the S̄2. A transition-
extended probe either only views two separate S̄1 (similarly S̄2 ) in the same
cycle or it views the parts as depicted in red in Fig. 2. It is clear that in no case
the adversary can break the masking using transition leakage.

Considering architectures of a masked PRESENT in light of transition leak-
age, we find that glitch-extended secure serial architectures provide protection
against transition leakage without requiring additional costs.

3.2 AES

We quickly recall the standardized AES cipher by Daemen and Rijmen [14]. AES-
128 consists of a 128-bit state and 128-bit key divided into 16 bytes. The cipher
is composed of 10 rounds each applying an addition of a subkey, a bricklayer
of S-Boxes, a ShiftRows operation, and a MixColumns operation. There are
many primitives using a similar diffusion layer such as LED [26], PHOTON [25],
PRINCE [8], SKINNY [2], etc. The security analysis considered here applies to
all these primitives.

Every Architecture Requires Extra Protection. For a glitch-extended probing
secure AES, we find that architectures are vulnerable against transition leakage
in the application of the MixColumns operation. First, notice that no matter the
architecture, transition leakage from the computation of an S-box is never usable
for an adversary due to the branch number of the MixColumns. An example of
such an activity pattern is depicted in Fig. 3. However, during the computation
of the MixColumns and due to the effect of glitches, the adversary can view
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the input of the operation and place a mask such that only one output byte
is active. This active byte can only shift over the state, causing the adversary
to also observe the computation of the following MixColumns due to transition
leakages. An activity pattern for a round-based architecture is shown in Fig. 4.
Even by changing the order of the MixColumns harmful activity patterns can
always be found.

One can prevent this leakage by re-masking some cells (for example, the top
row for the round-based architecture) of the AES state. This randomness cost
is low as the same randomness can be used for every round and for every cell.
More specifically, considering a two-shared threshold implementation, a total of
eight random bits are needed to prevent any transition leakage from occurring.

Another countermeasure is based on the verification of the Linear Approxi-
mation Table (LAT) of the shared AES S-box using the definitions from Sect. 2.4.
More specifically, note that a masking of a linear operation works share-wise.
As a result, a transition-extended probe on the AES diffusion layer only views
one share each of two MixColumns operations and thus one input and one out-
put share of the shared S-box. Given an s-sharing of the AES S-box S̄ and
V =

⊕s
i=1 V

i such that each mask u ∈ F
8s
2 /V⊥ can be decomposed in (u1, ..., us)

with ui ∈ F
8
2/(Vi)⊥ then the linear approximation between the observed values

is only harmful if

∀α, β ∈ F
8s
2 /V⊥ : CS̄

α,β = 0 when wt(α) = 1,wt(β) = 1 .

In words, the sharing is secure if the masked S-box has nontrivial diffusion
between the shares. A sharing using randomness, for example the sharing of
the AES S-box by De Cnudde et al. [17], typically has this property. Currently
there exists no uniform sharing of the AES S-box and thus every AES S-box
sharing (except those using changing of the guards as explained later) uses ran-
domness. However, applying the above property to sharings of primitives such
as LED or PRINCE could be interesting future work.

Fig. 3. Activity patterns between the top left S-boxes of rounds i and i + 1 of a
masked AES. The figure denotes in blue what the adversary can observe and hatched
cells denote active cells. (Color figure online)

Using Changing of the Guards. Currently, the AES S-box has no known uniform
sharing. As a result, designers typically use the changing of the guards technique
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Fig. 4. An activity pattern caused by transition leakage following the AES diffusion
layers. The figure denotes in blue what the adversary can observe and hatched cells
denote active cells. (Color figure online)

Fig. 5. The “Changing of the Guards” method to make a sharing uniform.

by Daemen [12] to ensure uniformity. The technique adds input shares of one
S-box to the output of another in order to embed the sharing in a permutation
similar to the Feistel construction. The method is depicted in Fig. 5. Since the
technique chains S-boxes, extra diffusion is added to the round function. A depic-
tion of such an example is given in the left picture of Fig. 6. The figure shows
which inputs (start of an arrow) are used to “re-mask” a shared S-box (end of
an arrow). When this technique is used with care, one might use it to strengthen
the masking against transition leakage. For example, while the diffusion follow-
ing the left picture still allows for harmful transition leakage in a round-based
architecture, the diffusion following the second picture prevents the adversary
from learning a secret variable. This is due to the pattern ensuring that each
active cell in the state activates at least one different column after the application
of the SubBytes and ShiftRows operations. The third picture of Fig. 6 depicts
which column each cell activates after the SubBytes and ShiftRows operations.

We note that the second pattern shown in Fig. 6 is not unique. It is also
assumed the changing of the guards technique is only applied once per round.
If it is applied multiple times (such as in the work by Wegener et al. [36] or by
Sugawara [34]), different patterns should be used to secure the cipher against
transition leakage.

3.3 ASCON

ASCON [21] consists of a mode of operation which uses a specific permutation.
In this work, we focus on the permutation. The substitution layer is the parallel
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Fig. 6. Two example diffusion patterns using the changing of the guards technique. In
gray we denote the added extra cells. The left pattern combined with the AES diffusion
layers is vulnerable to transition leakage, the right provides resistance. The third figure
shows the activation of columns of the second pattern combined with ShiftRows.

column-wise application of 64 5-bit S-boxes which are an affine transformation
of the χ mapping of Keccak [3]. These S-boxes have linear branch number three.
The linear layer consists of five row-wise applications of a linear function Σ.
Each Σ function has linear branch number four and uses different rotation values
depending on the row to optimize diffusion over several rounds.

Every Architecture is Secure. Consider again an arbitrary glitch-extended prob-
ing secure masking of ASCON. We investigate whether we can transform this
masking to be transition-extended probing secure. First, while the S-box of
ASCON has a nontrivial linear branch number, its sharing might not have a
similar property. Denoting the ASCON S-box by S. While S has a correlation
zero transition between its first input bit x and first output bit z, the sharing
of S can allow for such a transition. Meaning that one can place a nontrivial
mask on the sharing of x and on the sharing of z and still find nonzero corre-
lation. The sharing of the S-box given in Appendix B has been verified to still
have a nontrivial linear branch number over the bits. More specifically, given
that V =

⊕5
i=1 Vi such that each mask u ∈ F

20
2 /V⊥ can be decomposed in

(u1, u2, u3, u4, u5) with ui ∈ F
4
2/(Vi)⊥ then

min
α,β∈F20

2 /V⊥,CS̄
α,β �=0

{wt(α) + wt(β)} = 3 .

By adding linear correction terms, we can cycle through other non-complete
sharings of the ASCON S-box. Via this search method we found sharings which
were uniform but did not attain the above property.

In case the sharing of the ASCON S-box has a nontrivial branch number, a
round-based implementation is automatically secure against any harmful tran-
sition leakage. A typical simplified activity pattern is shown in Fig. 7. Moreover,
the same applies for other architectures like a bit-serial implementation. In other
words, except for some trivial share-serial approaches, the round function of
ASCON requires no additional care to prevent any harmful transition leakage.
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Fig. 7. A simplified activity pattern in ASCON caused by a transition-extended probe.

4 Analyzing Coupling Leakage

We consider a leakage effect originating from coupling capacitors between circuit
wires, and between circuit wires and ground which are influenced by the switch-
ing activity on that wire causing recombinations of the wire values. Effectively
when observing leakage from one wire, one can observe leakage from nearby
coupled wires. De Cnudde et al. [15] has shown that the security of masked
hardware implementations can be affected due to coupling effects. These effects
are integrated into the probing model following the work by Faust et al. [22].

“Specific Model for Couplings. For any set of adjacent wires {w1, ..., wd},
routing recombinations (aka couplings) can be modeled with c-extended probes
so that probing one wire wi allows the adversary to observe c wires adjacent to
wi.”

Defending against the above model is not straightforward as two wires carry-
ing different shares of a secret can be coupled. The work by De Cnudde et al. [16]
discusses three potential solutions to “separate” logic.

– To perform sequential operations instead of parallelism where the implemen-
tation processes a non-complete set of shares at each clock cycle. While this
provides security this reduces the throughput and avoids making use of the
full parallelism feature of hardware.

– Via the use of embedded voltage regulators (VRM) inside the chip, which are
already used in commercial smart cards. However, it remains unclear whether
electromagnetic signals exhibit potential issues.

– Via the chip having separate Vdd lines to supply functions associated to
each share independently. However, it is still an open problem how to supply
nonlinear functions which operate on sets of shares and prove the security of
the countermeasure.

In this work, we assume one of the above countermeasures has been applied
to the masking. To that end, we assume the masking is “domain non-complete”
meaning that each domain processes only a non-complete set of shares per cycle.
An example is shown in Fig. 8. As a result, a coupling-extended probe (for any
c in the above definition) does not yield all the shares of a secret. This non-
completeness property alone is sufficient to protect an implementation against
coupling-extended probes. However, a more detailed security analysis is needed
when combining multiple leakage effects together.
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Fig. 8. Separation into domains of a layer of masked Boolean functions.

5 Analyzing Glitches, Transitions, and Couplings

For the final analysis, we study maskings which are secure against all combined
effects described by Faust et al. [22], i.e. glitches, transitions, and coupling leak-
age. Considering coupling effects, we study the effect when c = 1 following the
definition above. That means the adversary is capable of observing the probed
wire along with one coupled wire. Recall that we consider that a coupling-
extended probe can not view all shares of a secret in one cycle. Combining
coupling effects with glitches and transitions, using a single probe, the adversary
observes all inputs to the probed wire, the previous values which flowed through
those resources, and glitches and transition leakage from a coupled operation.
We revisit the case studies from Sect. 3.

5.1 PRESENT: Serial Architecture

We revisit the masking of PRESENT from Sect. 3.1. More specifically, we con-
sider a glitch-extended probing secure masking in an S-box serial architecture
which we showed was secure against the combined effect of glitches and transi-
tions. We adapt the architecture to work share-serial meaning that each cycle
one share of one S-box (or quadratic function in the S-box) is calculated. In
particular, such an architecture is domain non-complete.

In this case, glitch effects already include the effect of couplings as only one
operation per cycle is calculated. When the architecture would calculate two
shares of the same S-box consecutively, transitions could leak the input secret
of the S-box. Instead, we interleave computation on shares of a secret with
the computation of other parts of the state. Thus, the architecture would first
calculate the ith share of each S-box before calculating a (i + 1)th share. This
secures from harmful transition leakage. The activity patterns are the same as
before, given in red in Fig. 1.

5.2 AES: Serial Architecture

We consider a glitch-extended probing secure masking in a serial architecture
where only one S-box and MixColumns is implemented. This is a popular archi-
tecture for maskings, examples can be found in the works by De Meyer et al. [18,
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Fig. 6] and Gross et al. [24, Fig. 5]. In this case, we consider that a domain sepa-
ration through different Vdd lines or via embedded voltage regulators has been
implemented such that the design is domain non-complete.

Even though there is only one masked S-box on the implementation, it typi-
cally consists of multiple register stages. Thus, the S-box can compute on several
bytes at once in a pipelined manner. Recall that we assume that c = 1, thus a
probe on an S-box views the computation of another coupled S-box. Due to
transition leakage, the adversary can view the two S-boxes over two consecu-
tive cycles. Due to the MixColumns having branch number five, this leakage can
never reveal a secret. However, there is still leakage from the calculation of the
MixColumns as noted in Sect. 3.2. Finally, there can be coupling leakage between
the MixColumns and an S-box (from a different column). However, these cases
do not add extra harmful activity patterns. Thus, as explained in Sect. 3.2, we
only require adding one cell of extra randomness to secure against the combined
effect of glitches, transitions, and couplings.

5.3 ASCON: Round-Based Architecture

Finally, we consider a glitch-extended probing secure masking with a round-
based architecture for ASCON. Again, we consider the case where c = 1 meaning
that a probe can observe an additional operation in that cycle and we consider
domain non-complete maskings where there is some countermeasure ensuring
coupling leakage alone does not reveal all shares of a secret.

Due to the combined effect of transitions and couplings, a probed S-box gives
information on two S-boxes over two consecutive rounds. Previously, we argued
ASCON was secure when probing an S-box due to the nontrivial branch number
of the linear layer. This argument no longer holds as the linear layer only has
branch number four. However, the case remains secure as the layer does not
allow for transitions of two active input bits to two active output bits. This can
be verified on sight from the equations of the Σ function:

Σα,β(x) = x ⊕ (x ≫ α) ⊕ (x ≫ β),

with ≫ the right circular shift and α, β ∈ N constants specific for ASCON.
When the adversary probes the linear layer, it can potentially activate two

input and two output bits of a shared S-box. The diffusion of the S-box is not
sufficient to prevent harmful leakage. However, we observe that the probe returns
bits from the same share, e.g. both from the first share of the input and first share
of the output. Thus, one can protect the implementation when the shared S-box
S̄ has the following property. Given an s-sharing S̄ and V =

⊕s
i=1 V

i such that
each mask u ∈ F

5s
2 /V⊥ can be decomposed in (u1, ..., us) with ui ∈ F

5
2/(Vi)⊥

then for i ∈ {1, ..., s}

∀α, β ∈ F
5s
2 /V⊥ : CS̄

α,β = 0 when α = (0, ..., αi, ..., 0), β = (0, ..., βi, ..., 0) .

A similar property was explored in Sect. 3.2 on diffusion between shares. Since
the S-box is quadratic, one can easily find non-complete sharings of the entire
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S-box. This non-completeness can be used to argue that the ith share of the
input and output of the S-box do not reveal any secret information. An example
sharing with the above property is given in Appendix B. For example, the first
bit of the second output share is

χ2
1 = x2

1 + x2
3 + (x2

2 + x3
2 + x4

2)(x
2
3 + x3

3 + x4
3) .

Together with the second input shares x2
i for i ∈ {1, 2, 3, 4, 5}, one always misses

the first input shares x1
i to retrieve an input secret.

6 Conclusion

This work discussed the security of masked symmetric primitives against the
combined leakage effects of glitches, transitions, and couplings. This was done
using the standard tools from linear cryptanalysis and on case studies of symmet-
ric primitives. The case studies were made considering black box glitch-extended
probing secure maskings. Moreover, we covered case studies on PRESENT, AES,
and ASCON to show our analysis is applicable to a wide range of primitives.

Interesting future work would be transform our analysis method (which cur-
rently is only done by hand) into a tool which can verify netlists on potential
transition leakage using the linear cryptanalytic properties of basic gates such
as ANDs and XORs. We also did not investigate methods to analyze transition
leakage when re-using randomness between S-boxes or transition leakage inside
a single S-box. However, for such cases, brute-force verification is possible allow-
ing for extensions of existing tools such as SILVER [28]. Finally, we noted a
lack of theory concerning correlation matrices of masked functions together with
interesting examples which indicate that bounds on the maximum absolute cor-
relation or branch number of a masking might be difficult to find. More research
on this topic could improve the security and efficiency of masked designs.

Acknowledgements. I thank Vincent Rijmen, Svetla Nikova, Venci Nikov, Tim
Beyne, and Adrián ranea for the interesting discussions and their advice. Siemen
Dhooghe is supported by a PhD Fellowship from the Research Foundation – Flan-
ders (FWO).

A Three Sharing of the PRESENT S-Box

This appendix provides a decomposition of the PRESENT S-box and a three
sharing of the S-box. We denote by (x, y, z, w) the input nibble from most sig-
nificant to least significant bit.

Following the work by Kutzner et al. [30], the PRESENT S-box S can be
decomposed as follows

S(x, y, z, w) = B′(G(G(C ′(x, y, z, w) + d)) + e) .
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In the above, the nonlinear function G(x, y, z, w) is given as

G1 = x + yz + yw G2 = w + xy G3 = y G4 = z + yw .

When implemented, the above function is computed over two register
stages. We denote S1(x, y, z, w) = G(C ′(x, y, z, w) + d) and S2(x, y, z, w) =
B′(G(x, y, z, w) + e) for each stage.

This permutation G is shared using a direct balanced sharing. More specifi-
cally, for each share i ∈ {1, 2, 3}

Gi
1 = xi + yizi + yizi+1 + yi+1zi + yiwi + yiwi+1 + yi+1wi,

Gi
2 = wi + xiyi + xiyi+1 + xi+1yi,

Gi
3 = yi,

Gi
4 = zi + yiwi + yiwi+1 + yi+1wi,

where the convention is used that superscripts wrap around at three. The linear
layers are masked share-wise.

B Uniform Sharing of the ASCON S-Box

This appendix provides a uniform four-sharing of the ASCON S-box. Recall that
the ASCON S-box is affine equivalent to the Keccak S-box. More specifically,
for the Keccak S-box χ and the ASCON S-box S we have that

S(x) = B(χ(B(x))) + c ,

with A,B linear transformations and c a constant.
Denoting the five input bits by {x1, x2, x3, x4, x5} going from least significant

to most significant bit. A uniform sharing of the Keccak S-box χ using four shares
was given by Bilgin et al. [6]. For i = 1, 2, 3, 5 we have

χ1
i = x1

i + x1
i+2,

χ2
i = x2

i + x2
i+2 + (x2

i+1 + x3
i+1 + x4

i+1)(x
2
i+2 + x3

i+2 + x4
i+2),

χ3
i = x3

i + x3
i+2 + x1

i+1(x
3
i+2 + x4

i+2) + x1
i+2(x

3
i+1 + x4

i+1) + x1
i+1x

1
i+2 ,

χ4
i = x4

i + x4
i+2 + x1

i+1x
2
i+2 + x1

i+2x
2
i+1 ,

where the convention is used that subscripts wrap around at five. For the remain-
ing fourth coordinate function we have

χ1
4 = x1

4.

χ2
4 = x2

4 + x2
1 + x3

1 + x4
1 + (x2

5 + x3
5 + x4

5)(x
2
1 + x3

1 + x4
1),

χ3
4 = x3

4 + x1
1 + x1

5(x
3
1 + x4

1) + x1
1(x

3
5 + x4

5) + x1
1x

1
5,

χ4
4 = x4

4 + x1
5x

2
1 + x1

1x
2
5,
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ascon.iaik.tugraz.at/files/asconv12-nist.pdf

22. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.X.: Composable
masking schemes in the presence of physical defaults & the robust probing model.
IACR TCHES 2018(3), 89–120 (2018). https://doi.org/10.13154/tches.v2018.i3.
89-120. https://tches.iacr.org/index.php/TCHES/article/view/7270

23. Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”
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Abstract. The field of post-quantum cryptography aims to develop and
analyze algorithms that can withstand classical and quantum cryptanal-
ysis. The NIST PQC standardization process, now in its third round,
specifies ease of protection against side-channel analysis as an important
selection criterion. In this work, we develop and validate a masked hard-
ware implementation of Saber key encapsulation mechanism, a third-
round NIST PQC finalist. We first design a baseline lightweight hardware
architecture of Saber and then apply side-channel countermeasures. Our
protected hardware implementation is significantly faster than previously
reported protected software and software/hardware co-design implemen-
tations. Additionally, applying side-channel countermeasures to our base-
line design incurs approximately 2.9× and 1.4× penalty in terms of the
number of LUTs and latency, respectively, in modern FPGAs.

Keywords: Post-quantum cryptography · Lattice-based · Key
encapsulation mechanism · Hardware · FPGA · Side-channel analysis

1 Introduction

The accelerating development of post-quantum computing threatens the security
of our current public-key infrastructure, based on traditional public-key cryp-
tosystems, such as RSA and Elliptic Curve Cryptography (ECC). This threat
motivates Post-Quantum Cryptography (PQC) research and development, aim-
ing to produce and analyze algorithms that can withstand quantum and classical
attacks and, at the same time, run on traditional computing platforms. The NIST
PQC standardization process, currently in its third round, aims to coordinate
the development and analysis of PQC algorithms to eventually select a few of
them as new American Federal Information Processing Standards (FIPS).

Side-channel analysis (SCA), including Differential Power Analysis
(DPA) [12], is a significant threat to the successful deployment of cryptographic
solutions. Lightweight applications with limited or no physical security are even
more susceptible to such attacks since adversaries can easily collect side-channel
information. Consequently, the NIST PQC standardization process specifies ease
c© Springer Nature Switzerland AG 2021
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of protection against side-channel attacks as a desirable feature of candidates.
Among the most urgent tasks in the evaluation process is developing SCA-
resistant implementations of third-round finalists and assessing their compara-
tive cost of protection against SCA. All the range of target platforms from pure
software to full hardware and hybrid platforms need consideration since leakage
patterns differ from one platform to another. For example, architectural leak-
age stemming from processor architecture can affect the software, while glitches,
dependent on basic combinational and sequential circuit building blocks, affect
hardware implementations.

NIST has selected Saber, a lattice-based key encapsulation mechanism
(KEM), as a third-round finalist in July 2020. Previous works on applying SCA
countermeasures to Saber concentrated on software [4] and software/hardware
co-design [8].

In this work, we develop and evaluate SCA-resistant full hardware imple-
mentations of Saber. Our hardware design is significantly faster compared to
previously reported SW, and SW/HW masked implementations of Saber. Addi-
tionally, our masked design uses approximately 2.9× more lookup tables (LUTs)
while incurring 1.4× performance penalty compared to the unprotected base-
line design when implemented in Xilinx Artix-7 FPGAs. Our results show the
possibility of producing efficient masked hardware implementations of Saber
that are significantly faster than SW and SW/HW designs. The source code
of our implementation is publicly available at https://github.com/GMUCERG/
SABER-SCA.

2 Previous Work

PQC algorithm side-channel resistance is an active research field with several
open problems. Developing efficient countermeasures suitable for PQC algo-
rithms and assessing the comparative cost of protection are critical for a fair
comparison of NIST PQC third-round candidates. The community has made
progress towards these goals, but many open questions remain.

In [16], Reparaz et al. proposed a masked implementation for ring-Learning-
With-Errors (ring-LWE). The main idea is to split the secret polynomial s into
two shares s0 and s1 such that s = s0 + s1. Multiplying the shared version
of s by an unshared polynomial is a linear operation so, it can be done on
each share separately. The result of the polynomial multiplication is fed to a
custom threshold decoder. The decoder uses a masked lookup table. However,
to simplify the function calculated by the table, the authors use a set of rules
to reduce the number of inputs to the lookup table. The main disadvantage
of this decoder is that it increases the decryption failure rate and has a large
performance overhead due to the need to repeatedly check the set of rules. The
hardware crypto-processor reported in [16] is 20% larger and requires 2.6× more
cycles to perform decryption compared to the unprotected design.

Many real-wold applications require the use of schemes that resists chosen-
ciphertext attacks (CCA) and adaptive chosen-ciphertext attacks (CCA2). Oder

https://github.com/GMUCERG/SABER-SCA
https://github.com/GMUCERG/SABER-SCA


226 A. Abdulgadir et al.

et al. investigated masked implementations for CCA2-secured ring-LWE schemes
in [15]. The authors developed a unit (MDecode) that receives the arithmetically
shared polynomial coefficients, converts them to Boolean sharing, and outputs
the decoded version. However, their design requires 5.7× more clock cycles com-
pared to the unprotected implementation.

A first-order SCA resistant software implementation of Saber was introduced
by Beirendonck et al. in [4], building on work started by Verhulst [19]. The
reported overhead of this work is 2.52× in terms of clock cycles compared to the
unprotected software. This low overhead is due to Saber’s power-of-two moduli
and the reliance on rounding for noise generation. A significant contribution of
this work is a unit that performs logical shifting on arithmetic shares, based on
arithmetic-to-Boolean algorithms by Coron and Debraiz [5,7]. Their binomial
sampler is based on the bit-sliced masked binomial sampler by Schneider et
al. [17].

In April 2021, Fritzmann et al. reported a masked SW/HW co-design that
supports Saber and Kyber [8]. Their design is based on an open-source RISC-V
implementation, in which they added accelerators and instruction-set extensions
for PQC algorithms. The accelerators reported are used to speed up hashing,
binomial sampling, polynomial multiplication, Arithmetic-to-Boolean (A2B),
and Boolean-to-Arithmetic (B2A) operations. The authors report a 2.63× per-
formance overhead for Saber compared to unprotected implementations.

3 Background

3.1 Saber

Saber is a lattice-based KEM that depends on the hardness of the Module Learn-
ing With Rounding (MLWR) problem [18]. KEMs use a public and private key
pair to generate and securely exchange keys between communication parties.
Specifically, Alice generates a key pair, keeps the private key, and distributes the
public key. Bob provides Alice’s public key to the encapsulation algorithm to
generate a secrete key K and ciphertext c. The ciphertext can now be transmit-
ted to Alice. Alice feeds her private key and the ciphertext to the decapsulation
algorithm to generate the secret key K.

We concentrate on the SCA protection of the CCA-Secure decapsula-
tion algorithm, Saber.KEM.Decaps, since it uses the long-term private key.
The Saber.KEM.Decaps algorithm is based on the CPA-secure algorithms
Saber.PKE.Enc and Saber.PKE.Dec. These algorithms are shown in Algo-
rithms 1–3 for reference. Detailed specification can be found at [18].

Saber uses power-of-two moduli, and the primary operation performed is
polynomial multiplication. Other significant operations include hashing, an
extendable output function, and Binomial sampling.

3.2 Masking

In this work, we utilize masking as an SCA countermeasure. Masking is a well-
researched countermeasure that provides a basis for constructing provably secure
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Algorithm 1. Saber.PKE.Enc [18]
Require: (pk := (seedA, b),m ∈ R2; r)
Ensure: c := (cm, b ′)
1: A = gen(seedA) ∈ Rl×l

q

2: s ′ = βμ(Rl×1
q ; r)

3: b ′ = ((AT s ′ + h) mod q) � (εq − εp) ∈ Rl×1
p

4: v′ = bT (s ′ mod p) ∈ Rp

5: cm = (v′ + h1 − 2εp−1m mod p) � (εq − εT ) ∈ RT

Algorithm 2. Saber.PKE.Dec [18]
Require: (s, c := (cm, b ′))
Ensure: m′

1: v = bT (s mod p) ∈ Rp

2: m′ = ((v − 2εp−εT cm + h2) mod p) � (εp − 1) ∈ R2

Algorithm 3. Saber.KEM.Decaps [18]
Require: (sk := (z, pkh, pk, s), c)
Ensure: K
1: m′ = Saber.PKE.Dec(s, c)
2: (r′, K̂′) = G(pkh,m′)
3: c′ = Saber.PKE.Enc(pk,m′; r′)
4: if c = c′ then
5: K = H(K̂, c)
6: else
7: K = H(z, c)
8: end if

systems provided that certain assumptions hold. In general, two components
define a masking scheme: 1) the method used to split the data into shares, 2)
the method used to perform computations on these shares.

For example, in Boolean masking, each sensitive variable x is split into n
shares x0, x1, . . . , xn−1 such that

⊕
xi = x. A commonly used way to achieve this

is by generating n − 1 random masks m0,m1, . . . ,mn−2, setting x0 = m0, x1 =
m1, . . . , xn−2 = mn−2, and computing xn−1 = x ⊕ m0 ⊕ m1 ⊕ · · · ⊕ mn−2.
On the other hand, in arithmetic masking, a variable a is split into n shares
a0, a1, . . . , an−1 such that

∑
ai mod q = a. This can be achieved by generating

n − 1 random masks m0,m1, . . . ,mn−2, setting a0 = m0, a1 = m1, . . . , an−2 =
mn−2, and computing an−1 = (a − m0 − m1 − mn−2) mod q.

The computation on the shares should be performed such that all interme-
diate values are statistically independent of the unshared sensitive variables.

Masking linear functions is trivial. The same function is duplicated, with
each instance taking one share of each input variable and producing one share
of each output variable. Non-linear functions require much more care to make
sure the implementation is correct and secure.
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3.3 Domain Oriented Masking

Domain Oriented Masking (DOM) [11], introduced by Gross et al., provides
security against SCA attacks in the presence of glitches. It also allows building
circuits that can be synthesized for an arbitrary protection order. Similar to
classical Boolean masking, variables are split into shares. For example, x is split
into x0 and x1 such that x = x0 ⊕ x1.

DOM uses the concept of share domains, where every share of each variable
is associated with a domain. For example, x0 and y0 can be associated with
Domain0.

In DOM, calculations are done so that data in different domains are kept
independent of each other. In case data from two domains must be combined,
steps are taken to preserve this independence. Linear functions are trivial to
calculate since they require shares from each domain to be used separately. In
non-linear functions, however, shares from different domains must be mixed.

4 Methodology

To study the impact of applying SCA countermeasures on the hardware imple-
mentations of Saber, we start by developing a baseline lightweight hardware
implementation. This allows us to reuse components from the unprotected
design, enabling meaningful comparison and evaluation of the cost of protection.
At the same time, some components remain unchanged in the protected imple-
mentations. We choose a lightweight (LW) implementation because LW applica-
tions are especially vulnerable to SCA attacks. In many cases, LW applications
have limited or no physical security, allowing easy collection of side-channel infor-
mation by adversaries. We utilize the Register-Transfer-Level (RTL) methodol-
ogy to construct our hardware. RTL provides granular control over operations,
which simplifies countermeasure application. Additionally, hardware implemen-
tations provide performance and power efficiency, which are helpful in many
applications. We primarily use VHDL for hardware description, except for the
SHA-3 core, which is written using Chisel.

The baseline Saber implementation is then protected against DPA using
masking countermeasures, adapting protection schemes to hardware when nec-
essary. Furthermore, we design flexible hardware that has performance and area
trade-offs. Doing that results in a highly configurable implementation that can
be adapted to a wide range of applications.

The security of our design has been experimentally verified using the Test
Vector Leakage Assessment methodology [9]. Finally, we benchmark our design
on widely used state-of-the-art FPGA devices to quantify the resource utilization
and performance to evaluate the effect of applying the countermeasures on Saber.
The results are compared to masked software and software/hardware co-design
implementations of Saber.
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5 Baseline Lightweight Saber Implementation

The datapath of our hardware implementation of Saber, capable of performing
encapsulation and decapsulation, is shown in Fig. 1. The figure omits control sig-
nals for clarity. The design uses a FIFO-based interface with one input port and
one output port. This interface facilitates connecting the design as an accelerator
to processors using similar interfaces such as AXI stream [2]. We use memory to
store all data, including keys. We choose a memory width of 16 bits to read/write
one polynomial coefficient in one clock cycle since the largest coefficient size is
13 bits, and our lightweight units for polynomial arithmetic receive/produce at
most one coefficient per clock cycle. All data kept in memory is in byte-string
format. This approach allows data to be kept in a compact, memory-saving form.
We utilize width converters to perform unpacking byte-strings into polynomials
before feeding them into arithmetic units and packing the resulting polynomials
into byte-strings before memory write-back on the fly. The central control unit
implements the sequencing of operations needed to perform encapsulation and
decapsulation. The user of the core uses pre-defined opcodes to select one of the
two operations.

Data flow from memory to arithmetic units and back to memory, or from
memory to SHA3/Sampling units and back to memory. Combining this simple
data flow and utilizing width converters simplify our control logic since width
converters adjust the width of data with minimal control signals from the central
controller, and the simple data flow minimizes control signals to the datapath.

The general operation of the core is as follows: the core pulls input data
via the din port and interprets the first word as an opcode to select between
encapsulation or decapsulation. If encapsulation was selected, the core loads
the public key and the random message from the input port and computes
the ciphertext and the secret key. If the operation specified in the opcode is
decapsulation, the core loads the public key, the private key, and the ciphertext
and computes the secret key. In both cases, the dout port is used to output
results. Below, we discuss the significant units used in the design in detail.

5.1 Polynomial Arithmetic Units

One of the most intensively used operations in Saber and other lattice-based
algorithms is polynomial multiplication. Our design goal is to minimize resource
utilization of this operation, which comes at the expense of clock cycles.

We developed a flexible schoolbook multiplier and accumulation unit Poly-
MAC with a configurable rolling factor ROLL, which can be set at synthesis
time. We define a multiplier with ROLL = 1 as a multiplier capable of per-
forming n coefficient multiplications simultaneously. Here, n is the number of
coefficients in a polynomial which is equal to 256 in Saber. Our multiplier multi-
plies n/ROLL coefficients in one clock cycle, and it needs n ·ROLL clock cycles
to perform the multiplication of two polynomials. Furthermore, it needs roughly
2n clock cycles for input and output. This configuration allows us to have a
performance-area trade-off yielding a highly flexible design.
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Fig. 1. Lightweight Saber datapath

The PolyMAC unit is shown in Fig. 2 and it operates as follows. The multi-
plier receives the first polynomial poly1 via the di port and stores it internally
in a two-dimensional circular input buffer as shown in the left part of Fig. 2. The
coefficients of poly1 are organized into columns that can rotate from left to right.
PolyMAC then receives the second polynomial poly2 one coefficient at a time via
the di port and multiplies it by all coefficients of poly1. To do the multiplication
by all coefficients of poly1, the right-most column of the input buffer is multiplied
by the current poly2 coefficient, and the result is stored in the left-most columns
of the 2D circular output buffer (shown to the right of the MAC units). The
columns of the input and output buffer rotate until all coefficients of poly1 have
been multiplied. The multiplier then pulls the next coefficient of poly2 until all
coefficients are consumed. The result of the polynomial multiplication is stored
internally, and the multiplier is ready to output the result or accept another two
polynomials to multiply and accumulate to the previous result. This is useful to
implement vector-by-vector multiplication. After any multiplication, the result
can be cleared using a control signal.

The other polynomial arithmetic operation in Saber is polynomial subtrac-
tion. This operation is much less time-intensive and has a small effect on the
overall execution time of the algorithm. To implement this operation, we devel-
oped the PolySub unit shown in Fig. 3. PolySub instantiates a single subtractor
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Fig. 2. Configurable schoolbook polynomial multiplier. Input circular buffer high-
lighted in green and output circular buffer highlighted in blue (Color figure online)

capable of subtracting two coefficients at a time. This unit is purely combi-
national. However, we use control signals for handshaking to make sure that
the unit consumes two coefficients from the source before providing the corre-
sponding coefficient of the result at the output. Constants h1 and h2 are added
using a simple adder at the output of the PolyMAC unit, capable of adding two
coefficients together in one clock cycle.

5.2 SHA3 Unit

We have developed a flexible SHA-3 unit that can be configured to process a con-
figurable number of state slices to provide performance/area trade-off. Addition-
ally, the IO width of the module is configurable. The core user can select between
SHA3-256, SHA3-512, and SHAKE128 functions using a command word. All of
these functions are required by Saber. This core has been written in Chisel to
exploit its capability to generate highly configurable hardware.
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Fig. 3. Polynomial subtractor

5.3 CBD Sampler

Saber.KEM.Decaps uses Centered Binomial Distribution (CBD) to sample the
polynomial vector s

′
. To generate one binomial sample, our sampler takes two

μ/2 bit-wide uniform samples x and y and calculates the CBD sample as
HW (x)−HW (y), where HW (.) is the Hamming weight function. Figure 4 shows
the sampler unit. It receives 64 bits of uniform randomness generated by SHA-3
and converts it into eight binomial samples in two clock cycles.

5.4 Width Converter Unit

Saber uses many polynomial coefficient sizes. For example, Saber uses polynomi-
als with coefficient sizes of eq, ep, and eT , which are equal to 13, 10, and 4 bits,
respectively. To avoid designing separate packing and unpacking units for each
size, we developed a flexible width converter with arbitrary input and output
width. This unit is essentially an asymmetric FIFO. In Fig. 1, width converters
are labeled conv(WI,WO), where WI and WO are the input width and output
width (in bits), respectively.

Figure 5 shows the internal structure of this unit. We use asymmetric RAM
to briefly store the input data and allow it to be read via the output port.
Control logic is needed to keep track of pointers to locations for the next read
and write and the number of bits stored in the width converter. Utilizing such a
unit simplifies data packing and unpacking since the central controller delegates
this task to the width converters and only enables the proper width converters
for the current transaction. At the inputs of polynomial arithmetic units, we
instantiated width converters to convert from memory width to the coefficient
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Fig. 4. CBD sampler

sizes processed by the unit. At the output, we instantiate width converters to
pack the data into the memory words on the fly.

5.5 Other Units

The ciphertext verification is done using a comparator that compares two mem-
ory locations in two clock cycles. If the contents of the two locations are not
equal, we set a flag to indicate the inequality. Regardless of the comparison out-
come, we go through all the ciphertext c and the re-encryption ciphertext c′

to ensure that our implementation runs in constant time, which is necessary to
resist timing attacks. The left-shift operations, which are used for rounding, are
free in hardware.

6 Masked Saber Implementation

Contrary to encapsulation, the decapsulation process utilizes the long-term pri-
vate key, which makes it vulnerable to side-channel analysis. We implement
a masked full hardware implementation of Saber.KEM.Decaps based on our
lightweight hardware design. We adapt general ideas presented in [4] for hard-
ware. The data flow of our masked Saber.KEM.Decaps is shown in Fig. 6. All
operations that are dependent on the private key are highlighted in grey. SCA
attacks could target any intermediate value processed in these units.

Polynomial multiplication of an unshared polynomial by a shared polynomial
is a linear operation when utilizing arithmetic masking. Hence, multiplication
can be done by performing it for each share separately.
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Fig. 5. Width converter

Figure 7 depicts the datapath of our masked Saber design. We highlight oper-
ations that can be done separately for each of the two shares in green and blue.
Hashing using SHA-3, CBD sampling, and rounding include non-linear opera-
tions, and both shares mix at some stage in these operations. We highlight these
units in red. Eventually, these units produce two shares of data that can be
safely consumed in destination domains. In Fig. 7, data generally flows from the
two memories inward through linear polynomial arithmetic units, then through
non-linear rounding units in the center of the figure, and back to main memo-
ries. Also, data can flow from the memories to the SHA-3/Sampling units in the
middle of the figure and back to memory.

The linear units in the masked design are the same units used in the baseline
design. We duplicated these units for each of the two shares. However, non-linear
units were re-implemented. We perform constant addition of h1 and h2 constants
to one of the shares only.

In the following subsections, we describe the hardware implementation of the
primary units of the protected design in detail.

6.1 Polynomial Arithmetic Units

Polynomial multiplication is done using the approach used previously by Reparaz
et al. in [16]. Since polynomial multiplication is linear for arithmetic masking,
secret polynomials are split into two arithmetic shares (coefficient-wise). For a
polynomial s, two polynomials s0 and s1 are generated such that s = s0 + s1.
Now, multiplication of the shared version of s by another unshared polynomial
w is performed as w∗s0+w∗s1. Polynomial addition/subtraction of an unshared
polynomial is performed on only one share.
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Fig. 6. Masked Saber decapsulation data flow [4]

6.2 SHA3 Unit

We utilize Domain-Oriented Masking (DOM) [11] to develop a first-order pro-
tected implementation of our SHA3 core based on [3]. As the input of the Keccak
core comes from a uniformly random distribution, we can use uncorrelated state
bits to provide for the randomness required for the non-linear χ operation [3].

6.3 CBD Sampler

As shown in Fig. 6, the CBD sampler in Saber must be protected against SCA.
This sampler should securely compute a CBD sample as the difference between
the Hamming weights of two uniform samples x and y as discussed previously.

The masked sampler takes Boolean shares from SHAKE as input. However,
the subsequent operations (i.e., polynomial multiplication) use arithmetic shares.

We implemented a masked CBD sampler per Algorithm 4 which was intro-
duced by Schneider et al. [17]. x and y are two μ-bit numbers in Boolean shar-
ing representation. The output A is an arithmetic sharing representation of
HW (x) − HW (y), i.e.,

∑
Ai = HW (x) − HW (y). This task is accomplished

by converting one bit at a time of x and y from Boolean to arithmetic repre-
sentation. The generated arithmetic shares are added to compute the Hamming
weight of x and y, and finally, a subtraction is performed to compute the bino-
mial sample.

We utilized Goubin’s method [10] for Boolean-to-Arithmetic conversion B2A.
In this conversion, x = xp ⊕ r is converted to arithmetic masking in the form
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Algorithm 4. SecSampler1 [17]
Require: x = (xi)1≤i≤n ∈ F2µ ,y = (yi)1≤i≤n ∈ F2µ , such that

⊕
i xi = x and⊕

i yi = y
Ensure: A = (Ai)1≤i≤n ∈ Fq such that

∑
i Ai = HW (x) − HW (y) mod q

1: (Ai)1≤i≤n ← 0
2: for i = 0 to μ − 1 do
3: (Ai)1≤i≤n ← 0
4: B ← B2A((x >> i ∧ 1))
5: C ← B2A((y >> i ∧ 1))
6: A ← A + B mod q
7: A ← A − C mod q
8: end for

Fig. 8. Masked CBD sampler
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x = A + r mod 2K where K ≥ 1. In this method, the share r is kept as is and
A is calculated from the Boolean shares and a random value γ as follows:

A = [(x′ ⊕ γ) − γ] ⊕ x′ ⊕ [(x′ ⊕ (r ⊕ γ)) − (r ⊕ γ)] (1)

Goubin’s B2A conversion is efficient and lightweight. Additionally, it works
a power-of-two modulus, which makes it suitable for Saber. We used synchro-
nization registers to prevent mixing intermediates that depend on both Boolean
shares in our hardware implementation.

The SW/HW design in [8] uses B2A and A2B conversion algorithms from [6].
Both algorithms utilize secure addition over Boolean shares. This enables them to
use the same adder to accelerate both operations. In our case, since the sampler
is a standalone module, we chose to use Goubin’s method since it is suitable for
our lightweight design.

Figure 8 depicts our hardware implementation of the CBD sampler. In this
figure, we omit control signals and randomness distribution for simplicity. The
sampler can work on NS (number of samples) CBD samples at a time. We
instantiate NS B2A converters to convert bits from x and a similar number of
converters to convert bits from y. The converted shares are then accumulated
into registers A0 1 to A0 NS and A1 1 to A1 NS. Eventually, these samples
are sent to the output using parallel-in-serial-out (PISO).

6.4 Masked Logical Shifting

In Saber, noise is introduced into MLWR samples by truncating LSB bits. This
operation is free in unprotected hardware. However, in the masked implemen-
tation of Saber, this is not as straightforward. This is because the input to
this operation consists of arithmetic shares produced by polynomial arithmetic
units. However, the logical shift is a Boolean operation. The most straightfor-
ward solution to this issue is applying A2B conversion, performing the logic
shift on Boolean shares, and using B2A conversion to convert the shares back to
arithmetic shares. Many algorithms for B2A and A2B conversion exist. Goubin’s
B2A conversion [10] is efficient. However, the A2B algorithm proposed in [10] is
not as efficient. Coron proposed a table-based method for A2B conversion that
can be more efficient than Goubin’s method in some cases [5]. A bug in Coron’s
A2B algorithm was later fixed by Debraiz in [7].

Since the LSB bits are discarded in Saber, it is not efficient to perform all the
calculations to convert them into Boolean. The authors of [4] exploited this fact
to produce an efficient masked logic shift unit based on [5] and [7]. The authors
call this algorithm A2A since it accepts and produces arithmetic shares. This
algorithm, adapted from [4] is listed in Algorithm 5.

The A2A logical shift algorithm accepts (A,R) such that x = A + R
mod sm+n·k and returns (A,R) such that x >> (n · k) = A + R mod 2m,
which is the shifted version of x in arithmetic shares. The shifts in Saber are
>> 9, >> 6 and >> 3. Our hardware implementation of the A2A algorithm
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is shown in Fig. 9. We use registers to store the values of the algorithm inter-
mediates. Since the algorithm requires various synchronization stages, we use
registers to stop glitch propagation in hardware. We adopt the (m,n, k) values
used in [4]. Specifically we set (m,n, k) = (1, 3, 3), (4, 2, 3) and (10, 1, 3) for the
�9,�6 and �3 shifts, respectively. The operation of this module is as follows:
first, the module is initialized and it pre-computes the value Γ and the table T.
The hardware to compute this step is not shown in Fig. 9 for simplicity. Once
the module is initialized, it can accept the shares (A,R), and return the shifted
version in arithmetic shares via the Aout and Rout ports.

7 Leakage Assessment

We performed a non-specific fixed-vs-random Test Vector Leakage Assessment
(TVLA) [9] to test the first-order leakage of the design. We instantiated the
design-under-test (DUT) in the NewAE CW305 target board, which is an Artix-
7-based board. The DUT power consumption is measured at the output of the
CW305’s onboard amplifier, which amplifies the voltage drop across the onboard
0.1Ω resistor. The DUT was clocked at 12.5 MHz, and a USB3-based oscilloscope
(Picoscope 5000) was used to collect traces at a sampling rate of 125 MS/s, and 8-
bit sample resolution. We utilized the Flexible Opensource workBench fOr Side-
channel analysis (FOBOS) [1] platform to control test-vector communication
and trace capture from the oscilloscope. The fixed test vectors are formed by
generating fresh sharing of a fixed private key, and the random test vectors are
generated using a completely random private key. In both cases, the rest of the
test vector consists of fixed ciphertext and public key.

To validate our experimental setup, we performed a TVLA test with the
PRNG output set to zero. This disables the countermeasures since they depend
on randomness generated from the PRNG. The result of this test is shown in
Fig. 10. As expected, significant leakage is detected. This can be observed even
at 2,000 traces.

To test the protected version, we enabled the PRNG to activate the counter-
measures. The TVLA result after analyzing 100,000 traces is shown in Fig. 11.
The right-most spike is related to comparing the hash of the input ciphertext
and the ciphertext generated by the re-encryption process. This leakage does not
provide any useful side-channel information to an attacker, as discussed in [4].
All other points in the TVLA result are below the threshold, indicating that our
countermeasures are effective.

Although the protected version shows significant leakage reduction, it can
still be vulnerable to fault attacks as well as profiling and deep learning-based
attacks such as [13,14]. We leave protection against these attacks for future work.
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Fig. 9. A2A logical shift unit

Algorithm 5. A2A Logical Shift [4]
Require: (A, R) such that x = A + R mod 2m+n·k, T, r, γ
Ensure: (A, R) such that x >> (n · k) = A + R mod 2m

/*Let A = (Ah||Al), R = (Rh, Rl) where Al, Rl the k LSB bits.*/
1: Γ ← ∑n

i=1 2i·k · γ mod 2m+n·k

2: P ← ∑n−1
i=0 2i·k · r mod 2m+n·k

3: A ← A − P mod 2m+n·k

4: A ← A − Γ mod 2m+n·k

5: for i = 0 to n − 1 do
6: A ← A + Rl mod 2m+(n−i)·k

7: Ah ← Ah + T [Al] mod 2m+(n−i−1)·k

8: A ← Ah

9: R ← Rh

10: end for
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Fig. 10. TVLA result with PRNG disabled (2,000 traces)

Fig. 11. TVLA result with PRNG enabled (100,000 traces)

8 Results and Comparison

To quantify the cost and performance of our baseline and masked Saber designs,
we benchmark them on Xilinx Artix-7 FPGA. Resource utilization in terms of
lookup tables (LUTs), flip-flops (FFs), and the number of DSP units is provided.
We also provide latency information in clock cycles, maximum frequency, and
encapsulation and decapsulation time. These information are shown in Tables 1
and 2.

Saber-r8 refers to our baseline design with PolyMAC rolling factor, ROLL,
set to 8, so it can perform n/8 = 32 coefficient multiplications in one clock cycle.
This is the variant that we report in Tables 1 and 2. Saber-r8 has a low area
footprint and requires only 6,713 LUTs and 32 DSPs. On the other hand, Saber-
r8-masked, the corresponding masked design, uses 19,299 LUTs and 64 DSPs.
That is 2.9× more LUTs and exactly 2× more DSP units compared to the
baseline unprotected variant. Since our baseline design has a small footprint, we
decided to duplicate the logic and process shares simultaneously in the masked
design. Another option is to use the same hardware resources and process the
shares sequentially at the expense of latency. The protected design needs twice
as many DSP units because it uses two PolyMAC units, the only unit that uses
DSPs.

Our masked design performs decapsulation in 576 µs, assuming keys are
already loaded. This is 1.36× the baseline unprotected variant.

To evaluate how our designs compare to previously reported masked imple-
mentations of Saber on various platforms, we summarize all results in Table 1
and 2.

In [4], the authors report a masked software implementation of
Saber.KEM.Decaps and benchmarking results on STM32F407-DISCOVERY
board featuring an ARM Cortex-M4 processor. The decapsulation time reported
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is 2,833,348 clock cycles, 2.52× more than the unprotected decapsulation. For
software implementations, it is usual to report cycle count. Execution time can
be calculated after knowing the processor clock speed. However, in hardware, the
critical path of the design influences the final results, so reporting cycle count
and the maximum frequency is helpful. Assuming that the masked software
decapsulation in [4] runs at 168 MHz, which is the clock frequency used in the
STM32F407-DISCOVERY board, protected decapsulation will take 16,865µs.
In this case, our hardware implementation can provide a speedup of 29×.

The SW/HW design reported in [8] is based on an open-source RISC-V imple-
mentation augmented with accelerators and instruction-set extensions that can
support Saber and Kyber. The accelerators are used to speed up hashing, bino-
mial sampling, polynomial multiplication, Arithmetic-to-Boolean (A2B), and
Boolean-to-Arithmetic (B2A) operations. The authors report 2.63× performance
overhead for Saber decapsulation compared to unprotected implementations. In
Table 2, we list resource utilization of this SW/HW design. It uses block RAM
(BRAMs) while our design does not. However, our designs use more DSP units.
In terms of decapsulation time, the protected SW/HW design needs 15,398µs
when run at the reported maximum frequency of 58.8 MHz. Consequently, our
full hardware design, Saber-r8-masked, provides a speedup of 26×.

A breakdown of component area (in LUTs) for Saber-r8 and Saber-r8-masked
is depicted in Fig. 12. The combinations of SHA3, PolyMAC, and main mem-
ory utilize 88% and 61% for baseline and masked variants, respectively. Width
converters that perform packing and unpacking occupy around 7% and 5%
in the baseline and masked variants, respectively. In Saber-r8, other compo-
nents include CBD sampler, PolySub, control logic, and other units. These units
account for only 4.7%. On the other hand, in Saber-r8-masked, the CBD sam-
pler requires 21% of the LUTs, and other components need 13%. This breakdown
shows that further area improvements of both masked and baseline variants will
benefit from more area-efficient SHA3 and polynomial multiplication units. A
smaller CBD sampler will improve resource utilization of the masked variant.

(a) Baseline Saber-r8 (b) Masked Saber-r8

Fig. 12. Resource utilization per unit
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Table 1. Comparison between masked Saber implementations in the literature and
designs in this work. Notation: U - unprotected, P - protected.

Type Platform Protection Freq MHz

This work HW FPGA-Artix7 U 125

125

P 125

[4] SW ARM Cortex-M4 U 168

P 168

[8] SW/HW RISC-V+ Acc. U 62.5

62.5

P 58.8

Table 2. Comparison between resource utilization and latency of masked Saber imple-
mentations in the literature and in this work. Notation: U - unprotected, P - protected.

Protection Resource utilization Latency

LUTs FFs Slices DSPs BRAMs Operation Cycles us Ratio

This work U 6,713 7,363 2,631 32 0 Encaps 46,705 373.1 -

Decaps 52,758 422.1 1.00

P 19,299 21,977 7,036 64 0 Decaps 72,005 576.0 1.36

[4] U - - - - - Decaps 1,123,280 6,686.2 1.00

P Decaps 2,833,348 16,865.2 2.52

[8] U 20,697 11,833 6,852 13 36.5 Encaps 308,430 4,934.9 -

Decaps 347,323 5,557.2 1.00

P 29,889 17,152 9,641 13 52.5 Decaps 905,395 15,397.9 2.77

9 Conclusions and Future Work

In this work, we report an SCA-resistant hardware implementation of Saber.
We have started with a baseline lightweight hardware design and applied side-
channel countermeasures to resist DPA attacks. Our masked hardware imple-
mentation offers 29× and 26× speedup over previously reported protected soft-
ware and software/hardware co-design implementations, respectively. Also, our
design occupies around 2.9× the number of LUTs and requires 1.4× the latency
compared to our baseline design when benchmarked on modern FPGAs. Interest-
ing future work includes investigating resistance against fault and deep learning-
based attacks. Reducing resource utilization and improving the performance of
hardware implementations of Saber and other finalists in the NIST PQC stan-
dardization process will also be helpful.
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Abstract. Threshold Implementations have become a popular generic
technique to construct circuits resilient against power analysis attacks.
In this paper, we look to devise efficient threshold circuits for the light-
weight block cipher family SKINNY. The only threshold circuits for this
family are those proposed by its designers who decomposed the 8-bit
S-box into four quadratic S-boxes, and constructed a 3-share byte-serial
threshold circuit that executes the substitution layer over four cycles. In
particular, we revisit the algebraic structure of the S-box and prove that
it is possible to decompose it into (a) three quadratic S-boxes and (b)
two cubic S-boxes. Such decompositions allow us to construct threshold
circuits that require three shares and executes each round function in
three cycles instead of four, and similarly circuits that use four shares
requiring two cycles per round. Our constructions significantly reduce
latency and energy consumption per encryption operation. Notably, to
validate our designs, we synthesize our circuits on standard CMOS cell
libraries to evaluate performance, and we conduct leakage detection via
statistical tests on power traces on FPGA platforms to assess security.
(For reproducibility’s sake, we provide a public repository containing
the source code to all proposed schemes together with a script to run the
SILVER verification suite [8].)

Keywords: DPA · Masking · SKINNY · Threshold Implementation

1 Introduction

Side-channel attacks have been widely successful at efficiently attacking imple-
mentations of cryptosystems. Power analysis has been particularly effective in
part due to the relatively low cost of the requisite equipment. In differential
power analysis [17] (DPA) and its generalizations [6,18], an attacker observes
the power consumption of a cryptographic primitive over time and applies sta-
tistical analysis to infer the underlying secret key. An attacker can perform a d-th
order attack, e.g., by probing up to d internal wires of the circuit at once [15].
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In an attempt to mitigate the damaging effects of side-channel attacks, the
development of countermeasures has proliferated. Masking is one such approach
which uses secret sharing to randomize input and intermediate values within
a circuit. To standardise the error-prone and often ad-hoc process of designing
secure masked circuits, Threshold Implementations (TI) were introduced which
provide provable security with respect to side-channel attacks [4,10,20]. When
implemented in hardware, a TI is secure even in the presence of glitches, an
inherent side effect not considered in earlier schemes [15].

A correct TI must satisfy so-called non-completeness and uniformity to
ensure security. Satisfying these properties for linear components of a given
circuit is relatively straight-forward. Non-linear components are less trivial; a
t-degree function must be split into at least (td + 1) coordinate functions in
the canonical higher-order TI [4] to provide d-th order security guarantees.
Approaches to reduce this complexity like adding additional randomness exist [3],
but there is an inherent trade-off between area, randomness requirements and
latency when designing a TI of a given circuit. Unsurprisingly, TI schemes for
AES and Keccak have enjoyed the most attention the literature. Recent works
include [25,27,29] and [1,28] respectively.

1.1 SKINNY

SKINNY is a lightweight family of tweakable block ciphers designed by Beierle et
al. [2]. The cipher performs extremely well on both software and hardware plat-
forms, and is the core encryption primitive used in the authenticated encryption
scheme Romulus [14] which is a finalist in the NIST lightweight cryptography
competition [26]. Moreover, a criterion for the competition is the efficiency of
protected circuit implementations. In the 64-bit block size versions of SKINNY,
the underlying S-box defined over four bits. Designing Threshold Implementa-
tions for 4-bit S-boxes is a well-studied problem [5], and so in this work we focus
on the 128-bit block size versions of SKINNY which use an 8-bit S-box, hereafter
denoted by S.

S is very lightweight and uses only sixteen cross-connected two-input logic
gates. Using the fact that S can be decomposed in the form I ◦ H ◦ G ◦ F
(hereafter denoted by S2222

1) where each sub-function is quadratic, the designers
of SKINNY proposed a first-order TI of SKINNY using a byte-serial circuit.
However, when this decomposition is used to construct a TI of a round-based
circuit, a single S-box layer takes four cycles to execute. This increases the latency
and hence energy consumption per encryption operation in the circuit, as was
shown in [7].

1.2 Contributions and Organization

In this paper, we take a closer look at first-order Threshold Implementations of
the 8-bit substitution box of round-based SKINNY instantiations. As previously
1 Note that throughout this paper we use the notation Si1...ik to denote decompositions

of the same S-box S into k component S-boxes of algebraic degrees i1 . . . ik.
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mentioned, the only in-depth analysis and indeed proposal of such a masked
circuit is that of S2222 which appeared in the design paper [2] for the byte-serial
variant of SKINNY. This 3-share scheme is likely the optimal choice for a first-
order secure realization in the byte-serial setting when it comes to area, latency
and power/energy consumption. However, for round-based circuits, this assertion
does not hold true anymore. In fact, we propose two novel decompositions that
eclipse the existing variant in both latency, power and energy consumption with-
out significantly increasing the circuit area. More specifically, our contributions
are summarized as follows:

1. We devise an approach that exploits the simple 4 × 4 cross-connected struc-
ture of S and automatizes the search for decompositions and thus Threshold
Implementations.

2. The proposed technique is then used as a gateway to efficiently decompose S
into three quadratic functions S222 = H ◦ G ◦ F that is computed over three
cycles. The resulting 3-share masked circuit exhibits a similar area footprint to
S2222 but cuts the number of required cycles for an encryption by one quarter
and consumes around 30% less energy across different clock frequencies and
cell libraries.

3. In a second step, by extending the previous technique, we propose a decom-
position of S into two cubic functions S33 = G ◦ F that is thus computed in
two cycles. The corresponding 4-share TI halves the number of encryption
cycles and consumes 30% less energy while moderately increasing the circuit
area relative to S2222. We emphasise that neither of the above circuits require
additional randomness beyond the initial plaintext masking.

4. We provide an extensive suite of synthesis measurements on both ASIC and
FPGA targets for all investigated schemes showcasing the advantages of both
S222 and S33.

5. The proposed schemes are proven sound via the SILVER verification frame-
work [16] that performs its analysis on ASIC netlists, which in our case are
generated by the NanGate 45 nm standard cell library. In addition, we per-
form practical leakage assessments using the TVLA methodology [12,24] by
taking power traces on FPGA targets.

The paper unfolds as follows: Sect. 2 reiterates some preliminaries regarding
masking and Threshold Implementations. Subsequently in Sect. 3, we detail the
derivation of S222 and S33. Synthesis results are given in Sect. 4 and leakage
assessment is performed in Sect. 5. Finally, we conclude in Sect. 6.

2 Preliminaries

Masked hardware implementations of cryptographic algorithms use the secret
sharing methodology in which key-related, intermediate values xi are split into
s independent shares xi,0, xi,1, . . . , xi,s−1 such that

∑s−1
j=0 xi,j = xi. In practice,

sharing variables implies that each function f(xn−1, . . . , x0) = z within an algo-
rithm needs to be decomposed into functions fi(·) = zi adhering to the same
correctness requirement

∑s−1
i=0 fi = f .
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In the following, we assume that an attacker is capable of probing individual
wires of a circuit and can extract their intermediate values during the computa-
tion [15]. More specifically, we consider d-th order security, where information of
any d wires can be gathered and processed. Different d-th order security prop-
erties can be defined and satisfied by a given design [9], the most natural being
d-probing security which is satisfied given that any observation made on up to d
wires is statistically independent of the secret [15]. Security properties are further
considered with respect to a leakage model. Two such models of interest are the
standard model, where a circuit without any glitching or unintended behaviour is
assumed, and the glitch-robust model [10,11] which accounts for such behaviour.
Hereafter, we say that a masked implementation in a given leakage model is
d-th order secure if it is d-probing secure. There is a correspondence between
d-probing security and security against d-th order differential power analysis
(hereafter DPA), where the latter is implied by d-th glitch-robust probing secu-
rity [3].

Threshold Implementation. The task of designing d-th order secure mask-
ing schemes has spawned various approaches, of which Threshold Implementa-
tions have crystallized themselves as one of the most adopted strategies. First
introduced by Nikova et al. [4,19] Threshold Implementations provide some d-
th order security guarantees against DPA in the presence of hardware glitches
that are inherent to any CMOS circuit. We note that higher-order TI as defined
below does not necessarily ensure d-th order security without additional mea-
sures [22,23]. Nonetheless, in the first-order setting, our setting of interest in this
work, a first-order Threshold Implementation achieves first-order security in the
glitch-robust model [10].

The decomposition of an n-variable Boolean function f(xn−1, . . . , x0) = z

into a set of s functions f0, . . . , fs−1 such that
∑s−1

i=0 fi = f is a d-th order
Threshold Implementation if and only if the following conditions are met:

1. Non-Completeness. The functions f0, . . . , fs−1 are d-th order non-complete,
if any combination of at most d functions is independent of at least one input
share.

2. Uniformity. For all x such that f(x) = z, the input masking is said to be
uniform if each set of valid input shares of x (i.e., those sum to x) have
equal probability of occurring. If this holds, the shared implementation of f
is said to be uniform if each valid output share also have equal probability of
occurring.

The number of input shares sin respectively output shares sout required to
achieve a non-complete and uniform sharing of a function of algebraic degree t
is given by the below bounds [4]:

sin ≥ td + 1, sout ≥
(

td + 1
t

)

.

Note that a first-order TI of a quadratic function can thus be obtained with
sin = sout = 3. In this work, we will bootstrap the sharing of an arbitrary
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quadratic function via the canonical direct sharing of the function f(x2, x1, x0) =
x0 + x1x2, i.e.,

f0 = x0,1 + x1,1x2,1 + x1,1x2,2 + x1,2x2,1

f1 = x0,2 + x1,0x2,0 + x1,2x2,0 + x1,0x2,2

f2 = x0,0 + x1,0x2,0 + x1,1x2,0 + x1,0x2,1.

We use an analogous direct sharing for cubic terms.

2.1 SKINNY-128 Substitution Box

As Threshold Implementations of linear functions are obtained by simple decom-
positions, the crux lies in finding efficient sharings for non-linear mappings. In
our case, this involves the 8-bit substitution box of the 128-bit block size vari-
ants of SKINNY with different tweakey sizes which we denote by SKINNY-128,
SKINNY-256 and SKINNY-384 given by the iterative mapping

Π ′ ◦ T ◦ [Π ◦ T ]3 (x7, x6, x5, x4, x3, x2, x1, x0) = (z7, z6, z5, z4, z3, z2, z1, z0),

composed of a transformation T and two bitwise permutations Π, Π ′ such that

T (x7, . . . , x1, x0) = (x7, x6, x5, x4 + (x7
−∨ x6), x3, x2, x1, x0 + (x3

−∨ x2))
Π(x7, . . . , x1, x0) = (x2, x1, x7, x6, x4, x0, x3, x5)
Π ′(x7, . . . , x1, x0) = (x7, x6, x5, x4, x3, x1, x2, x0).

Here, −∨ denotes the logical NOR gate, i.e., x −∨ y = xy + x + y + 1. A graphical
depiction of the 8-bit S-box circuit is given in Fig. 1a. Note that the highest
algebraic degree of six is reached in output term z0. The full expression of each
term is given in Appendix A.

3 Partitioning the S-Box S

In [21], the authors showed how to decompose the S-box SP of the PRESENT
block cipher into two quadratic S-boxes F , G such that SP = G◦F . This enabled
the authors to construct a 3-share TI of PRESENT by constructing Threshold
Implementations of F and G separately with a register bank in between which
suppresses and thus prevents the glitches produced by the F layer from propa-
gating to the G layer. This however means that every evaluation of the shared
S-box requires two cycles to complete. However, this is compensated by the fact
that the construction requires only three shares and thus the total silicon area
required for the circuit is minimal. The approach used by the authors to obtain
the decomposition can be summarized as follows:

1. Evaluate all quartets of 4-bit vectorial Boolean functions f0, f1, f2, f3 such
that all the fi’s are quadratic. There are 211 quadratic functions in 4 bits and
so a total of 244 such quartets are possible.
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Fig. 1. (a) Definition of the 8-bit SKINNY-128 substitution box given the transforma-
tion T and two permutations Π, Π ′. (b) TI decomposition proposed in [2] using four
quadratic functions F , G, H and I.

2. Of the above list only filter for the quartets such that the function F :
{0, 1}4 → {0, 1}4 with F (x0, x1, x2, x3) = (f0, f1, f2, f3) is a bijective S-box.

3. For all such F check if G = SP ◦ F−1 is also a quadratic S-box. If so, output
the pair of S-boxes (G,F ).

It was later shown in [5] that SP belongs to the affine equivalence class C266 of
4-bit S-boxes. All S-boxes in this class allows decomposition into two quadratic S-
boxes. The above approach can not be extended to 8-bit S-boxes even considering
the authors’ suggested optimisations. To begin with there are 237 quadratic
functions over 8 bits, and therefore the number of octets of the form f0, f1, . . . , f7
will be 237×8 = 2296.

3.1 The Techniques

As done with PRESENT our goal lies in finding decompositions of the 8-bit
SKINNY S-box S that allow for efficient Threshold Implementations in terms of
circuit area, latency and energy consumption. In turn, this implies finding an
appropriate balance between the number of shares, coordinate functions, and
their degrees and gate complexity. To obtain a similar decomposition of S let us
first state the following definitions:

Definition 1 (i-representable). A Boolean function B has AND-complexity
n, if its circuit can be constructed with a total of n 2-input AND gates or fewer.
Its AND-depth is i (or equivalently it is i-representable) if there exists a circuit
in which the AND gates can be arranged in i distinct levels in the following
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Fig. 2. (a) S232 = H ◦G◦F decomposition with deg(F ) = deg(H) = 2 and deg(G) = 3.
(b) S24 = G ◦ F decomposition with deg(F ) = 2 and deg(G) = 4. We later introduce
the terminology SBlue and SRed to denote F, G respectively in (b). (Color figure online)

sense: all quadratic functions are 1-representable of some order, and a function
Bi is i-representable if it can be expressed as Bi = Q(t0, t1, . . . , tm−1) where Q
is quadratic and the functions t0, t1, . . . , tm−1 are each k-representable of some
order for k ≤ (i − 1). B is i-representable of order n if there exists a circuit
which constructs it with AND-depth i and AND-complexity n.

Thus a function which is i-representable of order n can be necessarily imple-
mented by n or a smaller number of 2-input AND gates (connected such that
the total AND-depth is at most i) along with other linear gates. Thus all four
coordinate functions of SP are 2-representable of some fixed order, which allows
a 3-share TI over two clock cycles.

Regarding S, the eight output functions z0, z1, . . . , z7 are of different algebraic
degrees. z2, z3, z5, z6 are themselves quadratic and their algebraic expressions
contain only one quadratic term and hence are 1-representable of order one.
z4, z7 have algebraic degree four: the fact that z7 is 2-representable of order
three can be easily deduced from Fig. 3a: the paths from the input bits to the z7
node go through exactly three NOR gates arranged so that the depth is two. We
have z4 = z7

−∨ z6 + x3. Hence z4 is at most 3-representable (in fact we will later
prove that it is 2-representable too). z0 and z1 have algebraic degree six and five
respectively: they can not be 2-representable since the set of all 2-representable
functions contains members of degree four or less.
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3.2 Exhaustive Partition Search

As mentioned, the byte-serial scheme presented in the SKINNY design paper [2],
and later adapted to round-based setting in [7], considers a three-share decom-
position into four functions of degree two which we denote by S2222. As a conse-
quence, the S-box operation is performed in a pipelined fashion over four clock
cycles which incurs a large latency thus energy penalty, i.e., a single encryption
of a plaintext takes four times the number of rounds when implemented as a
round-based circuit.

Since z0 and z1 are not 2-representable, the decomposition of S into quadratic
S-boxes Fi ◦ Fi−1 ◦ · · · ◦ F1 is not possible for i ≤ 2. Consequently, we aim to
decompose every coordinate Boolean function of S into 3-representable functions
of low order. Given that S can be realized in only 16 logical two-input gates, a
natural approach to obtain efficient decompositions is by partitioning the circuit
into connected sub-circuits. For example, the S2222 decomposition corresponds
to making three horizontal cuts after each row of gates. The number of possible
partitions of 16 gates into n sets is n16, however among those, only a small
fraction of those partitions respect functional correctness. Hence, if n = 3, it is
feasible to enumerate all correct partitions. Although this procedure does not
admit a 3-representable decomposition of each coordinate function, we found
many decompositions of the form S = H ◦ G ◦ F where deg(F ) = deg(H) = 2
and deg(G) = 3. One such example denoted by S232 is shown in Fig. 2a.

3.3 A Deeper Dive

As noted above, all coordinate functions of S except z0 and z1 are 3-representable.
If we can argue that z0 and z1 are also 3-representable, then it becomes straight-
forward to decompose S into three quadratic S-boxes. z1 is clearly 3-representable
of order five as can be deduced from Fig. 3b. The set of all paths from the input
bits to z1 traverses exactly five NOR gates arranged in three levels and so the
result follows (they are marked in red in Fig. 3b).

z0 is of algebraic degree 6 and from Fig. 1 it is at least 4-representable of
order 7. This is because all but one of the 8 NOR gates are used to produce the
z0 bit and they are clearly arranged in 4 levels. However the question is: Is z0
also 3-representable of a suitable low order? If yes, a 3-share first-order TI which
evaluates the S-box in only three cycles is possible.

In this part we will show that z0 is indeed 3-representable of order 8. Note
that since the algebraic expression for z0 is very complex, we avoid directly
working with it to prove 3-representability: it would be very difficult to keep
the AND-complexity down to a suitable value. Instead, consider the function
π(x, y, z) = (x−∨ y)+ z, whose algebraic expression is given by xy +x+ y + z +1.
Note that π is completely linear in the last input z. In Fig. 4, π is represented
by a green circular node, and the figure represents the circuit graph for z0. The
figure itself is redrawn by isolating the circuit path for z0 as in Fig. 1, and will
help us prove the 3-representability of z0. Note that Fig. 4 also makes it clear
that z0 is 4-representable of order 7.
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Fig. 3. (a) The path up to z7 is marked in blue. There are 3 NOR gates, whose levels
are marked inside. There is a single NOR gate at level 2, which takes inputs from the
2 other level 1 NOR gates in the first row. (b) The path up to z1 is marked in red.
There are 5 NOR gates, whose levels are marked inside. There is a single NOR gate at
level 3, which takes inputs from the level 2 NOR gate and another level 1 NOR gate
in the second row. (Color figure online)

Lemma 1. It is possible to transform the circuit graph for z0 according to the
transformation (a) → (b) shown in Fig. 5.

Proof. This transformation is easy to prove: consider the nodes labeled in darker
green in Fig. 5a. The output bit e = π(b, x3, x1) is given by the following algebraic
expression:

e = π(b, x3, x1) = π(π(x2, x3, x0), x3, x1)
= π(x2x3 + x2 + x3 + x0 + 1, x3, x1)
= x3(x2x3 + x2 + x3 + x0 + 1) + x3 + (x2x3 + x2 + x3 + x0 + 1) + x1 + 1
= x0x3 + x2x3 + x2 + x0 + x1

= x3(x0 + x2) + (x0 + x2) + x3 + (x1 + x3 + 1) + 1
= π(x0 + x2, x3, x1 + x3 + 1)

Lemma 2. It is possible to transform the circuit graph for z0 according to the
transformation (a) → (b) shown in Fig. 6. Thus, z0 is 3-representable of order
eight.

Proof. The proof for this transformation is slightly more involved. Consider again
the gates labeled in dark green in Fig. 6a. They lie entirely in levels 3 and 4 of
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Fig. 4. Circuit graph for z0. Its AND-complexity is 7 (note the gate π(x2, x3, x0) is
shown twice for a clearer representation). (Color figure online)

the circuit graph, and takes as input the signals d, c, e, x7, x2 and produces z0
as output. The expression can be written as:

z0 = π(f, e, x2) = π(π(d, c, x7), e, x2)
= π(dc + d + c + x7 + 1, e, x2)
= e(dc + d + c + x7 + 1) + e + (dc + d + c + x7 + 1) + x2 + 1
= edc + ed + ec + ex7 + dc + d + c + x7 + x2

= d(ec + e + c + 1) + ec + ex7 + c + x7 + x2

= d(π(e, c, 0)) + (ec + e + c + 1) + d + (d + e + 1 + ex7 + x7 + x2)
= d(π(e, c, 0)) + π(e, c, 0) + d + (ex7 + e + x7 + x2 + 1 + d)

= π

(

π(e, c, 0), d, d + π(e, x7, x2)
)

This completes the proof of the transformation. Figure 6 also proves that z0 can
be constructed with a AND-depth of 3 and so it is 3-representable.

This allows us to decompose the S-box into H ◦ G ◦ F = S222, where F :
{0, 1}8 → {0, 1}8, G : {0, 1}8 → {0, 1}9 and H : {0, 1}9 → {0, 1}8 are each
quadratic S-boxes. The algebraic expressions are as follows:

F (x7, x6, x5, x4, x3, x2, x1, x0) = (u7, u6, u5, u4, u3, u2, u1, u0)
u0 = x4 + x6x7 + x6 + x7 + 1, u1 = x0 + x2x3 + x2 + x3 + 1
u2 = x0x3 + x0 + x1 + x2x3 + x2, u3 = x1x2 + x1 + x2 + x6 + 1
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u4 = x2, u5 = x3, u6 = x5, u7 = x7

G(u7, u6, u5, u4, u3, u2, u1, u0) = (v8, v7, v6, v5, v4, v3, v2, v1, v0)
v0 = u6 + u0u1 + u0 + u1 + 1, v1 = u5 + u6u0 + u6 + u0u1 + u1

v2 = u2u3, v3 = u0, v4 = u1, v5 = u2, v6 = u3,

v7 = u4, v8 = u7

H(v8, v7, v6, v5, v4, v3, v2, v1, v0) = (z7, z6, z5, z4, z3, z2, z1, z0)
z0 = v2v0 + v2 + v5v0 + v8v5 + v6v0 + v6 + v0 + v8 + v7,

z1 = v8 + v0v6 + v0 + v6 + 1,

z2 = v6, z3 = v5, z4 = v1, z5 = v4, z6 = v3, z7 = v0

Note that the additional output bit v2 = u2u3 roughly corresponds to the
π(e, c, 0) node created at level 2, i.e. v2 is the only non-linear term in π(e, c, 0). As
can be seen that this output bit of S2 is constructed by a standalone AND gate,
and correction terms have to be added to construct a 3-input/3-output share
TI of the SKINNY S-box. In the supplementary material [8], we present explicit
algebraic expressions for all 3 shares of the S-boxes F , G and H. While non-
completeness and correctness are easy to argue, we additionally argue uniformity
of our construction too.

Fig. 5. Transformation (a)→(b) of the circuit graph of z0 for Lemma 1. (Color figure
online)
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Fig. 6. Transformation (a)→(b) of the circuit graph of z0 for Lemma 2, proving that
z0 is 3-representable of order 8 (right).(Color figure online)

3.4 Decomposition into Two Cubic S-Boxes

Note that it is straightforward to decompose S into two S-boxes of degree 4
each. For example from S2222 = I ◦ H ◦ G ◦ F , both G ◦ F and I ◦ H are degree
4 S-boxes. A first order TI of degree 4 S-box requires 5 shares. So by using the
above decomposition we can implement a circuit that evaluates the shared S-box
in only 2 clock cycles but requires 5 shares. Suppose we were able to decompose
S into two cubic S-boxes: if this were so then a first order TI would need only
4 shares. Such a circuit would require smaller circuit area and hence consume
less power on account of the reduced number of shares and also consume less
energy to encrypt a plaintext on account of the reduced power consumption.
So in principle it is an interesting exercise to see if this decomposition is at all
possible.

In order to decompose S into two cubic S-boxes, we can again mount an
exhaustive search on all partitions of two sets as done in Sect. 3.3. This procedure
does not yield such a decomposition but many of the form S = G ◦ F where
deg(F ) = 2 and deg(G) = 4 or vice-versa as shown in Fig. 2b. However, we can
follow a similar strategy as in detailed in the previous section. We begin with
the following definition:

Definition 2. A Boolean function B is said to have cubic depth 2, if it can be
expressed as B = C(c1, c2, . . . , cn) where C, c1, c2, . . . , cn are each either cubic
Boolean functions or functions of algebraic degree strictly less than 3. The cubic
order of such a function is said to be i, if the total number cubic terms in the
algebraic expressions of C, c1, c2, . . . , cn combined is i.

Note that lower cubic depth allows us to construct a TI of the given function
lower number of cycles using only 4 shares. Since every cubic term wxy in the
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algebraic expression has to be opened up as (w1 + w2 + w3 + w4)(x1 + x2 + x3 +
x4)(y1 + y2 + y3 + y4) to construct a 4 share TI, a low cubic order will obviously
help make the circuit more lightweight and efficient. It is straightforward to
see that z1, z2, . . . , z7 all have cubic depth 2: z2, z3, z5, z6 are quadratic. z7 has
algebraic degree 4 and we have already seen that it is 2-representable, and so it
automatically follows that its cubic depth is 2 and cubic order is 0. The fact that
z1, z4 also have cubic depth equal to two can be seen in Fig. 2b of the SKINNY
S-box circuit. The part shaded in blue is an 8 × 8 quadratic S-box, call it SBlue
and the part in red is another 8 × 8 S-box of degree 4 (call it SRed). Note we
obviously have S = SRed ◦ SBlue. The algebraic expressions are as follows:

SBlue(x7, x6, x5, x4, x3, x2, x1, x0) = (u7, u6, u5, u4, u3, u2, u1, u0)
u7 = x2, u6 = x3, u5 = x3x2 + x3x0 + x2 + x1 + x0, u4 = x7,

u3 = x6 + x2x1 + x2 + x1 + 1, u2 = x5,

u1 = x3x2 + x3 + x2 + x0 + 1, u0 = x7x6 + x7 + x6 + x4 + 1
SRed(u7, u6, u5, u4, u3, u2, u1, u0) = (z7, z6, z5, z4, z3, z2, z1, z0)

z7 = u2 + u1u0 + u1 + u0 + 1, z6 = u0, z5 = u1

z4 = u6 + u2u0 + u2 + u1u0 + u1, z3 = u5, z2 = u3,

z1 = u4 + u3u2 + u3u1u0 + u3u1 + u3u0 + u2 + u1u0 + u1 + u0,

z0 = u7 + u5u4 + u5u3u2 + u5u3u1u0 + u5u3u1 + u5u3u0 + u5u2

+ u5u1u0 + u5u1 + u5u0 + u5 + u4 + u3u2 + u3u1u0

+ u3u1 + u3u0 + u2 + u1u0 + u1 + u0 + 1

From the expression we can see that z1 as the output of SRed is a cubic function
with only a single cubic term. And since the ui’s are at most quadratic this
follows that the cubic depth of z1 is 2 and its cubic order is 1. Also the expression
for z4 is quadratic in SRed, which proves that not only is its cubic depth 2 and
cubic order 0, but it is also 2-representable. It is elementary to verify that its
AND-complexity is 3.

The only problematic part is proving that z0 also has cubic depth 2 of some
suitably low order, since it is not clear from this decomposition. Note that there
is only one degree 4 term u5u3u1u0 in the expression of z0. Also u5u1 = x3x2x1+
x3x1 +x1+x1x2 +x0x1 is a cubic expression in the xi’s. Therefore, we construct
the following S-box S′

Blue : {0, 1}8 → {0, 1}9 where

S′
Blue(x7, x6, x5, x4, x3, x2, x1, x0) = (u8, u7, u6, u5, u4, u3, u2, u1, u0)

such that u8 = x3x2x1+x3x1+x1+x1x2+x0x1 and the other ui’s are as defined
for SBlue. Correspondingly we define S′

Red : {0, 1}9 → {0, 1}8 where

S′
Red(u8, u7, u6, u5, u4, u3, u2, u1, u0) = (z7, z6, z5, z4, z3, z2, z1, z0)

such that z0 = u7+u5u4+u5u3u2+u8u3u0+u5u3u1+u5u3u0+u5u2+u5u1u0+
u5u1 + u5u0 + u5 + u4 + u3u2 + u3u1u0 + u3u1 + u3u0 + u2 + u1u0 + u1 + u0 + 1
and the other zi’s are as defined for SRed. Since both S′

Blue and S′
Red are cubic
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S-boxes this proves that the cubic depth of z0 is also 2. It is easy to count that
there are 5 cubic terms in the modified expression of z0 and one cubic term in
the expression for u8, which implies that the cubic order of z0 is 6. Since we also
have that S = S′

Red ◦ S′
Blue, this also gives us the cubic decomposition required

to construct a first order TI using 4 input/output shares that can evaluate the
shared S-box in just 2 cycles. In the supplementary material [8], we present
explicit algebraic expressions for all 4 shares of the S-boxes S′

Red,S
′
Blue, where we

additionally argue uniformity of our construction too.

4 Implementation

After decomposing the S-box into quadratic and cubic component functions, we
use the direct sharing approach to obtain the algebraic expressions for each of the
individual shares of the masked S-box. In all cases, except for S2222, correction
terms were required to ensure uniform sharing (all the algebraic expressions for
the individual shares can be found in [8]).

All the investigated schemes in this work have been synthesized on both ASIC
and FPGA platforms. In particular, we used Synopsys Design Vision v2019.03
to synthesize the hardware description into a netlist via the compile ultra
-no autoungroup directive that respects entity boundaries and thus prevents
the optimizer from potentially interfering with the threshold properties of the
circuit. Additionally, the power figures were obtained using back annotation of
the switching activity onto the netlist performed by the Synopsys Power Com-
piler. In order to obtain a comprehensive set of measurements, our circuits were
synthesized using three standard cell libraries of different sizes, namely the low-
leakage TSMC 28 nm and UMC 65 nm libraries and the high-leakage NanGate
45 nm process.

In Table 1, we detail the measurements for the investigated S-box circuits
and note that both in latency and power, S222 as well as S33 eclipse the other
variants. This trend is amplified when the entire SKINNY circuit is implemented
as shown in Table 2. We denote by SKINNYi1...ik the full SKINNY circuit using
the S-box Si1...ik .

The schemes have also been implemented on a 65 nm Xilinx Virtex-5 FPGA
and a 45 nm Xilinx Spartan-6 FPGA using the Xilinx ISE synthesis and imple-
mentation tool. To prevent optimisations that might break the masking scheme,
DONT TOUCH, KEEP, and KEEP HIERARCHY constraints have been added to the HDL
source files. The resulting measurements are tabulated in Table 3.

5 Leakage Assessment

SILVER [16] is a formal verification tool for masking countermeasures. For a
given security property [9], the tool exhaustive evaluates the input netlist using
reduced-ordered binary decision diagrams. We compile the netlist for the S222
and S33 S-boxes using the NanGate 45 nm standard cell library and verified that
both netlists satisfied first-order probing security in the standard and robust
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Table 1. ASIC synthesis measurements for the investigated substitution boxes.

Scheme Library Latency
(Cycles)

Area
(GE)

Timing
(ns)

Power (µW)

10 MHz 100MHz

S2222 TSMC 28 nm 4 550.3 0.20 4.880 45.32

NanGate 45 nm 4 584.3 0.24 43.81 157.1

UMC 65nm 4 597.9 1.15 5.735 56.14

S232 TSMC 28 nm 3 922.0 0.50 6.490 59.17

NanGate 45 nm 3 915.3 1.11 86.15 166.2

UMC 65nm 3 941.3 3.82 7.986 77.86

S222 TSMC 28 nm 3 598.9 0.24 4.561 42.03

NanGate 45 nm 3 600.6 0.31 46.77 154.4

UMC 65nm 3 616.5 1.73 5.395 52.63

S33 TSMC 28 nm 2 1995 0.72 11.12 99.49

NanGate 45 nm 2 1906 1.21 159.7 553.7

UMC 65 2 1924 4.79 14.35 139.1

probing models as well as uniformity. A script together and the corresponding
netlist files are given in the auxiliary repository [8].

5.1 t-Tests

The TVLA methodology [12,24] provides a set of best-practice guidelines for
performing non-invasive leakage detection on a device under test (DUT). To
verify the security of our designs, we follow this approach using Welch’s t-test
and the min-p strategy for null hypothesis rejection. In particular, we perform
non-specific fixed versus random t-tests, where we aim to determine the validity
of the null hypothesis that encryptions with a fixed and uniformly sampled plain-
text admit the same mean power consumption (i.e., are indistinguishable under
first-order statistical analysis). Following the state of the art [1,24,30], we set a
threshold |t| > 4.5 for any t-value to reject the null hypothesis.

To perform t-tests, power traces of SKINNY222 and SKINNY33 were mea-
sured using the Sakura-X and Sasebo-GII power side-channel leakage evaluation
boards. These boards contain a core FPGA target on which a cryptographic
circuit can be programmed, allowing the evaluation of custom hardware imple-
mentations of cryptographic primitives. To reduce noise, the boards contain an
additional FPGA for communication with the host PC, which is used to send
keys and plaintexts and read ciphertexts. Moreover, these boards contain direct
connectors for oscilloscope probes, facilitating the acquisition of the power sup-
ply voltage traces for the side-channel evaluation. The encryption FPGA has
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Table 2. ASIC synthesis figures for all investigated schemes for three cell libraries.

Scheme Library Latency Area Critical Path Power (μW) Energy (nJ/128 bits)

(Cycles) (GE) (ns) 10 MHz 100 MHz 10 MHz 100 MHz

SKINNY-1282222 TSMC 28 nm 872 4461 0.31 21.91 186.2 1.911 1.623

Byte-Serial NanGate 45 nm 872 5039 0.51 100.6 343.5 8.772 2.995

UMC 65 nm 872 4989 1.59 25.82 244.5 2.251 2.132

SKINNY-2562222 TSMC 28 nm 1040 5280 0.33 25.90 219.6 2.694 2.284

Byte-Serial NanGate 45 nm 1040 5993 0.52 120.7 420.8 12.55 4.376

UMC 65 nm 1040 5876 1.64 30.33 287.3 3.154 2.988

SKINNY-3842222 TSMC 28 nm 1208 6122 0.35 26.97 222.5 3.258 2.688

Byte-Serial NanGate 45 nm 1208 6949 0.57 140.3 496.4 16.94 5.993

UMC 65 nm 1208 6782 1.69 34.98 333.1 4.226 4.024

SKINNY-1282222 TSMC 28 nm 160 13671 0.35 80.01 707.0 1.280 1.131

NanGate 45 nm 160 14637 0.47 917.3 2199 14.68 3.518

UMC 65 nm 160 15116 2.03 93.57 898.7 1.497 1.438

SKINNY-2562222 TSMC 28 nm 192 15197 0.36 88.13 776.9 1.692 1.491

NanGate 45 nm 192 16315 0.47 1041 2490 19.98 4.781

UMC 65 nm 192 16735 2.12 103.1 990.3 1.979 1.901

SKINNY-3842222 TSMC 28 nm 224 16641 0.38 95.98 844.8 2.149 1.892

NanGate 45 nm 224 17991 0.47 1166 2774 26.12 6.213

UMC 65 nm 224 18357 2.12 113.4 1088 2.538 2.437

SKINNY-128222 TSMC 28 nm 120 14452 0.44 77.58 683.3 0.931 0.819

NanGate 45 nm 120 14899 0.66 474.9 1890 5.699 2.268

UMC 65 nm 120 15413 3.40 93.05 892.7 1.156 1.071

SKINNY-256222 TSMC 28 nm 144 15975 0.44 86.74 761.1 1.249 1.095

NanGate 45 nm 144 16576 0.66 501.5 2010 7.222 2.894

UMC 65 nm 144 17031 3.51 104.0 997.1 1.497 1.436

SKINNY-384222 TSMC 28 nm 168 17484 0.44 95.51 838.7 1.604 1.410

NanGate 45 nm 168 18253 0.66 632.1 2298 10.62 3.861

UMC 65 nm 168 18654 3.51 115.6 1109 1.942 1.863

SKINNY-12833 TSMC 28 nm 80 24375 0.66 114.7 988.5 0.917 0.791

NanGate 45 nm 80 23954 0.88 980.1 3200 7.841 2.560

UMC 65 nm 80 24923 4.13 139.1 1391 1.113 1.113

SKINNY-25633 TSMC28 nm 96 26192 0.66 126.3 1090 1.212 1.046

NanGate 45 nm 96 25888 0.87 1109 3678 10.64 3.531

UMC 65 nm 96 26767 4.23 159.3 1542 1.529 1.480

SKINNY-38433 TSMC 28 nm 112 27964 0.66 137.5 1190 1.540 1.333

NanGate 45 nm 112 27820 0.87 1382 4001 15.48 4.481

UMC 65 nm 112 28621 4.24 147.7 1636 1.654 1.832

direct connections to header pins on the board, allowing easy synchronisation
using a dedicated trigger signal.

The Sakura-X board contains a more recent FPGA from the Xilinx 7-
Series (Kintex-7, XC7K160T), while the Sasebo-GII board contains an older
FPGA from the 5-Series (Virtex-5, XC5VLX30) architecture. To prevent
unwanted optimizations during the FPGA toolchain synthesis and implementa-
tion, DONT TOUCH, KEEP HIERARCHY, and KEEP constraints are added. The clock
frequency of our designs is constrained to a low 3 MHz on both boards. All
power measurements are performed using a Tektronix MDO3104 oscilloscope
with a sampling rate of 1 GS/s and AC coupling; we take 10000 sample points
per trace with 1µs horizontal graduations.
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Table 3. Xilinx Virtex-5 and Spartan-6 substitution and cipher synthesis results.

Scheme Target Slices Flip-Flops Lookup Tables Max. Frequency (MHz)

S2222 Virtex-5 35 72 24 600

Spartan-6 41 72 32 375

S222 Virtex-5 30 51 46 472

Spartan-6 42 51 52 316

S33 Virtex-5 106 36 296 278

Spartan-6 178 36 300 202

SKINNY-1282222 Virtex-5 1348 1672 1514 280

Spartan-6 2204 1672 928 194

SKINNY-128222 Virtex-5 956 1337 1689 250

Spartan-6 791 1328 1619 105

SKINNY-12833 Virtex-5 2883 1224 5834 180

Spartan-6 2640 1216 5641 110

To perform non-specific t-tests, all encryptions were performed with a fixed
key. The cryptographic primitive was reset before every encryption to ensure
identical initial conditions for both the fixed and random traces. Consequently,
this allowed us to record traces for t-tests in a deterministic interleaving fashion,
where a random plaintext preceded a fixed plaintext and vice-versa, reducing
bias in any one dataset from potential variation in noise and environmental
conditions over time. To avoid leakage arising from generating random masks on
the DUT itself, we sent pre-masked plaintext shares to the FPGA.

In order to verify the soundness of our experimental setup, we first ran t-
tests in the masks off setting by setting all but one share of the plaintext to the
zero vector. We perform the masks off t-tests on 10000 traces for each design.
Figures 10a and 10b plot a sample trace for the two designs. Note that we take
traces corresponding to 10 rounds of an encryption operation in each experi-
ment. Recall that executing a round of SKINNY with S33 uses two cycles, rather
than three like with S222. The encryption operation for the SKINNY33 experi-
ments only begins after a few thousand data points, whereas we record from the
beginning of an encryption for the SKINNY222 experiments.

The results in Figs. 7a and 8a indicate that there is potentially exploitable
leakage with just 10000 traces, even with measurements with low SNR taken on
the Sakura-X board. We then record 1 million traces with randomly generated
masks to assess the first-order security of our designs (Figs. 7b and 8b). Our
results indicate that the threshold of 4.5 is not crossed in any of the trace samples,
and that no leakage is detected with this number of traces. Since Threshold
Implementations are well-studied, we expect these results to hold with a larger
number of traces also.

To demonstrate that our Threshold Implementation of SKINNY222 is secure
even on a smaller FPGA with a higher SNR (lower noise), we also performed
t-tests with both randomly generated and zero masks using the Sasebo-II side-
channel evaluation board. Figure 10c shows a sample trace taken during the
experiments, where the power consumption from the encryption operation in
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Fig. 7. t-test results for SKINNY222 on the Sakura-X with (a) 10000 traces and masks
off and (b) one million traces and masks on.

Fig. 8. t-test results for SKINNY33 on the Sakura-X with (a) 10000 traces and masks
off and (b) one million traces and masks on.

Fig. 9. t-test results for SKINNY222 on the Sasebo-II with (a) 10000 traces and masks
off and (b) one million traces and masks on.
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Fig. 10. Sample power traces of encryption operations for (a) SKINNY222 on the
Sakura-X, (b) SKINNY33 on the Sakura-X and (c) SKINNY222 on the Sasebo-II.

each clock cycle is clearly visible. Figure 9 shows the t-values obtained for the
power traces. As before, with 10000 traces in the masks off setting, we note
substantial leakage. With one million traces and masks on, we find no evidence
of leakage.

6 Conclusion and Future Work

In this work, we re-envision first-order TI for the SKINNY family of tweakable
block ciphers in the round-based setting. More specifically, we propose differ-
ent decompositions of the 8-bit S-box which enable significantly more efficient
implementations of a protected SKINNY circuit in terms of latency and energy
consumption, which we demonstrate through an extensive suite of synthesis
benchmarks. We conclude by assessing the security of our designs via lever-
aging existing leakage detection and formal verification techniques. In terms of
future work, we identify the following problems as of particular interest:

– Higher-Order Schemes. This paper covers first-order realizations but against
a more capable adversary, security against higher-order attacks is required. As
TI schemes become increasingly expensive in this setting, a suitable candidate
approach is d+1 sharing e.g., using Domain-Oriented Masking [13] to reduce
the number of required shares.

– Area Optimizations. Although S222 and S33 optimize for latency and energy
consumption in comparison to S2222, their circuit area is roughly the same or
moderately larger. It is thus an interesting exercise to determine whether the
area footprint can be reduced as well.
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A Algebraic Expressions for SKINNY S-box S

z0 = x7x6x3x2x1x0 + x7x6x3x2x0 + x7x6x3x2 + x7x6x3x1x0 + x7x6x2x1+
x7x6x1x0 + x7x3x2x1x0 + x7x3x2x0 + x7x3x1x0 + x7x3x0 + x7x2x1+
x7x2 + x7x1x0 + x7x1 + x7x0 + x7 + x6x5x3x2 + x6x5x3x0 + x6x5x2+
x6x5x1 + x6x5x0 + x6x5 + x6x4x3x2x1 + x6x4x3x1 + x6x4x3x0+
x6x4x3 + x6x4x2x1 + x6x4x1x0 + x6x3x2x1x0 + x6x3x2x1 + x6x3x2x0+
x6x3x1x0 + x6x3x1 + x6x3 + x6x2 + x6x1 + x6x0 + x6 + x5x3x2x1x0+
x5x3x2x0 + x5x3x2 + x5x3x1x0 + x5x2x1x0 + x5x2x1 + x5x2x0+
x5x1x0 + x4x3x2x1x0 + x4x3x2x0 + x4x3x2 + x4x3x1x0 + x4x2x1+
x4x1x0 + x3x2x1x0 + x3x2x0 + x3x1x0 + x3x0 + x2x1x0 + x2x1+
x2x0 + x1x0 + x1 + x0 + 1

z1 = x7x6x3x2x1 + x7x6x3x1 + x7x6x2x1x0 + x7x6x2x0 + x7x6x2+
x7x6x1x0 + x7x3x2x1 + x7x3x1 + x7x2x1x0 + x7x2x0 + x7x2+
x7x1x0 + x7 + x6x5 + x6x4x3x2 + x6x4x3 + x6x4x2 + x6x4x0+
x6x3x2x1 + x6x3x2 + x6x3x1 + x6x3 + x6x2x1x0 + x6x2x0+
x6x1x0 + x6x0 + x6 + x5x2x1 + x5x2 + x5x1 + x4x3x2x1 + x4x3x1+
x4x2x1x0 + x4x2x0 + x4x2 + x4x1x0 + x2x1 + x2 + x1

z2 = x6 + x2x1 + x2 + x1 + 1, z3 = x3x2 + x3x0 + x2 + x1 + x0

z4 = x7x6x5 + x7x6x3x2 + x7x6x3 + x7x6x2 + x7x6x0 + x7x6 + x7x5+
x7x3x2 + x7x3 + x7x2 + x7x0 + x7 + x6x5 + x6x3x2 + x6x3 + x6x2+
x6x0 + x6 + x5x4 + x4x3x2 + x4x3 + x4x2 + x4x0 + x4 + x3

z5 = x3x2 + x3 + x2 + x0 + 1, z6 = x7x6 + x7 + x6 + x4 + 1
z7 = x7x6x3x2 + x7x6x3 + x7x6x2 + x7x6x0 + x7x3x2 + x7x3 + x7x2+

x7x0 + x6x3x2 + x6x3 + x6x2 + x6x0 + x5 + x4x3x2 + x4x3+
x4x2 + x4x0
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Abstract. In this paper we analyze the 5G standard cipher Espresso
against differential fault attack. The attack outcome results in a complete
internal state recovery by injecting only 4 random faults into the state
of the keystream generation phase of Espresso. Since the round update
function of Espresso is reversible it allows recovery of the secret key just
by doing the inverse key-IV initialization process. To the best of our
knowledge this is the first differential fault attack analysis of Espresso
which finds the secret key of the cipher with a very minimal number of
fault injection. We also provide a hardware implementation of the cipher
to support our software implemented results.

Keywords: Espresso · 5G · Differential fault attack · Signatures

1 Introduction

With the growth of Internet of Things (IoT) applications, demand for lightweight
ciphers in the IoT industry has increased manifold. Lightweight ciphers are
required to offer the users a high level of security, while running in devices with
constrained resources. Hence, besides being implemented in IoT devices that
usually have limited computing power and strict power constraints, lightweight
ciphers should also offer low propagation delays in implementation. Additionally,
with the rise of 5G networks, traffic volume is estimated to increase by approx-
imately 1000 times [11]. This advent of very fast 5G networks, efficient stream
ciphers with low hardware cost are much in need. Espresso [6] is one of such
ciphers, that not just decreases the average execution speed of the encryption,
but also have a relatively easier hardware implementation.

When it comes to implementing any cryptosystem on hardware, security of
the cipher becomes a primary concern. The adversary can always take advantage
c© Springer Nature Switzerland AG 2021
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of the cipher implementation by disturbing the normal operation mode of the
cipher, and then trying to find the secrets of the cipher by restricting its com-
putationally expensive search space to a smaller domain. By disturbing normal
modes of operation of a cipher we mean causing glitches in the clock input, using
focused laser beams to introduce bit flips, exposing the hardware to severe envi-
ronments like high temperatures, over-voltage or anything that can change the
internal state of the cipher. Once the changes are incorporated into the cipher
and faulty ciphertexts are produced, the differences between fault-free and faulty
ciphertexts are noted and we try to deduce the internal state of the cipher, and
if possible, the secret key too. Since Boneh et al. [3] used fault attacks against
an implementation of RSA, fault attacks have been widely used against many
encryption algorithms, including DES [4] and AES [5].

Fault attacks study the robustness of a cryptosystem in a setting that is
weaker than its original or expected mode of operation. Though optimistic, this
model of attack can successfully be employed against a number of proposals.
In a practical setting, it is indeed possible to mount such an attack when the
number of faults is very low and we do not require precise controls over fault
injection, both in terms of exact register locations as well as timing. In this paper
we achieve these goals and present a first differential fault attack on Espresso.

Espresso is a non-linear feedback register based stream cipher. The cipher
contains the NFSR in Galois configuration instead of Fibonacci configuration, as
used in many ciphers. This reduces the size of feedback functions, thus decreasing
the propogational delay of its hardware implementation. The NFSR has a non-
linear output function with 20 variables. The cipher runs in two phases, the first
one is Key and IV Initialization phase which takes a 128-bit key and 96-bit IV
and uses it to initialize the state. After that the cipher runs for 256 times and the
output bit is XORed with two state bits in each round. No keystream bits are
generated in this round. The second phase is the keystream generation phase,
where each clock gives a keystream bit.

The primary reason behind the design of Espresso is to provide a very effi-
cient stream cipher that uses as few hardware resources as possible. This ensures
Espresso to be used in various IOT technologies, where the hardware resources
provided to run the encryption algorithm are very limited. Due to its very effi-
cient implementation, Espresso is also used in 5G, which requires a very low
latency.

Contribution and Organization. In this work we have presented a differential
fault attack on 5G standard cipher Espresso. In Sect. 2, we describe the design
of Espresso. In Sect. 3 we describe in detail the differential fault attack, how the
faults are located using signatures. Our main contributions are as follows:

– In Sect. 4 we illustrate our attack on Espresso. We show that the secret key
of the Espresso stream cipher can be recovered by injecting only 4 faults
into the state of the cipher in the keystream generation phase. To describe
our attack we first show that if we inject fault at random location then that
location can be identified by doing statistical analysis on the normal and fault
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affected keystream bits. After detecting the location of the fault we generate
200 many normal and faulty keystream bits. Using these keystream bits we
recover the state of the cipher in approximately 400 s on a laptop with Intel
i5 processor and 8 GB ram. As the key-IV initialization phase of Espresso is
reversible thus it yields a successful key recovery attack on Espresso.

– As Espresso needs to be implemented in the hardware terminal of a mobile
(IOT) device, we further implement our attack on hardware to check its
correctness. In Sect. 5 we illustrate the hardware implementation.

We conclude in Sect. 6.

2 Design Description of Espresso

Espresso [6] is a stream cipher based on 256-bit NFSR in the Galois Configura-
tion, with key size 128-bit and IV size 96-bit. The state of the cipher is denoted by
(x0, x1, . . . , x256), the key is denoted by (k0, k1, . . . , k127) and the IV is denoted
by (iv0, iv1, . . . , iv95). There are feedback functions for each of the state bits,
and the functions are denoted by fi∀i ∈ 0, 1, . . . , 255. The cipher runs in two
phases, the first one is the Initialization phase, in which the key along with the
IV is used to initialize the starting state of the cipher. Then the cipher runs for
256 rounds, and in each round the output bits are XORed with the state bits
x255 and x217. This first phase is described in the Algorithm 1.

Algorithm 1. Key and IV Initialization Phase
1: (s0, s1, . . . , s127) ← (k0, k1, . . . , k127);
2: (s128, s129, . . . , s223) ← (iv0, iv1, . . . , iv95);
3: (s224, s225, . . . , s254) ← (1, 1, . . . , 1);
4: s255 ← 0;
5: for i = 1 to 256 do
6: z ← x80 ⊕ x99 ⊕ x137 ⊕ x227 ⊕ x222 ⊕ x187 ⊕ x243x217 ⊕ x247x231 ⊕ x213x235 ⊕ x255x251

⊕x181x239 ⊕ x174x44 ⊕ x164x29 ⊕ x255x247x243x213x181x174;
7: f255 = x0 ⊕ x41x70 ⊕ z; f217 = x218 ⊕ x3x32 ⊕ z;
8: f213 = x214 ⊕ x4x45; f209 = x210 ⊕ x6x64;
9: f205 = x206 ⊕ x5x80; f201 = x202 ⊕ x8x103;

10: f197 = x198 ⊕ x29x52x72x99; f193 = x194 ⊕ x12x121;
11: f251 = x252 ⊕ x8 ⊕ x42x83;
12: f247 = x248 ⊕ x40 ⊕ x44x102;
13: f243 = x244 ⊕ x103 ⊕ x43x118;
14: f239 = x240 ⊕ x117 ⊕ x46x141;
15: f235 = x236 ⊕ x67x90x110x117;
16: f231 = x232 ⊕ x189 ⊕ x50x159;
17: (x0, x1, . . . x254) ← (x1, x2, . . . x255);
18: (x193, x197, x201, x205, x209, x213, x217, x231, x235, x239, x243, x247, x251, x255) ←

(f193, f197, f201, f205, f209, f213, f217, f231, f235, f239, f243, f247, f251, f255);
19: end for

The second phase is the keystream generation phase, in which the output
bits are taken as the keystream bits. This phase is described in the Algorithm 2.
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Algorithm 2. Keystream Generation Phase
1: for i = 0 to n − 1 do
2: zi ← x80 ⊕ x99 ⊕ x137 ⊕ x227 ⊕ x222 ⊕ x187 ⊕ x243x217 ⊕ x247x231 ⊕ x213x235 ⊕ x255x251

⊕x181x239 ⊕ x174x44 ⊕ x164x29 ⊕ x255x247x243x213x181x174; �This is the keystream bit
3: f255 = x0 ⊕ x41x70; f217 = x218 ⊕ x3x32;
4: f213 = x214 ⊕ x4x45; f209 = x210 ⊕ x6x64;
5: f205 = x206 ⊕ x5x80; f201 = x202 ⊕ x8x103;
6: f197 = x198 ⊕ x29x52x72x99; f193 = x194 ⊕ x12x121;
7: f251 = x252 ⊕ x8 ⊕ x42x83;
8: f247 = x248 ⊕ x40 ⊕ x44x102;
9: f243 = x244 ⊕ x103 ⊕ x43x118;

10: f239 = x240 ⊕ x117 ⊕ x46x141;
11: f235 = x236 ⊕ x67x90x110x117;
12: f231 = x232 ⊕ x189 ⊕ x50x159;
13: (x0, x1, . . . x254) ← (x1, x2, . . . x255);
14: (x193, x197, x201, x205, x209, x213, x217, x231, x235, x239, x243, x247, x251, x255) ←

(f193, f197, f201, f205, f209, f213, f217, f231, f235, f239, f243, f247, f251, f255);
15: end for

3 The Differential Fault Attack

When it comes to implementing any cryptosystem on hardware, security of the
cipher becomes a primary concern. The adversary can always take advantage
of the cipher implementation by disturbing the normal operation mode of the
cipher, and then trying to find the secrets of the cipher by restricting its compu-
tationally expensive search space to a smaller domain. Disturbing normal modes
of operation of a cipher seems to be a daunting task, and can possibly corrupt
the data, or even worse, damage the cipher. Certainly, these can be performed
in very harsh environments, and in normal use, the cipher still stays safe.

When we say introducing a disturbance in the cipher, we mean causing
glitches in the clock input, using focused laser beams to introduce bit flips, expos-
ing the hardware to severe environments like high temperatures, over-voltage or
anything that can change the internal state of the cipher. The most popular
method is using focused laser beams to flip some bits of the internal state. The
precision of the laser beam - w.r.t. time and position of the injected fault - can
be quite flexible according to some fault models, while some works assume the
same. Once the changes are incorporated into the cipher and faulty ciphertexts
are produced, the differences between fault-free and faulty ciphertexts are noted
and we try to deduce the internal state of the cipher, and if possible, the secret
key too.

When we assume that an adversary can inject faults into the cipher, it is a
very strong assumption. Similarly, if the fault attack model assumes that the
adversary can inject faults with precise location and timing, it is an another
strong assumption. Hence, before we discuss mounting of a fault attack, we
briefly mention the various assumptions made while mounting a fault attack:

1. has the required tool for injecting the fault.
2. can inject multiple faults at the exact timings during the execution.
3. can restart the cipher multiple times with the same key and IV.
4. can introduce controlled number of faults. If the number of faults is higher,

injecting faults will have adverse effects on the encryption device.
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Locating Faults Using Signatures. Consider a fault has been injected into
some unknown location f of the state of the cipher. We have access to λ
keystream bits, for every fault injected into the cipher. The entire process of
identifying a fault can be divided into two parts - the offline phase, and the
online phase.

First, we will define a vector of λ length which we would refer to as a sig-
nature, corresponding to a known fault location f .

S(f) = {s
(f)
0 , s

(f)
1 , . . . , s

(f)
λ−1}. (1)

where s
(f)
i is set as:

s
(f)
i =

1
2

− Pr(zi �= z
(f)
i ). (2)

Here zi represents the keystream bits obtained without injecting any fault;
whereas z

(f)
i represents the keystream bits obtained by injecting a fault in

a known location f . The probability that the fault-free keystream and fault
affected keystreams will be unequal is calculated over some number of trials, say
220, for different possible states with faults injected in the same known location
f . The calculated value of s

(f)
i will fall between −0.5 and 0.5.

So the adversary does the following during the offline phase. For each possible
location f of the state of the cipher, the adversary calculates S(f) for some value
of λ, which is recommended to be taken comparable to the state size of the
cipher, over some large number of trials and stores it in a table. The calculated
fault signature is said to be strong if the value,

σ(S(f)) = 2 · Σλ−1
i=1 · |s(f)i |

λ

is close to 1. More sharp is the signature, better are the chances of identifying
the fault location.

Now, the adversary performs ω many trials and injects a fault in the cipher in
each trial, such that ω is large enough to solve equations and derive the state of
the cipher (and if possible the key), as we will discuss in Sect. 4.2. The adversary
notes down the original keystream z0, z1, . . . , zλ−1. Now the adversary uses the
assumption of resetting the cipher to the original state, re-keying the cipher with
the same key and IV. Then the adversary injects a fault in an unknown location
γ and records the corresponding keystream z

(γ)
0 , z

(γ)
1 , . . . , z

(γ)
λ−1. The process is

repeated ω many times and the adversary has now access to ω + 1 keystream
sequences.

Next, the adversary computes a trail vector for each unknown fault γ:

τ (γ)[i] =

{
1
2 , if zi = z

(γ)
i

−1
2 , if zi �= z

(γ)
i

(3)

for i = 0, 1, 2, . . . , λ − 1.
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The fault location f for which the fault signature S(f) matches the trail τ (γ)

(for some unknown γ) the best would ideally be the correct fault location. To
attain the best matching, we use correlation coefficient to match a trail with
a corresponding signature. Pearson’s correlation coefficient lies between −1 to
1, and the better the correlation, we consider it a better match. To improve
matching, we consider the correlation coefficient μ(S(f), τ (γ)) = −1 if there is
a complete mismatch between the two, i.e. S

(f)
i = 1

2 , τ
(γ)
i = −1

2 or S
(f)
i =

−1
2 , τ

(γ)
i = 1

2 .
For each γ, the adversary calculates the correlation coefficient between τ (γ)

and S(f) for each possible fault location f and creates a list of fault indices Lγ

sorted with reducing correlation coefficient. The adversary has to construct ω
such lists, L0,L1, . . . ,Lω−1. Now, the adversary considers a set of fault locations
ρ0, ρ1, . . . , ρω−1, where each ρi ∈ Li and choosen from Li in the increasing
order of rank in the list, and tries solving equations. After solving equations and
recovering state, the adversary obtains a 2n-length keystream from the state and
checks it with the available keystream. In case of a miss, the adversary repeats
the solving of equations with the next best set of locations ρ0, ρ1, . . . , ρω−1,
chosen in the increasing order of rank in the list.

4 Differential Fault Attack on Espresso

In this section we demonstrate our proposed attack on Espresso. We follow a
transient single bit-flip model of attack here. It is transient, because the injected
fault propagates to other locations with further encryption rounds. It is different
from other fault attack models like hard faults, where a fault is permanent and
sticks to a certain position. Moreover, hard faults can damage the device and
prevent its re-usability.

As we discussed earlier, the attack model we employ here has been inspired
from Differential Fault Attack on Stream Ciphers. Note that our fault attack
model assumes a flip of a single bit from 1 → 0 or 0 → 1. We assume that
the adversary has the technology to inject a single laser beam of wavelength
not bigger than the target cell itself, i.e., only a single bit will be affected. The
adversary must have the ability to reset the cipher with the original key and
plaintext. Since the faults are not permanent, such assumptions are considered
to be feasible in literature.

We also assume that the location of the fault is not known to the adversary.
For this purpose, we explain below how we identify the location of the injected
fault.

4.1 Offline Phase

In this section we describe the Offline phase of DFA on Espresso. First we pre-
pare the signature, and then for each location find out trail and the correlation
between trail and the signature. The signatures are prepared for 100 keystream
bits. The signature is plotted in the Fig. 1, It can be seen from the Fig. 1 that
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Fig. 1. Signature of Espresso

the signature lies close to 0.5 for most of the locations and keystream bits. This
indicates that the correlation between trail and signature obtained will be closer
to 1.0 for the same fault location, thus making the identification of the fault
location easier. This is indeed verified by the plot of maximum correlation of
each location in Fig. 2. The rank comes out to be 0 for every fault location.
Looking at the plots, it is clear that the fault location can easily be inferred
from the correlation.

Fig. 2. Blue line shows μ(S(g), τ (g)), max100
f=0 μ(S(g), τ (g)) is represented by the red line.

(Color figure online)

4.2 Online Phase

The Online phase of DFA consists of injecting the fault and then detecting the
fault location. By following the above discussion, this detection is easy to do
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in Espresso. After the detection, the next step in DFA is to create a system of
equations involving the state bits and the keystream bits. This section describes
the process to create these equations.

We first generate the equations for the keystreams bits without fault. But
from the design of Espresso we note that it contains exactly 14 non-linear feed-
back bits. These feedback bits will gradually make the equations lengthy and
almost impossible to generate and solve. To tackle this problem we introduce new
variables in each clocking for all the 14 feedback bits. We use these keystream
bits to feed it back into the respective positions of the state bits, and form
another set of equations involving these new variables. Thus all the equations
generated will be shorter in length, and thus easier to solve. If we are using n
keystream bits for the DFA, then the total number of new variables required will
be 14n. Also, for the initial state each state bit will be represented by a different
variable. Hence, the total number of variables used for generating the equations
related to the normal keystream bits is 14n + 256. This technique is described
in the Algorithm 3.

Algorithm 3. Generation of Equations for keystream bits without fault
1: Eq = φ; � This is the set of equations formed
2: for i = 0 to n − 1 do
3: eqo ← x80 ⊕ x99 ⊕ x137 ⊕ x227 ⊕ x222 ⊕ x187 ⊕ x243x217 ⊕ x247x231 ⊕ x213x235

⊕x255x251 ⊕ x181x239 ⊕ x174x44 ⊕ x164x29 ⊕ x255x247x243x213x181x174;

4: E1,i ← eqo ⊕ zi; � zi is the ith keystream bit, known beforehand.
5: f255 = x0 ⊕ x41x70; f217 = x218 ⊕ x3x32;
6: f213 = x214 ⊕ x4x45; f209 = x210 ⊕ x6x64;
7: f205 = x206 ⊕ x5x80; f201 = x202 ⊕ x8x103;
8: f197 = x198 ⊕ x29x52x72x99; f193 = x194 ⊕ x12x121;
9: f251 = x252 ⊕ x8 ⊕ x42x83;

10: f247 = x248 ⊕ x40 ⊕ x44x102;
11: f243 = x244 ⊕ x103 ⊕ x43x118;
12: f239 = x240 ⊕ x117 ⊕ x46x141;
13: f235 = x236 ⊕ x67x90x110x117;
14: f231 = x232 ⊕ x189 ⊕ x50x159;
15: (x0, x1, . . . x254) ← (x1, x2, . . . x255);
16: (x193, x197, x201, x205, x209, x213, x217, x231, x235, x239, x243, x247, x251, x255) ←

(v193,i, v197,i, v201,i, v205,i, v209,i, v213,i, v217,i, v231,i, v235,i, v239,i, v243,i, v247,i,
v251,i, v255,i);

17: E2,i = f255 ⊕ v255,i; E12,i = f217 ⊕ v217,i;
18: E3,i = f213 ⊕ v213,i; E13,i = f209 ⊕ v209,i;
19: E4,i = f205 ⊕ v205,i; E14,i = f201 ⊕ v201,i;
20: E5,i = f197 ⊕ v197,i; E15,i = f193 ⊕ v193,i;
21: E6,i = f251 ⊕ v251,i; E7,i = f247 ⊕ v247,i;
22: E9,i = f239 ⊕ v239,i; E8,i = f243 ⊕ v243,i;
23: E10,i = f235 ⊕ v235,i; E11,i = f231 ⊕ v231,i;
24: Eq = Eq ∪ E1,i ∪ E2,i ∪ E3,i ∪ E4,i ∪ E5,i ∪ E6,i ∪ E7,i ∪ E8,i ∪ E9,i ∪ E10,i ∪ E11,i

∪E12,i ∪ E13,i ∪ E14,i ∪ E15,i;
25: end for

Now, we inject random faults in the cipher to generate fault affected
keystream bits. These faults are injected just after the key scheduling phase
of the cipher. For the fault affected keystream bits, we have to choose new vari-
ables for each feedback bits again. But in this case we can also do another tweak
to ensure that the equations formed are very short in length. This is done by
forming difference equations for the fault affected bits.
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Consider the fact that if a fault is injected at f in the state of the cipher,
then the change in the value of state bits is 0 for all other locations except at
f which will be 1. Thus Δxi = 0 ∀xi ∈ {0, 1, . . . , f − 1, f + 1, . . . 255} when
the fault is injected at location f . The delta represents the difference between
initial and final values of some parameter. Also, note that for any two boolean
variables a and b, the following basic propositions are true:

Δ(a ⊕ b) = (Δa) ⊕ (Δb)

Δ(a.b) = ((Δa).b) ⊕ ((Δb).a) ⊕ (Δa.Δb)
(4)

Following these propositions we can create a more generalized equation of
difference for multiple boolean values. These values are derived in the equations
below (+ is equivalent to ⊕ and is used only for brevity):

Δ(a · b · c) = (Δ(a · b)) · c + (Δc)a · b + (Δ(a · b))Δc

= ((Δa) · b + (Δb) · a + Δa · Δb) · c

+ ((Δa) · b + (Δb) · a + Δa · Δb)Δc + (Δc)a · b

= a · b · Δc + a · Δb · c + a · Δb · Δc + Δa · b · c

+ Δa · b · Δc + Δa · Δb · c + Δa · Δb · Δc

(5)

For four, five and six variables these difference equations can be generated in
a similar sense, and are given in the Eqs. 6 and 7.

Δ(a · b · c · d) = a · b · c · Δd + a · b · d · Δc + a · c · d · Δb + b · c · d · Δa

+ a · b · Δc · Δd + a · d · Δb · Δc + b · d · Δa · Δc + a · c · Δb · Δd

+ c · d · Δa · Δb + b · c · Δa · Δd + a · Δb · Δc · Δd + b · Δa · Δc · Δd

+ c · Δa · Δb · Δd + d · Δa · Δb · Δc + Δa · Δb · Δc · Δd

(6)

Δ(a · b · c · d · e) = a · b · c · d · Δe + a · b · c · e · Δd + a · b · d · e · Δc + a · c · d · e · Δb

+ b · c · d · e · Δa + a · b · c · Δd · Δe + a · b · e · Δc · Δd + a · c · e · Δb · Δd

+ b · c · e · Δa · Δd + a · b · d · Δc · Δe + a · d · e · Δb · Δc + b · d · e · Δa · Δc

+ a · c · d · Δb · Δe + c · d · e · Δa · Δb + b · c · d · Δa · Δe + a · b · Δc · Δd · Δe

+ a · c · Δb · Δd · Δe + b · c · Δa · Δd · Δe + a · d · Δb · Δc · Δe + b · d · Δa

·Δc · Δe + c · d · Δa · Δb · Δe + a · e · Δb · Δc · Δd + b · e · Δa · Δc · Δd

+ c · e · Δa · Δb · Δd + d · e · Δa · Δb · Δc + a · Δb · Δc · Δd · Δe + b · Δa · Δc

·Δd · Δe + c · Δa · Δb · Δd · Δe + d · Δa · Δb · Δc · Δe + e · Δa · Δb · Δc · Δd

+ Δa · Δb · Δc · Δd · Δe

(7)



280 B. Bathe et al.

Using these equations for transforming the feedback functions, the difference in
feedback functions will look like as in set of Eq. 8.

Δf255 = Δx0 + Δx41 · x70 + x41 · Δx70 + Δx41 · Δx70

Δf251 = Δx252 + Δx42 · x83 + x42 · Δx83 + Δx42 · Δx83 + Δx8

Δf247 = Δx248 + Δx44 · x102 + x44 · Δx102 + Δx44 · Δx102 + Δx40

Δf243 = Δx244 + Δx43 · x118 + x43 · Δx118 + Δx43 · Δx118 + Δx103

Δf239 = Δx240 + Δx46 · x141 + x46 · Δx141 + Δx46 · Δx141 + Δx117

Δf235 = Δx236 + Δx67 · x90 · x110 · x137 + x67 · Δx90 · x110 · x137 + x67 · x90 · Δx110 · x137

+ x67 · x90 · x110 · Δx137 + Δx67 · Δx90 · x110 · x137 + Δx67 · x90 · Δx110 · x137

+ Δx67 · x90 · x110 · Δx137 + x67 · Δx90 · Δx110 · x137 + x67 · Δx90 · x110 · Δx137

+ x67 · x90 · Δx110 · Δx137 + Δx67 · Δx90 · Δx110 · x137 + Δx67 · Δx90 · x110 · Δx137

+ Δx67 · x90 · Δx110 · Δx137 + x67 · Δx90 · Δx110 · Δx137 + Δx67 · Δx90 · Δx110 · Δx137

Δf231 = Δx232 + Δx50 · x159 + x50 · Δx159 + Δx50 · Δx159 + Δx189

Δf217 = Δx218 + Δx3 · x32 + x3 · Δx32 + Δx3 · Δx32

Δf213 = Δx214 + Δx4 · x45 + x4 · Δx45 + Δx4 · Δx45

Δf209 = Δx210 + Δx6 · x64 + x6 · Δx64 + Δx6 · Δx64

Δf205 = Δx206 + Δx5 · x80 + x5 · Δx80 + Δx5 · Δx80

Δf201 = Δx202 + Δx8 · x103 + x8 · Δx103 + Δx8 · Δx103

Δf197 = Δx198 + Δx29 · x52 · x72 · x99 + x29 · Δx52 · x72 · x99 + x29 · x52 · Δx72 · x99

+ x29 · x52 · x72 · Δx99 + Δx29 · Δx52 · x72 · x99 + Δx29 · x52 · Δx72 · x99

+ Δx29 · x52 · x72 · Δx99 + x29 · Δx52 · Δx72 · x99 + x29 · Δx52 · x72 · Δx99

+ x29 · x52 · Δx72 · Δx99 + Δx29 · Δx52 · Δx72 · x99 + Δx29 · Δx52 · x72 · Δx99

+ Δx29 · x52 · Δx72 · Δx99 + x29 · Δx52 · Δx72 · Δx99+

Δx29 · Δx52 · Δx72 · Δx99

Δf193 = Δx194 + Δx12 · x121 + x12 · Δx121 + Δx12 · Δx121

(8)

A similar change will also happen in the non-linear output function. The function
has a degree of 6, so the difference equation will be quite lengthy to write here.
The difference equation of this non-linear output function, along with other
details to form the equations related to fault affected keystream bits is given in
Algorithm 4. Note that this algorithm generates equations for a single fault. For
multiple faults it can be repeated accordingly.
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Algorithm 4. Keystream Bits Difference Equation Generation
1: Eq = φ;

2: (Δx0, Δx1, . . . , Δx255) ← (0, 0, . . . , 0)

3: Δxf ← 1 � f is the fault location

4: for i = 0 to n − 1 do

5: Δzi = Δx80 + Δx99 + Δx137 + Δx227 + Δx222 + Δx187 + Δx243 · x217 + x243 · Δx217 + Δx243 · Δx217
+Δx247 · x231 + x247 · Δx231 + Δx247 · Δx231 + Δx213 · x235 + x213 · Δx235 + Δx213 · Δx235
+Δx255 · x251 + x255 · Δx251 + Δx255 · Δx251 + Δx181 · x239 + x181 · Δx239 + Δx181 · Δx239
+Δx174 · x44 + x174 · Δx44 + Δx174 · Δx44 + Δx164 · x29 + x164 · Δx29 + Δx164 · Δx29
+Δx255 · x247 · x243 · x213 · x181 · x174 + x255 · Δx247 · x243 · x213 · x181 · x174
+x255 · x247 · Δx243 · x213 · x181 · x174 + x255 · x247 · x243 · Δx213 · x181 · x174
+x255 · x247 · x243 · x213 · Δx181 · x174 + x255 · x247 · x243 · x213 · x181 · Δx174
+Δx255 · Δx247 · x243 · x213 · x181 · x174 + Δx255 · x247 · Δx243 · x213 · x181 · x174
+Δx255 · x247 · x243 · Δx213 · x181 · x174 + Δx255 · x247 · x243 · x213 · Δx181 · x174
+Δx255 · x247 · x243 · x213 · x181 · Δx174 + x255 · Δx247 · Δx243 · x213 · x181 · x174
+x255 · Δx247 · x243 · Δx213 · x181 · x174 + x255 · Δx247 · x243 · x213 · Δx181 · x174
+x255 · Δx247 · x243 · x213 · x181 · Δx174 + x255 · x247 · Δx243 · Δx213 · x181 · x174
+x255 · x247 · Δx243 · x213 · Δx181 · x174 + x255 · x247 · Δx243 · x213 · x181 · Δx174
+x255 · x247 · x243 · Δx213 · Δx181 · x174 + x255 · x247 · x243 · Δx213 · x181 · Δx174
+x255 · x247 · x243 · x213 · Δx181 · Δx174 + Δx255 · Δx247 · Δx243 · x213 · x181 · x174
+Δx255 · Δx247 · x243 · Δx213 · x181 · x174 + Δx255 · Δx247 · x243 · x213 · Δx181 · x174
+Δx255 · Δx247 · x243 · x213 · x181 · Δx174 + Δx255 · x247 · Δx243 · Δx213 · x181 · x174
+Δx255 · x247 · Δx243 · x213 · Δx181 · x174 + Δx255 · x247 · Δx243 · x213 · x181 · Δx174
+Δx255 · x247 · x243 · Δx213 · Δx181 · x174 + Δx255 · x247 · x243 · Δx213 · x181 · Δx174
+Δx255 · x247 · x243 · x213 · Δx181 · Δx174 + x255 · Δx247 · Δx243 · Δx213 · x181 · x174
+x255 · Δx247 · Δx243 · x213 · Δx181 · x174 + x255 · Δx247 · Δx243 · x213 · x181 · Δx174
+x255 · Δx247 · x243 · Δx213 · Δx181 · x174 + x255 · Δx247 · x243 · Δx213 · x181 · Δx174
+x255 · Δx247 · x243 · x213 · Δx181 · Δx174 + x255 · x247 · Δx243 · Δx213 · Δx181 · x174
+x255 · x247 · Δx243 · Δx213 · x181 · Δx174 + x255 · x247 · Δx243 · x213 · Δx181 · Δx174
+x255 · x247 · x243 · Δx213 · Δx181 · Δx174 + x255 · x247 · Δx243 · Δx213 · Δx181 · Δx174
+x255 · Δx247 · x243 · Δx213 · Δx181 · Δx174 + x255 · Δx247 · Δx243 · x213 · Δx181 · Δx174
+x255 · Δx247 · Δx243 · Δx213 · x181 · Δx174 + x255 · Δx247 · Δx243 · Δx213 · Δx181 · x174
+Δx255 · x247 · x243 · Δx213 · Δx181 · Δx174 + Δx255 · x247 · Δx243 · x213 · Δx181 · Δx174
+Δx255 · x247 · Δx243 · Δx213 · x181 · Δx174 + Δx255 · x247 · Δx243 · Δx213 · Δx181 · x174
+Δx255 · Δx247 · x243 · x213 · Δx181 · Δx174 + Δx255 · Δx247 · x243 · Δx213 · x181 · Δx174
+Δx255 · Δx247 · x243 · Δx213 · Δx181 · x174 + Δx255 · Δx247 · Δx243 · x213 · x181 · Δx174
+Δx255 · Δx247 · Δx243 · x213 · Δx181 · x174 + Δx255 · Δx247 · Δx243 · Δx213 · x181 · x174
+x255 · Δx247 · Δx243 · Δx213 · Δx181 · Δx174 + Δx255 · x247 · Δx243 · Δx213 · Δx181 · Δx174
+Δx255 · Δx247 · x243 · Δx213 · Δx181 · Δx174 + Δx255 · Δx247 · Δx243 · x213 · Δx181 · Δx174
+Δx255 · Δx247 · Δx243 · Δx213 · x181 · Δx174
+Δx255 · Δx247 · Δx243 · Δx213 · Δx181 · x174 + Δx255 · Δx247 · Δx243 · Δx213 · Δx181 · Δx174

6: Δf255 = Δx0 + Δx41 · x70 + x41 · Δx70 + Δx41 · Δx70;

7: Δf251 = Δx252 + Δx42 · x83 + x42 · Δx83 + Δx42 · Δx83 + Δx8;

8: Δf247 = Δx248 + Δx44 · x102 + x44 · Δx102 + Δx44 · Δx102 + Δx40;

9: Δf243 = Δx244 + Δx43 · x118 + x43 · Δx118 + Δx43 · Δx118 + Δx103;

10: Δf239 = Δx240 + Δx46 · x141 + x46 · Δx141 + Δx46 · Δx141 + Δx117;

11: Δf235 = Δx236 + Δx67 · x90 · x110 · x137 + x67 · Δx90 · x110 · x137 + x67 · x90 · Δx110 · x137
+x67 · x90 · x110 · Δx137 + Δx67 · Δx90 · x110 · x137 + Δx67 · x90 · Δx110 · x137
+Δx67 · x90 · x110 · Δx137 + x67 · Δx90 · Δx110 · x137 + x67 · Δx90 · x110 · Δx137
+x67 · x90 · Δx110 · Δx137 + Δx67 · Δx90 · Δx110 · x137 + Δx67 · Δx90 · x110 · Δx137
+Δx67 · x90 · Δx110 · Δx137 + x67 · Δx90 · Δx110 · Δx137 + Δx67 · Δx90 · Δx110 · Δx137;

12: Δf231 = Δx232 + Δx50 · x159 + x50 · Δx159 + Δx50 · Δx159 + Δx189;

13: Δf217 = Δx218 + Δx3 · x32 + x3 · Δx32 + Δx3 · Δx32;

14: Δf213 = Δx214 + Δx4 · x45 + x4 · Δx45 + Δx4 · Δx45;

15: Δf209 = Δx210 + Δx6 · x64 + x6 · Δx64 + Δx6 · Δx64;

16: Δf205 = Δx206 + Δx5 · x80 + x5 · Δx80 + Δx5 · Δx80;

17: Δf201 = Δx202 + Δx8 · x103 + x8 · Δx103 + Δx8 · Δx103;

18: Δf197 = Δx198 + Δx29 · x52 · x72 · x99 + x29 · Δx52 · x72 · x99 + x29 · x52 · Δx72 · x99
+x29 · x52 · x72 · Δx99 + Δx29 · Δx52 · x72 · x99 + Δx29 · x52 · Δx72 · x99
+Δx29 · x52 · x72 · Δx99 + x29 · Δx52 · Δx72 · x99 + x29 · Δx52 · x72 · Δx99
+x29 · x52 · Δx72 · Δx99 + Δx29 · Δx52 · Δx72 · x99 + Δx29 · Δx52 · x72 · Δx99
+Δx29 · x52 · Δx72 · Δx99 + x29 · Δx52 · Δx72 · Δx99 + Δx29 · Δx52 · Δx72 · Δx99;

19: Δf193 = Δx194 + Δx12 · x121 + x12 · Δx121 + Δx12 · Δx121;

20: I = Δzi ⊕ zi ⊕ z
f
i

� z
f
i

is the ith-bit of fault affected keystream

21: Eq = Eq ∪ I

22: (Δx0, Δx1, . . . Δx254) ← (Δx1, Δx2, . . . Δx255);

23: (Δx193, Δx197, Δx201, Δx205, Δx209, Δx213, Δx217, Δx231, Δx235, Δx239, Δx243,
Δx247, Δx251, Δx255) ← (Δf193, Δf197, Δf201, Δf205, Δf209, Δf213, Δf217,
Δf231, Δf235, Δf239, Δf243, Δf247, Δf251, Δf255);

24: (x0, x1, . . . x254) ← (x1, x2, . . . x255); � State bits are updated as in Algorithm 3

25: (x193, x197, x201, x205, x209, x213, x217) ←(
v193,i, v197,i, v201,i, v205,i, v209,i, v213,i, v217,i

)
;

26: (x231, x235, x239, x243, x247, x251, x255) ←(
v231,i, v235,i, v239,i, v243,i, v247,i, v251,i, v255,i

)
;

27: end for
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Using the idea described above we implemented the attack in SageMath
9.0 [14] and SAT solver, and tried various different configurations of fault loca-
tions. Wo observed that if we inject four random faults the Sat Solver is able to
find the values of all the state bits correctly. As an example, we injected faults
at locations {212, 33, 155, 3}, which were selected randomly, and generated a
system of equations as described in Algorithm 4 for 200 keystreams. These sys-
tem of equations were then fed to the SAT solver. The SAT solver solves the
system of equations and returns the state bits. This experiment took approxi-
mately 400 s. All these experiments were performed on a system with a 2208
Mhz processor, 8 GB RAM running on Ubuntu-20.04 operating system.

5 Hardware Implementation of Espresso

In this section, we describe the hardware implementation of Espresso. Espresso
is based on Non linear Feedback Shift Register (NLFSR) in Galois configura-
tion. The size of the NLFSR is 256 − bit. The state of the cipher is denoted by
(x0, x1, . . . , x255), the key is denoted by (k0, k1, . . . , k127) and the IV is denoted
by (iv0, iv1, . . . , iv95). The output bit of espresso is denoted by z.

Figure 3 shows the implementation details for the cipher. The state register
is 256 − bit and is updated using Non linear feedback functions. The Output
is generated by non linear output function operating on 20 bits from the state
register. In each clock the state register is shifted by one bit position.

Espresso has two phases, key scheduling phase and pseudorandom bit gener-
ation phase. In key scheduling phase, state register x is initialized by using key
and IV as follows:

(x0, x1, . . . , x127) ← (k0, k1, . . . , k127)
(x128, x129, . . . , x223) ← (iv0, iv1, . . . , iv95)
(x224, x225, . . . , x254) ← (1, 1, . . . , 1)

(x255) ← 0

After initialization, the state register is updated using non-linear feedback
function for 256 clocks. In most of the stream ciphers designs based on feedback
shift registers only LSB is updated using nonlinear or linear update function. In
Espresso, 14 bits of state register are updated using different nonlinear feedback
functions as follows:

x213 ← x214 ⊕ x4x45

x209 ← x210 ⊕ x6x64

x205 ← x206 ⊕ x5x80

x201 ← x202 ⊕ x8x103

x197 ← x198 ⊕ x29x52x72x99

x193 ← x194 ⊕ x12x121

x251 ← x252 ⊕ x8 ⊕ x42x83
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Fig. 3. Design of Espresso

x247 ← x248 ⊕ x40 ⊕ x44x102

x243 ← x244 ⊕ x103 ⊕ x43x118

x239 ← x240 ⊕ x117 ⊕ x46x141

x235 ← x236 ⊕ x67x90x110x117

x231 ← x232 ⊕ x189 ⊕ x50x159

x255 ← x0 ⊕ x41x70 ⊕ z

x217 ← x218 ⊕ x3x32 ⊕ z

Output bit z is generated as:

z ← x80 ⊕ x99 ⊕ x137 ⊕ x227 ⊕ x222 ⊕ x187 ⊕ x243x217 ⊕ x247x231 ⊕ x213x235⊕
x255x251 ⊕ x181x239 ⊕ x174x44 ⊕ x164x29 ⊕ x255x247x243x213x181x174

The output z generated during initialization phase is also used to update x255

and x217. In pseudorandom bit generation phase the one output bit is generated
per clock. The output z generated during this phase is not used to update x255

and x217.
State machine is used to control operation of Espresso. Details of state

machine are shown in Fig. 4. In each state, state machine generates control sig-
nals required for controlling the different functions of operation. In Reset state
S1, state register x and control signals are set to zero. In Loading state S2, State
register is loaded with Key and IV as described above. In key scheduling state
S3, the state register is updated for 256 clocks. After 256 clocks the cipher enters
the fault injection state S4. In state S4, a particular bit/bits in a state register
x is flipped without shifting the state register. In pseudo random generations
state S5, the cipher starts generation of Key stream. One key stream bit is gen-
erated per clock. The keystream bit generated during this state is transferred to
computer using buffered FIFO.
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Fig. 4. Control finite state machine

Functional simulation of Espresso is carried out using Aldec ActiveHDL 10.1.
Figure 5 gives details of various waveforms generated during the cipher opera-
tions.

Fig. 5. Functional simulation result

On Reset signal, state register and control signals become zero. LoadEn sig-
nal loads the state register x. On ShiftEn signal, state register is updated and
shifted by one bit position on each rising edge of the clock. On FlipEn signal
an appropriate bit in state register x is flipped and keystream generation starts
from the next clock cycles. The faulty keystream is collected in a 8 bit register
using collect signal and transferred to computer using buffered FIFO.
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Above circuit is synthesized using Xilinx ISE design suite. Our hardware
setup consists of Xilinx Sparton 3 FPGA (Spartan3S50AN) which is interfaced
with computer using buffered FIFO. Device resource utilization after implemen-
tation of the circuit is provided in Table 1.

Table 1. Device utilization summary

Logic utilization Used Available Utilization

# Slice Flip Flops 294 1408 20%

# 4 Input LUTs 318 1408 22%

# Occupied Slices 184 704 26%

# Slices Containing Only Related Logic 184 184 100%

# Slices Containing Unrelated Logic 0 184 0%

Total # 4 Input LUTs 329 1408 23%

Number Used as Logic 318

Number Used as a Route-thru 11

# Bounded IOBs 16 108 14%

# BUFGMUXs 1 24 4%

Average Fanout of Non-Clock Nets 5.28

Steps in Generation of Differential Data

1. Initialize the Key and IV with random values.
2. Generate the bit file.
3. Download bit file to FPGA.
4. Reset the FPGA and start keystream generation.
5. Collect the keystream in computer.
6. Repeat the step 1 to 5 for bit difference at locations from the set

{3, 33, 155, 212}.
7. Use the output generated from FPGA for further analysis using Sage.

After getting the fault-free and faulty keystream bits, we generate a system of
equations involving the internal state bits of Espresso in SageMath software.
The details of how these equations are generated for the software is explained
in Sect. 4. The SAT solver returns the correct solution which matches with the
internal state. Since the state update of Espresso is invertible the internal state
recovery implies key recovery. We have validated our result with the software
simulation described in Sect. 4 of our main article.

6 Conclusion

In this paper we demonstrate a differential fault attack on Espresso. The design-
ers of the cipher have not performed any security analysis of Espresso against
fault attacks. We show that an adversary can retrieve complete internal state
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using DFA and which then can reversed to reveal the secret key. Precisely we
require only 4 random faults and approximately 200 keystreams to recover the
complete internal state in a practical time of approximately 400 s.

Acknowledgements. We would like to thank the anonymous reviewers for their con-
structive comments and suggestions, which considerably improved the editorial and
technical quality of our paper.
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5. Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the advanced encryption
standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45126-6 12

6. Dubrova, E., Hell, M.: Espresso: a stream cipher for 5G wireless communication sys-
tems. Cryptogr. Commun. 9(2), 273–289 (2017). https://doi.org/10.1007/s12095-
015-0173-2

7. Hoch, J.J., Shamir, A.: Fault analysis of stream ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28632-5 18
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Abstract. Differential fault attacks are powerful techniques to break a
cryptographic primitive, where the adversary disrupts the execution of a
calculation to find a secret key. Those attacks have been applied in Ellip-
tic Curve Cryptography under various types of faults, and there exists
several protection mechanisms to prevent them.

In this paper, we present a new differential fault attack on the Mont-
gomery ladder algorithm for scalar multiplication. We further present
that such attacks can be applied when specific point additions formulas
are used and when different scalar blinding techniques to randomize the
computation are present.

Keywords: Differential fault attack · Elliptic curve · Montgomery
ladder · Scalar blinding · Scalar splitting

1 Introduction

Differential Fault Analysis (DFA) was first introduced on block ciphers [4] and
RSA [7]. In these attacks, a fault is induced and modifies the behavior of the
execution resulting in an erroneous output. The effects of the fault on the output
are compared with the correct one to compromise the full secret key.

The efficiency of Elliptic Curve Cryptography (ECC) makes it popular for
embedded devices due mainly to the small parameter size for high-security level,
thus it is necessary to protect against physical attacks such as fault attacks. In
this paper, we are interested in several unexplored paths for DFA on the scalar
multiplication which is the main operation of ECC.

The first main contribution is a new attack on the Montgomery ladder algo-
rithm [22]. Its most sensitive part as implemented in cryptographic libraries is
a conditional swap, and we extend the analysis of DFA when a fault affects this
operation. In particular, we look at the use of specific point addition formulas
that do not use all point coordinates. Those are specific to the Montgomery
ladder algorithm and often used in libraries outside of the classical formulas.
Furthermore, we show that point validation or loop invariant verification are
not sound measures to protect against our attack.
c© Springer Nature Switzerland AG 2021
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Our second main contribution is to show that scalar blinding methods do not
prevent DFA if the randomizer is too small. Those are the first Coron counter-
measure [13] that adds a random multiple of the group order to blind the secret
scalar, and the others are methods that separate in several shares the scalar
with a multiplicative or Euclidean splitting [12,38]. We consider the attack in
the context of the ECDSA signature scheme, as it is well suited for DFA and
can be exploited for key recovery using lattice techniques [25]. Finally, our attack
was experimented on several simulations.

The paper is organized as follows. In Sect. 2 we introduce notations on elliptic
curves and ECDSA. Then, Sect. 3 describes our DFA attack on the Montgomery
ladder algorithm, followed in Sect. 4 on how the scalar blinding and scalar split-
ting methods can also be attacked. We give in Sect. 5 a practical evaluation of
the implementation of the ladder algorithm in cryptographic libraries, how the
attack can be achieved under the skip instruction fault model or with a random
fault in a register, and results from several simulations. Finally, we discuss in
Sect. 6 past proposed countermeasures to protect against DFA and the limita-
tions of some against our attack, and we conclude in Sect. 7. The construction
of the lattices adapted for each case considered in the paper is presented in
Appendix A.

1.1 Related Works

The first report of DFA with elliptic curves was presented in [3]. The target of
the fault injection is a point coordinate during a scalar multiplication resulting
in a point that does not belong to the original elliptic curve. The algorithm is run
backward with the correct and erroneous outputs by making guesses on the bits
of the secret scalar processed after the fault was made. The comparison with the
correct value is used to check which guess is the correct one. This attack makes
the points leave the curve, and a classical countermeasure is to validate them
using the curve equation before releasing an output.

Another DFA was proposed in [6], with the advantage that a point validation
does not detect the fault. Indeed this sign-change fault attack only modifies the
sign of a point, so it still satisfies the curve equation. An example is given to
realize such an effect with a fault during the calculation of the NAF represen-
tation of the secret scalar, and the paper claims that it could be adapted to the
Montgomery ladder algorithm in the case the y-coordinate is used.

In the same line of work, DFA where point validation cannot detect the fault
were presented in [32] and [33] on the Montgomery ladder algorithm. The faults
considered are a skip of one or several operations of the algorithm such that one
bit is not processed in the first paper, or with a skip of one multiplication or one
squaring when used with RSA in the second paper (but compatible with elliptic
curves if one replaces the operations with point doublings and point additions).
Then, it is possible to recover the bits of the scalar processed after or before the
fault occurred.

Our attack is akin to the previous DFA on the Montgomery ladder algorithm,
where the fault does not make the points leave the elliptic curve. But it shares
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similarities to the sign-change fault attack, as the goal is to change the sign of
the implicit loop invariant of the algorithm.

There are other recent fault attacks on ECC, but those are either a DFA
against a wNAF algorithm for scalar multiplication [11], or target specifically
deterministic signature scheme such as the determinist variant of ECDSA or
EdDSA [1,26,29,30] that cover well the subject.

2 Preliminaries

In this section, we introduce notations of elliptic curves, followed by a description
of ECDSA and why it is useful for a DFA attack.

2.1 Elliptic Curves over Prime Fields

An elliptic curve E defined over a field Fp with p a prime greater than 5 is the
set of points (x, y) ∈ (Fp)2 that satisfy an equation of the form

y2 = x3 + Ax + B, A,B ∈ Fp, (1)

with Δ = 4A3+27B2 �= 0, and an additional point O, alongside an operation that
makes the curve an abelian group. This operation is the point addition, where
the identity is O, and the inverse of a point P = (xP , yP ) is −P = (xP ,−yP ).

For an integer k, the operation called scalar multiplication is the repeated
addition of a point P that appears k times and is noted [k]P . For all points P ,
there exists a smallest positive integer k such that [k]P = O and is called the
order of the point.

Given Q a point in the subgroup of prime order q generated by P , then there
exists an integer k such that Q = [k]P and is called the discrete logarithm of Q
in base P . The security of ECC is based upon the hardness of finding the discrete
logarithm, and the best algorithms are Baby Step-Giant Steps (BSGS) [35] and
Pollard’s rho algorithms with complexity O(

√
q). In the case k is known to lie

in a relatively small interval [a, b], then it can be found in complexity O(
√

b − a)
with BSGS or Pollard’s kangaroo algorithm [27].

2.2 ECDSA

This is an elliptic curve-based signature scheme [24]. Its domain parameters are
an elliptic curve E and a base point P of prime order q that belongs to the curve.

Given a private key α in [1, q − 1] and a hashing function H, signing a mes-
sage M is done according to Algorithm 1, and the pair (r, s) forms the signature.

The verification process consists of computing the point

˜Q = [H(M)s−1]P + [rs−1]Ppub (2)

where Ppub = [α]P is the public key of the signer, and the signature is valid if r

is equal to the x-coordinate of ˜Q (lifted as an integer, then reduced modulo q).
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Algorithm 1. ECDSA signature generation.
Require: message M , private key α, point P of order q on an elliptic curve
Ensure: signature (r, s) of the message M under the private key α

1: repeat
2: k ← random integer in [1, q − 1]
3: Q ← [k]P
4: r ← xQ mod q
5: s ← k−1(H(M) + αr) mod q
6: until r �= 0 and s �= 0
7: return (r, s)

Faulty Signature. The differential fault attack of this paper results in the pro-
duction of a faulty signature. If a fault is made during the scalar multiplication
such that the output is Q′, then the resulting signature (r′, s′) is

{

r′ = xQ′ mod q
s′ = k−1(H(M) + αr′) mod q.

It is not possible to recover the full signature (r, s) from the faulty signature,
but the point Q from which r is derived can be reconstructed using the public
point of the signer from the relation that is used for signature verification:

[H(M)s′−1]P + [r′s′−1]Ppub = [k]P = Q.

The point Q′ can also be obtained by lifting the integer r′ as a point on the
elliptic curve. However, the value xQ′ has been reduced modulo the prime q. It
has been shown that outside of Q′ there are only a few possible points [2]. Since
the prime q is generally the curve cardinality and is very close to the field order,
there are likely only two possible points, Q′ and −Q′.

Therefore, an attacker can obtain both Q and Q′, which is a major part of a
DFA attack.

2.3 Hidden Number Problem

The attack presented in this paper allows an attacker to retrieve partial knowl-
edge of the nonce in an ECDSA signature. This can be turned into an instance
of the Hidden Number Problem, and solve it using lattices to recover the private
key [8,25].

By injecting the partial information of nonces in the linear equations of n
signatures, it can be rewritten as a linear system of n equations and (n + 1)
variables:

uiX + vi ≡ Yi, (mod q), 1 ≤ i ≤ n. (3)

The unknowns are X (the private key α) and Y1, . . . , Yn (the unknown parts of
the nonces). The Hidden Number Problem is finding X when the variables Yi

are known to belong in a relatively small interval.
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The simplest case is when the most significant bits (respectively least) of
the nonces are known, thus the variables Yi consist of their least significant bits
(respectively most). The number of signatures to collect depends on the leak
obtained on each nonce. We can get a rough idea with a rule of thumb: with a
t-bit curve and � bits leaked per nonce, we can expect around t/� signatures for
the lattice attack to succeed. For instance, with 5 least significant bits leaked on
a 256-bit curve, an average of 54 signatures are generally sufficient. Therefore,
this step in the attack has a negligible cost from a few milliseconds up to a few
seconds.

Explanation and construction of lattices for each situation are detailed in
Appendix A.

3 DFA on Montgomery Ladder

In this section, we present the Montgomery ladder algorithm, then we describe
our attack.

3.1 The Montgomery Ladder Algorithm

One advantage of the Montgomery ladder algorithm for computing Q = [k]P is
that the same elliptic curve operations are executed for each bit processed: the
algorithm has a regular behavior.

This is done by using two variable points R0 and R1 that satisfy the invariant
R1 − R0 = P in each loop. Let k = (kn−1, . . . , k0)2 the binary representation of
the scalar k, and suppose the leading bits ̂k down to kj are already processed,
meaning that R0 = [̂k]P and R1 = [̂k+1]P . The state of the Montgomery ladder
algorithm is updated depending on the current bit kj−1 as follows:

(R0, R1) =

{

([2]R0, R0 + R1) if kj−1 = 0,

(R0 + R1, [2]R1) if kj−1 = 1.
(4)

As a consequence, at the end of the step, we have R0 = [2̂k + kj−1]P , and the
relation R1 − R0 = P still holds. The process goes on until the last bit, and the
final state gives R0 = [k]P .

To avoid branch conditions, a conditional swap with bitwise masking tech-
niques is commonly used in implementations so the point doubling is executed
with the correct value, and a second time after the operations to restore R0 and
R1 (see Algorithm 2).

Remark 1. There is also a padding method to avoid a leak of the bit length of its
input given in [10], using the group order q of bit length t: the scalar k is replaced
with k+εq with ε ∈ {1, 2} that makes the new scalar exactly a (t+1)-bit integer.
Since q is the order of the base point, the final result of the scalar multiplication
is unchanged. We suppose in the following that this countermeasure is implicitly
used.
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Algorithm 2. Montgomery ladder
Require: k = (kn−1, . . . , k0)2, P , kn−1 = 1
Ensure: Q = [k]P

1: R0 ← P
2: R1 ← [2]P
3: for i = n − 2 down to 0 do
4: conditional swap(ki, R0, R1)
5: R1 ← R0 + R1

6: R0 ← [2]R0

7: conditional swap(ki, R0, R1)

8: return R0

3.2 New Attack: Invariant Sign-Change Fault

We consider a fault that inverts the state of the ladder algorithm after the
processing of the bit kj (see Sect. 5 for examples of how it can be achieved):

{

R0 = [̂k]P

R1 = [̂k + 1]P

E−−−−−−−−−−→
fault

{

R0 = [̂k + 1]P

R1 = [̂k]P
(5)

The value R0 for processing the next bit is R′ = [̂k + 1]P and the invariant
for the remainder of the algorithm is the point I = −P . Thus, the resulting
point of the scalar multiplication is

Q′ = [2j ]R′ + [k]I = [(̂k + 1)2j − k]P, (6)

where k = (kj−1, . . . , k0)2 are the least significant bits following the bit processed
when the fault was made.

Then, the following difference is a point that depends only on the j least
significant bits of k:

Q − Q′ = [2k − 2j ]P. (7)

Those j bits can be found with an exhaustive search. An alternative is to calcu-
late the sum

Q + Q′ = [̂k2j+1 + 2j ]P, (8)

that depends only on the most significant bits of k.
While this type of fault is undetectable with a point validation, a check of

the invariant reveals that a wrong calculation occurred. This is true for classical
formulas such as affine point addition or their projective equivalent (including
the complete formulas of [28]). However, there are specific formulas that do not
use all point coordinates which has an impact on the previous description and
makes the fault undetectable by a check of the invariant, and it is covered below.

Remark 2. In the particular case of k = 2j−1 the points Q and Q′ are equal, so
it is impossible to distinguish with the cases where the fault has no impact on
the swap operation.
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x-only Formulas. The particularity of those formulas is that the y-coordinates
of the points are not used to compute either a point doubling or a point addi-
tion [9,18]. Let P1 = (x1, y1) and P2 = (x2, y2). Given x1 and x2, and the
auxiliary value xP the x-coordinate of P1 − P2, then those formulas compute
the x-coordinate of P1 + P2. No auxiliary data is needed for the point doubling
(outside of the elliptic curve parameters). Those formulas are well adapted for
the Montgomery ladder algorithm since the point addition occurs between two
points whose difference is invariant and equal to the input of the scalar multi-
plication.

The invariant is replaced by −P in our attack. Its x-coordinate is the same
as P , so the point additions in the following steps are correctly calculated, and
the differential analysis can be done.

The interesting side-effect happens for the reconstruction of the missing coor-
dinate y of the resulting faulty point, since it uses formulas involving the two
coordinates of the invariant (see Appendix B for the formula). In this case, the
invariant has changed from (xP , yP ) to (xP ,−yP ), and the code might use the
original invariant directly, stored in registers and not modified by the execution.
The sign difference only impacts the y-coordinate of the output Q′ which is the
same as in Eq. (6) with a sign change (so it passes a point validation test).
However, the attack on ECDSA needs to construct candidates for Q′ which also
includes −Q′ so it makes no difference in the analysis.

Furthermore, a check of the invariant would not detect the fault. Indeed,
the points R0 and R1 will be reconstructed as R′

0 = −R0 and R′
1 = −R1 as

explained above, so the difference

R′
1 − R′

0 = −(R1 − R0) = P

would yield the invariant P as if no fault occurred.

Co-Z Formulas. We look now at the co-Z formulas based on Jacobian projec-
tive representation of the points: a point (x, y) is represented by (X : Y : Z) with
x = X/Z2 and y = Y/Z3. The particularity of those formulas is the requirement
that the two points share the third projective coordinate Z. We consider the
variant that does not use this coordinate in the formulas [17].

Instead of a regular point doubling and point addition in a ladder step, it is
composed of two additions, XYcoZ-ADDC and XYcoZ-ADD, such that the two inputs
share the same Z-coordinate, and give two outputs with the same property:

XYcoZ-ADDC : (P1, P2) �→ (P1 + P2, P1 − P2)
XYcoZ-ADD : (P1, P2) �→ (P1 + P2, P1).

A formula for the recovery of the missing coordinate Z is necessary at the end
of the scalar multiplication during the processing of the last bit to get the affine
form.

The formulas are correct as long as the points share the Z-coordinate, and
this property is not impacted by the attack. What remains to observe is the
effect on the Z-coordinate recovery. The original invariant (xP , yP ) might be
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used instead of the new one (xP ,−yP ) following the fault for the same reason
as with the x-only formulas, and the consequence is the appearance of a factor
−1 in the reconstructed coordinate Z of the points R0 and R1 (see Appendix B
for details). But it only changes the sign of the affine coordinate y due to the
Jacobian coordinates. So the erroneous output Q′ is a valid point of the elliptic
curve.

Finally, as with the x-only formulas, a check of the invariant would not
detect the fault. Indeed, we have R1 − R0 = −P after the fault, and the points
are reconstructed as R′

0 = −R0 and R′
1 = −R1 so the difference R′

1 − R′
0 would

yield the correct invariant.

Remark 3. An alternative view for the x-only and co-Z formulas is that the
invariant of the algorithm is not the full point P anymore, but only its x-
coordinate which stays intact during the attack.

Unknown Step. The differential points in Eq. (7) and (8) do not depend only
on the least or most significant bits of the secret scalar, but also on the step
where the fault was made. This could result in several candidates if several steps
j are considered during the analysis.

Conservative choices can be made to lift this indeterminacy, at the cost of
losing a few bits of the scalar. Suppose we retrieved the discrete logarithm d =
2k − 2j of the differential point of Eq. (7), but the step j is unknown. We can
compute d/2 mod 2i for an integer i that we expect to be smaller than j (say 5
for i against 10 for j), then the i least significant bits are retrieved.

The loss of precision is not impactful as the lattice attack on ECDSA can
still be successful from a few bits per nonce.

4 DFA with Scalar Randomization

In this section, we present how differential fault attacks might still be applicable
when the scalar is randomized with scalar blinding methods in the context of
ECDSA.

4.1 Scalar Blinding with Group Order

This is the most classical measure proposed in [13]. The secret scalar k is replaced
with

k� = k + mq,

where m is a random integer of λ bits. Since q is the order of the base point P ,
then we have

Q = [k�]P = [k]P + [mq]P = [k]P.

Write k� = ̂k�2j +k
�

where k
�

are the j least significant bits, and ̂k� the most
significant bits. Suppose that a DFA reveals k

�
(as in our attack on Montgomery
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ladder), then the unknown part satisfies the inequality

q − k
�

2j
≤ ̂k� <

q + 2λq − k
�

2j
, (9)

which is an interval of width q/2j−λ. Then, it is necessary to have j > λ for the
unknown to be in an interval of width less than q, a necessity for exploitation in
a lattice attack on ECDSA as described in Appendix A.

Cost. Suppose that we get a point whose discrete logarithm depends on the
j = λ + ε least significant bits of the blinded scalar for a nonnegative ε. An
exhaustive search on those bits is expensive in this case, so a discrete loga-
rithm algorithm such as BSGS and Pollard’s kangaroo might be used to find the
bits more efficiently in complexity O(2(λ+ε)/2). For example, if λ is 20 (as was
originally suggested in [13]), then a fault on the step j = 24 would make the
discrete logarithm easy to find, and a small ε is sufficient to attack ECDSA as
can be attested in our simulation tools. Therefore, the cost depends essentially
on λ which has to be chosen quite large to prevent the attack or to make it
impractical.

4.2 Euclidean Splitting

This method was proposed in [12] to protect against side-channel attacks as an
alternative for scalar blinding. The secret scalar k is rewritten as

k = am + b,

where m is a random integer of λ bits with a = 	k/m
 and b = k mod m. Then,
the scalar multiplication Q = [k]P can be computed as Q = [m]([a]P ) + [b]P
using three individual scalar multiplications and a point addition.

We show here how to recover the random divisor (or one of its factors) and
the remainder of the Euclidean division of a secret scalar k from a single fault.
This can be used in ECDSA for a lattice attack, and on a fixed scalar with the
Chinese Remainder Theorem.

We start by giving the general principle. Let R = [a]P the scalar multiplica-
tion with the quotient, so the output is given by

Q = [m]R + [b]P.

If the point R is known, then the BSGS algorithm can be applied to find m
and b. It consists of computing a first list of possible values for [b]P (the baby
steps), then a second list of possible points for Q − [m]R (the giant steps) until
a collision with the first list occurs, revealing the values m and b.

The first list depends only on the base point, so it can be computed once and
stored for reuse. Since both m and b are less than 2λ, both the time and space
complexities of the algorithm are O(2λ).
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The proposed target is the scalar multiplication [m]R with the random divi-
sor. We suppose a fault has been made such that the effective calculation is
[m′]R where the difference δ = m − m′ belongs to a set of size T . Then the
result of the whole scalar multiplication Q = [m]R + [b]P is altered in a point
Q′ = [m′]R + [b]P , and their difference is

Q − Q′ = [δ]R.

A candidate for R is constructed from each candidate δ̃ for δ:

˜R = [1/δ̃](Q − Q′).

The BSGS strategy is applied to get candidates (m̃, b̃) that satisfy the equality

Q − [m̃] ˜R = [b̃]P.

Cost. There are T possible values for δ and the BSGS algorithm runs in O(2λ)
steps, so the overall cost is O(2λT ). So it is practical only for a small parameter λ
(the only library implementing this technique that we found uses a parameter
λ of 32 bits so the time and memory constraints are low enough). In particular,
the memory constraints of BSGS should make the attack infeasible for λ = 64.

Several Candidates. Eventually, several candidates for (m, b) can be found,
but we can still salvage valuable information on the scalar k. Let (m̃, b̃) a can-
didate alongside the corresponding value δ̃. The correct values (m, b) and δ are
also amongst the candidates.

We start with the case b �= b̃. Since (m̃, b̃) is a candidate, we have

[m̃] ˜R + [b̃]P = [m]R + [b]P, (10)

from which we derive the relation

a ≡ δ̃(b̃ − b)(mδ̃ − m̃δ)−1 (mod q). (11)

The quotient a is recovered, so the scalar k can be fully reconstructed and verified
with the relation Q = [k]P . This case seems unlikely to happen.

In the case the candidates are (m̃1, b), . . . , (m̃N , b), then we can pose d =
gcd(m̃1, . . . , m̃N ), and we get the relation k ≡ b (mod d).

Example with the Invariant Sign-Change Fault. We apply the attack of
Sect. 3.2 when no specific formulas are used. After a fault on the scalar multipli-
cation [m]R, then the result is [m′]R with m′ = (m̂ + 1)2j − m. The difference
with the correct output Q is

Q − Q′ = [2m − 2j ]R,

and the value δ = 2m − 2j depends only on the least significant bits of m.
Therefore, the BSGS part of the attack only needs to run an exhaustive search
on the most significant bits of m. If the baby steps are precomputed, then the
complexity is O(2λ).
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4.3 Multiplicative Splitting

This technique was proposed in [38]. A random value m of λ bits is randomly
generated, and γ is defined such that we have the relation

k ≡ mγ (mod q).

The scalar multiplication Q = [k]P is computed in two successive scalar multi-
plications as R = [m]P and Q = [γ]R.

The differential fault attack can be applied with a fault in the second scalar
multiplication. We suppose a fault has been made such that the effective calcu-
lation is [γ′]R where the difference δ = γ − γ′ belongs to a set of size T . Then
the result of the whole scalar multiplication Q = [γm]P is altered in a point
Q′ = [γ′m]P , and their difference is

Q − Q′ = [δm]P.

The value δm can be found by running through all possible values for δ, and
then computing the discrete logarithm of the point [m]P in base P with BSGS
or Pollard’s kangaroo algorithms.

Cost. Since m is a positive integer less than 2λ the overall cost is O(2λ/2T ).
The cost is similar to the attack on the blinding with the group order, so it is
tractable for small λ (such as 20 or 32).

Example with the Invariant Sign-Change Fault. In certain cases, a single
discrete logarithm is sufficient when δ represents a small value. For example, if
we consider the fault of Sect. 3.2 during the processing of the bit γj , then the
difference with the result of the whole scalar multiplication is

Q − Q′ = [(2γ − 2j)m]P.

We obtain a point whose discrete logarithm in base P is less than 2λ+j (in
absolute value), so the complexity to find it is O(2(λ+j)/2). Again, this is practical
when λ is relatively small (as was suggested in the paper that proposed this
method), then the discrete logarithm can be found in a matter of seconds or
minutes.

This discrete logarithm is useful for lattice attacks on ECDSA. Indeed, we
have the relation

k − mγ

m2j
≡ γ̂ (mod q), (12)

where γ̂ is a relatively small integer compared to the order q (at least j bits less).
When it is possible to distinguish m from 2γ − 2j in the discrete logarithm (if
m is prime for instance), then a lattice attack can be applied.
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Table 1. Overview of Montgomery ladder in several cryptographic libraries.

Library Init Swap variant Formulas Remarks

Weierstrass curves

OpenSSL 1.1.1k (P, 2P ) Algorithm 3* x-only

LibreSSL 3.2.4 (P, 2P ) Algorithm 3* Jacobian

CoreCrypto (Apple) (P, 2P ) Algorithm 3 Co-Z Point valid., Eucl. split

Montgomery curves

SymCrypt (O, P ) Algorithm 3 x-only

Mbed TLS (O, P ) Algorithm 2 x-only

libsodium † (O, P ) Algorithm 3 x-only

*The source code is slightly different but the compiled code corresponds to
Algorithm 3.
†ref10 implementation of Curve25519 present in other libraries.

Algorithm 3. Processing of the bit ki in the Montgomery ladder variants with
merged swaped.
1: pbit ← pbit ⊕ ki

2: conditional swap(pbit, R0, R1)
3: R1 ← R0 + R1

4: R0 ← [2]R0

5: pbit ← ki

5 Practical Evaluation

In this section, we consider the practicality of the attack and present evidence
on how it can be achieved on several cryptographic libraries, with simulated
experiments to validate our claims that are publicly available1.

5.1 Montgomery Ladder in Libraries

In most cryptographic libraries, the second swap in the loop is merged with the
first swap of the next step to avoid an unnecessary swap: the swap is effective
only if the scalar bit differs from the previous one. This variant is presented in
Algorithm 3.

We list in Table 1 the variant used for several libraries that implement the
Montgomery ladder algorithm for the elliptic curve scalar multiplication. Elliptic
curves in Montgomery form such as Curve25519 are also present in the table,
though those are not used for ECDSA, the attack might still be applicable in
situations where the attacker can obtain the correct and erroneous outputs.

It shall be noted that in some cases side-channel attacks could be sufficient,
but those are inherent to how the actual swap is implemented. There is the

1 https://github.com/orangecertcc/dfa-ladder.

https://github.com/orangecertcc/dfa-ladder
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binary masking technique, where the swap is made using a mask with its bits
all set to 0 or 1, and a template attack was applied where the leak comes from
the AND binary operator [23]. In the case of Mbed TLS, the multiplication by 0
or 1 is used to swap the values, and is also vulnerable to a template attack [21].
In both cases, a single trace could reveal the whole scalar.

Assuming that an implementation is protected against these attacks, then a
fault attack becomes relevant. In the following we present a strategy to perform
our attack with the variant of Algorithm 3.

5.2 Realization of the Fault Attack

Physical access to the device is necessary, and the attacker must be able to
disturb the calculation at a specific point in time and location.

Skip Instruction. The first model considered is the skip instruction that was
applied successfully in practice on RSA exponentiation with a spike injection on a
microcontroller to skip a squaring [31]. It was also recently applied in the elliptic
curve point decompression algorithm to make a point lie on weak curve [5,36].

The effects described in Sect. 3.2 can be achieved if line 1 of Algorithm 3 is
omitted during one iteration of the algorithm. Indeed, the variable pbit at the
beginning of the loop refers to the previous scalar bit, and keeps track of the
current state of the couple (R0, R1) such that the loop invariant is

R1−pbit − Rpbit = P.

So, if the line “pbit ← pbit ⊕ ki” is not executed and the bit ki is 1, then the
variable pbit is not updated:

– If pbit was 0, then we have R1 − R0 = P , the points are not switched, so we
still have R1 − R0 = P ;

– If pbit was 1, then we have R0 −R1 = P , the points are switched, so we have
now R1 − R0 = P .

In both cases, the variable pbit gets the value 1 at the end of the loop, so starting
from the next iteration we have

R1−pbit − Rpbit = R0 − R1 = −P,

and the sign of the loop invariant has changed for the remainder of the algorithm.
One alternative is to target the line “pbit ← ki”. If this line is skipped and

the bit ki differs from the value in the variable pbit, then it will not be consistent
with the current state or (R0, R1), but starting from the processing of the next
loop iteration.

Remark 4. Of course, in half of the cases, skipping one of these instructions will
not have an effect and result in a correct output (and it is discarded in our
attack).
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Algorithm 4. Constant-time conditional swap of two values with binary oper-
ators (comments: alternative version)
Require: (w0, w1), bit b
Ensure: (wb, w1−b)

mask ← (b, . . . , b)2
tmp ← mask ∧ (w0 ⊕ w1) � tmp ← w0

w0 ← w0 ⊕ tmp � w0 ← (w0 ∧ ¬mask) ∨ (w1 ∧ mask)
w1 ← w1 ⊕ tmp � w1 ← (w1 ∧ ¬mask) ∨ (tmp ∧ mask)
return (w0, w1)

Fault in a Register. A common method for the conditional swap is to use
binary masks as presented in Algorithm 4. The interesting part is the construc-
tion of the binary mask. It is generally done using the binary representation of
−1 in a machine-word with all bits set to 1. So the value −b gives a null mask
if b is 0, and a binary mask with all bits set to 1 if b is 1.

However, there are other ways to construct such masks, where any nonzero b
ends up with a binary mask with bits set to 1. Let N the bit length of machine-
words, then the two equivalent following formulas give an example of such con-
struction (the first one is present in Mbed TLS and the second in OpenSSL)
where “>>” is the bitwise shift right operator:

−(

(b ∨ (−b)) >> (N − 1)
)

or
(

(¬b ∧ (b − 1)) >> (N − 1)
) − 1.

A fault that randomly modifies the register that contains the bit b will have the
desired effect and swaps the points if the original value of b is 0. This can be
achieved with a random fault on a register.

5.3 Simulations

Simulations were used to put in practice our attack and evaluate the other
different cases of the paper. The first one uses the GNU Debugger GDB to
simulate faults according to the fault models presented above in the OpenSSL
implementation of the Montgomery ladder algorithm. The second is based on
the Unicorn engine2 to test the effect of faults wrongly injected with the skip
instruction fault model. Finally, other cases with the randomization methods
were also simulated in Python and the lattice attack used the fpylll library [37].

GDB Simulation. We give in Listing 1.1 part of the assembly code related
to the loop of the Montgomery ladder algorithm in OpenSSL version 1.1.1k
(compiled on a Raspberry Pi device model 4B).

The instruction on address 0xdd208 corresponds to the line “pbit ← pbit ⊕
ki” that needs to be ignored in the skip instruction fault model. The second
fault model can be achieved with a modification of register r6 after this same

2 https://www.unicorn-engine.org/.

https://www.unicorn-engine.org/
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dd1e8: mov r1, r8
dd1ec: ldr r0, [sp, #8]
dd1f0: bl 8b440 <BN_is_bit_set > ; r0 <- current bit k_i
dd1f4: ldr r6, [sp, #12] ; r6 <- pbit
dd1f8: mov r3, r9
dd1fc: ldr r2, [fp, #8]
dd200: ldr r1, [r7, #8]
dd204: sub r8, r8, #1
dd208: eor r6, r6, r0 ; r6 <- pbit XOR k_i
dd20c: mov sl, r0
dd210: mov r0, r6
dd214: bl 8b554 <BN_consttime_swap > ; swap X if r0 = 1
dd218: mov r0, r6
dd21c: mov r3, r9
dd220: ldr r2, [fp, #12]
dd224: ldr r1, [r7, #12]
dd228: str sl, [sp, #12] ; pbit <- k_i
dd22c: bl 8b554 <BN_consttime_swap > ; swap Y if r0 = 1
dd230: mov r0, r6
dd234: mov r3, r9
dd238: ldr r2, [fp, #16]
dd23c: ldr r1, [r7, #16]
dd240: bl 8b554 <BN_consttime_swap > ; swap Z if r0 = 1

Listing 1.1. Excerpt of assembly code of the function ec scalar mul ladder in
OpenSSL 1.1.1k.

instruction. Indeed, this variable is only used thereafter for the conditional swap
on each point coordinates.

It is easy to instrument these faults with GDB, and has been automatized
with two scripts. In both cases the analysis on the signatures followed by the
lattice attack resulted in a successful private key recovery.

Unicorn Simulation. Unicorn is CPU framework emulator and we used it
through the Rainbow tool3 that makes it easy to trace the execution of all
instructions of a binary. It can be stopped at any moment and the next instruc-
tion can be read. Then the skip instruction fault model can be instrumented as
follows: we read the next instruction, and it is skipped by resuming the execution
at the following instruction using the size of the skipped instruction.

The constant-time big integer modular arithmetic of the secp256r1 curve
written in assembly was chosen (taken from the OpenSSL project). It has no
external dependency which makes it easier to work with the emulator. Two
binaries were created to implement the Montgomery ladder variant of Algo-
rithm 3: the first with Jacobian projective coordinates, and the second with
co-Z formulas.

The instructions related to the lines “pbit ← pbit ⊕ ki” and “pbit ← ki” are
present in the assembly code of both binaries. When one of those is skipped
during an iteration of the main loop, then the analysis of Sect. 3.2 is successful
and the least significant bits of the scalar are recovered.

3 https://github.com/Ledger-Donjon/rainbow.

https://github.com/Ledger-Donjon/rainbow
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However, we found a false positive situation with both binaries when the
fault skips one instruction in the function that extracts one bit of the scalar.
What happens is that the extracted bit is incorrect: the bit kj is replaced with
1 − kj , but the remaining of the scalar multiplication is done correctly. This is
equivalent to a bitflip of the scalar, and as a consequence we have

Q − Q′ =

{

[−2j ]P if kj = 0,

[2j ]P if kj = 1.

If we look at Eq. (7), this might wrongly reveal that the least significant bits of
the scalar are only composed of zero bits. Therefore, to avoid a wrong signature
in the lattice attack against ECDSA, it might be better to discard this case (say
j is 16, then there would be one out 65536 scalars on average where the 16 least
significant bit are indeed set to 0 so discarding a correct result would be rare).

Another false positive was observed with the Jacobian projective formulas:
after a specific instruction skip in the point addition function, one of the points is
not loaded correctly and the addition happens with the same point: the doubling
function is called instead, and the analysis catches a wrong value.

For the co-Z binary, we included the invariant check at the end of the scalar
multiplication as a countermeasure [39]. We adapted the XYcoZ-ADD function
such that it computes the difference of the inputs (the invariant) instead. Once
the missing Z-coordinate is recovered and the points are converted to their affine
representation, the calculated invariant I is XORed with P , the correct invariant,
and the output Q:

Q ⊕ I ⊕ P.

If the calculated invariant is correct, it should be canceled by P . As was expected
from Sect. 3.2, I is indeed correctly calculated as P . The output is a valid point
and it does not prevent our attack.

6 Countermeasures

As with other works where the fault does not make the elliptic curve point leave
the curve, a point validation cannot detect the fault, even in the case of x-only
or co-Z formulas (for the former it was suggested in [15] to recover the missing
coordinate and perform the verification, but in the context of the attack of [16],
and would not be able to prevent our attack).

Verification of the Montgomery ladder invariant was proposed in [14,39]
against fault attacks. As we have seen in Sect. 3.2, it should work in general
because the invariant is changed, except in the cases of the x-only and co-Z
formulas (the reconstructed invariant would be the correct one) as was experi-
mented in Sect. 5.3.

There is another idea from [14] to prevent our attack with the x-only and
co-Z formulas. It is a variant of the point blinding countermeasure from [13]
adapted to Montgomery ladder: the algorithm is initialized as R0 = P + R and
R1 = [2]P + R for a random point R, and the invariant R1 − R0 is still the



DFA on Montgomery Ladder and in the Presence of Scalar Randomization 303

input P . At the end of the scalar multiplication we have R0 = [k]P +[2n−1]R, so
a subtraction by S = [2n−1]P is needed to get the correct output. In our attack,
the points R0 and R1 are inverted and the invariant becomes −P :

{

R0 = [k′]P + [2n−1]R
R1 = R0 − P.

We have seen that it changes the sign of the reconstructed point after the recovery
of the missing coordinate. Therefore, subtracting the blinded point to get the
output would give

Q′ = −R0 − [2n−1]R = −[k′]P − [2n]R,

and without the knowledge of the point R, the output is useless for an attacker.
However, this is true as long as R is randomly selected at each new execution, and
it was originally proposed to update R by replacing it with the point [(−1β)2]R
with β ∈ {0, 1} chosen randomly. With faults successfully injected in consecutive
runs, it might be possible to deduce the point R, and then the differential analysis
could be done.

Classic countermeasures such as repeating the operations twice and check
consistency can be applied against our attack. To reduce the cost, it was proposed
in [6] to make the second computation on an elliptic curve Ep′ over a smaller
prime field Fp′ , and the first on an elliptic curve Epp′ over the integer ring
Z/pp′Z. On one hand, the reduction modulo p of the result gives the expected
calculation, and on the other hand, the reduction modulo p′ is checked with the
calculation on Ep′ .

A variant of the previous method was proposed in [19,32] where the second
computation is done on an auxiliary group glued together with the elliptic curve
operation. For instance, it can be done by adding an integer to point coordi-
nates which keeps track of the current discrete logarithm of the points using the
following rules:

(P1, �1) + (P2, �2) = (P1 + P2, �1 + �2), [2](P, �) = ([2]P, 2�).

If no fault occurred the resulting point should be ([k]P, k) with k the secret
scalar. This method should detect the fault in our attack since the auxiliary
value is consistent with the point, so a change in the point affects the value too.

Finally, in the case of an attack on ECDSA, it is always possible to verify
the signature at the end of the calculation.

7 Conclusion

In this paper, we presented a new differential fault attack on Elliptic Curve Cryp-
tography with the Montgomery ladder algorithm. We showed that an attacker
can switch two points with either a skip instruction or a random fault in a
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register. With this modification in the program flow, the least (or most) signifi-
cant bits of the secret scalar can be determined from the difference between the
correct and erroneous outputs.

Furthermore, this attack bypasses some of past countermeasures against fault
attacks on ECC. A consequence is that particular care is necessary to choose
the right measures to protect an implementation when protection against fault
attacks is part of the threat model.

Finally, we presented evidence that scalar randomization with common meth-
ods is not enough to thwart differential fault attacks. It requires that the ran-
domizer is small enough for the attack to be practical. However, it is generally
suggested in the papers that proposed such methods to choose them small to
reduce the extra cost.

Future work could explore further ways to achieve the effects of our attack
using other fault models or targeting other instructions, or investigate other
randomization methods.

A Lattice Attack

In this appendix, we present the lattice construction to solve the Hidden Number
Problem, then we give the values for the particular cases met in the paper.

A.1 Lattice Construction

First we introduce the notation | · |q defined as

|z|q = min
y∈Z

|z − yq|,

for any real z, which is a reduction modulo q in the range [−q/2, q/2] followed
by an absolute value.

Let uX + v ≡ Y mod q a linear equation in the variables X and Y , where an
approximation viewed as an integer of Y is known:

B1 ≤ Y < B2,

where B1 and B2 are two integers with (B2 −B1) < q/L for a positive integer L.
The width of the interval can be reduced by centering around 0. Let C = (B1 +
B2)/2 be the center of the interval, and we get the bound

|Y − C| < q/(2L).

Therefore, noting v′ = C − v, we have |uX − v′|q = |Y − C|q = |Y − C|, since
we know that (Y − C) is in [−q/2, q/2]. Then, using the bound on it, we obtain
the inequality

|uX − v′|q < q/(2L), (13)

whose meaning is that when seen modulo q, the value v′ is close to a multiple of
the hidden number X.
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Given n inequalities of the form |uiX−v′
i|q < q/(2Li) derived from equations

where X is a common variable, we construct the lattice generated by this integer
matrix:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2L1q
2L2q

. . .
2Lnq

2L1u1 2L2u2 · · · 2Lnun 1 0
2L1v

′
1 2L2v

′
2 · · · 2Lnv′

n 0 q

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Denoting mi the i-th line of the matrix, and
{

u = (2L1u1, . . . , 2Lnun, 1, 0)
v = (2L1v

′
1, . . . , 2Lnv′

n, 0, q),

the vectors from the last two lines of the matrix, there exists integers λi such
that the vector Xu−v+

∑n
i=1 λimi is a short vector of the lattice according to

the inequalities, since each coordinate is bounded by q.
Applying a lattice basis reduction algorithm such as LLL [20] or BKZ [34],

there is a possibility that one of the vectors of the reduced basis is the one we are
looking for. By construction, this short vector has the hidden number X as its
penultimate coordinate. In the different settings, it corresponds with a private
key and can be easily checked with the public key.

A.2 Application to ECDSA

First, we recall that a signature (r, s) can be rewritten:

k ≡ αr/s + H(M)/s (mod q).

The hidden number X is the private key α, while the unknown variable Y cor-
responds partially to the ephemeral value k in various ways depending on each
of the following cases.

Case 1. Let k = am + b the Euclidean division of k by an integer m. This case
concerns the attack on the Euclidean splitting in Sect. 4.2, but also cases when
the � least significant bits are known by setting m = 2�. If m and b are known,
then we have

⎧

⎪

⎨

⎪

⎩

Y = a,

u = r/(sm) mod q,

v = H(M)/(sm) − b/m mod q.

With the padding method applied on k beforehand, we have 2t ≤ k < 2t + q so
the unknown a is bounded by

2t − b

m
≤ a <

2t + q − b

m
,

of width q/m. When the blinding method of Sect. 4.1 is used instead of a padding,
we have the inequality in Eq. (9) when the � least significant bits are known.
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Case 2. Instead, if a and m are known in the Euclidean division of k by m,
then we have

⎧

⎪

⎨

⎪

⎩

Y = b,

u = r/s mod q,

v = H(M)/s − am mod q.

The unknown b is a non-negative integer less than m. This case corresponds to
the most significant bits of k known. Suppose that we know the (� + 1) most
significant bits (including one from the padding), then m = 2t−� (which can be
approximated to q/2� when q is very close to 2t for some standardized elliptic
curves).

Case 3. This is the situation of Sect. 4.3 where k is randomized by an integer m
of at most λ bits, and is rewritten as k ≡ mγ mod q. If m and the � least
significant bits γ of γ are known, we can write

k ≡ mγ̂2� + mγ (mod q),

where the unknown is γ̂ (the most significant bits of γ). We have
⎧

⎪

⎨

⎪

⎩

Y = γ̂,

u = r/(ms2�) mod q,

v = H(M)/(sm2�) − γ/2� mod q.

If no padding was applied on the scalar multiplication with γ, then the unknown
is bounded by 0 ≤ γ̂ < q/2�, and if a padding is applied then the bound on the
unknown is

2t − γ

2�
≤ γ̂ <

2t + q − γ

2�
,

both of them of width q/2�.

B Coordinates Recovery

In this appendix, we give more details on the recovery of the missing coordinates
for the x-only and co-Z formulas.

B.1 x-only Formulas

Those are based on the homogeneous projective coordinates: a point (x, y) is
represented as [X : Z] where x = X/Z for a nonzero Z.

The missing coordinate can be recovered in the case of the Montgomery
ladder algorithm. Let [X0 : Z0] and [X1 : Z1] the representations of two points
R0 and R1, and P = (xP , yP ) the point such that R1 − R0 = P . The formula to
recover the affine y-coordinate of R0 is

y0 =
2BZ2

0Z1 + Z1(AZ0 + xP X0)(xP Z0 + X0) − X1(xP Z0 − X0)2

2yP Z2
0Z1

(14)
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Algorithm 5. Recovery of the missing coordinate with co-Z formulas in the
last step of the Montgomery ladder algorithm.
1: R1−k0 , Rk0 ← XYcoZ-ADDC(Rk0 , R1−k0)
2: Z ← (X(R1) − X(R0))xPY (Rk0)/yPX(Rk0)
3: Rk0 , R1−k0 ← XYcoZ-ADD(R1−k0 , Rk0)
4: Q = (X(R0)/Z

2, Y (R0)/Z
3)

If the invariant sign-change fault attack of Sect. 3.2 is successful, then we
have R1 − R0 = −P = (xP ,−yP ). A correct reconstruction of R0 should use
−yP instead of yP in Eq. (14). On the contrary, it will introduce a factor −1 in
the computation of y0, so the reconstructed point will be R′

0 = −R0. A similar
formula can be derived for R1 and the reconstruction would give R′

1 = −R1. So
the difference R′

1 − R′
0 would still be equal to the original invariant.

B.2 Co-Z Formulas

Those formulas are based on the Jacobian projective coordinates: a point (x, y)
is represented by (X : Y : Z) with x = X/Z2 and y = Y/Z3. The variant
considered does not use the third coordinate Z in calculation.

The missing coordinate is mandatory to get the affine representation. Let
P = (X : Y : Z) with the coordinate Z unknown, and (x, y) its known affine
representation, then we have

Z =
x · Y

y · X
. (15)

On the last step of the Montgomery ladder algorithm, the XYcoZ-ADDC oper-
ation computes the difference of the points R0 and R1, so the invariant P
appears in Jacobian projective form. The above formula allows the reconstruc-
tion of its missing Z-coordinate which is common to R0 and R1. This is given
in Algorithm 5 (another factor is present in line 2 to take into account the final
XYcoZ-ADD operation).

If the invariant sign-change fault attack of Sect. 3.2 is successful, then the
invariant becomes −P which introduces a factor −1 in Eq. (15) since the affine
coordinates of P will be used. As a consequence, the missing coordinate recon-
structed in line 2 of Algorithm 5 will be −Z. Let R0 = (X0 : Y0 : Z) and
R1 = (X1 : Y1 : Z) the two points at the end of the Montgomery ladder algo-
rithm. Then using −Z instead of Z to get the affine form will result in

R′
i =

(

Xi

(−Z)2
,

Yi

(−Z)3

)

= (xi,−yi) = −Ri, i ∈ {0, 1}.

So the difference R′
1 − R′

0 would still be equal to the original invariant.
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C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 98–113. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36400-5 9

39. Vasyltsov, I., Saldamli, G.: Fault detection and a differential fault analysis coun-
termeasure for the Montgomery power ladder in elliptic curve cryptography. Math.
Comput. Model. 55(1–2), 256–267 (2012). https://doi.org/10.1016/j.mcm.2011.06.
017

https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1109/FDTC.2008.10
https://doi.org/10.1109/FDTC.2009.38
https://doi.org/10.1007/978-3-642-24209-0_26
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1090/pspum/020
https://doi.org/10.1090/pspum/020
https://doi.org/10.1109/EuroSP.2019.00035
https://doi.org/10.1109/EuroSP.2019.00035
https://github.com/fplll/fpylll
https://doi.org/10.1007/3-540-36400-5_9
https://doi.org/10.1016/j.mcm.2011.06.017
https://doi.org/10.1016/j.mcm.2011.06.017


Fault-Enabled Chosen-Ciphertext Attacks
on Kyber

Julius Hermelink1,2(B), Peter Pessl1, and Thomas Pöppelmann1
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Abstract. NIST’s PQC standardization process is in the third round,
and a first final choice between one of three remaining lattice-based key-
encapsulation mechanisms is expected by the end of 2021. This makes
studying the implementation-security aspect of the candidates a pressing
matter. However, while the development of side-channel attacks and cor-
responding countermeasures has seen continuous interest, fault attacks
are still a vastly underdeveloped field.

In fact, a first practical fault attack on lattice-based KEMs was
demonstrated just very recently by Pessl and Prokop. However, while
their attack can bypass some standard fault countermeasures, it may be
defeated using shuffling, and their use of skipping faults makes it also
highly implementation dependent. Thus, the vulnerability of implemen-
tations against fault attacks and the concrete need for countermeasures
is still not well understood.

In this work, we shine light on this problem and demonstrate new
attack paths. Concretely, we show that the combination of fault injec-
tions with chosen-ciphertext attacks is a significant threat to implemen-
tations and can bypass several countermeasures. We state an attack on
Kyber which combines ciphertext manipulation–flipping a single bit of
an otherwise valid ciphertext–with a fault that “corrects” the cipher-
text again during decapsulation. By then using the Fujisaki-Okamoto
transform as an oracle, i.e., observing whether or not decapsulation fails,
we derive inequalities involving secret data, from which we may recover
the private key. Our attack is not defeated by many standard counter-
measures such as shuffling in time or Boolean masking, and the fault
may be introduced over a large execution-time interval at several places.
In addition, we improve a known recovery technique to efficiently and
practically recover the secret key from a smaller number of inequalities
compared to the previous method.

1 Introduction

The emerging threat of large-scale quantum computers to asymmetric cryp-
tography drives the research on quantum-secure schemes. The standardization
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process on Post-Quantum cryptography (PQC) of the National Institute of Stan-
dards and Technology (NIST) [Natb] is in the third round, and as the process
slowly reaches its (preliminary) end, the topic of implementation security of PQC
schemes is receiving increased attention. While for classical public-key cryptog-
raphy, implementation security has seen decades of research and threats are
relatively well understood, the situation is much less clear for quantum-secure
algorithms.

In this regard, lattice-based key-encapsulation mechanisms (KEMs) are of
particular interest. These schemes offer comparably small key- and ciphertext
sizes and high speeds. Therefore, they are especially well-suited for embedded
devices, which are highly susceptible to implementation attacks. Also, NIST
expects to pick one of the three third-round lattice KEMs for standardization
by the end of 2021, thereby making the study of side-channel and fault attacks
and possible mitigations a pressing matter [Nata].

In fact, the side-channel aspect has already seen some analysis. Especially
single-trace (or more generally, profiled) attacks appear to be a focal point of
research, in, e.g., [PPM17,PP19,ACLZ20,PH16]. Another emerging topic is the
combination of side-channel analysis with chosen-ciphertext attacks as shown
in [RRCB20] and [HHP+21]. Almost all finalist KEMs in the NIST process
use some variant of the Fujisaki-Okamoto (FO) transform [FO99,HHK17] to
achieve CCA security. However, chosen ciphertexts are still highly useful when
combined with side-channel leakage from the re-encryption step involved in
this transform [RRCB20,RBRC20,GJN20,BDH+21]. There also exist works
on side-channel secured implementations [OSPG18,BDH+21,HP21,RRVV15,
RRdC+16].

Fault attacks against these systems, however, are a comparably underdevel-
oped topic. A potential reason is that the FO transform closes many attack
paths through its re-encryption step and ciphertext-equality test. One already
well documented attack option is to skip the equality test and thereby re-enabling
chosen-ciphertext attacks [VOGR18,OSPG18,BGRR19,XIU+21]. Very recently,
however, Pessl and Prokop [PP21] showed that other parts of the decapsulation
can also be sensitive to fault injections. By skipping over certain instructions
and then observing if the device still computes the correct shared secret (ineffec-
tive fault) or not (effective fault), they can gather information on the secret key.
After faulting many decapsulation calls and accumulating said information, they
can solve for the key. While their attack is practical, it does not come without
caveats. For instance, instructions-skip attacks typically require a certain level of
knowledge on the used implementation, and they presume that the attacker can
find the selected instruction in the execution time. Also, since the shuffling coun-
termeasure randomizes the time of execution, the specific attack by Pessl and
Prokop might be already defeated by this relatively cheap technique. Thus, it
is unknown whether such standard countermeasures might already suffice when
used on an FO-transformed KEM. It is also unclear what algorithm steps and
intermediates require protection, and if more general data corruption can also
be used for attacks.
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Our Contribution. In this work, we explore these open questions and show that
fault-enabled CCA-attacks are a powerful attack tool capable of bypassing many
standard fault countermeasures. We also demonstrate that in these scenarios
public data (the ciphertext) needs to be secured against manipulation. To show
this, we present such a fault-enabled attack on Kyber, but instead of faulting
the equality test within the FO-transformation, we exploit it as an oracle. We
flip a single selected bit in an otherwise honestly generated ciphertext. This
ciphertext is sent to the device under attack. The device decrypts and then re-
encrypts the message before comparing the re-encrypted ciphertext to the sent
ciphertext. Anytime between the initial unpacking and the final comparison of
the ciphertexts, we correct the induced flip on either the sent or the recomputed
ciphertext using a fault and observe whether the following comparison fails. From
this, linear inequalities involving the secret key can be derived, akin to the attack
by Pessl and Prokop [PP21]. We further improve upon their key-recovery; our
belief propagation based recovery technique significantly reduces the amount of
memory required and recovers the secret key using far fewer faults.

Our fault can, e.g., be introduced in memory during virtually the entire
decapsulation, or at more specific locations in registers during re-encryption.
That is, our attack is flexible in its target choice. Securing the equality check of
the FO-transform does not protect against our attack. Several countermeasures,
such as shuffling (which protects against [PP21]) and also Boolean masking, can
be bypassed. In addition, our fault is introduced in public data only, making fault
profiling easier. We thereby stress the importance of not only securing certain
operations but also to protect the integrity of both secret and public data over
most of the execution time. In addition, we show that countermeasures such
as first-order masking, as presented e.g. in [OSPG18], on CCA2-secured LWE-
based schemes are not sufficient to protect against fault attacks. Our results in
this regard are similar to and in line with the results of [BDH+21] but in a more
general setting and not reliant on a faulty comparison. In addition, compared to
their approach, we provide a drastically improved key-recovery algorithm.

While we demonstrate our attack on Kyber, related attacks likely apply to
conceptually similar schemes, such as Saber [DKRV18], FrodoKEM [ABD+21],
or NewHope [AAB+19].

Outline. We first, in Sect. 2, give a short overview over necessary preliminaries,
focusing on the Kyber [BDK+18] algorithm for reference in the later sections. We
also give a short introduction to the belief propagation algorithm and the prior
work of [PP21]. In Sect. 3, we describe the basic idea of our attack, leading to a
description of the practical implementation and simulation in Sect. 4 and then
give and discuss the results of our simulations. In Sect. 5, we explore possible
countermeasures against our attack.

2 Preliminaries

2.1 Kyber

Kyber [BDK+18] is an IND-CCA2-secure key exchange mechanism (KEM) and a
finalist in the NIST standardization process [Natb]. Kyber relies on the hardness
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of the Module Learning with Errors (MLWE) problem [LS15] and thus belongs
to the field of lattice-based cryptography. Three parameter sets are currently
specified: Kyber512, Kyber768, and Kyber1024. Kyber internally uses a CPA-
secure public-key encryption scheme (PKE) which can be seen as a descendant
of the LPR scheme [LPR13]. From the PKE, a CCA-secure KEM is derived
by using a variant of the Fujisaki-Okamoto (FO) transform [FO99,HHK17]. We
now describe (simplified) versions of the KEM and the internally used PKE.

Kyber PKE. Computations in Kyber take place in Rq and Rk
q , with Rq =

Zq[x]/(xn + 1) with q = 3329, n = 256, and k ∈ { 2, 3, 4 } (depending on the
parameter set). SampleUniform performs coefficient-wise sampling from a uniform
distribution over Zq, SampleBinom,η denotes coefficient-wise sampling from a cen-
tered binomial distribution defined over { −η,−η + 1, . . . , η }, where η ∈ {η1, η2}.
Sampling is deterministic and depends on a seed which is incremented after each
call. The functions compress and decompress are given by

compress(x, d) =
⌈

2d

q
· x

⌋
mod 2d

decompress(x, d) =
⌈ q

2d
· x

⌋

where d is either set to du or dv. The concrete values of all parameters are
given in Table 1. The functions Encode and Decode1 interpret a bitstream as
polynomial and vice-versa. Decode therefor multiplies each bit of a message m
by q

2 . �·� denotes rounding to the nearest integer and mod q maps an integer x to
an element x′ ∈ { 0, 1 . . . , q − 1 } such that x ≡ x′ mod q. Elements a under the
number theoretic transform (NTT) are denoted by â = NTT(a), and the symbol
◦ denotes pointwise multiplication. Vectors and matrices, i.e. elements in Rk

q and

R
(k×k)
q , are denoted in bold lowercase and uppercase letters, respectively. For an

element a ∈ Rk
q , NTT(a) is defined as applying the NTT component-wise to its

components.

Table 1. Kyber parameter sets

Parameter set q n k (η1, η2) (du, dv)

Kyber512 3329 256 2 (3, 2) (10, 4)

Kyber768 3329 256 3 (2, 2) (10, 4)

Kyber1024 3329 256 4 (2, 2) (11, 5)

Key generation (Algorithm 1) uniformly samples a matrix A using a seed ρ
and samples vectors s, e from a binomial distribution using a seed σ. The public
key is then calculated as t = As + e, the secret key is s.
1 In earlier works, the names of Encode and Decode were sometimes switched. We use

them according to Kyber’s specification.
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Encryption (Algorithm2) reconstructs A, samples r, e1, e2 from the binomial
distribution, and computes u = ATr + e1 and v = tT r + e2 + Decode(m).
The compressed u and v are returned as ciphertext. The decryption, depicted
in Algorithm 3, computes an approximate version (due to compression being
ignored here) of

v − sT u

= tT r + e2 + Decode(m) − sT AT r − sT e1

= sT AT r + eT r + e2 − sT AT r − sT e1 + Decode(m)

= Decode(m) + eT r + e2 − sT e1

(1)

and as e, r, e2, s, and e1 are sufficiently small (due to being sampled from a
narrow binomial distribution), the above gives m when encoded2.

Algorithm 1. PKE.KeyGen (simplified)
Input: Seeds ρ, σ
Output: Public key pk , secret key sk
1: Â ∈ Rk×k

q ← SampleUniform(ρ) � Generate uniform Â in NTT domain
2: s, e ∈ Rk

q ← SampleBinom,η1(σ) � Sample from binomial distribution
3: ŝ ← NTT(s) � NTT for efficient multiplication
4: t̂ ← Â ◦ ŝ + NTT(e) � t := As + e
5: return (pk := (̂t, ρ), sk := ŝ)

Algorithm 2. PKE.Encrypt (simplified)
Input: Public key pk = (̂t, ρ), message m, seed τ
Output: Ciphertext ct
1: Â ← SampleUniform(ρ) ∈ Rk×k

q

2: r ∈ Rk
q ← SampleBinom,η1(τ)

3: e1 ∈ Rk
q , e2 ∈ Rq ← SampleBinom,η2(τ) � Sample from binomial distribution

4: u ← NTT−1(ÂT ◦ NTT(r)) + e1 � u = AT r + e1

5: v ← NTT−1(̂tT ◦ NTT(r)) + e2 + Decode(m) � v = tT r + e2 + Decode(m)
6: c1, c2 ← Compress(u, v) � Lossy compression
7: return c := (c1, c2)

Kyber KEM. To transform the PKE to a KEM using the FO-transform, two
distinct hash functions H and G are required. The key generation of the KEM
(Algorithm 4) corresponds mostly to that of the PKE. In the encapsulation
(Algorithm 5) the shared secret K is derived from the hash of a uniform mes-
sage m, the public key and the ciphertext c under PKE.Encrypt of the message,

2 The function Encode(Compress(·)) is often called Decoder by previous works.
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Algorithm 3. PKE.Decrypt (simplified)
Input: Secret key sk = ŝ, ciphertext c = (c1, c2)
Output: Message m
1: u, v ← Decompress(c1, c2) � Decompress ciphertext
2: m ← Encode(Compress(v − NTT−1(̂sT ◦ NTT(u)))) � Retrieve m
3: return m

with seed τ depending on the message and the public key. The decapsulation
(Algorithm 6) decrypts the ciphertext using PKE.Decrypt and re-encrypts the
message using the randomness retrieved from the message and the public-key
hash H(pk). If the re-encrypted ciphertext c′ matches the received ciphertext c,
the shared secret is returned, otherwise, the secret value z is used for an implicit
rejection.

Algorithm 4. Kyber-KEM Key Generation (simplified)
Output: Public key pk = pkpke, secret key sk = (skpke||pk||H(pk)||z)
1: z, ρ, σ ← SampleUniform
2: pkpke, skpke ← PKE.KeyGen(ρ, σ)
3: return (pk := pkpke, sk := (skpke||pk||H(pk)||z))

Algorithm 5. Kyber-KEM Encapsulation (simplified)
Input: Public key pk = (̂t, ρ)
Output: Ciphertext c, shared key K
1: m, τ ← SampleUniform � Uniformly sample a message and a seed
2: (K̄, τ) ← G(m||H(pk))
3: c ← PKE.Encrypt(pk , m, τ) � CPA encryption with seed τ
4: K ← KDF(K̄||H(c)) � Derive shared key from ct, m, and pk
5: return (c, K)

2.2 Belief Propagation

Since the belief propagation algorithm is an important part of our attack, we
now give a brief introduction based on the description of MacKay [Mac03,
Chapter 26]. For random variables {xi}i∈{1,...,N} = x on a set X with joint
mass function

p(x) =
K∏

k=1

fk(xIk), x ∈ X
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Algorithm 6. Kyber-KEM Decapsulation (simplified)
Input: Secret key sk = (̂s, pk , z), ciphertext ct = (c1, c2)
Output: Shared key K
1: m ← PKE.Decrypt(sk, ct)
2: (K̄, τ) ← G(m||H(pk)) � Retrieve seed for re-encryption
3: c′ ← PKE.Encrypt(pk , m, τ) � Re-encrypt
4: if c = c′ then
5: K ← KDF(K̄||H(c)) � Derive shared key on successful re-encryption
6: else
7: K ← KDF(z||H(c)) � Implicit rejection on failure

8: return K

with Ik ⊆ { 1, . . . , N } and fk functions mapping xIk = {xi}i∈Ik to [0, 1], belief
propagation aims on efficiently computing all

Zn(x) =
∑

x,xn=x

p(x)

which are proportional to the marginal distributions of xn. Näıvely computing Zn

is often computationally infeasible. Belief propagation exploits the factorisation
of p to significantly reduce the complexity of computing the marginals.

To compute the Zn, and thereby the marginal distributions of xn, for all n,
the x1, . . . , xN are interpreted as variable nodes, which are connected to factor
nodes given by f1, ..., fK , where the connections are described by the index sets
I1, ..., IK . In each step, either variable nodes or factor nodes send messages to
connected nodes. Messages at a variable node (with index) i ∈ { 1, . . . , N } to
factor node j ∈ { 1, . . . , K } are computed as

mi,j(x) ←
∏
k �=j

m′
k,i(x)

where m′
k,i are the messages that were sent to the i-th node in the previous

iteration. Messages from a factor node j to a variable node i are computed as

mj,i(x) ←
∑

x,xi=x

fj(x)
∏
k �=i

m′
k,j(x).

Belief propagation consists of the repeated computation and passing of messages
from variable to factor nodes and vice-versa. For an acyclic graph, the product of
the messages at the n-th variable node converges against Zn. Belief propagation
on cyclic graphs is called loopy belief propagation and often gives useful approx-
imations, even graphs might not converge or, in the context of key recovery,
retrieve the correct result.

Belief propagation has proven to be a powerful tool for side-channel analysis
of a wide variety of schemes [VGS14,PPM17,GRO18,PP19,KPP20,GGSB20],
recently also in combination with chosen-ciphertext attacks [HHP+21].
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In this work, we use belief propagation to find the most likely solution in a
linear system of inequalities. This is similar to the usage of belief propagation for
decoding, e.g., low density parity check (LDPC) codes [Mac03], where one aims
at solving a system of (possibly erroneous) linear equations. In our case, every
variable node has a so called prior distribution, which is set to the distribution
the corresponding unknown variable was sampled from. In every iteration, either
all variable nodes process messages and pass them to factor nodes or vice-versa.
A full iteration is the combination of iterations from variable to factor nodes
and vice-versa.

2.3 The Fault Attack of Pessl and Prokop

In [PP21], Pessl and Prokop introduced an instruction-skipping fault in the
Decompress/Decode method of Algorithm 3. They thereby provided proof that
the equality check of the FO-transform is not the only critical operation for fault
attacks.

By introducing said fault and observing whether the re-encryption compari-
son in Algorithm 6 fails (by testing if the device still returns the correct shared
secret K), they obtain a linear inequality involving the decryption error polyno-
mial (c.f. Eq. (1)). In the j-th fault introduction, this error polynomial is given
by

eT rj − sT (e1j + Δuj) + e2j + Δvj (2)

for j ∈ {0, ..., l − 1} where l is the total number of faults introduced, and where
Δuj and Δvj denote the compression error introduced to uj and vj , respectively,
by applying compression and decompression. Note that r, e1, e2, Δu, Δv, as well
as the true shared secret K are all known to the attacker, assuming he honestly
performs encapsulation.

Denoting the t-th component of a vector of polynomials by r(t), by writing
out Eq. (2), we get that the i-th coefficient of the error term polynomial is given
by

k−1∑
t=0

n∑
h=0

σ(h, i)e(t)h r(t)j,τ(h,i)

+
k−1∑
t=0

n∑
h=0

σ(h, i)s(t)h (e1
(t)
j,τ(h,i) + Δu(t)

j,τ(h,i))

+ e2j,i + Δvj,i,

where τ(h, i) = i−h mod n, and σ(h, i) returning 1 if i−h ≥ 0 and −1 otherwise.
Using the notation (·)i to encapsulate all involved sign flips and index shifts, we
can restate the above using dot products:

〈(rj)i, e〉 + 〈(e1,j + Δuj)i, s〉 + e2j,i + Δvj,i
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Assuming that i is constant over all injections, the inequalities, involving the
error polynomial, may thus be written in matrix-vector form as Ax � −b where

A =

⎛
⎜⎜⎜⎝

(r0)i (e10 + Δu0)i

(r1)i (e11 + Δu1)i

...
(rl−1)i (e1l−1 + Δul−1)i

⎞
⎟⎟⎟⎠ ,

x =
(
e
s

)
, and b =

⎛
⎜⎜⎝

e20,i + Δv0,i

e21,i + Δv1,i

. . .
e2l−1,i + Δvl−1,i

⎞
⎟⎟⎠ .

Note that these inequalities hold over Z as due to all polynomials involved being
small, no reduction modulo q happens.

Each coefficient of each polynomial of e and s was sampled from a known
binomial distribution with small support. To recover the key from the inequalities
above, Pessl and Prokop initialize a 2n vector of probability distributions using
said distribution. This vector is successively updated in each iteration according
to the information given by the system of inequalities represented by A and b.

As previously mentioned, the attack is highly implementation specific and
requires a high level of synchronisation, as one needs to skip over a very specific
instruction. Also, the attack can likely be prevented by simple shuffling. Hence,
the true potential of fault attacks is still unclear.

3 Enabling Chosen-Ciphertext Attacks with Faults

In this section, present an attack that improves on the mentioned weaknesses of
[PP21]. Concretely, we explain how to use a fault to enable a chosen-ciphertext
attack on Kyber. Instead of faulting the decoder, we assume an attacker to be
able to introduce a single-bit fault. Sending a manipulated ciphertext and then
correcting it back to a valid ciphertext after the decryption step using a fault
yields inequalities, similar to [PP21]. This is due to the fact that the success
of decapsulation implies that decrypting the manipulated ciphertext yields the
original message used to create the valid ciphertext. This means, our attack
consists of

1. manipulating the polynomial v (in Algorithm 2) of a valid ciphertext dur-
ing encapsulation in Algorithm5 by flipping a single bit in the compressed
ciphertext,

2. sending the manipulated ciphertext to the device under attack,
3. correcting the ciphertext during decapsulation (Algorithm6) using a one-bit

fault,
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4. observing whether a valid shared secret is established,
5. deriving inequalities from repeating the above steps (one inequality per fault),
6. and recovering the secret key from those inequalities.

As shown in Fig. 5, being able to introduce one-bit faults anywhere in the red
phases enables our attack. Decompression and compression methods are depicted
here, even though they belong to the decryption and the re-encryption, as they
prevent an earlier manipulation of c′. The incoming ciphertext c is manipulated
and either c or c′ need to be “corrected” using a fault. That is, either c is
faulted such that it matches the unaltered ciphertext, or c′ is faulted such that
it matches the manipulated ciphertext. Introducing a fault in c can be done
by e.g. flipping a bit in RAM, while manipulation of c′ would likely be done
using a fault against a value in a register, as values generated during the re-
encryption might not be stored RAM, or only for a shorter duration and possibly
varying addresses. The decryption/re-encryption corresponds to lines 1 to 3 in
Algorithm 6, the compression and decompression methods correspond to lines
5 and 1 of Algorithm2 and Algorithm 3 which are called from lines 1 and 3 of
Algorithm 6, respectively.

c

decompress decrypt/re-encryption compress

compare

Fig. 1. Visualisation of the FO-transforms re-encryption check including decompression
and compression. Being able to introduce one-bit faults anywhere in the red (light)
phases enables our attack. (Color figure online)

3.1 Manipulating and Correcting the Ciphertext

The PKE ciphertext consists of the result of compressing a polynomial v (to
get c2) and of compressing a vector of polynomials u (to get c1). The decrypt
functions decompresses both c1 and c2, retrieves approximate versions of u and
v, and computes and approximate version of v − uT s, given by

rec = eT r − sT (e1 + Δu) + e2 + Δv + Decode(m)

where each coefficient is reduced to the range {0, ..., q−1} and the Δ-terms denote
the difference introduced by first compressing and then decompressing a (vector
of) polynomial(s). The message is then recovered by mapping the coefficients of
rec, rec[i] for i ∈ { 0, . . . , n − 1 }, to a 0-bit if rec[i] is closer to 0 or q than to
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q/2 and to a 1-bit, otherwise; i.e. the function mapping a coefficient, reduced to
{0, ..., q − 1}, to a bit is given by

φ : {0, ..., q − 1} → {0, 1}

a →
{

0, if min(|a − q|, |a|) < q/4
1, else.

For an honestly generated ciphertext, this yields the message m with high prob-
ability as the error polynomial d, given by

d = eT r − sT (e1 + Δu) + e2 + Δv,

is small.

Decoding of Manipulated Ciphertexts. By adding q/4 to rec[i], we in some cases
change the i-th bit mi of the decoded message m. If mi is 0, rec[i] is “closer” to
0 mod q, i.e., 0 or q, than to q/2. In the first case (rec[i] is close to 0), adding
q/4 changes the decoding result to 1, as the result is now closer to q/2. In the
second case (rec[i] is close to q) rec[i] + q/4 will still be decoded to 0 (the result
is now closer to 0 than to q/2). Analogously, if mi is 1, then adding q/4 to rec[i]
changes the result of decoding to 0 if rec[i] < q/2.

Hence, observing if decoding rec[i] + q/4 still results in the same message
m allows to retrieve information about the error polynomial d. By modularly
mapping the coefficients of d to

{ −� q
2�, . . . , � q

2� }
and ignoring rounding, this

may be as expressed as

rec[i] +
q

4
decodes to mi if, and only if, d[i] < 0.

We are using this property of φ to manipulate ciphertexts and introduce faults
such that we may derive a system of inequalities involving the secret key.

Correct vs. Incorrect Message. Recall that during decapsulation (Algorithm6),
the randomness τ used for re-encryption is derived by hashing the message m
with the hash of the public key. Hence, flipping just a single bit in m yields a
completely random c′. However, if the correct m is still computed, then c′ will
be equal to the original (non manipulated) ciphertext and thus only differs in a
single bit from the sent ciphertext.

Introducing and Correcting an Error. The above observations lead to the follow-
ing method. In the encapsulation step, we first create a valid ciphertext c = (v,u)
where v =

∑n−1
i=0 vix

i. We then replace v by v′ = v + q
4xi and compress it to

obtain a manipulated ciphertext c′, which is sent to the device under attack. The
attacked device decompresses c′, retrieves a message m′, re-encrypts the mes-
sage to a ciphertext c′′ and compares c′ against c′′. Before the comparison, we
introduce a fault, flipping a bit of c′, such that c′ = c. Thereby, we achieve that
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the attacker performs the decryption on the manipulated ciphertext c′ but effec-
tively compares against the honestly generated ciphertext c. Observing whether
a shared secret is established then tells us if the decryption of the manipulated
ciphertext c′ resulted in the original message m which was used to generate c. We
note that this approach (manipulating a single coefficient of v and then testing
if a decryption failure occurs) bares some resemblance to the side-channel attack
of [BDH+21] on (flawed) algorithms for masked comparison [OSPG18,BPO+20].

Retrieving Information from Observing Encryption Failures. In the decryption
step of the decapsulation routine, replacing c by the manipulated ciphertext c′

results in the message being recovered from

v′ − sT u = v − sT u +
⌊q

4

⌋
xi = rec +

⌊q

4

⌋
xi.

The manipulation therefore only affects the i-th message bit mi and does not
produce the same message and thus prevents a failed shared secret from being
established if d[i] > 0 and mi = 0 or d[i] ≥ 0 and mi = 13. The probability of
an error occurring not introduced by the manipulated ciphertext is those of a
decryption failure and can be ignored for this attack.

Restricting to Single-Bit Differences. If c and c′ differ by more than one bit, we
do not use that ciphertext and re-try with new randomness. Otherwise, single-
bit faults would not be sufficient. This may take a few tries, but as ciphertexts
can be pre-computed and are not sent to the device, we do not regard this as a
limitation. Note that allowing multi-bit differences would also result in slightly
different inequalities as in these cases, compression changes the error added to
v.

Fault Location and Profiling. A single-bit fault model at a specific time in exe-
cution is realistic but requires profiling or good understanding of the implemen-
tation of software as well as hardware [RSDT13,OGM17]. However, in our case,
the fault may be introduced over a time interval spanning almost the whole
execution time and on different intermediates and methods, e.g. against a value
in memory or in a register, as depicted in Fig. 1. Note that the attacker knows
the value of the bit to be flipped and may discard ciphertexts with an undesired
value of the targeted bit. Thus, a bit flip can be achieved if the attacker is being
able to either set or reset bits, which is a more realistic attacker assumption
compared to straight-up flipping [RSDT13,OGM17]. If a Boolean-masked value
is targeted, then setting/resetting a bit is ineffective with a probability of 50 %,
even if the plain value is known. Still, if we observe a successful decapsulation
(no decryption failure), then we can infer that the bit was actually flipped. As
we cannot further distinguish the cause of a decapsulation failure (decryption
failure or ineffective fault injection), we have to ignore injections yielding this
result. Therefore, in this case, the number of required faults is approximately
quadrupled.
3 The difference in strictness arises from rounding to integers.
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In addition, the observed outcome of the FO can be used for profiling, i.e.,
finding the correct faulting position in memory. The sent manipulated ciphertext
will always be rejected unless properly corrected using a fault. This means that
one can sweep over faulting positions and accept the one which leads to a cor-
rect decapsulation.4 Even after finding a proper position, discarding inequalities
resulting from observed decapsulation failures allows to filter out fault injections
which did not produce the desired effect.

We finally note that the fault target (the ciphertext c) is public. Using, e.g.,
power analysis, one can find the point in time at which c is written into memory.
This can aid in finding its address and physical location in RAM.

3.2 Obtaining Inequalities

To obtain inequalities in e and s, we apply the procedure described in the pre-
vious section l times, where in the j-th step we obtain an inequality involving
the i-th coefficient of the error polynomial, denoted dj . As described before, in
case of the decapsulation failing, we have dj [i] ≥ 0 and otherwise dj [i] ≤ 05. The
polynomial dj is given by

dj = ψ(vj) − sT ψ(uj)

= (v + Δv) − sT uj − sΔu

= eT rj − sT (e1j + Δuj) + e2j + Δvj + Decode(m),

where ψ denotes Decompress(Compress(·)). This means our inequalities are of
the form

(eT rj − sT (e1j + Δuj))[i] � (e2j + Δvj)[i],

where i is the coefficient we are manipulating/faulting, j is the index of the cur-
rent step/fault, and all variables except for e and s are known. As the inequalities
are clearly linear in e and s, we may write those equations as Ax � −b where
each row of the matrix A, together with the corresponding row of b and the
information whether this row corresponds to a smaller or a greater sign, gives
a check node as described in the next section. The construction of A and b is
analogue to the construction in Sect. 2.3, x is the vector consisting of the entries
of e and s. In contrast to [PP21], we are not directly using the matrix structure.
As described in the next section, each inequality, i.e. each row of A and b, are
represented by a check node in a belief propagation graph.

4 By first adding, e.g., only q/8 instead of q/4 to one coefficient of v, the chance that
m = m′ and thus the probability of acceptance after a successful fault is drastically
increased. This allows finding neighboring bits in memory more easily, which can
then be used to find the actual targeted bit.

5 By taking the i-th message bit into consideration, one may derive strict inequalities.
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3.3 Recovering the Secret Key

To recover the secret key from inequalities, we use belief propagation. Our belief
propagation graph consists of variable nodes, representing each unknown coeffi-
cient of e and s, and factor nodes, which inspired by decoding algorithms we call
check nodes, representing an inequality. Check nodes are connected to all variable
nodes. In each iteration, the check nodes send messages to the variable nodes or
vice-versa. A message represents a probability distribution over { −η1, . . . , η1 }
of a key coefficient, where we interpret the key as consisting of e and s and
denote the key vector as x. In each step the messages are combined according to
the inequalities represented by the respective check node, from which probabil-
ity distributions for each key coefficient are derived. Figure 2 shows a simplified
example with four unknown variables (represented by x0, x1, x2, x3) and five
inequalities (represented by Check 0, . . . , Check 4 ).

The variable nodes are initialized with the distribution e and s were sampled
from in Algorithm 1, this is called the prior distribution and in the following
denoted by prior . In the first step, the prior distributions, now called messages,
are sent to the check nodes. The check nodes update the distributions according
to the inequality they represent. For an unknown coefficient i, all other messages
are combined according to the represented inequality and the resulting proba-
bility distribution is used to derive a distribution for the i-th coefficient. To be
precise, for each input with index i every check node computes the distribution
of the sum in the inequality, leaving out i. This means a check node with index
j, corresponding to an inequality∑

i

ajixi � bj

receiving messages m0, . . . ,m2n−1 (mi belongs the i-th key coefficient) computes
distributions

Di =
∑
i�=j

ajimi for i ∈ { 0 . . . 2n } (3)

where addition corresponds to computing the distribution of the sum of the
corresponding random variables, i.e. convolution of the mi (see Sect. 4), and
sends the messages

x → PDi
(x � bj) for i ∈ { 0 . . . 2n } , x ∈ { −η1, . . . , η1 }

to the i-th variable node. As described in Sect. 4, for efficiency reasons, the
computations of Eq. (3) are carried out in the Fourier domain.

The variable nodes combine incoming messages by computing the product
with one index left out. For incoming messages m0, . . . ,ml (mj is the message
coming from the j-th check node/inequality), the (normalized) product

x →
∏

i�=j mi(x)∑
y

∏
i�=j mi(y)

, x ∈ { −η1, . . . , η1 }

is sent to the j-th check node.
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Sending messages from variable nodes to factor nodes or vice-versa is called
an iteration; sending messages from variable nodes to factor nodes and vice-
versa is called a full iteration. After each full iteration, we may compute the
current resulting probability distributions for the i-th coefficient, by multiplying
and normalizing the incoming messages at the i-th node. That is, we compute
the distribution

x →
∏

j mj(x)∑
y

∏
j mj(y)

, x ∈ { −η1, . . . , η1 }

and use this as (preliminary) result for the i-th coefficient. We do not use an
equivalent of the clustering method used in [PP21].

Note that this process is also related to decoding Low-density parity-check
codes using belief propagation [Mac03]. In our setting, the implied code is not
low-density, instead, all variable nodes are connected to all factor nodes.

The belief propagation varies with the parameters k and η1, depending on
the parameter set as described in Table 1, and l. The parameter k determines
the number of variable nodes, given by 2nk; the size of a message is 2η1 + 1
probabilities. Each of the l observations corresponds to a check node.

Fig. 2. A belief propagation graph with four variable nodes and five check nodes cor-
responding to four unknown coefficients and five inequalities.

4 Attack Implementation and Simulation

We implemented the simulation of the attack in Python and Rust where we rely
on a modified version of PQClean [PQC]. We obtain inequalities by calling the
Kyber implementation from Python, process them, and use a Rust implemen-
tation of belief propagation to recover the secret key from those inequalities. As
single-bit faults are an established fault model and can be achieved e.g. using a
laser, we solely rely on a simulation. The implementation is available at https://
github.com/juliusjh/fault enabled cca.

4.1 Introducing Faults

To simulate our attack, we first fix a secret key on the assumed device. The sim-
ulated attacker then generates ciphertexts, checking for each ciphertext if the
manipulation described in Sect. 3.1 only affects a single bit in the compressed

https://github.com/juliusjh/fault_enabled_cca
https://github.com/juliusjh/fault_enabled_cca
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ciphertext. If this is the case, we call a manipulated decapsulation function, cor-
recting the manipulated ciphertext before the comparison of the ciphertext with
the re-encrypted ciphertext. This function corresponds to a call to the device
under attack during which we flip one bit of the ciphertext. By observing whether
the correct shared secret is returned, we retrieve an inequality as described in
Sect. 3.2. These steps are repeated until a sufficient number of inequalities have
been extracted. Note that ciphertexts that differ in more than one bit are not
sent to the device but are discarded before any communication happens.

For our simulation, we assume a perfect bit-flipping fault. As mentioned in
Sect. 3.1, this assumption can be relaxed at the expense of having to send more
manipulated ciphertexts to the device under attack. Depending on the fault
model, it might be favorable to allow the manipulated ciphertext to differ in
multiple bits, e.g. in a pattern matching some property of the expected intro-
duced fault.

4.2 Belief Propagation

For each coefficient of e and s, we initialize a variable node and for each inequal-
ity, we initialize a check node. We then propagate for a maximum of 80 full
iterations, i.e. from variable to factor nodes and vice-versa, and, after each full
iteration, we retrieve the resulting probability distribution at each variable node
and sort by

– entropy,
– min-entropy6,
– entropy change since the last iteration,
– entropy and min-entropy.

If the first n coefficients are correct in any ordering, we can find the other n
coefficients by solving the public key equation b = As+e using linear algebra. In
this case, the belief propagation is aborted and counted as a success. To minimize
the runtime for obtaining statistics, we also abort if after 5 full iterations, the
number of correct coefficients has not improved.

To compute the distributions Di, described in Sect. 3.3, Eq. (3), for each
variable node i, the convolution of n − 1 messages has to be computed. Näıvely,
this results in having to compute (n − 1)n convolutions of distributions (with
growing support) at each check node in every full iteration. To avoid ineffi-
cient re-computations when computing partial products in check nodes, we are
using the binary tree algorithm described by Pessl and Prokop in [PP21]. Using
an upwardly constructed and a downwardly constructed tree, we are avoiding
recomputations and may compute all Di at once. This is similar to the classical
two-directional pass to compute partial products.

To construct the upward tree, we first initialize leaf nodes with ŷi. Every
following layer then consists of the product of two nodes of the previous layer
up until the log(2n) − 1-th layer having two nodes. The downward tree is then
6 The negative logarithm of the probability of the most likely value.
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initialized by swapping the values of the last layer of the upward tree. Every
other layer of the downward tree is computed by multiplying the node of the layer
above with the sibling from the upward tree. Thus, each node of the downward
tree is the product of all nodes except its child nodes. The algorithm is also used
for variable nodes. As the number of inequalities is not always a power of two,
we add an additional node to a layer if the number nodes in the previous layer
is not even. This additional node is equal to the last node of the previous layer,
i.e. we implicitly add a node with the value of the multiplicative neutral element
to each uneven layer.

Algorithm 7. Computations at a check node representing a less-equal inequality
given by a0, . . . a2n−1, a value b, and set of possible values V . Messages m map a
16-bit signed value to a probability represented as 64-bit float by the [·] operator.
The i-th messages represents the variable xi corresponding to the coefficient ai

in the inequality.
Input: Incoming messages m0, . . . , m2n−1

Output: Outgoing messages m′
0, . . . , m

′
2n−1

1: for all i ∈ { 0, . . . , 2n − 1 } do
2: for all v ∈ V do
3: mmi[ai · v] ← mi[x] � Distribution of aixi

4: m̂mi ← FFT(mmi)

5: downtree ← BinaryTrees.compute(m̂m0, . . . , m̂m2n−1) � Multiply leaving one out
6: for all i ∈ { 0, . . . , 2n − 1 } do
7: m̂pi ← downtree.leaf(i) � downtree.leaf(i) =

∏

j �=i m̂mj

8: mp ← FFT−1(m̂pi) � Holds distribution of
∑

j �=i ajxj

9: for all v ∈ V do
10: m′

i[v] ← mpi.sum lesseq than(b − v) � m′
i[v] = P (

∑

j �=i ajxj ≤ b − v)

11: return m′
0, . . . , m

′
2n−1

4.3 Results

We ran our simulations for all three Kyber parameter sets to determine the
number of inequalities and thus faulted decapsulations necessary to retrieve the
secret key. We first determined the range of inequalities from which on a key
recovery is possible. We than tested different numbers of inequalities with a
step-size of 250, 500, and 1000 inequalities depending on the rate of change in
the recovered coefficients in that range. For every number of inequalities, we ran
20 experiments, the success rate is then calculated as the number of successful
runs divided by the total number of runs. The number of recovered coefficients
is the average number of recovered coefficients.

Abort Criteria. We abort if the key is found or after at most 80 full iterations.
To check for a successful recovery, an attacker would use the ordering described
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in Sect. 4.2 and the public key equation. To obtain statistics, we simply abort if
at least n of the coefficients in any of the orderings are correct. In addition, we
abort early if there is no improvement after 20 steps.

Success Rate. Figure 3 shows the success rate of our experiments. In our sim-
ulations, our approach recovered the secret key in all cases starting with 5750
inequalities for Kyber512, 6750 inequalities for Kyber768, and 8500 inequalities
for Kyber1024. Each inequality corresponds to one manipulated key exchange
(and therefore one fault) with the device. More inequalities gave a higher suc-
cess rate in all experiments. Succeeding runs usually occur starting with 5000
inequalities for Kyber512, 5750 inequalities for Kyber768, and 7250 inequalities
for Kyber1024.

Fig. 3. Success rate depending on the number of inequalities/introduced faults.

Recovered Coefficients. In failing cases, we often recover a high number of coeffi-
cients that might be sufficient to retrieve the key, using standard lattice reduction
algorithms such as [CN11]. We count recovered coefficients as the longest chain of
correct coefficients in one of the orderings described in Sect. 4.2 after any step. As
the number of correct coefficients might decrease after further iterations, espe-
cially in corner cases, an attacker should test if the key can be recovered using
the public key equations after every step. If additional lattice reduction tech-
niques are used, those should also be applied to intermediate results. Figure 4
shows the average number of recovered coefficients. Given that the number of
recovered inequalities rises quickly after obtaining more than a certain threshold
of inequalities, we assume that additional lattice reduction techniques are only
useful for cases where obtaining further inequalities is very difficult or expensive.
In all other cases where lattice reduction techniques may yield a correct result,
retrieving more inequalities should quickly increase the success rate to 1.
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Fig. 4. Average number of recovered coefficients. The dashed lines mark 512, 768, and
1024 coefficients.

Runtime. Our implementation is in large parts multithreaded with the ability to
utilize as many cores as the number of inequalities used. The runtime strongly
depends on the number of inequalities as each inequality is represented by a
factor node.

Our attack runs on widely available hardware. For example, on a standard
laptop, one full iteration for Kyber768 and with 7000 inequalities takes about
15 min using a single thread of an Intel(R) Core(TM) i7-10510U CPU. Table 2
shows the average number of full iterations and the runtime in minutes for suc-
cessful runs with 32 and 8 threads on a Intel(R) Xeon(R) Gold 6242 CPU with
16 cores.

Table 2. Runtimes in minutes on a Intel(R) Xeon(R) Gold 6242 with 32 and 8 threads.

Parameter set Iterations 32 threads 8 threads

Kyber512 (6000 inequalities) 6.8 3.25 9.3

Kyber768 (7000 inequalities) 6.75 6.7 18.6

Kyber1024 (9000 inequalities) 9 16.9 39.25

Comparison with Previous Work. The work of Pessl and Prokop, presented in
[PP21], uses a different attack (especially regarding the fault model) to obtain
similar inequalities. Their technique to recover the secret key from those inequal-
ities is different, but in a way related to ours.

Note that they analyzed an older version of Kyber. The main difference
between the versions, in the context of key recovery from inequalities, is the
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use of η = 3 (instead of η = 2 as in the previous version) for Kyber512. This
probably makes recovering the secret key slightly harder in our case.

Pessl and Prokop report a success rate of 1 starting with 7500 inequali-
ties for Kyber512, 10500 inequalities for Kyber768, and 11000 inequalities for
Kyber1024. While lacking an exact comparison, our technique seems to be a
clear improvement. We assume that our belief propagation based approach bet-
ter avoids feedback loops which might negatively impact the result. Our imple-
mentation also uses significantly less memory than the implementation of [PP21].
While the original recovery technique requires up to 79 GB of RAM, we stay well
below 10 GB of RAM usage at all times, depending on the number inequalities
and threads, where we used up to 10000 inequalities and 40 threads. Regarding
runtime, our implementation is slightly slower, but the attack may be carried
out using a normal laptop.

5 Conclusion and Countermeasures

In the previous sections, we presented a realistic attack by combining a chosen-
ciphertext attack with a fault injection and introduced an improved recovery
technique for linear inequalities involving the secret key. The fault may be
injected over a long execution-time interval and on different variables which
hold public data. Our attack depends on the result of computations and not the
computational steps itself. Therefore, securing computations and Boolean mask-
ing of inputs does not prevent our attack. We thereby highlighted the impor-
tance to protect seemingly non-sensitive, public data as well as operations over
the whole execution time and to implement additional countermeasures to pro-
tect against fault-enabled chosen-ciphertext attacks. In addition, we give another
exemplary usage of the belief propagation algorithm for key recovery and provide
further evidence for the importance of the belief propagation algorithm for side-
channel analysis. While we targeted Kyber, we conjecture that variants of this
attacks are applicable to conceptually similar schemes such as Saber [DKRV18],
FrodoKEM [ABD+21], or NewHope [AAB+19]. In this section, we provide an
overview over standard countermeasures and if and how they defend against our
attack.

Shuffling. In contrast to [PP21], our attack may not be mitigated by shuffling
the decoder. They introduce a fault in the decoder and need to know which bit
has been faulted to extract correct inequalities, which explains the usefulness of
shuffling. Shuffling in time, however, does not affect the physical location of c in
RAM, which is why manipulation of this value is not prevented. Still, a second
attack path, namely manipulating c′ during re-encryption (cf. Fig. 1), becomes
more difficult to exploit. When only using successful decapsulations–they can
only occur when the correct coefficient was faulted–the number of required faults
is approximately multiplied by the number of shuffling positions.
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Redundancy. Introducing redundancy in the storage of c, as depicted in Fig. 5,
might drastically increase the effort and abilities required by an attacker. For
that, a hash of c is computed directly after receiving the ciphertext. Right after
the comparison check of the re-encryption, c is again hashed and compared
against the previously computed hash. This mainly protects against faults intro-
duced in c while it is stored in RAM. A manipulation during compression of c′ is
still possible, therefore the attack is not fully prevented but significantly harder
to carry out.

The combination of introducing redundancy, shuffling the decoder, together
with a secured comparison (via, e.g., double computation) likely prevents our
attack with high probability. Additional security can be achieved by randomising
the memory layout, e.g. by storing coefficients in a permuted order, and shuffling
the compression function.

c

decompress decrypt/re-encryption compress

compare

Hash

Fig. 5. Visualisation of the FO-transforms re-encryption check including decompression
and compression with an additional countermeasure. Being able to introduce one-bit
faults anywhere in the red (light) phases enables our attack. Introducing redundancy
drastically reduces the attack surface. (Color figure online)
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Abstract. Delegating heavy computations to auxiliary servers, while
keeping the inputs secret, presents a practical solution for computa-
tionally limited devices to use resource-intense cryptographic protocols,
such as those based on isogenies, and thus allows the deployment of
post-quantum security on mobile devices and in the internet of things.
We propose two algorithms for the secure and verifiable delegation of
isogeny computations in the CSIDH setting. We then apply these algo-
rithms to different instances of CSIDH and to the signing algorithms
SeaSign and CSI-FiSh. Our algorithms present a communication-cost
trade-off. Asymptotically (for high communication), the cost for the del-
egator is reduced by a factor 9 for the original CSIDH-512 parameter
set and a factor 30 for SQALE’d CSIDH-4096, while the relative cost
of SeaSign vanishes. Even for much lower communication cost, we come
close to these asymptotic results. Using the knowledge of the class group,
the delegation of CSI-FiSh is basically free (up to element generation)
already at a very low communication cost.

Keywords: Post-quantum cryptography · Isogeny-based
cryptography · CSIDH · Secure computation outsourcing · Lightweight
cryptography

1 Introduction

Delegation of Computations. The last decade has witnessed an immense surge
in mobile devices, including RFID-cards, tiny sensor nodes, smart phones and a
myriad of devices in the internet of things. Since such mobile devices are usually
computationally limited or have other constraints such as low battery life, the
delegation of their computations to external, more powerful devices, has become
an active area of research. While delegation allows to relieve these devices of
their most heavy computations, it comes at a certain risk, such as potentially
malicious servers trying to extract sensitive data or returning wrong results for
these computations. Mitigating these threats is especially important when dele-
gating cryptographic protocols, where such servers might try to extract private
keys. The necessary properties for secure and verifiable delegation were first for-
malized in a security model introduced by Hohenberger and Lysyanskaya [15]
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in the context of group exponentiations. Their model lets the delegator shroud
sensitive data before sending it to the server and then verify and de-shroud
the server’s output. The operations performed by the delegator should still be
efficient enough for the delegation to be worthwhile.

Isogeny-based Cryptography. Isogeny-based cryptography goes back to the works
of Couveignes [12] and Rostovtsev and Stolbunov [24] and is based on the diffi-
culty of finding an explicit isogeny linking two given isogenous elliptic curves
defined over a finite field. While the original proposal uses ordinary elliptic
curves, recent quantum attacks [11,18,23], which use the commutativity of the
endomorphism ring, push the secure parameter size to the realm of prohibitively
inefficient protocols. In response, two new approaches using supersingular ellip-
tic curves have been introduced. The first one, commonly referred to as SIDH
(supersingular isogeny Diffie-Hellman) was proposed by Jao and De Feo [16] and
uses the fact that supersingular elliptic curves over Fp2 have a non-commutative
endomorphism ring, so that the previously discussed attacks are not applicable.
The second one, called CSIDH [7] (commutative SIDH), uses the structure of
supersingular elliptic curves to immensely reduce the computational cost of the
originally proposed protocols back to the realm of usability. We note that while
CSIDH closely follows the line of the original Couveignes-Rostovtsev-Stolbunov
scheme, SIDH uses a different approach that is more closely related to the cryp-
tographic hash function proposed by Charles, Goren and Lauter [8].

Motivation and Related Work. While isogeny-based protocols profit from the
lowest key sizes of any of the current post-quantum standardization proposals [1,
7,16,19,26], they are still among the slowest. This might be tolerable for specific
applications, but given the immense surge in low-power mobile devices in recent
years, there is a strong need for easily deployable and computationally cheap,
yet secure cryptographic protocols. It is of particular interest for these limited
devices to profit from post-quantum security in order to allow them to remain
secure in the long term. While there have been many proposals for the delegation
of group exponentiations and pairings [15,29], the delegation of post-quantum
cryptographic protocols is a very new topic. In 2019, Pedersen and Uzunkol [20]
proposed the first delegation algorithms for isogeny computations and improved
upon their work with a follow-up paper in 2021 [21]. Their approach is applied to
SIDH-type protocols, i.e. supersingular isogeny protocols over Fp2 , and is based
on the outsource security model from [15]. The question of delegating isogenies in
the CSIDH setting has been proposed as a direction of future research by [21] and
will be the main focus of this work. While we will also use the outsource security
model from [15], we stress that we cannot simply use or translate the previously
proposed isogeny delegation schemes in the SIDH setting to the CSIDH setting.
The main reason is that cryptographic protocols in these two schemes use very
different descriptions and are not related to one another in an obvious way.

Our Contribution. The purpose of this work is to propose the first isogeny del-
egation algorithms in the CSIDH setting, which are secure and provide high
verifiability guarantees. More precisely,



DeCSIDH 339

1. We introduce and analyze ShrVec, an algorithm that allows transforming a
uniform vector into three vectors, two of which are uniform, and the third
one being small. This allows to shroud secret keys in the CSIDH protocol [7].

2. We define two new algorithms based on the outsource-security description of
Hohenberger and Lysyanskaya [15]:

– The (commutative) isogeny computation algorithm CIso, which allows to
delegate the computation of an isogeny, while keeping the kernel hidden
from the auxiliary servers, and

– The hidden isogeny computation algorithm HIso, which allows to delegate
the computation of an isogeny, while keeping both the kernel and the
isogeny codomain hidden from the auxiliary servers.

We present both algorithms in the one-malicious two untrusted program
(OMTUP) assumption defined in [15] and in the newly introduced two honest-
but-curious (2HBC) assumption. All of our algorithms work in two rounds of
communication.

3. We apply our delegation algorithms to different protocols in the CSIDH set-
ting and compare the reduced cost of the delegator to the full, local com-
putation. Most of our algorithms allow a trade-off between computational
and communication cost. Asymptotically (for large communication cost), we
reduce the computational cost of CSIDH-512 [7] to below 12% of the local
cost of the full protocol, while the SQALE’d CSIDH-4096 [9] protocol can
be reduced to about 3.5% of the local cost. Also for lower communication
costs, the gain of the delegator quickly approaches the asymptotic values. The
gains for signatures are even better: The relative cost of delegating SeaSign
asymptotically vanishes and can be easily reduced to a few percent at low
communication cost, while CSI-FiSh, by using knowledge of the class group
structure, can be made virtually free at low communication cost.

Naming. Following the fishy name trend of commutative supersingular isogeny
protocols, we refer to their delegation as DeCSIDH (Delegated CSIDH) and
pronounce it deckside. The reader is free to imagine a fisher with limited resources
being helped by a more powerful (yet potentially malicious) fishing boat.

2 Elliptic Curves and Isogenies

Isogeny-based cryptography is based on the good mixing properties of isogeny
graphs, i.e. graphs of isomorphism classes of elliptic curves over finite fields
connected by isogenies. Isogenies are surjective homomorphisms between elliptic
curves that are also algebraic maps. Separable isogenies are uniquely defined by
their kernel. While it is easy to compute an isogeny from a given kernel, it is in
general difficult to find the kernel, given two isogenous elliptic curves.

The original protocols by Couveignes [12] and Rostovtsev and Stolbunov [24,
27] used ordinary elliptic curves, defined over a prime field Fp, while the later
CSIDH protocol by Castryck, Lange, Martindale, Panny and Renes [6] uses
supersingular elliptic curves over Fp for efficiency reasons. These curves have
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Frobenius trace t = 0 and their Fp-rational endomorphism rings are orders O in
a quadratic imaginary field Q(

√−p). A key observation of these protocols is that
the ideals in the class group Cl(O) uniquely define subgroups via their kernel
and therefore uniquely define isogenies, i.e. for a given elliptic curve E/Fp and
ideal a ∈ Cl(O), we have a separable isogeny E → E/a with kernel

⋂
α∈a ker α.

As a result, the ideal-class group Cl(O) acts freely and transitively on the set of
Fp-isomorphism classes of these elliptic curves via isogenies [12] and this group
action is generally written as E → a ∗ E.

In the CSIDH protocol [7], the underlying prime field Fp is defined via
p = 4

∏n
i=1 �i − 1, where the �i are small primes. Since #E(Fp) = p + 1, the

chosen structure of p implies that �iO decomposes as the product of two prime
ideals li = (�i, π −1) and l−1

i = (�i, π +1), where π corresponds to the Frobenius
endomorphism. The action of these ideals on the set of (isomorphism classes
of) elliptic curves over Fp can then be computed with the standard Vélu for-
mulae [30] and are efficient for small �i. Given the structure of p, ideals can
generally be expressed as a =

∏n
i=1 l

ai
i , where positive exponents ai correspond

to the action of li, while negative exponents correspond to the action of l−1
i . Ide-

als can then be simply expressed by representative vectors, e.g. a = (a1, . . . , an)
would correspond to the action of a as defined above. The order of the appli-
cation of the prime ideals li of a does not matter and its dual is simply a−1

represented by −a. Note that a1a2 corresponds to a1 + a2.
Isogenies can be computed using Algorithm 2 of [7]. We denote by I(a) the

generic cost of computing an isogeny defined by the ideal a.

The Class Group. While the class group has asymptotic size #Cl(O) ≈ 2
√

p [25],
computing its exact structure is a difficult task for large p [3,17]. The original
proposal of CSIDH-512 [7] circumvented this problem by choosing n = 74 small
primes (the 73 smallest odd primes and �74 = 587) and sampling the elements
ai of a from a range {−5, . . . , 5} of size 11. As such, 11n ≈ 2256, which should
cover most of the class group without knowing its exact structure. In 2019, Beul-
lens, Kleinjung and Vercauteren [3] computed the class group structure and the
relation lattice for the CSIDH-512 parameter set and found a cyclic class group
of order #Cl(O) ≈ 2257. This knowledge allows to sample random elements
from Z#Cl(O) = Z/#Cl(O)Z and transform them into vectors a by solving easy
instances of the closest vector problem using the relation lattice. This guarantees
uniform coverage of the entire class group, while also allowing efficient computa-
tion via low-degree isogenies. Unfortunately, class group computations for larger
parameter sets than CSIDH-512 seem currently out of reach.

Notation. We use “←” as the assignment operator: If the right hand side is
an algorithm, the left hand side represents the variables to which its output
is assigned. If the right hand side is a set, we assume the left hand side to
represent a randomly sampled value from this set. We will write [start, end] as
a shorthand for the set of integers ranging from start ∈ Z to end ∈ Z. We define
as B(N) ⊂ Z

n any set of the form B = B1 × · · ·× Bn, where Bi ⊂ Z are intervals
of length di = #Bi, and such that #B(N) =

∏n
i=1 di ≈ N . As an example, for
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CSIDH-512, we use B(2256) = [−5, 5]n. Ideals in Cl(O) can then be represented
by vectors a ∈ B(N), where typically N ≤ #Cl(O). Intervals Bi are of the types
[−Bi, Bi] or [0, Bi] for Bi ∈ N (see e.g. [5,7,9]). Throughout this work, we will
use the former case for simplicity, for which it holds di = 2Bi + 1. The case
[0, Bi] follows completely analogously.

We write ideals in Cl(O) in the fraktur font (e.g. a, b, s, . . . ) while the cor-
responding vectors in B(N) are written in bold font (e.g. a,b, s, . . . ). If the
class group is known, we write elements from Z#Cl(O) in the standard font (e.g.
a, b, s, . . . ). We assume Cl(O) to be cyclic with publicly known generator g.1

We always see elements using the same letters as related, e.g. a ∈ Z#Cl(O) and
a ∈ B(N) will always represent a ∈ Cl(O), while the same holds for (b,b, b),
(s, s, s) etc. Let a = (a1, . . . , an), then we can express this relation as follows:

a =
n∏

i=1

lai
i = ga .

Note that vector entries are also written in the standard font. Their distinction
from elements in Z#Cl(O) will always be clear from context.

It is useful to note that multiplications between elements in Cl(O) natu-
rally translate to additions in Z#Cl(O) and B(N), while divisions translate to
subtractions. As an example, ab−1 can be represented by a − b or by a − b.

Security. Security of CSIDH and related protocols is generally based on the
following hard problem.

Definition 1 (Group action inverse problem (GAIP)). [7] Given two
supersingular elliptic curves E,E′ over Fp with the same Fp-rational endomor-
phism ring O, find an ideal a ∈ Cl(O) such that E′ = a ∗ E.

Classical security is based on a meet-in-the-middle attack. The query complexity
of this attack is O(

√
#Cl(O)). Quantum security of CSIDH is still subject to

scrutiny. For current estimates of the quantum security, we refer the reader
to [4,7,9] and [22]. We will use these estimates for later assessment of our schemes
and always refer to the source in question. We write λ(N) for a generic quantum
security parameter for a class group of size approximately N .

3 Secure and Verifiable Delegation

3.1 Security Model by Hohenberger and Lysyanskaya

The secure delegation model of Hohenberger and Lysyanskaya [15] is defined
around three central entities: a delegator T , a set of auxiliary servers U and the

1 Throughout this work, we will only consider the known class group established in [3].
In any other case, where Cl(O) would not be cyclic, we can always assume to work
in a cyclic subgroup. For simplicity, we will still refer to it as the class group and
write Cl(O).
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environment E . The delegator interacts with the servers, denoted as T U , so that
they jointly implement an algorithm Alg at a lower computational cost for T ,
than if T would run Alg itself. The environment represents any third party, that
might observe the interaction or that might later (or previously) interact with
T itself. Most notably, E includes the manufacturer of the service provided by
U . A key assumption of the model is that after T starts using U , there is no
more direct channel between U and E or between the different servers in U . The
rationale behind this, is that T has access to U only through a firewall. Yet,
these entities can still try to communicate indirectly. Thus, this interaction has
multiple threats to mitigate: First, T has to make sure that neither E nor U
gain any sensitive information from T ’s interaction with U (and possibly later
with E). In general, this means that T has to find a way to shroud sensitive data
before passing it on to U and be able to recover its desired result (i.e. the output
of Alg) from whatever U returns. Secondly, to be able to do so, T also needs a
way to verify that the output of U is indeed correct. This is generally achieved
by checking that the outputs fulfill some verification conditions that adversarily
produced outputs could only fulfill with a low probability.

The following definition summarizes the security assumptions used through-
out this work and includes the reduction in computational cost α that T profits
from, when compared to the local computation, as well as the degree of certainty
β that the outputs of the servers are correct.

Definition 2 ((α, β)-outsource-security). [15] Let Alg be an algorithm with
the following outsource input/output specification: We distinguish secret, pro-
tected and unprotected inputs and outputs, depending on whether only T has
access, only T and E have access, or all parties have access, respectively. The
non-secret inputs are further subdivided into honest and adversarial, depending
on whether they originate from a trusted source or not. Then, the pair (T ,U)
constitutes an (α, β)-outsource-secure implementation of Alg if:

– Correctness: T U is a correct implementation of Alg.
– Security: For all PPT adversaries A = (E ,U), there exist PPT simulators

(S1,S2) that can simulate the views of E and U indistinguishable from the real
process. If U consists of multiple servers Ui, then there is a PPT-simulator
S2,i for each of their views. We formalize this with the following pairs:

• Pair One: EV IEWreal ∼ EV IEWideal: E learns nothing about the secret
inputs and outputs.

• Pair Two: UV IEWreal ∼ UV IEWideal: U learns nothing about the secret
and (honest/adversarial) protected inputs and outputs.

For a more formal description of these experiments, we refer the reader to
Definition 2.2 of [15].

– for all inputs x, the running time of T is at most an α-multiplicative factor
of the running time of Alg(x) (i.e. Time(T ) ≤ αTime(Alg)),

– for all inputs x, if U deviates from its advertised functionality during the
execution of T U (x), then T will detect the error with probability ≥ β.
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We call α the cost reduction function and β the verifiability of a delegation
algorithm. Many adversarial models for U have been proposed in the literature,
differing along the number of servers and their adversarial powers. In this work,
we will use the OMTUP and 2HBC assumptions, the latter being based on the
one-server honest-but-curious assumption from [10].

Definition 3 (OMTUP [15]). The one-malicious version of a two untrusted
program model defines the adversary as A = (E , (U1,U2)) and assumes that at
most one of the two servers U1 or U2 deviates from its advertised functionality
(for a non-negligible fraction of the inputs), while T does not know which one.

Definition 4 (2HBC). The two honest-but-curious program model defines
the adversary as A = (E , (U1,U2)), where U1 and U2 are servers that always
return correct results, but may try to extract sensitive data.

3.2 Advertised Server Functionality

For our purposes throughout this work, we assume that as input, we give the
servers multiple pairs (a1, E1), . . . , (ak, Ek) consisting of ideals ai and associated
elliptic curves Ei. The servers then generate and return the codomain curves
ai ∗ Ei for each i = 1, . . . , k. We write

(a1 ∗ E1, . . . , ak ∗ Ek) ← U((a1, E1), . . . , (ak, Ek)) .

We assume that the input elements are always given in a random order as to
avoid distinguishability of the elements. We define two ways for the delegator to
transmit ideals to the server:

– In the case where Cl(O) is known with generator g, we assume that we can give
an element a ∈ Z#Cl(O) to the server, which represents the ideal a = ga. The
server can efficiently compute a short representation of a using the relation
lattice by applying the procedure described in [3].

– Otherwise, the delegator can give a vector a ∈ B, representing a =
∏n

i=1 li
ai ,

to the servers.

4 Shrouding and Splitting

Before we present implementations for our delegation algorithms, we discuss how
to shroud ideals. The basic idea is to split the secret s into a pair of random-
looking ideals (a1, a2), so that a1 ∗ (a2 ∗ E) = s ∗ E. In the case where Cl(O) is
known, we can simply generate (a, s − a) for a ← Z#Cl(O). If Cl(O) is unknown,
on the other hand, we cannot simply generate (a, s − a) for a random vector
a = (a1, . . . , an) ∈ B since s − a would no longer be in B and leak information
about the secret [28]. A similar problem was addressed in [13] using rejection
sampling: taking vector elements ai ← [−(δi + 1)Bi, (δi + 1)Bi] for integers
δi ≥ 1, so that si − ai ∈ [−δiBi, δiBi] for all i ∈ {1, . . . , n} makes s − a look
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uniform. On the other hand, a is then no longer uniformly distributed in B(N),
since e.g. si = −B would exclude the values of ai > (δ − 1)B. This is not an
issue in [13], since a is never directly revealed. In our case, however, we also
want to delegate the computation of the isogeny defined by a, and currently
this would reveal information about the secret. We circumvent this problem in
Algorithm 1 by splitting up s into three vectors r0, r1, r∗, so that the first two
are uniform, while the third one contains extra information about s that the
delegator computes itself. To make r0 and r1 uniform, r∗ is in general non-zero.
The goal of the algorithm is to minimize the Hamming weight of r∗. We define
by χ(k) the uniform distribution in [−k, k] and let δB(N) = [−δ1B1, δ1B1] ×
· · · × [−δnBn, δnBn]. We further present Algorithm 2, which allows to split a
vector s into two vectors s′ and s∗, so that s∗ has a given Hamming weight.

Input : secret s = (s1, . . . , sn) ∈ B and parameters δ = (δ1, . . . , δn)
Output: r0, r1 ∈ δB uniform, r∗ ∈ B small, such that r0 + r1 + r∗ = s

1 for i = 1, . . . , n do
2 repeat
3 r0,i ← χ((δi + 1)Bi)
4 r1,i = si − r0,i

5 until |r0,i| ≤ δiBi or |r1,i| ≤ δiBi

6 b ← {0, 1}
7 if |r0,i| > δiBi then
8 if b == 0 then r1,i ← χ(δiBi)
9 r0,i = −r1,i

10 r∗
i = si

11 else if |r1,i| > δiBi then
12 if b == 0 then r0,i ← χ(δiBi)
13 r1,i = −r0,i

14 r∗
i = si

15 else r∗
i = 0

16 end
17 return r0 = (r0,1, . . . , r0,n), r1 = (r1,1, . . . , r1,n), r∗ = (r∗

1 , . . . , r∗
n).

Algorithm 1: ShrVec: Shrouding a vector in B.

We write the invocation of these algorithms as (r0, r1, r∗) ← ShrVecδ(s) and
(s∗, s′) ← Split(s, k), respectively. We generally omit δ in the index if it is clear
from the context or not explicitly needed. In Sect.A of the supporting material,
we prove correctness of our algorithms and the two Lemmas below. We further
show, that the expected value of r∗ vanishes for δ → ∞.2 These lemmas imply
that r0 and r1 do not contain any information about s.

2 This also follows intuitively from the fact, that the interval [−(δ + 1)B, −δB − 1] ∪
[δB+1, (δ+1)B] is constant in size, while [−δB, δB] grows with increasing δ, making
it less and less probable for r0, r1 to be sampled from the former.
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Input : secret s = (s1, . . . , sn) ∈ B, and parameter k
Output: s′, s∗ ∈ B, such that s∗ has Hamming weight ≤ k and s′ + s∗ = s.

1 Sample a uniform subset C∗ ← {1, . . . , n} of size k.
2 for i = 1, . . . , n do
3 if i ∈ C∗ then (s∗

i , s′
i) = (si, 0)

4 else (s∗
i , s′

i) = (0, si)

5 end
6 return s∗ = (s∗

1, . . . , s
∗
n), s′ = (s′

1, . . . , s
′
n).

Algorithm 2: Split: Splitting a vector in B.

Lemma 1. If s is uniformly distributed in B(N), the outputs r0 and r1 of Algo-
rithm 1 are uniformly distributed in δB(N).

Lemma 2. Let (s∗, s′) ← Split(s, k) where s ← B(N) uniform and let
(r0, r1, r∗) ← ShrVecδ(s′). Then, the outputs r0 and r1 of Algorithm 1 are uni-
formly distributed in δB(N).

5 Delegation Algorithms

In this section, we present two delegation algorithms and their implementation
under different assumptions. In both algorithms we want to delegate the com-
putation of s ∗ E from (s, E). The first algorithm, CIso keeps s hidden from
the servers, while the second algorithm HIso, keeps s and s ∗ E hidden from the
servers. For the efficiency reasons discussed in [7], we assume that there is a short
representation s = (s1, . . . , sn) ∈ B(N) of s =

∏n
i=1 l

si . In the case where Cl(O)
is known, we further assume that s ∈ Z#Cl(O) is known by the delegator, such
that s = gs. We define the two algorithms below, using the formalism from [15].

Definition 5 (CIso and HIso). The isogeny computation algorithm CIso and
the hidden isogeny computation algorithm HIso take as inputs a supersingular
elliptic curve E/Fp and an ideal s, either as an element in Z#Cl(O) or a vector
in B(N), then return the elliptic curve s∗E. The input E is (honest/adversarial)
unprotected, while s is secret or (honest/adversarial) protected. The output s∗E
of CIso is unprotected, while it is protected in the case of HIso. We write

s ∗ E ← CIso(s, E) and s ∗ E ← HIso(s, E) .

Below, we present implementations for both CIso and HIso in the OMTUP and
2HBC assumptions (Definitions 3 and 4). Both work in two rounds of delegation.

5.1 CIso: Unprotected Codomain

Our general approach to hide s from the servers is to split it up into two ide-
als a1, a2, such that the consecutive application of both yields a1 ∗ (a2 ∗ E) =
a2∗(a1∗E) = s∗E, i.e. that we can compute the desired codomain in two rounds
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of delegation. In the 2HBC case, this can be implemented more or less straight-
forwardly. If, however, one of the servers is malicious, it could simply return a
wrong codomain. Thus in the OMTUP case we want to be able to verify these
computations. Unfortunately, unlike in the DLOG setting (e.g. see [15]), we can
not compose elliptic curves in order to verify correctness, so we have to resort
to comparisons, i.e. let two servers compute the same curve and check if they
are the same. Note that simply going two different paths to s∗E and comparing
the results is also not possible, since the malicious server would take part in the
computation of both of them and could simply apply another isogeny defined by
an ideal x to its result in both rounds yielding the result x∗ (s∗E) in both cases.

The goal of the verification is that the servers do not return an incorrect
codomain without the delegator realizing (up to a certain probability). Note
that we need to be able to verify intermediate results as well. We resort to
direct comparisons, i.e. giving both servers common queries whose output we can
directly compare. In the first round, we have the starting curve at our disposal,
which easily allows to make the same queries to both servers. The second round
becomes more tricky, however, since all the curves at our disposal are the starting
curve and the curves generated by the servers in the first round, potentially
maliciously. Reusing the starting curve in some queries while not in others makes
the queries distinguishable. One obvious possibility would be to generate curves
ourselves, which would however defeat the purpose of delegating in the first
place. An alternative would be to work with lookup-tables analogous to the
DLOG setting, but since we can not combine multiple elliptic curves, elements
of the form (a, a∗E) could only be used individually. Again, using such sets ends
up defeating the need for delegation. Therefore our algorithm in the OMTUP
case resorts to delegating sets of extra curves in order to increase verifiability.

To this end, we generate a set S of ideal tuples (c1, c2, d1, d2) that satisfy
c1c2 = d1d2. If we work over Z#Cl(O), this is straightforward. If we work with
elements in δB(N), we can implement this as follows: for i = 1, . . . , n, generate
c1,i, c2,i, d1,i ← χ(δiBi) and define d2,i = c1,i+c2,i−d1,i until d2,i ∈ [−δiBi, δiBi].
Note that this approach might yield some information about c1,i + c2,i (at most
that it is positive or negative) given c1,i only, but we do not really need to
care about that, since this is not enough information to be able to distinguish
d2,i from a random value (mainly because d1,i remains unknown), so this will
neither reduce the security nor the verifiability of the scheme. In the first round,
we further delegate the computation of a second set R of ideals applied to the
starting curve and directly compare between the servers to increase verifiability.

We present our approach for the 2HBC assumption in Fig. 1 and our approach
for the OMTUP assumption in Fig. 2. We analyze these protocols and discuss
secure parameter sizes in Sect. 5.3. Note that the case (a) corresponds to the
delegation algorithm presented in [15] with unprotected base element.

5.2 HIso: Hidden Codomain

Next to keeping s hidden, HIso also does not disclose the codomain curve to the
auxiliary servers. The idea works similar to CIso, but rather than shrouding and



DeCSIDH 347

Fig. 1. Implementation of CIso in the 2HBC assumption.

delegating the computation of the isogeny generated by some secret ideal s, we
do the same for an ideal s′ to yield a codomain s′ ∗ E that can be known to
the servers. The goal is to choose s′, so that s′ ∗ E is close enough to s ∗ E,
that the path can be efficiently computed by the delegator, while searching the
space of potential curves is too large to reasonably allow an attacker to find
s ∗ E by walking from s′ ∗ E. We call the remaining path s∗ = ss′−1, so that
s∗ ∗ (s′ ∗ E) = s ∗ E.

To be able to assess path lengths, we work with ideals only in their vector
representation in B(N). In the case where the class group Cl(O) is known, this is
achieved by working modulo the relation lattice [3].3 We then call B̃(N) ⊆ B(N)
the subset from which s∗ is sampled. We can achieve this splitting of s using the
Split-procedure (Algorithm 2). The protocol then uses CIso as a subroutine with
s′ as the secret argument. It is summarized in Fig. 3. Note that the protocol has
the same description in the 2HBC and OMTUP assumptions, and that CIso is
called with the appropriate assumption.

5.3 Analysis

Size of k. Assume we work with a class group of size approximately N , which has
an associated quantum security level λ(N) with respect to GAIP (Definition 1).
Let D = #B(N) denote the number of possible vectors in B(N). The basic idea
is to define a subset B̃(N) ⊆ B(N) of size D̃ = #B̃(N), that is big enough that
searching the entire space is at least as hard as breaking a GAIP instance. Since
the servers are only given s′∗E, they cannot resort to a meet-in-the-middle attack
to find information about s ∗ E, but rather have to resort to a database search
of size D̃ to find it. We assume that they would be able to identify the correct

3 Note that B(N) does not necessarily contain a representation for all elements in
Cl(O). We ignore this case and assume we can delegate such elements using simple
heuristics, such as computing the “overshoot” locally, or simply by resampling.
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Fig. 2. Implementation of CIso in the OMTUP assumption.

curve once found (e.g. by being able to decrypt a given ciphertext). The best
known quantum algorithm for this database search is Grover’s algorithm [14],
which runs in O

(
D̃1/2

)
. Thus in order to ensure a quantum security level of λ,

we choose D̃ = 22λ. We can therefore define B̃(N) analogously to B(N), i.e.
B̃(N) = B̃1 × · · · × B̃n , where B̃i ∈ {[0, 0], Bi} of size d̃i ∈ {1, di}, such that
D̃ =

∏n
i=1 d̃i ≈ 22λ.

The input parameter k of Split determines the number of non-zero B̃i. Thus,
we need to choose k large enough such that an adversary’s search space is approx-
imately 22λ. We note that due to Lemma 2, the adversary can not distinguish
in which entries s′ is zero and can therefore not know the subset C∗. Thus, the
size of the search space can be determined by searching through any k-out-of-n
subsets and running through all permutations in these subsets. Therefore, we
have to choose k, such that
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Fig. 3. Implementation of HIso for both 2HBC and OMTUP assumptions.

(
n

k

) ∏

i∈C∗
di ≈ 22λ . (1)

Verifiability in the OMTUP Case. In the OMTUP case, the servers success-
fully cheat if all of the verification conditions succeed but the output is wrong,
i.e. Es �= s∗E. Let us assume U1 is the malicious server. In order to be successful,
U1 needs to correctly identify the query (a1, E) in the first round and (b2, Eb1)
in the second round. Note that U1 can also change the elements in S, as long as
it does so consistently in both rounds. The elements in R have to be returned
correctly, since they are directly compared to U2’s results.

Let ms = #S and mr = #R. By choosing a random subset of size κ ∈
{1, . . . , 1+ms} among the queries of the first round, the probability of choosing a
set that includes a1 (or b1) and no elements of R is given by

(
ms

κ−1

)/(
1+ms+mr

κ

)
.

Furthermore, in the second round, the malicious server has to identify the same
subset, which it achieves with probability 1

/(
1+ms

κ

)
, yielding the full success

probability for the adversary of

Pr[success] =

(
ms

κ − 1

)
(

1 + ms + mr

κ

) (
1 + ms

κ

) =
κ

1 + ms

κ!(ms + mr + 1 − κ)!

(ms + mr + 1)!
. (2)

If mr = 0, 1, 2, this probability is maximal for κ = 1 + ms, while for mr ≥ 3,
we find κ = 1 to be optimal. In the latter case, the upper probability simplifies
to Pr[success | mr ≥ 3] = [(1 + ms)(1 + ms + mr)]−1 . Since this probability
decreases quadratically with bigger ms, we minimize the overall set sizes (and
thus communication cost) by fixing mr = 3 and choosing ms to yield the desired
verifiability. We thus find the verifiability

β(ms) = 1 − Pr[success | mr = 3] =
m2

s + 5ms + 3
m2

s + 5ms + 4
. (3)
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Security Proofs. We prove security of CIso and HIso.

Theorem 1. Figure 1 is an outsource-secure implementation of CIso in the
2HBC assumption.

Proof. Correctness follows immediately from a1 +a2 = s or from the correctness
of ShrVec, respectively. We prove security by proposing the following simulators:

– Environment E : If s is not secret, both simulators behave as in the real exe-
cution of the protocol. Otherwise, in each round, S1 generates random ideals
u1, u2 either as elements in Z#Cl(O) (case (a)) or as vectors in δB(N) (case
(b)). In the second case, S1 further generates u∗ ← B(N). Then S1 makes the
query E1 ← U1((u1, E)), computes E1 ← u∗ ∗ E1 if applicable, then makes
the query E2 ← U2((u2, E1)). S1 returns E2 and saves its own state and those
of the servers. In any round, the input values u1, u2 are indistinguishable from
a1, a2. In case (b), this is given by Lemma 1.

– Servers U1,U2: For any s, the simulator S2 proceeds exactly as the simulator
S1 for a secret s. UVIEWreal ∼ UVIEW ideal is guaranteed by the indistin-
guishability of u1, u2, u∗ and a1, a2, a

∗. Note that applying a∗ ∗E1 between the
two queries has the advantage that neither server will see both the domain
and the codomain of this isogeny and therefore cannot recover a∗. ��

Theorem 2. Figure 2 is an outsource-secure implementation of CIso in the
OMTUP assumption.

Proof. Correctness of the output follows again from the definition of s. Concern-
ing the verification conditions, correctness of Ec

?= Ed follows from the definition
of S. The other verification conditions are simple comparison operations between
both servers. We prove security by proposing the following simulators:

– Environment E : If s is not secret, both simulators behave as in the real exe-
cution of the protocol. Otherwise, in each round, S1 generates random ideals
u1, u2, v1, v2 and in case (b) further u∗, v∗ as vectors in B(N). S1 further gen-
erates two random sets of ideals M1,M2 of size mr and four sets of ideals
N1,N2,N3,N4 of size ms, such that for (n1, n2, n3, n4)i ∈ N1 ×N2 ×N3 ×N4,
it holds that n1n4 = n2n3, pairwise for i = 1, . . . , ms. Then S1 makes the
queries

Eu1 , {En1}, {Em1} ← U1

(
(u1, E), {(n1, E) | n1 ∈ N1}, {(m1, E) | m1 ∈ M1}

)
,

Ev1 , {En2}, {Em2} ← U2

(
(v1, E), {(n2, E) | n2 ∈ N2}, {(m2, E) | m2 ∈ M2}

)
.

S1 verifies the results. If either of the elements in {Em1} or {Em2} are incor-
rect, then S1 returns ⊥, otherwise it continues. In case (b), S1 computes
Eu1 ← u∗ ∗ Eu1 and Ev1 ← v∗ ∗ Ev1 . Then, in the second round, S1 makes
the queries

Ev2 , {En3}, ← U1

(
(v2, Ev1), {(n3, En2) | n3 ∈ N3}

)
,

Eu2 , {En4}, ← U2

(
(u2, Eu1), {(n4, En1) | n4 ∈ N4}

)
.
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Again, S1 verifies the results. If �x : Eu2 = (xu1u2) ∗ E ∧ Ev2 = (xv1v2) ∗ E,
S1 returns ⊥. Otherwise, let κ be the number of pairs (En3 , En4) for
which there doesn’t exist such an x. Then with probability 1 − Pr[success]
(as given in Eq. (2)), S1 returns Es, otherwise S1 returns ⊥. S1 saves
the appropriate states. In any round of the simulation, the input tuple
(u1, u2, u∗, v1, v2, v∗,M1,M2,N1,N2,N3,N4) is indistinguishable from the
tuple (a1, a2, a∗, b1, b2, b∗,R,R, {c1 ∈ S}, {d1 ∈ S}, {d2 ∈ S}, {c2 ∈ S}),
due to uniform sampling or because of Lemma 1. If a server cheats, S1 out-
puts a wrong result with probability Pr[success], otherwise it returns ⊥, as
in the real execution of the protocol. It follows EVIEWreal ∼ EVIEW ideal.

– Servers U1,U2: For any s, the simulator S2 proceeds exactly as the simula-
tor S1 for a secret s, except for the verification procedure after the second
round, which is not necessary. UVIEWreal ∼ UVIEW ideal is guaranteed by
the indistinguishability of the tuple described above. ��

Theorem 3. Figure 3 is an outsource-secure implementation of HIso in both the
2HBC and OMTUP assumptions.

Proof. Correctness of the output follows from the correctness of Split and CIso.
Security follows from the outsource-security of CIso and the appropriate choice
of the parameter k as determined by Eq. (1).

Remark 1. Note that Definition 4 implies that U1 and U2 might try to collude.
Yet, since their outputs are honestly generated, their indirect communication
channel through T is in fact non-existent. For example, E1, output by U1 and
input to U2, is honestly generated and can therefore not contain any auxiliary
information that U2 could use to learn any information about a1. Definition 3
implies that at least one of the two servers is honest, so that collusion is not
possible in the OMTUP case.

Communication Cost. We want to express the communication cost between
the delegator and the server. We do this by looking at the information content
of the exchanged elements in bits. We establish the following maximal costs.

Element of Maximal cost in bits

Z#Cl(O) �log2 #Cl(O)�
δB(N)

∑n
i=1 log2 (2δiBi + 1)

Fp �log2 p�

Note that elliptic curves in Montgomery form are encoded by a single curve
parameter in Fp. The actual average communication cost of elements in B and
δB is smaller than the maximal cost if the individual vector entries are expressed
using the minimal amount of bits. This representation considerably lowers the
communication cost, especially for large δi. We can estimate the communication
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costs by establishing the minimal number of bits of an element uniformly sampled
from δB as

ExI(δB) :=
n∑

i=1

1
2δiBi + 1

δiBi∑

y=−δiBi

�log2(2|y| + 1)� .

We can now establish the communication cost for the delegation of CIso
and HIso, which are the same. In the 2HBC case, the delegator uploads one
element from either Z#Cl(O) or δB(N) and downloads one elliptic curve from
each server, defined by a parameter in Fp. In the OMTUP case, the delegator
uploads 2 + 2ms + mr elements from either Z#Cl(O) or δB(N) to each server
and downloads the same amount of elliptic curves. We define the upload and
download costs per server in the 2HBC (b = 0) and OMTUP (b = 1) case:

Up(x) =

{
(1 + (2ms + mr + 1)b)�log2 #Cl(O)�, x = Cl(O),
(1 + (2ms + mr + 1)b)ExI(δB), x = δB,

(4)

Down = (1 + (2ms + mr + 1)b)�log2 p�,

Cost Reduction Functions. Ignoring the costs of comparison operations,
element generation and ShrVec, as they are negligible in comparison to isogeny
computations, we get the following cost reduction functions for CIso and HIso

αCIso(δ,B, n, b) =
(1 + b)I(r∗)

I(s)
, αHIso(δ,B, n, k, b) =

(1 + b)I(r∗) + I(s∗)
I(s)

, (5)

where the parameter b ∈ {0, 1} distinguishes between the 2HBC and OMTUP
cases, respectively, and where s, r∗, s∗ and r relate to the outputs of Split and
ShrVec. Note that the isogeny cost functions all depend on B and n. Further,
the size of r∗ (thus I(r∗)) depends on δ and the size of s∗ (thus I(s∗)) on k.
Remember that in the case, where the class group and relation lattice are known,
we do not need to use ShrVec, so that, effectively, I(r∗) = 0. Similarly, since the
expected value of r∗ vanishes for δ → ∞, we can identify

α
Cl(O)
CIso (B,n) = lim

δ→∞
αCIso(δ,B, n, b) = 0 ,

α
Cl(O)
HIso (B,n, k) = lim

δ→∞
αHIso(δ,B, n, k, b) =

I(s∗)
I(s)

. (6)

In this case the cost also becomes independent of b, i.e. of the underlying server
assumption. Each server, on the other hand, has to compute (2ms +mr +1)b+1
isogenies of cost given by I(r). We therefore find the relative cost per server of

αU (δ,B, n, b) =
((2ms + mr + 1)b + 1)I(r)

I(s)

where the size of r also depends on δ. Note that we generally have αU (δ,B, n, b) ≥
1. We will still refer to this as the cost reduction function.
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6 Applications

In this section we discuss how to apply our delegation algorithm to some of the
isogeny-based protocols in the CSIDH setting and benchmark our delegation
algorithms using the VeluSqrt implementation in MAGMA,4 introduced in [2].
All benchmarks were done in Magma v2.25-6 on an Intel(R) Xeon(R) CPU
E5-2630 v2 @ 2.60GHz with 128 GB memory.5 We note that our benchmarks
support our assumption that ShrVec is negligible as its cost generally constitutes
less than 0.01% of the cost of the delegator in terms of CPU cycles.

6.1 Delegating the CSIDH Key Exchange Protocol

We briefly revisit the CSIDH key exchange protocol in this section and then
show how to delegate it. CSIDH uses a prime p = 4

∏n
i=1 �i − 1 of appropriate

size and defines the starting curve as E0 : y2 = x3 + x over Fp. Further, CSIDH
uses symmetric boxes around 0, all of equal size, i.e. B(N) = [−B,B]n.

– Key generation: Alice’s private key is a vector s ∈ B(N) representing s and
her public key is EA = s ∗ E0.

– Key exchange: Using Bob’s public key EB , Alice can compute the shared
secret s ∗ EB .

In terms of the input/output specifications from Definition 2, we consider s as a
secret input, s∗E0 as an unprotected output, and s∗EB as a secret or protected
output. Note that we have to consider EB as honestly generated, which can
always be achieved by authenticating the public key. We can then use CIso to
delegate the key generation step and HIso for the key exchange step as follows:

– Key generation: Delegate EA ← CIso(s, E0).
– Key exchange: Delegate s ∗ EB ← HIso(s, EB).

We can easily see that the cost reduction function for the delegation of
CSIDH can be expressed as αCSIDH(δ,B, n, k, b) = 1

2 (αCIso(δ,B, n, b) + αHIso(δ,
B, n, k, b)) , while for the server, we have αU,CSIDH(δ,B, n, b) = αU (δ,B, n, b).

Instantiations. We look at specific instantiations of CSIDH. While the security
is still subject of scrutiny, we go on a limb and make certain assumptions in
this section, which the reader should take with caution. Our estimates for λ are
mainly based on the results in [4, Table 8], [9, Table 3] and [22, Fig. 1].

CSIDH-512. The original proposal from [7] uses the following parameters:
n = 74, log2 p ≈ 512, B = 5, so that D = #B(N) = (2B + 1)74 ≈ 2256.
For the key exchange round, we have to define k such that Eq. (1) is fulfilled.
Looking at the different security assessments found in the literature, we take the
lower estimate of λ ≈ 58 from [22, Fig. 1], which corresponds to k = 18. The
benchmark results are summarized in Table 1.
4 https://velusqrt.isogeny.org/software.html.
5 Our implementation can be found here: https://github.com/gemeis/DeCSIDH.

https://velusqrt.isogeny.org/software.html
https://github.com/gemeis/DeCSIDH
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Table 1. Benchmarks for CSIDH-512: In the left table are the benchmarked cost
reduction functions for the delegator, while the right table shows the relative cost of
the server. For the latter, we chose mr = 3 and compare the cases ms = 0 (β = 75%)
and ms = 8 (β = 99%). Different mr and ms do not impact the delegator cost. Note
that the case for δ → ∞ corresponds to the cost of delegating CSIDH if the class group
structure and relation lattice are known (cf. Eq. (6)). For the CSIDH-512 parameter
set this is indeed the case as the class group has been computed in [3].

αCSIDH δ = 1 5 10 100 → ∞
2HBC 0.462 0.253 0.213 0.134 0.113

OMTUP 0.877 0.391 0.322 0.159 0.113

αU,CSIDH δ = 1 5 10 100
2HBC 0.971 4.59 8.84 91.9

OMTUP (ms = 0) 4.83 20.5 42.1 395
OMTUP (ms = 8) 19.1 80.5 170 1376

Communication Cost. The communication cost of the full protocol is four times
the cost from Eq. (4), since CIso is invoked twice with two servers each time. The
total costs are summarized in Table 2. The OMTUP case is strongly dependent
on mr, ms. But even if we want high verifiability and low cost in the OMTUP
case, the communication cost is manageable, e.g. assuming mr = 3 and setting
δ = 100 and ms = 100, we find 33kB of upload and 13kB of download.

Table 2. Communication costs of CSIDH-512 in the 2HBC and OMTUP assumptions.
In the OMTUP case, we choose mr = 3 and compare the cases ms = 0 (β = 75%)
and ms = 8 (β = 99%). We compare different values of δ and the case where the class
group and relation lattice are known.

Upload Download

Cl(O) δ = 1 5 10 100

2HBC 129 B 108 B 180 B 215 B 333 B 256 B

OMTUP (ms = 0) 645 B 539 B 900 B 1074 B 1663 B 1280 B

OMTUP (ms = 8) 2.63 kB 2.21 kB 3.69 kB 4.40 kB 6.82 kB 5.25 kB

CSIDH-1792 and SQALE’d CSIDH-4096. As a comparison to CSIDH-512,
we also consider the larger parameter set for CSIDH-1792 proposed and analyzed
in [4] as well as the SQALE’d CSIDH-4096 proposal from [9]. The former has
log2 p ≈ 1792, n = 209, B = 10, and we find k = 24 taking the value λ = 104
from [4, Table 8]. CSIDH-4096 uses n = 417, log2 p ≈ 4096 and B = 1, such that
#B(N) ≈ 2661 � #Cl(O). Using λ = 124 as an estimate (cf. [9, Table 3]) yields
k = 40. The results are summarized in Table 3. It is interesting to note that the
gains in CSIDH-4096 are not considerably larger than for CSIDH-1792. This is
mainly due to the fact, that the authors of [9] chose a key set that covers only
a subset of the class group, such that the relative cost of local computations is
lower than if the full group would be covered, resulting in a lower overall gain
for the delegator.
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Table 3. Benchmarked cost reduction functions for different δ, representing CSIDH-
1792 from [4] and SQALE’d CSIDH-4096 from [9], respectively, in the 2HBC and
OMTUP assumptions. The case δ → ∞ again represents the cost in case class group
structure and relation lattice are known.

α1792
CSIDH δ = 1 5 10 100 → ∞
2HBC 0.331 0.123 0.103 0.067 0.042

OMTUP 0.614 0.209 0.165 0.085 0.043

α4096
CSIDH δ = 1 5 10 100 → ∞
2HBC 0.312 0.101 0.076 0.055 0.033

OMTUP 0.577 0.179 0.132 0.079 0.036

6.2 Signature Protocols

SeaSign. SeaSign is a signature protocol based on Fiat-Shamir with aborts [13]
for cases where the class group is unknown. During the signature process, the
signer needs to compute t isogenies b1, . . . , bt as commitments, where t is a secu-
rity parameter that depends amongst others on the public key size 2s. Secure
instantiations require st ≥ λ. The exponents bi that define these isogenies are
sampled from B(N) = [−(nt + 1)B, (nt + 1)B]n in order to guarantee a rea-
sonable success probability. Further steps are the typical hashing and response
computation, which we assume to have negligible cost. The verification has the
same average computational cost as the signing process, as the commitments are
verified using response vectors in B(N). Delegation can be achieved by using t
instances of CIso (possibly in parallel). The delegator is left with computing the
r∗-part of each of these delegations, we therefore find

αSeaSign(δ,B, n, t, b) =
(1 + b)I(r∗)

I(s)
,

choosing the same δ for each step. We note that while r∗ and s are sampled
from the larger set B(N) = [−(nt+1)B, (nt+1)B]n, the cost difference between
different t ∈ {1, . . . , 128} is negligible, so that we find αSeaSign(δ,B, n, t, b) ≈
αCIso(δ,B, n, b). The instantiation in [13] uses the parameter set from CSIDH-
512 [7]. We show the cost reduction for different values of δ in the top of Table 4.
Because of the size of the set B, the communication costs of delegating SeaSign
become more expensive. In the OMTUP case, since we repeat the protocol
throughout many rounds, we choose mr = 3 and ms = 0 for our assessment
of the communication costs, which are summarized in the bottom of Table 4.

CSI-FiSh. One the main results of the CSI-FiSh paper [3] is the computation
of the class group structure and relation lattice for the CSIDH-512 parameter
set. Using the knowledge of Cl(O), the authors construct a signature scheme
in the random oracle model based on the original identification protocol from
Rostovtsev and Stolbunov [24,27]. The main computational effort of the signa-
ture process comes, analogous to SeaSign, from the fact that the signer needs to
compute t isogenies given by b1, . . . , bt, depending on the public key size 2s. In
contrast to SeaSign however, these elements can simply be sampled from Z#Cl(O)

and then translated into short vectors using the relation lattice. A verifier has
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to compute the same amount of isogenies and therefore has the same computa-
tional cost as the signer. Both the prover and verifier can delegate these isogenies
using CIso, but knowing Cl(O) has now the advantage of not having to resort to
ShrVec, and therefore not needing to compute the r∗ part of the isogeny. This
means that from the point of view of the delegator, the signature and its veri-
fication are basically free, up to element generation in Z#Cl(O) and comparison
operations. The communication costs for CSI-FiSh, again assuming mr = 3 and
ms = 0 amount to 64.25t bytes upload and 128t bytes download in the 2HBC
case and 321.25t bytes upload and 640t bytes download in the OMTUP case.

Table 4. Top: Benchmarked cost reduction function for different δ. Bottom: Commu-
nication cost (assuming unknown Cl(O)) in the 2HBC and OMTUP assumptions. We
compare the cases t = 32 and t = 128.

αSeaSign δ = 1 5 10 100 → ∞
2HBC 0.393 0.162 0.120 0.031 0.003

OMTUP 0.809 0.315 0.226 0.057 0.003

Upload Download
δ = 1 5 10 100

2HBC, t = 32 7.87 kB 9.19 kB 9.77 kB 11.7 kB 4.0 kB
2HBC, t = 128 36.1 kB 41.4 kB 43.7 kB 51.4 kB 16.0 kB
OMTUP, t = 32 39.4 kB 45.9 kB 48.8 kB 58.5 kB 20.0 kB
OMTUP, t = 128 181 kB 207 kB 218 kB 257 kB 80.0 kB

7 Conclusion

This work presents a first approach of securely and verifiably delegating isogeny
computations to potentially untrusted servers in the CSIDH setting. We pre-
sented two algorithms and showed their application to different instances of
CSIDH [4,7,9] and to the signature schemes SeaSign [13] and CSI-FiSh [3]. Our
algorithms present a communication-cost trade-off. In terms of the cost reduction
function, we reduced the delegator’s cost asymptotically (for large communica-
tion cost) down to 11.3% and about 3.5% of the cost of the local computation for
CSIDH-512 and SQALE’d CSIDH-4096, respectively, while the cost of SeaSign
reduces to a few percent and asymptotically vanishes. Using the known class
group of CSI-FiSh, its delegated cost reduces to element generation in Z#Cl(O).

Our protocols work in two rounds of delegation and use either the OMTUP
or the 2HBC server assumptions. It is of interest to try to reduce delegation to a
single round. The tools developed in this work do not seem to allow delegation to
only malicious servers. We therefore leave it open to develop delegation schemes
that work in the two untrusted or one untrusted program model presented in [15].

We leave it as an open question to apply delegation to other post-quantum
cryptographic paradigms, such as lattice-based and code-based cryptography.
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A Proving Lemmas 1 and 2

Distributions of ShrVec and Split. We first analyze the properties of Algo-
rithm 1. Since they hold for any i ∈ {1, . . . , n}, we will omit the index. Cor-
rectness holds, since after the repeat loop, we have r0 + r1 = s and r∗ = 0. If
either of the if-conditions succeed, then r0 + r1 = 0 and r∗ = s. In either case,
r0 + r1 + r∗ = s holds. Before proving Lemma 1, we first introduce some nota-
tion. We define the discrete rectangular function Θx[xstart, xend] which is 1, if x ∈
{xstart, . . . , xend} and 0 otherwise. We also write f(x)

∣
∣xend

xstart
= f(x)Θx[xstart, xend]

as a shorthand. For further conciseness, we introduce

ck = (δ + k)B , Δk = 2ck + 1 and d = 2B + 1 .

In general, we denote the distribution of a value by the corresponding capital
letter, e.g. S(x) represents the distribution of s etc. Finally, we write convolutions
as f(x) ∗ g(x) =

∑∞
y=−∞ f(y)g(x − y). As an example for our notation, consider

the trapezoidal distribution

χ(c0) � χ(B) = (dΔ0)−1
(
(x + c1 + 1)

∣
∣−c−1−1

−c1
+ d

∣
∣c−1

−c−1
+ (−x + c1 + 1)

∣
∣c1
c−1+1

)
.

We further denote by Hn =
∑n

i=1
1
i the n-th harmonic number. We establish

expected values for elements sampled from the distributions surrounding ShrVec.
Since all of these distributions will turn out be symmetric, we define the expected
values in terms of the absolute values of the elements. The expected absolute
value of an element from a distribution F (x) is thus

ExF :=
∞∑

y=−∞
|y|F (y) .

As an example, consider the uniform distribution χ(x) for which we find
Exχ(x) = x(x+1)

2x+1 . This allows us to determine the expected values of elements
from e.g. S(x) and R(x):

ExS(B) := Exχ(B) =
1

d
B(B + 1) and ExR(δ, B) := Exχ(c0) =

1

Δ0
c0(c0 + 1) (7)

In order to prove Lemma 1, we analyze how the distribution of s and of r0
and r1 change throughout the algorithm. We define different instances of the
distributions with different subscripts (i).
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1. We first analyze what happens in the repeat-loop. In order to fulfill the
condition at the end of the loop, we distinguish two possible cases for r0:

– r0 ∈ [−c0, c0]: The until-condition always succeeds and we have

R
(0)
1 (x) =

Θx[−c0, c0]
Δ1

∗χ(B) = (dΔ1)−1

⎧
⎪⎨

⎪⎩

x + c1 + 1, x ∈ [−c1,−c−1],
d, x ∈ [−c−1, c−1],
−x + c1 + 1, x ∈ [c−1, c1].

– r0 ∈ [−c1,−c0 − 1] ∪ [c0 + 1, c1]: In this case, we have

R
′(0)
1 (x) = (dΔ1)−1

⎧
⎪⎨

⎪⎩

−|x| + c2 + 1 x ∈ [−c2,−c1 − 1] ∪ [c1 + 1, c2],
B x ∈ [−c1,−c0 − 1] ∪ [c0 + 1, c1],
|x| − c−1 x ∈ [−c0,−c−1] ∪ [c−1, c0].

At the end of the repeat-loop, the distribution of r1 is simply the average of
these two cases, excluding |r0|, |r1| > c0 because of the until-condition (and
changing the normalization appropriately). We note that

(x + c1 + 1)
∣
∣−c−1

−c1
+ (−x − c−1)

∣
∣−c−1

−c0
= (x + c1 + 1)

∣
∣−c0−1

−c1
+ d

∣
∣−c−1

−c0
,

(−x + c1 + 1)
∣
∣c1
c−1

+ (x − c−1)
∣
∣c0−1

c−1
= d

∣
∣c0
c−1

+ (−x + c1 + 1)
∣
∣c1
c0+1

,

so that finally we find

R(1)(x) = K−1

{
−|x| + c1 + 1, x ∈ [−c1,−c0 − 1] ∪ [c0 + 1, c1],
d, x ∈ [−c0, c0],

where K = B(B + 1) + dΔ0 is the normalization constant, guaranteeing that∑∞
y=−∞ R(1)(y) = 1. Note that exchanging the roles of r0 and r1 within the

repeat-clause yields the same distributions after fulfillment of the until-
condition. R(1)(x) thus describes the distribution of either after the repeat-
loop. We establish the probability of either r0 or r1 being outside [−c0, c0]:

P ∗ := Pr
[
|r| > c0

∣
∣
∣r ← R(1)(x)

]
=

B(B + 1)
B(B + 1) + dΔ0

(8)

2. In the second part of the algorithm, whenever |r0| > c0 or |r1| > c0, these
values are reassigned to [−c0, c0]. For simplicity, we consider only the case
|r0| > c0. Note that if this is the case, then since r1 = s − r0, s ∈ χ(B) and
|r1| ≤ c0, the counterpart to |r0| > c0 is the “flipped”

r1 ∈ F (x) = K−1
(
(−x − c−1)

∣
∣−c−1−1

−c0
+ (x − c−1)

∣
∣c0
c−1+1

)
.

We distinguish two cases, depending on the random parameter b.
– If b = 1, we simply redefine r0 = −r1, which amounts to

R
(2)
1 (x) = R

(1)
0 (x)

∣
∣c0
−c0

+ F (x) = dK−1Θx[−c0, c0] + F (x).
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– If b = 0, r1 is first resampled from χ(c0), then we redefine r0 = −r1,
which means F (x) is subtracted from χ(c0), then resampled from χ(c0).
In terms of the distributions, this implies R

′(2)
1 (x) = (1+P ∗)χ(c0)−F (x).

Averaging over both cases, we get the uniform distribution

R(3)(x) =
1
2

(
R(2)(x) + R′(2)(x)

)
= Δ−1

0 Θx[−c0, c0] ,

which holds for both r0 and r1 and thus proves the lemma.

Distribution and Expected Value of r∗. We analyze how r∗ is distributed
at the end of Algorithm 1. Since r∗ either takes the value of s or is zero, we
first establish the probability of non-zero r∗ for a given s. With the same con-
siderations as in the proof of Lemma 1, we find that after the repeat-loop, the
probability of r0 or r1 being outside [−c0, c0] is P ∗

s = |s|
Δ0+|s| , for fixed s. Since

either r0 or r1 can be outside [−c0, c0], r∗ has probability 2P ∗
s of taking the value

of s and probability 1− 2P ∗
s of being zero. Averaging over all possible s, we find

R∗(x) =
1
d

(
2|x|

Δ0 + |x|Θx[−B,B] +
(
4Δ0(HΔ0+B − HΔ0) − 2B + 1

)
Θx[0, 0]

)

.

The second term represents the case r∗ = 0, when |r0|, |r1| ≤ c0, computed as
Θx[0,0]

d

∑B
y=−B

(
1 − 2|y|

Δ0+|y|
)
. We can now compute the expected value of |r∗| as

ExR∗(δ, B) =
1

d

B∑
y=−B

2|y|2
Δ0 + |y| =

1

d

(
2B(B +1)+4Δ0(−B +Δ0(HΔ0+B −HΔ0)

)
. (9)

We analyze the asymptotic dependency of ExR∗(δ,B) on δ. The first term of (9)
is an offset, while the second term T := 4Δ0(−B + Δ0(HΔ0+B − HΔ0) strongly
depends on Δ0 = 2δB + 1. Using Δ0(HΔ0+B − HΔ0) =

∑B
y=1

1
1+yΔ−1

0
, we find

lim
δ→∞

T = lim
δ→∞

−4
B∑

y=1

y

1 + yΔ−1
0

= −4
B∑

y=1

y = −2B(B + 1) ,

which is exactly the offset, thus limδ→∞ ExR∗(δ,B) → 0. For δ small, the behav-
ior is dominated by the difference of the harmonic numbers.

Finally, Eq. (8) also allows us to express the estimated Hamming weight of
the full vector r∗ simply as 2nP ∗, since we have 2n values r0,i, r1,i.

Split and Lemma 2. Correctness of Split is straightforward, since s∗
i + s′

i = si is
always guaranteed. We analyze how the outputs are distributed. We again drop
the indices i and indicate distributions by the corresponding capital letters. Since
#C∗ = k, we have Pr[i ∈ C∗] = k

n for i ∈ {1, . . . , n}. It immediately follows

S∗(x) =
k

dn
Θx[−B,B] +

n − k

n
Θx[0, 0], S′(x) =

n − k

dn
Θx[−B,B] +

k

n
Θx[0, 0] .
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We can determine the expected value of s∗ as

ExS∗(B,n, k) =
k

dn
B(B + 1) =

k

n
ExS(B) . (10)

From Algorithm 2, it immediately follows that an entry s′
i is either uniform in

[−Bi, Bi] or zero. Following Lemma 1, the first case results in r0,i and r1,i being
uniform. If s′

i = 0 this also immediately follows from the first repeat-loop in
Algorithm 1, thus proving Lemma 2.
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25. Siegel, C.: Über die classenzahl quadratischer zahlkörper. Acta Arith 1(1), 83–86
(1935)

26. SIKE: Supersingular Isogeny Key Encapsulation (2018). https://sike.org
27. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group

action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215 (2010)
28. Stolbunov, A.: Cryptographic schemes based on isogenies. Norges teknisk-

naturvitenskapelige universitet (2012)
29. Uzunkol, O., Rangasamy, J., Kuppusamy, L.: Hide the modulus: a secure non-

interactive fully verifiable delegation scheme for modular exponentiations via CRT.
In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp.
250–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8 14
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Abstract. Key-oblivious encryption (KOE) is a promising crypto-
graphic primitive that randomizes the public keys of an encryption
scheme in an oblivious manner. It has applications in designing account-
able tracing signature (ATS) that facilitates the group manager to revoke
the anonymity of traceable users in a group signature while preserving
the anonymity of non-traceable users. KOE is an independent primitive
and may serve as a technical building block in designing privacy preserv-
ing protocols.

In this work, we introduce the first isogeny-based KOE scheme.
Isogeny-based cryptography is a fairly young post-quantum cryptogra-
phy with sophisticated algebraic structures and unique security prop-
erties. Our KOE scheme is resistant to quantum attacks and derives
its security from Commutative Supersingular Decisional Diffie-Hellman
(CSSDDH), which is an isogeny-based hard problem. More concretely,
we show that our construction exhibits key randomizability, plaintext
indistinguishability under key randomization and key privacy under key
randomization in the standard model adapting the security framework
of [12]. Furthermore, we have manifested an instantiation of our scheme
from cryptosystem based on Commutative Supersingular Isogeny Diffie-
Hellman (CSIDH-512) [3] parameter set. Additionally, we demonstrate
the utility of our KOE scheme by leveraging it to construct an isogeny-
based ATS scheme preserving anonymity under tracing, traceability, non-
frameability, anony-mity with accountability and trace obliviousness in
the random oracle model following the security framework of [14].

Keywords: Post-quantum cryptography · Isogenies · Key-oblivious
encryption · Key privacy · Provable security

1 Introduction

Key-oblivious encryption (KOE) is not a newly developed primitive, but rather
cryptographic folklore. Ling et al. have recently renewed interest in KOE in his
work [14]. The core concept in KOE is to enable randomization of a large set of
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public keys related to the same secret key. This randomization generates related
keys and the relation remains oblivious as long as the knowledge of the secret
key and the randomness used are hidden.

How is KOE Different from PKE? KOE is nontrivial and useful particu-
larly when key privacy is at prime concern apart from data privacy. The tra-
ditional security prerequisite of any public key encryption (PKE) scheme is to
provide privacy of the encrypted data only. There exist encryption schemes that
are able to meet indistinguishability under chosen-ciphertext attack (IND-CCA),
which is the most potent form of data privacy, but do not provide key privacy.
KOE captures this data privacy requirement by the security attribute plaintext
indistinguishability under key randomization. Besides data privacy, KOE seeks to
provide two key privacy requirements and is formalized by key randomizability
and key privacy under key randomization. Key randomizability requires that an
adversary cannot distinguish between the original public key and a randomized
public key without having the secret key. In contrast, key privacy under key ran-
domization requires anonymity from the adversary’s point of view. An adversary
in possession of a ciphertext is unable to tell which particular key from a set
of adversarially randomized public keys is used to create the ciphertext. These
notions are a variant of standard key privacy requirements introduced in [2].

Applications. KOE has interesting applications in accountable tracing signature
(ATS) [12] and anonymous credential systems [6] described below.

– Recent interest in designing a KOE is because of its application in developing a
framework for ATS. ATS is an enhanced variant of group signature. In the tra-
ditional group signature scheme, the group manager (GM) is allowed to ran-
domly revoke the anonymity of any signer to avoid the misuse of anonymity
of the signer. The GM is trusted blindly and there is no means to check
his accountability. On the other hand, the GM is kept accountable for his
actions in an ATS scheme. Once a user enrolls in the group, the GM deter-
mines the category of the user. The traceable users are the suspected users
and their anonymity can be revoked by the GM. For non-traceable users,
anonymity remains preserved and even the GM cannot trace the signatures
generated by them. The GM then issues a certificate corresponding to his
choice (traceable/non-traceable) to the user. Later the GM reveals his choice
of category to enforce his accountability.

– Another application of KOE was put forward in [6] which showed how the
key privacy notions can be used to realise anonymous credential systems, a
primitive that enable users to control the dissemination of information about
themselves. Their construction make use of a verifiable circular key-oblivious
encryption scheme.

A variant of key privacy property of KOE has surfaced in various different aspects
in the past and found several applications as in searchable encryption [1], bid
secrecy and verifiability in auction protocols [17], anonymous broadcast encryp-
tion schemes [13] and many more. As the goals of data privacy and key privacy
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are orthogonal, designing KOE with the above stated security requirements is
not only indispensable but challenging as well.

Our Contributions. KOE is an independent primitive and may serve as a tech-
nical building block in designing privacy preserving protocols. However, due to
lack of comprehensive treatment we believe it is worthwhile to develop such a
primitive in the isogeny world and bring its application to light. Considering its
limited development in the literature, we devote this paper in designing KOE
from isogenies that withstands quantum attacks. The only two existing KOE
constructions so far are [12] and [14]. The KOE scheme presented in [12] relies
on the Decisional Diffie-Hellman (DDH) assumption but is insecure in the pres-
ence of a quantum machine due to Shor’s algorithm [18]. San Ling et al. [14]
introduced KOE in the lattice settings which is secure under the hardness of
Ring Learning With Errors (RLWE) assumption. In a nutshell, our contribution
in this paper is twofold and can be summed up as follows:

– Firstly, we initiate the study of KOE in the isogeny world. We have devel-
oped the first isogeny-based KOE and named it as Commutative Supersingular
Isogeny Key-Oblivious Encryption (CSIKOE). We provide concrete security
analysis and have shown that our scheme satisfies key randomizability, plain-
text indistinguishability under key randomization and key privacy under key
randomization in the standard model (Sect. 4). Unlike [12], our security proof
for plaintext indistinguishability under key randomization is not a straight
forward reduction. Instead, our proof comprises of a sequence of games to
achieve the desired security notion.

– Secondly, we have manifested an instantiation of our CSIKOE scheme from
cryptosystem based on Commutative Supersingular Isogeny Diffie-Hellman
(CSIDH-512) parameter set. We refer to it as CSIKOE-512 (Sect. 5).

– Finally, to address the application of our KOE scheme, we exploit our CSIKOE-
512 scheme to develop an isogeny-based ATS scheme to make the group man-
ager accountable in a group signature scheme (Sect. 7).

In 2019, Castryck et al. gave the non-interactive key exchange based on isogeny,
named as CSIDH [7]. The ElGamal-like PKE based on CSIDH without using
hash functions is not indistinguishability under chosen-plaintext attack (IND-
CPA) secure [15]. Thus, we construct our CSIKOE scheme leveraging the PKE
from CSIDH based on hash function which is IND-CPA secure. We believe our
CSIKOE scheme enjoys efficiency in terms of storage and communication cost.
For a security parameter λ, our CSIKOE scheme features user public key, user
secret key and ciphertext size of O(λ) each. Our CSIKOE can be instantiated
with any of the three sets of CSIDH parameters that have been introduced till
now (CSIDH-512, CSIDH-1024, and CSIDH-1792). However, we emphasize that
our CSIKOE scheme derived from the CSIDH-512 parameter set turns out to
be more efficient. We provide a detailed security analysis and arrived at the
following result:
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Theorem 1. Under the CSSDDH assumption, our isogeny-based CSIKOE
scheme satisfies key randomizability, plaintext indistinguishability under key ran-
domization and key privacy under key randomization in the standard model.

To address the rising concern for tracing mechanism in group signatures to
ensure user accountability, we extend our KOE scheme to develop the first ATS
scheme from isogenies. We integrate the Commutative Supersingular Isogeny
based Fiat-Shamir (CSI-FiSh) signature scheme [3] and a zero-knowledge argu-
ment system (Sect. 2.2) in our CSIKOE-512 scheme in a suitable manner to yield
an ATS scheme. We have arrived at the following theorem:

Theorem 2. Our isogeny-based ATS scheme satisfies anonymity under tracing,
traceability, non-frameability, anonymity with accountability and trace oblivious-
ness in the random oracle model following the security framework of [14] as
CSI-FiSh signature scheme is strongly unforgeable, CSIKOE-512 scheme satisfies
key randomizability, plaintext indistinguishability under key randomization and
key privacy under key randomization and under the assumption that Π is zero-
knowledge simulation-extractable argument system.

Technical Overview of our ATS Scheme. The main idea behind our ATS
scheme is that here a trusted party generates a public key pk(0) using the key
generation algorithm of our CSIKOE-512 scheme. He sends the public key pk(0)

to the GM as a part of group parameter gp. Its corresponding secret key sk(0)

is discarded and not known to anyone. Similarly, the GM generates another
public key pk(1) using our CSIKOE-512 scheme. He publishes both the public
keys pk(0) and pk(1) as a part of his group public key gpk and keeps the secret
key sk(1) secret to himself. Each user sets his user public key upk and user
secret key usk to be the verification and signing key of the CSI-FiSh signature,
respectively. At the time of enrolment of a user to a group, the GM uses the
randomize algorithm of our CSIKOE-512 scheme to randomize one of the public
keys pk(0) (for non-traceable users) or pk(1) (for traceable users) and generates
the randomized public key epk. It may be the case where a dishonest GM sends
malicious randomness to the user and later blames the user for modifying epk.
By this, the GM may claim a traceable user to be non-traceable. In order to
guarantee non-repudiation, the GM needs to generate a signature σcert on his
randomized public key epk along with his user public key upk using the CSI-
FiSh signature. He sends the randomized public key epk and the signature as a
certificate to the user’s enrolment and keeps the randomness involved to generate
epk as a witness. By the key randomizability property of our CSIKOE-512 scheme,
the users have no idea whether they are traceable to the GM or not. Next, to sign
a message the user generates a CSI-FiSh verification key, generates a CSI-FiSh
signature σu on it, encrypts the signature along with his user public key upk
using our CSIKOE-512 scheme and finally generates a zero-knowledge proof π to
proof the knowledge of (upk, epk, σcert, σu). As sk(0) is not known to the GM, he
will only be able to decrypt the ciphertext and retrieve the identity of a traceable
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user using his secret key sk(1). Anonymity of the user remains preserved for non-
traceable users. In a later phase, the GM proves his accountability using his
stored witness, which follows from the correctness of our CSIKOE-512 scheme.

2 Preliminaries

Notation. Throughout this paper, we use the following notations: Let λ ∈ N

denote the security parameter. We use #S to denote the cardinality of the set
S. The residue class ring is denoted by Z/qZ. A function μ(·) is negligible if for
every integer c, there exists an integer k such that for all λ > k, |μ(λ)| < 1/λc.

Elliptic Curves and Isogenies [9,19]. Let K be a finite field and K be its
algebraic closure. An elliptic curve E over K is a non-singular, projective, cubic
curve having genus one with a special point O, called the point at infinity. The
set of K-rational points of the elliptic curve E form an additive abelian group
with O as the identity element. A Montgomery elliptic curve E is of the form
E : By2 = x3 + Ax2 + x where B(A2 − 4) �= 0 for some A,B ∈ K.

Let E1 and E2 be two elliptic curves over a field K. An isogeny from E1

to E2 is a non-constant morphism φ : E1 −→ E2 over K preserving the point
at infinity O. The degree of the isogeny φ, denoted by deg(φ) is its degree as a
rational map. A non-zero isogeny φ is called separable if and only if deg(φ) =
#ker(φ) (= φ−1(OE2)).

Endomorphism Ring. The set of all isogenies from E to itself defined over
K forms a ring under pointwise addition and composition. This ring is called
the endomorphism ring of the elliptic curve E and is denoted by End(E). By
EndK(E), we mean the set of all isogenies from E to itself defined over K. If
End(E) is isomorphic to an order in a quaternion algebra, the curve E is said to
be supersingular. On the other hand, if End(E) is isomorphic to an order in an
imaginary quadratic field, we say the curve E is ordinary.

Theorem 3 [21]. Let E1 be a curve and G be its finite subgroup. Then there is a
unique elliptic curve E2 and a separable isogeny φ : E1 −→ E2 with ker(φ) = G
such that E2

∼= E1/G which can be computed using Vélu’s formulae [20].

Ideal Class Group [15]. Let F be a number field, and O be an order in F . A
fractional ideal a of O is a finitely generated O-submodule of F . Let I(O) be a
set of invertible fractional ideals of O. Then I(O) is an abelian group derived
from the multiplication of ideals with the identity O. Let P(O) be a subgroup of
I(O) defined by P(O) = {a|a = αO for some α ∈ F � {0}}. The abelian group
Cl(O) defined by I(O)/P(O) is called the ideal class group of O. An element of
Cl(O) denoted by [a] is an equivalence class of a.

The Class Group Action. Let Ellp(O) denote the set of Fp-isomorphic classes
of supersingular curves E, whose Fp-endomorphism ring EndFp

(E) ∼= O =
Z[

√−p]. The ideal class group Cl(O) acts freely and transitively on Ellp(O).
For the curve E ∈ Ellp(O), the action ∗ of [a] ∈ Cl(O) on E is defined as follows:
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– Consider all the endomorphisms α in a.
– Compute the subgroup E[a] =

⋂
α∈a ker(α).

– Compute the elliptic curve E/E[a] and an isogeny φa : E −→ E/E[a] using
Velu’s formula. (See Theorem 3) and returns the elliptic curve E/E[a].

Henceforth, we shall use the notation [a]E instead of [a]∗E to denote the elliptic
curve E/E[a]. The next theorem suggests that since the curves in Ellp(O) where
O = Z[

√−p] can be uniquely represented by their Montgomery coefficient.

Theorem 4 [7]. Let p ≥ 5 be a prime such that p ≡ 3 (mod 8) and E be a
supersingular elliptic curve over Fp. Then EndFp

(E) = Z[
√−p] if and only if

there exists Amg ∈ Fp such that E is Fp-isomorphic to the Montgomery curve
EAmg : y2 = x3 + Amgx

2 + x. Moreover, if such an Amg exists then it is unique.

2.1 CSIDH: a Non-interactive Key Exchange Based on Isogeny [7]

The non-interactive key exchange scheme CSIDH = (Setup, KeyGen, KeyEx-
change) consists of polynomial-time algorithms with the following requirements:

Setup(1λ) → pp: A trusted authority runs this probabilistic polynomial-time
(PPT) algorithm on input a security parameter 1λ and proceed as follows:

– Chooses a large prime p of the form p = 4 l1l2 . . . ln − 1, where li’s are small
distinct odd primes.

– Picks an integer m and selects a base elliptic curve E0 : y2 = x3 +x ∈ Ellp(O)
over Fp with endomorphism ring O = Z[

√−p].
– Defines MC : Ellp(O) → Fp, a function that maps isomorphism classes of

elliptic curve to its Montgomery coefficient. (See Theorem 4)
– Sets the public parameter pp = (p, l1, l2, . . . , ln, m, E0, MC).

KeyGen(pp) → (pk, sk): A user, say U on input the public parameter pp runs this
randomized algorithm by executing the following steps and generate its public
key pk and secret key sk.

– Samples an integer vector u = (u1, . . . , un) randomly where ui ∈ [−m, m],
i = 1, . . . , n and defines [u] ∈ Cl(O) as [u] = [lu1

1 · · · lun
n ], where li = <li, π−1>.

Here < , > denotes the ideal generated by multiplication by li map and π − 1
where π is the Frobenius endomorphism that maps (x, y) to (xp, yp).

– Computes the action of [u] ∈ Cl(O) on E0 ∈ Ellp(O) to get the curve [u]E0.
Computes the unique Montgomery coefficient Umg = MC([u]E0) ∈ Fp of the
elliptic curve [u]E0 : y2 = x3 + Umgx

2 + x.
– Sets its public key pk = Umg and secret key sk = u.

KeyExchange: Key exchange between users A and B who want to agree upon a
common secret is depicted in Fig. 1.

Correctness. Correctness of CSIDH follows immediately from the commutativ-
ity of the class group Cl(O) and Theorem 4.
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Fig. 1. KeyExchange protocol of CSIDH between Alice and Bob

Remark 1. We dwell upon few important aspects of CSIDH.

• As the cardinality of the class group is asymptotically #Cl(O) ∼ √
Δ, it

is computationally infeasible to compute the structure of the class group
Cl(O), where Δ stands for discriminant of class group. Thus [7] opts for
heuristic arguments assuming that li do not have very small order and are
uniformly distributed in the class group, two ideals la1

1 · · · lan
n for small ai will

occasionally lie in the same class group. The exponents ai’s are preferred to
be sampled from a short range {−m, . . . , m} for some integer m such that
2m + 1 ≥ n

√
#Cl(O).

• Choosing prime p of the form 4 l1l2 . . . ln − 1, establishes an association of
the fractional ideal li = <li, π − 1> to each li. The action of these li can
be computed efficiently by finding an Fp-rational point and hence a unique
subgroup of E0(Fp) of order li and applying Velu’s formulas [20].

Theorem 5. The non-interactive key exchange protocol CSIDH is secure under
the Commutative Supersingular Decisional Diffie-Hellman (CSSDDH) assump-
tion as defined in Definition 1.

Definition 1 (Commutative Supersingular Decisional Diffie-Hellman
assumption). Let p be a large prime of the form p = 4 l1l2 . . . ln − 1, where
li’s are small distinct odd primes and E0 be the base curve given by y2 = x3 + x
over Fp. The Commutative Supersingular Decisional Diffie-Hellman (CSSDDH)
advantage of any PPT adversary denoted by AdvCSSDDH

A (λ) is defined as:

AdvCSSDDH
A (λ) = |Pr[A(E0, [a]E0, [b]E0, [a][b]E0 ) = 1 | a, b ← Cl(O)]

−Pr[A(E0, [a]E0, [b]E0, [c]E0 ) = 1] | a, b, c ← Cl(O)|.
We say that the CSSDDH assumption holds if the CSSDDH advantage of any

PPT adversary A is negligible.

Definition 2 (Entropy Smoothing). Let H : = {Hk}k∈K be a family of
keyed hash functions where each Hk maps from group G to {0, 1}l. Let A be an
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algorithm that on input an element of key space K and an element of {0, 1}l and
outputs a bit. We say H : = {Hk}k∈K is entropy smoothing if the advantage:

AdvESA (λ) = |Pr[ k ← K, g ← G | A(k, Hk(g)) = 1 ]
−Pr[ k ← K,h ← {0, 1}l | A(k, h) = 1 ] |

of any PPT adversary A is negligible.

2.2 Non-interactive Zero-Knowledge [4]

Syntax. A Non-Interactive Zero-Knowledge (NIZK) argument system Π =
(Setup,Prove,Verify, S = (S1,S2)) for a language L ∈ NP with witness relation
R specifies the following PPT algorithms:

Setup(1λ) → crs: A trusted party runs this randomized algorithm taking input
the security parameter 1λ and generates a common reference string crs.

Prove(crs, x, w) → π: To prove the statement x ∈ L with witness w, the prover
runs this randomized algorithm taking the crs and generates a proof π.

Verify(crs, x, π) → {0, 1}: This is a deterministic algorithm run by a verifier
that takes input the crs, a statement x and a proof π and returns 1 if the
proof π is valid, else returns 0.

A NIZK argument system has the following three requirements: Completeness,
Soundness and Zero-Knowledge which are explicitly described below.

Definition 3 (Completeness). A NIZK argument system Π for a language L
∈ NP with witness relation R is complete if for all x, w such that R(x, w) = 1
and all crs ← Setup(1λ), it must hold that Verify(crs, x, Prove(crs, x, w)) = 1.

Definition 4 (Soundness). A NIZK argument system Π for a language L ∈
NP with witness relation R is sound if the advantage of any PPT adversary A
given by AdvSnDΠ,R,A(λ) = Pr[ExpSnDΠ,R,A(λ) = 1] is negligible where the experiment
ExpSnDΠ,R,A(λ) is specified in Fig. 2.

Definition 5 (Zero-knowledge). A NIZK argument system Π for a language
L ∈ NP with witness relation R is zero-knowledge if the advantage of any PPT
adversary A given by AdvZoKΠ,R,A(λ) = Pr[ExpZoKΠ,R,A(λ) = 1] is negligible where
S1,S2 in the experiment ExpZoKΠ,R,A(λ) specified in Fig. 2 stands for the simulator.

Definition 6 (NIZK argument of knowledge). A NIZK argument system
Π for a language L ∈ NP with witness relation R is an argument of knowledge if
there exists a PPT extractor E = (E1, E2) such that the advantage of any PPT
adversary A given by AdvExTΠ,R,A(λ) = Pr[ExpExTΠ,R,A(λ) = 1] is negligible, where
trap refers to a trapdoor in the experiment ExpExTΠ,R,A(λ) specified in Fig. 2.
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Fig. 2. Experiment defining soundness, zero-knowledge, NIZK argument of knowledge

3 Key-Oblivious Encryption (KOE)

Syntax. A key-oblivious encryption is a tuple KOE = (Setup, KeyGen, KeyRand,
Enc, Dec) of five polynomial-time algorithms with the following requirements:

Setup(1λ) → pp: This is a randomized algorithm run by a trusted authority that
on input the security parameter 1λ outputs the public parameter pp.

KeyGen(pp) → (pk, sk): A user runs this randomized algorithm on input the
public parameter pp and generates a key pair (pk, sk). The public key pk is
published while the key sk is kept secret to the user.

KeyRand(pp, pk; r) → pk′: Any entity can randomize pk using the public param-
eter pp and some randomness r to produce a new public key pk′ for the same
secret key sk.

Enc(pp, pk, m) → ct: This randomized algorithm is executed by an encryptor
who uses the public parameter pp, the public key pk of the recipient to encrypt
a message m and outputs a ciphertext ct.

Dec(pp, ct, sk) → m′: This is a deterministic algorithm run by the decryptor
taking input the public parameter pp, the secret key sk, the ciphertext ct and
outputs the decrypted message m′.

Correctness. A KOE scheme is said to be correct if for all security parameter
λ, all pp ← Setup(1λ), all (pk, sk) ← KeyGen(pp), all pk′ ← KeyRand(pp, pk; r),
all m, it must hold that Dec(pp, Enc(pp, pk′, m), sk) = m.

Security Models. We describe the three security requirements for KOE scheme:
(i) Key randomizability (KR): This property demands that no adversary should
be able to figure out how the public keys are related to each other without the
secret key and randomness used. This is formalized by means of the experiment
ExpKRKOE, A(λ) between an adversary A and a challenger C described in Fig. 3.
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Fig. 3. The key randomizability experiment ExpKRKOE,A

Definition 7 (Key randomizability). A KOE scheme is key randomizable if
the advantage AdvKRKOE, A(λ) = |Pr[ExpKRKOE, A(λ) = 1] − 1

2 | of any PPT adversary
A is negligible.

(ii) Plaintext indistinguishability under key randomization (INDr): This security
notion requires that no adversary can differentiate the ciphertexts corresponding
to messages of its choice even though the adversary is allowed to randomize the
public key. This is formalized in the experiment ExpINDr

KOE, A(λ) given in Fig. 4.

Fig. 4. The plaintext indistinguishability experiment ExpINDr
KOE,A(λ)

Definition 8 (Plaintext indistinguishability under key randomiza-
tion). A KOE scheme is plaintext indistinguishable under key randomization if
the advantage AdvINDr

KOE, A(λ) = |Pr[ExpINDr
KOE, A(λ) = 1] − 1

2 | of any PPT adversary
A is negligible.

(iii) Key privacy under key randomization (KPr): This feature requires that no
adversary can distinguish between ciphertexts of a particular message under
adversarially randomized public keys. This is formally modelled by the experi-
ment ExpKPrKOE, A(λ) between an adversary A and a challenger C in Fig. 5.

Definition 9 (Key privacy under key randomization). A KOE scheme is
key private under key randomization if the advantage of any PPT adversary A
given by AdvKPrKOE, A(λ) = |Pr[ExpKPrKOE, A(λ) = 1] − 1

2 | is negligible.
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Fig. 5. The key privacy under key randomization experiment ExpKPrKOE,A(λ)

4 Our Key-Oblivious Encryption from Isogenies

In this section, we explain our proposed isogeny-based KOE scheme and we call
it as Commutative Supersingular Isogeny Key-Oblivious Encryption (CSIKOE).
For convenience we adapt the following notational framework from [11]:

• [a]E will be replaced by [a]E, where [a] = [la1
1 · · · lan

n ] ∈ Cl(O) is determined
by its exponent vector a = (a1, . . . , an).

• [a][b]E will be replaced by [a+b]E where [a], [b] ∈ Cl(O) and a = (a1, . . . , an),
b = (b1, . . . , bn) ∈ Z

n represents exponent vectors of [a] and [b] respectively.

Setup(1λ) → pp: A trusted authority runs this algorithm on input a security
parameter 1λ and performs the following steps:

– Chooses a large prime p of the form p = 4 l1l2 . . . ln − 1, where li’s are small
distinct odd primes. Picks an integer m such that 2m + 1 ≥ n

√
#Cl(O) and

selects a base elliptic curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp with endo-
morphism ring O = Z[

√−p].
– Defines MC : Ellp(O) → Fp, a function that maps isomorphism classes of

elliptic curve to its Montgomery coefficient.
– Samples a family of hash function H : = {Hk}k∈K where Hk : Fp → {0, 1}λ

for each k ∈ K, where K is the key space and message space M = {0, 1}λ.
– Sets the public parameter pp = (p, l1, l2, . . . , ln, m, E0, MC , H : = {Hk}k∈K).

KeyGen(pp) → (pk, sk): This is a randomized algorithm run by a user on input
the public parameter pp = (p, l1, l2, . . . , ln, m, E0, MC , H : = {Hk}k∈K) to
generate his public key pk and secret key sk. The user proceeds as follows:

– Samples randomly two n-tuple integer vectors a = (a1, . . . , an), r =
(r1, . . . , rn) where ai, ri ∈ [−m, m] for i = 1, . . . , n. These integer vectors
define the ideal classes [a] = [la1

1 · · · lan
n ] and [r] = [lr1

1 · · · lrn
n ] ∈ Cl(O) respec-

tively, where li = <li, π − 1> and π is the Frobenius endomorphism.
– Computes the elliptic curves E1 = [a]E0, E2 = [r]E1 = [r + a]E0 and returns

the public key pk = (E1, E2) and keeps sk = r secret.
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KeyRand(pp, pk; r′) → pk′: This randomized algorithm takes input the public
parameter pp, public key pk = (E1, E2) and randomize it to obtain pk′. The
steps involved are as follows:

– Samples randomly an n-tuple integer vector r′ = (r′
1, . . . , r

′
n) where r′

i ∈
[−m, m] for i = 1, . . . , n. This integer vector r′ defines the ideal class [r′] =
[lr

′
1

1 · · · lr′
n

n ] ∈ Cl(O).
– Computes the curves E′

1 = [r′]E1, E′
2 = [r′]E2 and outputs the randomized

public key pk′ = (E′
1, E′

2).

Enc(pp, pk, m) → ct: An encryptor takes input the public parameter pp, the
public key pk = (E1, E2), a message m and performs the following steps:

– Samples randomly an n-tuple vector c = (c1, . . . , cn) of integers, where ci ∈
[−m,m] for i = 1, . . . , n, which defines the ideal class [c] = [lc11 · · · lcnn ].

– Computes ct1 = [c]E1, ct2 = Hk(MC([c]E2)) ⊕ m and returns ct = (ct1, ct2).

Dec(pp, ct, sk) → m: This a deterministic algorithm run by a decryptor that
takes input the public parameter pp, the secret key sk = r and the ciphertext
ct = (ct1, ct2) where ct1 = [c]E1, ct2 = Hk(MC([c]E2)) ⊕ m. The decryptor
retrieves the plaintext m by computing ct2 ⊕ Hk(MC([r]ct1)).

Correctness. The correctness of the CSIKOE protocol follows from:

ct2 ⊕ Hk(MC([r]ct1)) = Hk(MC([c]E
′
2)) ⊕ m ⊕ Hk(MC([r]ct1))

= Hk(MC([c][r
′
][r + a]E0)) ⊕ m ⊕ Hk(MC([r][c][r

′
]E1))

= m.

Parameter Setting. The system parameters must be set in such a way that no
polynomial-time adversary can guess the private key with non-negligible prob-
ability. Note that the private key is an n-tuple vector of integers with each
co-ordinates chosen randomly from [−m, m]. Therefore the private key space is
(2m + 1)n and (2m + 1)n ≥ 23λ ⇒ n log(2m + 1) ≥ 3λ needs to be satisfied
to provide a secure key space, with the goal that no polynomial-time attacker
can guess the private key [10]. Considering the best-known threats, three sets
of parameters were recommended for CSIDH under three NIST security levels -
CSIDH-512, CSIDH-1024 and CSIDH-1792. The parameters of CSIDH-512 were
fully specified in practice (n = 74, m = 5, l73 = 373, l74 = 587) corresponding
to the NIST level 1 and achieves 127-bit classical and 64-bit quantum security.

Remark 2. Castryck et al. [8] pointed out that the CSSDDH problem is easy if we
work with supersingular elliptic over Fp with p ≡ 1 (mod 4). It is noteworthy
that CSIDH is secure as it relies on supersingular elliptic curves over Fp with
p ≡ 3 (mod 4). Consequently, our CSIKOE construction is secure as for our
setting the CSSDDH assumption is conjectured to be hard.
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Efficiency. We now analyse the efficiency of our CSIKOE scheme in terms of
security parameter λ. The size of public key pk is of O(log p) = O(λ). The secret
key sk has n log(2m+1) bits. Since n log(2m+1) ≥ 3λ, thus the size of the secret
key sk is O(λ). In Table 1, we provide a theoretical comparison of our CSIKOE
with other proposed KOE.

Table 1. Comparative summary of communication bandwidth and storage overhead
of KOE

Scheme Quantum
secure

Storage Communication Computation Security

|pk| |sk| |ct| Encryption Decryption

[12] No 2|G| |Zq| 2|G| 2 exponentiation
1 multiplication

1 exponentiation
1 inversion

DDH

[14] Yes 2nl n-tuple vector
over Z

2nl 2 scalar multiplication
1 Ternary decomposition

1 modular division
1 matrix
multiplication

RLWE

Ours Yes 2 log p n log(2m + 1) 2 log p 2 group actions
1 XOR operation

1 group action
1 XOR operation

CSSDDH

pk = Public key, sk = Secret key, ct = Ciphertext For [12], G is a group of prime order

q. For [14], n = O(λ) is a power of 2, l =
⌊
log q−1

2

⌋
+ 1 and q = Õ(n4).

4.1 Security Analysis

Theorem 6. Under the CSSDDH assumption as defined in Definition 1 of
Sect. 2, the isogeny-based CSIKOE scheme presented in Sect. 4 satisfies key ran-
domizability (KR) as per Definition 7.

Proof. Let us assume that there exists a PPT adversary A and a non-negligible
function μ(·) such that Pr[ExpKRKOE, A(λ) = 1 ] � 1

2 + μ(λ), where ExpKRKOE, A(λ) is
defined in Fig. 3 of Sect. 3. We will prove that we can design a PPT distinguisher
D which can solve any CSSDDH instance, i.e., distinguishes between (E0, X =
[x]E0, Y = [y]E0, Z1 = [x+y]E0 ) and (E0, X = [x]E0, Y = [y]E0, Z0 = [z]E0 )
with non-negligible probability where E0 ∈ Ellp(O) and x = (x1, . . . , xn), y =
(y1, . . . , yn), z = (z1, . . . , zn) are integer vectors such that xi, yi, zi ∈ [−m, m]
for i = 1, . . . , n. Given a CSSDDH challenge ( E0, X = [x]E0, Y = [y]E0, Zb )
where b ∈ {0, 1}, the reduction is straight forward and proceeds as described in
Fig. 6.

Fig. 6. Distinguisher D for the KR security of CSIKOE
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For the instance when b = 1, i.e., (X = [x]E0, Y = [y]E0, Z1 = [x+y]E0)
is a CSSDDH triple, the view of the adversary A is identical to experiment
ExpKRKOE, A(λ). As the adversary receives original public key pk = ([r]E0, [r]X)
= ([r]E0, [x+r]E0) and the subsequent public key pk1 = ([r]Y, [r]Z1)) =
([y][r]E0, [y][x+r]E0), a re-randomization of the original key pk using y. On the
other hand, when b = 0, i.e., (X = [x]E0, Y = [y]E0, Z0 = [z]E0), the second key
pk0 = ([r]Y, [r]Z0)) = ([y][r]E0, [z+r]E0) is a complete randomized key. Thus, if
A correctly distinguishes between a real or random key with a non-negligible
advantage, the distinguisher D breaks CSSDDH with the same non-negligible
advantage as that of A. More formally, the probability of D winning in the
distinguishability game = Pr[ExpKRKOE, A(λ) = 1 ] � 1

2 + μ(λ). �
Theorem 7. The isogeny-based CSIKOE scheme presented in Sect. 4 satisfies
plaintext indistinguishability under key randomization (INDr) as per Definition
8 under CSSDDH assumption as defined in Definition 1 and the assumption that
H : = {Hk}k∈K is “entropy smoothing” as defined in Definition 2.

Proof. We prove the plaintext indistinguishability under key randomization
(INDr) of our CSIKOE scheme using the following sequence of games G0, G1,
G2, under CSSDDH assumption and the presumption that H is entropy smooth-
ing.

Game G0. We start with game G0 which is the true INDr experiment
ExpINDr

KOE, A(λ) and is explicitly described in Fig. 7.

Fig. 7. Game Gi for i = 0, 1, 2 in the proof of Theorem 7

Game G1. It is the same as game G0, but with a small tweak. In this
game, the challenger sets the targeted ciphertext ct = (ct1 = [c]E′

1, ct2 =
Hk(MC( [z]E′

2 ) ) ⊕ mb) where z = (z1, . . . , zn) is an integer vector sampled
randomly such that zi ∈ [−m,m] for i = 1, . . . , n.
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For Game Gi for i = 0, 1, 2, let Ti be the event associated with b = b′. We first
prove the following claim.

Claim: For the event Ti in game Gi where i = 0, 1, we have |Pr[T0] − Pr[T1] | =
εcssddh where εcssddh is the CSSDDH-advantage of any PPT adversary, which is
negligible.

Proof of Claim. To prove that |Pr[T0] − Pr[T1] | is negligible, one argues that
there exists a distinguishing algorithm D that interpolates between game G0

and game G1, so that when given (E0, X = [x]E0, Y = [y]E0, Z1 = [x+y]E0 ) as
input, D outputs 1 with probability Pr[T0] and when given (E0, X = [x]E0, Y =
[y]E0, Z0 = [z]E0 ) as input, D outputs 1 with probability Pr[T1]. The CSSDDH
indistinguishability assumption then implies that |Pr[T0] − Pr[T1] | is negligible.
Our distinguisher D is precisely described in Fig. 8.

Fig. 8. Distinguisher D for the INDr security of CSIKOE

If the input to D is of the form (E0, X = [x]E0, Y = [y]E0, Z1 = [x+y]E0 ),
then computation proceeds just as in game G0, and therefore

Pr[ x, y ← [−m, m]n|D(E0, X, Y, Z1 = [x+y]E0 ) = 1] = Pr[T0].

On the other hand, if the input to D is of the form (E0, X = [x]E0, Y =
[y]E0, Z0 = [z]E0 ), then computation proceeds as in game G1, and therefore

Pr[ x, y ← [−m, m]n|D(E0, X, Y, Z0 = [z]E0 ) = 1] = Pr[T1].

Thus we have, AdvCSSDDH
D (λ)

= |Pr[ x, y ← [−m, m]n | D(E0, X = [x]E0, Y = [y]E0, Z1 = [x+y]E0 ) = 1]
−Pr[ x, y ← [−m, m]n | D(E0, X = [x]E0, Y = [y]E0, Z0 = [z]E0 ) = 1]|

= |Pr[T0] − Pr[T1] |
From this, it follows that the CSSDDH-advantage of D is equal to |Pr[T0] −
Pr[T1] |, which completes the proof of the Claim.

Game G2. Game G2 is identical to game G1, except that the challenger sets ct
= (ct1 = [c]E′

1, ct2 = h ⊕ mb) by choosing h ∈ {0, 1}λ uniformly at random.
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Then from the entropy smoothing assumption of the family of hash functions
H as defined in Definition 2, we have |Pr[T1] − Pr[T2] | = εes, where εes is the
entropy smoothing advantage of any PPT algorithm, which is negligible. Also,
note that as h behaves like a one-time pad in game G2. Thus, Pr[T2 ] = 1

2 . Thus,

AdvINDr
KOE, A(λ) = |Pr[ExpINDr

KOE, A(λ) = 1] − 1
2
|

= |Pr[T0 ] − Pr[T2 ]|
≤ |Pr[T0 ] − Pr[T1 ]| + |Pr[T1 ] − Pr[T2 ]|
= εcssddh + εes

which is negligible since both εcssddh and εes are negligible. �
Theorem 8. Under the CSSDDH assumption as defined in Definition 1 of
Sect. 2, the isogeny based CSIKOE scheme presented in Sect. 4 satisfies key pri-
vate under key randomization (KPr) as per Definition 9.

Proof. On the contrary, let us assume that there exists a PPT adversary A and
a non-negligible function μ(·) such that Pr[ExpKPrKOE, A(λ) = 1 ] � 1

2 + μ(λ). Now
we shall prove that we can design a PPT distinguisher D which distinguishes
between (E0, X = [x]E0, Y = [y]E0, Z1 = ( [x+y]E0) and (E0, X = [x]E0, Y =
[y]E0, Z0 = ( [z]E0) with non negligible probability where E0 ∈ Ellp(O) and
x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn) are integer vectors such that
xi, yi, zi ∈ [−m, m] for i = 1, . . . , n. Given a CSSDDH challenge ( E0, X, Y, Zδ ),
where δ ∈ {0, 1} the reduction is given in the Fig. 9.

Fig. 9. Distinguisher D for the KPr security of CSIKOE

Observe that if X0, Y0, S0 is a CSSDDH triple, then so is X1, Y1, S1. More-
over, the two triples are identically distributed and generates proper distribu-
tions of keys in CSIKOE. For the instance when δ = 1, (Xb = [xb]E0, Yb =
[yb]E0, Sb = [xb+yb]E0 ) is a CSSDDH triple, the view of the adversary A is iden-
tical to experiment ExpKPrKOE, A(λ), where x0 = x, x1 = x + α, y0 = y, y1 = y + β.
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Indeed, [rb + vb]Sb = [rb + vb][xb + yb]E0 = [yb]([rb + vb]Xb) = [yb]ct1. On the
other hand, when δ = 0, Sb is a random element, then the challenge cipher-
text provided to A contains no information. Hence A’s advantage at guessing
the bit is negligible. Thus, if A has a non-negligible advantage in experiment
ExpKPrKOE, A(λ), D breaks CSSDDH with the same non-negligible advantage as
that of A. Thus, the probability of D winning in the distinguishability game
= Pr[ExpKPrKOE, A(λ) = 1 ] � 1

2 + μ(λ). This completes the proof. �

5 Instantiation of CSIKOE from CSIDH-512

We now show an instantiation of our CSIKOE scheme based on the CSIDH-512
parameter set and name it as CSIKOE-512. The structure of the class group
Cl(O) where O = Z[

√−p] is computed by Beullens et al. [3]. They have shown
that Cl(O) is a cyclic group and g = <3, π−1> is a generator of this class group.
The class number of this ideal class group is given by N , where

N = #Cl(O) = 37 × 1407181 × 51593604295295867744293584889
× 31599414504681995853008278745587832204909.

For simplicity we can consider Cl(O) to be ZN and use the following notation:

• [a]E will be replaced by [a]E for any element [a] ∈ Cl(O) which can be written
as [ga] for some a ∈ ZN .

• [a][b]E will be replaced by [a + b]E where [a], [b] ∈ Cl(O) and [a]E = [ga]E,
[b]E = [gb]E for some a, b ∈ ZN .

Setup(1λ) → pp: A trusted authority runs this algorithm on input a security
parameter 1λ and performs the following steps:

– Chooses a large prime p of the form p = 4 l1l2 . . . ln −1, where the li are small
distinct odd primes with n = 74, l1 = 3, l73 = 373, and l74 = 587.

– Sets the generator of the ideal class group G = Cl(O) to be g = <3, π − 1>
with class number N .

– Selects a base elliptic curve E0 : y2 = x3 + x, a function MC : Ellp(O) → Fp

and a family of keyed hash function H : = {Hk}k∈K where Hk : Fp → {0, 1}λ

for each k ∈ K same as in our CSIKOE construction.
– Sets the public parameter pp = (p, g, N , E0, MC , H).

KeyGen(pp) → (pk, sk): This is a randomized algorithm run by a user to generate
his corresponding pair of public and secret keys. The user samples two elements
[a] = [ga] and [r] = [gr] ∈ G(∼= ZN ) for some a, r in ZN . Computes the elliptic
curves E1 = [a]E0, E2 = [r]E1 = [r + a]E0 and returns the public key pk =
(E1, E2) and keeps sk = r secret.

KeyRand(pp, pk; r′) → pk′: This is a randomized algorithm run by any entity
taking input a public key pk and randomize it to obtain pk′. For this he samples
[r′] = [gr′

] ∈ G(∼= ZN ) for some r′ in ZN . Computes the elliptic curves E′
1 =

[r′]E1, E′
2 = [r′]E2 and outputs the randomized public key pk′ = (E′

1, E′
2).



Key-Oblivious Encryption from Isogenies with Application 379

Enc(pp, pk, m) → ct: The encryptor samples [c] = [gc] ∈ G(∼= ZN ) for some c
in ZN . Computes ct1 = [c]E1 and ct2 = Hk(MC([c]E2)) ⊕ m using the input
public key pk = (E1, E2) and returns the ciphertext ct = (ct1, ct2), which is the
encryption of the message m ∈ {0, 1}λ.

Dec(pp, ct, sk) → m: Given the secret key sk = r and the ciphertext ct =
(ct1, ct2) where ct1 = [c]E1 and ct2 = Hk(MC([c]E2))⊕m, the decryptor returns
the message m = ct2 ⊕ Hk(MC([r]ct1)).

Remark 3. The recent quantum security analysis of CSIDH-512 in [5,16] corre-
sponding to NIST category 1 reveals that CSIDH-512 is broken by 40 bit quantum
memory and 216 quantum oracle queries, thereby reducing the expected quantum
security level of CSIDH-512. But the quantum circuit for the group operations
of CSIDH is expensive. Taking a note of such external overheads of circuits in
addition to his evaluation, CSIDH appears to be safe in reality.

6 Accountable Tracing Signature

Syntax. An accountable tracing signature (ATS) scheme is a tuple ATS =
(Setup, GrKeyGen, UsKeyGen, Enroll, Sign, Verify, Open, Judge, Account) of nine
polynomial-time algorithms with the following requirements:

Setup(1λ) → gp: This is a randomized algorithm run by a trusted authority that
on input the security parameter λ and outputs the group parameter gp.

GrKeyGen(gp) → (gpk, gsk): The GM runs this randomized algorithm on input
the group parameter gp and generates the group public key gpk which includes
gp and group secret key gsk = (isk, opk) where isk is the issue key and opk is
the opening key.

UsKeyGen(gp) → (upk, usk): This is a randomized algorithm run by a user that
takes input the group parameter gp and generates its user public key upk and
user secret key usk. The user public key upk is published while the user secret
key usk is kept secret to the user.

Enroll(gp, gpk, isk, upk, tr) → (cert, wescrw): The GM runs this randomized algo-
rithm taking inputs the group parameter gp, the group public key gpk, a
user public key upk, issue key isk and a trace bit tr ∈ {0, 1}. For tr = 0, the
anonymity of the user is preserved whereas for tr = 1, the user is traceable.
Based on the choice of bit tr, the GM produces a certificate cert including upk
and witness wescrw. The GM sends the certificate cert to the user and keeps
the witness wescrw secret to himself.

Sign(gp, gpk, cert, usk, msg) → σ: This randomized algorithm is executed by a
user that takes inputs the group parameter gp, the group public key gpk, a
user secret key usk, user certificate cert and generates a signature σ on the
message msg.

Verify(gp, gpk, msg, σ) → {0, 1}: Given the group parameter gp, the group public
key gpk, a message msg and a signature σ, the verifier runs this deterministic
algorithm and outputs 1 if σ is a valid signature on msg, else outputs 0.
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Open(gp, gpk, opk, msg, σ) → (upk, Prf): This is a deterministic algorithm run
by the GM which takes inputs the group parameter gp, the group public key
gpk, the opening key opk, a message msg and a signature σ. The algorithm
outputs the user public key upk and a proof Prf which ensures that the
signature σ on the message msg is indeed generated by the user with public
key upk. In case of upk =⊥, Prf = ⊥ .

Judge(gp, gpk, msg, σ, (upk, Prf)) → {0, 1}: This is a deterministic algorithm
that takes inputs the group parameter gp, the group public key gpk, a message
msg, a signature σ, a user public key upk and a proof Prf and outputs 1 if
the proof Prf guarantees that the signature σ on the message msg is indeed
generated by the user public key upk, else outputs 0.

Account(gp, gpk, cert, wescrw, tr) → {0, 1}: This is a deterministic algorithm run
by the GM taking inputs the group parameter gp, the group public key gpk,
a certificate cert, witness wescrw, trace bit tr and outputs 1 if the witness
confirms the choice of tr, else outputs 0.

Correctness. For a traceable user (tr = 1), an ATS scheme is said to be correct
if for all security parameter λ, all gp ←Setup(1λ), all (gpk, gsk) ← GrKeyGen(gp),
all (upk, usk) ← UsKeyGen(gp), all (cert, wescrw) ← Enroll(gp, gpk, isk, upk, tr =
1), all σ ← Sign(gp, gpk, cert, usk, msg) it must hold that

Verify(gp, gpk,msg, σ) = 1
Judge(gp, gpk,msg, σ,Open(gp, gpk, opk,msg, σ)) = 1

Account(gp, gpk, cert, wescrw, 1) = 1

For a non-traceable user (tr = 0), an ATS scheme is said to be correct if for
all security parameter λ, all gp ←Setup(1λ), all (gpk, gsk) ← GrKeyGen(gp), all
(upk, usk) ← UsKeyGen(gp), all (cert, wescrw) ← Enroll(gp, gpk, isk, upk, tr = 0),
all σ ← Sign(gp, gpk, cert, usk, msg) it must hold that

Verify(gp, gpk,msg, σ) = 1
Account(gp, gpk, cert, wescrw, 0) = 1

7 Our Accountable Tracing Signature from Isogenies

In this section we show the concrete construction of our ATS-scheme from iso-
genies. The main ingredients for our ATS scheme are: the CSI-FiSh signature
scheme [3], our CSIKOE-512 scheme described in Sect. 5 and a zero-knowledge
argument system described in Sect. 2.2.

Setup(1λ) → gp: A trusted authority runs this algorithm on input a security
parameter 1λ and proceeds as follows to generate the group parameter gp.

– Sets the public parameter pp = (p, g, N , E0, MC , Hk, H ′) where the param-
eters are defined exactly as in CSIKOE-512. Additionally, pp also includes a
hash functions H ′ : {0, 1}∗ → [−(S − 1), (S − 1)]t.
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– Samples two elements [a] = [ga] and [r] = [gr] ∈ G for some a, r ∈ ZN .
Computes the curves E

(0)
1 = [a]E0 and E

(0)
2 = [a + r]E0 and sets the public

key pk(0) = (E(0)
1 , E

(0)
2 ). Generates crs ← Π.Setup(1λ) (See Sect. 2.2) and

finally sets the group parameter gp = (pp, pk(0) = (E(0)
1 , E

(0)
2 ), crs).

GrKeyGen(gp) → (gpk, gsk): The GM runs this randomized algorithm to generate
the group public key gpk and group secret key gsk in the following manner:

– Extracting g, N, E0 from gp.pp, samples S − 1 elements [mi] = [gmi ] ∈ G for
some mi ∈ ZN , computes the elliptic curve Ei = [mi]E0 for i = 1, . . . , S − 1
and sets vk = {E1, . . . , ES−1}.

– Samples two elements [b] = [gb] and [s] = [gs] ∈ G for some b, s ∈ ZN ,
computes the curves E

(1)
1 = [b]E0 and E

(1)
2 = [b + s]E0, sets the public key

pk(1) = (E(1)
1 , E

(1)
2 ) and the secret key sk(1) = s. The GM publishes gpk =

(gp = (pp, pk(0) = (E(0)
1 , E

(0)
2 ), crs), vk, pk(1) = (E(1)

1 , E
(1)
2 )) and keeps gsk

= (isk = (m1, . . . , mS−1), opk = s) secret to himself.

UsKeyGen(gp) → (upk, usk): This is a randomized algorithm run by a user that
takes input the group parameter gp = (pp = (p, g, N,E0,MC ,Hk,H ′), pk(0) =
(E(0)

1 , E
(0)
2 ), crs) and generates its user public key upk and user secret key usk.

– Samples S − 1 elements [ni] = [gni ] ∈ G for some ni ∈ ZN , computes the
elliptic curve E′

i = [ni]E0 for i = 1, . . . , S − 1 where g, N, E0 are extracted
from gp.pp. Sets upk = {E′

1, . . . , E
′
S−1} and usk = (n1, . . . , nS−1).

Enroll(gp, gpk, isk, upk, tr) → (cert, wescrw): The GM runs this algorithm taking
inputs the group parameter gp = (pp, pk(0) = (E(0)

1 , E
(0)
2 ), crs), the group public

key gpk = (gp, vk, pk(1) = (E(1)
1 , E

(1)
2 )), a user public key upk = {E′

1, . . . , E
′
S−1},

an issue key isk = (m1, . . . , mS−1) and a value of trace bit tr ∈ {0, 1}. He produces
a certificate - witness pair (cert, wescrw) to the bit tr as follows:

– Randomizes the public key pk(tr)= (E(tr)
1 , E

(tr)
2 )) and generates a new public

key epk by sampling [r′] = [gr′
] ∈ G for some r′ ∈ ZN , computing the curves

E′
1
(tr) = [r′]E(tr)

1 and E′
2
(tr) = [r′]E(tr)

2 and setting epk = (E′
1
(tr)

, E′
2
(tr)).

– Generates a CSI-FiSh signature σcert on upk||epk
= E′

1|| . . . ||E′
S−1||E′

1
(tr)||E′

2
(tr) using the issue key isk= (m1, . . . , mS−1) by

setting m0 ← 0, sampling [m′
i] = [gm′

i ] ∈ G for some m′
i ∈ ZN , computing t

commitment elliptic curves Êi = [m′
i]E0 for i = 1, . . . , t and generating the

challenge string of length t over [−(S − 1), (S − 1)] as follows:

(ch1, . . . , cht) = H ′(Ê1|| · · · ||Êt||upk||epk).
The GM computes the response zi = m′

i - sgn(chi) m| chi | (mod N) using
issue key isk and sets the signature σcert = (ch1, . . . , cht, z1, . . . , zt), where
sgn(chi) denotes the sign of chi. He finally sends the certificate cert = (upk
= {E′

1, . . . , E
′
S−1}, epk = (E′

1
(tr)

, E′
2
(tr)), σcert = (ch1, . . . , cht, z1, . . . , zt)) to

the user and keeps secret wescrw = r′.
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Sign(gp, gpk, cert, usk, msg) → σ: This randomized algorithm is run by a user
to generate a signature σ on a message msg ∈ {0, 1}λ using the group param-
eter gp = (pp = (p, g, N,E0,MC ,Hk,H ′), pk(0) = (E(0)

1 , E
(0)
2 ), crs), the group

public key gpk = (gp, vk, pk(1) = (E(1)
1 , E

(1)
2 )), a user certificate cert = (upk

= {E′
1, . . . , E

′
S−1}, epk = (E′

1
(tr)

, E′
2
(tr)), σcert = (ch1, . . . , cht, z1, . . . , zt)) and a

user secret key usk = (n1, . . . , nS−1) in the following manner:

– Samples S−1 elements [ei] = [gei ] ∈ G for some ei ∈ ZN , computes the elliptic
curve E′′

i = [ei]E0 for i = 1, 2, . . . , S − 1 and sets pk = {E′′
1 , . . . , E′′

S−1} and
sk = (e1, . . . , eS−1).

– Computes a signature σu on the message pk = {E′′
1 , . . . , E′′

S−1} using usk =
(n1, . . . , nS−1) as the signing key. For which the user sets n0 ← 0, samples
[n′

i] = [gn′
i ] ∈ G for some n′

i ∈ ZN , computes t commitment curves Ẽi =
[n′

i]E0, the challenge string of length t over [−(S − 1), (S − 1)] given by:

(ch′
1, . . . , ch

′
t) = H ′(Ẽ1|| · · · ||Ẽt||pk),

the response z′
i = n′

i - sign(ch′
i) n| ch′

i | (mod N) for i = 1, . . . , t and sets the
signature σu = (ch′

1, . . . , ch
′
t, z

′
1, . . . , z

′
t).

– Encrypts the message γ = bin(MC(E′
1))|| · · · ||bin(MC(E′

S−1))||bin(ch′
1)|| · · · ||

bin(ch′
t)||bin(z′

1)|| · · · ||bin(z′
t) using randomized public key epk = (E′

1
(tr)

,

E′
2
(tr)) extracted from cert to generate the ciphertext ct = (ct1, ct2). For

which the user samples [q] = [gq] ∈ G for some q ∈ ZN and sets ct1 = [q]E′
1
(tr),

ct2 = Hk(MC([q]E′
2
(tr))) ⊕ γ and the encryption randomness rand = q. This

encryption is same as the CSIKOE-512 scheme described in Sect. 5.
– Generates a proof π ← Π.Prove(crs, stmt, wit) (Sect. 2.2) using crs for the fol-

lowing relation R to prove knowledge of (upk, epk, σcert, σu) where the state-
ment stmt = (ct = (ct1, ct2), pk = {E′′

1 , . . . , E′′
S−1}, vk = {E1, . . . , ES−1})

and witness wit = (upk = {E′
1, . . . , E

′
S−1}, epk = (E′

1
(tr)

, E′
2
(tr)), σcert =

(ch1, . . . , cht, z1, . . . , zt), σu = (ch′
1, . . . , ch

′
t, z

′
1, . . . , z

′
t), rand = q). We say

that (stmt, wit)∈ R if and only if the following three relations hold:

1. The ciphertext ct = (ct1, ct2) must be a correct encryption of message
γ = bin(MC(E′

1))|| · · · ||bin(MC(E′
S−1))||bin(ch′

1)|| · · · ||bin(ch′
t)||bin(z′

1)|| · · · ||
bin(z′

t) under the public key epk with encryption randomness rand = q satis-
fying:

ct1 = [q]E′
1
(tr)

, ct2 = Hk(MC([q]E′
2
(tr))) ⊕ γ

2. The CSI-FiSh signature σu on the message pk must be a valid signature under
the verification key upk satisfying

(ch′
1, . . . , ch

′
t) = H ′(Ẽ1|| · · · ||Ẽt|| pk)

where Ẽi = [n′
i]E0 is recovered by computing [z′

i]E
′
ch′

i
for i = 1, . . . , t.
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3. The CSI-FiSh signature σcert on upk||epk must be a valid signature under the
verification key vk satisfying:

(ch1, . . . , cht) = H ′(Ê1|| · · · ||Êt||upk||epk)
where Êi = [m′

i]E0 is recovered by computing [zi]Echi
for i = 1, . . . , t.

– Generates a CSI-FiSh signature σ0 on the message msg || ct || pk || vk ||π, i.e.,

msg||ct1||ct2||E′′
1 || · · · ||E′′

S−1||E1|| · · · ||ES−1||π
taking sk = (e1, . . . , eS−1) as the signing key. For which the user sets e0 ← 0,
samples [e′i] = [ge′

i ] ∈ G for some e′
i ∈ ZN . Computes t elliptic curves Ei =

[e′
i]E0, the challenge string of length t over [−(S − 1), (S − 1)] given by:

(ch′′
1 , . . . , ch′′

t ) = H ′(E1|| · · · ||Et||msg||ct||pk||vk||π)

and the response z′′
i = e′

i - sign(ch′′
i ) e| ch′′

i | (mod N) for i = 1, . . . , t. Sets
the signature σ0 = (ch′′

1 , . . . , ch′′
t , z′′

1 , . . . , z′′
t ).

– Finally, outputs the signature σ = (σ0, pk, ct = (ct1, ct2), π) on msg.

Verify(gp, gpk, msg, σ) → {0, 1}: This is a deterministic algorithm that verifies
the signature σ = (σ0 = (ch′′

1 , . . . , ch′′
t , z′′

1 , . . . , z′′
t ), pk = {E′′

1 , . . . , E′′
S−1}, ct =

(ct1, ct2), π) on the message msg ∈ {0, 1}λ by performing the following steps
using the group parameter gp = (pp, pk(0) = (E(0)

1 , E
(0)
2 ), crs) and the group

public key gpk = (gp, vk, pk(1) = (E(1)
1 , E

(1)
2 )).

– Parse σ0 = (ch′′
1 , . . . , ch′′

t , z′′
1 , . . . , z′′

t ). Defines E−i = Et
i for i =

1, . . . , S − 1, where Et
i is the twist1 of the elliptic curve Ei. Recovers

t elliptic curves Ei = [z′′
i ]Ech′′

i
for i = 1, . . . , t. If (ch′′

1 , . . . , ch′′
t ) =

H ′(E1|| · · · ||Et||msg||ct||pk||vk||π) returns 1, else returns 0.
– Runs Π.Verify(crs, stmt, π) (See Sect. 2.2) taking input the statement stmt =

(ct, pk, vk) and crs to verify π, where pk, ct are extracted from σ and vk is
obtained from gpk. If all the checks succeed, returns 1, else returns 0.

Open(gp, gpk, opk, msg, σ) → (upk, Prf): This is a deterministic algorithm run
by the GM which takes inputs the group parameter gp = (pp, pk(0) = (E(0)

1 , E
(0)
2 ),

crs), the group public key gpk= (gp, vk, pk(1) = (E(1)
1 , E

(1)
2 )), the opening key

opk = s, a message msg ∈ {0, 1}λ and a signature σ = (σ0, pk, ct = (ct1, ct2), π)
and outputs the user public key upk and a proof Prf in the following manner:

– Runs Verify(gp, gpk, msg, σ) and aborts if it fails.
– Extracts the ciphertext ct = (ct1, ct2) from the signature σ and recov-

ers the message γ = bin(MC(E′
1))|| · · · ||bin(MC(E′

S−1))||bin(ch′
1)|| · · · ||bin

(ch′
t)||bin(z′

1)|| . . . ||bin(z′
t) using the opening key opk = s by evaluating

ct2 ⊕ Hk(MC([s]ct1)) and finally computing upk = {E′
1, E′

2, . . . , E
′
S−1} and

σu = (ch′
1, . . . , ch

′
t, z

′
1, . . . , z

′
t) from γ.

1 The quadratic twist of an elliptic curve E : y2 = f(x) defined over a field K is given
by Et : dy2 = f(x) where d ∈ K has Legendre symbol value −1.
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– Outputs upk = {E′
1, . . . , E

′
S−1} and Prf = σu.

Judge(gp, gpk, upk, Prf, msg, σ) → {0, 1}: This is a deterministic algorithm that
takes inputs the group parameter gp = (pp, pk(0) = (E(0)

1 , E
(0)
2 ), crs), the group

public key gpk = (gp, vk, pk(1) = (E(1)
1 , E

(1)
2 )), a message msg, a signature

σ = (σ0, pk, ct = (ct1, ct2), π), a user public key upk = {E′
1, E′

2, . . . , E
′
S−1} and

a proof Prf = σu and outputs 0 or 1 by executing the below steps:

– Runs Verify(gp, gpk, msg, σ) and aborts if it fails.
– Parse σu = (ch′

1, . . . , ch
′
t, z

′
1, . . . , z

′
t). Defines E−i = Et

i for i = 1, . . . , S − 1.
Recovers t elliptic curves Ẽi = [n′

i]E0 by computing [z′
i]E

′
ch′

i
for i = 1, . . . , t.

If (ch′
1, . . . , ch

′
t) = H ′(Ẽ1|| · · · ||Ẽt|| pk) returns 1 or else returns 0.

– If all the checks succeed returns 1, or else returns 0.

Account(gp, gpk, cert, wescrw, tr) → {0, 1}: This is a deterministic algorithm run
by the GM taking inputs the group parameter gp = (pp, pk(0) = (E(0)

1 , E
(0)
2 ),

crs), the group public key gpk = (gp, vk, pk(1) = (E(1)
1 , E

(1)
2 )), a certificate cert =

(upk = {E′
1, . . . , E

′
S−1}, epk = (E′

1
(tr)

, E′
2
(tr)), σcert = (ch1, . . . , cht, z1, . . . , zt)),

witness wescrw = r′, trace bit tr and checks if the equality ([r′]E(tr)
1 , [r′]E(tr)

2 ) =
(E′

1
(tr)

, E′
2
(tr)) holds. If the verification succeeds return 1, else return 0.

Correctness. The correctness of our ATS scheme is an immediate consequence
of the correctness of our CSIKOE-512 scheme, completeness of zero-knowledge
argument system and the correctness of the CSI-FiSh signature scheme.

Efficiency. Since our ATS scheme is the first isogeny based accountable tracing
signature scheme, we do not compare the efficiency of our scheme with other
works. The key and signature size of our scheme grows as S grows and thus
it is not very reasonable. But that can be reduced somewhat using the Merkle
tree technique and other optimizations stated in [3]. From the efficiency point of
view, our ATS scheme is not up to the mark and needs a lot more optimization.
However, we believe that it will open avenues for more research in this direction.
The following theorem follows from Theorem 12 of [12].

Theorem 9. Our isogeny-based ATS scheme satisfies anonymity under tracing,
traceability, non-frameability, anonymity with accountability and trace-oblivious-
ness in the random oracle model following the security framework of [14] as CSI-
FiSh [3] signature scheme is strongly unforgeable under chosen-message attack,
CSIKOE-512 scheme (Sect. 5) satisfies KR, INDr and KPr and under the assump-
tion that Π is zero-knowledge simulation-extractable argument system (Sect. 2.2).
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Abstract. We propose a provably secure Identity-Based Signature
(IBS) scheme in the multivariate quadratic (MQ) setting. Our con-
struction utilizes the 3-pass identification scheme (IDS) and salted-UOV
scheme (of Sakumoto et al. Crypto 2011, PQCrypto 2011). The main
technical tool in our security reduction is a further generalization of the
Forking Lemma of Bellare and Neven (CCS 2006). The forking algorithm
of Bellare-Neven cannot be directly applied to our context, as it requires
simulating two random oracles one of which needs to be suitably pro-
grammed to embed the challenge supplied in the problem instance. Our
formulation of forking algorithm involves an encoding technique that
satisfies all the requirements of the security reduction. To the best of
our knowledge, the algorithm introduced here is the first formulation
of forking in a nonlinear setting. This abstraction is likely of indepen-
dent interest, particularly to argue security of signature schemes in the
MQ-setting.

Keywords: Identity-based signature · Multivariate cryptography ·
Forking algorithm · Post-quantum security

1 Introduction

In 1984, Shamir [Sha84] in his landmark paper introduced the concept of ID-
based cryptography as an alternative to the complex certificate management
process of public key infrastructure. In the same work, he proposed an Identity-
Based Signature (IBS) scheme in the RSA setting. Since then several concrete
IBS schemes have been proposed in various other settings such as discrete-log
and pairing [Hes02,Pat02,CC03]. Such IBS schemes find application in practical
cryptosystems such as in MANET [KCC05].

In [BNN04,BNN09], Bellare et al. proposed two generic constructions of IBS.
Their certificate-based IBS utilizes a base signature scheme (SS) at two levels.
During key-generation for an identity id, a random key-pair (pk, sk) of SS is cho-
sen and a signature σid is generated on (pk, id) using the private key generator’s
master secret key for the same SS and the user is issued the key skid = sk and
c© Springer Nature Switzerland AG 2021
A. Adhikari et al. (Eds.): INDOCRYPT 2021, LNCS 13143, pp. 387–412, 2021.
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a certificate certid = (σid, pk). A signature in IBS scheme on (M, id) has two
components, a signature on M generated using skid and the certificate certid.

Their second construction uses a standard identification (SI) (along with
trapdoor sampleable relation (TSR)) and works in two steps. First, convert (SI,
TSR) to an identity-based identification (IBI) and then convert it to an IBS
through Fiat-Shamir transformation [FS86]. In two-step reduction, they showed
that their IBS is EUF-CMA secure in the random oracle model, provided the
underlying SI and TSR satisfy certain security properties (see Corollary 4.10
in [BNN09]). The paper also describes several instantiations of their frameworks
while noting that not all identification schemes are amenable to their framework,
Schnorr identification [Sch89] being one such prominent example.

We are interested in the question of constructing provably secure IBS in
the post-quantum setting, where the hash functions will be treated as classical
random oracles. Unlike the traditional (or classical) setting like RSA or discrete-
logarithm, the cryptosystems in the post-quantum setting such as lattices, codes,
multivariate-quadratic (MQ) polynomials etc., are expected to be secure against
both classical and quantum adversaries. Recently, signature schemes in the multi-
variate quadratic setting have gained a lot of attention in the crypto community.
In fact, four multivariate signatures Rainbow, LUOV, GeMSS and MQDSS were
shortlisted for the second round of evaluation for NIST standardization project
[NIS19] of which Rainbow is one of the finalists while GeMSS is being considered
as an alternative candidate [NIS20].

Shen et al. [STX13] were the first to propose an IBS in the MQ-setting. Their
construction is nothing but a concrete instantiation of the certificate-based IBS
of Bellare et al. [BNN09] mentioned earlier. They suggested UOV [KPG99] as the
base signature scheme. As noted by Lyuen [Luy19], the UOV considered in their
proposal is not known to be provably secure, so the security of the IBS cannot be
formally argued. The same paper [Luy19] proposed a provably secure Rainbow
as the base SS in a similar certificate-based IBS construction. A limitation of
this proposal is that the final signature contains the Rainbow public-key which
is quite large.

In [CLND19], the authors proposed an IBS from Rainbow using a new tech-
nique. At high-level, their construction works as follows. The pp and msk of their
IBS are the Rainbow public-key and secret key respectively. Note that in general,
the underlying polynomials of the key-pair are expressed by some collection of
coefficients (basically constants) over a field F. But, in this proposal, the authors
considered the coefficients of each polynomial in pp and msk to be linear func-
tions in id = (z1, · · · ,zd) ∈ F

d for some integer d > 0. For an identity id, the key
skid is extracted by evaluating each polynomial in msk at id. In addition, some
randomly chosen matrices have to be properly embedded in the key structure
to prevent trivial attacks. Their scheme is very efficient, in fact, the size of the
signature is the same as that of Rainbow. However, we noticed an issue in the
correctness of their proposal, namely, the affine transformations involved in skid
cannot be guaranteed to be invertible. Further, the proposal does not have any
formal security reduction.
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Our Result. In this paper, we construct a provably secure IBS scheme in the
MQ-setting. In order to argue its security, we propose a novel extension of the
General Forking Lemma of Bellare-Neven [BN06]. The extended Forking Lemma
proposed here is likely to find further applications in the MQ-setting.

The main building blocks of our IBS are a 3-pass identification scheme pro-
posed in [SSH11b] and a salted version of UOV signature scheme proposed in
[SSH11a] along with the Fiat-Shamir transformation (in short, FST) [FS86]. At
a high level, it works as follows.

– The secret key skid for an identity id is generated by running the sign algorithm
of the salted-UOV on id. Here skid has the form (x, s) such that P(x) = ω,
where P : F

n → F
m is the UOV-public map, ω = H(id, s), H is a crypto-

graphic hash function and, s is called salt.
– The IBS signature on (M, id) is generated by running r-parallel rounds of

the underlying 3-pass IDS (which we refer to as IDSr) using (x, (P,ω)) as
key-pair followed by FST which essentially commits M .

We note that the generic framework of [BNN09] is not directly applicable on
the building blocks of the IBS proposed here. Also, there are two subtle structural
differences with our construction. The first one is that in [BNN09], no salt is
involved in the computation of ω and the second one is that we consider nested
hashing, i.e., first, we compute ω = H(id, s) and then compute the challenge as a
hash of (M,ω, ct), instead of (id,M, ct), where ct is the commitment used in the
underlying SI. The rationale for these differences will be clearer in our security
proof. Also see Sect. 4 where we further comment on the differences with the
generic framework of [BNN09].

The sizes of the public parameters pp and master secret key msk of the IBS
are the same as the public-key pk and secret key sk of the underlying UOV-
scheme respectively. For an identity id, the size of its secret key skid is the same
as that of salted-UOV [SSH11a]. The signature size of the IBS is roughly the
same as that of the 3-pass version of MQDSS [CHR+16].

The security of our IBS is argued in a modular fashion. First, we show a reduc-
tion of existential unforgeability under no-message attack (EUF-NMA) security
without giving access to the key-extraction and signature oracle. We then show
how to simulate the key-extraction queries by manipulating the random oracle
involved in the salted-UOV. Finally, we give a reduction of EUF-CMA security
by showing how to simulate the signature queries. This step involves a novel
application of partitioning technique originally introduced in [Cor00] to consis-
tently respond to the signature queries.

The first reduction is the most technically involved one and requires running
the adversary multiple times on related inputs. This technique, called rewinding
the adversary, was originally introduced in [PS96] to argue security of discrete
log based (blind) signature schemes. In [BN06], Bellare and Neven proposed an
abstraction of rewinding in the form of a general forking algorithm. Informally
speaking, the forking algorithm supplies the problem instance to a wrapper algo-
rithm as input along with a set of random values. The wrapper, in turn, runs the
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adversary using the problem instance to construct the public key of the under-
lying signature scheme while the supplied random values serve to simulate the
random oracle.

However, the forking algorithm as abstracted by Bellare and Neven (or, for
that matter, the rewinding strategy of [PS96]) cannot be directly applied in
our context. The main reason for that is, unlike [BN06], we have to simulate
two random oracles and one of them needs to be appropriately programmed to
embed the challenge supplied as part of the MQ-problem instance. Also, the
forking algorithm of [BN06] models rewinding the adversary once while we need
to rewind the adversary twice. We, therefore, need to extend the original forking
algorithm and related analysis of [BN06].

Firstly, we introduce an appropriate encoding technique which enables our
wrapper algorithm to answer both types of random oracle queries made by the
adversary using only a single set of random values. The encoding technique
essentially involves some functions that map from a common index set to the
ranges of the respective hash functions and satisfy regularity, thereby ensuring
the uniformity in the random oracle outputs. In addition, the encoding also
ensures that the random oracles can be programmed at any suitable index, if
necessary.

Secondly, we partition the problem instance into two parts, (inst1, inst2),
where inst1 corresponds to the underlying one-way function and inst2 to the
given target that needs to be inverted under inst1. We use inst2 in programming
of the random oracles via the corresponding encoding function. Further, we use
the trick of nested hashing mentioned earlier in the context of our scheme design
to ensure that the hash value programmed by inst2 is not modified in the process
of rewinding the adversary.

In the MQ-setting, there are a few schemes, e.g., [PBB13,CHR+16] that
claimed to invoke the rewinding style argument of [PS96] without providing any
details. The security reduction of 5-pass MQDSS [CHR+16] includes an applica-
tion of the original Pointcheval-Stern rewinding technique [PS96]. That reduction
considers rewinding the adversary thrice, but neither does it involve more than
one random oracle nor is there any need to embed the problem instance in the
random oracle response.

All the exiting results that we are aware of which either use the forking
algorithm of Bellare-Neven [BN06] or generalize it as in [HKL19] have implicitly
or explicitly considered the setting of linear functions like RSA or discrete log.
To the best of our knowledge, the extended forking algorithm introduced here is
the first abstraction of general forking in a non-linear setting. This abstraction is
likely to find other applications, for example to argue security of blind signature
in the MQ-setting.

2 Preliminaries

The basic notations, the background of multivariate quadratic polynomials and
some hardness assumptions are defined in this section. The syntax and security
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definitions of IBS and 3-pass IDS are also provided in this section. Further, the
3-pass IDS of [SSH11b] and related results are reproduced here.

2.1 Notations and Background

Notations. For a set S, the notation x
$←− S denotes that x is drawn uniformly

at random from S. For an algorithm A and its input x, the notation y
$←− A(x)

denotes that when A is run on x, it chooses its internal coin ρ uniformly at
random from the coin space Λ and outputs y. This essentially says that A is a
randomized algorithm. When ρ is supplied to A in addition to x, then A will
behave deterministically and will be denoted by y ←− A(x; ρ). For a, b ∈ N∪{0},
define [a, b] = {x ∈ N ∪ {0} : a ≤ x ≤ b} and when b ∈ N, define [b] = [1, b].

Multivariate Quadratic Polynomials. Let v, m and n be three positive
integers with n = v + m and let these integers be called the number of vinegar
variables, the number of oil variables and the total number of variables respec-
tively. Without loss of generality, we assume that out of n variables, the first
v variables are vinegar variables and the remaining m variables are oil vari-
ables. If x = (x1, . . . , xv, xv+1, . . . , xv+m), then we write x = (xv,xo), where
xv = (x1, . . . , xv) and xo = (xv+1, . . . , xv+m). The same integer m also repre-
sents the number of polynomials in the context of system of equations.

By a quadratic polynomial map F : F
n → F

m of oil-vinegar type, we mean
F = (f (1), . . . , f (m)) and each f (k) : F

n → F is a quadratic polynomial of oil-
vinegar type, i.e., of the form:

f (k)(x1, . . . , xn) =
v∑

i=1

n∑

j=i

α
(k)
ij · xixj +

n∑

i=1

β
(k)
i · xi + γ(k) (1)

where F is a field and α
(k)
ij , β

(k)
i , γ(k) ∈ F for k ∈ [m]. The above map F : F

n →
F

m is called the central map of oil-vinegar type. When v ≈ 2 · m, then f (i)

would be called quadratic map of unbalanced oil-vinegar (UOV) type [KPG99]
and F : F

n → F
m would be called the central map of UOV-type.

By invertible affine map, we mean T = (A,a) ∈ GLn(F) × F
n, where GLn(F)

denotes the set of all n × n non-singular matrices over F. For x ∈ F
n, define

T (x) := Ax + a. So, T is a map from F
n onto F

n. We use the notation
invAff(Fn, Fn) to denote the set of all affine invertible maps from F

n onto F
n.

Let Fuov(Fn, Fm) be the collection of all quadratic polynomial maps F :
F

n → F
m of UOV-type. Define Puov(Fn, Fm) = {F ◦T : F ∈ Fuov(Fn, Fm)∧T ∈

invAff(Fn, Fn)}. Let P(Fn, Fm) be the collection of all quadratic polynomial maps
P : F

n → F
m. Obviously, Puov(Fn, Fm) is a subset of P(Fn, Fm).

For a quadratic map P : F
n → F

m, its polar form G : F
n × F

n → F
m is

defined by
G(x,y) = P(x + y) − P(x) − P(y) + P(0)

where x,y ∈ F
n. One can easily show that it is a bilinear map in each variable.
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The signature scheme based on UOV central map (called UOV-signature)
was studied in [KPG99]. But, no formal security proof was known until the work
of [SSH11a]. The main difficulty is perhaps non-uniformity of output signatures.
In [SSH11a], Sakumoto et al. considered a random salt in the signing process to
make the output signature uniform and then argued the security following the
FDH-style [BR93] of security reduction.

2.2 Hardness Assumption

The multivariate quadratic (MQ)-problem is one of the central problems in mul-
tivariate public-key cryptography and proven to be NP-hard. Further, it is widely
believed that solving random instances of the MQ-problem (with m ≈ n) is a
hard task. Note that the security parameter κ defines several sets of parameters
consisting of the number of variables, the number of equations and the size of
the underlying field. Let (n,m, q) be one such set of parameters. For simplicity
of the security reduction, we assume that security parameter κ uniquely defines
the corresponding parameter set. For ease of exposition, we may drop κ from
the following hardness assumptions.

Definition 1 (MQ-problem [SSH11b]). Given (P,y∗) ∈ P(Fn, Fm) × F
m,

find an x∗ ∈ F
n such that y∗ = P(x∗). The advantage AdvMQ

A (κ) of an algorithm
A in breaking the MQ-problem is defined by

Pr
[
P(x∗) = y∗ : (P,y∗) $←− P(Fn, Fm) × F

m; x∗ ← A(P,y∗)
]
.

We say the MQ-problem is intractable, if for every quantum PPT algorithm A,
the advantage AdvMQ

A (κ) is a negligible function in κ.

Now, consider a special case of the MQ-problem which we call the WMQ-
problem. The authors [SSH11a] considered this problem for proving security of
their salted version of UOV-signature.

Definition 2 (WMQ-problem [SSH11a]). Given (P,y∗) ∈ Puov(Fn, Fm) ×
F

m, find an x∗ ∈ F
n such that y∗ = P(x∗). The advantage AdvWMQ

A (κ) of an
algorithm A in breaking the WMQ-problem is defined by

Pr
[
P(x∗) = y∗ : (P,y∗) $←− Puov(Fn, Fm) × F

m; x∗ ← A(P,y∗)
]
.

We say the WMQ-problem is intractable if for every quantum PPT algorithm
A, the advantage AdvWMQ

A (κ) is a negligible function in κ.

Let us fix the parameter set and the underlying field F of the WMQ-problem
to be (n,m, q) and F respectively. This means, all the instances of the problem
will have the same parameter set and the underlying field as above. Following
Definition 2, we can express any instance (P,y∗) of the problem into two parts,
viz., the one-way function P and the target y∗ ∈ F

m. Let Wmq denote the
set of all instances of the WMQ-problem. Then, we can always write Wmq as
Wmq1×Wmq2, and a random instance inst of the WMQ-problem can be written
as (inst1, inst2), where inst1 and inst2 are uniformly distributed over Wmq1 and
Wmq2 respectively. Notice that here Wmq2 = F

m.



Identity-Based Signature and Extended Forking Algorithm 393

2.3 Commitment and IBS Schemes

A non-interactive commitment scheme has three PPT algorithms - CSetup,
Commit and Open. CSetup generates a public commitment key ck, Commit on
input (ck,M) returns a commitment-decommitment pair (ct, dct) and Open out-
puts M on input (ck, ct, dct). If the randomness τ used in Commit is supplied
from outside, we can write (ct, dct) ←− Commit(ck,M ; τ). In our construc-
tion, we do not use Open, rather given (ct,M, τ), we simply check whether
ct

?= Commit(ck,M ; τ). Further, throughout this paper, we neither explicitly
mention ck nor the random coin τ as part of the input of Commit.

Definition 3 (IBS Scheme). It consists of four PPT algorithms - IBS.Setup,
IBS.KeyGen, IBS.Sign and IBS.Ver.

– IBS.Setup: It takes as input a security parameter κ and outputs public param-
eters and master secret key pair (pp,msk).

– IBS.KeyGen: It takes as input public parameters pp, master secret key msk and
an identity id ∈ ID, where ID is the identity space, and outputs a signing
key skid.

– IBS.Sign: It takes as input public parameters pp, a message M ∈ M, where
M is the message space, and a secret key skid and outputs a signature σ.

– IBS.Ver: It takes as input public parameters pp, a message M , a signature σ
and an identity id. It outputs a value 1, if σ is a valid signature for (M, id),
else it outputs 0.

Correctness: For all (pp,msk) $←− IBS.Setup(1κ), for all id ∈ ID, skid
$←−

IBS.KeyGen(pp,msk, id) and for all M ∈ M, it is required that

IBS.Ver(pp,M, IBS.Sign(pp,M, skid), id) = 1.

Next, we define a security notion of IBS against adaptive identity existen-
tial unforgeability under chosen-key attack (CKA) and chosen-message attack
(CMA). In the literature [BNN04], this security notion is often referred to as
EUF-CMA. Formally, it is defined as follows.

Definition 4 (EUF-CMA). An IBS scheme is said to be EUF-CMA secure,
if for all PPT algorithms A, the advantage

AdvEUF-CMA
A (κ) := Pr

[
ExpEUF-CMA

A (κ) = 1
]

in ExpEUF-CMA
A (κ) defined in Fig. 1 is a negligible function in κ, where A is pro-

vided access to signature oracle OSign and key-gen oracle OKey at most polynomial
number of times, and Qkey is the set of identities on which key-gen queries were
made and Qsign is the set of message-identity pairs on which signature queries
were made.
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Fig. 1. Experiments for EUF-CMA of IBS scheme

2.4 Identification Scheme

For the abstract definition of identification scheme (IDS), knowledge error
and statistical honest verifier zero-knowledge (HVZK), the reader may consult
[CHR+16]. In general for practical use of IDS, we want the knowledge error μ
to be negl(κ). If μ is non-negligible in κ, then by running IDS r-times in parallel
(denoted by IDSr), we can make the knowledge error to be μr, which is negligible
by considering r sufficiently large.

Definition 5 (3-Pass IDS). A canonical three pass identification scheme (3-
pass IDS) consists of three PPT algorithms - KeyGen, P and V together with a
challenge space ChS.

– KeyGen: It takes as input a security parameter κ and outputs a public and
private key pair (pk, sk).

– Identification: The execution of P(pk, sk) and V(pk) is illustrated in the fol-
lowing order.
1. The prover P first sends a commitment ct to V.
2. The verifier V then picks ch

$←− ChS and sends it to P.
3. In the final pass, P sends a response rs to V.
4. Finally, V decides to accept or reject based on pk and π, where π =

(ct, ch, rs) is called transcript.

Remark 1. We often refer to sk and pk as witness and statement respectively.
Note that for a statement, there could be more than one witness.

Definition 6 (3-Special Soundness). A 3-pass identification scheme IDS =
(KeyGen,P,V) with |ChS| ≥ 3 and public-key pk is said to satisfy 3-special sound-
ness, if there exists an extractor Extr such that given any three accepted tran-
scripts of the form π = (ct, ch, rs), π′ = (ct, ch′, rs′) and π′′ = (ct, ch′′, rs′′) with
ch �= ch′ �= ch′′ �= ch, it can efficiently compute a witness sk.

2.5 3-Pass IDS of Sakumoto et al.

Described here is the 3-pass identification scheme of Sakumoto et al. [SSH11b].

Choose (P, s) $←− P(Fn, Fm) × F
n and set v = P(s). The public key and secret
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Fig. 2. Illustration of 3-pass IDS of Sakumoto et al. [SSH11b].

key pair is given by pk = (P,v) and sk = s. Let G : F
n × F

n → F
m be the polar

form of P and let ChS = {0, 1, 2}. The interaction between a prover P and V is
shown in Fig. 2.

The following three lemmas play a crucial role in the formal security argument
of our IBS (see Lemmas 5, 6 and 7). The proofs of Lemmas 2 and 3 more or less
follow [SSH11b] and are omitted from here due to space constraints.

Lemma 1 (Statistical HVZK). The above 3-pass IDS is statistical HVZK,
if the underlying commitment scheme has statistical hiding property.

Proof. First, notice that whatever be the challenge ch ∈ ChS, the components
involved in the corresponding response rs are always uniformly distributed over
their respective domains. We construct a PPT simulator Simu which generates
proofs as follows. It chooses ch

$←− ChS and a fake secret s′ ∈ F
n. Then, ct =

(ct0, ct1, ct2) and rs are generated exactly in similar manner as in the original
execution (but using the fake secret s′) except, when ch = 1. If ch = 1, then
ct1 is computed as it is computed during verification, i.e., ct1 = Commit(a1||v −
P(a1) − G(b1,a1) − c1). Since, the underlying commitment scheme is statistical
hiding, so ct does not leak any information related to the fake secret s′ and the
corresponding response rs. Therefore, the original proof and the simulated proof
are indistinguishable from any adversary.
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Lemma 2 (Knowledge extractor). Assume that the underlying commitment
scheme is computationally binding. Then, the 3-pass IDS in Fig. 2 satisfies 3-
special soundness (c.f., Definition 6).

Lemma 3 (Knowledge error). Suppose MQ-problem is intractable1 and the
underlying commitment scheme is computationally binding. Then, the 3-pass IDS
presented in Fig. 2 is sound with knowledge error 2/3.

3 Extended Forking Lemma

Let Wmq = (Wmq1,Wmq2) be the set associated to the WMQ-problem2 (as
discussed in Sect. 2.2). Let R2 be an enumerable set and let R = {1, . . . , ϕ}
with ϕ = |R2| · |Wmq2|. Assume that there are efficiently computable encoding
functions Enc1 : R → Wmq2 and Enc2 : R → R2 with the following properties:

1. For y ∈ Wmq2, Enc−1
1 (y) = {x ∈ R : Enc1(x) = y} is efficiently computable.

2. When y
$←− Wmq2 and x

$←− Enc−1
1 (y), then x is uniform over R.

Fix an integer ν ∈ N. Let B be a randomized algorithm which takes inst1 and
h1, . . . , hν as input, and returns a pair (J, σ), where J ∈ [0, ν ] and σ is called a
side output. Let accB denote the probability of J ≥ 1 in the following experiment:

(inst1,h) $←− Wmq2 × Rν ; (J, σ) $←− B(inst1,h).

Let Λ be the domain from which B picks its random coins. Next, define a
forking algorithm ExtFB (given as Algorithm 1) associated to B, a randomized
algorithm which extends the forking algorithm of Bellare-Neven [BN06]. Further,
it provides room to embed the challenge of the problem instance in the random
oracle via the respective encoding function (see steps 2 to 4). The algorithm
takes (inst1, inst2) ∈ Wmq1 ×Wmq2 as input and runs B thrice on related inputs
to get 3 signatures on the same message, but associated with three different
random values of R.

Proposition 1. Let the forking probability of ExtFB be defined by

frk = Pr
[
b = 1 : (inst1, inst2)

$←− Wmq; (b, σ, σ′, σ′′) ←− ExtFB(inst1, inst2)
]
.

Then

frk ≥ accB

(
acc2B
ν2

− 3
ϕ

)
. (2)

1 If the public map P (involved in the 3-pass IDS) is considered to be UOV-public
map, then this lemma will rely on WMQ-problem.

2 For the sake of concreteness, we present the extended forking algorithm using only
the instance of the WMQ-problem. The same algorithm also works for a similar kind
of problem instance. It would be interesting to find some applications that rely on
problems other than the WMQ-problem.
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Algorithm 1. Extended Forking

1: procedure ExtFB(inst1, inst2)

2: pick θ
$←− [ν ]

3: pick �
$←− Enc−1

1 (inst2)

4: choose h
$←− Rν such that hθ = �

5: pick random coin ρ
$←− Λ for B

6: (J, σ) ←− B(inst1, h; ρ)
7: if J = 0 then
8: return (0, ε, ε, ε)
9: end if

10: pick h′
J , . . . , h′

ν
$←− R

11: h′ ← (h1, . . . , hJ−1, h
′
J , . . . , h′

ν )

12: (J ′, σ′) ←− B(inst1, h
′; ρ)

13: if J �= J ′ or hJ = h′
J then

14: return (0, ε, ε, ε)
15: end if
16: pick h′′

J , . . . , h′′
ν

$←− R
17: h′′ ← (h1, . . . , hJ−1, h

′′
J , . . . , h′′

ν )
18: (J ′′, σ′′) ←− B(inst1, h

′′; ρ)
19: if J ′ = J ′′ and hJ �= h′′

J and
h′

J �= h′′
J then

20: return (1, σ, σ′, σ′′)
21: end if
22: return (0, ε, ε, ε)
23: end procedure

Proof. We start by stating the following results which are important for calcu-
lating the forking probability.

Lemma 4. Let X be a non-negative real-valued random variable. Then

E
[
X3

]
≥ E [X]3 .

The proof of the lemma is omitted here as it is an immediate consequence
of Jensen’s inequality [Jen06] with the underlying convex function being X3 for
X ≥ 0.

Corollary 1. Let a ≥ 1 be an integer and x1, . . . , xa ≥ 0 be real numbers. Then

a∑

i=1

x3
i ≥ 1

a2

(
a∑

i=1

xi

)3

.

Proof. Let X be a random variable which takes xi with probability 1/a for i ∈ [a].
Then, we can write

E
[
X3

]
=

1
a

a∑

i=1

x3
i and E [X]3 =

1
a3

(
a∑

i=1

xi

)3

.

The proof is concluded following Lemma4.

For inst1 ∈ Wmq1, define

frk(inst1) = Pr
[
b = 1 : inst2

$←− Wmq2; (b, σ, σ′, σ′′) ←− ExtFB(inst1, inst2)
]
.

Then, we can write

frk =
1

|Wmq1|
∑

inst1∈Wmq1

frk(inst1) = E
inst1

[frk(inst1)] . (3)
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For inst1 ∈ Wmq1, let

accB(inst1) = Pr
[
J ≥ 1 : h

$←− Rν ; (J, σ)
$←− B(inst1, h)

]
.

Therefore, we can write

accB =
1

|Wmq1|
∑

inst1∈Wmq1

accB(inst1) = E
inst1

[accB(inst1)] . (4)

Now, for inst1 ∈ Wmq1 we compute

frk(inst1) = Pr
[
b = 1 : inst2

$←− Wmq2; (b, σ, σ′, σ′′) ←− ExtFB(inst1, inst2)
]

= Pr
[
J = J ′ = J ′′ ∧ J ≥ 1 ∧ hJ �= h′

J ∧ h′
J �= h′′

J ∧ hJ �= h′′
J

]

≥ Pr
[
J = J ′ = J ′′ ∧ J ≥ 1

] − Pr
[
J ≥ 1 ∧ hJ = h′

J = h′′]

= Pr
[
J = J ′ = J ′′ ∧ J ≥ 1

] − Pr [J ≥ 1] (3/ϕ − 2/ϕ2)

≥ Pr
[
J = J ′ = J ′′ ∧ J ≥ 1

]
︸ ︷︷ ︸

Υ

−3 · Pr [J ≥ 1] /ϕ

= Υ − 3 · accB(inst1)/ϕ. (5)

For calculating Pr [J = J ′ = J ′′ ∧ J ≥ 1], we will discuss some machinery (as
considered in [BN06]) as follows. For j ∈ [ν ], define Δj := Λ × Rj−1. For each
j ∈ [ν ], define a random variable Xj : Δj → [0, 1] as follows. For t = (ρ,h1) ∈ Δj ,
where h1 = (h1, . . . , hj−1) ∈ Rj−1, define

Xj(t) = Pr
[
J = j : h2

$←− Rν−j+1; h ← (h1,h2); (J, σ) ←− B(inst1,h; ρ)
]
.

Regard Xj as a random variable having uniform distribution on its domain. So,
we can write

E [Xj ] =
∑

t∈Δj

1

|Δj | · Xj(t) (6)

E
[
X3

j

]
=

∑
t∈Δj

1

|Δj | · X3
j (t). (7)

For inst1 ∈ Wmq1, we have

accB(inst1) = Pr
[
J ≥ 1 : h

$←− Rν ; (J, σ) ←− B(inst1, h)
]

=
ν∑

j=1

∑
t∈Δj

Pr
[
J = j : h

$←− Rν ; (J, σ) ←− B(inst1, h)
∣∣t $←− Δj

]
·

Pr
[
t

$←− Δj

]

=

ν∑
j=1

∑
t∈Δj

1

|Δj | · Xj(t)
Eqn 6

=

ν∑
j=1

E [Xj ]. (8)
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Now, calculate the following

Υ = Pr
[
J = J ′ = J ′′ ∧ J ≥ 1

]

=
ν∑

j=1

∑
t∈Δj

Pr
[
J = J ′ = J ′′ ∧ J ≥ 1

∣∣J = j ∧ t
$←− Δj

]
· Pr

[
J = j ∧ t

$←− Δj

]

=
ν∑

j=1

∑
t∈Δj

Pr
[
J ′ = j

∣∣t $←− Δj

]
· Pr

[
J ′′ = j

∣∣t $←− Δj

]
·

Pr
[
J = j

∣∣t $←− Δj

]
· Pr

[
t

$←− Δj

]

=

ν∑
j=1

∑
t∈Δj

1

|Δj | · X3
j (t)

Eqn 7
=

ν∑
j=1

E
[
X3

j

] Lem 4≥
ν∑

j=1

E [Xj ]
3

Cor 1≥ 1

ν2
·
(

ν∑
j=1

E [Xj ]

)3

Eqn 8
=

1

ν2
· (accB(inst1))

3 . (9)

Using Eqs. 5 and 9, we can write

frk(inst1) ≥ 1

ν2
· (accB(inst1))

3 − 3

ϕ
· accB(inst1). (10)

Therefore, we can write

frk
Eqn 3

= E
inst1

[frk(inst1)]
Eqn 10

≥ E
inst1

[
1

ν2
· (accB(inst1))

3 − 3

ϕ
· accB(inst1)

]

≥ 1

ν2
· E
inst1

[accB(inst1)]
3 − 3

ϕ
· E
inst1

[accB(inst1)]

Eqn 4
=

1

ν2
· acc3B − 3

ϕ
· accB = accB

(
acc2B
ν2

− 3

ϕ

)
.

4 Identity-Based Signature

In this section, we present an identity-based signature scheme based on salted-
UOV scheme [SSH11a] and the 3-pass IDS3 of [SSH11b]. The key-generation
algorithm of IBS utilizes the sign algorithm of the salted-UOV signatures. The

3 In [SSH11b], authors also proposed a 5-pass IDS whose knowledge error is remarkably
less than its 3-pass variant. So, the number of parallel rounds required to construct
any signature scheme based on that 5-pass IDS is expected to be significantly less
than its 3-pass counterpart. This, in turn, implies that a signature based on 5-pass
IDS would be more efficient than its 3-pass variant. However, the authors in [KZ20]
showed a forgery on MQDSS [CHR+16] (a signature scheme based on this 5-pass
IDS). To compensate for this attack, one has to go for larger values of parameters,
which essentially means that 5-pass IDS is no more efficient than its 3-pass variant
for the same security level. On the other hand, the 3-pass IDS is well understood
and structurally simpler and thus appears to be a better choice.
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signature generation of IBS follows the style of MQDSS, i.e., it runs the 3-pass
variant of IDSr followed by FST [FS86]. More formally, our IBS construction is
given as follows.

IBS.Setup(κ). Let (v,m, q) be a set of parameters defined by the security param-
eter κ, where v,m and q denote the number of vinegar variables, the number
of oil variables and the size of the field respectively. Set n = v + m and
let F be a field of size q. Let M and ID be the message space and iden-
tity space respectively. Let SaltSp = {0, 1}� be salt space, where � ∈ N. Let
H1 : ID × SaltSp → F

m and H2 : {0, 1}∗ → {0, 1, 2}r be cryptographic
hash functions. Let C = (CSetup,Commit,Open) be an efficient commitment
scheme. The following steps are remaining part of the setup algorithm.
1. choose r ∈ N such that (2/3)r = negl(κ), where r denotes the number of

rounds
2. pick F $←− Fuov(Fn, Fm) and T $←− invAff(Fn, Fn)
3. set P = F ◦ T
4. run ck

$←− CSetup(κ)
5. set pp = (P,H1,H2, ck, r) and msk = (F , T ).

IBS.KeyGen(pp,msk, id). The key-generation for the identity id consists of the
following steps:
1. choose x′

v
$←− F

v

2. s
$←− SaltSp

3. ω = H1(id||s)
4. if {xm ∈ F

m : F(x′
v,xm) = ω} = ∅, go to step 2

5. x′
o

$←− {xm ∈ F
m : F(x′

v,xm) = ω}
6. x = T −1(x′

v,x′
o)

7. return skid = (id,x, s).
IBS.Sign(pp,M, skid). Parse skid as (id,x, s). Here the signature is generated using

the 3-pass IDS of Sakumoto et al. [SSH11b]. Note that the signer knows the
witness x for the statement (P,ω), where ω = H1(id||s). The steps are given
as follows:
1. let G be the polar form of the system P : F

n → F
m

2. pick a0,i, b0,i
$←− F

n and c0,i
$←− F

m for i ∈ [r]
3. set a1,i = x − a0,i, b1,i = a0,i − b0,i and c1,i = P(a0,i) − c0,i for i ∈ [r]
4. for each i ∈ [r], compute the following.

(a) ct0,i ←− Commit(a1,i,G(b0,i,a1,i) + c0,i)
(b) ct1,i ←− Commit(b0,i||c0,i)
(c) ct2,i ←− Commit(b1,i||c1,i)

5. set ct = (ct0,1, ct1,1, ct2,1, . . . , ct0,r, ct1,r, ct2,r) and compute ch = H2(M ,
ω, ct)

6. parse ch as (ch1, . . . , chr)
7. for each i ∈ [r], do the following.

(a) if chi = 0, set rsi = (a0,i, b1,i, c1,i)
(b) if chi = 1, set rsi = (a1,i, b1,i, c1,i)
(c) if chi = 2, set rsi = (a1,i, b0,i, c0,i)



Identity-Based Signature and Extended Forking Algorithm 401

8. set rs = (rs1, . . . , rsr) and return σ = (s, ct, rs)
IBS.Ver(pp,M, σ, id). It consists of the following steps.

1. parse σ as (s, ct, rs), where ct = (ct0,1, ct1,1, ct2,1, . . . , ct0,r, ct1,r, ct2,r)
and rs = (rs1, . . . , rsr)

2. compute ω = H1(id, s) and ch = H2(M,ω, ct)
3. for each i ∈ [r], do the following:

(a) if chi = 0, parse rsi as (a0,i, b1,i, c1,i) and check, if

ct1,i
?= Commit(a0,i − b1,i||P(a0,i) − c1,i) & ct2,i

?= Commit(b1,i||c1,i)

(b) if chi = 1, parse rsi as (a1,i, b1,i, c1,i) and check, if

ct0,i
?= Commit(a1,i||ω − P(a1,i) − G(b1,i,a1,i) − c1,i) & ct2,i

?=
Commit(b1,i||c1,i)

(c) if chi = 2, parse rsi as (a1,i, b0,i, c0,i) and check, if

ct0,i
?= Commit(a1,i||G(b0,i,a1,i) + c0,i) & ct1,i

?= Commit(b0,i||c0,i)
(d) return 0, if any of the above checks fail

4. return 1

Correctness. It follows from the correctness of the underlying salted-UOV sig-
nature and 3-pass IDS. Also to note that the signature component response rsi

implicitly contains the random coin used in Commit. This is used in the signature
verification algorithm for the commitment equations involved in Eqs. 3(a), 3(b)
and 3(c) as mentioned in the discussion of commitment scheme in Sect. 2.3.

Remark 2. Following our construction, one can build an IBS using a two-layers
salted version of Rainbow [DS05] and its security can be argued similarly as done
in Sect. 5.

Remark 3. Sometimes, we consider the following form of signature: σ = (s, ct,
ch, rs), where ω = H1(id, s), and ch = H2(M,ω, ct) which, further, can be
written as σ =

(
s, {cti, chi, rsi}i∈[r]

)
.

Comparison with [BNN09]. Note that the security of the 3-pass version of
IDSr [SSH11b] relies on the intractability of the MQ-problem. This IDSr can
be a possible instantiation of SI required for the construction of IBS following
the modular approach of [BNN09], if an instantiation of trapdoor sampleable
relation (TSR) is available such that SI and TSR together satisfy the necessary
security properties. Also, note that ω is computed as ω = H1(id) as part of the
public-key of the underlying SI in [BNN09]. Therefore, the salted UOV-signature
(even if we treat this as the right candidate of TSR in the MQ-setting) does not
exactly fit in their modular approach. Another possible candidate of TSR in
the MQ-setting could be (plain) UOV-signature [KPG99]. In either of the two
approaches outlined above, we cannot prove the security of the IBS following
the proof-strategy of [BNN09] as it is not known whether the underlying candi-
dates, the IDSr and (salted or plain) UOV-signature satisfy the requirement of
Corollary 4.10 in [BNN09]4. For the sake of discussion, let us assume (i) IDSr

4 Note that this is not something unique for the MQ-setting as [BNN09] itself observed
that their framework does not encompass all possible candidate schemes.
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and UOV-signature fulfill the security properties mentioned in [BNN09] and (ii)
the security of the UOV relies on the intractability of the WMQ-problem. Then,
following [BNN09] for the corresponding IBS we would get a reduction from
WMQ-problem. From [BNN09, Corollary 4.10] and the passive-attack version of
[SSH11b, Lemma 8], one can show that the degradation factor in the security
reduction is roughly ν6. On the other hand, the degradation factor of our reduc-
tion (see Eq. 17) is roughly ν3 · ν3

key, where ν and νkey are the number of queries
to the random oracles and key-gen oracle respectively. Since in practice ν and
νkey are roughly 260 and 230 respectively, our reduction is tighter than the one
following [BNN09].

5 Security of the Proposed IBS

In this section, we prove EUF-CMA-security of our proposed IBS scheme. Note
that in EUF-CMA-security model (c.f., Definition 4), an adversary is provided
access to both, the signature oracle OSign and key-gen oracle OKey. We also
consider two weaker security models, existential unforgeability under chosen-
key attack (EUF-CKA) and existential unforgeability under no-message attack
(EUF-NMA), where the adversary is not provided access to OSign-oracle and
(OSign,OKey)-oracles respectively.

In Lemma 5, we first show a reduction of EUF-NMA-security of the IBS
scheme (c.f., Sect. 4) from WMQ-problem and computational binding property of
the underlying commitment scheme in the random oracle model. Then, in Lem-
mas 6 and 7 we show reductions of EUF-CKA-security from EUF-NMA-security
and EUF-CMA-security from EUF-CKA-security respectively in the random ora-
cle model. Finally, in Corollary 2, we prove EUF-CMA security of the IBS scheme
from WMQ-problem and computational binding and statistical hiding properties
of the underlying commitment scheme. We start with the following proposition
which will be used in Lemma 5.

Proposition 2. Assume that H2 (involved in the IBS construction in Sect. 4)
is a random oracle. Then, given any three signatures σ = (s, ct, ch, rs), σ′ =
(s, ct, ch′, rs′) and σ′′ = (s, ct, ch′′, rs′′) with ch �= ch′ �= ch′′ �= ch, we can find
with probability 1 − (7/9)r an i ∈ [r] such that chi �= ch′

i �= ch′′
i �= chi.

Proof. For each i ∈ [r], let Eventi denote chi �= ch′
i �= ch′′

i �= chi. By simple
counting argument, we can write Pr [Eventj ] = 6/27 = 2/9. Now, the probability
of its complement is given by

Pr [¬Eventj ] = Pr
[
chi = ch′

i ∨ chi = ch′′
i ∨ ch′

i = ch′′
i

]

= 1 − Pr [Eventj ] = 7/9.

Since challenge components are chosen uniformly at random from {0, 1, 2}, we
can write

Pr [∃i ∈ [r] s.t Eventi = true] = 1 − Pr [¬Event1 ∧ · · · ∧ ¬Eventr] = 1 − (7/9)r.
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Lemma 5. If the WMQ-problem (c.f., Definition 2) is intractable and the
underlying commitment scheme is computationally binding, then our proposed
IBS scheme described in Sect. 4 is EUF-NMA-secure in the random oracle model.

Proof. Recall that there are two hash functions H1 : ID × SaltSp → F
m and

H2 : {0, 1}∗ → {0, 1, 2}r. We model both the hash functions as random oracles.
Note that here the ranges of the hash functions are enumerable sets and hence,
the values in the ranges can be uniquely and efficiently determined by their
indices in the corresponding enumerations. We assume that the index of an
element in each range set starts with 1. Wlog, we can use the element of a range
set and its index interchangeably.

We denote the ranges of H1 and H2 by R1 and R2 respectively. So, |R1| =
qm = |Wmq2| and |R2| = 3r. Let R = {1, 2, . . . , ϕ}, where ϕ = 3rqm. We would
call R as common range which is basically an index set. Now, we define two
encoding functions Enc1 : R → R1 and Enc2 : R → R2 as follows: for x ∈ R,
define

Enc1(x) =
⌈ x

3r

⌉
and Enc2(x) =

⌈
x

qm

⌉
.

It is easy to check that the above encoding functions satisfy the following prop-
erties:

1. Each Enci : R → Ri is efficiently computable.
2. If x

$←− R, then Enci(x) is uniform over Ri for i = 1, 2.
3. For y ∈ F

m, the preimage set5 Enc−1
1 (y) = {3r · (y − 1) + 1, 3r · (y − 1) +

2, . . . , 3r · y} is efficiently computable and |Enc−1
1 (y)| = 3r.

4. When y
$←− Wmq2 and x

$←− Enc−1
1 (y), then x is uniform over R.

Items (3) and (4) implies that Enc1 fulfills all the requirements of the forking
algorithm ExtFB (Algorithm 1) defined in Sect. 3.

Our proof strategy is in the similar line as in [BN06] which is described as
follows:

(a) Given an EUF-NMA-attacker A0, we first show that with non-negligible prob-
ability, A0 can be rewound with the same random tape but different oracles
to generate three signatures for the same message-identity pair (M, id).

(b) From these 3 signatures, we extract out three transcripts of the underlying
3-pass IDS with three different challenges.

(c) Then, we extract the witness using the 3-special soundness property of the
3-pass IDS.

To proceed along the above strategy, we first construct a wrapper algorithm
B which will create an environment for A0 and thereby, outputs the associated
forking-index of H2-oracle in addition to the forgery. Knowing this forking-index
is important for rewinding B with the same random tape but different random
values of H2-oracle. Let the numbers of queries made by A0 to H1 and H2-
oracles be ν1 and ν2 respectively. Let ν = ν1 + ν2. Our wrapper algorithm B
5 Recall that y is considered here as an index, i.e., a positive integer.
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Algorithm 2. Wrapper

1: procedure B(inst1, h) � Compute
a signature σ and the corresponding
forking-index J

2: run ck
$←− CSetup(κ)

3: pick r ∈ N s.t (2/3)r = negl(κ)
4: List ← ∅ and ctr ← 0 �

List stores the tuples of the form
(ctr, i, arg, Hi(arg)) for i ∈ [2]

5: (M, id, (s, ct, rs))
$←− A{OH1 ,OH2}

0

(inst1, ck, r) � the oracles
OHi for i = 1, 2 are defined after “end
procedure”

6: ω ← OH1(id, s)
7: ch ← OH2(M, ω, ct)
8: set σ = (s, ct, ch, rs)
9: if IBS.Ver(pp, M, σ, id) = 0 then

10: return (0, ε) � abort
11: end if
12: return (J, σ) such that tuple

(J, 2, M ||ω||ct, ch) ∈ List
13: end procedure

OHi(arg): // for i = 1, 2

if (∗, i, arg, Hi(arg)) �∈ List then
ctr ← ctr + 1
Hi(arg) ← Enci(hctr) � Hi is

programmed via encoding Enci and the
property defined in item 2 ensures the
uniformity of Hi(arg)

List ← List ∪ {(ctr, i, arg, Hi(arg))}
end if
return Hi(arg)

(described as Algorithm 2) takes (inst1,h) ∈ Wmq1 × Rν as input and returns a
pair (J, σ). Note that B handles both types of random oracle queries perfectly
using the supplied ν -many random indices from R and the encoding functions
described above. The acceptance probability accB of B is negligibly close6 to
AdvEUF-NMA

A0
(κ).

Finally, we design an WMQ-problem solver which will make use of the
extended forking algorithm ExtFB (Algorithm 1 in Sect. 3) and solves the given
problem instance. Let (P,y∗) ∈ Wmq1 ×Wmq2 be the given random instance of
WMQ-problem. Then, the WMQ-problem solver algorithm Solver is described
as Algorithm 3.

The probability that we can reach to step 12 of Algorithm 3 without abort
is frk · (1 − (7/9)r) (using Proposition 2). Notice that the witness x∗ computed
in step 12 always satisfies the following identity

P(x∗) = ω = H1(id, s) (11)

as π, π′ and π′′ being the accepted transcripts for the statement (P,ω). Now,
the quantity in the RHS of Eq. 11 cannot equal y∗ in general, unless H1 is
programmed accordingly. So, the witness computed in step 12 cannot provide a
correct solution of the given problem instance.

To extract out the correct solution, we guess an index θ ∈ [ν ], where (id, s)
will appear as a query to the oracle H1 (see step 2 of Algorithm 1). So, H1(id, s)

6 This probability does not include any non-negligible advantage due to the knowledge
error (2/3)r (c.f., Lemma 3) of the underlying IDSr as (2/3)r = negl(κ) by the choice
of r. Otherwise, the forking algorithm would fail to provide sufficient information
about the underlying witness.
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Algorithm 3. WMQ Solver

1: procedure Solver(P, y∗) � Output
x∗ such that P(x∗) = y∗

2: (b, σ, σ′, σ′′) $←− ExtFB(P, y∗) �
run ExtFB(inst1, inst2), where inst1 =
P and inst2 = y∗

3: if b = 0 then
4: abort
5: end if
6: parse σ, σ′ and σ′′ as σ =

(s, ct, ch, rs), σ′ = (s, ct, ch′, rs′) and
σ′′ = (s, ct, ch′′, rs′′)

7: find an i ∈ [r] such that chi �=
ch′

i �= ch′′
i �= chi

8: if such i is not found then
9: abort

10: end if
11: set π = (cti, chi, rsi), π′ =

(cti, ch
′
i, rs

′
i) and π′′ = (cti, ch

′′
i , rs′′i )

12: x∗ ←− Extr(π, π′, π′′) � Extr is
involved in Lemma 2

13: if P(x∗) �= y∗ then
14: abort
15: else
16: return x∗

17: end if
18: end procedure

gets the programmed value Enc1(hθ) = y∗ with probability 1/ν (see steps 3
and 4 of Algorithm 1). Further, the nested hashing ensures that the H1-value
at (id, s) will remain unchanged, once it is programmed by y∗. Therefore, x∗ is
a solution of the given problem instance. Due to the above guess, the success
probability of finding correct solution becomes

AdvWMQ
Solver (κ) ≥ frk

ν
·
(

1 −
(

7
9

)r) Eqn 2
≥ accB

ν

(
acc2B
ν2

− 3
ϕ

)
·
(

1 −
(

7
9

)r)

≈ 1
ν3

·
(
AdvEUF-NMA

A0
(κ)

)3

·
(

1 −
(

7
9

)r)
. (12)

Lemma 6. Suppose there exists an adversary A1 who can break EUF-CKA-
security of the proposed IBS scheme described in Sect. 4 in the random oracle
model, where H1 and H2 are treated as random oracles. Then using A1 as a
subroutine, we can create an algorithm A0 for breaking EUF-NMA-security of
the same IBS with advantage

AdvEUF-NMA
A0

(κ) ≈
(
1 − ν1 · νkey

2�

)
· AdvEUF-CKAA1

(κ) (13)

where ν1 and νkey are the number of H1 queries and the number of signature
queries respectively, and � is the size of a salt.

Proof. We construct an EUF-NMA-attacker A0 (described as Algorithm 4) using
the EUF-CKA-attacker A1 of the proposed IBS as subroutine. The EUF-NMA-
attacker A0 gets access to two random oracles OH1 and OH2 from its challenger
and at the end, it returns a forgery. Here the main challenging part is to answer
key-gen queries of A1 without having access to any external key-gen oracle OKey.

First note that all the oracle queries are answered perfectly, except those
answers of H1-queries which are programmed locally by A0 (see step 5 of the
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Algorithm 4. EUF-NMA-Attacker

1: procedure A{OH1 ,OH2}
0 (P, ck, r) � Return a forgery

2: List1 ← ∅ � List1 stores the pairs of the form ((id, s), H1(id, s))

3: (M∗, id∗, (s∗, ct∗, rs∗)) $←− A{ ˜OH1 ,OH2 , ˜OKey}
1 (P, ck, r) � the oracles ÕH1 and

ÕKey are defined in Figure 3
4: ω∗ ← OH1(id

∗, s∗)
5: ch∗ ← OH2(M

∗, ω∗, ct∗)
6: set σ∗ = (s∗, ct∗, ch∗, rs∗)

7: if IBS.Ver(pp, M∗, σ∗, id∗) = 0 then

8: return (0, ε, ε, ε) � abort
9: end if

10: return (1, M∗, id∗, σ∗) � forgery produced by A0

11: end procedure

Fig. 3. Description of the oracles ÕH1 and ÕKey involved in EUF-NMA-Attacker (Algo-
rithm 4).

key-gen oracle ÕKey in Fig. 3), i.e., H1(id, s) = P(x). It suffices to show that P(x)
is uniform over F

m. Since P is random UOV-public map, we can assume that for
a uniform choice of x ∈ F

n, P(x) will be uniform over F
m. The same assumption

was implicitly considered in the security proof of salted UOV-scheme [SSH11a].
Further, note that the H1-oracle value involved in the forgery produced by A1

(in step 3 of Algorithm 4) is consistent with external oracle OH1 as A0 locally
programs only at (id, ∗) such that id �= id∗. Therefore, the probability of a valid
forgery produced by A0 is

AdvEUF-NMA
A0

(κ) = Pr

[
b = 1 : (b,M∗, id∗, σ∗) $←− A{OH1 ,OH2}

0 (P, ck, r)
]

=
(
1 − ν1

2�

)νkey

· AdvEUF-CKAA1
(κ) (14)

≈
(
1 − ν1 · νkey

2�

)
· AdvEUF-CKAA1

(κ)

where the first and last factors of the RHS of Eq. 14 are due to the probabil-
ities that step 2 of the routine ÕKey and step 7 of Algorithm 4 will not hold
(highlighted by bounded box) respectively. This concludes the lemma.
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Lemma 7. Assume that the underlying commitment scheme is statistically hid-
ing. Suppose there exists an adversary A2 who can break EUF-CMA-security of
the proposed IBS scheme described in Sect. 4 in the random oracle model, where
H1 and H2 are treated as random oracles. Then using A2 as a subroutine, we
can create an algorithm A1 for breaking EUF-CKA-security of the same IBS with
advantage

AdvEUF-CKAA1
(κ) ≈ AdvEUF-CMA

A2
(κ)/νkey (15)

where νkey is the number of key-gen queries.

Proof. We construct an EUF-CKA-attacker A1 using the EUF-CMA-attacker A2

of the proposed IBS as subroutine in the random oracle model. The EUF-CKA-
attacker A1 gets access to two random oracles OH1 and OH2 and access to the
key-gen oracle OKey from its challenger and at the end, it returns a forgery.

Here, the main challenging part is to answer signature queries of A2 without
having access to any external signature oracle OSign. One might think that each
signature query would be answered using the simulator for the HVZK of the
underlying 3-pass IDS. But, it is not possible for the following reason. First,
notice that the secret key skid and a signature on (M, id) have some common
ingredient, namely, the salt s. Just consider the following situation: A2 first asks
a signature query on (M, id) and gets the simulated signature σ = (s, ct, rs),
where s is uniform over SaltSp. Later, if A2 asks for a key-gen query on the
same identity id, then with high probability the salt part in skid will be different
and hence, violates the environment of the real execution.

To tackle the above issue, we adapt Coron’s partitioning technique [Cor00],
where the identity space ID is partitioned into IDλ and ID \ IDλ based on a
biased coin with probability of head being λ (λ will be chosen later). In fact,
for each id ∈ ID, toss the biased coin, and let η be the outcome of the toss
(note that Pr[η = 1] = λ). Then, assign id to IDλ if η = 1, otherwise assign to
ID \ IDλ. The following proof strategy ensures that the aforementioned issue
will never arise.

1. If a query identity id of OKey belongs to IDλ, then abort.
2. For a signature query on (M, id), we do the following:

(a) If id ∈ IDλ, then we answer using Simu (defined in the proof of Lemma1)
for the HVZK of the underlying 3-pass IDS. In this case, we program
H2 locally at some points (see step 9 of the oracle Ohvzk in Fig. 4).

(b) Else, generate signature according to IBS.Sign using skid.
3. If the challenge id∗ �∈ IDλ, then abort.

The EUF-CKA-attacker A1 is formally described as Algorithm 5, where the
queries of A2 to the oracles may appear in an interleaved manner. The queries to
H1 and key-gen oracles are handled by forwarding to its external oracles OH1 and
OKey. However, for answering signature queries, we maintain two lists List2 and
Listkey which respectively store the pairs of the form (arg,H2(arg)) and (id,x, s),
where x ∈ F

n ∪ {⊥}. The list List2 is updated while answering signature queries
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Algorithm 5. EUF-CKA-Attacker

1: procedure A{OH1 ,OH2 ,OKey}
1 (P, ck, r) � Return a forgery

2: List2 ← ∅ and Listkey ← ∅
3: (M∗, id∗, (s∗, ct∗, rs∗)) $←− A{OH1 , ˜OH2 , ˜OKey,OSign}

2 (P, ck, r) � the oracles ÕH2 ,

ÕKey and OSign are defined in Figure 4
4: ω∗ ← OH1(id

∗, s∗)
5: ch∗ ← OH2(M

∗, ω∗, ct∗)
6: set σ∗ = (s∗, ct∗, ch∗, rs∗)

7: if id∗ �∈ IDλ or IBS.Ver(pp, M∗, σ∗, id∗) = 0 then

8: return (0, ε, ε, ε) � abort
9: end if

10: return (1, M∗, id∗, σ∗) � forgery produced by A1

11: end procedure

Fig. 4. Description of the oracles ÕH2 , ÕKey and OSign involved in EUF-CKA-Attacker
(Algorithm 5). The notation Simur(P, ω) involved in the routine Ohvzk indicates that
the simulator of the underlying IDS is run r-times on the same input (P, ω) to generate
transcripts π1, . . . , πr.

with underlying identity id ∈ IDλ and H2-queries, whereas the list Listkey is
updated while answering key-gen and signature queries. Wlog, we assume that
for an identity id, at most one secret key skid = (id,x, s) will be issued to A2 and
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the same will be stored in Listkey
7. While answering signature query on (M, id),

if id ∈ IDλ, then (id,⊥, s) is stored in Listkey, where s
$←− SaltSp. Therefore, for

each identity id involved in the queries, there will be at most one entry in Listkey
containing id. We do not need to store the outcome η of the biased coin to each
query identity id as the 2nd-entry of Listkey can decide η. How the lists List2 and
Listkey are exactly updated via the queries to ÕH2 , ÕKey and OSign made by A2

are shown in Fig. 4.
Note that all the random oracle queries and key-gen queries are handled

perfectly. Also, the signature queries are answered properly thanks to Simu for
the HVZK of the underlying 3-pass IDS. Therefore, the probability of valid
forgery produced by A1 is

AdvEUF-CKAA1
(κ) = Pr

[
b = 1 : (b,M∗, id∗, σ∗) $←− A{OH1 ,OH2 ,OKey}

1 (P, ck, r)
]

≥ (1 − λ)νkey ·
(

1 − ν2 + νsign
qm · 23·r·ζ

)νsign

· λ · AdvEUF-CMA
A2

(κ) (16)

≈ (1 − λ)νkey · λ · AdvEUF-CMA
A2

(κ) as
(

1 − ν2 + νsign
qm · 23·r·ζ

)νsign

≈ 1

≈ 1
e

· 1
νkey

· AdvEUF-CMA
A2

(κ) ≈ AdvEUF-CMA
A2

(κ)/νkey.

Each factor appears in Eq. 16 due to the non-abort probability of Algorithm 5,
where the abort cases are highlighted by the bounded boxes in the algorithm as
well as in the associated oracles defined in Fig. 4. In particular, the probability
that abort will not occur in step 6 of the oracle Ohvzk for each call is at least
(1 − ν2+νsign

qm·23·r·ζ ), where ν2 and νsign are the number of queries to OH2 and OSign

oracles respectively, and ζ is the collision entropy of the underlying commitment
scheme. Note that the quantity (1 − λ)νkey · λ attains the maximum value 1/(e ·
νkey) when λ = 1/(1 + νkey). Therefore, the last expression is guaranteed by
setting λ = 1/(1 + νkey). This concludes the lemma.

Corollary 2. Suppose WMQ-problem (c.f., Definition 2) is intractable and the
underlying commitment scheme is computationally binding and statistically hid-
ing. Then, the proposed IBS scheme described in Sect. 4 is EUF-CMA secure in
the random oracle model.

Proof. Let ν1, ν2 and νkey be the numbers of queries to H1, H2 and key-gen ora-
cles respectively and let ν = ν1+ν2. Let A2 be an EUF-CMA-attacker, i.e., EUF-
CMA attacker of the proposed IBS scheme. Let Solver be the WMQ-problem
solver. Then, using Lemmas 5, 6 and 7, the advantage of Solver is given by:

7 This consideration is for an easy exposition of the reduction. Otherwise, we can allow
asking multiple key-gen queries for an identity. In this case, we can keep a counter
for each queried identity and even allow A2 to choose a particular secret key for the
same identity by specifying the counter to answer the signature queries.
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AdvWMQ
Solver (κ) ≥ 1

ν3
· 1
ν3
key

·
(
AdvEUF-CMA

A2
(κ)

)3

·
(

1 −
(

7
9

))r

(17)

This completes the corollary.

6 Conclusion

We have proposed a provably secure IBS scheme in the MQ-setting. To achieve
the security of our construction, we have developed a new forking technique by
extending the existing forking algorithm of Bellare-Neven. To the best of our
knowledge, our forking related result is the first to apply in the MQ-setting. The
forking algorithm is likely to be applicable in the security reduction of other
primitives such as blind signature in the MQ-setting.
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Abstract. Identity-based matchmaking encryption (IB-ME) is a gener-
alization of identity-based encryption where the sender and the receiver
can both specify a target identity: If both the chosen target identities
match the one of the other party, the plaintext is revealed, and other-
wise the sender’s identity, the target identity, and the plaintext remain
hidden. Previous work showed how to construct IB-ME in the random
oracle model. We give the first construction in the plain model, based on
standard assumptions over bilinear groups.

Keywords: Identity-based encryption · Matchmaking encryption ·
Plain model

1 Introduction

Identity-based encryption (IBE) [6] extends the standard concept of public-key
encryption to a setting where the receiver’s public key is an arbitrary string
representing its identity. This allows a sender to encrypt a message while speci-
fying the identity rcv ∈ {0, 1}∗ of the intended receiver. A receiver with identity
ρ ∈ {0, 1}∗ obtains a decryption key dkρ from an authority, which allows to
correctly decrypt the ciphertext so long as ρ = rcv.

Identity-based matchmaking encryption (IB-ME) [2] is a generalization of
IBE in which the sender’s identity σ ∈ {0, 1}∗ can also be embedded in the
ciphertext. The receiver can now additionally specify a target sender’s identity
snd ∈ {0, 1}∗ on the fly, and obtain the message so long as there is a match in
both directions (i.e., ρ = rcv and σ = snd). An IB-ME should satisfy two main
security properties:

– Privacy: In case of mismatch (i.e., either ρ �= rcv or σ �= snd) both the sender’s
identity and the plaintext remain hidden.

– Authenticity: The sender obtains from the authority an encryption key ekσ

associated to its identity, with the guarantee that it should be hard to forge
a valid ciphertext embedding σ without knowing such a key.
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IB-ME finds applications in settings where IBE with strong anonymity guar-
antees is required. For instance, Ateniese et al. [2] show how to use IB-ME in
order to construct a privacy-preserving bulletin board that can be used by news-
papers and organizations to collect information from anonymous sources.

1.1 Our Contribution

The work of Ateniese et al. [2] shows how to construct IB-ME under the Bilinear
Diffie-Hellman assumption. This leaves the following open problem:

Can we construct IB-ME in the plain model?

We answer the above question to the positive by providing the first construc-
tion of IB-ME without random oracles (see Sect. 4). On a high level, our result
is obtained in two steps:

– First, we give a construction of an IB-ME satisfying privacy based on the
Decisional Augumented Bilinear Diffie-Hellman Exponent assumption over
bilinear groups. Our scheme builds upon the anonymous IBE of Gentry [4].
Very roughly, we add the functionality that the receiver can decrypt a cipher-
text only if it knows (or guesses) the sender’s identity. This is achieved by
adding a second layer of encryption using a one-time pad derived from the
sender’s identity via a randomness extractor. While it seems that this idea can
be applied generically to any anonymous IBE, our security analysis crucially
relies on specific properties of Gentry’s scheme (e.g., homomorphism).

– Second, we exhibit a generic transform taking as input any private IB-ME
and outputting an IB-ME satisfying both privacy and authenticity. The main
idea is to let ekσ consist of a signature over the sender’s identity σ (computed
using the authority’s master secret key). Hence, the sender encrypts the mes-
sage using the underlying IB-ME but additionally proves in zero knowledge
that it knows a valid signature of the string representing its identity. Privacy
follows by the privacy property of the underlying IB-ME along with the zero
knowledge property; authenticity follows by knowledge soundness.

An additional contribution of our work is to significantly strengthen the
definition of privacy for IB-ME. In particular, the previous definition only guar-
antees privacy when the receiver’s identity ρ does not match the target identity
rcv specified by the sender. We give a stronger definition that allows to charac-
terize privacy in a meaningful way also in case the target identity snd chosen by
the receiver does not match the identity σ of the sender. We refer the reader to
Sect. 3 for more details.

1.2 Related Work

Ateniese et al. [2] define the more general concept of ME, in which both the
sender and the receiver (each with its own attributes) can specify policies the
other party must satisfy in order for the message to be revealed. Differently
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than IB-ME, the policy chosen by the receiver cannot be chosen on the fly, but
is associated to a secret key that is generated by the authority.

As pointed out in [2], the general concept of ME implies both (anonymous)
ciphertext-policy and key-policy attribute-based encryption [5,7]. The implica-
tion holds in the identity-based setting too: IB-ME can be seen as a more expres-
sive version of (anonymous) IBE [1], in which both the sender and the receiver
can specify a target communicating entity (in a privacy-preserving way).

2 Preliminaries

2.1 Notation

We use the notation [n] def= {1, . . . , n}. Capital boldface letters (such as X) are
used to denote random variables, small letters (such as x) to denote concrete
values, calligraphic letters (such as X ) to denote sets, and serif letters (such as A)
to denote algorithms. All of our algorithms are modeled as (possibly interactive)
Turing machines; if algorithm A has oracle access to some oracle O, we write QO

and OO for the set of queries asked by A to O and for the set of outputs returned
by O, respectively.

For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents
the cardinality of X . When x is chosen randomly in X , we write x ←$ X . If A is
an algorithm, we write y ←$ A(x) to denote a run of A on input x and output y; if
A is randomized, y is a random variable and A(x; r) denotes a run of A on input
x and (uniform) randomness r. An algorithm A is probabilistic polynomial-time
(PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of
A(x; r) terminates in a polynomial number of steps (in the input size).

Negligible Functions. We denote by λ ∈ N the security parameter and we implic-
itly assume that every algorithm takes as input the security parameter (written
in unary). A function ν : N → [0, 1] is called negligible in the security parameter λ
if it vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ))
for all positive polynomials p(λ). We sometimes write negl(λ) (resp., poly(λ))
to denote an unspecified negligible function (resp., polynomial function) in the
security parameter.

Unpredictability and Indistinguishability. The min-entropy of a random variable
X ∈ X is H∞(X) def= − log maxx∈X P [X = x], and it measures the best chance
to predict X (by a computationally unbounded algorithm). We say that X and
Y are computationally indistinguishable, denoted X ≈c Y, if for all PPT distin-
guishers D we have ΔD(X;Y) ∈ negl(λ), where

ΔD(X;Y) def=
∣
∣P

[

D(1λ,X) = 1
] − P

[

D(1λ,Y) = 1
]∣
∣ .
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2.2 Signature Schemes

A signature scheme with message space M is made of the following polynomial-
time algorithms.

KGen(1λ): Upon input the security parameter 1λ, the randomized key generation
algorithm outputs a secret and a public key (sk, pk).

Sign(sk,m): Upon input the secret key sk and the message m ∈ M, the deter-
ministic signing algorithm produces a signature s.

Ver(pk,m, s): Upon input the public key pk, the message m ∈ M, and the
signature s, the deterministic verification algorithm returns a decision bit.

A signature scheme should satisfy two properties. The first property says
that honestly generated signatures always verify correctly. The second property,
called unforgeability, says that it should be hard to forge a signature on a fresh
message, even after seeing signatures on polynomially many messages.

Definition 1 (Correctness of signatures). A signature scheme Π =
(KGen,Sign,Ver) with message space M is correct if ∀λ ∈ N, ∀(sk, pk) output by
KGen(1λ), and ∀m ∈ M, the following holds: P [Ver(pk,m,Sign(sk,m)) = 1] = 1.

Definition 2 (Unforgeability of signatures). A signature scheme Π =
(KGen,Sign,Ver) is existentially unforgeable under chosen-message attacks
(EUF-CMA) if for all PPT adversaries A:

P
[

Geuf
Π,A(λ) = 1

] ≤ negl(λ) ,

where Geuf
Π,A(λ) is the following experiment:

– (sk, pk) ←$ KGen(1λ).
– (m, s) ←$ ASign(sk,·)(1λ, pk)
– If m �∈ QSign, and Ver(pk,m, s) = 1, output 1, else output 0.

2.3 Non-interactive Zero Knowledge

Let R be a relation, corresponding to an NP language L. A non-interactive zero-
knowledge (NIZK) proof system for R is a tuple of polynomial-time algorithms
Π = (I,P,V) specified as follows. (i) The randomized algorithm I takes as input
the security parameter and outputs a common reference string ω; (ii) The ran-
domized algorithm P(ω, (y, x)), given (y, x) ∈ R outputs a proof π; (iii) The
deterministic algorithm V(ω, (y, π)), given an instance y and a proof π outputs
either 0 (for “reject”) or 1 (for “accept”). We say that a NIZK for relation R is
correct if for all λ ∈ N, every ω output by I(1λ), and any (y, x) ∈ R, we have
that V(ω, (y,P(ω, (y, x)))) = 1.

We define two properties of a NIZK proof system. The first property, called
adaptive multi-theorem zero knowledge, says that honest proofs do not reveal
anything beyond the fact that y ∈ L. The second property, called knowledge
soundness, requires that every adversary creating a valid proof for some state-
ment, must know the corresponding witness.
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Definition 3 (Adaptive multi-theorem zero-knowledge). A NIZK Π for
a relation R satisfies adaptive multi-theorem zero-knowledge if there exists a PPT
simulator Z := (Z0,Z1) such that the following holds:

– Algorithm Z0 outputs ω and a simulation trapdoor ζ.
– For all PPT distinguishers D, we have that

∣
∣
∣P

[

DP(ω,(·,·))(ω) = 1 : ω ←$ I(1λ)
]

− P

[

DO(ζ,(·,·))(ω) = 1 : (ω, ζ) ←$ Z0(1λ)
] ∣
∣
∣ ≤ negl(λ) ,

where the oracle O(ζ, (·, ·)) takes as input a pair (y, x) and returns Z1(ζ, y) if
(y, x) ∈ R (and ⊥ otherwise).

Definition 4 (Knowledge soundness). A NIZK Π for a relation R satisfies
knowledge soundness if there exists a PPT extractor K = (K0,K1) such that the
following holds:

– Algorithm K0 outputs ω and an extraction trapdoor ξ, such that the distribu-
tion of ω is computationally indistinguishable to that of I(1λ).

– For all PPT adversaries A, we have that

P

⎡

⎣
V(ω, (y, π)) = 1∧

(y, x) �∈ R
:
(ω, ξ) ←$ K0(1λ)
(y, π) ←$ A(ω)
x ←$ K1(ξ, y, π)

⎤

⎦ ≤ negl(λ) .

2.4 Reusable Computational Extractors

A computational extractor is a polynomial time algorithm Ext : S ×X → Y that
on input a seed s ∈ S and a value x ∈ X outputs Exts(x) = y ∈ Y. The security
of computational extractors guarantees that y ∈ Y is pseudorandom when the
seed is sampled at random from S and x is sampled from an input distribution
X (defined over the input space X ) of min-entropy H∞(X) ≥ k, even if the seed
is made public. In this work, we will rely on so-called reusable [3], computational
extractors, that produce random looking outputs even if evaluated multiple times
on the same input. The formal definition is provided below.

Definition 5 (Reusable computational extractors). An algorithm Ext :
S × X → Y is a (k, q)-reusable-extractor if for all random variables X ∈ X such
that H∞(X) ≥ k, and for all PPT distinguishers D, it holds that

ΔD((s1, . . . , sq,Exts1(x), . . . ,Extsq
(x)); (s1, . . . , sq, y1, . . . , yq)) ≤ negl(λ) ,

where x ←$ X, si ←$ S, and yi ←$ Y (for all i ∈ [q]).
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2.5 Augumented Bilinear Diffie-Hellman Exponent Assumption

Our IB-ME construction is based on the hardness of the decisional truncated
ABDHE assumption, which we recall below.

Definition 6 (Decisional truncated q-ABDHE assumption). Let G and
GT be two groups of prime order p. Let e : G×G → GT be an admissible bilinear
map, and let g, g′ be generators of G. The decisional truncated q-ABDHE problem
is hard in (G,GT , e) if for every PPT adversary A:

∣
∣
∣P

[

A(g′, g′
q+2, g, g1, . . . , gq, e(gq+1, g

′)) = 0
]

− P
[

A(g′, g′
q+2, g, g1, . . . , gq, Z) = 0

]
∣
∣
∣ ≤ negl(λ) ,

where gi = g(α
i), g, g′ ←$ G, α ←$ Zp and Z ∈ GT .

3 Identity-Based Matchmaking Encryption

We recall below the definition of IB-ME presented in [2]. In IB-ME (i.e., ME in
the identity-based setting), attributes and policies are treated as binary strings.
We denote with rcv and snd the target identities (i.e., policies) chosen by the
sender and the receiver, respectively. We say that a match (resp. mismatch)
occurs when σ = snd and ρ = rcv (resp. σ �= snd or ρ �= rcv). The receiver can
choose the target identity snd on the fly.

3.1 Syntax

More formally, an IB-ME scheme is composed of the following 5 polynomial-time
algorithms:

Setup(1λ): Upon input the security parameter 1λ, the randomized setup algo-
rithm outputs the master public key mpk and the master secret key msk. We
implicitly assume that all other algorithms take mpk as input.

SKGen(msk, σ): Upon input the master secret key msk, and identity σ, the ran-
domized sender-key generator outputs an encryption key ekσ for σ.

RKGen(msk, ρ): Upon input the master secret key msk, and identity ρ, the ran-
domized receiver-key generator outputs a decryption key dkρ for ρ.

Enc(ekσ, rcv,m): Upon input the encryption key ekσ for identity σ, a target
identity rcv, and a message m ∈ M, the randomized encryption algorithm
produces a ciphertext c linked to both σ and rcv.

Dec(dkρ, snd, c): Upon input the decryption key dkρ for identity ρ, a target iden-
tity snd, and a ciphertext c, the deterministic decryption algorithm outputs
either a message m or ⊥.
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Correctness. Correctness of IB-ME simply says that in case of a match the
receiver obtains the plaintext.

Definition 7 (Correctness of IB-ME). An IB-ME Π = (Setup,SKGen,
RKGen,Enc,Dec) is correct if ∀λ ∈ N, ∀(mpk,msk) output by Setup(1λ), ∀m ∈
M, ∀σ, ρ, rcv, snd ∈ {0, 1}∗ such that σ = snd and ρ = rcv:

P [Dec(dkρ, snd,Enc(ekσ, rcv,m)) = m] ≥ 1 − negl(λ) ,

where ekσ ←$ SKGen(msk, σ) and dkρ ←$ RKGen(msk, ρ).

3.2 Security

We now define privacy and authenticity of IB-ME. Recall that privacy captures
secrecy of the sender’s inputs (σ, rcv,m). This is formalized by asking the adver-
sary to distinguish between Enc(ekσ0 , rcv0,m0) and Enc(ekσ1 , rcv1,m1) where
(m0,m1, σ0, σ1, rcv0, rcv1) are chosen by the attacker.

Fig. 1. Games defining CPA-privacy and CPA-authenticity security of IB-ME. Oracles
O1, O2 are implemented by SKGen(msk, ·), RKGen(msk, ·).

Definition 8 (Privacy of IB-ME [2]). We say that an IB-ME Π satisfies
privacy if for all valid PPT adversaries A = (A1,A2):

∣
∣
∣
∣
P

[

Gib-priv
Π,A (λ) = 1

]

− 1
2

∣
∣
∣
∣
≤ negl(λ) ,

where game Gib-priv
Π,A (λ) is defined in Fig. 1. Adversary A = (A1,A2) is called valid

if ∀ρ ∈ QO2 it satisfies the following invariant:

ρ �= rcv0 ∧ ρ �= rcv1 (1)
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Note that, when a match occurs, IB-ME reveals all the inputs of the encryp-
tion algorithm (as the sender’s and receiver’s identities match). Hence, the above
definition only guarantees privacy when a match does not occur (mismatch case).
However, as discussed in [2], since the receiver can choose a target identity snd
on the fly during the decryption process, we need to restrict privacy only to
the case when the adversary holds a decryption key dkρ for an identity ρ that
does not satisfy both target identities rcv0 and rcv1 (see Eq. (1)). This is because
otherwise an adversary can submit a challenge (m,m, σ0, σ1, rcv, rcv) such that
σ0 �= σ1, and then ask for the decryption key dkρ for the identity ρ = rcv (i.e.,
the adversary’s identity satisfies the sender’s policy). Then, the adversary can
retrieve the challenge bit b by simply decrypting the challenge ciphertext c under
the target identity snd0.

The definition of authenticity intuitively says that an adversary cannot com-
pute a valid ciphertext under the identity σ, if it does not hold the corresponding
encryption key ekσ produced by the authority.

Definition 9 (Authenticity of IB-ME [2]). We say that an IB-ME Π satis-
fies authenticity if for all PPT adversaries A:

P
[

Gib-auth
Π,A (λ) = 1

] ≤ negl(λ) ,

where game Gib-auth
Π,A (λ) is defined in Fig. 1.

Note that the secret encryption key ekσ is needed only when authenticity
is required. For applications where authenticity is not required, we can simply
let ekσ = σ = SKGen(msk, σ) and Enc(ekσ, rcv,m) = Enc(σ, rcv,m). We also
observe that Definition 9 is slightly stronger than the definition of authenticity
given in [2]. In particular, the adversary is allowed to obtain the decryption key
dkσ for the identity σ = snd where snd is the receiver’s target identity included
in the forgery (c, ρ, snd).

3.3 A Stronger Flavor of Privacy

As we argue below, the above definition of privacy provides an unsatisfac-
tory level of security and does not match the intuitive privacy guarantee of
matchmaking encryption. In particular, Definition 8 guarantees privacy only
when the receiver does not hold a decryption key dkρ for an identity ρ that
allows to decrypt the challenge ciphertext. This is reminiscent of anonymous
IBE (where anonymity refers to secrecy of the sender’s identity). Indeed, we
can use an anonymous IBE Π ′ = (Setup′,KGen′,Enc′,Dec′) to build an IB-ME
Πbad = (Setup,SKGen,RKGen,Enc,Dec) as follows:

1. The IB-ME encryption algorithm Enc(ekσ, rcv,m) produces a cipher-
text c ←$ Enc′(rcv,m||σ) where ekσ = σ and (msk,mpk) ←$ Setup(1λ) =
Setup′(1λ).

2. The IB-ME decryption algorithm Dec(dkρ, snd, c) computes m||σ =
Dec(dkρ, c) where dkρ ←$ RKGen(msk, ρ) = KGen′(msk, ρ). Finally, it outputs
m if σ = snd. Otherwise, it returns ⊥.
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It is easy to see that the above IB-ME satisfies privacy as per Definition 8,
as security of the anonymous IBE Π ′ implies that Enc(ekσ0 , rcv0,m0) =
Enc′(rcv0,m0||σ0) ≈c Enc′(rcv1,m1||σ1) = Enc(ekσ1 , rcv1,m1). However, Πbad

does not meet the intuitive privacy guarantee of IB-ME. Suppose a receiver,
holding an identity ρ, tries to decrypt a ciphertext c computed as Enc′(rcv,m||σ)
where ρ = rcv. Regardless of the selected target identity snd, the receiver will
learn the sender’s identity σ by simply decrypting c using the decryption key
dkρ.

This gap is due to the fact that Definition 8 does not take into account the
case in which the receiver’s target identity snd is not satisfied by σ. Unfortu-
nately, this seems inherent in that when σ0 and σ1 are chosen by the adversary,
the attacker can simply try to decrypt the challenge ciphertext by choosing on
the fly a target identity snd = σ0 �= σ1. Ateniese et al. [2, Remark 1] noticed this
gap and informally argued that their IB-ME construction hides the message and
the sender’s identity to an honest receiver that uses an invalid target identity
snd. For readers familiar with [2], the latter follows by the fact that their con-
struction leverages a random oracle to derive a one-time key from the sender’s
identity σ. Intuitively, this allows to hide σ to an honest receiver that does not
evaluate the random oracle on the same input snd = σ (i.e., to a receiver that
does not choose the correct target identity snd = σ).

A Stronger Definition of Privacy. We introduce a stronger flavor of privacy,
which we dub enhanced privacy. Enhanced privacy captures privacy of IB-ME
according to every possible mismatch condition for the receiver. The main chal-
lenge is to capture the scenario in which the adversary wants to leak information
from a ciphertext c ←$ Enc(ekσb

, rcvb,mb) while holding a decryption key dkρ

such that ρ = rcvb for b ∈ {0, 1}. As explained in [2, Section 5], an adversary
that matches the target identity chosen by the sender, can always choose on the
fly a target identity snd such that snd = σ0 �= σ1 and leak the bit b by decrypting
the challenge ciphertext. In order to rule out the above trivial attack, our defi-
nition of enhanced privacy modifies the mismatch condition in such a way that
the sender’s identities σ0, σ1 are hidden when the adversary holds a decryption
key dkρ for the identity ρ = rcv. This does not allow the attacker to choose
snd = σ0 �= σ1, since σ0, σ1 are kept secret.

More formally, the security game for enhanced privacy (see Fig. 2) is identical
to that of privacy (see Fig. 1) except that the challenge sender’s attributes σ0 and
σ1 are replaced with two adversarial distributions ID0 and ID1. The challenger
privately samples (σ0, σ1) ←$ ID0 × ID1 and proceeds as usual by computing
c ←$ Enc(ekσb

, rcvb,mb) for b ←$ {0, 1}. To capture secrecy of σi for i ∈ {0, 1},
and avoid trivial attacks when the adversary holds dkρ such that ρ = rcvi,
we require the distributions IDi to have a non-trivial amount of min-entropy
H∞(IDi) ≥ ω(log(λ)). In particular, an adversary is considered valid if for every
identity ρ for which it knows the corresponding decryption key dkρ: (i) Either
ρ �= rcv0 and ρ �= rcv1, or (ii) the distributions ID0 and ID1 have a non-trivial
amount of min-entropy H∞(IDi) ≥ ω(log(λ)) for i ∈ {0, 1}, or (iii) ρ �= rcv0 and
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Fig. 2. Games defining enhanced privacy of IB-ME. Oracles O1, O2 are implemented
by SKGen(msk, ·), RKGen(msk, ·). Oracle Oi

3(m, rcv) is implemented by Enc(ekσi , rcv,m)
for i ∈ {0, 1}.

ID1 has a non-trivial amount of min-entropy H∞(ID1) ≥ ω(log(λ)), or (iv) ρ �=
rcv1 and ID0 has a non-trivial amount of min-entropy H∞(ID0) ≥ ω(log(λ)).

Definition 10 (Enhanced privacy of IB-ME). We say that an IB-ME Π
satisfies enhanced privacy if for all valid PPT adversaries A = (A1,A2):

∣
∣
∣
∣
P

[

Gib-priv+

Π,A (λ) = 1
]

− 1
2

∣
∣
∣
∣
≤ negl(λ) ,

where game Gib-priv+

Π,A (λ) is depicted in Fig. 2. Adversary A = (A1,A2) is called
valid if ∀ρ ∈ QO2 it satisfies the following invariant:

(ρ �= rcv0 ∧ ρ �= rcv1) ∨ (H∞(ID0),H∞(ID1) ≥ ω(log(λ))) (2)
∨ (ρ �= rcv0 ∧ H∞(ID1) ≥ ω(log(λ)))
∨ (ρ �= rcv1 ∧ H∞(ID0) ≥ ω(log(λ))).

Note that, in the second query phase, the adversary has oracle access to
Enc(ekσ0 , ·, ·) and Enc(ekσ0 , ·, ·). This is crucial in order to give the attacker the
possibility to obtain ciphertexts under arbitrary messages and target identities
when the identity σi is unknown (i.e., H∞(IDi) ≥ ω(log(λ))).

Remark 1. Observe that enhanced privacy (cf. Definition 10) is stronger than
privacy (cf. Definition 8). Indeed, enhanced privacy rules out all the adversaries
that choose two constant distributions ID0 = σ0 and ID1 = σ1 and always
play the security experiment with respect to the first mismatch condition (ρ �=
rcv0∧ρ �= rcv1) of Eq. (2). Those are all the adversaries ruled out by Definition 8.
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Remark 2. The contrived IB-ME Πbad described at the beginning of Sect. 3.3
does not satisfy enhanced privacy. To see this, consider the adversary that plays
the experiment Gib-priv+

Πbad,A
(λ) of Fig. 2 with respect to the second mismatch condi-

tion (H∞(ID0) ≥ ω(log(λ) ∧ H∞(ID1) ≥ ω(log(λ))) of Eq. (2) as follows:

– Output a challenge (m,m, rcv, rcv, ID0, ID1) such that ID0, ID1 have an
empty intersection (i.e., there does not exist an identity σ that is output by
both distributions) and H∞(ID0) ≥ ω(log(λ)), H∞(ID1) ≥ ω(log(λ)).

– Ask to O2(·) = RKGen(msk, ·) = KGen′(msk, ·) the decryption key dkρ for
ρ = rcv (observe that this is a valid query when H∞(ID0) ≥ ω(log(λ)) and
H∞(ID1) ≥ ω(log(λ))).

– Decrypt the challenge ciphertext c by executing m||σ = Dec′(dkρ, c) using the
decryption algorithm of the underlying IBE, and output b′ = 0 if σ ∈ ID0.
Otherwise, output b′ = 1.

Since the encryption algorithm Enc(ekσ, rcv,m) of Πbad encrypts a ciphertext by
running Enc′(rcv,m||σ) (see Item 1 in the description of Πbad) where Enc′ is the
encryption algorithm of the underlying IBE, the above adversary outputs b′ = b
with overwhelming probability.

4 Construction Without Random Oracles

In this section, we describe our constructions of IB-ME and prove their security.
We start by giving a direct construction of an IB-ME satisfying enhanced privacy
in the plain model. Hence, we show how to add authenticity generically via a
generic transform (while preserving enhanced privacy).

4.1 Achieving Privacy

Our construction is based on the anonymous IBE of Gentry [4]. At a high level, in
this scheme one encrypts a message m under the target identity rcv by computing
m · gs where s is sampled at random. During decryption, a receiver holding the
correct decryption key dkρ for ρ = rcv is able to compute the inverse g−s of
gs (by leveraging auxiliary information included in the ciphertext) and therefore
obtain the message. Our IB-ME leverages the homomorphic properties of the IBE
scheme to encrypt the message as m · gs · gσ, where gσ is output by a reusable
extractor Extx(σ). This way, a receiver also needs to choose the correct target
identity snd = σ to recompute gσ and recover m. Since our construction will not
meet authenticity directly, we will assume that σ = ekσ = SKGen(msk, σ) and
Enc(ekσ, rcv,m) = Enc(σ, rcv,m).

Construction 1. Let G and GT be groups of order p, and let e : G × G → GT

be a symmetric pairing, and let Ext : S × Zp → GT .

Setup(1λ): Sample random generators g ∈ G and α, y ←$ Zp. Compute gα =
gα ∈ G, and h = gy. Output mpk = (g, gα, h) and msk = (α, y).
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SKGen(msk, σ): Upon input msk = (α, y) and σ ∈ {0, 1}∗, return ekσ = σ.
RKGen(msk, ρ): Upon input msk = (α, y) and ρ ∈ Zp, sample rρ ∈ Zp and output

dkρ = (hρ, rρ), where hρ = g
y−rρ
α−ρ . If an indentity ρ ∈ Zp is queried multiple

times, we require RKGen to use the same value rρ (this can be accomplished
by leveraging a PRF).

Enc(ekσ, rcv,m): Upon input ekσ = σ ∈ {0, 1}∗, rcv ∈ Zp, and m ∈ GT , sample
s ←$ Zp, x ←$ S, compute gσ = Extx(σ), and return c = (c1, c2, c3, c4) where

c1 = (gα · g−rcv)s, c2 = e(g, g)s, c3 = x, c4 = m · e(g, h)−s · gσ.

Dec(dkρ, snd, c): Upon input dkρ = (hρ, rρ), snd ∈ {0, 1}∗, and c = (c1, c2, c3, c4),
return m = c4 · e(c1, hρ) · c

rρ

2 · g−1
snd where gsnd = Extc3(snd).

Correctness (cf. Definition 7) follows because ∀σ, rcv, ρ, snd ∈ Zp, (hρ, rρ) =
dkρ ←$ RKGen(msk, ρ) such that snd = σ and rcv = ρ, we have:

gsnd = Extc3(snd) = Extx(σ) = gσ, and

e(c1, hρ) · c
rρ

2 = e(gs(α−ρ), g
y−rρ
α−ρ ) · e(g, g)s·rρ = e(g, h)s.

The theorem below says that the above scheme satisfies enhanced privacy.
The proof of security leverages both the homomorphic properties and the cipher-
text structure of Gentry’s scheme. For this reason, our technique does not extend
directly to any anonymous IBE scheme.

Theorem 1. Assuming that Ext is an (ω(log(λ)), qext)-reusable-extractor, and
that the truncated decisional qabdhe-ABDHE problem is hard, then the IB-ME Π
from Construction 1 satisfies enhanced privacy, so long as qabdhe = qO2 + 1 and
qext = max{qO0

3
, qO1

3
} + 1 (where qO is the number of queries submitted to oracle

O in the game of Fig. 2).

Proof. For brevity, let Gib-priv+

Π,A (λ) = G(λ) be the experiment of Fig. 2. Recall
that, in order to be valid, the adversary A must satisfy at least one of the four
mismatch conditions given in Eq. (2); we define the events corresponding to each
condition below:

Mismatch1 : ∀ρ ∈ QO2 , ρ �= rcv0 ∧ ρ �= rcv1 (3)
Mismatch2 : H∞(ID0),H∞(ID1) ≥ ω(log(λ)) (4)
Mismatch3 : ∀ρ ∈ QO2 , ρ �= rcv0 ∧ H∞(ID1) ≥ ω(log(λ)) (5)
Mismatch4 : ∀ρ ∈ QO2 , ρ �= rcv1 ∧ H∞(ID0) ≥ ω(log(λ)). (6)

Lemma 1.
∣
∣
∣P

[

Gib-priv+

Π,A (λ) = 1
∣
∣
∣Mismatch1

]

− 1
2

∣
∣
∣ ≤ negl(λ).

Proof. We consider a sequence of hybrid experiments. For the rest of this proof,
we think of the experiments as conditioned on the event Mismatch1 of Eq. (3).
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H1(λ): This is identical to G(λ). Without loss of generality we assume the
adversary A does not make any query to oracles {Oi

3} for i ∈ {0, 1}. This
is because, according to Eq. (3), A can choose two constant distributions
σ0 = ID0, σ1 = ID1 and simulate the oracle Oi

3(m, rcv) as Enc(ekσi
, rcv,m)

where ekσi
←$ O1(1λ, σi), for i ∈ {0, 1}.

H2(λ): Same as H1(λ), except that, after receiving the challenge (m0,m1, rcv0,
rcv1, σ0 = ID0, σ1 = ID1) from the adversary (recall we assume that
ID0, ID1 are constant distributions), the challenger produces the challenge
ciphertext c∗ = (c∗

1, c
∗
2, c

∗
3, c

∗
4) where c∗

4 is computed as

c∗
4 = (mb · g∗

σb
)/(e(c∗

1, hrcvb
) · c∗

2
r∗
rcvb ) (7)

for (h∗
rcvb

, r∗
rcvb

) ←$ RKGen(msk, rcvb) and g∗
σb

= Extc∗
3
(σb). Observe that the

value 1/(e(c∗
1, hrcvb

) · c∗
2
r∗
rcvb ) in Eq. (7) can be computed by running e(g, h)−s

as in the decryption algorithm.
H3(λ): Same as H2(λ), except for the following differences.

Setup: The challenger samples a random polynomial f(x) ←$ Zp[x] of degree
q = qabdhe, α ←$ Zp, and sets gα = gα and h = gf(α). Then, it returns
mpk = (g, gα, h) and keeps msk = (α, y) where y = f(α).

RKGen = O2: On input ρ ∈ Zp for RKGen = O2, the challenger defines the
polynomial Fρ(x) = (f(x) − f(ρ))/(x − ρ) of degree q − 1 and computes
hρ = gFρ(α) and rρ = f(ρ). Finally, it returns dkρ = (hρ, rρ).

Challenge: The challenger receives the challenge (m0,m1, rcv0, rcv1, σ0 =
ID0, σ1 = ID1). It samples b ←$ {0, 1} and it defines the degree q + 1
polynomial

F ∗(x) =
xq+2 − rcvq+2

b

x − rcvb
=

q+1
∑

i=0

F ∗
i · xi,

where F ∗
i is the i-th coefficient of F ∗. It computes the challenge cipher-

text c∗ = (c∗
1, c

∗
2, c

∗
3, c

∗
4) as c∗

1 = g′αq+2 · g′−rcvq+2
b and c∗

2 = e(g′, g)αq+2 ·
e(g′,

∏q
i=0(g

αi

)F ∗
i ), where g′ ←$ G, and c∗

3, c
∗
4 are computed as described

in experiment H2(λ).
H4(λ): Same as H3(λ), except that the challenger generates c∗

1 and c∗
2 in the chal-

lenge ciphertext using different randomness. More in details, the challenger
computes c∗

1 = (gα ·grcvb)s1 and c∗
2 = e(g, g)s2 for s1 ←$ Zp and s2 ←$ Zp\{s1}.

Claim. {H1(λ)}λ∈N ≡ {H2(λ)}λ∈N.

Proof. The difference between H1(λ) and H2(λ) is purely conceptional. Hence,
the claim follows.

Claim. {H2(λ)}λ∈N ≡ {H3(λ)}λ∈N.

Proof. We show that H2(λ) and H3(λ) are identically distributed. The dis-
tribution of mpk and msk in H3(λ) is perfectly simulated since f is a ran-
dom polynomial. The challenger evaluates the polynomial f(x) on points I =
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{α, rcvb} ∪ QO2 . Let q = qabdhe. Since |I| ≤ q+1 and f are random polynomials
of degree q, we have that {f(i)}i∈I are uniform and independent as in H2(λ).

As for the challenge ciphertext, note that c∗
3, c

∗
4 are computed in the same

way in both experiments. Hence, we focus on c∗
1, c

∗
2. In H3(λ) we can write c∗

1

and c∗
2 as follows

c∗
1 = (g′αq+2 · g′−rcvq+2

b ) = gt(α−rcvb)F
∗(α)

c∗
2 = e(g′, g)αq+2 · e(g′,

q
∏

i=0

(gαi

)F ∗
i ) = e(gt, gF ∗(α))

where g′ = gt. By setting the randomness s = t · F ∗(α) (note that s is random
since g′ is random) we obtain that c∗

1, c∗
2 of H3(λ) are identically distributed to

the ones of H2(λ). This concludes the proof.

Claim. {H3(λ)}λ∈N ≈c {H4(λ)}λ∈N.

Proof. For the sake of clarity, let q = qabdhe. Assume there exists a distinguisher D
that is able to distinguish between H3(λ) and H4(λ) with non-negligible advan-
tage. We build an adversary A that solves the q-ABDHE problem. A receives
as input (g′, g′αq+2

, g, gα, . . . , gαq

, Z) and proceeds as in H3(λ) except for the
following differences.

– At setup, it samples a random polynomial f(x) ←$ Zp[x] of degree q and sets
h = gf(α). Note that h can be computed without knowing α using the values
g, gα, . . . , gαq

. Send mpk = (g, gα = gα, h) to D. Note that the distribution
of mpk is perfectly simulated and this implicitly defines the secret key msk =
(α, y) where y = f(α).

– On input ρ ∈ Zp for RKGen = O2, it answers as in H3(λ) except that hρ =
gFρ(α) is computed without knowing α using g, gα, . . . , gαq

. Note that dkρ is
a correctly simulated decryption key.

– During the challenge phase, it receives (m0,m1, rcv0, rcv1, σ0 = ID0, σ1 =
ID1). Hence, A samples b ←$ {0, 1} and defines the degree q + 1 polynomial

F ∗(x) =
xq+2 − rcvq+2

b

x − rcvb
=

q+1
∑

i=0

F ∗
i · xi

as in H3(λ). Finally, A computes the challenge ciphertext c∗ = (c∗
1, c

∗
2, c

∗
3, c

∗
4)

as in H3(λ) except that it sets c∗
1 = g′αq+2 · g′−rcvq+2

b and c∗
2 = Z · e(g′,

∏q
i=0

(gαi

)F ∗
i ). Note that c∗

1, c
∗
2 can be computed using the input for the q-ABDHE

problem.

As in the proof of the previous claim, if c∗
1, c

∗
2 are correctly distributed, so are

c∗
3, c

∗
4. We write c∗

1 as c∗
1 = g′αq+2 · g′−rcvq+2

b = gt(α−rcvb)F
∗(α) = g(α−rcvb)s1 , for

s1 = t · F ∗(α). Note that s1 is random since g′ is a random generator of G. If
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Z = e(g′, g)αq+1
, the ciphertext c∗ is distributed as in H3(λ) since c∗

1 and c∗
2 are

computed using the same randomness. Indeed, we have

c∗
2 = Z · e(g′,

q
∏

i=0

(gαi

)F ∗
i ) = e(gt, gF ∗(α)) = e(g, g)s1 .

On the other hand, if Z ←$ GT so is c∗
2 as in H4(λ). This concludes the proof.

In the last experiment, c∗
1, c∗

2, and c∗
3 look like three random elements in

G, GT , and S, respectively. Since c∗
1 and c∗

2 are random, the inequalities c∗
2 �=

e(c∗
1, g)

1
α−rcv0 and c∗

2 �= e(c∗
1, g)

1
α−rcv1 hold with overwhelming probability. When

the above inequalities hold, the value e(c∗
1, h

∗
rcvb

) ·(c∗
2)

r∗
rcvb (used to compute c∗

4) is
uniformly distributed in GT since r∗

rcvb
is random and independent from the A’s

view (since A can not ask for decryption key dkrcv0 and dkrcv1). As a consequence,
the tuple c∗ = (c∗

1, c
∗
2, c

∗
3, c

∗
4) does not leak any information about b (except with

negligible probability). Hence, Lemma1 follows by combining the above claims.

Lemma 2.
∣
∣
∣P

[

Gib-priv+

Π,A (λ) = 1
∣
∣
∣Mismatch2

]

− 1
2

∣
∣
∣ ≤ negl(λ).

Proof. Without loss of generality, assume qOb
3

≥ qO1−b
3

. Hence, we have qext =
qOb

3
+1. We consider a sequence of hybrid experiments. For the rest of this proof,

we think of the experiments as conditioned on the event Mismatch2 of Eq. (4).

H1(λ): This is identical to G(λ).
H2(λ): Same as H1(λ), except that the challenger changes how it produces the

challenge and the answers of oracles O0
3 and O1

3 for i ∈ {0, 1}. Let L0 and L1

be two empty sets:
– When computing the challenge c∗ = (c∗

1, c
∗
2, c

∗
3, c

∗
4) for bit b, the challenger

adds c∗
3 to Lb.

– On input (m, rcv) for Oi
3, the challenger computes c = (c1, c2, c3, c4) as in

H1(λ). Then, if c3 ∈ Li, the challenger aborts. Otherwise, it adds c3 to
Li and proceeds as in H1(λ).

H3(λ): Same as H2(λ), except that the challenger changes how it produces the
challenge and the answers of oracles Ob

3 where b is the challenge bit.
– When computing the challenge c∗ = (c∗

1, c
∗
2, c

∗
3, c

∗
4) for bit b, the challenger

samples g∗
σb

at random from GT .
– On input (m, rcv) for Ob

3, the challenger samples s ←$ Zp and computes
(c1, c2, c3) under the randomness s (note that c1, c2, c3 are computed as
usual). Then, it samples gσb

←$ GT and it computes c4 = m·e(g, h)−s ·gσb
.

H4(λ): Same as H3(λ), except that the challenger changes the answers of oracles
O1−b

3 where b is the challenge bit.
– On input (m, rcv) for O1−b

3 , the challenger samples s ←$ Zp and computes
(c1, c2, c3) under the randomness s (note that c1, c2, c3 are computed as
usual). Then, it samples gσ1−b

←$ Zp and it computes c4 = m · e(g, h)−s ·
gσ1−b

.
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H5(λ): Same as H4(λ), except that, after receiving the challenge (m0,m1, rcv0,
rcv1, ID0, ID1) from the adversary, the challenger produces the challenge
ciphertext c∗ = (c∗

1, c
∗
2, c

∗
3, c

∗
4) where c∗

4 is computed as

c∗
4 = (mb · g∗

σb
)/(e(c∗

1, hrcvb
) · c∗

2
r∗
rcvb ), (8)

where (h∗
rcvb

, r∗
rcvb

) ←$ RKGen(msk, rcvb) and g∗
σb

←$ GT . Note that the value
1/(e(c∗

1, h
∗
rcvb

) · c∗
2
r∗
rcvb ) in Eq. (8) can be computed by running e(g, h)−s

in the decryption algorithm. The same approach is used to answer the
queries submitted to O0

3 and O1
3. On input (m, rcv) for Oi

3 for i ∈ {0, 1},
the challenger computes c = (c1, c2, c3, c4) except that c4 is computed as
c4 = (m · gσi

)/(e(c1, hrcv) · c2
rrcv), where (hrcv, rrcv) ←$ RKGen(msk, rcv) and

gσi
←$ GT

H6(λ): Same as H5(λ), except for the following differences.
Setup: The challenger samples a random polynomial f(x) ←$ Zp[x] of degree

q = qabdhe, α ←$ Zp, and sets gα = gα and h = gf(α). It returns mpk =
(g, gα, h) and keeps msk = (α, y) where y = f(α).

RKGen(1λ, ·) = O2(·): On input ρ ∈ Zp for RKGen = O2, the challenger
defines the polynomial Fρ(x) = (f(x) − f(ρ))/(x − ρ) of degree q − 1 and
computes hρ = gFρ(α) and rρ = f(ρ) Finally, it returns dkρ = (hρ, rρ).

Challenge: The challenger receives the challenge (m0,m1, rcv0, rcv1, ID0,
ID1). It samples b ←$ {0, 1} and it defines the degree q + 1 polynomial

F ∗(x) =
xq+2 − rcvq+2

b

x − rcvb
=

q+1
∑

i=0

F ∗
i · xi,

where F ∗
i is the i-th coefficient of F ∗. It computes the challenge ciphertext

c∗ = (c∗
1, c

∗
2, c

∗
3, c

∗
4) as c∗

1 = g′αq+2 ·g′−rcvq+2
b and c∗

2 = e(g′, g)αq+2 ·e(g′,
∏q

i=0

(gαi

)F ∗
i ), where g′ ←$ G, and c∗

3, c
∗
4 are computed as described in experi-

ment H5(λ).
Enc(ekσi

, ·, ·) = Oi
3(·, ·): On input (m, rcv) for Enc = Oi

3, the challenger gen-
erates the decryption key dkrcv = (hrcv, rrcv) ←$ O2(1λ, rcv) and computes
c = (c1, c2, c3, c4) as in H5(λ), i.e.

c1 = (gα · g−rcv)s, c2 = e(g, g)s, c3 = x

c4 = (m · gσi
)/(e(c1, hrcv) · c2

rrcv),

where s ←$ Zp, gσi
←$ GT .

H7(λ): Same as H6(λ), except that the challenger generates c∗
1 and c∗

2 in the chal-
lenge ciphertext using different randomness. More in details, the challenger
compute c∗

1 = (gα ·grcvb)s1 and c∗
2 = e(g, g)s2 for s1 ←$ Zp and s2 ←$ Zp\{s1}.

Claim. {H1(λ)}λ∈N ≈c {H2(λ)}λ∈N.

Proof. The claim follows by simply observing that each time c3 is sampled at
random. Hence, since the adversary submits at most a polynomial number of
queries to oracles O0

3 and O1
3, the probability that c3 ∈ L0 or c3 ∈ L1 is negligible.
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Claim. {H2(λ)}λ∈N ≈c {H3(λ)}λ∈N.

Proof. Assume there exists D telling apart the two experiments with non-
negligible advantage. We build an adversary A that breaks the security of the
reusable extractor.

1. A proceeds as in experiment H2(λ) until the challenge phase.
2. During the challenge phase, it receives (m0,m1, rcv0, rcv1, ID0, ID1). Hence,

A samples b ←$ {0, 1} and sends IDb to the challenger. It receives (x1, . . . ,
xqext , g1, . . . , gqext), where A has to determine if gi = Extxi

(σb) for σb ←$ IDb.
Hence:

– It samples σ1−b ←$ ID1−b and it creates an empty set Lb.
– It computes c∗ = (c∗

1, c
∗
2, c

∗
3, c

∗
4) as in H2(λ) except that c∗

3 = x1 and
c∗
4 = mb · e(g, h)s∗ · g1, where s∗ is the randomness used to compute c∗

1

and c∗
2.

3. During the second query phase, the adversary answers to the queries submit-
ted as usual except for Ob

3:
– On input the i-th query (m, rcv) for Ob

3, the adversary computes c =
(c1, c2, c3, c4) as in H2(λ) except that c3 = xi and c4 = m · e(g, h)−s · gi,
where s is the randomness used to compute c1 and c2.

Note that qext = qOb
3

and H∞(IDb) ≥ ω(log(λ)). It is easy to see that if
(g1, . . . , gqext) = (Extx1(σb), . . . ,Extxqext

(σb)) then A perfectly simulates experi-
ment H2(λ). On the other hand, if (g1, . . . , gqext) are random elements, then A
perfectly simulates H3(λ). Hence, A breaks the security of the reausable extrac-
tors with the same advantage of D. This concludes the proof.

Claim. {H3(λ)}λ∈N ≈c {H4(λ)}λ∈N.

Proof. Identical to the analogous step in the proof of Lemma 1, and therefore
omitted.

Claim. {H4(λ)}λ∈N ≡ {H5(λ)}λ∈N.

Proof. The difference between the two hybrids is purely conceptional. Hence,
the claim follows.

Claim. {H5(λ)}λ∈N ≡ {H6(λ)}λ∈N.

Proof. Similarly to the proof of a previous claim, we have that the setup phase,
the challenge phase, and the queries to oracle O2 are perfectly simulated. It
follows that the answers returned by Oi

3 in H5(λ) are identical to the ones in
H6(λ), for i ∈ {0, 1}. This concludes the proof.

Claim. {H6(λ)}λ∈N ≈c {H7(λ)}λ∈N.

Proof. Similar to the proof of the corresponding step in Lemma 1. The only
differences are that oracles Oi

3 must be simulated as defined in H5(λ) and that
the challenge ciphertext c = (c∗

1, c
∗
2, c

∗
3, c

∗
4) can be simulated by sampling g∗

σb

uniformly at random from GT as in H5(λ).
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In the last experiment, c∗
1, c∗

2, c∗
3 are random elements in G, GT , and S,

respectively. Moreover, since g∗
σb

(used to compute c∗
4) is sampled at random, we

conclude that the tuple c∗ = (c∗
1, c

∗
2, c

∗
3, c

∗
4) does not leak any information about

b (except with negligible probability). Hence, Lemma 2 follows by combining the
above claims.

Lemma 3.
∣
∣
∣P

[

Gib-priv+

Π,A (λ) = 1
∣
∣
∣Mismatch3

]

− 1
2

∣
∣
∣ ≤ negl(λ).

Proof. As in the proof of Lemma 2, we assume qOb
3

≥ qO1−b
3

. Hence, we have
qext = qOb

3
+ 1. We consider a sequence of hybrid experiments, where Hb(λ) is

the experiment with challenge bit is b ∈ {0, 1}. For the rest of this proof, we
think of the experiments as conditioned on the event Mismatch3 of Eq. (5).

H0
1(λ): This is identical to G(λ) with challenge bit b = 0. Without loss of
generality we assume the adversary A does not make any query to oracles
O0

3. Similarly to H1(λ) in the proof of Lemma 1, according to Eq. (5), the
adversary A can choose a constant distribution σ0 = ID0 and simulate the
oracle O0

3(m, rcv) as Enc(ekσ0 , rcv,m) where ekσ0 ←$ O1(1λ, σ0). Observe that
H0

1(λ) is identical to H1(λ) in the proof of Lemma 1, except that we fix the
challenge bit b = 0 and we assume only σ0 = ID0 as constant distribution.

H0
i (λ), for i ∈ {2, 3, 4}: Each hybrid H0

i (λ) is defined as Hi(λ) in the proof of
Lemma 1 for i ∈ {2, 3, 4} except that we fix the bit b = 0 and, similarly to
H0

1(λ) we assume only σ0 = ID0 is constant (and thus there are no queries
submitted to O0

3).
H0

5(λ): Same as H0
4(λ) except that the challenger changes how it produces the

answers of oracle O1
3. Let L1 be an empty set:

– On input (m, rcv) for O1
3, the challenger computes c = (c1, c2, c3, c4) as in

H0
1(λ). Then, if c3 ∈ L1, the challenger aborts. Otherwise, it adds c3 to

L1 and proceeds as in H0
4(λ).

Note that H0
5(λ) is defined similarly to H2(λ) in the proof of Lemma 2.

H0
6(λ): Same as H0

5(λ) except that the challenger changes the answers of oracles
O1

3 as follows.
– On input (m, rcv) for O1

3, the challenger computes (c1, c2, c3, c4) as in
H0

5(λ) except that gσ1 ←$ GT (note that gσ1 is used to compute c4).
Note that H0

6(λ) is defined similarly to H4(λ) in the proof of Lemma 2.
H1

i (λ), for i ∈ {7, 8, 9, 10, 11, 12, 13}: Each hybrid H1
i (λ) is defined as Hi−4(λ)

in the proof of Lemma 2 except that we fix the bit b = 0 and, similarly to
H0

1(λ) we assume only σ0 = ID0 is constant (and thus there are no queries
submitted to O0

3). Note that H1
5(λ) is identical to G(λ) with challenge bit

b = 1.

Claim. {H0
1(λ)}λ∈N ≈c {H0

4(λ)}λ∈N.

Proof. Identical to the proof of a previous claim, except that we set the challenge
bit b = 0 and we simulate O1

3 as defined in Construction 1. In particular, one can
show:

H0
1(λ) ≡ H0

2 ≡ H0
3(λ) ≈c H0

4(1
λ).
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Claim. {H1
7(λ)}λ∈N ≈c {H1

13(λ)}λ∈N.

Proof. Identical to the proof of a previous claim, except that we set the challenge
bit b = 1. In particular, one can show:

H1
7(1

λ) ≈c H1
8 ≈c H1

9(1
λ) ≈c H1

10(1
λ) ≡ H1

11(1
λ) ≡ H1

12(1
λ) ≈c H1

13(1
λ).

Claim. {H0
4(λ)}λ∈N ≈c {H0

5(λ)}λ∈N.

Proof. Similar to the proof of a previous claim and therefore omitted.

Claim. {H0
5(λ)}λ∈N ≈c {H0

6(λ)}λ∈N.

Proof. Similar to the proof of a previous claim and therefore omitted.

Claim. {H0
6(λ)}λ∈N ≡ {H1

13(λ)}λ∈N.

Proof. By leveraging the same argument used at the end of the proof of Lemma
1 and Lemma 2, we conclude that in both experiments H0

6(λ) and H1
13(λ) the

challenge ciphertext c∗ = (c∗
1, c

∗
3, c

∗
3, c

∗
4) is uniform in G1×G2×S×GT to the eyes

of the adversary. Hence, the two hybrid experiments are identically distributed.
This concludes the proof.

Lemma 4.
∣
∣
∣P

[

Gib-priv+

Π,A (λ) = 1
∣
∣
∣Mismatch4

]

− 1
2

∣
∣
∣ ≤ negl(λ).

Proof. The proof is symmetrical to that of Lemma 3, and therefore omitted.

Theorem 1 now follows by combining the above lemmas.

4.2 Adding Authenticity

We show how to add authenticity to any IB-ME scheme satisfying enhanced
privacy. Without loss of generality, we assume that the encryption keys ekσ of
the underlying IB-ME are defined as in Construction 1.

Construction 2. Let Π = (Setup,SKGen,RKGen,Enc,Dec) be an IB-ME with
encryption keys ekσ of the form ekσ = σ, Π ′ = (KGen,Sign,Ver) be a signature
scheme and Π ′′ = (I,P,V) be a NIZK argument for the following NP relation:

R =

{

((mpk, pk, c), (σ, s)) :
∃rcv,m, r, s.t.

c = Enc(mpk, σ, rcv,m; r) ∧ Ver(pk, σ, s) = 1

}

.

Consider the following IB-ME Π∗ = (Setup∗,SKGen∗,RKGen∗,Enc∗,Dec∗).

Setup∗(1λ): Output msk∗ = (msk, sk) and mpk∗ = (mpk, ω, pk) where (msk,mpk)
←$ Setup(1λ), (sk, pk) ←$ KGen(1λ) and ω ←$ I(1λ).

SKGen∗(msk, σ): Upon input msk∗ = (msk, sk) and σ ∈ {0, 1}∗, return ekσ =
(s, σ) where s = Sign(sk, σ).
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RKGen∗(msk, ρ): Upon input msk∗ = (msk, sk) and ρ ∈ {0, 1}∗, return dkρ ←$

RKGen(msk, ρ).
Enc∗(ekσ, rcv,m): Upon input ekσ = (s, σ), rcv ∈ {0, 1}∗, and m ∈ {0, 1}∗, output

c∗ = (c, π) where c ←$ Enc(σ, rcv,m) and π ←$ P(ω, (mpk, pk, c), (σ, s)).
Dec∗(dkρ, snd, c): Upon input dkρ, snd ∈ {0, 1}∗, and c∗ = (c, π), output m =

Dec(dkρ, snd, c) if V(ω, (mpk, pk, c), π) = 1. Otherwise, return ⊥.

Correctness is immediate. As for security, we establish the following results.

Theorem 2. If Π satisfies enhanced privacy and Π ′′ satisfies adaptive multi-
theorem zero knowledge, then the IB-ME scheme Π∗ from Construction 2 satis-
fies enhanced privacy.

Proof. Consider the following hybrid experiments.

H0(λ): This is identical to the experiment Gib-priv+

Π∗,A∗ (λ).
H1(λ): Same as H0(λ) but now the challenger uses the simulator Z = (Z0,Z1)

to generate the CRS and to compute the proofs. Formally, the challenger
runs (ω, ζ) ←$ Z0(1λ) at the beginning of the experiment; when the adver-
sary outputs the challenge (m0,m1, rcv0, rcv1, ID0, ID1), the challenger gen-
erates the ciphertext c∗ = (c, π), where c ←$ Enc∗(σb, rcvb,mb), σb ←$ IDb,
and π ←$ Z1(ζ, (mpk, pk, c)).

Claim. {H0(λ)}λ∈N ≈c {H1(λ)}λ∈N

Proof. The claim follows from the adaptive multi-theorem zero-knowledge prop-
erty of the NIZK. The reduction is standard, and therefore omitted.

Claim. |Pr[H1(λ) = 1] − 1
2 | ≤ negl(λ).

Proof. The claim follows from the enhanced privacy property of the IB-ME. The
reduction is standard, and therefore omitted.

By combining the above claims, Construction 2 satisfies enhanced privacy.

Theorem 3. If Π ′ is EUF-CMA and Π ′′ satisfies knowledge soundness, then
the IB-ME scheme Π∗ from Construction 2 satisfies authenticity.

Proof. Assume that Construction 2 does not satisfy authenticity, i.e., there exists
a PPT attacker A∗ that has a non negligible advantage in experiment Gib-auth

Π∗,A∗(λ).
We build an attacker A′ that breaks the EUF-CMA security of the signature
scheme Π ′. Attacker A′ proceeds as follows:

1. Upon receiving pk from the challenger, generate (msk,mpk) ←$ Setup(1λ),
(ω, ξ) ←$ K0(1λ) and forward mpk∗ = (mpk, pk, ω) to A∗.

2. A′ answers to the incoming queries as follows:
– On input σ ∈ {0, 1}∗ for O∗

1 = SKGen∗, forward the query σ to the signing
oracle in order to obtain a valid signature s. Finally, return to A∗ the key
ekσ = (s, σ).
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– On input ρ ∈ {0, 1}∗ for O∗
2 = RKGen∗, return dkρ ←$ RKGen(msk, ρ) to

A∗.
3. Upon receiving the forgery (c∗ = (c, π), ρ∗, snd∗) check whether V(ω, (mpk, pk,

c), π) = 0 or Dec(dkρ∗ , snd∗, c) = ⊥ where dk∗
ρ ←$ RKGen(msk, ρ∗). If true,

abort. Otherwise, extract (s∗, σ∗) ←$ K1(ξ, (mpk, pk, c), π) and return (σ∗, s∗)
as forgery to the challenger.

Except with negligible probability, the oracle queries of A∗ are perfectly simu-
lated by A′. This is because the CRS ω is computed via K0 in the reduction, which
yields a CRS that is computationally close to an honestly generated CRS. This
means that with non-negligible probability the ciphertext c∗ = (c, π) returned by
A∗ as a forgery for snd∗ is valid. Now, by knowledge soundness of the underlying
NIZK proof, except with negligible probability, we must have that s∗ is a valid
signature for σ∗ (note that σ∗ = snd∗) with respect to the public key pk sampled
by the challenger. Furthermore, this is a valid forgery because A∗ never queried
O1 on the identity σ∗ which implies that A′ has never asked for a signature of
σ∗ to the challenger. Hence, (σ∗, s∗) is a valid forgery for the EUF-CMA game.
This concludes the proof.
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Abstract. A forward-secure public-key encryption (PKE) scheme pre-
vents eavesdroppers from decrypting past ciphertexts in order to mitigate
the damage caused by a potential secret key compromise. In prior works,
forward security in a non-interactive setting, such as forward-secure
PKE, is achieved by constantly updating (secret) keys. In this paper, we
formalize the notion of blockchain-based forward-secure PKE and show
the feasibility of constructing a forward-secure PKE scheme without key
update (i.e. both the public key and the secret key are immutable),
assuming the existence of a proof-of-stake blockchain with the distin-
guishable forking property introduced by Goyal et al. (TCC 2017). Our
construction uses the proof-of-stake blockchain as an immutable decryp-
tion log and witness encryption by Garg et al. (STOC 2013) to ensure
that the same ciphertext cannot be decrypted twice, thereby render-
ing a compromised secret key useless with respect to decryption of past
ciphertext the legitimate user has already decrypted.

Keywords: Public-key encryption · Forward security · Blockchain

1 Introduction

Forward security for public-key encryption is a security notion that ensures that
a secret key compromise does not affect the confidentiality of past ciphertexts.
More specifically, even if Alice’s long-term secret key skA is compromised by an
eavesdropper Eve, who observed and recorded ciphertexts sent to Alice in the
past, forward security guarantees that Eve does not learn the secrets required
for decrypting these past ciphertexts (i.e. skA is insufficient to decrypt).

While forward security in an interactive setting (e.g. key exchange protocols),
can be achieved relatively easily by generating ephemeral secrets that are erased
when no longer needed, this is harder in a non-interactive setting. However, one
strategy for achieving forward security in a non-interactive setting, is to con-
stantly update or erasing long term secrets. For example, a näıve approach to
obtaining forward-secure PKE is generating a series of one-time public/secret
c© Springer Nature Switzerland AG 2021
A. Adhikari et al. (Eds.): INDOCRYPT 2021, LNCS 13143, pp. 436–461, 2021.
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key pairs; once a key pair has been used, erase the secret key as soon as possible
to ensure that an adversary cannot learn this key in a potential future compro-
mise. The disadvantage of this approach is that a sender needs to update Alice’s
public key if all of the key pairs have been used, and furthermore needs to be
aware of which keys Alice has already used and erased. This makes the näıve
approach impractical, but more practical approaches to forward security have
been developed, which we will briefly outline below.

Canetti et al. [8] formally introduced forward-secure PKE by extending the
definition of PKE with a key update algorithm. In their scheme, the encryption
algorithm takes as input a time period along with the receiver’s public key and
a message. The ciphertext is associated with the specified time period. The key
update algorithm takes as input a secret key sk and outputs an updated secret
key sk′ (the public key pk remains the same). Even if an adversary compromises
sk′, they cannot decrypt ciphertexts in the prior periods (and thus provides
forward security).

Green et al. [16] presented a fine-grained forward-secure (aka. absolute for-
ward security [6]) encryption scheme called puncturable encryption. It introduces
a key update algorithm similar to [8], but allows revoking a specific ciphertext,
that is, the key update algorithm outputs an updated secret key which can be
used to decrypt ciphertexts except the ciphertext given to the algorithm.

While interactive by definition, the recent work [2,11,18] on ensuring forward
security of 0-RTT key exchange involves techniques that can be used to imple-
ment forward security for non-interactive primitives such as PKE. The idea
behind 0-RTT key exchange, introduced in such as TLS 1.3 [22], is to enable
clients to send encrypted data in their first message using pre-shared secrets.
This essentially corresponds to a non-interactive encryption for the server, and
to provide forward security of this data, is almost equivalent to constructing a
forward-secure PKE (e.g. see the bloom filter encryption in [11]).

To the best of our knowledge, forward security in a non-interactive setting
such as PKE, has only been achieved by introducing key update [2,8,11,16,
18,21]. This seems natural, since in an ordinary PKE, if an eavesdropper Eve
compromises the secret key sk, she can decrypt any ciphertext c by simply
running the decryption algorithm Dec to obtain m ← Dec(sk, c). Hence, in order
to achieve forward security, it is natural to prevent Eve from compromising an
unmodified secret key. In the key update approach, we update or partially break
the secret key sk(i) to derive a new secret key sk(i+1) which cannot be used for
decrypting past (or already decrypted) ciphertexts, and then erase the old key
sk(i).

1.1 Our Contribution

In this paper, we give a feasibility result of a forward-secure encryption scheme
without key update, i.e. both the public key and the secret key remain unchanged
like ordinary (non-forward-secure) PKE. To achieve this, we allow the PKE
scheme to make use of a blockchain for encryption and decryption of messages.
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Firstly, we note that the standard definitions of correctness and (forward)
security are insufficient for capturing a setting in which the PKE scheme depends
on a blockchain. This is due to the ability of an adversary to observe any infor-
mation posted to the blockchain when encrypting or decrypting messages, and
the ability to post maliciously crafted blocks to the blockchain, which might
prevent an honest user from correctly decrypting a ciphertext. Hence, we appro-
priately extend these definitions. Our forward security notions are obtained by
extending the standard IND-CPA security notion for ordinary PKE with two
additional oracles. The first oracle, Leak, captures secret key leakage that hap-
pens after the honest user decrypts the challenge ciphertext. The second oracle,
HonestDec, captures the information leakage an adversary can observe on the
blockchain when an honest user decrypts a ciphertext. For the full details of our
security definition, see Sect. 4.

Our construction of a forward-secure PKE without key update, assumes the
existence of a proof-of-stake blockchain which satisfies properties described in
[14]. We combine this with witness encryption, which in general allows a plaintext
to be encrypted under an NP statement instead of a public encryption key, and
anyone in possession of a witness for the statement, will be able to decrypt. In our
construction, we use witness encryption to tie a ciphertext to information posted
by the decryptor to the blockchain, and thereby turn the blockchain into an
immutable decryption log that only allows a ciphertext to be decrypted once. In
other words, like puncturable encryption [16], our construction implements fine-
grained forward security which removes the ability to decrypt on a ciphertext-by-
ciphertext basis, as opposed to the (standard) more coarse approach of revoking
the ability to decrypt any ciphertext constructed in the time period between
key updates (we discuss security further in Sect. 4). Note that while encryptor
and decryptor are required to interact with the blockchain protocol to obtain
an updated view of the blockchain, the communication between the two remains
non-interactive: once the encryptor has created a ciphertext based on his current
view of the blockchain, no further communication is required on his part and he
can go offline without affecting the decryptor’s ability to decrypt.

Specifically, the pair of public key and secret key in our construction is sim-
ply that of a digital signature scheme. The encryption algorithm uses witness
encryption to encrypt a message for an NP statement capturing that a certain
type of message signed by the receiver has been posted to the blockchain. The
decryption algorithm generates an ephemeral secret esk, posts a signed message
associated with esk to the blockchain, which will allow the decryption of the
ciphertext using the relevant sequence of blocks on the blockchain and esk as
a witness (decryption key). Immediately after decryptions, the decryption algo-
rithm erases esk which ensures that an adversary compromising the secret key,
will not be able to decrypt as they don’t know esk.

Since our construction uses a simple key pair of a digital signature scheme and
these are immutable, the size of the keys is obviously independent of the num-
ber of time periods or decryptions unlike existing forward-secure PKE schemes
[8,16]. Fixed immutable keys are furthermore an interesting property from an
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application point of view. For example, it is undesirable to use a fine-grained
forward-secure PKE scheme with key updates in a scenario where the decryp-
tion key is used by multiple devices, such as laptops and smartphones, as keys
would have to be synchronized to maintain fine-grained forward security. This
concern is alleviated by fixed immutable secret keys. Lastly, we note that our
construction enjoys some interesting security properties in addition to forward
security, such as secret key leakage detection and a variant of post-compromise
security [9]. We will discuss these benefits in detail in Sect. 5.

2 Preliminaries

In this section, we introduce building blocks and their security definitions.
Besides the primitives defined below, we make use of an EUF-CMA secure sig-
nature scheme Sig = (Sig.KGen,Sig.Sign,Sig.Ver), and a one-way hash function
H : {0, 1}n → {0, 1}m. Due to space limitations, we do not include the standard
definitions of these, but defer these to the full version of the paper.

2.1 Witness Encryption

Witness Encryption is a type of encryption introduced by Garg et al. [12]. Instead
of a pair of public and private keys, in witness encryption, a plaintext is encrypted
with respect to an NP statement x and the ciphertext can be decrypted with
the corresponding witness w.

Definition 1 (Witness Encryption [12]). A witness encryption scheme WE
for NP language L (with witness relation R) is a tuple of algorithms (WE.Enc,
WE.Dec).

– c ← WE.Enc(1λ, x,m): The encryption algorithm WE.Enc takes as input a
string x, and a message m, and outputs a ciphertext c.

– m/⊥ ← WE.Dec(c, w): The decryption algorithm WE.Dec takes as input a
ciphertext c, and a string w, and outputs a message m or the symbol ⊥.

A witness encryption scheme WE is required to satisfy correctness: for all security
parameters λ, all strings x and w for which R(x,w) holds, for all m, it holds
that WE.Dec(WE.Enc(1λ, x,m), w) = m.

For a witness encryption scheme, we will use the security notion extractability,
first proposed in [13], which informally requires that, for all adversaries able to
distinguish between encryptions of different messages for a statement x, there
exists an extractor that can extract a witness w from the adversary, such that
R(x,w) holds. We use the adaptive definition by Bellare et al. [5] in which A is
allowed to specify x.

Definition 2 (Extractability). A witness encryption scheme with witness
relation R is extractable if for every security parameter λ, every PPT adversary
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A = (A1,A2) with a random tape r, there exists a corresponding PPT algorithm
E (the extractor) such that:
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∣
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b
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≤ neg(λ)

The above definition ensures that if an adversary A with non-negligible
advantage ε(λ) in distinguishing the ciphertexts of two messages exists, an
extractor E with success probability ε(λ) − neg(λ) must also exist.

Instantiating Witness Encryption. Witness encryption is a strong crypto-
graphic primitive and efficiently instantiating this remains a work in progress.
Recent interesting results include constructions by Barta et al. [3] based on the
generic group model, and Bartusek et al. [4] based on affine determinant pro-
grams, with the latter claimed to be the first construction sufficiently efficient
to be implementable. However, these works do not consider extractability, and
it is unclear whether efficient extractors can be obtained for these construction.

Goldwasser et al. [13] proposed a candidate extractable witness encryption
scheme but without a formal security reduction. Liu et al. [20] proposed a con-
struction based on multi-linear maps, which can be instantiated from indis-
tinguishability obfuscation (iO) [1], which in turn can be obtained from well-
founded assumptions [19], leading to a theoretical instantiation. A different
approach was taken by Goyal et al. [15] who show how the functionality of
extractable witness encryption can be implemented efficiently on a blockchain.
This approach is especially appealing in relation to our work due to the obtained
efficiency and that our construction already makes use of a blockchain. Note that
[15] requires the miners maintaining the blockchain to implement additional
functionality i.e. smaller changes would have to be made to existing blockchain
protocols to achieve the desired functionality, and to maintain forward security,
the communication between miners and the decryptor must be forward secure
(e.g. by using TLS 1.3 [22]). Furthermore, due to the dependency on a blockchain,
[15] does not follow the standard definition of witness encryption. However, in
this work, we will make use of the standard definitions above.

2.2 Blockchain Protocol

In general, a blockchain protocol is a multi-party distributed protocol that main-
tains an ordered sequence of blocks (blockchain) without a trusted third party.
The blockchain is continuously extended by parties called miners under a con-
sensus algorithm and forging sufficiently old blocks is considered difficult based
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on underlying hardness assumptions. A Proof-of-Stake blockchain uses a consen-
sus algorithm in which a party with more stake (e.g. number of coins) is more
likely to succeed in mining a new block. Below, we recall the abstract definition
of blockchain protocols used in [14].

Definition 3 (Blockchain Protocol). A blockchain protocol BLCV with valid-
ity predicate V is a tuple of algorithms (BLCV .UpdateState,BLCV .GetRecords,
BLCV .Broadcast).

– BLCV .UpdateState(1λ): It is a stateful algorithm that takes as input the secu-
rity parameter λ and maintains the local state st. It has no output.

– B ← BLCV .GetRecords(1λ, st): It takes as input the security parameter λ and
a local state st, and outputs the longest ordered sequence of blocks B (the
blockchain) contained in st.

– BLCV .Broadcast(1λ,m): It takes as input the security parameter λ and a mes-
sage m, and spreads the message m over the blockchain network. It outputs
nothing.

In the above, V is a predicate which takes a sequence of blocks B and outputs
1 if B is valid. The definition of “validity” varies with the blockchain protocol;
details of how V is defined will not be important for our purpose.

Blockchain Execution. At a high level, the execution of the blockchain proto-
col corresponds to the participants running UpdateState, which will continuously
update their state according to messages broadcast using Broadcast e.g. a miner
might broadcast a new successfully mined block. Each participant can access his
current view of the blockchain via GetRecords. We assume that (honest) min-
ers will include any record broadcast via Broadcast in the blocks they attempt
to mine, which allows all participating parties to have records added to the
blockchain (e.g. in cryptocurrencies, a user might wish to add a transaction).

In [14], the execution of a blockchain protocol is formally modeled in the UC-
framework [7], and is directed by the environment Z, which initially activates
all participants as either honest or corrupt (as in [14], we only consider static
corruptions). All corrupt parties are controlled by an adversary A. The execution
starts by all honest users running UpdateState on an empty state, and proceeds
in rounds. In each round, an honest user might receive a record from Z which
it will attempt to add to the blockchain, as well as messages from the other
parties. The user may then perform any computation, broadcast a message via
Broadcast, and update its local state. A is responsible for delivering all messages
between parties, and may delay or reorder these, but is not allowed to modify
them. Z can communicate with A and access the local view of the blockchain
obtained via GetRecords of any honest party. For a more detailed discussion of
the blockchain execution, see [14].

We will let EXECBLCV [A,Z, 1λ] denote the above execution, and view ←
EXECBLCV [A,Z, 1λ] denote the joint view of all parties in the execution. The
latter fully determines the former.
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Blockchain Properties. We will now define several blockchain properties
introduced in [14], which our construction will be based on. In these definition,
we make use of the unique stake fraction of the last � blocks of a blockchain B,
which we denote u-stakefrac(B, �), and which is defined to be the combined stake
of all miners who mined at least one of the last � blocks in B divided by the
total amount of stake for the blockchain. Additionally, we will use the notation
B�� to denote B with the last � blocks removed, and B � B̃ to denote that B is
a prefix of B̃.

The blockchain properties are defined based on the following predicates:
blockchain consistency (consistent), which captures that all honest participants in
the blockchain protocol agrees upon all except the last � blocks; sufficient stake
contribution (suf-stake), which captures that all blockchains of length � has a
unique stake fraction of at least β; and bounded stake forking (bd-stake-fork),
which captures that all maliciously constructed forks of the blockchain has
unique stake fraction less than α. Formally, these predicates are defined as:

– consistent�(view) = 1 iff for all rounds r ≤ r̃ and honest parties i, j in view
with blockchain B in round r and B̃ in round r̃, respectively, it holds that
B�� � B̃.

– suf-stake�(view, β) = 1 iff for every round r ≥ �, and each honest party i with
blockchain B at round r, it holds that u-stakefrac(B, �) ≥ β.

– bd-stake-fork(�1,�2)(view, α) = 1 iff for all rounds r ≥ r̃, each honest party i
with blockchain B at round r, each corrupt party j with blockchain B̃ at
round r̃, if there exists �′ ≥ �1 + �2 such that B̃��′ � B and for all �̃ < �′,
B̃��̃ 	� B, then u-stakefrac(B̃, �′ − �1) ≤ α.

Based on the consistency and sufficient stake contribution predicates, we define
the corresponding blockchain properties.

Definition 4 (Chain Consistency). A blockchain protocol BLCV satisfies �0-
consistency for adversary A in environment Z, if for every � > �0

Pr
[

consistent�(view) | view ← EXECBLCV [A,Z, 1λ]
]

≥ 1 − neg(λ)

Definition 5 (Sufficient Stake Contribution). A blockchain protocol BLCV

satisfies (�0, β)-sufficient stake contribution for adversary A in environment Z,
if for every � > �0

Pr
[

suf-stake�(view, β) | view ← EXECBLCV [A,Z, 1λ]
]

≥ 1 − neg(λ)

Lastly, we consider a property called distinguishable forking which requires
that sufficient stake contribution and bounded stake forking properties hold
simultaneously. Note that when this is the case (and α < β), it is possible
to distinguish an honestly created extension of the blockchain from an adversar-
ially created fork by examining the unique stake fraction shown in the extension
or fork.
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Definition 6 (Distinguishable Forking). A blockchain protocol BLCV sat-
isfies (α, β, �1, �2)-distinguishable forking for adversary A in environment Z, if
for every � > �1 and �̃ ≥ �2

Pr

⎡

⎢
⎣

α + neg1(λ) < β∧
suf-stake�̃(view, β) = 1∧

bd-stake-fork(�,�̃)(view, α + neg1(λ)) = 1

∣
∣
∣
∣
∣
∣
∣

view ← EXECBLCV [A,Z, 1λ]

⎤

⎥
⎦

≥ 1 − neg2(λ)

Goyal et al. showed in [14] that Snowwhite, a Proof-of-Stake based blockchain
protocol proposed by Daian et al. [10], satisfies all of the above properties.

Proof-of-Work Blockchain. The above properties, which will be used as
a basis for the security of our construction, are all stated with respect to a
blockchain based on Proof-of-Stake. It might be considered whether it would be
possible to instead rely on a blockchain based on Proof-of-Work in which the
blockchain is extended by miners solving computational puzzles (i.e. relying on
the computational power of the miners). This, however, seems difficult. More
specifically, in the typical Proof-of-Work setting, an adversary can locally com-
pute a valid fork in realistic time by solving the required puzzles and ignoring
input from honest miners. This would break the distinguishable forking property
which our construction crucially depends on. In contrast, this property can be
achieved in a Proof-of-Stake blockchain because we assume, as in [14], that the
adversary controls only a minority stake and cannot forge digital signatures of
other miners controlling a majority stake.

Additional Blockchain Notation. Each block of a blockchain B contains a
list of records. A record is a set of fields and a field is an arbitrary string. We
denote the i-th block of B as B[i], the number of records in the i-th block as
|B[i]|, the j-th record in the i-th block as B[i][j], and each field in a record r as
r.name. We use the notation r ∈ B if there exists i, j such that B[i][j] = r, and
r 	∈ B when this is not the case.

Also, we overload the consistency predicate, and define consistent�(Bprefix,B)
to hold for two sequences of blocks, Bprefix and B, if and only if B��

prefix � B
i.e. Bprefix with the last � blocks truncated is a prefix of B. Finally, for a
blockchain satisfying (α, β, �1, �2)-distinguishable forking, we introduce a predi-
cate ext-suf-stk(β,�1,�2)(B, i) (short for “extended with sufficient stake”), which
takes a sequence of blocks B and index i where i ≥ 0, and holds if and only if
the number of blocks after the i-th block is larger than �1 + �2 and at least β
fraction of stake is proved in the last �2 blocks. Intuitively, ext-suf-stk determines
whether the i-th block looks honestly created, assuming stakes of adversaries are
bounded by α (where α < β).
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3 Forward-Secure PKE Without Key Update

In this section, we give definitions and the construction of our forward-secure
PKE scheme without key update. In contrast to existing forward-secure PKE
schemes[8,16], both pk and sk are immutable, and since we don’t employ key
update to achieve forward security, the syntax looks much closer to the tra-
ditional non-forward-secure PKE schemes except we allow the encryption and
decryption algorithm to make use of a blockchain protocol.

Specifically, we assume that both encryptor and decryptor are participants in
a blockchain protocol, and will allow the encryption and decryption algorithms
direct access to the state of the encryptor and decryptor, respectively. Note that
this does not necessarily require that the encryptor or decryptor have any stake
in the blockchain, but that they have the ability to broadcast messages across
the blockchain network, and can extract, from their local state, their current
view of the blockchain. It is assumed that both encryptor and decryptor will
maintain their state by running UpdateState of the blockchain protocol, and
that the encryption and decryption algorithms will have access to the most
recent state when extracting the current view of the blockchain via GetRecords.
In other words, we treat the input state st to the encryption and decryption
algorithms as a reference to the most current state (as opposed to the value of
the state at the time the algorithms are called), which will allow, for example,
the algorithms to broadcast a message, and wait for this message to be included
in the blockchain, before continuing execution.

The syntax of our forward-secure PKE scheme is as follows:

Definition 7 (FSPKE). A forward-secure public-key encryption scheme with-
out key update under the existence of a blockchain protocol BLCV is a tuple of
algorithms (FSPKE.KGen,FSPKE.Enc,FSPKE.Dec).

– (pk, sk) ← FSPKE.KGen(1λ): The key generation algorithm FSPKE.KGen
takes as input the security parameter λ. It outputs a key pair (pk, sk).

– c ← FSPKE.Enc(st, pk,m): The encryption algorithm FSPKE.Enc takes as
input a reference to a blockchain state st, a public key pk and a message m.
It outputs a ciphertext c.

– m/⊥ ← FSPKE.Dec(st, sk, c): The decryption algorithm FSPKE.Dec takes as
input a reference to a blockchain state st, a secret key sk and a ciphertext c.
It outputs a message m or the symbol ⊥.

3.1 Correctness

Unlike ordinary (forward-secure) PKE, the correctness of a PKE scheme depen-
dent on a blockchain is non-trivial. Specifically, when decryption is dependent
on information obtained from or posted to the blockchain, we need to con-
sider potential adversarial interference from other entities with access to the
blockchain. Firstly, malicious miners can potentially prevent correct decryp-
tion by simply not including any information required for decryption in the
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Fig. 1. Game defining correctness.

blockchain. Secondly, since the basic premise of the use of the blockchain is that
anyone can post a block, and by doing so, any malicious user might be able
to interfere with the decryption by honest users. We capture this aspect of the
use of a blockchain, by considering a correctness definition similar to a security
game, in which the adversary attempts to prevent decryption of an honestly con-
structed ciphertext. Note that besides controlling corrupt parties, the adversary
in our definition can make honestly mined blocks contain maliciously generated
messages by simply broadcasting these, since we assume that all honest miners
will include messages received via the broadcast functionality of the blockchain.

We define correctness via the security game shown in Fig. 1 in which the
adversary can instruct two honest users to encrypt and decrypt any time dur-
ing the execution of the blockchain protocol via the Enc and Dec oracles. Note
that for the correctness definition to be meaningful, we will only consider adver-
saries that query these oracles once in that order. We refer to such adversaries
as correctness-admissible. Furthermore, note that additional restrictions on the
adversary and the execution of the blockchain are likely to be required for cor-
rectness to hold for any scheme that makes meaningful use of the blockchain. In
particular, the delay an adversary might introduce for messages sent to honest
parties might have to be limited, and the execution of the blockchain proto-
col might be required to extend the blockchain. However, we will not include
such restrictions or guarantees in the definition below, but introduce appropri-
ate assumptions when showing correctness of our concrete scheme.

Definition 8 (Correctness). We say that FSPKE with access to blockchain
protocol BLCV satisfies correctness for adversary A in environment Z if for every
plaintext m, every pair of honest users i and j in Z, there exists a negligible
function ε(·) such that the following holds:

Pr
[

GCorr
A,Z,FSPKE,m,i,j = 1

] ≥ 1 − ε(λ)

3.2 Security

We will now define a security notion capturing forward security for a PKE scheme
FSPKE based on a blockchain. Like in the case of correctness, the definition
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is non-standard due to the ability of an adversary to observe and manipulate
the blockchain. Our security notion, which we denote fs-IND-CPA security, is
based on the standard IND-CPA security notion for ordinary PKE, in which
the adversary is challenged to distinguish between the encryption c∗ of two
adversarially chosen messages, m0 and m1. However, we allow the adversary to
access two new oracles: Leak and HonestDec. The first oracle, Leak, captures the
notion of a key compromise. When it’s invoked, it will return the secret key to the
adversary, but before doing so, it ensures that the challenge ciphertext has been
decrypted by running m∗ ← FSPKE.Dec(st, sk, c∗). In previous forward security
notions, this oracle would correspond to an oracle that updates the secret key
and returns the new (updated) key to the adversary.

The second oracle, HonestDec(c), captures potential information leakage from
records posted on the blockchain by honest users in the decryption process1.
Specifically, in the blockchain setting, an honest user might be required to post
information related to a ciphertext c or their secret key sk, in order to be able
to decrypt c. Since the blockchain is public, an adversary will be able to obtain
this information just by monitoring the blockchain. To capture this, the oracle
HonestDec allows the adversary to submit any ciphertext c, which the oracle will
decrypt as m ← FSPKE.Dec(st, sk, c). However, as we consider a CPA security
notion, the decryption result m will not be returned to the adversary (he will only
be able to observe any information posted to the blockchain in the decryption
process). Our definition can be extended to a CCA notion, simply by returning
m and restricting the adversary from submitting c∗. Note that in our definition
below, no restrictions are placed on c submitted to HonestDec.

Finally, note that the fs-IND-CPA definition itself is generic: it does not
place any assumptions on the adversary in terms of adversarial control of the
blockchain (e.g. the amount of stake held by the adversary). For our concrete
scheme, which will be presented in Sect. 3.3, we will show that fs-IND-CPA
security holds, assuming the stake controlled by the adversary is sufficiently
small as in [14].

Security is defined via the game shown in Fig. 2. We say that an adversary
fs-IND-CPA A is admissible if A queries the challenge oracle Chal once with
messages m0 and m1 of equal length, and only queries the Leak oracle after Chal
has been queried (without loss of generality, we can assume any A always queries
both oracles).

Definition 9 (fs-IND-CPA). Let BLCV be a blockchain protocol with the
validity predicate V , and let FSPKE = (FSPKE.KGen,FSPKE.Enc,FSPKE.Dec)
be a public-key encryption scheme with access to BLCV . We define the advantage
Advfs-IND-CPA

A,FSPKE (λ) of an adversary A against the fs-IND-CPA security of FSPKE
as

Advfs-IND-CPA
A,FSPKE (λ) :=

∣
∣
∣
∣
Pr

[

Gfs-IND-CPA
A,Z,FSPKE,i,j = 1

] − 1
2

∣
∣
∣
∣

1 Note that encryption might likewise require information being posted to the
blockchain, but this is already captured by running the encryption algorithm when
constructing the challenge ciphertext c∗.
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Fig. 2. Security game defining fs-IND-CPA security.

where the security game Gfs-IND-CPA
A,Z,FSPKE,i,j is defined in Fig. 2. We say that FSPKE

is fs-IND-CPA secure against an admissible adversary A in environment Z if
for all honest users i and j in Z, Advfs-IND-CPA

A,FSPKE (λ) is negligible in λ.

Note that similar to puncturable encryption [16], the above security notion
guarantees fine-grained forward security i.e. the scheme must support removing
the ability to decrypt just a single ciphertext. This improves upon the notion for
standard forward-secure schemes based on key update, in which the ability to
decrypt all ciphertexts constructed between two key updates is lost in the second
key update. Note that adjusting the time period between key updates in this
type of scheme is a challenging task; frequent updates implies that the ability to
decrypt any ciphertext the decryptor cannot immediately access and decrypt will
be lost, whereas infrequent updates implies that any adversary gaining access to
the decryption key will have the ability to decrypt a potentially large number
of previous ciphertexts i.e. any ciphertext constructed within the current time
period (as well as future ciphertexts). In contrast, fine-grained forward security
does not require a notion of time, and any ciphertext not yet decrypted by
the decryptor will remain decryptable. In this sense, a fine-grained forward-
secure scheme provides a functionality closer to ordinary non-forward-secure
encryption, while still providing strong security guarantees in the case of key
compromise. It should be noted, however, that standard fine-grained forward-
secure schemes inherently do not protect against a particular type of message
suppression attack [6]. In Sect. 5, we discuss the details of this as well as how
our particular construction allows this type of attack to be mitigated.

3.3 Construction

Our construction is inspired by the idea behind the construction of one-time
programs using a proof-of-stake blockchain presented by Goyal et al. [14], in
particular, the use of a proof-of-stake blockchain in combination with a witness
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encryption scheme2. In our construction, a message is encrypted under an NP
statement requiring that a certain type of record associated to an ephemeral
secret to be signed by the receiver and posted to the blockchain. Here, the
signing key is the receiver’s long-term secret. The decryption algorithm, which
has access to the signing key, constructs and signs such a record, posts this to the
blockchain, and waits until the blockchain has been sufficiently extended. Then,
using the ephemeral secret and the blockchain containing the corresponding
record as a witness, the decryption algorithm is able to decrypt the message.

Note that the ephemeral secret is the only secret required to construct a
valid witness required for decryption as the blockchain is assumed to be public.
Hence, neither the record posted to the blockchain nor a key compromise must
leak this. The former is ensured by using a one-way hash function (and high-
entropy ephemeral secrets), and the latter is ensured by deleting the ephemeral
secret once decryption has been completed. Note also, that an attacker without
access to the long-term signing key will be unable to construct an appropriate
record that can be used for decryption, assuming the signature scheme is secure.

The key to making this construction forward secure is to require the NP
relation to check that the record used in the witness is the first record in the
blockchain that allows decryption. This will prevent an attacker from creating a
valid witness for a given ciphertext once this has been decrypted by the receiver,
even if the attacker gains access to the long-term signing key.

The above assumes that the attacker cannot manipulate the blockchain
itself. To ensure the security extends to attackers with a minority stake in the
blockchain, we rely on the distinguishable forking property (Definition 6). More
specifically, the distinguishable forking property guarantees that honestly cre-
ated blockchain extensions can be distinguished from adversarially constructed
forks by examining the unique stake in blockchain. Hence, by letting the NP
relation additionally check that blockchain used in the witness is of sufficient
length and has sufficient stake, we can ensure that the attacker cannot decrypt
by constructing a fork of the blockchain.

Let WE be a witness encryption scheme for the NP relation RFSPKE (defined in
Fig. 3), BLCV a blockchain protocol with the validity predicate V , Sig a public
key signature scheme, and H a one-way hash function. We present our con-
struction, FSPKE, of a forward-secure public-key encryption scheme without
key update in Fig. 4. Note that the scheme depends on a set of parameters
par = (β, �c, �1, �2) which should be set according to the properties of the under-
lying blockchain protocol.

2 As a one-time program is a powerful primitive, it might be considered to base the
construction of a forward-secure encryption scheme directly on this (besides addi-
tional appropriate primitives). However, we note that it is not clear whether such
a construction will be able to meet our security notions (e.g. [14] does not con-
sider correctness against malicious adversaries whereas we do), and any potential
construction will be much more complicated due to the generality of one-time pro-
grams based on garbled circuits. Hence, we focus on a direct construction based on
a proof-of-stake blockchain.



Forward-Secure PKE Without Key Update from Blockchain 449

Fig. 3. An NP relation RFSPKE based on the blockchain protocol BLCV with validity
predicate V and parameters par = (β, �c, �1, �2), Sig is a public key signature scheme,
and H is a one-way hash function.

On the Relation RFSPKE. The relation RFSPKE used in WE and defined in Fig. 3
-relations. We discuss the intuition of these in the following. RValidBlocks ensures
that both sequences of blocks satisfy blockchain-protocol-specific requirements
i.e. it denies malformed inputs. RValidEsk ensures that the ciphertext has not yet
been decrypted. It requires that the given esk is valid for the first record on the
blockchain which satisfies RDecAttempt. ext-suf-stk used in RValidEsk ensures the i∗-
th block is honestly created with all but negligible probability. RDecAttempt is true
if the given record r contains a decryption attempt for the ciphertext associated
with id. RNotYetDecrypted ensures that before the j∗-th record in the i∗-th block
in B′, there’re no valid decryption attempts for the ciphertext associated with
id. This relation guarantees that the ciphertext can be decrypted only once.
RKnowsEsk ensures that the party who is trying to decrypt knows the ephemeral
secret key esk for the first decryption attempt.

3.4 Proof of Correctness

Before showing correctness of our scheme, we will introduce mild assumptions
regarding the execution of the blockchain. Firstly, we will restrict our attention
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Fig. 4. A construction of FSPKE where WE is a witness encryption scheme for the
NP relation RFSPKE (defined in Fig. 3), BLCV is a blockchain protocol with the validity
predicate V and parameters par = (β, �c, �1, �2), Sig is a public key signature scheme,
and H is a one-way hash function.

to blockchain executions that lead to a sufficient growth of the blockchain. More
specifically, we will refer to a blockchain execution as �-growth respecting if the
blockchain of all honest parties is extended with at least � blocks following a
broadcast by an honest party. Finally, we restrict the delay in terms of growth
of the blockchain, an adversary might introduce for messages broadcast by honest
parties. Specifically, we refer to a blockchain execution as �̃-delay respecting, if
the blockchain of any honest users is extended with at most �̃ blocks between
an honest user broadcasting a message and this is delivered to all other honest
users.

Theorem 1. Assume the signature scheme Sig is EUF-CMA secure and that
the blockchain protocol BLCV provides �c-consistency, and (�2, β)-sufficient stake
for all PPT adversaries with stake at most α′ in environment Z. Then the con-
struction described in Fig. 4 with parameters par = (β, �c, �1, �2) satisfies correct-
ness for any PPT correctness-admissible adversary A in Z with stake at most
α < min(α′, β) in blockchain executions that are �̃-delay and (�̃+�1+2�2)-growth
respecting.

Proof (Theorem 1). Firstly note that the definition of �c-consistency directly
implies that for blockchain B used in the encryption performed in the Enc
oracle and the blockchain B′ used in the decryption in the Dec oracle,
consistent�c(B,B′) holds with overwhelming probability.

Secondly, since the execution is (�̃+�1+2�2)-growth respecting, the blockchain
B′ contained in stj used in the decryption must be extended with �̃ + �1 + 2�2
blocks after the broadcast of r in line 6 of the decryption algorithm. Since the
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execution is also �̃-delay respecting, r must have been delivered to all honest
miners before B′ has been extended with �̃ blocks, and due to the (�2, β)-sufficient
stake property and α < β, the next �2 blocks must contain an honestly mined
block (which must include r unless r has already been posted) with overwhelming
probability. Hence, there must be at least �1+�2 blocks after the block containing
r, and again due to the (�2, β)-sufficient stake property, the �2 last blocks of these
will have stake at least β. This implies that ext-suf-stk(β,�1,�2)(B′, i∗) is satisfied,
where i∗ is the index of the block containing r.

Combined with the observation that r is honestly constructed, the above
implies that the witness B′ ‖ esk constructed in the decryption is a valid wit-
ness unless RNotYetDecrypted does not hold. This happens only if B′ contains a
block with index less than i∗ with a record r′ for which r′.σ 	= r.σ but which
satisfies RDecAttempt(id, pk, r′) for the id used in the encryption. This in turn
implies that r′.cert is a valid signature on r′.id ‖ r′.σ. However, if A can cause
such a record to be added to B′, we can construct a PPT algorithm B which
breaks the EUF-CMA of the digital signature scheme. B simply plays the cor-
rectness game with A simulating all honest parties, and using his signing oracle
to obtain r.cert corresponding to a signature on r.id ‖ r.σ. After the game fin-
ishes, it searches B′ ← GetRecords(1λ, stj) for a valid record r′ (posted by A)
such that Sig.Ver(pk, r′.id ‖ r′.σ, r′.cert) = 1 holds. Lastly, it outputs the pair
(r′.id ‖ r′.σ, r′.cert) in the EUF-CMA security game.

Since the signature scheme is assumed to be secure, we conclude that B will
only succeed with negligible probability, and hence, that RNotYetDecrypted will hold
with overwhelming probability. Thus the theorem holds. (Theorem 1) �

Note that in the above, we assume that WE does not impose a length bound
on the used witness. If the maximum witness length of the witness encryption is
bounded, we additionally need to assume that the number of records posted to
the blockchain by A for a certain period is bounded for correctness to hold. In
other words, we would require the honest user is able to decrypt before A posts
so many blocks to the blockchain such that it cannot be used as a witness due
to the length bound being exceeded. A similar assumption is necessary in the
framework of [14].

Lastly, we note that correctness would still hold even if the encryptor bases
his encryption on a previously obtained version of the blockchain as opposed
to the most recent up-to-date version. This is because our construction (Fig. 3)
only requires the blockchain B used in encryption to be a prefix of and be con-
sistent (w.r.t. consistent� as defined in Sect. 2.2) with the decryptor’s blockchain
B′. However, note again that if the witness encryption only supports witnesses
of bounded size, the difference in terms of blocks between the versions of the
blockchain used by encryptor and decryptor cannot exceed this bound, as decryp-
tion would otherwise fail3.

3 For ease of notation, as in [14], we use the entire blockchain B′ as part of the witness
w. However, we note that essentially only the blocks appended to the blockchain after
encryption suffice as part of the witness w.
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3.5 Efficiency

The efficiency of our construction essentially follows from the efficiency of the
underlying signature scheme, witness encryption scheme, and blockchain. We
emphasize that neither encryptor nor decryptor are required to participate in
the blockchain protocol itself, but are only required to be able to access an up-
to-date version of the blockchain, and in case of the decryptor, be able to post
a message to the blockchain e.g. by requesting a miner to do so. Depending on
the premise of the blockchain protocol execution, the latter might involve an
additional cost to the decryptor (e.g. paying a fee to the miner).

In more detail, key generation and public/private key size correspond to that
of the signature scheme, and the computational encryption cost and the cipher-
text size correspond to that of the witness encryption scheme, assuming access-
ing the blockchain does not involve any computational requirements. Decryption
firstly requires the decryptor to post a signed message to the blockchain. Note
that he will not be able to immediately decrypt once this has been posted, but
must wait for the blockchain to grow sufficiently to satisfy distinguishable forking
(Definition 6). Once this happens, he will invoke the decryption of the witness
encryption scheme, which will most likely dominate the computational decryp-
tion cost (compared to signing). We refer the reader to Sect. 2.1 for a discussion
of potential witness encryption instantiations.

Finally, we note that the relation in Fig. 3, which is required to be imple-
mented by the witness encryption, is relatively complex, which could be an
efficiency concern as ciphertext size and encryption/decryption cost typically
scale with the size and complexity of the encryption statement and witness45.
However, as noted in [20], this can be addressed by the use of succinct non-
interactive arguments of knowledge (SNARKs) (e.g. see [17]). In our construc-
tion, the decryptor could include a SNARK common reference string in his public
key6, allowing the relation in Fig. 3 to be proved using the SNARK and the wit-
ness encryption to only rely on the verification and succinct witness from the
SNARK. This would alleviate concerns regarding encryption cost and ciphertext
size.

4 Security Analysis

The following theorem establishes the security of our construction.

4 Note that in our construction, the lower bound of the witness size would be �1+�2+�d
blocks where �1 and �2 are blockchain-specific parameters from the distinguishable
forking property (see Sect. 2.2), and �d is the difference in the number of blocks
between the blockchain obtained by encryptor and decryptor.

5 We note the approach by Goyal et al. [15] allows efficient encryption and only requires
the decryptor to perform a potentially heavy computation related to the relevant
statement and witness.

6 To maintain forward security, the randomness and trapdoor for this common refer-
ence string must be securely erased by the key pair holder after key generation.
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Theorem 2. Assume WE is an extractable witness encryption scheme for the
NP relation RFSPKE, Sig is an EUF-CMA-secure signature scheme, H is a one-
way hash function, and BLCV is a blockchain protocol satisfying (α, β, �1, �2)-
distinguishable forking property for any PPT adversary with stake fraction at
most α in environment Z. Then the construction described in Fig. 4 is fs-IND-
CPA secure for any admissible PPT adversary A in Z with at most α stake
fraction.

4.1 Proof of Theorem 2

Simulation of the Blockchain. Theorem 2 is with respect to an adversary A
who controls at most an α stake fraction of the blockchain. With the exception
of Claim 3, our security reduction will simulate the parties holding the remaining
stake fraction for A, by honestly executing the blockchain protocol BLCV . We
do not include an explicit simulation of this in the following proof.

Proof (Theorem 2). Let FORGE be the event that A causes honest user j to add
a maliciously constructed record r∗ to the blockchain contained in stj that can be
used to decrypt the challenge ciphertext c∗. More precisely, FORGE denotes that
r∗ is the first record in sequence of blocks B ← GetRecords(1λ, stj) satisfying
Sig.Ver(pk, r∗.id ‖ r∗.σ, r∗.cert) = 1. Note that since the Leak oracle will add a
valid record to the blockchain contained in stj for decryption of c∗, A needs to
compute r∗.cert and post r∗ before Leak does so (i.e. without sk) for FORGE to
occur. That is, intuitively speaking, posting r∗ means that A can forge a valid
signature r∗.cert. In the following lemma, we formalize this intuition.

Lemma 1. Assume that Sig is an EUF-CMA secure signature scheme. Then
Pr[FORGE] < neg(λ).

Proof (Lemma 1). If FORGE occurs, we can construct an adversary BSig which
breaks EUF-CMA security of Sig. BSig simulates the role of a challenger in the
fs-IND-CPA game for A, and is defined as follows:

1. Upon receiving pk in the EUF-CMA game, BSig forwards pk to A. When
running, BSig simulates all honest parties in the blockchain and executes the
blockchain protocols honestly. If HonestDec(c) is called where c = (id, CT ),
BSig performs the decryption operations as described in Fig. 4 except it com-
putes cert using the signing oracle of the EUF-CMA game. Lastly, BSig adds
(id ‖ σ) to a set Σ. When A calls Leak, BSig aborts A after decryption of c∗,
before the secret key sk is returned.

2. When A finishes its execution (or is terminated by BSig due to a call to Leak),
BSig searches the blockchain B ← GetRecords(1λ, stj) for a valid record r∗

such that (r∗.id ‖ r∗.σ) /∈ Σ, and outputs (r∗.id ‖ r∗.σ, r∗.cert) if such a record
is found.

From the above description, it should be clear that BSig provides a perfect sim-
ulation for A up until abortion, and that, assuming FORGE occurs, BSig returns
a valid forgery. (Lemma 1) �
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Let S be the event that the adversary A wins the fs-IND-CPA game. In the
following lemma, we consider the case A wins the game without causing a valid
maliciously constructed record to the blockchain of honest user j that can be
used for decrypting the challenge ciphertext, i.e. without FORGE occurring.

Lemma 2. Assume WE is an extractable witness encryption scheme, H is a
one-way hash function, and the blockchain protocol BLCV satisfies (α, β, �1, �2)-
distinguishable forking property in Z. Then

∣
∣Pr[S|¬FORGE] − 1

2

∣
∣ ≤ neg(λ)

Proof (Lemma 2). Assume there exists an fs-IND-CPA attacker A with non-
negligible advantage ε =

∣
∣Pr[S|¬FORGE] − 1

2

∣
∣. From A, we construct an attacker

AWE against WE as follows. Firstly, we choose random esk ← {0, 1}n, and com-
pute y ← H(esk). The value y will be hardcoded into AWE, and we use the
notation AWE

y to denote this. Hardcoding y into AWE is needed, as below, we
will consider a value y given by an external one-way challenger for H, and hence,
AWE cannot generate y internally.

AWE
y will simulate the fs-IND-CPA game for A = (A1,A2) as follows:

1. AWE
y generates a FSPKE key pair as (pk, sk) ← FSPKE.KGen(1λ).

2. AWE
y sends pk to A1 and forwards its output m0,m1 and x = (B ‖ id ‖ pk)

as the challenge instance in the extractability game, where B and id are
computed as B ← BLCV .GetRecords(1λ, sti) and id

$←− {0, 1}λ respectively.
3. Upon receiving the challenge ciphertext c∗, AWE

y forwards c∗ to A2.
– If HonestDec oracle is called by A, AWE

y executes step 1 to 5 of the decryp-
tion algorithm for the given ciphertext c, as defined in the construction,
except it replaces σ with the hardcoded value y if c is the challenge cipher-
text7.

– If the Leak oracle is called by A, AWE
y responds in the same way as in

HonestDec, and then returns sk.
4. Lastly, A2 outputs b, and AWE

y forwards this as its own response in the
extractability game.

From the above description, it should be clear that the view of A is identical to
the fs-IND-CPA game, and that if A successfully distinguishes the encryption
of m0 and m1, so will AWE

y in the extractable witness encryption game. Since
WE is extractable, there exists a PPT extractor E for AWE

y , and assuming we
can show that AWE

y successfully distinguishes with a non-negligible advantage, E
will likewise be able to compute a valid witness with non-negligible advantage.
However, here a subtle issue arises: from the assumption that the advantage of A
is ε, it only follows that AWE

y has advantage ε when the choice of y is considered
part of the probability space defining the advantage. For a fixed value of y, even
if this is correctly distributed, we can no longer draw the conclusion that AWE

y

has advantage ε. Nevertheless, the following claim shows that, with probability
ε/2 over the choice of y, AWE

y will have an advantage larger than ε/2.

7 Note that AWE
y cannot fully decrypt the challenge ciphertext c∗, as it does not know

the preimage of the hardcoded value y, which is required to construct a witness for
decryption.
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Claim 1. Let b′ denote the bit output by AWE
y , let b denote the challenge bit

in the extractability game, and let Goody denote the event that Pr[b = b′] ≥
ε/2 + 1/2. Then, Pr[Goody] ≥ ε/2, where the probability is taken over a random
choice of esk ← {0, 1}n and y ← H(esk).

Proof (Claim 1). Let Succ denote the event b′ = b when esk ← {0, 1}n is picked
at random and y ← H(esk). From the construction of AWE

y and the assumption
that the advantage of A is ε, we have that Pr[Succ] = ε + 1/2. Hence,

ε +
1
2

= Pr[Succ|Goody] Pr[Goody] + Pr[Succ|¬Goody] Pr[¬Goody]

≤ Pr[Goody] + Pr[Succ|¬Goody]

≤ Pr[Goody] +
ε

2
+

1
2

where the last inequality follows by the definition of ¬Goody. Rearranging the
terms, we obtain Pr[Goody] ≥ ε/2. (Claim 1) �
The above claim allows us to conclude that we can extract a valid witness for
x specified by AWE

y (including its internal fs-IND-CPA attacker A) with non-
negligible probability, despite invoking the extractor E with AWE

y for a fixed
(but randomly chosen) y. This can be seen as follows. Let w denote the witness
extracted by E from AWE

y . Then we have that

Pr[RFSPKE(x,w)] ≥ Pr[b = b′ ∧ RFSPKE(x,w)]
≥ Pr[Goody] · Pr[b = b′ ∧ RFSPKE(x,w)|Goody]
≥ ε/2 · Pr[b = b′ ∧ RFSPKE(x,w)|Goody]. (1)

By definition, Goody ensures that the advantage of AWE
y is greater than ε/2, and

we obtain that

ε/2 ≤ Pr[b = b′|Goody] − 1
2

≤ Pr[b = b′ ∧ RFSPKE(x,w)|Goody] + Pr[b = b′ ∧ ¬RFSPKE(x,w)|Goody] − 1
2

≤ Pr[b = b′ ∧ RFSPKE(x,w)|Goody] + neg(λ)

where the last inequality follows from the extractability of WE (note that
extractability requires a successful extractor exists for all successful adversaries,
including any adversary AWE

y for values of y such that Goody is satisfied). Rear-
ranging the terms yields that

Pr [b = b′ ∧ RFSPKE(x,w)|Goody] ≥ ε

2
− neg(λ)

and combining this with (1) we obtain that

Pr [RFSPKE(x,w)] ≥ ε

2
· (

ε

2
− neg(λ)).
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Note that if ε is non-negligible, then so is Pr[RFSPKE(x,w)]. In other words, with
non-negligible probability, we obtain a valid witness w for x specified by AWE

y

via the extractor E .
In the following, we will show that if a valid witness can be extracted, we

can either break the onewayness of the hash function H, or the distinguishable
forking property of BLCV .

Let HONEST be the event that E outputs a sequence of blocks B′ containing
the record r∗ honestly constructed in the first decryption query of the challenge
ciphertext c∗ (either a query to Dec or Leak) as the first valid record that allows
decryption of c∗. We have that

Pr[RFSPKE(x,w)] = Pr[RFSPKE(x,w)|HONEST] · Pr[HONEST]
+ Pr[RFSPKE(x,w)|¬HONEST] · Pr[¬HONEST]

≤ Pr[RFSPKE(x,w)|HONEST]
+ Pr[RFSPKE(x,w)|¬HONEST] (2)

Claim 2. If Pr[RFSPKE(x,w)|HONEST] is non-negligible, there exists an adver-
sary BOW against the onewayness of H with non-negligible advantage.

Proof (Claim 2). BOW is constructed as follows. Given a challenge y∗, BOW simply
constructs AWE

y∗ as described above, but using y∗ as the embedded y value. Note
that as BOW’s challenge is constructed as y∗ = H(esk∗) for a randomly chosen
esk∗, the construction of AWE

y∗ is identical to the above description. BOW then
runs E for AWE

y∗ to obtain a witness w, and forwards w.esk as the solution in the
onewayness game. Since HONEST occurs, E outputs a witness w corresponding
to the honestly created record r∗ for the challenge ciphertext c∗ i.e. r∗ must
have been posted by the HonestDec or the Leak oracle. Furthermore, it must
hold that H(w.esk) = r∗.σ, and due to the construction of AWE

y∗ , r∗.σ = y∗.
Thus the obtained value w.esk satisfies w.esk = H−1(y∗), and BOW therefore
successfully wins the onewayness game. (Claim 2) �
Claim 3. If Pr[RFSPKE(x,w)|¬HONEST] is non-negligible, there exists an adver-
sary BBLC breaking the (α, β, �1, �2)-distinguishable forking property of the
blockchain with non-negligible advantage.

Proof (Claim 3). The construction of BBLC is straightforward: BBLC simply runs
E , and returns its output B′. Note, however, that BBLC plays the role of an adver-
sary against the distinguishable forking property of the blockchain, and therefore
must abide by the rules for this type of adversary. In particular, BBLC cannot
control the honest parties participating in the blockchain protocol. Neverthe-
less, the simulation remains straightforward: BBLC simply corrupts the parties
required by the underlying adversary A, who will have a total stake fraction at
most α, and forwards any messages to honest parties over the blockchain network
as dictated by A.
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Since HONEST is assumed not to occur, the first valid record r′ in B′ allowing
decryption of c∗ does not correspond to the honestly generated record r∗ in a
Dec or Leak upon submission of c∗ (recall that B′ from a valid witness is required
to contain a valid record allowing decryption of c∗). Furthermore, since FORGE
is also assumed not to occur, r′ cannot occur before r∗ in the honest blockchain
B′′ ← GetRecords(1λ, stj) held by the honest user j. This implies that from
the block in B′ in which r′ occurs, B′ cannot be a prefix of B′′. Additionally,
witness correctness implies that there are at least �′ = �1 + �2 blocks after the
block in which r′ occurs, and that the last �′ − �1 blocks of these contain a
combined stake fraction more than β. Hence, B′ contradicts the (α, β, �1, �2)-
distinguishable forking property, which requires these blocks to contain a stake
fraction less than α < β. (Claim 3) �

Combining the above observations, we conclude that the existence of an
adversary A with non-negligible advantage implies Pr[RFSPKE(x,w)] being non-
negligible, which in turn implies that either the onewayness of H or the distin-
guishable forking property of BLCV can be broken with non-negligible advan-
tage due to (2) in combination with Claim 2 and Claim 3. This contradicts the
assumption that H and BLCV are secure, and we hence conclude that all A must
have negligible advantage. Hence, Lemma 2 follows. (Lemma 2) �
Putting Lemma 1 and Lemma 2 together, we obtain:

Advfs-IND-CPA
A,FSPKE (λ) =

∣
∣
∣
∣
Pr[S] − 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[S|FORGE] Pr[FORGE] + Pr[S|¬FORGE] Pr[¬FORGE] − 1

2

∣
∣
∣
∣

≤
∣
∣
∣
∣
Pr[S|¬FORGE] Pr[¬FORGE] − 1

2

∣
∣
∣
∣
+ Pr[FORGE]

≤
∣
∣
∣
∣
Pr[S|¬FORGE](1 − Pr[FORGE]) − 1

2

∣
∣
∣
∣
+ Pr [FORGE]

≤ neg(λ) + neg(λ) = neg(λ)

Hence, Theorem 2 follows. (Theorem 2) �

5 Discussion

Besides forward security, our construction provides several interesting properties
which lead to advantages compared to existing approaches as well as additional
security guarantees, but also impacts aspects such as decryption privacy. In the
following, we discuss these in further detail.

Fixed Immutable Secret Keys. The unique feature of our construction is that
forward security is achieved without key updates, and secret keys are short and
immutable. This property provides several advantages.
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Firstly, while the size of secret keys in most previous works [8,16] depends on
the number of key updates, our construction achieves a constant size secret key
and furthermore does not impose a predetermined maximum number of possible
key updates (such as Bloom filter encryption [11]).

Secondly, fixed immutable keys are interesting from an application point
of view. For example, a fixed secret key can be embedded in secure read-only
memory, which would provide an additional hardware-based defense against key
compromise. Note that in our construction, the secret key is only required for sig-
nature generation, which is a standard functionality supported by most trusted
platform modules (TPMs), and that the remaining part of decryption can be
done without direct access to the secret key. In contrast, providing similar pro-
tection for a dynamically changing secret key of non-constant size is a harder
task requiring a more advanced trusted execution environment, which in turn is
more difficult and expensive to implement securely.

Lastly, a fixed secret key allows the key to be distributed among several
independent devices or servers without introducing security concerns due to a
potential lack of synchronization. Key distribution might be desirable e.g. if the
same user uses several different devices or several servers are used to implement
load balancing (here the servers look like one server from the outside). In this
case, security concerns might arise for schemes implementing fine-grained for-
ward security based on key update. For example, if a device decrypts a ciphertext
c, the local key of that device will be rendered useless for future decryptions of c
to ensure forward security. However, unless the keys stored by all other devices
are updated with respect to c, an adversary will still be able to decrypt c by
compromising a device with a key that has not yet been updated. Hence, this
creates a potentially significant synchronization problem. On the other hand,
this problem is completely eliminated by a scheme with fixed secret keys, as
there is no need to update keys to ensure security.

Decryption Privacy and Key Compromise Detection. Our construction requires
the decryptor to post an appropriate message to the blockchain to decrypt a
ciphertext. Specifically, Alice (holding the key pair pkA and skA) is required
to post a record r to the blockchain such that Sig.Ver(pkA, r.id ‖ r.σ, r.cert) = 1
holds to be able to decrypt a ciphertext c = (id, CT ).

Note that as r.cert is publicly verifiable with respect to Alice’s public key pkA

and id uniquely identifies c, anyone monitoring the blockchain, which is assumed
to be publicly accessible, will be able to tell when Alice decrypts a specific
ciphertext i.e. the construction does not provide Alice with privacy regarding
decryption.

On the other hand, this gives the construction a unique security property
not provided by existing schemes. More precisely, by monitoring the blockchain,
Alice can detect if someone else is trying to decrypt a ciphertext using her private
key. Hence, it is possible for Alice to detect a key compromise if the compromised
key is ever attempted to be used for decryption. This property is not achievable
if decryption can be done without any information being made public.
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One-Time Decryption. In existing fine-grained encryption schemes without
interaction [11,16,18], a ciphertext can be decrypted only once even by a legit-
imate user because an updated secret key cannot be used for decrypting past
ciphertexts; the same limitation applies to our construction. Note that one-time
decryption is an inherent property of fine-grained forward security.

Message Suppression Attacks and Mitigation. As we mentioned in Sect. 3.2, a
standard fine-grained forward-secure scheme with perfect correctness inherently
does not protect against message suppression attacks [6]. A message suppression
attack is a man-in-the-middle attack where the attacker is assumed to control the
communication between encryptor and decryptor and simply does not deliver a
given ciphertext c. Then, if the attacker is allowed to compromise the secret key,
he will be able to decrypt c due to the perfect correctness of the scheme and the
fact that c has not been attempted to decrypt by the decryptor8.

To mitigate the attack in our construction, we can introduce decryption expi-
ration (similar to eventual forward security [6]) by checking in the witness rela-
tion RFSPKE(x,w) that the number of blocks in w.B′ extended from x.B is less
than a predefined expiration threshold. This ensures that if the adversary does
not compromise the secret key before the extension of the blockchain passes the
threshold, he will not be able to decrypt the intercepted ciphertext. However,
this will also require the legitimate decryptor to decrypt the ciphertext before
the expiration, as he would otherwise lose the ability to do so. Finally note that
this change does not interfere with the property that once the decryptor has
decrypted a ciphertext, this can no longer be decrypted by an adversary com-
promising the decryption key i.e. fine-grained forward security is maintained.
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Abstract. In a typical ride-hailing service, the service provider (RS)
matches a customer (RC) with the closest vehicle (RV) registered to this
service. Ride-hailing services have gained tremendous popularity over
the past years, and several works have been proposed to ensure pri-
vacy of riders and drivers during ride-matching. TRACE is an efficient
privacy-preserving ride-hailing service proposed by Wang et al. (IEEE
Trans. Vehicular Technology 2018). TRACE uses masking along with
other cryptographic techniques to ensure efficient and accurate ride-
matching. RS computes a (secret) spatial division of a region into quad-
rants. The RS uses masked location information to match RCs and RVs
within a quadrant without obtaining their exact locations, thus ensuring
privacy. Additionally, an RC only gets to know location of the closest
RV finally matched to it, and not of other responding RVs in the region.

In this work, we disprove the privacy claims in TRACE by showing
the following: a) RCs and RVs can identify the secret spatial division
maintained by RS (this reveals information about the density of RVs in
the region and other potential trade secrets), and b) the RS can identify
exact locations of RCs and RVs (this violates location privacy). Prior
to exchanging encrypted messages in the TRACE protocol, each entity
masks the plaintext message with a secret unknown to others. Our attack
allows other entities to recover this plaintext from the masked value
by exploiting shared randomness used across different messages, that
eventually leads to a system of linear equations in the unknown plain-
texts. This holds even when all the participating entities are honest-but-
curious. We implement our attack and demonstrate its efficiency and high
success rate. For the security parameters recommended for TRACE, an
RV can recover the spatial division in less than a minute, and the RS
can recover the location of an RV in less than a second on a commodity
laptop.

Keywords: Location privacy · Privacy-preserving protocols ·
Ride-hailing services · Cryptanalysis · Random masking

1 Introduction

Ride-hailing services such as Uber and Lyft have become a popular choice of
transportation in the past decade [9]. By offering convenience and reliability
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to its customers, these services are well suited for intra-city commutes. A ride-
hailing service usually consists of three entities: the ride-hailing server (RS),
riders or customers (RCs) and drivers or vehicles (RVs). The RS is primarily
responsible for hosting the ride-hailing service publicly. Drivers can register to
this service and become identified as certified RVs. A customer who wishes to
make use of this service can sign up as an RC and request for a ride. Depending
on the pick-up and destination locations, the RS smartly forwards this ride
request from RC to suitable RVs in the region. A list of nearby available RVs
is revealed to the RC along with their reputations, who then makes a suitable
choice.

However, revealing locations of RCs/RVs to other entities can have severe
consequences. A pick-up location could correspond to the residential address
of an RC, which can be used for stalking/kidnapping. There have also been
instances when RVs registered to a particular ride-hailing service have been
targeted by regular taxi drivers or targeted for theft [4,14]. Preserving privacy
of sensitive users’ locations has become a primary concern in ride-hailing services.
Generally, the RS is assumed to be honest-but-curious. This means that RS tries
to learn as much information as possible without maliciously deviating from the
ride-hailing protocol. Such a model is reasonable to assume since the RS wishes
to preserve its reputation among the public. But it is still dangerous for the
RS to learn locations of RCs and RVs, in case the RS later turns malicious or
becomes a victim of cyberattacks [3,8].

In the past few years, there have been many works that focus on ensuring
location privacy of RCs and RVs in the context of ride-hailing services. Section 5
contains an overview of recent papers in this area. These works use cryptographic
primitives to hide sensitive location information from the RS, while trying to
ensure efficiency and ride-matching accuracy.

In this paper, we focus on TRACE [16], proposed by Wang et al. in 2018.
TRACE is a privacy-preserving solution to ride-hailing services. Here, the RS
first spatially divides each city into quadrants. RCs and RVs mask their sensi-
tive location information using randomness and then forward it to RS. The RS
then identifies the quadrant in which RCs and RVs lie, without finding out their
exact locations. To ensure efficiency and accuracy, the ride request from an RC
is forwarded only to RVs that are in the same quadrant as RC. The RC then
makes a choice among RVs that lie in its vicinity to finalize ride establishment.
Since the RS knows the distribution of RVs in different quadrants, it can period-
ically change its spatial division of the city to optimize bandwidth usage, reduce
waiting time and improve accuracy.

TRACE uses masking with random secrets to prevent other entities of the
protocol from learning the underlying message. At a high level, a large prime p is
chosen and the plaintext is multiplied with a random integer in Zp. These masked
messages are encrypted using shared keys to prevent external eavesdroppers from
gaining any useful information. Since TRACE uses lightweight cryptographic
techniques and simple modular arithmetic, it is efficient in practice. The security
guarantees for TRACE state that RS cannot learn about the exact locations of
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RCs and RVs apart from the quadrant they are in. Additionally, RCs and RVs
cannot learn about the secret spatial division maintained by RS, since this could
reveal the density of drivers across the city, among other proprietary information
and trade secrets of RS.

1.1 Our Contribution

We propose an attack on TRACE and disprove the above security claims by
showing that the RS can indeed retrieve the exact locations of all RCs and RVs.
Secondly, we show that RCs and RVs can learn the secret spatial division infor-
mation maintained by RS. These attacks constitute a total break of the privacy
objectives of TRACE. The underlying idea behind our attack is to eliminate
the (unknown) randomness shared across different messages when other entities
mask their location values. This allows one to efficiently obtain an overdeter-
mined system of linear (modular) equations in the unknown plaintext locations.
We stress that this attack is purely algebraic, and does not make any geometric
assumptions about the region. Our attack is efficient (runs in time quadratic in
the security parameters) and holds even when all entities are honest-but-curious.
For instance, with the recommended security parameters from [16], an RV can
recover the quadtree maintained by RS in under a minute (see Table 2) and the
RS can recover the exact location of an RV in under a second (see Table 3).

The rest of our paper is organized as follows. In Sect. 2, we describe relevant
steps of the TRACE protocol from [16]. The first attack in Sect. 3.1 describes
how RCs and RVs can recover the secret quadtree maintained by RS. The second
attack in Sect. 3.2 describes how the RS can recover exact locations of RCs and
RVs. We briefly discuss a modification to the TRACE protocol that prevents
only the first attack, and argue that the second attack (which is more severe
than the first) is hard to thwart. Algorithms 1 and 2 summarize the above two
attacks. Section 4 provides details about our experimental setup and evaluates
the efficiency and success rate of our attack in practice (refer Tables 2 and 3).
Section 5 gives an overview of recent works in the area of privacy-preserving
ride-hailing services. We conclude our paper and provide remarks about future
work in Sect. 6.

2 Overview of TRACE

This section contains a high level overview of the TRACE protocol [16]. Details
that are not directly relevant to our attack will be omitted. For more information
the reader is referred to the original paper.

2.1 Preliminaries

A quadtree {N1, . . . , Nm} with m nodes is a data structure used to represent the
partition of a 2-D space into quadrants and subquadrants. Each node Ni in the
tree is associated with four (x, y) coordinates denoting corners of the quadrant
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represented by that node. Every non-leaf node in the quadtree has four children
denoting the division of that quadrant into four subquadrants. An example is
presented in Fig. 1.

Fig. 1. Example of a quadtree

Given a point P = (x, y) and a quadrant {(xj , yj)} with j = 1, . . . , 4, we can
easily check if P lies within the quadrant by doing the following [16, Section III].
For each j compute

Sj = (xyj + yxj′ + xjyj′) − (xyj′ + yxj + xj′yj) (1)

where j′ = (j mod 4) + 1. If all Sj ≥ 0, then P lies within the quadrant,
otherwise it does not. Given a quadtree, this idea can be extended to find the
quadrant/node of the tree in which P lies. Starting at the root, among its four
children, find that quadrant/node in which P lies; then recurse on its children
until a leaf is encountered.

2.2 System Design and Security Goals

System Design. The three primary entities in the TRACE protocol are the
ride-hailing server/service provider (RS), the customer/rider (RC) and the vehi-
cle/driver (RV). All of the aforementioned entities are assumed to be honest-
but-curious. This means that they wish to learn as much information as they
can about the other entities without violating any protocol steps.

RS is mainly responsible for forwarding requests/responses between RCs and
RVs. As part of the protocol, RS maintains a spatial division of the city into
quadrants and uses it to identify regions in which RCs and RVs lie. It does
so in such a way that RCs and RVs do not learn any information about the
spatial division, while RS does not learn the exact locations of RCs and RVs.
The RC can choose a pick-up point and send a ride-hailing request to RS, who
then forwards it to the RVs that lie in close vicinity of RC. RVs submit their
masked location information to RS at regular intervals, allowing the RS to have
an idea of distribution of RVs in the city. Depending on the density of RVs, RS
can periodically optimize its space division to improve ride-matching accuracy.

Threat Model. We assume the same threat model that is considered in
TRACE. All entities are assumed to be honest-but-curious, that is, they fol-
low the protocol specification but may infer additional data from the observed
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transcripts. RS does not collude with RCs and RVs (to try and obtain informa-
tion about customers), since it has an incentive to maintain high reputation.

Security Goals. It is essential to ensure that location information of RCs and
RVs is not revealed to other entities. The spatial division maintained by RS
should also be kept secret, as this could reveal information about density of
drivers in a city and other proprietary information/trade secrets of RS. The
authors of TRACE claim that the following security requirements are satisfied
during the protocol execution.

Claim 1. RS creates a quadtree N containing information about spatial divison
of the city into quadrants, and masks it with a randomly chosen secret to compute
EN . Given EN , RCs and RVs do not learn anything about N .

Claim 2. RS can only learn the quadrants in which RCs lie. RS does not obtain
any other information about the exact pick-up locations of RCs.

Claim 3. RS can only learn the quadrants in which RVs lie. RS does not obtain
any other information about the exact locations of RVs.

2.3 TRACE Protocol

This section describes the execution of the TRACE protocol. Figure 2 gives a
summarized view of the messages exchanged between different entities. RS acts
as a central entity for forwarding messages between RCs and RVs. It establishes
shared keys with RCs and RVs through the Diffie-Hellman key exchange. All
messages exchanged between RS and RCs, RVs are encrypted using a symmetric
encryption scheme. The authentication of entities is ensured by signing these
messages using the BLS signature scheme [1]. The notations used in the TRACE
protocol and their descriptions are provided in Table 1.

For convenience, the remainder of this paper shall refer to subscripts (·)i,j

and (·)i,j,l as simply (·)ij and (·)ijl, respectively.

Step 0. RS publishes details about different system parameters (for example,
the group and its generator used in the signature scheme, public key of RS,
choice of symmetric encryption). RCs and RVs also establish their public keys.
RS announces security parameters k1, k2, k3, k4. As we shall see subsequently,
they specify the size of different randomness used when masking location infor-
mation. Step 3 elaborates on the constraint that should exist among these four
parameters to ensure correctness of the protocol.

RS chooses two large public primes p and α (of size k1 bits and k2 bits,
respectively) and a random secret s ∈ Z

∗
p known only to itself.

Step 1. RS divides the two-dimensional space into squares or rectangles repre-
sented by a quadtree

N = {N1, N2, . . . , Nm}
with m nodes. The i-th quadrant Ni has four corners {Nij = (xNij , yNij)} where
j = 1, . . . , 4. RS wishes to learn the quadrant in which each RV lies without
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Fig. 2. Overview of TRACE protocol
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Table 1. Description of the notations used in the TRACE protocol.

Notation Description

RS Ride-hailing server (service provider)

RC Customer (rider)

RV Vehicle (driver)

k1, k2, k3, k4 Security parameters of TRACE

N Spatial division (quadtree) maintained by RS

α, p Large primes chosen by RS

α′, p′ Large primes chosen by RC

(xNij , yNij) Coordinates of j-th vertex in the i-th quadtree node Ni

s, ajh Random values used by RS when masking N

EN Masked quadtree computed by RS

(xV , yV ) Coordinates of RV

rij Random values chosen by RV when masking (xV , yV )

π(·) Random permutation chosen by RV

A Data aggregated by masking (xV , yV ) and EN

(xCP , yCP ) Pick-up coordinates of RC

SRC Square with (xCP , yCP ) at its center

R Length of a side of SRC

s′, di Random values used by RC when masking (xCP , yCP )

C1, . . . , C5 Data aggregated by masking (xCP , yCP ) and EN

learning its exact location. To do this, RS sends a masked version of Ni to RV.
Concretely, RS chooses 24 random values ajh (j = 1, . . . , 4;h = 1, . . . , 6) of size
k3 bits each. For every vertex Nij of Ni, let Nij′ be the vertex adjacent to it
in the anticlockwise direction, i.e. j′ = (j mod 4) + 1. RS masks this vertex by
computing

ENij1 = s(xNij · α + aj1) mod p,

ENij2 = s(yNij · α + aj2) mod p,

ENij3 = s(xNij′ · α + aj3) mod p,

ENij4 = s(yNij′ · α + aj4) mod p,

ENij5 = s(xNij · yNij′ · α + aj5) mod p,

ENij6 = s(xNij′ · yNij · α + aj6) mod p.

The values α, p are public, whereas s, xNij , yNij are only known to RS. The
masked coordinate is

ENij = ENij1‖ENij2‖ENij3‖ENij4‖ENij5‖ENij6,
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where ‖ denotes concatenation. Next, RS computes the masked quadrant

ENi = ENi1‖ENi2‖ENi3‖ENi4,

for i = 1, . . . , m, to get the masked quadtree

EN = {EN1, EN2, . . . , ENm}.

It then encrypts EN and forwards it to RV.

Step 2. RV decrypts this message and uses EN along with its own randomness
to mask its location (xV , yV ). For i = 1, . . . ,m; j = 1 . . . , 4, RV chooses a fresh
random number rij (each k4 bits long) and computes

Aij1 = rij · α(xV · ENij4 + yV · ENij1 + ENij6) mod p,

Aij2 = rij · α(xV · ENij2 + yV · ENij3 + ENij5) mod p,

Aij = Aij1‖Aij2.

RV chooses a random permutation π(·) to reorder the j-indices for each Ai.
That is,

Ai = Aiπ(1)‖Aiπ(2)‖Aiπ(3)‖Aiπ(4),

A = {A1, . . . , Am}.

The order within each Aiπ(j) is still preserved, that is,

Aiπ(j) = Aiπ(j)1‖Aiπ(j)2.

RV encrypts A and forwards it to RS.

Step 3. RS obtains A that contains the masked location of each RV, and does
the following computations to identify the quadrant/node Ni of the quadtree in
which RV lies.

Bij1 = s−1 · Aij1 mod p

= s−1 · rij · α(xV · ENij4 + yV · ENij1 + ENij6) mod p

= s−1 · rij · s[α2(xV · yNij′ + yV · xNij + xNij′ · yNij)
+ α(xV · aj4 + yV · aj1 + aj6)] mod p.

B′
ij1 =

Bij1 − (Bij1 mod α2)
α2

= rij(xV · yNij′ + yV · xNij + xNij′ · yNij).
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Similarly,

Bij2 = s−1 · Aij2 mod p,

B′
ij2 =

Bij2 − (Bij2 mod α2)
α2

= rij(xV · yNij + yV · xNij′ + xNij · yNij′).

Next, RS computes the difference

Bij = B′
ij2 − B′

ij1

= rij [(xV · yNij + yV · xNij′ + xNij · yNij′)
− (xV · yNij′ + yV · xNij + xNij′ · yNij)].

Compare this to Eq. (1). Since rij is always positive, RS can identify whether
RV lies in Ni by checking if Bij is positive for all j = 1, . . . , 4. Using the method
described in Sect. 2.1, RS can query the quadtree to identify the exact quadrant
where RV lies.

Note that it was necessary to remove the modulus with respect to p when
obtaining B′

ij1 and B′
ij2, otherwise those values would always be positive irre-

spective of whether RV was inside the quadrant Ni or not. To remove this mod-
ulus it is sufficient if the following is always true during the computation of Bij1

(a similar condition exists for Bij2).

rij [α2(xV · yNij′ + yV · xNij + xNij′ · yNij)
+ α(xV · aj4 + yV · aj1 + aj6)] < p,

rij · α(xV · aj4 + yV · aj1 + aj6) < α2,

rij · α(xV · aj2 + yV · aj3 + aj5) < α2.

Let 〈·〉 denote the bit length of a non-negative integer. Recall that 〈p〉 = k1, 〈α〉 =
k2, 〈ajh〉 = k3, 〈rij〉 = k4. To ensure the above conditions hold, the parameters
are chosen such that

k4 + 2k2 < k1,

k2 + k3 < k1,

k3 + k4 < k2. (2)

Moreover, the size of location coordinates are assumed to be negligible compared
to these security parameters. In [16], the above values are set as k1 = 512, k2 =
160, k3 = 75, k4 = 75.

Step 4. RC receives EN from RS. Now the RC tries to mask its location with
respect to the quadtree and send it to RS. Suppose the pick-up point of RC
is (xCP , yCP ). RC chooses a square SRC of side 2R (where R is ≥ 1 km) with
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this pickup point at its center. Let the vertices of this square be {(xS1, yS1),
(xS2, yS2), (xS3, yS3), (xS4, yS4)}. Recall that in Step 2, each RV masked its loca-
tion (xV , yV ) with respect to EN and computed A. RC also does an equivalent
computation here; after receiving EN from RS, it computes a masking for each
of the four vertices of SRC to obtain C = C1‖C2‖C3‖C4.

Next, RC chooses a public prime p′ of size k1 bits, a public prime α′ of k2
bits, a secret s′ ∈ Z

∗
p′ and 4 random values di of k4 bits each. It computes

D1 = s′(xCP · α′ + d1) mod p′,
D2 = s′(yCP · α′ + d2) mod p′,
D3 = s′ · d3 mod p′,
D4 = s′ · d4 mod p′,
D = D1‖D2‖D3‖D4,

E = x2
CP + y2

CP − R2.

RC encrypts C,D,E and sends it to RS.

Step 5. The goal here is to convey the masked location information from RC to
RVs that are “nearby” to it. RS decrypts the message from RC to get C,D,E.
Similar to Step 3, for each of C1, C2, C3, C4, RS obtains the quadrant in which
the vertex represented by Ci (i.e. (xSi, ySi)) lies. With this RS knows the quad-
rants in which the corners of square SRC lies. RS can construct a region CSRC

enclosing SRC . From Step 3, RS also knows the quadrants in which each RV lies.
RS encrypts D,E and sends it to those RVs that lie in CSRC (call these RVs as
SRVs).

Step 6. SRV receives D,E from RS and tries to add in masked information
about its own location (xSV , ySV ) to these values. It chooses three random ri’s
of k4 bits each and computes

F1 = xSV · α′ · D1 mod p′,
F2 = ySV · α′ · D2 mod p′,
F3 = r1 · D3 mod p′,
F4 = r2 · D4 mod p′,
F = r3(F1 + F2 + F3 + F4),

I = r3(x2
SV + y2

SV + E).

SRV encrypts and sends I, F to RC via RS.
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Step 7. RC uses I, F (that contain masked information of RC’s and SRVs’
locations) to check if that SRV is within distance R.

J = s′−1 · F mod p′

= s′−1 · s′ · r3[α′2(xCP · xSV + yCP · ySV )
+ α′(xSV · d1 + ySV · d2) + r1 · d3 + r2 · d4] mod p′,

J ′ =
J − (J mod α′2)

α′2 = r3(xCP · xSV + yCP · ySV ),

K = I − 2J ′

= r3[x2
CP + y2

CP + x2
SV + y2

SV

− 2(xCP · xSV + yCP · ySV ) − R2]

= r3[(xCP − xSV )2 − (yCP − ySV )2 − R2].

When K ≤ 0, the SRV is within the circle query range CRC of radius R around
RC. Call such SRVs as CRVs.

Once again (similar to Step 3) we need to eliminate the modulus with respect
to p′ (otherwise K would always be positive even if the SRV had distance > R).
With the relationship imposed on the security parameters (Eq. (2) in Step 3),
the following condition holds and the modulus is removed.

r3[α′2(xCP · xSV + yCP · ySV )
+ α′(xSV · d1 + ySV · d2) + r1 · d3 + r2 · d4] < p′,

r5[α′(xSV · d1 + ySV · d2) + r1 · d3 + r2 · d4] < α′2.

Step 8. RC masks its take-off point (xCT , yCT ) using EN (similar to Step 2) to
create C5, and forwards C5 along with the list of CRVs to RS. (The take-off point
usually lies very close to the RC’s pick-up point from Step 4). Similar to Step 3,
RS uses C5 to identify the subregion in which the take-off point lies. RS chooses
a random location ATP in this subregion and forwards it to CRVs. Each CRV
inspects ATP to make a decision on whether to accept this ride-hailing request
from RC. The CRVs who decide to accept send an “Accept Response” to RS. RS
forwards the list of ready and available CRVs to RC. RC chooses a suitable CRV
from this list, and this CRV is informed about the same by RS. Later, the RC and
the chosen CRV proceed with ride establishment by negotiating a shared session
key and by exchanging information such as location, phone number, reputation,
etc.

3 Attack on TRACE

This section presents two attacks which (with high empirical probability) dis-
prove the following privacy claims made about TRACE. First, in Sect. 3.1, we
show that RCs and RVs can obtain the secret spatial division (quadtree) informa-
tion maintained by RS (violation of Claim 1). We also discuss a modification to
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the TRACE protocol, as a countermeasure for this attack. Secondly, in Sect. 3.2,
we show how the RS can identify exact locations of all RCs and RVs (violation
of Claims 2, 3). We also briefly argue why this attack is not straightforward to
thwart. In both attacks, the entities recover location coordinates modulo prime
p. This is same as recovering the actual integer values since p is a very large
prime and the coordinate values are negligibly small compared to p.

Steps from the TRACE protocol described in Sect. 2.3 will be referred as and
when needed. In Sect. 4, we shall experimentally evaluate the success probability
of our attacks.

3.1 RCs, RVs Obtain Quadtree

After an RV receives the masked quadtree EN computed by RS (Step 2), we
show how it can recover all underlying vertices xNij , yNij of the quadtree’s nodes.
This same principle allows an RC to obtain information about the quadtree as
well (recall that each RC receives EN from RS in Step 4).

Intuition. Intuitively, our attack works as follows. Each quadtree node Ni is
masked by the RS using random values s, α, ajh, resulting in ENi. When an
RV receives EN1, . . . , ENm, it knows p, α but does not know s, ajh. For a sin-
gle ENi, the number of equations involved is 4 × 6 = 24 (since there is one
equation for each ENijh, j = 1, . . . , 4;h = 1, . . . , 6). The number of unknowns
involved in ENi is 1 + 24 + 8 = 33 (s, ajh’s and quadrant vertices xNij , yNij ,
j = 1, . . . , 4;h = 1, . . . , 6). A key observation is that if one considers ENi along
with a different ENi′ , the number of equations is 24 + 24 = 48. However the
number of unknowns involved is 1 + 24 + 8 + 8 = 41 (s, ajh’s and quadrant
vertices xNij , yNij , xNi′j , yNi′j , where j = 1, . . . , 4;h = 1, . . . , 6). That is, con-
sidering an additional ENi′ gives 24 new equations but introduces only 8 new
variables. This would allow RV to solve this system of modular equations and
obtain the secrets s along with quadrant vertices of Ni and Ni′ .

Formal Attack. Without loss of generality, we show how an RV can recover
vertices of quadrants N1, N2 when given EN1, EN2 (i.e. i = 1, i′ = 2). The first
task is to eliminate the unknown randomness ajh, j = 1, . . . , 4;h = 1, . . . , 6.
This can be done by subtracting EN2jh from EN1jh. For h = 1, . . . , 6, we get
the following equations.

EN1j1 − EN2j1 = sα(xN1j − xN2j) mod p, (3)
EN1j2 − EN2j2 = sα(yN1j − yN2j) mod p, (4)
EN1j3 − EN2j3 = sα(xN1j′ − xN2j′) mod p, (5)
EN1j4 − EN2j4 = sα(yN1j′ − yN2j′) mod p, (6)
EN1j5 − EN2j5 = sα(xN1jyN1j′ − xN2jyN2j′) mod p, (7)
EN1j6 − EN2j6 = sα(xN1j′yN1j − xN2j′yN2j) mod p. (8)
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Here j′ = (j mod 4)+1. The parameters s, α are unknown to RV along with the
16 variables xN1j , yN1j , xN2j , yN2j , j = 1, . . . , 4. RV can obtain linear (modular)
equations in these variables by eliminating s, α as follows.

Compare (3) × yN1j′ + (6) × xN2j and (7):

(EN1j1 − EN2j1) × yN1j′ + (EN1j4 − EN2j4) × xN2j

= sα(xN1jyN1j′ − xN2jyN1j′ + yN1j′xN2j − yN2j′xN2j)
= sα(xN1jyN1j′ − xN2jyN2j′)
= (EN1j5 − EN2j5) mod p. (9)

Compare (3) × yN2j′ + (6) × xN1j and (7):

(EN1j1 − EN2j1) × yN2j′ + (EN1j4 − EN2j4) × xN1j

= sα(xN1jyN2j′ − xN2jyN2j′ + yN1j′xN1j − yN2j′xN1j)
= sα(xN1jyN1j′ − xN2jyN2j′)
= (EN1j5 − EN2j5) mod p. (10)

Compare (4) × xN1j′ + (5) × yN2j and (8):

(EN1j2 − EN2j2) × xN1j′ + (EN1j3 − EN2j3) × yN2j

= sα(yN1jxN1j′ − yN2jxN1j′ + xN1j′yN2j − xN2j′yN2j)
= sα(xN1j′yN1j − xN2j′yN2j)
= (EN1j6 − EN2j6) mod p. (11)

Compare (4) × xN2j′ + (5) × yN1j and (8):

(EN1j2 − EN2j2) × xN2j′ + (EN1j3 − EN2j3) × yN1j

= sα(yN1jxN2j′ − yN2jxN2j′ + xN1j′yN1j − xN2j′yN1j)
= sα(xN1j′yN1j − xN2j′yN2j)
= (EN1j6 − EN2j6) mod p. (12)

Compare (3) and (4):

(EN1j1 − EN2j1) × sα(yN1j − yN2j)
= (EN1j2 − EN2j2) × sα(xN1j − xN2j) mod p,

⇒ (EN1j2 − EN2j2)(xN1j − xN2j)
− (EN1j1 − EN2j1)(yN1j − yN2j) = 0 mod p. (13)

Similarly, compare (4) and (5), and (5) and (6):

(EN1j3 − EN2j3)(yN1j − yN2j)
− (EN1j2 − EN2j2)(xN1j′ − xN2j′) = 0 mod p, (14)

(EN1j4 − EN2j4)(xN1j′ − xN2j′)
− (EN1j3 − EN2j3)(yN1j′ − yN2j′) = 0 mod p. (15)
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Consider Eqs. (9)—(15) for all j = 1, . . . , 4; j′ = (j mod 4) + 1. There are
28 linear (modular) equations in the 16 unknowns (xN1j , yN1j), (xN2j , yN2j);
j = 1, . . . , 4. This can be treated as a linear system of equations with elements
from the field Zp, and standard techniques from linear algebra such as Gaussian
Elimination can be applied to find solutions for X in Zp.

Existence of a Unique Solution. Suppose we represent Eqs. (9)—(15) using
matrix notation as PX = Q, where dim(P ) = 28 × 16, dim(X) = 16 × 1,
dim(Q) = 28 × 1, and vector X represents the 16 unknown quadrant vertices of
N1, N2. We observed that rank(P ) ≤ 13 < 16, and the RV cannot obtain unique
solutions for X from this system.

Hence we propose a modification to our attack such that rank(P ) equals the
number of unknowns. Previously, considering only N1, N2 gave us 28 equations
and 8 × 2 = 16 unknowns. If we instead consider N1, N2, N3 and take

(
3
2

)
= 3

pairwise combinations, we end up with 28 × 3 = 84 equations and 8 × 3 = 24
unknowns (which is slightly better). But we observed that in some cases, the
resulting 84 × 24 matrix P had rank 23 < 24. Next, considering N1, N2, N3, N4

and taking
(
4
2

)
= 6 pairwise combinations gives us 28 × 6 = 168 equations and

8 × 4 = 32 unknowns. We observed (from experiments described in Sect. 4)
that the corresponding 168 × 32 matrix P always had rank 32, and an RV can
therefore solve this system to get the unique values (in Zp) of quadrant vertices
for N1, . . . , N4. One can proceed further and consider more Ni, but that would
be redundant since rank already equals the number of unknowns.

We now formalize the above idea. Let the linear system defined by Eqs. (9)—
(15) (for vertices of N1, N2) be denoted by

⎡

⎣PN1N2 PN2N1

⎤

⎦
[

XN1

XN2

]
=

⎡

⎣QN1N2

⎤

⎦ . (16)

Here PN1N2,XN1 and PN2N1,XN2 are submatrices corresponding to
unknown vertices of N1 and N2, respectively. Note that dim(PN1N2) =
dim(PN2N1) = 28×8, dim(XN1) = dim(XN2) = 8×1, dim(QN1N2) = 28×1. In
the same manner, take all

(
4
2

)
= 6 pairwise combinations Ni, N

′
i ; 1 ≤ i < i′ ≤ 4

from N1, N2, N3, N4 and compute PNiNi′ ,XNi, PNi′Ni,XNi′ , QNiNi′ . Define a
linear system that considers all the above systems simultaneously.

PX = Q,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

PN1N2 PN2N1 0 0
PN1N3 0 PN3N1 0
PN1N4 0 0 PN4N1

0 PN2N3 PN3N2 0
0 PN2N4 0 PN4N2

0 0 PN3N4 PN4N3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

XN1

XN2

XN3

XN4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

QN1N2

QN1N3

QN1N4

QN2N3

QN2N4

QN3N4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17)
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Algorithm 1: RV recovers quadtree
Input : Size of quadtree m, masked quadtree EN = (EN1, . . . , ENm)
Output: Underlying quadrant vertices N = (N1, . . . , Nm)
Procedure Recover Quadtree(m, EN) :

while size(EN) > 0 do
Pick four random entries ENa, ENb, ENc, ENd and delete them from
EN

for each of the
(
4
2

)
pairwise combinations (i, i′) from a, b, c, d do

Obtain a linear system in the unknown vertices of Ni, N
′
i using

equations similar to (9)—(15)
Let the corresponding matrices be PNiNi′ , XNi, PNi′Ni, XNi′ ,
QNiNi′ similar to (16)

end
Using the above matrices, define the system PX = Q similar to (17)
Solve this system to obtain quadrant vertices corresponding to
Na, Nb, Nc, Nd

end
Output: (N1, . . . , Nm)

Here 0 denotes the zero matrix of dimension 28×8, dim(P ) = 168×32, dim(X) =
32× 1, dim(Q) = 168× 1 and rank(P ) is experimentally observed to be 32. The
RV can solve this system to obtain unique solutions for X (i.e. quadrant vertices
of N1, . . . , N4) in Zp.

Note that there is no restriction here to use equations for the first four quad-
rants N1, . . . , N4. The RV can consider equations corresponding to any four
distinct Ni and find their underlying vertices. The above steps are repeated for
other quadrants as well, until all of them are recovered. We summarize the attack
in Algorithm 1. The same idea also allows an RC to recover the quadtree, when
it receives EN from RS.

We remark that this attack is purely algebraic and does not make any
assumptions about geometry of the region. The same attack would still work
even if quadrants in the spatial division were not restricted to rectangles/squares.

Complexity. The linear system of equations represented by PX = Q, where
dim(P ) = 168×32, dim(X) = 32×1, dim(Q) = 168×1, and all operations are in
the field Zp, can be solved in time O((log p)2) = O(k2

1) [2]. We need to repeatedly
solve such a system 	m/4
 times to recover vertices of all m quadrants. The
total asymptotic complexity of this attack is O(k2

1m). Our attack is efficient in
practice, and Table 2 shows the average time taken to recover quadrant vertices
for varying tree sizes and security parameters.

Remark. The aforementioned attack mainly relies on the fact that TRACE uses
the same set of 24 random values ajh, j = 1, . . . , 4;h = 1, . . . , 6 throughout all
ENi, i = 1, . . . , m (refer to Step 1 of the TRACE protocol in Sect. 2.3). However,
upon careful observation, one can see that the correctness of the TRACE protocol
would still hold if different set of values of ajh were used for each ENi. That is,
sample 24 × m independent random values aijh, i = 1, . . . ,m; j = 1, . . . , 4;h =
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1, . . . , 6 and mask ENijh with aijh. In the TRACE protocol, these random values
are involved only when computing Bij1 and Bij2 (Step 3). Correctness still holds
since these values cancel each other out when computing Bij1 − (Bij1 mod α2).

Therefore, one can modify the TRACE protocol by using a new random aijh

each time when computing ENijh. This is a countermeasure to prevent RCs
and RVs from obtaining the secret quadtree because, ENijh is masked by fresh
randomness each time and no information can be obtained about (xNij , yNij)
given the ENi values (similar to a one-time pad). This simple observation leads
to the following lemma.

Lemma 1. The above modification to TRACE provides information-theoretic
security against any passive adversary who wishes to obtain additional informa-
tion about the quadtree maintained by RS.

However, as we shall see in Sect. 3.2, this modification does not prevent the
RS in obtaining locations of RCs and RVs. We will also later see that a similar
countermeasure does not exist for the latter attack. Trying to use fresh random-
ness there will violate the correctness of the protocol.

3.2 RS Obtains Locations of RCs, RVs

RS Finds Location of RVs. In Step 3, RS receives Ai = Aiπ(1)‖Aiπ(2)‖Aiπ(3)

‖Aiπ(4), i = 1, . . . ,m, from each RV, that contains masked information about
(xV , yV ). RS knows ENij but does not know rij and the random permutation
π used on the four Aij values. Since there can only be 24 possible choices for π,
the RS can enumerate all of them to try and find π.

For each i, RS initializes an empty set Si. For each choice of permutation
ρ (among the set of all permutations on four elements), RS permutes the four
components of Ai according to ρ. That is, RS computes

A′
i = Aiρ(π(1))‖Aiρ(π(2))‖Aiρ(π(3))‖Aiρ(π(4))

= A′
i1‖A′

i2‖A′
i3‖A′

i4. (18)

A′
i corresponds to the original value Ai1‖Ai2‖Ai3‖Ai4 computed by RV only

when ρ = π−1. To see if the current choice ρ equals π−1, RS can do the following:
eliminate rij , α from A′

ij1 and A′
ij2 to get a linear equation in the unknowns

xV , yV :

A′
ij1(xV · ENij2 + yV · ENij3 + ENij5)

= A′
ij2(xV · ENij4 + yV · ENij1 + ENij6) mod p . (19)

In this way, RS can obtain four linear equations for j = 1, . . . , 4, in the two
unknowns xV , yV . Two of these equations can be used to solve and find xV , yV

(if a solution does not exist, move to the next choice of ρ). The remaining two
equations can be used to check if the values of xV , yV previously obtained are
consistent. If so, then with high probability RS can infer that ρ = π−1; add this
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Algorithm 2: RS recovers location of an RV
Input : (A1, . . . , Am) representing masked information about an RV’s location
Output: RV’s location (xV , yV )
Procedure Recover Location(A1, . . . , Am) :

for i = 1, . . . , m do
Si = φ
P = set of all permutations on 4 elements
for ρ ∈ P do

/∗ Permute the 4 components of Ai using ρ ∗/
Compute A′

i according to (18)
Obtain a linear system in the unknowns xV , yV by substituting
j = 1, 2 in (19)

if this system does not have a unique solution then
continue

end
/∗ Solve this system and check if the unique solution (x, y) also
satisfies the two equations obtained when substituting j = 3, 4 in
(19) ∗/

if (x, y) satisfies the consistency check then
Si = Si ∪ {(x, y)}

end
/∗ Note that ∀i, (xV , yV ) ∈ Si ∗/

end
/∗ With high probability, we have | ∩m

i=1 Si| = 1 ∗/
{(xV , yV )} = ∩m

i=1Si

end
Output: (xV , yV )

solution to set Si. If it is not consistent discard it and check the next permutation
choice for ρ. Note that Si always contains the original xV , yV chosen by RV since
this solution satisfies the consistency checks when ρ = π−1. In rare cases it could
be possible that a false positive also passes these consistency checks for a different
ρ and is added to Si.

The above procedure is discussed only for one value of i. There are m such
Ai’s received by RS (in general 30 ≤ m ≤ 100 [16, Section VI]), and the original
xV , yV is present in each Si. Moreover, it is highly unlikely that the same false
positive appears in every Si. Therefore, it is very likely that there is only one
common element present in all Si (this probability increases with m), and that
would be the required location of RV . Once again, there are no assumptions
made regarding geometry of the spatial region. We summarize the attack in
Algorithm 2.

Complexity. For each i = 1, . . . ,m, RS enumerates over all 24 possible permu-
tations. In each choice of permutation, RS solves a system of equations in two
variables (with all elements being in Zp) and checks for consistency with two
other equations to finally obtain the set Si. The size of each Si is at most 24. RS
later computes the intersection of all Si to determine the RV’s coordinates. All
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these operations can be done in time O(k2
1m). Table 3 shows the average time

taken to recover (xV , yV ) for varying tree size and security parameters.

RS Finds Location of RCs. In Step 5, RS receives C1‖C2‖C3‖C4 from RC.
Recall that RC chooses a square SRC of side 2R with its pick-up location at the
center. Each Cj corresponds to one vertex of that square, masked in a manner
similar to how RV masked its location as A (refer to Step 2). Since we just saw
an attack where RS can recover the original underlying location when given such
a masking, RS can obtain the 4 vertices corresponding to SRC . The center of
this square directly gives the pick-up location of RC.

RS can also find the take-off location of RC. In Step 8, RS receives C5 from
RC, which is a masking of RC’s take-off location using EN similar to what we
have seen in Step 2. Using the same attack as for RV, RS can directly recover
RCs location from C5. Note that, in practice, the pick-up and the take-off points
are quite close.

Remark. In Sect. 3.1 we saw that using fresh randomness for each encrypted
quadtree term ENi did not violate correctness of the protocol. If we try to apply
the same argument here, then in Step 2 of the TRACE protocol, Aij1 and Aij2

have to be masked with different (and fresh) randomness, say rij1 and rij2,
respectively (currently, they are both masked by the same rij). But in Step 3
of the TRACE protocol, this would mean B′

ij1 is masked with rij1, and B′
ij2 is

masked with rij2. Hence Bij = B′
ij1 − B′

ij2 would not have a common factor
rij , and one cannot infer whether the RV lies inside the quadrant Ni just by
checking the sign of Bij . Therefore, this approach will violate the correctness of
the TRACE protocol, and we believe that other countermeasures for this attack
are not straightforward to come up with.

4 Experimental Results

In this section, we discuss the experimental setup and other implementation
aspects of the attacks1 mentioned in Sect. 3. Our experiments were implemented
using SageMath [13] and run on an Intel Core i5-8250U CPU @ 1.60 GHz with
8 GB RAM running Ubuntu 20.04 LTS.

4.1 Setup

The TRACE paper [16] states that setting (k1, k2, k3, k4) = (512, 160, 75, 75)
should be sufficient to ensure that Claims 1, 2, 3 hold. We also initialize these
security parameters with the same values. In addition, we demonstrate the
robustness of our attack by performing another set of experiments with larger
values (2048, 1000, 400, 400) satisfying Eq. (2). Note that our attack is clearly
independent of the security of encryption schemes/digital signatures used in
TRACE.
1 The implementation can be accessed at https://github.com/deepakkavoor/rhs-atta

ck/tree/trace-attack.

https://github.com/deepakkavoor/rhs-attack/tree/trace-attack
https://github.com/deepakkavoor/rhs-attack/tree/trace-attack


480 D. Kumaraswamy and S. Vivek

The implementation of TRACE protocol from [16] does not give any refer-
ence to the dataset that was used to create spatial divisions. So, we simulate
the creation of an arbitrary quadtree by first choosing an outermost rectangular
quadrant, followed by picking a random center and dividing it into four sub-
quadrants. We repeat this for the smaller quadrants until the number of nodes
in the tree is m. The TRACE implementation in [16] varies m between 28 and
84; we set m = 50 and m = 100 in our experiments. The attack indeed works
for any value of m (recall m ≥ 4) and its success probability increases with m.

Integer modular arithmetic is used in all computations. Since the sizes
of location coordinates are negligible compared to the security parameters
k1, . . . , k4, the vertices of the outermost quadrant are randomly chosen in the
range [0, 220 − 1] (for (k1, k2, k3, k4) = (512, 160, 75, 75)) and in [0, 250 − 1] (for
(k1, k2, k3, k4) = (2048, 1000, 400, 400)).

4.2 RCs, RVs Recover Quadtree

RS computes the encrypted quadtree EN and sends it to an RV as described in
Sect. 2.3. Next, RV carries out the attack described in Sect. 3.1. We perform 20
iterations of this attack, and in each iteration, the RS generates a fresh random
quadtree (as described in Sect. 4.1) and computes EN accordingly. We observed
that in all iterations, RV was able to recover the exact values of all quadrant
vertices every time. We repeat the same for different choices of m and security
parameters, and tabulate the average time taken to recover the quadtree in
Table 2. Since the same attack allows an RC to recover the quadtree, similar
experimental statistics can be expected in this case.

Table 2. Time taken (in seconds) for an RV to recover quadtree, averaged over 30
iterations.

Security parameters (k1, k2, k3, k4) Size of quadtree m

50 100

(512, 160, 75, 75) 55.686 108.566

(2048, 1000, 400, 400) 2341.836 4771.549

4.3 RS Recovers Locations of RCs and RVs

The location (xV , yV ) of an RV is randomly chosen within the outermost quad-
rant. We simulate the exchange of messages between RS and this particular
RV, following the steps of TRACE protocol (Sect. 2.3). Next, RS carries out
the attack described in Sect. 3.2. We perform 30 iterations of the attack with
freshly generated (random) values for quadtree and (xV , yV ) in each iteration.
We observed that in all iterations, RS was able to recover the exact location of
the RV. That is, | ∩m

i=1 Si| was exactly 1, and the recovered coordinate was same
as the RV’s location in all iterations (refer Algorithm 2). We repeat the same for
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Table 3. Time taken (in seconds) for RS to recover an RV’s location, averaged over
30 iterations.

Security parameters (k1, k2, k3, k4) Size of quadtree m

50 100

(512, 160, 75, 75) 0.206 0.402

(2048, 1000, 400, 400) 7.461 14.778

different choices of m and security parameters, and tabulate the average time
taken to recover RV’s location in Table 3.

The attack to recover an RC’s location is exactly the same as that for an
RV. Since we assume the distribution of RC’s location to be random as well, the
same statistics also hold true when RS recovers the location of an RC.

5 Related Work

We briefly mention the prior works in privacy-preserving ride-hailing services.
Since these works use fundamentally different ideas (such as homomorphic
encryption, garbled circuits) compared to TRACE (which relies on random
masking), our attack does not directly apply to these works.

PrivateRide by Pham et al. [11] is the first work that provides a practical solution
towards privacy in ride-hailing systems. The locations and identities of riders
are hidden using cloaked regions and anonymous credentials. They use efficient
cryptographic primitives to ensure privacy of sensitive information. ORide by
Pham et al. [10] offers accountability guarantees and secure payments along
with privacy of riders and drivers. They use homomorphic encryption to compute
the Euclidean distance and identify the closest driver in a zone. [5] proposes a
modification to ORide to ensure location privacy of responding drivers in the
region with respect to a rider.

Zhao et al. [20] conduct a study on leakage of sensitive data in ride-hailing
services. They analyze APIs in non-privacy preserving apps provided to drivers
by Uber and Lyft.

pRide by Luo et al. [7] proposes a privacy-preserving solution involving two
non-colluding servers, one of them being the RS and the other a third-party
Crypto Provider (CP). They use road network embedding in a higher dimen-
sion to approximate shortest distance over road networks. The homomorphically
computed (approximate) distances are compared using a garbled circuit. Their
scheme provides higher ride-matching accuracy than ORide while being compu-
tationally efficient. lpRide by Yu et al. [19] improves upon pRide by eliminating
the need for a second Crypto Provider. They use a modified version of Paillier
cryptosystem for encrypting locations of riders and drivers. However, [15] pro-
posed an attack on the modified Paillier scheme used in lpRide, allowing the
service provider to recover locations of all riders and drivers in the region.
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EPRide by Yu et al. [18] uses an efficient approach to compute the exact short-
est road distance using road network hypercube embedding. They use some-
what homomorphic encryption over packet ciphertexts to achieve high ride-
matching accuracy and efficiency, reporting significant improvements over ORide
and pRide. Xie et al. [17] improve upon pRide by combining the idea of road
network embedding with cryptographic constructs such as Property-preserving
Hash. They eliminate the need for a trusted third-party server to compute short-
est distances.

Lu et al. [6] proposed a protocol for Privacy-Preserving Scalar Product (PP-
SP) in 2013, which allows two parties P0 and P1 (having input vectors −→a and−→
b , respectively) to jointly compute the scalar product −→a ·−→b such that no infor-
mation about Pi’s input is revealed to P1−i (other than what is revealed by the
output itself), for i ∈ {0, 1}. Their protocol was claimed to achieve information-
theoretic security using random masking, and does not make use of any compu-
tational assumptions. However, in 2019, [12] proposed an attack on the PP-SP
protocol of Lu et al. and showed that it is impossible to construct a PP-SP
protocol without the use of computational hardness assumptions. These attacks
are based on constructing distinguishers that leak additional information about
the other party’s secrets than what the output should reveal. While the TRACE
protocol is motivated by the designs of the PP-SP protocols of Lu et al., we
would like to stress that the application context, i.e., privacy-preserving ride-
hailing services, is different in our setting, and hence the privacy requirements
differ too. The main goal of our attacks on the TRACE protocol is the complete
recovery of secret locations rather than just distinguishing them from uniform
random values, and hence the attack techniques are also different. Note that the
anonymity of users’ locations is the main requirement for a PP-RHS, and not just
indistinguishability from uniform random values. Hence, the attack in [12] does
not necessarily imply our results, though it certainly provides the motivation for
a deeper investigation such as our work.

Also, the impossibility result of [12] does not necessarily imply that a PP-
RHS cannot be constructed without computational hardness assumptions. For
instance, in Sect. 3.1, we showed that our modification to the TRACE protocol,
where fresh random values are used for each invocation, prevents RCs and RVs
from obtaining the secret quadtree (this is based on an information-theoretic
argument similar to that of a one-time pad). Hence, impossibility results for the
PP-SP setting do not necessarily translate to the PP-RHS setting.

6 Conclusion and Future Work

In this work we proposed an attack on the privacy-preserving ride-hailing service
TRACE. We disproved several privacy claims about TRACE in an honest-but-
curious setting. We showed how riders (RCs) and drivers (RVs) can recover the
secret spatial division information maintained by the ride-hailing server (RS).
We also showed how the RS can recover the exact locations of RCs and RVs.
We implemented our attack and evaluated the success probability for different
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security parameters. In the future, it would be interesting to propose a modified
protocol for TRACE in which all the aforementioned privacy claims hold.
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Abstract. Multiple approaches have been developed to address data
privacy concerns, as cloud services increasingly gain traction. One of
these methods is Searchable Encryption (SE), which enables a user to
search over encrypted data. When applied to a dynamic dataset, it is
important that SE achieves two essential properties upon updating a
dynamic dataset: (1) Forward Privacy, which guarantees that an updated
document would not be linked to previous searches and (2) Backward
Privacy, which prevents information leakage from deleted data.

In this paper, we propose an efficient Verifiable Dynamic Symmetric
Searchable Encryption (VDSSE) scheme, achieving forward and back-
ward privacy. The scheme is designed based on the principle of additive
secret sharing, where each keyword is assigned a secret and each doc-
ument containing the keyword is assigned a share of the secret to hide
its entry. To support a dynamic update, the last secret share, which is
stored only on the client-side, is recursively shared. Each secret share is
applied to reconstruct the secret. If the secret is reconstructed correctly,
a search result is considered correct. We formally prove the security of
the proposed VDSSE scheme and show its practicality by conducting a
large number of experiments over a publicly available dataset 20 News-
groups. Experimental results show that it takes less than 1 microsecond
(µs) - on average - to retrieve a document from an encrypted dataset.

Keywords: Dynamic searchable encryption · Forward privacy ·
Backward privacy · Verifiability

1 Introduction

Remote cloud storage services have gained popularity over the past decade. How-
ever, privacy concerns that cloud services inherently carry are still not resolved.

Searchable Encryption (SE) [30] is one of the promising techniques proposed
to address privacy challenges. It allows data owners to efficiently outsource their
data to the Cloud Service Provider (CSP) and retrieve and/or update the tar-
geted dataset without privacy violation while bearing a reasonable overhead in
terms of computation and communication.
c© Springer Nature Switzerland AG 2021
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In the last years, researchers focused on Dynamic Symmetric Searchable
Encryption (DSSE) schemes, which support modifications to the encrypted
dataset such as document insertion or deletion. Developing a secure and efficient
DSSE scheme is still an open challenge due to additional information that docu-
ment updates disclose to the CSP. The following aspects remain to be addressed.

Secure Search: SE is susceptible to information leakage resulting from the
search functionality. Oblivious RAM (ORAM) [32] hides access patterns but
requires a large amount of local and remote storage and extra communication
between clients and the CSP. Private information retrieval (PIR) [12] achieves
the same goal but demands a high computational power from the CSP.

Verifiable Search Result: A CSP conducting search operations is able to
provide to the user incorrect search results. It could intentionally change search
results in order to save computational resources. System and network faults could
also impact search results. SE may not work correctly in such scenarios.

Secure Insert: As new data gets added into a dataset stored on the CSP,
information gets exposed to the CSP, potentially revealing the timestamp of a
new record’s addition, memory address of an inserted record, etc. Moreover, if
the CSP records previous queries and observes states before and after insertion, it
may be able to link the document to a specific keyword. To prevent such attacks,
forward privacy [11] has become an essential property for DSSE schemes.

Secure Delete: Exposed data during a delete operation could potentially reveal
deletion time, the memory address of a deleted record, and a deleted record could
easily be linked to a keyword w by analyzing the search process before and after
deletion. In order to address such attacks, backward privacy [31] is proposed
and can be divided into three levels. The highest level reveals the timestamp of
matched inserted files, the total number of updates, and matching documents
associated with w. The second level additionally reveals updates’ timestamp.
The lowest level additionally reveals the type of updates, i.e., insert or delete
(Ref. Sect. 3.5).

In addition to the challenges above, efficiency is an important factor in
designing a DSSE scheme. In this paper, we propose a Verifiable Dynamic Sym-
metric Searchable Encryption (VDSSE) scheme, secure against an active adver-
sary, and achieving both forward and backward privacy, while providing an opti-
mal Efficiency - Security tradeoff under the lowest configuration requirements
on the client side.

High-Level Overview of our Methodology. Our scheme is based on the principle
of additive secret sharing. A keyword is assigned a secret, which is then split
into a number of shares equal to the total number of data records containing
the keyword plus one. Namely, broadly speaking, we use a share rid of a secret
to obfuscate a document-index id and thus the secret (related to the keyword w)
can be reconstructed starting from the (obfuscated) list formed by all indexes
of the documents containing w. More in details, we first assign a secret to a
keyword w and split it into n shares, where n − 1 is the number of documents
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containing the keyword w. Thus, s = rid1 ⊕ · · · ⊕ ridn−1 ⊕ r where ⊕ denotes
the Exclusive Or (XOR) operation, s represents a secret, r and ridi

represent a
share for 1 ≤ i ≤ n − 1. The first n − 1 shares can be random, while the last
share needs to match r = s⊕rid1 ⊕· · ·⊕ridn−1 . We can further modify the above
equation into r ⊕ s = rid1 ⊕ · · · ⊕ ridn−1 . Particularly,

– For each keyword w, the scheme builds the (obfuscated) list T which does
not contain the last share r and it is stored on the CSP. Note that each
document containing the keyword holds one share from which it is impossible
to reconstruct the initial secret without all other shares.

– For each document, the server also stores the encrypted document identifier
Encrypt(id) which is linked with the share rid.

– The client saves (only) the last share r, in order to prevent the CSP from
reconstructing the secret.

– In the Search phase, the client sends r (and some auxiliary information, i.e.,
a key K) to the server. The server, with a simple operation, recovers the pre-
vious obfuscated document-index, i.e., ridn−1 . Using this share, the server
retrieves the corresponding encrypted document identifier Encrypt(idn−1).
Repeating recursively these operations, it is able to recover all the (encrypted)
document-indexes.
Note that, the search token is constant-sized since it consists only of the
share r (plus the key K) and so it does not increase with the frequency of
the queried keyword.

– A similar method is used during the Update phase where the scheme updates
the obfuscated list T for the CSP and the last share r. As before, the client
holds the last share r locally and the random shares (i.e. the obfuscated
document-indexes rid1 , . . . , ridn+1) are submitted to the CSP.

To verify the efficiency of our proposed scheme, we run our experiments
over 20 Newsgroups [1] - a common dataset in the area of information retrieval
(2,579,597 keyword/document pairs). Results show that the proposed scheme
takes less than 1 µs to retrieve a document. We compare our results with

∑
oφoς

[5], which is the most efficient existing scheme to achieve forward privacy through
the lowest requirements at the client side. Our experimental results show that
our scheme is 10x to 20x faster than

∑
oφoς in searching keywords contained

in documents. We also compare our scheme against Mitra that requires the
least search computations from the CSP and achieves forward and type 2 back-
ward privacy (formally defined in Sect. 3.5). However, Mitra’s query generation
mechanism can be more than 4500 times slower than our scheme when the num-
ber of matching documents is larger than 10,000 (Ref. Sect. 8).

2 Related Work

The first practical SE scheme was presented in 2000 by Song et al. [30]. Three
years later, Goh introduced the secure index-based search, where an index is
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built per document [21]. In 2006, the first index-based SSE construction achiev-
ing sublinear search complexity was proposed by Curtmola et al. [13]. While,
previous schemes are only suitable for static datasets, in 2012, Kamara et al. [25]
introduced a dynamic and sublinear search scheme, which was later improved
in [24]. In 2013, Cash et al. [9] developed a highly-scalable SSE scheme with
support for boolean queries. One year later, Cash et al. [8] developed a dynamic
scheme optimized for large datasets. Stefanov et al. [31] introduced the notion
of forward and backward privacy for dynamic schemes. The formal definition of
forward security was proposed in 2016 by Bost [5] and one year later refined
by Kamara et al. [23]. Bost et al. [7] classify backward privacy into the three
types. Zuo et al. [38] introduce a non-conventional intermediate level backward
privacy, called type 1−. This kind of backward privacy, to one side, does not
protect access pattern (unlike type 1) but it is stronger than type 2, since it
leaks only the history of updates.

The concept of forward and backward privacy was almost not discussed in
literature until 2016, when Zhang et al. [36] proposed a powerful version of
injection attacks, proving that an adversary can obtain the content of a past
query by inserting only 10 new documents. After this work, many forward pri-
vacy schemes were proposed, e.g. [2,5–7,10,16,17,19,26,29,33,34,38] but only
some of them (e.g., [7,10,16,33,34,38]) also provide backward privacy. The most
popular scheme to achieve forward privacy is

∑
oφoς, proposed by Bost in [5].∑

oφoς claims to achieve the optimal point of the privacy/performance trade-off
for SSE. Lai et al. in [29] construct secure DSSE schemes over labeled bipartite
graphs, used to model the relationship between keywords and files. They pro-
pose a parallelizable dynamic encrypted data structure, which offers parallelism
and efficient update and search operations. In 2018, Etemad et al. proposed a
parallel structure to improve efficiency [19] and Chamani et al. offloaded com-
putational tasks from a server to a client to reduce computations on the server
[10]. Although they lower the search time, overheads are incurred by local stor-
age and increased bandwidth. Sun et al. [34] proposed a DSSE scheme based on
symmetric puncturable encryption [22] that can revoke a server’s searching abil-
ity on deleted data. In a very recent work, Sun et al. present a type 2 backward
private DSSE scheme [33], where deletions are made oblivious to the server.

Previous schemes assume that the server is honest-but-curious. However,
there are scenarios where the server can be malicious. Verifiable SSE schemes
were proposed (e.g., [6,27,28,35,37]). The first verifiable SSE scheme is given by
Kurosawa et al. [27], and, one year later, it was extended to the dynamic setting
by the same authors [28]. After this scheme, several VDSSE schemes achieving
forward security have been proposed. Bost [5] proposed a verifiable version of∑

oφoς, called
∑

oφoς-ε, at the cost of increasing client’s storage; Bost et al. [6]
introduced a scheme based on Verifiable Hash Tables; Yoneyama et al. [35] solved
the problem of

∑
oφoς-ε extra client storage cost and Zhang et al. [37] proposed

a scheme which can simultaneously achieve verifiability of search results and
forward security. To the best of our knowledge, all the VDSSE schemes achieving
forward security proposed so far, do not offer backward privacy.
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Table 1. Performance comparison of DSSE schemes. Notation: D = # documents,
|W| = # keywords, N = # keyword/document pairs, aw = # times queried keyword
w was added to the database, dw = # deleted entries for w, p = # processors, nw = #
documents matching w, i.e., nw = aw − dw, d = maxw dw · nw is the size of search
result matching w, − = much larger than other listed schemes. RT is roundtrip. Here,
we assume two rounds of result-hiding scheme is equal to one round of result-revealing
scheme. FP is forward privacy, BP is backward privacy. ˜O notation hides polylogarith-
mic factors.

Scheme Computation Communication Client Security Verifiability

Query Search Update Search Update RT Storage FP BP

Πdyn [8] O(1) O(aw) O(1) O(nw) O(1) 1 O(1) ✗ ✗ ✗
∑

oφoς [5] O(1) O(aw) O(1) O(nw) O(1) 1 O(|W| log D) � ✗ ✗

Moneta [7] − ˜O(aw log N + log3 N) ˜O(log2 N) ˜O(aw log N + log3 N) ˜O(log3 N) 3 O(1) � Type 1 ✗

Fides O(aw) O(aw) O(1) O(aw) O(1) 2 O(|W| log D) � Type 2 ✗

Diana O(log aw) O(aw) O(log aw) O(nw + log aw) O(1) 1 O(|W| log D) � ✗ ✗

Dianadel O(dw log aw) O(aw) O(log aw) O(nw + dw log aw) O(1) 2 O(|W| log D) � Type 3 ✗

Janus O(1) O(nwdw) O(1) O(nw) O(1) 1 O(|W| log D) � Type 3 ✗

Scheme [19] O(nw) O(aw/p) O(1) O((aw + nw)/p) O(1) 2 O(|W| + D) � ✗ ✗

Orion [10] − O(nw log2 N) O(log2 N) O(nw log2 N) O(log2 N) O(log N) O(1) � Type 1 ✗

Mitra O(aw) O(aw) O(1) O(aw) O(1) 2 O(|W| log D) � Type 2 ✗

Horus − O(nw log dw log N) O(log2 N) O(nw log dw log N) O(log2 N) O(log dw) O(|W| log D) � Type 3 ✗

SDa [15] − O(aw + log N) O(log N) O(aw + log N) O(log N) 2 O(1) � Type 2 ✗

SDd − O(aw + log N) O(log3 N) O(aw + log N) O(log N) 2 O(1) � Type 2 ✗

Janus++ [34] O(log D) O(nwd) O(d) O(nw) O(1) 1 O(|W| log D) � Type 3 ✗

Aura [33] O(log D) O(nw) O(1) O(nw) O(1) 1 O(|W|D) � Type 2 ✗

Fb-dsse [38] O(1) O(aw) O(1) O(1) O(nw) 1 O(|W| log D) � Type 1− ✗

vsps [6] O(1) O(m log3 N) O(log2 N) O(nw) O(1) 1 O(|W|D) � ✗ �
vfsse [37] O(1) O(aw) O(1) O(nw) O(1) 1 O(|W| log D) � ✗ �
Our scheme O(1) O(aw) O(1) O(aw) O(1) 1 O(|W| log D) � Type 2 �

Beyond State of the Art: Table 1 compares our scheme with prior work.
Our scheme provides the same time complexity of search and update with

Πdyn and
∑

oφoς. However, Πdyn does not offer forward nor backward privacy,
while

∑
oφoς provides forward privacy. Fides, Mitra and Aura attempt to

bridge the gap between
∑

oφoς and backward privacy. All achieve type 2 back-
ward privacy. However, their approach increases the time to generate a query
or client storage. The query generation complexity of Aura is O(log D), and
of Fides and Mitra is O(aw), where aw is the number of updates related to
keyword w. In comparison, as we already mention, our scheme has a complexity
of O(1), namely, our search token is constant-sized.

Orion and Moneta (relying on ORAM), provide the strongest notion of
backward privacy. However, communication is largely increased and efficiency is
impacted. Etemal et al.’s scheme [19] presents the most efficient search through
parallel programming, however, it sacrifices backward privacy and incurs a large
amount of local storage. vsps [6] and vfsse [37] achieve verifiability, but not
backward privacy.

Our scheme achieves an optimal tradeoff between privacy (forward and back-
ward), verifiability, and efficiency, without shifting the workload to the client.
It achieves better search efficiency than

∑
oφoς and provides a more efficient

query generation mechanism than Mitra. In addition, our scheme achieves the
security level of type 2 backward privacy.
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3 Preliminaries

3.1 Notations

In the rest of the paper, we will use the following notations:

– $←− is used to represent a uniform random selection;
– | | denotes the size of an object or the number of elements in a set;
– ‖ and ⊕ represent concatenation and bitwise exclusive (XOR), respectively;
– λ is the security parameter, while negl(λ) is a negligible function in λ;
– w is a keyword; id is a document identifier; and rid is a random string selected

for document id;
– DB is a database, while DB[w] is a tupla of n data entries associated to

keyword w: DB[w]=(idi1 , · · · , idin
);

– T is a T-Dic in the form T[key] = value; where T-Dic is a tuple dictionary;
– Πw is a random string for keyword w;
– W is a T-Dic stored in the form W [w] = Πw;
– F is a pseudorandom function (PRF);
– H is a collision resistant hash function;
– S and Φ are sets storing ciphertexts and ids, respectively; and
– L is a leakage function

3.2 DSSE Scheme and VDSSE Scheme

A DSSE scheme Σ is composed of one algorithm Setup and two protocols (Search
and Update) between a client and a server [5].

– Setup(DB) takes as input a dataset DB. It outputs a pair (EDB,K, σ) where
K is a secret key, EDB the encrypted database, and σ the client’s state.

– Search(K, q, σ, EDB) = (SearchC(K, q, σ), SearchS(EDB)) is a protocol
between the client with input the key K, its state σ, and a search query
q, and the server with input EDB.

– Update(K,σ, op, in,EDB) = (UpdateC(K,σ, op, in), UpdateS(EDB)) is a pro-
tocol between the client with input the key K, the state σ, an operation op
and an input in parsed as the index id and the keyword w, and the server
with input EDB. The update operations are taken from the set {add, del}
(addition and deletion of a document/keyword pair).

A VDSSE scheme is an extension of DSSE scheme, providing verifiability.
Specifically, an algorithm Verify is implemented with input of retrieved result.
If the result is correct, then the Verify returns True, otherwise False.

3.3 Data Structure

In our scheme, we propose a primitive made up of a tuple dictionary (referred to
as T-Dic), which is built from T-Set, a set of tuples, proposed in [9]. Each T-Set
associates a list of fixed-sized data tuples to each keyword in the database (e.g.,
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an inverted index [3], where the keyword is used to retrieve a list of document
identifiers, is a T-Set).

A T-Dic is designed to store and associate pairwise fixed-sized elements, e.g.,
(w, Πw). Each pairwise element consists of two parts: the first part is unique,
referred to as key, and the second part is the associated information, referred
to as value. Note that T-Dic is designed to store pairwise elements, which is
different from T-set suitable for element-list structure. T-Dic consists of two
algorithms: Insert and Get. Insert adds a pair of key and value into the T-Dic.
If the operation is executed successfully, a boolean value True is returned, else,
False is returned. We will denote by T [k] the value associated with key k in the
T-Dic T . The Get function, on an input key, returns the corresponding value if
the corresponding key exists in T-Dic. Otherwise, no value is returned. In the
following sections, to be brief, we only use an arrow that starts from T-Dic to
represent Get function and that ends at T-Dic to represent Insert function.

3.4 Information Leakage Analysis

We consider the leakage of size pattern, search pattern, and access pattern in
our analysis. Informally, size pattern leakage includes the size of encrypted data
learnt by the CSP, the search pattern leakage is the record of the queries sent to
the CSP, and the access pattern leakage reveals the history of data access.

Definition 1 (Ciphertext Size Pattern). Let T be a T-Dic containing pairs
that consist of the ith key ti and the corresponding value vi, i.e., vi ← T [ti]. The
ciphertext size pattern α is defined as α = {|T |, (|ti|, |vi|), 0 ≤ i < |T |}, where
|T | represents the total number of records in T , and |ti| and |vi| represent the
size of ti and vi respectively.

Definition 2 (Search Pattern). Let Msp be a two dimensional binary matrix.
The first dimension represents the search token observed as a query result by
the CSP and the second dimension represents the time at which the query was
received. The value inside Msp is either 1 or 0: 1 representing the fact that
a query was performed on a keyword at a given time. For a set of queries,
Q0, . . . , Qq, the search pattern can be defined as β = {Msp, |Q0|, . . . , |Qq|}.
Definition 3 (Access Pattern). Let Mac be a two dimensional matrix. The
first dimension represents the keyword observed as a query by the CSP and the
second dimension is the encrypted document identifier observed as ciphertext by
the CSP. The value of the matrix is either 1 or 0. For a set of queries, Q0, . . . , Qq

on encrypted data T , which resulted in the retrieved values vi, . . . , vj (i ≤ j ≤
|T |), the access pattern γ is defined as γ = {Mac, |Q0|, . . . , |Qq|, |vi|, . . . , |vj |}.

In our scheme, keys and values have the same size due to the T-Dic structure
and the query size is uniform. Moreover, the the two values of the T-Dic T
are, roughly speaking, (i) the obfuscated list of all document-indexes except the
last index (needed to reconstruct the secret) and (ii) the encrypted document
identifiers.
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Therefore, we can simplify the above definitions. The size pattern is refor-
mulated as α = {|T |}, since T is sent to the server during the Setup and
Update phases. The search pattern leakage is the time of when the query was
received, namely, β = {Msp}. The access pattern is γ = {Mac}, that is, the
encrypted document identifiers observed by the server during the Setup (and
Update) phase. Finally, the leakage function of the proposed scheme is defined
as L = α ∪ β ∪ γ = {|T |,Msp,Mac}.

3.5 Privacy Definition

In our privacy definition, we do not want the CSP to learn anything related to
client data beyond some explicit leakage, which is typically captured by using
real world and ideal world formalisation [14,25]. In the real world SSEreal, the
SSE scheme is executed honestly and the CSP observes the transcript of each
operation. In the ideal world SSEideal, the CSP is given a simulated transcript
that is generated by a simulator Sim using the leaked information. The leaked
information is given by leakage function L (defined in Sect. 3.4) that describes
what the CSP is able to learn. If these two worlds are indistinguishable, the SSE
scheme is secure. To formalise the above description, we present the following
definition of adaptive security of SSE schemes:

Definition 4 (Adaptive security of SSE schemes [7]). An SSE scheme
Σ = {Setup,QueryGen,Search,Update and Decrypt} is L-adaptively-secure, with
respect to a leakage function L, if for any polynomial-time adversary A issuing
a polynomial number of queries q, there exists a PPT simulator Sim such that

∣
∣P [SSEΣ

real,A(λ, q) = 1] − P [SSEΣ
ideal,(A,Sim,L)(λ, q) = 1]

∣
∣
∣ ≤ negl(λ).

In our analysis, we consider forward privacy and backward privacy. Formally,
we have the following definitions [7]:

Definition 5 (Forward privacy). A L-adaptively-secure SSE is forward-
private iff the insert operation leakage function L can be written as: L = {op},
where op is the current operation type, i.e., insert or delete.

Definition 6 (Backward privacy - type 1). A L-adaptively-secure SSE
scheme achieves type 1 backward privacy iff the leakage function can be writ-
ten as: L = {DB[w], Ψ [DB[w]], |Φ[w]|, op} where |Φ[w]| records the total number
of operations over keyword w, Ψ [DB[w]] records the insert timestamp of all the
matching documents, and op is the insert operation.

Definition 7 (Backward privacy - type 2). A L-adaptively-secure SSE
scheme achieves type 2 backward privacy iff the leakage function can be written
as: L = {DB[w], Ψ [w], op}, where Ψ [w] records the timestamp of all operations
over keyword w and op is the insert operation.

Definition 8 (Backward privacy - type 3). A L-adaptively-secure SSE
scheme achieves type 3 backward privacy iff the leakage function can be written
as: L = {DB[w], Ψ [w],H[w]}, where Ψ [w] records the timestamp of all operations
over keyword w and H[w] records all operations over keyword w.
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Our scheme aims to achieve forward privacy and type 2 backward privacy.
By obfuscating access patterns, it could also achieve type 1 backward privacy.
However, obfuscation techniques are far from practical applications [20,32].

4 Models

We now introduce the system, query, and threat models for our proposed scheme.

4.1 System Model

The proposed system consists of two parties, the client and the CSP. Initially,
the client extracts keywords from its documents and builds an inverted index [3].
Then, the client encrypts the index and documents before outsourcing them to
the CSP. Once data is uploaded to the CSP, the client is capable of generating
a request and send it to the CSP for searching or updating (i.e., performing
an insert and delete operation) the encrypted documents. Upon receiving the
request, the CSP processes the request and sends the result back to the client.

4.2 Query Model

The proposed system supports search and update requests. The search request
is used to search for documents based on a keyword, while the update request is
designed for inserting or deleting specific documents. The search (query) process
can be further split into two steps. The first step is to retrieve a target document
identifier and the second step is to retrieve a document based on the identifier.
Our paper focuses on the first step, since completion of the second step is trivial
given a correct output from the first step. Similarly, for the update request, we
emphasize on the index update instead of uploading/deleting documents. For
protecting the security of the second step, we could apply many techniques to
prevent the CSP from getting access to the content of the updated document or
any information related to it (e.g., uploading fake documents to obfuscate the
updated documents or delaying and grouping updated documents).

A search request requires three inputs: (i) a target keyword; (ii) a client’s
secret key; and (iii) a T-Dic where the key is the keyword and value is a string (i.e.
the obfuscated list that we introduced in Sect. 1) corresponding to the keyword
(see Sect. 3.3 for the definition of a T-Dic). Specifically, a client first inputs a
target keyword and a secret key to generate two sub-keys. The first sub-key is
sent in the clear to the CSP, while the second sub-key is privately stored by
the client within a specific keychain. In addition, the client reads the value from
the T-Dic and sends it to the CSP along with the first sub-key (see Sect. 5.1 for
details). Based on the key and value sent from the client, the CSP can search over
the encrypted data and return the encrypted identifiers of documents containing
the keyword.

The update request takes five input parameters: (i) a keyword, which is
supposed to be included in the target document; (ii) a secret key, only known
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to the client; (iii) an identifier of the target document; (iv) an operation type,
which specifies either an insert or a delete operation; and (v) a T-Dic, which
stores the keywords and corresponding strings.

Similarly to the query request, a client first generates two sub-keys through
inputting the target keyword and its secret key. Then the client reads the value
from T-Dic where the key is the target keyword. To hide the operation type and
updated document identifier, the client encrypts the operation type (insertion or
deletion) and target document identifier. Based on the above result, the client
constructs two key-value pairs (see Sect. 5.1 for details) and sends them to the
CSP. The CSP updates the stored data by adding the two uploaded pairs.

4.3 Threat Model

In our work, we first consider the semi-honest model and then we extend it
to malicious model [6], providing the verifiable variant of our scheme. In the
semi-honest model, the CSP is assumed to be semi-honest, which means the
CSP honestly follows the protocol but could try to launch passive attacks by
analyzing available data. Under this assumption, the CSP is able to examine
the ciphertext and try to infer the plaintext. Moreover, it keeps a record of the
queries submitted by the client and tries to analyze their content. We, specifically,
consider the following attacks.

1) Ciphertext Analysis: Uploaded data is stored on the CSP, which can
perform analyses and inference on the ciphertext. For instance, the CSP could
deduce information such as the size of the ciphertext and the number of records.
2) Query Analysis: Clients send encrypted queries to the CSP, which executes
queries and tries to infer their content and link documents to specific keywords.
3) Update Analysis: Update requests are sent to the CSP, which diligently
addresses them. The CSP is capable of observing the whole process and tries to
deduce the update type, its content, and target documents.
In the malicious model, the CSP could exhibit following malicious behaviors:
1) Incomplete Search Result: The CSP may try to save resources by not
running the query over the whole dataset. As a result, only a part of the requested
data is returned.
2) Incorrect Search Result: The CSP may intentionally change search results
so that the content deliberately misleads the client into making a wrong decision.

5 Proposed Scheme

We provide a detailed explanation of the components of our scheme (verifiability
will be introduced in Sect. 7). We also provide a proof of the correctness.
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5.1 Details of the Proposed Scheme

The proposed DSSE construction inspired by the additive secret sharing scheme
differs from traditional schemes as follows:

1. Secret Generation and Assignment. Given a set of documents, keywords
are first extracted. A generator creates and assigns a secret to each keyword.

2. Secret Shares Generation and Assignment. Let nw − 1 be the number
of documents containing keyword w, and sw be a secret value associated with
w. Each secret Πw is split into nw same-sized shares sw,id (1 ≤ id ≤ nw)
by randomly selecting nw − 1 shares and selecting the last one share such
that Πw =

∑nw

id=1 sw,id. Note that in Algorithm 1 we denoted sw,id as rid.
Afterwards, each document containing the keyword will be assigned a share.

3. Index Construction. Tuples consist of a keyword, a secret share, and a
document identifier and are applied to construct a secure index.

The proposed scheme consists of five modules: Initialization, Query Genera-
tion, Search, Decrypt, and Update.

Initialization. The client pre-processes documents by extracting keywords and
storing them into database DB as an inverted index: {w, (id1, . . ., idn)}. After
DB construction (Algorithm 1), the client builds two T-Dic T and W as follows:

1. A secret key K is first drawn uniformly at random from {0, 1}λ. This key K
is known only to the client and is never exposed to the CSP.

2. For each keyword w inside DB, the client calls PRF F with two inputs: w and
K. The output is split into K1 and K2. K1 is a key sent to the CSP during
search phase while K2 is a key stored locally and is used for decryption.

3. The client initialises a string Πw with all ones of size λ,
4. For each document identifier id belonging to DB(w), a uniformly random

string rid is selected from {0, 1}λ.
5. Πw is XORed with rid. The result is stored back to Πw.
6. Πw is XORed with K1 and passed into a collision-resistant hash function

H. The outcome is a key of the T-Dic T , denoted as t1. The corresponding
value v is obtained by computing the XOR of rid and H(Πw).

7. Another key t2 of T is constructed by calling the hash function H: the result
of K1 XOR rid is an input into H.

8. The value of T [t2] is a ciphertext which is generated by invoking a symmetric
encryption, with inputs as key K2 and op||id op represents the type of oper-
ation (insert or delete). We use one bit to express op: 1 represents insertion
and 0 deletion. Note that the op bit is set to one in the initialization phase.

9. After all document identifiers belonging to DB(w) have been processed, value
Πw is stored into the T-Dic W with key w.

10. T-Dic T and W are built. T is sent to the CSP, W is stored locally.
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Query Generation. Once the T-Dic T is stored on the CSP, the client is
allowed to generate a query locally with a specified keyword and send it to the
CSP to search for target document identifiers. As shown in Algorithm2, the
client first calls the PRF F with the input of its secret key K and keyword w.
The output of F consists of two keys, K1 and K2. Subsequently, the value Πw

of W [w] is read. Finally, the string Πw and K1 are sent to the CSP while K2 is
stored locally.

Search. The CSP seeks document identifiers that match a search query and
returns them to the client. Specifically, CSP receives Πw and K1 from the client
and initializes a list S, used to store identifiers. If Πw contains at least one zero
(not the initial state), the following is executed, otherwise, an empty list S is
returned. The first operation is an XOR of Πw with K1 followed by a hash of
the result. The outcome t1 is a key of T . The corresponding value rid is com-
puted by executing T [t1] ⊕ H(Πw). Afterwards, K1 ⊕ rid is hashed with H.
The computed result t2 is another key of T . Value c of T [t2] is a ciphertext
generated using symmetric encryption and added into S. Subsequently, Πw is
replaced with value Πw ⊕rid. The above process is recursively executed until Πw

contains only ones (initial state). Search operation is presented in Algorithm3.

Algorithm 1: Setup
Client:
Input: λ, DB
Output: T , W , K

K
$←− {0, 1}λ

for w ∈ DB do
K1||K2 ← F (K,w)
Πw ← 1λ

for id ∈ DB(w) do

rid
$←− {0, 1}λ

Πw ← Πw ⊕ rid

t1 ← H(Πw ⊕ K1)
v ← rid ⊕ H(Πw)
T [t1] ← v
t2 ← H(K1 ⊕ rid)
T [t2] ← Enc(K2, op||id)

W [w] ← Πw

Algorithm 2: QueryGen
Client:
Input: K, w, W
Output: Πw, K1, K2

K1||K2 ← F (K,w)
Πw ← W [w]
send Πw and K1 to CSP
store K2 locally

Algorithm 3: Search
CSP:
Input: Πw, K1, T
Output: S
S ← [ ]
while Πw �= 1λ do

t1 ← H(Πw ⊕ K1)
v ← T [t1]
rid ← v ⊕ H(Πw)
t2 ← H(K1 ⊕ rid)
c ← T [t2]
S ← S ∪ c
Πw ← Πw ⊕ rid
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Decrypt. (Ref. Algorithm 4) Once a retrieval result is received from the CSP,
the client has to decrypt them in order to recover the plaintext. The client first
initializes a set Φ used to store document identifiers. For all ciphertexts inside
S, the client sequentially decrypts them following a Late In First Out (LIFO)
strategy, thus, keeping the order of operations. With key K2 and ciphertext c, the
decryption algorithm Dec is invoked and the plaintext of op and id is extracted.
If op is equal to zero, id is removed from Φ, otherwise the id is added into Φ.
The above is recursively executed until all the ciphertexts of S are deciphered.

Update. Upon an update operation (insertion or deletion), T-Dic T is updated.
The update process is split in two phases (Ref. Algorithm 5). In the first phase,
the client generates an update request; the CSP responds in the second phase.
The client initially calls the PRF F with secret key K and keyword w. The
client then tries to read the value Πw from W with key w. If the key w does
not exist inside W , then w is inserted into W and the corresponding Πw is set
to all ones. Subsequently, a string rid is randomly selected from {0, 1}λ. The
result of Πw ⊕ rid is stored back into Πw and the newly generated Πw is stored
into W with key w. In addition, two new (key, value) pairs of T are computed.
The first new key t1 is computed by calling hash H with input Πw ⊕ K1, where
value v is computed as rid ⊕ H(Πw). The second key is t2 that is computed by
invoking H(K1⊕rid). The associated value c is generated by running encryption
algorithm with inputs: K2 and op||id. At the end of phase 1, the two (key, value)
pairs are sent to the CSP. Upon receiving the uploaded content, the CSP starts
to update T . More precisely, the CSP puts the value v into T[t1] and c into T[t2].

Algorithm 4: Decrypt
Client:
Input: S, K2

Output: Φ
Φ ← φ
for c ∈ S do

(op, id) ← Dec(K2, c)
if op=0 ; /* delete if op =

0,otherwise insert */

then
Φ ← Φ \ id

else
Φ ← Φ ∪ id

Algorithm 5: Update
Client:
Input: w, id, op, K, W
Output: θ
K1||K2 ← F (K, w)
Πw ← W [w]
if Π =⊥ then

Πw ← 1λ

rid
$←− {0, 1}λ

Πw ← Πw ⊕ rid

W [w] ← Πw

t1 ← H(Πw ⊕ K1)
v ← H(Πw) ⊕ rid

t2 ← H(K1 ⊕ rid)
c ← Enc(K2, op||id)
θ ← (t1, v) ∪ (t2, c)
CSP:
Input: θ, T
Output: True/False
(t1, v), (t2, c) ← θ
T [t1] ← v
T [t2] ← c
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5.2 Proof of Correctness

We prove here that our scheme correctly retrieves all existing documents that
contain a specific input keyword and excludes documents inserted then deleted.

Correctness of Search: The input of the search algorithm is Πw, K1 and T .
Based on the Setup procedure, T is a list of pairs. Keys in T are generated by
either H(Πw ⊕ K1) or H(rid ⊕ K1), where K1 is the key generated from input
keyword w, and rid is the random string associated with w. During search, for
key generation, CSP constructs the first key t1 by calling H(Πw ⊕ K1) and
computes the value rid through T [t1] ⊕ H(Πw). Then, the ciphertext c can be
read from T [t2] with key t2 = H(rid ⊕K1). To retrieve all documents containing
w, the recursive process is controlled through Πw. In Setup, for each document
id, an rid is selected and the value Πw of W [w] is equal to 1λ ⊕id∈Φ rid, where
Φ is the set of documents that contain w.

During the Search process, the value of Πw is read from W [w] and recursively
updated as Πw ← Πw ⊕ rid, for each rid in the set Φ, until Πw is equal to 1λ.
Thus, the search procedure is performing the inverse operations of Setup, which
proves the correctness of the search process.

Correctness of Decryption: Inputs consists of search result and decryption key
K2. K2 is the same as the encryption key, so decryption is executed correctly.
Decryption is also consistent with the order of operations over the ciphertext.

Correctness of Update: If input keyword w already exists in W , Update procedure
reads string Πw from W with w and conducts an XOR operation with a randomly
selected string rid. Otherwise, the Πw of the keyword w is set to the initial
string (1λ), which is same as the Setup. The second difference is that the newly
generated pairs of keys and values are sent to the CSP instead of updating T
locally. In Setup, the client holds T while in the context of Update, T is stored
in the CSP. Hence, the client sends the change of T to the CSP, which directly
stores the submitted (key,value) pairs into T without any further operation. The
result is the same as the Setup operation and thus Update is correct.

6 Privacy Analysis

In this section, we formally prove that our scheme is L-adaptively-secure where
L matches the requirements of forward and type 2 backward privacy. We prove
Theorem 1 through the real/ideal world game of SSE (Ref. in Sect. 3.5).

Theorem 1. If the output of PRF (F ) is indistinguishable from a random func-
tion, the collision resistant hash function H is modeled as a random oracle
and the applied symmetric encryption algorithm is semantically secure, then our
scheme is L-adaptively-secure, where L = {DB[w], Ψ [w], op}.
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Proof Sketch: If an adversary has significant advantage in breaking the scheme,
it is capable to break either pseudorandom function, or collision resistant hash
function or applied semantically secure encryption.

Game G0: G0 is the same as the proposed scheme.

Game G1: Instead of calling F when generating K1 and K2 with inputs w and
K, G1 randomly selects two strings, k∗

1 , k∗
2 , with the same size and stores them

in a table Tk, that is, Tk[w] ← (k∗
1 , k

∗
2). If an adversary can distinguish G1 from

G0, then the adversary is able to distinguish F from a random function. The
advantage can be formalized as follows: AdvPRF

F = |P [G0 = 1] − P [G1 = 1]|.
Game G2: In G2, in Setup, random oracle H is programmed and outputs ran-
dom strings for the original hash function. Change details are presented in Algo-
rithms 6, 7, 8, and 9. An adversary trying to distinguish G2 from G1 is to set
conflict to be true. If the adversary is able to distinguish G2 from G1 in sig-
nificant advantage, the adversary is able to break the collision resistant hash
function in significant advantage. The advantage can be formalized as follows:
AdvPRF

H = |P [G0 = 1] − P [G1 = 1]|.
Game G3: The difference of G3 over G2 is that all updates over w are recorded
and the Oracle of H is reprogrammed. Moreover, a random string is selected as
the encryption output. The timestamp is represented by ts, which starts at 0 and
increases by 1 for each new operation. We use Ψ [w] to record all the updates of w
and corresponding timestamps. Algorithms 10 and 11 detail the modifications.

Game G4: The difference over G3 is that only the first update over w is recorded.

Game G5: The difference over G4 is that all the updates are randomly generated.

Comparing G3 with G2, we observe that update operations in both cases
have the same distribution since both output random strings. For the search
operation, in G2, the search result is the ciphertext generated from a symmetric
encryption algorithm, while in G3, the search result is a random string.

Assuming a semantically secure symmetric encryption algorithm, the cipher-
text can only be distinguished from a random string with a negligible advantage.
Therefore, we have Advenc = |P [G2 = 1] − P [G3 = 1]| ≤ negl(λ).

The difference between G4 and G3 is that G4 only records the first insert
operation while G3 records all the operations. In G5, operations are not recorded.
From G3, we learn that all operations are encrypted. Thus, the output of G5 is
indistinguishable from G4 and G3.

From the above analysis, we deduce that G5 is the same as the ideal world
of SSE, which can be simulated by a simulator Sim with leaked information L.
Since Sim only needs to simulate the process on the client-side, we only give the
corresponding simulation details, as shown in Algorithms 12, 13 and 14.

Combining all aforementioned games, we can conclude that the advantage
in distinguishing the game in the real world from the game in the ideal world
is negligible. Let Δ represent the proposed scheme. Formally, we have AdvΔ ≤
AdvPRF

F + AdvH + Advenc ≤ negl(λ). Thus we proved Theorem 1.



502 N. Aaraj et al.

Algorithm 6: Setup∗

Client:
Input: λ, DB
Output: T , W
conflict ← false
for w ∈ DB do

K∗
1 ← {0, 1}λ

K∗
2 ← {0, 1}λ

Tk[w] ← (K∗
1 , K∗

2 )
Πw ← 1λ

for id ∈ DB(w) do

rid
$←− {0, 1}λ

Πw ← Πw ⊕ rid

r1 ← {0, 1}λ

H(Πw) ← r1

r2 ← {0, 1}λ

H(Πw ⊕ K∗
1 ) ← r2

r3 ← {0, 1}λ

H(rid ⊕ K∗
1 ) ← r3

t1 ← H(Πw ⊕ K∗
1 )

v ← rid ⊕ H(Πw)
T [t1] ← v
t2 ← H(K∗

1 ⊕ rid)
T [t2] ← Enc(K∗

2 , op||id)

W [w] ← Πw

Algorithm 7: Search∗

CSP:
Input: Πw, K∗

1 , T
Output: S
S ← φ
while Πw �= 1λ do

t1 ← H(Πw ⊕ K∗
1 )

v ← T [t1]
rid ← v ⊕ H(Πw)
t2 ← H(K∗

1 ⊕ rid)
c ← T [t2]
S ← S ∪ c
Πw ← Πw ⊕ rid

Algorithm 8: Query
generation∗

Client:
Input: w, W
Output: Πw, K∗

1 , K∗
2

K∗
1 ||K∗

2 ← Tk(w)
Πw ← W [w]
send Πw and K∗

1 to cloud

Algorithm 9: Update∗

Client:
Input: w, id, op, K, W
Output: θ
Πw ← W [w]
if Πw =⊥ then

Πw ← 1λ

if Tk[w] =⊥ then

K∗
1 ← {0, 1}λ

K∗
2 ← {0, 1}λ

Tk[w] ← (K∗
1 , K∗

2 )
if Πw /∈ H then

r1 ← {0, 1}λ

H(Πw) ← r1

if Πw ⊕ K∗
1 /∈ H then

r2 ← {0, 1}λ

H(Πw ⊕ K∗
1 ) ← r2

else
conflict ← true

if r ⊕ K∗
1 /∈ H then

r3 ← {0, 1}λ

H(r ⊕ K∗
1 ) ← r3

else
conflict ← true

rid
$←− {0, 1}λ

Πw ← Πw ⊕ rid

W [w] ← Πw

t1 ← H(Πw ⊕ K∗
1 )

v ← H(Πw) ⊕ rid

t2 ← H(K∗
1 ⊕ rid)

c ← Enc(K∗
2 , op||id)

θ ← (t1, v) ∪ (t2, c)
CSP:
Input: θ, T
Output: True/False
(t1, v), (t2, c) ← θ
T [t1] ← v
T [t2] ← c
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Algorithm 10: Update∗∗

Client:
Input: w, id, op, W
Output: θ
ts ← ts + 1
t∗1 ← {0, 1}(λ)
v∗ ← {0, 1}(λ)
t∗2 ← {0, 1}(λ)

c∗ ← {0, 1}(λ)
θ∗ ← (t∗1, v

∗) ∪ (t∗2, c
∗)

Φ[w] appends (ts, θ∗)
CSP:
Input: θ∗, T
Output: True/False
(t∗1, v

∗), (t∗2, c
∗) ← θ∗

T [t∗1] ← v∗

T [t∗2] ← c∗

Algorithm 11: Query
generation∗∗

Client:
Input: w, W
Output: Πw, K∗

1 , K∗
2

(K∗
1 ,K∗

2 ) ← Tk(w)
Π∗

w ← 1λ

θ∗
1 · · · θ∗

c ← Φ[w]

for ts from 1 to c do

rid
$←− {0, 1}λ

t∗1, v
∗, t∗2 ← θ∗

st

Π∗
w ← Π∗

w ⊕ rid

H(Π∗
w ⊕ K∗

1 ) ← t∗1
H(Π∗

w) ← v∗ ⊕ rid

H(K∗
1 ⊕ rid) ← t∗2

send Π∗
w and K∗

1 to CSP

Algorithm 12: Setup-Sim
Client:
Input: λ, L
Output: T ∗, W ∗

K∗ $←− {0, 1}λ

W ∗, T ∗ ← L
ts ← 0

Algorithm 13: Update-Sim
Client:
Input: L
Output: θ∗

ts ← ts + 1
t∗1 ← {0, 1}λ

v∗ ← {0, 1}λ

t∗2 ← {0, 1}λ

c∗ ← {0, 1}λ

θ∗ ← (t∗1, v
∗) ∪ (t∗2, c

∗)
send θ∗ to CSP

Algorithm 14: Query
generation-Sim

Client:
Input: W ∗, L, Φ
Output: Π∗

w, K∗
1

w∗ ← L
K∗

1 ← 1λ

Π∗
w ← 1λ

ι[w∗] ← Π∗
w

θ∗
1 · · · θ∗

c ← Φ[w∗]
for st from 1 to c do

rid
$←− {0, 1}λ

t∗1, v
∗, t∗2 ← θ∗

st

Π∗
w ← Π∗

w ⊕ rid

H(Π∗
w ⊕ K∗

1 ) ← t∗1
H(Π∗

w) ← v∗ ⊕ rid

H(K∗
1 ⊕ rid) ← t∗2

send Π∗
w and K∗

1 to CSP

7 Verifiability of Our Scheme

The scheme proposed in Sect. 5 is only secure against a semi-honest CSP. In
order to extend the security of the current scheme against a malicious CSP,
namely, turning our scheme into a verifiable SSE scheme, we force the CSP to
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provide proof that it correctly executed a specific request. We consider the two
following types of malicious behavior:

– The search result is incomplete. The CSP may try to save resources by not
running the query over the whole dataset. As a result, only a part of the
requested data is returned.

– The CSP can send back an incorrect result. In such a case, the content may
deliberately mislead the client into making a wrong decision.

To address above threats we modify the Setup algorithm to embed the ran-
dom share into the retrieved result, enabling the client to bind the secret share
with the document identifier (i.e., id||rid). Once a retrieved result is received,
the client decrypts the result, verifies all shares (rid), and consequently combines
the locally stored share Πw with all the shares rid retrieved from the CSP: if
all shares can recover the secret (1λ), then the search is complete and correct.
These modifications are formally described in Algorithms 15 and 16.

Algorithm 15: Setup
Client:
Input: λ, DB
Output: T , W

K
$←− {0, 1}λ

for w ∈ DB do
K1||K2 ← F (K, w)
Πw ← 1λ

for id ∈ DB(w) do

rid
$←− {0, 1}λ

Πw ← Πw ⊕ rid

t1 ← H(Πw ⊕ K1)
v ← rid ⊕ H(Πw)
T [t1] ← v
t2 ← H(K1 ⊕ rid)

T [t2] ← Enc(K2, op||id||rid)

W [w] ← Πw

Algorithm 16: Decrypt
Client:
Input: S, Πw, K2

Output: Φ/False
Φ ← φ
for c ∈ S do

(op, id, rid) ← Dec(K2, c)

Πw ← Πw ⊕ rid

if op=0 ; /* delete if op

=0, otherwise insert */

then
Φ ← Φ \ id

else
Φ ← Φ ∪ id

if Πw = 1λ then return Φ
return False

Note that in the Algorithms 15 the adopted encryption algorithm is an
authenticated encryption algorithm [4,18] such that the adversary is not able
to partially modify the retrieved result.

Proof of Correctness: To prove the correctness of our scheme and security
against a malicious CSP, we prove that it can detect an incomplete search result
and resist incorrect retrieval results. The proof of resisting incomplete search
results is split into two cases. In the extreme case, the malicious CSP rejects to
return any result. In such a case, the client can detect that because the local
T-Dic W includes the keyword w and the corresponding Πw of W [w] is not equal
to 1λ, then there must exist at least a document containing the keyword.
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Now let us focus on the case where the search operation provides only partial
results. Since all retrieved results include random share rid, which is encrypted in
an authenticated encryption algorithm, the malicious CSP cannot observe that
value. Therefore, the client can use all the shares, including the share that the
client holds, to reconstruct 1λ. If reconstruction fails, the search result remains
incomplete.

The proof of the correctness of the search result is based on the above ratio-
nale. Indeed, since the document identifier is linked to the random share and
both of them are encrypted in an authenticated encryption, the malicious CSP
is not able to modify the ciphertext without being detected. Thus, if the secret
share rid is correct, the document identifier should also be correct. It remains
to highlight that since all secret shares are correct - otherwise the correct secret
could not be reconstructed - the search results are correct.

Note that the security proof of the VDSSE scheme is similar to the DSSE one.
Since we only add the Verify function on the client side, the CSP is not able to
learn any extra information. Therefore, the scheme is still L-adaptively-secure.

8 Performance

In this section, we evaluate the performance of query generation (client side) and
search (server side) of our scheme. We implement our scheme with C code on a
laptop with a 2.6 GHz Intel Core i7 processor, 16 GB of RAM, and 500 GB flash
storage. The security parameter is set to 128 bits. Meanwhile, AES is adopted
as the applied symmetric encryption algorithm and 256-bit collision resistant
hash function is adopted as the standard hash function. We use the well-known
public dataset 20 Newsgroups [1], which contains 61,187 keywords and 20,000
documents. The total number of keyword/document entries is 2,579,597. We
repeat each experiment 10 times and report the average result. Specifically, in the
experiments, we focus on comparing our scheme with

∑
oφoς and Mitra along

the following dimensions: (i) Search Efficiency and (ii) Query Generation (Mitra
only). Since our scheme has a similar Query Generation process as

∑
oφoς, we

skip the comparison of Query Generation with
∑

oφoς. In order to demonstrate
the scalability of our scheme, the total number of keyword/document entries
is first set to 1,400,000 and then set to 2,579,597. In our scheme, the Setup
algorithm of two different datasets costs 16.8 s and 30.7 s, respectively. The time
cost of the update process is constant (regardless of the size of the dataset),
requiring around 0.013 ms.

Figure 1 shows the average time cost (namely, the search time cost for each
matching entry on average) required for searching a matching document. We can
observe that our scheme takes on average 0.9 µs to retrieve a document, while∑

oφoς needs 20 µs on average when the number of matching documents is
less than 100. Nevertheless, with an increasing number of matching documents,∑

oφoς reduces its average search time, eventually reaching around 7 µs
We can observe that, in our scheme, the average search time is almost con-

stant, making it suitable to be deployed for use cases involving both large or
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Fig. 1. Search: comparison with
∑

oφoς and Mitra

Fig. 2. Query generation: comparison with Mitra

small volumes of data. However,
∑

oφoς is sensitive to the number of matching
documents. The reason behind this, is mainly caused by storage latency. More
specific, we explain that because the cost of the storage latency and accessing
the disk induces a certain amount of waiting. Since

∑
oφoς uses RSA opera-

tions during the search phase, we suppose that these RSA operations will not
be fully interleaved with disk accesses and

∑
oφoς pays for the latency induced

by mutexes and storage accesses.
Figure 1 shows that Mitra has a slightly better performance than our scheme

in the search phase. However, in the Query Generation phase (Fig. 2), our scheme
only needs 0.2 µs regardless of the number of matching documents while the time
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cost of Mitra’s Query Generation increases linearly, reaching 900 µs when the
number of matching documents reaches 10,000.

Hence, we conclude that our scheme is around 10x to 20x faster than
∑

oφoς
during search phase. Our query generation could be more than 4500 times faster
than Mitra when the number of matching documents is larger than 10,000.

9 Conclusion

In this paper, we propose a new approach based on additive secret sharing to
construct SSE and we provide the first VDSSE scheme achieving both forward
and backward privacy. Specifically, we construct a practical instance of VDSSE,
achieving forward and type 2 backward privacy with the lowest configuration
requirements on the client side. In addition, we present both theoretical and
experimental comparisons between the proposed scheme and existing works. The
comparison result shows that the proposed scheme is the most efficient scheme to
achieve forward and type 2 backward privacy through the smallest client require-
ments. Our future research includes extensions where our scheme would benefit
from further storage and communication optimization as well as an extension to
support type 1 backward privacy.
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Abstract. We define smooth zero-knowledge hash functions (SZKHFs)
as smooth projective hash functions (SPHFs) for which the completeness
holds even when the language parameter lpar and the projection key
hp were maliciously generated. We prove that blackbox SZKHF in the
plain model is impossible even if lpar was honestly generated. We then
define SZKHF in the registered public key (RPK) model, where both
lpar and hp are possibly maliciously generated but accepted by an RPK
server, and show that the CRS-model trapdoor SPHFs of Benhamouda
et al. are also secure in the weaker RPK model. Then, we define and
instantiate subversion-zero knowledge SZKHF in the plain model. In this
case, both lpar and hp are completely untrusted, but one uses non-
blackbox techniques in the security proof.

Keywords: Plain model · RPK model · SPHF · Trapdoor SPHF ·
Subversion zero-knowledge

1 Introduction

Smooth projective hash functions (SPHFs, [14]) for an NP language Llpar (with
corresponding relation Rlpar such that Llpar = {x : ∃w, (x, w) ∈ Rlpar}),
parametrized by a language parameter lpar, are cryptographic primitives with
the following properties. Given lpar and a word x, one can compute a hash of
x in two different ways: either (i) using a projection key hp (an analogue of a
public key), and (x, w) ∈ Rlpar, as pH ← projhash(lpar; hp, x, w), or (ii) using a
hashing key hk (an analogue of a secret key) and any x, as H ← hash(lpar; hk, x).
If (x, w) ∈ Rlpar, then the completeness property guarantees that the two ways
of computing the hash result in the same value, pH = H. If x �∈ Llpar, then
the smoothness property guarantees that, knowing hp but not hk, one cannot
distinguish H from random. SPHFs are useful in many different applications,
starting from constructing IND-CCA2 secure cryptosystems [14] and password-
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authenticated key exchange [20], and ending with honest-verifier zero knowl-
edge [10], and non-interactive zero knowledge (NIZK, [1]).

Several varieties of SPHFs exist. In KV-SPHFs [24], hp is created first and
then x can depend on hp. In GL-SPHFs [20], the order is opposite. In the current
paper, we are primarily interested in the GL-SPHFs. Recent research [1,9,10] has
shown how to construct efficient GL-SPHFs for a large variety of languages. In
particular, it is known how to construct GL-SPHFs for the class of algebraic
languages LΓ ,θ := {x : ∃w,Γ (x) · w = θ(x)}, where Γ and θ are x-dependent lin-
ear maps, [1,9,10]. Algebraic languages are quite powerful and include quadratic
languages like the languages of the Elgamal encryption of bits, [10,13]. It is also
known how to create GL-SPHFs for conjunction and disjunction of two algebraic
languages [1,9,10]. On the other hand, assuming the polynomial hierarchy does
not collapse, it is impossible to construct SPHF for NP-complete languages [9].

It is usually assumed that the creator of hp is honest; this explains, e.g., why
the SPHF-based two-message zero-knowledge argument of [10] is honest-verifier
only. Benhamouda et al. [10] defined trapdoor SPHFs (TSPHFs) as SPHFs where
one can verify that the projection key has been generated correctly. Unfortu-
nately, TSPHFs are defined in the strong common reference string (CRS) model,
where everybody has to trust the same CRS creator. In many applications, such
a universally trusted third party does not exist. This creates another avenue of
subversion to which TSPHFs provide no answer: one obtains security against a
malicious projection-key creator but not against a malicious CRS creator.

Several recent papers on zero-knowledge arguments [8], including succinct
non-interactive arguments of knowledge (SNARKs [2,16]) and quasi-adaptive
NIZKs (QA-NIZKs [4]), have shown how to achieve either soundness or zero-
knowledge even when the public parameters, like the CRS or the public
key, have been maliciously subverted. In the case of NIZK, many well-known
(im)possibility results exist. E.g., one cannot achieve (say) blackbox or even
auxiliary-string non-blackbox NIZK in the weak Bare Public Key (BPK, [12,28];
see also the full version [3]) model [22] while efficient no-auxiliary-string non-
blackbox zero-knowledge (Sub-ZK) NIZK in the BPK model is possible [2,4,16].
Moreover, it is impossible to achieve NIZK that, at the same time, has
the properties of subversion-resistant soundness and subversion-resistant zero-
knowledge, [8].

We are not aware of similar positive or negative results for SPHFs in the case
of trusted or untrusted hp, or of any previous research on the applications of
non-blackbox assumptions to SPHF. We emphasize that in the case of SPHFs,
this issue is even more critical than in the case of NIZKs: in SPHFs, hp is created
by the verifier (who is by definition untrusted by the prover), while in NIZKs,
the CRS creator may be honest, depending on the application.
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Our Contributions. We study SPHFs with untrusted language-parameter and
projection-key generator. We say that an SPHF HF is a smooth zero-knowledge
hash function (SZKHF1) if

(i) smoothness holds even for a maliciously generated lpar (but honestly gen-
erated hp), and

(ii) zero-knowledge (i.e., completeness) holds even for a maliciously generated
lpar and a maliciously generated hp, where lpar and hp are accepted
respectively by a public lpar-verification algorithm verpar and a public hp-
verification algorithm verhp.

First, we show that SZKHFs are impossible in the plain model. Second, we define
SZKHFs in the RPK (registered public key) model, which is weaker than the CRS
model. We show that SZKHFs exist in the RPK model. Third, we define Sub-ZK
SZKHFs in the plain model, which are SZKHFs without any trust assumption,
but similarly to Sub-ZK NIZKs, we use non-blackbox techniques to construct
them and show that Sub-ZK GL-SZKHFs exist for all algebraic languages.

On the other hand, Sub-ZK NIZKs are only known in the bare public key
model [12,28], which is in stark contrast to our results. In a parallel work, we
motivate the difference by showing that Sub-ZK SZKHFs are equivalent to Sub-
ZK deterministic-prover quasi-adaptive two-message zero-knowledge arguments.
Our Results and Techniques. First, we define blackbox SZKHFs in the plain
model without any trust assumptions. Motivated by a classical impossibility
result for blackbox two-round zero knowledge in the plain model [22], we prove
that such SZKHFs are impossible for hard languages even if lpar is trusted.
Thus, one has two options: either (i) allow SZKHFs to rely on non-blackbox
assumptions, or (ii) construct SZKHFs in a trust model.

Second, we consider blackbox SZKHFs in the RPK [6] model, where each
party P trusts some key-registration authority R and has registered her public
key pk with R. If P is honest, then the secret key sk can be extracted, and pk is
correctly distributed. Otherwise, sk can be extracted, but there is no guarantee
about its distribution. The RPK model is considerably weaker than the better
known CRS model since, in the latter, one assumes that sk is always correctly
distributed and that all parties trust the same CRS.

In this case, the zero-knowledge definition is similar to the soundness defi-
nition of trapdoor SPHFs (TSPHFs) in [10], except that the latter is given in
the CRS model while we use the weaker RPK model. In addition, motivated
by recent work on Sub-ZK QA-NIZK [4], we assume that lpar is also created
in the RPK model, i.e., its trapdoor is extractable, but there is no guarantee

1 We considered other terms. This notion corresponds to completeness/projectivity
when lpar and hp are subverted, and thus it could be called subversion-
completeness/subversion-projectivity. For trapdoor SPHFs, it was called soundness
in [10] and, finally, zero knowledge in [9]. Zero-knowledge is the most intuitive term
since in a typical application of HF; it guarantees that a malicious creator of hp does
not learn anything new from seeing pH compared to when she sees H that does not
depend on the witness.
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about its distribution; this is in contrast to [10] that assumed that lpar is hon-
estly generated. After appropriate tweaking, all known TSPHFs [10] will become
computationally-smooth blackbox SZKHFs in the RPK model. Unfortunately, a
TSPHF only shifts the subversion problem: instead of having to trust the gener-
ator of hp, one has to trust the generator of lpar and the RPK; however, in the
RPK model, lpar and the RPK can be handled by different RPK authorities,
and there is no need to assume that their trapdoors are correctly distributed.

Third, inspired by research on Sub-ZK NIZK [2,4,8,16], we define Sub-ZK
SZKHF in the plain model. Motivated by an impossibility result about two-
message zero-knowledge [22] and its use in [4], we prove that auxiliary-string
non-blackbox SZKHF in the plain model is impossible for languages not in BPP,
even if lpar is honestly generated. This impossibility result is strictly stronger
than the impossibility result mentioned at the beginning of this subsection. Thus,
as in [4], Sub-ZK corresponds to no-auxiliary-string non-blackbox zero-knowledge.
Differently from Sub-ZK NIZK, where one assumes non-blackbox extraction of
the secret key, we only require that one can extract κ(hk), where κ can be a
hard-to-invert bijection. Such a notion of κ-extractability emphasizes the fact
that in many applications of SPHFs, it is not essential to extract hk; instead,
it suffices to recover a related value κ(hk) that can be used to verify efficiently
that projhash was correctly computed.

More formally, let κ be an efficient algorithm, e.g., identity map or exponenti-
ation/bilinear map. An SZKHF is κ-extractable Sub-ZK if it supports determin-
istic algorithms verpar (language-parameter verification), verhp (projection-key
verification) and simhash (subversion hash), s.t. : for each PPT subverter Z
that creates a verpar-accepted lpar and verhp-accepted hp, there exists a non-
blackbox PPT extractor ExtZ that outputs κ(hk), s.t. simhash(lpar;κ(hk), x) =
projhash(lpar; hp, x, w) for every (x, w) ∈ Rlpar. Importantly, compared to black-
box SZKHFs in the RPK model, a Sub-ZK SZKHF in the plain model does not
rely on a trusted RPK, and thus, we get full subversion-resistance.

We construct a Sub-ZK SZKHF in the plain model based on SPHFs from
DVSs (diverse vector spaces) [9,10]. Then, we give a construction of compu-
tationally smooth blackbox SZKHF in the RPK model based on DVS-based
SPHFs. We also present a Sub-ZK SZKHF in the plain model and a blackbox
SZKHF in the RPK model, both based on Benhamouda et al.’s TSPHFs [10] in
the full version [3].

2 Preliminaries

For a matrix A, colspace(A) is the subspace generated by its columns. Let
PPT denote probabilistic polynomial-time. Let vect(A) be the vectorization of
the matrix A. The cokernel of A is defined as coker(A) = {a : a�A = 0}.
Let λ ∈ N be the security parameter. All adversaries will be stateful. For an
algorithm A, im(A) is the image of A (the set of valid outputs of A), RNDλ(A)
is the random tape of A (for a fixed choice of λ), and r ←$RNDλ(A) denotes the
random choice of r from RNDλ(A). By y ← A(x; r) we denote that A, given an
input x and a randomizer r, outputs y. By x ←$ D we denote that x is sampled
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according to distribution D or uniformly randomly if D is a set. Let negl(λ) be
an arbitrary negligible function. We write a ≈λ b if |a − b| ≤ negl(λ). We follow
Bellare et al. [8] by using “cryptographic” style in security definitions where all
complexity (adversaries, algorithms, assumptions) is uniform, but the security
(say, soundness) is quantified over all inputs chosen by the adversary.

A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,GT , ê, [1]1, [1]2),
where G1, G2, and GT are three additive cyclic groups of prime order p, [1]ι is
a generator of Gι for ι ∈ {1, 2, T} with [1]T = ê([1]1, [1]2), and ê : G1 × G2 →
GT is a non-degenerate efficiently computable bilinear pairing. We assume λ
is implicitly described by p, and as in [8], we assume that p is a deterministic
function of λ and thus cannot be subverted. (This is usually the case in practice.)
We require the bilinear pairing to be Type-3 [18], that is, we assume that there
is no efficient isomorphism between G1 and G2. We use the additive implicit
notation of [15], that is, we write [a]ι to denote a[1]ι for ι ∈ {1, 2, T}. We denote
ê([a]1, [b]2) by [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We freely use the bracket
notation together with matrix notation; for example, if AB = C then [A]1 •
[B]2 = [C]T . We also assume that [A]2 • [B]1 := ([B]�1 • [A]�2 )

� = [AB]T .

Algebraic Languages. Let p be system parameters, including say the descrip-
tion of a bilinear group. Let lpar = (Γ ,θ,λ), where Γ ,θ,λ are all linear maps
in their their inputs. More precisely, Γ (x) is an n × k matrix, θ(x) is an n-
dimensional vector, and λ(x, w) is a k-dimensional vector. Moreover, different
coefficients of θ(x), Γ (x), and λ(x, w) can belong to different algebraic struc-
tures (most commonly, given a bilinear group p = (p,G1,G2,GT , ê), either to
Zp, G1, G2, or GT ) as long as the equation θ(x) = Γ (x) · λ(x, w) is “well-typed”.
E.g., the equation

(
[θ1]T
[θ2]1

)
=

(
[Γ11]T [Γ12]2
[Γ21]1 Γ22

)(
λ1

[λ2]1

)
is well-typed. We omit the

subscript lpar if it is clear from the context. Define

Llpar = {x : ∃w,θ(x) = Γ (x) · λ(x, w)} . (1)

Let RL = {(x, w) : θ(x) = Γ (x) · λ(x, w)} be the corresponding witness-relation.
Languages of the form Eq. (1) have been studied at least since [10], and they
called algebraic2 in [13]. All linear languages are algebraic, but algebraic lan-
guages also include non-linear languages. E.g., the language of Elgamal encryp-
tions of bits is algebraic [10]; in this case, Γ (x) depends on x.
Projective Hash Functions. Let Llpar ⊂ Xlpar be a language parametrized
by lpar (the language parameter), where Xlpar is the underlying domain, e.g.,
a group. Let Rlpar be the witness-relation defined by Llpar = {x : ∃w, (x, w) ∈
Rlpar}. A projective hash function (PHF, [14]) for {Llpar} is a tuple of PPT
algorithms HF = (Pgen, setup.lpar, hashkg, projkg, hash, projhash), where

Pgen(1λ): Takes a security parameter λ and generates the global parameters p.
setup.lpar(p): sets up the language parameters lpar. lpar contains p and some

public parameters specifying the relation (e.g., an encryption key).
2 Couteau and Hartmann [13] considered λ(x, w) := w only; however, one can just

redefine the witness to contain all elements of λ(x, w).
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hashkg(lpar): Inputs a language parameter lpar. It generates and outputs a
hashing key hk for Llpar.

projkg(lpar; hk, x): Inputs a language parameter lpar, a hashing key hk, and
possibly a word x ∈ Xlpar. It outputs deterministically a projection key hp.

hash(lpar; hk, x): Inputs a language parameter lpar, a hashing key hk, and a
word x ∈ Xlpar. It outputs deterministically a hash value H.

projhash(lpar; hp, x, w): inputs a language parameter lpar, a projection key hp,
and (x, w) ∈ Rlpar. It outputs deterministically a projected hash value pH.

The set of hash values is called the range of HF and is denoted by HashSet. We
assume HashSet is an efficiently sampleable set that has size, exponential in λ.
To shorten notation, we will denote the sequence “hk ← hashkg(lpar); hp ←
projkg(lpar; hk, x)” by (hp, hk) ← kgen(lpar; x).

A distribution Dp (e.g., the output distribution of setup.lpar(p)) on Llpar

is witness-sampleable [23] if there exists a PPT algorithm setup.ltrap(p) that
outputs (lpar, ltrap) such that lpar is distributed according to Dp, and mem-
bership of x in the parameter language Llpar can be verified in PPT given ltrap.
We always assume that lpar can be efficiently computed from ltrap. In SPHF-
related research, Dp is often assumed to be witness-sampleable, even if it is
not always necessary. Couteau and Hartmann [13] extended the definition of
witness-sampleable languages to all algebraic languages.

HF is perfectly complete if for all lpar ∈ im(setup.lpar(p)), (x, w) ∈ Rlpar,
and (hp, hk) ∈ im(kgen(lpar; x)), hash(lpar; hk, x) = projhash(lpar; hp, x, w).

There are at least three types of smooth PHFs (SPHFs). Intuitively, in GL-
SPHF [20], security is required even when hp maliciously depends on x. On the
other hand, in KV-SPHF [24], security is required even when x can maliciously
depend on hp. The third type is CS-SPHF, [14]; we will not discuss CS-SPHFs
in what follows. See [9, Section 2.5] for more information.

A PHF HF for a language L ⊆ X is ε-GL-smooth (an ε-GL-SPHF) if for any
lpar and any word x ∈ Xlpar \ Llpar, the following distributions are ε-close:

{(hp,H) : (hp, hk) ← kgen(lpar; x);H ← hash(lpar; hk, x)}
{(hp,H) : (hp, hk) ← kgen(lpar; x);H ←$HashSet}

A PHF is GL-smooth if it is ε-GL-smooth with ε negligible in λ.
HF for L ⊆ X is ε-KV-smooth (an ε-KV-SPHF) if for any lpar and any (not

necessarily computable in polynomial-time) function f from the set of possible
projection keys hp to Xlpar \ Llpar, the following distributions are ε-close:

{(hp,H) : (hp, hk) ← kgen(lpar);H ← hash(lpar; hk, f(hp))}
{(hp,H) : (hp, hk) ← kgen(lpar);H ←$HashSet}

A PHF is KV-smooth if it is ε-KV-smooth with ε negligible in λ. Since projkg
does not depend on x in this case, we often omit x as an argument for projkg.

For all (subset-membership-hard) algebraic languages, one can construct an
efficient SPHF, [1,9,10], s.t. the hash value belongs to a source group, G1 or G2.
Benhamouda [9, Section 2.5.3.2] remarks that one cannot construct GL-SPHF
for an NP-complete language since then one can also to construct a witness
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encryption scheme for the same language [19] which would solve a long-standing
open problem in the complexity theory.

3 Defining SZKHF

While completeness of SPHF, defined for honestly generated hp, is sufficient
in many applications, it is natural to ask what happens if hp was generated
maliciously. Consider, e.g., an application of SPHFs in the construction of zero-
knowledge proof systems. One can use SPHFs to design two-message honest-
verifier zero-knowledge proof systems [10] and non-interactive zero-knowledge
(NIZKs) argument systems in the CRS model [1]. In the former case, the need
to trust the hp generator translates to the need to trust the verifier who creates
hp (hence, one gets honest-verifier zero-knowledge). While [10] showed how to
obtain two-message zero-knowledge proof systems, they did it by introducing
a trusted CRS generator. In this case and the case of SPHF-based NIZKs, [1],
the need to trust the hp generator is transformed to the need to trust the CRS
generator.

The CRS model [11] assumes the existence of a universally trusted CRS cre-
ator who creates the CRS from the correct distribution and does not leak any
information. Unfortunately, NIZK in the plain model, and even auxiliary-string
NIZK in the BPK [12,28] model, is impossible, [22]. One can construct efficient
no-auxiliary-string non-blackbox zero-knowledge NIZK in the BPK model based
on SNARKs and QA-NIZKs [2,4,16] assuming there exists a public BPK verifica-
tion procedure PKV and, in the case of QA-NIZK [4], a public language parame-
ter verification procedure verpar. No-auxiliary-string non-blackbox implies that,
given the BPK pk is accepted by PKV, one can use an adversary-dependent
extractor to extract the trapdoor of pk, and, in the case of QA-NIZK, lpar is
accepted by verpar. For the extraction to succeed, it is required that the adver-
sary has no auxiliary string since an auxiliary string could encode a pk for which
she does not know the trapdoor.

Since SPHFs can be used to construct NIZKs [1], one can hope that some of
the known (im)possibility results about NIZKs can be translated to the case of
SPHFs. However, this is not evident, in particular since there is no prior work on
non-blackbox SPHFs or SPHFs in different trust models, except [10] that only
considers SPHFs in the CRS model. Thus, we need to use known (im)possibility
results about two-message zero-knowledge argument systems.

We approach the question of untrusted lpar and hp systematically. We will
define a stronger version of completeness (zero-knowledge) of an SPHF that
guarantees that even if lpar and hp are created maliciously then either

(i) one detects that this is the case, or
(ii) if (x, w) ∈ RL then hash(lpar; hk, x) = projhash(lpar; hp, x, w).

Additionally, we define a stronger version of smoothness, called Sub-PAR smooth-
ness of an SPHF which guarantees that the smoothness holds even if lpar (but
not hp) is created maliciously. Asmooth zero-knowledge hash function (SZKHF)
is an SPHF that satisfies zero-knowledge and Sub-PAR smoothness. The precise
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model (Sub-PAR smoothness and Sub-ZK) is motivated by the model used in [4]
in the case of QA-NIZK. However, since SZKHFs are related not to QA-NIZK
but to a flavour of two-message zero-knowledge argument systems, and thus the
completeness of this model has to established separately in the case of SZKHFs.

We will consider SZKHFs in the following three models:

Blackbox zero-knowledge (ZK) in the plain model: ZK holds without the
use of non-blackbox techniques or trust assumptions. We show that blackbox
SZKHF in the plain model is impossible for languages not in BPP, even if
lpar was honestly generated and auxiliary input is not allowed.3

Blackbox ZK in the RPK model: ZK holds without the use of non-blackbox
techniques but one relies on the RPK model. In this case, SZKHF is a vari-
ant of the definition of TSPHFs from [10] that however were defined in the
stronger CRS model. More precisely, both lpar and hp can be untrusted but
they need to be accepted by an RPK server. (Thus, one can extract ltrap
and td in the security proof.) On the other hand, [10] assumes that lpar
and the CRS are correctly distributed. Known TSPHFs can be tweaked to
be SZKHF in this sense but one still has the issue of the subversion of both
lpar and the rpk.

Non-blackbox ZK in the plain model: ZK is proven by non-blackbox tech-
niques in the plain model. Here, the SZKHF definiton is related to that of
the subversion zero-knowledge (Sub-ZK) Sub-PAR smooth QA-NIZKs [4].
We show that auxiliary-string non-blackbox SZKHF in the plain model is
impossible for languages not in BPP, even if lpar was honestly generated.

In all three cases, we will assume that there exist deterministic PPT algo-
rithms verpar and verhp, such that correctness holds even if lpar and hp
were maliciously constructed as long as verpar accepts lpar and verhp accepts
(lpar; hp, x). (Note that verhp takes the input x only when we have a GL-SPHF.)
We assume that verpar (resp., verhp) accepts all correctly generated language
parameters (resp., projection keys). The existence of verhp for SPHFs was first
postulated by Benhamouda et al. [10] who used it to obtain trapdoor SPHFs.
An analogous algorithm CV for NIZKs was (independently) postulated for NIZKs
in [2] and played a key part in their definition of Sub-ZK NIZK in the CRS model.
We are not aware of any previous definition of verpar in the case of SPHFs; in
the case of QA-NIZKs, it was first done in [4].

In the rest of the paper, we only consider GL-SZKHFs: security definitions
in the case of GL-SZKHFs and KV-SZKHFs differ in small technical details that
mostly just make it more difficult to parse the definitions.

3.1 Blackbox SZKHF in the Plain Model

We define blackbox GL-SZKHF in the plain model. We prove that, even if
lpar was honestly generated, this definition can only be satisfied for languages
3 In the case of blackbox ZK in the plain model, we will give the definition only for

honestly generated lpar: since we will show that this definition is impossible to
achieve, this will make our result only stronger.
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Fig. 1. Completeness experiments in Definitions 1 to 3. The dashed-box/dotted-box
part is only present in the dashed-boxed/dotted-boxed experiment.

Fig. 2. Smoothness experiments in Definitions 1 to 3. The boxed/dashed-box/dotted-
box part is only present in the boxed/dashed-boxed/dotted-boxed experiment.

in BPP. In Definitions 1 to 3, we postulate the existence of a deterministic
algorithm simhash, such that for any (x, w) ∈ Rlpar, projhash(lpar; hp, x, w) =
simhash(lpar; hp, x). Here, simhash does not get either the RPK trapdoor td or
hk (or even κ(hk), where κ is a possibly hard-to-invert bijection) as an input.

As in the case of TSPHFs [10], we assume only computational smoothness.
Moreover, in the definition of smoothness, we only consider honestly generated
lpar, and consider security in the case when A does not have access to ltrap
(and thus the definition is not restricted to witness-sampleable languages). All
these changes only make our impossibility result stronger.

A GL-SZKHF in the plain model is a PHF together with new deterministic
algorithms verpar, verhp and simhash defined as follows:

– verhp(lpar; hp, x) outputs 1 if hp is a valid projection key and 0 otherwise.
– verpar(lpar): outputs 1 if lpar is well-formed and 0 otherwise.
– simhash(lpar; hp, x) returns the trapdoor hash value of x, given hp.

Definition 1. A GL-SZKHF HF = (Pgen, setup.ltrap, hashkg, projkg, hash,
projhash, verhp, verpar, simhash) in the plain model satisfies the following prop-
erties, for the experiments depicted in Figs. 1 to 3.
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Fig. 3. (Persistent) zero-knowledge experiments in Definitions 1 to 3. The
boxed/dashed-box/dotted-box part is only present in boxed/dashed-boxed/dotted-
boxed experiments. Also, gray background marks differences compared to
ZKbb-plain

HF,Z,A(λ). (Color figure online)

Perfect completeness: for all λ, PPT A, Pr[CompleteplainHF,A(λ) = 1] = 1.
Computational (blackbox) smoothness: ∀ PPT A, Pr[Smoothbb-plainHF,A (λ) =

1] ≈λ
1
2 . SZKHF is statistically smooth if this holds for all unbounded A.

Composable (blackbox) ZK: ∀ PPT subverters Z, unbounded A,
Pr[ZKbb-plain

HF,Z,A(λ) = 1] ≈λ
1
2 .

(Recall that p is a deterministic function of λ.) Note that unbounded A creates
(x, w) and only x is passed to bounded subverter Z; this is necessary since in the
case of GL-SZKHF, hp can depend on x. We do not allow A to transmit any
other information. We consider A only to be successful if (x, w) ∈ Rlpar. Sadly,
it is easy to show that Definition 1 can only be satisfied for Llpar ∈ BPP.

Lemma 1. Let HF be a computationally smooth and composable ZK GL-SZKHF
in the plain model for Llpar under blackbox assumptions. Then Llpar ∈ BPP.

This lemma is a corollary of Theorem 1 from Sect. 5, but for the sake of com-
pleteness, we will next give a direct proof. A simple modification of the proof
also shows the impossibility of KV-SZKHFs in the plain model.
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Proof. Let HF be a computationally-smooth and composable ZK GL-SZKHF in
the plain model for Llpar. We describe B, the BPP adversary for deciding Llpar

as follows:

B(lpar, x)
(hp, hk) ← kgen(lpar; x); bA ←$ {0, 1};
H0 ← hash(lpar; hk, x);H1 ← simhash(lpar; hp, x);
if H0 = H1 then b′ ← 0; else b′ ← 1;fi

return b′;

The challenger C of the BPP-decision game samples p ← Pgen(1λ), lpar ←
setup.lpar(p), b ←$ {0, 1}, x0 ←$ Llpar, x1 ←$ X \ Llpar. For x ← xb, C sends
(lpar; x) to B who returns b′.

The soundness of B follows directly from the computational-smoothness of
HF. For any xb �∈ Llpar, B will output b′ = 1 with probability at least 1 − εsm.
Also, the Sub-ZK property of the HF guarantees the completeness of B. Thus:

Pr[b′ = b] = (Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1]) /2
= Pr[H0 = H1|x = x0]/2 + Pr[H0 �= H1|x = x1]/2

≥ 1
2 + 1−εsm

2 = 1 − εsm

2 .

Thus, B has non-negligible advantage in deciding Llpar. �

4 Blackbox SZKHF in the RPK Model

Since blackbox SZKHFs are impossible in the plain model, we will next consider
blackbox SZKHFs in the RPK model [6]. The following definition combines the
security definitions of Sub-PAR QA-NIZKs in the BPK model [4] with these of
TSPHFs [10]. We will first give the new definition and then explain the difference
between the new definition and the definitions of [4] and [10].

A SZKHF in the RPK model is defined together with new algorithms Krpk,
verpar, verhp and simhash as follows.

– Pgen, setup.ltrap are as before, except that setup.ltrap obeys the rules of
the RPK model. (See the description of Krpk below.)

– verpar(lpar): outputs 1 if lpar is well-formed and 0 otherwise.
– Krpk(lpar): takes an input lpar generated by setup.ltrap and outputs a

public key rpk together with a secret key sk. Krpk can either generate sk
herself or can, alternatively, verify that the owner of sk knows the secret key
corresponding to rpk, [6]. In the latter case, Krpk can be implemented as a
stand-alone interactive zero-knowledge protocol where a party registers her
public key rpk with an authority by additionally proving the knowledge of
td := sk. In a security proof, td is then extracted by using (say) rewinding.
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If the creator of rpk is untrusted, rpk is well-formed and its underlying sk is
returned; however, there is no guarantee about the distribution of rpk or sk.
The setup.ltrap algorithm works similarly, but with rpk being replaced with
lpar and sk being replaced with ltrap. Thus, if the creator of lpar is
untrusted, lpar is well-formed and its underlying ltrap is returned; how-
ever, there is no guarantee about the distribution of lpar or ltrap.

– hashkg, projkg, hash, and projhash are as usual but also take rpk as an
input. To shorten notation, we will denote “hk ← hashkg(lpar, rpk); hp ←
projkg(lpar, rpk; hk, x)” by “(hp, hk) ← kgen(lpar, rpk; x)”.

– verhp(lpar, rpk; hp, x): outputs 1 if hp is a valid projection key and 0 other-
wise.

– simhash(lpar; td, hp, x): returns the simulated (trapdoor) hash value of x,
given an RPK trapdoor td and hp.

In applications where Krpk is not trusted (like the definition of zero-knowledge
in the RPK model), we denote the untrusted Krpk as Kadv

rpk . As above, the output
of Kadv

rpk will be well-formed (in particular, it will return a correct sk) but there will
be no assumption about the distribution of rpk and Kadv

rpk may leak information
about sk to other adversaries.

Definition 2. A blackbox GL-SZKHF HF = (Pgen, setup.ltrap, hashkg, projkg,
hash, projhash) in the RPK model must satisfy the following properties for some
PPT Krpk, deterministic polynomial-time verpar, verhp and simhash, and the
experiments depicted in Figs. 1 to 3.

Perfect completeness: for any λ and PPT A, Pr[CompleterpkHF,A(λ) = 1] = 1.
Computational (blackbox) smoothness: for any PPT Kadv

rpk and A,
Pr[Smoothbb-rpkHF,A (λ) = 1] ≈λ

1
2 . SZKHF is statistically smooth if the same

holds for all unbounded adversaries.
Composable (blackbox) persistent ZK in the RPK model: For any PPT

Z and unbounded A, Pr[PZKbb-rpk
HF,Z,A(λ) = 1] ≈λ

1
2 .

Comparison with Previous Work. Differently from [4], the definitions are
for SPHFs and not for QA-NIZKs. Our definition is in the RPK model for a
trusted public key, without a non-blackbox extractor of the secret key.

Moreover, since we want to avoid non-blackbox techniques, in the definition
of smoothness, we assume that also lpar is generated according to the rules of
the RPK model (that is, setup.ltrap returns lpar with a corresponding ltrap).
This is motivated by the fact that existing TSPHF constructions [10] are given
for witness-sampleable distributions, where ltrap is used in the smoothness
proofs explicitly. We modify the way the witness-sampleable distribution is used
according to the model. In the RPK model, the RPK-model setup algorithm
returns ltrap. In the non-blackbox plain model of Sect. 5, we will assume the
existence of an extractor that can extract ltrap. In both cases, ltrap will be
used in the smoothness and persistent ZK security proofs, and we do not assume
that ltrap is correctly distributed. As in [4], persistent zero-knowledge means
zero-knowledge in the case when lpar is maliciously constructed.
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On the other hand, [10] defined TSPHFs in the CRS model (where there
exists a universally trusted third party that creates a CRS), while we use the
significantly weaker RPK model. More importantly, we consider the case of mali-
ciously created lpar; this seems to be a first in the existing SPHF literature.
More precisely, we assume that both lpar and rpk are constructed according
to the rules of the RPK model. We only considered honest lpar in Definition 1
since there we gave an impossibility result. In the RPK model, we are interested
in a possibility result; thus, following [4], we consider persistent ZK.4 We also use
a language that immediately guarantees composability of SZKHFs. Finally, [10]
used different terminology: what we call zero-knowledge was called soundness
in [10]; however, it was called zero-knowledge in [9].

Abdolmaleki et al. [4] showed that in the case of QA-NIZKs, while ZK (with
honestly chosen lpar) sounds to be a weaker definition than persistent ZK (with
maliciously chosen lpar), this is actually not the case. More precisely, they con-
structed a contrived QA-NIZK argument system Πleaky where one need ltrap
to be able to simulate. In the case of persistent ZK, one can use a knowledge
extractor (the use of which is explicitly allowed by their definition of persistent
ZK) to obtain ltrap and then use ltrap to simulate. However, Πleaky does not
achieve ZK since a simulator does not have access to ltrap. In our definition of
persistent ZK in the RPK model, there is no extractor and thus ZK follows from
the persistent ZK. However, we will use an extractor in Sect. 5 and thus there
we will define ZK and persistent ZK separately.

Finally, we emphasize that persistent ZK holds in the case the RPK is hon-
estly created (and thus simhash has access to the secret key td) but lpar and
hp are subverted. Thus, like TSPHFs, SZKHFs in the RPK model provide only
partial answer to the problem of subversion. To solve the latter, in Sect. 5, we
define Sub-ZK SZKHF (in the plain model).
Constructions. We give two construction of computationally-smooth blackbox
SZKHF in the RPK model. The first construction is from HFdvs in Fig. 4, by
defining rpk = [τ ]2 and hpf = (hp, hpver) for hpver = [τα�]2, such that the Eq.
(2) holds. The second construction is based on TSPHF [10]. Note that both
constructions are computationally-smooth SZKHF under the DDH assumption
for witness-sampleable languages. We defer the constructions and their security
proofs to the full version [3].

5 Sub-ZK SZKHF in the Plain Model

In Sect. 4, we defined SZKHF in the RPK model and gave a construction of
computationally smooth blackbox SZKHF in this model. Now, we consider the
second direction of weakening Definition 1, namely, that of using non-blackbox
techniques. To this end, we modify the Sub-ZK definition of QA-NIZKs by

4 We emphasize that proving ZK in the case of subverted lpar and hp is paramount
in applications where both lpar and hp are generated by the verifier (the party who
checks that the values of hash and projhash are equal).
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Abdolmaleki et al. [4] to the case of SPHFs. To facilitate reading by readers
who come from the SPHF background, we will first motivate the security defi-
nition.

Briefly, [4] defines QA-NIZKs in the Bare Public Key (BPK) model, assuming
that the public key pk and possibly lpar are created by a malicious subverter Z.
They define Sub-PAR soundness (soundness even if both lpar and pk are mali-
ciously created), Sub-ZK (ZK, even if pk is maliciously created), and persistent
Sub-ZK (ZK, even if both lpar and pk are maliciously created).

According to [8], independently of how lpar was generated, one cannot get
at the same time Sub-SND (subversion-soundness, soundness if pk is maliciously
generated) and Sub-ZK. [4] constructed a Sub-PAR sound and persistent Sub-
ZK QA-NIZK. Moreover, [4] noted that Sub-ZK (QA-)NIZK in the CRS model
is the same as no-auxiliary-string non-blackbox (QA-)NIZK in the weak BPK
model. The Sub-ZK definition of [4] is motivated by the fact that blackbox [5,28]
and even auxiliary-string non-blackbox [22] (see also [4,29]) NIZK in the BPK
model is impossible.

More precisely, a Sub-ZK QA-NIZK in the BPK model [4] guarantees that if
a malicious subverter Z creates lpar and pk that are accepted by a verpar (lpar-
verification) and PKV (public-key verification), respectively, then there exists a
non-blackbox extractor ExtZ that extracts the secret key sk that corresponds to
pk. After that, sk can be used to run the original CRS-model simulator Sim that
works in the case pk is generated honestly. Hence, one obtains non-blackbox ZK.

Next, we consider Sub-ZK SZKHFs in the plain model that are motivated by
QA-NIZKs in the BPK model. In the case of SZKHF, we have a hp instead of
the pk, hk instead of sk, verhp instead of PKV, projhash instead of the prover,
and simhash instead of the simulator. Intuitively, since in many applications,
hp is generated by the SZKHF verifier (the party who checks that hash and
projhash results in the same values), a Sub-ZK SZKHF works in the plain model,
i.e., without any trust assumptions at all. This is a fundamental difference com-
pared to Sub-ZK SNARKs and QA-NIZKs where one has to rely on some trust
assumption due to the use of the BPK.

As in [4], we define an efficient lpar-verification algorithm verpar (denoted
by PARV in [4]) which checks whether lpar is well-formed. Following the def-
inition of SZKHFs in the RPK model (see 4), we allow one to extract a
function κ(hk) of hk instead of hk itself. In general, κ may be the identity
or a one-way function, e.g., κ(hk) = [hk]2. In the latter case, it may not
be possible to efficiently recover hk from κ(hk). Due to this, we require that
simhash(lpar;κ(hk), hp, x) = hash(lpar; hk, x) for all lpar, hk, and x.

By analogy to [4], we obtain Definition 3. It is a variant of the definition
of Sub-ZK QA-NIZKs, with syntactic differences caused by differences between
SPHFs and NIZKs. On top of it, the definition is for GL-SZKHFs, which means
that in the definition of ZK, a subverted hp can depend on input x chosen by
the adversary before hp itself is chosen. In comparison, QA-NIZKs are related
to KV-SZKHFs where x depends on hp. Sub-ZK NIZK is impossible in the plain
model, [8]. On the other hand, as we will show in Sect. 6, Sub-ZK SZKHFs
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are possible in the plain model. We define separately auxiliary-string and no-
auxiliary-string non-blackbox ZK in the plain model; this is motivated by The-
orem 1 that states that the former is impossible for languages not in BPP. In
the case of auxiliary-string non-blackbox ZK, we allow the auxiliary input to be
generated by a PPT algorithm AUX called auxiliary string machine which takes
the language parameter lpar as input and returns aux.

Definition 3. A (no-)auxiliary-string non-blackbox zero knowledge GL-SZKHF
HF = (Pgen, setup.ltrap, hashkg, projkg, hash, projhash) in the plain model satis-
fies the following properties for deterministic polynomial-time algorithms verpar,
verhp, simhash, κ, and the experiments depicted in Figs. 1 to 3.

Perfect completeness: for any λ, PPT A, Pr[CompleteplainHF,A(λ) = 1] = 1.
Computational Sub-PAR (non-blackbox) smoothness: for any PPT A,

Pr[Smoothnbb-plainHF,A (λ) = 1] ≈λ
1
2 . SZKHF is statistically Sub-PAR smooth if

the same holds for any unbounded A.
Composable κ-extractable (no-)auxiliary-string non-blackbox ZK: For

any PPT subverter Z, there exists a PPT extractor ExtZ , s.t. for any PPT
auxiliary string machine AUX and unbounded A, Pr[ZKnbb-plain

HF,AUX,Z,ExtZ ,A(λ) =
1] ≈λ

1
2 . In the no-auxiliary-string case, AUX always outputs ε (the empty

string).
Composable κ-extractable (no-)auxiliary-string non-blackbox per-

sistent ZK: For any PPT subverter Z, there exists a PPT extractor
ExtZ , s.t. for any PPT auxiliary string machine AUX and unbounded A,
Pr[PZKnbb-plain

HF,AUX,Z,ExtZ ,A(λ) = 1] ≈λ
1
2 . In the no-auxiliary-string case, AUX

always outputs ε.

HF is extractable if κ is the identity function; then, for (x, w) ∈ Rlpar,
simhash(lpar; hk, x) = projhash(lpar; hp, x, w). Differently from F -extractability
[7] that limits applications compared to just extractability, we use κ-
extractability only in the Sub-ZK proof and thus it has no negative effect.

Abdolmaleki et al. [4] defined separately ZK and persistent ZK for QA-NIZK,
and showed that ZK does not follow from persistent ZK since in the latter one
can use a knowledge assumption to extract ltrap that is not available in the
former. The same problem holds in the case of SZKHFs, and thus in the security
proofs, one has to prove separately that a Sub-ZK SZKHF satisfies both ZK and
persistent ZK.

Motivated by applications in SNARKs, Abdolmaleki et al. [4] defined the
notion of knowledge-soundness in the case Llpar = X is the trivial language.
One can similarly define knowledge-smoothness when Llpar = X ; we decided
not to do it since we already have too many new definitions.
Impossibility of Auxiliary-String SZKHF in the Plain Model. Goldreich
and Oren [22, Thm. 4.4] proved that two-round non-uniform auxiliary-string
computational zero-knowledge proof (and also argument) systems do not exist
for languages outside BPP. We modify Thm. 4.4 of [22] to prove a similar result
about GL-SZKHFs. Note that this result is strictly stronger than Lemma 1.
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Motivated by this connection, we show in a parallel work that no-
auxiliary-string non-blackbox GL-SZKHFs and quasi-adaptive two-message zero-
knowledge (QA-2MZK) arguments are in one-to-one correspondence. A similar
result holds in the case of blackbox and no-auxiliary-string non-blackbox GL-
SZKHFs and QA-2MZK arguments. We omit further discussion.

Theorem 1. Let HF be an auxiliary-string non-blackbox ZK GL-SZKHF in the
plain model for Llpar. Then Llpar ∈ BPP for all lpar.

Proof. Let HF be a computationally-smooth κ-extractable auxiliary-string non-
blackbox GL-SZKHF in the plain model for Llpar. The execution of HF can
be seen as a question hp from the verifier, who has access to the randomness
hk, and an answer pH ← projhash(lpar; w, hp, x) by the prover. The prover’s
ability to provide an answer pH such that pH = hash(lpar; hk, x) is seen as
a sufficient evidence that x ∈ Llpar. The perfect completeness property of HF
ensures that if x ∈ Llpar then the prover will be able to output pH for any
hp ← projkg(lpar; hk, x). The computational-smoothness guarantees that if x �∈
Llpar then given only hp ← projkg(lpar; hk, x), no PPT prover can distinguish
H ← hash(lpar; hk, x) from random for any but a negligible fraction of the hk’s.

The idea of the proof is to run the simhash algorithm as a means of gener-
ating pH. To be able to do it so that we could still rely on the computational-
smoothness, it is essential to hide from the extractor ExtZ the randomness used
by the subverter Z when generating hp. This can be achieved by using the aux-
iliary string of the subverter as follows. Consider a subverter Z∗ that, given a
correctly generated projection key hpf as its auxiliary string, sets hp ← hpf and
outputs hp. Provided that the length of hpf is polynomial in the length of x, Z∗

is clearly a PPT machine. Thus, by the ZK property, there exists an extractor
ExtZ∗ that, given as input x and an auxiliary string hpf, outputs κ(hk) without
knowing the randomness of hpf. Using ExtZ∗ , we build a PPT adversary B that
decides Llpar. On input xb, B works as follows:

B(lpar; xb) // b = 0 if x ∈ Llpar and b = 1 if x �∈ Llpar

hk ← hashkg(lpar); hpf ← projkg(lpar; hk, xb);

r ←$RNDλ(Z∗); (hpf, stZ) ← Z∗(ltrap; xb, aux = hpf; r);
κ(hk) ← ExtZ∗(ltrap; xb, aux; r);
H ← hash(lpar; hk, xb);H

′ ← simhash(lpar, κ(hk); hpf, xb);

if H = H′ then b′ ← 0; else b′ ← 1;fi

return b′;

The soundness of B follows directly from the computational-smoothness of HF:
if xb �∈ Llpar and simhash is able to generate, with non-negligible probability,
a hash value H′ such that H = H′, then a PPT adversary A using ExtZ∗ can
trivially break the computational-smoothness property. Thus, for any xb �∈ Llpar,
B will output b′ = 1 with high probability 1− εsm. Also, the ZK property of the
HF guarantees the completeness of B. Thus:

Pr[b = b′] = (Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1])/2 = 1
2 + 1−εsm

2 = 1 − εsm

2 .



526 B. Abdolmaleki et al.

Thus, B has non-negligible advantage in deciding Llpar. �

6 Constructing SZKHF

In Sect. 3.1, we proved that blackbox SZKHFs in the plain model are restricted to
languages in BPP. Thus, one must either use a preprocessing model (as defined
in [10]) or rely on some non-blackbox technique (as defined in Sect. 5). As we
already mentioned, the use of the CRS model as in [10] (or the weaker RPK
model, as in 4) is not completely satisfactory since one essentially shifts the
problem of protecting against a subverted hp-generator to the problem of pro-
tecting against a subverted crs/pk-generator. As always in cryptography, the
end goal is not to have any trust at all whenever possible.

We first recall the notion of DVS and the construction of SPHF from DVS.
Next, we construct a Sub-ZK SZKHF in the plain model based on DVS-based
SPHFs and prove its security based on a new assumption. We also present a
Sub-ZK SZKHF in the plain model based on Benhamouda et al.’s TSPHFs [10]
in the full version [3].

6.1 Preliminaries: Diverse Vector Space (DVS)

A DVS [1,9,10] is essentially a representation of a language L ⊆ X as a subspace
L̂ of some vector space. Let RL = {(x, w)} be a relation with L = {x : ∃w, (x, w) ∈
RL}. Let p be system parameters, including say the description of a bilinear
group. Let Γ lpar(x) be an n × k matrix, θlpar(x) an n-dimensional vector, and
λlpar(x, w) a k-dimensional vector. A (pairing-based) DVS V is equal to V =
(p,X ,L,RL, n, k,Γ ,θ,λ). The matrix Γ lpar(x) can depend on x (in this case, we
say that we have a GL-DVS) or not (KV-DVS). Moreover, different coefficients
of θlpar(x), Γ lpar(x), and λlpar(x, w) can belong to different algebraic structures
(most commonly, given a bilinear group p = (p,G1,G2,GT , ê), either to Zp, G1,
G2, or GT ) as long as the equation θlpar(x) = Γ lpar(x) · λlpar(x, w) is “well-
typed”. That is, an equation like

(
[θ1]T
[θ2]1

)
=

(
[Γ11]T [Γ12]2
[Γ21]1 Γ22

)(
λ1

[λ2]1

)
holds. Note

that Llpar = {x : ∃λ,θlpar(x) = Γ lpar(x) · λ}. We omit the subscript lpar if it
is clear from the context.

A DVS V satisfies the following properties [9]: (i) coordinate-independence of
groups: the group in which each coordinate of θ(x) lies is independent of x. (ii)
perfect completeness: for any (x, w) ∈ RL, θ(x) = Γ (x) · λ(x, w). (iii) statistical
ε-soundness: ∀x ∈ Xlpar \ Llpar, Pr[θ(x) ∈ colspace(Γ (x))] ≤ ε.

6.2 Preliminaries: DVS-Based SPHFs

Benhamouda et al. [9,10] defined diverse vector spaces (DVSs). We will not
formally define DVSs (see 6.1), however, we need the following construction of
DVS-based GL-SPHFs from [10]. Essentially, a DVS-based GL-SPHF is defined
for any algebraic language (see Sect. 2) Llpar, where lpar = (Γ ,θ,λ). Recall
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that in the case of GL-SPHFs, Γ and θ are affine maps of x, with Γ (x) ∈ Z
n×k
p ,

n > k. In a DVS-based GL-SPHF for Llpar, one first samples a hashing
key hk = α ←$Z

n
p and then defines the projection key as hp = [γ(x)]1 ←

projkg(lpar; hk) = α�[Γ ]1 ∈ G
1×k
1 . For a witness w ∈ Z

k
p, the projection hash is

pH ← projhash(lpar; hp, x, w) = [γ(x)]1 · λ(x, w) = α�[Γ (x)]1λ(x, w) ∈ G1. For
an input x = [θ]1 = [Γ (x)]1λ(x, w) ∈ G

n
1 , the hash is H ← hash(lpar; hk, x) =

hk� · x = α�[Γ (x)]1λ(x, w) ∈ G1. Thus, if x ∈ Llpar, then H = pH. See [9,10] for
the proof of (information-theoretic) smoothness.

6.3 New DVS-Based SZKHF

Recall that a projection key hp is valid if there exists a hk such that hp =
projkg(lpar; hk). Consider a DVS-based SPHF HF with HashSet = G1 in the
plain model, as defined in 6.1. Since Γ (x) ∈ Z

n×k
p with n > k, it means that all

hp-s are valid. Thus, we must add to the projection key an additional sub-key
hpver that corresponds to similar auxiliary data crsCV in [2], such that hpf =
(hp, hpver) fixes uniquely the vector α ∈ Z

n
p , such that hp = α�[Γ (x)]1, and

then make it possible to verify that hp = α�[Γ (x)]1.
One has to be careful in defining hpver. For example, a simple approach is to

set hpver = [α]2; after that one can verify hp by just checking that hp • [1]2 =
[α]�2 •[Γ (x)]1. Unfortunately, this breaks computational-smoothness, as anybody
given an alleged hash H of x, can check whether H • [1]2 = [α]�2 • [θ(x)]1 =
pH • [1]2 ∈ GT . The latter can be done given only lpar, (hp, hpver) and x. To
overcome this issue, we use the idea from [10] to mask [α]2 by multiplying it
with a random integer τ ∈ Z

∗
p. Intuitively, for the construction to be secure, τ

has to be chosen so that from

τ(α�Γ (x) − γ) = 01×k (2)

it follows α�Γ (x) = γ. This holds if τ �= 0. Differently from [10], we however
add the corresponding elements to the projection key (chosen by a potentially
malicious verifier) and not to the CRS (chosen by a universally trusted author-
ity).

Moreover, differently from [10], we allow lpar to be chosen maliciously. Recall
that for this, there must exist an efficient verpar algorithm that verifies that lpar
is well-formed. Such efficient verpar exists only for certain distributions Dp; see [4]
for discussion. In what follows, we assume that an efficient verpar exists.

The new Sub-ZK SZKHF HFdvs with HashSet = GT is depicted in Fig. 4.
Next, we define the security assumptions needed to prove its security, and then
follow with the security proof. While the construction is inspired by [10], the
security assumptions and the proof are inspired by [4].

6.4 New Security Assumptions

In [10], the DDH adversary B defined in the computational-smoothness reduction
for tsphf relies on the witness-sampleability of Dp to obtain ([Γ (x)]1,Γ (x)) sam-
pled from D′

p. Since we prove Sub-PAR smoothness (i.e., smoothness even in the
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Fig. 4. The GL-SZKHF HFdvs. Here, HF is any DVS-based SPHF HF with HashSet =
G1. We denote the procedures of HF by prepending their names with HF as in
HF.hashkg. Moreover, χ(a) = [a]2 if κ = id and χ(a) = a if κ = [·]2.

case [Γ (x)]1 is maliciously generated), we cannot rely on witness-sampleability.
Thus, we need an alternative way to extract Γ (x). We follow an idea of [4].
Namely, in the proof of Sub-PAR smoothness, B obtains [Γ (x)]1 ← A(p) and
then uses a non-adaptive discrete logarithm (DL) oracle to extract Γ (x). Hence,
instead of the DDH assumption (together with witness-sampleability) that was
used in [10], we prove (non-blackbox) Sub-PAR smoothness under the following
new non-falsifiable, non-adaptive interactive DDHdl assumption.

The DDHdl assumption is an non-adaptive XY -type interactive assumption,
where the assumption X is assumed to hold even if the adversary is given a non-
adaptive (i.e., before the challenge X is chosen), access to an oracle that solves
the assumption Y . Several XY assumptions are known in the literature, see,
e.g., [4,21,26]. Some XY assumptions (e.g., the ones used in [26]) are falsifiable;
however, DDHdl is non-falsifiable.

Let ι ∈ {1, 2}. The DDHdl
Gι

assumption states that DDH in Gι remains
intractable even if the adversary is given a non-adaptive access to the DL oracle.
More precisely, the DDHdl

Gι
assumption holds relative to Pgen, if ∀ PPT A,

Pr

[
p ← Pgen(1λ); st ← Adl(·)(p);x, y, z ←$Zp;w0 ← xy;w1 ← z;
b ←$ {0, 1}; b∗ ← A(p, st, [x, y, wb]ι) : b = b∗

]
≈λ 0 .

New knowledge assumptions. Let HF = HFdvs be the new SZKHF. To prove
ZK and persistent ZK properties in our construction, we need to rely on two
new assumptions X-SZKHF-KE, for X ∈ {Dp,SUBPAR}. We first define these
assumptions. In Theorem 2, we prove they hold in the AGM [17]. The knowl-
edge assumptions are to postulate that given a valid hpf, one can efficiently
extract td = κ(hk). More precisely, SUBPAR-SZKHF-KE (resp., Dp-SZKHF-KE)
assumption is the core of the persistent ZK proof (resp., the ZK proof) of the
DVS-based SZKHF construction in Theorem 3. There, we assume that if an
adversary A outputs a language parameter lpar accepted by verpar and a hpf
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Fig. 5. SZKHF-KE experiments in Definition 4. The dotted-boxed/dashed-box part is
only present in dotted-boxed/dashed-boxed experiments.

accepted by verhp, then there exists an extractor ExtA that by knowing the secret
coins of A, returns td = κ(hk) where hk was used to compute hpf.

Like KWKE [4] is a tautological knowledge assumption for the Kiltz-Wee
QA-NIZK [25], X-SZKHF-KE is tautological knowledge assumption for HFdvs.
Nevertheless, KWKE has already found uses behind its original application in [4],
and we hope the same will happen to X-SZKHF-KE.

Definition 4. Let κ be a one-to-one map. Fix n > k ≥ 1 and a distribution
Dp. Let HF = HFdvs be the new GL-SZKHF. The X-SZKHF-KE assumption for
X ∈ {Dp,SUBPAR} holds relative to Pgen for any p ∈ im(Pgen(1λ)) and PPT
adversary A and PPT subverter Z, there exists a PPT extractor ExtZ , such that
Pr[ExpX-SZKHF-KEHF,Z,ExtZ ,A(λ) = 1] ≈λ 0, where ExpX-SZKHF-KEHF,Z,ExtZ ,A(λ) is depicted in Fig. 5.

Theorem 2 (Security of X-SZKHF-KE). Let κ be a one-to-one map. Fix n >
k ≥ 1. Then SUBPAR-SZKHF-KE and Dp-SZKHF-KE hold relative to Pgen in
the AGM.

We refer to the full version [3] for a brief overview of the algebraic group
model (AGM).

Proof. (1: SUBPAR-SZKHF-KE.) The proof is inspired by that of the KWKE
assumption in [4]. However, the assumption itself is different. Moreover, we prove
it in the standard AGM of [17] instead of the HAK assumptions introduced
in [27]. This enables us to simplify the proof significantly.

Let A be a SUBPAR-SZKHF-KE adversary that, given public parameters
p, and randomness r ←$RNDλ(A) as input, outputs lpar = [Γ (x)]1 and hpf,
s.t. with probability εA, verhp(lpar; hpf, x) = 1 and verpar(lpar) = 1. Denote
Δ := τα� ∈ Z

1×n
p . Let verhp(lpar; hpf, x) = 1, i.e., [Δ]2 • [Γ (x)]1 = [τ ]2 • [γ]1 ∈

G
1×k
T . Let ExtagmA be the extractor, existence of which is guaranteed by the AGM.

Figure 6 depicts the extractor ExtA, who also emulates the oracle answers [qιi]ι
for i > 0 to A in Gι. Ext

agm
A extracts N ι, such that

[
vect(Γ )

γ

]
1
=N1

[
1
q1

]
1

∈ G
nk+k
1 ,

[ τ
vect(Δ)

]
2
=N2

[
1
q2

]
2

∈ G
n+1
2 .
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Fig. 6. Extractors ExtA(p; r) in the proof of Theorem 3

Thus, e.g., τ =
∑|q2|+1

t≥0 N2,1,tq2t. Given N1, N2, q1, and q2, one can efficiently
compute Γ ∈ Z

n×k
p , γ ∈ Z

1×k
p , τ ∈ Zp and Δ ∈ Z

1×n
p .

We will now show that ExtA satisfies the requirements of the extractor in
Eq. (2). Assume that A(p; r) was successful. We execute ExtA(p; r) and obtain
either α or ⊥. From the fact that [Δ]2 • [Γ ]1 = [τ ]2 • [γ]1, we get ΔΓ = τγ ∈
Z
1×k
p . Since τ �= 0, γ = τ−1ΔΓ ∈ Z

1×k
p . Clearly, α := τ−1Δ ∈ Z

n
p is a valid hk

since α�Γ = τ−1ΔΓ = γ and in particular [γ]1 = α�[Γ ]1.
(2: Dp-SZKHF-KE.) The proof is similar to the SUBPAR-SZKHF-KE proof

with the difference that lpar = [Γ ]1 is honestly generated and so A is given
[Γ ]1 as additional input. �

If κ(hk) = [hk]2 then it suffices to extract [hk]2. Then, one can rewrite the
proof so that the algebraic adversary only recovers the coefficients of τ(Q2) but
not of Δ(Q2). In that case, one can prove persistent ZK and Sub-ZK (see Theo-
rem 3) under standard knowledge assumptions (instead relying on the AGM) by
adding [yτ ]2 to hpver, where y ←$Zp is a knowledge trapdoor (i.e., only adding
one additional group element to the projection key). Alternatively, one can define
new tautological knowledge assumptions stating that given hpf as input, one can
extract either hk or κ(hk).

6.5 Security Proof

Theorem 3. Let {Llpar} be a family of algebraic languages, such that there
exists an efficient verpar algorithm. Let HF be a DVS-based GL-SPHF for {Llpar}
and let HFdvs be the GL-SZKHF for {Llpar} depicted in Fig. 4.

(i) If DDHdl
G2

holds relative to Pgen, then HFdvs is a (non-blackbox) Sub-PAR
computationally-smooth GL-SZKHF in the plain model.

(ii) Let κ := a �→ [a]2 or κ := id. The GL-SZKHF HFdvs is (a) auxiliary-
string non-blackbox persistent ZK under SUBPAR-SZKHF-KE, and (b) no-
auxiliary-string non-blackbox ZK under Dp-SZKHF-KE, in the plain model.
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Fig. 7. Experiment Smoothnbb-plainHF,A (λ)

Fig. 8. Experiment ExpintB (p) for the proof of Sub-PAR smoothness in Theorem 3

Proof. (i: Sub-PAR smoothness). First, recall that computational Sub-
PAR (non-blackbox) smoothness says that for all PPT adversaries A,
Pr[Smoothnbb-plainHF,A (λ) = 1] ≈λ 1/2, where the experiment Smoothnbb-plainHF,A (λ) is
depicted in Fig. 7.

We first reduce the Sub-PAR smoothness to the following intermedi-
ate assumption: for all p ∈ im(Pgen(1λ)), and stateful PPT adversaries B,
Pr[ExpintB (p) = 1] ≈λ 1/2, where ExpintB (p) is depicted in Fig. 8. Intuitively, this
assumption states that for any PPT adversary (who is given the projection key
hpf), it is hard to distinguish [hk]2 from [hk]2 +μ, where μ is a random element
of the cokernel of [Γ ]2. That is, hpf does not contain sufficient information to
decide which of the possible | coker(Γ )| secret keys was used by the challenger.
Note that since μ ∈ coker(Γ ), (α + μ)�Γ = α�Γ .

Let A be a Sub-PAR smoothness adversary. We construct an adversary B
against the intermediate problem that uses the help of A. The idea is to let B play
the role of the challenger in the smoothness experiment and feed A with values
calculated based on the intermediate experiment. B(p) proceeds as follows:

1. ([Γ ]1, x) ← A(p).
2. Return [Γ ]1 to the challenger.
3. The challenger creates (hpf, [β]2) as in Fig. 8, and sends it to B.
4. B computes Hb ← [β]�2 x.
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5. b′ ← A(hpf,Hb).
6. Return b′.

Clearly, if b = 0 (i.e., β = α), then Hb = H(lpar; hk, x). Otherwise (i.e., if
b = 1), we have two cases:

– if x �∈ Llpar, then Hb = [α+μ]�2 x = [α]�2 x+ [μ]�2 x is uniformly random from
the viewpoint of the adversary. This is because in this case, x is not in the
column span of [Γ ]1 and thus H = [α]�2 x is uniformly random.

– if x ∈ Llpar, then Hb = [β]�2 x = [α]�2 x = H(lpar; hk, x).

Now assume that A breaks the Sub-PAR smoothness with non-negligible advan-
tage. This means that with non-negligible probability, A outputs b = 0 in the
case of receiving a real hash and outputs b = 1 in the case of receiving a random
hash. Based on the above observation, this would be the same as the advantage
of B in succeeding in ExpintB (p).

We now show that the intermediate assumption can be reduced to the DDHdl
G2

problem. Let D be an adversary against the DDHdl
G2

problem. Without loss of
generality, we assume that the challenge given to D is of the form [x, xy, z]2,
where x, y, z ∈ Zp and z = y or random5. D plays the role of the challenger
for B in the experiment ExpintB (p) in Fig. 8. Before describing the reduction, note
that for all [γ]1 ∈ {[γ′]1 ∈ G

1×k
1 : ∃α ∈ Z

n
p s.t. γ′ = α�Γ } ⊆ G

1×k
1 , there exists

Δγ ∈ Z
n×(m+1)
p , with m = n − k, such that

{α : γ = α�Γ } = {Δγ · s̃ : s̃ = ( s
1 );∀s ∈ Z

m
p } .

In other words, the columns of Δγ form a basis for the solutions of equation
γ = α�Γ with unknown α6. By having this, the adversary D plays the role of
the challenger for B as follows:

1. run B with input p and obtain [Γ ]1.
2. call the DL oracle on input [Γ ]1 and set st := Γ ∈ Z

n×k
p .

3. given a challenge C = [x, xy, z]2, generate m DDH challenges C =
{[x, rixy, riz]2}i∈[m] for ri ←$Zp by using the self-randomizability of the DDH
problem. To simplify the notation, we write C = [x, xy,z]2.

4. call B with input ([τ,F ,G]2, [H ]1) defined as τ = x, [F ]2 = Δγ · xỹ =
x(Δγ · ỹ), [G]2 = Δγ · z̃ and [H]1 = [γ]1, where γ ←$Z

k
p, ỹ = ( y

1 ), and
z̃ = ( z

1 ).
5. return B’s output.

Note that when C = [x, xy,z]2 is a vector of DDH tuples, then z = y and B
is given ([τ, τα�,α]2,α�[Γ ]1) as input, where α = Δγ · ỹ. Thus B is expected
to output b′ = 0. On the other hand, if C = [x, xy,z]2 is not a vector of DDH

5 Although this tuple is different from the usual DDH challenge [x, y, z]2 where z = xy
or random, it is not hard to show they are two versions of the same hardness problem.

6 The existence of Δγ comes from the parametric equations that describe all the
solutions of the underlying system of equations.
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Fig. 9. The extractor and the constructed adversary B from the persistent zero-
knowledge proof of Theorem 3.

tuples, then z is a random vector different from y, but still such that Δγ ·z̃ ∈ {α :
γ = α�Γ }. This means that in this case, B is given ([τ, τα�,β]2,α�[Γ ]1) as
input, where α and β are random vectors that are solutions for {α : γ = α�Γ }.
This is B’s input in Fig. 8 experiment for the case b = 1 and therefore, B is
expected to output b′ = 1. This completes the proof of Sub-PAR smoothness.

(ii-a: persistent ZK). Let Z be a subverter that breaks the auxiliary-string
non-blackbox persistence ZK property. First, Z(p; rZ) outputs ([Γ ]1, auxhp). Let
B be the adversary from Fig. 9. Note that RNDλ(B) = RNDλ(Z). Under the
SUBPAR-SZKHF-KE assumption, there exists an extractor Ext2B, such that if
verpar([Γ ]1) = 1 and verhp([Γ ]1, hpf) = 1 then Ext2B(p; rZ) outputs α, such that
γ = α�Γ . We construct a trivial extractor ExtZ(p; rZ) for Z, as depicted in
Fig. 9. Clearly, ExtZ returns hk = α, such that γ = α�Γ .

Fix concrete values of λ and rZ ∈ RNDλ(Z). Let p ← Pgen(1λ), (lpar =
[Γ ]1, stZ) ← Z(p; rZ), (x = [y]1, w = w) ← A(lpar; stZ), (hpf, stZ) ←
Z(p; x; rZ), and run ExtZ(p; rZ) to obtain α.

It clearly suffices to show that if verpar(lpar) = 1, verhp(lpar; hpf, x) =
1 and (x, w) ∈ Rlpar, then projhash(lpar; hpf, x, w) = [γ]1w • [1]2 and
simhash(lpar, κ(hk) = κ(α); hp, x) = χ(κ(α))�x (for χ defined in Fig. 4) have
the same distribution. Really, from verhp(lpar; hpf, x) = 1 it follows γ = α�Γ
and from (x, w) ∈ Rlpar it follows x = Γw. Thus, projhash(lpar; hpf, x, w) =
[γ]1w • [1]2 = [α�Γw]1 • [1]2 = [α]�2 x = simhash(lpar, κ(hk). Hence, projhash
and simhash have the same distribution, and thus, HFdvs is persistent zero-
knowledge under SUBPAR-SZKHF-KE assumption.

(ii-b: ZK). The proof can directly be captured from the proof in (ii-a) when
[Γ ]1 is picked honestly and Z gets it as an additional input. �
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Abstract. Starting from the five-card trick proposed by Den Boer
(EUROCRYPT’ 89), many card-based protocols performing secure mul-
tiparty computations with a deck of physical cards have been devised.
However, the five-card trick is considered to be still the most elegant,
easy-to-understand and practical protocol, which enables two players to
securely evaluate the AND value of their private inputs using five cards.
In other words, for more than thirty years, in the research area of card-
based cryptography, we have not discovered any protocols that are as
simple and beautiful as the five-card trick.

In this study, making use of the five-card trick, we design a novel easy-
to-understand protocol which securely evaluates the three-input majority
function using six cards. That is, by applying a simple shuffle, we reduce a
secure three-input majority computation to evaluating the AND value. By
virtue of a direct application of the five-card trick, our proposed majority
protocol is extremely simple enough for lay-people to execute. In addition,
one advantage is that ordinary people such as high school students will be
able to learn the concept of logical AND/OR operations and the majority
function as well as their relationship through our majority protocol, pro-
viding a nice tool of pedagogical significance. Thus, we believe that our
new protocol is no less practical and beautiful than the five-card trick.

1 Introduction

To perform cryptographic tasks such as secure multiparty computations, card-
based cryptography uses a deck of physical cards such as black ♣ and red cards
♥ where their backs are all identical ? . Using these cards, Boolean values are
typically represented as follows:

♣ ♥ = 0, ♥ ♣ = 1. (1)

When a one-bit value x ∈ {0, 1} is encoded by two face-down cards according
to the encoding rule (1) above, we call such a pair of cards a commitment to x,
which is denoted by
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-92518-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92518-5_24&domain=pdf
http://orcid.org/0000-0002-4586-4342
http://orcid.org/0000-0002-5818-8937
http://orcid.org/0000-0002-8698-1043
https://doi.org/10.1007/978-3-030-92518-5_24


Card-Minimal Secure Three-Input Majority Function Evaluation 537

? ?
︸︷︷︸

x

.

This paper begins with introducing the first card-based protocol in history, called
the five-card trick, designed by Den Boer [6].

1.1 The Five-Card Trick

Assume that Alice and Bob hold private input bits x ∈ {0, 1} and y ∈ {0, 1},
respectively, and that each of them creates a commitment to his/her private bit.
The five-card trick securely evaluates the AND value x ∧ y of their private bits,
given commitments to bits x, y ∈ {0, 1} along with an additional card ♥ :

♥ ? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

→ · · · → x ∧ y .

The procedure is as follows. (Here, we slightly rearrange the order of cards from
the original reference [6] for the sake of later explanation.)

1. By swapping the two cards constituting the commitment to y (which means
the NOT computation), obtain a commitment to the negation y, and turn
over the additional card:

♥ ? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

→ ?
♥
? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

.

Note that the three ♥ s are cyclically consecutive (i.e., the first, second, and
fifth cards are red) if and only if x ∧ y = 1:

?
♥
?
♣
?
♥
?
♥
?
♣

if (x, y) = (0, 0),

?
♥
?
♣
?
♥
?
♣
?
♥

if (x, y) = (0, 1),

?
♥
?
♥
?
♣
?
♥
?
♣

if (x, y) = (1, 0),

?
♥
?
♥
?
♣
?
♣
?
♥

if (x, y) = (1, 1).

2. Apply a random cut to the sequence of five cards; a random cut, denoted
by 〈·〉, is a shuffling operation that cyclically shifts a sequence of cards at
random without changing its order:

〈 ? ? ? ? ? 〉 → ? ? ? ? ? .

Thus, the resulting sequence becomes one of the following five cases with
the equal probability (i.e., 1/5), where we attach a number to each card for
convenience sake:
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1

?
2

?
3

?
4

?
5

? →

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1

?
2

?
3

?
4

?
5

? ,
2

?
3

?
4

?
5

?
1

? ,
3

?
4

?
5

?
1

?
2

? ,
4

?
5

?
1

?
2

?
3

? ,
5

?
1

?
2

?
3

?
4

? .

It is well-known that humans can securely implement a random cut easily so
that nobody learns which case occurs [24].

3. Reveal all the five cards; then, we know the value of x ∧ y depending on
whether the three ♥ s are cyclically consecutive:

♥ ♣ ♥ ♥ ♣ ♥ ♥ ♣ ♣ ♥
♣ ♥ ♥ ♣ ♥ ♥ ♣ ♣ ♥ ♥
♥ ♥ ♣ ♥ ♣ ♣ ♣ ♥ ♥ ♥
♥ ♣ ♥ ♣ ♥ ♣ ♥ ♥ ♥ ♣
♣ ♥ ♣ ♥ ♥ ♥ ♥ ♥ ♣ ♣

x ∧ y = 0 x ∧ y = 1

or

.

This is the five-card trick, whereby Alice and Bob can learn only the value
of x∧ y without leaking any information about x and y more than necessary. As
seen above, the five-card trick is extremely easy-to-understand: even lay-people
can easily understand why this AND protocol works, and it is simple enough for
non-experts such as high school students to execute without any difficulty.

1.2 Our Target

Since the invention of the five-card trick, many card-based protocols have been
devised; refer to [9,14,23] for surveys. However, the five-card trick is considered
to be still the most elegant, easy-to-understand, and practical protocol. The
five-card trick provides a way of “secure dating” for two people [12] as well as
it can be used for teaching the concept of secure multiparty computation to
students [20,22].

While it is quite certain that the five-card trick is beautiful, many lay-people
would consider that such a secure two-input AND computation may be somewhat
useless because once Alice having a private bit of x = 1 knows that the result
of the computation is x ∧ y = 0, she gets to know that Bob’s bit is y = 0,
implying that information about the other private input is leaked. Of course,
this is inherent, but it would be worthwhile to find more suitable functions for
educational purpose.

In this study, as a promising function, we consider the three-input majority
function maj : {0, 1}3 → {0, 1} defined as

maj(a, b, c) =

{

1 if a + b + c ≥ 2,
0 if a + b + c ≤ 1.

(2)
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That is, we solicit card-based protocols that securely evaluate maj(a, b, c); we
call them three-input majority protocols. By using such a three-input majority
protocol, Alice, Bob, and Carol can know only whether or not there are two or
more players having ‘Yes.’ We believe that the three-input majority function is
more convincing than the two-input AND function when teaching the concept
of secure multiparty computation.

1.3 The Existing Protocols

There are several existing three-input majority protocols. Here, we review the
history.

In 2013, Nishida et al. [17] presented for the first time a three-input majority
protocol using eight cards. Their protocol takes commitments to bits a, b, c ∈
{0, 1} along with two additional cards and outputs a commitment to the value
of maj(a, b, c) using two shuffles:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

♣ ♥ → · · · → ? ?
︸︷︷︸

maj(a,b,c)

.

Such a protocol is called a committed-format protocol (because it outputs a
commitment). It has been an open problem to reduce the number of required
additional cards (to 0 or 1).

In 2017, Nakai et al. [16] showed that the three-input majority function can be
securely evaluated with four cards by introducing “private operations.” Allowing
private operations is a strong assumption1 that a player may manipulate the
cards privately, say behind their back, while making sure that the other players
do not see the movement (cf. private PEZ protocols [1,5]). The protocol proposed
by Nakai et al. includes a private rearranging operation and a private turning
operation.

In 2018, Watanabe et al. [25] showed that the same task can be conducted
with only three cards. Their protocol uses an oral response to reverse the value
depending on the input value. In other words, this protocol uses a private
negation.

In 2020, Yasunaga [26] proposed a protocol using six cards based on simple
private operations. This protocol needs to reconstruct the input commitment to
a in the middle. Yasunaga [26] also provided a protocol that does not use private
operation by making a copy of the input commitment to a in advance, resulting
in an eight-card protocol.

This paper focuses on protocols that do not rely on any private operation;
hence, in our setting, all the previous works are the protocol by Nishida et
al. [17] and the second protocol by Yasunaga [26], as shown in Table 1. The open
problem mentioned above has not been resolved yet; we will close it by proposing
“card-minimal” protocols, as explained below.

1 Malicious behaviors during the private operations have been discussed in [2,11,18,
19].
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Table 1. The existing three-input majority protocols (without private operations) and
our proposed protocols

# Cards # Shuf. Committed format Runtime

Nishida et al., 2013 [17] 8 2 � Finite

Yasunaga, 2020 [26] 8 3 Finite

Ours (Sect. 2) 6 2 Finite

Ours (Appendix A) 6 8 (exp.) � Las Vegas

1.4 Our Contribution

In this paper, we construct two protocols using six cards that improve upon the
existing three-input majority protocol proposed by Nishida et al. [16], as shown
in Table 1.

Our first protocol is the main contribution of this paper: it securely evaluates
maj(a, b, c) without any additional card:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

→ · · · → maj(a, b, c).

Because any three-input majority protocol requires six cards due to three input
commitments (in our setting) and our protocol needs no additional card, i.e.,
only three input commitments (consisting of six cards) suffice, our protocol is
optimal in terms of the number of required cards under the encoding rules (1),
i.e., it is card-minimal. Therefore, this is the first card-minimal protocol for the
three-input majority function maj(a, b, c).

As seen later, our protocol makes use of the five-card trick [6]. That is, by
applying a simple shuffle, we reduce the three-input majority computation to
evaluating the AND value. Thus, our card-minimal protocol uses only a sim-
ple shuffle along with an execution of the five-card trick. As the five-card trick
is famous for its brevity, our protocol is also simple enough for lay-people to
execute.

As the second protocol, we will also provide a committed-format version,
which we will present in Appendix A:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

→ · · · → ? ?
︸︷︷︸

maj(a,b,c)

.

This protocol is obtained by amending our first protocol using the idea behind
the AND protocol proposed by Abe et al. [3]. Although the runtime of the
protocol is Las Vegas, it is interesting to note that we can achieve the minimum
number of cards without complex shuffling operations such as those required
for the card-minimal AND protocol proposed by Koch et al. [10] and the one
modified by Ruangwises and Itoh [21].
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1.5 Outline

The outline of this paper is as follows. In Sect. 2, we present a simple and easy-to-
understand three-input majority protocol which is card-minimal. In Sect. 3, we
formally describe our protocol and give a formal proof for correctness and secu-
rity. In Appendix A, we present a committed-format version of a card-minimal
three-input majority protocol. We conclude this paper in Sect. 4.

2 Our Card-Minimal Majority Protocol

In this section, we design a three-input majority protocol without any additional
card.

In our construction, we make use of the following simple fact on the three-
input majority function maj(a, b, c) [16]:

maj(a, b, c) =

{

b ∧ c if a = 0,

b ∨ c if a = 1.
(3)

That is, we will reduce the computation of maj(a, b, c) to the computation of b∧c
or b ∨ c . As we can compute b ∧ c using the five-card trick shown in Sect. 1.1,
let us consider how to compute b ∨ c in a similar manner, i.e., we first propose
the five-card “OR” protocol by modifying the five-card trick slightly. We also
describe variants of the five-card trick and the five-card OR protocol by replacing
the additional red card ♥ with a black card ♣ .

2.1 Variants of Five-Card Trick

In this subsection, based on the idea behind the five-card trick, we describe its
four variants: the ♥-based AND, ♥-based OR, ♣-based AND, and ♣-based OR
protocols.

The ♥-based AND protocol is exactly the five-card trick itself because it uses
♥ as an additional card and evaluates the AND value. We can obtain the ♥-
based OR protocol by modifying the rearrangements in the five-card trick. As for
the ♣-based protocols, let the output be 0 if three ♣ s are cyclically consecutive;
otherwise, let the output be 1. (Note that this encoding is the opposite case
where ♥ is the additional card.) Then, we can have the ♣-based AND and OR
protocols, as seen below. For the sake of illustration, let us write commitments
to x and y using x0, x1, y0 and y1 as

?
x0

?
x1

︸︷︷︸

x

?
y0

?
y1

︸︷︷︸

y

,

where x0 and x1 (y0 and y1) represent the two cards constituting the commitment
to x (y). For example, if x = 1, x0 is ♥ and x1 is ♣ .
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The ♥-Based AND Protocol. This is exactly the same as the five-card trick
presented in Sect. 1.1.

The ♥-Based OR Protocol

1. Arrange the five cards as follows:

♥ ? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

→ ?
♥
? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

.

2. Rearrange the order of the sequence as

? ? ? ? ?
�����

�����
? ? ? ? ? .

The resulting sequence of cards becomes

?
♥
?
y0

?
x1

?
y1

?
x0

.

Note that the three ♥ s are cyclically consecutive if and only if x ∨ y = 1.
3. Apply a random cut to the sequence of five cards:

〈 ? ? ? ? ? 〉 → ? ? ? ? ? .

4. Reveal all the five cards. If the three red cards are cyclically consecutive
♥ ♥ ♥ , we have x ∨ y = 1; otherwise, we have x ∨ y = 0.

The ♣-Based AND Protocol

1. Perform Steps 1 and 2 of the ♥-based OR protocol where the additional card
is ♣ instead of ♥ . The resulting sequence of cards becomes

♣ ? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

→ ?
♣
?
y0

?
x1

?
y1

?
x0

.

Note that the three ♣ s are not cyclically consecutive if and only if x∧y = 1.
2. Apply a random cut to the sequence of five cards:

〈 ? ? ? ? ? 〉 → ? ? ? ? ? .

3. Reveal all the five cards. If the three black cards are cyclically consecutive
♣ ♣ ♣ , x ∧ y = 0; otherwise, x ∧ y = 1.
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The ♣-Based OR Protocol

1. Perform Step 1 of the ♥-based AND protocol (namely, the five-card trick)
where the additional card is ♣ instead of ♥ . The resulting sequence of cards
becomes

♣ ? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

→ ?
♣
? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

.

Note that the three ♣ s are not cyclically consecutive if and only if x∨y = 1.
2. Apply a random cut to the sequence of five cards:

〈 ? ? ? ? ? 〉 → ? ? ? ? ? .

3. Reveal all the five cards. If the three black cards are cyclically consecutive
♣ ♣ ♣ , we have x ∨ y = 0; otherwise, we have x ∨ y = 1.

These four protocols satisfy the following relationship:

2.2 Idea

Here, we explain the idea behind our card-minimal three-input majority protocol.
Consider an initial state

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

, (4)

where we have a commitment to c by applying the NOT computation to a
commitment to c. Let us apply a random cut to the second through sixth cards
in this sequence; since the ♥-based AND will be applied (to the commitments
to b and c) if a = 0 and the ♣-based OR will be applied if a = 1, we can derive
the value of maj(a, b, c) because of the fact (3). However, depending on whether
the output is ♥-based or ♣-based, the value of a will be leaked.

To resolve this issue, using the aforementioned relationship between the four
protocols, we “randomize” the state so that if a = 0, either the ♥-based AND or
the ♣-based AND is applied with the equal probability, as follows. (Automati-
cally, if a = 1, either the ♣-based OR or the ♥-based OR is applied in the same
way.)

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

→

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

with prob. 1
2 ,

? ?
︸︷︷︸

a

?
c0
?
b1
?
c1
?
b0

with prob. 1
2 .

(5)
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It is easy to see that if we apply a random cut to the second through sixth cards
in the above randomized state in (5), then either the ♥- or ♣-based AND is
applied when a = 0 (with the equal probability) and either the ♥- or ♣-based
OR is applied when a = 1; hence, the value of a cannot be leaked while the value
of maj(a, b, c) can be derived.

To realize the randomization in (5), we introduce a practical shuffle, called a
random bisection cut, invented by Mizuki and Sone [15]. It bisects a sequence of
cards and swaps the two halves at random (denoted by [·|·]) as follows:

[ 1

? ?
∣

∣

2

? ?
] →

⎧

⎪
⎨

⎪
⎩

1

? ?
2

? ? with prob. 1
2 ,

2

? ?
1

? ? with prob. 1
2 .

We will apply a random bisection cut to the commitment to a, the third card,
and the sixth card, as seen later.

A random bisection cut can be securely implemented using familiar tools;
a few implementations (that can be conducted publicly) were shown in [24]. If
the backs of cards are asymmetric, a random bisection cut can be reduced to
applying a random cut without using any auxiliary tools [24].

2.3 Description

Here, we present the complete description of our three-input majority protocol.
This protocol starts with six cards of commitments to input bits a, b, and c.

1. Given commitments to a, b, and c, take the negation of the commitment to
c:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

→ ? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

.

2. Apply a random bisection cut to the commitment to a, the third card, and
the sixth card, and return the four cards, as follows:

1

?
2

?
3

? ? ?
6

? → [ 1

?
3

?
∣

∣

2

?
6

?
]

? ?

→
1

?
2

?
3

?
4

? ? ? →
1

?
3

?
2

? ? ?
4

? .

Note that the state of the resulting sequence becomes what is in (5).
3. Apply a random cut to the second to sixth cards as follows:

? 〈 ? ? ? ? ? 〉 → ? ? ? ? ? ? .

4. Reveal the first card.
(a) If ♣ appears, the result is ♥-based. Reveal all the remaining five

cards. If the three red cards are cyclically consecutive ♥ ♥ ♥ , we have
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maj(a, b, c) = 1; otherwise, we have maj(a, b, c) = 0.
♣ ♥ ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♣ ♣ ♥
♣ ♣ ♥ ♥ ♣ ♥ ♣ ♥ ♣ ♣ ♥ ♥
♣ ♥ ♥ ♣ ♥ ♣ ♣ ♣ ♣ ♥ ♥ ♥
♣ ♥ ♣ ♥ ♣ ♥ ♣ ♣ ♥ ♥ ♥ ♣
♣ ♣ ♥ ♣ ♥ ♥ ♣ ♥ ♥ ♥ ♣ ♣
maj(a, b, c) = 0 maj(a, b, c) = 1

or

(b) If ♥ appears, the result is ♣-based. Reveal all the remaining five cards.
If the three black cards are cyclically consecutive ♣ ♣ ♣ , we have
maj(a, b, c) = 0; otherwise, we have maj(a, b, c) = 1.

♥ ♣ ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♥ ♣ ♥
♥ ♣ ♥ ♥ ♣ ♣ ♥ ♣ ♥ ♣ ♥ ♣
♥ ♥ ♥ ♣ ♣ ♣ ♥ ♥ ♣ ♥ ♣ ♣
♥ ♥ ♣ ♣ ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♥
♥ ♣ ♣ ♣ ♥ ♥ ♥ ♥ ♣ ♣ ♥ ♣
maj(a, b, c) = 0 maj(a, b, c) = 1

or

Thus, this protocol does not need any additional card, and uses only two
shuffles. It is easy-to-understand as well as easy-to-implement.

We will provide a committed-format version as well in Appendix A.

3 Formal Treatment

In this section, we give a description of our majority protocol (presented in
Sect. 2) in a formal way based on the computation model of card-based cryptog-
raphy [13]. We also prove the correctness and security of our protocol by using
the KWH-tree invented by Koch et al. [10].

3.1 Operations in Card-Based Cryptography

In card-based cryptography, there are three main operations performed on a
sequence of cards, namely, permuting, turning, and shuffling. Below, we assume
a sequence of n cards.

Permute. This is denoted by (perm, π) where π is a permutation applied to the
sequence of cards as follows:

1

?
2

? · · ·
n

?
(perm,π)−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? .

Turn. This is denoted by (turn, T ) where T is a set of indexes, indicating that
the t-th card is turned over for every t ∈ T as follows:

1

?
2

? · · ·
t

? · · ·
n

?
(turn,T )−−−−−→

1

?
2

? · · ·
t∈T

♣ · · ·
n

? .
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Algorithm 1 Our majority protocol
input set:

{( ?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣
)
,
( ?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥
)
,
( ?

♥ ,
?

♣ ,
?

♣ ,
?

♥ ,
?

♥ ,
?

♣
)
,

( ?

♥ ,
?

♣ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥
)
,
( ?

♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣
)
,
( ?

♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥
)
,

( ?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♥ ,
?

♣
)
,
( ?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥
)}

1. (perm, (5 6))
2. (shuf, {id, (1 2)(3 6)})
3. (shuf,RC2,3,4,5,6)
4. (turn, {1})
5. if visible sequence = (♥, ?, ?, ?, ?, ?) then
6. (result, 2, 3, 4, 5, 6)
7. else if visible sequence = (♣, ?, ?, ?, ?, ?) then
8. (result, 2, 3, 4, 5, 6)

Shuffle. This is denoted by (shuf,Π, F) where Π is a permutation set and F
is a probability distribution on Π, indicating that π ∈ Π is drawn according
to F and is applied to the sequence of cards as follows:

1

?
2

? · · ·
n

?
(shuf,Π, F)−−−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? .

We note that nobody knows which permutation in Π was applied. If the
probability distribution F is uniform, we may omit it.

3.2 Pseudocode

A pseudocode for our majority protocol is depicted in Algorithm 1, where we
define

RC2,3,4,5,6 := {id, (2 3 4 5 6), (2 3 4 5 6)2, (2 3 4 5 6)3, (2 3 4 5 6)4},

and (result, i, j, k, l,m) specifies output positions. The shuffle (shuf,RC2,3,4,5,6)
means that a random cut is applied to the second through sixth cards. The shuf-
fle (shuf, {id, (1 2)(3 6)}) in Algorithm 1 represents the application of a random
bisection cut in Step 2 shown in Sect. 2.3.

3.3 Correctness and Security

In this subsection, we verify the correctness and security of our non-committed-
format majority protocol. A three-input majority protocol is said to be correct if,
given input commitments to a, b and c, it always evaluates the value of maj(a, b, c)
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correctly. We say that such a protocol is secure if it leaks no information beyond
the value of maj(a, b, c) for any run of the protocol.

To verify that our majority protocol is correct and secure, we make use of the
KWH-tree, which is an excellent tool developed by Koch, Walzer, and Härtel [10].
That is, if one is able to write a KWH-tree satisfying some properties for a
protocol, then it automatically implies that the protocol is correct and secure;
see [8–10,14] for the details.

We describe the KWH-tree of our non-committed-format majority protocol
in Fig. 1, following Chap. 7 of [9]. The first box in Fig. 1 corresponds to an ini-
tial sequence, consisting of three input commitments; X111, X110, X101, X100,
X011, X010, X001, and X000 represent the probabilities of (a, b, c) = (1, 1, 1),
(a, b, c) = (1, 1, 0), (a, b, c) = (1, 0, 1), (a, b, c) = (1, 0, 0), (a, b, c) = (0, 1, 1),
(a, b, c) = (0, 1, 0), (a, b, c) = (0, 0, 1), and (a, b, c) = (0, 0, 0), respectively. In
the bottom boxes, we write X1 instead of X111 + X110 + X101 + X011 and
write X0 instead of X100 + X010 + X001 + X000. A polynomial annotating a
card sequence in a state, such as 1/2X111, represents the conditional proba-
bility that the current sequence is the one next to the polynomial, given the
visible sequence trace observed so far on the table. From the two boxes at the
bottom, one can see that (turn, {2, 3, 4, 5, 6}) reveals the value of maj(a, b, c)
definitively. Furthermore, in each box, the sum of all polynomials is equal to
X111 + X110 + X101 + X100 + X011 + X010 + X001 + X000, implying that no
information about a, b and c leaks, i.e., the inputs and visible sequence trace are
stochastically independent (before (turn, {2, 3, 4, 5, 6}) is applied finally).

Thus, the KWH-tree in Fig. 1 guarantees that our proposed non-committed-
format majority protocol is correct and secure.

4 Conclusion

In this paper, we constructed a three-input majority protocol using only six cards
without depending on private operations. Therefore, this is the first card-minimal
protocol for the three-input majority function maj(a, b, c). We also show that we
can obtain a committed-format majority protocol with the minimum number of
cards.

The former protocol is so simple that lay-people can easily execute it; see the
pseudocode presented in Sect. 3.2 again to recall that the protocol is quite simple.
Thus, we believe that our three-input majority protocol is no less practical and
beautiful than the five-card trick. We even think that our majority protocol
is better than the five-card trick in a sense: lay-people will be able to learn
the concept of logical AND and OR operations and their relationship through
our majority protocol (because our protocol is based on the nice property that
maj(a, b, c) can be expressed simply using b∧ c and b∨ c, i.e., maj(a, b, c) is equal
to one of the four variants of the five-card trick according to the value of c)
while the five-card trick is just based on the fact that the three red cards are
consecutive only when x = y = 1.

Our committed-format three-input majority protocol shown in Appendix A
is not finite-runtime. Since there is no committed-format finite-runtime protocol
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Fig. 1. The KWH-tree of our non-committed-format majority protocol

other than the eight-card protocol proposed by Nishida et al. [17], it is an inter-
esting open problem to determine whether we can have a committed-format
finite-runtime three-input majority protocol using less than eight cards. It is
also interesting to investigate relationship between card-based general majority
function protocols and Turing world computations (cf. [7]).
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A Transformation to Committed Format

In this section, we show how to transform our non-committed-format proto-
col proposed in Sect. 2 to a committed-format one. Subsequently, we give the
description of the derived committed-format majority protocol.

A.1 How to Transform

The transformation is inspired by the five-card Las Vegas AND protocol pro-
posed by Abe et al. [3]. Briefly, their protocol realizes to output a commitment
to x∧y , by adding further manipulations to the five-card trick. Since the output
in our proposed protocol is derived by using (the four variants of) the five-card
trick, it is possible to obtain a commitment to maj(a, b, c) in a similar way to
their protocol.

Here is the idea behind their protocol [3].

1. Perform Steps 1 to 3 of the five-card trick shown in Sect. 1.1:

♥ ? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

→ · · · → ? ? ? ? ? .

2. Turn over the center card; suppose that ♣ appears:

? ? ? ? ? → ? ? ♣ ? ? .

At this time, the resulting sequence of cards is one of the following four cases:

(i) ♥ ♥ ♣ ♥ ♣ if a ∧ b = 0;
(ii) ♣ ♥ ♣ ♥ ♥ if a ∧ b = 0;
(iii) ♥ ♥ ♣ ♣ ♥ if a ∧ b = 1;
(iv) ♥ ♣ ♣ ♥ ♥ if a ∧ b = 1.

3. Turn the center card face down. For the sake of illustration, let us represent
the sequence as follows:

? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

? .

Observe that, in the cases (ii) and (iv), if we let the first and second cards be a
commitment to x ∈ {0, 1} and the third and fourth ones be a commitment to
y ∈ {0, 1}, we have x ⊕ y = a∧b. Therefore, by applying the committed-format
XOR protocol [15] to them, one can obtain a commitment to x ⊕ y = a ∧ b :
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? ?
︸︷︷︸

x

? ?
︸︷︷︸

y

? → ♣ ♥ ? ?
︸︷︷︸

a∧b

? or ♥ ♣ ? ?
︸︷︷︸

a∧b

? .

Note that, even if it is the case (i) or (iii), one can still continue to execute
the protocol without leaking information, as seen below.

In the next subsection, we present the description of our committed-format pro-
tocol using this idea.

A.2 Description

The following is our committed-format three-input majority protocol.

1. Perform Steps 1 to 3 of our non-committed-format protocol presented in
Sect. 2.3:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

→ · · · → ? ? ? ? ? ? .

2. Reveal the first card. Assume that it is black, i.e., the result will be ♥-based:

reveal
︷︸︸︷

? ? ? ? ? ? → ♣ ? ? ? ? ? .

(In the case where a red card is shown, it works by interchanging the black
cards and the red cards.)

3. Reveal the fourth card. If ♥ appears, turn it over and apply a random cut to
the second through sixth cards; then, return to this step. If ♣ appears, turn
it over and go to the next step.

4. Apply the XOR protocol [15] to the second through fifth cards as follows.
(a) Rearrange the order of the sequence as

♣ ? ? ? ? ?
�����	

♣ ? ? ? ? ? .

(b) Apply a random bisection cut to the second through fifth cards:

♣
[

? ?
∣

∣

∣ ? ?
]

? → ♣ ? ? ? ? ? .

(c) Rearrange the order of the sequence as
♣ ? ? ? ? ?

�����	
♣ ? ? ? ? ? .
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5. Reveal the second and third cards.
(a) If ♣ ♥ or ♥ ♣ appears, we obtain a commitment to maj(a, b, c) as follows:

♣ ♣ ♥ ? ?
︸︷︷︸

maj(a,b,c)

? or ♣ ♥ ♣ ? ?
︸︷︷︸

maj(a,b,c)

? .

In the latter case, by swapping the left and right cards, we obtain a
commitment to maj(a, b, c).

(b) If ♥ ♥ appears, then turn them over:

♣ ♥ ♥ ? ? ? → ♣ ? ? ? ? ? ,

and rearrange the order of the sequence as
♣ ? ? ? ? ?

��	��	��	
�����

♣ ? ? ? ? ? .

Then, apply a random cut to the second through sixth cards and return
to Step 3.

♣ 〈 ? ? ? ? ? 〉 → ♣ ? ? ? ? ? .

Let us find the number of required shuffles for this committed-format proto-
col. The AND protocol proposed by Abe et al. takes the average of seven shuffles
to terminate [3]. Since we apply a random bisection cut first in our protocol, it
terminates with the expected number of eight shuffles in total. (It should be
noted that a recent technique presented in [4] will reduce the number of shuffles
further).

A.3 Pseudocode

A pseudocode for our committed-format majority protocol is depicted in
Algorithm 2.
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Algorithm 2 Our committed-format majority protocol
input set:

{( ?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣
)
,
( ?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥
)
,
( ?

♥ ,
?

♣ ,
?

♣ ,
?

♥ ,
?

♥ ,
?

♣
)
,

( ?

♥ ,
?

♣ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥
)
,
( ?

♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣
)
,
( ?

♣ ,
?

♥ ,
?

♥ ,
?

♣ ,
?

♣ ,
?

♥
)
,

( ?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♥ ,
?

♣
)
,
( ?

♣ ,
?

♥ ,
?

♣ ,
?

♥ ,
?

♣ ,
?

♥
)}

1. (perm, (5 6))
2. (shuf, {id, (1 2)(3 6)})
3. (shuf,RC2,3,4,5,6)
4. (turn, {1})
5. if visible sequence = (♥, ?, ?, ?, ?, ?) then
6. (turn, {4})
7. if visible sequence = (♥, ?, ?,♥, ?, ?) then
8. (turn, {4})
9. (shuf,RC2,3,4,5,6)

10. go to 6
11. else if visible sequence = (♥, ?, ?,♣, ?, ?) then
12. (turn, {4})
13. (shuf, {id, (2 3)(4 5)})
14. (turn, {2, 3})
15. if visible sequence = (♥,♥,♥, ?, ?, ?) then
16. (turn, {2, 3})
17. (perm, (3 4 5 6))
18. (shuf,RC2,3,4,5,6)
19. go to 6
20. else if visible sequence = (♥,♥,♣, ?, ?, ?) then
21. (result, 4, 5)
22. else if visible sequence = (♥,♣,♥, ?, ?, ?) then
23. (result, 5, 4)
24. else if visible sequence = (♣, ?, ?, ?, ?, ?) then
25. (turn, {4})
26. if visible sequence = (♣, ?, ?,♣, ?, ?) then
27. (turn, {4})
28. (shuf,RC2,3,4,5,6)
29. go to 25
30. else if visible sequence = (♣, ?, ?,♥, ?, ?) then
31. (turn, {4})
32. (shuf, {id, (2 3)(4 5)})
33. (turn, {2, 3})
34. if visible sequence = (♣,♣,♣, ?, ?, ?) then
35. (turn, {2, 3})
36. (perm, (3 4 5 6))
37. (shuf,RC2,3,4,5,6)
38. go to 25
39. else if visible sequence = (♣,♣,♥, ?, ?, ?) then
40. (result, 4, 5)
41. else if visible sequence = (♣,♥,♣, ?, ?, ?) then
42. (result, 5, 4)
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A.4 Correctness and Security

To verify the correctness and security of our proposed committed-format major-
ity protocol, we describe its KWH-tree in Fig. 2; it guarantees that our protocol
is correct and secure.

Fig. 2. The KWH-tree of our committed-format majority protocol
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Abstract. Proof of Elapsed Time (PoET) is a Nakamoto-style consen-
sus algorithm where proof of work is replaced by a wait time randomly
generated by a trusted execution environment (TEE). PoET was origi-
nally developed by Intel engineers and contributed to Hyperledger Saw-
tooth, but has never been formally defined or analyzed. In particular,
PoET enables consensus on a bitcoin-like scale without having to resort
to mining. Proof of Luck (PoL), designed by Milutinovic et al., is a similar
(but not identical) protocol that also builds a Nakamoto-style consensus
algorithm using a TEE. Like PoET, it also lacks a formal proof.

In this work, we formally define a simplified version of PoET and PoL,
which we call elapsed time consensus (ET) with a trusted timer. We prove
the security of our ET consensus with a trusted timer given an honest
majority assumption in a model that generalizes the bitcoin backbone
model proposed by Garay et al. which we call the elapsed time backbone
model. Our model and protocol aim to capture the essence of PoET and
PoL while ignoring some of the more practical difficulties associated with
such protocols, such as bootstrapping and setting up the TEE.

The PoET protocol also contains a function called the z-test that
limits the number of blocks a player can publish in any particular set
of blocks of some (larger) size. Surprisingly, by improving this z-test we
can prove the security of our ET consensus protocol without any TEEs
with a (slightly stronger) honest majority assumption. This implies that
Nakamoto-style consensus with rate limiting and no proofs of work can
be used to obtain scalable consensus in a permissioned setting: in other
words, “bitcoin without proofs of work” can be made secure without a
TEE for private blockchains.

1 Introduction

In today’s interconnected world, it is important to be able to share data widely
but in a selective manner. Efficient distributed databases have been known
for quite some time and continue to improve [48]. However, basic distributed
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databases have a core problem: they have absolutely no protection from mali-
cious users. Since we do not live in a perfect world, we cannot expect database
users to be angels [38], and this leads to many practical issues when using dis-
tributed databases: what happens when two people or entities that do not trust
each other need to share data? What if some participants in the database are
outright malicious?

Almost two decades ago, Castro and Liskov [18] came up with a clever solu-
tion to this problem: the practical byzantine fault tolerant (PBFT) consensus
algorithm. PBFT was a clever and practical invention: it allowed people to
use what were essentially distributed databases that tolerated up to a third
of the users being malicious. This was a big improvement over basic distributed
databases, but still did not allow for truly public databases. In addition, PBFT
protocols require a large amount of communication between participants–O

(
n2

)
,

for n parties [25], which makes them very difficult to scale. So while PBFT pro-
tocols proved to be very useful for many applications of distributed computing,
they did not fully solve the fundamental problem at hand.

In 2008, another new technology radically changed the state of distributed
databases: bitcoin [41]. Someone using the pseudonym Satoshi Nakamoto
designed what amounted to a new distributed database with some pretty incred-
ible properties: the database is fully public, so anyone can participate, and
(probabilistic) consensus in the optimistic case only requires O (n) communi-
cation, meaning that it is easy for tens of thousands of users to participate in
bitcoin at any given time. The ideas behind bitcoin have been further gener-
alized: blockchains enabling smart contracts such as Ethereum constitute even
more powerful types of distributed database.

But bitcoin and other proof of work-based systems have one major drawback:
energy consumption. One source [1] reports that the power consumed for bit-
coin proof-of-work in January 2019 was around 40TWh/year, comparable to the
power use of a small country. In essence, the public trust that bitcoin guarantees
is directly correlated to the energy consumption of the bitcoin miners. To put
it differently, bitcoin’s resiliency to attack is a direct result of consuming large
amounts of power.

This brings us to a fundamental question in modern distributed databases:
can we build systems with many of the good core properties of bitcoin–scalability
and broadly decentralized trust—without the drawbacks associated with mining?

In an attempt to offer a low power but scalable alternative, Intel included in
the Hyperledger Sawtooth [2] distributed ledger platform a form of Nakamoto
consensus that replaced proof-of-work with an alternative called proof of elapsed
time (PoET ) [3], which utilizes the security properties provided by a trusted
execution environment (TEE). Several academic works [21,47] point to the effi-
ciency of PoET and its strong performance in large systems. However, PoET
lacks any formal analysis, and we fill that gap in this paper.

1.1 Our Contributions

We generalize the PoET and Proof of Luck protocols into what we call elapsed
time (ET) consensus, where we relax the PoET protocol to focus on the critical
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protocol itself and ignore some of the difficulties faced in practical implementa-
tions, such as bootstrapping, onboarding parties, and dynamic membership. We
provide a formal description of our ET consensus protocol (as per our knowledge,
there is no formal description of PoET available anywhere).

Our model can be considered as a generalization of the bitcoin backbone
model [28,29]—that might be of independent interest.

We focus on elapsed time consensus protocols with two main assumptions on
the TEE: (1) The TEE has access to a trusted timer. (2) No TEEs are present,
or TEEs can be easily compromised [32,34,36,49].

ET Consensus with Trusted Timer. We first define a basic version of our proto-
col: elapsed time consensus with a trusted timer, where the TEE has access to a
trusted timer.1 This protocol captures the essence of PoET [3] and other related
works like proof of luck [40] (which we discuss more later). We show that our
ET consensus protocol with a trusted timer provides similar security guarantees
as bitcoin with the same honest majority assumption.

Elapsed Time Consensus with a z-Test. We modify our basic ET consensus
protocol and include a z-test to avoid the dependency on TEEs. However, our
z-test is quite different than the one proposed by the Intel engineers, as theirs
is not sufficient for our proof.2 Instead of checking the proportion of the total
number of blocks a player produces in a chain, we (essentially) restrict how many
blocks a player can produce over a sliding window of time.

We prove that ET consensus with our z-test is secure in our (permissioned)
model without TEEs and assuming that some constant fraction (> 2

3 ) of the
participants are Byzantine. In other words, we show that “bitcoin without min-
ing” coupled with some clever rate-limiting (the z-test) is secure in a permis-
sioned network without any hardware security guarantees, even if up to 33%
parties are dishonest.

Until now, PoET, proof of luck, and other elapsed time based consensus
systems have never (to our knowledge) been formally proven secure. Perhaps
the most exciting implication of our proofs, though, is that we can ignore TEEs
completely in these protocols and still maintain relatively good security with our
z-test. This notion of “permissioned bitcoin without mining” will be very useful
for future blockchain developments.

1.2 Related Work

The only current work of which we are aware on the security of PoET is [19]. This
work shows how an adversary that is capable of compromising SGX can attack
PoET up to the bounds of the z-test that PoET currently uses. Unfortunately,
this paper does not offer any formal analysis in the other direction: it does not
include a rigorous security proof that PoET is secure outside of these bounds. As
1 Many TEEs, including SGX [4], have a trusted timer or equivalent functionality.
2 Using the z-test given by the PoET specification would require much stronger param-

eter settings than for which we achieve provable security.
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we have mentioned before, we note that Milutinovic et al. [40] define a consensus
protocol called proof of luck (PoL) that functions very similarly to PoET, but
do not offer a security analysis to their protocol or even a comparison to PoET.
Additionally, the authors of [5] show a construction of a proof of stake protocol
using TEEs, but this protocol also lacks a formal security proof.

Improved consensus algorithms and models with exciting new properties
have proliferated recently. Some examples include Thunderella [45], the sleepy
model of consensus [44], Snow White [22], Fruitchain [43], Ouroboros [24,31],
Bitcoin-NG [27], Casper [15], Stellar [39], and ByzCoin [33]. Exciting new work
in the space includes things like proofs of space and storage [9,20,26] and ver-
ifiable delay functions [12]. However, most of these protocols focus on public
blockchains.

Comparatively, the academically-focused work on permissioned blockchains
has been substantially less, but has notably included things like an analysis of
Hyperledger Fabric [6,16] and the Tendermint consensus protocol [35]. Work
on Byzantine fault tolerant consensus has also been done [11], including the
recent an exciting development of [51]. There have also been a number of very
useful papers that have analyzed these consensus protocols and their properties,
including [10,17,30,42,50].

Several consensus protocols in past have leveraged different forms of trusted
hardware. For example, MinBFT [46] proposes a trusted counter to reduce the
number of nodes required from 3F + 1 to 2F + 1 for F faulty nodes. More
recently, FastBFT [37] uses a trusted execution environment to aggregate mes-
sages for latency and throughput improvements. Other protocols use TEEs for
the purposes of sharing on blockchains [23].

2 Elapsed Time Backbone Model

Our model can be considered as a generalization of [28]. Here we provide a
summary and refer to our extended version [13] for a complete description.

2.1 Notations

We assume that the blockchain protocol has a fixed number n of players. We use
H : {0, 1}∗ → {0, 1}κ to represent a cryptographic hash function (modelled as a
random oracle). A block is any tuple of the form B = 〈s, x, π〉, where s ∈ {0, 1}κ

is the hash of the previous block, x ∈ {0, 1}∗ is the content of the block and
π ∈ {0, 1}∗ is the proof of block validity. validblock is the predicate that takes
a block B and a chain C as input, checks validity of the content of B.

A blockchain or chain is a sequence of blocks. The (current) last block of a
blockchain C is called the head of C and is denoted by C.head. For an empty
string or empty blockchain ε, we have ε.head = ε. The length of a chain is
its number of blocks. A chain C can be extended by a block B = 〈s, x, π〉 if
s = H(C.head), ValidBlock(B, C) is true and B.π is a valid proof for the
extended chain C′ = C‖B. For the new chain C′, we have C′.head = B. For any
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chain C = (B1, · · · , B�), Length(C) = � denotes the length of the chain. For any
pair of integers 1 ≤ i ≤ j ≤ �, the chain C̃ = (Bi, · · · , Bj) is called a subchain
of C. C�k denotes the chain resulting from removing the k rightmost blocks, for
a given non-negative integer k. If k ≥ �, then C�k = ε. For two chains C1, C2 the
notation C1 	 C2 denotes that C1 is a prefix of C2.

2.2 Model and Structure

Our model assumes round-based protocols as in [7,28,29]. In our model we have
three top level parameters: the total number of players n, the security parameter
λ and honest parties’ advantage δ. If t is the number of corrupt players then we
require that t

n−t ≤ 1 − δ.

Adversary. We allow the adversary to see all of the global variables in the system,
including the description of all of the algorithms in the protocol. The adversary
can corrupt players at the beginning or during the protocol run, as long as the
total number of corrupted players does not exceed t.

Model Rules. We model communication among protocol parties by having a
global array of queues PLAY ER QUEUE[n] - where PLAY ER QUEUE[i]
represents the queue associated with player i. We let each party send to other
players’ queues, but only read from their own queue.

2.3 Abstractions

In this work we use the following abstractions to simplify our protocol and proof.

Certifications. We use the Cert functionality (Fig. 1) instead of explicitly using
digital signatures - they act as completely unforgeable, perfect digital signatures.

Certu (Statement m): //certificate issued by u attesting validity of m

IsCertValidu (Cert cu,m,Statement m):
Return 1 if cu,m certifies statement m on behalf of user u and 0 otherwise.

Fig. 1. Certification functionality.

Trusted Execution Environment (TEE). In our model, a TEE is an unbreakable
black box (a VBB obfuscator [8]) that runs some code in a way that completely
hides the internals of the code—an adversary can only see the input and output
values of the program being run by the TEE. We note that this is an idealistic
model for a TEE since it presumes perfect security and no side channel attacks.
We represent our abstraction of TEE in Fig. 2.

In some protocols, we will give our TEE a trusted timer functionality. Since
time is approximated by round number in our protocol, we will have the TEE
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return the current round number for this function. Additionally, we endow our
TEE with a monotonic counter TEE.Counter which can never be decreased in
value, even if the TEE is reset. We note that many modern TEEs like Intel’s
SGX have both trusted timer and monotonic counter functionalities [4].

TEE.α := null; // Can be set to any program code.
TEE.args := null; // Arguments for α().
TEE.Counter := 0; // monotonic counter inside TEE.

TEE.GetCounterValue()
Return TEE.Counter // Just return the counter value.

TEE.CounterSet(x)
if TEE.Counter < x then TEE.Counter x end if

TEE.Run(Prog, arguments):
// Run the program Prog inside the TEE.
// If there is any currently running program it aborts the current program.

Abort(α); α Prog; args arguments; Run α(args)

TEE.Poll():

// Can be called only after calling TEE.Run()
if α = null then return ⊥ end if
if α() has completed running then

O output of α(args), Return (O,CertTEE (O||α||args))
else return Incomplete end if

Fig. 2. TEE functionality

2.4 Blockchain Properties

We next define three core blockchain properties: the common prefix property,
the chain quality property, and the chain growth property. As argued in [28],
these properties together essentially define what it means to be a functional and
useful blockchain.

Definition 1. Common Prefix Property: Suppose C1 is a chain which has
been accepted by an honest party at round r1 and C2 is another chain which has
been accepted by some honest party at round r2(≥ r1). Then C�k

1 	 C2 holds for
all integers k ≥ �cf , where �cf is the common prefix parameter.

Definition 2. Chain Quality Property: Suppose C is a chain that has been
accepted by some honest party. Any subchain C̃ of C of length �̃ ≥ �q must con-
tain at least μ�̃ many honest blocks. Here �q, μ are the chain quality parameters
(Table 1).
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Table 1. Table of all parameters

n : Total number of players

t : Number of corrupted players

δ : Advantage of honest parties, ( t
n−t

≤ 1 − δ)

p : Probability that an honest player creates a block in a given round

f : Probability at least one honest player creates a block in a given round

rend : Total number of rounds in the security game

ε : A security parameter used to bound the “luckiness” of the adversary

See the “typical execution” definition in Sect. 5.1

ε′ : Quality of concentration for z-test (Definition 4)

λ : Security parameter

�cf : Minimum number of blocks in common prefix property

μ : Parameter in chain quality property

�q : Minimum number of blocks for which the chain quality property holds.

τ : Minimum number of blocks in chain growth property.

σ : Maximum number of blocks in chain growth property.

rg : Minimum number of rounds for which the chain growth property holds

A block is an honest block, if it is created by an honest party.

Definition 3. Chain Growth Property: Suppose C1 is a chain of length
�1 which has been accepted by an honest party at round r1 and C2 is another
chain of length �2 which has been accepted by some honest party at round r2. If
r2 − r1 > rg, then �2 − �1 ∈ [τ(r2 − r1), σ(r2 − r1)]. Here rg, τ, σ are the chain
growth parameters.

Block.π:

π.timestamp // Round of “mining.”
π.WaitTime // How many rounds until the block can be issued.
π.WaitCert // Proof that a TEE generated the WaitTime properly.

Fig. 3. Block proof structure

3 Elapsed Time Consensus Protocol with Trusted Timer

Here we construct an elapsed time consensus protocol with a trusted timer.
We start by defining the block validity proof π of a block in Fig. 3. The basic
version of our ET protocol (with trusted timer), denoted by ETtimer, works in
two phases: (1) Initialization phase and (2) Leader election phase.

Initialization Phase. In this phase, the challenger initializes the blockchain by
calling Genesis() (refer to Fig. 4), which in turn creates the genesis block Bgenesis

and initializes all the players.
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Genesis(n,λ):
generate the genesis block Bgenesis

P := Geometric Distribution with parameter p
for i = 1 to n; i++ do

PLAY ERS[i].Initialize(i, Bgenesis)
end for

Fig. 4. Initialization of the Blockchain for ETtimer

Leader Election Phase. In this phase, all the players compete with each other
to be elected to generate the next block. Once a block is generated, they start
a fresh competition and repeat the process [3]. We define the leader election
protocol in the RunPlayer() routine defined in Fig. 5. For an honest user, the
challenger runs RunPlayer() exactly once per round.

In every round, RunPlayer() checks if there are new chains in the input
buffer of the player. These chains are generated in the previous round by other
players. Our current player picks the best chain according to PickChain()

chain C := empty; // A chain - an ordered list of blocks.
playerID; // denotes the index of the player provided by the challenger
TEE; // denotes the trusted execution environment specific to the player

Initialize( integer i, the genesis block Bgenesis):

playerID i ; Add Bgenesis to C;
Initialize the TEE for player i
x Collected transactions from users;
TEE.Run(WaitForBlock(),C, x)

RunPlayer():

if PLAY ER QUEUE[playerID] is not empty then
Cnew PickChain(playerID,C) // Defined in Fig 6
if Cnew = C then

C Cnew; x Collected transactions from users
TEE.Run(WaitForBlock,C, x) // Wait on TEE for the next block

end if
else

if TEE.Poll() = Incomplete ∧ TEE.Poll() =⊥ then
// It seems the player is a leader
(B, WaitCert) TEE.Poll(); B.π.WaitCert WaitCert
Add B to C; Broadcast(C)
// Again, repeat for the next leader election
x Collected transactions; TEE.Run(WaitForBlock,C, x)

end if
end if

Fig. 5. Ideal functionality of ET consensus protocol
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(defined in Fig. 6) to replace (if applicable) its own local chain. If PickChain()
updates the local chain, our player stops competing for the last election and calls
TEE.Run(WaitForBlock, C, · · · ) to start a new competition.

PickChain(integer i denoting the player index, current chain C):
for each C∗ in PLAY ER QUEUE[i] do

// Check if the chain is valid and longer than the current chain
// In case of a tie, keep the current chain

if (Length(C∗) > Length(C))∧ IsChainV alid(C∗) then C C∗ end if
end for
return C

IsChainValid( chain C∗ = {B1, B2, . . . B } ):

if B1 is not the genesis block then return false end if
for each block Bi in C∗ except B1 do

Ci−1 (B1, · · · , Bi−1)
// Verify that the current block is pointing to the previous block
if ( Bi.s = (Bi−1) ) then return false
// Verify that the block is not created ahead of its previous block
else if (Bi.π.timestamp < Bi.π.WaitT ime+ Bi−1.π.timestamp )
then return false
// Verify the WaitCert and content for the block
else if !V alidBlock(Bi, Ci−1) ∨ !IsCertValidTEE Bi.π.WaitCert,

Bi.π.WaitT ime WaitForBlock (Ci−1, Bi.x)
then return false
else continue
end if

end for
// Verify that the last block is not created ahead of time
if ( B .π.timestamp ≥ current-round ) then return false end if
// If z-test is running, verify that the chain satisfies z-test property
if ( z ,λ (C, B .π.playerID) = 0 ) then return false end if
return true

Fig. 6. Chain selection mechanism for ET consensus (the part in red is only applicable
when z-test is used as defined in Definition 4.)

Given an existing chain C, the leader election mechanism works very much
like a lottery algorithm: a player wins an election if their WaitT ime (picked from
a pre-defined probability distribution P ) is smallest among all players. The TEE
runs WaitForBlock(C) (defined in Fig. 7) for a player to generate WaitT ime.

Collision Resolution: It is possible that two players get the same WaitT ime. In
that case, both the players broadcast their chains in the same round, each chain
with a newly added block – it is considered a collision.

Each player handles collision locally in the following way (refer to Fig. 6 for
the pseudocode representation): If two chains C1 and C2 are of same length,



568 M. Bowman et al.

and the last blocks in C1 and C2 were generated at rounds t1 and t2 respec-
tively. Among t1 and t2, whichever is smaller the corresponding chain is chosen.
However, if t1 = t2, the collision is not resolved; the player can choose any one
of the chains as the current chain and keeps mining for that chain. If C1 and C2

are of different lengths, the longer chain is chosen by the player.
Note that, since we have a synchronized round based model and the players

have access to a reliable broadcast mechanism, it might seem unlikely to have
t1 
= t2. However, a compromised player might choose not to broadcast his chain,
or selectively send the chain to some players.

WaitForBlock(chain C, transactions x)

if (TEE.GetCounterValue() ≥ Length(C)) then return ⊥
else TEE.CounterSet(Length(C)) end if
waitT ime draw an element from P ; sleep(waitT ime)
B CreateBlock(waitT ime,C, x); return B

CreateBlock(time delay t, chain C, transactions x):

create an empty block B; B.x x // Add transactions
B.s (C.head) // Point to the last block of the existing chain
B.π.timestamp current-round; B.π.WaitT ime t
B.π.playerID current player ID; return B

Fig. 7. Function to be run under Trusted Execution Environment (TEE)

Probability Distribution for WaitT ime. In our protocol, the TEE generates the
WaitT ime by sampling from a probability distribution. In our case, we use a
geometric distribution where the probability of success in each round is p.3 The
parameters of the probability distribution are defined by the protocol, and are
globally known. Each WaitT ime is independent of all previous ones and all other
players. We denote the probability distribution with P .

Due to the memorylessness of geometric distribution adversarial parties gain
no information about the sampled wait times until the wait time actually expires
and TEE releases the block. The following lemma captures this fact.

Lemma 1. The event that any party generates a block in a given round happens
with probability at most p over the random coins of that party’s TEE. This event
is independent of all other random coins in the protocol as well as adversarial
choices.

Proof (Proof Sketch for Lemma 1).
The probability of block generation by an honest party can only be influenced

if a new block arrives. However, because the adversary has no knowledge about
3 Here we are considering the version of geometric distribution where trial number

WaitT ime is the first successful trial.
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the current wait times of honest or adversarial parties, drawing a new wait time
is exactly same as drawing a new element from the probability distribution with
replacement, and hence, is independent of the current wait times or any past
wait times.

The memorylessness property of geometric distribution ensures that the prob-
ability of generating a block by an honest party is p in a given round, independent
of if the party has queried a new wait time in that round or not. An adversarial
party can draw a new wait time in two ways:

1. if the party decides to discard the current wait time and draw a new wait
time,

2. or, after the completion of the current wait time.

In the first case, the probability for the adversarial party to generate a block in
a given round still remains p since the wait time is stored inside the TEE and
the party does not see it. In the second case, the probability is trivially p. Note
here, we assume that the adversarial party always generates a block, when the
TEE time expires. ��
With the above lemma in place the security proof for ET consensus with trusted
timer is very similar to that of bitcoin [29] and provides exactly the same security
properties; we skip the detailed proof here and refer to [29]; in Appendix 6.4 we
summarize the security properties achieved by the protocol for completeness.

4 ET Consensus with Z-Test

We already know that operations within a TEE may be subject to attacks [32,
34,36,49]. In PoET, PoL, and ET consensus with TEEs, we are mainly concerned
about two forms of attack: accelerating the trusted timer and impersonating (or
stealing the secret keys from) a TEE. In both cases, an attacker can create an
invalid leadership claim and break the security of the protocol.

To address this issue, PoET implements a “z-test” (or more accurately, it
implements a “1 sample z-test”) that limits the number of blocks any valida-
tor can win in some (large) consecutive set of blocks. The “z-test” is based on
the observation that while any validator can win any block (the fairness princi-
ple), the probability that a particular validator wins a disproportionately large
number of blocks is extremely low.

4.1 Our ET Consensus Protocol with z-Test

While the PoET z-test is an excellent innovation, we cannot prove the security of
any ET consensus protocols using that z-test. We implement a slightly different
z-test—PoET rate-limits what percentage of blocks any given participant can
win on the entire chain, while we rate-limit each participant’s block wins over
a sliding window of time (or, in our protocol, a sliding window of rounds). An
adversary can decide not create blocks for a long time, then create enough in a
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short window to violate consensus while bypassing the z-test by PoET; however,
our z-test would catch such attacks. Given the distribution of block creation, we
can figure out the expectation of (and appropriate other statistics around) how
many blocks a player wins over a particular time period. Deviating too far from
this results in future blocks being declared invalid.4

For a consecutive set of rounds S, we denote number of adversarial blocks
in a chain C by ADVC(S). In other words, ADVC(S) = |{B ∈ C : round(B) ∈
S and id(B) is corrupted. }|. For a player i ∈ [1, n], ZC(i, S) denotes the number
of blocks in chain C produced by player i, created in rounds in S, i.e. ZC(i, S) =
|{B ∈ C : round(B) ∈ S and id(B) = i}|. Hence, for a chain C and set of rounds
S, we have ADVC(S) =

∑
i∈[1,n]

i is corrupted

ZC(i, S).

Definition 4. Let C be a chain. For ε′ ∈ (0, 1) and λ > 0 the function zε′,λ :
C × [1, ..., n] → {0, 1} be defined in the following way:

zε′,λ (C, i) =

⎧
⎨

⎩

0 if ∃ set of consecutive rounds S s.t.
|S| ≥ λ and ZC(i, S) > (1 + ε′)p|S|

1 otherwise

⎫
⎬

⎭
(1)

zε′,λ (C, i) = 0 if a party i has contributed more than the allowed number of blocks
in chain C.
We set our z-test parameters so that honest parties will only be affected with
negligible probability, so our z-test has no negative impact on honest blockchain
operation. Our new z-test can effectively stop an adversary from concentrating
a high number of blocks in a very small amount of time and allows us to state
concrete facts about the security of our protocol with the z-test.

4.2 Modification in the Protocol with Z-Test

In this section, we do not assume any integrity of the TEE. Hence, adversarial
parties can generate arbitrarily many valid blocks per round. However, honest
parties apply the ‘z-test’ before accepting a chain, which checks that no single
player is producing substantially more than their fair share of the blocks.

Although we do not assume any security of any TEE (or even the existence
of a TEE), the probability any honest party generates a block in any given round
still remains p. This holds because adversarial parties cannot influence the wait
time distributions of honest parties. We capture this in the following lemma. We
skip the proof here because it is very similar to the proof of Lemma 1.

Lemma 2. The event that any honest party generates a block in a given round
happens with probability p, over the random coins of that party’s TEE. This event
is independent of all other random coins in the protocol as well as adversarial
choices.

4 We also note that this change helps us to address the attacks in [19].
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5 Security of ET Consensus with Z-Test

Even though z-test is a powerful assumption, the adversary can still essentially
allocate their blocks however they want over the given time periods. In addi-
tion, the adversary can also create many different small forks or chains like a
“nothing at stake” attacker [14]. It is important to note that the z-test bounds
the behaviour of the adversary on each chain, not globally. Therefore, we use
a slightly modified honest majority assumption (where we require slightly more
honest parties) compared to bitcoin, and prove that honest parties are “stronger”
than the adversary on each valid chain.

To prove the desired security properties for ETztest, we assume cryptographic
security of the hash function and the signature scheme, and an honest majority
assumption (formally stated below).

Definition 5 (Honest Majority Assumption). Suppose n is the total num-
ber of parties, and out of them t parties are corrupted. Then we require that
t < (1 − δ)(n − t), where max

(
2f+ε+ε′−f2−fε

1+ε′ , 1+ε+2ε′−2ε′f−2εf
2(1+ε′)(1−f)

)
< δ ≤ 1,

ε ∈ (0, 1) and ε′ > 0.

We shall use the following boolean random variables for the proofs:

– HON≥1
i is defined to be 1 if at least one honest party creates a block at round

i and 0 otherwise.
– HON1

i is defined to be 1 if exactly one single honest party creates a block at
round i and 0 otherwise.

– ADVi,j is defined to be 1 if the jth dishonest party creates a block at round
i and 0 otherwise5. We also define, ADVi :=

∑
j ADVi,j .

– HONi,j is defined to be 1 if jth honest player successfully generated a block
at round i and 0 otherwise. We denote HON·,i(S) =

∑
r∈S HONr,i.

Below, we mention an inequality that we will use often.

f < p(n − t) <
f

1 − f
(2)

Note, the first inequality is a straight forward application of Bernoulli’s
inequality which says for real x > −1 and integer r ≥ 0 we have, (1+x)r > 1+rx.
The second inequality is another application of Bernoulli’s inequality after apply-
ing the following inequality (1 − p)−(n−t) > (1 + p)n−t.

5 The adversary actually has a choice to try to mine in a specific round or not. However,
without loss of generality we can consider an adversary who always tries to do so, as
the adversary is always free to discard a successfully mined block. This assumption
helps us in defining random variables ADVi,j in terms of pure probabilistic events.
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5.1 Typical Execution

We slightly modify the definition of typical execution from the bitcoin backbone
work [28] and use here. More specifically, we do not impose any condition on
adversarial success, because without integrity of the trusted execution environ-
ment the adversary is free to generate as many valid blocks as it wants (although,
if they generate too many, they will be rejected by honest parties using the z-test
property).

Definition 6 (Typical Execution). An execution of rend rounds, is (ε, ε′, λ)-
typical, for some ε ∈ (0, 1), ε′ > 0, if for any set S of at least λ consecutive rounds
the following hold:

(a) (1 − ε)E[HON≥1(S)] < HON≥1(S) < (1 + ε)E[HON≥1(S)]
and (1 − ε)E[HON1(S)] < HON1(S)

(b) For all honest players i, HON·,i(S) < (1 + ε′)E[HON·,i(S)]

Theorem 1. An execution of rend rounds is (ε, ε′, λ)-typical with probability at
least 1 − rend(e−Ω(ε2λf) + (n − t)e−Ω(ε′2λp)).

Proof (Sketch). Note, there are (n− t) honest parties and for every honest party
i, we have E[HON·,i(S)] = p|S|. The theorem follows with a Chernoff bound. ��

Now, let us look at some more properties of a typical execution under z-test.
Later in this section, we are going to use those properties to analyze the chain
growth and chain quality properties.

Lemma 3. For any set S of at least λ consecutive rounds, the following prop-
erties hold in a typical execution where C is a chain adopted by an honest party.

(a) (1 − ε)f |S| < HON≥1(S) < (1 + ε)f |S|
(b) ADVC(S) < (1+ε′)t

(n−t)(1−f)(1−ε)HON≥1(S)
(c) 2ADVC(S) < HON1(S)
(d) ADVC(S) < (1 − f − ε)f |S|
Proof. Recall, E[HON≥1(S)] = f |S|. Hence, part (a) readily follows from defi-
nition of typical execution (Definition 6). The chain C got adopted by an honest
party, hence it passed the ‘z-test’ for all parties. As |S| ≥ λ, for all players
i ∈ [1, n] we have ZC(i, S) < (1 + ε′)p|S|. Hence,

ADVC(S) =
∑

i∈[1,n]
i is corrupted

ZC(i, S) < (1 + ε′)pt|S| <
(1 + ε′)tf

(n − t)(1 − f)
|S| (3)

The last inequality above uses inequality (2). Now we can prove part (b) by
applying HON≥1(S) lower bound from part (a). For part (c), from the definition
of typical execution we have,

HON1(S) > (1 − ε)E[HON1(S)]

= (1 − ε)(n − t)p(1 − p)n−t−1|S|
> (1 − ε)(n − t)p(1 − p)n−t|S|
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> (1 − ε)(n − t)p(1 − p(n − t))|S| By Bernoulli’s inequality

> (1 − ε)(n − t)p(1 − f

1 − f
)|S| By Inequality 2

=
(1 − ε)(1 − 2f)
(1 + ε′)(1 − f)

(n − t)
t

(1 + ε′)pt|S|

>
(1 − ε)(1 − 2f)
(1 + ε′)(1 − f)

(n − t)
t

ADVC(S) By Inequality 3

>
(1 − ε)(1 − 2f)

(1 + ε′)(1 − f)(1 − δ)
ADVC(S) Definition 5

From the honest majority assumption or Definition 5 we also have

1 + ε + 2ε′ − 2ε′f − 2εf

2(1 + ε′)(1 − f)
< δ < 1,

which in turn implies (1−ε)(1−2f)
(1+ε′)(1−f)(1−δ) > 2. This completes the proof of part (c).

For part (d), from Inequality (3) we have

ADVC(S) < (1 + ε′)pt|S|
< (1 + ε′)(1 − δ)p(n − t)|S| By Definition 5

< (1 + ε′)(1 − δ)
f

1 − f
|S| By Inequality (2)

=
(1 + ε′)(1 − δ)

(1 − f)(1 − f − ε)
(1 − f − ε)f |S|

From honest majority assumption we also have 2f+ε+ε′−f2−fε
1+ε′ < δ < 1, which

in turn implies (1+ε′)(1−δ)
(1−f)(1−f−ε) < 1. This completes the proof of part (d). ��

5.2 Chain Growth Properties

Now, we want to prove the chain growth property for ET consensus with z-
test. However, the property crucially depends upon the fact that in a typical
execution, honestly generated blocks never get rejected because of the ‘z-test’.
We note that this property is easy to achieve with what should be fairly typical
parameter settings: namely, with ε ≤ ε′.

Lemma 4. In a typical execution, let C1 and C2 be two chains which were
adopted by some honest parties. Suppose B1 and B2 are the k-th blocks of chains
C1 and C2 respectively. If id(B1) is an honest user and round(B1) is a uniquely
successful round, then either B1 = B2 or id(B2) is corrupted.

Proof. For contradiction, we assume B1 
= B2 and id(B2) is honest. Security
of the signature scheme implies the blocks B1 and B2 are actually created by
id(B1) and id(B2). As, round(B1) is uniquely successful round and both id(B1)
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and id(B2) are honest, we have round(B1) 
= round(B2). Suppose, round(B1) <
round(B2); as both of the players are honest id(B2) must have received the chain
ending in B1 with length k on or before round(B2). This implies position of the
block B2 must be greater than k, which is a contradiction. The cryptographic
security of the hash function ensures an honest party creates a block at position
k and that adversarial players cannot insert that block at a different position. A
similar argument holds for the case round(B1) < round(B2). ��
Lemma 5 (Chain Growth Lemma). In a typical execution, suppose an hon-
est party has adopted a chain of length � at round r. Then, by round h > r, every

honest party has adopted a chain of length at least � +
h−1∑

i=r

HON≥1
i .

Proof. We prove the above theorem using induction on h ≥ r + 1.
Induction base: The protocol has moved only one round after round r, hence

h = r + 1. If at round r, an honest party has a chain of length �, every honest
party will adopt a chain of length at least � by round r + 1. Additionally, if
HON≥1

r = 0, the statement follows directly. If HON≥1
r = 1, the successful

honest party will broadcast a chain of length �+1 = �+HON≥1
r , and all honest

parties will adopt a chain of at least that length by round h = r + 1.
Inductive step: Let us assume that every honest party has adopted a chain

of length at least �′ = � +
h−2∑

i=r

HON≥1
i by round h − 1.

Now, two things could have happened on round h − 1:

1. HON≥1
h−1 = 0, in which case

h−1∑

i=r

HON≥1
i =

h−2∑

i=r

HON≥1
i . Hence, the state-

ment follows.
2. HON≥1

h−1 = 1, in that case a successful honest party will broadcast a chain of
length at least �′ +1 in round h− 1. By round s, all honest parties will adopt

a chain of length at least �′ + 1 = � +
h−2∑

i=r

HON≥1
i + 1 = � +

h−1∑

i=r

HON≥1
i .

��
Lemma 6 (Chain Growth Upper Bound). Suppose C is a chain adopted
by an honest party during a typical execution. For any k ≥ max(2λf, 4), let
Bm, Bm+1, · · · , Bm+k−1 be k consecutive blocks of the chain C. Then, we have

|[round(Bm), round(Bm+k−1)]| ≥ k

2f
.

Proof. Suppose S′ = [round(Bm), round(Bm+k−1)]. For contradiction let us
assume |S′| < k

2f . Consider the set S of consecutive rounds such that S ⊇ S′

and |S| = � k
2f �. Security of the signature scheme along with the fact chain C

has been adopted by an honest party ensures HON≥1(S′) + ADVC(S′) ≥ k. As
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S′ ⊆ S, this in turn implies HON≥1(S) + ADVC(S) ≥ k. As, |S| ≥ λ, we can
apply Lemma 3 and it implies the following.

HON≥1(S) + ADVC(S)
< (1 + ε)f |S| + (1 − f − ε)f |S|
< (2 − f)f |S|
< (2 − f)f(

k

2f
+ 1) Since |S| = � k

2f
� <

k

2f
+ 1

≤ k − kf

2
+ 2f − f2 < k + f(1 − k/4) < k. Since k ≥ 4

This shows we have a contradiction. ��
Lemma 6 provides us an upper limit on the rate of chain growth. It says that

at least k
2f rounds are required for a valid chain to grow by k blocks. Additionally,

note that, for f > 0.5 the number of rounds to generate k blocks becomes less
than k, which is not possible because multiple blocks in the same round will only
increase forks, not the chain length. That necessarily means any f > 0.5 will not
improve the chain growth, instead only increase the fork rate. That is why we
should always consider f ≤ 0.5.

A corollary to chain growth lemma(Lemma 5), Lemma 3 and Lemma 6 is
the following theorem.

Theorem 2 (chain-growth). In a typical execution, the chain growth property
holds with parameters τ = (1 − ε)f , σ = 2f and rg > λ.

The above theorem provides an upper bound as well as a lower bound on the
total number of blocks added to a chain C given a sequence of rounds S with
a length s > rg. For s rounds, the number of blocks x added to the chain C is
upper bounded by σs and lower bounded by τs.

5.3 Common Prefix Property

Here we prove that honest parties eventually agree on a common chain in our
ET consensus with z-test protocol. The main difference from bitcoin backbone
analysis [28] is the following: In bitcoin, the total number of blocks an adversary
can produce is bounded (with some probability, of course). However, in our ET
consensus with z-test protocol, the z-test only allows us to bound the number
of blocks per chain. So an adversary could create a theoretically infinite number
of chains and generate blocks on all of them. It turns out, though, that this per-
chain restriction is actually pretty strong. Below we present the formal proof.

Lemma 7 (Common Prefix Lemma). In a typical execution, for two chains
C1 and C2 with len(C2) ≥ len(C1), if C1 is adopted by an honest party at round
r, and C2 is either adopted by an honest party or broadcasted by an honest party
at round r, then C�k

1 	 C2 and C�k
2 	 C1, for all k ≥ max(2λf, 4).
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Proof. Let us assume, for contradiction, there exists a k > 2λf such that C�k
1 
	

C2 or C�k
2 
	 C1. Suppose, B∗ be the last block on the common prefix of C1 and

C2 such that id(B∗) is honest. Let us denote round(B∗) = r∗. Note, B∗ can be
genesis block, in which case r∗ = 0.

Now, we define S = {i : r∗ < i < r}. Suppose, Bm, Bm+1, · · · , Bm+k′−1 are
k′ consecutive blocks of the chain C1, where Bm is the next block after B∗ and
Bm+k′−1 is the last block of C1. Clearly, k′ ≥ k ≥ max(2λf, 4) and we can apply
Lemma 6. This implies, |[round(Bm), round(Bm+k′−1)]| ≥ k′

2f ≥ λ. We also
know, S ⊇ [round(Bm), round(Bm+k′−1)]. Hence, |S| ≥ λ (i.e., the execution
during S is a typical execution with overwhelming probability) and Lemma 3
applies for the set of rounds S.

For a uniquely successful round u ∈ S, let ju be the position at which the
uniquely successful honest party created the block. J be the set of positions at
which honest parties created the blocks on uniquely successful rounds. J = {ju :
u ∈ S,HON1

u = 1}. Suppose the maximum value of the set J is max(J). Then,
len(C1) ≥ max(J), since C1 is adopted by an honest party at round r, by which
the honest party has already received a chain of length max(J).

Since, len(C2) ≥ len(C1), jth block exists in both the chains C1 and C2 for
all j ∈ J . We denote such blocks by B1,j and B2,j respectively. Now, we want
to claim for all j ∈ J at least one of the players between id(B1,j) and id(B1,j)
is corrupted. By Lemma 4, if both id(B1,j) and id(B1,j) are honest then we
must have B1,j = B2,j . Cryptographic strength (collision resistance) of the hash
function implies Bj = B1,j = B2,j belongs to the common prefix of chains C1

and C2. However, we also know round(Bj) > round(B∗) and B∗ is the last block
in the common prefix such that id(B∗) is honest. This implies a contradiction.

Now, we have established the fact that for all j ∈ J at least one of the players
between id(B1,j) and id(B2,j) is corrupted. Hence, total number of blocks B
such that id(B) is corrupted, B ∈ C1 ∪C2 and round(B) ∈ S must be more than
or equal to size of set J . Hence,

ADVC1(S) + ADVC2(S) ≥ |{B : B ∈ C1 ∪ C2 and round(B) ∈ S}|
≥ |J | = HON1(S).

However, for a typical execution with |S| ≥ λ, by Lemma 3 we have

ADVC1(S), ADVC2(S) <
HON1(S)

2
.

Hence, contradiction. Therefore, we can say that for all k > 2λf , it holds that
C�k
1 	 C2 and C�k

2 	 C1. ��

Intuitively, if C�k
1 
	 C2 or C�k

2 
	 C1, the number of adversarial blocks for
both the chains combined is more than the total number of honest blocks, for
the parts of the chains where they don’t have a common honest block. And that
is not possible for a typical execution, because the number of adversarial blocks
for a chain C during a sequence of rounds S is limited by ADVC(S) < HON1(S)

2 .
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Common Prefix Lemma shows that the honest parties eventually agree on
a common chain. Once a transaction is included in a block B, the transaction
becomes irreversible once honest parties have mined enough number of blocks
extending after B. The common prefix lemma directly implies the following
security theorem about the common prefix property.

Theorem 3 (Common Prefix). In a typical execution the common prefix
property holds with parameter �cf ≥ max(2λf, 4).

5.4 Chain Quality Property

Now we want to prove the property that at least a constant fraction of blocks
are added by honest parties in a chain C that is adopted by an honest party.
That eventually ensures, because of common prefix property, that the common
chain agreed on by the honest parties has at least a constant fraction of honest
blocks.

Theorem 4 (Chain Quality). In a typical execution, the chain quality prop-
erty holds with parameters �q ≥ max(2λf, 4) and μ = 1− (1+ε′)t

(n−t)(1−f)(1−ε) for any
chain adopted by any honest party.

Proof. Let us consider a chain C, which has been adopted by an honest party
P at round r, such that len(C) > �q. Suppose C consists of sequence of blocks
(B1, B2, . . . , Blen(C)) and (Bu, Bu+1, . . . , Bu+�q−1) is an arbitrary �q length sub-
sequence of C, such that �q ≥ max(2λf, 4).

Let (Bu′ , Bu′+1 . . . , Bu′+L−1) be the shortest subsequence of C containing
(Bu, Bu+1, . . . , Bu+�q−1) (i.e. u′ ≤ u and L ≥ �q) such that:

1. id(Bu′) is honest
2. there exists an honest party which adopted the chain (B1, B2, . . . , Bu′+L−1)

Observe that B1 is genesis block and id(B1) is honest by definition. We know
that an honest party P adopted the chain C and len(C) > �q. Hence, the whole
chain C trivially satisfies the above properties, except it might not the shortest
one. This shows existence of the shortest subsequence Bu′ , Bu′+1 . . . , Bu′+L−1.
Suppose, r1 = round(Bu′) and the earliest round at which the chain (B1, B2,
. . . , Bu′+L−1) got adopted by an honest party is r2. Let S be the sequence of
rounds defined as S = {r : r1 ≤ r < r2}. Observe that

S ⊇ [round(Bu′), round(Bu′+L−1)] ⊇ [round(Bu), round(Bu+�q−1)].

Hence, by Lemma 6, we have |S| ≥ �q/2f ≥ λ and the properties of typical
execution are applicable (Lemma 3) for the set of rounds S.

Let x be the number of honest blocks in the �q length sequence. In other
words x = |{B ∈ (Bu, Bu+1, . . . , Bu+�q−1)|id(B) is honest}|. For contradiction,
we assume the chain quality property does not hold for this �q length sequence
of blocks (Bu, Bu+1, . . . , Bu+�q−1). Hence, x < μ�q ≤ μL.
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As the chain (B1, B2, . . . , Bu′+L−1) got adopted by an honest party in round
r2; for all i ∈ [u′, u′ + L − 1] we have round(Bi) ∈ S. As [u, u + �q − 1] ⊆
[u′, u′ + L − 1], from our contradiction assumption we have

ADVC(S) ≥ |{B ∈ (Bu, Bu+1, . . . , Bu+�q−1)|id(B) is corrupted}|
= L − x > (1 − μ)L

(4)

Now, Lemma 5 implies u′ + L − 1 ≥ u′ + HON≥1(S) or equivalently L >
HON≥1(S). Hence inequality (4) can be rewritten as ADVC(S) > (1 −
μ)HON≥1(S). As we have seen before, |S| ≥ λ. Hence, by Lemma 3

(1 − μ)HON≥1(S) =
(1 + ε′)t

(n − t)(1 − f)(1 − ε)
HON≥1(S) > ADVC(S)

Therefore we have our desired contradiction ADVC(S) > ADVC(S). ��
The chain quality property guarantees that there will be at least μ�q honest

blocks given a chain of length �q. For example, when 20% of the miners are
dishonest, ε′ = ε = 0.2, and f = 0.2, we have μ = 0.53—which means at least
53% blocks in the chain are honest. We refer to Table 2 for more examples.

6 Discussion and Practical Application

6.1 Parameter Choices

We want to set the z-test parameter ε′ in such a way that an honest block
is excluded from a chain only with negligible probability. We therefore recom-
mend setting ε = ε′. In Table 2 we show some examples with possible values of
ε, f, δ and how the parameters τ, σ, �cf , μ corresponding to the security proper-
ties(namely, chain growth, common prefix and chain quality) vary. Table 2 shows
that we can vary (f + ε) up to 1, when δ = 1 (which means all the protocol par-
ties are honest). For ε = 0.2 and f = 0.2, δ can be as low as 0.75, which means
the protocol can tolerate up to 20% dishonest protocol parties. For small values
of ε and f , ET consensus with z-test can tolerate up to 33% dishonest parties.

6.2 Implications of z-Test Security

In addition to lending evidence to support that the actual PoET protocol (and
other similar protocols like proof of luck) is resilient to the compromise of some
TEEs, we show a pretty surprising fact: basic proof of work consensus with a
z-test but no actual proofs of work, just “promises” from users still remains
secure with an honest majority assumption! Table 3 shows that our ET protocol
without TEEs is not terribly worse (in terms of security) than ET consensus
with trusted timer (and, similarly, bitcoin in the bitcoin backbone protocol).

While these numbers are not incredibly tight, the δ factors indicate that our
proofs hold even when the number of adversarial parties is a (relatively large)
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Table 2. How the security property parameters (τ, σ, rg, �cf , �q, μ) of ET consensus
with z-test corresponding to chain growth, common prefix and chain quality properties
vary based on the protocol parameters δ, ε, f, λ. The first column presents the values of
ε and f defined in the honest majority assumption, the second column the minimum
δ (accurate up to two decimal places) to satisfy the honest majority assumption; the
third, fourth, fifth, sixth, seventh, and eighth columns are τ , σ, rg, �cf , �q and μ
respectively as described in Sect. 5. For all the cases, we use ε′ = ε, and λ � 4. Note
that f in our case is actually derived from p, however, to be comparable with similar
works [7,28,29] we use f in the table.

Protocol parameters δ τ σ rg �cf �q μ

ε = 0.05, f = 0.05 0.58 0.0475 0.1 λ 0.1λ 0.1λ 0.51

ε = 0.1, f = 0.1 0.64 0.09 0.2 λ 0.2λ 0.2λ 0.51

ε = 0.2, f = 0.2 0.75 0.16 0.4 λ 0.4λ 0.4λ 0.53

ε = 0.3, f = 0.3 0.85 0.21 0.6 λ 0.6λ 0.6λ 0.60

ε = 0.4, f = 0.3 0.88 0.18 0.6 λ 0.6λ 0.6λ 0.6

ε = 0.4, f = 0.4 0.93 0.24 0.8 λ 0.8λ 0.8λ 0.72

ε = 0.5, f = 0.4 0.95 0.2 0.8 λ 0.8λ 0.8λ 0.65

ε = 0.6, f = 0.4 0.96 0.16 0.8 λ 0.8λ 0.8λ 0.73

ε = 0.5, f = 0.5 1 0.25 1 λ λ λ 1

Table 3. Relationship between f and minimum δ in ET consensus with trusted timer,
ET consensus with z-test. The f and the corresponding minimum δ values are exactly
same for Bitcoin consensus and ET with trusted timer, and therefore, we do not include
a separate column for Bitcoin in the table.

f ET with trusted timer δmin ET with z-test δmin

0.05 0.3 0.58

0.1 0.6 0.64

constant fraction (up to 33%) of the total number of players. This indicates that
current TEE-based consensus systems like PoET that are used “in the wild” are,
at least in theory, secure, although we would need to change the z-test in PoET
in order for our proofs to apply.

Although the security proofs of ET consensus with z-test hold without any
TEE assumptions, as long as the honest majority assumption holds, we recom-
mend using the protocol in combination with TEE (e.g., Intel SGX) to ensure
only a small number of malicious participants.

6.3 Performance Improvement

Even though, in our protocol description, we make ETztest wait on the TEE
to generate a block, the security analysis does not depend on that. And there-
fore, a player can just query the WaitT ime and WaitCert from the TEE, and
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still, all the security properties will hold. This can be very useful in practice,
because if each round is small enough querying the TEE every round can be
really inefficient.

6.4 Applications of Our Results

In [28], the authors show that the bitcoin backbone protocol almost immediately
implies a Byzantine fault tolerant consensus protocol and a public ledger. The
same results apply to our protocols, so we omit the full proofs and descriptions
here. An inquisitive reader can refer to Sects. 5 and 6 of [28].

Acknowledgment. We thank the anonymous reviewers for their helpful comments.
We thank Dan Middleton for the useful discussions.

Appendix: Security of ET Consensus with Trusted Timer

Assuming that the hash function and the signature scheme are cryptographically
secure through our Cert () functionality, and assuming integrity of the TEE, we
can prove that the security properties of our ET consensus protocol with trusted
timer are exactly same as that of Bitcoin. This fact is a direct implication of
Lemma 1, and the security proofs are extremely similar to that of Bitcoin. Here
we skip the proofs and present the key security properties.

All of the security guarantees hold if there are enough honest parties in the
system, where the exact amount that is “enough” depends on other parameters
of the system. Below, we formally state the honest majority assumption.

Definition 7 (Honest Majority Assumption). Suppose n is the total num-
ber of parties, and out of them t parties are corrupted. If δ is the advantage of
honest parties, then we require that t < (1 − δ)(n − t), where 3f + 3ε < δ ≤ 1,
where ε is a positive fraction (used in various concentration bounds) and f is the
probability that at least one honest party creates a block at a given round.

For a security parameter λ, total number of parties n ∈ poly(λ), and with
the above honest majority assumption the following security theorems can be
derived about our ET consensus protocol with trusted timer.

Theorem 5 (chain-growth). The chain growth property holds with parame-
ters τ = (1 − ε)f , σ = 2f and rg > λ with overwhelming probability.

Theorem 6 (Common Prefix). The common prefix property holds with
parameter �cf ≥ max(2λf, 4) with overwhelming probability.

Theorem 7 (Chain Quality). With overwhelming probability the chain qual-
ity property holds with parameters �q ≥ max(2λf, 4) and μ = 1 − (1 + δ

2 ) t
n−t −

ε
1−ε > 1 − (1 + δ

2 ) t
n−t − δ

2 for any chain adopted by any honest party.
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Abstract. Time-release cryptography requires problems that take a long time to
solve and take just as long even with significant computational resources. While
time-release cryptography originated with the seminal paper of Rivest, Shamir
and Wagner (’96), it has gained special visibility recently due to new time-release
primitives, like verifiable delay functions (VDFs) and sequential proofs of work,
and their novel blockchain applications. In spite of this recent progress, security
definitions remain inconsistent and fragile, and foundational treatment of these
primitives is scarce. Relationships between the various time-release primitives
are elusive, with few connections to standard cryptographic assumptions.

We systematically address these drawbacks. We define formal notions of
sequential functions, the building blocks of time-release cryptography. The new
definitions are robust against change of machine models, making them more
amenable to complexity theoretic treatment. We demonstrate the equivalence of
various types of sequential functions under standard cryptographic assumptions.
The time-release primitives in the literature (such as those defined by Bitansky et
al. (ITCS ’16)) imply that these primitives exist, as well as the converse.

However, showing that a given construction is a sequential function is a hard
circuit lower bound problem. To our knowledge, no results show that standard
cryptographic assumptions imply any sequentiality. For example, repeated squar-
ing over RSA groups is assumed to be sequential, but nothing connects this con-
jecture to standard hardness assumptions. To circumvent this, we construct a func-
tion that we prove is sequential if there exists any sequential function, without
needing any specific knowledge of this hypothetical function. Our techniques use
universal circuits and fully homomorphic encryption and generalize some of the
elegant techniques of the recent work on lattice NIZKs (Canetti et al., STOC ’19).

Using our reductions and sequential function constructions, we build VDFs
and sequential proofs of work from fully homomorphic encryption, incremental
verifiable computation, and the existence of a sequential function. Though our
constructions are theoretical in nature and not competitive with existing tech-
niques, they are built from much weaker assumptions than known constructions.
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1 Introduction

1Many security assumptions assume a certain problem cannot be solved within some
computational budget, such as 280 operations, but give no restriction on whether these
computations are done in parallel or serially. In contrast, time-release cryptography adds
an extra flavour of assumption: a problem can be solved in less than a specified amount
of time, even with enormous parallel computing resources.

The field of sequential (or “time-release”) crypto dates back to 1996, when Rivest,
Shamir, andWagner first proposed time-lock puzzles [44]. A time-lock puzzle is a prob-
lem for which it is easy to generate a problem instance but which requires a moderate
amount of sequential computation to solve. The authors of [44] proposed that repeated
squaring on a group of unknown order is an inherently sequential function, and so far
this has been the core idea behind almost all non-random oracle primitives in time-
release cryptography. Boneh and Naor [12] followed up by building timed commit-
ment schemes, Garay et al. [23] considered resource-fairness in multi-party compu-
tation, but time-release cryptography was a relatively quiet field until the advent of
blockchain [36].

Much of the most recent work has focused on verifiable delay functions. A verifiable
delay function is a function that requires T sequential steps of computation and has a
unique output on every input that can be verified efficiently in time “almost” indepen-
dent of T . This means any “honest” user with a relatively small amount of computing
power should be able to compute the function in almost the same time as an “adversar-
ial” user with substantial parallel computing resources.

The genesis of this work was a construction by Lenstra and Wesolowski called
Sloth [31]. Approximately two years later, Boneh et al. wrote the seminal VDF
paper [10] which formally defined and introduced the notion of a VDF. More efficient
constructions from Weselowski [50] and Pietrzak [41] followed this, as well as more
analysis of these constructions [11].

Other interesting VDF constructions include tight VDFs in [21], giving a greater
theoretical understanding to the problem. VDFs have been built from elliptic curve
isogenies [20,46]. The imminent use of VDFs in blockchains has even prompted work
on more efficient parallel field operations [37,38].

The complexity requirements of VDFs have also attracted attention. In their paper
on continuous VDFs, Ephraim et al. [22] connect the existence of a VDF to the compu-
tation of Nash equilibria. Mahmoody et al. show that VDFs satisfying perfect unique-
ness and tight VDFs are impossible to construct in a black-box way solely from ideal
hash functions [34]. Rotem et al. [45] show that what they call “generic group delay
functions” which model the known VDF constructions which require hidden-order
groups, meaning that we are unlikely to be able to build VDFs from group-based
assumptions without groups of unknown order.

Recently there has been substantial interest in sequential primitives. There have
been a number of constructions on time-lock puzzles [9], including a new notion of
homomorphic time-lock puzzles that allow for greater efficiency [13,35]. Mahmoody

1 This is a condensed version of our full result; the full version with all supporting details is at
https://eprint.iacr.org/2020/755.

https://eprint.iacr.org/2020/755
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et al. [33] defined a primitive called a publicly verifiable sequential proof of work, which
is similar to a VDF except the verifying solution may not be unique. More recently,
Cohen and Pietrzak [18] showed a simpler construction2.

Verifiable delay functions have a number of exciting applications, including ran-
domness beacons [17,42], resource-efficient blockchains [29,30,39], and proofs of
replication [4]. In fact, the Ethereum Foundation and a number of other blockchain
entities are rapidly pushing towards building practical VDFs in order to better scale
Ethereum [16]. Potentially billions of dollars [1] will rely on a secure VDF construction
in the near future, so it is important that we have a secure construction. We encourage
interested readers to refer to [10] for a full treatment of the applications of VDFs and
time-release cryptography.

1.1 Models of Computation and Time

The existing models of computation in time-release cryptography works [10,44,50] are
based on parallel random access machines. Boneh et al. [10] define a notion of (t, ε)-
sequentiality for functions: the function can be honestly computed in time t, while no
adversary will have a non-negligible chance of computing it within time (1 − ε)t. Of
course if the adversary has a vastly superior machine compared to an honest evaluator,
it can even accelerate the honest computation. So such a possibility is implicit in the
notion, although not explicitly encoded in the definition.

However, this notion is not robust to changes in machine models, which makes
a complexity-theoretic treatment difficult. For example, if we analyze a function in the
circuit model, which is common in cryptography, it is natural to take the depth as the run
time and the width as the amount of parallelism. However, the adversary may execute
this in a random access machine which may shave off a log(λ) factor in evaluation time.

We therefore ask: is there a notion of sequential functions that is independent of the
specific, perhaps distinct, models adopted by the honest and adversarial evaluators, as
long as these models are reasonable in some sense? If so, can we relate these notions to
each other, to standard time-release primitives, and to standard cryptographic notions?

1.2 Assumptions of Existing Constructions

If we examine all of the above constructions of time-release cryptography, then we
notice that there are some common threads. In particular, all of the constructions we
have mentioned (except for [9], which we will mention in more detail later) explicitly
rely on one (or both) of the following assumptions: that repeatedly computing a random
oracle on its own output is an inherently sequential operation, and that repeated squar-
ing in a group of unknown order is an inherently sequential operation. Each of these
assumptions has some unfortunate drawbacks.

The Random Oracle Assumption. The random oracle sequentiality assumption in the
above papers is typically a more precise statement of the following form: given a ran-
dom oracle H : X → X , if it takes h time to compute H on a single input x ∈ X , then

2 The [18] result also improved the [33] result in a number of ways that are important for our
results.
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it takes Ω (hk) time to compute Hk (x), where Hk (x) = H (...H (x)) for k computa-
tions of H . While there may be more complicated bounds involved, this is the general
structure of typical random oracle assumptions.

However, this is a very strong assumption on random oracle models. The random
oracle model [6] assumes that an adversary has black-box access to a random oracle: in
other words, they can query the oracle on inputs of their choice, and receive back the
corresponding outputs. For some cryptographic protocols, such as digital signatures,
the protocols reasonably fit the scheme. In the case of time-release cryptography, this
black-box assumption no longer holds. An adversary generally must have the circuit
description of a random oracle in order to compute any sequential functions, and we
must assume that given a circuit description of H an adversary cannot find another
circuit that computes Hk much faster than k evaluations of H . This is a strong require-
ment for concrete hash functions, and while it seems to hold for popular choices of
hash functions that are used as random oracles such as SHA256, it remains to be seen if
researchers will be able to parallelize “chained” computations of random oracle instan-
tiations such as SHA256, particularly once there are large financial incentives to do so.

Even more clearly defying the random oracle assumption, random oracle VDF con-
structions not only require access to the circuit of the random oracle, but the proofs of
correctness are built around the circuit itself [10]. In fact, with only black-box access to
H , tight VDFs are impossible [21].

Groups of Unknown Order. The more prominent sequentiality assumption made in
VDFs and other sequential crypto primitives is that repeated squaring in a group of
unkown order is inherently sequential (e.g. [41,50]. More precisely, many construc-
tions assume that with a description of a group G that does not include the order, and
a generator g ∈ G, then it takes Ω (T ) time to compute g2

T

. This assumption can be
generalized to include arbitrary powers other than squaring, which some constructions
use.

This assumption is already known to be false: Bernstein and Sorenson [7] showed
that modular exponentation of 2T can be parallelized with T 1+o(1) processors to a depth
ofO(T/ lg lg T ). While this algorithm is not a strong practical concern, it highlights that
these assumptions are tenuous. There are no known reductions relating the hardness of
computing modular exponentiation of 2T with any traditionally hard problems over
groups of unknown order, such as factoring, even for exponentially-sized T .

Finally, we would be neglectful if we did not mention that efficient quantum com-
puters can determine the order of groups in polynomial time [47]. Recently [45] showed
that delay functions on groups require an unknown order, meaning that unless we find
a non-generic way to use groups of known order, we will need to completely scrap this
assumption if quantum computing becomes viable.

Ideal Assumptions. Naturally, we want to ask: can we do better? If so, how? Tradi-
tonal complexity theorists have studied parallel complexity for quite some time [5], but
devoted less attention to parallel average-case complexity, which would be applicable
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to cryptographic protocols3. [9] define average-case non-parallelizing languages and
show that they imply one-way functions, but we would like a reverse implication. Ide-
ally we could build some sequential function F such that violating the sequentiality of
F allowed for some traditional cryptographic assumption to be broken. But this style
of reduction seems difficult, since we currently have no way of relating sequentiality
assumptions to traditional cryptographic assumptions.

On the other hand, could we build time-release cryptography from two assump-
tions: a very broad assumption stating that some sequential function of a certain type
existed, and a traditional cryptographic assumption? Assuming only the existence of
some non-parallelizing language, and a specific randomized encoding, [9] construct a
concrete time-lock puzzle. This is fairly close to ideal, since the existence of sequential
functions is necessary for things like VDFs in the first place. Can we do this for VDFs?

Related Work. There has been some progress on building sequential cryptographic prim-
itives from better assumptions. In [9], Bitansky et al. show how to construct time-
locked puzzles from randomized encodings [3] assuming the existence of what they
call a t-non-parallelizing language. Informally, a t-non-parallelizing language is decid-
able in time t, but hard for circuits of depth substantially smaller than t. Notably, the
authors of [9] only need to assume worst-case hardness of the non-parallelizing lan-
guage, avoiding average case assumptions of sequentiality.

Bitansky et al. show two main constructions of TLPs from randomized encodings.
The first, an (essentially) optimal construction from succinct randomized encodings,
has the drawback that the only known way to construct such randomized encodings
uses indistinguishability obfuscation (iO) [8,24]. The second construction is of weak
TLPs (similar to the primitive given in the random oracle construction of [33]) from
randomized encodings that are implied by one-way functions.

The [9] construction is, to our knowledge, the only known construction of time-
release cryptographic primitives that does not rely on a concrete sequentiality assump-
tion. As such, we will refer to it frequently in the paper. However, the only “optimal”
construction relies on iO, which is a strong assumption.

1.3 Our Contributions

We develop new notions of sequential functions and show that we can build time-release
cryptography from general circuit assumptions and fully homomorphic encryption. We
substantially advance the line of work started in [9] by showing several new construc-
tions of time-release primitives, as well as some implications between them all.

Sequential Function Notions. Informally, we allow distinct models for a challenger (the
honest user) and the adversary, which we call MC and MA, respectively. A sequen-
tial computation in both models takes time proportional to some function of a security
parameter λ and a time parameter k. MA is allowed to be more powerful (up to some
factors) than MC with respect to λ but should be no more powerful with respect to k.

3 There has been some work done on average-case parallel complexity with respect to memory
hardness [2].
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In this paradigm, we will consider (tC , tA)-sequentiality to model the gap between an
honest user and an adversary rather than the notion of (t, ε) sequentiality as in [10]. Our
modeling here reflects the fact that an adversary may have faster hardware or a better
model of computation than the challenger, which is not reflected in previous definitions.
We develop several variants of the notion in terms of adaptivity and iterativity and show
the equivalence of the existence of these notions with the assumption of fully homo-
morphic encryption.

Sequential Function Constructions. Our core construction is an iterative sequential
function (ISF) from minimal circuit assumptions. In particular, we show how to build
an ISF from the following ingredients:

– The existence of an iterative sequential function (ISF).
– A fully homomorphic encryption (FHE) scheme.

We emphasize that we do not actually need to know a construction of an ISF, we just
need the knowledge that one exists within some set of parameters. We need an FHE
scheme that allows us to compute potentially a superpolynomially large number of oper-
ations, so we will unfortunately need to assume circular-secure LWE [43] because we
will need to bootstrap [25]. Concretely, our scheme uses the GSW FHE scheme in [26].

Circuit Framework. We define a circuit-based framework and assumptions for time-
release cryptography. In Sect. 5, we show that our minimal circuit assumptions both
imply and are implied by the the t-non-parallelizing language assumption of [9] up to
some small loss factors. We specifically use the circuit model and we focus on “search”
problems instead of decision problems because these apply more directly to recent time-
release cryptographic primitives. To our knowledge, there has not been a model around
sequential computation for VDFs and other “modern” sequential primitives that is as
fine-grained as this one, so we think that this framework may be useful for future work
in the space of time-release cryptography.

Applications. [10] showed that an iterated sequential function (ISF), together with incre-
mental verifiable computation (IVC), can produce a VDF. This implies that if there
exists an ISF, an FHE, and IVC, then our construction can create a VDF.

By definition, a VDF, proof of sequential work, or a time-lock puzzle are all sequen-
tial functions. Thus the existence of any of these primitives implies that ISFs exist,
which in turn implies that VDFs exist. Our results provide some connection between
these time-release cryptography assumptions, illustrated in Fig. 1.

1.4 Paper Outline

Section 2 covers some preliminary material. Section 3 introduces our new definitions for
various flavours of sequential functions, and also proves their equivalence if FHE exists.
We discuss our main assumption about the existence of a sequential function. In Sect. 4,
we construct our ISF, proving it is sequential from our existential circuit assumption and
FHE. Section 5 relates our sequential function ideas to non-parallelizing languages, the
notion of sequentiality defined in [9].
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Lem 6,7

[9]

Thm 1

Thm 2 [10]

Legend
(C,I)SF (Continous, iterated) sequential function Definitions 4,5

FHE Fully homomorphic encryption Definition 1
IVC incremental verifiable computation –
NPL non-parallelizing language Definition 8

PoSW proof of sequential work –
SRE succinct randomized encoding –
TLP time-lock puzzle –
VDF verifiable delay function –

Fig. 1.Relation between time-release cryptography assumptions. Thin borders indicate existential
assumptions (e.g., there exists an ISF) and thick borders indicate constructive assumptions (e.g.,
the construction in Sect. 4 is an ISF). Unlabelled arrows are consequences that follow directly
from definitions.

2 Preliminaries

In this section we provide background material and definitions for our constructions and
reductions. Experienced cryptographers should be familiar with the content, although
the notation might be unfamiliar in some cases.

2.1 Fully Homomorphic Encryption

We now briefly go over definitions and notation for fully homomorphic encryption
(FHE) [25]. We base our presentation off of [14] because we use FHE in a similar
manner as they do.

Definition 1. Fully Homomorphic Encryption: A fully homomorphic encryption
(FHE) scheme FHE = (Gen,Enc,Dec,Eval) consists of four PPT algorithms such
that (Gen,Enc,Dec) is a public key encryption scheme and

– Eval (pk, f, ct1, ..., ctn) → ct′ takes as input the public key pk, a function f (repre-
sented by a Boolean circuit), and a vector of ciphertexts (ct1, ..., ctn). Eval outputs
another ciphertext ct′ which has size that is polynomial in λ (and, without loss of
generality, linear in the output length of f ).
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– For any (pk, sk) ← Gen
(
1λ

)
, any vector of messages (m1, ...,mn) and any circuit

C : {0, 1}n → {0, 1} it holds with probability 1 that

Dec (sk,Eval (pk, C,Enc (pk,m1) , ...,Enc (pk,mn))) = C (m1, ...,mn)

Definition 2. Circular Secure Encryption: A public key encryption scheme PKE is
said to be circular secure if the following distribution for m = 0|sk| and m = sk is
computationally indistinguishable:

{
(pk, sk) ← Gen

(
1λ

)
: (pk,Enc (pk,m))

}

2.2 Universal Circuits

Our construction needs a universal circuit [19,32,49] for homomorphic computation of
encrypted circuits. We define this below. Our work will focus on the circuit model with
boolean gates of fan-in 2.

Definition 3. Universal Circuit: A circuit UCn,m
d,g is called a universal circuit if it coin-

tains n true input variables, m true output variables, and g distinguished universal
gates such that for any circuit C of size gc ≤ g and depth dc ≤ d, there is an efficiently
computable configuration for UC such that the ith distinguished universal gate of UC
computes the same function as the ith gate of C for 1 ≤ i ≤ gc.

Let C̃ denote the bitwise representation of some circuit C with gc ≤ g gates, n true
input variables, and m true output variables. We define the following convention:

UCn,m
d,g

(
C̃, x1, ..., xn

)
= C (x1, ..., xn) = m1, ...,mn

3 Sequential Functions

In this section we define sequential functions and related primitives and prove equiva-
lence results between different notions of sequential functions. We also relate our new
definitions to previous work, such as [10] and [9]. We start by introducing our models
of computation, as these will motivate many of our new definitions.

3.1 Models of Computation

We assume two models of computations MC and MA, respectively, for the challenger
and the adversary. Each has resources parameterized by the security parameter λ.

Typically, MC will have poly(λ) parallelism, whereas MA may have 2o(λ) paral-
lelism. The precise subexponential resources of MA must be polynomial in the delay
T , but not enough to break the security of the FHE scheme we will use4. Rather than
clutter our notation, we will refer to the parallelism of MA as 2o(λ).

4 In fact, we need the FHE to be secure against “efficient” sub-exponential adversaries. In prac-
tical terms, this makes no difference, since any adversary against our model could be used to
attack FHE in a different context.
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These two models allow us to define (tC , tA)-sequential functions. Informally, MC

can compute such a function in time tC , and tA is the fastest time that an algorithm in
MA can compute the same function.

User Model. For MC , we want to capture general computations and have universal
simulation. That is, there is a universal algorithm U in MC such that U can simulate
all algorithms F in MC , given a description of F as input. Running U should take
time at most O(poly(λ)) more than F . Such models include uniform boolean circuits,
uniform arithmetic circuits, Turing machines, and parallel random access machines with
polynomial parallelism.

Our constructions and reductions will use both universal circuits and FHE. Since
we will need to keep track of the circuit overhead of these primitives in order to prop-
erly describe our constructions and reductions, we will actually require four different
computational models:

1. The model MC which can compute a (tC , tA)-sequential function. There must be a
universal circuit which can simulate MC .

2. The model MUC in which a universal circuit can run. MUC must be homomorphi-
cally computable by the FHE.

3. The model MFHE in which the fully homomorphic encryption is performed and
the universal circuit homomorphically evaluated.

4. The adversarial model MA.

We choose MC to be a boolean circuit model with gates of fan-in two, with unit
cost and unit depth for all 16 possible gates. Assuming a (tC , tA)-sequential function
exists is a stronger assumption if MC is less powerful. Unfortunately, even if a stronger
model is a more realistic model of an actual user, we must choose a weaker model MC

so that a universal circuit exists that can efficiently evaluate circuits in this model.
We chooseMUC to be a boolean circuit model, since this accommodates a universal

circuit, but we restrict the gate set so it can be easily evaluated homomorphically.
We also model MFHE as a boolean circuit of bounded fan-in, simply for ease of

analysis. Since this is the model that actually computes the construction, it should be
similar to MA. If not, we risk losing logarithmic factors in the sequentiality.

We assume throughout that the security of the FHE scheme is sub-exponential in
both T and λ. For example, if T = Θ(λlog λ), then O(T log T ) = O(λlog3 λ) is subex-
ponential in both λ and T , even though T is subexponential in λ as well.

Adversarial Parallelism. If the adversary were allowed an exponential number of gates,
then they could compute any circuit in depth logarithmic in the input size by hard-
coding the truth table of the function being computed. To avoid such pitfalls, we prevent
the model MA from having exponential parallelism. Previous works [10] also only
allow subexponential parallelism to the adversary.

We still allow an adversary to reduce circuit depth from d to d′, with an increase
in circuit size of Ω(2d−d′

) [28]. This means with poly(k, λ) size, they can reduce the
depth of a circuit by an additive factor of O(log k + log λ). This allows us to choose a
slightly smaller t′A(λ) such that ktA(λ) − O(log k + log λ) ≥ kt′A(λ) for al k ≤ 2o(λ)

and retain the linear scaling.
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The key observation for our model is that we are more flexible in allowing an adver-
sary to compute a sequential function once very quickly – up to poly(λ) faster thanMC

– but we still have the restriction that computing such a function k times in sequence
takes time proportional to k times the original computation.

Choice of Models. While MA has more resources than MC , we assume they are
fundamentally the same type of computational model. A specific function might be
a tight sequential function when both MA and MC are boolean circuit models, but
may become loose if MA is a more powerful PRAM model.

For our construction, we assume a (tC , tA)-sequential function in a boolean circuit
model, in order to evaluate the function with a universal circuit. This means that if a
more powerful model like PRAM is more appropriate to the real hardware for both
MC and MA, the adversary can use that power while the honest users must still use
the universal circuit. This could create a gap between the tightness of the sequential
function we assume to exist, and the provable tightness of our construction.

To exploit this gap an adversary must recompile the FHE and universal circuit for
faster evaluation with their PRAM, and still produce the same output as the honest user.
This seems implausible, but our methods cannot rule it out. However, we assume that
since all possible models can simulate each other up to poly-logarithmic factors, which
bounds the tightness loss.

3.2 Definitions of Sequential Functions

In this work, instead of considering (t, ε)-sequentiality as in [10], we will consider
(tC , tA)-sequentiality. If MC = MA (except for the allowed parallelisms), then these
definitions are trivially equivalent with t = tC and ε = 1 − tA

tC
.

We view sequential functions in practice to have three phases, captured in the
(Setup,Gen, Eval) tuple in Definition 4. The infrequent Setup phase generates pub-
lic parameters from the required cryptographic strength. Then the instance generation
function Gen produces a seed value. Finally, the evaluation function Eval runs on the
seed for a desired duration and outputs a value. We require that honest participants can
efficiently perform these phases, but for security we disallow adversaries to output the
same value too soon.

The syntax and security of sequential functions have freedom along two dimensions.
The first is which of the three phases require the duration parameter. The most inflexible
situation (“selective”) is when the duration needs to be decided at the setup phase. This
restricts all runtime instances to the same duration parameter. Isogeny-based VDFs are
in this category [20,46]. We can relax this restriction to make the setup independent of
the delay parameter, but the instance generation phase must select its own (“adaptive”).
The least restrictive case is when even the instance generation is duration independent
(“dynamic”). Here the evaluation can select its desired duration.

The second dimension is iterativity, where the evaluation function has a repet-
itive structure composed of rounds. A repetitive structure is not only more conve-
nient, but also enables some primitive constructions, such as VDFs by using IVC and
SNARKs [10,21] and continuous VDFs [22]. We can have all possible conjuctions of
adaptivity and iterativity.
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In an iterative sequential function where only Eval requires the duration parameter,
Eval is allowed to select a different round function for each duration parameter. We
can relax this further and allow the round function to be independent of the duration
parameter (“continous”). This allows us to extend the duration at any point by comput-
ing more iterations of the round function. This captures the idea of a self-composable
VDF from [21]. We take the name from continuous VDFs [22], though a continuous
VDF requires the proofs to also be produced iteratively.

Some of the implications among these primitives follow from the definitions. We
show some non-trivial implications in this section. Remarkably, the existence of all
these notions are equivalent assuming FHE and restricting evaluation to polynomial
space in the security parameter.

Definition 4 (Sequential Functions). A selective sequential function (SSF) F =
(Setup,Gen,Eval) is defined as the following tuple of algorithms:

Setup(1λ , k ) → pp: On input the security parameter 1λ , and k ∈ 2o(λ) , the setup
algorithm returns the public parameters pp. By convention, the public parameters
encode an input domain X and an output domain Y .

Gen(pp , k )) → x: On input the public parameters pp , and k ∈ 2o(λ) , the instance
generation algorithm samples a random input x ← X .

Eval(pp, x, k) → y: On input the public parameters pp, an input x ∈ X , and k ∈ 2o(λ),
the evaluation algorithm returns an output y ∈ Y .

An SSF is an Adaptive Sequential Function (ASF) if Setup is independent of k. An
ASF is a Dynamic Sequential Function (DSF) if Gen is independent of k.

An SF F satisfies (tC(λ), tA(λ))-sequentiality for machine models (MC ,MA) if
the following hold:

1. There exists an algorithm in the computational model MC such that for all k and
for all x that can be output by Gen, it computes Eval in at most time k · tC(λ).

2. For all λ ∈ N and for all tuples of PPT machines (A0,A1,A2), such that A2 runs
in time strictly less than k · tA(λ) in the computational model MA, there exists a
negligible function negl such that:
(a) If F is a selective sequential function:

Pr

⎡

⎣y = y′
(k, τ0) ← A0(1λ), pp ← Setup(1λ, k),
τ1 ← A1(pp, k, τ0), x ← Gen(pp, k),

y′ ← A2(pp, x, k, τ), y ← Eval(pp, x, k)

⎤

⎦ = negl(λ)

(b) If F is an adaptive sequential function:

Pr

⎡

⎣y = y′
pp ← Setup(1λ), (k, τ) ← A1(pp),

x ← Gen(pp, k),
y′ ← A2(pp, x, k, τ), y ← Eval(pp, x, k)

⎤

⎦ = negl(λ)

(c) If F is a dynamic sequential function:

Pr

⎡

⎣y = y′
pp ← Setup(1λ), (k, τ) ← A1(pp),

x ← Gen(pp)
y′ ← A2(pp, x, k, τ), y ← Eval(pp, x, k)

⎤

⎦ = negl(λ)
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We now consider the relationship between these definitions. By definition, we have
DSF =⇒ ASF =⇒ SSF as properties, but FHE allows us to show the reverse
implications in terms of existence.

Lemma 1. If a selective sequential function and FHE exist, then a dynamic sequential
function exists.

Proof. Given an SSF SF , we construct another sequential function SF1 by moving the
setup step from SF to the gen step:

SF1.Setup(1λ, k) → pp: Output pp = ε.
SF1.Gen(pp, k) → x: Sample pp′ ← SF.Setup(1λ, k) and x′ ← SF.Gen(pp′, k).

Output x = (pp′, x′).
SF1.Eval(pp, x, k) → y: Output SF.Eval(pp′, x′, k).

This is also an SSF. To show this, let (ASF1
0 ,ASF1

1 ,ASF1
2 ) be an SSF adversary

against SF1. We construct an SSF adversary (ASF
0 ,ASF

1 ,ASF
2 ) against SF :

ASF
0 (1λ) → (k, τ0): Sample and output (k, τ0) ← ASF1

0 (1λ).
ASF

1 (pp, k, τ0) → τ : Sample and output τ ← ASF1
1 (ε, k, τ0).

ASF
2 (pp, x, k, τ) → y: Sample and output y ← ASF1

2 (ε, (pp, x), k, τ).

The advantages of (ASF1
0 ,ASF1

1 ,ASF1
2 ) and (ASF

0 ,ASF
1 ,ASF

2 ) are the same.
We now construct a hybrid sequential function SF2 using the FHE scheme:

SF2.Setup(1λ, k) → pp: Output pp = ε.
SF2.Gen(pp, k) → x: Sample pk ← FHE.Gen(1λ). Let l be the poly(λ) size output

bound of SF1.Gen(pp, ·). Sample x′ ← SF1.Gen(pp, k) and pad it to l bits. Sample
ct ← FHE.Enc(pk, x′). Output x = (pk, ct).

SF2.Eval(pp, x, k) → y: Let PE be the algorithm SF1.Eval(pp, ·, k).
Output FHE.Eval(pk, PE , ct).

An SSF adversary against SF2 can be used to construct an SSF adversary against
SF1 by instantiating its own instance of FHE before passing the challenges on, though
it loses a poly-logarithmic overhead to compute the FHE. Thus, SF2 is also an SSF.

Finally, we construct SF3 as follows:

SF3.Setup(1λ) → pp: Output pp = ε.
SF3.Gen(pp) → x: Sample pk ← FHE.Gen(1λ). Let l be the poly(λ) size output

bound of SF1.Gen(pp, ·). Sample ct ← FHE.Enc(pk, 0l). Output x = (pk, ct).
SF3.Eval(pp, x, k) → y: Let PE be the algorithm SF1.Eval(·, ·, k).

Output FHE.Eval(pk, PE , ct).

SF3 can be syntactically structured as an SSF by simply ignoring any input k in the
Setup and Gen functions. The semantic security of FHE implies that the outputs of
SF3 and SF2 are indistinguishable, and hence since SF2 is SSF-sequential, so is SF3.

Now we show that SF3 is a DSF. To do this we build an SSF adversary (SSF.ASF3
0 ,

SSF.ASF3
1 ,SSF.ASF3

2 ) from a DSF adversary (DSF.ASF3
1 ,DSF.ASF3

2 ). The only dif-
ference between these types of adversary is that SSF adversaries are restricted to choose
k before the setup phase, so we construct the SSF adversary as:
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SSF.ASF3
0 (1λ) → (k, τ0): Sample and output (k, τ0) ← DSF.ASF3

1 (ε).

SSF.ASF3
1 (pp, k, τ0) → τ : Output τ = τ0.

SSF.ASF3
2 (pp, x, k, τ) → y: Sample and output y ← DSF.ASF3

2 (ε, x, k, τ).

If (DSF.ASF3
1 ,DSF.ASF3

2 ) is a successful DSF adversary, then (SSF.ASF3
0 , SSF.ASF3

1 ,
SSF.ASF3

2 ) is a successful SSF adversary because we simply changed the order of steps
that depend only on fixed inputs.

Following all the reductions, the SSF-sequentiality of SF implies that SF3 is DSF-
sequential.

Iterative Sequential Functions. We next define iterative sequential functions.

Definition 5. An Iterative Sequential Function (ISF) is a Sequential Function such that
the Eval function is iterative: there exists a function Round such that Eval(pp, x, k) =
(Round(pp, ·, k))(k)(x). We have Selective, Adaptive and Dynamic Iterative Sequential
Functions defined in the same way as Sequential Functions. In addition, we say that a
DISF is a Continuous ISF (CISF) if Round is also independent of k.

By definition, we have CISF =⇒ DISF =⇒ AISF =⇒ SISF, The proof of the
converse follows that of Lemma 1.

Lemma 2. If a selective iterative sequential function and FHE exist, then a continuous
iterative sequential function exists.

Proof. We construct the same series of hybrids ISF1, ISF2, and ISF3 as in the proof
of Lemma 1, except that ISF2 and ISF3 homomorphically evaluate the round function
iteratively. This means that ISF3.Round(pp, x, k)will output FHE.Eval(pk, PE , ct) for
PE = SF1.Round(pp, ·, k).

We then construct ISF4, where we set P ′
E = SF1.Round(pp, ·, ·), with a round

function of FHE.Eval(pk, P ′
E , ct, ctk) for ctk = FHE.Enc(k). This is identical, except

the round number k is now encrypted, so it is also a sequential function.
This allows us to switch ctk with ct0, an encryption of 0, for ISF5. An adversary

breaking ISF5 but not ISF4 distinguishes between an encryption of 0 and of k, and
thus breaks semantic security of FHE. Thus ISF5 is secure as a sequential function,
and since the round function is now independent of k, it is a CISF.

An iterative sequential function of any type (selective, adaptive, or dynamic) implies
the existence of a non-iterative sequential function of the same type. For the converse:

Theorem 1. DSF =⇒ DISF, provided DSF.Eval runs in poly-space in λ. Similarly,
ASF =⇒ AISF and SSF =⇒ SISF with the same poly-space restrictions.

Proof. Let CΩ be an algorithm in model MC that takes a configuration description M
(in the model MC) of length poly(λ) and outputs the configuration resulting after the
simulation of tC steps, which also has length poly(λ).CΩ will only introduce a poly(λ)
overhead in time. We define the DISF as follows:
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– Setup
(
1λ

) → pp:
• Let [E] denote the description of DSF.Eval(), and s(λ) define the upper limit of

its space requirement.
• Sample pp0 ← DSF.Setup(1λ)
• Output pp = (pp0, [E], s(λ)).

– Gen (pp):
• Sample x ← DSF.Gen(pp0).
• Output M0 = ([E], x, 0) padded to make it s(λ)-bits.

– Round (pp,M, k):
• Given input M , if M = ([E], x, 0) for some x, set M̂ = ([E], x, k), otherwise
set M̂ = M .

• Output CΩ(M̂), padded to make it s(λ)-bits.

In the first round, CΩ acts on ([E], x, k) and produces the tC step advance of the
evaluation of DSF.Eval(x, k). In subsequent rounds it just advances in steps of tC over
the previous configuration, as expected.

The proof can be simply adapted for the other two implications ASF =⇒ AISF
and SSF =⇒ SISF with the same poly-space restrictions.

Overall Picture. Figure 2 shows the overall relationship between all of the sequential
functions we have defined. The existence of any type implies the existence of any of the
others, though perhaps with a poly(λ) loss of tightness.

SSF ASF DSF

SISF AISF DISF CISF

FHE

FHE

Lem 1

Th
m

1

Lem 2

(a) Existential implications.

Iterative

Sequential Functions

Selective

Adaptive

Dynamic

Continuous

(b) Set containments.

Fig. 2. Relations between sequential function definitions. {S,A,D}SF are {sequential, adap-
tive, dynamic} sequential functions (Definition 4). {S,A,D, C}ISF are {sequential, adaptive,
dynamic, continuous} iterated sequential functions (Definition 5). Unlabelled arrows represent
implications that follow directly from definitions
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3.3 Main Assumption

We do not know of any primitives that are provably sequential in a rigorous sense.
Like other works, we will make an assumption that some sort of sequential function
exists. Our goal is that this assumption should be as weak as possible, and that we only
need the existence of such a function–not necessarily the knowledge of one. This core
assumption is that continous ISFs exist:

Definition 6 (Circuit Assumption CKTtC ,tA,d,g,n). There exists a CISF, denoted
CISF∗, with (tC , tA)-sequentiality such that f∗ = CISF∗.Round has a circuit of at
most g gates, at most d depth, and at most n inputs and n outputs.

We assume that CISF∗ is a boolean circuit with fan-in 2, although all circuit models
are interchangeable up to polynomial loss. Though we assume the strongest type of ISF,
Lemma 2 shows that the types of ISF are also interchangeable up to polynomial loss.

Our circuit assumption may not hold for all parameters, e.g., all iterated sequential
functions may require many more gates g than their depth d. The bounds below allow
us to choose values of d, g, and n that are likely to capture a CISF, if it exists.

Lemma 3. The assumption CKTtC ,tA,d,g,n implies CKTt′
C ,t′

A,d′,g′,n, where d′ = g,

g′ = g2, t′C = d′ − o(d′) and d′
t′
A

≤ 2 tC
tA
.

Proof. Let CISF∗ = (Setup,Gen,Eval,Round) be a continous iterated sequential
function implied by the circuit assumption. Let CISF′ be identical to CISF∗, except
CISF′.Round consists of repeating CISF∗.Round for �g/tC	 iterations, which will have
g�g/tC	 ≤ g2 gates. In model MC it runs in time t′C := tC · � g

tC
	 = g − o(g).

Because CISF∗ is an iterated sequential function, CISF′.Round cannot run faster than
t′A := tA� g

tC
	 in model MA.

Since CISF∗.Round can be computed in a circuit of depth tC , CISF
′.Round can be

computed with a circuit of depth at most tC�g/tC	 ≤ g, and thus d′ := g.
Finally, since tC ≤ g we have �g/tC	 ≥ g/2tC , and thus d′

t′
A
= g

tA�g/tC� ≤ 2 tC
tA
.

4 Construction

We are now in position to define our construction of an iterated sequential function
assuming the existence but not knowledge of some iterated sequential function as well
as an FHE scheme. Since we only assume the existence of an ISF, we do not need to
have one as an input to our scheme.

The starting point of our construction is not any of the recent VDF construc-
tions; rather, it is the beautiful line of work on building NIZKs from lattice assump-
tions [14,15,40]. The core technique of these papers (that we will also use) is the idea
of computing a universal circuit (Definition 3) [48] homomorphically over encrypted
data. Suppose we are given an encryption of a circuit description C̃ and an encryption

of a program input x, which we will refer to as Enc
(
C̃
)
and Enc (x), respectively. If

Eval denotes the FHE evaluation function under the appropriate public key, then we
can compute
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Eval
(
UCn,m

g,d (·) ,Enc
(
C̃
)

,Enc (x)
)
= Enc (C (x)) .

In words, we homomorphically compute the universal circuit on an encrypted descrip-
tion of a circuit C and an encrypted input to the circuit x, and get a valid encryption of
C (x). Due to FHE security, the encrypted circuit description C̃ is indistinguishable from
random–so someone computing the universal circuit in this way (without the secret
key) cannot determine whether they are computing C or any other circuit that meets the
requirements of the parameters n, m, g, and d.

The authors of [14,40] use this to show correlation intractability, which allows them
to use a lattice-based hash function in the place of random oracles for NIZKs. Here, we
use this to argue that an adversary cannot distinguish whether they are evaluating a
sequential function.

We assume that a (tC , tA)-iterated sequential function f exists, and can be evaluated
homomorphically as an input to the universal circuit. Wrapping f in this way produces
a function that is still sequential, since evaluating this circuit gives the output of f
encrypted, and we know the output of f cannot be found faster than the bound tA.
Since the FHE and universal circuit add only a polynomial parallelization overhead,
honest users can use the homomorphic wrapper of f as a sequential function, albeit
with some loss in tightness, as the overheads increase tC .

So far this requires us to encode f as a circuit. If we knew exactly what function f
is, then we could use f directly, but we may not know such a function. However, thanks
to FHE, during the setup phase we can encrypt any circuit (even an all-zeros string),
and no adversary can distinguish this from an encryption of f . Hence, by the semantic
security of the FHE, they will not be able to evalute this circuit homomorphically any
faster than they could evaluate f , even though the setup does not know anything about
f except some bound on the circuit size.

Since we only rely on the existence of some f , this means that as long as any sequen-
tial function (or VDF) exists, then this construction is a sequential function.

Unfortunately, our constructions based on this intuition are not remotely practical:
honest parties will need a huge amount of computational parallelism to compute our
core sequential function. Instead, we view our constructions as a theoretical advance-
ment that will hopefully spur further improvements in this area, and that maybe one day
some constructions in this vein will be practical.

4.1 Formal Definition

Our ISF is a continuous ISF (CISF) in the sense of Sect. 3, as the subroutines Setup,Gen
and Round are all independent of k. We use a universal circuit UCn,n

d,g (Definition 3),
and we assume the existence of a fully homomorphic encryption scheme FHE =
(Gen,Enc,Dec,Eval) (Definition 1).

Definition 7 (CISFFHE construction). The continous iterated sequential function
CISFFHE is defined as follows:

– Setup
(
1λ

) → pp:



600 S. Jaques et al.

• Select g, k, and d to be in O(poly(λ)), such that n ∈ Ω(λ) and g = d2 (see
Lemma 3). These parameterize the number of gates, the input size, and depth,
respectively, of a universal circuit.

• Let b denote the largest number of bits required to represent the circuit portion
of the input to UCn,n

d,g (·).
• Sample (pk, sk) ← FHE.Gen

(
1λ

)
and ctckt ← 〈FHE.Enc (pk, 0)〉b

i=1.
• Output the tuple pp = (pk, ctckt).

– Gen (pp):
• Sample and output x ← 〈FHE.Enc (pk, 0)〉n

i=1.
– Round (pp,x):

• Output FHE.Eval
(
pk,UCn,n

d,g , ctckt,x
)
.

– Eval (pp,x, k):

• Output
(
Round

(
pk,UCn,n

d,g , ctckt, ·
))(k)

(x).

FHE.Eval may be probabilistic, but we can instead use any pseudorandom bits for its
random input to make it deterministic to fit the definition of Round. This will not impact
the proof of Theorem 2.

4.2 Sequentiality

Here we show that CISFFHE is a continous ISF as long as there exists a continuous
ISF. Since we must assume FHE for this construction, then Lemma 2 and Theorem 1
show that the existence of any type of sequential function implies that CISFFHE is a
continuous ISF.

Our construction adds two constant overheads to the scheme: κUC , the overhead
to compute a circuit with a universal circuit, and κFHE , the overhead to compute a
circuit homomorphically with an FHE scheme. These constants are a function only of
the security parameter λ5. Here we show that evaluating a sequential function with
either a universal circuit or an FHE scheme is also sequential.

Recall Definition 6, which defines CKTtC ,tA,d,g,n as the assumption that there exists
some (tC , tA) continous ISF, simulatable by UCn,n

d,g .

Lemma 4 (UC Sequentiality). Assuming CKTt′
C ,t′

A,d,g,n, there exists a continous
ISF, CISFn = (Setup,Gen,Eval) with round function f , such that (Setup, Gen,
UCn,n

g,g2(f, ·)) is a (tC , tA) continous ISF, with tC = κUCg and tA = t′A� g
t′
C

	.

Proof. Lemma 3 strengthens the circuit assumption to CKTt′′
C ,t′′

A,g,g2,n with t′′C = g
and t′′A = t′A� g

tC
	, implying the existence of CISFn. Cook and Hoover’s universal

circuit [19, Theorem 1] shows that κUC can be made constant.

Lemma 5 (FHE Sequentiality). If CISF = (Setup,Gen,Eval) is an iterated
(t′C , t′A)-sequential function such that CISF.Eval has circuit C, then CISF′ =
(Setup′,Gen′,Eval′) is an iterated (tC , tA)-sequential function, with tC = (κFHE +
o(1))t′C and tA = t′A, where

5 Details in full version.
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– Setup′(1λ) → (pp1 := CISF.Setup(1λ), pp2 := FHE.Gen(1λ))
– Gen′((pp1, pp2)) → FHE.Enc(pp2,CISF.Gen(pp1))
– Eval′((pp1, pp2), k,x) = (FHE.Eval(pp, C, ·))(k) (x)
Proof. If we decrypt the output of Eval′, then it acts as a circuit to compute the iterated
sequential function CISF, and this cannot run faster than tA. The overhead for these
computations is κFHE , and decrypting the output adds the o(1) term.

Finally, we prove that our scheme is sequential even if the encrypted public param-
eters do not encode a sequential function.

Theorem 2 (Sequentiality). Let CISFFHE be instantiated with parameters d, g = d2,
and n. Assuming CKTt′

C ,t′
A,d,d,n and CPA-2 security of FHE, CISFFHE is a (tC , tA)-

iterated sequential function, where tC = (κFHEκUC +o(1))d and tA = ( t′
A

t′
C

−o(1))d.

Proof. The circuit assumption and Lemma 4 imply that there exists CISF = (Setup,
Gen, Eval), a CISF, with a round function f that UCn,n

d,d2 can simulate.
We now play an adaptive security game with an oracle for an FHE scheme with

public key pk. First we run Gen and get a random message m, and we send this to the
FHE oracle to get an input x. Then for the challenge, we send m0 = {0}b and m1 as
the circuit for f . We receive a ciphertext ctc for c ∈ {0, 1}, and we set ppc = (pk, ctc)
to be the public parameters of our construction.

Suppose that (A1,A2) breaks the sequentiality of CISFFHE . We set (k, τ) ←
A1(ppc) and then set yA ← A2(ppc,x, k, τ), which runs in some time TA. We also
honestly compute y ← CISFFHE(ppc, k,x).

By our assumption that A2 breaks the iterated sequentiality of CISFFHE , if c = 0
then y = yA and TA < ktA. However, if c = 1, then both statements cannot be true:
since the ciphertext encodes the circuit for a CISF, then the construction is a sequential
function by Lemma 5, so A2 cannot produce the correct answer y in time TA < ktA.
Thus, we can compare y to yA, and TA to ktA, and deduce the original value of c,
breaking the semantic security of FHE. Honestly computing CISFFHE requires only
k · poly(λ) ≤ 2o(λ) resources, so this is a computationally feasible attack.

5 Non-Parallelizing Languages

Bitansky et al. defined a primitive called a non-parallelizing language in their work on
time-locked puzzles [9]. We modify their definition slightly to use our (MC ,MA) app-
roach and then show equivalences between our definition of adaptive sequential func-
tion and the definition of a non-parallelizing language. Informally, an adaptive sequen-
tial function is akin to the “search problem” variant of a non-parallel language.

Definition 8. An average-case non-parallelizing language ensemble with gap ε is a set
of languages {Lλ,t}λ,t∈N, where Lλ,t ⊆ {0, 1}λ, that satisfies:

Completeness: For all λ ∈ N and t ≤ 2o(λ), there exists a decision algorithm L in
model MC such that for all λ and t and all inputs x ∈ {0, 1}λ, L(t, x) runs in time
t and outputs 1 if and only if x ∈ Lλ,t.
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Average-case non-parallelizing: There exists an efficient sampler Gen such that for
every family of circuits A = {Aλ}λ∈N in model MA with parallelism at most
2o(λ), there exists a negligible function negl such that for all λ and t, if the run-time
of Aλ < (1 − ε)t, then

Pr
[Aλ(x) = L(t, x) x ← Gen(1λ, t)

] ≤ negl(λ).

Lemma 6. The existence of a (tC , tA) ASF implies an average case non-parallelizing
language of gap ε = 1 − tA

tC
+ o(1).

Proof. Our proof is a relatively basic application of the Goldreich-Levin Theeo-
rem [27]. A critical fact necessary for the proof to work is that queries in the Goldreich-
Levin algorithm (as stated in theorem) are nonadaptive and thus can be computed in
parallel.

Let ASF = (Setup,Gen,Eval) be an ASF and let pp = Setup(1λ). We let
T = ktC(λ) and l be the bit-length of the outputs of Gen(pp, k). We create a language
Lλ,T ⊆ {0, 1}l+l as the set of all strings (pp,x, r) such that 〈Eval(pp, k,x), r〉 ≡ 1
mod 2. The behaviour of Eval may be undefined if x is not the output of Gen; we
include such strings in Lλ,T if Eval runs in T and produces a well-formed output with
odd parity with r.

Finding the parity with Eval satisfies the completeness property, since Eval runs in
time ktC(λ) = T . If Eval fails to run in that time or does not produce a well-formed
output, the string is not in the language by definition and we can correctly output 0.

We let ASF.Gen be the efficient sampler for the languages. If Lλ,T are not average-
case non-parallelizing, then there is a parallel circuit A that decides Lλ,T with probabil-
ity greater than 1

2 + p in time less than (1− ε)T on the outputs of Gen. The Goldreich-
Levin algorithm will then find the output of Eval by running A for O(p−2λ1+o(1))
inputs [27]; however, this is less than 2o(λ), and these can be run in parallel, since the
output of the algorithm is just the bitwise majority of the outputs of A. Thus, the total
time will be less than (1 − ε)T + O(log(p) + log(λ)). If we let ε = 1 − tA

tC
+ δ, then

this equals
ktC(λ) − δktC(λ) + O(log(p) + log(λ)).

If δ is large enough this contradicts the sequentiality of ASF, and a large enough δ is
still o(1) in terms of λ.

Lemma 7. If there exists an average-case non-parallelizing languages of gap ε, then
there is a (1, 1 − ε) ASF.

Proof. Suppose we have a language Lλ,t which is average-case non-parallelizing of
gap ε. It comes with an algorithm L with decides the language. We set Setup(1λ) → λ.
The definition of non-parallelizing implies a sampler L.Gen, and we define the Gen
function for the ASF as λ repetitions of L.Gen, outputting x = (x1, . . . ,xλ). We then
define

Eval(pp, k,x) → L(k,x1)‖L(k,x2)‖ . . . ‖L(k,xλ).

Since L can be run in time k for any t, Eval runs in time k · 1.



Time-Release Cryptography from Minimal Circuit Assumptions 603

If (A1,A2) breaks sequentiality of this ASF, then A1 can be run once to produce
k, since Setup produces only the public information λ. Then A2 produces the output
of Eval in time less than ktA := k(1 − ε), and the output of Eval decides the language
Lλ,k with non-negligible probablity, contradicting the average-case non-parallelization
of Lλ,t.

Lemma 8. If there exist a worst-case non-parallelizing language of gap ε, then there
is a (κFHE , 1 − ε) ASF, where κFHE is the sequential overhead of FHE.

Proof. Suppose we have a languages Lλ,t which is worst-case non-parallelizing of gap
ε. As before, it comes with an algorithm L with decides the language. We sample pk ←
FHE.Gen

(
1λ

)
and set Setup(1λ) → (pk, λ). Let S be the sampler implied by the

definition of Lλ,t, and set Gen to be

FHE.Enc (x1 ← S‖x2 ← S‖ . . . ‖xλ ← S)

Finally, we set

Eval (pp, k,x) → FHE.Eval (L (k, ·) ,x1) ‖ . . . ‖FHE.Eval (Lλ (k, ·) ,xλ)

This has the exact same structure as in lemma 7 except for the fact that the input string
is encrypted and we are evaluating everything homomorphically. Thus, our argument
would follow immediately for average-case non-parallelizing languates.

However, the FHE scheme hides the input of Eval (effectively the output from Gen).
So, by the security of the FHE scheme, an adversary cannot tell whether this is a random
input or a specially tailored one. Using a simple hybrid argument, we can switch out
the input x for arbitrary (i.e. worst-case) value, which completes the proof.

The [26] FHE encryption scheme can have sequential overhead of O
(
log1+ε λ

)
for

any ε > 06, which means we can instantiate the implied construction from the above
lemma with relatively good parameters.
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Abstract. We study zero-knowledge arguments where proofs are: of
knowledge, short, publicly-verifiable and produced without interaction.
While zkSNARKs satisfy these requirements, we build such proofs in
a constrained theoretical setting: in the standard-model—i.e., without
a random oracle—and without assuming public-verifiable SNARKs (or
even NIZKs, for some of our constructions) or primitives currently known
to imply them.

We model and construct a new primitive, SPuC (Succinct Publicly-
Certifiable System), where: a party can prove knowledge of a witness w by
publishing a proof π0; the latter can then be certified non-interactively by
a committee sharing a secret; any party in the system can now verify the
proof through its certificates; the total communication complexity should
be sublinear in |w|. We construct SPuCs generally from (leveled) FHE,
homomorphic signatures and linear-only encryption, all instantiatable
from lattices and thus plausibly quantum-resistant. We also construct
them in the two-party case replacing FHE with the simpler primitive of
homomorphic secret-sharing.

Our model has practical applications in blockchains and in other pro-
tocols where there exist committees sharing a secret and it is necessary
for parties to prove knowledge of a solution to some puzzle. Our con-
structions can be seen as a way to compile a designated-verifier SNARK
into a proof system with a flavor of public-verifiability with similar effi-
ciency features of the starting dvSNARK (e.g., proving time).

We show that one can construct a version of SPuCs with robust proac-
tive security from similar assumptions. In a proactively secure model the
committee reshares its secret from time to time. Such a model is robust
if the committee members can prove they performed this resharing step
correctly. Along the way to our goal we define and build Proactive Uni-
versal Thresholdizers, a proactive version of the Universal Thresholdizer
defined in Boneh et al. [Crypto 2018].

1 Introduction

We consider the setting where, at any given moment in time, users can post
a puzzle on a blockchain. Later some other user may come along and show to
everybody that they know a solution to the puzzle without necessarily leaking it
(i.e., in zero-knowledge). This scenario has numerous applications to problems
c© Springer Nature Switzerland AG 2021
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in secure decentralized computing that have received much attention lately—
these include but are not limited to: showing that the parties are following some
internal protocol [29], storing and retrieving secrets with functionalities close
to extractable witness encryption [31], zero-knowledge contingent payments [17]
and showing knowledge of secret inputs to general smart-contracts [16].

For a solution to the problem above to be useful, we do not only require that
all the users can verify the proof to a puzzle, but we also need to pose efficiency
requirements. A scalable solution should involve minimal interaction among
parties—ideally the puzzle-solver should post its proof and then disappear—
and low bandwidth—short proofs.

In principle, a perfect candidate for this setting are publicly-verifiable suc-
cinct non-interactive arguments of knowledge (or pv-SNARKs) [4] with zero-
knowledge properties. In this work, however, we shall seek solutions that do not
require publicly-verifiable SNARKs. Our choice is motivated by exploring dif-
ferent (and, plausibly, weaker) assumptions while obtaining post-quantum secure
constructions. In our solutions we do not only avoid using pv-SNARKs, but also
any publicly-verifiable proof for non-deterministic computations (that is, NIZKs
for NP \ P). We discuss the rationale of this choice in Sect. 1.2.

Committees Certifying Proofs without Interaction. We consider a model which
is almost as non-interactive as that of pv-SNARKs, but in which we add one
more hop. At the high-level our model works as follows. At each moment in
time there exists a committee holding a secret (the secret being shared among
the committee members)1. This secret permits them to publicly “certify” a proof
publicly posted by anybody claiming they know a solution to a puzzle. Certifying
a proof happens in a threshold fashion: a prover holding a witness w, outputs a
succinct proof π0; the parties in the committee can then process it broadcasting
a “partial certificate”, which any node in the network can check whether to
consider it valid; if at least d (out of the total N) committee members broadcasted
a valid certificate, these can be combined through a deterministic algorithm to
obtain the bit b determining acceptance/rejection of π0. The protocol is required
to stay secure as long as the adversary corrupts less than a certain fraction of
committee members.

Naturally, a general MPC-based solution is always applicable in this sce-
nario. Our challenge, however, is to keep the efficiency requirements of low
interaction/bandwidth sketched above. Specifically we need to guarantee that:
(i) parties require no interaction among each other for proving, certification or
verification2; (ii) all messages—the proof π0 as well as the partial certificates—
are short (sublinear in the witness size).

YOSO-style Proactive Committees. The requirements sketched above are suffi-
cient for the setting where a certifying committee is static (this is our vanilla
SPuC model in Sect. 2). We also study a version of our protocol where the com-

1 Such a committee is not an uncommon architectural choice. See, e.g. [3,27].
2 Naturally we require certifying parties to wait for proof π0 to be posted publicly.
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mittee changes over time and can proactively reshare its shares. The challenge
for us is to make these protocols robust and YOSO-style, staying within our
weak-assumptions framework as much as possible. Requiring robustness means
that the resharing parties can prove whether they reshared correctly. YOSO
(You Only Speak Once) [27] requires more elaboration: when performing the
resharing (as well as in other parts of the protocol) parties should not interact
among each other, instead they speak only once and then can potentially dis-
appear. For us, the YOSO-style requirement means that, after the parties have
been assigned their roles as members of the certifying committees3 they need to
speak only once. Their message will consist of the certificate for the (potentially
many) proofs π0-s publicly posted during their time holding the role.

1.1 Contributions and Overview

A Model for SPuCs. We provide a formal model for Succinct Publicly Certi-
fiable proofs (SPuCs), which we describe in Sect. 2. Our security notions all refer
to an adversary controlling up to d−1 of the N committee members. We require
properties analogous to those for proof systems: unbounded zero-knowledge—an
adversary cannot learn anything even after (adaptively) querying many proofs
and certificates on them—and strong knowledge-soundness—given an adversary
providing a verifying proof and certificates for a statement stmt one can extract
a valid witness from them. The last notion can be paraphrased as: no adversary
can forge a certified proof π0 and (up to d − 1) valid certificates for stmt and
π0 without knowing a witness for stmt. While these definitions intuitively are
extensions of the corresponding notions for designated-verifier NIZKs, we find
them to be non-trivial and require some care (for example, in modeling appro-
priate oracles for the zero-knowledge simulator). Finally we require our proofs
and certificates to be of total size sublinear in the witness size.

A General Construction for SPuCs. We provide a general construction
for SPuCs from designated-verifier SNARKs and a primitive called Universal
Thresholdizers (UT) introduced in [8]. Informally a UT generalizes threshold
primitives such as threshold encryption or signatures. The setup of a UT takes
as input a secret x and produces some public parameters and N secret keys which,
in our setting, will be given to the members of the certifying committee. These
allow the secret-holders to non-interactively and jointly compute any circuit C
on the secret without knowing the secret. Each of these “local computations”
from the secret holders can be verified as being valid. If at least d of them are
valid they can be recombined to reconstruct C(x).

3 This happens through some nomination mechanism that we just posit and do not
model explicitly in this paper. For example, one could use the nominating committee
techniques in [3]. After being nominated the committee members can potentially
remain anonymous to the rest of the network. This can be done for example through
ephemeral public-keys and anonymous public-key encryption [3].



610 M. Campanelli and H. Khoshakhlagh

Our second ingredient are designated-verifier (dv) SNARKs. In a dvSNARK
a proof π for a statement stmt can be verified only by a party holding a
verification-key vk through Verify(vk, stmt, π). To preserve soundness of the sys-
tem it is important that the designated-verifier key remains secret from a mali-
cious prover.

We show that thresholdizers from [8] can be used to construct SPuCs by
injecting x = vk as a secret in the UT and compute functions of the type
Cstmt,π(·) = Verify(·, stmt, π) through it. Although this construction is arguably
simple, showing we can apply UT to obtain our desired argument-like system
has some non-trivial aspects to it. First, despite the generality of the threshold-
like setting in the UT definition, its security definition is incompatible with that
in the SPuC setting: the latter involves additional oracles—e.g. a proof oracle
for true statements in the zero-knowledge experiment—and additional experi-
ments extractability. Second, we do not require the “full universality” of these
thresholdizers, but only that their supported computations include dvSNARK
verification. This may be a low-complexity computation, involving for example
a decryption and a zero-test on a low-degree polynomial [6]. This is significantly
less complex than the proven relation R. Finally, to obtain zero-knowledge in
SPuCs we observe that the dvSNARK used in the construction does not need
to satisfy the usual notion of zero-knowledge for designated-verifier NIZKs; a
weaker notion suffices. We introduce and model this notion, dubbed “key-less
zero-knowledge”, which we believe to be of independent interest. We show that
some existing dvSNARKs already satisfy this notion, namely all those obtained
through the popular compiler from Non-Interactive Linear Proofs (NILPs) [32]
described in [6]. We also observe that it is possible to obtain dvSNARKs satisfy-
ing this notion by compiling a (non zero-knowledge) pvSNARKs with a public-
key encryption scheme.

Quantum-Resistant Instantiations from Homomorphic Primitives and
Linear-Only Encryption. By “opening the boxes” of UT and dvSNARKs
we show we can instantiate our SPuC construction requiring the existence of:
(leveled) Fully Homomorphic Encryption (FHE) [25]4, Homomorphic Signatures
(HS) with context-hiding5 properties [30] and linear-only encryption [6,11] (we
require the existence of all these primitives). Given an encryption of x, FHE
allows computing an encryption of f(x) using only public parameters; leveled
FHE ensures correctness only for functions of a bounded depth d specified at
setup time. HS allows to perform the same on signatures. Linear-only encryption
[6,11] is a form of linearly-homomorphic encryption with guaranteed limited
malleability.

We elaborate more on the relation between publicly-verifiable NIZKs and
these abstract primitives in Sect. 1.2. Our construction for SPuCs is quantum-

4 More precisely, we require leveled Threshold FHE, which is shown to be implied by
leveled FHE with the mild requirement of moderate decryption “noise bound”[8].

5 Context-hiding states that a signature σf,x, authenticating f(x) and obtained homo-
morphically from a signature on x, reveals nothing about x.
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resistant: all the above primitives can be instantiated from lattices. This is of par-
ticular relevance since there are no results on publicly-verifiable zero-knowledge
arguments with short proofs in the standard model. The only other construction
of pvNIZKs from lattices does not have succinct proofs [35]; the constructions
in [11,12,24] are for designated-verifiers.

One relatively minor challenge for us here is making sure that UT can be
built through the abstract primitives above. The construction for UT in [8] is
based on NIZKs, which we want to avoid. Although [8] informally mentions that
one could replace NIZKs with context-hiding homomorphic signatures, there is
no formal construction in the paper6.

We also show yet one more construction of UT for the two-party case replac-
ing FHE with the simpler notion of (two-party) homomorphic secret sharing
(HSS), which can be also built from lattices [15]. An HSS scheme allows to share
a secret x and to let the share-holders compute shares of C(x) for any circuit C.

A Practical Perspective. If applied to an efficient dvSNARK—potentially one
more efficient than pvSNARKs—then one could leverage our constructions to
obtain a public-verifiability-flavored proof system preserving some of the effi-
ciency features of the starting dvSNARK (e.g. proving time and to some extent
succinctness). We believe our constructions can be practical: their overhead for
certifying dvSNARK proofs is arguably low since we apply homomorphic cryp-
tography to very small circuits (those for dvSNARK verification) and so is the
communication overhead for each certificate (whose number, however, scales
with the chosen threshold). Nonetheless it seems unclear what scheme could
currently be used for such instantiation. To the best of our knowledge, despite
recent advances [33] it is still an open problem to obtain dvSNARKs without
random oracles that could beat pvSNARKs in practice (especially for prover’s
time).

Proactive SPuCs from Proactive UT (pUT). We consider the setting
where the committee is not fixed but it can proactively reshare its secret at
every round without interaction. We construct a proactive variant of SPuCs
through a proactive variant of UT (pUT) which we introduce in this paper. The
construction of pSPuC from pUT is analog to that SPuC from UT, i.e. applying
a thresholdizer for a designated-verifier SNARK. Our model for proactive SPuCs
is straightforward once defining SPuCs and pUT. We present it in full details in
the full version of this paper.

A Construction of pUT from Special UT (sUT). To convert a UT into its proac-
tive version we need to enable the committee members to reshare (or “hand
over”) their secret keys. Some prior techniques for doing this allow each party to
prove they are resharing correctly but they use NIZKs [3,31]. For our alternative
approach, we observe that what needs to be handed over to the next committee
6 A formal construction from homomorphic signatures is present in [9] but it relies on

the specifics of the underlying homomorphic encryption scheme.
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are reshares of some trapdoor computed inside the UT setup. We cannot directly
perform secret shares of it at handover time because there is no party holding
it (whoever computed it is now disappeared or it was not a single entity but a
protocol execution).

The solution to the problem above comes from UT itself. UT can be used
to verifiably compute functions on some secret obliviously (without knowing the
secret). Can we then extend UT to perform oblivious computation, not only
an injected secret x, but on its own trapdoor (a secret computed during the
execution of UT.Setup(x))? With this tool in our hands we could then let the
committee members obliviously compute some resharing function Reshare.

We show we can extend UT to support general (controlled) evaluations of its
own trapdoor obtaining a new primitive we call sUT. A sUT is like a UT but
it allows evaluations on two secrets: some secret x specified (through algorithm
sUT.PartEval) at setup time and its own trapdoor (through an analog of the
partial evaluation algorithm, called sUT.TrapEval). We are able to construct
sUT using almost the same assumptions as for UT: we still require homomorphic
signatures and FHE, but we need to also assume circular security of the latter
(namely, we should be able to securely encrypt its own decryption key in it).

We then show how to construct pUT by applying the algorithm TrapEval of
sUT on a function that generates a new secret and provides its share. Other
techniques of our construction for pUT are inspired by the YOSO-style ones
in [3] where the committee members of the new epoch can access their share
by opening a ciphertext encrypted with an ephemeral public key (of which they
only know the decryption key).

Both pUT and sUT are of independent interest and can be applied in contexts
of “cryptography-as-a-service” as those described in [3] (Fig. 1).

[16]

[9
]

[30]

[6]

pUT

pSPuC

LWE HSS(2,2)

TFHE

UT(2,2)

sub-exp SIS

HS

UT

lin-only enc.

dvSNARK

SPuC(2,2)

sUT

SPuC

Fig. 1. Dependency diagram of assumptions and constructions. Suffix “(2, 2)” denotes
two-parties. The dashed line refers to non blackbox constructions and additionally
requires circular (KDM) security for the TFHE scheme. Plausible constructions for
linear-only encryption can be instantiated from LWE [11].

1.2 Further Theoretical Motivation and Assumptions

Our goal is to build SPuCs through assumptions that are weaker than publicly-
verifiable zero-knowledge SNARKs and NIZKs. Also, our goal is to stay in the
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standard model (without random oracles). In the next paragraphs we discuss
some of the motivation behind this and how our constructions relate to these
goals. Our hope is that this work can provide a new lens on constructions relying
on publicly-verifiable proof systems.

Through this work, we want to make the following observation:

In the standard model, we can obtain robust systems for succinct zero-
knowledge proofs, without interaction among the prover and verifier even
if publicly-verifiable NIZKs or SNARKs do not exist. It is possible to
extend these results to the case of proactive resharing without relying on
publicly-verifiable SNARKs.

Why not Using Publicly-Verifiable SNARKs? We know that succinct arguments
in general require non-falsifiable assumptions (in case of black-box reductions)
[28]. Constructions of publicly-verifiable SNARKs usually go around this by:
the sometimes problematic Fiat-Shamir in the random-oracle model; knowledge-
of-exponent-like assumptions or idealized settings such as the generic or alge-
braic group models (e.g., [1,22,32]). Since our constructions use results implying
designated-verifier SNARKs, we cannot get around the result in [28] and will have
underlying non-falsifiable assumption (those required for linear-only encryption
[6,11]). Nonetheless we remark that our results still hold without a random ora-
cle and in the following paragraphs we argue that there is still an advantage in
moving from pvSNARKs to dvSNARKs as an assumption.

Advantages of Assuming dvSNARKs Instead of pvSNARKs. We observe it is
plausible that dvSNARKs may require strictly weaker assumptions than pvS-
NARKs. In fact, we know that publicly-verifiable SNARKs are not a stronger
primitive than designated-verifier SNARKs since we can always construct the
latter from pvSNARK by encrypting the proof under the verifier’s public key.
We still do not know whether there is a theoretical separation between these two
notions though.

Even if dvSNARKs were not strictly weaker than pvSNARKs as a primitive
in the standard model, we might still obtain them from different (and, poten-
tially, more plausible) assumptions. For example, consider the pvSNARK con-
structions in [23] and the dvSNARK constructions in [11,12,24]. Although all
non-falsifiable, the mathematical objects they refer to are quite different (respec-
tively, groups with bilinear pairings and lattices). We point that there also exist
other constructions in the standard model such as the publicly verifiable argu-
ments in [36], but they are based on the indistinguishability obfuscation, which
is yet not standard.

Finally, SPuCs and their constructions relying on dvSNARKs, can be moti-
vated by post-quantum security. We observe that, to the best of our knowledge,
there are no known constructions for pvSNARKs in the standard-model that
are resistant to quantum attacks. In fact, only recently the community learned
about the possibility of post-quantum non-interactive zero-knowledge (with non-
succinct proofs) [35].
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On not Requiring Publicly-Verifiable NIZKs in General. Our constructions for
SPuCs not only do not require publicly-verifiable SNARKs, but they do not
require publicly-verifiable NIZKs in general either. None of the assumptions we
rely on—linear-only encryption, leveled FHE (or two-party HSS) and (context-
hiding) homomorphic signatures—are known to imply pvNIZKs7. We observe
that homomorphic signatures with the context-hiding property can be seen as
a variant of non-interactive zero-knowledge (with short proofs) for determinis-
tic computations on authenticated data. However, they do not allow to prove
anything on general non-deterministic computations since witnesses can possi-
bly be unauthenticated. The reason our work can afford this is that we use a
trusted setup that “bootstraps” the system creating secret keys for authenti-
cation (homomorphic signatures) and threshold homomorphic decryption and
signing the initial set of shares. After this step no party is assumed to have
access to these secrets. We remark that it is possible to replace the trusted setup
with an MPC execution. This, at the same time, shows a limitation of our work:
for this MPC to run efficiently one would probably require publicly-verifiable
NIZKs (interactive approaches should also be possible though). We leave alter-
native approaches to the latter as future work.

On Assuming Homomorphic Cryptography for Small Computations. We remark
that although we often express our assumptions as general “Fully” Homomor-
phic Encryption and (context-hiding) Homomorphic Signature in general, our
requirements are actually weaker. We only need homomorphic properties on com-
putations as decryption, PRFs and the final low-degree test of some designated-
verifier SNARKs [6]. These are all computable in the class NC1 [2].

1.3 Other Related Work

The work in [5] also discusses how to compose (unleveled) FHE and “proofs” of
the verification algorithms to obtain succinct arguments of knowledge (in their
Sect. 9). The differences between their work and ours is that we use a primitive
that checks only deterministic computation (we use homomorphic signatures;
they use NIZK arguments of knowledge) and that their construction cannot
achieve public-verifiability from designated-verifiability. On the other hand, to
obtain the latter, we work in a slightly different security model and we add one
“hop” in the protocol.

7 Unleveled FHE—where homomorphic operations work correctly for any polynomial-
size function f(x) without any depth bound—does imply designated-verifier
NIZKs [20]. The recent work in [18] shows, however, that circular (KDM-secure)
unleveled FHE even implies pvNIZKs. For our proactive extensions, we assume
KDM-secure leveled FHE for NC1 which is known to imply (circular-secure) unleveled
FHE through bootstrapping [25]. We observe, however, that while the assumptions in
our proactive constructions are sufficient to imply pvNIZKs, they do not require the
standard FHE bootstrapping, significantly improving the efficiency of homomorphic
operations. Finally, circular-secure leveled FHE is not known to imply pvSNARKs.
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The work in [26] investigates approaches to minimizing proof size. Their work
requires a slightly different primitive called fully homomorphic hybrid encryp-
tion, and differently from us, requires it to support any computation (whereas we
require that only for the circuit of the verifier in a designated-verifier SNARK).

Notation and Basic Background. For any positive integer n, [n] denotes the
set {1, . . . , n}. We denote vectors in boldface. We use the notation Oλ(f(n)) to
denote O(p(λ)f(n)) where p is some polynomial in the security parameter. We
consider all adversaries to be stateful.

2 A Definition of SPuC

In this section we define our primitive SPuC-s.

Definition 1. Let P = [N] be a set of parties. A SPuC Π with a (d,N)-threshold
access structure and relation family (RSetλ)λ∈N with completeness error c = c(λ)
and soundness error ε = ε(λ) is a tuple of PPT algorithms (Setup,Prv,PartCert,
PartCertVfy,Vfy) such that

– Setup(1λ,R, d,N) → (pp, {sk1, . . . , skN}): On input the description of R and
threshold parameters d,N, the setup algorithm outputs public parameters pp
and a set of verification state shares sk1, . . . , skN.

– Prv(pp, stmt,w) → π0: On input pp, a statement stmt and a witness w, the
prover algorithm outputs a proof π0.

– PartCert(ski, stmt, π0) → π(i): On input a verification state share ski, a state-
ment stmt and a proof π0, the partial public prover algorithm outputs a
partial proof π(i) related to the partial certifier i.

– PartCertVfy(pp, stmt, π0, π
(i)) → {0, 1}: On input pp, a statement stmt, a

proof π0 and a partial proof π(i), the partial verifier outputs a bit b ∈ {0, 1}.
– Vfy(pp, stmt, π0, B) → {0, 1}: On input pp, a statement stmt, a proof π0 and a

set B = {π(i)}i∈IS for some S ⊆ [N] with index set IS , the verifier algorithm
outputs a bit b ∈ {0, 1}.

Remark 1. Although we do not make it explicit in the syntax, the public param-
eters can be split in two: prover-related (used in Prv) and verifier-related (used
verification algorithms) parameters. The former of size potentially growing with
|R|, while the latter of independent size and concretely much smaller.

We require the following properties.

Correctness. For all λ ∈ N, R ∈ RSetλ, (stmt,w) ∈ R, any set S with cardinality
no smaller than d, we have that the following probability is at least 1 − c(λ)

Pr

⎡
⎢⎣

(pp, {sk1, . . . , skN}) ← Setup(R, d,N)

π0 ← Prv(pp, stmt,w)

π(i) ← PartCert(ski, stmt, π0)

: Vfy(pp, stmt, π0, {π(i)}i∈IS ) = 1

⎤
⎥⎦
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Moreover, for any statement stmt∗, proof π∗
0 and for any set of partial proofs

B = {π∗(i)}i∈IS such that Vfy(pp, stmt∗, π∗
0 , B) = 1, it should hold for all i ∈ IS ,

Pr[PartCertVfy(pp, stmt∗, π∗
0 , π

∗(i)) = 1] ≥ 1 − c(λ)

where (pp, {sk1, . . . , skN}) ← Setup(R, d,N).

Succinctness. The running time of Verify is Oλ(d(|stmt| + log(|w|))) and the size
of each proof and certificate is Oλ(log(|w|)).

Robustness. We require that for all λ ∈ N, R ∈ RSetλ, it holds that for any
PPT adversary A, the following experiment called ExptA,robust(1λ) outputs 1
with negligible probability.

1. The challenger runs (pp, {sk1, . . . , skN}) ← Setup(R, d,N) and then sends
(pp, {sk1, . . . , skN}) to A.

2. A outputs a statement stmt∗, a proof π∗
0 and a partial proof π∗(i).

3. The challenger returns 1 if PartCertVfy(pp, stmt∗, π∗
0 , π

∗(i)) = 1 and π∗(i) �=
PartCert(ski, stmt∗, π∗

0).

Knowledge Soundness. We require that if an adversary is able to convince the
verifier, then we can extract a valid witness from it. Intuition about the exper-
iment: the adversary chooses a corruption set and gets the secret keys for that
set. It is then given oracle access to partial proofs from all the other parties.

Definition 2 (Knowledge Soundness). For all λ ∈ N, R ∈ RSetλ and for
all (non-uniform) efficient stateful adversaries A there exists a (non-uniform)
efficient extractor E such that Pr[KSNDA,E(1λ) = 1] ≤ negl(λ)

KSNDA,E(1λ)

(pp, sk = (sk1, . . . , skN)) ← Setup(1λ, R, d,N)

C ← A(pp) where |C| = d − 1

(h, stmt, π0, πi1 , . . . , πid−1) ← AOprf(pp, (skj)j∈C) where h ∈ [N] \ C

πh ← PartCert(skh, stmt, π0)

w ← EOprf(pp)

Output 1 iff R(stmt,w) �= 1 ∧ Verify(pp, π0, (πh, πi1 , . . . , πid−1)) = 1

The oracle Oprf above works as follows: given a pair (stmt′, π′
0) the adversary

is given all the responses PartCert(ski, stmt′, π′
0) for i ∈ [N].

NB: Above, the extractor does not need to take as input πh since it can always
obtain it from the (deterministic) proof oracle it has access to by emulating the
adversary’s behavior. This approach to modeling the extractor has the advan-
tage of not requiring an explicit trapdoor (we remark that constructions of this
type are possible [6]), thus allowing for a somewhat stronger notion. We follow
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ZK
world∈{hon,sim}
A (1λ)

if world = hon then

(pp, sk = (sk1, . . . , skN)) Setup(1λ
, R, d,N)

else

(pp, sk = (sk1, . . . , skN)) S1(R, d,N)

C (pp) where |C| = d − 1

guess

A

AOworld
zk (pp, (skj)j∈C)

Output 1 iff guess = world

Ohon
zk (tag, inp)

if tag = part-proofs then

Parse inp as (stmt, π0)

(πi)i∈[N] PartCert(ski, stmt, π0)
)

i∈[N]

return (π1, . . . , πN)

if tag = valid-x then

Parse inp as (stmt,w)

if (stmt,w) R∈� then return ⊥
return Prv(pp, stmt,w)

Osim
zk (tag, inp)

if tag = part-proofs then

Parse inp as (stmt, π0)

(πi)i∈[N] Sprt(sk, stmt, π0)
)

i∈[N]

return (π1, . . . , πN)

if tag = valid-x then

Parse inp as (stmt,w)

if (stmt,w) R∈� then return ⊥
return Sprf(sk, stmt)

Fig. 2. ZK experiment. Oracles take as input tag ∈ {part-proofs, valid-x} and some stmt
whose structure depends on the tag.

a similar line of modeling when defining strong knowledge-soundness for dvS-
NARKs (Definition 4).

Zero-Knowledge. In the zero-knowledge experiment we let the adversary to cor-
rupt a certain subset of parties and then access to two types of oracles:

– one in which it supplies a statement stmt (not necessarily in the language)
and some π0 and gets the partial certificates from all the secret key holders;

– one analog to the oracle for standard zero-knowledge where, given a pair
statement–witness satisfying the relation, it receives a proof together with
certificates for it.

Definition 3 (Zero-Knowledge). We say SPuC with a (d,N)-threshold
access structure is zero-knowledge if there exists a stateful efficient simulator
tuple S = (S1, Sprt, Sprf) such that for all λ ∈ N, all R ∈ RSetλ and all PPT
adversary A, we have that

|Pr[ZKhon
A (1λ) = 1] − Pr[ZKsim

A (1λ) = 1]| ≤ negl(λ)

where the experiments are defined in Fig. 2.
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3 Construction of SPuC

In this section we describe constructions of (non-proactive) SPuC and discuss its
instantiations. The goal of Subsect. 3.1 is to serve as a warm-up to some of the
challenges of constructing SPuC-s and informally describes a limited construc-
tion. We provide preliminaries for our general SPuC construction—universal
thresholdizers, UT, and designated-verifier SNARKs—in Subsect. 3.2. We then
proceed to describe two instantiations of UT, both based on lattices. In Sub-
sect. 3.5 we present a general construction (no limitations on threshold and num-
ber of parties) from Threshold FHE and context-hiding homomorphic signatures
(HS). We present a simpler, more efficient construction for the two-party case
based on homomorphic-secret sharing (HSS) in Subsect. 3.6.

3.1 Warm-Up: A Straw-Man Construction

The following construction—based only on the existence of (zero-knowledge)
designated-verifier SNARKs—exemplifies some of the properties we desire in a
succinct publicly-certifiable scheme. Although arguably simpler than our other
constructions we find it to have stronger limitations, discussed below. Thus we
keep its presentation informal.

Assuming the existence of a designated-verifier SNARK scheme (see next
section), we can construct a SPuC with N certifiers and threshold d as follows.

– At setup time we generate N different setups (eki, vki) ← dvKeyGen(1λ,R),
publish the N evaluation keys and a secret verification key vki to each of the
committee members.

– The algorithm Prv would then produce N designated-verifier proofs πdv
i , each

with a different evaluation key eki for i ∈ [N].
– Each certifier i in the committee (algorithm PartCert) would return a bit

stating acceptance or rejection of the respective πdv
i using vki and signed

with a key of the respective committee member.
– Given a set B of acceptance/rejection bits of size at least d, a verifier would

then accept if all the bits in B are 1 and otherwise reject.

For simplicity we have not presented algorithm PartCertVfy which can be
achieved with techniques similar to ours. The construction just described sat-
isfies knowledge soundness and zero-knowledge. its main limitations are a high
concrete and asymptotic efficiency and that it is not immediate how to extend
it efficiently to a proactively secure construction. For efficiency, notice that we
require N designated-verifier setups, which is very expensive (especially if we
want to replace the setup stage with an MPC execution). It is also expensive
in practice to require that a prover would run N times the proving algorithm.
The construction does not technically satisfy succinctness for the same reason:
the output of Prv depends on the number of shares. Even if this were acceptable
asymptotically (e.g., considering N a constant) this incurs high concrete costs.
In addition and in contrast to our constructions, it forces the runner of the algo-
rithm Prv to store N evaluation keys (each of size at least linear in the size of the
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relation R). This dependency on N is less problematic if this parameter is small.
Extending this construction to the proactive case would seem to require regener-
ating the verification keys (the adversary could learn d of them through different
epochs and so they cannot remain the same). It is unclear how to perform this
new setup without an interactive MPC or a trusted authority.

3.2 Building Block Primitives: UT and dvSNARKs

We now describe the building blocks for our general construction.

UT. Universal thresholdizers (UTs) are a primitive that can be used to thresh-
oldize a system. A UT scheme with a (d,N)-threshold access structure consists of
four algorithms (Setup,Eval,Verify,Combine). The setup algorithm Setup takes
in a secret value x and divides it into a set of shares s1, . . . , sN, which are given
to N users. Each user, on input a circuit C, calls Eval and uses their shares si to
compute an evaluation share yi of C(x). The verification algorithm Verify can be
used to check whether yi was computed correctly. Finally, for a set B = {yi} for
which |B| ≥ d, the algorithm Combine can be used to combine these evaluation
shares and produce y = C(x).

For a UT scheme to be secure, it should hold that the shares s1, . . . , sN,
together with the evaluation shares yi can be simulated only given access to
the circuit C and its output on the secret value x (i.e., C(x)). In addition, the
robustness property states that no PPT adversary should be able to produce
an incorrectly computed evaluation share yi for a circuit C if the verification
algorithm Verify accepts it.

Theorem 1 (Implicit in [8]). If there exists leveled Threshold FHE and com-
pact context-hiding homomorphic signatures (HS) then there exists UT. It is
possible to construct leveled Threshold FHE from LWE.

dvSNARKs. A dvSNARK has a key-generation algorithm dvKeyGen which
returns an evaluation key ek and a verification key vk for an NP relation R.
The prover PSNARK takes in ek, a statement stmt and a witness w, and out-
puts a proof π, which can be verified through algorithm VSNARK taking as input
(stmt, π), and the (secret) vk. Key properties of a dvSNARKs are: Succinct-
ness (its proofs are short), Knowledge-soundness (we can extract a valid witness
from a verifying proof), Zero-knowledge (a proof does not reveal anything more
than the truth of the statement). There are constructions of dvSNARKs from
linear-only encryptions [6,11] (which can be plausibly instantiated from LWE).

3.3 A General Construction for SPuC

Our construction is in Fig. 3.

Theorem 2. (informal) If there exists UT and zero-knowledge dvSNARKs then
there exists a secure SPuC.
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Setup(1λ,R, d,N)

dvKeyGen(1λ, R) (ek, vk)

(ppUT, skUT,1, . . . , skUT,N) UT.Setup(d,N, vk)

return (pp = (ek, ppUT), {ski = skUT,i}i∈[N])

Prv(pp = (ek, ppUT), stmt,w)

return π0 dvProve(ek, stmt,w)

Vfy(pp, stmt, π0, (π(i))i∈IS
)

return UT.Combine(ppUT, (π(i))i∈IS )

PartCert(ski, stmt, π0)

π(i) UT.PartEval(skUT,i, Cstmt,π0)

s.t. Cstmt,π0( ) := dvVerify( , stmt, π0)

PartCertVfy(pp, stmt, π0, π
(i))

return UT.Verify(ppUT, Cstmt,π0 , π(i))

s.t. Cstmt,π0( ) := dvVerify( , stmt, π0)

Fig. 3. Construction of SPuC from UT

Remark 2 (Weakening Zero-Knowledge Requirements for dvSNARKs). The
result above (as well as its corollaries) only require a weaker notion than standard
zero-knowledge for dvNIZKs: key-less zero-knowledge, which we introduce (Defi-
nition 5). The notion states that a proof leaks nothing to any adversary without
the verification key. This is less stringent than the standard zero-knowledge
requirement where we require a proof to leak nothing even to an adversary hold-
ing a verification-key. We show this weaker notion is sufficient to obtain (full)
zero-knowledge in our model as formalized in Definition 3. We provide further
discussion in the full version where we also argue how it may allow for simpler and
more efficient designated-verifier SNARKs to be plugged into our construction.

3.4 Proof of Security

Completeness and robustness follow straightforwardly from the equivalent prop-
erties of UT [8]. We prove knowledge soundness and zero-knowledge. We first
recall two formal definitions for dvSNARKs that we will use in the proof. The
definition of strong knowledge-soundness is an adaptation of that in [19].

Definition 4 (Strong Knowledge-Soundness). For all λ ∈ N and for all
(non-uniform) efficient adversaries Adv there exists a (non-uniform) efficient
extractor Edv such that

Pr

⎡
⎢⎢⎣

(ek, vk) ← dvKeyGen(1λ,R)

(stmt, π) ← AOdv(vk,·)
dv (ek)

w ← EOdv(vk,·)
dv (ek)

:
R(stmt,w) �= 1 ∧

VSNARK(vk, stmt, π) = 1

⎤
⎥⎥⎦ ≤ negl(λ)

where Odv(vk, ·) := VSNARK(vk, ·)



Succinct Publicly-Certifiable Proofs 621

Definition 5 ((Unbounded) Key-Less Zero-Knowledge). We say dvS-
NARK ΠSNARK = (dvKeyGen,PSNARK,VSNARK) is key-less zero-knowledge if there
exists a stateful efficient simulator S such that for all λ ∈ N and all PPT adver-
sary A, we have that |Pr[klZKhon

A (1λ) = 1] − Pr[klZKsim
A (1λ) = 1]| ≤ negl(λ)

klZK
world∈{hon,sim}
A (1λ)

(ek, vk) ← dvKeyGen(1λ, R); guess ← AOworld
kl-zk(ek); Output 1 iff guess = world

where Ohon
kl-zk(stmt,w) (resp. Osim

kl-zk(stmt,w)) return PSNARK(ek, stmt,w) (resp.
S(ek, stmt)) if (stmt,w) ∈ R. Both oracles return ⊥ if (stmt,w) �∈ R.

In our proofs below we also use UT security, which is a special case of sUT
security with no trapdoor evaluation oracle, described formally in Definition 7.

Lemma 1 (Knowledge Soundness). The construction in Fig. 3 is knowledge
sound (Definition 2) if UT is Universal Thresholdizer and DV is a designated-
verifier SNARK with strong knowledge-soundness (Definition 4).

Proof. Consider an adversary Ā in the knowledge soundness experiment of Def-
inition 2 for some λ,N ∈ N. Let us construct an adversary Adv for the strong
knowledge-soundness experiment as in Fig. 4. We construct an extractor Ē that
internally runs the knowledge soundness extractor Edv, corresponding to Adv. We
claim that the extractor outputs a witness with high probability if Ā produces a
valid proof with high probability. First observe that (x, π0), output of Adv, must
verify successfully with probability negligibly close to that of Ā. This follows from
the definition of S = (SUT

1 , SUT
2 ), security of UT as well as its verification and

evaluation correctness: the output of O′ in Adv must be computationally indis-
tinguishable from dvVerify(vk, ·) (the oracle Odv in Strong Knowledge-Soundness
definition) otherwise we would be able to distinguish between the simulated πi-s
and the honestly computed ones in UT security. By definition of Adv the output
of Ē must be a valid witness with probability close to that of Edv. To show why,
we observe that the oracle O′′ in the extractor Ē must have, by construction,
an output indistinguishable from that of dvVerify(vk, ·); we can conclude this by
invoking verification and evaluation correctness. ��

Lemma 2 (Zero-Knowledge). The construction in Fig. 3 is zero-knowledge
(Definition 3) if UT is Universal Thresholdizer and DV is a designated-verifier
SNARK with key-less zero-knowledge (Definition 5).

Proof. Our goal is to build S = (S1, Sprt, Sprf) where S1 is the simulator for the
setup. We shall do that by invoking the security definition of UT8 and the defini-
tion of key-less zero-knowledge (Definition 5). From these theorems it follows the
8 For the definition of UT security, we refer to the sUT security in Fig. 6. Note that

UT security is a special case where there is no trapdoor evaluation oracle.
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AOdv
dv (ek)

Let S = (SUT
1 , SUT

2 ) be the simulator from the UT security;

(pp, s1, . . . , sN, st) SUT
1 (1λ); C Ā(pp)

Define oracle O′(stmt′, π′
0) as :

b Odv(stmt′, π′
0)

(πi)i∈[N] SUT
2 (pp, Cstmt′,π′

0
, b, st)

where Cstmt′,π′
0
is the verification circuit (as in construction)

return (πi)i∈[N]

(h, stmt, π0, πi1 , . . . , πid−1) ĀOprf(pp, (si)i∈C)

return (stmt, π0)

ĒOprf(pp)

Define oracle O′′(stmt′′, π′′
0 ) as :

(πi)i∈[N] Oprf(stmt′′, π′′
0 )

Find set of d proofs π∗ s.t. SPuC.PartCertVfy(pp, stmt, π′′
0 , π∗

j ) = 1 ∀j ∈ [d]

If ∃π∗ output SPuC.Vfy(pp, stmt, π′′
0 , π∗); o.w. output 0

w EO′′
dv (ek)

return w

Fig. 4. Construction of Adv in the proof of Lemma 1

existence of simulators respectively SUT = (SUT
1 , SUT

2 ) and Sklzk. We then define
S1 so that: it first runs (ek, vk) ← dvKeyGen(R); then (ppUT, sk) ← SUT

1 (1λ,N);
then it outputs a public key (ek, ppUT) and a simulation trapdoor (sk, vk). We
shall then define S as S := (S1, Sprt = SUT

2 , Sprf = Sklzk).

Claim 1. The output of S1 is indistinguishable from that of the honest setup.
This follows directly from the definition of SUT

1 and from UT security.

Hybrid Experiments. Let q(λ) = poly(λ) be an upper bound on the number
of oracle queries of the adversary in the experiment in Definition 3. For each
i ∈ {0, 1, . . . , q(λ)} we define a hybrid zero-knowledge experiment Hi as in figure.
For all oracle queries j ∈ [q(λ)] the oracle Oi

zk acts as follows: for query j ≤ i
the adversary receives honest generated queries (from Ohon

zk ); for query j > i

receives simulated queries (Osim
zk ). Notice that hybrid H0 corresponds to ZKhon

and hybrid Hq(λ) to ZKsim. It is now sufficient to prove the following claim.

Claim 2. for all i ∈ [q(λ)] Hi−1 ≈ Hi. Notice that the oracles in Fig. 2 are such
that for any tag ∈ {part-proofs, valid-x} Ohon

zk (tag, inp) ≈ Osim
zk (tag, inp). This is
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because of the security of the UT and the (key-less) zero-knowledge property of
the dvSNARK. If two consecutive hybrids were distinguishable then it would be
possible to distinguish either of the two oracles with non-negligible probability
since the i − 1 queries can be efficiently implemented.

Hi
A(1λ,N)

(ppUT, sk = (sk1, . . . , skN)) ← SUT
1 (1λ, R,N); C ← A(pp) where |C| = d − 1

Output guess ← AOi
zk(ppUT, (sj)j∈C) where h ∈ [N] \ C

��

3.5 A General Construction of UT from TFHE and HS ([8])

As informally described in [8], we can construct UT from TFHE and context-
hiding HS. TFHE can itself be built from FHE with moderate “noise bound”
(roughly, a measure of the noise at the decryption stage), which we can obtain
for our purposes from LWE [8]. In the full version we formally build for the first
time UT from homomorphic signatures ([8] only contains formal description and
proofs for a pvNIZK-based construction).

Intuition on Construction. We exploit Threshold FHE, where one can encrypt a
message x (TFHE.Enc), publicly obtain a ciphertext of an evaluation C(x) for a
circuit C, members of a committee can provide partial decryptions of a ciphertext
through (a share of) a secret key, which can then be publicly combined to obtain a
plaintext. When we run UT.Setup(x) we encrypt the secret x through the TFHE
and provide a share of the TFHE secret key to each of the committee members.
The evaluation and combination algorithm of UT invoke respectively the partial
decryption and combination algorithm of TFHE. To provide robustness we use
homomorphic signatures: we let each committee member sign the output of the
partial decryption. They can carry this out homomorphically (using HS.Eval),
as they are given a signature of their secret key share at setup time (through
HS.Sign).

Corollary 1. (informal) If there exists leveled Threshold FHE for NC1, com-
pact context-hiding Homomorphic Signatures and zero-knowledge dvSNARKs
then there exists a secure SPuC.

Efficiency. We can instantiate our construction with dvSNARKs obtained
through Square-Span Programs [21] compiled with the results in [6] and homo-
morphic signatures from [30]. The output of Prove consists of a constant number
of ciphertexts each encrypting a field element. Its total size would then be Oλ(1).

The size of each certificate is Oλ(log(|stmt|)) which we can derive as follows.
First observe that the signatures in [30] after evaluation remain of a size lower
than some bound on the depth of the homomorphic computation. Looking inside
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the TFHE-based UT construction from [8] (formalized in the full version) and the
compiler in [6], we see that the homomorphic computation consists of a partial
TFHE decryption on top of a procedure fdv. On input a signed secret of size
Oλ(|stmt|) procedure fdv decrypts the aforementioned ciphertexts and performs
a zero-test on a low-degree multivariate polynomial with O(n) variables. Hence
a bound on the depth of fdv is Oλ(log(|stmt|)). The partial decryption on top of
it adds a factor poly(λ).

3.6 A Construction of UT from HSS and HS for the (2, 2) Setting

In Fig. 5 we describe a novel construction for (two-party) UT based on Homo-
morphic Secret-Sharing [13]. It works similarly to the construction from TFHE.
We recall that HS denotes the homomorphic signature scheme and we denote
by using HS.Eval and by HS.Sign respectively the algorithms for homomorphic
evaluation of signatures and for initially signing a message. We can instantiate
HSS9 from LWE through the construction in [15]. While the (2, 2)-case for UT
is subsumed by the general construction from Sect. 3.5, our HSS-based construc-
tion requires simpler and more efficient primitives (see discussion of efficiency of
TFHE vs HSS in [15]). Moreover, although our main focus is quantum-resistant
constructions, HSS allows for a wider type of instantiations, for example from
DDH as in [13]10 (not known to imply (leveled) FHE).

Corollary 2. (informal) If there exists two-party-HSS for NC1, context-hiding
HS and zero-knowledge dvSNARKs then there exists a two-party SPuC.

Remark 3 (On UT and Robust HSS). We observe that the notion of UT is very
close to robust homomorphic secret-sharing scheme (see, e.g., Sect. 2 in [14]).
We, however, present it in the language of UT because it allows to use for the
same framework as that of our Sect. 3.5 and for continuity with [8].

4 Proactive UT and Proactive SPuC

We define a new primitive pUT, proactive version of UT where the committee
members can change constantly. The protocol is divided in epochs with a han-
dover stage at the end of each. During each epoch t, the members of committee
(Ct) can carry out oblivious evaluations as in UT and later hand over their shares
to the next committee Ct+1. We require these steps to be non-interactive and
robust (roughly, the resharing phase should be publicly verifiable).

After being nominated (a nomination stage is out of the scope of this paper
and we merely posit it) the committee member i for the next epoch holds an

9 A (2-party) HSS consists of algorithms: Share to secret share a message, Eval to
homomorphically produce a partial evaluation of a function f on the message x
given a share, Combine to publicly recombine the evaluation shares into f(x).

10 This instantiation is still plausibly weaker than publicly-verifiable NIZKs; the recent
breakthrough in [34] requires a sub-exponential version of DDH to build pvNIZKs.
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UT(2,2).Setup(1λ, d = 2,N = 2, x)

(skhs, pkhs) HS.Setup(1λ)

sk UT(2,2)-AuxSetup(x, skhs)

return (pp := pkhs, sk)

UT(2,2)-AuxSetup(x, skhs)

(share1, share2) HSS.Share(1λ
, x)

for i = 1, 2 :

sk′
i[hs] HS.Sign(skhs, “i”, sharei)

sk′
i := (sharei, sk

′
i[hs])

return (sk′
1, sk′

2)

UT(2,2).PartEval(pp := pkhs, ski, i, C)

yi HSS.Evali(sharei, C)

σi HS.Eval(pkhs, “i”, CHSSEval, ski[hs])

where CHSSEval := HSS.Evali(·, C)

return (yi, σi)

UT(2,2).Combine (pp := pkhs, y1, y2)

return HSS.Combine(y1, y2).

UT(2,2).VfyEval (pp := pkhs, πi = (yi, σi), i, C)

return HS.Verify(pkhs, “i”, yi, σi, CHSSEval)

where CHSSEval := HSS.Evali(·, C)

Fig. 5. 2-party UT Construction, UT(2,2), from HSS and HS.

ephemeral secret key eski. Its share of the secret will be encrypted with a corre-
sponding ephemeral public key epki. For this purpose a pUT is coupled with a
public-key encryption scheme PK.

Here we present an overview of the model and the construction. Further
details can be found in the full version.

4.1 Proactive UT: Model Description

A pUT extends the syntax of UT with algorithms for resharing, reconstruction
and related verification: – pUT.Reshare(pp, skt

i, i, epk
t+1) → (yresh

i , σresh
i ): using

a partial secret key skt
i this algorithm performs a (partial) handover of secret i

to the committee in epoch t + 1. – pUT.VfyReshare(pp, epkt, (yresh
i , σresh

i ), i) →
{0, 1}: The algorithm verifies if party i carried out a resharing step correctly.
– pUT.Reconstruct(pp, eskt

j , (y
resh
i )i∈[d]) → skt+1

j : Having d shares (yresh
i ), the

algorithm reconstruct a secret share skt+1
j through eskj .

4.2 Building Block: Special UT (sUT)

We construct pUT from another novel primitive, sUT. If a pUT extends UT with
resharing features, a sUT extends it with a special type of oblivious evaluation.
Recall that in UT committee members can obliviously compute functions on a
secret x, provided as input to the UT setup. In sUT, on the other hand, we also
allow to compute functions on secrets of the sUT itself (a trapdoor generated
at setup time). This very powerful type of evaluation will be useful in pUT to
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Exptworld∈{real,ideal}
A,sUT 1λ, d,N

)
:

1. x (1λ, d,N)
2. if world = real then (pp, s1, . . . , sN, trapd) sUT.Setup 1λ, d,N, x

)
3. else if world = ideal then (pp, s1, . . . , sN, trapd)

A

SS 1λ, d,N
)
.

4. A outputs a corruption set C of size d− 1
5. The challenger provides the shares {si}i∈C to A.
6. A can ask for a polynomial number of adaptive queries to the oracle Oworld

sUT

(defined below).
7. Adversary outputs a guess guess
8. Return 1 iff guess = world

The oracle Oworld
sUT can receive in input either a tuple (trapdquery, z) or a tu-

ple (xquery, C). The first asks for a query evaluation on the trapdoor; the
other for the secret x. For the case (trapdquery, z), the oracle samples a cir-
cuit from sampler D as C $ D(trapd, z), returns circuit C and partial evaluation
{yi sUT.TrapdEval (pp, si, C)}i∈[N]. For the case (xquery, C) the oracle responds with:

– if world = real then return {yi sUT.Eval (pp, si,T , C)}i∈[N]

– if world = ideal then return {yi}i∈[N] SE (trapd, C, C(x))

Fig. 6. Security experiment for sUT

reshare the trapdoor itself. Naturally we need to somehow constrain the type
of evaluations allowed to the adversary. In order to do this we allow two types
of evaluation queries: one unconstrained (on the secret x) and one (on the sUT
trapdoor) with respect to a circuit sampler.

Definition 6 (Circuit Sampler). A circuit sampler D is a PPT that on input
a string z returns a circuit C ← D(z) of size polynomial in |z|.
Definition 7. (sUT Security) A sUT scheme satisfies security with respect to
circuit sampler D if there exists a PPT algorithm S = (SS ,SE) such that for
all λ, for any PPT adversary A, the following experiments ExprealA,sUT

(
1λ, d,N

) ≈
ExpidealA,sUT

(
1λ, d,N

)
(see Fig. 6).

A Construction for sUT. We extend the construction from [8] to prove eval-
uations on the sUT trapdoor. The TrapdEval function works exactly as PartEval
but on a different ciphertext (which encrypts the trapdoor). The construction is
using almost the same assumptions as for UT, namely homomorphic signatures
and FHE, but we need to also assume circular security of the latter as we should
be able to securely encrypt its own decryption key. A construction of sUT is in
Fig. 7. We prove its security in the full version.
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sUT.Setup(1λ, d,N, x)

(skhs, pkhs) HS.Setup(1λ)

(skfhe, pkfhe) TFHE.KeyGenAux(1λ
, d,N)

ctx TFHE.Enc(pkfhe, x)

ρ $ rnd

trapd := (skfhe, skhs, ρ)

sk AuxSetup(trapd)

cttpd TFHE.Enc(pkfhe, trapd)

return (pp := (pkfhe, pkhs, ctx, cttpd), sk, trapd)

AuxSetup(s)

Parse s as s = (skfhe, skhs, ρ)

Parse ρ as ρ = (ρ[SS], ρ1[hs], . . . , ρN[hs])

sk′
1[fhe], . . . , sk′

N[fhe] SS(d,N, skfhe, ρ[SS])

for i = 1, . . . ,N

sk′
i[hs] HS.Sign(skhs, “i”, sk′

i[fhe]; ρi[hs])

sk′
i := (sk′

i[fhe], sk
′
i[hs])

return sk′
1, . . . sk′

N

sUT.PartEval(pp := (pkfhe, pkhs, ctx, cttpd), ski, i, C)

ct′ TFHE.Eval(pkfhe, ctx, C)

yi TFHE.PartDec(ski[fhe], ct
′)

σi HS.Eval(pkhs, “i”, CDec, ski[hs])

where CDec := TFHE.PartDec(·, ct′)
return (yi, σi)

sUT.TrapdEval(pp := (pkfhe, pkhs, ctx, cttpd), ski, i, C)

ct′ TFHE.Eval(pkfhe, cttpd, C)

yi TFHE.PartDec(ski[fhe], ct
′)

σi HS.Eval(pkhs, “i”, CDec, ski[hs])

where CDec := TFHE.PartDec(·, ct′)
return (yi, σi)

sUT.VfyEval (pp := (pkfhe, pkhs), πi = (yi, σi), i, C)

ct′ TFHE.Eval(pkfhe, ctx, C)

return HS.Verify(pkhs, “i”, yi, σi, CDec)

where CDec := TFHE.PartDec(·, ct′)

sUT.VfyTrapdEval (pp := (pkfhe, pkhs), πi = (yi, σi), i, C)

ct′ TFHE.Eval(pkfhe, cttpd, C)

return HS.Verify(pkhs, “i”, yi, σi, CDec)

where CDec := TFHE.PartDec(·, ct′)

sUT.Combine (pp := (pkfhe, pkhs), y1, . . . , yd)

return TFHE.Dec(pkfhe, {y1, . . . , yd}).

Fig. 7. Our sUT Construction.

4.3 Construction of pUT

We give a construction based on a homomorphic signature HS, a threshold fully
homomorphic encryption scheme TFHE, and PRFs PRF. Our construction is in
fact based on the sUT construction by applying the algorithm TrapEval of pUT
on a “resharing” function F resh

t,epkt+1 , tied to our sUT construction (see also Fig. 8)
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pUT.Setup(1λ, d,N, epk0, x) (pp, ct)

(pp, sk, trapd) sUT.Setup(1λ, d,N, x)

Parse trapd as (skfhe, skhs, ρ)

ct resh
0,epk0(skfhe, skhs, ρ)

return (pp, ct)

pUT.Reshare(skt
i, i, epk

t+1) (yresh
i , σresh

i )

return sUT.TrapdEval(pp, skt
i,

resh
t,epkt+1)

pUT.VfyReshare(pp, epkt, (yresh
i , σresh

i ), i)

return sUT.VfyEval(pp, (yresh
i , σresh

i ), i, resh
t,epkt+1)

pUT.Reconstruct(pp, eskt
j , (y

resh
i )i∈[d])

ctj sUT.Combine(pp, (yresh
i )i∈[d]))

return skt+1
j := Deceskt

j
(ctj)

pUT.Eval := sUT.Eval

pUT.VfyEval := sUT.VfyEval

pUT.Combine := sUT.Combine

resh
t,epkt+1(s)

Parse s as s = (skfhe, skhs, ρ)

(ρt+1
SS , ρt+1

hs,1 , . . . , ρt+1
hs,N, ρt+1

ct,1 , . . . , ρt+1
ct,N) = PRFρ(t + 1)

(sk′
i[fhe])i∈[N] SS.Share(d,N, skfhe, ρ

t+1
SS )

for i = 1, . . . ,N

sk′
i[hs] HS.Sign(skhs, “(i, t)”, sk

′
i[fhe], ρ

t+1
hs,i )

sk′
i := (sk′

i[fhe], sk
′
i[hs])

cti Enc
epkt+1

i
(sk′

i; ρ
t+1
ct,i )

return ct1, . . . ctN

Fig. 8. pUT Construction and the auxiliary resharing functionality
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that generates a new secret and then creates, signs and encrypts its shares for
the next epoch. Other techniques of our construction for pUT are inspired by
the YOSO-style ones in [3] where the committee members of the new epoch
can access their share by opening a ciphertext encrypted with an ephemeral
public key (of which they only know the decryption key). The main intuition
is that a committee member can carry out homomorphic computation on the
encrypted secrets and then certify through homomorphic signatures their partial
decryption. The result can publicly be combined to obtain the function output.
The construction of pUT is in Fig. 8.

Theorem 3. (Informal) We can construct sUT for a “family of resharing func-
tions” from compact context-hiding homomorphic signatures and leveled TFHE
with KDM security [7,10]. We can construct pUT from the same assumptions.

4.4 From pUT to pSPuC

Proactive SPuCs extend the SPuC model in the same way as pUT extends
UT. A pSPuC includes algorithms (Reshare,VfyReshare,Reconstruct) to allow
the committee members to hand over their secrets for certification. Once defined
(and constructed) pUTs, a construction for pSPuCs is straightforward: it is the
same as the one for SPuCs, but we replace UT with pUT. We provide further
details in the full version of this paper.
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