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Abstract. In this paper, we consider an asymptotic analysis for the
stationary queue length of a tandem queueing system with one orbit,
Poisson arrival process of incoming calls and two sequentially connected
servers. Under the condition that the average delay time of calls in the
orbit is extremely large, we obtain the asymptotic probability distribu-
tion of the number of calls there. It turns out that the scaled version of
the number of calls in the orbit follow the Gaussian distribution. Then
we evaluate the applicability of the asymptotic results by simulation.

Keywords: Tandem RQ-system with two sequentially connected
servers · Asymptotic analysis method · Gaussian approximation

1 Introduction

In queuing theory there exists a special class of systems, in which the following
situation is characterized: if a call finds the server busy, instead of queueing
before the server it goes into the orbit, from there, after some random time,
it tries to get onto the server again. Such models with orbits are called retrial
queuing systems or RQ-systems [1–5].

On the other hand, tandem queuing systems represent a connection between
one node queue and queuing networks: such systems can be considered as queuing
networks with a linear topology [6]. Furthermore, tandem RQ-systems can be
used to simulate the processing process, in which incoming requests are serviced
sequentially at several stages. The need for sequential services arises in processing
requests in call-centers [7–9], in controlling the data flow between elements of a
multi-agent robotic system [10], etc. Tandem queuing networks are extensively
studied. If the buffer is full, then the request is lost in such systems [11]. In
contrast to this, we study tandem systems with an orbit of infinite capacity.
Studies in this area have already been carried out by several authors. In [14], a
model with a correlated flow of arrivals and the operation of the second station
is described by a Markov chain.
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Retrial tandem queues are studied by several authors. Arvachenkov and
Yechiali [2,3] study the model with constant retrial ate and they obtained some
analytic and approximate results. However, as far as we know, tandem queues
with classical retrial policy, i.e., the retrial rate is proportional to the number
of customers in the obit, are less studied in the literature. We are aware of only
one the related work in this line by Phung-Duc [13] in which the author studied
a tandem retrial queue where only blocked customers at the first server join the
orbit while those are blocked at the second one are lost. In this model, explicit
joint distribution of the queue length and the state of the servers is obtained. It
should be noted that the loss at the second server makes the model simple and
allows the explicit solution.

In contrast to this, the underlying Markov chain of the model in the current
paper is non-homogeneous because the retrial rate is proportional to the num-
ber of customers in the orbit. As a result, the model can be formulated using
a level-dependent quasi-birth-and-death process where the level is the number
of customers in the orbit and the phase represents the states of the servers.
However, it is well-known that level-dependent QBD does not have analytical
solution in general and in our model. Thus, our aim in this paper is to obtain
an explicit form for the distribution of the number of customers in the orbit
under some asymptotic condition. To this end, we study the model in a special
regime, i.e., the case in which the retrial rate is extremely small. Under this
regime, the number of customers in the orbit explodes. However, after some
appropriate scaling, the scaled version of the number of customers in the orbit
follows a proper distribution. The main tool to derive our results is the method
of asymptotic analysis [12] under the condition of a large delay of calls in the
orbit. We also validate the accuracy of the analytical results by comparing them
with simulations.

The rest of our paper is organized as follows. In Sect. 2, we present the model
in details. Section 3 presents the Kolmogorov’s equations for the model while
Sect. 4 shows the asymptotic analysis. In Sect. 5, we utilize the asymptotic results
to build an approximation an validate it by comparing with simulation. Section 6
concludes our paper.

2 Mathematical Model and Problem Statement

We consider a retrial queueing system with Poisson arrival process of incoming
calls with rate λ and two sequentially connected servers (see Fig. 1). Upon the
arrival of a call, if the first server is free, the call occupies it. The call is served
for a random time exponentially distributed with parameter μ1 and then tries
to go to the second server. If the second server is free, the call moves to it for a
random time exponentially distributed with parameter μ2. When a call arrives,
if the first server is busy, the call instantly goes to the orbit, stays there for an
exponentially distributed time with parameter σ and then tries to occupy the
first server again. If after completing the service at the first server if the call
finds that the second server is busy, it instantly goes to the same orbit, where,
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after random exponentially distributed delay with parameter σ, tries to move to
the first server for service again.

Fig. 1. Tandem RQ-system.

Let us denote:
Process N1(t) - the state of the first server at time t: 0, if the server is free;

1, if the server is busy;
Process N2(t) - the state of the second server at time t: 0, if the server is free;

1, if the server is busy;
Process I(t) - the number of calls in the orbit at the time t.
The goal of the study is to obtain the stationary probability distribution of

the number of calls in the orbit I(t) and the probability distribution of servers’
states in the considered system.

3 Derivation of Differential Kolmogorov Equations

We define probabilities

Pn1n2(i, t) = P{N1(t) = n1, N2(t) = n2, I(t) = i};n1 = 0, 1;n2 = 0, 1. (1)

The three-dimensional process {N1(t), N2(t), I(t)} is a Markov chain. For prob-
ability distribution (1) we can write the system of differential Kolmogorov
equations:

∂P00(i, t)
∂t

= −(λ + iσ)P00(i, t) + μ2P01(i, t),

∂P10(i, t)
∂t

= λP00(i, t) + (i + 1)σP00(i + 1, t) − (λ + μ1)P10(i, t)

+λP10(i − 1, t) + μ2P11(i, t),
∂P01(i, t)

∂t
= μ1P10(i, t) − (λ + iσ + μ2)P01(i, t) + μ1P11(i − 1, t),

∂P11(i, t)
∂t

= λP01(i, t) + (i + 1)σP01(i + 1, t) − (λ + μ1 + μ2)P11(i, t)

+λP11(i − 1, t).

(2)
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We introduce partial characteristic functions, denoting j =
√−1

Hn1n2(u, t) =
∞∑

i=0

ejuiPn1n2(i, t). (3)

Rewriting system (2) in the following form

∂H00(u, t)
∂t

= −λH00(u, t) + jσ
∂H00(u, t)

∂u
μ2H01(u, t),

∂H10(u, t)
∂t

= λH00(u, t) − jσe−ju ∂H00(u, t)
∂u

−(λ + μ1 − λeju)H10(u, t) + μ2H11(u, t),
∂H01(u, t)

∂t
= μ1H10(u, t) − (λ + μ2)H01(u, t)

+jσ
∂H01(u, t)

∂u
+ μ1e

juH11(u, t),

∂H11(u, t)
∂t

= λH01(u, t) − jσe−ju ∂H01(u, t)
∂u

−(λ + μ1 + μ2 − λeju)H11(u, t).

(4)

Denote matrices

A =

⎡

⎢⎢⎣

−λ λ 0 0
0 −(λ + μ1) μ1 0
μ2 0 −(λ + μ2) λ
0 μ2 0 −(λ + μ1 + μ2)

⎤

⎥⎥⎦ ,

B =

⎡

⎢⎢⎣

0 0 0 0
0 λ 0 0
0 0 0 0
0 0 μ2 λ

⎤

⎥⎥⎦ , I0 =

⎡

⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤

⎥⎥⎦ , I1 =

⎡

⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ .

(5)

Let us write the system (4) in the matrix form

∂H(u, t)
∂t

= H(u, t){A + ejuB} + ju
∂H(u, t)

∂u
{I0 − e−juI1}. (6)

Multiplying equations of system (6) an identity column vector e, we get scalar
equation and add it to the system (6) in order to have

∂H(u, t)
∂t

= H(u, t){A + ejuB} + ju
∂H(u, t)

∂u
{I0 − e−juI1},

∂H(u, t)
∂t

e = (eju − 1){H(u, t)B + jσe−ju ∂H(u, t)
∂u

I1}e.
(7)

This system of equations is the basis in further research. We will solve it by an
asymptotic method under the asymptotic condition σ → 0.
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4 Research of the Tandem RQ-System by the Method
of Asymptotic Analysis

We will solve the Eq. (7) by a method of asymptotic analysis under the asymp-
totic condition of unlimitedly increasing the average delay of calls in the orbit,
i.e., 1/σ → ∞. Under the the steady-state regime, the system of Eq. (7) is written
as follows.

H(u){A + ejuB} + juH′(u){I0 − e−juI1} = 0,

{H(u)B + jσe−juH′(u)I1}e = 0.
(8)

4.1 The First Order Asymptotic

Denote σ = ε and perform the following substitution in (8)

u = εw,H(u) = F(w, ε). (9)

We obtain

F(w, ε){A + ejεwB} + j
∂F(w, ε)

∂w
{I0 − e−jεwI1} = 0,

{F(w, ε)B + je−jεw ∂F(w, ε)
∂w

I1}e = 0.

(10)

Theorem 1. Under the asymptotic condition σ → 0, the following equality is
true

lim
σ→ 0

Eejwσi(t) = ejwκ1 , (11)

where κ1 is a solution of the scalar equation

r(κ1){B − κ1I1}e = 0, (12)

and vector r(κ1) satisfies the normality condition

r(κ1)e = 1, (13)

and is a solution of matrix equation

r(κ1){(A + B) − κ1(I0 − I1)} = 0. (14)

Proof. Let us take the limit ε → 0 in the system (10) and get the system for
F(w) = limε→0 F(w, ε):

F(w)(A + B) + jF′(w)(I0 − I1) = 0,
(F(w)B + jF′(w)I1)e = 0.

(15)

We find the solution of this system in the form

F(w) = rΦ(w), (16)
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where row vector r defines two-dimensional probability distribution of the states
of servers (n1, n2), the sum of the elements of which is equal to one, according
to the normalization condition.

Substituting the Eq. (16) in the system (15),we obtain

r(A + B) + jr
Φ′(w)
Φ(w)

(I0 − I1) = 0,

r
{
B + j

Φ′(w)
Φ(w)

I1

}
e = 0.

(17)

Because the ratio Φ′(w)
Φ(w) not depends on w, the scalar function Φ(w) has the form

Φ(w) = ejwκ1 , (18)

then j Φ′(w)
Φ(w) = −κ1. Let us substitute this equation to the system (17)

r(A + B) − rκ1(I0 − I1) = 0,
r(B − κ1I1)e = 0.

(19)

Solving this system, we find the probability distribution of states of servers r
and κ1.

The first order asymptotic only defines the mean asymptotic value κ1/σ of
the number of calls in the orbit in prelimit situation of nonzero values of σ. For
more detailed information of the number I (t) of calls in the orbit, let us consider
the second order asymptotic.

4.2 The Second Order Asymptotic

Substituting the following equation in the system (8)

H(u) = exp
(
j
u

σ
κ1

)
H(2)(u), (20)

we obtain

H(2)(u){A + ejuB − κ1(I0 − e−juI1)} + jσ
dH(2)(u)

du
{I0 − e−juI1} = 0,

H(2)(u)(B − e−juκ1I1)e + jσe−ju dH(2)(u)
du

I1e = 0.

(21)

Denote σ = ε2 and perform the following substitution in (21)

u = εw,H(2)(u) = F(2)(w, ε), (22)

and obtain the system

F(2)(w, ε){A + ejεwB − κ1(I0 − e−jεwI1)} + jε
∂F(2)(w, ε)

∂w
{I0 − e−jεwI1} = 0,

F(2)(w, ε)(B − e−jεwκ1I1)e + jεe−jεw ∂F(2)(w, ε)
∂w

I1e = 0.

(23)
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Theorem 2. In the context of Theorem 1 the following equation is true

lim
σ→ 0

Eejw
√

σ(i(t)− κ1
σ ) = e

(jw)2

2 κ2 , (24)

where κ2 is a solution of the scalar equation

g(κ2)(B − κ1I1)e = rI1(κ2 − κ1)e, (25)

and vector g(κ2) is a solution of the system

g(κ2){A + B − κ1(I0 − I1)} = r(κ2I0 − κ2I1 − B + κ1I1),
g(κ2)e = 0.

(26)

Proof. Let us substitute the following expansion into the system (23)

F(2)(w, ε) = Φ2(w)(r + jεwf) + O(ε2), (27)

where r =
[
r00 r10 r01 r11

]
and f =

[
f00 f10 f01 f11

]
, we obtain

Φ2(w)(r + jεwf)
{
A + ejεwB − κ1(I0 − e−jεwI1)

}

+jε(Φ′
2(w)(r + jεwf) + Φ2(w)jεf)(I0 − e−jεwI1) = O(ε2),

Φ2(w)(r + jεwf)(B − e−jεwκ1I1)e

+jεe−jεw(Φ′
2(w)(r + jεwf) + Φ2(w)jεf)I1e = O(ε2).

(28)

Rewrite the system (28) in the following form:

Φ2(w)(r + jεwf)
{
A + ejεwB − κ1(I0 − e−jεwI1)

}

+jε(Φ′
2(w)(r(I0 − e−jεwI1) = O(ε2),

Φ2(w)(r + jεwf)(B − e−jεwκ1I1)e + jεe−jεwΦ′
2(w)rI1e = O(ε2).

(29)

Let us expand the exponent in a series

Φ2(w)(r + jεwf) {A + (1 + jεw)B − κ1(I0 − (1 − −jεw)I1)}
+jε(Φ′

2(w)(r(I0 − (1 − jεw)I1) = O(ε2),

Φ2(w)(r + jεwf)(B − (1 − jεw)κ1I1)e + jε(1 − jεw)Φ′
2(w)rI1e = O(ε2).

(30)

Open the parentheses and group the terms for ε0 and ε1

Φ2(w)r {A + B − κ1(I0 − I1)}
+Φ2(w)jεw {rB − rκ1I1 + fA + fB − fκ1(I0 − I1)}

+jεΦ′
2(w)r(I0 − I1) = O(ε2),

Φ2(w)r(B − κ1I1)e + Φ2(w)jεw(rκ1I1 + fB − fκ1I1)e

+jεΦ′
2(w)rI1e = O(ε2).

(31)
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Taking into account the system (19), rewrite the system (31) in the form

rB − rκ1I1 + fA + fB − fκ1(I0 − I1) +
Φ′
2(w)

wΦ2(w)
r(I0 − I1) = 0,

(rκ1I1 + fB − fκ1I1)e +
Φ′
2(w)

wΦ2(w)
rI1e = 0.

(32)

Because the ratio dΦ′
2(w)/dw

wΦ2(w) not depends on w, the scalar function Φ2(w) has
the form

Φ2(w) = e

{
(jw)2

2 κ2

}
, (33)

then Φ′
2(w)

wΦ2(w) = −κ2. Let us substitute this equation to the system (32)

f {A + B − κ1(I0 − I1)} = r(κ2I0 − κ2I1 − B + κ1I1),
f(B − κ1I1)e = rI1(κ2 − κ1)e.

(34)

The system (34) is an inhomogeneous system of linear algebraic equations for
f . Since the determinant of the matrix of coefficients of the system is equal to
0, and the rank of the extended matrix is equal to the rank of the matrix of
coefficients, the system is consistent and has many solutions.

Let us consider the inhomogeneous system of Eqs. (34) and homogeneous
system of Eqs. (19). If we compare them, we can see that system (19) is a homo-
geneous system for system (34). In this case, we can write the solution to system
(34) in the form

f = Cr + g, (35)

where C is a constant, r is the stationary distribution of the probabilities of
the states of the servers and the row vector g is a particular solution of the
inhomogeneous system (34), to which we will assign the condition ge = 0.

Substituting the expression (35) in the system (34), we obtain

g {A + B − κ1(I0 − I1)} = r(κ2I0 − κ2I1 − B + κ1I1),
g(B − κ1I1)e = rI1(κ2 − κ1)e.

(36)

The solution of this system of inhomogeneous equations allows us to find a
parameter κ2, that determines the variance of the number of claims in the orbit
as κ2/σ.

The second order asymptotic shows that the asymptotic probability distri-
bution of the number I (t) of calls in the orbit is Gaussian with mean asymptotic
κ1/σ and dispersion as κ2/σ.

5 Approximation Accuracy and its Application Area

Now we could build a Gaussian approximation

P (2)(i) = (L(i + 0.5) − L(i − 0.5))(1 − L(−0.5))−1, (37)

where L(x ) is the normal distribution function with parameters κ1/σ and κ2/σ.
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Approximation accuracy P(2)(i) will be defined by using Kolmogorov range.

Δ = max
k≥0

∣∣∣∣∣

k∑

i=0

(
P

(2)
i − Pi

)∣∣∣∣∣ , (38)

where Pi is the probability probability distribution of the number of claims in
the orbit, obtained by the simulation.

The table contains values for this range for various values of σ and ρ (system
load):

ρ =
λ(μ1 + μ2)

μ1μ2
. (39)

We consider μ1 = 1 and μ2 = 2 for all experiments (Table 1).

Table 1. Kolmogorov range.

σ ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

0.5 0.142 0.125 0.112 0.146 0.198

0.1 0.071 0.049 0.055 0.071 0.097

0.05 0.034 0.039 0.04 0.036 0.074

0.02 0.022 0.024 0.026 0.031 0.049

In Figs. 2, 3 and 4, the solid line shows the approximation of P
(2)
i , the dashed

line - the probability distribution of the number of claims in the orbit, obtained
by the simulation (Pi).

Fig. 2. The probability distribution of the number of claims in the orbit σ = 0.5,
ρ = 0.5.
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Fig. 3. The probability distribution of the number of claims in the orbit σ = 0.1,
ρ = 0.5.

Fig. 4. The probability distribution of the number of claims in the orbit σ = 0.02,
ρ = 0.5.

It can be seen from the table that the accuracy of the approximations
increases with decreasing parameters ρ and σ. The Gaussian approximation is
applicable for values of σ < 0.02, where the relative error, in the form of the
Kolmogorov distance, does not exceed 0.05.

6 Conclusion

In this paper, we consider the tandem retrial queueing system with Poisson
arrival process. Using the method of asymptotic analysis under the asymptotic
condition of the long delay in the orbit, we obtain mean asymptotic κ1/σ and
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dispersion as κ2/σ and build the Gaussian approximation for the probability
distribution of the number of calls in the orbit in the considered RQ-system.
Comparing with the results of simulation, it is shown that the accuracy of the
approximations increases with decreasing parameters σ and the system load.
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