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Abstract. Scheduling theory is a major field in operations research
and discrete applied mathematics. This paper focuses on several recent
developments in scheduling theory and a broad range of new applica-
tions – from multiagent scheduling to robots in communication networks.
The survey presents a personal view on current trends, critical issues,
strengths and limitations of this advantageous field.

1 Introduction and Brief History

Scheduling theory is a field in operations research and discrete applied mathe-
matics which is concerned with the optimal allocation of scarce resources (for
instance, machines, processors, robots, operators, etc.) to activities over time,
with the objective of optimizing one or several performance measures. The
systematic study and efficient computer-aided solution of scheduling problems
started about 70 years ago, being initiated by seminal papers by Johnson (1954)
[1], Bellman (1956) [2], and Smith (1956) [3].

Since then a great diversity of scheduling models and solution techniques have
been developed. Vast applications are found in industry, communications, trans-
port, planning of military operations, healthcare, etc. Today, scheduling theory
is a rapidly evolving area fruitfully contributing to computer science, artificial
intelligence, industrial engineering and data science. The interested reader can
find many nice examples of scheduling problems and elegant algorithms in sur-
veys, textbooks, and monographs by Tanaev et al. [4], Lee et al. [5], Chen et al.
[6], Pinedo [7], Blazewicz et al. [8], Levner [9], and Lenstra and Shmoys [10].

This paper describes the current state and prospects for the development
of theoretical and practical research in the field of scheduling theory. The arti-
cle is organized as follows. The second section discusses recent theoretical and
algorithmic advances, including models and algorithms for multiagent schedul-
ing, issues of integrating scheduling theory and queueing theory, etc. Section 3
is devoted to the description of scheduling models in artificial intelligence and
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scheduling of flying unmanned aerial vehicles and broadband wireless communi-
cation networks based on them. The final Sect. 4 briefly describes the directions
for further research.

2 Recent Theoretical and Algorithmic Advances

2.1 Multiagent Schedulings

Research on multi-agent scheduling started about 20 years ago with papers by
Baker and Smith [11] and Agnetis et al. [12] in which two-agent scheduling was
introduced. In multiagent scheduling problems, activities (jobs) are allocated to
resources (machines) similarly as in conventional single-agent single-objective
scheduling problem but the major difference is that each job is controlled by an
(usually human) agent who has his/her own criteria which may be competing
and which is to be optimized by each agent.

Extensive surveys of recent multiagent scheduling models and algorithms are
given in Agnetis et al. [13,14], and Cheng et al. [15].

The multiagent scheduling, and, in particular, corresponding coordination
mechanisms, are studied in a novel area in game theory known as job scheduling
games, in which multiple users (agents) wish to utilize multiple machines, the
incentive of each user being to optimize his/her own objective function [16].

2.2 Integrating Scheduling Theory and Queueing Theory

For many years queueing theory and scheduling theory have been developed inde-
pendently and, as a consequence, have different performance measures, problem
formulations and techniques. However, in recent years, the scheduling commu-
nity has noticed that the long-term stochastic reasoning as studied in queueing
theory can be usefully combined, both theoretically and practically, with short-
term algorithmic reasoning studied in scheduling theory, and this fact can be
used in applications when solving practical artificial intelligence and big data
processing problems.

Interesting that as early as in 1956, Richard Bellman has noticed in [2]: “If
we fix the [job] order and fasten our attention upon the distribution of idle times,
the distribution of waiting times, and similar questions, we enter the domain of
queuing theory (see Kendall, 1951 [49]). In this connection, we would like to point
out that the explicit formulas of Johnson may be of some utility in determining
limiting distributions”.

The queueing system consists of a single or several lines of waiting jobs (cus-
tomers) and the available number of servers. Factors that are to be studied
include: the line length(s), number of lines and the queue servicing discipline.
Queue servicing discipline is the priority rule, similar to that in the scheduling
theory, for determining the order of service to customers in waiting lines. Similar
to what happens in the scheduling theory, the most common used are the follow-
ing greedy priority rules: “first come, first served” (FCFS, FIFO); highest-profit
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or “best” customer first; largest orders first, longest wait-time first, and many
others (see, for instance [8,17–19].

An important aspect of the queueing system is the line structure. Analogous
structures are investigated in the scheduling theory. However, different jobs in the
queueing systems have different probabilistic characteristics and requirements for
processing on different resources, and these characteristics often do not become
known until the jobs arrive.

Some basic questions studied in queueing theory are beyond the scope of
scheduling theory, like, e.g., “What is the average waiting time for customers in
a line and in the system?”

In [20], Terekhov et al. took initial steps toward integrating queueing and
scheduling for dynamic scheduling problems. The dynamic scheduling problems
are characterized by a varying stream of jobs arriving stochastically over time.
Each job requires a combination of resources, sequentially and/or in parallel,
using different processing times. The existence of any particular job and its cor-
responding characteristics are not known until its arrival. However, the authors
in [20] assumed, - as in queueing theory but not as in scheduling settings, that
stochastic characteristics of the distribution of job arrivals are known. Jobs may
require a complex routing through the available resources, which may be het-
erogeneous but with known and deterministic capacities. To solve a dynamic
scheduling problem, the jobs must be assigned to appropriate resources and
start times, respecting the resource and temporal constraints. As jobs arrive,
there must be an online process to make decisions: it is not possible to solve the
entire problem of-line.

Solving dynamic scheduling problems is challenging both due to the combina-
torics of the interaction of jobs, resources, and time, and due to the stochastics:
to make a decision, one can use only the information that is known with cer-
tainty at a decision point and the stochastic properties of scenarios that may
occur in the future.

The authors of [20] showed that the well-known queueing theory notion of
stability can be used to analyze periodic scheduling algorithms, and that, for
each of the problems studied, periodic scheduling algorithms can be maximally
stable, that is, no queueing policy or scheduling algorithm can allow the system
to operate at a higher load or achieve a higher throughput. For one dynamic
scheduling problem, the long-term stochastic reasoning of queueing can be com-
bined with short-term combinatorial reasoning and produces a hybrid scheduling
algorithm that achieves better performance than either queueing or scheduling
approaches can provide if used alone.

These authors empirically demonstrated that for a comparatively simple
dynamic flowshop, the use of combinatorial scheduling has a small impact on
schedule quality. In contrast, for more complicated flexible queueing networks,
a novel algorithm that combines long-term guidance from queueing theory with
short-term decision making outperforms all other tested approaches.

Integrating Scheduling Theory and Queueing Theory has many yet unsolved
challenges.
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2.3 An Improved Near-Optimal Algorithm for the Traveling
Salesman Problem1

One of the fundamental problems in scheduling theory and discrete optimization
is the traveling salesman problem (TSP), included in Karp’s initial list of 21 NP-
complete problems [21]. In TSP we are given a set of n nodes (cities) V along
with their pairwise symmetric distances, V × V → R ≥ 0. The goal is to find a
Hamiltonian cycle of minimum cost. In the metric TSP problem, which we shall
study in this section, the distances satisfy the triangle inequality.

First, we recall the classical Christofides–Serdyukov (CS) algorithm, also
known in literature as the Christofides algorithm. Nicos Christofides and Ana-
toly Serdyukov have discovered it independently more than four decades ago,
in [22] and [23], respectively (see also [24]). This algorithm finds approximate
solutions to the metric TSP and guarantees that its solution is always within
a factor of 3/2 of the optimal solution value. Such type algorithms are called
near-optimal or with performance guarantees. Let G = (V,w) be an instance of
the travelling salesman problem. That is, G is a complete graph on the set V
of vertices, and the function w assigns a nonnegative real weight to every edge
of G. The CS algorithm works as follows: Given an instance of the metric TSP,
choose a minimum spanning tree and then add the minimum cost matching
on the odd degree vertices of the tree. In spite of its simplicity, this algorithm
is the best known to date polynomial time approximation algorithm with the
performance guarantee for the metric traveling salesman problem. It is worth
mentioning that there known the ‘complementary’ inapproximability results, for
instance, it is NP-hard to approximate TSP within a factor of 123/122 [25].

For many years, nobody could improve the Christofides-Serdukov algorithmic
result. And only quite recently, Karlin, Klein, and Gharan [26] introduced a
novel approximation algorithm with a slightly better approximation ratio r =
(3/2 − 1036).

Theorem 1. For some absolute constant >1036, there is a randomized algo-
rithm that outputs a tour with expected cost at most 3/2− ε times the cost of the
optimum solution.

The method [26] closely follows the Christofides-Serdyukov’s algorithm, but
uses a special randomly chosen tree rather than the minimum spanning tree. The
authors note that their algorithm makes use of the Held-Karp relaxation [27].
They also remark that although their approximation factor is only slightly bet-
ter than Christofides-Serdyukov’s, in their numerical experiments they did not
discover any example where the approximation ratio of the algorithm exceeded
4/3 in expectation. This recent approach is an exciting and promising direc-
tion for further study and improvement of the classical Christofides-Serdyukov
algorithm.

1 This Section Is Dedicated to the Memory of Dr. Anatoly Ivanovich Serdyukov (1951–
2001).



18 E. Levner and V. Vishnevsky

2.4 Almost-Optimal (Fully Polynomial Time Approximation)
Scheduling Algorithms

An algorithm A for solving an optimization problem P (in particular, a schedul-
ing problem) is called an almost optimal algorithm (or a fully polynomial-time
approximation scheme FPTAS) if given an input I for P and an ε > 0, the
algorithm A finds in time polynomial in the size of I and in 1/ε, a solution s
for I that satisfies: |OPT (I) − f(s)| ≤ εOPT (I), where OPT (I) is the optimal
value of a solution for I.

A polynomial time approximation scheme PTAS is an algorithm which takes
an instance of an optimization problem and a parameter ε > 0 and, in polynomial
time in the problem size, produces a solution that is within a factor 1 + ε of
being optimal for a minimization problem (or 1− ε for maximization problems).
There exists dozens of different types of PTAS and FPTAS for many classes of
scheduling problems (see Sahni [28], Babat [29], Gens and Levner [30], Lawler
[31], Kovalyov et al. [32], Kovalyov and Kubiak [33], Woeginger [34], Hoesel.and
Wagelmans [35], and references therein).

In this section, we give a brief description of several not-trivial FPTAS that
have appeared in recent years. Liu and Wu [36] considered a scheduling prob-
lem in a flexible supply chain where jobs can be either processed in house, or
outsourced to a third-party supplier with the goal of minimizing the sum of hold-
ing and delivery costs subject to an upper bound on the outsourcing cost. The
problem with identical job processing times has been proved to be binary NP-
hard; a fully polynomial time approximation scheme that runs in O(n8(1/ε2))
time has been known. This paper derives a faster FPTAS. Kacem and Levner
[37] revisited he problem of scheduling a set of proportional deteriorating non-
resumable jobs on a single machine subject to maintenance. The maintenance
has to be started prior to a given deadline. The jobs as well as the maintenance
are to be scheduled so that to minimize the total completion time. For this prob-
lem a new dynamic programming algorithm and a faster fully polynomial time
approximation scheme are proposed improving a recent result by Luo and Chen
[JIMO (2012), 8:2, 271–283]. Yin et al. [38] considered the problem of schedul-
ing n independent and simultaneously available jobs without preemption on a
single machine, where the machine has a fixed maintenance activity. The objec-
tive is to find the optimal job sequence to minimize the total amount of late
work, where the late work of a job is the amount of processing of the job that
is performed after its due date. The authors first discussed the approximability
of the problem, then developed two pseudo-polynomial dynamic programming
algorithms and constructed a fully polynomial-time approximation scheme for
the problem. Finally, the authors performed extensive numerical studies to eval-
uate the performance of the proposed algorithms in practice. Zhao and Hsu [39]
considered a single-machine scheduling problem in which the processing time
of a job is a linear increasing function of its starting time. The objective is
to minimize the weighted number of tardy jobs. A pseudo-polynomial dynamic
programming algorithm and a new fully polynomial-time approximation scheme
were proposed.
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Halman et al. [40] presented a new framework for obtaining fully polyno-
mial time approximation schemes for stochastic univariate dynamic programs
with either convex or monotone single-period cost functions. This framework is
workable for the stochastic scheduling problems and is developed through the
establishment of two sets of computational rules, namely, the calculus of K-
approximation functions and the calculus of K-approximation sets. Using this
general framework, the novel FPTASs for several NP-hard scheduling problems
were obtained.

More details on the properties of the FPTAS algorithms can be found in the
tutorial [41].

3 Novel Models and Applications

3.1 Scheduling and Artificial Intelligence. Robots are Everywhere

In recent decades, there is a growing interest on scheduling problems for
autonomous robots and robotic systems. There are numerous applications of
artificial intelligence (AI) and smart robots in different industries, on the earth
and in space (see, e.g., Pinedo [7], Blazewicz et al. [8], Levner et al. [9], Agnetis
et al. [14]) and in communications and transport (Vishnevsky et al. [42,43]).
Modern flexible manufacturing systems are integrated with computer-controlled
hoists, robots and other automatic devices. Robots have expanded production
capabilities in manufacturing world making the technological processes faster,
more efficient and precise than ever before. As larger and more complex robotic
systems are implemented, more sophisticated scheduling models, methods and
algorithms are required for performing and optimizing these processes.

More details on AI and robotic scheduling problems and algorithms are pre-
sented in [7–9,42,43].

3.2 Scheduling of Flying Unmanned Stations in Airborne
Communication Networks

The unmanned aerial vehicle communication networks (UAV-CN) contain a set
of unmanned aerial vehicles (UAVs) that constitute together a network which
may be used for very many applications. The UAVs autonomously fly in 3-
dimensional space in ad-hoc mode and carry out the communications and col-
laboration missions. The specificity of such communication networks is a high-
speed of UAVs constituting the network nodes, which has a crucial impact on
efficient routing. Another factor affecting the quality of communication service
is the power issue that is limited and should be optimized during the design of
the UAV-CNs.

In the last decade, unmanned aerial communication systems have emerged
in different areas, such as military and police operations, search and evacuation
emergency missions, detection of ecological disasters, border surveillance, traffic
monitoring, etc. In these systems, unmanned aerial vehicles communicate with
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each other based on a flying network to provide services to customers such as live
streaming, high-speed access point, etc. (see Vishnevsky et al. [42,43]). The per-
formance of UAV-CNs can be advantageous in emergency, for example, rescuing
and searching people in areas where the conventional communication network is
unavailable. In [44], the authors propose a method for detecting the coordinates
of subscribers with the Wi-Fi signals generated from victims’ phones using a
flying network for emergencies based on UAV swarms.

According to the IEEE classification (see [45,46]), the wireless communica-
tion networks can be divided into two large domains: Infrastructure-based net-
works (IBN) and infrastructure-less networks (ILN), also called ad hoc networks.

Infrastructure-based network (IBN) has two subgroups, stationary and
mobile. The stationary subgroup consists of stationary (static) base stations
(BS) while the mobile subgroup consists of mobile nodes (MN) and master sta-
tions (MS) which are known as access points (AP).

The communication among MN is done with the help of access points which
use different frequencies to establish the communication.

The infrastructure-less (ad hoc) networks are grouped, in turn, into wireless
sensor network (WSN), wireless mesh networks (WMN), and mobile ad hoc
networks (MANET). Next, the mobile ad hoc networks are classified into two
sub groups: vehicular ad-hoc networks VANET and unmanned aerial vehicle
communication networks UAV-CN.

As a typical fragment in novel applications, consider a perspective of exploit-
ing classic scheduling models and methods for efficient scheduling of a flying
UAV-CNs with the minimum number of UAVs.

We suggest to use the extension of the Kats-Levner model [47,48] for defining
the minimum number of vehicles to meet a fixed schedule. In a new setting, we
have the following problem. We study a cyclic process in which a set of several
sensors perform m operations of data collection. A number of flying unmanned
stations (drones) are used to transfer information of sensors from one sensor
to another. The durations of data collecting and data transfers are known. The
problem that has the key performance measure, the number of drones to be used.
The aim is to find the minimum number of drones needed to meet a given cyclic
schedule, for a fixed cycle length.

If the transfer times in the considered UAV (drone) scheduling problem sat-
isfy the triangle inequality then the minimal number of UAVs needed to meet a
given cyclic schedule of a fixed period length, is equal to the optimum solution
of the m × m assignment problem. The complexity of the algorithm is O(m3),
independently of the range within which the cycle length value may vary. The
problem has several practical modifications (see, for instance, [47,48]).

4 Concluding Remark: A Look to the Future

There exist a number of related attractive fields which are not covered in this
survey, for instance, knowledge-based scheduling, real time scheduling, schedul-
ing in cloud computing, and scheduling with communication delays. They will
be overviewed in our future work.
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