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Abstract. In this paper, we consider an infinite-service resource queue-
ing system M/GI/∞ operating in a random environment. When the
environment changes its state, the service time and the occupied resource
do not change for the customers already under service, however, for the
new customers the arrival rate, the service time distribution, and resource
requirements are changed. We apply the dynamic screening method and
perform asymptotic analysis to find the approximation of the probability
of the total amount of occupied resource.
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1 Introduction

Network slicing in 5G can be defined as a network configuration that allows mul-
tiple networks (virtualized and independent) to be created on top of a common
physical infrastructure. This configuration has become an essential component
of the overall 5G architectural landscape [17]. Each “slice” or portion of the
network can be allocated based on the specific needs of the application, use case
or customer.

Network slicing involves dividing the physical architecture of 5G into multiple
virtual networks or layers. Each network layer includes control plane functions,
user traffic plane functions, and a radio access network. Each layer has its own
characteristics and is aimed at solving a particular business problem. 3GPP
defines three standard network layers [1]:

– super-broadband access (eMBB, Enhanced Mobile Broadband) – users of the
global Internet, CCTV cameras;

– ultra-reliability and low latency (URLLC, Ultra Reliable Low Latency Com-
munication) – driverless transport, augmented and virtual reality;

– low enegry and low latency (IoT, Internet of Things) – millions of devices
transmitting small amounts of data from time to time.

Figure 1 shows an example of a network slicing by traffic (service) types. In
this paper, it is proposed to consider a resource queueing system operating in a
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random environment as a mathematical model of such a technology, assuming
that service requests occur when the random environment is in the appropriate
state. We analyze the system in the limiting condition of extremely frequently
changing states of the environment, thus, this will insignificantly affect the main
probabilistic and numerical characteristics. We assume that requests for the
services form a Poisson process with constant intensity, depending on the type of
service (i.e. the state of the random environment). The request service duration
and the amount of the provided resource also depend on the type of service and
do not change for requests that are in service when the random environment
changes its state. We present a detailed description of the model in the Sect. 2.

Fig. 1. Example of network slicing

There are many papers where queues in a random environment were studied.
For example, [13] considers queueing system M/M/C, where the arrivals and
service rates are modulated by a random environment for which the underlying
process C(t) is an irreducible continuous-time Markov chain. B. D’Auria [6]
investigated an M/M∞ queue whose parameters depend on an external random
environment that is specified by a semi-Markovian process. Boxma and Kurkova
[2] studied an M/M/1 queue with the special feature that the speed of the
server alternates between two constant values. There are a lot more papers [3,
4,7–10,12], where authors consider queueing systems operating in a random
environment.

Resource queueing systems have been analyzed extensively in recent years.
For example, in [15], a model of a multi-server queueing system with losses
caused by lack of resources necessary to service claims was considered. In [18], it
was investigated a heterogeneous wireless network model in terms of a queueing
system with limited resources and signals that trigger the resource reallocation
process. In [19] Tikhonenko studied a queueing system with processor sharing
and limited resources.

In [16], it was considered an M/GI/∞ queueing system in a random envi-
ronment. The dynamic screening method and asymptotic analysis were applied
as well as we do in this paper. In [5], a mathematical model of an insurance
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company in the form of the infinite-server queueing system operating in a ran-
dom environment was studied using the asymptotic analysis method. Paper [11]
considers a non-Markovian infinite-server multi-resource queuing system. The
result was found under the asymptotic condition of the growing intensity of the
arrival process. All these papers consider an infinite-server queue in a random
environment or with requirements for resources. Unlike them, we consider the
M/GI/∞ queueing model with both a random environment and requirements
for resources in this paper.

The paper is organized as follows. In Sect. 2, the mathematical model is
described and the goal of the study is formulated. In Sect. 3, the dynamic screen-
ing method is explained, moreover, balance equations are obtained and written
using characteristic functions. The asymptotic analysis and final equations are
derived in Sect. 4. Section 5 presents a numerical example and conclusions on the
accuracy of the obtained approximation.

2 Mathematical Model

Consider a queueing system with an unlimited number of servers and an unlim-
ited capacity of some resource that operates in a random environment (Fig. 2),
such the functioning of the system depends on the environment state. The ran-
dom environment is specified by a continuous-time Markov chain with a finite
number of states k ∈ {1, . . . , K} and generator Q = {qkν}, k, ν = 1, . . . ,K.
When the process is in state k, the rate of the Poisson arrival process is equal
to λk and the service time has distribution with CDF Bk(x). We compose
the arrivals rates into diagonal matrix Λ = diag{λk}, k = 1, . . . ,K. In addi-
tion, each arrival occupies a resource of a random size vk > 0 with the CDF
Gk(y) = P{vk < y} which depends on the environment state.

When the environment state changes, the resource amounts and the service
rates change only for new customers, as for customers already under service,
these values stay the same. When a customer completes servicing, it leaves the
system and releases the resource that it occupied during the capture. Capture is
understood as the moment when the customer arrives, at which the resource is
allocated.

A stochastic process {k(t), i(t), v(t)} describes the system’s state at time t
as follows:

– the environment state at time t is denoted by k(t) ∈ {1, . . . , K},
– the number of customers in the system at time t is denoted by i(t) ∈

{0, 1, 2, . . . },
– the total amount of occupied resource at time t is denoted by v(t) ≥ 0.

Our goal is to find the steady-state probability distribution of the total
amount of the occupied resources v(t).



214 N. Krishtalev et al.

Fig. 2. Structure of the model

3 Dynamic Screening Method

We consider an infinite-server queue with non-exponential service times. This is
the reason why we can not apply some classical methods directly here (for exam-
ple, the method of supplementary variables). Otherwise, we should deal with the
number of variables and equations that are unlimited and changing. To avoid
the problem, we apply the dynamic screening method [14] whose modification
for the resource queue is described below.

3.1 Method Description

Let at moment t0 the system is empty. We fix a moment T > t0 in the future. Let
us draw two time axes (Fig. 3). The moments of customers arrivals are marked
on the axis 0. We mark on axis 1 only those arrivals that before the moment T
have not finished their service. We name the arrivals on axis 1 as “screened”,
and the entire point process on axis 1 is named as the “screened process”.

Let us define function Sk(t) that determines the dynamic screening proba-
bility on axis 1 as follows:

Sk(t) = 1 − Bk(T − t).

The customer arrived at the system at the moment t < T does not finish service
before moment T and occupies a certain amount of the resource with probabil-
ity Sk(t). On the other hand, the customer leaves the system and releases the
resource occupied at the arriving with the probability 1 − Sk(t), hence it is not
considered in the “screened” process. The values of Sk(t) belong to the segment
[0, 1]. In Fig. 3, colored areas depict different states of the random environment.
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Fig. 3. Example of the customers arrivals screening

Let us denote the number of screened arrivals, which occurred during time
[t0, t) by n(t), and the total amount of resource occupied by the screened cus-
tomers by w(t).

Basing on the results obtained in [14] and [11], it is not hard to show that

P{k(T ) = k, i(T ) = m, v(T ) < x}
= P{k(T ) = k, n(T ) = m,w(T ) < x}, k ∈ {1, . . . , K} (1)

for any non-negative values of m and x. So, we can first study the stochastic
process {k(t), n(t), w(t)} instead of process {k(t), i(t), v(t)}. After that, we can
substitute t = T into the final expressions and obtain the goal due to the moment
T is chosen arbitrarily.

3.2 Balance Equations

We denote the probabilities

Pk(n,w, t) = P{k(t) = k, n(t) = n,w(t) < w}.

For Pk(n,w, t), we write the following system according to the total proba-
bility law and dynamic screening method

Pk (n,w, t + Δt) = Pk (n,w, t) (1 − λkΔt) (1 + qkkΔt)

+λkΔtSk (t)

w∫

0

Pk (n − 1, w − y, t) dGk (y)

+λkΔt (1 − Sk (t)) Pk (n,w, t) +
K∑

v=1
v �=k

qνkΔtPν (n,w, t) + o(Δt).
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We obtain the system of Kolmogorov integro-differential equations

∂Pk (n,w, t)
∂t

= λkSk (t)

⎡
⎣

w∫

0

Pk (n − 1, w − y, t) dGk (y) − Pk (n,w, t)

⎤
⎦

+
K∑

ν=1

qνkPν (n,w, t), (2)

with the initial condition

Pk(n, dw, t0) =

{
rkδ0(dw), if n = 0,

0, else,
(3)

where rk is the element of row vector r, which satisfies the system of equations:
{

rQ = 0,

re = 1,

and e is a column vector that consists of ones.

3.3 Characteristic Functions

Let us define the partial characteristic functions as

hk(u, v, t) =
∞∑

n=0

ejun

∞∫

0

ejvwpk(n, dw, t),

where j =
√−1, and we rewrite the system (2)–(3) for functions hk(u, v, t)

∂hk (u, v, t)
∂t

= λkSk (t)
(
ejuG∗

k(v) − 1
)
hk(u, v, t)

+
K∑

ν=1

qνkhν (u, v, t), k ∈ {1, . . . , K},

with the initial condition

hk(u, dv, t0) = rkδ0(dv)

where

G∗
k(v) =

∞∫

0

ejvydGk(y).

Then, we rewrite the obtained system as matrix equation

∂h (u, v, t)
∂t

= h (u, v, t)
[
ΛS(t)

(
ejuG(v) − I

)
+ Q

]
, (4)
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with the initial condition

h (u, dv, t0) = rδ0(dv) (5)

where

h (u, v, t) = [h1 (u, v, t) , . . . , hK (u, v, t)] ,
S (t) = diag{Sk(t)}, G (v) = diag{G∗

k(v)}

and I is identity matrix.

4 Asymptotic Analysis Method

Problem (4)–(5) seems as it can not be solved analytically in a direct way, so,
we apply the method of asymptotic analysis to solve it.

4.1 Method Description

Asymptotic analysis method for queueing systems consists of analysis of the
equations defining any characteristics of the system and allows to obtain prob-
ability distribution and numerical characteristics in the analytical form under
some asymptotic condition. We will use the asymptotic analysis method under
the condition of growing arrivals rate and extremely frequent changes in the
environment state to solve the Eq. (4)–(5). We set

Λ̃ = NΛ, Q̃ = NQ, N → ∞.

Then (4) can be rewrite as

1
N

∂h (u, v, t)
∂t

= h (u, v, t)
[
ΛS (t)

(
ejuG (v) − I

)
+ Q

]
. (6)

4.2 First Order Asymptotic

In (6), (5), we substitute

1
N

= ε, u = εx, v = εy, h (u, v, t) = f1 (x, y, t, ε) , (7)

and then it can be rewritten as

ε
∂f1 (x, y, t, ε)

∂t
= f1 (x, y, t, ε)

[
ΛS (t)

(
ejεxG (εy) − I

)
+ Q

]
. (8)

In (8) we set ε → 0 and denote

lim
ε→0

f1(x, y, t, ε) = f1(x, y, t),
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this yields
f1(x, y, t)Q = 0,

it then follows that f1(x, y, t) can be represented as a product

f1(x, y, t) = rΦ1(x, y, t), (9)

where Φ1(x, y, t) is a scalar function that satisfies the initial condition
Φ1(x, y, t0) = 1.

We multiply (8) by e, divide by ε, set ε → 0 and substitute (9):

∂Φ1 (x, y, t)
∂t

= Φ1 (x, y, t) rΛS (t) (jxI + jyA1) e, (10)

where

A1 = diag{ak}, ak =

∞∫

0

ydGk(y).

The solution of Eq. (10) is given as

Φ1 (x, y, t) = exp

⎧⎨
⎩jx

t∫

t0

rΛS (τ) edτ + jy

t∫

t0

rΛS (τ)A1edτ

⎫⎬
⎭. (11)

Denoting

m1 (t) Δ=
∫ t

t0

rΛS (τ) edτ , m2 (t) Δ=
∫ t

t0

rΛS (τ)A1edτ,

and making substitution inverse to (9) and (7), we obtain the first order approx-
imation

h(1) (u, v, t) = f1 (x, y, t, ε) ≈ f1 (x, y, t) = rΦ1 (x, y, t)
= r exp {juNm1 (t) + jvNm2 (t)}.

4.3 Second Order Asymptotic

In (4), we make a substitution

h (u, v, t) = h2 (u, v, t) exp {juNm1 (t) + jvNm2 (t)}, (12)

we obtain

1
N

∂h2 (u, v, t)
∂t

= h2 (u, v, t)

× [
ΛS (t)

(
ejuG (v) − I

)
+ Q − rΛS (t) e (juI + jvA1)

]
.

(13)
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We substitute

1
N

= ε2, u = εx, v = εy, h2 (u, v, t) = f2 (x, y, t, ε) (14)

into (13), and we obtain

ε2
∂f2 (x, y, t, ε)

∂t
= f2 (x, y, t, ε)

× [
ΛS (t)

(
ejεxG (εy) − I

)
+ Q − rΛS (t) e (jεxI + jεyA1)

]
.

(15)

As ε → 0, denoting

lim
ε→∞ f2(x, y, t, ε) = f2(x, y, t),

we obtain

f2(x, y, t)Q = 0.

This yields

f2 (x, y, t) = rΦ2 (x, y, t) , (16)

where Φ2 (x, y, t) is a scalar function that satisfies the initial condition
Φ2(x, y, t0) = 1. We represent f2 (x, y, t) as the expansion

f2 (x, y, t, ε) = Φ2 (x, y, t) [r + g (t) (jεxI + jεyA1)] + O
(
ε2

)
, (17)

where g (t) is a row vector.
We substitute the first degree Maclaurin expansion of ez into Eq. (15)

ε2
∂f2 (x, y, t, ε)

∂t
= f2 (x, y, t, ε) [ΛS (t) (I − er) (jεxI + jεyA1) + Q] .

Then we substitute (17) into the obtained equation

Φ2 (x, y, t) [r + g (t) (jεxI + jεyA1)]

× [ΛS (t) (I − er) (jεxI + jεyA1) + Q] = O
(
ε2

)
.

We divide both sides by ε and set ε → 0

Φ2 (x, y, t) [rΛS (t) (I − er) + g (t)Q] [jxI + jyA1] = 0.

This yields

g (t)Q = rΛS (t) (er − I) . (18)

Hence, vector g (t) is defined by the inhomogeneous linear system. The solution
g (t) of the system (18) we can write as

g (t) = c (t) r + d (t) ,
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where c(t) is an arbitrary scalar function and the row vector d (t) is any specific
solution to system (18) satisfying a certain condition, for example:

d (t) e = 0.

The solution has the form

d (t) = rΛS (t)G,

where
{

GQ = er − I,
Ge = 0.

Finally, the solution of (18) has the form

g (t) = c (t) r + rΛS (t)G.

Let us now derive the explicit expression for the function Φ2 (x, y, t). To do
this, we approximate the exponential function in (15) with the second degree
Maclaurin expansion and make substitution (17). This yields the equation

ε2
∂Φ2 (x, y, t)

∂t
r = Φ2 (x, y, t) [r + g (t) (jεxI + jεyA1)]

×
[
jεyΛS (t)A1 +

(jεy)2

2
ΛS (t)A2 + jεxΛS (t) + jεxjεyΛS (t)A1

+
(jεx)2

2
ΛS (t) + Q − jεxrΛS (t) eI − jεyrΛS (t) eA1

]
,

where

A2 = diag{αk}, αk =

∞∫

0

y2dGk(y).

We then multiply both parts of the obtained equation by vector e. Due
to (18), we can write

∂Φ2 (x, y, t)
∂t

= Φ2 (x, y, t)

[
(jx)2

2
[r + 2g (t) (I − er)]ΛS (t) e

+
(jy)2

2
[rA2 + 2g (t) (I − er)A1A1]ΛS (t) e

+ jxjy [r + 2g (t) (I − er)] A1ΛS (t) e] .
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Denoting

K11 (t) Δ=
∫ t

t0

[r + 2g (τ) (I − er)]ΛS (τ) edτ ,

K22 (t) Δ=
∫ t

t0

[rA2 + 2g (τ) (I − er)A1A1]ΛS (τ) edτ ,

K12 (t) Δ=
∫ t

t0

[r + 2g (τ) (I − er)] A1ΛS (τ) edτ ,

we obtain the solution

Φ2 (x, y, t) = exp

{
(jx)2

2
K11 (t) +

(jy)2

2
K22 (t) + jxjyK12 (t)

}
.

Making substitution inverse to (16), (14) and (12), we obtain the second
order approximation

h(2) (u, v, t) ≈ r exp

{
juNm1 (t) + jvNm2 (t) +

(ju)2

2
NK11 (t)

+
(jv)2

2
NK22 (t) + jujvNK12 (t)

}
.

4.4 Main Result

Multiplying by vector e, we obtain the approximation of the characteristic func-
tion of stochastic process {n(t), w(t)}

h(2) (u, v, t) = h(2) (u, v, t) e,

and going to steady-state regime, we put t = T and t0 → −∞, using (1), we
obtain the approximation for the characteristic function of process {i(t), v(t)}

h (u, v) ≈ exp

{
juNm1 + jvNm2 +

(ju)2

2
NK11 +

(jv)2

2
NK22 + jujvNK12

}
,

where

m1 = rΛBe, m2 = rΛA1Be,

K11 = rΛBe + 2rΛBGΛe − 2rΛ(M ◦ G)Λe,

K22 = rA2ΛBe + 2rA1ΛBGA1Λe − 2rA1Λ(M ◦ G)A1Λe,

K12 = rA1ΛBe + 2rA1ΛBGΛe − 2rA1Λ(M ◦ G)Λe,

B = diag

⎧⎨
⎩

∞∫

0

(1 − Bk (τ)) dτ

⎫⎬
⎭ ,

M =

⎡
⎣

∞∫

0

(1 − Bk (τ)) (1 − Bk′ (τ)) dτ

⎤
⎦ , k, k

′ ∈ {1, . . . , K}.
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Here notation X ◦ Y means Hadamard (element-wise) product of matrices X
and Y.

Finally, the steady-state probability distribution of two-dimensional stochas-
tic process {i(t), v(t)} can be approximated by the Gaussian distribution with
means vector

m = N [m1 m2]

and covariance matrix

K = N

[
K11 K12

K12 K22

]
.

In particular, the stationary characteristic function of the distribution of the
total amount of occupied resource v(t) can be approximated as follows:

h (v) ≈ exp

{
jvNm2 +

(jv)2

2
NK22

}
. (19)

So, this distribution can be approximated by the Gaussian one with mean Nm2

and variance NK22.

5 Numerical Example

Consider the following example. Let the random environment have three states
{1, 2, 3} and be defined by the generator

Q̃ = N ·
⎡
⎣−3 1 2

1 −2 1
2 2 −4

⎤
⎦ .

Let we have Poission arrivals with intensities

Λ̃ = N · diag{0.1; 1; 10}.

Let service times have gamma distribution with the following shape and rate
parameters:

α1 = 1.9, β1 = 2; α2 = 0.5, β2 = 1; α3 = 0.4, β2 = 3,

and resource requirements, also, have gamma distribution with parameters

ᾱ1 = β̄1 = 0.5; ᾱ2 = β̄2 = 1.5; ᾱ3 = β̄3 = 2.

Here indices mean the state of the random environment when the customer
arrives.

Let us estimate the accuracy of obtained approximation (19) and find a
lower bound of parameter N for the applicability of the proposed approxima-
tion. To do this, we carried out series of simulation experiments (in each of
them 107 arrivals were generated) for increasing values of N and compared the
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asymptotic distributions with the empiric ones by using the Kolmogorov distance
Δ = sup

x
|F (x)− F̃ (x)| as an accuracy measure. Here F (x) is the cumulative dis-

tribution function (CDF) built on the basis of simulation results, and F̃ (x) is
the CDF based on Gaussian approximation (19).

Table 1 presents the Kolmogorov distances between the asymptotic and
empirical distribution functions of the total amount of resources occupied in
the system. We see that the approximation accuracy increases with growing of
parameter N , which is also illustrated by Fig. 4.

Table 1. Kolmogorov distances for the distribution of the total amount of occupied
resource between ones basing on the approximation and the simulation results for
various values of parameter N

N 5 10 15 20 25 50 100

Δ 0.085 0.061 0.051 0.045 0.041 0.033 0.023

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20 25

F(
v)

v

Simulation Analytical

0

0,2

0,4

0,6

0,8

1

0 15 30 45 60 75 90 105 120

F(
v)

v

Simulation Analytical

N = 10 N = 100

Fig. 4. Comparison of the approximation and simulation results for the distribution
function of the total amount of occupied resource

If we suppose that the error Δ ≤ 0.05 is acceptable, we may conclude that
the Gaussian approximation can be applicable for the cases N > 15.

6 Conclusion

In the paper, we have studied a resource queueing system M/GI/∞ operating
in a random environment. We have considered the case when the service time
and the occupied resource do not change for the customers already under ser-
vice when the random environment state changes. We have applied the dynamic
screening method and the asymptotic analysis method to find the approxima-
tion of the probability of the total amount of occupied resource. It has been
obtained that this distribution can be approximated by Gaussian distribution
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under the condition of growing arrival rate and extremely frequent changes of
the states of the random environment. The parameters of the corresponding
Gaussian distribution have been obtained.
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