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Abstract

The diatoms evolved within the stramenopiles, an ecologically important and
diverse assemblage of eukaryotes that includes both photosynthetic macrophytes
and microalgae, as well as non-photosynthetic heterotrophs and parasites. The
evolutionary history of the stramenopiles, which stretches back to the Palaeozoic,
has been marked by the acquisition of chloroplasts in a recent common ancestor
of their photosynthetic members, the ochrophytes; and progressive gains of genes
in the nuclear genome by horizontal and endosymbiotic gene transfer. Here, we
place diatoms in their actual evolutionary context within the stramenopiles;
identify gene transfers that have shaped the coding content of the diatom nucleus;
and profile sources of differences in chloroplast and mitochondrial genome
content between different stramenopiles including diatoms. We underline the
importance of considering diatoms as evolutionary mosaics, supported by genes
of bacterial, red, green and other eukaryotic algal origins, as illustrated by
multiple phylogenomic studies realised over the last two decades; and the rela-
tively limited changes to organelle genome content in diatoms compared to other
stramenopile lineages. We further identify a previously undocumented transfer of
a novel open reading frame of the chloroplasts of green algae into the
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ochrophytes, underlining the importance of changes in organelle and nuclear gene
content, in defining the current biology of diatoms.
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Haptophytes - Dinoflagellates

Abbreviations

ATP adenosine triphosphate

BLAST Basic Local Alignment Search Tool

DNA deoxyribonucleic acid

ER endoplasmic reticulum

GFP green fluorescent protein

GTR generalised time reversible substitution model
HGT horizontal gene transfer

ISIP iron-stress-induced protein

JTT Jones-Taylor-Thornton substitution model
Lhe light harvesting complex

ORF open reading frame

Pt Phaeodactylum tricornutum

rRNA ribosomal ribonucleic acid

SAR stramenopiles, alveolates and rhizaria

Tat twin arginine transporter

Tp Thalassiosira pseudonana

tRNA transfer ribonucleic acid

WAG Whelan and Goldman substitution model

1.1

The Evolutionary Context of Diatoms within
the Stramenopiles

Diversity of Photosynthetic and Non-photosynthetic

Stramenopile Groups

Diatoms belong to the stramenopile phylum which sits within the “SAR clade”
(Stramenopiles, Alveolates and Rhizaria) of the tree of life (Dorrell and Bowler
2017; Ichinomiya et al. 2016; Adl et al. 2012) (Fig. 1). Besides stramenopiles, the
SAR clade contains the alveolates (including dinoflagellates which are the principal
photosynthetic component of corals, and apicomplexans such as the malaria parasite
Plasmodium), and rhizarians (including the important fossil markers, forams). The
group is distantly related both to plants and to animals, sharing a last common
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Fig. 1 Evolutionary positions of diatoms within the eukaryotes and the stramenopiles. Top: a
schematic tree of eukaryotic diversity, adapted from Dorrell and Smith (2011); bottom, a close-up
of stramenopile lineages, adapted from Dorrell and Smith (2017), showing the global and local
evolutionary context of diatoms. Cell images are reprinted from Encyclopaedia of Life (www.eol.
org), Prof. Connie Lovejoy (Université Laval), and Dr. Zhanru Shao (Institute of Oceanology,
Chinese Academy of Sciences), with permissions

ancestor with each no more recently than one billion years ago (Parfrey et al. 2011).
The stramenopiles themselves are evolutionarily ancient, radiating at least six
hundred million years before the present (Brown and Sorhannus 2010), placing
them on a common level of antiquity to plants and animals (Dorrell and Smith 2011).

The stramenopiles are an ecologically diverse, and environmentally important
group of eukaryotes. They are characterised, in particular, by their flagellar
organisation which typically includes one short flagellum and one long flagellum
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covered in tubular « hair »-like structures, with the uneven length of their flagella
giving rise to an alternate name of « heterokonts » (Adl et al. 2012; Cavalier-Smith
1998). Beyond this, stramenopiles contain few conserved features, although their
monophyly is well supported by molecular data (Burki et al. 2007; Elias et al. 2009).

Alongside the diatoms, the stramenopiles contain numerous other photosynthetic
taxa, referred to collectively as “ochrophytes” (Fig. 1). These include, but are not
limited to, giant macrophytic kelps (found within the phaeophytes) which can grow
to nearly one hundred meters in length (Fork et al. 1991), and unicellular and
colonial algae (e.g. the chrysophytes, or “golden algae,” dictyochophytes, or
“silicoflagellates” and pelagophytes) which can have cell diameters of only a couple
of micrometers. Several other stramenopile groups (particularly phaeophytes,
pelagophytes, dictyochophytes and chrysophytes) are important contributors to
marine and freshwater photosynthesis (Dorrell and Smith 2011) Some of the
ochrophyte groups are silicifying, like diatoms (e.g. silicoflagellates within the
dictyochophytes; synurophytes within the chrysophytes), while others are not
(Dorrell and Bowler 2017; Ichinomiya et al. 2016; Hendry et al. 2018). Some of
these photosynthetic groups are also known to engage in mixotrophic strategies,
either through the phagocytotic consumption of bacteria (e.g. in chrysophytes and
dictyochophytes (Graupner et al. 2018; Walker et al. 2011)), or through the
osmotrophic uptake of extracellular organic nutrients (e.g. in diatoms and
pelagophytes) (Villanova et al. 2017), while in others (e.g. kelps), neither strategy
has been reported (Dorrell and Bowler 2017).

Moreover, there is a substantial non-photosynthetic component to stramenopile
diversity (Fig. 1). These include some lineages that resolve within otherwise photo-
synthetic groups, for example, non-photosynthetic diatoms (Kamikawa et al. 2015a;
Pendergrass et al. 2020), dictyochophytes (Sekiguchi et al. 2002; Kayama et al.
2020), and chrysophytes (Graupner et al. 2018; Dorrell et al. 2019), and accordingly
retain leucoplasts (non-photosynthetic plastids). Other non-photosynthetic
stramenopile groups contain no photosynthetic members and no trace of plastids.
These “aplastidic stramenopiles” include important pathogens: oomycetes, parasites
of algae and plants, such as the causative agents of potato blight and sudden oak
death (Stiller et al. 2009; Levesque et al. 2010); labyrinthulomycetes which are
important pathogens of marine algae and invertebrates (Tsui et al. 2009); and
Blastocystis, a human gut commensal which may have harmful effects in immuno-
deficient hosts (Eme et al. 2017). In addition, the aplastidic stramenopiles include
important marine saproptrophs (e.g. hypochytriomycetes, related to oomycetes
(Leonard et al. 2018)) and predator groups (e.g. bicosoecids, related to Blastocystis
(Jirsova et al. 2019)).

1.2 Phylogenetic Arrangement and Endosymbiotic Histories
of the Stramenopiles

The phylogenetic relationships within the stramenopiles have been revealed progres-
sively by morphology, electron microscopy and biochemistry (Adl et al. 2012;
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Cavalier-Smith 1998), alongside single-gene, and subsequently multigene
phylogenies (Parks et al. 2018; Ichinomiya et al. 2016; Derelle et al. 2016)
(Fig. 1). The exclusively non-photosynthetic groups form the most basally divergent
stramenopile nodes, with oomycetes forming the closest major sister-group to the
photosynthetic ochrophytes (Ichinomiya et al. 2016; Derelle et al. 2016) (Fig. 1).
Within the ochrophytes, three major groups are apparent (Fig. 1): the “chrysista”
which include phaeophytes; chrysophytes, and the oil-producing alga
Nannochloropsis (Ichinomiya et al. 2016, Rodolfi et al. 2009); the « hypogyristea,
containing pelagophytes and dictyochophytes (Ichinomiya et al. 2016; Dorrell et al.
2017a); and the “khakista” or diatoms and their immediate sister group, a single-
genus group alternatively labelled Bolidomonas or Triparma (Ichinomiya et al.
2016, Tajima et al. 2016). The hypogyristea and khakista are clearly sister-groups,
whereas the monophyly of chrysista is uncertain, with some phylogenomic studies
resolving the constituent lineages as a single group (Derelle et al. 2016), and others
indicating a basally divergent group of pinguiophytes, synchromophytes,
synurophytes and chrysophytes which precede the divergence of phaeophytes,
raphidophytes and eustigmatophytes from the remaining ochrophytes (Dorrell
et al. 2021; Burki et al. 2016).

Chloroplasts originate via the endosymbiotic uptake of free-living photosynthetic
bacteria (in the case of primary endosymbiosis), of single-celled red or green eukary-
otic algae containing chloroplasts (in the case of secondary endosymbiosis), or even
of eukaryotic algae containing secondary chloroplasts (tertiary or higher
endosymbioses; Fig. 1). The engulfed cells are converted into stable, intracellular
organelles; and this process has been observed to occur in multiple algal groups
across the tree of life (Fig. 1) (Walker et al. 2011). The chloroplasts found in
ochrophytes are typically characterised by the presence of four surrounding
membranes, the outermost of which is contiguous to the endoplasmic reticulum
(Ishida et al. 2000) and possess chlorophyll ¢ as a light-harvesting pigment
(Kowallik et al. 1995), although exceptions to these paradigms are known (Dorrell
and Bowler 2017; Wetherbee et al. 2019) (Fig. 2). Both of these features are
characteristic  of  chloroplasts acquired through the secondary or
higher endosymbioses of red algae (i.e. those found in cryptomonads, haptophytes,
dinoflagellates and photosynthetic apicomplexans; Fig. 1), although are not known
in red algae themselves (Dorrell and Bowler 2017). In contrast, ochrophytes do not
retain phycobiliprotein subunits which are found in red algae and in cryptomonad
chloroplasts (Bhattacharya et al. 2013; Sturm et al. 2013)). The ochrophyte chloro-
plast additionally is defined by a « girdle lamella », a ring-like structure consisting of
three apressed thylakoids that cover the exterior of the chloroplast stroma (Andersen
et al. 1993), and additional synapomorphies (the accessory pigments diatoxanthin
and diadinoxanthin) unifies the Khakista (diatoms and Bolidomonas) and
hypogyristea (pelagophytes and dictyochophytes) (Dorrell and Bowler 2017; Buck
et al. 2019; Kuczynska et al. 2015). (Figs. 1 and 2).

Consistent with the classical paradigm based on biochemical and ultrastructural
data, multigene phylogenies of chloroplast genomes robustly resolve ochrophytes as
a monophyletic group, with the chloroplast originating within red algae, and closely



152 R. G. Dorrell et al.

Chloroplast-targeted protein Chloroplast-targeted
Chloroplast: ER recruited from other host protein derived from
Periplastid compartment organelle bacterial HGT

Intermembrane Space

PtDNA

Chloroplast-targeted
protein derived from
eukaryotic algal HGT

Nucleus
containing
endosymbiont-
and horizontally-
derived genes

Chloroplast-targeted
protein derived from
endosymbiotically
transferred gene

Chloroplast-encoded protein

Fig. 2 Schematic diagram of the diatom chloroplast, adapted from Nonoyama et al. (2019) and
Dorrell and Bowler (2017), demonstrating the ultrastructure of the chloroplast, and the major
evolutionary classes of chloroplast- and nucleus-encoded chloroplast proteins

related to other chloroplast groups acquired through the secondary endosymbiosis of
red algae (Dorrell et al. 2017a; Mufioz-Gémez et al. 2017; Stiller et al. 2014). Thus,
the most parsimonious scenario for the origin of the ochrophyte chloroplast is
through a single endosymbiosis event in a recent common ancestor (Dorrell et al.
2017a), prior to the divergence of diatoms (Fig. 1).

2 Phylogenomic Insights into Diatom Evolution

Prior to the genomics era, the deep evolutionary history of the eukaryotic tree was
resolvable only through ultrastructural similarities, and single-gene trees realised
with individual markers (e.g. 18S and chloroplast 16S ribosomal DNA (Cavalier-
Smith 1998, 1999)). Based on the conserved ultrastructural features of their
chloroplasts, and single-gene phylogenetic data, it was posited that the major groups
of algae with chloroplasts of secondary red origin, that is, stramenopiles,
cryptomonads, haptophytes and dinoflagellates, descended from a common ancestor
which acquired its chloroplast through a single secondary endosymbiosis involving a
red alga (Cavalier-Smith 1998, 1999). These lineages were therefore proposed to
form a monophyletic group, termed the “chromalveolates”; non-photosynthetic
members of these lineages, such as oomycetes, were posited to have therefore
once possessed chloroplasts, and subsequently to have lost them (Cavalier-Smith
1998).

Whole-genome sequencing in diatoms commenced with the centric species
Thalassiosira pseudonana and the pennate Phaeodactylum tricornutum (Armbrust
et al. 2004; Bowler et al. 2008). This has also opened new windows of insight into
the phylogenetic composition of the diatom nucleus (Armbrust et al. 2004; Bowler
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et al. 2008; Moustafa et al. 2009) which has undergone substantial elaborations over
its evolutionary history. The advent of high-throughput genomic sequencing, and
multigene phylogenomics, revolutionised our understanding of diatom evolution, for
example, through the incorporation of rhizaria (which do not contain red algal
chloroplasts) with stramenopiles and alveolates, as part of the “SAR clade” (Burki
et al. 2007; Walker et al. 2011). Further studies have positioned the nuclear lineages
of cryptomonads as being more closely related to that of plants and red algae than
that of diatoms, directly questioning the occurrence of a single, secondary endosym-
biosis event (Burki et al. 2016; Lax et al. 2018). Moreover, genomic investigations
of major non-photosynthetic stramenopile groups, such as oomycetes (Stiller et al.
2009) and hypochytriomycetes (Leonard et al. 2018), have revealed an absence of
genes of red algal origin that are shared with photosynthetic lineages (Stiller et al.
2014; Wang et al. 2017), placing the acquisition of the ochrophyte chloroplast after
their divergence from non-photosynthetic relatives (Fig. 1).

The acquisition of a chloroplast by the common ancestor of the ochrophytes
dramatically altered the composition of their genomes, adding a new organelle, with
its own complex biochemical and physiological needs, to the host genome. Some of
these functions are encoded in the chloroplast genome itself, and others in the
genome of the stramenopile nucleus (Fig. 2). These nuclear genes, encoding
chloroplast-targeted proteins, might have originated within the nucleus itself, and
adapted to support the biology of the chloroplast (Novak Vanclova et al. 2020;
Larkum et al. 2007; Morozov and Galachyants 2019), or might have been derived
from either the nucleus or the chloroplast of the red algal ancestor of the ochrophyte
chloroplast, and relocated to the host via endosymbiotic gene transfer (Dorrell and
Bowler 2017; Dorrell et al. 2017a) (Fig. 2). At least, some of the proteins in the
chloroplast proteome may additionally have bifunctional roles in other organelles,
for example, through dual-targeting to the mitochondria (Dorrell et al. 2017a, 2019;
Gile et al. 2015) or to the plasma membrane (Kazamia et al. 2018) (Fig. 2).

Alongside this, both the nuclear and mitochondrial genomes of ochrophytes and
aplastidic stramenopiles have undergone their own, independent gene transfer
events: for example the relocation of mitochondria-encoded functions to the nucleus
and the horizontal acquisition of non-chloroplast related genes of non-stramenopile
origin by the stramenopile nuclear genome (Bowler et al. 2008; Keeling and Palmer
2008; Rastogi et al. 2018). Here, we summarise current knowledge (as of 2022)
regarding different evolutionary sources of novelty in diatom nuclear genomes that
have arisen through the course of stramenopile evolution, focusing on the genome of
the model diatom P. tricornutum, which remains the best-studied system for
phylogenomic reconstructions of gene transfer in the diatom lineage (Bowler et al.
2008; Rastogi et al. 2018) (Table 1). Subsequently, we explore the dynamic evolu-
tion of diatom mitochondria and chloroplasts, and identify features underpinning the
progressive loss, and occasional gain, of novel coding functions in the organelle
genomes of individual diatom species.
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2.1 Methods and Problems when Exploring Origins of Diatom
Nuclear Genes

Dynamic transitions in the evolutionary history of the diatom nuclear, mitochondrial
and chloroplast genomes can be identified, and quantified, by comparative genomic
and phylogenomic approaches (Bowler et al. 2008; Moustafa et al. 2009; Rastogi
et al. 2018) (Table 1). Understanding these transitions is important as it may reveal
adaptations of diatoms to their current environments and allow us to pinpoint
genomic novelties that may explain their success over red or green algae, or even
other stramenopile groups, in the contemporary ocean (Dorrell and Smith 2011).
However, the exact size, timing, reason and even the veracity of individual gene
transfer events can be controversial (Deschamps and Moreira 2012; Dagan and
Martin 2009), depending particularly on the methodology used.

Firstly, different results may be obtained depending on the reference library used
which may be constrained both by taxonomic undersampling and oversampling of
key lineages. For example, early estimates of the green algal signal in diatom
genomes (Armbrust et al. 2004; Bowler et al. 2008; Ponce-Toledo et al. 2019)
were likely to be overinflated by the paucity of red algal gene models at the time
of analysis, being largely dependent on the highly reduced genome of the
extremophilic alga Cyanidioschyzon merolae as the only publicly available red
algal gene reference (Matsuzaki et al. 2004; Collén et al. 2013).

In contrast, the indiscriminate use of transcriptome data and poorly curated
reference genomes can lead to the misidentification of contaminants as horizontally
transferred genes (Dorrell et al. 2017a; Vancaester et al. 2020; Burki et al. 2012), or
the preferential identification of genes with unresolvable or ambiguous origins as
being related to oversampled taxa (Deschamps and Moreira 2012). These strategies
may be avoided by judicious taxonomic sampling when constructing reference
datasets (Dorrell et al. 2017a; Morozov and Galachyants 2019): alongside the use
of new long-read sequencing technologies (e.g.; PacBio (Rhoads and Au 2015)),
assembly approaches (e.g. Dovetail (Moll et al. 2017)), gene annotation pipelines
(incorporative of transcriptome or proteomic data (Rastogi et al. 2018; Yang et al.
2018)), and in silico cleaning of reference genome and transcriptome libraries
(e.g. through considering nucleotide composition, (Dorrell et al. 2021; Hehenberger
et al. 2016; Sato et al. 2020)) to improve curation of gene models, and remove
probable contaminant sequences.

Different results can also be obtained because of the methodology used, for
example, BLAST-based analyses such as ranking of top hits (Stiller et al. 2014;
Armbrust et al. 2004; Rastogi et al. 2018; Méheust et al. 2016) versus whole-genome
phylogenomic analysis (Dorrell et al. 2021; Morozov and Galachyants 2019;
Deschamps and Moreira 2012; Vancaester et al. 2020; Fan et al. 2020). BLAST
top hit analysis is less computationally intensive than phylogenetic techniques and
provides several technical advantages, for example, the ability to infer possible
evolutionary histories for genes that are too short or divergently evolved
(e.g. chimeric gene fusions) to be resolved through classical phylogenetic
approaches (Dorrell et al. 2017a, 2021; Méheust et al. 2016), but its resolution is
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necessarily poorer: for example not being able to determine the directions of gene
transfers that can be inferred from the topology (e.g. monophyly versus paraphyly of
stramenopile lineages) within a phylogenetic output (Dorrell et al. 2017a; Morozov
and Galachyants 2019).

The threshold stringencies applied when identifying evolutionary origins may
also bias the evolutionary relationships reconstructed. Too permissive criteria can
admit poorly resolved or artefactual relationships, whereas too stringent parameters
can conversely eliminate usable phylogenetic signals. For example using
phylogenomic approaches and automated tree sorting, Moustafa et al. identified
418 red and 1757 green genes in the P. tricornutum genome (Moustafa et al.
2009) (Table 1). Following manual reinspection of the green gene dataset identified
by Moustafa et al. (Moustafa et al. 2009), Deschamps and Moreira found that 91 of
the putative green gene trees had topologies consistent with a vertical transfer of
genes from the green lineage into the diatoms, whereas 89 of the putative green
genes had histories more consistent with a transfer from the red lineage into the
diatoms (Deschamps and Moreira 2012), although they did not perform a compara-
ble analysis of the red genes identified by Moustafa et al. (Table 1).

Finally, even within well-sampled datasets, the exact questions that are posed by
a study of horizontal gene transfer will determine the results obtained. Early studies
on diatoms necessarily focused on gene transfers from animals, fungi, bacteria, red
algae and green algae, as these were the reference genomic models available at the
time (Armbrust et al. 2004; Bowler et al. 2008; Moustafa et al. 2009). However,
diatoms may also have exchanged genes with other algae with secondary
chloroplasts (e.g. cryptomonads, haptophytes and dinoflagellates): either as part of
chloroplast endosymbiosis events (Dorrell et al. 2017a, 2021; Stiller et al. 2014) or
through independent horizontal gene transfers (Nonoyama et al. 2019; Kazamia et al.
2018), and some of the “bacterial,” “red” or “green” genes identified in early studies
may have passed through one or more of these algal groups as intermediates prior to
arriving in diatom genomes (Dorrell et al. 2021). Genes acquired horizontally into
diatom genomes may have variously been received in early ancestors of the SAR
clade, stramenopiles or ochrophytes, in the diatom ancestor, or even specifically
within the diatom species considered; and recent studies have profited from the
expanded number of diatom and stramenopile genomes and transcriptomes available
to infer the probable timing of individual gene transfers (Dorrell et al. 2021;
Vancaester et al. 2020; Fan et al. 2020). These more densely sampled datasets
may even be able to identify occasions in which diatoms or their ancestors have
acted as donors, rather than recipients, in gene transfers with other lineages (Dorrell
et al. 2017a, 2021).

In Table 1, we profile the key results of different studies of horizontal gene
transfers involving the diatom nucleus, focussing on the T. pseudonana and
P. tricornutum genomes (Dorrell et al. 2017a, 2021; Armbrust et al. 2004; Bowler
et al. 2008; Moustafa et al. 2009; Rastogi et al. 2018; Deschamps and Moreira 2012;
Vancaester et al. 2020; Fan et al. 2020). The most recent of these analyses, involving
a densely sampled reference dataset of all currently available eukaryotic and pro-
karyotic genomes and transcriptomes, and manual sorting of trees by partner lineage,
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timing and direction of horizontal transfer (Dorrell et al. 2021), identified 1347/
12177 (11.0%) genes in the P. tricornutum genome to have been horizontally
acquired since the origin of the ochrophytes, and a further 1771 examples,
distributed over 1184 (9.7%) genes, of gene transfers from the ochrophytes into
the other branches of the tree of life (Dorrell et al. 2021). Below, we discuss the
likely origin points and functions of different horizontally transferred genes, includ-
ing genes acquired from bacteria, red algae and their endosymbiotic descendants,
green algae, as well as gene transfers from diatoms into other eukaryotic lineages.

2.2 Prokaryotic Signals

Phylogenomic annotations of the P. tricornutum have identified large numbers of
genes of prokaryotic (i.e., bacterial and archaeal) origin, inferred to constitute 7.4%
(784 genes) of the original annotation (Bowler et al. 2008) and reduced to a still
substantial 285 genes (2.3%) (Dorrell et al. 2021) in the most recent estimates from
the third genome annotation with more densely sampled taxonomic references
(Table 1) (Dorrell et al. 2021). Most of these genes pertain to bacteria, with limited
or zero estimated archaeal and viral contributions into diatom genomes (Dorrell et al.
2021; Rastogi et al. 2018). These genes have been acquired progressively through
diatom evolution, with studies focused on Phaeodactylum (Dorrell et al. 2021;
Rastogi et al. 2018); and indeed on wider diatom pan-genomes (Dorrell et al.
2021; Vancaester et al. 2020; Fan et al. 2020), detecting large numbers of bacterially
derived genes into early ancestors of the SAR clade, stramenopiles or ochrophytes;
into the diatom common ancestor; and even into individual diatom groups or species
(Table 1).

Two recent studies from Vancaester et al. (2020) and from our group (Dorrell
et al. 2021), which have reconciled automatically resolved bacterial transfers from
densely sampled datasets with multigene reference tree topologies for SAR clade
members, have attributed large numbers of bacterial gene transfer to early ancestors
of the diatoms, following their divergence from other stramenopiles (Dorrell et al.
2021; Vancaester et al. 2020) (Table 1). This may reflect a greater flux of bacterial
DNA into diatoms than related algae which may contribute to their comparative
ecological success (Dorrell et al. 2021). However, it is possible that this asymmetry
reflects the greater number of diatom reference sequence libraries in which gene
transfers may be identified, and a parallel study by Fan et al. (2020) using a smaller
number of diatom genomes, but balanced taxonomic sampling of diatom and
non-diatom species, did not appear to yield greater numbers of bacterial genes in
diatoms than other lineages (Fan et al. 2020) (Table 1). An alternative explanation is
a high rate of transfer, but also secondary loss of bacterial-derived genes into diatoms
which may enable specific diatom species to explore new evolutionary niches and
fluctuating environments (Dorrell et al. 2021).

Regardless of the frequencies of their appearance, bacterial genes contribute a
wide range of different functions to diatoms. For example, within the dataset of
770 genes encoding chloroplast-targeted proteins that are shared across (and
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presumably ancestral to) all ochrophytes, we identified 49 of probable prokaryotic
origin, including many implicated in the expression of the chloroplast genome
(Dorrell et al. 2017a). More recently, considering both in silico targeting predictions
and GFP labelling, we have shown that bacterial genes acquired early during
ochrophyte evolution are enriched in chloroplast-targeted proteins, consistent with
origins tied to the ochrophyte chloroplast, whereas more recently acquired proteins
predominantly function in the diatom secretome (Dorrell et al. 2021). Many of these
more recently acquired bacterial genes have functions pertaining to environmental
stress: ice-binding proteins in polar-adapted diatoms (Sorhannus 2011; Raymond
and Kim 2012), and proteins involved in the synthesis of Vitamin B, which may be
a limiting micronutrient in many of the Southern Ocean habitats where diatoms are
abundant (Vancaester et al. 2020; Browning et al. 2017).

23 Red-Algal-Related Signals

Early estimates posited approximately 400 genes (4% of the coding content) in the
P. tricornutum and T. pseudonana genomes were of red algal origin (Table 1)
(Bowler et al. 2008; Moustafa et al. 2009; Rastogi et al. 2018). These genes
principally encode proteins of chloroplast function, and are shared across
ochrophytes, for example, constituting one-half (255 of the 502 genes) of the
chloroplast-targeted proteins shared across all ochrophytes identified by Dorrell
et al. 2017a, b for which a tractable phylogenetic signal could be found (Table 1)
(Dorrell et al. 2017a). In contrast, only four of these genes were found to be shared
with non-photosynthetic ~stramenopile groups such as oomycetes and
labyrinthulomycetes (Dorrell et al. 2017a) (Table 1). This, alongside the previously
discussed lack of red algal signal in the genomes of non-photosynthetic
stramenopiles (Stiller et al. 2009, 2014; Leonard et al. 2018; Wang et al. 2017), is
consistent with a late acquisition of the ochrophyte chloroplast, after their divergence
from oomycetes (Dorrell and Bowler 2017).

Despite the massive expansion in the availability of red algal genome sequences
and transcriptomes in the last decade (Dorrell et al. 2017a; Collén et al. 2013;
Brawley et al. 2017), the number of red algal-derived genes identified in
stramenopile genomes has remained relatively constant. For example, whereas
Moustafa et al. (2009) identified 418 genes of putative red origin in the
P. tricornutum genome using the extremophilic red alga C. merolae as a principal
reference (Moustafa et al. 2009), only 459 red genes were identified by Rastogi et al.
(2018) using a much more exhaustive dataset including five complete red algal
genomes and thirteen different red algal transcriptomes (Rastogi et al. 2018)
(Table 1). One possible reason for this quite limited red contribution is the relatively
high level of reduction observed in red algal nuclear genomes, which lack many of
the accessory functions identified in diatoms and in other eukaryotic groups (Rastogi
et al. 2018; Qiu et al. 2017).

An alternative scenario is that the red algal signal in stramenopile lineages does
not itself directly come from red algae, but from a secondary, red-chloroplast
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containing lineage that was acquired by the stramenopiles through a tertiary or more
complex endosymbiosis event. Using an innovative methodology based on the
similarity of BLAST hit signals, Stiller et al. (2014) concluded a probable
cryptomonad origin for the ochrophyte chloroplast (Stiller et al. 2014). In our most
recent analyses, considering algae with secondary chloroplasts as possible donors
into diatom genomes, we could only manually identify 193 P. tricornutum genes that
resolved phylogenetically as a direct sister to red algae, but found a further 514 that
resolved with cryptomonads, haptophytes or dinoflagellates, with haptophytes
contributing the greatest number (Table 1) (Dorrell et al. 2021). In this case,
whatever functions that might have been inherited by the stramenopile ancestor
from red algae would have been winnowed by not only one, but potentially two or
more successive endosymbiotic events. Ultimately, identifying why stramenopiles
contain the red algal genes that they do will depend on tracing the permeation of the
red signal across all major groups of algae with secondary, red-derived chloroplasts.

24 Green-Algal-Derived Signals

As discussed above, diatoms contain a sizeable number of genes of green algal
origin, although the number identified varies based on the methodology employed
(Moustafa et al. 2009; Morozov and Galachyants 2019; Deschamps and Moreira
2012) (Table 1). In our most recent estimates, we identified 260 (2%) genes in the
P. tricornutum genome showing relationships consistent with a direct gene transfer
from the green algae into the ochrophytes, most of which resolve to deep nodes in
ochrophyte evolution (Table 1) (Dorrell et al. 2021), and 105 out of 502 (20%) of
conserved ochrophyte chloroplast-targeted proteins for which a tractable origin was
identified for green algae (Dorrell et al. 2017a) (Table 1). The exact numbers and
identities of the green genes in diatom genomes are likely to undergo further revision
with deeper sequencing of red algae revealing previously unidentified homologues
of diatom genes (e.g., xanthophyll cycle genes (Dautermann and Lohr 2017)). Other
green genes may be reassigned as having more direct cryptomonad, haptophyte or
dinoflagellate origins, although even the most stringent pipelines and sampling
thresholds fail to completely eliminate the green signal from diatom genomes
(Dorrell et al. 2021; Deschamps and Moreira 2012).

Beyond the presence and size of the green signal in diatoms, other questions
remain, namely: where do these genes come from, and how were they acquired?
Phylogenomic analyses typically pinpoint green genes as arising within
chlorophytes (i.e. single-celled green algae) rather than streptophytes (plants and
their closest relatives) which helps argue against their origin as being artefactual
because of phylogenetic misannotation (Dorrell et al. 2017a; Moustafa et al. 2009),
although it remains to be determined where within the chlorophytes this signal
preferentially falls (Table 1). The green genes that are present in diatom genomes
are enriched in genes encoding chloroplast-targeted proteins (Dorrell et al. 2017a)
which might be consistent with a chloroplast endosymbiotic origin. This could be
due to a cryptic green endosymbiosis during the evolutionary history of the



Reconstructing Dynamic Evolutionary Events in Diatom Nuclear and Organelle. . . 161

stramenopile host, or the acquisition of a tertiary or higher chloroplast containing
mixed signals of red and green origin (Dorrell and Bowler 2017; Dorrell and Smith
2011). Answering precisely how green genes were transferred into diatoms will
depend both on deeper sequencing of the green algal tree (particularly in the context
of early-diverging members, e.g. Prasinoderma (Li et al. 2020)), and ideally the
verification of the exact evolutionary origin of the ochrophyte chloroplast (from red
algae, cryptomonads or another group entirely) (Stiller et al. 2014).

Perhaps most interesting is to consider what functional advantages green genes
might contribute to diatoms. Many of the green genes encoding chloroplast-targeted
proteins have functions in biosynthetic pathways (e.g. chloroplast and carotenoid
synthesis (Dorrell and Bowler 2017; Coesel et al. 2008; Frommolt et al. 2008)), and
their presence may change the metabolic functions observed in the diatom chloro-
plast. Other diatom green genes have functions in both chloroplast- and non-
chloroplast-related environmental stress responses: Lhcx light-harvesting complex
genes implicated in photoadaptation to aberrant light conditions (Buck et al. 2019;
Biichel 2015), and the iron-stress-related protein ISIP2a which mediates
non-reductive iron uptake across the plasma membrane (McQuaid et al. 2018;
Allen et al. 2008). Understanding the functional significance of the green footprint
in diatom genomes will depend on large-scale characterisation of their encoded
properties: using environmental sequence datasets and targeted mutagenesis in
model taxa (Dorrell and Smith 2011).

25 Have Diatoms Donated Genes to Other Organisms?

Alongside the mosaic origin of diatom genomes, it is possible that diatoms, or
ochrophytes in general, have donated genes to other organisms. For example we
previously identified 243 conserved chloroplast-targeted proteins that have been
shared between the ochrophytes and the haptophytes (Dorrell et al. 2017a) which
we have subsequently expanded to 817 genes (6.7%) of the Phaeodactylum genome
supporting horizontal gene transfer from ochrophytes to haptophytes (Dorrell et al.
2021) (Table 1). Phylogenetic analysis of these genes indicated a mass transfer event
from the hypogyristea (pelagophytes and dictyochophytes) into a common
haptophyte ancestor (Dorrell and Bowler 2017; Dorrell et al. 2017a, 2021). These
genes predominantly have chloroplast-targeted functions and may be footprints of an
ancient endosymbiotic transfer of the ochrophyte chloroplast into the haptophytes
(Dorrell et al. 2017a; Stiller et al. 2014). We have subsequently inferred the same
enrichment in pelagophyte/dictyochophyte affinities for genes transferred from the
ochrophytes to the dinoflagellates, which may relate to direct or indirect (e.g. via
haptophyte) gene transfers (Dorrell et al. 2021) (Table 1). Further phylogenetic
analysis of the chloroplast genomes of the photosynthetic alveolates Chromera
and Vitrella has revealed a possible relationship with the ochrophytes, potentially
involving a chrysophyte endosymbiotic transfer (Sev&ikova et al. 2015; Dorrell et al.
2021; Kim et al. 2017). These serial transfer events may help resolve the still
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uncertain origins, dynamics and functions of the red and green algal signals
associated with marine algal genomes.

Despite the gene transfers associated with other ochrophytes, there is relatively
little evidence that diatoms themselves have transferred large numbers of genes into
other algal groups—with one exception. The « dinotoms », a closely related group of
dinoflagellate algae within the order Peridiniales, possess whole cell endosymbionts
of diatom origin (Imanian et al. 2010; Yamada et al. 2019). These endosymbionts,
which retain a complete chloroplast, mitochondria and nucleus, appear to have been
acquired, lost and replaced on multiple occasions, from both pennate and centric
diatom lineages (Kretschmann et al. 2018; Yamada et al. 2017, 2020).
Phylogenomic analysis of dinotom nuclear transcriptomes reveals very little evi-
dence for the loss of functions from the symbionts, or transfer of genes to the host,
consistent with their relatively transient evolutionary associations (Hehenberger
et al. 2016; Burki et al. 2014). It remains to be determined what genetic integration
events, if any, are required for the stable domestication of the dinotom
endosymbionts.

Despite their relatively limited evolutionary interactions with other algal groups,
diatoms may exchange genes with each other which may have adaptive functions to
certain environmental stresses. For example the iron-stress-associated protein ISIP1,
which facilitates the non-reductive uptake of extracellular siderophores by endocy-
tosis, shows a complex phylogeny, consistent with either multiple transfer events
between diatoms, or independent paralogy and gene loss events (Kazamia et al.
2018). Similarly, phylogenies of ice-binding proteins, which confer cold stress
tolerance in polar native algae, reveal probable horizontal transfer events between
centric and pennate species (e.g. between the centric diatom Chaetoceros and the
pennate Navicula sp. or between the centric Aftheya and the pennate Amphora
sp. (Sorhannus 2011; Raymond and Kim 2012)). Resolving these more recent
gene transfer events is more challenging, as they are more likely to be biased by
limitations in taxonomic sampling and limited resolution of short protein sequences
(Swenson 2009). However, explorations of adaptive and within-genus diatom gene
transfers is becoming increasingly possible due to dense transcriptomic sampling of
specific genera (e.g. Thalassiosira, Chaetoceros, Fig. 1 (Ichinomiya et al. 2016)) or
genomes (Thalassiosira, Pseudo-nitzschia; (Basu et al. 2017)).

3 Evolution of the Diatom Organelle Genomes
3.1 Diatom Mitochondria

Diatom mitochondrial genomes display a largely well-conserved organisation,
forming a single, circular chromosome with a single repeat region (Kamikawa
et al. 2018; Crowell et al. 2019). These genomes typically contain 33 core-protein-
coding genes, alongside genes for tRNAs and rRNAs (Fig. 3a) (Crowell et al. 2019;
Ravin et al. 2010; Oudot-Le Secq and Green 2011). This coding content is less than
in some microbial eukaryotes (e.g. 47 protein-coding genes in the free-living
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stramenopile relative Ancoracystis), but somewhat greater than the three protein-
coding genes retained in dinoflagellate mitochondria (JanouSkovec et al. 2017; Nash

et al. 2007). The coding content of diatom mitochondria is similar to

that of both

ochrophytes and non-photosynthetic stramenopiles (Fig. 4a), except for the probable
ancestral loss of atpl in diatoms which is mitochondria-encoded in both photosyn-
thetic eustigmatophytes (Sevcikova et al. 2016) and non-photosynthetic oomycetes
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and bicosoecids (Jirsova et al. 2019). A further seven genes have more sporadic
distributions across diatom mitochondria, including fatA, which is only
mitochondria-encoded in a few select genera (Cattolico et al. 2008; Crowell et al.
2019; Guillory et al. 2018) (Fig. 3b).

Alongside this relatively conserved genomic content, more unusual organisations
have evolved in individual mitochondrial genomes. These include structural
changes, for example, a possible linear organisation of the mitochondrial genome
in the secondarily non-photosynthetic diatom Nitzschia (Kamikawa et al. 2018), and
expansions (Oudot-Le Secq and Green 2011) or losses (An et al. 2016) of the repeat
regions in different diatom species. These also include changes likely to impact on
the expression pathways of individual genes: the dynamic transfer and independent
inheritance of introns in diatom mitochondrial coxI and rnL genes (Crowell et al.
2019, Ravin et al. 2010, Guillory et al. 2018), independent origins of translationally
fused gene pairs in the pennate species Halamphora and Phaeodactylum (Crowell
et al. 2019; Oudot-Le Secq and Green 2011), and the possible use of UGA-stop
codons to encode tryptophan in the centric diatoms Thalassiosira and Skeletonema
(Ehara et al. 2000).

Most dramatically, a change in the post-translational mitochondrial biology of
raphid pennate diatoms (including Fragilariopsis, Phaeodactylum and the diatom
endosymbionts of dinotom algae) has been noted, in which the nadll gene is
divided into two separately located and independently transcribed ORFs,
corresponding to the iron-sulphur-binding and the molybdopterin-binding domains
(Oudot-Le Secq and Green 2011; An et al. 2016; Imanian et al. 2012). This
configuration is not known in araphid pennate or centric diatom mitochondria, and
its functional consequences remain unknown (Imanian et al. 2012).

3.2 Diatom Chloroplast Genomes

The chloroplast genomes associated with diatoms are typically arranged as a single,
circular chromosome, with 134-180 protein-coding genes, alongside ribosomal and
transfer RNAs (Fig. 4) (Dorrell and Bowler 2017; Yu et al. 2018; Hamsher et al.
2019; Prasetiya et al. 2019). Phylogenomic analysis, and the presence of discrete
molecular synapomorphies (e.g. the presence of a form ID type rubisco), robustly
places this chloroplast genome within red algae and closely related to the
chloroplasts of cryptomonads and haptophytes (Mufioz-Gémez et al. 2017;
Janouskovec et al. 2010; Tabita et al. 2008). However, the coding content of the
diatom chloroplast genome is somewhat less than the ca. 250 genes associated with
red algal chloroplasts (Mufloz-G6émez et al. 2017; Qiu et al. 2017), and indeed is less
than the chloroplast gene contents of other ochrophyte groups (Dorrell and Bowler
2017): raphidophytes (Heterosigma) (Cattolico et al. 2008), phaeophytes
(Ectocarpus) (Le Corguillé et al. 2009) and chrysophytes (Ochromonas) (§evél’kové
et al. 2015), pointing to both endosymbiotic and post-endosymbiotic reductions in
diatom chloroplast genome content (Fig. 3). This notwithstanding, the diatom
chloroplast genome has undergone less dramatic reductions than some other
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ochrophyte groups (e.g. pelagophytes, dictyochophytes), in which even the loss of
the chloroplast inverted repeat is known (Han et al. 2019; Ong et al. 2010).

Alongside these general trends, different diatom species have retained and lost
different patterns of genes (Fig. 5). For example the basally divergent genus
Leptocylindrus (Parks et al. 2018) retains a chloroplast petJ gene encoding cyto-
chrome cg which is also retained in other ochrophytes (e.g. Ectocarpus) (Dorrell and
Bowler 2017; Le Corguillé et al. 2009), suggesting it was present in the diatom
common ancestor and lost from other species. Similarly, the ilvB and ilvH genes,
encoding the small and large subunits of acetolactate synthase, have been retained in
the chloroplast genomes of the diatom genera Leptocylindrus, Coscinodiscus,
Cerataulina, Acanthoceros and Eunotia (Yu et al. 2018; Sabir et al. 2014). Con-
versely, the light-independent protochlorophyllide oxidoreductase complex,
encoded by the chlB, chIL and chIN genes, is uniquely chloroplast-encoded in the
diatom Toxarium (Ruck et al. 2017). These diatoms are distantly positioned to one
another and (except for Leptocylindrus) to the base of the diatom tree (Parks et al.
2018), but single-gene phylogenies reveal likely vertical origins of each gene (Ruck
et al. 2017), suggesting that they have been independently lost in a wide range of
other diatoms.
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Fig. 6 Dynamic of evolutionary rates in diatom chloroplast genomes. Scatterplots showing the
mean pairwise identities observed by BLAST searches between complete (>90% coverage)
protein-coding sequences with universal presence (green), identified to be infrequently lost (red),
or to have sporadic distributions (serC, tsf, ilvB, ilvH) in diatom chloroplast genomes, plotted
against similar pairwise identity scores for pairs of non-diatom stramenopile sequences (left), and
pairs of diatom and non-diatom sequences (right). The regression gradients for the chloroplast-
encoded proteins with incomplete presences in diatom chloroplasts are much steeper than those
with universal presence: a small decrease in non-diatom chloroplast sequence identity correlates to a
much larger decrease in diatom chloroplast sequence identity. This indicates that the chloroplast-
encoded proteins that are variably present in diatom chloroplasts are more rapidly diverging, even
within their chloroplast milieu, than genes that are never lost

Other diatoms have lost genes typically retained in the chloroplast genomes of
other species (Figs. 5, and 6). Substantial losses of chloroplast-encoded genes have
been noted in the centric species Proboscia and the pennate species Astrosyne
radiata which form extremely long branches in diatom chloroplast gene trees
(Yu et al. 2018; Ren et al. 2020). Astrosyne was isolated from a shallow-water
coral reef habitat in Guam (Ashworth et al. 2012), whereas Proboscia was isolated
from the Red Sea, and it remains to be determined if this reductive evolution is
correlated to high-light or temperature adaptations in either species (Yu et al. 2018).

3.3 Diatom Leucoplast Genomes

An even more dramatic degree of reduction is known in some diatoms within the
genus Nitzschia, which have secondarily lost the capacity for photosynthesis, and
may have originated through one (Onyshchenko et al. 2019) or independent evolu-
tionary events (Kamikawa et al. 2015a). These species retain vestigial,
non-photosynthetic plastids known as « leucoplasts » which perform essential
biosynthetic functions and still retain genomes, but lack plastid-encoded genes
associated with photosynthetic functions: genes for photosystem I, II, cytochrome
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bef, the Calvin Cycle and chlorophyll biosynthesis (Fig. 4) (Kamikawa et al. 2017,
2018). Notably, the Nitzschia leucoplast genome retains genes encoding subunits of
plastid ATP synthase (Fig. 4) which has been proposed to function in this organelle
in the catabolic consumption of ATP, allowing the maintenance of a thylakoid
proton gradient that would permit function of the thylakoid Tat protein import
complex (Kamikawa et al. 2015b, 2017). Comparative analysis of different
non-photosynthetic Nitzschia species reveals largely conserved leucoplast genome
content, consistent either with convergent trajectories following independent losses
of photosynthesis, or limited divergence in genome content following a single loss of
photosynthesis (Kamikawa et al. 2018).

The Nitzschia leucoplast genome is notably less reduced in coding content
compared to that of other secondarily non-photosynthetic plastids of similar evolu-
tionary origin, for example those identified in non-photosynthetic chrysophytes or in
apicomplexans (Dorrell et al. 2019; Hadariova et al. 2018) which have lost a wider
range of leucoplast-encoded functions, including ATP synthase. It has been pro-
posed that the osmotrophic feeding strategies of non-photosynthetic Nitzschia spp.
may limit their ability to supplement plastidial functions with heterotrophically
acquired metabolites, explaining the greater relative functional autonomy of their
leucoplasts compared to phagotrophic (chrysophyte) or parasitic (apicomplexan)
lineages (Dorrell et al. 2019; Kamikawa et al. 2017). Ultimately, further functional
characterisation is required to understand the metabolic contributions of the
Nitzschia leucoplast in the context of other, secondarily non-photosynthetic algal
species. which will be aided by the recent completion of a nuclear transcriptome
(Kamikawa et al. 2017) and genome (Pendergrass et al. 2020).

34 Why Are Certain Genes Lost from Diatom Chloroplasts?

It remains to be determined what physiological processes underpin the reductive
evolution of diatom organelle genomes. This is the case both for genes that have
been lost from diatom chloroplasts compared to other algal groups, and genes that
have been lost from individual diatom lineages. In other groups of eukaryotes, for
example, plants and dinoflagellates, the loss of genes from the chloroplast genome is
correlated to mutation rate and a loss in constraining selective pressure (Dorrell et al.
2017b; Magee et al. 2010), and it is notable that Astrosyne and Proboscia, which
have undergone substantial amounts of chloroplast gene loss, are also two of the
fastest-evolving diatom species, considering chloroplast-encoded substitution rates
(Ren et al. 2020).

As a test of this principle, we have compared the degree of conservation between
proteins encoded with universal, sporadic and occasional presence in diatom chlo-
roplast genomes (Fig. 6). As controls, we have considered the conservation observed
between orthologues from non-diatom stramenopiles, and between diatom and
non-diatom species (Fig. 6). We note that the proteins with sporadic distributions
in diatom species are much more divergent than would be expected compared to
both proteins with conserved distributions and orthologues from non-diatom
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stramenopiles (Fig. 6). Thus, the genes that are most frequently lost from diatom
chloroplast genomes are likely to be those already under relaxed selection in the
diatom chloroplast.

3.5 Loss Versus Transfer of Diatom Organelle Genes

Another related question is under what circumstances genes are lost completely from
diatom organelles, versus being relocated to the nucleus. Typically, genes are lost
from chloroplast and mitochondrial genomes if they no longer perform necessary
functions in these organisms.

In contrast, genes may be relocated to the nucleus to permit differential regula-
tion, to protect from elevated chloroplast mutation rates or to change the stoichiom-
etry of their expression relative to chloroplast-encoded copies (Magee et al. 2010;
Dorrell and Howe 2012; Noordally et al. 2013). In the context of diatoms, the open
ocean species Thalassiosira oceanica, which is adapted to tolerate chronic iron
limitation (Gao et al. 2021), has been proposed to have relocated the gene petF,
encoding the iron-sulphur protein ferredoxin, to the nucleus, to allow its regulation
in response to environmental iron availability (Lommer et al. 2010). In another case,
the psb28 gene of the centric diatom 7. pseudonana has been shown to be present as
both chloroplast- and nucleus-encoded copies, suggesting it is midway through a
functional chloroplast to nuclear transfer event (Jiroutova et al. 2010). Psb28 has a
non-essential role in photosynthetic complex assembly, but its absence from the
cyanobacteria Synechococcus and Synechocystis leads to retarded growth under high
light conditions (Beckova et al. 2017). It remains to be determined whether the
nucleus-encoded copies of these proteins permit photo-adaptation in 7. pseudonana.

3.6 Gains and Transfers of Novel Diatom Organelle ORFs

Finally, alongside the loss and reduction of organelle-encoded genes, diatom
chloroplasts and mitochondria possess novel ORFs not identified in other lineages.
For example some pennate diatom chloroplasts are known to contain serC and tsf
genes, encoding serine and tyrosine recombinases (Hamsher et al. 2019). These
genes are frequently located on plasmids and may represent the traces of mobile
genetic elements integrated into diatom chloroplasts (Hildebrand et al. 1991; Jacobs
et al. 1992).

Other ORFs are either conserved across all diatoms, or indeed all stramenopiles,
hence might form ancestral components of stramenopile organelle genomes. Among
these is ycf66, a gene found in plant and green algal chloroplast genomes, and
conserved in cyanobacteria (Stoebe et al. 1998), although it is frequently lost in
some lineages (Leliaert et al. 2016; Gao et al. 2011), and is not known in the
chloroplasts of red algae. A phylogeny of ycf66 positions the ochrophytes as a
monophyletic group, within the green lineage, as a sister-group to the streptophyte
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Fig. 7 Evolution of diatom chloroplast ycf66. Consensus MrBayes and RAXML tree, realised
under three substitution matrices (GTR, Jones/JTT, WAG), for a 31 taxa x 93 aa alignment of ycf66
from cyanobacteria and chloroplast genomes. The MrBayes topology supports placement of the
ochrophyte sequences within the green algae, as a sister-group to all streptophyte species except
Klebsormidium sp.

lineage (i.e. land plants and their close relatives), except for the early-branching
species Klebsormidium (Fig. 7).

The most parsimonious explanation for this topology is a transfer of the ycf66
gene from the green chloroplast lineage into a common ancestor of the ochrophyte
chloroplast, concomitant with its endosymbiotic uptake, which would represent the
first known example of a horizontal gene transfer event between two distantly related
chloroplast genomes. Understanding the functional consequences of this transfer
will depend on characterisation of the physiological role performed by ycf66 which
remains unknown.



Reconstructing Dynamic Evolutionary Events in Diatom Nuclear and Organelle. . . 171

4 Concluding Remarks

In this chapter, we have explored the phylogenetic context of the diatoms within
their broader constituent lineage, the ochrophytes, within the stramenopiles (Fig. 1).
Diatoms are evolutionary mosaics, containing complex chloroplasts with compli-
cated evolutionary histories (Fig. 2), and nuclear genomes that have been enriched
via by the horizontal and endosymbiotic acquisition of genes with chloroplast and
non-chloroplast functions (Table 1). We show that the diatom nucleus is supported
by genes of prokaryotic, red, green and other eukaryotic algal origin (Table 1). While
the exact numbers, and even the individual evolutionary events that have given rise
to these genes remain uncertain, their presence is indelible and may have contributed
unique biological functions to diatom cells.

Alongside this, we have compared reductive trajectories in mitochondrial
(Fig. 3) and chloroplast genome content (Figs. 4, and 5) across the stramenopile
tree of life, focusing on sources of evolutionary difference within the diatom lineage.
Diatom organelles are marked by reductive evolution, although greater extremes
exist in both non-diatom and diatom branches of the stramenopile tree
(e.g. non-photosynthetic members of the genus Nitzschia) than the organelle genome
reductions associated with the common ancestor of the diatom lineage following its
divergence from other ochrophyte groups. We show that the genes are frequently
lost from diatom chloroplast genomes and tend to exhibit lower global similarity
than well-conserved genes (Fig. 6). It remains to be determined whether this is
driven by chloroplast mutation rate, which appears to be somewhat lower in diatoms
than that of the mitochondria, despite having a more conserved coding content
(Krasovec et al. 2019) Figs. 4, and 6), or via relaxed selection pressure which has
been shown to substantially vary across different chloroplast genes in other algal
lineages (e.g. dinoflagellates (Klinger et al. 2018)).

Finally, a possible gain of a chloroplast-encoded function has been identified, the
uncharacterised open reading frame ycf66 which appears to have been acquired by
ochrophytes via horizontal gene transfer of an equivalent open reading frame from
green algal chloroplasts (Fig. 7). The role of this transfer event awaits functional and
environmental characterisation. We stress the importance of considering function
alongside the number, tempo and mode of acquisition of novel diatom genes, when
exploring the extraordinary environmental success of this lineage. In this context,
emergent transformable systems (Mock et al. 2017; Brunson et al. 2018; Sharma
et al. 2018), and environmental sequence datasets (Caputi et al. 2019; Carradec et al.
2018), may cast new functional insights into the consequences of dynamic evolu-
tionary events in diatom nuclei and organellular genomes.
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