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Abstract

Since their relatively recent evolution, diatoms have come to dominate today’s
oceans, playing a critical role in major biogeochemical cycles, including carbon
and silicon, and supporting coastal and polar food webs. A key factor underpin-
ning diatom ecological success is their secretion of dissolved organic matter
(DOM) that attracts a variety of heterotrophic bacteria in aquatic environments;
in turn, these heterotrophs supply diatoms with nutrients and cofactors essential
for their survival in different environmental regimes. These symbiotic exchanges
occur in the diffusive boundary layer surrounding phytoplankton cells, including
diatoms, known as the phycosphere. Research efforts over the past few decades
have explored the nature and range of associations between diatoms and bacteria
and illuminated the profound influence they can have on diatom physiology and
ecology. Recent advances in genomics, microscopy, mass spectrometry, micro-
bial cultivation, and microfluidic devices have revolutionized the study of
diatom-bacteria symbiosis and promise to provide an unprecedented view of
the importance of this microbial symbiosis to the oceanic ecosystem. In this
chapter, we discuss DOM, alongside other nutrients, as major drivers of
diatom-bacteria symbiosis, and outline new concepts in interkingdom signaling,
exploring their role in diatom microbiome assembly and maintenance. We syn-
thesize the current knowledge in light of new discoveries and highlight novel
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directions to further expand our understanding of diatoms and their success in the
modern ocean living alongside bacteria.

1 Introduction

Despite their relatively recent evolution around 250 million years ago, diatoms
represent a major lineage of eukaryotic phytoplankton with an estimated 200,000
species in today’s oceans (Armbrust 2009; Kooistra et al. 2007). Their interactions
with other microbes, particularly bacteria, have major influences on the oceanic
ecosystem and beyond. This knowledge has been realized through many discoveries
that cumulatively enhanced our understanding of interactions between diatoms and
other microbes. More than a hundred years after the first illustrations of diatoms were
published in the Philosophical Transactions of the Royal Society in 1703, thousands
of diatom species were classified and extensively described by German botanist
F.T. Kützing in a dedicated monograph in 1844 (Fig. 1). Approximately 50 years
later, the first mono-algal diatom cultures were grown in the laboratory, and by then,
the term “symbiosis” was coined by German mycologist De Bary to describe the
phenomenon of different organisms living together. The first hint towards diatom-
bacteria symbiotic interactions appeared in the early 1900s, and by the 1930s, the
nature of interactions between diatoms and microbes was defined by the realization
that surrounding bacteria were assimilating exudates released by living diatoms. The
first positive and negative associations between diatoms and bacteria, represented by
growth augmentation and algicidal effects, respectively, were reported in the early
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Fig. 1 A historical view of diatom–bacteria interactions. A schematic timeline illustrating major
milestones in our understanding of diatoms and their interactions with bacteria. [1] Anonymous
(1703); [2] Dolan (2019); [3] (Kützing 1844); [4] De Bary (1879); [5] Miquel (1892); [6] Ostenfeld
and Schmidt (1901) [7] Waksman and Renn (1936); [8] Moskovits (1961); [9] Mitchell (1971);
[10] Bell and Mitchell (1972); [11] Haines and Guillard (1974); [12] Azam et al. (1983); [13] Smith
et al. (1995); [14] Armbrust et al. (2004); [15] Wigglesworth-Cooksey and Cooksey (2005);
[16] Bruckner et al. (2008); [17] Amin et al. (2015); [18] Shibl et al. (2020)
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1960s and 1970s. Evidence that diatoms and bacteria establish direct contact by
attachment was reported in 1995, followed by findings in the early 2000s that
proposed a strong influence of associated bacteria on the lifestyle of diatom species,
in terms of motility and biofilm formation. The rise of genomics further
revolutionized this field when in 2004 and 2008 the first two diatom genomes
were publicly available. In the past decade, research on diatom-bacteria model
systems, propelled by advances in the field of ‘omics, highlighted the exchange of
metabolites and infochemicals that play important roles in this symbiosis. These
milestones, and others highlighted in Fig. 1, paved the way for the field of diatom-
bacteria symbiosis to flourish and opened new perspectives for how these
associations influence today’s oceans.

2 Diatom DOM

After the “Microbial Loop” was first proposed in 1983 (Fig. 1; Box 1), diatoms were
estimated to contribute ~20% of all primary productivity and generate a significant
proportion of dissolved organic matter (DOM, Box 1) in aquatic environments
(Nelson et al. 1995), sustaining heterotrophic microbial biomass and coastal marine
food webs (Azam and Malfatti 2007; Buchan et al. 2014). Diatoms also secrete
molecules that aggregate to form particulate organic matter (POM, Box 1), which
serves as an anchor as well as a growth substrate for bacteria (discussed below).

A significant proportion of DOM generated by diatoms is released extracellularly.
Although measurements of DOM release by diatom cells are highly variable, they
typically range between ~2–40% of the cell’s total primary production, also known
as percentage extracellular release (PER) (Thornton 2014). Mechanisms of release
vary from cell leakage or passive diffusion across cell membranes, active transport/
efflux, or via cell lysis and “sloppy feeding” by grazers. Diffusion across cell
membranes is a common phenomenon often observed with gases (e.g., O2, CO2)
and certain hydrophobic molecules (Hopkinson et al. 2011; Myklestad 1995). Cell
leakage frequently occurs in “unhealthy” or senescent diatom cells (Granum et al.
2002). Cell lysis is accompanied by a release of DOM and is mostly mediated
through viral lysis (see chapter “Diatom Viruses”), algicidal bacterial activity (May-
ali and Azam 2004), or sloppy grazing (Calbet and Landry 2004). Active efflux of
metabolites from diatom cells plays an important role in DOM secretions and
interactions with other microbes; however, characterization of this mechanism and
distinction between it and other mechanisms is difficult. Several studies established
that the extracellular DOM composition of diatoms is distinct from intracellular
DOM (Granum et al. 2002; Mague et al. 1980; Puskaric and Mortain-Bertrand
2003), indicating that diatoms selectively secrete specific metabolites. Numerous
recent studies involving diatom transcriptomics and metabolomics showed that
diatoms upregulate biosynthesis of many metabolites, concurrent with their excre-
tion, which indicates active efflux of these metabolites (Amin et al. 2015; Durham
et al. 2015, 2017; Landa et al. 2017; Shibl et al. 2020). Active excretion is often
manifested in the form of central metabolites, toxins, waste products, volatile
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molecules, extracellular peptides and proteins, lipids, carbohydrates, infochemicals
and signaling or defense metabolites [reviewed in Thornton (2014)].

3 Diatom’s Backyard: DOM Accumulation
in the Phycosphere

Once excreted outside the cell either by active export or passive diffusion/leakage,
diatom-derived DOM accumulates into a diffusive boundary layer that surrounds
diatom cells (Lazier and Mann 1989; Ploug et al. 1999; Richardson and Stolzenbach
1995). This physically sheltered microscale region, known as the phycosphere (Box
1; Fig. 2) (Bell and Mitchell 1972), is the aquatic equivalent of the well-studied
terrestrial plant rhizosphere (Berendsen et al. 2012). The phycosphere is
characterized by molecular diffusivity largely governing the transport of molecules
and a negligible effect of turbulence on this microscale region (Guasto et al. 2012).

Consequently, small and hydrophilic molecules that have large diffusion
coefficients disperse more rapidly away from the diatom cell surface than large
and/or hydrophobic molecules that have smaller diffusion coefficients. In addition,
the phycosphere size increases with diatom cell size, which plays a major role in the
ability of bacteria to perceive diatom-derived DOM since larger phycospheres are
more likely perceived by nearby bacteria (Amin et al. 2012; Seymour et al. 2017).
These physicochemical features render the phycosphere a DOM-rich hub, where
diatoms may release specific metabolites to attract bacteria that benefit them and
complement their metabolic needs (Fig. 2).

Depending on environmental conditions, it is conceivable that diatoms alter the
composition of DOM metabolites that they release to attract specific populations of
bacteria that can help them survive nutrient limitations. For instance, a vitamin-
limited diatom may release specific DOM metabolites that attract vitamin-producing
bacteria, while the same cell may adjust its DOM secretions under iron limitation to
attract bacteria that produce iron-chelating molecules. Indeed, numerous studies
have shown that diatoms modify the composition of DOM under different nutrient
regimes. For example, silicon (Si), N and P limitations influence diatom DOM lipid
and carbohydrate secretions (Granum et al. 2002; Lombardi and Wangersky 1991;
Magaletti et al. 2004; Pete et al. 2010). In fact, the rates of excreted DOM relative to
total photo-assimilated carbon by many phytoplankton species, including diatoms,
increase under nutrient limitation (Nagata 2000). While increases in extracellular
DOM secretions under nutrient limitation are often interpreted as metabolic waste
due to major changes in the metabolism of stressed diatoms, it is plausible to
hypothesize that these increases in DOM secretion can also serve the purpose of
attracting a beneficial microbiome to diatom cells that can alleviate such nutrient
stresses. While we currently know a number of metabolites that play important roles
in the phycosphere, most phycosphere metabolites are generally unknown. In
addition, the concentrations of almost all phycosphere metabolites are obscured by
the fact that we are unable to directly measure these molecules in situ. Our knowl-
edge thus far is limited to modeling studies estimating phycosphere metabolite

682 K. E. Helliwell et al.



Fi
g
.
2

A
co
nc
ep
tu
al

de
pi
ct
io
n
of

ho
w

di
at
om

s
es
ta
bl
is
h
an
d
m
ai
nt
ai
n
th
ei
r
m
ic
ro
bi
om

e.
(L
ef
t)
:
D
ia
to
m
s
m
ay

re
le
as
e
a
un

iq
ue

co
m
po

si
tio

n
of

D
O
M

(b
lu
e

ar
ro
w
s)
th
at
at
tr
ac
ts
ch
em

ot
ac
tic

ba
ct
er
ia
in
to
th
e
ph

yc
os
ph

er
e.
B
en
efi
ci
al
,c
om

m
en
sa
l,
an
d
an
ta
go

ni
st
ic
ch
em

ot
ac
tic

ba
ct
er
ia
,a
s
w
el
la
s
no

n-
m
ot
ile

ba
ct
er
ia
th
at

en
co
un

te
r
th
e
di
at
om

ph
yc
os
ph

er
e,
ar
e
at
tr
ac
te
d
to

th
es
e
D
O
M

se
cr
et
io
ns
.C

on
cu
rr
en
tly

,d
ia
to
m
s
re
le
as
e
m
ol
ec
ul
es

th
at
ca
n
ag
gr
eg
at
e
to

fo
rm

ge
l-
lik

e
pa
rt
ic
le
s

The Diatom Microbiome: New Perspectives for Diatom-Bacteria Symbioses 683



Fi
g
.2

(c
on

tin
ue
d)

kn
ow

n
as

tr
an
sp
ar
en
te
xo

po
ly
m
er
ic
pa
rt
ic
le
s
(T
E
P
)
th
at
ac
ts
as

an
an
ch
or

fo
r
in
co
m
in
g
ba
ct
er
ia
.(
R
ig
ht
):
O
nc
e
in

th
e
ph

yc
os
ph

er
e,
ba
ct
er
ia

in
du

ce
di
at
om

s
to

pr
od

uc
e
la
rg
er

am
ou

nt
s
of

T
E
P
.B

en
efi
ci
al
ba
ct
er
ia
m
ay

at
ta
ch

to
T
E
P
an
d
us
e
it
as

a
gr
ow

th
su
bs
tr
at
e,
th
e
br
ea
kd

ow
n
of

w
hi
ch

fe
ed
s
ot
he
r

m
ic
ro
bi
al

co
m
m
un

iti
es
.
T
o
m
ai
nt
ai
n
a
he
al
th
y
m
ic
ro
bi
om

e,
di
at
om

s
re
le
as
e
se
co
nd

ar
y
m
et
ab
ol
ite
s
(r
ed

ar
ro
w
s)

in
th
e
ph

yc
os
ph

er
e
th
at

ac
t
as

si
gn

al
s/

in
fo
ch
em

ic
al
s
an
d
de
fe
ns
e
m
ol
ec
ul
es

to
pr
ol
if
er
at
e
th
ei
r
sy
m
bi
on

ts
w
hi
le
de
te
rr
in
g
an
ta
go

ni
st
ic
an
d
al
gi
ci
da
l
ba
ct
er
ia
.(
B
ac
kg
ro
un

d)
:
U
nd

er
st
re
ss
,s
en
es
ce
nt

di
at
om

s
m
ay

no
t
be

ab
le

to
m
ai
nt
ai
n
a
he
al
th
y
m
ic
ro
bi
om

e,
w
hi
ch

le
ad
s
to

th
e
pr
ol
if
er
at
io
n
of

an
ta
go

ni
st
ic

an
d
al
gi
ci
da
l
ba
ct
er
ia

th
at

ca
n
ly
se

di
at
om

ce
lls
.

(I
m
ag
e
cr
ed
it:

G
ly
nn

G
or
ic
k)

684 K. E. Helliwell et al.



concentrations often using estimated excretion rates and diffusivity constants
(Breckels et al. 2010; Karp-Boss et al. 1996; Seymour et al. 2017). Improvements
to the sensitivity and ability to detect, measure, and identify diatom metabolites will
significantly increase our knowledge about their role in shaping heterotrophic
microbial communities and the contribution of these exchanges to the major biogeo-
chemical cycles.

In response to DOM secretions by diatom cells, a wide range of bacteria are
attracted to the phycosphere (Smriga et al. 2016; Stocker and Seymour 2012)
(Fig. 2). Collectively, these concepts point to the phycosphere as a complex chemi-
cal and ecological environment and thus is the interface for symbiotic interactions
between diatoms and bacteria (Amin et al. 2012; Seymour et al. 2017).

4 A Needle in a Haystack: Finding the Phycosphere
in the Dilute Marine Environment

Establishment of associations between diatoms and bacteria requires physical prox-
imity of both partners. Random encounters between planktonic diatoms and
non-motile bacteria are estimated to be rare, with a bacterium encountering an
algal cell 0.0035 times per day and an algal cell encountering 3.5 bacterial cells
per day when considering the average density of phytoplankton and bacteria in the
oceans (Seymour et al. 2017). In contrast, motile, chemotactic bacteria have a
significant advantage over their non-motile counterparts. Motility increases the
chance of a bacterium’s encounter with an algal cell to 9 times per day while an
algal cell will come in contact with 900 bacterial cells per day (Seymour et al. 2017).
Cell size, diffusivity, and fluid flow, motility patterns, and swimming speed are
essential to quantifying the probability of bacterial cells encountering floating
particulate matter or potential algal cells (Słomka et al. 2020; Son et al. 2016;
Taktikos et al. 2013; Xie and Wu 2014). Bacterial motility is energetically costly
and different patterns and mechanisms of motility are ultimately governed by a cell’s
energy investment into this mechanism (Kempes et al. 2017; Mitchell 2002; Ni et al.
2020). Bacterial swimming speeds are influenced by turning angles and propulsive
forces exerted by different motility patterns (Kiørboe et al. 2002; Mitchell et al.
1995). Algal motility also influences encounter rates, though this is mostly consid-
ered for flagellated taxa such as dinoflagellates and rarely for diatoms since most
diatoms do not swim and those that do display gliding motility that is more relevant
in benthic communities (Karp-Boss et al. 1996; Poulsen et al. 1999). Algal
movements, whether through motility or sinking through the water column, disrupts
the fluid flow around algal cells thereby disrupting the phycosphere. This disruption
creates a plume of DOM and nutrients that enhance detection by bacteria (Stocker
2012). However, it remains challenging for motility calculations and encounter rate
equations to incorporate other important bacterial components such as alternating
swimming patterns, or chemotaxis.

Chemotaxis enables bacteria to track phycospheres by further boosting encounter
rates compared to motility alone (Lambert et al. 2019). Once in the phycosphere,
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chemotactic cells may attach to diatoms, or can continuously track the phycosphere
using chemotaxis (Fig. 2). Laboratory experiments have shown that chemotactic
bacteria can indeed swarm near and chase algal cells (Barbara and Mitchell 2003;
Blackburn et al. 1998; Smriga et al. 2016). Bacteria that can achieve efficient
chemotactic responses coupled with the ability to attach in the phycosphere once
located likely gain an advantage over bacteria that must constantly track the
phycosphere, since motility and chemotaxis are energetically demanding processes
(Taylor and Stocker 2012). This dual mode has been observed in presumed diatom
symbionts that can switch their motile lifestyle to an attached state (Fei et al. 2020)
using bacteria–bacteria communication systems, known as quorum sensing (Daniels
et al. 2004; Dobretsov et al. 2009) (Box 1).

5 Something Sticks: Bacterial Attachment, Aggregation,
and Diatom-Bacteria Biofilms

Transparent exopolymeric particles (TEP, Box 1) are a complex “microgel” com-
posed of polysaccharides secreted by diatoms and other phytoplankton. These
polysaccharides coagulate in the phycosphere and serve as an important sticking
agent and growth substrate for bacteria (Alldredge et al. 1993; Passow 2002a). Once
in the phycosphere, bacteria may attach to diatoms or to their TEP (Fig. 2), a major
constituent of diatom-derived POM (Passow 2002b). A “symbiotic” bacterium may
then rely on vertical transmission of its offspring on TEP to remain in the
phycosphere (Zehr 2015), or use reversible adhesion mechanisms (Van Loosdrecht
and Zehnder 1990) that enable it to detach from the phycosphere during cell
senescence or under unfavorable conditions. Upon attachment, bacteria can then
induce alterations in the physical structure of diatom populations, including promot-
ing the formation of diatom aggregates (Gärdes et al. 2011; Grossart et al. 2006b).
Diatom aggregation is an important process in marine planktonic systems
contributing to bloom termination, and driving significant sinking of POM in the
form of marine snow (Alldredge and Gotschalk 1989; Grossart et al. 2006a; Smith
et al. 1995). By influencing the onset, extent and dynamics of these aggregations,
diatom-attached bacteria can play an important role in carbon export to the deep
ocean (Leblanc et al. 2018; Tréguer et al. 2018). Moreover, this process can
substantially alter the physical environment for diatom–bacteria interactions, pro-
moting surface associations between these organisms.

Evidence for the role of bacteria in mediating diatom aggregation has been
consistently demonstrated in the laboratory. Gärdes et al. (2011) reported that
whereas axenic Thalassiosira weissflogii remained in uniform cell suspension,
co-inoculation with diatom-attaching bacteria triggered aggregation. By comparison,
free-living bacteria were unable to promote the formation of diatom aggregates.
Aggregation was also dependent on the physiological state of diatom cells, whereby
only photosynthetically active cells formed particles, suggesting that this was not a
consequence of bacterial feeding on dead or decaying diatom cells. Aggregate-
promoting bacteria rapidly divided following inoculation with T. weissflogii cells
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while unattached bacterial isolates that were unable to promote diatom aggregation
grew poorly, suggesting that they could not utilize diatom-derived organic substrates
as efficiently. Furthermore, TEP concentrations of T. weissflogii aggregates far
exceeded those of non-aggregating axenic cells, suggesting that diatom-attaching
bacteria influenced TEP production (Gärdes et al. 2011). Certainly, particle-
associated bacteria enhanced enzymatic hydrolase activity to access diatom surface
mucus, compared to “free-living” bacteria (Smith et al. 1995). These experiments
indicate the profound impact diatom-associated bacteria may have through attach-
ment on their diatom host, including mediating aggregate formation and physical
agglutination of these organisms (Gärdes et al. 2011; Grossart et al. 2006a). Thus,
aggregation alters the physical microenvironment, which may increase colonization,
sustained associations, and enable bacterial exploitation of diatom-derived
resources.

Field studies suggest that the interactions of bacteria with diatom aggregates are
environmentally relevant. While these associations undoubtedly can encompass
non-specific bacterial scavenging of dead phytoplankton within the so-called
detritosphere (Biddanda and Pomeroy 1988), accumulating evidence indicates that
bacteria establish direct contact with live diatom aggregates in natural marine
microbial communities too. Enumeration of free and aggregate-associated bacteria
during progression of a diatom-dominated bloom of Chaetoceros and Thalassiosira
in mesocosms demonstrated that particle-associated bacteria became more prevalent
as the bloom progressed (Smith et al. 1995). These colonizing bacteria exhibited
rapid growth and did not impede diatom growth, suggesting that aggregate-
associated bacteria were actively metabolizing diatom-derived DOM in situ, via
associations that go beyond detritus feeding (Smith et al. 1995). Thus, diatom–

bacteria interactions appear to be important drivers of aggregate dynamics and
sedimentation of organic matter in natural marine ecosystems.

Besides pelagic ecosystems, diatoms are also a major component of benthic
intertidal and estuarine biofilms (Fig. 3a). These habitats constitute a distinct physi-
cal microenvironment for diatom–bacteria interactions. Microphytobenthic biofilms
are highly-productive assemblages, which can contribute over 50% of total estuarine
primary production (Joint 1978; Underwood and Paterson 2003). Composed of
heterotrophic bacteria, cyanobacteria, and microalgae (predominantly diatoms),
these environments are characterized by a matrix of cells and sediments that are
stabilized by extracellular polymeric substances (EPS, Box 1) (Underwood and
Paterson 2003). Spatial heterogeneity in biomass and species composition can
drive resource patchiness. Moreover, the close spatial proximity between microbes
can promote cell-to-cell interactions and communication. Similar to bacterial
influences on diatom aggregate formation (Gärdes et al. 2011; Grossart et al.
2006a), several studies have observed bacterial induction of diatom biofilm forma-
tion (Bruckner et al. 2008, 2011; Windler et al. 2015). Transition of the planktonic
fusiform morphotype of Phaeodactylum tricornutum to its benthic biofilm-forming
oval form was triggered by inoculation with bacteria, and/or bacterial spent medium
(Buhmann et al. 2016). Similarly, bacterial assemblages isolated from Lake
Constance also induced biofilm formation of the pennate diatoms Cymbella
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microcephala and Achnanthidium minutissimum (Bruckner et al. 2008; Windler
et al. 2015) and enhanced diatom EPS production, and free amino acid
concentrations (Bruckner et al. 2008; Buhmann et al. 2016; Windler et al. 2015).
In addition, these bacteria promoted the formation of specific extracellular structures
that foster bacterial attachment. In particular, in the presence of a Bacteroidetes

Fig. 3 Diatom–bacteria interactions in benthic environments. (a) Diatom biofilms growing on the
surface of intertidal sediment, including a photograph of a spatially extensive intertidal mudflat (The
Eden Estuary, St Andrews, Fife, UK) (i), and the sediment surface (ii). A low-temperature scanning
electron micrograph of diatoms growing on the surface of the biofilm is also shown (iii). Images
were kindly contributed by David M. Paterson (Sediment Ecology Research Group, University of St
Andrews, UK) (Hubas et al. 2018). (b) Scanning electron micrograph of the benthic biofilm-
forming freshwater diatom Achnanthidium minutissimum under axenic (left) and xenic conditions
(right) (scale bar: 1 μm). In the presence of bacteria, A. minutissimum produces extracellular
capsules (denoted by red asterisks) of extracellular polysaccharide (EPS). These capsules foster
the attachment of bacteria, and thus promote diatom–bacteria interactions (Leinweber and Kroth
2015; Windler et al. 2015). By comparison, in axenic conditions the diatom frustule is clearly
visible, due to the absence of an EPS capsule. A “stalk” like structure is also observable in the
axenic cell, which is thought to mediate adherence in the early stages of biofilm formation (n.b. stalk
structures are present both in axenic and xenic conditions) (Windler et al. 2015). Images were
provided by Peter Kroth and Katrin Leinweber (University of Konstanz, Germany) and are licensed
under CC-BY 4.0
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bacterium, the diatom A. minutissimum produced extracellular “capsules”
(Leinweber and Kroth 2015; Windler et al. 2015) (Fig. 3b). Since bacteria preferen-
tially attach to encapsulated A. minutissimum cells, these capsules are likely impor-
tant in mediating cell-to-cell interactions with diatom-associated bacteria. These
studies add to the growing body of evidence that bacteria can influence both the
morphologies and carbon flux of diatom communities. They also serve to highlight
the breadth and diversity of habitats that diatoms have colonized, and how the
physical features of such microenvironments may influence the nature of the
interactions between diatoms and cohabitating bacteria.

6 Host Specificity in Diatom-Associated Bacteria: Towards
a Diatom Microbiome?

Despite being classified as autotrophic (Box 1), many, if not most, diatom species
require exogenous cofactors and nutrients (Fig. 4, top panel) that are often supplied
by prokaryotes, such as bacteria (discussed below). This fact, coupled to many
observations in laboratory diatom cultures and diatom-dominated blooms, has
pointed to specific genera and species of bacteria that commonly co-occur with
diatoms and display beneficial interactions with them (Amin et al. 2012). Indeed, the
microbial communities associated with the diatoms Asterionellopsis glacialis and
Nitzschia longissima appear to be consistent across strains of each species, regard-
less of culturing time in the laboratory (Behringer et al. 2018). Colonization
experiments between the diatom T. rotula and marine microbial communities
derived from seawater or other phytoplankton cultures yielded highly reproducible
and specific microbial communities over time (Mönnich et al. 2020). Moreover,
microbial communities associated with three species and 36 strains of the diatom
Leptocylindrus genus did not display significant differences in composition between
species (Ajani et al. 2018).

More specifically, two genera of nitrogen-fixing, symbiotic cyanobacteria,
Richelia and Calothrix are known to associate with the diatoms Rhizosolenia,
Chaetoceros, and Hemiaulus (Foster et al. 2011; Hilton et al. 2013; Villareal
1991) and are discussed in more detail in chapter “An Integrated View of Diatom
Interactions”. Among the most frequently observed heterotrophic bacteria to
co-occur and to interact with diatoms are members of the Rhodobacteraceae,
Flavobacteriaceae, and various γ-proteobacterial groups. Rhodobacteraceae
encompasses >70 genera that have diverse ecological adaptations and environmen-
tal niches (Simon et al. 2017). Several studies have described symbiotic interactions
between diatoms and Rhodobacteraceae species or consistent associations between
the two taxa, including Silicibacter, Ruegeria, Sulfitobacter, Roseobacter,
Roseovarius, and Donghicola (Amin et al. 2012; Durham et al. 2015; Grossart
et al. 2005; Hünken et al. 2008; Suleiman et al. 2016). Other groups of bacteria
that have been shown to benefit diatoms or consistently associate with them include
Marinobacter, Alteromonadaceae, Flavobacteria, Oceanospirillales,
Sphingomonadaceae, and Bacteroides (Ajani et al. 2018; Amin et al. 2009;
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Johansson et al. 2019; Klindworth et al. 2014; Mönnich et al. 2020; Riemann et al.
2000; Schäfer et al. 2002; Teeling et al. 2012). While it is not clear whether diatoms
have highly specific bacterial symbionts, similar to legumes (Poole et al. 2018),
recently several strains of the Rhodobacteraceae bacterium Sulfitobacter
pseudotnitzschiae have been isolated from the diatoms A. glacialis originating
from the Persian Gulf (Fei et al. 2020), Skeletonema marinoi originating from the
Baltic Sea (Töpel et al. 2019) and several cultures of the toxigenic diatom Pseudo-
nitzschia multiseries originating from the Atlantic and Pacific Oceans (Amin et al.
2015; Hong et al. 2015). These repetitive isolations of nearly identical bacteria
(>99% average nucleotide identity, ANI) (Fei et al. 2020) from different diatom
species originating from starkly different environments suggest this bacterium may
be a highly specific symbiont of some diatoms. Several studies have also shown that
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S. pseudonitzschiae and other Sulfitobacter spp. are attuned to diatom metabolites,
enhance diatom growth, provide them with reduced nitrogen, and protect diatoms
against viruses and oxidative stress (Amin et al. 2015; Fei et al. 2020; Hünken et al.
2008; Kimura and Tomaru 2014; Shibl et al. 2020), further highlighting a
symbiotic role.

Cumulatively, these observations suggest that diatoms possess specific microbial
communities, a so-called microbiome. However, current sampling methods for
laboratory and field samples hinder our ability to define a specific diatom
microbiome. For example, methods typically used to isolate and culture diatoms
from field samples rely on isolating a single diatom cell or chain along with bacterial
communities in ~1 μL volume, while metagenomic studies that examine bacterial
communities associated with diatom blooms rely on sampling liters of seawater. In
contrast, phycosphere volumes of most diatoms vary between a few picoliter for
small cells to hundreds of nanoliters for large cells. This large discrepancy in volume
indicates that inadvertent inclusion of non-phycosphere bacteria in cultures and
metagenomic samples is likely. Recent advances in fluorescence-activated cell
sorting (FACS, Box 1) has aided in reducing some of the biases associated with
traditional sampling methods (Baker and Kemp 2014; Crenn et al. 2018). However,
FACS is mainly effective in capturing bacteria strongly attached to diatom cells or
TEP and is mainly applicable to relatively small diatom cells and chains (<100 μm).
Loosely associated bacteria or ones that track the phycosphere without adhering,
large diatoms and long diatom chains are not captured by this method. Thus, it has
been difficult, to date, to define with a high level of certainty the true microbiome of
diatoms and other eukaryotic phytoplankton groups. Further examination of micro-
bial communities in the phycosphere using robust sampling methods coupled with
advances in single-cell techniques, including genomics and metagenomics, will shed
more light on the true diatom microbiome in the oceans.

7 Metabolic Attributes of Diatom Microbiomes: Metabolic
Fitting or Coadaptation?

While defining the existence and nature of the “diatom microbiome” (Box 1) is a
work in progress, so too is the development of ecological principles governing the
assembly, stability, and maintenance of such communities. The apparent conserva-
tion of specific diatom-associated bacteria with certain diatom species implies that
the diatom host likely plays an important role in driving the composition of its
associated bacterial community. This observation coupled with evidence that
diatom-associated bacteria can profoundly influence diatom ecology suggests that
co-adaptive traits have arisen that underpin the association of diatoms with certain
bacteria, and vice versa. On the other hand, the environment has an important role in
shaping diatom microbiome composition as shown in Leptocylindrus species that
generally displayed no significant differences in bacterial community composition
across species, but large differences were found between strains collected at different
locations and times (Ajani et al. 2018). Determining the extent of host versus
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environment selection in driving diatom-associated bacterial communities thus
remains a critical research question.

Host-driven regulation of diatom microbiome composition would require (i) host
mechanisms to control the bacterial community composition (discussed below),
and/or (ii) specific diatom metabolic attributes (e.g., auxotrophy) that select for
bacterial taxa with specific functional traits. The ability of diatoms and their
associated bacteria to satisfy each other’s nutritional demands can be an important
starting point to foster the establishment of specific interactions. However, whether
such “metabolic fitting” drives the initiation of closer associations or arises as a
consequence of persistent interactions between specific diatoms and bacterial taxa
remains an open question (Kazamia et al. 2016). Functional redundancy between
bacterial taxa may also mean that diverse bacteria have the necessary attributes to
occupy a specific diatom phycosphere. In this scenario, coined “the lottery hypothe-
sis,” whoever gets there first (and has the necessary functional traits) will inhabit the
diatom phycosphere. However, evidence against this hypothesis in microalgal com-
munity ecology has come from phytoplankton colonization studies. Exposure of
axenic T. rotula cultures to compositionally different bacterial inocula derived from
either seawater or phytoplankton hosts of varying degrees of relatedness converged
to a stable and reproducible core community (Mönnich et al. 2020). Thus, no matter
how diverse the starting community, the same taxa came to occupy the T. rotula
microbiome, which suggests factors beyond potluck are at play. Similarly,
microbiome recruitment was host-specific in a study of five green algal isolates
(Jackrel et al. 2020). Further evidence for host-specific microbiomes is presented by
a study of the bacterial communities associated with the toxic diatom Pseudo-
nitzschia. Whereas native microbiomes of P. pungens promoted growth of the
host, transplantation of the same microbiome to the related diatom species
P. australis and P. fraudulenta either had no growth stimulatory effect, or in some
cases decreased diatom growth rate (Sison-Mangus et al. 2014). Further investiga-
tion revealed that this effect was in part caused by the presence of the known
algicidal bacteria Cellulophaga, which promoted the growth of P. pungens, but
caused P. australis populations to completely crash. As marine bacteria are known
to “switch on” and “off” their algicidal activity, e.g. through regulating enzyme
activity (Skerratt et al. 2002), these results suggest that diatom-associated bacteria
may recognize, respond, and adapt their behavior according to specific diatom hosts.
This implies that coevolution between diatoms and their native bacterial
microbiomes may have arisen and could play an important role in governing the
assembly of diatom microbiomes. Specialization of native bacteria towards diatom
host-derived exudates could also influence the nature of relationships of bacteria
with diatoms (Sison-Mangus et al. 2014), discussed further below.

The findings above support the inference that diatom host-specific attributes,
and metabolic specialization of bacterial taxa drive assembly of phytoplankton-
specific consortia. As the primary interface for diatom–bacteria interactions,
the phycosphere and its physical properties/chemical composition is likely a key
constraint dictating the types of bacteria associating with diatoms. Evidence drawn
from metabolomics approaches has demonstrated that the chemical composition of
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phytoplankton-derived DOM varies according to phytoplankton taxonomy (Becker
et al. 2014; Landa et al. 2017), which suggests that specialization in utilizing certain
DOM compounds by bacteria can enable their phycosphere colonization. Indeed,
evidence is beginning to emerge that host-derived resources can select for growth of
specific bacterial taxa (Fu et al. 2020). Bacterial enzymes for accessing carbohydrate
substrates are encoded by the “polysaccharide utilization loci” (PULs) (Krüger et al.
2019; Lombard et al. 2014). As PUL repertoire may vary between taxa (Krüger et al.
2019; Xing et al. 2015), the distribution of these genes in different bacteria could be
an important mechanism tailoring certain species towards usage of phytoplankton-
specific DOM compositions. As the major constituent of diatom-derived DOM,
laminarin is of particular relevance to carbon utilization by diatom-associated
bacteria (Becker et al. 2020). Notably, members of the Bacteroidetes, which are
frequently found associated with diatoms (Amin et al. 2012), encode enzymes for
laminarin degradation (GH16 laminarinases) (Krüger et al. 2019), suggesting that
carbon utilization specialization could account for the observed associations
between diatoms and Bacteroidetes bacteria. However, diatoms also produce
specific polysaccharide compounds apparently resistant to bacterial enzymatic deg-
radation, such as the recently identified fucose-containing sulfated polysaccharide,
FCSP (Vidal-Melgosa et al. 2021). This compound accumulates on the surface of
diatom cells, has antibacterial properties (Fitton et al. 2015), and so has been
proposed to function as a defensive barrier against bacteria. These examples illus-
trate the importance of specific polysaccharide compounds that can promote or deter
bacteria. Resource-driven assembly of host-associated communities almost certainly
extends beyond carbon, and the roles of other nutrients and infochemicals in
governing specific interactions between diatoms and bacteria are outlined further
below. A persistent, close association between diatoms and certain bacteria could in
itself drive the evolution of metabolic specializations and/or co-dependencies that
cement closer ecological interactions (Helliwell et al. 2015; Kazamia et al. 2016).
Specific environmental scenarios such as prolonged periods of nutrient limitation
could provide the opportunity and time necessary to drive the evolution of more
obligate associations (e.g., due to host loss of biosynthetic capacity for organic
nutrients provided by associated bacteria). This raises the question of whether closer,
more obligate associations are more resilient to environmental influences on
microbiome composition, which requires further investigation. In any case, nutrient
exchange is likely a critical factor initiating diatom–bacteria interactions in the short-
term, but also in sustaining and developing them over evolutionary timescales.

8 Beyond Carbon: Cross-Feeding Between Diatoms
and Bacteria for Other Vital Nutrients

Our major focus so far has been on the importance of diatom-derived DOM for
instigating and sustaining diatom-bacteria symbioses (Fig. 2). For example, large
quantities of dimethylsulfoniopropionate (DMSP) and glycolate are released by
diatoms and other phytoplankton daily throughout the oceans (Schnitzler Parker
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et al. 2004; Stefels et al. 2007) and these metabolites serve as carbon (and sulfur for
DMSP) sources for specific groups of bacteria (Howard et al. 2006; Lau and
Armbrust 2006; von Borzyskowski et al. 2019). However, a suite of other
macronutrients (e.g., N, P and S), alongside inorganic and organic micronutrients
(e.g., vitamins and iron) are necessary for the growth of diatoms and bacteria alike
(Fig. 4, top panel). In fluid, turbulent, aquatic environments, diatoms frequently
experience a range and combination of nutrient limitations (see chapters “Compara
tive and Functional Genomics of Macronutrient Utilization in Marine Diatoms” and
“Molecular Mechanisms Underlying Micronutrient Utilization in Marine Diatoms”).
Accumulating evidence suggests that diatom-associated bacteria play an important
role in alleviating limitations for many of these nutrients, suggesting that the “diatom
microbiome”must be dynamic and/or resilient to different environmental constraints
over time. In the context of the diatom host, the capacity to recruit specific bacteria
conferring distinct ecological functions relevant to the environmental conditions
could thus confer a significant selective advantage. In this section, we will discuss
the current understanding of the roles of bacteria in diatom nutrient provision and
outline the types of bacteria recognized to be capable of fulfilling such roles.

An important class of organic micronutrients required by many diatoms are
vitamins (Box 1, Fig. 4). Vitamins are necessary as cofactors for enzymes of central
and secondary metabolism. Auxotrophs must therefore obtain an exogenous source
of certain vitamins from their environment. While eight water-soluble B vitamins
(thiamine, B1; riboflavin, B2; niacin, B3; pantothenic acid, B5; pyridoxine, B6, biotin,
B7; folate, B9 and cobalamin, B12) are universally required for human nutrition, only
three (B1, B7, and B12) are added routinely to diatom media (Guillard and Ryther
1962). Compilation of the requirements of fifty-four diatom species demonstrated
that 32, 7, and 0 species required cobalamin, thiamine, and biotin, respectively (Croft
et al. 2005). As only certain prokaryotes are capable of its biosynthesis (Shelton et al.
2019), vitamin B12 (Fig. 4, top panel) is considered to be a particularly pertinent
exchange molecule mediating algal–bacteria interactions (Croft et al. 2005; Kazamia
et al. 2012). This vitamin is necessary as a cofactor to the B12-dependent isoform of
methionine synthase (METH). As certain diatoms lack the B12-independent isoform
of methionine synthase (METE) (Helliwell et al. 2011) and cannot synthesize the
vitamin themselves (Croft et al. 2005), they must obtain an exogenous source of this
micronutrient for growth. The vitamin B12 requirements of several marine diatoms
can be satisfied in B12-limited culture by heterotrophic bacteria, which utilize diatom
DOM in return (Durham et al. 2015; Haines and Guillard 1974). In B12-limited
environments (Bertrand et al. 2015), diatoms may release a DOM composition
particularly suited towards attracting B12-synthesizing bacteria, thereby alleviating
this limitation. A case in point is when the B12-dependent diatom T. pseudonanawas
limited for B12 it released a unique organic sulfur metabolite, 2,3-dihydroxypropane-
1-sulfonate (Fig. 4, top panel), that supported the growth of the bacterium Ruegeria
pomeroyi DSS-3, which in exchange alleviated the B12 limitation of the diatom
(Durham et al. 2015).

Environmental metatranscriptomics studies have predicted interactions between
diatoms and bacteria governed by vitamin B12, particularly in B12-limited marine
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ecosystems. In the Southern Ocean, where diatoms are the dominant primary
producers, the γ-proteobacterium Oceanospirillaceae ASP10-02a contributed the
most B12 biosynthesis transcripts in this region (Bertrand et al. 2015). Concomi-
tantly, elevated transcripts involved in cell-surface attachment and DOM acquisition
in this group of bacteria are indicative of physical interactions that warrant further
investigation. These findings highlight the importance of vitamin B12 in chemical
exchanges between diatoms and bacteria in large areas of the ocean. The evidence
for the role of vitamin B12 in underpinning a range of mutualistic interactions
between bacteria and diverse algal taxa (Kazamia et al. 2012; Wagner-Döbler
et al. 2010) emphasizes the importance of vitamin cycling in cross-kingdom micro-
bial interactions more broadly.

Emerging evidence indicates that vitamin-based symbioses extend beyond vita-
min B12, and the unidirectional transfer of vitamins from bacteria to algae. Auxotro-
phy for biotin, niacin, and p-aminobenzoic acid ( p-ABA, a precursor for folate, B9;
Fig. 4, top panel) is particularly common in marine Rhodobacteraceae (Cooper et al.
2019). As outlined in the section above, diatoms are commonly found in close
association with members of the Rhodobacteraceae (Amin et al. 2012). Moreover,
cultivated diatoms do not typically require an exogenous source of niacin, p-ABA, or
biotin for growth and likely synthesize them by themselves (Croft et al. 2006;
Guillard and Ryther 1962). It is therefore feasible that diatoms may be able to fulfill
Rhodobacteraceae B-vitamin requirements, as has been observed with a model algal-
bacterial system comprising the green alga Ostreococcus tauri and Roseobacter
Dinoroseobacter shibae (Cooper et al. 2019). Given that vitamin auxotrophy can
evolve rapidly when an external source of the vitamin is readily available (Helliwell
et al. 2013, 2015), it is feasible that the widespread requirement of Rhodobacteraceae
may be an evolutionary consequence of the tendency of members of this lineage to
adopt lifestyles in close association with diatoms and other algae that synthesize
such vitamins (Cooper et al. 2019).

Another critical micronutrient limiting diatom growth is iron. Iron is essential for
a range of cellular processes, including photosynthesis, respiration, electron transfer,
and nitrogen assimilation. However, due to the poor solubility of Fe(III), dissolved
iron is present in extremely low concentrations in surface ocean waters (Johnson
et al. 1997). In addition, most iron in the ocean is complexed with a variety of
unknown organic ligands that further complicate its bioavailability to diatoms and
other microbes (Gledhill and Buck 2012). Due to these challenges, microbes have
evolved an array of strategies for iron acquisition (Boyd and Ellwood 2010). A
common mechanism among some bacteria is the secretion of organic compounds
known as siderophores that bind ferric iron, enabling its uptake via active transport
mechanisms. Although bacteria and microalgae typically compete for iron (Hassler
et al. 2011; Toulza et al. 2012), mutualistic bacteria that iron-limited diatoms may
attract to the phycosphere via specific DOM metabolites can alleviate algal iron
limitation. In particular, a number of γ-proteobacteria belonging to theMarinobacter
genus that are found to be associated with dinoflagellates, diatoms and
coccolithophores, produce an unusual siderophore known as vibrioferrin (Fig. 4,
top panel). By comparison, non-algal associated close relatives produced other
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siderophores to acquire iron (Amin et al. 2009). Once bound to Fe(III) and exposed
to light, vibrioferrin undergoes a photochemical reaction that oxidizes the
siderophore and renders it incapable of binding iron while simultaneously reduces
Fe(III) to Fe(II), which is more soluble in seawater. Vibrioferrin is 10–20 times more
photolabile than siderophores produced by free-living bacteria and has been shown
to promote algal assimilation of iron (Amin et al. 2009), likely via mutualistic
exchange for DOM.

Bacteria in the phycosphere can also improve the bioavailability of
macronutrients for diatoms. Methylamines are ubiquitous organic nitrogen
compounds in marine environments (Poste et al. 2014). Although nitrogen is a
critical macronutrient limiting diatom growth (Tyrrell 1999), diatoms appear to be
unable to degrade organic methylamine compounds (Suleiman et al. 2016).
Coculture with bacteria harboring genes for methylamine catabolism was shown to
fully support the growth of P. tricornutum on monomethylamine (MMA) as the sole
nitrogen source, by remineralizing nitrogen and liberating bioavailable ammonium
(Fig. 4, top panel). Given the widespread distribution of methylotrophic bacteria in
marine waters (Sosa et al. 2015), the potential ecological significance of methyl-
amine cross-feeding between bacteria and diatoms may only just be beginning to be
recognized. Nitrogen is undoubtedly an important driver of diatom–bacteria
interactions more broadly. Notably, diatom-diazotroph associations (DDAs) involve
N2-fixing cyanobacteria that can fix atmospheric gaseous N2 into biologically
available ammonium for their symbiotic diatom hosts [reviewed in Foster and
Zehr (2019)]. These relationships represent the most intimate symbioses between
diatoms and bacteria described to date, and thus offer unique insight into the
adaptations necessary to promote obligate and specific interactions with diatoms
(outlined further in chapter “An Integrated View of Diatom Interactions”).

Clearly, bacteria are capable of alleviating the demands of diatoms for a range of
nutrients. Given the dynamic environments in which diatoms thrive, this raises many
questions over the versatility, assembly, and maintenance of the diatom microbiome.
Are core microbiome members capable of satisfying a range of functional roles, and
thus adaptable to prevailing environmental conditions? Alternatively, in addition to
maintaining a core microbiome, must diatoms be flexible in their ability to attract
distinct bacterial taxa, resulting in a microbiome that is partially dynamic depending
on the environment? Or do specific environmental constraints drive highly variable
bacterial communities, naturally selecting for certain ecotypes adept in the given
conditions? Further work is undoubtedly required to determine how the diatom
microbiome is shaped by different environmental stressors, versus by the diatom
host itself.

9 Antagonistic Interactions Between Diatoms and Bacteria

While symbiotic and beneficial interactions have been discussed in detail above,
parasitic or algicidal bacteria have been widely reported in culture and field studies.
Exploitative algicidal bacteria can cause diatom cell lysis (Fig. 2), and thus
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maximize bacterial access to diatom-derived resources. The activity of such harmful
bacteria is likely to be critical in regulating diatom growth, productivity, and bloom
dynamics in natural plankton assemblages (Mayali and Azam 2004). Mesocosm
experiments have demonstrated that inoculation of the algicidal bacterium Pseudo-
monas fluorescens HYK0210-SK09 into a natural freshwater bloom of the small
centric diatom Stephanodiscus hantzschii led to a 95% reduction in S. hantzschii
growth (Jung et al. 2010). Termination of the S. hantzschii bloom occurred concom-
itantly with a proliferation of non-dominant algal species, alongside a significant
increase in heterotrophic protists. This study provides compelling evidence that the
presence and activities of algicidal bacteria in natural phytoplankton populations can
have profound impacts on community structure and composition.

Mechanistically, algicidal bacteria can severely limit diatom growth, inhibit cell
division, alter morphology, or hamper photosynthetic capabilities (Li et al. 2016;
Paul and Pohnert 2011; Van Tol et al. 2017). These pathogenic effects are often
mediated by excretion of small molecules and proteins, such as extracellular
proteases, chitinases, or algicidal compounds (Lee et al. 2000; Li et al. 2016; Paul
and Pohnert 2011). For instance, the algicidal bacterium Chitinimonas prasina LY03
will swim towards its diatom prey (T. pseudonana) and upon attachment produces
chitinases to degrade the diatom cell wall, causing cell lysis and death (Li et al.
2016). Similarly, the algicidal activity of the bacterium Kordia algicida is mediated
by extracellular proteases, the excretion of which is regulated in a bacterial density
dependent manner (Paul and Pohnert 2011). While algicidal bacteria can clearly
have pernicious effects, in some instances diatoms exhibit resistance towards these
antagonistic agents, mediated by defensive mechanisms such as secretion of
antibacterial compounds (Meyer et al. 2018). One class of molecules implicated in
diatom defense against algicidal bacteria are the polyunsaturated aldehydes (PUAs)
(Fig. 4, bottom panel), which have also been shown to suppress the reproduction of
grazers (e.g. copepods) (Ianora et al. 2004; Miralto et al. 1999), and confer
allelochemical effects against certain phytoplankton (Ribalet et al. 2007). The
algicidal bacterium K. algicida induces production of the hydroxylated PUA
eicosapentaenoic acid in Chaetoceros didymus, which confers growth inhibitory
effects on K. algicida (Meyer et al. 2018). Examination of three other diatom-
derived PUAs (2E,4E-decadienal, 2E,4E-octadienal, and 2E,4E-heptadienal) has
demonstrated that this class of molecules can have antibacterial properties against
other marine bacteria, inhibiting growth of 19 of 33 bacterial species surveyed
(Ribalet et al. 2008). Albeit, interestingly, the majority of bacterial strains (14/16)
isolated from diatom-dominated blooms (including Sufitobacter species) showed
resistance to PUA exposure.

The efficacy of algicidal activity can also be dependent on the species composi-
tion and complexity of a given microbial community. For instance, while the
PUA-producing diatom C. didymus is resistant to attack by K. algicida in coculture,
this diatom becomes susceptible when a non-resistant diatom, Skeletonema
costatum, is introduced (Bigalke and Pohnert 2019). Together, these findings sug-
gest that a viable ecological strategy for diatoms could be to adopt mechanisms to
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promote the close association of certain beneficial bacterial species, while deterring
other less cooperative taxa.

10 Microbial Chatter: Communication and Signaling Between
Diatoms and Bacteria

Signaling molecules are critical factors mediating microbe–microbe interactions in
the oceans, and beyond. In the highly diverse marine ecosystem, perception and
recognition of bacterial symbionts by diatoms most likely is initiated by the
exchange of signaling molecules. Signals are typically needed at minute quantities,
yet activate and regulate important metabolic pathways that in turn influence major
biogeochemical cycles; therefore, although in many cases they are unlikely to
constitute a major fraction of DOM in the oceans, they are indirectly responsible
for a substantial proportion of DOM production and assimilation. Despite their
importance, our knowledge of signaling molecules and their mechanisms of action
between diatoms and other microbes is at its infancy. Because of their typically low
effective concentrations needed to elicit responses in microbes, signaling molecules
and infochemicals may be consumed directly in the phycosphere before they ever
diffuse into bulk seawater, which may explain the scarcity of information on this
important class of metabolites.

At the core of communication between diatoms and heterotrophic bacteria is the
need for diatoms to attract specific “beneficial” bacteria that can satisfy their nutrient
dependencies, while at the same time evade algicidal, parasitic, and opportunistic
bacteria that can kill or compromise their cell health (Fig. 2). These subtle
interkingdom mechanisms are likely carried out by infochemicals and defense
molecules. While mechanisms of how multicellular eukaryotes nurture microbiomes
are starting to be understood and typically take place in specialized compartments/
organelles that can house such communities, diatoms and other eukaryotic phyto-
plankton are unable to differentiate and thus lack any such structures.

To decipher the mechanisms by which diatoms recruit and modulate their bacte-
rial consortia, Shibl et al. (2020) used multi-omics techniques to study early
transcriptomic and metabolic shifts following the re-introduction of axenic
populations of A. glacialis to its natural bacterial community. This experiment
identified two diatom secondary metabolites as likely signaling compounds,
rosmarinic acid and azelaic acid (Fig. 4, bottom panel). Rosmarinic acid was
shown to possess a quorum sensing-like (Box 1) effect on two putative symbionts
belonging to the Rhodobacteraceae family (Phaeobacter sp. F10 and
S. pseudonitzschiae) by facilitating their attachment to TEP produced by
A. glacialis, while increasing the motility of a potential opportunist (Alteromonas
macleodii). Coculture experiments between the diatom and these bacteria confirmed
that while the potential symbionts colonized the diatom TEP, A. macleodii failed to
attach in the phycosphere of the diatom. Azelaic acid was found to inhibit the growth
of A. macleodii, while simultaneously promoting the growth of Phaeobacter sp. F10
and S. pseudonitzschiae. The only bacterial gene known to respond to azelaic acid, a
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transcriptional regulator, was also restricted to a handful of bacterial orders and was
geographically widespread at the surface and deep chlorophyll maximum in the
oceans, despite not being abundant. These findings provide the first glimpse of a
eukaryotic phytoplankton modulating specific bacterial growth and behavior within
a microbial community, and suggest that unicellular eukaryotes like diatoms can
nurture microbiomes in the phycosphere, similar to multicellular eukaryotes (Shibl
et al. 2020). While this work highlights the role of two new infochemicals capable of
regulating diatom microbiome composition, it is likely that there is a vast array of
other cryptic metabolites present in the phycosphere that can, on the one hand,
promote proliferation of bacterial symbionts, while, on the other, inhibit pathogens/
opportunists.

Infochemicals are critical for initiating cell-to-cell communication and can medi-
ate bacterial chemotaxis. Dimethylsulfoniopropionate (DMSP) (Fig. 4, bottom
panel), an important diatom-derived organosulfur compound critical to climate
processes, acts as a chemical cue to attract motile bacterial lineages to their host,
in addition to being a carbon and sulfur source for some bacteria (Curson et al. 2011;
Seymour et al. 2010). Bacteria able to metabolize DMSP as a carbon and/or sulfur
source are especially responsive to these chemotactic infochemicals (Kiene et al.
2000; Seymour et al. 2010; Zimmer-Faust et al. 1996). In addition to inducing
the upregulation of genes that putatively metabolize DMSP (Amin et al. 2015;
Johnson et al. 2016), transcriptomic analysis of R. pomeroyi DSS-3 cultures treated
with DMSP produced high levels of the quorum-sensing molecule N-
(3-oxo-tetradecanoyl)-L-homoserine lactone, highlighting the multifaceted signaling
role DMSP may play in the bacterial response to diatom products (Johnson et al.
2016).

Another example of a chemically-mediated signaling mechanism between
diatoms and bacteria involves the Roseobacter group bacterium
S. pseudonitzschiae strain SA11 and the toxigenic diatom P. multiseries. In addition
to organic carbon and sulfur metabolites, P. multiseries releases the amino acid
tryptophan to S. pseudonitzschiae, which in turn converts it to the hormone indole-3-
acetate (IAA) (Amin et al. 2015) (Fig. 4, bottom panel). IAA promotes cell division
of P. multiseries, leading to an increase in photosynthesis and carbon fixation by the
diatom. This presumably benefits S. pseudonitzschiae as it acquires more diatom-
derived DOM. The discovery that Roseobacter group genes and transcripts respon-
sible for converting tryptophan to IAA are widespread in the oceans suggests that
IAA may be a common mechanism of signaling mediating Roseobacter–diatom
interactions.

Quorum sensing (QS) is a bacterial communication system by which bacterial
communities use small signaling molecules, known as autoinducers, to coordinate
their gene expression as a function of cell density (Miller and Bassler 2001; Williams
2007). When cell density increases, excreted QS signals accumulate to a threshold
and are subsequently sensed by QS response regulators, which in turn regulate the
expression of genes involved in many processes, including bacterial defense, patho-
genicity, siderophore production, attachment, biofilm formation, motility, and nutri-
ent acquisition (Mukherjee and Bassler 2019). Several classes of QS molecules are
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produced by a variety of bacteria: homoserine lactones (HSLs) (Fig. 4, bottom
panel), autoinducers-2 (AI-2), 2-alkyl-4-quinolones (AQs), and long-chain fatty
acids and their methyl esters, among others. N-acyl-HSL-mediated QS is arguably
the most described system (Hmelo 2017), where HSL signal-producing bacteria are
commonly associated with diatoms and other microalgal species (Gram et al. 2002;
Mangwani et al. 2015; Zhou et al. 2016). Recent studies have examined the effect of
QS signals on diatoms or on structuring of microbial communities in the
phycosphere.

Because the repertoire of diatom-associated bacterial HSL signals is limited,
studies have generally focused on the effects of common HSLs from marine bacteria
on diatoms. For example, the HSLs C10-HSL, 3-oxo-C10-HSL, and 3-OH-C10-HSL
increased the chlorophyll a content and TEP production in the biofilm-forming
diatom Cylindrotheca sp. (Yang et al. 2016). The benthic diatom, Seminavis
robusta, exhibited differential physiological responses to structurally similar long-
chain HSLs. C14-HSL promoted growth of S. robusta while OH-C14-HSL and
oxo-C14-HSL inhibited its growth. In addition to oxo-C14-HSL, a tetramic acid
derivative negatively affected the photosynthetic efficacy of S. robusta and triggered
a downregulation of cell cycle-related proteins and shifts in its fatty acid metabolic
profile (Stock et al. 2020). In field incubations, exposure of natural marine microbial
consortia to 2-heptyl-4-quinolone (HHQ) restructured bacterial community compo-
sition to enrich microbes that produce or sense HHQ (Whalen et al. 2019). Recently,
HHQ was shown to inhibit the growth of the diatoms Cylindrotheca closterium,
P. tricornutum, and A. minutissimum (Dow et al. 2020). In contrast, other bacterial
quinolone derivatives like 2-nonyl-4-quinolone and its N-oxide congener had
weaker inhibitory effects. Similarly, a pentyl-quinolinol produced by an
Alteromonas sp. displayed inhibitory properties on Cylindrotheca fusiformis,
Thalassiosira weissflogii, and Chaetoceros simplex (Long et al. 2003).

A more direct role for bacterial AHLs in mediating diatom–bacteria interactions
was recently shown with the ubiquitous diatom A. glacialis. Two potential bacterial
symbionts belonging to the Rhodobacteraceae isolated from the microbial commu-
nity associated with this diatom were shown to harbor complete QS systems,
indicated by the presence of autoinducer synthase and an autoinducer response
regulator genes that synthesize and perceive the autoinducer signal, respectively
(Fei et al. 2020). In contrast, a potential opportunist, A. macleodii, lacked the ability
to synthesize AHLs. Further experiments showed that the two Rhodobacteraceae
isolates synthesize three AHL signals, one of which, 3-oxo-C16:1-HSL, regulates
bacterial biofilm formation. These findings correlate with the ability of these two
bacteria to attach to diatom TEP, while A. macleodii was largely unresponsive to
these AHLs and was unable to attach to the diatom (Fei et al. 2020). Cumulatively,
these results suggest that AHL signals likely have a critical role in shaping the
microbial consortia that can colonize diatom phycospheres. Additionally, these
signals can influence physiological changes to diatoms and control their growth.

Diatoms can also produce signals, such as rosmarinic acid discussed earlier, that
can interfere with HSL-mediated QS to promote attachment of specific bacteria,
while preventing others from colonizing the phycosphere. Quorum-quenching
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(QQ) is another process that is utilized by some eukaryotes to disrupt bacterial QS
communication (Busetti et al. 2017; Natrah et al. 2011; Romero et al. 2011). Some
algal species produce and secrete molecules structurally similar to QS signals to
interfere with bacterial communication or release enzymes that inactivate QS
molecules (Hughes and Sperandio 2008; Pietschke et al. 2017; Rajamani et al.
2008; Rolland et al. 2016). For example, the benthic diatom Nitzschia cf pellucida
produces a haloperoxidase enzyme that degrades a variety of bacterial AHLs (Syrpas
et al. 2014). Like eukaryotes, some bacteria can also perform QQ presumably to
compete with competitors; such a mechanism is commonly found across several
groups such as Bacillus spp. and Pseudomonas spp. (Borges and Simões 2019;
Romero et al. 2012), which can produce lactonases (Dong et al. 2001; Rémy et al.
2020; Romero et al. 2012), acylases (Lin et al. 2003; Sio et al. 2006), and
oxidoreductases (Tang and Zhang 2014) that break down AHLs. Future work
needs to focus on the molecular mechanisms that enable bacterial signals to influ-
ence diatom physiology and growth and the signaling mechanisms that enable
diatoms to nurture a beneficial microbiome.

11 Future Outlook

Insights into the complex interactions between diatoms and bacteria have gained
major traction (Fig. 1), particularly in the past decade, owing to significant
advancements in sequencing and other ‘omics techniques. The development of
several diatom-bacteria symbiosis model systems (Amin et al. 2015; Bruckner
et al. 2008; Durham et al. 2015; Shibl et al. 2020) has provided an invaluable
platform to gain a deeper understanding of the dynamics underpinning diatom
microbiome assembly, nutrient exchange, and signaling. The employment and/or
expansion of genetic tools for both diatoms and their symbionts, including in
environmentally relevant systems, is now vital to gain further mechanistic under-
standing of the molecular machinery governing interactions between these
organisms.

These developments coupled with improvements in sampling diatoms and their
microbiomes from field samples using microfluidic techniques and advances in
culturing of natural diatom-bacteria assemblages in the laboratory will yield critical
insight that better represents the diatom-bacterial symbioses of natural marine
ecosystems. Use of microscopy approaches, such as fluorescent in-situ
hybridization, could also be a powerful tool for illuminating the nature of physical
associations between diatom cells and associated bacteria in the environment.
Devising more sensitive and high throughput methods for the extraction and identi-
fication of diatom DOM and bacterial metabolites in lab and field samples, as well as
characterization of gene functions in model diatoms and their symbionts will
significantly enrich our knowledge of the metabolic and genetic basis of these
relations. In addition, advances to single-cell analyses will enable the study of
microbe–microbe interactions at a relevant scale. This is particularly important if
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some of the diatom-derived DOM is highly labile and does not diffuse away from the
phycosphere into bulk seawater, due to rapid microbial assimilation.

In the past decade and until today, many studies have highlighted a variety of
chemical exchanges between diatoms and specific species of bacteria. Future work
needs to focus on how diatoms assemble and maintain beneficial microbial
communities (Fig. 2) and whether these communities are conserved or variable,
and if so, what controls this variability. Shedding light on these mechanisms will
potentially explain the reason diatoms have arisen to dominance in the modern
ocean, despite their relatively recent evolution relative to other phytoplankton
lineages. In parallel with our growing understanding of the molecular life of diatoms
(Falciatore et al. 2020), these directions represent the next critical steps in under-
standing diatom-bacteria symbiosis and interkingdom coevolution between ocean
microbes.

Box 1 Glossary of Terms

Term Definition

Autotroph An organism that does not require an external source of
organic molecules either because it can synthesize them
itself or because it does not require them.

Auxotroph An organism that requires an external source of organic
molecules that it cannot synthesize.

Diatom diazotroph
associations (DDA)

Planktonic symbiosis between several diatom genera and
di-nitrogen (N2)-fixing bacteria [reviewed in Foster and Zehr
(2019)].

Diatom microbiome The collection of microbes, mostly bacteria, that occupy the
microenvironment surrounding diatom cells, known as the
phycosphere. While the definition of a microbiome for
multicellular eukaryotes encompasses symbiotic,
commensal, and pathogenic microbes (Berg et al. 2020),
here we define the diatom microbiome as mainly composed
of symbiotic and commensal microbes, with pathogenic/
antagonistic bacteria being foreign bacteria that may
sometimes evade phycosphere defenses.

Dissolved organic carbon
(DOC)

Organic carbon molecules that pass through a filter with pore
sizes ranging from 0.2 μm and 1 μm (Verdugo et al. 2004).

Dissolved organic matter
(DOM)

Organic matter that passes through a filter with pore sizes
ranging between 0.2 μm and 1 μm (Verdugo et al. 2004).

Extracellular polymeric
substances (EPS)

High molecular weight (MW > 410,000) mixture of
different polymers, composed mainly of polysaccharides,
proteins, nucleic acids, lipids, surfactants, and humic-like
substances (Flemming and Wingender 2001; Toullec and
Moriceau 2018). EPS can aggregate to form transparent
exopolymeric particles (TEP).

Fluorescence-activated
cell sorting (FACS)

A specialized type of flow cytometry for sorting a
heterogeneous mixture of particles, including biological
cells, based on the specific light scattering and fluorescent
properties of each particle.

(continued)
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Box 1 (continued)

Homoserine lactones
(HSLs)

Acyl-homoserine lactones (also abbreviated as AHLs) are an
important class of quorum sensing molecules mostly
produced by the Proteobacteria.

Infochemicals/signaling
molecules

Biomolecules mediating communication and interactions
between organisms. Typically, these molecules are
produced in minute quantities, yet they have major
influences on the organisms that perceive them.

The microbial loop Originally coined by Azam et al. (1983), this term stems
from the increased recognition of the importance of bacteria,
nanoflagellates, and microzooplankton in the consumption
of phytoplankton-derived dissolved organic matter, which
subsequently makes its way up to higher trophic levels.

Phycosphere The diffusive boundary layer that surrounds phytoplankton
cells and creates a microenvironment where transport of
metabolites is mostly governed by diffusion.

Particulate organic matter
(POM)

Organic matter retained on a filter with pore sizes ranging
between 0.2 μm and 1 μm (Verdugo et al. 2004).

Quorum sensing (QS) A type of mostly bacterial cell–cell communication that
enables bacteria to coordinate their gene expression as a
function of the population cell density. QS is mediated by
diffusive small molecules, known as autoinducers
(e.g., HSLs).

Quorum-quenching (QQ) Defined as the disruption of QS by any means, e.g.,
inactivation of AHL signals with enzymes.

Transparent exopolymeric
particles (TEP)

Defined as >0.4 μm transparent particles that consist of
mostly acidic polysaccharides and are stainable with the dye
Alcian blue (Alldredge et al. 1993).

Vitamins Organic micronutrients, necessary as cofactors for enzymes
of central and secondary metabolism.
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