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Chapter 13
Application of Encapsulation Technology 
in the Agri-Food Sector

Marko Vinceković and Slaven Jurić

1 � Introduction Into the Encapsulation Technology 
to the Agri-Food-Bio Sciences

Encapsulation might be defined as a process of substance (internal phase, payload, 
or payload phase) insertion into another substance (membrane, shell, capsule, car-
rier material, external phase, wall, or matrix) (Vinceković et  al. 2021; Nedović 
et al. 2011). Throughout the encapsulation process, various sizes of particles can be 
produced, from a few nm (nanoparticles) to a few mm (microparticles) (Lengyel 
et al. 2019). The encapsulation technology was first introduced to the area of bio-
technology to increase the efficiency of products. The developed technology became 
huge interest in the other areas like pharmaceuticals and cosmetics industry, as well 
as agricultural and food industry.

There are several advantages towards using the encapsulation process in agri-
food-bio sciences: (i) easier handling (e.g. converting liquid ingredients into a pow-
der form, which can be completely free of certain impurities with better rheological 
and sensory (smell/odor) properties, (ii) immobilization of encapsulated material 
for various production processes, (iii) better stability of encapsulated material dur-
ing technological preparation and in the final product (i.e. significant reduction of 
volatiles evaporation, reduced degradation/decomposition and reduction of reaction 
with other ingredients in the complex matrix of the product), (iv) increase the safety 
and security (e.g. reduced flammability and explosive behavior of volatile com-
pounds and easier handling), (v) improving visible and textural effects (visual signs) 
in the final product (cosmetic, food and agricultural industry), (vi) tunning the prop-
erties of encapsulated material (particle size distribution, structure, solubility in 
organic and inorganic solvents, color), (vii) time adjustment of the release of 
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encapsulated material which may be activated under certain conditions or with the 
ingredients of a complex product system or by the action of external factors (Jurić 
et al. 2020a).

In addition to the above advantages, encapsulation processes have certain disad-
vantages, as (i) increasing the costs of upscaling the encapsulation process, (ii) the 
industrial production and/or supply chain process are complex, (iii) the final appear-
ance of the product is not in line with customer expectations (visually or sensory 
does not meet customer criteria) products, and this is especially problematic in the 
food production sector, (iv) stability problems of prepared nano- and microparticle 
formulations during storage, transport and application in certain complex system 
products (Vinceković et al. 2021). Despite these shortcomings mentioned, encapsu-
lation technology is increasingly being advanced and developed and continuously 
used as a process in the preparation of new products in the fields of agriculture, food 
technology, cosmetics, and nutraceuticals.

The encapsulation technology applies to the food industry as a useful tool to 
improve the delivery of bioactive compounds (e.g. antioxidants, minerals, vitamins, 
phytosterols, lutein, fatty acids, lycopene, esters, aromas, colors) and living cells 
(e.g. probiotics, yeast) in real food products (Jurić et al. 2021; Mrkonjić Fuka et al. 
2021; Belščak-Cvitanović et  al. 2017; Vos et  al. 2010). Furthermore, there is an 
increasing trend towards using encapsulation technology for agricultural purposes 
to increase the viability and to control the delivery of living microorganisms into the 
field. These methods proved efficient and superior to the other formulations in terms 
of living organisms’ protection against the harsh environment (Jurić et al. 2020c; 
Vinceković et al. 2016). The encapsulation process can be applied for the produc-
tion of particles loaded with biological and chemical agents as an advanced tool for 
ecological and sustainable plant production. Encapsulation in biopolymer matrices 
has been recognized as an effective method for the controlled release of agents used 
for plant protection and nutrition (Jurić et al. 2019, 2020b). In the cosmetic industry 
encapsulation process have been proposed to increase the stability of the material, 
to protect it against degradation, and also to direct and control the release of encap-
sulated material used in cosmetic products (Casanova and Santos 2016).

The stability of encapsulated compounds mainly depends on a combination of 
environmental and chemical factors (i.e. pH, metal ions, light, high temperatures, 
enzymes, and oxygen) (Mahdavee Khazaei et al. 2014). In Table 13.1 we have out-
lined some of the recently used stabilization techniques and carriers for encapsula-
tion of natural pigments. Usually, with regards to the encapsulation of various 
ingredients, research papers deal with the fabrication and development of new pro-
duction methods but worryingly the research on the inclusion of encapsulated mate-
rial into e.g. real food products is still scarce (Jurić et al. 2020a). Due to the stability 
issues under environmental conditions during product manufacturing and later stor-
age, the incorporation of particles loaded with active ingredients into final products 
is still extremely challenging. Even though encapsulation is always advancing and 
represents an effective way to protect encapsulated material, incorporation of nano- 
and microparticles into products is still not investigated enough (Jurić et al. 2020a).
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Table 13.1  Stabilization techniques and materials used for the protection of water and lipid-
soluble natural pigments (Adapted from Jurić et al. 2020a, 2020b, 2020c)

Pigment Co-pigment/Wall materials Stabilization technique Reference

Water soluble
Anthocyanins Dairy proteins Complexation Chung et al. (2015); He 

et al. (2016)
Pectins Complexation Lin et al. (2016)
Whey proteins and pectins Complexation/physical 

entrapment
Arroyo-Maya et al. 
(2016)

Gum arabic Complexation Chung et al. (2016a); 
Guan and Zhong (2015)

β-cyclodextrins Molecular inclusion Howard et al. (2013); 
Fernandes et al. (2013)

Green tea extracts Complexation Chung et al. (2016b)
Ferric ion Chelation Tachibana et al. (2014)
Stearic acid Lyophilization Cruz et al. (2015)
Oleic acids Lyophilization Cruz et al. (2016)
Different fatty acids Lyophilization Cruz et al. (2017, 2018); 

Luo et al. (2017); Yang 
et al. (2019)

Montmorillonite Hybridization Kohno et al. (2009)
Methoxyl pectin Ionic gelation de Moura et al. (2018)
Sodium alginate Ionic gelation da Silva Carvalho et al. 

(2019)
Polyethylene glycol (PEG) Ionic gelation Santos et al. (2013)
Alginate Ionic gelation Belščak-Cvitanović et al. 

(2016)
Pectin amide Ionic gelation Oidtmann et al. (2012)
Whey protein isolate Microemulsions Oidtmann et al. (2012)
Maltodextrin, pectin amide Spray drying Oidtmann et al. (2012)
Glycerol mono-oleate, soy 
Lecithin, maltodextrin, 
poloxamer 338

Spray drying Ravanfar et al. (2018)

Supercritical carbon 
dioxide

Liposomes Zhao et al. (2017)

Betalains Sucrose Co-crystallization Karangutkar and 
Ananthanarayan (2020)

Sodium alginate, sodium 
alginate-bovine serum

Ionic gelation Otálora et al. (2016)

Rapeseed oil, guar gum, 
xanthan gum

Double emulsions Kaimainen et al. (2015)

Lipid Soluble
Carotenoids Whey protein concentrate, 

gum arabic
Spray drying Chuyen et al. (2019)

β-carotene Wheat gluten nanoparticles, 
wheat gluten nanoparticle-
xanthan gum

Pickering emulsion Fu et al. (2019)

(continued)

13  Application of Encapsulation Technology in the Agri-Food Sector



472

Table 13.1  (continued)

Pigment Co-pigment/Wall materials Stabilization technique Reference

Maltodextrin, gum arabic, 
chitosan, gelatin

Spray drying Bonilla-Ahumada et al. 
(2018)

Native and hydrolyzed 
Pinhao starches

Freeze-drying da Silva Carvalho et al. 
(2019)

Lycopene Gelatin, sucrose Spray drying Shu et al. (2006)
Lecithin, α-tocopherol Supercritical 

antisolvent 
co-precipitation (SAS)

Cheng et al. (2017)

Lutein Gelatin, gum arabic Coacervation Qv et al. (2011)
Chlorophylls Polycaprolactone Microfluidic 

emulsification
Hsiao et al. (2020)

Gum arabic, maltodextrin Spray drying Kang et al. (2019)
Whey protein isolate Spray drying Zhang et al. (2020)

2 � Classification of Next-Generation Biopolymer-Based 
Carriers as Sustainable Materials

Research is nowadays more focused on the investigation of alternative carriers such 
as biopolymers. Biodegradable polymers are suitable materials for the production 
of NPs because of their abundance, relative stability, and durability throughout the 
encapsulation processes. One of the most important advantages of encapsulation in 
biopolymeric particles is also high food compatibility and safety which is connected 
with the availability of polysaccharides, proteins, and lipids (Fathi et  al. 2021). 
Biopolymeric carriers are generally easily prepared from natural biodegradable 
polymers. These types of materials are usually used because they are generally 
regarded as safe for the consumer and environment. Also, prepared particles have 
superior properties especially considering controlled and targeted release (Jana 
et al. 2020). Biopolymeric particles are usually spherical with some deviations. It is 
possible to distinguish two types of particles, the reservoir type, and the matrix 
type. The reservoir type (capsule) has a shell around the bioactive component 
(filler). These types can further be divided into a single-core/mono-core or a core-
shell type. The release of the payload from reservoirs can be achieved via the appli-
cation of force (pressure) or under specific conditions which are generally resulting 
in capsule breakage. Poly- or multiple-core type particles have several reservoir 
chambers loaded with encapsulated material in a single particle (Vinceković et al. 
2021). In the matrix type of particles, the payload is usually dispersed over the bio-
polymer matrix carrier and it can be in the form of homogeneously dispersed small 
droplets or it can be adsorbed on the surface.

Currently, various materials of different origins and properties are being used for 
the encapsulation process either in solid, liquid, or gaseous forms. Materials used in 
the production of carrier systems can be divided into three groups as proteins, poly-
saccharides, and lipids (Fig. 13.1). Biopolymer carriers can be prepared in various 
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Fig. 13.1  Major natural biomolecules groups which are most often used in the preparation of 
nanosized carriers

shapes (films, spheres, irregular particles), or structures (compact or porous, amor-
phous or crystalline, rubbery or glassy) which depends mainly on the type of pay-
load and application (Madene et al. 2006). Encapsulation in biopolymeric carrier 
systems is continuously developed and mostly advances to improve physicochemi-
cal, functional, and release properties while keeping in mind cost-effectiveness and 
the use of environmentally friendly material throughout the process (Lozano-
Vazquez et al. 2015). The chosen material for the production depends on the pur-
pose of encapsulation and final application. Generally, there are a couple of aims 
that are to be considered when choosing the right material for the encapsulation 
process: (i) the improvement of shelf life, (ii) type of encapsulation method, (iii) 
masking of taste or aroma, (iv) easier handling, (v) controlled and/or targeted 
release, (vi) improvement of appearance. Chosen materials for biopolymeric parti-
cle production are required to have several of the following requirements (Desai and 
Park 2005a). Furthermore, carriers should not react with a component which is to be 
encapsulated and should have good rheological properties and behavior even at very 
high concentration. Also, it should not release the encapsulated component during 
the storage or transport, provide maximal protection against environmental condi-
tions, and should be completely solvent-free or from any other material used during 
encapsulation under drying or other desolvating conditions. Concerning the eco-
nomical aspect, encapsulation material should be inexpensive, available in large 
quantities, and of constant quality (Desai and Park 2005b).

3 � Modern Nanocarrier Systems

When considering the use of desired nanocarrier system, few basic points need to be 
considered. The main point is to take into the account type of used payload, consider 
its physicochemical stability, consider the overall sustainability of the production 
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process, and possible health risks (Fathi et al. 2021). There are carrier systems that 
can be considered to be used in agri-food sectors and these include:

	 (i)	 Nanofibers are used due to their desirable properties for encapsulation of vari-
ous payload materials. They are usually lightweight with small diameters and 
have controllable pore structures with a high surface-to-volume ratio 
(Vinceković et al. 2021).

	(ii)	 Nanohydrogels are nanosized networks of chemically/physically cross-linked 
polymers consisted of chains that are hydrophilic or amphiphilic. They are 
three-dimensional biocompatible materials with a large amount of water con-
tent. For delivery applications, few key properties are necessary: high water 
content/swellability, biocompatibility, and adjustable chemical/mechanical 
properties. Hydrogels can retain a large quantity of water or biological fluid 
without disturbing their basic polymeric chain structure. Hydrogels prepared 
from natural polymers have drawn huge attention due to their applications in 
pharmacy, agriculture, medicine, tissue engineering, cancer therapy, and drug 
delivery (Akram and Hussain 2017; Khoee and Asadi 2016).

	(iii)	 Nanoemulsions are kinetically stable liquid-in-liquid dispersions with droplet 
sizes in the range of 100 nm. They are characterized by high surface area per 
volume, robust stability, optically transparent appearance, and tunable rheol-
ogy. Nanoemulsions are applicable in different areas from drug delivery, food 
production, agriculture, cosmetics, pharmaceuticals, to material synthesis 
(Gupta et al. 2016).

	(iv)	 Nanostructured lipid carriers are delivery systems composed of both solid and 
liquid lipids as core matrices. These types of carriers have advantages for drug 
therapy over conventional carriers. These include higher solubility, increased 
storage stability, better permeability, and bioavailability, decreased adverse 
effects, prolonged half-life, and tissue-targeted delivery (Nie et al. 2020).

	(v)	 Bionanocrystals are especially interesting due to their unique properties and 
have received considerable attention for the delivery of bioactive compounds. 
They are biocompatible, rigid, biodegradable, easy to modify, and are renew-
able (produced from food and agriculture waste) (Koshani and Madadlou 
2018). For the food industry, especially are interesting starch, chitin, and cel-
lulose nanocrystalline particles. They are considered promising contenders for 
the fabrication of reinforced, biodegradable carrier systems (Kasiri and Fathi 
2018; Hao et al. 2018).

Despite many advantages to the nanocarrier systems, some problems are in the 
future to be overcome. These include (i) aggregation and adhesion of particles, (ii) 
special storage conditions and limited stability time of prepared formulations, (iii) 
difficulties in encapsulating some payloads of different hydrophilic properties in the 
same matrix, (iv) difficulties in regulating the polydispersity of particles (Vinceković 
et al. 2021).

To choose the optimal encapsulation method and the process of production of 
particles several things are needed to be considered. Mainly the type of material and 
encapsulated component because this is determinant when regarding pore size, 
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payload size, molecular weight, solubility in the carrier, the volumetric size of the 
carrier, and complex interactions between the payload and the carrier since this will 
govern the release mechanisms. Knowledge of this can significantly increase effi-
ciency, loading capacity, and release properties which are the most important 
parameters (Panyam et al. 2004).

4 � Encapsulation Technology in Agriculture – Present 
and Future

The encapsulation technology is widely used in different sectors from medicine, 
agriculture, food processing through the cosmetics and pharma industries. The sci-
entific investigation in agricultural science technology and development in the last 
several years have concluded the huge necessity to set up a new type of micropar-
ticles (microspheres/microcapsules) as a delivery system of biological agents (fungi, 
bacteria, microalgae) and chemical agents (micro-and macronutrients, esters, pep-
tides, amino acids, hormones, pesticides, etc.) (Vinceković et al. 2016; Jurić et al. 
2020a, 2020b, 2020c; Slattery et al. 2019; Pereira et al. 2019; Rodríguez Nogales 
et al. 2020; Tsuji 2001).

One of the most important properties of the prepared microparticle formulations 
(microspheres/microcapsules) is the protection of active ingredients from external 
conditions and their decomposition and loss of activity in a particular environment. 
It can also improve their bioavailability and regulate the time release of ingredients 
over a longer period. Also, it brings the possibility of longer storage without loss of 
their activity. All setup properties depend on several important factors of encapsula-
tion technology in agricultural application: (i) various types of wall materials and 
their concentration, (ii) encapsulation method/encapsulation process – microparti-
cle production, (iii) pH and temperature, (iv) particle size (especially important for 
the method of application in agriculture (plant protection/nutrition)), (v) type and 
amount of encapsulated ingredients/additives and their interaction, as well as inter-
action with the carrier material. All these factors have a significant influence on the 
microparticle loading capacity, encapsulation efficiency, swelling degree, the 
strength of the membrane, and the type of release mechanism of bioactive compo-
nents from microparticles (Li et al. 2019).

Present scientific investigation of microparticle formulations is focused on the 
preparation of a complex biopolymer-based network containing several bioactive 
components (synergistic effect). With this intensive research, new insights were 
gained connected to the complex processes and mechanisms of inter-and intramo-
lecular interactions in biopolymer-based microparticles (microspheres/microcap-
sules). Inter- and intramolecular interactions are influencing the structural properties 
of microparticles loaded with active agents (biological and chemical) which in turn 
have an impact on their overall properties, especially on tunning their release mech-
anism from microparticle formulation in a specific environment. With this 
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knowledge, it is possible to prepare a new generation of microparticle formulations 
with the desired properties for different types of application in the agricultural pro-
duction in the open field, greenhouse, hydroponics, or foliar approach of agroeco-
logical plant nutrition or protection and functional food production (higher level of 
plant metabolites) (Jurić et al. 2020a, 2020b, 2020c; Vinceković et al. 2019).

Besides the use of microparticles in agriculture, nanoparticles are also exten-
sively utilized. Nanocapsules are vesicular systems consisted of a polymeric porous 
membrane that encapsulates an inner liquid core at the nanoscale. Some of the pref-
erentially used nanoparticles are:

–– Polymeric nanoparticles have superior biocompatibility and a minimal impact on 
non-targeted organisms. Polymeric types of nanomaterials are widely used in 
agriculture are polyethylene glycol, poly(epsilon-caprolactone), poly(lactide-co-
glycolides), and poly (γ-glutamic acid) (Chand Mali et al. 2020; Clemente et al. 
2014; Grillo et al. 2013; Ranganathan et al. 2019; Xu et al. 2013; Govender 1999).

–– Silver nanoparticles are very effective against different phytopathogens (pesti-
cide activity) with low toxicity and also in some cases, they are showing plant 
growth promotor properties. They are efficiently used for site-targeted delivery 
of important agrochemical products and diagnosis purpose tools in case of prior 
detection of plant diseases (Sadak 2019).

–– Nano alumino-silicates, used as an effective pesticide (for different insects) in 
agriculture. They have very good properties: non-toxicity, biocompatibility, low 
costs, and environment-friendly nature (Singh et al. 2021; Mittal et al. 2020).

–– Titanium dioxide nanoparticles (TiO2) are one of the forms of titanium in the 
environment. TiO2 nanoparticles are widely used for plant protection and envi-
ronmental remediation because of their photoprotective and photocatalytic prop-
erties (Lyu et al. 2017).

–– Carbon nanomaterials (graphene, graphene oxide, carbon dots, fullerenes, car-
bon nanotubes, fullerenes, carbon nanoparticles, and carbon nano-horns) have 
beneficial and stimulatory effects on plants in vitro or culture conditions. They 
are used to improve the seed germination process (Mukherjee et al. 2016; Husen 
and Siddiqi 2014).

Most nanotechnology products utilized in agriculture are used for plant protection 
and nutrition (nano herbicides, nano pesticides, nano fertilizers, and nanosystems 
for disease protection). All these systems explore the possible use of nanotechnol-
ogy primarily in the process of controlled delivery of active ingredients that could 
be used as pesticides, herbicides, or fertilizers, but also secondary to improve the 
safety of the products which are applied in the process of plant protection and nutri-
tion. Because of that, their group name is nanoagroparticles (Baker et al. 2017). In 
Table 13.2 we have presented examples of the application of colloidal delivery sys-
tems for essential oils in agriculture.

Viruses, fungi, and bacteria infections are causing huge economical losses in 
agricultural production. The preparation of nanomaterials enriched with certain 
components which are having specific antimicrobial properties against phytopatho-
genic fungi (Colletotrichum gloeosporioides, Fusarium oxysporum, Fusarium 
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Table 13.2  Examples of application of colloidal delivery systems for essential oils in agriculture 
(Adapted from Fathi et al. 2021)

Field of 
application

Essential oil delivery 
system

Preparation 
procedure Claimed advantages

Organic 
farming

Carvacrol in alginate-
whey protein 
biopolymeric particles

Emulsification and 
extrusion

Targeted release in chicken 
jejunum and ileum (Zhang 
et al. 2014)

Pest control Aegeratum conyzoides, 
Achillea fragrantissima, 
and Tagetes minuta EOs 
nanoemulsions

High pressure 
homogenization

Higher toxicity against eggs 
and adults of beetle 
Callosobruchus maculates 
than free oils (Nenaah et al. 
2015)

Zanthoxylum rhoifolium 
EO in biodegradable 
polycaprolactone 
nanospheres

Nanoprecipitation of 
the pre-formed 
polymer

Significantly higher reduction 
of Bemisia tabaci eggs and 
nymphs compared with 
control (Christofoli et al. 
2015)

Carum copticum EO in 
myristic acid–chitosan 
nanogels

Self-assembly 4–8-fold higher fumigant 
toxicity against Sitophilus 
granarius and Tribolium 
confusum than the free oil 
(Ziaee et al. 2014)

Geranium and bergamot 
EOs in poly(ethylene 
glycol) nanoparticles

Self-assembly Higher toxicity against 
Tribolium castaneum and 
Rhizopertha dominica than 
free oils (Werdin González 
et al. 2014)

Artemisia arborescens EO 
in solid lipid nanoparticles

Hot high-pressure 
homogenization

Reduced volatility with 
respect to emulsions (Lai et al. 
2006)

Lippia sidoides EO in 
chitosan/cashew gum 
nanoparticles

Spray drying of 
nanoemulsion

Mortality rate of St. aegypti 
larvae correlates with EO 
loading (Abreu et al. 2012)

Pest luring Geraniol in chitosan/gum 
arabic nanoparticles

Ionic gelation 
method

Improved EO stability and 
luring effect toward whitefly 
Bemisia tabaci (de Oliveira 
et al. 2018)

Repellant 
textile

Citronella EO in chitosan/
gelatin microcapsules

Complex 
coacervation

Higher repellant effect and 
lasting protection from insects 
compared to textiles sprayed 
with EO in ethanol (Specos 
et al. 2010)

solani, Dematophora necatrix, etc.) can be used in the plant disease protection pro-
cess. Prepared cobalt and nickel ferrite nanoparticles (CoFe2O4 and NiFe2O4) are 
successfully tested for antimycotic activity against three plant-pathogenic fungi: 
Fusarium oxysporum, Colletotrichum gloeosporioides, and Dematophora necatrix 
(Sharma et  al. 2017). Copper nanoparticles with chitosan and celluloses showed 
antifungal and antibacterial properties against Escherichia coli, Staphylococcus 
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aureus, Alternaria solani, Fusarium oxysporum, Klebsiella pneumoniae, 
Pseudomonas aeruginosa, Aspergillus niger, Aspergillus flavus, and Candida albi-
cans. Besides plant protection, copper nanoparticles are also used in plant nutrition 
(Rai et al. 2018). Copper is a micronutrient that can be found in high concentrations 
in chloroplasts. Almost 70% of the total Cu is found in chloroplasts. Cu has an 
important role in the process of synthesis of chlorophyll, other pigments and has a 
crucial role in the process of protein and carbohydrate metabolism (Mengel 
et al. 2001).

Despite the significant advantages of encapsulation technologies in the process 
of nano- and microparticle production, the preparation process still has several sig-
nificant obstacles that must be addressed in the coming years to be able to achieve 
production in larger quantities:

	(a)	 insufficient number of methods used in the characterization of micro- and 
nanoparticle formulations,

	(b)	 the balance between biosafety and compatibility of wall materials,
	(c)	 various types of active ingredients release mechanisms,
	(d)	 stability during long-term storage at variable environmental conditions and 

temperatures.

Due to the abovementioned, it is necessary to conduct further research that will 
focus on increasing the stability of nano- and microcapsule formulations, control 
the uniformity of formulation sizes and release mechanisms of bioactive compo-
nents in certain time intervals, testing their effectiveness on certain phytopathogenic 
fungi and bacteria and testing their action as new green formulations with 3 in 1 
effects (plant protection, plant nutrition, and time-release mechanism). It can be 
concluded that from the above scientific research, technologies of encapsulation and 
production of nano- and microparticle formulations will more effectively promote 
the development in the agroecological agriculture and functional food production 
process.

5 � Implementation of Encapsulated Material Into Final 
Food Products

There is a significant gap in the research with regards to the implementation of 
encapsulated natural pigments in real food products. Usually, with regards to this 
topic, research papers deal with bioactive compounds encapsulation procedures but 
the research on their inclusion in real food products is worryingly scarce and a 
couple of available examples are listed in Table 13.3.

It is important to observe the behavior of encapsulated bioactive compounds in 
food matrices and their influence on the sensory characteristics of food products. 
This would significantly advance the knowledge of ingredient behavior when con-
sidering implementation during food production.
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Table 13.3  Examples of application of stabilized natural pigments in real food products (Adapted 
from Jurić et al. 2020a, 2020b, 2020c)

Encapsulated 
compounds

Compound 
donor

Stabilization 
method Material

Functional 
food References

Anthocyanin Barberry 
(Berberis 
vulgaris L.)

Spray drying Gum arabic, 
maltodextrin, 
gelatin

Jelly Mahdavi 
et al. (2016)

Black bean 
(Phaseolus 
vulgaris L.) 
coat

Molecular 
inclusion

β-cyclodextrin Sport 
beverage

Aguilera 
et al. (2016)

Grape (Vitis 
vinifera L.) 
skin

Spray drying Maltodextrin Apple 
puree

Lavelli et al. 
(2016)

Sour cherry 
(Prunus 
cerasus L.) 
pomace 
extract

Freeze-drying Whey and soy 
proteins

Cookies Tumbas 
Šaponjac 
et al. (2016)

Betalains Barbary fig 
(Opuntia 
ficus-indica 
L.)

Ionic gelation Calcium 
alginate/Gelatin

Gummy 
candy

Otálora 
et al. (2019)

Barbary fig 
(Opuntia 
ficus-indica 
L.)

Spray drying Soluble fiber 
[(1–3)
(1–4)-𝛽-D-
glucan

Extruded 
cereal

Ruiz-
Gutiérrez 
et al. (2017)

Beetroot 
(Beta vulgaris 
L.)

Freeze-drying Maltodextrin Chewing 
gum

Chranioti 
et al. (2015)

Red beet 
(Beta vulgaris 
L.) extract 
diluted with 
dextrin

Thin-film 
hydration-
sonication 
technique

Lecithin 
liposome

Gummy 
candy

Amjadi 
et al. (2018)

Carotenoids Yellow bell 
pepper 
(Capsicum 
annuum L.)

Ultrasonic 
homogenization, 
kneading

β-cyclodextrin Isotonic 
beverage

Lobo et al. 
(2018)

Saffron 
(Crocus 
sativus L.)

Freeze-drying Maltodextrin Chewing 
gum

Chranioti 
et al. (2015)

Chlorophylls Alfalfa 
(Medicago 
sativa L.)

Emulsification + 
Freeze-drying

Canola oil, 
glycerol 
monostearate, 
gelatin, agar

Gummy 
candy

Raei et al. 
(2017)

When considering the application of encapsulated ingredients into final food 
products the matrix can significantly affect its release behavior and particles physi-
cochemical properties. Diffusion of ingredients may be affected by the presence of 
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proteins, carbohydrates, fatty acids, pH, water activity, packaging material, and 
trace metals. Furthermore, physicochemical stress factors like food processing, 
preservation, storage, food ingredients, etc. may start the degradation and collapse 
of the encapsulation system making it inefficient.

There are a couple of examples (Table 13.3) that have proven to have problems 
when the implementation of encapsulated bioactive compounds like anthocyanins 
into food products have negative effects on the shape, size, and uniformity of prod-
ucts (e.g. cookies, and other dough-based products). Furthermore, protein-based 
coatings (encapsulation systems) might induce significant changes in the structure 
of dough-based products (proteins absorb water resulting in increased hardness) 
while the presence of an additional particulate phase can increase the fragility of 
dough-based products (hindering the formation of a continuous starch network).

The main applications of encapsulated ingredients can be classified into four 
groups (Table 13.4). (1) Direct mixing with liquid foods or mixing with the food 
ingredients before food preparation; (2) washing the product surface with carrier 
systems in an aqueous dispersion; (3) infusion in porous food matrices; (4) coating 
with a biopolymeric layer incorporating the active ingredients delivery systems. 
Details about the strategies for the utilization of different colloidal systems for 
active ingredients like essential oils (EO) alongside the examples of application in 
food products are listed in Table 13.4 (Fathi et al. 2021).

Published research mainly deals with the fabrication procedures and the work on 
implementation into food products is scarce (even often contradicts the in vitro 
results). Thus it is important to understand the issues related to the application of 
encapsulated bioactive compounds (or other ingredients like microorganisms) into 
various food matrices. It is also necessary to investigate the behavior of carrier sys-
tems (i.e. protein-based) in complex food matrices alongside the influence on the 
sensory characteristics of final food products (Jurić et al. 2021).

6 � Future Remarks

Encapsulation is becoming essential for the sustainable and economic development 
of various products, from agri-food to nutraceuticals. Respectively, it can resolve 
some problems regarding the stability of payload during industrial processing and 
storage. Even though still there is a significant gap when considering using this 
technology for a large scale production due to the limitations. Advancing the encap-
sulation methodology and technology these limitations could be minimized signifi-
cantly. Advanced nanocarrier systems are becoming popular due to the low-cost 
materials necessary for their manufacturing especially when introduced to industrial-
scale production.

M. Vinceković and S. Jurić
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Table 13.4  Strategies of the utilization of different colloidal systems for essential oils (EO) 
delivery, together with examples of application in food products (Adapted from Fathi et al. 2021)

Nanoemulsions Liposomes Biopolymeric 
nanoparticles

Advantages Active barrier with 
controlled release of 
antimicrobial, low amount 
needed (surface treatment), 
low impact on organoleptic 
properties

High efficiency of 
delivery through the 
biological membranes, 
additional loading of 
hydrophilic molecules

High food compatibility, 
several natural 
polysaccharides and 
proteins available

Disadvantages Need for surfactant in 
formulation, high costs of 
nanoemulsion production

Limited loading of 
bioactives, high costs 
of phospholipids and 
of fabrication

Formation of particles in 
aqueous systems requires 
chemical/physical 
modification of 
hydrophilic polymers, or 
use of solvents for 
hydrophobic polymers

Shelf life extension of milk 
and quality preservation by 
encapsulation of thyme EO 
(Ben Jemaa et al. 2017)
Microbial stabilization of 
orange and pear juices by 
encapsulation of carvacrol 
(Donsì et al. 2011)
Microbiological 
stabilization of chicken 
pâté by encapsulation of 
oregano EO (Moraes-
Lovison et al. 2017)

Microbial stabilization 
of tofu by clove EO 
encapsulation (Cui 
et al. 2015)

Shelf life extension in 
bakery products by 
encapsulation of thyme 
EO by complex 
coacervation (Gonçalves 
et al. 2017)

Microbial stabilization of 
fresh lettuce by washing 
with oregano EO 
nanoemulsions (Bhargava 
et al. 2015) or of spinach 
leaves by carvacrol or 
eugenol nanoemulsions 
(Ruengvisesh et al. 2015)

– –

Enhancement of 
organoleptic properties and 
extension of the shelf life 
of trout fillets by infusion 
of nanoemulsions of 
rosemary, laurel and thyme 
EOs (Ozogul et al. 2017)

Preservation of 
minced beef by 
Zataria multiflora EO 
liposomes (Khosravi-
Darani et al. 2016)

Reduction of lipid 
oxidation and microbial 
growth by infusion in 
meat patties of chitosan 
nanoparticles containing 
cinnamon EO (Ghaderi-
Ghahfarokhi et al. 2017)

(continued)
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Table 13.4  (continued)

Shelf life extension of 
rucola leaves coated with 
chitosan containing lemon 
EO nanoemulsions (Sessa 
et al. 2015)
Microbial stabilization of 
green beans (Severino et al. 
2014a, 2015) or broccoli 
florets (Severino et al. 
2014b) by modified 
chitosan coatings 
containing citrus EO 
nanoemulsions
Preservation of fresh-cut 
cheese by encapsulation of 
Oregano EO (Artiga-
Artigas et al. 2017)
Microbial stabilization of 
bread slice by an edible 
coating containing clove 
bud or oregano EO 
nanoemulsions (Otoni et al. 
2014)

Shelf life extension 
and quality 
improvement of 
banana slices by a 
mucilage coating 
containing rosemary 
EO liposomes 
(Alikhani-Koupaei 
2015)

Microbial stabilization of 
beef cutlet by spraying 
with a chitosan-myristic 
acid nanogels containing 
clove EO (Rajaei et al. 
2017)
Enhanced antimicrobial 
and antioxidant activity 
of cinnamon EO on pork 
by encapsulation in 
chitosan nanoparticles 
(Hu et al. 2015)
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