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Abstract Tacit assumptions have been made about the suitability of two primary
data-driven deconvolution algorithms concerning large (10,000+) data sets captured
using nanoindentation grid array measurements, including (1) probability density
function determination and (2) k-means clustering and deconvolution. Recent works
have found k-means clustering and probability density function fitting and decon-
volution to be applicable; however, little forethought was afforded to algorithmic
compatibility for nanoindentation mapping data. The present work highlights how
said approaches can be applied, their limitations, the need for data pre-processing
before clustering and statistical analysis, and alternatively appropriate clustering
algorithms. Equally spaced apart indents (and therefore measured properties) at
each recordednanoindentation location are collectively processed via high-resolution
mechanical property mapping algorithms. Clustering and mapping algorithms also
explored include k-medoids, agglomerative clustering, spectral clustering, BIRCH
clustering, OPTICS clustering, and DBSCAN clustering. Methods for ranking the
performance of said clustering approaches against one another are also considered
herein.
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Introduction

Advances in nanoindentation testing systems’ application, understanding, and func-
tionality have continuedwith regularity since the formalization of the original Oliver-
Pharr (OP) in the late 1980s and early 1990s [1]. Such advancements include the
in-situ integration of nanoindentation systemswith scanning electron aswell as trans-
mission electron microscopes [2], the development of high-strain rate impact testing
methods via nanoindentation [3], the ability to quantify stress–strain relations [4],
and the ability to perform nanoindentation testing ofmaterials at notably elevated and
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cryogenic temperatures [5]. In addition to the advancements, considerable research
and development have also been dedicated to the formalization of statistically signif-
icant and high-throughput mechanical property mapping at a rate of an indent per
second [6, 7]. With the latter in mind, the present work aims to build upon the current
state of nanoindentation-based mechanical property mapping and the analysis of the
data obtained through such experimental protocols. That said, consideration of prior
work related to the data-driven analysis of nanomechanically mapped datasets is
considered first.

Background

When consideration was initially being given to the potential value of nanoinden-
tation grid arrays for mechanical property mapping, Randall et al. noted that a grid
array of 2500 preprogrammed and automated nanoindentation measurements could
be successfully obtained over three to four days [8]. However, by 2012, nanoinden-
tation “tomography” remained relatively limited in high-throughput functionality
(relative to modern systems), which can be shown by way of considering the work
of Tromas et al. via [9]. That is not to say that the work of Randall et al. and Tromas
et al. was any less valuable; rather, detailing the history of nanomechanical mapping
or grid array protocol implementation with a nanoindenter enables one to contextu-
alize better the degree of advancement achieved since that period. Specifically, as
nanoindentation technologies advanced in the 2010s, the rate at which individual
indents could be measured continued to the point of an indent per second in the case
of Nanomechanics, Inc. (now KLA), via a method named NanoBlitz3D [10]. Such
a revolution in the high-throughput nature of nanoindentation mapping implementa-
tion can be exemplified by comparing the three-to-four-day timeframe encountered
by Randall et al. for 2500 indents to the amount of time required to measure the
same number of indents via NanoBlitz3D, which would only be 0.0289 days or just
shy of 42 min. With such remarkable testing speeds, nanoindentation grid arrays and
nanomechanical property mapping quickly enabled relatively massive datasets to be
obtained in realistic timeframes and therefore enabled big data or data-driven tech-
niques to be suitably applied for analyzing the results. For context, Fig. 1 presents a
nanoindentation array measured using NanoBlitz3D and the iMicro Pro from KLA
that houses 160,000 indentation measurements within one array measured on a 4xxx
series steel.
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Fig. 1 a A NanoBlitz 3D 4140 steel hardness histogram. b The hardness versus depth data for
the same material system displayed in the hardness histogram (a). c The hardness contour plot for
the 160,000 indentation measurements within one array measured on a 4xxx series steel. d The
hardness versus array’s x-axis position within the nanomechanical property map shown in (c)

Methods and Materials

Data-Driven Details

The data analysis techniques applied herein include: (1) probability density function
(PDF) and deconvolution, (2) k-means clustering and deconvolution, (3) k-medoids
clustering and deconvolution, (4) agglomerative clustering and deconvolution, (5)
spectral clustering and deconvolution, (6) balanced iterative reducing and clustering
using hierarchies (BIRCH) anddeconvolution, (7) ordering points to identify the clus-
tering structure (OPTICS) anddeconvolution, and (8) density-based spatial clustering
of applications with noise (DBSCAN) and deconvolution.

(1) The probability density function determination and deconvolution method rely
on the idea of fitting a variable number of normal curves to the PDF of a
dataset. A normal curve represents each cluster. If a data point is in each normal
curve, then that point and all other points in that normal curve will make up
a cluster. The deconvolution method will iteratively fit new normal curves to
the data set, keeping track of the best result so far as it does this. The new
curves are generated by assigning them to random sections in the probability
density function. The best so far is the combination of normal curves that best
account for the probability density function of the original data. Combining
these normal curves should result in a similar probability density function as
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the original, assuming the number of curves is appropriately chosen for the
data set. A limit can also be applied to determine an acceptable combination
of normal curves to use, as shown by the decon 3.0 program [11], which the
deconvolution process in this paper is based on.

(2) K-means clustering focuses on generating k number of centroids to represent k
different clusters in a data set.A centroid is an arbitrary point in the range of data
values representing a cluster’s center. The distance between the point and each
centroid must be calculated to determine what cluster a point is affiliated with.
The data point will belong to the cluster paired with the centroid it is closest to.
The locations of these centroids are determined through a random and iterative
process. To start, k centroids are distributed randomly throughout the data
set. The algorithm then moves these centroids to minimize the within-cluster
sum-of-squares. These centroids are moved iteratively to locations where the
within-cluster sum-of-squares is decreased. Once the within-cluster sum-of-
squares has reached its minimum value, the centroids are in their final locations
and returned as the clustering result.

(3) K-medoids clustering focuses on generating k number of medoids representing
k different clusters in a data set. K-medoids is incredibly like that of k-means,
differing in the use of medoids instead of centroids. A medoid differs from
a centroid as it must be one of the data points themselves. This makes the
algorithm more robust when dealing with outliers and noise as it is less likely
to have its clusters’ centers closer to undesirable points. Despite this differ-
ence, the method performs similarly to k-means, iteratively moving around its
medoids until it finds the smallest within-cluster sum-of-squares.

(4) Agglomerative clustering is a form of hierarchical clustering. Agglomerative
clustering involves creating a dendrogram with all the data points by pairing
them together interactively. To start, each data point is represented as its own
cluster or group. With each iteration, a metric is computed to determine the
absolute difference between each data point and every other data point, making
every possible pair of clusters. It will then take the two points with the best
metric value for that iteration and combine them into their own cluster. The
cluster of the two points now has a new value that represents it to compare with
other data points. This first iteration forms the first step of the dendrogram. This
process is then done iteratively until only the number of clusters left is specified
at the start of the algorithm.

(5) Spectral clustering is a form of clustering which performs a low-dimensional
embedding of the affinity matrix between samples and then clusters the result
using k-means. Spectral clustering takes in all data points and then computes
a similarity graph using either a radius (epsilon-neighborhood) or k-nearest
neighbors. Once this is completed, it will create a Laplacian matrix. After
this, it will compute the first k eigenvectors of its Laplacian matrix to define
a feature vector for each object. Finally, after the original data points have
been represented in this way, the algorithm runs k-means on these features to
separate objects into k classes.
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(6) Birch clustering is a form of clustering that builds a Clustering Feature Tree to
create Cluster Feature Nodes (CF Nodes) to reduce data. These nodes repre-
sent several subclusters called Clustering Feature subclusters. Each of these
subclusters stores information involving the data points, allowing them to repre-
sent them accurately. This algorithm reduces the amount of data by creating
a tree of the data and then clustering the resulting CF nodes in the tree. The
clustering algorithm used after this point to further cluster the data is arbitrary.
The library used by this paper runs agglomerative clustering. In terms of how
the respective tree is formulated, a new sample is inserted into the root of the
CF Tree, which is a CF Node. It is then merged with the subcluster of the root
that has the smallest radius after merging, constrained by the threshold and
branching factor conditions. If the subcluster has any child node, then this is
done repeatedly till it reaches a leaf. After finding the nearest subcluster in the
leaf, the properties of this subcluster and the parent subclusters are recursively
updated. If the radius of the subcluster is obtained by merging the new sample
and the nearest subcluster is greater than the square of the threshold, and if
the number of subclusters is greater than the branching factor, then a space
is temporarily allocated to this new sample. The two farthest subclusters are
taken, and the subclusters are divided into two groups based on the distance
between these subclusters.

(7) OPTICS is a form of clustering incredibly like DBSCANwith a few additions.
Along with the fundamental properties of DBSCAN, OPTICS also has two
additionalmetrics. The firstmetric is aminimumdistance tomake a given point
a core point. The second metric OPTICS uses are known as the reachability
distance or the distance between density-reachable points. This reachability
metric can then be used to separate clusters, separating clusters every time
there are peaks in the reachability metric.

(8) DBSCAN is a form of clustering which focuses on the idea of a dataset being
separated into areas of high-density data points and low-density data points.
The goal of this algorithm is to identify the sections of high-density points into
separate clusters. This algorithm requires that points have a minimum number
of points in that cluster to be classified as a cluster. The process completes its
clustering by creating a circle around each data point and classifying each data
point based on the number of points within a radius. Once this is done, clusters
can be formed from these points by forming cores. Iteratively, it goes through
the process of joining points as follows. First, X is density-reachable from Y
when X is in the radius of Y and Y is a core point. Next, X is density-connected
to Y when there is a point O where both X and Y are density-reachable from
O. All density-connected points become a separate cluster. Once this process
is complete, there will be several clusters from the density-connected point
sets and several outliers that did not fit into the requirements of being density-
connected with a minimum number of points. Moreover, HDBSCAN is a form
of clustering that combines DBSCAN and hierarchical clustering. It is like
DBSCAN but does not use a fixed cutoff as the radius around a point to group
points with. It instead handles any offshoots in the dendrogram by discarding
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them using the minimum cluster size parameter. This creates a denser dendro-
gram and reduces the number of small extra clusters often present inDBSCAN.
This method also relies on generating an estimated probability density func-
tion of the data through sampling, varying the number of samples to find a
balance between a noisy PDF and one that may be too smooth. HBSCAN also
has another parameter that specifies the minimum cluster size, which must be
balanced to prevent too many extra clusters from forming from being too low
or merging too many clusters together from being too high.

Data Pre-processing

Once several clustering methods had been explored, it became apparent that the
data needed to be transformed for the clustering methods to create optimal models.
This was done through interpolation, correcting outliers, and separating outliers from
data sets to be added on later. While plotting the original data set, it became apparent
that nulls were a constant issue. A single null value can prevent the software from
displaying a map. To counter this, any nulls in the original data are interpolated
by basing them off their neighbors. To do this, the project uses SciPy’s interpolate
library. It can find all points which are null and then interpolate them based on their
neighbors. To interpolate the data, it runs through a two-step processing using two
different interpolation algorithms. The first algorithm generates the most accurate
guess of a data point possible based on the surrounding neighbors. However, this is
not guaranteed to fill all null values in with a numerical value. If the null data point
has many null neighbors, it will be unable to generate a value. To compensate for
this, the data is run through another interpolation method which is guaranteed to fill
in every null value regardless of the number of null neighbors at the cost of accuracy.
Instead of using a calculation like the first algorithm, it picks the neighbor closest
to it and uses that value. Once this process has been completed, all null values have
been corrected.

Due to the focus on clustering, some required the data to be cleaned before
clustering. K-means and agglomerative clustering, for example, is very prone to
be skewed by outliers. If there is a small group of outliers far away from the data
points, then it is very likely that a cluster will only be composed of outliers and take
away from the analysis of the substance, especially when these outliers are defects.
To counter this, the data were cleaned to remove all outliers. Due to the lack of
a standardized metric, existing statistical methods were explored. The first method
involved taking a sample’s mean and standard deviation and defining any point 3
standard deviations or more away from the mean for an outlier. The second method
involved calculating the first quartile, the first quartile, and the interquartile range.
After this, any value outside the range of the first quartile −1.5 * IQR and the first
quartile +1.5 * IQR were defined as outliers. The method involving the mean and
standard deviation was much more successful in accurately removing outliers. Once
outliers had been removed, the resulting null values would be interpolated just as
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they were in the previous section. This allowed an entire grid of data for clustering
and mapping.

After exploring removing outliers, a sample was chosen to be mapped where
the outliers were essential to identify. These involved a small section of a material
whose hardness value was more considerable to an unexpected material. Another
process was developed to prevent outliers from causing the clustering methods to
fail but still consider outliers. This process involved defining the outliers the same
as above. Instead of removing and interpolating the values, the data values would be
separated into two sections, one containing outliers with higher-than-expected values
and another containing outliers with lower-than-expected values. The expected data
values, which were not classified as outliers, would then be clustered. After this, they
would be recombined with the outliers. When recombining the outliers, they would
be identified as being in their own clusters. All outliers with lower-than-expected
values would exist in a cluster, and those with higher-than-expected values would
exist. If outliers existed on both sides of a dataset and k-means clustering was used
without outliers into three clusters, the resulting contour plotwould have five clusters.
This allowed the clustering algorithms to perform as intended while still marking off
anomalies.

After developing a framework to generate clusteringmodels onmore optimal data
and exploring the evaluation of these models as possible, it became necessary to use
a standardized metric to compare them after implementing the clustering methods
above. The following metrics were explored to solve this issue. After generating
the clustering configurations used in this paper, it became practical to compare how
similarly two clustering methods performed. Unlike the other evaluation techniques,
this would not determine how well a clustering model performs, only how similar it
is to another clustering model. The rand index score is used to compare the results
of two clustering outputs and determine their similarity. If two sets were the same, it
would produce 1.0; if they were completely different, it would produce 0.0. SciPy’s
adjusted rand index score was used for this project, which allowed for values to be
lower after taking chance into account. This allowed the quantitative measurement
of how similar clustering configurations were to one another after running them on
the same data set. Most importantly, if the original data set had each data point
with a labeled phase fraction, the metric could then be run between each clustering
configuration and the labeled data. This would produce a metric for how well the
clustering configuration scored to correctly identify the material phase at each (x, y)
location.

Engineering-Driven Details and Initial Performance

Theprimarymaterial consideredduring thepresentworkwas aPb–Sn soldering alloy.
The Pb–Sn soldering alloy utilized was formulated with 60% Sn and 40% Pb with
a 2% (by weight) leaded rosin-activated flux core. The 60/40 soldering alloy system
was selected due to the solders’ near eutectic nature. Given the near eutectic nature
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of the selected alloy system, along with consultation of prior literature of relevance
on 60/40 solder solidificationmicrostructures, Pb40/Sn60microstructures house two
microstructural phases. Specifically, the two microstructural phases housed within
Pb40/Sn60 solders include an alpha-Pb dendritic constituent in addition to an alpha-
Pb/beta-Sn near eutectic constituent, which has previously been shown to have sepa-
rable micromechanical properties (such as mean contact pressure, that is, indentation
hardness); thus offering an economically viable and easily processable material for
as-solidifiedmicrostructural propertymapping and subsequent data analysis for dual-
phase fraction quantification. Due to the thermodynamically unstable nature of the
soldered microstructure obtained via a soldering iron, experimental methods were
applied shortly after solidification and metallurgical preparation.

In terms of metallurgical preparation, the as-solidified 60/40 soldering alloy
was compression mounted in black phenolic resin using mounting materials and a
compression mounting system from Buehler (Lake Bluff, IL USA). Upon compres-
sion mounting in phenolic resin, the sample was mechanically polished to a mirror
finish wherein a 0.05 um colloidal silica suspension-based final polishing step was
employed using an automatic mechanical polishing suite sourced from Buehler.
Buehler’s automatic polisher and compression mounting system, which was utilized
in the present study, are housed and maintained at Worcester Polytechnic Institute
(Worcester, MA, USA) as part of the Buehler Center of Excellence affiliated with
the Metals Processing Institute.

Following the mounting, grinding, and polishing procedures implemented, scan-
ning electron microscopy (SEM), digital microscopy, and nanoindentation-based
mechanical mapping was performed for a dual-phase fraction or phase area
percentage determination benchmarking. Regarding SEM analysis, a tabletop Zeiss
(Oberkochen, Baden-Württemberg, Germany) Evo MA-10 series scanning electron
microscope was employed. An accelerating voltage between 5 and 10 kV was used
during SEM analysis alongside a working distance of 10.5 mm and a secondary
electron detector. An example SEM-captured micrograph, which was measured after
nanomechanical mapping was performed, is presented in Fig. 2.

As noted above, nanomechanical mapping was performed before secondary
electron-based SEM analysis. Consistent with the dual-phase microstructure
discussed for the Pb40/Sn60 soldering alloy, the light gray constituents captured
in Fig. 2 represent the near eutectic alpha-Pb/beta-Sn phase while the dark gray
constituents represent the dendritic alpha-Pb phase. The relatively spherical and dark
alpha-Pb features can also be observed in the near eutectic primary phase of the light
gray beta-Sn. As for the 50-by-75 array of indents shown in the SEM micrograph
of the soldering alloy presented in Fig. 2 followed from nanoindentation mapping
using an InForce 1000mNactuator, diamondBerkovich nanoindenter tip fromMicro
Star Technologies, Inc. (Huntsville, TX, USA), which has since been obtained by
Bruker (Billerica, MA, USA), and KLA’s (Milpitas, CA, USA) iMicro Pro, which
was manufactured by Nanomechanics, Inc. (Oak Ridge, TN, USA), before KLA
acquired Nanomechanics, Inc. Rapid nanomechanical mapping with the iMicro Pro
system was achieved through the use of the NanoBlitz 3D test method.
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Fig. 2 SEM-captured micrograph, measured after nanomechanical mapping was performed on the
as-solidified 60/40 soldering alloy

That said, dynamic or continuous stiffness measurement (CSM) nanoindentation
testing was performed before applying the NanoBltiz 3D test method to identify
an average target load associated with the desired target nanoindentation mapping
depth of approximately 100 nm. After that, the nanomechanical map was obtained
by defining the target applied load at each location within the grid array per the
dynamically/CSM-determined load associatedwith a 100 nm nanoindentation depth.
As a result, the relatively recently refined nanoindentation spacing of ten times the
depth rule-of-thumb demonstrated in [10] was able to be applied herein as well for
enhanced nanomechanical property contour plotting/mapping. Furthermore, imple-
menting thek-means clusteringprotocol built into the commercially available nanoin-
dentation data analysis software known as InView, which is associated with commer-
cial nanoindentation systems from KLA, basic benchmarking initialization of clus-
tered and deconvoluted phase fractions was achieved. Further details surrounding
benchmarking nanoindentation insights obtained are subsequently presented too.

Additional benchmarking was procured by way of image analysis using ImageJ
and computational thermodynamic analysis via Thermo-Calc. In terms of compu-
tational thermodynamic analysis, the commercial software used was Thermo-Calc
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2021b, which enabled equilibrium-based volume fractions of the dendritic (alpha-
Pb) phase as well as the primary constituent of the near eutectic (beta-Sn) phase such
that the results could be compared as a benchmark against the various clustering tech-
niques described in the Data-driven Details subsection of the Methods and Materials
section of the present work. Furthermore, equilibrium-based computational analysis
via Thermo-Calc is achieved through the “CALculation of PHAse Diagrams,” or the
CALPHAD technique. Moreover, the computationally assessed system was defined
within Thermo-Calc 2021b via the soldering alloy-based database, denoted within
Thermo-Calc as TCSLD3: Solder Alloys v3.3. Accordingly, the mass percent of Pb
was set to 40%, while the mass percent of Sn within the system was set to 60%,
given the Pb40/Sn60 composition of the soldering alloy experimentally considered
herein. Furthermore, beyond the use of the database, the conditional temperature and
pressure defined for the single-point equilibrium calculation were set to 294.15 °K
and 100,000 Pa, respectively. At the same time, the system size was set to 1.0 mol.

Finally, one may consider the details surrounding the use of image analysis via
ImageJ herein. First, a JPEG formatted digital micrograph was obtained using the
digital microscope accompanying the iMicro Pro nanoindenter for image analysis
via ImageJ. Then, said JPEG-based digital micrograph was initially opened within
ImageJ 1.53e and cropped to remove regions containing shadowing and edge effects.
After that, the JPEG-based imagefilewas converted to aTIFF-basedfile format.Upon
TIFF reformatting of the cropped JPEG-based image, thresholding was applied to
the 8-bit TIFF-based image such that binarization of the alpha-Pb (light constituents
shown in Fig. 3a) and the beta-Sn (darker constituents shown in Fig. 3a)was achieved.
After that, the area of the binarized micrograph shown in Fig. 3b associated with
alpha-Pb (the black features in Fig. 3b) and the beta-Sn (the white features in Fig. 3b)
could be quantified as an area percentage relative to the total surface microstructural
area shown in Fig. 3b post-thresholding.

To establish a ground truth for comparison of clustering and deconvolution algo-
rithm results with one another and with independent methods of phase fraction deter-
mination, nanoindentation mapping via KLA’s respective software and test method
gave 29.1% of the Beta-Sn dominant phase, ImageJ suggested 31.79% of the same
phase, and the Thermo-Calc volume phase fraction computed at ambient equilibrium
for the 60–40 alloy gave 30.36%. Follow-onwork based upon the framework detailed
herein and using the methods detailed in the Data-driven Details subsection of the
Materials and Methods section of the present work will enable identification of the
optimal data clustering techniques for nanomechanical property and phase mapping.
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Fig. 3 a Digital micrograph of soldering alloy experimentally considered; b The binarized digital
micrograph from ImageJ pre-processing; c Nanoindentation hardness contour plot obtained using
NanoBlitz 3D and iMicro Pro; and d The k-means clustered phase map
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