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Abstract Recent studies have presented evidence that aortic dissection entails mode
II and mixed-mode crack growth. In the present chapter we analyze the mixed-
mode behavior of two exponentially softening path-dependent cohesive zone mod-
els (CZMs). We demonstrate that these models provide physically realistic tractions
and positive incremental dissipation during proportional and non-proportional load-
ing paths. In contrast, we demonstrate that potential-based path-independent CZMs
can potentially result in the calculation of physically unrealistic repulsive normal
tractions and negative incremental dissipation. Our recent experiments suggest that
mode II fracture strength of the aorta in the circumferential-axial plane is signifi-
cantly higher than the mode I strength in the same plane. We demonstrate that such
anisotropic interface behavior renders potential-based CZMs unsuitable for simu-
lation of aortic dissection. Using our new non-potential path-dependent CZM we
simulate aortic dissection due to the presence of a notch in the radial-axial plane
of the aorta. Simulations suggest that significant dissection propagation only occurs
in cases of extreme hypertension. Additionally, we demonstrate that blood pressure
loading in a false lumenwill result in amixed-mode traction state at the crack tip, with
significant crack-tip blunting acting as a toughening mechanism against significant
propagation of the false lumen.

1 Introduction

Theprogression andpathogenesis of aortic dissection (AD) is relatively poorly under-
stood compared to other cardiovascular diseases (Vilacosta et al. 2009; Criado 2011).
For example, several clinical studies suggest that AD occurs as a result of initial dam-
age to the intima, with such damage referred to in clinical literature as an ‘intimal
tear’ or ‘entry tear’ (Larson and Edwards 1984; Criado 2011; Lemaire and Russel
2011; Kim et al. 2014). However, a number of clinical studies report AD without an
intimal tear (Lui et al. 1992; Eichelberger 1994; Utoh et al. 1997; Colli et al. 2018).
Conversely, an intimal tear may present without extensive AD, indicating early arrest
of tear propagation (Svensson et al. 1999). AD is typically characterized in the clini-
cal literature as the occurrence of a true and false lumen separated by an intraluminal
septum (Hasleton and Leonard 1979; Sayer et al. 2008; Nienaber et al. 2010; Huang
et al. 2015). The end point of the false lumen is typically used to indicate the extent
of the AD, which may be as short as 1cm from the original entry tear (Svensson et
al. 1999) or as long as the entire aorta and iliac vessels (>1m) (Dotter et al. 1950;
Hagan et al. 2000; Dake et al. 2013; Qiao et al. 2015; Gambardella et al. 2017).

In recent years there have been a myriad of numerical studies examining the fluid
dynamics of AD, and more recently, studies examining AD from a fluid-structure
interaction standpoint (Cheng et al. 2013, 2014; Alimohammadi et al. 2015; Doyle
and Norman 2016; Ryzhakov et al. 2019; Bäumler et al. 2020; Xiong et al. 2020;
Zorrilla et al. 2020). Many of these studies explore subject matter such as the effect
of bypassing the false lumen on fluid flow using a bypass graft (Qiao et al. 2015),
development of patient-specific models (Alimohammadi et al. 2015; Xiong et al.
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2020), and analysis of intraluminal septum rigidity (Bonfanti et al. 2018). However,
to the authors’ knowledge, no study to date has examined the risk of false lumen
propagation from a fracture mechanics standpoint. In the present chapter we inves-
tigate the application of mixed-mode cohesive zone models (CZMs) to analyze AD
risk. We begin the chapter with an analysis of mixed-mode cohesive zone formu-
lations. Cohesive zone models have been extensively used to describe an interface
undergoing separation (Barenblatt 1959; Xu and Needleman 1993; van den Bosch et
al. 2006; McGarry et al. 2014). CZMs have been used to model crack propagation in
ductile metals (Nielsen 2012), polyethylene (Ivankovic et al. 2004), porous materials
(Nakamura and Wang 2001) and concrete beams (Aure and Ioannides 2010). They
have also been used to model the delamination of cells from substrates (McGarry and
McHugh 2008), polymer coatings from stents (Hopkins et al. 2010; McGarry et al.
2014), inter-laminar failure in carbon-fiber laminates (Gallagher et al. (2018, 2019)),
failure of coatings of diamond-coated cutting tools (Hu et al. 2008), and separation of
arterial layers (Gasser and Holzapfel (2006, 2007); Ferrara and Pandolfi 2010;Wang
et al. 2017; Noble et al. 2017; Gültekin et al. 2019; FitzGibbon and McGarry 2020).
The calibration of CZM parameters requires experimental testing data (Ivankovic
et al. 2004; Di Leo et al. 2014; Wu et al. 2016). The primary outputs of these tests
are interface strength and fracture energy. It is extremely difficult to measure the
stiffness of interfaces in highly elastic materials. The characteristic length (δ) or the
modulus (K ) of the initial elastic region of some CZMs often dictates the fracture
energy (G) and vice versa. This is common in exponential CZM formulations as seen
in Xu and Needleman (1993), van den Bosch et al. (2006) and Dimitri et al. (2015).
Therefore, the choice of fracture energy may anomalously influence the stiffness and
characteristic length of the interface.

Piecewise CZMs allow for the specification of K (and by extension δ) and G
independently (Camanho et al. 2003; Park et al. 2009). Choice of CZM should be
motivated by experimental data and boundary conditions. CZMs may be coupled or
uncoupled. In a coupledCZMthe traction depends on the separation vectorwhichwill
include both normal and tangential opening (�n,�t), whereas in an uncoupled CZM
the normal traction (Tn) depends only on the normal opening (�n). Most engineering
applications involve mixed separation and therefore should implement mixed-mode
(coupled) CZMs. Achieving a physically realistic mixed-mode response is important
in such applications.Many constitutive relationships of traction-separation laws have
been proposed, these include but are not limited to, linear softening (Camacho and
Ortiz 1996), bilinear softening, cubic polynomial, exponential (Xu and Needleman
1993; van den Bosch et al. 2006; McGarry et al. 2014), exponential softening, and
trapezoidal (Tvergaard and Hutchinson 1992).

In the first part of this chapter we investigate the suitability of several cohe-
sive zone formulations for mixed-mode dissection. We firstly consider exponential
softening model and introduce a feature whereby tangential interface strength can
be augmented as a function of compressive normal traction. We also explore the
extension of such exponential softening models to a potential-based formulation.
We demonstrate that the derivation of path-independent tractions separation rela-
tionships from a potential function results in non-physical behavior. In the second
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part of this chapter we apply our mixed-mode exponential softening CZM to the
analysis of AD. We consider the evolution of AD due to pre-existing intraluminal
septum and a patent false lumen. Simulations suggest that extensive propagation of a
false lumen will not occur at a slightly hypertensive systolic pressure of 140mmHg
in a healthy aorta. Even in extreme hypertensive loading conditions AD propagation
is arrested due to blunting of the crack tip and an increase in the mode angle towards
mode II. We also investigate if an intimal tear (radial notch) will result in extensive
AD under physiological and super-physiological lumen blood pressure. Simulations
suggest that propagation of an intimal tear is not predicted for pressures less than
p = 275mmHg in a healthy aorta.

2 Analysis of CZMs in Mixed-Mode Dissection

2.1 Development of Non-Potential Based Mixed-Mode CZMs
with Exponential Damage and Overclosure Penalization
(CZM1 and CZM2)

For a given interface displacement vector � with normal and tangential (shear)
components �n and �t , respectively, the corresponding displacement magnitude is
given as �m = (

�n
2 + �t

2
)1/2

and the mode angle is given as ϕ = tan−1 (�t/�n).
The magnitude of the interface traction is expressed as a function of �n and ϕ by the
following formulation:

Tm (�m, ϕ) =
{

Km�m, �m < T max
m (ϕ)/Km.

KmT max
m (ϕ)/Km�(ϕ), �m ≥ T max

m (ϕ)/Km.
(1)

We refer to� as the integrity of the interface (i.e.� = (1 − D), where D is referred
to as the interface damage). � monotonically decreases from 1 to 0 with increasing
interface separation, such that

�(ϕ) = exp

(
−�max

m − T max
m (ϕ) /Km

δ∗
m (ϕ)

)
�m

�max
m

, (2)

where Km is the intrinsic elastic stiffness of the interface. Km is assumed to be
mode-independent. T max

m (ϕ) is the specified mode-dependent interface strength; the
corresponding displacement (δelm (ϕ) = T max

m (ϕ) /Km) represents the elastic limit of
interface separation at the point of damage initiation. Themode-dependent parameter
δ∗
m (ϕ) governs the rate of softening in the damage region �m ≥ T max

m (ϕ) /Km. The
interface strength is defined as a function of the mode as follows:

T max
m (ϕ) = τmax −

⎡

⎣ τmax − σmax

1 − exp
(
− π/2

	T

)

⎤

⎦
[
1 − exp

(
− ϕ

	T

)]
, (3)
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where τmax is the mode II interface strength,	T sets the nonlinearity of the transition
from mode II to mode I, and σmax is the mode I interface strength. The mode mixity
of the initial interface damage parameter δ∗

m (ϕ) is obtained from

δ∗
m (ϕ) = Gm (ϕ)

T max
m (ϕ)

− T max
m (ϕ)

2Km
, (4)

where Gm(ϕ) is the mode-dependent fracture energy

Gm (ϕ) =1

2
Kmδelm (ϕ)

2 +
∫ ∞

Tmax
m (ϕ)/Km

Tmax
m (ϕ) exp

(
−�max

m − Tmax
m (ϕ) /Km

δ∗
m

)
d�m.

(5)

We may specify the mode-dependence of Gm(ϕ) using the following function:

Gm (ϕ) = G0
t −

⎡

⎣ G0
t − G0

n

1 − exp
(
− π/2

	G

)

⎤

⎦
[
1 − exp

(
− ϕ

	G

)]
, (6)

where G0
t is the mode II fracture energy and G0

n is the mode I fracture energy. 	G

sets the nonlinearity of the transition from mode II to mode I. Finally, we complete
the description of the cohesive zone formulation by decomposing Tm into the normal
and tangential components, Tn and Tt , respectively, such that

Tn =
{

Knoc�n, �n < 0,
Tm sin ϕ, �n ≥ 0,

Tt = Tm cos(ϕ), (7)

where Knoc is the overclosure penalty stiffness.We include a dependence of the mode
II interface strength, τmax, on normal compression at the interface, such that

τmax(Tn) =
{

τ nc
max(Tn), �n < 0,

τ 0
max, �n ≥ 0,

(8)

as described in Eq. (9). The mode II interface strength increases with increasing
(negative) normal traction, such that

τ nc
max(Tn) = τ 0

max + τ 0
max(Foc − 1)

[
1 − exp

(
TnK ∗

noc/σmax

Km

)]
, (9)

where τ nc
max(�n) is the increased value of tangential strength due to a normal compres-

sion at the interface. τ 0
max is the maximum tangential strength, as encountered during

a pure mode II separation when �n = 0 and Tn = 0. The parameter Foc prescribes
the maximum (plateau) value of increased shear strength due to compressive normal
tractions at the interface. The parameter K ∗

noc governs the sensitivity of maximum
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(plateau) shear stress to compressive normal tractions. Unless otherwise stated, we
assume that τmax= τ 0

max, i.e. maximum tangential strength is not increased due to
normal compression at the interface.

2.2 Alternative Form of Damage and Softening (CZM2)

To demonstrate that alternative forms of damage softening laws can be readily incor-
porated into our CZM framework, we next present a small modification of Eq. (2)
whereby in which exponential damage is assumed to depend on the square of the
interface separation. Again, starting with Eq. (1), and the integrity of the interface,
� is now defined as

�(ϕ) = exp

[

−
(

�max
m − T max

m (ϕ) /Km

δ∗
m (ϕ)

)2
]

�m

�max
m

. (10)

We make use of the same relation of G(ϕ) = ∫ ∞
0 Tm (�m, ϕ) d�m in order to obtain

an expression for δ∗
m. The description of Gm(ϕ) is given as follows

Gm (ϕ) = 1

2
Kmδelm (ϕ)

2

+
∫ ∞

Tmax
m (ϕ)/Km

T max
m (ϕ) exp

[

−
(

�max
m − T max

m (ϕ) /Km

δ∗
m (ϕ)

)2
]

d�m.

(11)

Integrating we get the following expression which includes the error function

Gm = 1

2
Kmδelm (ϕ)

2 + Tmax
m (ϕ)

{
lim

�m→∞

[
1

2

√
π δ∗

m (ϕ)

(
�m − Tmax

m (ϕ) /Km

δ∗
m (ϕ)

)]}
. (12)

As �m → ∞ we arrive at the final expression for δ∗
m(ϕ), i.e.

δ∗
m(ϕ) = −T max

m (ϕ)

Km
√

π
+ 2Gm(ϕ)√

πT max
m (ϕ)

. (13)

2.3 Exploration of CZM1 and CZM2 Behavior

Wefirstly present the response ofCZM1andCZM2 to puremode II loading, as shown
in Fig. 1a. Normalized tangential traction Tt/τmax is presented as a function of nor-
malized tangential separation �t/δ

el
t . Traction increases according to the interfacial

stiffness Km until the prescribed mode II strength τmax is reached. Further deforma-
tion results in damage and softening. Due to the form of the respective exponential
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(a) (b)

Fig. 1 (a) Normalized traction separation curves for a mode II separation for both formulations of
the proposedmodel (Km = 10MPa, τmax = 5MPa,G0

t = 10N/mm); (b) instantaneous incremental
energy dissipation dφi /φt as a function of normalized tangential separation for CZM1 and CZM2
during a mode II displacement

(a) (b)

Fig. 2 (a) Influence of compressive normal tractions on tangential fracture; (b)maximum tangential
traction shown as a function of the Foc parameter

damage laws, CZM1 initially softens at a faster rate than CZM2. An expression
for the instantaneous incremental energy dissipation (Cazes et al. 2009) is given as
dφi = 0.5(Td� − �dT). As shown in Fig. 1b, positive instantaneous incremental
energy dissipation is observed throughout the mode II separation for both CZM1
and CZM2.

In Fig. 2a we explore the influence of normal compressive tractions on tangential
fracture. An increase inmagnitude of a compressive normal traction Tn (with Tn < 0)
results in an increase in τ nc

max(Tn), up to a plateau value of τ 0
maxFoc as Tn → −∞.

Figure2b further explores the influence of a fixed applied normal separation on
the maximum tangential traction, Tmax, encountered during a subsequent tangential
separation. As expected, normal interface separation �n > 0 results in a reduction
in Tmax. In contrast, if �n < 0 a negative normal traction Tn < 0 is obtained through
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(a) (b)

(c) (d)

Fig. 3 Mixed-mode response of each CZM undergoing proportional loading ranging from mode
II to mode I. Normalized traction versus separation in the normal direction (b), (d) and tangential
direction (a), (c) for CZM1 (a), (b), CZM2 (c), (d) undergoing proportional loading. Km = 10MPa,
τmax = 5σmax, G t = 5Gn

the overclosure penalty term (Eq. (8)). This results in an increase in τ nc
max(Tn) up to

a plateau value with increasingly negative normal traction.
Proportional loading paths: CZM1 and CZM2 are examined under mixed-mode

proportional loading conditions whereby �m increases at a constant mode angle
ϕ. Computed traction-separation responses are presented in Fig. 3 for the case of
Km = 10MPa, τmax = 5σmax, G t = 5Gn, 	T = π/16, 	G = 	T for both models.
CZM1 is shown inFig. 3a, b andCZM2 inFig. 3c, d.Consistentmixed-modebehavior
is observed for both formulations, with a gradual transition from mode II behavior
to mode I behavior. In accordance with Eqs. (3) and (6), identical fracture energy
is obtained for both formulations for such proportional loading paths, as shown in
Fig. 4. The computed total fracture energy G total monotonically increases from G0

n
to G0

t .
Non-proportional loading paths: We next consider non-proportional loading path

whereby the interface undergoes an initial mode II separation to a prescribed value
of �t = �max

t , followed by a subsequent normal separation to complete failure.
Figure5 shows the traction-separation response, again for the case of Km = 10MPa,
τmax = 5σmax, G t = 5Gn, 	T = π/16, 	G = 	T for both models. CZM1 is shown
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Fig. 4 Computed fracture energy as a function of mode angle ϕ for CZM1 and CZM2 under pro-
portional loading in the case of Km = 10MPa, τmax = 5σmax, G t = 5Gn, 	T = π/16, 	G = 	T

(a) (b)

(c) (d)

Fig. 5 Normalized traction versus separation in the normal direction (b), (d) and tangential direction
(a), (c) for CZM1 (a), (b) and CZM2 (c), (d) undergoing non-proportional loading. Each simulation
involves incrementally increasing tangential displacements beginning at �t/δt = 0 and increasing
until the interface is fully debonded in the tangential direction followed by a complete normal
separation (�n/δn = 50. Km = 10MPa, τmax = 5σmax, G t = 5Gn)
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(a) (b)

Fig. 6 Fracture energy (G) for CZM1 (a) and CZM2 (b) undergoing non-proportional loading paths
of varying initial tangential separation �t followed by normal separation �n until complete failure.
Parameters are the same as those implemented in Fig. 5

in Fig. 5a, b and CZM2 in Fig. 5c, d. Consistent behavior is again observed for both
models. If significant damage is computed during the initial mode II separation, the
maximumnormal traction computed during subsequent normal separation is reduced.
This demonstrates that sensiblemixed-mode coupling is provided by both CZM1 and
CZM2.Computed fracture energy is presented in Fig. 6 for the samenon-proportional
loading paths as those presented in Fig. 5. While identical fracture energy is not
obtained for both formulations, amonotonic increase as a function of increasing�max

t
is computed both formulations. Additionally, monotonically increasing/decreasing
tangential/normal fracture energy contributions are also computed.

The dissipation of CZM1 is presented in Fig. 7a, c and CZM2 is presented in
Fig. 7b, d for the proportional loading (Fig. 7a, b) and non-proportional loading
(Fig. 7c, d). Positive instantaneous incremental dissipation is computed throughout
each of the analyses presented. The response of CZM1 and CZM2 to load-unload
boundary conditions is demonstrated in Fig. 8. Specifically, as shown in Fig. 8a,
a mixed-mode proportional loading path is followed so that partial damage is com-
puted. The interface is then unloaded along the same mode angle, until it returns to
its original configuration (�n = �t = 0). The interface is then subjected to the same
mode angle in the reverse direction (�t < 0) to failure. As shown in Fig. 8b–d, con-
sistent behavior is obtained for all mode angles. In all cases, the prescribed strength
for the given mode angle is exceeded and softening/damage is computed. Rever-
sal of loading results in elastic unloading at a reduced/damaged interface stiffness.
Reversal of the direction of tangential loading direction for the final mixed-mode
component of the loading path results in a continuation of elastic deformation at the
reduced damaged interface stiffness. Eventually, the tangential traction reaches the
reduced/damaged tangential strength and further interface softening proceeds dur-
ing ultimate mode II separation and failure. Similar consistent trends are computed
for both CZM1 and CZM2. Figure8f, g demonstrate that instantaneous incremental
dissipation is positive throughout the entire mixed-mode loading histories shown in
Fig. 8b–e.
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(a) (b)

(c) (d)

Fig. 7 Instantaneous incremental energy dissipation of CZM1 (a), (c) and CZM2 (b), (d) under
proportional loading (a), (b) and non-proportional loading (c), (d)

2.4 Comparison of CZM1 and CZM2 with Abaqus
Exponential Softening Formulation (CZM3)

The commercial finite element software Abaqus provides a cohesive zone function-
ality in which damage evolution may be specified in terms of mixed-mode fracture
energy. In this section we describe this formulation, which we refer to as CZM3, and
we provide critical comparisons with CZM1 and CZM2. The constitutive law for the
traction is specified as follows

T =
(

Tn

Tt

)
=

[
Knn 0
0 Ktt

] (
�n

�t

)
= K�, (14)

where Knn is a prescribed mode I stiffness and Ktt is a prescribed mode II stiffness.
The traction increases elastically in accordancewith Eq. (14) until the chosen damage
initiation criterion is met. As an example, the quadratic failure criterion (Tsai and
Wu 1971) can readily be chosen, such that damage initiates when

( 〈Tn〉
σmax

)2

+
(

Tt

τtmax

)2

= 1, (15)
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 8 Loading-unloading path (a); demonstration of the interface integrity variable in CZM1 (b),
(d) and CZM2 (c), (e) for a series of proportional loading modes ranging from mode II to mode I
(Km = 10MPa, τmax = 5σmax, G t = 5Gn). Instantaneous incremental dissipation is shown in (f),
(g) for CZM1 and CZM2, respectively
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where brackets describe the ramp function

〈Tn〉 =
{
0, Tn < 0,
Tn, Tn ≥ 0.

(16)

Once the damage initiation criterion is satisfied, the scalar damage variable D
increases monotonically from 0 to 1 with increasing separation until complete failure
of the interface occurs. The traction during damage evolution is given as

T = (1 − D) T, (17)

where T is the peak elastic traction calculated in the absence of damage according to
Eq. (14). This applies in both tangential directions, however, in normal displacement
the traction is given as follows

Tn =
{

(1 − D)T n, T n ≥ 0,
T n, T n < 0.

(18)

This ensures the stiffness of the interface in overclosure cannot be affected by the
damage variable D whilst allowing stiffness of the interface in normal opening Knn

to be affected in the same manner as Eq. (17). For exponential damage evolution
specified according to energy the damage variable D reduces to

D =
∫ δ∗

m

δelm

Tmd�m

Gm − G0
, (19)

where Tm is the effective traction and�m is the effective separation, G0 is the stored-
elastic energy at damage initiation and Gm is the mixed-mode fracture energy. In
Fig. 9a we show the response of CZM3 to a simple mode II separation. The com-
puted tangential traction exceeds the prescribed mode II fracture strength of the
interface, providing a non-physical prediction. In contrast, CZM1 and CZM2 cor-
rectly reproduce the prescribedmode II fracture strength, in addition to the prescribed
mode II fracture energy. Figure9b shows the computed tangential traction for CZM3
as a function of the damage (D = (1 − �), where � is the interface integrity) dur-
ing a mode II separation. The relationship is non-monotonic, whereby the mode II
interface strength incorrectly increases with increasing interface damage. Peak tan-
gential traction occurs when the scalar damage variable D ≈ 0.3. Furthermore, the
tangential traction does not decrease to the specified mode II fracture strength until
D ≈ 0.7, i.e. when the interface is 70% damaged. In contrast, tangential tractions
are correctly computed to decrease monotonically with increasing interface damage
for CZM1 and CZM2.

Such anomalous behavior inCZM3 is further exposed in Fig. 10. Figure10a shows
the computed maximum normal traction as a function of mode angle during propor-
tional mixed-mode separation. In the case of CZM1 and CZM2 the prescribed mode
I strength is reached only for a pure mode I, as expected. However, for CZM3 the
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(a) (b)

Fig. 9 (a) Normalized traction-separation response of CZM3 (Abaqus exponential softening) for-
mulation presented with CZM1 and CZM2 for a pure mode II separation. Note Tt > τmax for the
Abaqus exponential softening (Km = 10MPa, τmax = 5MPa , G = 10N/mm); (b) normalized tan-
gential traction as a function of damage D (where D = (1 − �)). Monotonic reduction is mode II
interface strength with increasing damage for CZM1 and CZM2, but not for CZM3

(a) (b)

Fig. 10 (a) Normalized normal traction Tnmax/σmax as a function of mode angle ϕ for the three
models in proportional loading scenarios (as seen in Fig. 3); (b) normalized traction as a function
of maximum normalized tangential displacement prior to complete normal separation (as seen in
Fig. 5). The dotted grey curve indicates σmax in both (a) and (b). Note the non-monotonic behavior
of the Abaqus exponential softening model

prescribed mode I strength is incorrectly exceeded for a wide range of applied mode
angles. Similar results are presented in Fig. 10b for non-proportionate mixed-mode
loading paths.

2.5 Construction of a Potential-Based CZM

Several previous studies have used traction-separation laws derived from a potential
function (Xu et al. 1993; Park et al. 2009), so that the work of separation associated
with a given interface separation vector should be path independent. A study by
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(a) (b) (c)

Fig. 11 Potential surfaces shown as a function of normal separation and tangential separation:
(a) PF-CZM1 (K = 1, ϕt = 2ϕn, τmax = σmax, ϕ

0 = π/8); (b) PPR (σmax = τmax, ϕt = 2ϕn, δn =
δt); (c) Xu-Needleman (r = 0, q = 2)

McGarry et al. (2014) uncovered problematic behavior associated with potential-
basedCZMs, such as repulsive tractions duringmixed-mode loading paths. To further
demonstrate this limitation of potential-basedCZMs,we construct a potential surface
by integrating the traction magnitude-separation magnitude relationships specified
for CZM1 along proportional loading paths for 0 ≤ ϕ ≤ π/2, giving the following
piece-wise expression potential function

φ (�m, ϕ) =

⎧
⎪⎨

⎪⎩

1
2 Km�2

m, �m < T max
m (ϕ)/Km,

1
2 Kmδelm(ϕ)2−
T max
m (ϕ)δ∗

m(ϕ)
[
exp

(
−�m−δelm(ϕ)

δ∗
m(ϕ)

)
− 1

]
, �m ≥ T max

m (ϕ)/Km.

(20)
We refer to this formulation as PF-CZM1 (potential function extension of CZM1).
The traction separation relationships are derived from T(i=n,t) = ∂ϕ/∂�i . Figure11a
shows ϕ for PF-CZM1 for the case where the specifiedmode II fracture energy is two
times higher than the mode I fracture energy. The potential function (ϕ) of the PPR
model (2009) and the Xu-Needleman model (1993) are also shown for comparison.
Figure12a shows the normal traction ∂φ/∂�n derived from the PF-CZM1 potential
function φ as a function of normal separation �n and tangential separation �t . As
clearly shown in Fig. 12b repulsive tractions are computed for increasing tangential
separation, even when no normal separation exists (�n = 0).

Figure13 illustrates the response of the PF-CZM1, XN and PPR potential-based
formulationswhen subjected to amixed-modemonotonic loading pathwithϕ = 45◦.
In all cases tangential strength is higher than the normal strength (τmax = 5σmax) and
the tangential work of separation is higher than the corresponding normal value
(φt = 5φn). In all cases significant repulsive normal tractions are computed from the
potential function during the monotonic deformation path, while tangential tractions
remain positive (non-repulsive). Negative instantaneous incremental dissipation is
computed for the XN model, whereas such a violation of the second law is avoided
for the PF-CZM1 and the PPR model simply due to the dominance of the positive
dissipation of the tangential contribution over the negative normal contributions.
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(a)    (b)    

Fig. 12 (a) Normal traction derived from the potential function ϕ(�n,�t) seen in Fig. 11. Note
repulsive normal tractions exist for increasing tangential opening even for �n = 0; (b) repulsive
normal tractions are further demonstrated for a proportional loading of �t = 2�n. The transparent
surface indicates ∂φ/∂�n = 0

(a) (b)

(c) (d)

Fig. 13 PPR model subject to a proportional loading path where ϕ = 45◦. Model parameters are
the same as those seen in Fig. 5 (τmax = 5σmax, φt = 5φn, δt = 0.5, δn = δt/5): (a) normalized
normal traction Tn/σmax as a function of normal separation �n. Repulsive (negative) tractions
are computed; (b) normalized tangential traction Tt/τmax as a function of tangential separation
�t . Tractions remain positive throughout; (c) instantaneous incremental energy dissipation dφi /φn
as a function of normal separation �n. Negative instantaneous incremental energy dissipation is
observed during the loading history; (d) decomposition of the instantaneous incremental energy
dissipation (c) into normal and tangential components presented as a function of normal separation
�n
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However, Fig. 13 illustrates that potential-based models can result in repulsive nor-
mal tractions and negative instantaneous incremental dissipation duringmixed-mode
loading paths.

3 CZM Simulation of Mixed-Mode Aortic Dissection

In the previous section we demonstrated the advantages of path-dependent expo-
nential softening CZM1 and CZM2 formulations. In this section we use CZM1 to
investigate mixed-mode AD.

3.1 Examination of an Artery with an Intimal Tear

We first examine the risk of dissection propagation in an artery with a pre-existing
intimal tear in the form of a radial notch. Figure14e shows an illustration of the
intimal tear highlighted in red on the arterial geometry. In order to assess the risk
of the intimal tear propagating under a luminal pressure load a cohesive zone is
prescribed in the circumferential plane around the intimal tear, as shown by the
red surface in Fig. 14e. In order to determine an upper limit of allowable lumen
pressure a super-physiological blood pressure of 500mmHg is applied in the lumen.
A10%axial stretch is applied to the artery prior to lumen pressurization.Hyperelastic
anisotropic fiber-reinforced material behavior is prescribed to the artery according
to the bilinear fiber model proposed by Fereidoonnezhad et al. (2020). The shear
strength of the CZM interface is taken as τmax = 1.6MPa, as determined in the
experimental-computational study of mode II dissection (Fig. 15) by FitzGibbon and
McGarry (2020). The normal strength of the interface is taken as σmax = 0.2MPa,
based on standard peel test experiments (FitzGibbon and McGarry 2020).

Figure14f shows the max principal stress in the aorta at a lumen pressure of
500mmHg. The crack initiates at a pressure of 275mmHg and continues to propagate
with increasing applied pressure. The final crack growth is∼5.75mm at a pressure of
500mmHg. No crack propagation is recorded at lumen pressures below 275mmHg.
The crack initiates and propagates in a pure mode II due to compressive tractions
at the medial interface caused by the hypertensive blood pressure. Figure14g shows
the interface strength as a function of the lumen pressure at the point of intimal
tear propagation. τmax/τ exp = 1 indicates the interface strength is the experimentally
recordedvalue of τmax = 1.6MPa (FitzGibbon andMcGarry 2020).As shown, a 50%
reduction in interface strength will lead to an intimal tear propagation under a typical
hypertensive blood pressure load of p ≈ 190mmHg. A further reduction in interface
strength (τmax/τ exp = 0.25) results in tear propagation in the normotensive blood
pressure range. The highest recorded blood pressure in humans is 480/350mmHg
during heavy-resistance exercise (MacDougall et al. 1985), these are referred to
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(a) (b)

(c)

(d) (e)

(f) (g)

Fig. 14 (a) Illustration of the dissected geometry with the paraboloid flow profile. The intraluminal
septum is shown; (b) velocity magnitude (mm s−1) streamline plot of the dissected geometry;
(c) blunting of the crack tip in the axisymmetric cohesive zone finite element analysis; (d) mode at
the crack tip in (c) is shown as a function of the lumen pressure; (e) illustration of the intimal tear
in the artery. The surface of the CZM is shown in red; (f) maximum principal stress in the aorta
subject to 500mmHg of lumen pressure; (g) interface strength (τmax) as a function of pressure at
crack propagation (pinit). Four regions of blood pressure are shown: hypotensive, normotensive,
hypertensive, and super-physiological. In summary, this analysis suggests that propagation of an
intimal tear of the aorta will occur only in cases of extreme hypertensive pressures (≥275mmHg).
Extensive propagation of a false lumen is not predicted at a slightly hypertensive blood pressure
of 140mmHg. Even in extreme hypertensive loading conditions propagation is arrested due to
mixed-mode blunting of the crack tip and an increase in the mode angle towards mode II
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(a) (b)

Fig. 15 (a) Computational fit of the bilinear fiber model to the experimental results (adapted from
FitzGibbon and McGarry 2020); (b) calibrated cohesive zone shear interface strength parameters
(adapted from FitzGibbon and McGarry 2020)

here as super-physiological. Our results seem to suggest under such blood pressure
conditions an intimal tear is likely to propagate in a mode II in a healthy artery.

3.2 Examination of a Dissected Artery with a Patent False
Lumen

We next explore the risk of a false lumen propagating further in an artery with a
pre-existing patent false lumen, as shown in Fig. 14a. Computational fluid dynamics
simulations are implemented to determine the loading on the vessel wall and on the
intimal flap. A parabolic flow profile is prescribed at the inlet boundary (Fig. 14a).
A zero-velocity (no-slip) condition is imposed at the wall for the fluid. Physiologi-
cally accurate transient flow profiles are implemented. A pressure boundary condi-
tion is imposed at the outlet boundary. Using a one-way fluid-structure-interaction
approach, computed pressure distributions are applied to a solid finite element,
including CZM interfaces, to simulate propagation of the false lumen (Fig. 14c).
Velocity streamlines in the aorta are shown in Fig. 14b. Maximum velocity occurs
above the intraluminal septum and minimum velocities occur in the false lumen.
Figure14c, d explores crack arrest due to blunting of the crack tip. While recent
studies demonstrate that initiation of AD is a pure mode II process (Haslach et al.
2018; Gültekin et al. 2019; FitzGibbon and McGarry 2020), the simulations pre-
sented in Fig. 14c suggests that the eventual formation of a false lumen, following
mode II initiation, will result in mixed-mode conditions at the crack-tip. A form of
toughening of the crack tip is also evident in Fig. 14d as the mode angle at the crack
tip increases (tending towards mode II propagation) with increasing pressure. As
the mode II strength has been shown to be eight times higher than mode I strength
(FitzGibbon andMcGarry 2020), such an increase in the mode angle with increasing
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pressure will be accompanied by a significant increase fracture resistance. Such a
toughening mechanism is incorporated into our model through our calibrated mixed-
mode CZM formulation.

4 Conclusion

In the present chapter we analyze two new exponentially softening path-dependent
cohesive zone formulations. An extensive exploration of the mixed-mode coupling
in proportional and non-proportional loading paths is presented. Physically realistic
mixed-mode behavior of a CZM is of fundamental importance for applications in
materials with anisotropic fracture properties. Our recent experimental work demon-
strates that the mode II fracture strength of the aorta in the circumferential-axial
plane is eight times higher than the mode I strength in the same plane (FitzGibbon
and McGarry 2020). Recent studies have presented evidence that initiation of aortic
dissection is predominantly a mode II fracture process (Haslach et al. 2018; Gül-
tekin et al. 2019) while the further propagation of aortic dissection is suspected to
occur in a mixed-mode, as demonstrated in the finite element cohesive zone analysis
presented in Fig. 14c, d.

Accurate cohesive zone simulation of these complex fractures cannot be achieved
without robust analysis of the mixed-mode behavior of the cohesive zone under a
range of boundary conditions andmaterial properties. This is clearly demonstrated in
the simulation presented in Fig. 14c, d. Accurate simulation of the crack tip blunting
in the false lumen, as presented in Fig. 14c, d, requires the use of a cohesive zone
formulation with robust mixed-mode behavior (CZM1). As previously demonstrated
by McGarry et al. (2014), the use of potential-based cohesive zone formulations in
mixed-mode applications results in problematic repulsive normal tractions. This is
clearly demonstrated in Fig. 13 where repulsive tractions are calculated for three dif-
ferent potential-based models subject to a proportional separation at a mode angle of
ϕ = π/4 (Xu andNeedleman 1993; Park et al. 2009). The newly proposed PF-CZM1
is subject to the same limitations as previously proposed potential-based CZMs
despite its robust mixed-mode basis. Furthermore, the use of potential-based mod-
els may result in the calculation of residual tractions after separation has occurred.
The analysis presented in the present chapter clearly demonstrates the importance
of using a non-potential-based cohesive zone formulation with robust mixed-mode
behavior in the simulation of aortic dissection.
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