
Python Implementation for Brain-Computer
Interface Research by Acquiring and Processing

the NeuroSky EEG Data for Classifying
Multiple Voluntary Eye-Blinks

Oana-Andreea Rus,anu(B)

Product Design, Mechatronics and Environment Department, Transilvania
University of Brasov, Bras,ov, Romania

oana.rusanu@unitbv.ro

Abstract. The Brain-Computer Interface (BCI) is a challenging research field
reporting outstanding breakthroughs in biomedical engineering. This paper pro-
poses a new BCI research-related solution by implementing customized Python
scripts based on an artificial neural networks model to classify the raw electroen-
cephalographic (EEG) signal detected by the embedded biosensor of NeuroSky
portable headset. Achieving this aim is possible by applying features extraction
techniques on the raw EEG data to generate the training dataset composed of
3000 recordings corresponding to executing simple, double, or triple voluntary
eye-blinks. Detection of their specific EEG patterns resulted in calculating the
following seven statistical features: mean, median, standard deviation, route mean
square, the sum of values, Kurtosis Coefficient, and skewness. The voluntary eye-
blinking proved to be the most precise and easily detected control signal in a BCI
application to assist people with neuromotor disabilities. The proposed Python
implementation of BCI software is practical, especially for the initial stages of
research, by leveraging simple to use, inexpensive, and efficient instruments.

Keywords: BCI · Eye-blink · EEG · Python · ANN

1 Introduction

The Brain-Computer Interface (BCI) research field has considerably evolved during the
last decades by proving efficient means of controlling the assistive devices, communi-
cation, sleep, and stress monitoring, especially for people with neuromotor disabilities.
Their suffering is related to paralysis, spinal cord injuries, cerebral stroke, amyotrophic
lateral sclerosis, or locked-in syndrome. These disorders determined the interruption of
the neuronal pathway connecting the brain motor areas with the peripheral nerves and
muscles. BCI is a promising solution for replacing the natural cerebral path with an
artificial route allowing the translation of the thought into commands transmitted to an
assistive robotic device. This desire is currently unachievable outside an experimental
laboratory due to significantly higher requirements, including the complexity of the real-
time neuronal biopotentials processing, the ability of the neuromotor disabled person to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Tiginyanu et al. (Eds.): ICNBME 2021, IFMBE Proceedings 87, pp. 666–672, 2022.
https://doi.org/10.1007/978-3-030-92328-0_84

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92328-0_84&domain=pdf
https://doi.org/10.1007/978-3-030-92328-0_84


Python Implementation for Brain-Computer Interface Research 667

perform BCI related cognitive tasks (motor imagery, concentration, mental calculus) to
elicit recognizable patterns and the artificial intelligence techniques necessary to convert
the intentions into action.

Therefore, BCI prototypes enabling affordable software and hardware solutions to
improve the research results are still welcome and expected to overcome the existent
issues by providing maximum accuracy, quick response, and rapid information transfer
rate.

According to scientific literature [1, 2], implementing the most straightforward BCI
system involves controlling an external device by detecting the voluntary eye-blinking
across the electroencephalographic (EEG) signal. Moreover, the easiest way to acquire
the raw EEG signal for developing versatile BCI applications is to use a portable headset
such as NeuroSky Mindwave Mobile. The majority of the previous scientific articles [3]
focused on calling on-the-shelf NeuroSky libraries providing convenient programming
methods for achieving simple BCI applications with the expense of technical limitations
for accomplishing advanced BCI research instruments. Therefore, several thresholding-
based algorithms determined the measurement of the attention and meditation level and
the eye-blink strength used as commands in a BCI for controlling: a wheelchair, a mobile
robot, a robotic arm, a robotic hand, homeappliances, andvirtual simulations. Fewpapers
[4] explored the NeuroSky EEG data acquisition and processing by applying different
methods based on statistics, wavelet transform, supported vector machines, or artificial
neural networks. In addition, the investigation of the mentioned methods targeted a
specific BCI application not extendable to a general framework for conducting BCI
research by enabling the fundamental phases: EEG data acquisition, processing, and
classification.

Thus, it results in the main contribution of this paper by providing simple BCI
research automated solutions implemented in Python open-source programming lan-
guage to enable the NeuroSky EEG data processing, features extraction, training dataset
generation, and artificial neural networks (ANN) based classification. Performing these
stages resulted in performance assessment of the ANN accuracy for simple, double, and
triple voluntary eye-blinks detection. Also, it resulted in an EEG dataset comprising
3000 sequences distributed as follows: 1000 sequences – one eye-blink detected, 1000
sequences – two eye-blinks detected, and 1000 sequences – three eye-blinks detected.
Each sequence corresponds to the acquisition of 1024 raw EEG samples and the fol-
lowing seven extracted statistical features: mean, median, standard deviation, the sum
of values, skewness, Kurtosis Coefficient, and route mean square (RMS). Unfortunately,
the scientific literature reported very fewEEGdatasets [4] to test the algorithms of volun-
tary eye-blinking detection. The novelty of this paper resulted from customized Python
scripts for enabling the acquisition, analysis, and classification of the raw EEG signal
detected by the NeuroSky embedded biosensor. Further, the structure of the paper is:
Section II presents an overview of the software and hardware systems used to implement
a newBCI research solution, Section III explains the working principle and code instruc-
tions underlying the proposed instrument, Section IV discusses the achieved results and
Section V summaries and concludes the paper.



668 O.-A. Rus,anu

2 Hardware and Software

2.1 Hardware System – NeuroSky Mindwave Mobile Headset

The BCI application developed in the current research involved raw EEG signal acqui-
sition from the biosensor of the NeuroSky portable headset. The NeuroSky headset has
an embedded sensor located to the prefrontal lobe, on the forehead, at the FP1 position
according to the International 10–20 EEG System. Embedding the advanced ThinkGear
based, the NeuroSky facilitates the initial stages of BCI research based on EEG data
acquisition with a sampling rate of 512. Among the advantages provided by NeuroSky
are the simple set-up, the ergonomic design, convenient working principle, and espe-
cially, free of charge raw EEG signal acquisition and recording to.csv files for further
analysis.

2.2 Software System – Python Implementation Based on Raw EEG Data
Acquisition, Processing, and ANN Classification

The current research contributes to the BCI field by implementing customized Python
scripts to achieve the following phases (Fig. 1): cerebral biopotentials acquisition, raw
EEG graphical displaying, statistical features extraction, EEG dataset generation, and
classification of voluntary eye-blinks. There were necessary specific functions included
by the following Python libraries: Numpy – to store data in arrays, Matplotlib – to create
visualizations, SciPy – to calculate the statistical features, andWinsound – to get a sound.

3 Python-Based Customized Scripts for Enabling Multiple
Voluntary Eye-Blinks Classification

3.1 Raw EEG Signal Acquisition and EEG Training Dataset Generation

NeuroPy library [5] was updated to run in Python 3. The rawValue variable stored
each value of the raw EEG signal detected by the embedded NeuroSky biosensor. As a
drawback noticed to the NeuroPy library, it is not easy to get precision regarding waiting
time set to 2 ms between the raw EEG data samples. A healthy subject (girl, 29 years
old) participated in the experiment involving 75 sessions of performing one, two, or
three voluntary eye-blinks. Each session included 40 sequences representing 40 simple,
double or triple voluntary eye-blinks. A recurrent time interval set to 2 s, introduced by
a beep sound, determined a sequence of 1024 raw EEG samples.

It resulted in a.csv file comprising 40 sequences with 1024 samples, each organized
in 40 rows and 1024 columns representing the raw EEG data. Therefore, the previously
mentioned 75 sessions led to obtaining 75.csv files, including the 40 × 1024 = 40960
raw samples for each class: one-eye blink, two eye-blinks, and three eye-blinks. Thus,
there were 3 × 25 = 75.csv files of raw EEG data and 75 graphical representations of
the numerical content (40960 EEG raw samples).

It followed the extraction of seven statistical features from the raw EEG data con-
taining 1024 samples and the generation of the EEG dataset necessary to classify the
multiple voluntary eye-blinks. The extracted statistical features were: mean, median,



Python Implementation for Brain-Computer Interface Research 669

Fig. 1. Python implementation of the main BCI related research stages

standard deviation, route mean square (RMS), the sum of values, skewness, and Kurto-
sis Coefficient. These seven selected features had to discriminate the executed eye-blinks
initially set by the column representing the desired class: one eye-blink detected, two
eye-blinks observed, and three eye-blinks recognized.

Thus, a single EEG dataset consisted of 8 columns (7 – features and 1 – class) and 40
rows (40 sequences of 2 s each for recording 1024EEG samples). 75.csv files represented
the 75 EEG datasets to classify the multiple voluntary eye-blinks (Fig. 2): 25 – simple
eye-blinks, 25 – double eye-blink, and 25 – triple eye-blink.

Fig. 2. Graphical displaying a sample from each class: simple (one), double (two) and triple
(three) voluntary eye-blinks detected by NeuroSky Sensor

Concatenating all the 75 EEG datasets resulted in a single EEG dataset comprising
75 × 40 = 3000 sequences of eye-blinks. Then, the resulted.csv file consisted of 3000
rows and eight columns necessary to train an artificial neural network to classify the
multiple voluntary eye-blinks.

3.2 Artificial Neural Networks Based Classification of Multiple Voluntary
Eye-Blinks

Another contribution of the current research is implementing a customized Python script
to employ the artificial neural network (Fig. 3) for multiple voluntary eye-blinks classifi-
cation. The following Python libraries included the necessary specific functions: Numpy,



670 O.-A. Rus,anu

Matplotlib, Pandas – to handle data analysis, Keras – to use the Tensorflow deep learning
framework, and Scikit– for enabling Machine learning functions. After importing the
essential libraries, it followed the uploading of the EEG dataset, including all the 3000
sequences and the seven calculated statistical features correlated with executing simple,
double, and triple voluntary eye-blinks. Further, it followed the EEG dataset splitting
into a training subset and a testing subset. Thus, the testing subset constituted 20% of the
entire EEG dataset, resulting in 600 out of the 3000 samples only for testing purposes.

An essential stage consisted in creating the artificial neural network composed of
four layers. The structure of the first and second hidden layers was the following: number
of neurons= 1400, the uniform distribution used to initialize the weights, and activation
function = ReLU. The input layer had seven neurons corresponding to the previously
mentioned seven statistical features. The output layer had three neurons corresponding
to the three classes regarding recognizing simple, double, and triple multiple voluntary
eye-blinks.

Compiling the artificial neural network involved setting the following parameters
optimizer = SGD (Stochastic Gradient Descent), loss (function) = categorical cross-
entropy, and metrics = accuracy. The SGD convex function is used as Optimizer to
determine the suitable set ofweights by identifying a localminimumof the input function.
Thus, it is necessary to set the learning rate to an appropriate value: LR = 0.00001. A
momentum = 0.99 was also set to increase the speed of the optimization process.

The following critical stage consisted in fitting the compiled ANN to the generated
EEG dataset. The ANN was trained on 1920 samples and validated on 480 samples.
A sample is each of the 40 sequences/rows representing the measured values of the
seven statistical features from each of the 75 EEG datasets. As mentioned previously,
20% representing 600 samples of the entire EEG dataset containing 3000 samples were
necessary for testing purposes. It remained 2400 samples aimed for training and valida-
tion purposes. 20% of the 2400 samples or 480 EEG data sequences were necessary for
validation purposes.

Then, considering the hyperparameters batch_size = 2 and epochs = 2000 and the
rest of 1920 rows of training data, therewere 960 batcheswith two samples each and 2000
passes through the whole EEG dataset. Each of the 2000 epochs or training iterations
will involve 960 batches or 960 updates to the ANN-basedmodel. After working through
each batch of 2 samples, the internal ANNmodel parameters are updating. The learning
algorithm works 2000 times through the entire EEG dataset.

Finally, the ANN model made predictions on the testing data composed of 600
samples.Also, there resulted in loss and accuracy specific to the testing process necessary
to evaluate the performance of the ANN model. Also, the confusion matrix showed
detailed results regarding the correctly and incorrectly detected samples from each of
the three output classes: simple, double, and triple voluntary eye-blinks.



Python Implementation for Brain-Computer Interface Research 671

Fig. 3. Python artificial neural network for simple, double and triple voluntary Eye-Blinks
classification

4 Results and Discussions

The proposed artificial neural networks-based architecture aimed for multiple voluntary
eye-blinks classification reported the results in Table 1.

Table 1. Results for training, validating, and testing the Python ANN

EEG Dataset Number of Eye-Blinks
Sequences

Loss (%) Accuracy (%) Correctly Detected
Eye-Blinks Sequences

Training 1920 0.56 100.00 1920

Validation 480 33.27 92.92 446

Testing 600 31.21 92.33 554

A video demonstration of the Python-based implementation for voluntary eye-blinks
classification is available at the YouTube Unlisted Links: https://youtu.be/tvj8UcGbWa8
and https://youtu.be/MeMMj2JNUfk.Although the obtained results reported high values
of accuracy for training, validation, and testing the compiled Python-based ANN, further
experiments are necessary to analyze possible particularities implied by a large number
of individuals taking into account their age, gender, stress level, degree of disability or
the ability to focus on accomplishing the required task – to execute simple, double or
triple eye-blinks. The customized ANN-based architecture aims to classify eye-blinks
characterized by average amplitude. The ANN may need improvements to differentiate
between voluntary eye-blinks of various strengths depending on the effort of the eyeball
muscles.

Otherwise, the presented Python automated scripts aim to offer a general-purpose
BCI research instrument as long as the conducted experiments involve the following
three fundamental stages: raw EEG data acquisition, processing enable by features
extraction, and ANN-based classification. Still, the proposed Python implementation
aims to enable the ThinkGear embedded chip of the most affordable and portable EEG
commercial headset – NeuroSky Mindwave Mobile. In addition, the presented Python

https://youtu.be/tvj8UcGbWa8
https://youtu.be/MeMMj2JNUfk


672 O.-A. Rus,anu

software tool proves its usefulness for any application that involves the assessment of
the seven statistical features: mean, median, standard deviation, route mean square, the
sum of values, Kurtosis Coefficient, and skewness extracted from the raw EEG signal
detected by the biosensor placed on the forehead.

5 Conclusions

This paper presented a Python-based implementation of a simple BCI-related research
instrument necessary to acquire, process, and classify the raw EEG signal detected by
the embedded sensor of the NeuroSky headset. A customized ANN-based architecture
classified the multiple voluntary eye-blinks used as control signals in a straightforward
brain-computer interface application. It resulted in the generation of a training dataset
containing 3000 recordings evenly distributed for detecting simple, double, and triple
voluntary eye-blinks. It also involved extracting the following statistical features from
the raw EEG signal: mean, median, standard deviation, route mean square, the sum of
values, Kurtosis Coefficient, and skewness. The proposed Python application provides
simplicity and efficiency to help researchers explore and experiment with the working
principle underlying the BCI scientific field.

Future research should update the ANN-based framework to classify voluntary eye-
blinks of various strengths: mild, regular, or firm. Also, the Python-based ANN should
differentiate between spontaneous, reflexive, and voluntary eye-blinks. Moreover, the
BCI instrument requires improvements to detect winks precisely. Extracting additional
statistical features will extend the universality of the experiments conducted with the
proposed BCI software solution. The ultimate goal is to achieve a real-time running of
the Python-based voluntary eye-blinks classification.

Conflict of Interest. The authors declare that they have no conflict of interest.

References

1. Rejer, I., Cieszyński, L.: RVEB—an algorithm for recognizing voluntary eye blinks based on
the signal recorded from prefrontal EEG channels. Biomed. Signal Process. Control 59, 101876
(2020). https://doi.org/10.1016/j.bspc.2020.101876, ISSN 1746-8094

2. Sharma, K., Jain, N., Pal, P.K.: Detection of eye closing/opening from EOG and its application
in robotic arm control. Biocybern. Biomed. Eng. 40(1), 173–186 (2020). https://doi.org/10.
1016/j.bbe.2019.10.004, ISSN 0208-5216

3. Prem, S.,Wilson, J., Varghese, S.M., Pradeep,M.: BCI integratedwheelchair controlled via eye
blinks and brain waves. In: Pawar, P.M., Balasubramaniam, R., Ronge, B.P., Salunkhe, S.B.,
Vibhute, A.S., Melinamath, B. (eds.) Techno-Societal 2020, pp. 321–331. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-69921-5_32

4. Lo Giudice, M., et al.: 1D Convolutional Neural Network approach to classify voluntary eye
blinks in EEG signals for BCI applications. In: 2020 International Joint Conference on Neural
Networks (IJCNN), pp. 1–7 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207195

5. Neuropy Library. https://github.com/lihas/NeuroPy.git. Accessed 14 Aug 2021

https://doi.org/10.1016/j.bspc.2020.101876
https://doi.org/10.1016/j.bbe.2019.10.004
https://doi.org/10.1007/978-3-030-69921-5_32
https://doi.org/10.1109/IJCNN48605.2020.9207195
https://github.com/lihas/NeuroPy.git

	Python Implementation for Brain-Computer Interface Research by Acquiring and Processing the NeuroSky EEG Data for Classifying Multiple Voluntary Eye-Blinks
	1 Introduction
	2 Hardware and Software
	2.1 Hardware System – NeuroSky Mindwave Mobile Headset
	2.2 Software System – Python Implementation Based on Raw EEG Data Acquisition, Processing, and ANN Classification

	3 Python-Based Customized Scripts for Enabling Multiple Voluntary Eye-Blinks Classification
	3.1 Raw EEG Signal Acquisition and EEG Training Dataset Generation
	3.2 Artificial Neural Networks Based Classification of Multiple Voluntary Eye-Blinks

	4 Results and Discussions
	5 Conclusions
	References




