
Robot Arm Control Using
Reward-Modulated Hebbian Learning

Koutaro Minato1 and Yuichi Katori1,2(B)

1 Future University Hakodate, 116-2 Kamedanakano-cho,
Hakodate, Hokkaido 041-8655, Japan

katori@fun.ac.jp
2 The Institute of Industrial Science, The University of Tokyo,

4-6-1 Komaba Megro-ku, Tokyo 153-8605, Japan

Abstract. In recent years, soft robots with “softness” have been attract-
ing much attention. Since soft robots have “softness”, they are expected
to be able to perform delicate tasks that only humans can do. On the
other hand, it is challenging to control. Therefore, in this research,
we focused on reservoir computing with a biologically inspired learn-
ing algorithm. Reward-modulated Hebbian learning, one of the reservoir
computing frameworks, is based on Hebbian learning rules and rewards
and allows us to train the network without explicit teacher signals. The
rewards are provided depending on the predicted and actual state of the
environment influenced by the exploratory noise. We demonstrate that
our model successfully controls the robot arm so that the tip position of
the arm draws a given target trajectory.

Keywords: Reward-modulated Hebbian learning · Soft robotics ·
Reservoir computing

1 Introduction

In recent years, new research aimed at “softness” has been appeared in different
science and technology fields. Traditional robotics has pursued the traditional
engineering values of speed, power, precision, and certainty. However, it cannot
make the “soft” motions that living things do. Soft robots are composed of soft
materials, which are inspired by animals (e.g., squid, starfish, worms) that do not
have hard internal skeletons [1]. Soft robots carry many advantages associated
with mechanical softness [2,3]. On the other hand, it is challenging to control
soft robots compared to ordinary robots [4,5]. Also, when a soft robot makes
motion, its body produces diverse and complex dynamics. These are often high-
dimensional, non-linear, and depend on the history of past stimuli.

Reservoir computing(RC) [6] is a kind of recurrent neural network. RC is con-
structed with a randomly connected neural network (dynamical reservoir), and
only readout connections are learned. It is also suitable for handling non-linear
and those containing past information. However, most RC models rely on super-
vised learning rules. In many motor tasks, including generation and planning
c© Springer Nature Switzerland AG 2021
T. Mantoro et al. (Eds.): ICONIP 2021, CCIS 1517, pp. 55–63, 2021.
https://doi.org/10.1007/978-3-030-92310-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92310-5_7&domain=pdf
http://orcid.org/0000-0002-4108-5077
http://orcid.org/0000-0003-2773-0786
https://doi.org/10.1007/978-3-030-92310-5_7

56 K. Minato and Y. Katori

of motion, explicit teacher signal is not available. Reward-modulated Hebbian
learning (RMHL) [7] is one of the frameworks of reservoir computing and is
based on Hebbian learning rules and rewards obtained. This RMHL framework
allows performing learning without using an explicit teacher signal.

In the present study, we addresses to control the complex dynamics of soft
robots by using RMHL. We conduct an experiment using a robot arm of a 2-joint
6-muscle model of the forearm and upper arm, a muscle and skeletal system.

2 Methods

In the present study, we proposed the reservoir computing model for controlling
the robot arm. The model is required to generate an appropriate control signal
that causes tensions on muscles of the robot arm based on the given target time
course of the tip of the arm. In the following subsections, we first explained the
target of the control (robot arm), and then we describe the proposed model,
including the network architecture and the network configuration procedure.

2.1 Robot Arm

The robot arm we use in the present study is a 2-joint, 6-muscle model of the
forearm and upper arm, which is muscles and skeletal system (see Fig. 1)[8,9].
This robot arm was simulated using MuJoCo [10]. In this musculoskeletal system,
muscles act as actuators that generate joint torque. In this model, the shoulder
has a pair of monoarticular muscles and a pair of biarticular muscles for bending
and stretching the shoulder. The elbow also has a pair of monoarticular muscles
and a pair of biarticular muscles. This monoarticular muscle act only on one
joint, and the biarticular muscles act on two joints.

In this robot arm model, each muscle is controlled with a control signal
ranging from 0 to 1. 0 indicates that the muscle tension is 0, and 1 indicates
that the muscle tension is maximum.

In this model, the robot arm is controlled using a feedback controller. The
input signal to the feedback controller is based on the difference between the
target angle of the robot arm joint and the actual angle of the robot arm joint.
The output signal of the feedback controller is a control signal that causes tension
on the muscles and moves the joint of the robot arm.

2.2 Network Architecture

The overall structure of the model used in the present research is shown in Fig. 2.
The network model is composed of the reservoir and the feedback controller. The
training of the reservoir is based on the concept of predictive coding [11], and the
reward modulated Hebbian learning (RMHL). The reservoir generates the time
cause of the target joint angle and predicts the time course of the tip position of
the arm. Training of the connections from the reservoir to the output layer that
generates the target joint angle is achived based on RMHL, while the training

Robot Arm Control Using Reward-Modulated Hebbian Learning 57

Fig. 1. Arm 2-joint 6-muscle model: Gray represents shoulder and elbow joints. Black
represents forearm and upper arm. Red represents muscle. (Color figure online)

of the connection from the reservoir to the prediction layer is achieved by the
FORCE algorithm [12]. The feedback controller generates the control signal for
the muscles on the arm, and the controller is driven based on the differences
between the target angle and the actual joint angles.

The reservoir is consisting of N sparsely and recurrently connected neurons.
The firing rate of the neuron at time t is given by r(t) = tanh[x(t)]. The dynamics
of the internal state x of the network is given by

τ ẋ(t) = −x(t) + W inc(t) + W recr(t) + W eeya(t), (1)

where eya(t) = yt(t) − ya(t), and c(t) is the state of the context layer. This
context information is passed from c(t) to the reservoir. Also, the context infor-
mation is converted by the converter and passed to the target time course yt(t),
which is the tip position. yp(t) is the predicted tip position, and ya(t) is the
actual tip position of the robot arm. τ is the time constant. eya(t) is the dif-
ference between target teacher signal yt(t) and the actual tip position ya(t).
W rec, W in, and W e denote the synaptic weights for recurrent connection with
in the network, connections from context layer to the network, connections from
eya(t) to the reservoir, respectively. These synaptic weights are configured with
the following procedure.

The recurrent connection is configured sparsely and randomly with the fol-
lowing procedure. Firstly, generate a matrix of Nx × Nx with a connection rate
βrec, where Nx is the number of neurons in the reservoir. The elements of this
matrix W rec

0 are randomly set to a non-zero value of –1 or 1. Then, the spectral
radius of this matrix ρ0 is calculated. The synaptic connection of the recurrent
connnection W rec is given as W rec = αrW

rec
0 /ρ0 with the coefficient of synaptic

strength αr. Note that the spectral radius of W rec equals αr.
The connection for the contextual input W in and the error feedback W e

are configured with the following procedure. First, generate a matrix of Nx × 2
and Nx × 2 with a connection rate 0.1. The non-zero elements of these matrices
W in

0 and W e
0 are set to, uniformly distributed random numbers from –1 to 1.

58 K. Minato and Y. Katori

W in is given as W in = αiW
in
0 with the synaptic strength αi. W e is given as

W e = αeW
e
0 with the synaptic strength αe.

Feedback
controller

Exploratory
noise

Robot arm

FORCE

RMHL

Wy

Win

We

Wout

ya

z

a

yt

yp

Reservoir
r(t)

Wrec

c
Context

Converter

Fig. 2. Network architecture

The reservoir generate the target joint angle θt(t) in the output layer z(t),
and the output layer additionary receive the exploratory noise ξ(t):

z(t) = W outr(t) + ξ(t), (2)

where W out is the connections from the reservoir to the output layer z(t). Here,
we use the Ornstein-Uhrenbeck process as the exploratory noise. The Ornstein-
Uhrenbeck process is the stochastic process given by the following stochastic
differential equation

ξ̇(t) = −θξ(t) + σẆ (t), (3)

where W (t) presents the Wiener process, which has Gaussian increments,
namely, the difference of the variable in a small-time step is normally distributed
with a mean 0. Here, the exploratory noise is designed so that its amplitude is
modulated with the eya: when the actual tip position ya(t) approaches the target
tip position yt(t), the noise amplitude is decreased.

2.3 Reward-Modulated Hebbian Learning

The connection from the reservoir to the output layer is trained with reward-
modulated Hebbian learning (RMHL). The reward is a scalar value utilized to

Robot Arm Control Using Reward-Modulated Hebbian Learning 59

modulate the Hebbian learning on the output connection that strengthens the
connection between correlated neurons.

In the present study, the reward is configured based on the comparison between
the prediction and the actual tip position of the robot arm. The reward is provided
when the actual tip position is closer to the target tip position than the predicted
tip position. The reward R(t) is defined with the following equation.

R(t) =

{
−tanh[eya(t) − eyp(t)] ifeya(t) − eyp(t) < 0,

0 ifeya(t) − eyp(t) > 0,
(4)

where eyp(t) = |yt(t) − yp(t)| is the difference between the target tip position
yt(t) and the predicted tip position yp(t). The reward R(t) is provided when
the eya < eyp, and the weight change on the output connection W out(t) is given
by

ΔW out(t) = R(t)ξ(t)r(t). (5)

2.4 FORCE Learning

The connections from the reservoir to the prediction layer is trained with the
first order reduced and controlled error (FORCE) learning, which is one of the
online learning algorithms. According to the FORCE learning algorithm, W y is
updated with the following equations.

W y(t + Δt) = W y(t) + (ya(t) − yp(t))P (t)T r(t)T . (6)

The training progress so that the difference between the predicted tip position
yp(t) and the actual tip position ya(t) is reduced. Where P is the running esti-
mate of the inverse correlation among the output of the neurons and is updated
with the following equation:

P (t + Δt) = P (t) − P (t)r(t)r(t)TP (t)
1 + r(t)TP (t)r(t)

. (7)

The initial value of P is P (0) = I/αf , where the matrix I is the identity matrix
and αf is the reguralization parameter.

2.5 Feedback Controller

The feedback controller generates the control signal for the muscles on the arm,
and the controller is driven based on the differences between the target angle and
the actual joint angles. The feedback controller generates the control signal that
causes tension on the muscles on the arm, based on the difference between the
target joint angle θt(t), which is the output of the reservoir, and the actual joint
angle θa(t). Based on the differences between the target and actual joint angle,
the joint torque F (t) is determined using the proportional integral derivative
(PID) control. The joint torque is given by

F (t) = KP (θt(t) − θa(t)) + KI

∫ t

0

(θt(s) − θa(s))ds + KD(θ̇t(t) − θ̇a(t)) (8)

60 K. Minato and Y. Katori

where, KP , KI , and KD represent the gains of proportional control, integral
control, and differential control, respectively.

The tension (control signal) of the robot arm can be obtained by using the
pseudo-inverse matrix of matrix A and the joint torque [13]. The matrix A is
determined by the moment arm of the robot arm. The moment arm AT of the
robot arm is determined as the follows based on the architecture of the robot
arm shown in Fig. 1.

AT =
(

0.15 −0.15 0 0 0.5 −0.5
0 0 0.1 0.1 0.5 −0.5

)
(9)

The tension of the robot arm is given by

(
T1, T2, T3, T4, T5, T6

)T = −(AT)#F (t) (10)

T1 to T6 are the tensions of muscles in the robot arm, which correspond to the
muscles shown in Fig. 1. (AT)# is the pseudo inverse matrix of AT . Since the
value of the control signal is limited between 0 and 1, the tension is set to 0 if
Ti is less than 0 and is set to 1 if Ti is more than 1.

The control signal from the feedback controller is sending to the robot arm,
and the state of the robot arm is updated. The state of the robot arm can be
obtained as actual joint angle θa(t) and as actual tip position of the arm ya(t).

The parameter values used in the present study are as follows. Nx = 200,
τ = 0.2, βrec = 0.1, αr = 0.8, αi = 0.1, αe = 0.1, αf = 0.1, θ = 10, σ = 0.2,KP =
4.0,KI = 0.7,KD = 0.3.

3 Results

First, we evaluated the model with a task that requires the tip of the robot arm
to draw a circle (see Fig. 3(A)). The experiment was performed in 5000 time-
steps(25 s) per episode. In one episode, the target signal yt goes around the circle
in Fig. 3(A) about 12 times. The experiment is repeated for 30 episodes.

Also, after each episode, the tip of the robot arm returns to the coordinates
(1,0), which is the outstretched position. Learning was done from episodes 1 to
29, and learning was turn off in episode 30.

In the first episode, the robot arm did not draw a circle well, but as the
learning progress, the robot arm could draw the circle (Fig. 3(C)(D)).

Figure 3(E)(F) shows the time course of the joint angles and the tip position.
Upper panels in Fig. 3(E)(F) shows the target and actual joint angles θt and θa

in the first and last episodes, respectively. Light blue and blue curves indicate
the target θt and the actual θa angle of the shoulder joint, respectively. Purple
and red curves indicate the target θt and the actual θa angle of the elbow joint,
respectively. Lower panels in Fig. 3(E)(F) shows the target, actual, and predicted
tip position yt , ya , and yp in the first and last episodes, respectively. Orange,
red, and brown curves indicate yt , ya , and yp of y coordinate respectively. Blue,
green, and purple curves indicate yt , ya , and yp of x coordinate respectively.

Robot Arm Control Using Reward-Modulated Hebbian Learning 61

Y
Y Y

Y

X

X

X

X

Time Steps Time Steps

Time Steps Time Steps

θ a,
 θ t

y a,
y p,

y t
e ya

, e
yp

e ya
-e y

p

θ a,
 θ t

e ya
, e

yp
y a,

y p,
y t

e ya
-e y

p

Fig. 3. (A) The circle that is required to be drawn by the arm tip. (B) The layout
of the robot arm. The shoulder joint is fixed at the coordinates (0,0). (C): The orbits
drawn by actual tip position ya in the first ten episodes. (D): The orbits drawn by ya

in the last episode. (E) and (G): First episode. (F) and (H): Last episode. (Color figure
online)

In the first episode, both joint angles exhibit slight fluctuation, and the tip
position also fluctuates around the center of the target circle (Fig. 3 (E)). In the
last episode, the orbit of the tip position roughly follows the target circle.

Figure 3(G)(H) shows the time courses of the differences in the actual, pre-
dicted, and target tip positions. Upper panels in Fig. 3(G) (H) shows the eya and
eyp in the first and last episodes. Blue curves represents eya and orange curves
represents eyp. Lower panels in Fig. 3(G) (H) shows the eya − eyp in the first
and last episodes. The differences between the actual and the target tip position
ya and between the predicted and the target tip position yp are larger in the
early episodes, but after the learning, the differences are reduced. The difference
eya − eyp is reflected to the reward value; if eya − eyp is negative, the reward is
provided. The fluctuation of the difference eya − eyp is decreased as the learning
progress. This indicates that the number of updates in W out and amplitude of
the exploratory noise become smaller as the learning progresses.

62 K. Minato and Y. Katori

Fig. 4. The dependencies of the mean squared error (MSE) on the parameter values.
(A) The dependencies of the MSEs on the strength of the recurrent connection αr. (B)
The dependencies of the MSEs on time constant of the reservoir τ . Red, orange, and
green curves indicate the MSE of θt and θa , the MSE of yt and ya , and MSE of yt and
yp , respectively. The bold curve indicates the mean value, the thin curve indicates the
minimum and maximum values, and the filled area indicates the standard deviation.
(Color figure online)

Figure 4 shows the dependencies of the mean squeared error (MSE) of θt and
θa , MSE of yt and ya , and MSE of yt and yp on the strength of the recurrent
connection αr and τ . The MSE between θt and θa is minimized around αr = 0.8.
Also, when αr exceeds 1, it starts to exhibit chaotic activity. Furthermore, the
MSEs become small in the vicinity of 0.1 to 0.2 (Fig. 4(B)).

4 Conclusion

In the present study, we addressed controlling a robot arm with 2-joints and 6-
muscles by the reservoir computing that generates the motor command (target
joint angles) and predicts the state of the robot (tip position of the arm). We
show that the model successfully controls the robot arm so that the tip position
of the arm draws a given target trajectory.

This can be achieved by comparing the predicted arm motion with the actual
arm motion. The actual arm motion is reflected in a realization of the exploratory
noise. When the influence of the exploratory noise contributes to getting closer
to the target motion than the predicted value, the learning progresses based on
the realization of exploratory noise.

However, the actual orbit did not exactly match the target orbit, and there
was a deviation. A possible reason for this deviation is that the feedback control
does not perform completely redundant arm control. A possible solution to over-
come the problem is to use an inverse static model and a model using a reverse

Robot Arm Control Using Reward-Modulated Hebbian Learning 63

dynamics model together with PID control [13]. In the future, by incorporat-
ing these approaches into the present model, we expect to establish a further
advantageous model for soft robot control.

Acknowledgements. This paper is based on results obtained from a project,
JPNP16007, commissioned by the New Energy and Industrial Technology Develop-
ment Organization (NEDO) and is supported by JSPS KAKENHI Grant Number
21H05163, 20H04258, 20H00596, and JST CREST(JPMJCR18K2).

References

1. Sheoherd, R.F., et al.: Multigait soft robot. PNAS of USA 108(51), 20400–20403
(2011)

2. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics.
Trends Biotechnol. 31, 287–294 (2013)

3. Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspi-
ration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117
(2008)

4. Li, T., et al.: From the octopus to soft robots control: an octopus inspired behavior
control architecture for soft robots. Vie et Milieu, 61, 211–217 (2012)

5. Nie, X., Song, B., Ge, Y., Chen, W.W., Weerasooriya, T.: Dynamic tensile of soft
materials. Exp. Mach. 49(4), 451–458 (2009)

6. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the “echo state networks” approach. GMD report, German Nation. Res.
Center Inf. Technol. 159, 1–46 (2002)

7. Hoezer, G.M., Legenstein, R., Maass, W.: Emergence of complex computational
structures from chaotic neural networks through reward-modulated hebbian learn-
ing. Cerebr. Cortex 24(3), 677–690 (2012)

8. Izawa, J., Kondo, T., Ito, K.: Biological robot arm motion through reinforcement
learning. Proceed. 2002 IEEE Int. Conf. Robot. Autom., 4, 3398–3403 (2002)

9. Kambara, H., Kim, K., Shin, D., Sato, M., Koike, Y.: Learning and generation of
goal-directed arm reaching from scratch. Neural Netw. 22(4), 348–361 (2009)

10. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
5026–5033 (2012)

11. Katori, Y.: Network model for dynamics of perception with reservoir computing
and predictive coding. In: Delgado-Garćıa, J.M., Pan, X., Sánchez-Campusano,
R., Wang, R. (eds.) Advances in Cognitive Neurodynamics (VI). ACN, pp. 89–95.
Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8854-4 11

12. Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic
neural networks. Neuron, 63(4), 554–557 (2009)

13. Katayama, M., Kawato, M.: Virtual trajectory and stiffness ellipse during multi-
joint arm movement predicted by neural inverse models. Biol. Cybern. 69, 353–362
(1993)

https://doi.org/10.1007/978-981-10-8854-4_11

	Robot Arm Control Using Reward-Modulated Hebbian Learning
	1 Introduction
	2 Methods
	2.1 Robot Arm
	2.2 Network Architecture
	2.3 Reward-Modulated Hebbian Learning
	2.4 FORCE Learning
	2.5 Feedback Controller

	3 Results
	4 Conclusion
	References

