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Abstract. With the explosive growth of videos on the internet, video-
text retrieval is receiving increasing attention. Most of the existing
approaches map videos and texts into a shared latent vector space and
then measure their similarities. However, for video encoding, most meth-
ods ignore the interactions of frames in a video. In addition, many works
obtain features of various aspects but lack a proper module to fuse them.
They use simple concatenation, gate unit, or average pooling, which
possibly can not fully exploit the interactions of different features. To
solve these problems, we propose the Multi-Interaction Model (MIM).
Concretely, we propose a well-designed multi-scale interaction module to
exploit interactions among frames. Besides, a fusion module is designed
to combine representations from different branches by encoding them into
various subspaces and capturing interactions among them. Furthermore,
to learn more discriminative representations, we propose an improved
loss function. And we design a new mining strategy, which selectively
reserves informative pairs. Extensive experiments conducted on MSR-
VTT, TGIF, and VATEX datasets demonstrate the effectiveness of the
proposed video-text retrieval model.

Keywords: Video-text retrieval · Feature interactions · Feature
fusion · Loss function

1 Introduction

Since natural language texts contain richer content than keywords, video
retrieval with natural language queries has received more attention. Usually,
both texts and videos are projected into a latent space via different methods,
which still have some limitations. First, most methods do not exploit sufficient
inter-frame interactions. HGR [1] uses a weighted sum to get video embeddings,
ignoring exploring more inter-frame interactions. Second, many works obtain
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features of various aspects but fuse them with simple methods. CE [5] fuses the
results of multiple experts by average pooling and gate unit. Third, most loss
functions for video retrieval are not flexible enough. The hinge-based triplet rank-
ing loss [7–9] treats all samples equally, ignoring the effect of different samples
on optimization. And most loss functions either focus on the hardest negative
pair or average all negative pairs. [10,12] The former may cause model affected
by outliers, while the latter brings lots of redundancy.

To address the above limitations, we propose the Multi-Interaction Model
(MIM). First, we propose a multi-scale inter-frame interactions module (MSIFI)
to encode videos. It is implemented by a well-designed convolutional module. It
regards each frame feature as a channel and performs 1-D convolution along the
feature axis. Through MSIFI, each element of output embeddings comes from
all the elements of inputs. Second, a fusion method is designed to merge features
from MSIFI, bi-GRU, and global branches sufficiently. It maps the outputs of
MSIFI and bi-GRU into different subspaces. Features from all subspaces will
interact with each other. Then it is combined with global features via an adaptive
gate unit. Third, we propose an improved loss function. It assigns weights to each
pair with non-linear functions, whose value changes with the similarity score.
Pairs whose similarity scores are far from the optimum will get larger weights
and converge faster. Moreover, an adaptive mining strategy is designed to reserve
informative samples with different weights. The main contributions of this work
are as follows:

– To fully exploit interactions among frames in multi scales, we propose a novel
MSIFI module. It utilizes a well-designed convolution operation to learn more
accurate and significant information from multi-scale interactions.

– We design a novel fusion module to merge different features. Through suffi-
cient interactions among features from multiple latent subspaces, we integrate
features of various aspects and get an accurate video representation.

– Considering the influence of different samples on optimization, we propose an
improved loss with a new mining strategy.

– Extensive experiments on several datasets validate the effectiveness of MIM.

2 Related Work

Frame Aggregations for Video-Text Retrieval. HGR [1] decomposes videos
to match with texts in different levels and JSFusion [4] encodes all frames of
videos with texts and directly predicts the video-text similarities. They both
ignore exploring more inter-frame interactions.
Fusion Methods for Video-Text Retrieval. Dual Encoding [9] concatenates
the results of multiple encoders. Howto100m [6] aggregates different features by
max pooling and concatenation. CE [5] aggregates various information with a
gate unit and average pooling.
Loss Functions for Video-Text Retrieval. Most methods [7–9] adopt hinge-
based triplet ranking loss or bi-directional max-margin ranking loss [5,6]. How-
ever, they treat all samples equally. Circle loss [12] assigns weights to different
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pairs with a linear function and Polynomial Loss [10] just considers the hardest
negative sample or averages all negative samples, which are not flexible enough.

Fig. 1. The architecture of MIM. The video encoder has three branches. The Text
encoder contains a multi-dimensional attention module. The MSIFI module captures
multi-scaled interactions among frames. The fusion module merges three branches fea-
tures. N is the number of video frames and the dimension of features is unchanged by
proper padding. Details are in Sect. 3. WS denotes weighted sum and � is Hadamard
product.

3 Methodology

Given a video v and a text t, our model encodes them into fixed d-dimensional
vectors in a common space. We use the features extracted by pre-trained
CNNs [19–21] and BERT [11]. As illustrated in Fig. 1, the video encoder has
three branches, whose outputs are denoted as φ1(v), φ2(v), φ3(v). Then they are
integrated into ζ(v) by the fusion module. Text encoder handles text features
with a multi-dimensional attention mechanism to get the result ψ(t).

3.1 Multi-scale Inter-frame Interactions (MSIFI) Branch

As shown in the upper-left part of Fig. 1, a video is projected into a matrix
I ∈ R

N×d by pre-trained CNNs. I is the input of MSIFI and N is the number of
frames. Specifically, each element of the feature corresponds to a channel of the
last layer in pre-trained CNNs. We treat each frame as one channel of MSIFI and
perform the convolution along the feature axis. This actually combines different
channels of pre-trained CNNs when sliding our convolutional kernels. As the
number of layers increases, the receptive field of each layer is enlarged and it
completely covers I in the last layer. In this way, we achieve multi-scale inter-
frame interactions and merge significant information from all frames. They are
aggregated into φ1(v) ∈ R

d by max pooling, reserving the most informative
features. Each element of φ1(v) is derived from the interactions among all frames.
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3.2 Temporal Branch and Global Branch

Since temporal information plays an important role in video encoding, we employ
the bi-GRU network to capture temporal information. The input is I ∈ R

N×d

and the output is aggregated into φ2(v) ∈ R
d by max pooling.

To obtain a more comprehensive video embedding, we also extract the global
features. As the significance of frames in a video are different, we assign weights
to them based on significance. Each frame vi ∈ R

d is mapped into τi ∈ R by a
FC layer. The global embedding of the video is the weighted sum of all frames:

φ3(v) =
N∑

i=1

γivi, γi =
exp(τi)∑N
i=1 exp(τi)

, (1)

where γi ∈ R is the weight of the i-th frame and φ3(v) represents relatively
primitive video information.

Fig. 2. Visualization of attentions of different videos to K subspaces. Each row denotes
the attention of a subspace, and every K rows correspond to a video. We set K = 3.
Semantic similar videos have similar attentions. The content of the first two and last two
videos are different, so they have different attentions. This indicates different subspaces
represent different aspects of video features.

3.3 Fusion Module

To fuse information from three branches, we conduct another kind of interaction
between φ1(v) and φ2(v) and then merge the result with φ3(v). As illustrated
in the lower-right part of Fig. 1, we first map φ1(v) and φ2(v) into K subspaces
respectively. They are denoted as {h(k)} and {e(k)}, where k represents the
k-th subspace. Different subspaces represent different aspects of video features.
Figure 2 shows the representations of several videos in K subspaces. Semantic
similar videos pay similar attention to certain subspaces, and unrelated videos
have different dependencies on each subspace. After that, the representations
from all subspaces are aggregated by weighted sum to obtain z1 ∈ R

d and
z2 ∈ R

d. They are fused into ξ(v) by Hadamard product. The q-th element of
ξ(v) is as follow, where α(i) ∈ R and β(i) ∈ R are trainable parameters.

z1 =
K∑

i=1

α(i)h(i), z2 =
K∑

j=1

β(j)e(j), ξ(v)q =
K∑

i=1

α(i)h(i)
q

K∑

j=1

β(j)e(j)
q . (2)
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It can be seen that the representation from each subspace interacts with repre-
sentations from all subspaces of another branch. As φ3(v) contains global infor-
mation, an adaptive fusion gate is uesd to mix ξ(v) and φ3(v) into ζ(v) ∈ R

d:

ζ(v) = λ · ξ(v) + (1 − λ) · φ3(v), λ = σ(FC1(ξ(v))), (3)

where λ ∈ Rd denotes the gating weight, FC1 represents a fully connected layer
and σ is the sigmoid function.
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Fig. 3. The weight function curves (left) and their derivative curves (right) of pairs in
loss function. Blue curves are for positive pairs and red curves are for negative pairs.

3.4 Text Encoder with Multi-dimensional Attention

Inspired by MAGP [14], we believe that different dimensions attend to different
properties and we adopt the text encoder of MAGP. The difference is that we add
up the output of every 2 adjacent layers of BERT, and concatenate the results
of 6 groups. Then the multi-dimensional attention module obtains attention
weights for every word and aggregates them into a vector ψ(t) ∈ R

d.

3.5 Video-Text Matching

The cosine similarity of ζ(v) and ψ(t) is their similarity score: si,j =
ζ(v)Ti ψ(t)j

||ζ(v)i||||ψ(t)j || . si,i is a positive pair and si,j is a negative pair, where i �= j.
An adaptive mining strategy is used to reserve informative pairs. We select and
assign weights to informative pairs while discarding other pairs. All negative
samples are sorted based on similarity scores. Harder samples rank higher. Then
we save top U

r samples, assign weights, and aggregate them to get the negative
pairs representative si,neg for the i-th query. r is a hyper-parameter, U is the
size of one batch.

si,neg =

U
r∑

j=1,j �=i

ηjsij , ηj =
exp(sij)

∑U
r

j=1,j �=i exp(sij)
, (4)
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Our loss function is as follow, where μn and μp are the weight functions of
negative and positive pairs. Δ is the margin and [·]+ = max(·, 0), a, b0 and b1

are hyper-parameters.

L= log

[
1+

U∑
i=1

U∑
q=1

exp(µnsi,neg−µp(sq,q−Δ))

U∑
j=1

U∑
k=1

exp(µnsneg,j−µp(sk,k−Δ))

]
,

(5)

μp =
[
asi,i−Δ

]
+

, μn =
[
b
si,neg−b1
0

]

+
, (6)

Table 1. Comparison with state-of-the-arts on MSR-VTT, TGIF and VATEX dataset.

Dataset Methods Text-to-Video Video-to-Text rsum

R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

MSR-VTT VSE++ [8] 8.7 24.3 34.1 28 15.6 36.6 48.6 11 167.9

W2VV++ [7] 11.1 29.6 40.5 18 17.5 40.2 52.5 9 191.4

HGR [1] 11.1 30.5 42.1 16 18.7 44.3 57.6 7 204.4

Dual Encoding [9] 11.6 30.3 41.3 17 22.5 47.1 58.9 7 211.7

MAGP [14] 13.0 34.7 47.0 12 22.2 48.6 59.8 6 225.3

Ours 13.6 36.0 48.3 11 23.8 49.2 62.1 6 233.0

TGIF VSE++ [8] 1.6 5.9 9.8 220 1.4 5.6 9.6 192 33.9

Corr-AE [13] 2.1 7.4 11.9 148 2.2 7.3 11.5 158 42.4

PVSE [2] 3.0 9.7 14.9 109 3.3 9.9 15.6 115 56.4

HGR [1] 5.0 13.6 19.4 110 7.2 18.0 24.8 66 88

MAGP [14] 6.0 15.6 22.1 85 9.1 21.0 28.6 49 102.4

Ours 6.8 17.3 24.2 68 9.3 21.1 29.1 46 107.8

VATEX VSE++ [8] 31.3 65.8 76.4 - 42.9 73.9 83.6 - 373.9

CE [5] 31.1 68.7 80.2 - 41.3 71.0 82.3 - 374.6

HGR [1] 35.2 73.5 83.4 2 45.8 76.9 85.4 2 400.2

MAGP [14] 34.1 74.6 85.1 2 - - - - -

Dual Encoding [9] 36.8 73.6 83.7 - 46.8 75.7 85.1 - 401.7

Ours 36.0 75.4 85.2 2 48.5 74.7 82.7 2 402.5

The curves of weight functions and their derivative functions are shown in Fig.3.
Our loss functions satisfy the following characteristics. When the similarity score
is far from its optimum, this pair is more informative. The value and derivative
value of its weight function will be greater. It means that this pair gets a bigger
weight in the loss function and updates at a faster pace, and vice versa.

4 Experiments

4.1 Experimental Settings

Datasets and Metrics. We conduct experiments on MSR-VTT [15],
VATEX [16], and TGIF [17]. We use the official partition of MSR-VTT. For
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VATEX and TGIF, we follow the experimental setup of HGR [1].The perfor-
mance is evaluated with common retrieval metrics, namely R@K (Recall at rank
K), MedR (Median Rank), MnR (Mean Rank), and rsum (the sum of all recall
scores).

Implementation Details. For MSR-VTT, the visual features are extracted
by ResNet-152 and ResNeXt-101 pre-trained on ImageNet [9]. For TGIF and
VATEX, we use the pre-trained ResNet-152 visual feature and the officially pro-
vided I3D[19] visual feature respectively. The MSIFI module has 5 convolutional
layers with kernel size = 3,5,5,7,9. The number of subspaces K is 3. The dimen-
sion d is 4096. For loss function, we choose hyper-parameters by grid search. We
set r =20, a=0.37, Δ= 0.8, b0 = 37, and b1 = 0.5. The model is trained for 20
epochs using Adam optmizer [18] with batch size of 64 and learning rate is 1e−4.

Table 2. Ablation studies on MSR-VTT dataset.

Methods Text-to-Video Retrieval Video-to-Text Retrieval rsum

R@1 R@5 R@10 MedR MnR R@1 R@5 R@10 MedR MnR

Ours w/o MSIFI 10.7 30.5 42.6 15 91.6 14.7 37.2 49.9 11 63.4 185.6

Ours-transformer 13.5 35.4 48.0 12 84.8 22.8 47.0 59.7 6 44.6 226.4

Ours-gate 13.3 35.7 48.2 11 90.8 21.4 46.2 58.8 7 51.7 223.6

Ours-concat 11.9 32.6 44.9 14 94.9 19.7 43.6 56.8 7 53.3 209.5

Ours-CircleLoss 12.7 33.9 46.2 13 94.2 20.2 45.1 58.0 7 51.3 216.1

Ours-MaxPolyLoss 13.0 34.3 46.6 13 97.3 21.9 47.8 60.7 6 47.9 224.3

Ours-TripleLoss [8] 11.8 32.5 44.7 14 84.0 16.0 39.8 52.6 9 73.9 197.4

Ours-hard 13.4 34.5 46.8 13 92.3 21.7 48.0 61.3 6 45.9 225.7

Ours-avg 9.1 26.2 37.3 20 92.1 12.8 33.5 46.7 12 95.8 165.6

Full model 13.6 36.0 48.3 11 87.4 23.8 49.2 62.1 6 43.8 233.0

4.2 Comparisons with State-of-the-Arts (SOTAs)

As shown in Table 1. On all datasets, MIM has the highest rsum, demonstrating
the advantages of MIM. Specifically, MIM outperforms MAGP. As they have
the same text encoder, it proves that our video encoder is more effective. As the
features of VATEX are not frame-level features, it is hard to implement inter-
frame interactions as sufficiently as on MSR-VTT or TGIF. Our performance
on VATEX degrades slightly. Nevertheless, our rsum is still the highest, proving
the superiority of our fusion module and loss function.

4.3 Ablation Studies

We conduct ablation studies on MRS-VTT and results are displayed in Table 2.

Effectiveness of MSIFI. We remove MSIFI and compare it with Trans-
former [3]. To maintain similar number of parameters, we use 1 layer Trans-
former with 4096 hidden dimensions and 8 attention heads. Results show that
MSIFI is effective.
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Effectiveness of Fusion Module. We replace the fusion module with gate
unit and concatenation respectively. And rsum decreases by 9.4 and 23.5, which
proves that our fusion strategy can integrate different features more effectively.

Effectiveness of Loss Function. We compare our loss function with other loss
functions and replace the mining strategy with hard mining and average opera-
tion. Results confirm the superiority of our loss function and mining strategy.

5 Conclusions

This paper introduces a multi-interaction model for video-text retrieval, with
an MSIFI branch to capture multi-scale interactions among videos frames and a
fusion method to exploit multiple complementary information between different
video features. Moreover, a loss function and a mining strategy are proposed.
Extensive experiments show the effectiveness of this approach.
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