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Abstract. In real-world BCI applications, small-sized and low-impact
stimuli are more appropriate for smart devices. However, diminishing the
stimuli intensity leads to a reduction of P300 amplitude, causing lower
system performance. The purpose of this study is to propose a state-of-
the-art BCI speller where diminutive (less than 1 mm) visual stimuli were
implemented in a smartphone interface. To boost the task-relevant brain
components, participants performed a certain mental task according to
the given cue signs. Additionally, we applied a data-driven optimization
approach to represent the user-specific spatial-temporal features. The
results showed 96.8% of spelling accuracy with a maximum ITR of 31.6
[bits/min], which is comparable or even superior to conventional speller
systems. Our study demonstrated the feasibility to create more reliable
and practical BCI spelling systems in the future.
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1 Introduction

Brain-computer interface (BCI) systems are a non-muscular communication
opportunity for people with severe disabilities. BCI helps patients with neu-
romuscular disorders to project their intention by controlling external devices,
such as personal computers, synthesizer for speech, and prostheses [1]. Due to its
qualities as optimal price, easy utilization, and no risk, electroencephalography
(EEG) is frequently used in researching brain activities [2].

Prior researches have noted that the quality of evoked potentials highly
depend on the target stimulus’s visual or auditory characteristics [3–5]. There-
fore, the main idea of BCI performance improvement was to regularize the shape,
color, or intensity of the stimuli (i.e. transferring familiar face pictures to stimu-
lus [3,4], random stimulus [6], and color distinction [5]). These studies basically
strengthened the existing visual or auditory stimulus by making them either
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more intense or louder, which evoked stronger ERP response, and therefore,
caused improvements in the performance.

Moreover, users cannot sit in front of a monitor for long time while doing
stimuli tasks due to various factors and task complexities. Thus, in real-world
smaller stimuli seem to be more practical. Xu et al. [7] introduced miniature
asymmetric visual evoked potentials (aVEPs) to increase speller performance.
In the subsequent research, placing unobtrusive visual stimuli outside of the
fovea vision, then applying canonical pattern matching method has resulted in
a satisfactory performance for classification of ERP components [8].

The aim of this research is to present the idea of diminishing the external
properties of visual stimuli in BCI speller systems and maintaining the per-
formance achieved in previous studies. We theorize that performing voluntary
mental task could elicit endogenous ERP components, and this complementary
synthesis of oddball signals might improve the performance. The mental task for
the subjects was to imagine the high-pitch sound, that was played before the
experiment, when the target character appeared on screen. Two mental tasks:
passive concentration (PC ) and active concentration (AC ) were designated in
order to devaricate the ERP responses.

The hardware setup of this study is a mobile phone screen - speller layout
with diminutive visual stimuli (defined as a dot-speller), and the subjects were
guided to perform the mental task while the target symbol was presented. The
paradigms in this experiment were all implemented to present a more user-
friendly BCI system which can minimize the unpreventable adverse impact of
external stimuli (e.g., noisy visual/auditory stimuli). As a result, a high level
cognitive neural activity ERP component that can decode the user’s intention,
a late positive potential (LPP), was observed.

2 Materials and Methods

2.1 Participants and Data Acquisition

14 healthy subjects (aged 25–33 years, 4 females, 5 BCI naive users) participated
in this study. All participants are confirmed to have normal or corrected vision
and be free of psychiatric or neurological disorders. During data acquisition, the
subjects were sitting on a chair around 80 cm away from the visual stimulus.

EEG data was recorded via an ActiCap EEG amplifier (Brain Products,
Germany) with 32 channels (Fp1-2, F3-4, Fz, F7-8, FC5-6, FC1-2, T7-8, C3-4,
Cz, CP1-2, CP5-6, TP9-10, P3-4, P7-8, Pz, PO9-10, O1-2, and Oz). Electrodes
with 10–20 system standard were used along with forehead grounded reference
on nose (Ag/AgCl electrodes with a maximum impedance of 10 kΩ). The DC
artifacts were removed from the data by applying a notch filter with 1 KHz and
60 Hz sampling rate. Finally, Butterworth filter (5th order) with parameters of
0.5 Hz and 30 Hz was used to filter out noise.

The subjects were fully informed of the experiment’s objectives. Consent
was taken from all subjects in written form. The experiment was revised and
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Fig. 1. Illustration of speller systems. Dot- and normal-speller systems were imple-
mented in the smartphone layout

has the approval of the Institutional Review Board at Korea University [1040548-
KUIRB-16-159-A-2].

2.2 Dot- and Normal-Speller Experiments

Two groups of mental states were introduced: AC and PC. In the PC condition,
subjects were instructed to focus on the given stimuli without any certain mental
task. In the AC condition users had an instruction to gaze at the target character
and perform a sound imagery task, which was remembered (8 KHz frequency for
2 min) before the experiment. Basically, we validated the spelling performance
of the different mental tasks within both dot- and normal-speller layouts.

A normal-speller [9] and a dot-speller were implemented in the smartphone
environment. Both of the interface layouts were designed with 36 target visual
stimuli (‘A’–‘Z’, ‘1’–‘9’, ‘ ’). Individual stimuli had equal positions on the screen
by 6 rows and 6 columns. The stimuli were grey colored, and the background
was black. The individual letters in the normal-speller were repetitively flashed.
In the dot-speller tiny dots (less than 1 mm) were visually positioned on the top
of individual letters, and these dot-symbols were flashed instead of the letter
itself (see Fig. 1-(d)). Target and non-target trials ratio was 2:10. Note that
our experimental approach (e.g., protocol, validation) to the speller experiments
was designed based on well-established methods in related studies [3,4,10,11].
A sequence of 12 flashes (i.e. trials) was counted as a single iteration of flashed
letters twice within rows and columns. There were overall 10 sequences with
around 70 ms stimuli flash, and 150 ms ISI. The newly developed speller layout
was presented in a smartphone (Galaxy 9, Samsung) environment with a 1440p
OLED/5.8-inch panel using the screen capturing application.

The experimental procedures for spellers were identical. The training phase
was conducted offline, and patients were instructed to spell the following phrase,
‘BRAIN COMPUTER INTERFACE SYS’ (28 characters including spaces ‘ ’)
according to the task. Therefore, 3360 trials (28 characters × 10 sequences ×
12 flashes) were collected in each condition. Two classifiers were then con-
structed based on the training dataset: PC vs. NT and AC vs. NT. In the test
phase, subjects had an instruction to spell ‘U3RQJSMAUWES2QEF KOREA
UNIVERSITY’ (32 characters) according to the given task. After presenting all
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the letters (i.e., the end of 10 sequences) in every attempt, online feedback was
available for users (on top-left corner classifier showed the found target character).
A total of 3840 trials (32 characters × 10 sequences × 12 flashes) were therefore
collected in both conditions, and these test datasets were used to evaluate speller
performance.

3 Data Analysis and Performance Evaluations

EEG data were first down-sampled 100 Hz, and then epochs were acquired by
extracting individual trials in the interval of [−100 and 1000 ms] referencing
the stimulus onset, after which baseline-correction was performed: subtraction
of mean amplitudes in [−100 and 0] ms pre-stimulus time interval. Afterwards,
ERP responses for NT, PC and AC were investigated in the individual setups
(i.e., normal-speller, and dot-speller). In each session, all trials in the training
and test phases were concatenated. The Grand Averaged ERP patterns were
then evaluated across all subjects. Decoding accuracy and information transfer
rates (ITRs) were calculated along with the individual sequences to evaluate the
spelling performances [12]. Note that the training data were used to construct
the classifier parameters, and the decoding accuracy was evaluated in the test
dataset.

In the training phase, k intervals with a step length of 20 ms and an inter-
val length of 100 ms were created. The mean amplitude features [1] in k time
intervals were calculated from the ERP trials across all channels. The signed
r-squared value [13] was applied to statistically investigate the differences in
temporal ERP responses across all channels. A regularized linear discriminant
analysis (RLDA) [14] classifier was generated from the selected feature set.

Commonly, for all experiments certain target stimuli were presented 10 times
(i.e. 10 sequences), and decoding accuracy was calculated for individual sequence
(e.g. the decoding accuracy of last sequence was computed by the taking the
average of accumulated epochs of all 10 sequences). The speller layout had 36
classes (the chance level at 2.77%), and the classifier output f(xi) was calculated
from all the individual letters (i = 1, ..., 36). The estimated letter i, which has
the highest classification score, was chosen as the desired target symbol. These
decision functions were used to provide real-time feedback for the test phase in
all individual experiments.

4 Results

4.1 ERP Responses

Typical P300 components [15] were observed in both the normal- and dot-speller
experiments as these systems are designed within the oddball paradigm. Mean
values for the peak amplitudes in the interval of 300–400 ms (i.e., P300) at
the Cz electrode were 1.657 (±1.125)uV, 0.902 (±1.859)uV, 1.837 (±1.122)uV,
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Fig. 2. Average ERP responses at electrode Cz. The scalp plots demonstrate
the distribution of signal response for the three different conditions, i.e., NT, PC, and
AC trials

and 1.394 (±2.639)uV for normal-passive, normal-active, dot-passive, and dot-
active, respectively. The peak amplitude indicates that P300 components were
more strongly evoked during passive concentration compared to active task.

Additionally, LPP was observed in the interval of 700–800 ms, and
peak amplitudes mean values at the Cz electrode were 0.463 (±1.210) uV,
1.196 (±0.989) uV, 0.476 (±0.996) uV, and 1.244 (±1.105) uV for normal-
passive, normal-active, dot-passive, and dot-active, respectively. Contrary to the
P300 components, the LPPs were evoked by the active task in both speller sys-
tems (see Fig. 2).

4.2 Decoding Accuracy of Normal- and Dot-Speller

Figure 3 indicates the decoding accuracy for target and non-target discrimination
in four conditions. Decoding accuracies were calculated from 1 to 10 sequences
(x-axis) for individual users as well as the average speller performances. Results
demonstrate that active tasks in both speller systems significantly outperformed
passive tasks. Precisely, the average accuracies were 53.5%, 83.0%, 62.9%, and
88.8% after sequence four, and 76.3%, 94.1%, 78.1% and 96.8% after the 9th
sequence for the normal-passive, normal-active, dot-passive, and dot-active con-
ditions, respectively.

Paired t-tests indicate that active tasks (p > 0.05) have similar pattern with
the passive tasks (p > 0.05) in both speller systems. The active tasks demonstrate
higher performance than the passive task in sequences 2–6 and 2–8 for normal-
speller and dot-speller respectively. The maximum ITRs were 13.5, 28.6, 18.3,
and 31.6 [bits/min] for the normal-passive, normal-active, dot-passive, and dot-
active conditions, respectively.
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Fig. 3. Decoding accuracy for target and non-target discrimination in the
four conditions. The figure indicates the decoding accuracy plots for 14 subjects and
the averaged decoding accuracy across all subjects. In the last plot, ITR values for each
of the sequences for the four conditions are presented. For each of the subjects, active
task experiments produced much higher decoding accuracy than the passive tasks.

5 Discussion

This study aimed to investigate the practical perspective of real-world BCI appli-
cations as we studied the performance of a speller system, the application of
which combines pixel-level visual stimuli and sound imagery stimuli (dot-speller).
The proposed speller systems still rely upon their performance in an oddball
paradigm, but with a focus on less obtrusive visual interface. To investigate the
efficacy of small visual stimulation, we investigated the differences between a typ-
ical speller where the letters themselves were flashed and our novel dot-speller
where 0.1 mm dots were flashed instead of the letters on a smartphone. Addi-
tionally, we examined the utility of active sound imagery tasks within this setup
compared to passive gazing. Our results point to some important implications
for future practical BCI interfaces.

Concerning the issue of intentional command, there were two significant inter-
vals for discriminating AC and PC at 300–400 ms (P300) and 700–800 ms (LPP)
intervals (see Fig. 2). Interestingly, the PC task showed a stronger P300 com-
ponent compared to the AC, while the opposite result was found in the LPP.
We propose that the LPP stems from the user’s active mental task and could
be a powerful feature compared to P300 component. While P300 response is
the exogenous reaction to the oddball stimulus [9], passive attention can lead to
false commands, whereas the active mental would be far more reliable in terms
of intention.
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Regarding the intention issue, Fig. 3 indicates that the active task signifi-
cantly outperformed the passive attention task. The average spelling accuracies
for the passive task were 76.3% and 78.1% in the normal- and dot-layout systems,
respectively. This accuracy is lower than in previous studies where results have
shown more than 90% accuracy [3,4,16,17]. This reduced performance is mainly
due to our speller system being implemented on a smartphone interface. The
indicative stimulus sizes were less than 0.8 cm for the normal-speller letters and
only 0.1 mm for the dot-speller layout. As previously was found, smaller-sized
and closer-positioned letters can reduce ERP responses, which in turn results in
a decreased system performance [18]. Regardless of this shortcoming, the spelling
accuracies for the active tasks were 94.1% and 96.8%. This result is comparable
to or even outperforms many advanced spelling systems [4,5,16,17,19].

6 Conclusion

In this article, we proposed and tested a novel concept of lowering the impact of
external stimuli (visual) while maintaining high classification accuracy by gen-
erating endogenous ERP components through a mental task (sound imagery)
the user executes. The experiment was run and compared between four possible
combinations of stimuli, which allowed us to study the impact of both external
(normal- and dot-speller) and mental (passively attending and active concen-
trating) stimuli. As a result, executing a mental task improved the performance
significantly, and the dot-speller showed higher accuracy than the traditional
speller. The experiments were taken by healthy (normal or corrected vision)
individuals, so further study should be conducted to find out the proposed fea-
ture’s applicability for users with eye impairments. The feature proposed in this
article demonstrates superior potential to create more reliable, user-friendly BCI
spelling systems in the future.
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