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Abstract. The quality of multispeaker text-to-speech (TTS) is com-
posed of speech naturalness and speaker similarity. The current multi-
speaker TTS based on speaker embeddings extracted by speaker veri-
fication (SV) or speaker recognition (SR) models has made significant
progress in speaker similarity of synthesized speech. SV/SR tasks build
the speaker space based on the differences between speakers in the train-
ing set and thus extract speaker embeddings that can improve speaker
similarity; however, they deteriorate the naturalness of synthetic speech
since such embeddings lost speech dynamics to some extent. Unlike
SV/SR-based systems, the automatic speech recognition (ASR) encoder
outputs contain relatively complete speech information, such as speaker
information, timbre, and prosody. Therefore, we propose an ASR-based
synthesis framework to extract speech embeddings using an ASR encoder
to improve multispeaker TTS quality, especially for speech naturalness.
To enable the ASR system to learn the speaker characteristics bet-
ter, we explicitly feed the speaker-id to the training label. The exper-
imental results show that the speech embeddings extracted by the pro-
posed method have good speaker characteristics and beneficial acoustic
information for speech naturalness. The proposed method significantly
improves the naturalness and similarity of multispeaker TTS.

Keywords: Speech synthesis · End-to-end model · Speech
embedding · Speech recognition

1 Introduction

In recent years, end-to-end speech synthesis [1–3] has achieved significant
progress. An increasing number of researchers have started to explore how to
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synthesize high-quality speech using a small amount of target speakers’ speech,
just minutes or even seconds. The ultimate goal of multispeaker text-to-speech
(TTS) tasks is to solve the above problem.

The most straightforward approach for multispeaker TTS is to fine-tune the
pretrained model directly using target speakers’ data [4,5], but it is limited
by the size of the target speakers’ data. Another practical approach is to use
speaker embedding. Previous studies have trained speaker embedding networks
jointly with the end-to-end TTS model [4,6]. This means that speaker embedding
networks and the TTS model are trained on the same datasets. However, speaker
embedding networks and the TTS model have different requirements for datasets:
the former requires a vast number of speakers in the training data, whereas
the latter requires high-quality training data for each speaker. Therefore, some
researchers have proposed training the speaker embedding networks separately
[7,8], and then, they can be trained on more data regardless of speech quality.
Speaker verification or speaker recognition (SV/SR) systems are currently widely
used to extract the speaker embedding for multispeaker TTS [7–9]. [8] extracted
the d-vector from the SV system as the speaker embedding, and the model
can synthesize unseen target speakers’ speech with only seconds of reference
audio. [7] investigated two state-of-the-art speaker embeddings (x-vector and
learnable dictionary encoding) to obtain high-quality synthesized speech. [9] used
the traditional SR network as the speaker encoder to extract the embedding for
cross-lingual multispeaker TTS.

Although the current multispeaker TTS [7–9] mentioned above has made
remarkable progress, it still has substantial room for improvement. First, the
objective of SV/SR tasks is to discriminate the speakers. The speaker embed-
dings extracted by the SV/SR model can improve the speaker similarity in gen-
eral but ignore the dynamic properties of speech. The lack of the dynamic infor-
mation related with the speaker might damage the quality of multispeaker TTS.
Second, the speaker embedding extraction methods are borrowed from SV/SR
tasks, making the development of multispeaker TTS depend on SV/SR tasks.
More novel and practical approaches should be explored.

Unlike the above drawbacks of using an SV/SR system, the speech represen-
tations extracted from automatic speech recognition (ASR) include relatively
more complete speech information. In this study, (1) we propose novel speaker
embeddings extracted from a transformer-based ASR system to improve the
multispeaker TTS quality instead of using an SV/SR system. (2) This ASR
system is specially trained since the ASR task eliminated the speaker’s char-
acteristics in the network. To compensate for the speaker information loss, we
explicitly added the speaker-id to the label in training so that the system would
preserve the speaker’s characteristics. Experiments show the proposed method
can effectively improve the naturalness of synthesized speech without any loss
of similarity compared with the conventional SV-based method.



112 D. Liu et al.

Fig. 1. Framework of our proposed model.

2 Exploring Effective Speech Representation via ASR
for High-Quality End-to-End Multispeaker TTS

In this paper, we use ASR’s encoder module to extract speech embeddings for
multispeaker TTS. This approach avoids the problem encountered with speaker
embeddings extracted by the SV/SR-based method that can only improve the
speaker similarity but lack a positive influence on speech naturalness. Li et al.
[10] used the TTS model to show that speaker information is relatively complete
before the ASR decoder, but it decreases linearly as the layers of the encoder
become deeper. This discovery indicates that although the ASR task eliminated
the speaker characteristics, the ASR system still preserves them. In this paper,
we explicitly feed the speaker-id to the label during transformer-based ASR
model training so that we can more effectively preserve the speaker characteris-
tics [11].

Although there have been existing works that integrate ASR and TTS mod-
els, our proposed method lies in none of these following categories. Recent studies
have shown that jointly training ASR and TTS using cycle-consistency training
[12] or autoencoders [13] can substantially improve ASR systems. [14] proposed
a machine speech chain with semisupervised learning and improved ASR-TTS
performance by training each other using only unpaired data. Tjandra et al.[15]
used a SR model to let TTS synthesize unseen speakers’ speech and further
improve ASR.

The framework of the proposed method is shown in Fig. 1. The proposed
system comprises two components: the transformer-based ASR model and the
multispeaker TTS system based on Tacotron2 and the WaveRNN vocoder.
We first train the Transformer-based ASR model, and then use it to extract
speech embedding for multispeaker TTS. As described in Fig. 1, we extract
512-dimensional speech embeddings from the encoder of the transformer-based
ASR model and concatenate these speech embedding to the outputs of the TTS
encoder (512-dim); then, the augmented results (1024-dim) are input into the
TTS attention module. The audio samples are available online1.
1 https://daveliuabc.github.io/multispeaker-demo/.

https://daveliuabc.github.io/multispeaker-demo/
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2.1 Transformer-Based End-to-End ASR Systems

We used the implementation of the transformer-based neural machine translation
(NMT-Transformer) [16] in tensor2tensor2 for all our experiments. The feature
settings are the same as in our previous work [11].

We used 69 English phones3 as the modeling unit. An external decoding
process with lexicon and language models from LibriSpeech transcriptions is
used to generate word-level recognition results. The speaker-id was explicitly
added as the label during training [11,16]. We feed speaker-ids as the ground
truth in training, and the combinations of speaker attributes (e.g., <SPK>) are
inserted at the beginning of the label of the training utterances. The training
labels are organized as “<SPK-1001> labels </S>”. The network is trained to
output them at the beginning of decoding automatically, so we do not have to
prepare classifiers for these attributes.

2.2 Multispeaker TTS Systems

We based the end-to-end multispeaker TTS model architecture on Tacotron2
[3]4. In multispeaker TTS, the input text sequences are converted to fixed-
dimensional character embeddings, and then, the character embeddings pass
through convolutional neural network (CNN) layers and the BLSTM layer
to generate fixed-dimensional encoder outputs. We concatenate the embed-
dings extracted from the trained transformer-based ASR model with the fixed-
dimensional output of the multispeaker TTS encoder and then input it to the
location-sensitive attention module of the multispeaker TTS. The multispeaker
TTS decoder can predict an 80-dimensional Mel-spectrogram. We used Wav-
eRNN [17]5 as the multispeaker TTS vocoder, which converts the synthesized
80-dimensional Mel-spectrogram into time-domain waveforms.

3 Experimental Setup

3.1 Data Description

We trained the ASR model and the synthesizer of multispeaker TTS using 100 h
of LibriSpeech [18] data (train-clean-100) and trained the vocoder using VCTK
[19] datasets. All of them were trained separately. The LibriSpeech data (test-
clean) were used to test the ASR model and multispeaker TTS.

2 https://github.com/tensorflow/tensor2tensor.
3 We train the phone-level ASR system to extract the phonetic posteriorgram (PPG)

feature for TTS in the future.
4 https://github.com/CorentinJ/Real-Time-Voice-Cloning.
5 https://github.com/mkotha/WaveRNN.

https://github.com/tensorflow/tensor2tensor
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://github.com/mkotha/WaveRNN
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3.2 ASR Models

Two ASR models required for embedding extraction were trained on the same
LibriSpeech train-clean-100 but with different multitask training methods fol-
lowing [11,16]. These models and their performance on test-clean are as follows:

1. ASRori: trained using the original label. Rescored with an external trigram
language model from all LibriSpeech transcripts, the WER% was approxi-
mately 9.0% after language model rescoring.

2. ASRspk: trained using multitask training with the speaker-id and label. The
WER% was approximately 9.0% after language model rescoring.

We randomly selected seven speakers from train-clean-100 and test-clean and
randomly selected 30 voices for each speaker. We used ASRori and ASRspk mod-
els to extract speech embeddings and used uniform manifold approximation and
projection (UMAP) to visualize the extracted speech embeddings. The visual-
ization results are shown in Fig. 2. Through visualization, it can be found that
the proposed ASRspk model can extract effective speaker information not only
for seen speakers (train-clean-100) but also for the unseen speakers (test-clean).
There were only 251 speakers in the training set (train-clean-100), so the speaker
information contained in the unseen speaker’s speech embeddings extracted using
the ASRspk model was encouraging.

Fig. 2. Different E2E ASR models’ speech embedding distributions by UMAP on
selected data (seen from the training set, unseen from the testing set).

3.3 Multispeaker TTS System

We trained the synthesizer and vocoder separately, and used the same synthesizer
and vocoder in all the experiments. We trained the synthesizer based on the
original LibriSpeech train-clean-100 datasets and embeddings from the above
two models (ASRori and ASRspk).

We trained the vocoder based on VCTK datasets. We refer to the TTS
systems according to the different ASR embedding sources: ASRori-TTS and
ASRspk-TTS. Simultaneously, we trained the synthesis model in [8](See Foot-
note 4) on the original LibriSpeech train-clean-100 datasets as a baseline that
was referred to Baseline(replica [8]). The speaker encoder of the model maps
a sequence of Mel-spectrograms to a d-vector and uses a generalized end-to-end
SV loss [20,21].
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3.4 Evaluation Metrics

The evaluations for the multispeaker TTS task comprise subjective and objec-
tive evaluations. The subjective evaluation metrics use the mean opinion score
(MOS) for naturalness and the differential MOS (DMOS) [22] score for similar-
ity. As metrics for the objective evaluation, acc% is used for SV, which is the
ratio of the number of testing pairs identified as the same speaker over the total
number of testing pairs, and the word recognition error rate (WER%) for the
ASR task. All experiments were conducted on public datasets.

Subjective Evaluation. The same 25 listeners provided the MOS and DMOS
scores. The listeners come from a professional team, and all of them have been
learning English for more than ten years, while nineteen of them have majored
in English. They used headphones for listening tests. For the naturalness eval-
uation, all listeners completed 56 audio tasks. Additionally, for the similarity
evaluation, all listeners completed 100 pairs of audio tasks. The definitions of
MOS and DMOS are as follows:

1. The MOS evaluates the naturalness of synthesized speech and reference audio
from the target speakers with rating scores from 1 to 5, where 1 is the poorest
result to understand, and 5 is the best result, with 0.5-point increments for
each level.

2. The DMOS is used to evaluate the similarity between synthesized audio and
reference audio subjectively: 1 (from a different speaker, sure), 2 (from a
different speaker, not sure), 3 (from the same speaker, not sure), and 4 (from
the same speaker, sure).

Objective Evaluation. The value of acc% from the ResCNN-based SV system
[23], which was trained on VoxCeleb2 datasets, was used to evaluate similarity as
the objective evaluation of the multispeaker TTS task. Every model provided 90
pairs of audio for testing seen speakers and 200 pairs for testing unseen speakers.

4 Experimental Results

4.1 Subjective Evaluation

The experimental results are listed in Table 1. The embedding extracted by ASR
contained relatively complete speech information, such as speaker information
and timbre. Therefore, compared with the baseline (replica [8]), all the proposed
systems (ASRori-TTS and ASRspk-TTS) achieved significant improvement in
naturalness, whereas the similarity did not decrease (at least for ASRori-TTS).
In Table 1, the randomly selected reference audio sometimes contains plenty of
prosody and emotion, leading to a slightly higher MOS score for the unseen
speaker than for the seen speaker. The work in [8] obtained similar experimental
results on the same dataset. The naturalness’ improvement of synthesized speech
leads to a DMOS score of unseen speakers that is slightly higher than that of seen
speakers. Table 1 shows that ASRori-TTS has slightly better speaker similarity
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Table 1. Naturalness and similarity for multispeaker TTS. (95% confidence interval)

Naturalness (MOS) Similarity (DMOS)

Seen Unseen Seen Unseen

Ground truth 4.53 ± 0.26 4.51 ± 0.23 3.38 ± 0.29 3.58 ± 0.84

Baseline (replica [8]) 2.60 ± 0.57 3.11 ± 0.31 1.89 ± 0.24 2.01 ± 0.29

ASRori-TTS 3.12 ± 0.52 3.47 ± 0.27 1.90 ± 0.21 2.10 ± 0.23

ASRspk-TTS 3.57 ± 0.25 3.82 ± 0.25 1.96 ± 0.22 1.93 ± 0.28

Table 2. SV Performance (acc%) as the objective evaluation of multispeaker TTS.

Seen Unseen

Ground truth 100% 100%

Baseline (replica [8]) 57.78% 18.00%

ASRori-TTS 65.56% 26.00%

ASRspk-TTS 91.11% 52.00%

than the baseline (replica [8]). For ASRspk-TTS, the seen speakers achieve a
higher DMOS score. This result proves the effectiveness of explicitly feeding the
speaker-id as the label during training. The DMOS score on unseen speakers
obtained by ASRspk-TTS may reflect the shortcoming where we did not give
speaker information expected by the system.

4.2 Objective Evaluation

The experimental results are listed in Table 2. The experimental results show
that the proposed ASRspk-TTS model achieved the best results, effectively sur-
passing the baseline model (replica [8]) for both seen and unseen speakers. The
low scores for the baseline (replica [8]) were caused by the small number of
speakers in the training datasets, which caused the speaker encoder network of
the baseline [8] to fail to learn useful speaker embedding. Although the proposed
ASRspk-TTS model achieved good results, there was still a gap between seen and
unseen speakers. The reason is that there are only 251 speakers in the training
set, which may have caused a problem in the proposed method’s construction of
the speaker embedding space. Moreover, the slight drop in similarity scores in
the subjective evaluation in Table 1 may have been caused by this.

4.3 Further Analysis

The proposed ASRori and ASRspk models almost achieved the best and second-
best performance (highlighted in gray and light gray, respectively) on both
objective and subjective tasks compared with the baseline (replica [8]). In Sub-
sect. 3.2, we also noticed that the recognition performance of these two models
is almost identical. As pointed out in previous work [10], speaker information is
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relatively complete before the ASR decoder, but the ASR task eliminated the
speaker’s characteristics in the network. To compensate for this fact, we explic-
itly added the speaker-id to the label in training so that the system would learn
the speaker’s characteristics. For this reason, the current task (extracting the
speech embedding) can benefit from it. This is an interesting topic that merits
an in-depth investigation in the future.

In real applications, TTS is integrated with ASR systems for complex tasks,
such as speech-to-speech translation or dialogue systems, such as Amazon Alex,
Microsoft Cortana, Apple Siri, and Google Translation. Inspired by this app-
roach, the proposed method saves the development cost of training additional
SV/SR systems on data containing many speakers.

The speech chain [24] and motor theory indicated that human speech pro-
duction and perception functions evolve and develop together, sharing the same
speech gestures in speech communication [25,26]. ASR and TTS are the inverse
tasks of each other, and this paper reveals a close relation between ASR and TTS,
which can help us design the next generation of speech applications. Human can
recognize linguistic information meanwhile can preserve the speaker informa-
tion, vice versa. In the current situation, however, either ASR or SV/SR cannot
replicate this function. This is a topic worth investigating in the future.

5 Conclusion

This paper proposed a novel method to extract more effective speech repre-
sentations from a transformer-based ASR model to improve the naturalness and
similarity of multispeaker TTS. Compared with the traditional method, the pro-
posed method does not rely on an individual SV/SR system. To enable the ASR
system to learn more speaker characteristics, we explicitly added the speaker-
id to the training label. Experiments showed that the proposed method almost
achieved the best performance on both objective and subjective tasks. Because
TTS is always integrated with ASR systems for complex tasks, such as a multi-
speaker speech chain, the proposed method reduces the development cost caused
by integrating an additional SV/SR model.
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