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Abstract. This paper addresses the problem of visual dialog, which
aims to answer multi-round questions based on the dialog history and
image content. This is a challenging task because a question may be
answered in relations to any previous dialog and visual clues in image.
Existing methods mainly focus on discriminative setting, which design
various attention mechanisms to model interaction between answer can-
didates and multi-modal context. Despite having impressive results with
attention based model for visual dialog, a universal encoder-decoder for
both answer understanding and generation remains challenging. In this
paper, we propose UED, a unified framework that exploits answer candi-
dates to jointly train discriminative and generative tasks. UED is unified
in that (1) it fully exploiting the interaction between different modalities
to support answer ranking and generation in a single transformer based
model, and (2) it uses the answers as anchors to facilitate both two set-
tings. We evaluate the proposed UED on the VisDial dataset, where our
model outperforms the state-of-the-art.

Keywords: Visual dialog · Cross modal learning · Encoder decoder
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1 Introduction

Visual dialog is recently introduced by Abhishek et al. [2]. Compared with visual
question answering, it requires the agent to communicate with human about an
image in multiple rounds.

Most of the current visual dialog model focus on modeling the interaction
between answer candidates, current question, previous dialog history and image.
Nevertheless, the answer candidates are invisible in generative setting, how to
learn a unified model that can capture such interaction for both answer ranking
and generation settings is a seldom explored territory.

In this work, we formulate the interaction of all entities in discriminative
setting using a pretrained transformer. As shown in Fig. 1, in discriminative set-
ting the agent infers whether the answer candidate is the correct one with the
powerful representation yielded by fully attention of each entities. Inspired by
the recent success of visual and language pretraining, transformer is employed
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Fig. 1. Interaction flow direction illustration. Q: question, V: image, H: dialog history,
A: answer candidates, Ag: generated answer.

as the encoding backbone as it has natural capability of capturing interaction
between different entities from different modalities. As aforementioned, genera-
tive setting can only employ information contained in textual context and image
to reconstruct the answer. As shown in Fig. 1, the interaction between generated
answer and multi-modal context is unidirectional.

To leverage the discriminative clues in answer candidates for easing the diffi-
culty of answer generation, we employ the answer candidates used in discrimina-
tive setting as anchor points to promote the bi-directional interaction between
generated answer and other entities as shown in Fig. 1. Noted that, the attention
flow from multi-modal to generated answer is explicit and the reverse attention
is implicitly performed by anchor answer A. More specifically, a contrastive loss
is devised to preserve the similarity of generated answer features and the tar-
get answer, while distinguishing other answer options. This also leads to the
elegant view of how to bridge the discrepancy between discriminative and gen-
erative settings, and how to fully exploit the clues in answer candidates. The
main contributions of this paper are as follows.

(1) We introduce a unified model for visual dialog, which processes all interac-
tions between different entities for both discriminative and generative set-
tings.

(2) The target answers is employed as anchor points to help both of the encoder
and decoder for distinguishing the answer options with complex semantics.
Compared to previous methods, the contrastive loss enables the bidirectional
attention flow between all answer candidates and generated answer features
to learn discriminative features for distinguishing the answers with complex
semantics.

(3) Extensive experiments were performed on visual dialog benchmark [2], and
the qualitative results indicate that our model obtains reliable improvement
on both tasks by unified contrastive learning.
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2 Proposed Method

2.1 Problem Formulation

We first formally describe the visual dialog problem. Given a question Qt

grounded on an image I at t − th turn, as well as the previous dialog history
formulated as Ht = {C; (Q1;A1), ..., (Qt−1;At−1)} (where C denotes the cap-
tion sentence of the image), our task aims to predict the target answer At by
ranking a list of 100 answer candidates {A1

t , A
2
t ..., A

100
t } in discriminative setting

or generate the required answer in generative setting.

2.2 Cross Modal Extractor Backbone

Fig. 2. The framework of our UED for unified generative and discriminative learning.

To jointly learn these the tasks in an end-to-end framework, ViLBERT [1] is
adopted as the backbone network to extract cross modal features. ViLBERT is
a two stream pretrained multi-modal network, which can jointly model visual
and linguistic inputs by employing co-attention layers. Noted that, any pre-
trained multi-modal architecture can be adopted to our method. Following ViL-
BERT, we embedded the visual and text sequence as I = {[IMG]O1, ..., On}
and D = {[CLS]C[SEP ]Q1[SEP ]A1, ...Qt[SEP ]At[SEP ]}, here I is object fea-
tures extracted by Faster R-CNN. We feed the two sequences into VilBERT and
obtain output textual hidden state and visual hidden state as:

Dh, Ih = ViLBERT(D, I), (1)

where Dh = {d1, ..., dt} and Ih = {i1, ..in}.
As ViLBERT contains multiple transformer blocks and cross attention

blocks, the yielded feature Dh and Ih contains deep fused cross modal features.



104 C. Chen and X. Gu

2.3 Unified Learning of Two Tasks

Given the learned cross modal features Dh and Ih, we rank the answer candidates
through the Next Sentence Prediction (NSP) loss.

The NSP loss is trained to predict 1 when the target answer At is appended,
and 0 when a negative answer An sampled from other answer candidates is
appended to it. To autoregressively generate an answer, we also train UED with
the textual input with answer mask:

Dg = {[CLS]C[SEP ]Q1[SEP ]A1, ...Qt[SEP ][MASK]}, (2)

where the answer tokens is replaced by the special [MASK] token to make it
blind to encoder. The hidden state yielded by VilBERT Dg and Ih are fed to
the decoder to generate the answer Ag.

To model the cross-impact and interaction between the two tasks, we enable
the task-specific answer representations interact with each other via contrastive
training. Specifically, the answer representations in discriminative setting is
divided into two part, where the target answer representations Ap is regarded
as positive query feature, and the negative answer representations together with
all answer options in other dialog within a mini batch is regarded as negative
key features An = {An1, ...Ann}.

As decoder aims to generate target answer, the answer features Ag gener-
ated by it requires to semantically correspond to Ap. To encourage the decoder
interact with all other answer information and optimize the two tasks simulta-
neously, we leverage the target answer as anchor and define a contrastive loss
to transfer useful mutual information between two tasks. The contrastive loss is
thus defined as:

Lc =
exp(Ap · Ag/τ)

∑n−1
i=0 exp(Ap · Ani/τ)

, (3)

where τ is a temperature parameter.

2.4 Visually Grounded Training Objectives

During the training of UED, We use two visually grounded training objectives
masked language modeling (MLM) and next sentence prediction (NSP) to super-
vise the cross modal extractor backbone ViLBERT.

Similar to MLM in BERT, 10% tokens in textual input and 15% tokens in
visual input are randomly masked out and replaced with a special token [MASK].
The model is required to recover them based not only on the surrounding tokens
and the cross modal clues:

Lmlm = −E(D,I)∼T logP (Wm|D\m, I\m), (4)

where Wm is the masked tokens and T refers to the training set.
The NSP loss is implemented as:

Lnsp = −E(D,I)∼T logP (y|N(D, I)), (5)
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where y ∈ {0, 1} serves as the supervision label, and N()̇ is the binary next
sentence prediction head to predict the probability based on the dot product of
[CLS] representation in text features and [IMG] representation in image features.

For the generative setting, the decoder is required to reconstruct the sequen-
tial target answer tokens depending on all the dialog context and input image.
The loss is defined as maximum log-likelihood loss:

Lg = −E(D,I)∼T logP (A|D\A, I), (6)

The overall objective is expressed as:

Lued = Lmlm + Lnsp + αLg + Lc, (7)

where α = 0.05 is the weighting parameter.

3 Experiments

3.1 Dataset

The VisDial v1.0 dataset is used in our experiments. It consists of 123,287 images
in the training set, 2064 in the validation set, and 8,000 images in the testing
set. Each image is associated with a caption sentence and 10 question answer
pairs. For each round of question answer pair, 100 answer candidates are given.

3.2 Evaluation Metric

Following previous works [2,3], the ranking metrics like Recall@K (K = 1, 5,
10), Mean Reciprocal Rank (MRR), and Mean Rank is adopted. Since the 2018
VisDial challenge releases the dense annotations of each answer option’s rele-
vance degree, normalized discounted cumulative gain (NDCG) that penalizes
the lowranked answer options with high relevance is also used.

3.3 Implementation Details

We use ViLBERT base as the backbone, which has 12 layers of transformer blocks
with each block having a hidden state size of 768 and 12 attention heads. The
decoder consists of 12 layers of transformer blocks, each block has hidden size of
1024 and 16 attention heads. The max text sequence length is 256. We train on
8 V100 GPUs with a batch size of 120 for 20 epochs. The Adam optimizer with
initial learning rates of 2e-4 is adopted. A linear decay learning rate schedule
with warm up is employed to train the model.

3.4 Comparison to State-of-the-Art Methods

We compare our method with recently published methods, including MN [2],
FGA [3], CoAtt [4], HCIAE [5], ReDAN [6], LTMI [7], VDBERT [8], DAN [9],
Synergistic [10], GNN [11]. Tables 1, and Table 2 summarize the results on the
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aforementioned benchmark. Follow previous works [2,4], comparison of the gen-
erative setting is performed on val split of the dataset. We select here MN,
CoAtt, HCIAE, and ReDAN for comparison of generative setting, as their per-
formances of both settings in all metrics are available in the literature. Among
all evaluation metrics, our UED significantly outperforms other models, even
including some ensemble variants such as Synergistic and ReDAN. Notably, our
model significantly surpasses the state-of-arts by more than 1 points absolute
improvements under the metrics Recall@1 in both discriminitive and generative
settings. Moreover, the performance improvements under strict ranking metrics
are more obvious (e.g., Recall@1, MRR).

As aforementioned, UED supports ranking the answer candidates and gen-
erating answer in a single pass, the two tasks are jointly trained by unified
contrastive loss. As the results show, the generative setting surpasses the state
of art by a large margin, which indicates the contrastive loss enables the decoder
to perceive more discriminitive information from the rich answer candidates and
our model is able to perform well in both task.

Table 1. Performance comparisons of discriminative setting on the test-std split of
VisDial v1.0 dataset. The top 1 results are highlighted by bold.

Methods R@1↑ R@5↑ R@10↑ NDCG↑ MRR↑ Mean↓
MN 40.98% 72.30% 83.30% 47.50 55.49 5.92

FGA 49.58% 80.97% 88.55% 52.10 63.70 4.51

GNN 47.33% 77.98% 87.83% 52.82 61.37 4.57

MN-Att 42.42% 74.00% 84.35% 49.58 56.90 5.59

ReDAN 42.45% 64.68% 75.68% 64.47 53.73 6.64

LTMI 50.20% 80.68% 90.35% 59.03 64.08 4.05

VDBERT 51.63% 82.23% 90.68% 59.96 65.44 3.90

DAN 49.63% 79.75% 89.35% 57.59 63.20 4.30

Synergistic 47.90% 80.43% 89.95% 57.32 62.20 4.17

Ours − UED 51.73% 82.42% 91.13% 60.22 65.86 3.78

Table 2. Performance comparisons of generative setting on the val-std split of VisDial
v1.0 dataset. The top 1 results are highlighted by bold.

Methods R@1 ↑ R@5↑ R@10↑ NDCG↑ MRR↑ Mean↓
MN 38.01% 57.49% 64.08% 56.99 47.83 18.76

CoAtt 40.09% 59.37% 65.92% 59.24 49.64 17.86

HCIAE 39.72% 58.23% 64.73% 59.70 49.07 18.43

ReDAN 40.27% 59.93% 66.78% 60.47 50.02 17.40

Ours − UED 41.89% 61.07% 67.12% 61.21 51.11 17.12



UED: A Unified Encoder Decoder Network for Visual Dialog 107

3.5 Ablation Studies

In this section, we perform ablation studies to evaluate the effects of different
training settings. We first remove the decoder used for generative setting, and
the results are shown in row 1. Comparing row 1 and row 4, it can be observed
that training generative task brings improvements to ranking task.

In row 2, we vary the setting of decoder size. Specifically, a light decoder
which has 8 layers of transformer blocks with each block having a hidden state
size of 768 and 16 attention heads is adopted. The results shows that decoder
size has little impact to the results. The reason is that decoder is not pretrained
on large dataset.

The main characteristic of UED is the unified contrastive loss, which com-
bines all answer candidates and generated answer to learn more useful clues. To
study the impact of the contrastive loss alone, we train our UED without it and
report the result in row 3. Comparing to the full model with contrastive loss
(row 4), row 3 gets worse performance across the ranking metrics, which further
verifies the effectiveness of contrastive loss. The full model UED gets highest
results in all metrics.

Table 3. Ablation studies on the VisDial v1.0 dataset

Row Methods R@1↑ R@5↑ R@10↑ NDCG↑ MRR↑ Mean↓
1 UED-w/o-decoder 53.58% 83.86% 91.93% 60.02 64.79 3.83

2 UED-lidecoder 53.92% 84.08% 92.08% 60.86 64.97 3.81

3 UED-w/o-Lc 53.78% 83.98% 92.06% 60.02 64.88 3.88

4 Ours − UED 54.08% 84.32% 92.31% 61.06 65.48 3.71

3.6 Qualitative Result

We illustrate some qualitative examples of our UED in Fig. 3. Evidently, train-
ing with contrastive loss can produce more accurate result. Unified training of
two tasks helps our model distinguish the target answer from the answers with
similar semantics with the ground truth answer. It is very difficult for the model
to predict the answer without proper reference to the visual information. As

Fig. 3. The effects of unified learning of two tasks in our UED.
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our model exploits rich information from all answer candidates and generated
answer. It performs better than the baseline.

4 Conclusion

In this paper, we study the problem of visual dialog. A unified transformer model
UED that exploits the answers as anchor points to jointly train discriminitive
and generative tasks. UED is capable of modeling all the interactions between
all answer candidates and the generated answer to supervise the training of two
tasks via simple unified contrastive learning. Moreover, it can rank or generate
answers seamlessly in one single pass, and the training of two tasks is simul-
taneous. Experiments on visual dialog benchmark show the effectiveness of the
proposed model, and more extensive ablation studies further confirm the cor-
relation between two tasks and reveal that modeling the relations explicitly by
employing answers as anchor points can improve their performance.
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