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Abstract. Deep Reinforcement Learning (RL) has achieved great suc-
cess in many tasks, and the key challenge of Reinforcement Learning now
is the inefficient exploration and the unstable training problems brought
by high-dimensional input state. Recently, some ensemble works have uti-
lized multiple critics to provide a more specific Q-value and explore more
by increasing the diversity of critics. However, these works can not ensure
both robust training with effective exploration and thus get limited per-
formance on high-dimensional continuous control tasks. To address this
challenge, in this work, we propose Random Sampling Weights Alloca-
tion (RSWA), a new critic ensemble framework. Our method introduces
the random sampling weights mechanism to increase training robustness
and re-allocate the weights according to the Temporal-Difference in every
training step to encourage efficient exploration. Our method is compat-
ible with various actor-critic algorithms and can effectively improve the
performance of them. We conduct experiments that couple RSWA with
various current actor-critic RL algorithms on different OpenAI Gym and
DM-Control tasks to verify the effectiveness of this method.
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1 Introduction

With the integration of deep learning, we have witnessed the great success of rein-
forcement learning (RL) in many complex tasks [7,14] recent years. In RL, an
agent is learned to maximize the cumulative rewards through a series of inter-
actions with a dynamic environment. Deep Q-Network algorithm [11] is the first
to combine non-linear function approximation with the Q-learning algorithm and
introduce experience replay buffer to increase the training stability. In continuous

This work was supported in part by the National Natural Science Foundation of China
under Contract 61836011 and U20A20183, and in part by the Youth Innovation Pro-
motion Association CAS under Grant 2018497.

© Springer Nature Switzerland AG 2021

T. Mantoro et al. (Eds.): ICONIP 2021, CCIS 1516, pp. 676-684, 2021.
https://doi.org/10.1007/978-3-030-92307-5_79


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92307-5_79&domain=pdf
https://doi.org/10.1007/978-3-030-92307-5_79

RSWA for Deep Reinforcement Learning 677

control tasks, actor-critic algorithms [4,5,9,10], which combine policy iteration
and value iteration, have achieved promising performance. Although these algo-
rithms have been successful applied in many problems, they are still poor in some
tasks for two main reasons: one is unstable training leads to serious shock, and the
other is inefficient exploration. Recently, ensemble works like Averaged-DQN [2],
Bootstrapped DQN [12], Random ensemble mixture (REM) [1] have been proved
to be beneficial and efficient to solve these problems for RL. Averaged-DQN uti-
lize averaging previously learned Q-value estimates to reduce the target approx-
imation error variance that leads to stable training and improved performance.
In offline RL task, REM uses a random convex combination of multiple Q-value
estimation, which improves the stability during RL training. These works indicate
that using ensemble techniques can effectively improve performance and stability
of deep RL. However, these ensemble works can not ensure robust training with
effective exploration and thus get limited improvement in RL algorithms on high-
dimensional continuous control tasks.

To solve this problem, in this work, we propose Random Sampling Weights
Allocation Update (RSWA), a new multi-critic ensemble framework that
updates critic Q-value by re-allocating random sampling weights to multiple
critics according to Temporal-Difference (TD) [16] calculated on each head in
every time step. RSWA introduces a new policy improvement strategy that use
randomly parameterized critic to update the actor to ensure robust training,
analogous to dropout. Besides, by giving larger weights to critics with bigger
TD errors, the critics that can not estimate current state and action well will
be more weighted. It means the sensitivity of each critic to different samples
are diverse and the diversity of critics will encourage more effective exploration
further, like Bootstrapped DQN [12]. Since RSWA allocates random weights
to multiple critics, it can both improve the robustness of the updates and the
efficiency of exploration.

To verify the effectiveness of our method, we couple RSWA with three state-
of-the-art actor-critic algorithms: Twin Delayed Deep Deterministic policy gra-
dient algorithm (TD3) [5], Soft Actor-Critic (SAC) [6], and Proximal Policy
Optimization algorithm (PPO) [13]. We conduct experiments of these algorithms
on multiple OpenAl Gym tasks (Mujoco) [3] and DeepMind Infrastructure for
Physics-Based Simulation tasks (DM-Control) [15]. The experimental results
show that our RSWA not only improves the performance of these actor-critic
algorithms but also surpasses previous ensemble works.

2 Related Work

2.1 Actor-Critic Reinforcement Learning

Actor-critic method combines both policy gradient and Temporal-Difference
learning. It consists of two models: Critic and Actor. Critic updates the value
function parameters 6. Value function can be action-value Qq(s, a) or state-value
Vo(s) depending on the algorithm. And actor updates the policy parameters ¢
for mg(a | s) in the direction suggested by the critic.
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2.2 Ensemble in RL

Averaged-DQN [2] is a simple extension to the DQN algorithm, based on averag-
ing previously learned Q-value estimates, which leads to a more stable training
procedure and better performance by reducing approximation error variance in
the target values. Bootstrapped DQN [12] use multiple Q-functions updated
with different sets of training samples to encourage deep exploration. AUMC [§]
initialize critics with random parameters independently to increase the diversity
of critics. In offline RL tasks, REM [1] obtains a robust Q-learning by enforcing
optimal Bellman consistency on a random convex combination of multiple Q-
value estimates. These ensemble works all improve the stability or performance
of RL algorithm. However, they do not notice the balance between exploration
and robust training. In RSWA, we update critic Q-value by matching different
random weights to multiple Q-value estimates according to TD-error calculated
in each head that both can ensure efficient exploration and the robustness of
training.

3 Method

In this section, we introduce our proposed method: Random Sampling Weights
Allocation (RSWA), a critic ensemble framework that achieves both effective
exploration and robust training in RL. In RSWA,| we use multiple parameter-
ized Q-functions to estimate the Q-value, similar to Average-DQN [2]. Different
from previous ensemble works, we randomly generate Q-value weights for mul-
tiple critics that the convex combination of multiple Q-value estimates leads to
more robust training and stable updates. Besides, RSWA introduces TD-error,
to allocate random generated weights to multiple critics. And the diversity of
multiple critics brought by TD allocation will encourage deep exploration.

3.1 Random Sampling Weights Allocation

In actor-critic RL algorithm, we get the action tuple (s,a,r,s’) at each time
step. We then compute the absolute value of TD-error for all critics:

8= {IoulHy = {|r +4Qk (5,8) — Q§(s.a)| 1, @ ~m5(s), (1)

where i represents the index of the critic, ¢ and 6 are the delayed parameters of
the actor and the critic, respectively. Since SAC add the entropy bonus to value
function, when coupling RSWA with SAC, Eq. (1) is defined as follows:

|6 = |r+7(Q5 (s, @) + oM (my (- | 8))) = Qf(s,0)|, & ~ms(s).  (2)

We draw K dimensional weights for the critics from the Uniform(0,1) and
normalize them to get a valid categorical distribution at each time step as follows:

@ = {wy, = wj/ > wiH, w' = {w), ~U0,1)}, . (3)
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Then we resort w according to current TD-errors § in non-increasing order and
get the re-allocated weights w. And wy,- - -, wg € (0,1) indicate the sensitivity
of each citric to current samples. We make the citric be more sensitive to the
unfamiliar tuples, which improve the diversity of critics that encourage more
effective exploration.

3.2 Policy Evaluation

In RSWA, we use K critics Q1,Q@s, ..., @k to estimate Q-values and minimize
the loss of critics:

gk — 1 +vQp (8,75 (s))

X K 2 (4)
Jo(0) = Jor (0) = wy (yx — Qf(s,))" .
k=1 k=1

The target Q-value of critic & is y, and RSWA tries to minimize the loss remixed
by the weights wy. Since SAC and TD3 both use clipped double Q-learning
mechanism, when coupling RSWA with them, the target Q-value is formulated

as:
K

: k ! 1
= = e . 5
y=r+ Y min, ;;_1 wy,Qyg, (s, 75 (s")) (5)
In SAC, the target Q-value function includes entropy regularization item:

K
y =7+~ min (Z Qf (s',@") + aH (g (- | 8'))) : (6)
T \k=1

where actions @ are stochastically sampled from the current policy 4.

PPO is an on-policy algorithm and use advantage function to measure the
relative advantage of action a in state s. When coupling RSWA with PPO, we
change the computation of value function as:

K
Va(s) =Y wiVyi(s). (7)
k=1

3.3 Policy Improvement

RSWA mixes multiple critics to evaluate the policy and increase the diversity by
allocating random sampling weights to different critics according to TD-error. In
this way, the algorithm can both maintain the robust training and more efficient
exploration. The gradient of the deterministic policy (TD3) is:

Vi dn(6) = VaQo(s,0)l,_r, (o) Vo). (8)

and the gradient of the stochastic policy (SAC) is:

Voln(8) = Vs [ (Qls.a) = alogms(a | 5))]yer, o] (9)
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where the critic @y is random sampling weights mixed critics at each training
step. The the gradient of Proximal Policy Optimization (PPO) in RSWA is
formulated as:

Vode(6) = Vo | (CAU D4, (5,0) favrs | (10)

mg(al s)

where the advantage function A, is based on the current mixed value func-
tion Vj.

7000
RSWA+TD3
e
5000 7 Yird oA 6000 ‘M;Ar;(“:j 000 | — Averaged+TD3
v N s — T03 /—/"/w
E | E ' E
3 4000 Y 5 5000 ﬂ \ - —— Bootstrapped+TD3
g g g hlians
2 & a000 £ 4000 Y-
% 3000 p ©
2 2 3000 2
§ 2000 - £ — e
g | ASWA+TD3 £ 3000 RSWA+TD3 g 2000
< / — Averaged+TD3 2 — Averaged+TD3 2 e
1000| ¢ — 03 1000 — D3 o
" 3ootstrapped+TD3 of Bootstrapped+TD3
05 10 1s 20 25 30 05 10 15 20 25 30 05 10 15 20 25 30
Steps 166 Steps 1e6 Steps 1e6

(a) TD3,Walker2d-v2  (b) TD3,Ant-v2  (¢) TD3,Humanoid-v2

6000 8000

5000

6000

A
s

4000

VKA

M)WVW

8
8
8

4000

Average Return
g g
8 8

Average Return

Average Retu
g

| v A AMMI N
Il —— RSWA+SAC 2000| A T — Rswassac . SV — Rswassac
Il Averaged+SAC /,,. Averaged+SAC : Averaged+SAC
1000 | SAC W SAC 1000 SAC
o —— 3ootstrapped+SAC 0 —— Bootstrapped+SAC o — Bootstrapped+SAC
05 10 15 20 25 30 05 10 15 20 25 30 05 10 15 20 25 30
Steps 1e6 Steps 1e6 steps 1e6

(d) SAC,Walker2d-v2

(e) SAC,Ant-v2

(f) SAC,Humanoid-v2

—— RSWA+PPO

— RSWA+PPO 2500 [ rswapPo
3000 Averaged+PPO Averaged+PPO 700 Averaged+PPO
2000
€ PO £ o00 PO
% 1500 i g
g A &
s R P
& £
£ 1000 /J/’”li/:ﬁ H
g g
g ’ g
2 s00 2
A
of—""
05 10 15 20 25 30 05 10 15 20 25 30 15
Steps 16 Steps 106 Steps

(g) PPO,Walker2d-v2  (h) PPO,Ant-v2 (i) PPO,Humanoid-v2
Fig. 1. Learning curves of RSWA coupled with TD3 (first line), SAC (second line),
and PPO (third line) compared to Bootstrapped(PPO is not compatible with Boot-

strapped), Averaged ensemble method and original algorithms separately.

4 Experiments

In this section, we couple our method RSWA with state-of-the-art actor-critic
RL algorithms, like TD3 [5], SAC [6], and PPO [13], to verify the effectiveness
of RSWA. We also compare our method with previous ensemble works, such as
the Bootstrapped [12] and Averaged ensemble method [2]. Moreover, we further
make ablation study to verify the effectiveness of random weights allocation.
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4.1 Benchmarks

We separately couple RSWA, Bootstrapped method and Averaged Ensemble
method with three state-of-the-art RL algorithms and evaluate these methods
on 3 MuJoCo continuous tasks (Walker2d-v2, Ant-v2, and Humanoid-v2) in
OpenAl Gym [3]. Besides, we further implement our method on 12 DM-Control
tasks [15] to verify the improvement to original RL algorithms. The performance
of algorithms on each environment is demonstrated by plotting the mean cumu-
lative reward. For results plots, the solid lines represent the mean cumulative
rewards and the shaded regions represent the standard deviation of the average
evaluation over 4 different random seeds.
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Fig. 2. Learning curves of TD3, SAC, and PPO with and without RSWA on four DM-
Control (CartpoleThree, CheetahRun, FingerSpin and FingerTurnHard) tasks over 3
million time steps. Other tasks in DM-control are in appendix.

4.2 Implementation Details

For existing RL algorithms (TD3, SAC, and PPO), value-network and policy-
network are implemented with MLP consist of two hidden layers and learning
rate is 3e~*. The batch size is 256, the replay buffer size is 1 x 10%, and the
discount factor is 0.99 during training process. For Random Sampling Weights
Allocation, we sample the weights from the Uniform (0,1) and the number of
critics is set to 100 (K = 100). While in Bootstrapped Method and averaged
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ensemble method the number of critics is set to 10 (K = 10). For Bootstrapped
Method, we sample K-dimensional binary masks from Bernoulli distribution with
fixed parameter that denotes the probability of allocating the samples to the
critics for Bootstrapped Method. And in Bernoulli distribution, we set p =
0.5. For fair comparison, other hyper-parameters in Bootstrapped and Averaged
method is the same with our RSWA.

4.3 Results

The results of total average return during training for RSWA, Bootstrapped and
Averaged ensemble method on PPO, TD3 and SAC in Mujoco environments are
shown in Fig. 1. For all Mujoco tasks, our method RSWA consistently improves
the performance of three algorithms. And the improvement in PPO and TD3 is
larger than in SAC. It should be noting that the performance of Bootstrapped
method in SAC is also worse. In SAC, the introducing of entropy regularization
playing the same role as diverse multiple critics limits the performance of method
that encourage to explore more. However, our method in Mujoco tasks still per-
form better than original SAC algorithm, which verify performance improvement
in RSWA not only from the effective exploration but also from the robustness
brought by random sampling weights in each time step. Besides, Fig.2 shows
the performance of RSWA on 12 different DM-Control tasks. RSWA improve
the performance of three actor-critic RL algorithms on almost all tasks. These
results demonstrate that RSWA can improve current state-of-the-art actor-critic
RL algorithms and work better than other existing ensemble methods. It verifies
that our method can achieve both exploration and robust update efficient by
reasonably allocating random sampling weights.

4.4 Ablation Study
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Fig. 3. Performance comparison of RSWA, RSWU and TD3 on Walker2d-v2,
HalfCheetah-v2 and Ant-v2 to verify effectiveness of random sampling weights and
TD allocation.

We conduct ablation study to further examine which particular component
of RSWA is essential for the performance. We set TD3 as the baseline algorithm
to conduct the following experiments.
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As discussed in the previous section, the improvement of performance in
RSWA is mainly contributed by robust training and effective exploration, which
is separately brought by random weighs sampling and the allocation according
to TD-error. We therefore run the experiments that remove the TD allocation
from RSWA called Random sampling weights Update (RSWU). The learning
curve compared to RSWA and baseline TD3 are shown in Fig.3. On Ant-v2
and HalfCheetah-v2, RSWU is better than baseline TD3 while it is worse than
RSWA. The results verify our ideas that the random weighs sampling and the
TD allocation are complementary to each other and can both improve the per-
formance of actor-critic RL algorithms.

5 Conclusion

In this work, we propose the RSWA framework, a multi-critic ensemble mech-
anism that is compatible with various current state-of-the-art actor-critic RL
algorithms. RSWA achieves robust training with effective exploration through
the allocation of random sampling weights according to TD-errors. The experi-
ments on the OpenAl Gym and DM-Control benchmarks demonstrate that our
method can significantly improve the performance of RL algorithms, such as
TD3, SAC, and PPO. And we further conduct ablation study to verify that the
random weighs sampling and TD allocation are Complementary. Moreover, our
method is time efficient and compatible to various actor-critic RL algorithms.
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