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Abstract. Federated learning (FL) has been widely deployed in edge
computing scenarios. However, FL-related technologies are still facing
severe challenges while evolving rapidly. Among them, statistical het-
erogeneity (i.e., non-IID) seriously hinders the wide deployment of FL.
In our work, we propose a new framework for communication-efficient
and personalized federated learning, namely FedPrune. More specifically,
under the newly proposed FL framework, each client trains a converged
model locally to obtain critical parameters and substructure that guide
the pruning of the network participating FL. FedPrune is able to achieve
high accuracy while greatly reducing communication overhead. More-
over, each client learns a personalized model in FedPrune. Experimental
results has demonstrated that FedPrune achieves the best accuracy in
image recognition task with varying degrees of reduced communication
costs compared to the three baseline methods.
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1 Introduction

Federated learning (FL) [7,11] is a new machine learning paradigm that is
already widely used in personal devices and financial enterprises. FL has been
widely accepted as an artificial intelligence (AI) application that protects the
data privacy of users [16]. While FL promises better privacy and efficiency, there
are still two major challenges [8] in FL. The first one is the significant commu-
nication overhead, which has hampered the development of federated learning.
In fact, the federated network is likely to be composed of many clients and the
communication in the network is very frequent and more time consuming com-
pared to local computing. The second challenge is the statistical heterogeneity,
meaning that the distribution of data across clients is non-IID (non-identically
independently distributed). The data at the client side may be very different
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in size and type. In this work, we focus on both challenges and thus propose a
framework that can jointly take on them.

In our work, we propose a new framework for communication-efficient and
personalized federated learning, namely FedPrune. Specifically, each client trains
a converged model locally to obtain critical parameters and substructure that
guide the pruning of the network participating federated learning. Clients with
large differences in data distribution do not interfere with each other, while
clients with similar data distribution can enhance each other. Finally, a person-
alized model will be learned at each client. We show that FedPrune is able to
achieve high accuracy while greatly reducing communication overhead. More-
over, it only requires negligible computational and storage costs. We conduct
experiments on the MNIST, CIFAR-10 and CIFAR-100 datasets and compared
FedPrune with FedAvg [11], FedProx [9] and LG-FedAvg [10]. The experimental
results show that FedPrune is significantly better than the compared methods
in terms of accuracy and communication cost on non-IID data.

2 Related Work

AI has been integrated into many fields, such as mobile social networks [15] and
smart cities [17]. To further protect user privacy, academia and industry propose
to use federated learning [8,11] to achieve intelligence. However, Zhao et al. [18]
shows that non-IID data distribution may significantly reduce the prediction
accuracy of FL. FedProx [9] solves this problem by adding regularization terms
to the local optimization so that the local model does not change too much
compared to the global model. Model personalization is a worthwhile approach to
tackle statistical heterogeneity. Jiang et al. [6] introduce the MAML [3] algorithm
in the field of meta learning into federated learning to realize the personalization
of models on each client. Vahidian et al. [13] obtain personalized models by
structured pruning and unstructured pruning, but introduce hyperparameters
that are very dependent on the network structure, making it difficult to tune
and deploy in practice.

How to reduce the communication overhead of federated learning is another
problem that puzzles researchers. Previous work [1,5,7,12] reduces the size of the
model transferred between the client and the server through data compression
techniques such as sketching, sparsification and quantization. Wang et al. [14]
dynamically tunes the frequency of updating the model according to the available
communication resources.

3 Design of FedPrune

We denote N clients by C = {C1, ..., CN}. We denote wg as the weights of the
global model, and wk (k = 1, ..., N) as the local model weights on each client Ck.
We let {wij,k} denote the weights of the connections between pairs of neurons
ni,k and nj,k in the model wk. We denote Ωij,k as the importance value for each
parameter {wij,k}. We use the superscript t, e.g., wt

i , to indicate the weights
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learned in round t. Each client Ck learns a local mask mk ∈ {0, 1}wk , which
indicates whether the weights are pruned or not. In a local mask, a value of 0
means that the corresponding weight is pruned, and 1 means vice versa.

3.1 Estimating Parameter Importance

According to the lottery ticket hypothesis [4], there always exists the optimal sub-
network, also called the winning ticket, that can achieve similar performance as
the original network. That is, if the sub-networks of each client participate in
federated learning, they can not only achieve the performance of the original
model, but also avoid the interference of the model parameters of other clients.

In this work, we adapt the MAS [2] algorithm, which measures the importance
of parameters, to the federated learning scenario. Each client trains a model
locally using local data before participating in federated learning. The model
is considered to have learned an approximation F to the true function F̄ when
it reaches a local optimum. We characterize the importance of a parameter in
the network in terms of the sensitivity of the function F to that parameter.
When the input is xd, the output of the function is F (xd;w). Applying a small
perturbation δ = {δij} to the parameters w = {wij}, the output of the function
can be approximated by:

F (xd;w + δ) − F (xd;w) ≈
∑

i,j

gij(xd)δij (1)

where gij(xd) = ∂(F (xd;w))
∂wij

is the gradient of the function F with respect to the
parameter wij at the data point xd. δij is the small perturbation applied to the
parameter wij . Assuming that δij is a constant, we can use the magnitude of the
gradient gij to characterize the importance of the parameter. We accumulate the
gradients obtained from all the input data and sum up to obtain the importance
weight Ωij for parameter wij :

Ωij =
1

Ndp

Ndp∑

d=1

‖gij(xd)‖ (2)

where Ndp is the number of input data points.

3.2 Training Process of FedPrune

The details of FedPrune are described in Algorithm 1. Typically, the training
process of FedPrune is as follows:

Prior to training for federated learning, the server initializes the global model
w0

g and sends that model to each client. Once the global model is received, each
client trains the local model w

′
k as a way to obtain the masks needed to prune the

models involved in federated learning. Specifically, we can obtain the importance
of the parameters by the approach introduced in Sect. 3.1. Given a target pruning
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Algorithm 1: Training of FedPrune. K is the random sampling rate, B
is the set of local mini-batches, η is the learning rate, and l(·) is the loss
function.
1 Server executes: // Run on the server

2 initialize the global model w0
g;

3 ClientGetMask(w0
g); // executed in parallel

4 for each round t = 1 to T do
5 k ← max(N × K, 1);
6 St ← {C1, ..., Ck};
7 for each client k ∈ St in parallel do
8 wt+1

k ←ClientUpdate(wt
g);

9 end

10 wt+1
g ← aggregate subnetworks of clients, wt+1

k , and average the intersection
of them;

11 end

12 ClientGetMask(w0
g): // Run on client k

13 Train the local model w
′
k for El epochs based on w0

g;
14 Compute {Ωij,k} by Eq.(2);
15 mk, the mask for wk, is obtained based on {Ωij,k} and target pruning rate p;

16 ClientUpdate(wt
g): // Run on client k

17 wt
k ← wt

g � mk;
18 B ←split local training data into batches;
19 for each local epoch from 1 to E do
20 for batch b ∈ B do
21 wt+1

k ← wt
k − η∇wt

k
l(wt

k; b) � mk;

22 end

23 end

24 return wt+1
k to server;

ratio p, a binary mask of the same size as the model is derived. The process of
client training a local model to obtain a mask is asynchronous to the whole
process of federated learning, and clients who have already obtained a mask can
start federated training earlier.

Given the round t, the server samples a random set of clients S and distributes
a global model to each of them. Note that Ck trains wt

g�mk, the global model wt
g

pruned by the mask mk, as the initial model for this round, instead of training
the global model directly. Then Ck performs training for E epochs with the local
data, and then uploads the updated wt+1

k to the server.
At the end of the round, the server performs aggregation on all received

local models (i.e., wt+1
k ). Different from FedAvg, we only take the average on

the intersection of unpruned parameters for each client, just like the By-unit
approach described in Zhou et al. [19]. This aggregation method allows networks
with different structures that imply large differences in data distribution not
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to interfere with each other. Meanwhile, this approach enables networks with
similar structures to further enhance each other.

4 Experiments

4.1 Experimental Setup

We conduct an empirical study of FedPrune and compare it with classical FL
algorithms i.e. FedAvg [11], FedProx [9] and LG-FedAvg [10]. Our experimental
studies are conducted over three datasets, MNIST, CIFAR-10 and CIFAR-100.

To evaluate each method in terms of statistical heterogeneity, we divide the
data in the same way as in McMahan et al. [11]. The architecture we used for
MNIST is a CNN with two 5×5 convolution layers, a fully connected layer with
50 units, and a final softmax output layer. We add ReLU activation functions
to all layers except the last one. For CIFAR-10 and CIFAR-100 datasets we use
LeNet-5 architecture. In all experiments, we have 100 clients, each with local
batch size 10 and local epoch 5. In addition, we use an SGD optimizer with
learning rate and momentum of 0.01 and 0.5, respectively. For FedPrune, we set
the number of epochs for the local model El = 50. For FedProx, we show the
experimental results at the coefficient of the regularization term μ = 0.01.

We compare FedPrune with three methods, i.e., FedAvg, FedProx and LG-
FedAvg. FedAvg is a classical federated learning method. FedProx improves on
FedAvg by adding a regularisation term called proximal term. In LG-FedAvg,
each client learns a compact local representations and all clients learn a global
model together. We use the classification accuracy of the test data on each client
to evaluate the performance of personalization and report the average accuracy
of all clients. We use the number of parameters of the model to measure the
communication overhead.

4.2 Results and Analysis

We compare the results of our proposed algorithms against several baselines, as
shown in Table 1.

Accuracy: We show the accuracy of the model after pruning 30%, 50% and
70% of the parameters in Table 1. As can be seen from the table, the variation of
accuracy with the pruning rate is not drastic and the accuracy always maintains
at a high level. Even with 70% of the parameters pruned, the accuracy of the
FedPrune algorithm is still much higher than that of other methods. This result
illustrates that more parameters of the model do not mean better performance.

Overhead: As seen in Table 1, FedPrune achieves communication efficiency with
a small loss of accuracy. In the experiments on FedPrune, the client needs to
train a local model for 50 epochs as a way to get the critical parameters and
substructure, which seems to impose some computational overhead on the client.
However, the computational overhead of this part is only 10% or less compared
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Table 1. Comparing the classification accuracy and communication overhead of Fed-
Prune against several baselines.

Dataset Method Acc % Pruned param Communication cost

MNIST FedAvg 98.75% 0 1.75 GB

FedProx 98.75% 0 1.75 GB

LG-FedAvg 98.20% 0 1.71 GB

FedPrune 99.39% 30% 1.23 GB

FedPrune 99.49% 50% 0.88 GB

FedPrune 99.39% 70% 0.53 GB

CIFAR-10 FedAvg 49.21% 0 4.96 GB

FedProx 50.21% 0 4.96 GB

LG-FedAvg 76.28% 0 4.54 GB

FedPrune 80.68% 30% 3.47 GB

FedPrune 81.02% 50% 2.48 GB

FedPrune 79.63% 70% 1.49 GB

CIFAR-100 FedAvg 14.91% 0 5.57 GB

FedProx 13.13% 0 5.57 GB

LG-FedAvg 47.60% 0 5.17 GB

FedPrune 84.91% 30% 3.90 GB

FedPrune 83.95% 50% 2.79 GB

FedPrune 81.98% 70% 1.67 GB

to the whole federated learning process. For the vast majority of edge devices, it
is acceptable. Theoretically, the storage overhead of FedPrune is small. We need
only 1 bit to encode the mask per parameter. For example, in our experiments,
the network size of LeNet-5 for CIFAR-100 is 0.28 MB. The overhead of adding
a mask to this network is about 8.7 KB. A parameter is typically represented
by 4 bytes, and adding a mask results in an additional storage overhead of 1/32
of the initial model size, which is ideal for edge computing devices with small
storage space. Note that it is not necessary for the local model and the model
participating in federated learning to exist simultaneously.

Sensitivity Evaluation: We will study the variation of accuracy with target
pruning ratio p. Figure 1 plots the average test accuracy over all clients versus
various pruning percentages. At the beginning, the accuracy of the model keep
improving as the number of parameters being pruned increases. As we expect, in
federated learning, too many parameters are not beneficial for model training,
but lead to mutual interference among clients. As the number of parameters
being pruned continues to increase, the accuracy of the model begins to slowly
decrease. This is because the critical parameters are also pruned and the opti-
mal substructure is corrupted. Surprisingly, however, even at very high pruning
ratio, the accuracy does not drop dramatically and remains even higher than
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baselines. From the figure we can see that for CIFAR-10, the accuracy of the
classification can still reach 73.94% and 64.75% when the pruning ratio is 95%
and 99%, respectively. For CIFAR-100, the accuracy reaches 76.01% and 68.67%
at the same pruning ratio, respectively. This result sufficiently illustrates that
our method does find the critical parameters and optimal substructure, which
guarantee a good performance even when the model is extremely compressed.

Fig. 1. Average test accuracy of FedPrune over all clients for the CIFAR-10 (left) and
CIFAR-100 (right) datasets.

5 Conclusion

In this work, we propose a federated learning framework, FedPrune, that main-
tains a high level of accuracy while greatly reducing communication overhead.
Moreover, the framework is easy to implement and has limited computational
and storage overhead, making it suitable for deployment in mobile and edge com-
puting devices. In addition, FedPrune has only one more hyperparameter than
FedAvg, target pruning ratio p, making it easy to tune and deploy to production
environments.
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