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Abstract. Pedestrian trajectory prediction is an important issue in many real
applications, including autonomous driving, robot navigation, and intelligent
monitoring. With rapid growing volume of pedestrian trajectory data, existing
methods roughly learn pedestrian walking motion directly with increasing com-
putation and time costs while neglecting checking the relative importance of the
trajectory data. In order to address this issue, we propose a novel trajectory pre-
diction model via incremental active learning, which is referred as “IAL-TP”. In
this method, we utilize a simple and effective strategy to evaluate the candidate
data samples and then select the more valuable and representative samples. An
active set is determined by our proposed strategy such that both noisy and redun-
dant samples are not selected. The active learning strategy is implemented iter-
atively to improve the generalization ability of the model. Experimental results
on benchmark public datasets demonstrate that our model is able to achieve bet-
ter performance than state-of-the-art methods with only a small fraction of the
training data.
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1 Introduction

Future path prediction, which aims at forecasting the future trajectories of multiple
agents in the next few seconds, has received a lot of attention in the multimedia
community [27,32]. This is a fundamental problem in a variety of applications such
as autonomous driving [7], long-tern object tracking [21], monitoring, robotics, etc.
Recently, Recurrent Neural Network (RNN) and its variants, such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU), have demonstrated promising per-
formance in modeling the trajectory sequences [1,14].
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Trajectory prediction is difficult because of its intrinsic properties: (1) The pedestri-
ans walking in public often interact with each other and will change the walking paths to
avoid collision or overtaking. (2) The pedestrians may follow several viable trajectories
that could avoid collision, such as moving to the left, right, or stopping. Because of these
properties, some trajectory prediction methods are proposed by modeling social inter-
actions [1,11,23,35]. Some methods include additional surrounding semantics maps
into their model such that the predicted trajectories will comply the restrictions in the
maps [13,25,26]. Given the observed trajectories of agents in a scene, a pedestrian may
take different trajectories depending on their latent goals. Because of future is uncertain,
many researches focus on multiple future trajectory prediction [11,14,18]. Some recent
works also proposed probabilistic multi-future trajectory prediction [23,28], which pro-
vide very useful quantity results. Moreover, some vision-based trajectory prediction
methods apply raw camera data and LiDAR point cloud data directly for interaction
modeling and trajectory prediction [12,22].

In practice, one can drive a car with a LiDAR [17] or use overhead surveillance
cameras on open road to collect as many as possible trajectories of the road users.
However, not all trajectory data are helpful in training a robust and accurate prediction
model. Some observed trajectories are noisy because of the car movements in some
scenes are relatively simple where the road users are moving at constant speeds. In this
study, we propose a data efficient trajectory prediction active learning method through
the selection of a compact less noisy and more informative training set from all the
observed trajectory data. To the best of our knowledge, it is the first time considering
the trajectory prediction problem from the perspective of trajectory samples. The main
contributions of this study are summarized as follows.

– This study proposes a simple and efficient active learning strategy, which could
remove noisy and redundant trajectory data for a compact and informative training
set. The storage and computation costs at training stage are greatly reduced.

– Our proposed method could actively learn the streaming trajectory data incremen-
tally and efficiently, which is the first work that consider the value of trajectory data
in trajectory prediction task.

– Our proposed active prediction method is able to achieve better performance than the
previous state-of-the-arts with much smaller training dataset on five public pedes-
trian trajectory datasets.

2 Related Work

With rapid development of deep learning, various methods have been proposed. Social-
LSTM [1] is one of the earliest methods of applying Recurrent Neural Network
for pedestrian prediction. In Social-LSTM, a pooling layer is designed for sharing
human-human interaction features among pedestrians. Later work [4,19,30,34] fol-
lowed this pattern, design different approaches for delivering information of human-
human interactions. Instead of making only one determined trajectory of each pedes-
trian, Generative Adversarial Networks-based (GAN) methods [2,9,13,16,25,29] has
been designed for multiple plausible trajectories prediction. Moreover, auto-encoder-
based methods [5,20] have been developed for encoding important features of pedes-
trians and then making predictions with a decoder. Due to the big success of
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Fig. 1. The structure of our proposed IAL-TP model. At first, the model is initialized with samples
from the base pool. At each iteration, a subset is selected out of the candidate pool based on the
model inference and then added into the active set. Once the number of trajectory samples in
active set meets the requirement, retrain the model with samples from the collected active set.

Transformer structure [29] in sequential processing [6]. Recent works [10,33] seek to
utilize this structure for pedestrian trajectory prediction and achieve competitive per-
formance. However, these methods roughly utilize all the available trajectory data to
attempt to understand the movement pattern for future trajectory prediction. We argue
that not all available data are useful or meaningful during training and blindly using
such large amount of data could damage the performance of models, not to mention the
expensive computation and time costs.

3 Model

In this section, we first give the problem definition and then detailed introduce our
proposed model. The pipeline of our IAL-TP method is illustrated in Fig. 1.

3.1 Construct Two Pools

In real-world applications, trajectory data are easy to be collected automatically by
sensors such as LiDAR and cameras. Previous methods save all the collected trajec-
tories and then train their models on the collected data. However, the raw trajectory
data are noisy and redundant and it is unnecessary to save and train all the collected
data. Some collected trajectories fluctuate drastically with time and some trajectories
are straight lines with constant speeds. The fluctuation trajectories are noisy and the
straight trajectories with constant speeds are redundant and too easy for the predic-
tion model. To address this issue, we begin with constructing two non-intersect pools,
a base pool Pb only with a small amount of trajectory data for model initial learn-
ing, and a candidate pool Pc with the remaining trajectory data for incremental active
learning. Following the above problem formulation, the whole training trajectory data
is Γ obs = {Γ obs

i |∀i ∈ {1, 2, ..., N}}, define the base pool Pb = {Γ obs
j |∀j ∈ Sb},

the candidate pool Pc = {Γ obs
k |∀k ∈ Sc}, where Sb and Sc are two disjoint subsets
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Algorithm 1. Incremental Active Learning

Input: Untrained model M0, whole trajectory data Γobs.
Input: Hyper-parameters: λ%, p%, learning rate, etc.
Output: Trained model Ma.
1: Construct base pool Pb and candidate pool Pc following the percentage λ%.
2: Train an initial model Mb using the trajectory samples of base pool Pb.
3: Define an active setPa = ∅. DefineNa is the number of trajectory samples ofPa. Calculate

the expected number N̂a of trajectory samples with Equation 1.
4: while Na ≤ N̂a do
5: Infer all trajectory data in candidate pool Pc through model Mb.
6: Select a subset ΔPc from Pc based on our incremental select strategy.
7: Fine-tune model Mb with the subset ΔPc.
8: Pc ← Pc − ΔPc, Pa ← Pa ∪ ΔPc.
9: Update Na.
10: end while
11: Train model M0 with the active set Pa until convergence is realized.
12: return Trained model Ma.

and Sb ∪ Sa = {1, 2, ..., N}. We randomly select λ% trajectory data from the whole
training data as the base pool Pb and we set λ = 5 in our work.

3.2 Incremental Active Learning

Instead of learning from whole trajectory samples, we propose an active learning
method to incrementally select partial “worthy” trajectory data from candidate pool
merging in the active set Pa, and then utilize these more valuable samples for model
learning. Denote we expect to select p% trajectory samples from candidate pool, N̂a is
the expected number of trajectory samples of active set, which is defined as follow:

N̂a = p% × N (1)

At each iteration, we infer all the trajectory samples from candidate pool Pc and rank
these samples base on their inference errors, and choose the median ones as the subset
ΔPc. According to [3], the larger the error, the more noise the sample will have, the
smaller the error is, the easier the sample can be learned. Therefore, our proposed select
strategy is to select median trajectory samples merging in the active set. These median
samples have less noise, and at the meantime, they are more representative than those
with smaller error. In the experiments, we have explored different select strategies to
shown the effectiveness of our proposed selection. Note that the subset will be removed
from the candidate pool once selected. We iterate the above selection steps until the
number of active set Na equals to N̂a. The overall incremental active learning method
is illustrated in Algorithm 1 followed with detailed explanation.

Beginning with the untrained model M0, whole observed trajectories Γobs, and
hyper-parameter λ%, we firstly construct the base pool and candidate pool (line 1),
and then train an initial model M b with trajectory samples from base pool Pb (line 2).
Before starting iteration, we define an empty active set Pa, and calculate the number
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Table 1. Experimental results of our proposed IAL-TP model with different p%. We use four
different p% to evaluate the influence of different numbers of trajectory samples that participate
in the model training phase.

Performance (ADE/FDE)

ETH HOTEL UNIV ZARA1 ZARA2 Average

p% = 100% 0.56/1.06 0.52/0.91 0.57/1.20 0.41/0.90 0.33/0.74 0.48/0.96

p% = 50% 0.56/1.04 0.42/0.89 0.59/1.29 0.42/0.89 0.35/0.76 0.46/0.95

p% = 33% 0.69/1.20 0.52/1.04 0.63/1.33 0.46/1.00 0.40/0.86 0.54/1.09

p% = 25% 0.75/1.25 0.60/1.18 0.63/1.34 0.56/1.17 0.39/0.85 0.59/1.16

Na of the trajectory samples in Pa. Also, we calculate the expected number N̂a of
trajectory samples for final model learning (line3). At each iteration, we first inference
all the samples of the candidate pool through model M b and obtain the errors of these
samples (line 5). Then, we select a batch of samples with median errors as the subset
ΔPc from the candidate pool (line 6). Afterwards, the model M b is fine-tuned with the
subset ΔPc to ensure the model learn well on this subset, and thus avoid selecting sim-
ilar samples at the next iteration (line 7). Finally, we update the Pc, Pa, and calculate
the new number Na in Pa (line 8, 9). When the number Na equals to our expected
N̂a, the iteration is finished, and we obtain an active set Pa within more valuable and
representative trajectory samples. We retrain the model M0 with the active set until
convergence is realized to return the final model Ma.

3.3 Backbone for Prediction

In order to make accurate trajectory predictions, we utilize our previous state-of-the-art
framework [31], which is able to extract global spatial-temporal feature representations
of pedestrians for future trajectory prediction.

4 Experiments

We demonstrate the experimental results on two public datasets: ETH [24] and
UCY [15]. We observe 8 frames and predict next 12 frames of trajectories.

4.1 Evaluation Metrics

Similar with other baselines, we use two evaluation metrics: Average Displacement
Error (ADE) and Final Displacement Error (FDE).

4.2 Data Efficiency and Model Robustness

In our work, the most important hyper-parameter is the percentage p% denoting the
number N̂a of trajectory samples in the active set. The number N̂a represents the num-
ber of trajectory samples that are learned by the model at the training phase. Note that
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Table 2. Experimental results of baselines compared to our proposed model. Original Social-
STGCNN model is a probabilistic model and we try our best to adapt it to a deterministic model.

Method Performance (ADE/FDE)

ETH HOTEL UNIV ZARA1 ZARA2 Average

Linear [1] 1.33/2.94 0.39/0.72 0.82/1.59 0.62/1.21 0.79/1.59 0.79/1.59

Social-LSTM [1] 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54

Social-GAN [11] 1.13/2.21 1.01/2.18 0.60/1.28 0.42/0.91 0.52/1.11 0.74/1.54

TPNet [8] 1.00/2.01 0.31/0.58 0.55/1.15 0.46/0.99 0.33/0.72 0.71/1.08

TF-based [10] 1.03/2.10 0.36/0.71 0.53/1.32 0.44/1.00 0.34/0.76 0.54/1.17

Social-STGCNN* 0.98/2.10 0.54/1.10 0.57/1.20 0.46/1.00 0.37/0.78 0.58/1.24

IAL-TP (Ours) 0.56/1.04 0.42/0.89 0.59/1.29 0.42/0.89 0.35/0.76 0.46/0.95

Fig. 2. Model performance versus part of the training trajectory samples. The x-axis shows the
percentage of trajectory samples used. The y-axis shows the corresponding ADE/FDE error.

p% = 100% means all trajectory samples are used in the candidate pool for model
learning, which is the same with the existing baselines. Table 1 shows the performance
of our proposed model with different p%.

We can observe that when p% = 50%, namely using only half of the trajectory
samples from the candidate pool, our proposed IAL-TP model achieves the best per-
formance with the smallest error. It indicates that there are a lot of redundant trajectory
samples in the datasets and it also validates the necessity of our proposed active learn-
ing idea. In specific, the ADE error on dataset ETH is the same with the result with
p% = 100%, the ADE error on dataset HOTEL with p% = 50% outperforms the result
with p% = 100% by 19.2%, which is a significant improvement. One possible reason is
that the datasets ETH and HOTEL are relatively more crowded than other datasets [1].
It reflects that with more training data, active learning is more necessary and effective.

For comparison, Fig. 2 demonstrates the results of several existing methods with
part of the training trajectory samples. Note that the original Social-GAN [11] and
Social-STGCNN [23] are two probabilistic models, and we adapt them to determin-
istic models. We can observe that our model consistently outperforms the Social-GAN
and Social-STGCNN models on both ADE and FDE metrics with shrinked training
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Table 3. Experimental results (ADE/FDE) of our proposed IAL-TP model with three different
strategies, “Max”, “Median”, and “Min”.

Select strategy Performance (ADE/FDE)

Average

Max 0.52/1.06

Median 0.46/0.95

Min 0.54/1.11

trajectory data. In addition, with the same increase of p%, our model has the least
reduction on both ADE and FDE metrics, which validates the robustness of our pro-
posed model. Note that without any specific indication, we set p% = 50% in following
sections.

4.3 Selection Strategy

In order to validate the effectiveness of our proposed “Median” selection strategy (intro-
duced in Sect. 3.2), we design two others election strategies for comparison. One strat-
egy is to select the samples with the largest error, which is referred as “Max”, the other
strategy is to select the samples with the smallest error, which is referred as “Min”.
Table 3 shows the results of three different select strategies. We can observe that the
“Median” select strategy outperforms other strategies. This proves that samples with
median inference errors are more representative. As discussed in Sect. 3.2, samples with
larger error are more likely to have noise, which have negative influences on model
learning. In addition, samples with smaller error are more likely to be too “easy” for
model learning, namely these samples are less valuable. Thus our proposed “Median”
select strategy is more appropriate while seeking the “worthy” trajectory samples.

4.4 Quantitative Analysis

Table 2 shows quantitative results of our proposed model and baseline. Overall, IAL-TP
model outperforms all the baselines on the two metrics with only half of the training
trajectory samples. The ADE metric improves by 14.8% compared to TF-based and the
FDE metric improves by 12.0% compared to TPNet. In specific, the ADE error of our
IAL-TP model on dataset ETH is 0.56, significantly improving by 42.8% compared to
Social-STGCNN, the FDE error is 1.04, significantly improving by 48.3% compared
to TPNet. It validates the necessity of our active learning idea in the pedestrian trajec-
tory prediction problem. Additionally, it also validates the active set selected by our
proposed strategy is a small but compact and representative training set.

5 Conclusion

In this paper, we propose a novel trajectory prediction model via incremental active
learning (IAL-TP). In this model, we design a simple and effective method to itera-
tively select more valuable and representative trajectory samples for model learning,
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which can filter out noisy and redundant samples. This incremental active learning
method greatly improves the generalization ability and the robustness of the model.
Experimental results on five public datasets validate the effectiveness of our model.
Additionally, it can achieve better performance than the state-of-the-art methods with
only a small fraction of the whole training data.
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