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Abstract. In spite of the advancement of generative models, there have
been few studies generating objects in uncontrolled real-world environ-
ments. In this paper, we propose an approach for vehicle image genera-
tion in real-world scenes. Using a subnetwork based on a precedent work
of image completion, our model makes the shape of an object. Details
of objects are trained by additional colorization and refinement subnet-
works, resulting in a better quality of generated objects. Unlike many
other works, our method does not require any segmentation layout but
still makes a plausible vehicle in an image. We evaluate our method by
using images from Berkeley Deep Drive (BDD) and Cityscape datasets,
which are widely used for object detection and image segmentation prob-
lems. The adequacy of the generated images by the proposed method has
also been evaluated using a widely utilized object detection algorithm
and the FID score.
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1 Introduction

Most of the recent advances of object generation models [1,6] often implicitly
assume some rules when learning a domain such as aligned components and
fixed location of an object. To compose an image and arrange objects in a non-
trivial location, several works have used the semantic layout to transform it
into an image of a real scene. One of the frequently used datasets in this task
is Cityscape [3] which includes road scene images with pixel-wise annotations.
Many researchers have made remarkable progress and succeeded to generate a
realistic synthetic image using a semantic layout [2,10,13]. Using these tech-
niques, Hong et al. [8] has proposed a method that can generate an object in an
arbitrary location assigned by a user using a semantic layout. However, training
a model and synthesizing an image using the semantic layout is an inefficient
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method since making a pixel-wise annotation requires a lot of time and human
effort. Demand for an inexpensive annotation in computer vision tasks is being
raised steadily and one example is the weakly supervised object localization
which tries to localize images only using image-level labels [17].

Meanwhile, image completion is the task of filling a missing area in an image.
Research using convolutional neural networks(CNN) has made a breakthrough
in this field by making the models learn features around the deleted area [9,12].
Based on the clues given around the deleted area such as the corners of the table
or the bottom side of the window of a house, models are able to complete the
image naturally. However, with no other condition given, generating an object is
impossible if no clue is given outside the deleted area. Also, they usually fail to
complete some complicated texture such as the face of a human or a portion of
animals. Training these models with a single object category, they are capable
of making the coarse outline of the object but lack details when not enough
clues from its surroundings are given. Since the appearance of the objects in
image inpainting problems is not consistent like the images of MNIST or Celeb,
image inpainting methods highly rely on the reconstruction loss rather than the
adversarial loss which makes the object sharper. For this reason, the existing
inpainting methods are very hard to generate a sharp image with an object
inside.

In this paper, we propose a method to generate vehicles in given locations,
which understands typical appearances of vehicles but with various orientations
and colors. With a box given at an appropriate location with an appropriate
size, our model can generate learned objects inside. The generated cars suit the
surrounding background and even complete occluding objects ahead. Note that
all we need to generate an object is just a box annotation while many other
works in image translation require a segmented target map to transform it into
a realistic image. Our proposed method simply needs a rectangular-shaped mask
to generate a vehicle, regardless of the location it is placed. For this purpose,
we utilize Berkeley Deep Drive (BDD) dataset [14] which contains box annota-
tions around the objects in the images. It is widely used for the tasks of object
detection and image segmentation. By training the car areas annotated in the
BDD dataset, we can generate a vehicle that goes well with its surroundings in
an arbitrary location. The contributions of this paper are as the followings:

– We propose a method that generates a vehicle object in an image that goes
well with the background.

– Unlike other methods using pixel-wise annotated information, only box anno-
tations are used as a given knowledge.

– Our method is capable of generating vehicles over an empty road image as
well as substituting the existing vehicles.

2 Related Works

In order to synthesize a lifelike image, many researchers utilized label maps or
contours as a guide to generate a real image. Isola et al. [10] proposed a method
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to transform any kind of blueprint into the desired output using GAN. Chen
et al. [2] adopted a feature learning method by defining layer-wise losses. This
enabled transforming a high-resolution semantic layout into an actual image.
Patch-based methods such as the work of Wang et al. [13] enabled high-quality
image translation with an image size more than 512 × 512. Generating objects
in locations decided by a user has been possible in the work of Hong et al. [8]
using generative adversarial network. However, input layouts used in all of these
methods are expensive to prepare in real-world since they should be annotated
pixel-wise, which requires much more cost than just annotating bounding boxes.

Studies trying to generate more complicated context using clues in the image
have been proposed recently. Image completion is the task of filling an appropri-
ate image segment into a vacated region of a real-world image. The model must
learn to paint the image through the blank area. For example, in an image of
a building, the corner of a window is removed and then the model must fill it
up with glass and bricks aside. Coming to an image of a human face, one of the
eyes or the nose is erased and the network recovers it in a natural form.

The Context Encoder (CE), an early work of image completion using a neu-
ral network [12], has been proposed for this problem. Using a channel-wise fully
connected layer between an encoder and a decoder, CE roughly generates pix-
els in the image using the encoder features. The work of Iizuka et al. [9] has
approached this problem using dilated convolutions and a specific type of dis-
criminator. The dilated convolution acts just the same as the original convolution
except that the filter is applied to the feature skipping a few pixels or more. This
derives the expansion of the receptive field without loss of resolution. Although
both approaches can recover the missing parts of an image, it is impossible to
generate a whole object. Even if trained only with a particular object, the result
still suffers from poor performance. This is because the model bumbles among
many choices of how the object will be generated. Since the completion model
can predict the shape and surrounding context roughly, we use it as a primary
module of our method.

3 Approach

In this paper, we assume that every object can be expressed using two traits,
shape and texture. Our method consists of two consecutive networks learning
each of these properties (Fig. 1).

3.1 ShapeNet

As we assume that the segmentation layout is not given, we adopt an image
completion model which understands the surrounding texture around the erased
area. The architecture used in our ShapeNet (Snet) is the same as the work of
Iizuka et al. [9]. Snet maintains the feature resolution at a certain level rather
than going down to a vector-level representation, which is just a quarter of the
original image size in our case. For the image completion task, the information
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Fig. 1. Overall architecture. The top-side of the figure shows the Snet and the bottom-
side shows the Tnet which is composed of Tcolor and Trefine. Transposed convolutional
layers are used to recover the resolution of Îcolor.

from the features nearby is more important. Therefore, decreasing the resolution
only to half is adequate to fill the blank area. Also, to extend the receptive
field of the features in each layer, dilated convolution [15] is used in the middle
of the network. In this way, the network can reflect the information not only
from the pixels adjacent to the blank area but also from those far away. This
highly encourages the network to decide how the object should be placed and
how the occluding object should be completed. At the end of the Snet, the
network reconstructs the gray-scaled image of the original input so that the
model concentrates on constructing the pose and shape of the generated object,
not the color or details of the context. The detailed procedure of Snet can be
summarized as follows:

Îgray = S([I ′;M ]). (1)

Here, I ′ represents the image of which an area corresponding to the mask M has
been removed and S(·) denotes the Snet. Note that the mask M is not a segmen-
tation layout but a rectangular binary map which corresponds to the bounding
box of the object. The encoding step includes 2 steps of downsampling and 4
types of dilated convolution (rate = 1, 2, 4, 8). The decoding step upsamples
the features into the original scale using transposed convolutional layers. Pixels
outside the generated region are preserved as we do not wish any change outside
of the box. After the Snet generates an image, only the region inside the box
is combined with the stored background pixels. By doing this, only the change
that occurred inside of the box is taken into consideration. The Snet is trained
to minimize the L1 distance between the synthesized grayscale image Îgray and
the original gray scale image Igray as in (2). The Snet is trained individually
beforehand.

LS = ‖Igray − Îgray‖1. (2)

3.2 TextureNet

Complicated visual properties of real objects often disrupt the learning of gener-
ative models. In the problem settings of this paper, the overall structure and the
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detailed texture including colors can be difficult to depict by a single generator.
When it comes to generating a car, details such as headlights, taillights, or the
windshield of a car may vary a lot. If the Snet makes a rough sketch, the Tex-
tureNet (Tnet) adds details by painting colors on the sketched grayscale image
and refines it. We have adopted the architecture in [16] which was used for a
colorization task. The Tnet can be summarized as follows:

Îcolor = Tcolor(Ipgray, I
′) (3)

Î = Trefine(Îcolor) (4)

LT = CrossEntropy(I, Îcolor) + λ‖I − Î‖1. (5)

Tnet is divided into two components: Tcolor(·) which paints colors on the gray
patch image Îpgray and paste it back to the masked image I ′, and Trefine(·) which
corrects the details of the colorized image Îcolor as in (3) and (4), respectively.
After the Tcolor classifies the color classes of all pixels, the colorized image of
Îgray is pasted back to I, which produces Îcolor. We crop the patch image Ipgray =
Crop(Igray,M) where the object is to be generated since the remaining region
does not need any colorization nor manipulation. In the Tnet, Tcolor in (3) learns
the color distribution of cars in detail. As in [16], Tcolor predicts the values of each
pixel in the CIELab color space. Since the grayscale image corresponds to the
lightness L, the model should predict the remaining a and b values. A pretrained
VGG-19 network is used to extract features from the gray image. After that, a
1 × 1 convolution filter outputs a tensor with a depth of 313. Dividing the ab color
space into 313 bins, the Tcolor turns the colorization problem into a classification
problem which is much easier than directly generating images having various
occlusions and a wide color variation. The cost is calculated by the cross-entropy
function between the output and the Lab-encoded ground-truth values as in the
first term of (5). The color is painted solely on the patch image, which can
be awkward when the patch is pasted back to the original image. Therefore,
we use an additional network module Trefine that encourages the object to
get along with the surroundings of the image. Using the same structure with
the Snet highly sharpens the blurry results of colorized images and adaptively
optimizes the colors of the neighboring objects such as occluding cars, road
segments or parts of buildings. This module is trained adversarially using a
global-local discriminator along with a reconstruction L1-loss as shown by the
second term in (5). The value of λ is set to be 0.5 in our work. The colorization
network offers important clues for the refinement network such as the location
of taillights and the rear window, helping the refinement network concentrate on
polishing the details.

3.3 Global-Local Discriminator

A global-local context discriminator is used to train our model in the same way
as in [9]. The overall discriminator D consists of one global discriminator Dglobal

and one local discriminator Dlocal. The global discriminator takes the entire
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Fig. 2. Results from our method and the baseline [9]. From top to bottom, 1) completed
gray-scaled results of Snet, 2) results colorized by Tcolor, 3) final results of Tnet after
refinement, and 4, 5) results of the baselines. Compared to the results of the baselines,
our model depicts the details better since the refine module of Tnet can produce elab-
orate outputs. To present how well our method performs by itself, no post-processing
is applied to all results.

image I (real) or Î (generated) as an input and the local discriminator takes the
patch image Ip or Îp inside the annotated box from the respective image I or
Î. The size of the patch image is normalized to 64 × 64 by ROI-pooling. Each
discriminator is followed by a fully connected layer. After that, both features are
concatenated into a single vector and then processed by a single fully connected
layer. A sigmoid output produces an outcome which is trained to correctly decide
whether the given image is real or completed by the model. This encourages the
model to depict sophisticated details of the object. The discriminator D and
Trefine are trained in an adversarial way as follows:

min
Trefine

max
D

(EIp,I∼Pdata
[log(D(Ip, I))]

+ EÎcolor∼PTcolor(Îgray)
[1 − log(D(Îp, Î))]) (6)

We may consider the colorized image input Îcolor from the Tcolor as a noise.
This allows our model to be trained adversarially.

4 Experiments

4.1 Vehicle Generation Subject to the Surroundings

Among various objects, we have chosen to specifically concentrate on the car
which has more clear visibility compared to other objects in the data. BDD100K
is a dataset including videos filmed by running cars [14]. After resizing the res-
olution to 320 × 180 for the stable training, boxes sized under 10 pixels either
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Fig. 3. Generating vehicles on empty roads. Target regions where the vehicles are to
be generated are marked by red rectangles in the first row. With proper boxes given,
both the baselines and our method draw vehicles inside. (Color figure online)

Fig. 4. Our results generated over the Cityscape dataset. The red arrows indicate where
the vehicles are generated. (Color figure online)

horizontally or vertically are excluded in the training since they are so small that
it is hard to acknowledge them as cars, which makes it meaningless to generate
them. Also, a large vacated area is known to be hard to fill by the image comple-
tion frameworks. Therefore, we exclude boxes bigger than 64×50 since both the
baseline and our method show poor results on them. We evaluated our trained
model by generating vehicles on test images of BDD100K dataset. Since there
is no other research generating an object in a given position only using the box
annotation, we set the research of [9,11] used in the image completion problem
as the baseline models. As the image completion problem is quite similar to our
problem, the baseline holds the capacity to generate objects if trained properly.
Instead of vacating a random region of the image, we only deleted the region
where a vehicle exists and regenerated a new vehicle. As the baseline models only
witness particular appearances, this makes them possible to generate an object,
though they fail to express the details of objects as explained in this paper.

Some results of [9] are shown in the fourth row of Fig. 2. Cars generated at the
center of the images mostly show their backside since most of the cars are running
forward. For the boxes located between the road and the sidewalk, the cars
are generated slightly askew as the camera usually shoots them in the diagonal
direction. The overall appearances of all results resemble the real vehicles but the
details such as taillights and wheels lack delicacy. Despite using the global-local
discriminator described in Sect. 3.3, the baseline model generates blurry results.
Excessive abuse of adversarial loss easily corrupts the model and impedes the
training, which is why we mitigated the problem by our method. Results from
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the work of [11], the last row in Fig. 2, are considerably poor compared to other
methods. Using the perceptual loss introduced by Gatys et al. [5], the model
produces reasonable background segments and makes an appropriate outline of
a vehicle. However, the texture inside is quite noisy, which seems to draw cars
inside a car, which are hard to be perceived as cars. The third row of Fig. 2 shows
some results of our method. In our method, the outline of vehicles is clearly
visible and parts such as the taillights and wheels are described delicately. Also,
the texture around the generated car suits the surrounding background. The
paved roads are naturally connected at the bottom side with shadows shaded
by the body of the vehicle. Furthermore, the model can recognize a building or
a bush behind and reflect it in the background. Especially, for the cars tailing
back aside from the road, the generation of an occluding car ahead is possible
(see the third column in Fig. 2).

Although not presented in this paper, we also have tried to use the refine
network module (Trefine) directly after the Snet producing colorized images
instead of black and white images. However, the adversarial loss easily corrupts
the model making the images unrecognizable. In Fig. 2, the results of Snet (the
first row) and Iizuka et al. (the fourth row) are similarly blurry and incomplete.
Adding clues of texture by colorization (the second row) highly helps the training
of Trefine in which the adversarial loss is dominant. Also, while Tcolor focuses
on painting the vehicle regardless of its surroundings, Trefine makes up for the
inconsistent surroundings.

4.2 Vehicle Generation on an Empty Road

After training the model, we experimented with the situation in which our model
generates cars at given locations where no car existed in the original images,
which is the eventual objective of this paper. Images of the road with no cars
on it are chosen, which would have been never used in training since it has no
annotation box on it. Figure 3 shows the results of how well our method generates
objects on empty roads where we asked it to. Given a reasonable location, the
model is capable of generating a car with a random context. Especially, our
method shows a remarkable performance when it comes to generating a car
parking alongside the road.

4.3 Vehicle Generation on Cityscape Dataset

To show that our method is not restricted to the dataset it is trained on, we
apply our network trained by BDD to generate cars on images from the Cityscape
dataset [3]. Since, both of the datasets contain road scene images in the view
of the drivers, the perspective and overall aspects are quite similar except that
BDD is taken in the U.S.A and Cityscape in Germany. Figure 4 shows the results
of our model applied to the Cityscape dataset. Without the red arrow indicating
the generated vehicle, it is difficult to recognize which one is the generated vehicle
at one glance.
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Fig. 5. Detection results of generated objects. Boxes in purple show the detection result
of SSD. The top row shows the generated sample that our method succeeded to deceive
the detector to perceive it as a vehicle while the baseline failed and the second row
shows the case where both methods deceived the detector in spite of the poor quality
of the baseline. In spite of our far better quality, SSD occasionally detects the deformed
results of the baseline as a car. (Color figure online)

4.4 Effectiveness of Using Texture Net

Bringing the global-local discriminator to the end of Snet and changing the out-
put dimension to RGB channels is equivalent to the work of [9]. Though we have
shown the qualitative improvement in the figures above, we report an additional
numerical comparison to prove the effectiveness of Tnet. For a fair evaluation of
how much our TextureNet contributes to the training, we apply the Single Shot
multibox Detector (SSD) [18], a widely used object detection algorithm, to the
images generated by our method and the baseline [9]. Vehicles from the original
images are substituted by both methods. If objects are generated properly, the
detector should be able to locate them in the image, meaning that the generated
objects are assumed to be sampled from the data distribution it is trained.

Table 1. Object detection score (recall in %) when Tnet is additionally used (Ours) or
not (Baseline). Single Shot multibox Detector(SSD) [18] is used to evaluate how well
the objects are generated. Weights of SSD are pre-trained using PascalVOC dataset.
We only report the recall score at the target region since vehicles outside are not under
consideration.

Method Confidence threshold

0.12 0.3

Original BDD 87.42 78.59

Baseline (Iizuka et al.) 63.35 50.23

Ours 73.12 60.24
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Table 2. The FID scores of the methods used in this paper. Only the generated region
is used for the evaluation since the rest of the area is not synthesized.

Method FID score

Iizuka et al. 112.3

Liu et al. 50.54

Ours 41.04

Our model and the baseline [9] have been trained using the training data
in BDD100K and the evaluation has been carried out with the validation data.
Since only the object to be generated is under consideration, vehicles detected
outside the generated region are ignored. Therefore, we only evaluate the recall
of SSD, which is the ratio of whether the detector finds the generated object
or not. In the dataset, there are a total of 6,020 vehicles to recall that satisfy
our size constraints. Since the detector is trained using PascalVOC dataset [4],
it is fair enough to compare the baseline and our method applied to BDD100K
dataset.

Table 1 shows the recall scores of SSD on BDD dataset. For the original BDD
images, SSD detects vehicles in the box area at a rate of 78.59% using the confi-
dence threshold of 0.3 and 87.42% using the confidence threshold of 0.12 as shown
in Table 1. In both class confidence score thresholds, our method highly precedes
the baseline by about 10% points. Additionally, we analyze the detection result
of which the threshold is 0.12. Samples, which our method successfully makes
the detector perceive as vehicles while the baseline fails to, occupy 17.24% while
the opposite case records 7.47%. One example of this case is shown in the top
row of Fig. 5. Meanwhile, though both methods successfully deceive the detec-
tor in many cases, quite a lot of samples generated by the baseline suffer from
a qualitatively poor performance. This case is presented in the bottom row of
Fig. 5. Considering that some ambiguous results from the baseline are occasion-
ally detected by the detector, we expect that the performance of our method
would be rated higher if evaluated by a qualitative metric.

4.5 Measuring Generation Quality

Frechet inception distance (FID) score [7] is a measure frequently used to eval-
uate the generation quality of generative models. Using a pre-trained Inception-
V3, FID compares the statistics of generated images to the real ones.

In Table 2, we assess the quality of images generated by each method. Images
from [9] roughly have the appearance of vehicles but record the worst FID score.
This attributes to the abstractly depicted context of each vehicle. The work of
Liu et al. shows an intermediate level of FID score. Though the silhouette of the
generated sample resembles the vehicle, the texture inside is rather a noise which
causes an increase in the FID score. Our method has the lowest FID score, which
means that our method generates samples that have the most similar distribution
to that of real samples.
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Fig. 6. Failure cases. On the first row lie some single channel outputs of Snet and on
the second row lie the corresponding 3-channel outputs of Tnet.

5 Discussion

The object detection dataset includes annotations indicating the location where
the car exists, not where the car may be. This enforces us to give the model a box
at a reasonable position manually. Although the most important merit of our
method is that we only use a box annotation to generate a vehicle, the necessity
of giving a box candidate still remains. For example, with a box given upon a
building, the model would still try to generate a car even if it is nonsense. With a
highly predictive scene understanding model that can suggest the location where
the vehicle may be, we expect a fully automated vehicle image augmentation
would be possible. Also, wide boxes, which correspond to the cars near the
camera, usually fail to be filled, which is the drawback of the image completion
models. A portion of the car may lie outside the camera angle and this will go
against the overall aspect of trained objects. Some of the failure examples are
given in Fig. 6.

6 Conclusion

We tackled a problem to generate vehicles at designated locations over images
of real scenes. To solve this problem, we used an architecture composed of two
subnetworks which generate the shape and the texture of the vehicle respectively.
The Snet roughly completes the shape of the car according to the surroundings
while the Tnet decides the details of the generated vehicle resulting in a better
generating performance. Consequently, our method can generate objects going
well with the surroundings in arbitrary locations. This is highly expected to be
foundation research for image augmentation research.
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