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Abstract. Crowd flow prediction is of great significance to the con-
struction of smart cities, and recently became a research hot-spot. As
road conditions are constantly changing, the forecasting crowd flows
accurately and efficiently is a challenging task. One of the key factors
to accomplish this prediction task is how to temporally and spatially
model the evolution trend of crowd flows. In previous works, captur-
ing features is carried out mainly by utilizing the structure based on
a recurrent neural network which is effective to capture temporal fea-
tures from time sequence. However, it is inefficient for capturing spatial-
temporal features which is critical for the prediction task. In this paper,
we develop an elementary module, a 3D convolution layer based on the
self-attention mechanism (3DAM), which can extract spatial features
and temporal correlation simultaneously. Our proposed spatial-temporal
attention 3D convolution prediction network (STA3DCNN) is composed
of 3DAMs. Finally, we conduct comparative and self-studying exper-
iments to evaluate the performance of our model on two benchmark
datasets. The experimental results demonstrate that the proposed model
performs effectively, and outperforms 9 representative methods.

Keywords: Crowd flow prediction · Spatial-temporal features · 3D
convolution neural networks · Self-attention mechanism

1 Introduction

Crowd flow prediction is of great significance for developing modern intelligent
transportation system (ITS) in smart cities. It aims to predict the changes of
crowd distribution in a certain period of time in cities according to the histori-
cal distribution of crowds. Accurate and real-time prediction of crowds plays a
guiding role in planning the vehicle trajectory, alleviating the crowd congestion,
and providing an assistant reference for road construction planning. However, it
is still a challenging task due to the difficulty of efficiently fitting the nonlinear
characteristics caused by the dynamic temporal and spatial changes of crowd
flow.
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Fig. 1. The left part of the vertical line shows the structure based on RNN, while
the right part is the 3DCNN diagram. 3DCNN is able to draw information by sliding
convolutional kernels along the time dimension.

In the past few years, many works have been presented on the task of crowd
flow prediction. Some traditional time series prediction algorithms and machine
learning algorithms have been applied, such as ARIMA [16], linear regression
[19], support vector regression [21], and Bayesian Analysis [20]. These mod-
els are simple and convenient to be deployed in the task, however, they are
not suitable for solving the problem possessing the nonlinear characteristic, e.g.
crowd flow prediction. With the rising of deep learning, those methods based on
deep neural networks (DNNs) with outstanding nonlinear fitting capability were
applied to the task of time sequence analysis. Recurrent neural network (RNN)
[7] is specially designed for time sequence prediction, and the networks are able
to achieve satisfying performance on processing sequential tasks [9,10,12,25].
However, the instability of crowd-flow data caused by dynamic changes in time
and space is difficult to be fully fitted by the RNN-based models. Moreover,
the said model is at the risk of vanishing gradient, which makes models hard to
be trained and converge. RNNs are implemented with a serial structure that is
appropriate to capture timing features via step-by-step iterations (as shown on
the left part of the vertical line in Fig. 1) whereas the serial structure is short in
the computational efficiency.

In our work, a 3D convolutional neural network (3DCNN) based on the self-
attention mechanism (SAM) is introduced to remedy the defect mentioned above.
As shown on the right part of the vertical line in Fig. 1, 3DCNN can extract tem-
poral features by sliding convolution kernel along the time dimension, while the
spatial feature can also be aggregated by the receptive field of convolution ker-
nels. It is more efficient to extract the spatial feature and the temporal features
simultaneously from dynamic crowd flows. In addition, 3DCNN can extract fea-
tures of the entire input time series using a short network connection, which
is utilized to alleviate the problem of vanishing gradient. Relying on the self-
attention mechanism, our model can build a spatial connection between two
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regions at a long distance, meanwhile, the temporal feature of the entire input
time sequence can be captured.

In this paper, we propose a spatial-temporal attention network based on
a 3D convolutional neural network (STA3DCNN) to predicting crowd flows.
The specific works of this paper include: i) We introduce 3DCNN and SAM to
solve the problem of crowd flow prediction. 3D convolution layer and SAM are
cascaded together as an elementary ingredient, 3DAM, which will be used to form
modules to extract the spatial-temporal feature from various scales. ii) In order to
capture the temporal feature sufficiently, we consider the feature in two modes
including the high correlation features of adjacent time and cyclical pattern
features in crowd flows. Then, we implement a network with two branches by
employing 3DAM, which aims to automatically capture the spatial-temporal
evolution features and the stable spatial-temporal cycle pattern features hidden
in crowd flows, respectively. iii) We implement a bi-modal fusion module (BFM)
to fuse evolution features and cyclical pattern features, and to accomplish the
final prediction. The results of the experiments prove that our fusion method
performs better than the baseline fusion method.

In summary, the main contributions of our work can be summarized as below:

1) We introduce 3DCNN and self-attention mechanism into the crowd flow pre-
diction framework. Our model can efficiently extract spatial-temporal fea-
tures.

2) We model crowd-flow data based on the time correlation and the cyclical
pattern, while a bi-mode features fusion module is designed to merge spatial-
temporal features of different modes.

3) We propose a crowd flow prediction model, STA3DCNN, and conduct exper-
iments on two benchmark datasets to demonstrate that our model is feasible,
efficient, and accurate on predicting the trend of crowd flows.

2 Related Work

In the past few years, a lot of works have been proposed on the task of crowd
flow prediction. Traditional prediction methods, including linear regression [19],
support vector regression [21], ARIMA [5], Bayesian model [20], are easily imple-
mented. However, the prediction accuracy of these models is hard to satisfy the
expectation, due to these models is not well fitted the nonlinear characteristic
of crowd-flow data.

In recent years, deep learning shows an outstanding ability to fit nonlinear
data and has the capacity on digging the latent information from data. Methods
built on deep learning have been successfully utilized in time series forecasting
tasks. LSTM [14] and GRU [3] have been used to extract temporal features for
crowd flow prediction. By modifying the LSTM cell, Liu et al. [11] introduced the
attention mechanism into the method and implemented an attentive crowd flow
machine (ACFM) which can adaptively exploit diverse factors affecting changes
in crowd flows. Do et al. [4] employed the attention mechanism to design a new
model which consists of an encoder and a decoder based on GRU. Inspired by
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densely connected networks, Xu et al. [22] used historically dense structures to
analyze historical data, and then used two serial LSTM units for the temporal
feature extraction and prediction.

The spatial feature is vital for predicting the trend of crowd flows. Graph
neural network (GNN) is a popular way to extract spatial features of crowd
flows [1,23,27]. In previous works, the transportation network can be considered
as a graph composed of nodes (areas) and edges (roads). For example, Zhao
et al. [27] integrated the graph convolution operation into GRU cells, and
extracted spatial information while performing time-dependent extraction.

Although many impressive works have been presented in the literature, there
is still a challenge to capture the dynamic temporal and spatial characteristics
of crowd flows regarding balance effectiveness and efficiency. In our work, we
propose a crowd flow prediction method based on DNNs, STA3DCNN, which
can capture spatial-temporal features effectively and efficiently.

3 Preliminary

In this section, we briefly introduce the data processing methods, preliminary
concepts, and the definition of the problem of crowd flow prediction.

Region Partition. Crowds may move from one area to another along the road
in a city, such as from residential areas to central business districts. Because
the city may contain hundreds of thousands of road links, modeling the changes
of crowd flow based on road links is too complicated to accomplish. Then, the
city can be partitioned into grids, and we analyze the crowd-traffic flow in each
grid. Similar to previous study [26], we divide a city’s road map into h × w
small areas along the longitude and the latitude, by which data can be easily
processed by models. We make a compromise between the calculation amount
and the prediction granularity in city partition, so that the regional crowd flow
density can be better modeled.

Crowd Flow Prediction Problem. We count the flow of people entering and leav-
ing each area within a period of time as the research object. Xd

t ∈ R2×h×w

denotes the change of crowd distribution at the time period t on day d, where
the 1st channel represents the inflow, and the 2nd one represents the outflow.
The task of crowd flow prediction is to estimate the quantity of crowd flows which
will enter and leave an area according to historical crowd-flow data. Then, the
problem of crowd flow prediction can be transformed into the below problem:
Given sequence [Xd

t−k,X
d
t−k+1, . . . , X

d
t−1] of previous k time slots, to predict the

crowd-flow map Xd
t at the tth time interval of dth day.

4 Methodology

Figure 2 shows the architecture of STA3DCNN which is designed from 3 perspec-
tives: 1) Regarding dynamic spatial-temporal features, we implement an elemen-
tary module, 3DAM, which is comprised of a 3D convolutional layer and SAM.
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Fig. 2. Overview of the spatial-temporal 3D convolutional neural network
(STA3DCNN).

3DAM can make the model pay more attention to the temporal feature among
closely correlated time steps and the spatial dependence hidden in highly relevant
regions. 2) 3DAM is used to form two modules which are the spatial-temporal
evolution feature extraction module (STEM) and the spatial-temporal cyclical
patterns feature extraction module (STCPM). The two modules work in a paral-
lel way to extract evolution features and cyclical pattern features, respectively. It
should be noticed that the spatial information can be implanted in features due
to the operation characteristics of 3DAM. 3) A bi-modal feature fusion and pre-
diction module (BFM) is implemented to merge the spatial-temporal evolution
feature and spatial-temporal cyclical patterns feature by BFM and accomplish
the final prediction.

4.1 3D Convolutional Neural Networks Combining
with Self-Attention Mechanism

3DAM aims to fully capture the temporal feature and the spatial features of
crowd flow. As shown in Fig. 3, 3DAM is composed of SAM and a 3D convo-
lutional layer. Different from RNNs which can learn the sequence information
according to the order of feeding data, the 3D convolutional network can not
completely model the sequential relationship implied in the whole input time
series. All of the temporal features are calculated within the receptive field of
the convolution kernel in parallel, however, the model is hard to distinguish the
temporal relationship between different feature channels. Hence, we implement
SAM to extract the feature of the sequential relationship. In addition, the spatial
feature between distant regions can be captured simultaneously by the module.

Here, SAM is expressed as

F seq
out = F seq

in · fsig(fup(fpool(F seq
in ∗ w1))) (1)

where F seq
in denotes the input of SAM, F seq

out denotes the output of SAM, w1

denotes parameters of convolution kernel with kernel size 3 × 3 followed by an
activation unit (ReLU), fsig denotes a sigmoid operation, and fup and fpool
respectively denote up-sampling operation and pooling operation with kernel
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Fig. 3. Overview of our elementary module 3DAM. The part surrounded with dash line
is the SAM, while the part 3DCNN accomplish the extraction of the spatial-temporal
feature.

size 4 × 4. By updating weights of the above structure, the spatial-temporal can
be captured, so as to extract effective information for crowd flow prediction.

Combining with a 3D convolutional layer, the module can be used to fully
extract the spatial-temporal features. 3DCNN can extract the dependence of
adjacent time through sliding convolution kernels along the time dimension.
By adjusting the size of the convolution kernel, the receptive field in the time
dimension is also changed. Then, with the 3D convolution kernel sliding along
the time dimension with various strides, we can extract features of different
time scales. The size of the convolution kernel in spatial dimension determines
its spatial receptive field which can promote the capability of 3DCNN to extract
spatial features by setting spatial receptive field. Thus, 3DAM can simultane-
ously capture temporal features and spatial features of crowd flows. We set the
3D convolutional layer with kernel size 2 × 3 × 3.

4.2 Spatial-Temporal Feature Extraction

As shown in Fig. 2, STEM and STCPM are utilized to extract the spatial-
temporal features. The two modules can model the change of crowd flow from two
various perspectives. The closer the data is in the time dimension, the stronger
the correlation is between the data. Then, STEM is designed to capture such
trends in short-term and features with high correlation. Moreover, people follow
a relatively fixed travel schedule during the day in urban. For example, crowd
flow has two traffic peaks in the morning and evening, corresponding to the
beginning and the ending of production activities. The distribution of crowd
flow can be guided by the changes of crowd flow in the same period dating back
to the past few days due to the cyclical change. STCPM can extract the pat-
tern features of this cyclical change, which can provide varying perspectives for
prediction.
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STEM. This module is implemented to extract evolution features of crowd flow
in a short period of time. Regarding the change of crowd flows is continuously
evolving with time, we use the crowd-flow data of several past and adjacent
moments as inputs of STEM. We utilize a series of stacked 3DAMs to capture
the evolutionary change. Crowd-flow data is firstly encoded by the embedding
module into 96 channels aiming to improve the diversity of feature expression.
Then, the dynamic spatial-temporal features of crowd flows are extracted by the
cascaded 3DAMs. The features of different time intervals have different implicit
associations with the current time features, and the self-attention module in
3DAM can aggregate features from the hidden relationship. Then, 3DCNN layers
are employed for spatial-temporal features extraction. The output of STEM,
FSTEM
out ∈ R96×h×w, encodes the spatial-temporal evolution features of crowd-

flow data.

STCPM. The module is used to extract cyclical patterns of crowd flows. Due to
the change of producing activities and daily life in the city, the spatial and tempo-
ral distribution of people’s travel trajectory often exhibit a certain regularity and
periodicity. Therefore, we set weeks as the cycle of the cyclical pattern, and we
acquire data at the same period of each day which is selected from the past more
than a week. The data can provide enough information for our model to capture
the cyclical pattern which varies from day to day within a cycle. The historical
data of the same period is firstly encoded by the embedding module aiming to
enlarge the amount of channels. We pass the encoded features through SAM to
automatically emphasize those features with higher similarity. Then, 3DCNN in
3DAM fulfills the extraction of spatial-temporal features from crowd-flow data.
The outputs of STCPM is denoted as FSTCPM

out ∈ R96×h×w which encodes the
cyclical patterns of crowd flow, and will be fused with FSTEM

out in the subsequent
bi-mode fusion module for the final prediction.

4.3 Bi-Modal Fusion Module

After we obtained the two features, the temporal evolution, and the cyclical
pattern, we can generate the final prediction by fusing features. As shown in
Fig. 2, the bi-modal fusion module (BFM) is implemented to merge the two fea-
tures and accomplish the final prediction. We use the self-weighting method to
automatically learn the weights of the features extracted from the two modules.
Specifically, we calculate the weights by concatenating FSTEM

out and FSTCPM
out

together, and pass the feature through a convolution layer and a sigmoid func-
tion. BFM can be represented as:

F = fsig(w2 ∗ [FSTEM
out , FSTCPM

out ]), (2a)

Y = w3 ∗ (FSTEM
out � F + FSTCPM

out � (1 − F )) (2b)

where Y denotes the final crowd flow prediction, w2 and w3 denote the weights
of the convolutional layer, fsig denotes the sigmoid function, and ‘�’ denotes
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dot multiplication. Processed by BFM, the features of temporal evolution and
cyclical pattern are fully integrated, which can enhance the performance of the
prediction network.

5 Experiments

We comprehensively evaluate STA3DCNN in three perspectives: performance
evaluation, efficiency evaluation, and self-studying tests. We adopt PyTorch [13]
toolbox to implement the proposed method. Our model is compared with 9
representative methods presented in recent years, including 3 traditional time-
series analysis models, and 6 deep learning-based methods, in which two GNN-
based prediction methods are included. The performance evaluation we made is
the next-step prediction. The efficiency evaluation is performed on estimating
the RAM (random access memory) consumption and the operating efficiency.
Via self-studying experiments, we analyze the effectiveness of each component
of the proposed model.

5.1 Datasets and Evaluation Criteria

Datasets. Our method has been evaluated on two public benchmark datasets:
TaxiBJ dataset [25] and BikeNYC dataset [26]. The crowd-flow maps are gen-
erated from the trajectory data in the two datasets by the method presented in
Sect. 3. Similar to previous works, we use the last four weeks in TaxiBJ and the
last ten days in BikeNYC as a test set, while the rest data of the two datasets
are used for training models.

Evaluation Criteria. We evaluate the performance of the proposed method by
two popular evaluation metrics: Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE). Specifically, their definitions are respectively shown as
below:

RMSE =

√
√
√
√

1
n

n∑

i=1

(

Ŷi − Yi

)2

, (3a)

MAE =
1
n

n∑

i=1

∣
∣
∣Ŷi − Yi

∣
∣
∣ (3b)

where Ŷi and Yi respectively represent the predicted crowd-flow map and its
ground truth, and n denotes the number of crowd-flow maps used for validation.

5.2 Experimental Setup

In our work, the length of sequence inputted into the entire model is 16, while
the length of sequence fed into STEM and STCPM are set to 8, respectively. The
size of one minibatch is set to 128, and the initial learning rate in our model is
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10−3. Weights of all convolutional layers are initialized according to Kaiming’s
work [6]. We optimize the parameters of our network via Adam optimization
[15] by minimizing mean square error loss with a GTX Titan Xp GPU in an
end-to-end manner.

5.3 Experiment Results and Analysis

Evaluation on Crowd Flow Prediction. We apply STA3DCNN to predict
the next-step crowd flow, meanwhile we make a comparison with 9 representa-
tive methods: Historical Average (HA) [18], Auto-Regressive Integrated Moving
Average (ARIMA) [16], XGBoost [2], Convolution LSTM (ConvLSTM) [17],
Spatio-temporal graph convolutional neural network (STGCN) [24], Spatial-
Temporal Dynamic Network (STDN) [23], Context-Aware Spatial-Temporal
Neural Network (DeepSTN+) [10], Spatial-temporal Graph to Sequence Model
(STG2Seq) [1], and Dual Path Network (DPN) [8].

Table 1 shows the performance of our method and the 9 representative meth-
ods on the two benchmark datasets. The first 3 methods in Table 1 are tra-
ditional time series prediction methods, and the rest are deep learning-based
models. Compared with models based on deep learning, the traditional models
are hard to achieve satisfactory performance, because the traditional models are
inadequate to fit nonlinear data. Among the deep learning-based models, our
STA3DCNN achieves the best results on both two datasets. Specifically, com-
pared with the best performing method, RMSE of our model is respectively
decreased by 3.04% and 3.47% on the two datasets, while MAE is decreased by
5.45% and 0.88%, respectively. It is should be noticed that STGCN and STG2Seq

Table 1. Evaluation of crowd flow prediction on TaixBJ and BikeNYC datasets. The
top-2 results are highlighted in red and blue, respectively.

Models TaxiBJ BikeNYC Number of Para. Infer. Time

RMSE MAE RMSE MAE (Megabytes) (Sec.)

HA [18] 57.79 - 21.57 - - 0.04

ARIMA [16] 22.78 - 10.07 - - 110

XGBoost [2] 22.93 - 6.91 - - 3.45

ConvLSTM [17] 18.79 11.46 6.6 2.44 0.76 7.74

STGCN [24] 19.10 11.57 4.76 2.44 6 3.10

STDN [23] 17.83 9.90 5.79 2.41 37.8 1.49

DeepSTN+ [10] 17.65 10.03 4.96 2.31 1074 4.84

STG2Seq [1] 17.60 10.47 4.61 2.28 23.04 13.84

DPN [8] 16.80 - - - - -

STA3DCNN 16.29 9.36 4.45 2.26 3.1 1.28
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are built upon GNN for spatial feature extraction. Comparatively, STA3DCNN
employing 3DCNNs to extract spatial features is more effective.

Computational Efficiency of STA3DCNN. The efficiency evaluation is ful-
filled in two perspectives: calculating the RAM (random access memory) con-
sumption and estimating the operating efficiency. The former one is evaluated
by counting the parameter of models, while the latter one is evaluated by esti-
mating how long it is needed to infer and generate the final prediction. The
experimental results are shown in the last two columns of Table 1.

We evaluate the model based on deep learning only due to, generally, the
model built upon deep learning contains massive parameters. From the penul-
timate column of Table 1, it can be observed that the amount of parameters of
ConvLSTM, STGCN, and our method are far less than the rest three models.
Although ConvLSTM has the fewest parameters, our model surpasses a large
margin in operating efficiency. In all models, the operating efficiency of HA is
best, while our model is the most efficient among deep learning-based mod-
els. The inference time of STDN is slightly higher than our model, whereas the
parameter quantity of STDN is more than ten times that of our model. Although
the performance of STA3DCNN on the two efficiency criteria is not the best, the
comprehensive performance is higher than the rest models.

Table 2. Evaluation of each component composing STA3DCNN. ‘w/o’ in each sub-test
means ‘without’.

Module TaxiBJ BikeNYC

RMSE MAE RMSE MAE

STA3DCNN-w/o-STEM 43.23 21.40 7.04 3.24

STA3DCNN-w/o-STCPM 17.88 9.93 4.69 2.52

STA3DCNN-w/o-BFM 16.89 9.81 4.52 2.35

STA3DCNN-w/o-Att 16.45 9.49 4.50 2.31

STA3DCNN 16.29 9.36 4.45 2.26

Ablation Study. We verify the effectiveness of each component forming
STA3DCNN by self-studying. The model is comprised of 4 key components:
3DAM, STEM, STCPM, and BFM. Among them, STEM and STCPM are two
spatio-temporal feature extraction branches. Therefore, we verify each compo-
nent via 4 sub-tests: 1) STA3DCNN-w/o-STEM: Verifying the cyclical patterns
feature captured by STCPM to predict crowd flow without evolution features; 2)
STA3DCNN-w/o-STCPM: Evaluating the evolution features captured by STEM
without cyclical patterns; 3) STA3DCNN-w/o-BFM: Verifying BFM by fus-
ing the features extracted by STEM and STCPM with the same weight; 4)
STA3DCNN-w/o-att: Verifying the self-attention module in 3DAM.
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The results of ablation tests on each component are shown in Table 2, from
which we can observe: 1) Both STEM and STCPM are effective on this prediction
task, which proves the effectiveness of evolution features and cyclical pattern
features. Satisfactory performance is hard to be achieved by only using one of the
two features. Besides, the contribution of evolution features to the task is greater
than that of cyclical patterns features. 2) Compared with the fusion pattern via
simply averaging, BFM can integrate features more effectively. Specifically, BFM
can reduce RMSE by 3.55% and MAE by 4.59% on the TaxiBJ dataset, while
RMSE and MAE are respectively decreased by 1.57% and 3.83% on the BikeNYC
dataset. 3) The result of the STA3DCNN-w/o-att test demonstrates that SAM
in our 3DAM module can effectively capture temporal and spatial features.

6 Conclusion

In this paper, we propose a spatial-temporal attention 3D convolutional neural
network for the task of crowd flow prediction. Instead of utilizing RNN structure
to extract features, our work introduces a more effective and efficient structure
based on 3DCNN and the self-attention mechanism. We firstly implement the
3DAM module which served as an elementary module. Then, by using 3DAM, we
implement the extraction module for the evolution features of the crowd flow and
the cyclical pattern features. Finally, a feature fusion module is implemented to
fuse features. The experimental results demonstrate that our method is effective
and efficient in predicting crowd flows, and performs better than 9 representative
models. The results of the ablation study demonstrate that the modules forming
STA3DCNN are effective, and can incrementally improve the performance of
the proposed model. In the future, we will explore the interpretability of spatio-
temporal features from the actual physical meaning of the region for further
improving the performance of the method.
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