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Abstract. We propose an unsupervised image fusion architecture for
multiple application scenarios based on the combination of multi-scale
discrete wavelet transform through regional energy and deep learning.
To our best knowledge, this is the first time that a conventional fre-
quency method has been combined with deep learning for feature maps
fusion. The useful information of feature maps can be utilized adequately
through multi-scale discrete wavelet transform in our proposed method.
Compared with other state-of-the-art fusion methods, the proposed algo-
rithm exhibits better fusion performance in both subjective and objective
evaluation. Moreover, it’s worth mentioning that comparable fusion per-
formance trained in COCO dataset can be obtained by training with
a much smaller dataset with only hundreds of images chosen randomly
from COCO. Hence, the training time is shortened substantially, leading
to the improvement of the model’s performance both in practicality and
training efficiency.

Keywords: Multi-scene image fusion · Unsupervised learning ·
Discrete wavelet transform · Regional energy

1 Introduction

Image fusion is the technique of integrating complementary information from
multiple images obtained by different sensors of the same scene, so as to improve
the richness of the information contained in one image [3]. Image fusion can com-
pensate for the limitation of single imaging sensors, and this technique has devel-
oped rapidly in recent years because of the wide availability of different kinds
of imaging devices [3]. For example, in medical imaging applications, images of
different modalities can be fused to achieve more reliable and precise medical
diagnosis [23]. In military surveillance applications, image fusion integrates infor-
mation from different electromagnetic spectrums (such as visible and infrared
bands) to achieve night vision [10].
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The extraction of feature maps and the selection of fusion rules are the two
key factors determining the quality of the fused image [15], and most stud-
ies focus on proposing new methods based on these two factors. Before the
overwhelming application of deep learning in image processing, many conven-
tional approaches were used in feature extraction for image fusion, which can
be divided into two categories: transform domain algorithms and spatial domain
algorithms [10]. In transform domain algorithms, the source images are trans-
formed to a specific transform domain, such as the frequency domain, where the
feature maps are represented by the decomposition coefficients of the specific
transform domain. In feature maps fusion, max-rule and averaging are com-
monly used for high and low frequency bands, respectively, and then the fused
image is reconstructed by the inverse transform from the fused feature maps
[1,6]. Unlike transform domain algorithms, spatial domain algorithms employ
the original pixel of source images as feature maps and directly calculate the
weighted average of the source images to obtain the final fused image without
dedicated feature maps extraction, where the weights are selected according to
image blocks [11] or gradient information [9]. Consequently, the conventional
approaches can be regarded as designing some hand-crafted filters to process
the source images, and it is difficult for them to adapt to images of different
scenes or parts with different visual cues in one image.

Nowadays, deep learning has been the state-of-the-art solution in most tasks
in the fields of image processing and computer vision. Recently, deep learning
has also been used in image fusion and achieved higher quality than conven-
tional methods. For example, CNN can be used to automatically extract useful
features and can learn the direct mapping from source images to feature maps. In
recent image fusion research based on deep learning [2,7,8,15,16,20,23], fusion
using learned features through CNN achieved higher quality than conventional
fusion approaches. According to the different fusion framework utilized, deep
learning based methods can be divided into the following three categories: CNN
based methods [8,14,15,29], encoder-decoder based methods [7,20,23,27] and
generative adversarial network (GAN) based methods [18]. CNN based methods
merely apply several convolutional layers to obtain the weight map for source
images. Encoder-decoder based methods introduce encoder-decoder architecture
to extract deep features, and the deep features are fused by weighted average
or concatenation. Furthermore, GAN based methods leverage conditional GAN
to generate the fused image, where the concatenated source images are directly
input to the generator. In these studies, the feature maps obtained through deep
learning are usually simply fused by weighted averaging, and we will show that
this is not optimal. More importantly, the neural networks used in these studies
[7,8,15,20,23] usually need to be trained on large image dataset, which is time
consuming.

In this paper, we propose an image fusion algorithm by combining the
deep learning based approaches with conventional transform domain based
approaches. Concretely, we first train an encoder-decoder network and extract
feature maps from the source images by the encoder. Inspired by the multi-scale
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transform [10], discrete wavelet transform (DWT) is utilized to transform the
feature maps into the wavelet domain, and adaptive fusion rules are used at low
and high frequencies, thus making the beat use of the information of feature
maps. Finally, inverse wavelet transform is used to reconstruct the fused feature
map, which is decoded by the decoder to obtain the final fused image. Exper-
iments show that with the additional processing of the feature maps by DWT,
the quality of the fused image is remarkably improved. To the best of our knowl-
edge, this is the first time to adopt conventional transform domain approaches
to fuse the feature maps obtained from deep learning approaches.

The main contributions are summarized as follows:

(1) A generalized and effective unsupervised image fusion framework is proposed
based on the combination of multi-scale discrete wavelet transform and deep
learning.

(2) With multi-scale decomposition in DWT, the useful information of feature
maps can be fully utilized. Moreover, a region-based fusion rule is adopted
to capture more detail information. Extensive experiments demonstrate the
superiority of our network over the state-of-the-art fusion methods.

(3) Our network can be trained in a smaller dataset with low computational
cost to achieve comparable fusion performance compared with existing deep
learning based methods trained on full COCO dataset. Our experiments
show that the quality of the fused images and the training efficiency are
improved sharply.

2 Proposed Method

2.1 Network Architecture

WaveFuse is a typical encoder-decoder architecture, consisting of three com-
ponents: an encoder, a DWT-based fusion part and a decoder. As shown in
Fig. 1(b), the inputs of the network are spatially aligned source images Ik, where
k = 1,2 is used to index the images. Feature maps Fk are obtained by extracting
features from the input source images Ik through the encoder. The feature maps
Fk are first transformed into the wavelet domain, and an adaptive fusion rule is
used to obtain the fused feature maps F

′
. Finally, the fused feature maps are

input into the decoder to obtain the final fused image IF . The encoder is com-
posed of three ConvBlocks, where two CNNs and a Relu layer are included. The
kernel size of CNNs are all 3 × 3. After encoding, 48D feature maps are obtained
for fusion. In the DWT-based fusion part, to take 1 layer wavelet decomposition
and one dimension of the feature maps Fk for example, the feature maps are
decomposed to different wavelet components Ck, including one low-frequency
component CkL, namely L1k and three high-frequency components CkH : hori-
zontal component H1k, vertical component V1k and diagonal component D1k,
respectively. Different fusion rules are employed for different components to
obtain the fused wavelet components F , where the low-frequency component L2

is obtained from the fusion of L11 and L12, and the high-frequency components
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Fig. 1. (a) The framework of the training process. (b) Architecture of the proposed
WaveFuse image fusion network. The feature maps learned by the encoder from the
input images are processed by multi-scale discrete wavelet transform, and finally the
fused feature maps are utilized to the fused image reconstruction by the decoder.

H2, V2 and D2 are obtained from the fusion of H1k, V1k and D1k, respectively.
Finally, the fused low-frequency component and high-frequency components are
integrated by wavelet reconstruction to obtain the final fused feature map F

′
.

The decoder is mainly composed of two ConvBlocks and one 1 × 1 CNN, where
the fused image is finally reconstructed.

2.2 Loss Function

The loss function L used to train the encoder and the decoder in WaveFuse is a
weighted combination of pixel loss Lp and structural similarity loss Lssim with
a weight λ , where λ is assigned as 1000 according to [7]. The loss function L,
pixel loss Lp and structural similarity loss Lssim are defined as follows:

L = Lp + λLssim, (1)
Lp = ||Iout − Iin||2, (2)

Lssim = 1 − SSIM(Iout, Iin), (3)

where Iin and Iout represent the input image to the encoder and the output image
of the decoder, respectively. The structural similarity (SSIM) is a widely used per-
ceptual image quality metric, which combines the three components of luminance,
structure and contrast to comprehensively measure image quality [25].
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2.3 Training

We trained our network shown in Fig. 1(a) using COCO [12] containing 70,000
images, and all of them were resized to 256 × 256 and transformed to gray images.
The batch size and epochs were set as 64 and 50, respectively. Learning rate was
1 × 10−4. The proposed method was implemented on Pytorch 1.1.0 with Adam
as the optimizer and a NVIDIA GTX 2080 Ti GPU for training. In our practi-
cal training process, we found that using comparatively small dataset, containing
300–700 images chosen randomly from COCO, still achieved a comparable fusion
quality. The parameters for small dataset are as follows: learning rate was set as
1 × 10−4, and the batch size and epochs were 16 and 100, respectively.

2.4 Fusion Rule

The selection of fusion rules largely determines the quality of fused images [15].
Existing image fusion algorithms based on deep learning usually calculate the
sum of the feature maps directly, leaving the information of feature maps not
fully mined.

In our method, two complementary fusion rules based on DWT are adopted
for wavelet components Ck transformed by feature maps Fk, including adaptive
rule based on regional energy [26] and l1-Norm rule [7], and the fused wavelet
components are denoted as Fr and Fl1, respectively. In adaptive rule based on
regional energy, different fusion rules are employed for different frequency com-
ponents, that is, the low-frequency components CkL adopts an adaptive weighted
averaging algorithm based on regional energy, and for the high-frequency com-
ponents CkH , the one with larger variance between C1H and C2H will be selected
as the fused high-frequency components. Due to the page limitation, the detailed
description and futher equations can be found in [13]. Additionally, to preserve
more structural information and make our fused image more natural, we apply
l1-Norm rule [7] to our fusion part, where both low and high frequency com-
ponents are fused by the same rule to obtain global and general fused wavelet
components.

3 Experimental Results and Analysis

In this section, to validate the effectiveness and generalization of our WaveFuse,
we first compare it with several state-of-the-art methods on four fusion tasks,
including mult-exposure (ME), multi-modal medical (MED), multi-focus (MF)
and infrared and visible (IV) image fusion. There are 20 pairs of images in each
scenario, and all the images are from publicly available datasets [7,15,18,22].
For quantitative comparison, we use nine metrics to evaluate the fusion results.
Then, we evaluate the fusion performance of the proposed method trained with
small datasets. Finally, we also conduct the fine-tuning experiments on wavelet
parameters for the further improvement of fusion performance.



WaveFuse: A Unified Image Fusion Framework 167

3.1 Compared Methods and Quantitative Metrics

WaveFuse is compared against nine representative peer methods including dis-
crete wavelet transform (DWT) [6], cross bilateral filter method (CBF) [5], con-
volutional sparse representation (ConvSR) [17], GAN-based fusion algorithm
(FusionGAN) [18], DenseFuse [7] IFCNN [29], and U2Fusion [27]. All the nine
comparative methods were implemented based on public available codes, where
the parameters were set according to the original papers.

The commonly used evaluation methods can be classified into two categories:
subjective evaluation and objective evaluation. Subjective evaluation is suscep-
tible to human factors, such as eyesight, subjective preference and individual
emotion. Furthermore, no prominent difference among the fusion results can
be observed in most cases based on subjective evaluation. In contrast, objective
evaluation is a relatively accurate and quantitative method on the basis of mathe-
matical and statistical models. Therefore, in order to compare fairly and compre-
hensively with other fusion methods, we choose the following nine metrics:EN
[21], cross entropy(CE), FMI pixel [4], FMI dct [4], FMI w [4], QNICE [24]),
QAB/F [28], variance(VARI) and subjective similarity (MS-SSIM [19]). Each of
them reflects different image quality aspects , and the larger the nine quality
metrics are, the better the fusion results will be.

3.2 Comparison to Other Methods

Table 1. Quantitative comparison of WaveFuse with existing multi-scene image fusion
methods. Red ones are the best results, and blue ones mark the second results. For all
metrics, larger is better.

ME EN CE FMI_pixel FMI_dct FMI_w QNICE QAB/F VARI MS-SSIM
U2Fusion 6.9525 4.7649 0.8529 0.4005 0.4411 0.8146 0.4319 41.5841 0.9349
IFCNN 6.5269 2.1552 0.8590 0.4580 0.4892 0.8134 0.4788 34.4859 0.9478
Wavefuse 6.9224 4.7309 0.8661 0.4941 0.5265 0.8240 0.5149 39.8423 0.9582
MED EN CE FMI_pixel FMI_dct FMI_w QNICE QAB/F VARI MS-SSIM

U2Fusion 5.1257 7.5716 0.8430 0.2876 0.3471 0.8067 0.2879 57.8377 0.8980
IFCNN 5.0101 1.2406 0.8581 0.3611 0.4450 0.8075 0.3240 73.6683 0.9434
Wavefuse 5.2814 7.8243 0.8650 0.4052 0.3848 0.8094 0.3265 67.0572 0.9007

MF EN CE FMI_pixel FMI_dct FMI_w QNICE QAB/F VARI MS-SSIM
U2Fusion 7.4552 0.3424 0.8706 0.4018 0.4653 0.8269 0.6586 55.5703 0.9574
IFCNN 7.2756 0.0558 0.8903 0.4687 0.5389 0.8356 0.7447 48.6216 0.9947
Wavefuse 7.3681 0.3483 0.8912 0.5041 0.5619 0.8368 0.7743 51.7256 0.9896

IV EN CE FMI_pixel FMI_dct FMI_w QNICE QAB/F VARI MS-SSIM
U2Fusion 6.9092 1.1991 0.8795 0.3158 0.3546 0.8055 0.4775 37.1806 0.9196
IFCNN 6.5600 1.3125 0.8850 0.3450 0.3912 0.8062 0.5456 30.5133 0.8883
Wavefuse 6.8877 1.4285 0.8892 0.3702 0.4202 0.8084 0.5525 39.3585 0.8770

Subjective Evaluation. Examples of the original image pairs and the fusion
results obtained by each comparative method for the four scenarios are shown
in Fig. 2.
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Multi-scene Image Fusion: We first compare the proposed WaveFuse with
existing multi-scene image fusion algorithms U2Fusion [27] and IFCNN [29] in
all the four different fusion scenarios, and the results of the objective metrics
are shown in Table 1. From Table 1, we can see that WaveFuse achieves the best
results in almost all scenarios. In some scenarios that it does not achieve the
highest metric, our method is still close to the highest one.

Multi-exposure Image Fusion: The multi-exposure image fusion aims to
combine different exposures to generate better subjective images in both dark
and bright regions. From Fig. 2 (c1-j1, c2-j2), we can observe that CBF and
ConvSR generate many artifacts. JSRSD, DWT, DeepFuse and IFCNN suffer
from low brightness and blurred details. U2Fusion and WaveFuse achieve better
fusion reluslts considerding both dark and bright factors.

Multi-modal Medical Image Fusion: Multi-modal medical image fusion can
offer more accurate and effective information for biomedical research and clinical
applications. Better multi-modal medical fused image should provide combined
features sufficiently and preserve both significant textural features. As shown in
Fig. 2 (c3-j3, c4-j4), JSR, JSRSD and ConvSR shows obvious artifacts in the
whole image. DWT and CBF fail to preserve the crucial features of the source
images. U2Fusion shows better visual results than the above-mentioned methods.
However, DenseFuse still weakens the details and brightness. Information-rich
fused images can be obtained by IFCNN. In contrast, our method preserves
the details and edge information of both source images, which is more in line
with the perception characteristics of the human vision compared to other fusion
methods.

Multi-focus Image Fusion: The multi-focus image fusion aims to reconstruct
a fully focused image from partly focused images of the same scene. From Fig. 2
(c5-j5, c6-j6), we can observe that JSR and JSRSD shows obvious blurred arti-
facts. DWT shows low brightness in the fusion results. Other compared methods
perform well.

Infrared/Visible Image Fusion: Visible images can capture more detail infor-
mation compared to infrared images. However, the interested objects can not be
easily observed in visible image especially when it is under low contrast circum-
stance and the light is insufficient. Infrared images can provide thermal radiation
information, making it easy to detect the salient object even in complex back-
ground. Thus, the fused image can provide more complementary information.
Figure 2 (c7-j7, c8-j8) show fusion results of infrared and visible images with the
comparison methods. JSR, JSRSD and FusionGAN exhibit significant artifacts.,
and U2Fusion shows unclear salient objects. The results in DWT, DenseFuse
and IFCNN weaken the contrast. We can see that, WaveFuse preserves more
details in high contrast and brightness.

Objective Evaluation. From Fig. 2, we can observe that the fusion results of
CBF and ConvSR in multi-exposure images, the fusion results of CBF, JSR,
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Fig. 2. Fusion results by different methods. (a1)-(b1),(a2)-(b2) are two pairs of multi-
exposure source images and (c1)-(j1),(c2)-(j2) are the fusion results of them by different
methods; (a3)-(b3),(a4)-(b4) are two pairs of multi-modal medical source images and
(c3)-(j3),(c4)-(j4) are the fusion results of them by different methods; (a5)-(b5),(a6)-
(b6) are two pairs of multi-focus source images and (c5)-(j5),(c6)-(j6) are the fusion
results of them by different methods; (a7)-(b7),(a8)-(b8) are two pairs of infrared and
visible source images and (c7)-(j7),(c8)-(j8) are the fusion results of them by different
methods;

JSRSD and ConvSR in multi-modal medical images and the fusion results of
JSRSD in multi-focus images contain poor visual effects owing to considerable
artificial noise, and in this case their objective quality metrics will not be calcu-
lated for the quantitative evaluation.
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Table 2. The average values of fusion quality metrics for fused images of four different
scenarios. Red ones are the best results, and blue ones mark the second results. For all
metrics, larger is better.

ME EN CE FMI_pixel FMI_dct FMI_w QNICE QAB/F VARI MS-SSIM
DWT 5.9089 0.7402 0.8510 0.3592 0.3826 0.8165 0.4603 33.8954 0.8936
JSRSD 6.4366 1.4055 0.8533 0.2649 0.3026 0.8150 0.4257 36.3555 0.9001

DeepFuse 6.5352 0.8456 0.8556 0.4360 0.4462 0.8163 0.4573 30.7345 0.9115
U2Fusion 6.9525 4.7649 0.8529 0.4005 0.4411 0.8146 0.4319 41.5841 0.9349
IFCNN 6.5269 2.1552 0.8590 0.4580 0.4892 0.8134 0.4788 34.4859 0.9478

WaveFuse 6.9224 4.7309 0.8661 0.4941 0.5265 0.8240 0.5149 39.8423 0.9582
MED EN CE FMI_pixel FMI_dct FMI_w QNICE QAB/F VARI MS-SSIM
DWT 5.1344 1.1957 0.8522 0.2472 0.3730 0.8090 0.3171 82.7802 0.8974

U2Fusion 5.1257 7.5716 0.8430 0.2876 0.3471 0.8067 0.2879 57.8377 0.8980
IFCNN 5.0101 1.2406 0.8581 0.3611 0.4450 0.8075 0.3240 73.6683 0.9434

WaveFuse 5.2814 7.8243 0.8650 0.4052 0.3848 0.8094 0.3265 67.0572 0.9007
MF EN CE FMI_pixel FMI_dct FMI_w QNICE QAB/F VARI MS-SSIM
DWT 7.2436 0.0406 0.8811 0.3716 0.4908 0.8360 0.7530 46.9477 0.9706

DeepFuse 7.2488 0.4975 0.8791 0.4340 0.4868 0.8292 0.7361 47.8298 0.9812
U2Fusion 7.4552 0.3424 0.8706 0.4018 0.4653 0.8269 0.6586 55.5703 0.9574
IFCNN 7.2756 0.0558 0.8903 0.4687 0.5389 0.8356 0.7447 48.6216 0.9947

WaveFuse 7.3681 0.3483 0.8912 0.5041 0.5619 0.8368 0.7743 51.7256 0.9896
IV EN CE FMI_pixel FMI_dct FMI_w QNICE QAB/F VARI MS-SSIM

DWT 6.6684 0.9913 0.8799 0.2244 0.3117 0.8009 0.5416 34.9068 0.7703
JSRSD 6.7557 1.3340 0.8482 0.1439 0.1924 0.8056 0.3976 36.1247 0.7636

DeepFuse 6.1759 1.0604 0.8799 0.3346 0.3718 0.8051 0.5044 22.9167 0.8473
DenseFuse 6.3550 1.0577 0.8909 0.3592 0.4157 0.8083 0.5458 27.8602 0.8131
FusionGAN 6.6208 2.3257 0.8729 0.2334 0.2937 0.8080 0.3266 40.1621 0.3963
U2Fusion 6.9092 1.1991 0.8795 0.3158 0.3546 0.8055 0.4775 37.1806 0.9196
IFCNN 6.5600 1.3125 0.8850 0.3450 0.3912 0.8062 0.5456 30.5133 0.8883

WaveFuse 6.8877 1.4285 0.8892 0.3702 0.4202 0.8084 0.5525 39.3585 0.8770

Table 2 shows the average values of the fusion quality metrics among four dif-
ferent fusion tasks by different fusion methods. In multi-exposure image fusion,
our method ranks first in FMI pixel, FMI dct, FMI w, QNICE, QAB/F and MS-
SSIM, and ranks second in EN, CE and VARI. In multi-modl medical image
fusion, our method ranks first in EN, CE, FMI pixel, FMI dct, QNICE and
QAB/F, and ranks second in FMI w and MS-SSIM. In multi-focus image fusion,
our method ranks first in FMI pixel, FMI dct, FMI w, QNICE and QAB/F, and
ranks second in EN, CE, VARI and MS-SSIM . In the infrared and visible image
fusion, our method obtains the highest metrics in FMI dct, FMI w, QNICE and
QAB/F, and ranks second in EN, FMI pixel and VARI. Furthermore, from the
value of the last row among three image fusion task in Overall, compared with
other peer methods, our proposed method achieves the highest values in most
fusion quality metrics and the second in the remaining metrics.

3.3 Comparison of Using Different Training Dataset

In order to further demonstrate the effectiveness and robustness of our network,
we conducted experiments on another three different training minisets: MINI1-
MINI3, each of which contains 0.5%, 1% and 2% images respectively chosen
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randomly from COCO, and the fusion results difference can be found among the
subjective fused images, we compared the objective fusion results of WaveFuse on
COCO and MINI1-MINI3. The fusion performance was compared and analyzed
by the averaged fusion quality metrics. In WaveFuse, higher performance is even
achieved by training on minisets. Due to page limitation, further details can be
found in [13].

Furthermore, we can observe that WaveFuse is trained on minisets within one
hour, where the GPU memory utilization is just 4085 MB, so it can be trained
with lower computational cost compared with that trained in COCO (7.78h and
17345 MB). Accordingly, we can learn that our proposed network is robust both
to the size of the training dataset and to the selection of training images.

3.4 Ablation Studies

• DWT-based feature fusion. In this section, we attempt to explain why
DWT-based feature fusion module can improve fusion performance. DWT
has been a poweful multi-sacle analysis tool in signal and image processing
since it was proposed. DWT transforms the images into different low and
high frequencies, where low frequencies represent contour and edge informa-
tion and high frequencies represent detailed texture information [6]. In this
way, DWT-based fusion methods first transform the images into low and high
frequencies, and then fuse them in the wavelet domain, achieving promising
fusion results. Inspired by DWT methods, we apply DWT-based fusion mod-
ule to deep feature fusion extracted by deep-learning models, so as to fully
utilize the information contained in deep features. We conducted the ablation
study about DWT-based feature fusion module, and the results is shown in
Table 3. As we can see, when we apply the module, the fusion performance is
indeed improved largely.

Table 3. Ablation study on the DWT-based feature fusion module. Red ones are the
best results. For all metrics, larger is better.

EN CE FMI_pixel FMI_dct FMI_w QNICE QA/BF VARI MS-SSIM
BaseLine 6.8230 4.9708 0.8473 0.2500 0.2875 0.8153 0.4451 37.5291 0.9566
WaveFuse 6.9224 4.7309 0.8661 0.4941 0.5265 0.8240 0.5149 39.8423 0.9582
BaseLine 5.5631 7.8961 0.8505 0.2098 0.2274 0.8078 0.2911 66.7267 0.8970
WaveFuse 5.2814 7.8243 0.8650 0.4052 0.3848 0.8094 0.3265 67.0572 0.9007
BaseLine 7.3759 0.3276 0.8663 0.2686 0.3314 0.8290 0.6821 51.0500 0.9812
WaveFuse 7.3679 0.3498 0.8909 0.5028 0.5609 0.8368 0.7746 51.6778 0.9889
baseline 6.7367 1.4337 0.8776 0.1919 0.2443 0.8054 0.5036 33.1956 0.9182

WaveFuse 6.7805 1.4595 0.8891 0.3853 0.4122 0.8057 0.5449 34.2832 0.9268

ME

MED

MF

IV

• Experiments on Different Wavelet Decomposition Layers and Dif-
ferent Wavelet Bases. In wavelet transform, the number of decomposition
layers and the selection of different wavelet bases could exert great impacts
on the effectiveness of wavelet transform. We also conducted the ablation
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study on different settings. Due to the page limitation, we just give our final
conclusion, when the number of decomposition layers and the wavelet base
are set as 2 and db1 respectively, we achieve the best fusion results. More
details can be found in [13].

4 Conclusions

In this paper, we propose a novel image fusion method through the combina-
tion of a multi-scale discrete wavelet transform based on regional energy and
deep learning. To our best knowledge, this is the first time that a conventional
technique is integrated for feature maps fusion in the pipeline of deep learning
based image fusion methods, and we think there are still a lot of possibilities to
explore in this direction.

Our network consists of three parts: an encoder, a DWT-based fusion part
and a decoder. The features of the input image are extracted by the encoder, then
we use the adaptive fusion rule at the fusion layer to obtain the fused features,
and finally reconstruct the fused image through the decoder. Compared with
existing fusion algorithms, our proposed method achieves better performance.
Additionally, our network has strong universality and can be applied to various
image fusion scenarios. At the same time, our network can be trained in smaller
datasets to obtain the comparable fusion results trained in large datasets with
shorter training time and higher efficiency, alleviating the dependence on large
datasets. Extensive experiments on different wavelet decomposition layers and
bases demonstrate the possibility of further improvement of our method.
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