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Abstract. Hashing has been widely used to approximate the nearest
neighbor search for image retrieval due to its high computation efficiency
and low storage requirement. With the development of deep learning, a
series of deep supervised methods were proposed for end-to-end binary
code learning. However, the similarity between each pair of images is
simply defined by whether they belong to the same class or contain com-
mon objects, which ignores the heterogeneity within the class. Therefore,
those existing methods have not fully addressed the problem and their
results are far from satisfactory. Besides, it is difficult and impractical
to apply those methods to large-scale datasets. In this paper, we pro-
pose a brand new perspective to look into the nature of deep supervised
hashing and show that classification models can be directly utilized to
generate hashing codes. We also provide a new deep hashing architec-
ture called Deep Supervised Hashing by Classification (DSHC) which
takes advantage of both inter-class and intra-class heterogeneity. Exper-
iments on benchmark datasets show that our method outperforms the
state-of-the-art supervised hashing methods on accuracy and efficiency.
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1 Introduction

In recent years, hundreds of thousands of images are generated in the real
world every day, making it extremely difficult to find the relevant images. Due
to the effectiveness of deep convolution neural networks, images either in the
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database or the query image can be well represented by real-valued features.
Therefore image retrieval can be addressed as an approximating nearest neigh-
bor (ANN) searching problem for the sake of computational efficiency and high
retrieval quantity. Compared to the traditional content-based methods, hash-
ing methods has shown its superiority for data compression, which transforms
high-dimensional media data into the generated binary representation [4,11].
There are a number of learning-to-hashing methods for efficient ANN search-
ing [14], which mainly fall into unsupervised methods [4,13] and supervised
methods [11,12]. As the development of deep learning, deep hashing methods
have prevailed and shown competitive performance for their ability to learn
image representation [7]. By transferring deep representation learned by deep
neural networks, effective hash codes are obtained by controlling the loss func-
tion. Specifically, they can learn similar-preserving representations and control
quantization error for continuous representation by converting into binary codes.
These methods can also be divided into three schemes, pairwise label based meth-
ods [1,9], triplet label based methods [24] and point-wise classification schemes
[10,21], respectively. It’s noticed that the above schemes can be mixed and uti-
lized together [8]. Recently, several methods have added label information into
their models and achieved great success [8].

Although these existing methods have achieved considerable progress, two
significant drawbacks have not been fully addressed yet. The supervised hash-
ing methods are usually guided by a similarity matrix S, while the definition
of § is quite simple. Specifically, s;; = 1 if image 7 and image j belong to the
same class or contain common objects, and s;; = 0 otherwise. Definitely, this
way of definition is reasonable in a sense since images of the same category are
considered to be the same. However, there are usually many sub-classes in the
same class, and there should be some differences between different sub-classes.
If all the sub-classes are forced to be regarded as the same, the obtained hash
codes will be very unstable [15], so that the extension results on the test set
will be poor. Therefore, the existing methods do not fully proceed from the per-
spective of image retrieval, and thus leading to unsatisfied retrieval accuracy.
On the other hand, we notice that the schemes mentioned above often include
complex pairwise loss functions, which means training on large datasets is dif-
ficult. Therefore, VGG-Net [16] is often used in deep supervised hashing task
for the sake of speeding. If deeper models like ResNet are used [5], we need to
replace the loss function of deep hashing with simpler forms such as those in the
classification problem.

To address the two disadvantages mentioned above, we investigate the rela-
tionship between deep supervised hashing and classification problems. It turns
out that high-quality binary codes can be generated by deep classification mod-
els. For single-label datasets, we can construct the mapping relationship between
the classification result and the hash code in some ways, making the hamming
distance between different classes of hash codes relatively large, while the ham-
ming distance between the subclasses of the same class relatively small. For
multi-label datasets, it is very natural to regard the predicted multi-shot labels
as the final hash codes, since the dissimilarity of two images is well captured
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by the hamming distance. Following this idea, we proposed Deep Supervised
Hashing by Classification (DSHC), a novel deep hashing model that can gener-
ate effective and concentrated hash codes to enable effective and efficient image
retrieval. The main contributions of DSHC are outlined as follows:

— DSHC is an end-to-end hash codes generation framework containing three
main components: 1) a standard deep convolutional neural network (CNN)
such as ResNet101 or ResNeXt, 2) a novel classification loss based on cross-
entropy that helps to divide the origin classed into several sub-classes by their
features and 3) a heuristic mapping from sub-labels to hash codes making the
hash codes of the sub-classed with the same label approach in Hamming space.

— To the best of our knowledge, DSHC is the first method that addresses deep
supervised hashing as a classification problem and looks into the heterogeneity
within the class.

— Comprehensive empirical evidence and analysis show that the proposed
DSHC can generate compact binary codes and obtain state-of-the-art results
on both CIFAR-10 and NUS-WIDE image retrieval benchmarks.

2 Related Work

Existing hashing methods can be divided into two categories: unsupervised hash-
ing and supervised hashing methods. We can refer to [14] for a comprehensive
survey. In unsupervised hashing methods, data points are encoded to binary
codes by training from unlabeled data. Typical methods are based on recon-
struction error minimization or graph learning [4,19]. Supervised hashing fur-
ther makes use of supervised information such as pair-wise similarity and label
information to generate compact and discriminative hash codes. Across similar
pairs of data points, nonlinear or discrete binary hash codes are generated by
minimizing the Hamming distances and vice versa across dissimilar pairs [11,15].
Deep hash learning demonstrates their superiority over shallow learning
methods in the field of image retrieval through powerful representations. Specif-
ically, Deep Supervised Discrete Hashing [8] combines CNN model with a prob-
ability model to preserve pairwise similarity and regress labels using hash codes
simultaneously. Deep Hashing Network [25] proposes the first end-to-end frame-
work which jointly preserves pairwise similarity and reduces the quantization
error between data points and binary codes. To satisfy Hamming space retrieval,
DPSH [9] introduces a novel cross-entropy loss for similarity-preserving and the
quantization loss for controlling hashing quality. However, these methods are
difficult to apply to large-scale datasets that ignore heterogeneity within classes.
Recently, [22] uses a self-learning strategy and improves the performance.
Image Classification Tasks including single-label and multi-label have
been made impressive progress by using deep convolutional neural networks.
Single-label image classification, paying attention to assign a label from a prede-
fined set to an image, has been extensively studied. The performance of single-
label image classification has surpassed human in ImageNet dataset [5]. However,
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multi-label image classification is a more practical and general problem, because
the majority of images in the real-world contain more than one object from
different categories.

A simple and straightforward way for multi-label image classification is train-
ing an independent binary classifier for each class. However, this method does
not consider the relationship among classes! Indeed, the relationship between dif-
ferent labels can be considered by graph neural networks [2]. Additionally, Wang
et al. [17] adopted recurrent neural network (RNN) to encode labels into embed-
ded label vectors, which can employ the correlation between labels. Recently, the
attention mechanism and label balancing have been introduced to discover the
label correlation for multi-label image classification. Different from other hash
methods, this paper treats the generation of hash codes as a classification task.

3 Approach
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Fig. 1. Overview of our proposed method: The CNN layers perform feature extracting
followed by fully connected layer with soft-max to output (C'H+1)C sub-classes. There
are (CH + 1) sub-class contained for each class. And each sub-class will be mapped
into a hash code with length CH. The multi-hot labels are employed to optimize the
network. (Best viewed in color) (Color figure online)

3.1 Problem Formulation

In the problem of image retrieval, given a dataset O = {o;}.—,, 0; = (x;,1;),
in which x; is the feature of the i-th image, and l; = [l;1,--- ,lic] is the label
annotation assigned to the i-th image, in which C is the number of classes.
The similarity label s;; = 1 implies the i-th image and the j-th image are
similar, otherwise s;; = 0. The similar pairs are constructed by the image labels,
i.e. two images will be considered similar if they have at least one common
label. The goal of deep hashing is to learn a non-linear hash function: f : 0 —
h € {—1,1}*, encoding each sample o into compact L- bit hash code h where
original similarities between sample pairs are well preserved. For computational
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consideration, the distance between different hash codes is Hamming distance,
which can be formulated as

where <, > denotes the inner product of hash codes.

3.2 Mapping Sub-classes to Hash Codes

As mentioned in the introduction, we would like to construct a mapping from
sub-classes to hash codes, such that the hamming distances in the same class
are relatively smaller than those between classes. Suppose we have C' classes and
each class can be divided into m sub-classes. And for j-th sub-class of i-th class,
it has a unique hash code mapping p;;. Then we define

Dinter = Z Z (Z Z disty (pi1j1 7pi2j2))

i1 d2Fi1 J1 J2

Dintra = Z Z Z distr (Pijy » Pijs)

i g1 J2

as the total inter-class and intra-class distances respectively. Given the code
length L, we aim to find C' x m hash codes such that

Dintra - Dinter (1)

is minimized. However, finding the global optimization of the objective func-
tion 1 is NP-hard, so we proposed a space partition based method to get an
approximate solution of it.

As shown in Fig. 1, suppose the hamming space with dimension L is well
separated into m sub-spaces, each sub-space corresponding to a class. For each
subspace i, suppose there is a center point p;, which can be viewed as the bench-
mark code of class 7. Then for each subclass of class i, we just substitute one
position of p;, thus every sub-class is mapped to a unique hash code eventually.
It is easy to check that all hamming distances in the same class are smaller than
or equal to 2. So we can get high-quality hash codes if the hamming distances
between center points are much larger than 2.

The most critical step is to construct the center points that are well separated.
To make this purpose, we proposed two methods named Center Point-Based
Construction (CPBC) and K-means Based Construction (KBC). The idea of
CPBC is simple but effective. Specifically, assume each class has a sub-hash
code with a length of H, and the total code length is C'H. For a center point p;,
the i-th sub-hash code(length H) is all set to be 1 and other sub-hash codes are
—1. Then all the center points can be determined, while the Hamming distance
between any two of them is equal to 2H. We can see that hash codes generated
by CPBC are generally well separated through T-SNE clustering (see Fig.2).
For CPBC, we have to choose a relatively big H to get high-quality center
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points. KBC is proposed to generate relatively shorter but high-quality center
points. First, we choose C initial points with a given hash code length L, and
all the 2% points are clustered into C' groups by K-means. Then the resulted in
C clustering centroids are viewed as C' center points. Since each cluster contains
many more points than the number of subclasses, all subclasses are only mapping
to a small ball centered in the corresponding center point. Theoretically, KPC
needs a shorter hash code than CPBC, but we found that the effect is difficult to
guarantee in the numeric experiments. So we always use CPBC when comparing
with other methods.

C®NOU SR WN O

Fig.2. T-SNE clustering visualization of hash codes generated by CPBC with
CIFARI10 data set. Axes represent the first two dimensions of t-SNE embedding.

3.3 Loss Function

Our model converts learning to hash into a classification problem by introducing
multiple subclasses for each superclass. To learn a novel function that maps each
subclass to a unique hash code, all we need is to determine which subclass each
image belongs to. In this section, we will see that the first loss is the cross-entropy
loss for a single-label dataset, while the second loss is the binary cross-entropy
and soft-margin loss for a multi-label dataset.

For the single-label image classification, the cross-entropy loss is usually
employed [5]. Suppose there are C' classes in the training dataset and sub-hash
code with length H for each class, the whole length of the hash code is CH. In
intra-class, one of the hash codes can be replaced to generate CH sub-classes.
Thus (CH + 1)C classes will be contained in the soft-max output. Correspond-
ingly, the one-hot ground truth will be converted into the multi-hot, in which
the (CH + 1) label points are assigned to 1/H or otherwise set to 0. Here we
use 1/H instead of 1/(CH + 1) for computation. Formally, the loss function is:

(CH+1)C

Lce = - Z Ye IOg(pc); (2)

c=1

where y. € {0,1/H} is the ground truth and p. is the predicted probability dis-
tribution. Due to considering the robustness of the model, the top-K prediction
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probabilities are chosen to generate the corresponding hash codes. And the final
hash code can be calculated by the average of K hash codes.

As for the multi-label image classification, the labels are multi-hot values
which are contained in the ground truth so that they can be utilized to express
the hash code directly. There are relatively large Hamming distances between
intra-class and relatively small Hamming distances within inter-class. Besides,
our method can explore the correlation between classes rather than predict cor-
rectly as long as one label is matched. Since the loss with soft margin is intro-
duced to address the multi-label classification task, the loss is computed as:

N

Lyy=-— i log((1 + ex (—xi))_l)
;y g p )

+ (1 — y3) log((1 + exp(z;)) ),

where y; € {1, —1} express positive or negative class. z; and N are the predicted
probability and the batch size of data in the training phase, respectively.

4 Experiments

The performance of our proposed approach is evaluated on two public bench-
mark datasets: CIFAR-10 [6] and NUS-WIDE [3] comparing with state-of-the-art
methods.

4.1 Datasets and Settings

CIFAR-10. CIFAR-10 is a dataset containing 10 object categories, each with
6000 images (resolution of 32 x 32). We sampled 1,000 images per class (10,000
images in total) as the query set and the remaining 50,000 images were utilized
as the training set and database for retrieval.

NUS-WIDE. NUS-WIDE is a public multi-label image dataset consisting of
269, 648 images. Each image is manually annotated using some of the 81 ground
truth concepts for evaluating retrieval models. Following [8], we picked a subset
of 195, 834 images associated with 21 most frequent labels. We randomly sampled
2,100 images as query sets and the remaining images were treated as the training
set.

The retrieval quality is evaluated by the following four evaluation metrics:
Mean Average Precision(MAP), Precision-Recall curves, Precision curves con-
cerning hamming radius, and Recall curves for hamming radius. We measure the
goodness of the result by comprehensively calculating MAP. For NUS-WIDE,
for each bit, the distance needs to be different when the values are all 1s or all
0Os when calculating the distance between two images. As a result, we convert
—1 to 0 in hash codes and the distance between two images is still in the form
of Equation in Sect 3.1.

Our methods are compared with a list of classical or state-of-the-art super-
vised methods, including DSDH [8], DPSH [9], VDSH [23], DTSH [18], RMLH
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[20] and unsupervised hashing methods including SH [19], ITQ [4]. For CIFAR10,
we utilize ResNetb0 and replace the last layers with the corresponding number
of nodes, with the learning rate 0.1. We also rerun the source code of DPSH and
DSDH. The number of total epochs is 160 since we found all models can fit very
well afterward. For NUS-WIDE, we utilize ResNet 101 and the learning rate is
set to 0.1 which decreases every 6 epochs.

4.2 Performance

precision vs code length recall vs code length precison vs recall

— DPSH
—— DSDH
—— DSHC

o
o
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Fig. 3. Precision curves, Recall curves respect to hamming radius and Precision-Recall
curves when code length is 30. In the first two figures, the x axis represents the Ham-
ming distance (radius), and the y axis represents the average precision and recall. The
last figure is the curve of precision and recall.

Table 1 shows the results of different hashing methods on two benchmark data
sets when the code length is about 32 and 24, respectively. Here, for our method,
the code length is a little smaller than 32, but they are comparable because
the last two or three bits can be filled with zero for all images. Figure3 and
Table 1 shows the Precision-Recall curves, Precision curves, and Recall curves
respectively for different methods (code length of 30 and 60 bits).

We find that on the two benchmark datasets, DSHC outperforms all the com-
pared baseline methods. What’s more, unsupervised traditional hashing methods
show poor performances, which implies that labels and the strong representation
ability of deep learning are significant for learning to the hash. Compared with
DSDH which regresses the labels with hash codes, our method directly utilizes
the labels to produce sub-labels, showing superiority from the increment of per-
formance. Compared with DPSH, our model is based on a deeper model such
as ResNet50 for the sake of getting rid of the pairwise loss whose computation
cost increases greatly. As shown in Table 2, our method takes the advantage of a
deeper model like ResNet but with less training time, which implies it can easily
extend to large-scale image datasets. Figure 3 shows that when code length varies
from 60 to 30, the performance of our method is stable while those of DPSH
and DSDH are sensitive to the code length. Besides, when the code length is 60,
the average recall for the code distance 0 in our model is about 0.024 while the
value of DPSH is about 0.724. In other words, most images with the same labels
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Table 1. MAP for different methods on CIFAR10 dataset and NUS-WIDE dataset.
The MAP for the NUS-WIDE dataset is calculated based on the top 50000 returned
neighbors. We re-run the source codes of DSDH and DPSH with code length 30, shown

in the brackets while other results are from their papers.

Method | Published year | CIFAR10 NUS-WIDE
MAP Length(bits) | MAP | Length(bits)
DSHC | Ours 0.9431 30 0.844 | 21
RMLH | 2019 0.816 32 0.823 | 32
DSDH™* | 2017 0.939(0.802) | 32(30) 0.814 |24
DPSH* | 2016 0.781(0.887) | 32(30) 0.722 |24
DTSH |2016 0.925 32 0.776 |24
VDSH | 2017 0.844 32 0.564 | 24
ITQ 2012 0.172 32 0.468 | 24
SH 2009 0.126 32 0.406 |24

in DPSH are projected into the same hash codes while our method can retrieval
the most similar images within the class.

Table 2. MAP for different methods on CIFAR10 dataset (60-bit hash codes)

Method | MAP | Runtime (Last Ten epochs)
DSHC |0.9437 | 409.27
DPSH |0.8990 |600.30
DSDH |0.8786 |352.64

Since NUS-WIDE is annotated with multi-labels, we directly use the classifi-
cation binary output as hash codes. The results show that this kind of hash code
works quite well and performs much better than other methods. A reasonable
explanation is that the binary classification output has already captured the
intra-class heterogeneity of the dataset. What’s more, the multi-labeled classifi-
cation model considers the relationship between sub-labels while most deep hash
methods only consider the similarity between the two images.

4.3 Results with Different Code Length

We also compare the performance of our model with different code lengths.
Taking the CIFAR10 dataset, for instance, the result is shown in Table 3. When
a short hash code is used, CPBC is not able to partition the space well, resulting
in poor performance. When the hash code length is large enough (e.g. above
30), the MAP of our model is quite stable. Under the condition of a complex
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dataset, more hash bits will be needed for acceptable performance. It is worth
noting that the length of the hash code does not influence the running time.

Table 3. MAP and Runtime (Last Ten epochs) for different length

Length | MAP | Runtime
10 0.3599 | 408.21
20 0.8264 | 427.09
30 0.9431 |420.92
60 0.9437 | 409.27

4.4 Comparison Between CPBC and KBC

As mentioned above, the performance of our method is difficult to guarantee
when the hash code length is small (e.g., 10). However, if KBC is used to obtain
the centroids, its performance is acceptable even if the hash code length is as
small as 10, while CPBC is difficult to separate the Hamming space well. As
shown in Table4, when the hash code length is set to 10, 950 points out of
1024 points in the KBC model are filtered, while the model using CPBC leaves
110 points. The model using KBC performs much better than CPBC, which
means that the model using KBC can successfully select several groups with
larger distances in Hamming space. However, when the hash code length is large
enough, it is recommended to use the CPBC model for simplification.

Table 4. MAP@5000 for CPBC and KBC methods

Length | Method | MAP@5000 | Number of sub-classes
10 CPBC |0.5238 110
10 KBC 0.8980 74 (filter 950)

5 Discussion

From the results, our classification method shows superior performance com-
pared to state-of-the-art methods when the labels of the images are known.
Also, it can handle large-scale datasets without dealing with pairwise losses,
thus speeding up the computation. More importantly, when the classification
output is directly transformed into hash codes in NUS-WIDE, this suggests that
the classification model may be the key to deep supervised hashing.
Sometimes, similarity information is the only supervised information. We
have two methods to obtain the labels of images. First, if the real model is
simple, we can find images that contain only one label and get the exact specific
label from the similarity. Second, if the real model is complex, we can construct
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a similarity graph based on the information and then derive the final labels
by graph clustering (e.g., Markov clustering). From the clustering results, we
can derive the label for each image. However, the results are limited by the
performance of clustering, which is difficult to promise.

6 Conclusion

In this paper, we investigate the relationship between deep supervised hash-
ing and classification problems and find that high-quality hash codes can be
generated by deep classification models. We propose a new supervised hashing
method named DSHC, which consists of a classification module and a transfor-
mation module, and exploits inter-and intra-class heterogeneity. Based on the
performance of several benchmark datasets, DSHC proves to be a promising app-
roach. Further research can focus on designing an efficient ANN search algorithm
based on hash codes generated by DSHC.
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