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Abstract. A novel multi-reservoir echo state network incorporating the
scheme of extracting features from multiple-size input time slices is pro-
posed in this paper. The proposed model, Multi-size Input Time Slices
Echo State Network (MITSESN), uses multiple reservoirs, each of which
extracts features from each of the multiple input time slices of differ-
ent sizes. We compare the prediction performances of MITSESN with
those of the standard echo state network and the grouped echo state
network on three benchmark nonlinear time-series datasets to show the
effectiveness of our proposed model. Moreover, we analyze the richness
of reservoir dynamics of all the tested models and find that our proposed
model can generate temporal features with less linear redundancies under
the same parameter settings, which provides an explanation about why
our proposed model can outperform the other models to be compared
on the nonlinear time-series prediction tasks.

Keywords: Reservoir computing · Echo state network · Multi-size
input time slices

1 Introduction

Nonlinear Time-series Prediction (NTP) [19] is one of the classical machine learn-
ing tasks. The goal of this task is to make predicted values close to the corre-
sponding actual values. Recurrent Neural Networks (RNNs) [12] are a subset
of Neural Networks (NNs) and have been widely used in nonlinear time-series
prediction tasks. Many related works have reported that RNNs-based methods
outperform other NNs-based methods on some prediction tasks [9,13]. However,
the classical RNN model and its extended models such as Long Short-Term
Memory (LSTM) [5] and Gated Recurrent Unit (GRU) [1] often suffer from
expensive computational costs along with gradient explosion/vanishing prob-
lems in the training process.

Reservoir Computing (RC) [6,17] is an alternative computational framework
which provides a remarkably efficient approach for training RNNs. The most
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Fig. 1. (a) A standard ESN, (b) A standard GroupedESN.

important characteristic of this framework is that a predetermined non-linear
system is used to map input data into a high-dimensional feature space. Based
on this characteristic, a well-trained RNN can be built with relatively low com-
putational costs.

As one of the important implementations of RC, Echo State Network
(ESN), was first proposed in Ref. [6] and has been widely used to handle NTP
tasks [8,14]. The standard architecture of ESN, including an input layer, a reser-
voir layer, and an output layer, is shown in Fig. 1(a). We can see that an input
weight matrix, Win, represents the connection weights between the input layer
and the reservoir layer. Moreover, a reservoir weight matrix denoted by Wres

represents the connection weights between neurons inside the reservoir layer.
The readout weight matrix, Wout, represents the connection weights between
the reservoir layer and the output layer. A feedback matrix from the output layer
to the reservoir layer is denoted by Wback. Typically, the element values of three
matrices, Win, Wres, and Wback, are randomly drawn from certain uniform
distributions and are kept fixed. Only Wout (dash lines) need to be trained by
the linear regression.

Based on the above introduced ESN, we can quickly obtain a well-trained
RNN. However, this simple architecture leads to a huge limitation in enhancing
its representation ability and further makes the corresponding prediction per-
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formances on the NTP task hard to be improved. An effective remedy proposed
in Ref. [4] is to feed the input time series into N independent randomly generated
reservoirs for producing N different reservoir states, and then combine them to
enrich the features used for training the output weight matrix. The authors of
Ref. [4] called this architecture “GroupedESN” and reported that the predic-
tion performances obtained by their proposed model is much better than those
obtained by the standard ESN on some tasks. We show a schematic diagram of
GroupedESN in Fig. 1(b).

The purpose of multi-reservoir ESN, including GroupedESN, inherited from
the standard ESN is to extract features from each “data point” in a time series.
In most of related works [4,15], we found that they only used each sampling point
in a time series as the “data point” and extracted the corresponding temporal
feature from them in each reservoir. In fact, the scheme of extracting features
from inseparable sampling points can capture the most fine-grained temporal
dependency from the input series. However, this monotonous scheme unavoid-
ably ignores some useful temporal information in the “time slices” composed
of a period of continuous sampling points [20]. Figure 2 shows an example of
transforming the original sampling points of a time series into several time slices
of size two.
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Fig. 2. An example of transforming original sampling points of a time series into time
slices of size two.

In this paper, we propose a novel multi-reservoir ESN model, Multi-size Input
Time Slice Echo State Network (MITSESN), which can extract various tempo-
ral features corresponding to input time slices of different sizes. We compare
the proposed model with the standard ESN and the GroupedESN on the three
NTP benchmark datasets and demonstrate the effectiveness of our proposed
MITSESN. We provide an empirical analysis of richness in the reservoir-state
dynamics to explain why our proposed model performs better than the other
tested models on the NTP tasks.

The rest of this paper is organized as follows: We describe the details of the
proposed model in Sect. 2. We report the experimental results, including results
on three NTP benchmark datasets and corresponding analyses of richness in
Sect. 3. We conclude this work in Sect. 4.
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2 The Proposed Model: MITSESN

0 0

Fig. 3. An example of the proposed MITSESN with three independent reservoirs.

A schematic diagram of our proposed MITSESN is shown in Fig. 3. This is a
case where an original input time series with length four is fed into the proposed
MITSESN with three independent reservoirs. The original input time series is
transformed into three time slices of different sizes. Then, each time slice is fed
into the corresponding reservoir and the generated reservoir states are concate-
nated together. Finally, the concatenated state matrix is decoded to the desired
values. Based on the above introduction, we can observe that our proposed
MITSESN can be divided into three parts: the series-to-slice transformer, the
multi-reservoir encoder, and the decoder. We introduce the details of these parts
as below.

2.1 Series-to-Slice Transformer

We define the input vector and the target vector at time t as u(t) ∈ R
NU and

y(t) ∈ R
NY , respectively. The length of input series and that of target series are

denoted by NT .
To formulate the transformation from the original input time-series points

into input time slices of different sizes, we define the maximal size of the input
slice used in the MITSESN as M . In our model, the maximal size of the input
slice is equivalent to the number of different sizes. We denote the size of input
slice by m, where 1 ≤ m ≤ M . In order to keep the length of the transformed
input time slice the same as those of the original input time series, we add zero
paddings of length (m − 1) into the beginning of the original input series, which
can be formulated as follows:

Um
zp = [0, . . . ,0

︸ ︷︷ ︸

m−1

,u(1),u(2), . . . ,u(NT )], (1)
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where Um
zp ∈ R

NU×(NT+m−1) is the zero-padded input matrix. Based on the
above settings, we can obtain the transformed input matrix corresponding to
input time slices of size m as follows:

Um = [um(1),um(2), . . . ,um(NT )] , (2)

where Um ∈ R
mNU×NT and um(t) is composed of the vertical concatenation of

vectors from the t-th column to the (t + m − 1)-th column in Um
zp. We show an

example of Um when m = 3 as follows:

U3 =
[

u3 (1) ,u3 (2) , . . . ,u3 (NT )
]

=

⎡

⎣

0 0 . . . u (NT − 2)
0 u (1) . . . u (NT − 1)

u (1) u (2) . . . u (NT )

⎤

⎦

. (3)

2.2 Multi-reservoir Encoder

We adopt the basic architecture of GroupedESN in Fig. 1(b) to build the multi-
reservoir encoder. However, the feeding strategy of the multi-reservoir encoder is
different from that of GroupedESN. We assume that input time slices of size m
are fed into the m-th reservoir. Therefore, there are totally M reservoirs in the
multi-reservoir encoder. For the m-th reservoir, we define the input weight matrix
and the reservoir weight matrix as Wm

in ∈ R
Nm

R ×mNU and Wm
res ∈ R

Nm
R ×Nm

R ,
respectively, where Nm

R represents the size of the m-th reservoir. The state of
the m-th reservoir at time t, xm(t), is calculated as follows:

xm(t) = (1 − α)xm (t − 1) + α tanh (Wm
inu

m(t) + Wm
resx

m(t − 1)) , (4)

where the element values of Wm
in are randomly drawn from the uniform distri-

bution of the range [−θ, θ]. The parameter θ is the input scaling. The element
values of Wm

res are randomly chosen from the uniform distribution of the range
[−1, 1]. To ensure the “Echo State Property” (ESP) [6], Wm

res should satisfy the
condition described as follows:

ρ ((1 − α)E + αWm
res) < 1, (5)

where ρ (·) denotes the spectral radius of a matrix argument, the parameter α
represents the leaking rate which is set in the range (0, 1], and E ∈ R

Nm
R ×Nm

R is
the identity matrix. Moreover, we use the parameter η to denote the sparsity of
Wm

res.
We denote the reservoir-state matrix composed of NT state vectors cor-

responding to the m-th reservoir as Xm ∈ R
Nm

R ×NT . By concatenating M
reservoir-state matrices in the vertical direction, we obtain a concatenated state
matrix, X ∈ R

∑M
m=1 Nm

R ×NT , which can be written as follows:

X =
[

X1;X2; . . . ;XM
]

. (6)
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2.3 Decoder

We use the linear regression for converting the concatenated state matrix into
the output matrix, which can be formulated as follows:

Ŷ = WoutX, (7)

where Ŷ ∈ R
NY ×NT is the output matrix. The readout matrix Wout is given by

the closed-form solution as follows:

Wout = YXT
(

XXT + λI
)−1

, (8)

where Y ∈ R
NY ×NT represents the target matrix, I ∈ R

∑M
m=1 Nm

R ×∑M
m=1 Nm

R is
an identity matrix, and the parameter λ symbolizes the Tikhonov regularization
factor [18].

3 Numerical Simulations

In this section, we report the details and results of simulations. Specifically,
three benchmark nonlinear time-series datasets and the corresponding task set-
tings are described in Sec. 3.1, the evaluation metrics are listed in Sec. 3.2, the
tested models and parameter settings are described in Sec. 3.3, the correspond-
ing simulation results are presented in Sec. 3.4. The analyses of richness for all
the tested models are given in Sec. 3.5.

3.1 Datasets Descriptions and Task Settings

We leverage three nonlinear time-series datasets, including the Lorenz system,
MGS-17, and KU Leuven datasets, to evaluate the prediction performances of
our proposed model. Glimpses of the above datasets are shown in Fig. 4. The
partitions of the training set, the validation set, the testing set, and the initial
transient set are listed in Table 1. We introduce the details of these datasets and
task settings as below.

Lorenz System. The equation of Lorenz system [10] is formulated as follows:

dx

dt
= σ(y − x),

dy

dt
= x(δ − z) − y,

dz

dt
= xy − βz.

(9)

When δ = 28, σ = 10, and β = 8/3, the system exhibits a chaotic behavior. In
our evaluation, we used the chaotic Lorenz system and set the initial condition
at (x (0) , y (0) , z (0)) = (12, 2, 9). We adopted the sampling interval Δt = 0.02
and rescaled by the scaling factor 0.1, which is the same as those reported in [7].
We set a six-step-ahead prediction task on x values, which can be represented
as u(t) = x(t) and y(t) = x(t + 6).
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Fig. 4. Examples of three nonlinear time-series datasets.

MGS-17. The equation of Mackey-Glass system [11] is formulated as follows:

z(t + 1) = z(t) + δ ·
(

a
z(t − ϕ/δ)

1 + z(t − ϕ/δ)n
− bz(t)

)

, (10)

where a, b, n, and δ are fixed at 0.2, −0.1, 10, and 0.1, respectively. The Mackey-
Glass system exhibits a chaotic behavior when ϕ > 16.8. We kept the value of
ϕ equal to 17 (MGS-17). The task on MGS-17 is to predict the 84-step-ahead
value of z [7], which can be represented as u(t) = z(t) and y(t) = z(t + 84).

KU Leuven. KU Leuven dataset was first proposed in a time-series predic-
tion competition held at KU Leuven, Belgium [16]. We set an one-step-ahead
prediction task on this dataset for the evaluation.

Table 1. The partitions of Lorenz system, MGS-17, and KU Leuven datasets.

Training set Valiation set Testing set Initial transient set

Lorenz system 3000 1000 1000 500

MGS-17 3000 1000 1000 500

KU Leuven 2000 500 500 200

3.2 Evaluation Metrics

We use two evaluation metrics in this work, including Normalized Root Mean
Square Error (NRMSE) and Symmetric Mean Absolute Percentage Error
(SMAPE), to evaluate the prediction performances. These two evaluation met-
rics are formulated as follows:

NRMSE =

√

1
NT

∑NT

t=1 (ŷ(t) − y(t))2
√

1
NT

∑NT

t=1 (y (t) − ȳ)2
, (11)

SMAPE =
1

NT

NT
∑

t=1

|ŷ(t) − y(t)|
(|ŷ(t)| + |y(t)|) /2

, (12)

where ȳ denotes the mean of data values of y(t) from t = 1 to NT .
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3.3 Tested Models and Parameter Settings

In our simulation, we compared the prediction performances of our proposed
model with those of ESN and GroupedESN. We denote the overall reservoir size
NR =

∑M
m=1 Nm

R for all the models. Two architectures with M = 2 and M = 3
for GroupedESN and MITSESN were considered. We represent the architecture
with M reservoirs as N1

R − N2
R − · · · − NM

R .
To make a fair comparison, we set NR the same for each model. For simplicity,

the size of each reservoir in the GroupedESN and the proposed MITSESN was
kept the same. The parameter settings for all the tested models are listed in
Table 2. The spectral radius, the sparsity of reservoir weights, and the Tikhonov
regularization were set at 0.95, 90%, and 1E-06, respectively. The input scaling,
the leaking rate and the overall reservoir size were searched in the ranges of [0.01,
0.1, 1], [0.1, 0.2, . . . , 1], and [150, 300, . . . , 900], respectively. For each setting, we
averaged the results over 20 realizations.

Table 2. The parameter settings for all the tested models

Parameter Symbol Value

Spectral radius ρ 0.95

Sparsity of reservoir weights η 90%

Tikhonov regularization λ 1E-06

Input scaling θ [0.01, 0.1, 1]

Leaking rate α [0.1, 0.2, . . . , 1]

Overall reservoir size NR [150, 300, . . . , 900]

3.4 Simulation Results

We report the averaged prediction performances on the three datasets in
Tables 3, 4 and 5. It is obvious that our proposed MITSESN with three reser-
voirs obtains the smallest NRMSE and SMAPE among all the tested models
with the same overall reservoir size. By comparing the prediction performances
of the GroupedESN with those of our proposed MITSESN, we can clearly find
that the strategy of extracting temporal features from multi-size input time
slices can significantly improve the prediction performances. Moreover, with the
increase of the size of input time slices, the performance is obviously improved.
Especially, our simulation results on MGS-17 show that only adding more reser-
voirs is not a universally effective method to improve prediction performances
for the GroupedESN. Lastly, we observe that the best prediction performances
of all the tested models are obtained under the maximal values in the searching
range of input scaling and reservoir size, which indicates that all the models
benefit from high richness [3]. We investigate how this important characteristic
changes under different NR for all the tested models in the following section.
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Table 3. Average performances of the six-step-ahead prediction task on the Lorenz
system.

Models Architecture NRMSE SMAPE Best parameters

ESN 900 7.44E-05 1.21E-04 NR = 900, θ = 1, α = 0.4

GroupedESN (M = 2) 450-450 7.10E-05 1.04E-04 NR = 900, θ = 1, α = 0.4

GroupedESN (M = 3) 300-300-300 7.04E-05 1.13E-04 NR = 900, θ = 1, α = 0.4

MITSESN (M = 2) 450-450 6.29E-05 1.16E-04 NR = 900, θ = 1, α = 0.5

MITSESN (M = 3) 300-300-300 5.58E-05 9.23E-05 NR = 900, θ = 1, α = 0.4

Table 4. Average performances of the 84-step-ahead prediction task on the MGS-17.

Models Architecture NRMSE SMAPE Best parameters

ESN 900 1.87E-02 3.94E-03 NR = 900, θ = 1, α = 0.2

GroupedESN (M = 2) 450-450 2.05E-02 4,14E-03 NR = 900, θ = 1, α = 0.3

GroupedESN (M = 3) 300-300-300 2.16E-02 4.48E-03 NR = 900, θ = 1, α = 0.3

MITSESN (M = 2) 450-450 1.49E-02 3.12E-03 NR = 900, θ = 1, α = 0.2

MITSESN (M = 3) 300-300-300 1.24E-02 2.41E-03 NR = 900, θ = 1, α = 0.3

3.5 Analysis of Richness

The richness is a desirable characteristic in the reservoir state as suggested by
Ref. [2]. Typically the higher richness indicates the less redundancy held in the
reservoir state. We leverage the Uncoupled Dynamics (UD) proposed in [3] to
measure the richness of X for all the tested models. The UD of X is calculated
as follows:

arg min
d

{

d
∑

k=1

Rk |
d

∑

k=1

Rk ≥ A
}

, (13)

where A is in the range of (0, 1] and represents the desired ratio of explained
variability in the concatenated state matrix. We kept A = 0.9 in the following
evaluation. Rk denotes the normalized relevance of the i-th principal component,
which can be formulated as follows:

Ri =
σi

∑NR

j=1 σj

, (14)

where σi denotes the i-th singular value in the decreasing order. The higher the
value of UD in Eq. (13) is, the less linear redundancy held in the concatenated
state matrix X is. For the evaluation settings, we used a univariable time series
of length 5000 and we randomly chose each value from the uniform distribution
of the range [−0.8, 0.8]. We fixed the leaking rate α = 1 and input scaling θ = 1
in all the models.

The average UDs of all the tested models when varying NR from 150 to 900
are shown in Fig. 5. It is obvious that the MITSESN (M=3) outperforms the
other models when varying NR from 300 to 900. With the increase of NR (from
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Table 5. Average performances of the one-step-ahead prediction task on the KU Leu-
ven dataset.

Models Architecture NRMSE SMAPE Best parameters

ESN 900 2.31E-02 6.94E-03 NR = 900, θ = 1, α = 0.5

GroupedESN (M = 2) 450-450 2.29E-02 7.18E-03 NR = 900, θ = 1, α = 0.4

GroupedESN (M = 3) 300-300-300 2.28E-02 7.11E-03 NR = 900, θ = 1, α = 0.4

MITSESN (M = 2) 450-450 2.25E-02 7.01E-03 NR = 900, θ = 1, α = 0.4

MITSESN (M = 3) 300-300-300 2.24E-02 6.64E-03 NR = 900, θ = 1, α = 0.5

NR = 450), differences between UDs of our proposed MITSESN with those
of ESN and GroupedESNs (M = 2 and 3) gradually become larger and larger,
which indicates that our proposed MITSESN can generate less linear redundancy
in the concatenated state matrix than the ESN and the GroupedESN under the
case of the larger NR. Moreover, we find that the larger size of input time slices is,
the less linear redundancy in the concatenated state matrix of MITSESN is. The
above analyses explain the reasons why our proposed MITSESN outperforms
the ESN and the GroupedESNs, and the MITSESN (M = 3) has the best
performances on the three prediction tasks.

Fig. 5. UDs of all the tested models varying NR from 150 to 900.

4 Conclusion

In this paper, we proposed a novel multi-reservoir echo state network, MIT-
SESN, for nonlinear time-series prediction tasks. Our proposed MITSESN can
extract various temporal features from multi-size input time slices. The predic-
tion performances on three benchmark nonlinear time-series datasets empirically
demonstrate the effectiveness of our proposed model. We provided an empirical
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analysis from the prospective of reservoir-state richness to show the superiority
of MITSESN.

As future works, we will continue to evaluate the performances of the pro-
posed model on the other temporal tasks such as time series classification tasks.

Acknowledgements. This work was partly supported by JSPS KAKENHI Grant
Number 20K11882 and JST-Mirai Program Grant Number JPMJMI19B1, Japan (GT),
and partly based on results obtained from Project No. JPNP16007, commissioned by
the New Energy and Industrial Technology Development Organization (NEDO).

References

1. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

2. Gallicchio, C., Micheli, A.: A Markovian characterization of redundancy in echo
state networks by PCA. In: ESANN. Citeseer (2010)

3. Gallicchio, C., Micheli, A.: Richness of deep echo state network dynamics. In:
Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11506, pp. 480–
491. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8 40

4. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: a critical exper-
imental analysis. Neurocomputing 268, 87–99 (2017)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. Ger. Natl. Res. Cent. Inf. Technol. GMD Tech.
Rep. 148(34), 13 (2001)

7. Li, Z., Tanaka, G.: Deep echo state networks with multi-span features for nonlinear
time series prediction. In: 2020 International Joint Conference on Neural Networks
(IJCNN), pp. 1–9. IEEE (2020)

8. Li, Z., Tanaka, G.: HP-ESN: echo state networks combined with hodrick-prescott
filter for nonlinear time-series prediction. In: 2020 International Joint Conference
on Neural Networks (IJCNN), pp. 1–9. IEEE (2020)

9. Liu, Y., Gong, C., Yang, L., Chen, Y.: DSTP-RNN: a dual-stage two-phase atten-
tionbased recurrent neural network for long-term and multivariate time series pre-
diction. Expert Syst. Appl. 143, 113082 (2020)

10. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)
11. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems.

Science 197(4300), 287–289 (1977)
12. Medsker, L., Jain, L.C.: Recurrent Neural Networks: Design and Applications.

CRC Press, Boca Raton (1999)
13. Menezes, J.M., Barreto, G.A.: A new look at nonlinear time series prediction with

narx recurrent neural network. In: 2006 Ninth Brazilian Symposium on Neural
Networks (SBRN 2006), pp. 160–165. IEEE (2006)

14. Shen, L., Chen, J., Zeng, Z., Yang, J., Jin, J.: A novel echo state network for
multivariate and nonlinear time series prediction. Appl. Soft Comput. 62, 524–535
(2018)

15. Song, Z., Wu, K., Shao, J.: Destination prediction using deep echo state network.
Neurocomputing 406, 343–353 (2020)

http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/978-3-030-20521-8_40


A MRESN with Multiple-Size Input Time Slices for NTP Tasks 39

16. Suykens, J.A., Vandewalle, J.: The KU leuven time series prediction competition.
In: Suykens J.A.K., Vandewalle J. (eds) Nonlinear Modeling, pp. 241–253. Springer,
Boston (1998). https://doi.org/10.1007/978-1-4615-5703-6 9

17. Tanaka, G., et al.: Recent advances in physical reservoir computing: a review.
Neural Netw. 115, 100–123 (2019)

18. Tikhonov, A.N., Goncharsky, A., Stepanov, V., Yagola, A.G.: Numerical Methods
for the Solution of III-Posed Problems, vol. 328. Springer Science & Business Media,
Berlin (2013)

19. Weigend, A.S.: Time Series Prediction: Forecasting The Future And Understanding
The Past Routledge, Abingdon-on-Thames (2018)

20. Yu, Z., Liu, G.: Sliced recurrent neural networks. arXiv preprint arXiv:1807.02291
(2018)

https://doi.org/10.1007/978-1-4615-5703-6_9
http://arxiv.org/abs/1807.02291

	A Multi-Reservoir Echo State Network with Multiple-Size Input Time Slices for Nonlinear Time-Series Prediction
	1 Introduction
	2 The Proposed Model: MITSESN
	2.1 Series-to-Slice Transformer
	2.2 Multi-reservoir Encoder
	2.3 Decoder

	3 Numerical Simulations
	3.1 Datasets Descriptions and Task Settings
	3.2 Evaluation Metrics
	3.3 Tested Models and Parameter Settings
	3.4 Simulation Results
	3.5 Analysis of Richness

	4 Conclusion
	References




