
Chapter 3
Algorithms for the Development of Deep
Learning Models for Classification and
Prediction of Learner Behaviour in
MOOCs

José Edmond Meku Fotso, Bernabe Batchakui, Roger Nkambou,
and George Okereke

3.1 Introduction

3.1.1 Background

The demand for training has grown rapidly in recent years. This is evidenced by
the high number of learners at every level and type of education: not only in
universities but also at the primary and secondary levels as well as in technical
and vocational education, both formal and informal. In order to address the issue
of massification in education and to encourage sharing of knowledge, distance
learning, and especially e-learning, appears to be a suitable approach. This trend
is supported by the international agenda, including UNESCO’s “Education for
All” initiative, the United Nations’ fourth sustainable development goal (SDG4)
(UNESCO et al., 2016; UNESCO, 2005), the Incheon declaration on SDG4-
Education 2030, and the Continental Education Strategy for Africa (CESA 16-25)
(AFRICAINE, 2016). In particular, SDG4’s objective is to provide “inclusive and
equitable quality education and promote lifelong learning opportunities for all”
(UNESCO et al., 2016). Massive open online courses (MOOCs) appear to be a
suitable approach to support such an initiative. However, MOOCs face the unsolved
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major problems of high dropout, low completion, and a low success rate. Around
90% of students who enrol in a MOOC fail to complete it (Andres et al., 2018). In
addition, while slightly more than half of students intend to receive a certificate of
completion from a typical MOOC, only around 30% of these respondents achieve
this certification (Brooks et al., 2015).

Much research has addressed the problems of dropout and failure in MOOCs.
Because of the high number of learners and their heterogeneity, a huge volume
of data is generated by learners’ activities. Many models have been designed to
predict dropout, completion, certification, and/or success, with dropout prediction
being the most common (UNESCO, 2005). However, the concept of dropping out
and success needs to be reconsidered in the context of MOOCs because not all the
learners enrolled in MOOCs intend to get the certificate or even complete the course.
Therefore, for people who enrol in MOOCs for other purposes, than to get the
certificate or to complete the course, not completing the course, and/or not getting
the certificate should not be considered a failure and thus should not be classified as
such. Nevertheless, whatever the learners’ objectives, they need to take part in the
learning process in order to truly fulfil those objectives.

3.1.2 Interest

Our work aims to predict learner participation in the course learning process. To
do this, our objective is to design a model to classify and predict learner behaviour,
more specifically learners’ interaction in the learning process, including with course
activities and resources. Such classification and prediction of learner behaviour
can serve many purposes. It can be used to improve personalized support and
interventions by course instructors and managers; it can also guide the development
of adaptive content and learner pathways for learners (Gardner & Brooks, 2018).
Altogether, it can then be used to help predict and prevent dropout, thus improving
the completion and success rate.

3.1.3 State of the Art

Prior academic and commercial studies of MOOCs have established that there is a
strong correlation between student dropout, student general learning outcomes, and
student’s behaviour vis-a-vis course activities such as attempting quizzes, posting
in forums, submitting homework, and utilizing course resources such as videos,
audio lectures, and downloadable files (Brown et al., 2015). These behaviours can
be divided into two main types: pure learning behaviour, which involve student–
system interactions (e.g., completing quizzes, watching videos) (Sinha et al., 2014),
and social behaviours, which involve student–student interactions (e.g., posting or
commenting on messages in a forum) (Pursel et al., 2016).
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Many research works on learner performance prediction using activity logs have
demonstrated that learner’s behaviour during the learning process can efficiently
serve as learner performance predictor (Brown et al., 2015). Activity logs and social
metrics include various aspects of learner behaviour. Therefore, by combining the
features extracted from those two main sources with other features, like features
from geographical, academic, and socio-professional background, we may be able
to obtain a very comprehensive understanding of the learner behaviour and then
improve our ability to predict learner behaviour or learner participation in the
learning process.

3.1.4 Our Contribution

This chapter describes the development and implementation of more accurate
behaviour prediction models for learners enrolled in MOOCs, which are based
on deep learning algorithms. Since time series data is involved, recurrent neural
networks (RNNs) are used. We compare three RNN architectures: simple RNNs,
gated recurrent unit RNNs (GRU RNNs), and long short-term memory (LSTM). We
find that simple RNNs provide best prediction performance. Finally, we propose a
tool to support efficiently the course designers in their process of supporting and
guiding the learners in the learning process.

3.1.5 Structure of the Document

This document is organized as follows. Related prior research is described in
Sect. 3.2. The research methodology, including the approach, context, and method,
is presented in Sect. 3.3, as well as presentation and analysis of results. Section 3.4
gives the conclusion and the future work or perspectives.

3.2 Related Work

3.2.1 Outline

This section aims to explore the concept, concepts, as well as the state of the
art related to prediction of student success, and for other learning outcomes. The
learning analytics (LA) techniques are designed to analyse learning-driven data. LA
includes (1) descriptive analysis (what happened?), (2) predictive analysis (what
will happen next?), (3) diagnostic analysis (why did it happen?), and (4) prescriptive
analysis (what should be done to improve?). In our current study related to learner
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behaviour in MOOCs, the focus is done on the predictive analysis. The section
starts with an introduction to learning analytics, and then address the importance
of student success predictive models in MOOCs, after that we explore the diverse
types of inputs that are used by student success predictive models as well as the
various data sources providing those inputs/features. The section also explores the
features engineering, helping to extract features from data sources, and the section
presents the relation between types of model and the outcome predicted, as well
as the algorithms used for predictive models and metrics for their evaluation. The
section ends with lessons learned from this exploratory exercise.

3.2.2 Overview of Learning Analytics

The subject matter of this chapter falls under the area of learning analytics (LA) in
e-learning on MOOC platforms. LA includes predictive, diagnostic, and prescriptive
analysis in addition to descriptive analysis. According to the Society for Learning
Analytics Research, “LA is the measurement, collection, analysis and reporting
of data about learners and their contexts, for purposes of understanding and
optimizing learning and the environments in which it occurs” (Siemens & Baker,
2012). LA utilizes raw data extracted from any learning system, including learning
management systems (LMSs), open educational resources, online libraries, e-
portfolio systems, and student services systems. The analysis of this data highlights
relation between variables in log files that are related to the learning process and
generates new knowledge about students’ behaviour.

The field of LA is itself a subset of educational data mining (EDM) and consists
of four main categories of analysis: (1) descriptive (what happened?), (2) predictive
(what will happen next?), (3) diagnostic (why did it happen?), and (4) prescriptive
(what should be done to improve?) (Rokach, 2005). Tasks and methods are drawn
from the areas of statistics, classification, clustering, visualization, and data mining
(Rokach, 2005). Machine learning techniques (including deep learning) are also
utilized.

Educational data mining techniques can be divided into two main categories:
verification-oriented techniques, which rely on traditional statistical techniques such
as hypothesis tests and analysis of variance, and discovery-oriented techniques that
are used for prediction and categorization, such as classification, clustering, web
mining, and others (Rokach, 2005). Those two categories may employ similar
techniques, but for different purposes. For example, in the first case, a logistic
regression model might be constructed with the aim of understanding its parameters
(e.g., Kizilcec & Halawa, 2015), while in the second case the same modeling
technique could be used for a purely predictive goal (e.g., Whitehill et al., 2015).
Figure 3.1 below further breaks down the machine learning methods used for
classification, which may also be used for other purposes.
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Fig. 3.1 Taxonomy of learning analytics for classification (adapted from Rokach, 2005)

Many research works have used features extracted from pure learning behaviour,
as well as features related to social behaviour or interactions. Pure learning activities
include visiting pages, watching videos, downloading files, and taking quizzes,
while social interaction includes posting in forums, participating in discussions,
sending private messages, participating in social networks, and so on. Data related
to these activities may be obtained from sources like activity logs, data bases, and
external sources to describe or predict outcomes like dropout, completion, success,
and certification, using statistics, machine learning and deep learning algorithms.
In the area of descriptive learning analytics, Cocea and Weibelzahl (2009) has
proposed models to describe learner behaviour based on learning data. Many other
projects have also led to the development of plug-ins used in Moodle for descriptive
analysis (Mwalumbwe & Mtebe, 2017). Concerning predictive learning analytics,
many authors have also produced valuable research works (Kotsiantis et al., 2013).
There are also some plug-ins developed for predictive analysis (Mwalumbwe &
Mtebe, 2017).

3.2.3 Importance of Student Success Predictive Models in
MOOCs

In MOOCs, predicting student achievement is beneficial for a wide range of tasks.
Many authors agree on three major reasons for constructing predictive models of
student achievement, as described in the following subsections. Our model for the
classification and prediction of learner behaviour in MOOCs addresses all three of
these main purposes.
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3.2.4 Personalized Support and Interventions

Identifying students who are more likely to or fail offers the potential to improve
the student experience by enabling focused and personalized interventions to those
students who are most likely to need help. This is the stated motivation for many
previous works, which frequently refer to these pupils as “at-risk” students (a term
adopted from the broader educational literature). Because of the large number of
students enrolled in MOOCs compared to the amount of the instructional support
personnel, clearly identifying difficult students is critical for delivering focused and
timely assistance.

While a teacher in a regular in-person higher education course, or even a
moderately sized e-learning course, may be able to directly monitor students, such
observation is not possible to support MOOC instructors at scale, and predictive
models can help with (a) identifying which students require these resources and (b)
intervening by forecasting which resources will best support each at-risk student.
Predictive models that can identify these individuals with high confidence and
accuracy are necessary, especially when instructor time and resources are limited.
Furthermore, many interventions would be superfluous or even harmful to the
learning of students who are engaged or otherwise successful. A predictive model
must generate accurate and actionable forecasts in order to provide individualized
support and actions.

3.2.5 Adaptive Content and Learner Pathways

Predictive models in MOOCs have the potential to optimize the delivery of course
content and experiences for projected student performance. In MOOCs, there has
been very little research into adaptivity or true real-time intervention based on
student success forecasts in any manner. For example, dropout prediction is used
by Whitehill et al. to improve learner response to a post-course survey (this work
optimizes for data collection, not learner performance) (Whitehill et al., 2015), and
He et al. propose a hypothetical intervention based on projected dropout rates (but
only implements the predictive model to support it, not the intervention itself) (He
et al., 2015). Kotsiantis et al. offer a predictive model-based support tool for a
354-student distance learning degree programme, which is far smaller than most
MOOCs. Pardos et al. implement a real-time adaptive content model in an edX
MOOC. However, their approach is geared around increasing time spent on the page
rather than improving student learning (Pardos et al., 2017).

To some extent, the paucity of research on adaptive content and learner pathways
backed by accurate, actionable models at scale is owing to a lack of consensus on
the most effective strategies for developing predictive models in MOOCs, which we
address in the current study.
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3.2.6 Data Understanding

Predictive models can be used as exploratory or explanatory tools, assisting in
the understanding of the mechanisms underlying the desired outcome. Predictive
models can also be used to detect learner behaviours, learner qualities, and course
attributes related with MOOC performance, rather than just offering predictions
to enable targeted interventions or adaptive material. These findings can help us
enhance the content, pedagogy, and platform, as well as gain a better understanding
of the underlying elements that affect student success in these settings. They also
make a more direct contribution to theory by offering a better understanding of
the complicated interactions between predictors and outcomes derived from the
predictive modeling.

Certain types of models are more useful than others from this perspective.
Models with simple interpretable parameters (like linear or generalized linear
models, which provide interpretable coefficients and p-values, and decision trees,
which generate human-readable decision rules) are far more useful for human
understanding of the underlying relationship than models with many complex
parameters (such as a multilayer neural network). Unfortunately, the latter are
usually (but not always) more effective in making predictions in practice, so
interpretability and predictive performance are frequently trade-offs. Some major
developments in making increasingly sophisticated models interpretable suggest
that this trade-off may be decreased in the future (e.g., Baehrens et al., 2009), but
for predictive models in MOOCs, this “fidelity-interpretability trade-off” is still a
major concern (Nagrecha et al., 2017).

3.2.7 Common Metrics for Student Success in MOOCs

Much research in the area of MOOCs has focused on analysing different learning
outcomes including dropout, stopout, and certification, as well as measures such
as final exam grade or final course grade. These outcomes are taken as measures of
student success. Figure 3.1 shows the distribution of measures used in recent studies
of success prediction (Gardner & Brooks, 2018).

The issue of evaluating student success in MOOCs is particularly problematic
since indicators from traditional educational contexts—such as dropout, achieve-
ment, participation, and enrolment—can mean various things or appear illogical in
the context of a MOOC. The authors frequently employ different definitions for
these concepts, in the context of MOOCs. Furthermore, the abovementioned mea-
sures all focus on final outcomes and ignore the level of engagement of the student
during the course. A balanced picture of student success should provide a broad
collection of measures that assess course completion, engagement, and learning
outcomes. Having various different measures to quantify MOOC effectiveness and
outcomes allows us to test the robustness of models by potentially checking their
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Fig. 3.2 Trend of predictive models according to outcomes predicted (adapted from Gardner &
Brooks, 2018)

ability to predict multiple different outcomes. Furthermore, it allows us to capture
metrics such as course completion, certification, and career advancement as shown
in Fig. 3.2.

3.2.8 Inputs Used by Student Success Predictive Models

Besides the variety of outcomes predicted, there is also a variety of inputs used in
MOOC predictive models. Those outcomes include logging status and frequency,
attendance status, dropout status, completion, final grade, success, learning out-
comes, learner behaviour, and so on. Table 3.1 below categorizes predictive models
according to input types, with their associated data sources and usual outputs.

The figure below shows the tendency, in 2017, of predictive models in MOOC
by types of inputs used.

3.2.9 Activity-Based Models

Activity-based models use inputs related to learner behaviour to evaluate learner
behavioural outcomes such as dropout, failure, retention, success, and certification.
From Fig. 3.3, it is evident that activity-based models are the most commonly
found in the literature. This may be attributed to the fact that many outcomes
predictable are more driven by activities. In addition, in MOOC platforms, activity
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Table 3.1 Synthesis of predictive model categories from types of features perspectives

Predictive model
categories

Types of predic-
tions/outcomesType of input/features Sources

Activity-based
models

Use inputs data from
learner behaviour to
evaluate learner
behavioural outcomes
(dropout, failure, retention,
success, certification)

Clickstream files data
bases

Dropout, grade,
certification

Demographics-
based
models

Use learner attributes
which remain static (age,
sex, academic level, town,
marital status, country,
town, . . .) over the interval
of a course to predict
student success

Data bases Dropout, grade,
certification

Learning-based
models

Use observed student
learning or performance on
course assignments or
theories of student learning
as the basis for predictive
modeling

Clickstream files data
bases

Pass/fail, final
grade, assignment,
or exam prediction

Discussion forum
and text-based
models

Use natural language data
generated by learners, as
well as linguistic theory as
the basis of student models

Clickstream-based
activity features and
natural language
processing features

Completion

Cognitive models Cognitive models
incorporate observed or
inferred cognitive states or
rely on theories of
cognition

Biometric tracking,
contemporaneous
questionnaires

Dropout, grade,
certification

Social models Social models use observed
or inferred social
relationships, or theories of
social interaction, as the
foundation for student
models

For a data, external
sources

Dropout, grade,
certification

data are more abundant and more granular than any other data. Clickstream files, for
example, provide detailed and granular interaction-level data on users’ engagement
or interaction with the platform.

In addition, Brinton and Chiang (2015) established that activity-based features
not only predict activity-based outcomes but also appear to provide reasonable
predictive performance even in non-activity-based prediction tasks, such as in grade
prediction. Activity-based features may include simple counting-based features
(like the number of posts in forum, the number of quizzes completed) (e.g., Xing
et al., 2016), as well as more complex features such as temporal indicators of
increase/decrease of course engagement (date of last connexion to the course
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Fig. 3.3 Trend of predictive models in MOOC according to the types of inputs used (based on
data from Gardner & Brooks, 2018)

platform) (Bote-Lorenzo & Gómez-Sánchez, 2017), sequences (Fei & Yeung,
2015), and latent variable models (Qiu et al., 2016). Despite the variety of types
of activity-based inputs, all are obtained from the same underlying data source,
namely the course clickstream log (which may be reformatted as a relational
database consisting of extracted time-stamped clickstream events). Base features
are drawn from a relatively small and consistent set of events, including page views,
activity views, forum posts and views, and quiz completion: these features reflect
the structure of courses available across the dominant MOOC platforms, such as
edX and Coursera. Recently, however, due to the gamification of learning, different
types of features have also emerged, as shown in Table 3.2 below.

3.2.10 Demographics-Based Models

Demographics-based models use learner attributes which remain static over the
interval of a course to predict student success. Examples of demographic variables
include age, sex, academic level, marital status, and so on. Several works have
investigated the relationship between learner demographics and success in MOOCs.
For instance, Qiu et al. (2016) examine the impact of both gender and level of
education on forum posting, total active time, and certification rate for a sample
of XuetangX MOOCs. They found that in non-science courses, females had higher
rates of forum activities (posting and replying), more time spent on video and
assignment activities and higher certification rates—but in science courses, the
reverse was true.
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Other works established links between demographic features like age, prior
education, and prior experience with MOOCs and both dropout and achievement.
Greene et al. (2015) identified those three features as significant predictors of both
dropout and achievement. Khalil and Ebner (2014) identified several features that
explained a large proportion of dropout in MOOC, including lack of time, lack of
motivation, and “hidden costs” (textbooks needed for reference or paid certificates
not clearly mentioned at the beginning).

On the other hand, Brooks et al. (2015) found that adding demographics provided
only minimal improvement over the performance of activity-based predictive
models for academic achievement of learners enrolled in MOOCs. Brooks et al.
(2015) demonstrate that demographics-based models underperform activity-based
models in MOOCs, even during early stages of the course when activity data is
minimal. Additionally, demographic features provide no discernible improvement
when added to activity-only models—on the contrary demographic features tend to
degrade the performance of activity-only models in the second half of the course, as
activity data accumulates (Brooks et al., 2015).

3.2.11 Learning-Based Models

Learning-based models use observed student performance on learning tasks (includ-
ing course assignments) or theories of student learning as the basis for predictive
modeling. Learning is obviously the basic objective of any MOOC—however,
learning-based features are limited and are only used to predict a limited set of
outcomes, such as pass/fail, final grade, assignment, or exam prediction. Bayesian
Knowledge Tracing (BKT) (Mao, 2018; Pardos et al., 2013) has been widely used
in intelligent tutoring systems to predict homework scores. However, Ren et al.
(2016) found that “personalized linear regression” for predicting student quiz and
homework grade outperformed an item-level variant of BKT (IDEM-KT) across
two MOOCs.

Garman et al. (2010) applied pre-existing learning assessment to online courses
by administering a commonly used reading comprehension test (the Cloze test) to
students in an e-learning course. He found that reading comprehension is positively
associated with exam performance and overall course grade but found no association
between reading comprehension and open-book quizzes or projects. Kennedy et al.
(2015) evaluated how prior knowledge and prior problem solving abilities predict
student performance in a discrete optimization MOOC with relatively high prior
knowledge requirements, drawing on robust learning theory results from in-person
courses. The prior knowledge variables alone account for 83% of the variance in
students’ performance in this MOOC. The relationship between prior knowledge
and student performance is well documented in traditional education research but
is largely unexplored in MOOCs, despite the potential presence of many more
students who lack prerequisite prior knowledge in MOOCs relative to traditional
higher education courses.
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Other works focusing on time-on-task and task engagement are also student
performance concepts which have been applied extensively to educational contexts
outside of MOOCs. Champaign et al. (2014) evaluate how learner time dedicated to
various tasks within the MOOC platform (assignment problems, assessments, e-text,
check point questions) correlates with their learning gain and skill improvement
in two engineering MOOCs. They find negative correlations between time spent
on a variety of instructional resources and both skill level and skill increase (i.e.,
improvement in students’ individual rate of learning), using assessments calibrated
according to Item Response Theory.

On the other hand, DeBoer and Breslow (2014) find that time spent on homework
and labs in a Circuits and Electronics MOOC on edX predict higher achievement on
assignments, while time spent on the discussion board or book is less predictive
or not statistically significant. Additionally, time on the ungraded in-video quiz
problems between lecture videos is found to be more predictive of achievement
than time on lecture videos themselves.

Moreover, peer learning and peer assessment are also important theoretical
concepts in education but have seen only limited applications in MOOCs to date.
Ashenafi et al. (2016) examine models for student grade prediction which only use
peer evaluation. They apply these models to traditional courses with web-based
components but argue that their findings are also applicable to MOOC contexts.
Peer assessment is used extensively in MOOCs, and its predictive capacity remains
largely unexplored (Jordan, 2015).

3.2.12 Discussion Forum and Text-Based Models

Discussion forums are an embedded feature in every major MOOC platform and
are widely used in most courses. A detailed analysis of the data from discussion
forums provides the opportunity to study many dimensions of learner experience
and engagement, which could not been identified elsewhere. This includes a rich
set of linguistic features (derived from the analysis of the textual content of forum
posts), social features (measured by the networks of posts and responses or actions
such as likes and dislikes), and some behavioural features not available purely
from the evaluation of clickstream data. Typically, discussion forum and text-based
models use natural language processing (NLP) applied to data generated by learners,
as well as linguistic theory as the basis of student models.

Crossley et al. (2016) compared the predictiveness of clickstream-based activity
features and natural language processing features. They found that clickstream-
based activity features are the strongest predictors of completion but discovered
that NLP features were also predictive. Their work established that the addition of
clickstream-based activity features improves the performance over a linguistic-only
model by about 10%.

Other works (Tucker et al., 2014) found a moderate negative association between
students’ mood in posts regarding individual tasks and their performance on those
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assignments in an art MOOC. They also discover a little upward trend in forum
post mood throughout the course of the study. Other predictive work in the area of
sentiment analysis shows a link between sentiment and attrition that appears to be
different depending on the course content (Wen et al., 2014).

3.2.13 Cognitive Models

As the foundation for student models, cognitive models incorporate observed
or inferred cognitive states or rely on theories of cognition. Despite the fact
that MOOCs are ultimately concerned with influencing learners’ cognitive states
(learning is a cognitive activity), there has been surprisingly little research on the
use of cognitive data in MOOCs. This could be due to the particular difficulties of
obtaining this data, especially when compared to other rich data sources (activity,
forum postings, etc.). Novel data collection approaches, ranging from biometric
tracking (e.g., Xiao et al., 2015) to contemporaneous questionnaires, are used in
much of the research on cognitive states in MOOCs (Dillon et al., 2016).

Other authors like Wang et al. (2015) look at behaviours related to higher
order thinking as displayed in student discourse and examine their relationship to
learning using data from discussion forums. Several learning outcomes are evaluated
using hand-coded data and a learning activity classification framework based on
cognitive science research. The authors discovered that students who used “active”
and “constructive” behaviours in the discussion forum, behaviours that demonstrate
higher level cognitive tasks like synthesis rather than simply paraphrasing or
defining, produced significantly more learning gains than students who did not use
these behaviours. Furthermore, they established that useful cognitive data relevant
to student performance may be retrieved from discussion forum posts and applied
to simple models using techniques such as bag of words and linear regression.
Furthermore, cognitive strategies if they can be discovered properly appear to be
associated with student performance in MOOCs and that cognitive theory can be
used to inform MOOC prediction models.

Novel data collection approaches are used in much of the work in this subject.
Future research should move increasingly beyond questionnaires and self-reports
as the sole source of cognitive data from learners. The type of data required for
this type of research should become more available for researchers as sensing
technology gets more affordable and consumers’ devices (such as smartphones
and tablets) become increasingly outfitted with sensors. Many canonical cognitive
findings in educational research have yet to be investigated or replicated in a MOOC
environment, and further study is needed to establish the limitations of these findings
when applied to MOOCs.



56 J. E. M. Fotso et al.

3.2.14 Social Models

Social models of learning are built on the foundation of observed or assumed social
relationships or ideas of social interaction.

Many studies employ discussion forums to build social networks in which
students serve as nodes and varied response relationships serve as edges. Joksimović
et al. (2016), for example, use two sessions of a programming MOOC, one in
English and one in Spanish, to assess the association between social network ties
and performance (specifically, non-completion vs. completion vs. completion with
distinction). Students who received a certificate or distinction were more likely to
interact with one another than non-completers. Jiang et al. (2014) discovered that
learners in different performance groups tend to communicate with one another in
different types of MOOCs. Joksimović et al. (2016) found that weighted degree
centrality was a statistically significant predictor of completion with distinction in
the both the English and Spanish courses mentioned above, as well as a significant
predictor of basic completion in the Spanish language course. On the other hand,
closeness and betweenness centrality had more variable and inconsistent effects
across courses. They get to the conclusion that structural centrality in the network
is related to course completion (Joksimović et al., 2016). The findings are similar
to those of Russo and Koesten (2005), who found centrality to be a statistically
significant predictor of student achievement in a short online course. The findings
are similar to those of Russo and Koesten (2005), who found centrality to be a
statistically significant predictor of student achievement in a short online course.

In a related study, Dowell et al. (2015) examine how text discourse features
can predict social centrality and that discourse features explain about 10% of
the variance in performance (compared to 92% with a model using discourse +
participant features). The explained variance increased to 23% for the most active
participants in the forums.

There is a need for more research into the impact of social networks in MOOCs,
as well as more exploration of external social network data. Although social
networks appear to play a major role in students’ learning, they are difficult to
quantify using existing MOOC data, especially with small single-course samples.
Despite the richness of these data sources, MOOCs rarely incorporate external
digital social networks (such as data from Facebook or LinkedIn). Existing research,
on the other hand, appears to be unduly reliant on discussion forums as sources of
social network data. The evaluation of new data sources on social issues has the
potential to have a significant impact on the scholarly consensus in this field.
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Fig. 3.4 Trend of predictive models in MOOC according to the data sources providing inputs used
(based on data from Gardner & Brooks, 2018)

3.2.15 Data Sources Providing Inputs/Features for Predictive
Models

The data sources employed in MOOC predictive modeling research have received
little attention. Knowing which data sources are valuable for prediction and which
are unexplored is a good starting point for future research. Recognizing which data
sources are most valuable can also increase the efficiency of predictive modeling
work in practice because feature extraction is costly in terms of both development
and computing time.

The figure below displays the common data sources used in predictive models
designing in MOOCs. Moreover, this figure confirms that clickstreams are the most
common raw data source for predictive modeling research in MOOCs, out of the
raw data sources outlined in Fig. 3.4 above.

In some ways, the much used of clickstream data is unsurprising: clickstreams
give rich granular data that the field is only just beginning to understand how to
capture in its entirety. Clickstreams, on the other hand, are unstructured text files
that need a lot of human and computational work to parse. Due to faults in platform
server logging, their forms are complex and sometimes inconsistent, and a single
item can have multiple levels of aggregate applied to it. The various data types in
the figure above are usually given as organized relational databases that may be
accessed using simple SQL commands. The fact that clickstreams are so frequently
used, despite the difficulties in acquiring and using this data, demonstrates their
utility in predictive modeling. The authors (Gardner & Brooks, 2018) compare the
predictiveness of clickstream features vs. forum- and assignment-based features
when predicting dropout across the entire population of learners in a large state
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university in the USA. This work verifies that clickstream features are more effective
predictors than forum- or assignment-based features when predicting dropout across
the entire population of learners.

While clickstreams contain complicated, potentially relevant temporal informa-
tion regarding learner behaviour across time, most modeling of these temporal
patterns has been limited to simple counting-based representations (with few
exceptions; i.e., Fei & Yeung, 2015; Brooks et al., 2015). Much of the complexity
seen in these contact logs is unlikely to have been caught using current study
methodologies.

3.2.16 Features Engineering in Predictive Models

Boyer and Veeramachaneni (2015) show how good feature engineering may be
paired with effective statistical models to produce performant student success
predictors in a series of papers. Several unique approaches to developing activity-
based models of student success in MOOCs are demonstrated in these studies, which
combine crowd-sourced feature extraction, automatic model tweaking, and transfer
learning.

Boyer and Veeramachaneni (2015) employ crowd-sourced feature extraction to
create behavioural features for stopout prediction, using members of a MOOC
to apply their human skills and domain knowledge. For all four cohorts studied,
the authors find that these crowd-proposed characteristics are more complex and
have greater predictive performance than simpler author-proposed features (passive
collaborator, wiki contributor, forum contributor, and fully collaborative). The
predictive model in this study is based on a basic regularized logistic regression,
revealing that many good predictive models of student achievement in MOOCs have
depended on creative feature engineering rather than complicated algorithms.

Boyer and Veeramachaneni conclude that a posteriori models, which are built
retrospectively using labeled data from the target course, provide an “optimistic
estimate” and “struggle to achieve the same performance when transferred.” The
same researchers discovered that an in situ prediction architecture transfers well,
with performance comparable to a model that takes into account a user’s whole
history (which is not actually possible to obtain during an in-progress course).

The two sessions above helped to explore the data sources commonly used
and to address the issue of extracting features from those sources. It appears that
clickstreams are the most common raw data source used for predictive modeling
research in MOOCs. In the session above, we saw that many types of activity-based
features are embedded in clickstreams. Activity-based features are the basics of
activity-based models that are the most commonly used predictive models. From
the explanations provided above, it appears that the model we are developing for the
classification and prediction of learner behaviours is an activity-based model.
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3.2.17 Relation Between Types of Model and the Outcome
Predicted

Above we presented various types of models, ranging from activity-based to social
model. We also presented the most common types of outcomes that have been
predicted in MOOCs, and they include dropout, completion, and others.

The figure below is adapted (Gardner & Brooks, 2018), and the results presented
were established by experiments that included a predictive model that could be
classified as many categories or predicted numerous outcomes were included in each
category in this table, resulting in cell totals that surpass the total number of works
assessed. Pass/fail, final grade, assignment grade, and exam grade are examples of
“academic” outcomes.

All measures of course completion, such as certification and participation in the
final course module, are included in the term “complete.” They established that
academic outcomes are the most predicted, while completion and other types of
outcomes are the least predicted. On the other hand, while activity-based model is
the most common, cognitive-based models have not been well explored.

The figure below groups several outcomes into a single “academic” outcome
category. “Pass/Fail” indicates whether a learner met a predetermined final grade
threshold to pass the course, and “Certification/Completion” indicates whether a
student successfully completed all course requirements and received an official
certificate of completion. In addition, those official certificate sometimes requires
payment and identity verification; Fig. 3.5 shows the various types of models
according to the outcomes predicted.

Fig. 3.5 Trend of types of predictive models (inputs used) in MOOC according to the outcomes
predicted (adapted from Gardner & Brooks, 2018)
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Fig. 3.6 Trend of predictive models in MOOC according to the types of algorithms used (adapted
from Gardner & Brooks, 2018)

3.2.18 Algorithms for Predictive Models and Metrics for Their
Evaluation

Once the outcomes to be predicted are identify, as well as the type of model, the
features and the sources to extract the features from, the remaining tasks include
selecting relevant algorithms to build/train the model and the suitable metrics for
its evaluation. According to outcomes predicted and the model types, a number of
algorithms have been commonly used to build models, and various metrics have
been used to evaluate those models.

3.2.19 Algorithms for Predictive Models

Predictive student modeling in MOOCs relies heavily on statistical models to
translate features to predictions. Figure 3.6 represents the frequencies of different
classes of statistical algorithms used to develop MOOC predictive models (Gardner
& Brooks, 2018). The figure shows that tree-based models and generalized linear
models are the two most common types. The popularity of tree-based algorithms can
be attributed to several advantages: tree-based models can handle a variety of data
types (categorical, binary, and continuous), they are less prone to multicollinearity
than linear models, they are nonparametric and make few assumptions about the
underlying data, and their outputs may be interpreted through visualization, inspec-
tion of decision rules, variable importance metrics, and other methods. On the other
hand, GLMs are quick and easy to fit to data, requiring little or no hyperparameter
tuning. Unlike tree-based models, they produce regression coefficients that can be
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Fig. 3.7 Trend of predictive models in MOOCs according to the specific algorithms used (adapted
from Gardner & Brooks, 2018)

directly interpreted as expressing the relative contribution to overall accuracy of the
different predictors.

Figure 3.7 further disaggregates Fig. 3.6 by showing the specific algorithms
utilized. The figure shows that how the prevalence of tree-based algorithms obscures
the lack of uniformity in the algorithms utilized. It appears that, of all the tree-
based algorithms studied, only random forests were used in more than ten of
the works. As a result, evaluating the effectiveness of any particular tree method
across their survey is challenging. In contrast, there are few GLM algorithms used
in the literature; practically, all GLM algorithms are logistic regression (LR) and
L2-penalized logistic regression (“ridge” regression, L2LR). Despite their high
parametric assumptions about the underlying data, GLMs, and L2LR in particular,
often achieve outstanding performance when applied with large and robust feature
sets.

Finally, Fig. 3.7 shows a “long tail” of modeling methodologies, with about half
of the work using customized, individualized algorithms, indicated by “Other” in
Figs. 3.6 and 3.7. This reflects a focus on innovation in academic research, as well
as a new area with limited consensus on the optimal strategy to solve prediction
problems. We notice that none of the methods in the assessed work consistently
outperforms all other algorithms, implying that there is no one “best” algorithm for
a given job or dataset (Wolpert & Macready, 1997). At this juncture, future work
comparing and evaluating the fitness of various predictive modeling algorithms
for various objectives in MOOC research would be suitable. It also appears that
supervised learning approaches dominate the literature, with few examples of
unsupervised approaches; this is likely due to the fact that many of the outcomes
(i.e., dropout, certification, pass/fail, grades) are observable for all learners, making
unsupervised techniques unnecessary for many of the prediction tasks addressed by
research to date.
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3.2.20 Metrics for Model Evaluation

The figure below shows the distribution of evaluation measures commonly used
as highlighted in Gardner and Brooks (2018). There is a general consensus on
a set of evaluation metrics, including accuracy (ACC), area under the Receiver
Operating Characteristic curve (AUC), precision (also known as positive predictive
value) (PREC), recall (REC) (also called true positive rate, sensitivity, or probability
of detection), F1, and kappa. Different measures evaluate different aspects of
predictive quality, which change based on the task and study goals. However,
sometimes readers are unable to compare performance across otherwise-similar
studies that report different performance metrics due to the lack of a common
baseline. Reporting multiple measures would frequently provide a fuller view of
model performance and make cross-study comparisons easier, while still allowing
researchers to look at performance using their preferred metric(s). Open data or
open replication frameworks would enable more detailed comparisons and shift the
burden of proof from the researcher to reviewers and critical readers, who would be
able to evaluate results using any performance indicator of interest.

Classification accuracy is reported as the only model performance metric in
ten of the studies surveyed (more than 10%). But although classification accuracy
is easily interpretable, but it can be a misleading measure of prediction quality
when outcome classes are of unequal size, as is the usual case in MOOCs (i.e.,
most students dropout, do not certify, etc.). The same data that is used to compute
accuracy can also be used to obtain more informative performance metrics, such
as sensitivity, specificity, F1, Fleiss’ kappa, and so on. Other measures, such as the
AUC, assess performance for all potential thresholds, thus taking into account the
fact that performance is threshold dependent, as shown in Fig. 3.8 below.

The best model evaluation metric is typically determined by the outcome being
measured as well as the specific objectives of a predictive modeling project.
For example, recall may be an appropriate model evaluation metric in a dropout
modeling experiment where the goal is to provide an inexpensive and simple
intervention to learners (such as a reminder or encouragement); however, precision
may be a better choice when the goal is to provide an expensive or resource-intensive
intervention to predicted dropouts.

3.2.21 Lessons Learned from Related Work

The accuracy dimension of predictive student models described in the figure above
is reflected by the data source, feature extraction method, statistical modeling
algorithm, and assessment metric taken together. Research into and methodological
development in each of these domains (feature extraction, modeling, and evaluation)
stands to significantly increase the accuracy of future predictive MOOC models.
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Fig. 3.8 Trend of predictive models in MOOC according to the evaluation metrics used (adapted
from Gardner & Brooks, 2018)

We have observed the various aspects of the related works and the key observa-
tions made are the following: (1) input/features/predictors have been focusing most
on exploring activity-based data through click stream logs. (2) Outcomes predicted
or the prediction have been focusing on (a) dropout, (b) completion, (c) success,
and (d) certification, not providing the actor with a good understanding of what is
going on in the MOOC platform which remain a “Black Box,” Course instructor
is not provider with a tool clear understanding of the learner behaviour in order
to support him in the learning process. (3) Algorithm models have been focusing
most on the descriptive models; in addition, predictive models used so far have not
explore enough the power of deep learning for better prediction.

Given the previous observations, we conclude that the following actions would
provide actors with tools for better management of the learning process in MOOCs:
(1) exploring more features, (2) exploiting the power of deep learning, and (3)
classifying and predicting learner behaviour.

3.2.22 Approach

Traditional educational researchers and practitioners used methods such as (1)
surveys, (2) interviews, and (3) observations, those methods are (1) time consuming,
(2) costly, and (3) do not provide the course instructor with timely and useful
information to understand and manage the teaching and learning process, and
in addition, a delay always occurs between data collection and prediction. So
educational researchers progressively switched to learning analytics (LA) for real-
time analysis of data generated by the learning process.
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LA includes both descriptive and predictive analyses. As described above, our
goal is to construct a predictive model that takes into account a variety of features of
a learner life cycle (activity-based features, demographics-based features, learning-
based features, Discussion Forum and Text-Based Features, Cognitive Features,
Social Features) in a MOOC platform, for the purpose of enabling timely, targeted,
and personalized intervention to promote retention and successful course and
programme completion, by classifying and predicting the learning behaviour in the
MOOC. For this purpose, it is necessary to take into account the characteristics of
data to be analysed such as volume, variability, velocity, veracity, as well as the
highly imbalanced nature of dropping out over retention or failure over success.
The large volume of data available, as well as the complicated interaction of factors
involved, indicates that deep learning algorithms can potentially provide far better
prediction performance and accuracy than traditional algorithms (Xing & Du, 2019).
The experimentation will start by activity-based features and then will progressively
consider other types of features.

Our overall methodology consists of (1) exploring the potential of deep learning
techniques to provide learner behaviour predictive model which can potentially
outperform the traditional-used Machine Learning approaches, (2) analysing per-
sonalized interventions using individual’s learner behaviour prediction, and (3)
checking whether deep learning models can better personalized and prioritised
interventions to support learner in the learning process than other algorithms. In the
current chapter, we deal exclusively with point (1). In order to achieve predictions
that are actionable in a real-world context, and given time series types of data
generated by learner behaviour, the training technique is L2 regularization on
models using RNN architectures (Che et al., 2018).

While training our model, we initially play on (1) the number of epochs, (2) the
type of RNN, (3) the number of hidden layers, (4) the learning rate, and (5) the
regularization parameter. Accuracy is the most suitable model evaluation metric to
work, in view of the binary nature of our outputs and the dataset. So, we choose
accuracy as the metric to evaluate the model. During the training, we keep constant
the parameters related to the Adams optimizer, as shown in Fig. 3.9 below.

3.2.23 Context/Dataset

The context for this work is a gender-sensitive STEM Education course deployed
on Moodle. The course took place in September 2018 and lasted for 6 weeks. The
course consisted of 6 modules and 3617 students registered. The course consisted
of involved many activities and resources, including forums, quizzes, assignments,
videos, audios, wiki, downloadable files, lecture content pages, announcement,
calendar, and gradebook, whereas Moodle has many data sources, for this work
our dataset will be extracted from clickstream logs, which is a file provided directly
by Moodle containing historical information about the learners’ and instructors’
interactions in the platform, such as pages visited including when and how many
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Fig. 3.9 Architecture of the training of the model

students and teachers interacted with the course content. The dataset also includes
demographic data. Those sources are enough for the current preliminary study,
because we do not intend at this level to go deep in the contents of learners’
interactions.

3.2.24 Method

3.2.24.1 Features Generation

In order to build our predictive model, several activity-based features related to
learners’ interaction with the learning process or course content (activities and
resources) were generated. The features and their descriptions are given in Table 3.1.
These are all activity-based features and were chosen according to the MOOC
prediction literature (Rosé et al., 2014) and our previous work (Sinha et al., 2014).
Since feature engineering is not a principal objective of this work, we used a flat
feature structure containing clickstream, directly provided by the log file. Our work
adopts a classical 80/20 train/test split because we did not have a very large amount
of data, as shown in Figs. 3.10 and 3.11 below.

3.2.25 Building the Model

Our model works on time series data (learner behaviour in the learning process),
so RNN (Recurrent Neural Network) is a suitable deep learning algorithm to use
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Fig. 3.10 Overview of features generated to serve as inputs for the predictive mode

Fig. 3.11 Example of clickstream data extracted from the Moodle platform/clickstream data
having 8844 records

(Che et al., 2018). The most common RNN architectures used in predictive models
are simple RNNs, GRUs, and LSTMs. All the RNN models work with sequenced
data and feed information about previous states or time steps into each next state.
Practically, LSTMs require the most memory, followed by GRUs. Simple RNNs
have the smallest memory capacity (Anani & Samarabandu, 2018).
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This chapter implements all the three aforementioned architectures. The model
consists of a recurrent layer with 200 hidden layers coupled with a tanh activation
function, and then the output is given to a layer, having a sigmoid activation function
to produce the probability that the learner will take the next activity in the learning
process. This probability will be used to classify and predict their behaviour. The
model is built in such a flexible way to allow easy switching from one RNN
architecture to another. This enables us to compare the models built using the three
types of RNNs. The model also makes it possible to adapt the dimension of the
RNNs to suit the input dataset.

In our experimentation, some learner’s activities or interactions with the learning
environment have been identified, and separate feature values are defined for each
of those activities.

Learner’s activities are related to the various tasks of a learner in an online
learning environment. Those tasks include and are not limited to: (1) Log into
the platform, (2) Using forums, (3) Using quiz. If we consider learners activities
associated with the task (1) Log into the platform, then the features we can use,
concerning learners, are “never log in”, “log in on time”. So for this activity, the
model classifies and predicts learners who could log into the platform or not, as
well as those who could log into the platform on time or not. If we consider learners
activities associated with the task (2) Using forums, then the features we can use,
concerning learners, are “view forum messages”, “post messages in forum”. So
for this activity, the model classifies and predicts learners who could view forum
messages or not, as well as those who could post messages in forum or not. If we
consider learners activities associated with the task (3) Using quiz, then the features
we can use, concerning learners, are “viewing quizzes”, “completing quizzes”,
“validating quizzes”. So for this activity, the model classifies and predicts learners
who could view quizzes or not, those who could complete quizzes or not, as well as
those who could validate quizzes or not . . .

• Training algorithm: ADAM optimizer
• ADAM uses the running averages of the previous gradients to adjust parameter

updates during the training phase
• For the cost function J, represented below, we use binary cross-entropy loss with

L2 regularization (helps model to fit the training data well and generalize better)

This cost function is constructed based on binary cross-entropy loss coupled
to L2 regularization. Our model is performing a binary classification (learner
takes the next activity or not) with estimated probabilities, compared to currently
used training techniques like cross-validation, in situ or gradient clipping, so L2
regularization is appropriated because it helps smoothing oscillations in the training
loss. The Adam optimization algorithm was used to train the model; Adam is an
optimizing algorithm that uses the running averages of the previous gradients to
adjust the parameters of the model during the training phase, and we play on (1) the
number of epochs, (2) the type of RNNs, (3) the number of hidden layers, (4) the
learning rate, and (5) the L2 regularization parameter. During the training, we keep
constant the parameters related to the Adams optimizer. In addition, the learning
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Fig. 3.12 Structure of the model with hidden layers

Fig. 3.13 Structure of any single type of RNN tested (simple RNN, LSTM, and GRUs)

Fig. 3.14 Cost function: binary cross-entropy loss coupled to L2 regularization

rate used by the model is automatically reduced during the training, if the validation
loss did not decrease after a few numbers of epochs, as shown in Figs. 3.12, 3.13
and 3.14 above.
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Table 3.3 Comparison of model accuracy for different types of the RNNs used

Inputs type Simple RNN GRU LSTM

All features 0.8920 0.8801 0.8870

3.3 Experimental Results and Discussion

We experimented the model with many sets of hyper parameters, by try and
error, with the three RNN architectures (simple RNNs, GRUs, and LSTMs) before
concluding that simple RNNs perform best, as shown in Table 3.3, using a
regularization parameter of λ = 0.01, which produced the best accuracy of 89.2%
for simple RNNs.

With any of the three architectures, 200 hidden layers appear to be offering the
best balance in terms of speed and accuracy compared to models with 64 or 256
hidden layers. In our work, we found that simple RNNs produced the best accuracy
for the model on the dataset used. This was not expected as experience and previous
works tend to predict that LSTMs should perform better than other types of RNNs.
One potential explanation of this situation is that having long memory seems not to
be so important in this dataset as expected. In fact, some previous works suggest that
there might be a transition point in the learning process where learner behaviour far
likely changes. Furthermore, past studies on learner behaviour suggest that learner’s
activities are high at the beginning of the learning process, then decrease during
the process, and then slightly increase at the end of the process. The previous
explanations imply that there is not a real need of advanced memory capacities for
the required model, and then LSTMs may not necessarily be the best option.

3.4 Conclusion and Future Work

Our main objective in this chapter was to study relevant algorithms for the
development of deep leaning model to classify and predict learner’s behaviour in
MOOC. Given the time series type of dataset, we tested three architectures of
RNNs to find out that simple RNN with input features offers the best precision
(performance and accuracy) in classifying and predicting learning behaviour in
the learning process. One of the key benefits of this model is the fact that, by
giving a good understand of learner’s behaviour, the model might guide teachers to
provide personalized support and interventions to learners in the learning process.
This would give a tool to the course instructor/teacher who is the main tutor of
any learning process, who mastered the course content, and who can better assist
learners so that they actively benefit from the entire course. This analysis also reveals
that learner’s behaviours concerning video viewing, posting in discussion forums,
viewing discussion forums and quizzes could help predict learner behaviour about
other types of content. This model could also be used to support adaptive content
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and learner pathways, by suggesting the revision or restructuring of the content
and/or training path, closure of a course, or the launch of a new course. This model
could also support data understanding, by providing insight information, exploratory
or explanatory tools, assisting in the understanding of the mechanisms underlying
the desired outcome, and then helping to understand the mechanisms behind the
outcomes.

The main challenge of this study was the imbalanced nature of our dataset in the
single MOOC used for this first experimentation. In addition, the learner behaviour
or interaction with a given content is not easily and deeply measurable. We used
common behaviours like clicking, viewing, downloading, uploading, attempting,
and posting which are not always suitable and easy to measure.

Future research would address the following main issues: (a) develop a method
to measure the quality of learner behaviours, (b) test the model in other MOOCs and
explore methods to further improve the deep learning behaviour prediction model
performance in MOOCs by increasing the hidden layers in the network, (c) the
current study only shows statistical validity of the model, (d) further researchers
could examine its validity by implementing the model in ongoing MOOC courses
to assess it in real-time prediction, and (e) subsequent research should also include
designing personalized interventions based on the model predictions.
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