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Abstract. Nuclear cataract (NC) is the leading cause of blindness and
vision impairment globally. Accurate NC classification is significant for
clinical NC diagnosis. Anterior segment optical coherence tomography
(AS-OCT) is a non-contact, high-resolution, objective imaging technique,
which is widely used in diagnosing ophthalmic diseases. Clinical studies
have shown that there is a significant correlation between the pixel den-
sity of the lens region on AS-OCT images and NC severity levels; how-
ever, automatic NC classification on AS-OCT images has not been seri-
ously studied. Motivated by clinical research, this paper proposes a gated
channel attention network (GCA-Net) to classify NC severity levels auto-
matically. In the GCA-Net, we design a gated channel attention block by
fusing the clinical priority knowledge, in which a gated layer is designed
to filter out abundant features and a Softmax layer is used to build the
weakly interacting for channels. We use a clinical AS-OCT image dataset
to demonstrate the effectiveness of our GCA-Net. The results showed
that the proposed GCA-Net achieves 94.3% in accuracy and outperformed
strong baselines and state-of-the-art attention-based networks.

Keywords: AS-OCT · Nuclear cataract · Gated channel attention ·
Deep learning

1 Introduction

Cataract is the leading cause of reversible blindness and vision impairment world-
wide [5]. Early treatment can address vision impairment and restore vision to
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(a) AS-OCT image (b) Normal (c) Mild (d) Severe

Fig. 1. The whole AS-OCT image shown in (a), and the center area is the nucleus.
(b) Normal nucleus image; (c) Mild NC image where the nuclear opacity is asymp-
tomatic;(d) Severe NC image where the nuclear opacity is symptomatic.

improve the cataract patient’s quality of life. According to the location of the
opacities, cataracts can be generally classified into three types: nuclear cataract
(NC), cortical cataract (CC), and posterior subcapsular cataract (PSC). NC is
the most common type of cataract, characterized by the increase of light scatter-
ing in the nucleus region of the crystalline lens area. In clinical practice, slit-lamp
image is routinely used to diagnose NC based on standard cataract classification
systems. Lens opacity classification system III (LOCS III) [4] is a well-accepted
slit lamp image-based cataract classification system. With the development of
nuclear opacity pathology, nuclear cataract can be divided into three stages [15].
(1) Normal: healthy or without nuclear opacity in the slit-lamp image; (2) mild
(grade=1 or 2 in LOCS III): the nuclear opacity is asymptomatic; (3) severe
(grade≤3 in LOCS III): the nuclear opacity is symptomatic. Mild NC can be
relieved by clinical intervention, while severe NC needs to prepare for surgery as
soon. Figure 1 shows the representative figures of AS-OCT nuclear areas at the
three stages.

Anterior segment optical coherence tomography (AS-OCT) is a non-contact,
high-resolution tomography technique, which can objectively and quickly obtain
overall information of the entire lens. AS-OCT images have gradually been used
in the diagnosis of various anterior segment ocular diseases such as glaucoma,
cataracts, and keratitis [5]. For NC diagnosis, AS-OCT image can capture the
nucleus region clearly while other ophthalmology images like fundus images can-
not. The clinical study has shown that the average lens density (ALD) has a
strong linear relationship with the nucleus region of AS-OCT images based on
the LOCS III [21], which provided clinical support for automatic cataract classi-
fication on AS-OCT images. Following [21], clinical research [3,14,16,20] further
got the similar statistics results. Motivated by the preliminary works, [27] studied
NC classification based on AS-OCT image, which uses the convolutional neural
network (CNN), but they achieved poor performance.

Average nucleus density (AND) is a clinical indicator on AS-OCT image for
nuclear cataract diagnosis, which is defined as the average pixel density in the
nucleus region [21]. Figure 2 shows the distribution of AND in different stages
of nuclear cataract. It can be seen that there are significant differences in the
AND distribution among different NC stages, while many images are difficult to
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Fig. 2. The different nuclear opacity stages are reflected in the OCT image; the his-
togram reflects the sample distribution of three nuclear cataract severity levels (differ-
ent colors mean different NC stages).

classify the severity of cataracts simply by AND (the overlap area as shown in
Fig. 2).

In recent years, channel attention mechanism has become one of the most
popular attention mechanisms due to its simplicity and effectiveness, which
directly learns importance weights of each channel. In channel attention block,
global average pooling (GAP) is used for integrating channel-wise information,
which calculates the mean value of each channel. GAP collects the global mean
value, which enhances the representation ability for global information, espe-
cially AND. Inspired by this relationship, we propose a simple yet effective
gated channel attention network (GCA-Net) for NC classification automatically.
In the GCA-Net, this paper designs a novel gated channel attention block, where
a gating operator is used to mask and applies a weakly-interacting operator to
model the global channel information.

The main contributions of this paper are as follows: (1) We develop a novel
convolutional neural network (CNN) model named GCA-Net to discriminate
opacity information for classifying NC levels into three severity levels. (2) This
paper designs a simple yet effective channel attention (GCA) block comprised
of three stages: gating, squeezing, and interacting, to capture the global infor-
mation. (3) The results on a clinical AS-OCT image show that our GCA-Net
surpasses state-of-the-art attention-based networks.

2 Related Work

2.1 Cataract Classification

In recent years, research scholars have proposed many advanced machine learn-
ing and deep learning methods for automatic cataract classification on different
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ophthalmology image modalities [26]. [12] proposes an automatic NC classifica-
tion system that contains three stages (region detection, pixel feature extrac-
tion, and level prediction) based on the ACHIKO-NC slit-lamp dataset, and
achieves an average error of 0.36. Xu et al. also performed NC classification on
the ACHIKO-NC dataset, using the group sparse regression (GSR) method and
achieved 83.4% accuracy [25]; [24] proposed the semantic similarity method for
slit lamp image-based NC classification and obtained better performance than
GSR. [1] achieves an accuracy of 95% using support vector machines (SVM) to
classify NC on ultrasound images, but the ultrasound image data sets used for
their work are from animals. Li et al. achieved accurate cataract screening by
improving the Haar wavelet transform algorithm on fundus images [2].

Compared with machine learning methods, deep learning methods are skilled
at capturing useful feature representations. Gao et al. proposed a hybrid model
of convolutional neural network (CNN) and recurrent neural network (RNN)
based on slit-lamp images and achieved 82.5% accuracy for NC classification [6].
A team of Sun Yat-sen University proposed a congenital cataract screening plat-
form based on deep learning [13]. Xu et al. proposed a global-local hybrid CNN
network by fusing different parts of pathological information that achieves better
performance than previous methods on fundus images [23,26].

There are relatively few NC classification studies on AS-OCT images.
Some clinical studies have verified its reliability on NC classification based on
LOCS III [3,16,21]. [27] tried preliminary NC classification using deep learning
methods on AS-OCT images. We combine clinical and methodological research
to propose our own method.

2.2 Attention Mechanism

Attention mechanisms have empowered CNN models and achieved state-of-
the-art results on various learning tasks [19]. In general, attention mecha-
nisms can be mainly summarized into two groups, channel attention mecha-
nism and spatial attention mechanism. SENet [10] firstly proposed the channel
attention mechanism. It performs the GAP for channel squeeze, then recon-
structs inter-dependencies of the channels through fully-connected (fc) layers,
finally a Sigmoid layer is applied to generate channel weights for each channel.
GENet [9] introduces a learnable layer for better exploiting the context feature,
and FcaNet [19] increases the diversification of extracted features by extracting
multi-band information. Bottleneck Attention Module (BAM) [17] and Convolu-
tional Block Attention Module (CBAM) [22] combine the two attention mecha-
nisms for getting the fused attention weights. To improve efficiency, ECANet [18]
uses one-dimensional convolution layers to replace the original fully-connected
layers in SENet.

3 Method

In this section, we first revisit the classical channel attention mechanism. Then
we elaborate our GCA block in detail.
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Fig. 3. A gated channel attention block.

3.1 Revisiting of Channel Attention

Channel attention is one of the most widely used attention module in CNNs. It
uses a learnable block to adjust the importance of each channel and enhance the
feature representation ability of the model. Given X ∈ R

C×W×H is the input
feature tensor, where C denotes the number of channels, H and W denote the
height and width of the feature map, respectively. The output Y ∈ R

C×W×H has
the same shape of X with re-weighting of each channel. SENet [10] is the most
classic channel attention mechanism consist of squeeze and excitation operation.
The formula can be written as:

Y = Fscale(Watt,X), (1)

Watt = Fex(Fsq(X)), (2)

where Watt ∈ R
C is the channel attention weight, Fscale refers to channel-

wise multiplication, Fsq represents the squeeze function GAP, and Fex is the
excite function to transform the squeeze info to attention weights. Generally, the
squeeze step compresses channel information, and excitation step calculates the
channel weights Watt. For the first step, it usually use parameter-free function
like global average pooling (GAP) [10] or global max pooling (GMP) [22] to
compute channel-statistics information. For the second step, it adopts fc layers
for inter-channel dependency reconstruction.

In this paper, we found that the dependency among channel-statistics infor-
mation is weak, and fc layers do not work well for AS-OCT image-based NC
classification. This is because AND is an important indicator for NC diagnosis
on AS-OCT images. Hence, we design a simple yet effective channel attention
block named gated channel attention (GCA) block and will be introduced in the
next section.

3.2 Gated Channel Attention Block

Figure 3 shows the diagram of the structure of a gated channel attention (GCA)
block, which comprises three stages: gating, squeezing, and interacting.
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(a) SE Residual Unit (b) GCA Residual Unit

Fig. 4. The schema of the SE residual unit (left) and the GCA residual unit (right).

Gating: To suppress the redundant features in a feature map, we devise a gated
unit to mask the irrelevant features. According to the clinical studies in Sect. 2.1,
the higher density region has higher relevance with cataract. To this end, we
proposed a high-value gate for masking the low-value influence. It is an adaptive
threshold function in which we use the global average value from each feature
map as the threshold value. This is because [11] demonstrated that pooling
value below average suppressed neuron activations in a CNN model. Formally,
the gated tensor X ′ ∈ R

C×W×H is generated by masking the low-value of input
tensor X ∈ R

C×W×H , such that the c-th channel is formulated by:

(X ′
c)ij = Fgating(Xc)ij = Max(Mean(Xc), (Xc)ij), (3)

where Mean function calculates the mean value of the feature map, Max func-
tion returns the largest item of input.

Squeezing: We use a squeezing operator to follow the gating operator, which
is used to compute the channel-statistics feature information from each channel.
This paper uses global average pooling (GAP) as squeezing operator, equivalent
to the AND indicator for NC diagnosis. It can be written as follows:

zc = FGAP (X ′
c) =

1
W × H

W∑

i=1

H∑

j=1

(X ′
c)ij , (4)

where zc denotes the output of GAP in c-th channel.
In the experiments, we test the effects of different pooling operators.

Interacting: In the third stage, we propose a weakly interacting operator to
construct weak dependencies of inter-channel and set the relative weights for
channels. The fully-connection operator is the first proposed method for channel
interacting in channel attention block. However, it brings higher model complex-
ity, and [18] simplifies the interacting stage using local-connection. We further
reduce the interacting complexity, and achieve channel interacting base on a
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Softmax function. This paper uses the following formulation to get attention
weights:

(Watt)c = Softmax(z)c =
ezc

∑C
i=1 e

zi
, (5)

where Watt is the channel attention weight same as formula 2.
As shown in the formula 5, the attention weight (Watt)c of each channel can be

obtained through the dependencies between a single channel (zc) and all channels
(z). Thus, Softmax function can be regarded as a weakly-connection among
channels. On the contrary, Sigmoid obtain the channel weights independently
with a lack of interaction. In the experiments, we will make a comparison between
these two interaction methods.

The final output of the GCA block is obtained by rescaling X ′ with the
channel weights Watt:

Yc = Fscale(X ′
c, (Watt)c) = (Watt)cX ′

c, (6)

where Yc is the c-th channel of final output, Fscale(X ′
c, (Watt)c) is a channel-wise

multiplication between the weight Wattc and the feature map X ′
c.

Discussion: To demonstrate the effectiveness of our GCA block, we use
ResNet18 and ResNet34 as the backbone networks. We use them based on two
reasons: 1) ResNet is a universal backbone, and ResNet18 and ResNet34 have
low computational cost. 2) Most attention mechanism blocks have been veri-
fied to be effective on the ResNet backbone. The final GCA-Net is stacked by
repeated GCA units shown in Fig. 4(b).

4 Experiments

4.1 Dataset and Evaluation Measures

We use a clinical AS-OCT images dataset, which is collected through the
CASIA2 ophthalmology device (Tomey Corporation, Japan). The original AS-
OCT image is shown as Fig. 1(a). However, only the nucleus area is associated
with NC classification [21], and we extracted the nucleus part of the whole AS-
OCT image manually as shown in Fig. 1(b)(c)(d).

The AS-OCT image dataset contains 17200 AS-OCT images from 543 par-
ticipants with the average age of 61.3±18.7 (range: 14˜95) years old, and there
are 135 males and 335 females among the participants with gender information.
The participants were asked to collect images of one eye or both eyes, and the
total number of collected eyes is 860 (440 left eyes and 420 right eyes). Each eye
has 20 AS-OCT images, and We discarded 999 images without complete nucleus
region due to the occlusion of the eyelids during collection. Finally, we use 16201
AS-OCT images for NC classification.

We divide the dataset based on participants into three disjoint subsets: train-
ing dataset, validation dataset, and testing dataset. Table 2 summarizes the dis-
tribution of three NC stages on the three datasets.
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Table 1. The AS-OCT image distribution of NC stages on different datasets.

Dataset Normal Mild Severe

Training 896 3219 5504

Validation 317 793 2331

Testing 390 830 1921

Total 1603 4842 9756

We resize the nucleus images to 224*224 and perform the random rotation
and random horizontal flipping for data augmentation. All models are imple-
mented on the Pytorch platform and trained on a TITAN-V GPU with 12GB
memory. We use the stochastic gradient descent (SGD) optimizer with the batch
size of 64. The initial learning rate is set to 0.0015 and decreased by a factor of
10 every 10 epochs after 100 epochs.

We use three commonly-used evaluation metrics: Acc, F1 and Kappa value
to evaluate the performance of the model [7]. The calculation formulas are as
follows:

Acc =
TP + TN

TP + FP + TN + FN
, (7)

Recall =
TP

TP + FN
, (8)

Precision =
TP

TP + FP
, (9)

F1 = 2 × Recall × Precision

Recall + Precision
, (10)

where TP, FP, TN, and FN denote the numbers of true positives, false positives,
true negatives, and false negatives, respectively.

Kappa =
p0 − pe
1 − p0

, (11)

where p0 is the relative observed agreement among raters, and pe is the hypo-
thetical probability of chance agreement. Furthermore, we use #P to denote the
number of parameters and GFLOPs [10] to measure the computation.

4.2 Comparison with State-of-art Attention Attention Blocks

Table 2 compares the proposed GCA block with state-of-art attention blocks
on ResNet18 and ResNet34. Our GCA-Net achieves the best NC classification
results among all methods. It obtains the accuracies of 94.24% and 94.31%,
respectively, and outperforms state-of-art attention blocks by more than 3%
accuracy. Furthermore, It also consistently improves performance over other
methods on F1 and Kappa value, demonstrating the effectiveness of the pro-
posed GCA-Net. Moreover, compared with ResNets and comparative attention-
based CNN models, the GCA-Net parameters are equal to ResNets and are
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Table 2. Comparison with state-of-the-art attention blocks.

Method Backbone Acc F1 Kappa #P GFLOPs

ResNet [8]

ResNet18

91.02 90.98 83.43 11.18M 1.82

SENet [10] 90.61 90.88 82.44 11.27M 1.82

CBAM [22] 89.18 89.03 79.21 11.27M 1.82

GCA-Net 94.24 94.76 89.48 11.18M 1.82

ResNet [8]

ResNet34

88.57 88.57 78.27 21.29M 3.67

SENet [10] 88.35 88.39 77.75 21.44M 3.67

CBAM [22] 91.21 90.93 83.54 21.44M 3.67

GCA-Net 94.31 94.55 89.45 21.29M 3.67

smaller than SENet and CBAM. Furthermore, our GCA-Net does not add addi-
tional GFlops through comparisons to other state-of-the-art attention methods.
In general, Our GCA-Net works better between accuracy and complexity.

4.3 Ablation Study

Table 3. Effects of pooling operators in GCA based on ResNet18 (✓ denotes using
gating operator before squeezing and ✗ denotes not).

Squeeze Gating Acc F1 Kappa

Global max pooling ✓ 93.51 93.80 85.95

Global std pooling ✓ 93.25 93.59 87.84

Global average pooling ✗ 93.64 93.67 88.31

Global average pooling ✓ 94.24 94.76 89.48

Effects of Different Pooling Operators. Table 3 shows the classification
results of three different pooling operators in the GCA block based on ResNet18.
Compared with global max pooling and global std pooling, the GAP achieves the
best results on three evaluation measures. This is because GAP can be taken
as another representation of average nucleus density (AND) from the nucleus
region. Furthermore, the results also demonstrate that the gating operator sig-
nificantly improves the classification results for the GCA block.
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Table 4. Classification results of channel interaction operators in GCA block based
on ResNet18.

Squeezing operator Acc F1 Kappa

Fully-connection [10] 91.27 91.08 83.41

Local-connection [18] 93.31 93.34 87.77

Non-connection 92.04 92.12 85.44

Weakly-connection 94.24 94.76 89.48

Effect of Different Channel Interaction. Table 4 presents the classifica-
tion results of four interaction operations: fully-connection, local-connection,
non-connection(Sigmoid) and weakly-connection (Softmax). Our weakly-
connection interaction operation obtains the best classification results among
four interaction operations. Two reasons can explain these: 1) Softmax oper-
ation not only sets the relative weights for channels, but also suppresses the
unimportant channels. 2) Inter-channel dependencies are weak, and it is difficult
to build good dependencies among channels in training.

5 Conclusion

This paper proposes a simple yet effective gated channel attention network
named GCA-Net to classify severity levels of nuclear cataract automatically on
AS-OCT images. In the GCA-Net, we design a gated channel attention (GCA)
block to mask redundant features and use the Softmax layer to set relative
weights for all channels, which is motivated by the clinical study of average
nucleus density (AND). The results on a clinical AS-OCT image dataset demon-
strate that our GCA-Net achieves the best classification performance and out-
performs advanced attention-based CNN models. Moreover, the computation
complexity of our GCA-Net is equal to previous methods, which indicates that
it has the potential to deploy our method on the real machine.

In the future, we will collect more AS-OCT images to verify the overall
performance of the GCA-Net and plug the GCA block in other CNN models to
test its effectiveness.
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