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Abstract. Gesture recognition using surface electromyography (sEMG)
is the technical core of muscle-computer interface (MCI) in human-
computer interaction (HCI), which aims to classify gestures according to
signals obtained from human hands. Since sEMG signals are character-
ized by spatial relevancy and temporal nonstationarity, sEMG-based ges-
ture recognition is a challenging task. Previous works attempt to model
this structured information and extract spatial and temporal features,
but the results are not satisfactory. To tackle this problem, we proposed
spatial-temporal convolutional networks for sEMG-based gesture recogni-
tion (STCN-GR). In this paper, the concept of the sEMG graph is first
proposed by us to represent sEMG data instead of image and vector
sequence adopted by previous works, which provides a new perspective
for the research of sEMG-based tasks, not just gesture recognition. Graph
convolutional networks (GCNs) and temporal convolutional networks
(TCNs) are used in STCN-GR to capture spatial-temporal information.
Additionally, the connectivity of the graph can be adjusted adaptively
in different layers of networks, which increases the flexibility of networks
compared with the fixed graph structure used by original GCNs. On two
high-density sEMG (HD-sEMG) datasets and a sparse armband dataset,
STCN-GR outperforms previous works and achieves the state-of-the-art,
which shows superior performance and powerful generalization ability.
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1 Introduction

The technology of human-computer interaction (HCI) allows human to interact
with computers via speech, touch, or gesture [14], which promotes the prosper-
ity of rehabilitation robots [3] and virtual reality [10]. With the development
of HCI, a new technology called muscle-computer interface (MCI), which used
surface electromyography (sEMG) to recognize gestures and realized natural
interaction with human, has emerged and used in many applications, especially
rehabilitation robots. sEMG is a bio-signal derived from the muscle fibers’ action
potential [11], which is recorded by electrodes placed on the skin. According to
the number of electrodes, sEMG can be categorized into sparse sEMG and high-
density sEMG (HD-sEMG), both of them record spatial and temporal changes
of muscle activities when gestures are performed. Since sEMG signals provide
sufficient information to decode muscle activities and hand movements, gesture
recognition based on surface electromyography (sEMG) forms the technical core
of non-intrusive MCIs [1].

Gesture recognition based on sEMG can be divided into two categories:
conventional machine learning (ML) approaches and novel deep learning (DL)
approaches. ML approaches (e.g., SVM) depend heavily on hand-crafted features
(e.g., root mean square), which limits their wider application. As revolutionary
ML approaches, DL approaches have achieved great success on the sEMG-based
gesture recognition tasks. In existing DL-based recognition approaches, sEMG
data are represented as images ([4,6,17]) or sequences ([13]), and are fed into
convolutional neural networks (CNNs) or recurrent neural networks (RNNs) to
extract high-level features for gesture classification tasks. Since the superposi-
tion effect of muscle fibers’ action potential, neither sEMG images nor sequences
can reveal this characteristic. Moreover, most of the previous works only focus
on spatial information or temporal information and have not considered them
together [4,7,13,17]. The potential spatial-temporal information is not fully uti-
lized, which further limits the performance of these approaches.

To bridge the gaps mentioned above, we proposed spatial-temporal con-
volutional networks for sEMG-based gesture recognition called STCN-GR, in
which spatial information and temporal information are taken into consideration
together by using graph convolutional networks (GCNs) and temporal convolu-
tional networks (TCNs). Instead of the representation of images or sequences for
sEMG data, we propose the concept of sEMG graph and use graph neural net-
works for sEMG-based gesture recognition, in which the topology of the graph
can be learned on different layers of networks. To our knowledge, it is the first
time that graph neural networks have been applied in the sEMG-based gesture
recognition tasks. Our work makes it possible for graph neural networks to be
used in sEMG-based gesture recognition tasks and provides a new perspective
for the research of sEMG-based tasks.

The main contributions of our work can be summarized as:

• We propose the concept of sEMG graph and use graph neural networks to
solve the task of sEMG-based gesture recognition for the first time, in which
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the connectivity of graph can be learned automatically to suit the hierarchical
structure of networks.

• We propose spatial-temporal convolutional networks STCN-GR which uses
spatial graph convolutions and temporal convolutions to capture spatial-
temporal structured information for gesture recognition.

• On three public sEMG datasets for gesture recognition, the proposed model
exceeds all previous approaches and achieves the state-of-the-art, which ver-
ifies the superiority of STCN-GR.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the DL approaches for gesture recognition and the neural networks
on graph. Section 3 describes the proposed model. Section 4 is the experimental
details followed by the conclusion in Sect. 5.

2 Related Work

DL-Based Gesture Recognition. sEMG signals are time-series data with
high correlation in spatial and temporal dimensions, which reflect the activi-
ties of gesture-related muscles. Given by a sequence (i.e., window) of sEMG
data, the object of the gesture recognition task is to determine the gesture cor-
responding to these data. As a leading technology to solve gesture recognition
tasks, the deep learning approaches are categorized into CNN approaches, RNN
approaches, and hybrid approaches. CNN approaches describe each frame of
sEMG data as an image to extract spatial features and turn the gesture classi-
fication task into an image classification task. The recognition result obtains by
performing a simple majority vote over all frames of a window [2,4,17]. There
also exist works that use CNNs directly on the whole window data of sEMG [11].
RNN approaches treat sEMG data as vector sequences and directly feed them
into RNN to obtain the recognition results [7,8], in which the temporal informa-
tion is mainly utilized. Hybrid approaches use CNN, RNN, or other experiential
knowledge, simultaneously. Hybrid CNN-RNN architecture [6] has been used
and achieves 99.7% recognition accuracy. By integrating experience knowledge
into deep models [16,20], good outcomes also are achieved.

However, all of these works are failed to capture structured spatial-temporal
information, especially spatial information. Since the superposition effect of mus-
cle fibers’ action potential, correlations exist between majority channels. Graph-
based approaches may be more appropriate for sEMG-based gesture recognition.

Graph Convolutional Network. Graph neural network (GNN) is a kind of
network used to solve the tasks based on graph structure, such as text clas-
sification [19], recommender system [9], point cloud generation [15], and action
recognition [12,18]. As a typical GNN, graph convolutional network (GCN) is the
most widely used one and follows two streams: the spectral perspective and the
spatial perspective. The spectral perspective approaches consider graph convo-
lution operations in the form of spectral analysis in the frequency domain. The
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spatial perspective approaches define graph nodes and their neighbors, where
convolutional operations are performed directly using defined rules. Our work
follows the second stream. Graph convolutions are performed on constructed
sEMG graph followed by temporal convolutions. More details will be introduced
in Sect. 3.

3 Spatial-Temporal Convolutional Networks

When performing gestures, human muscles (e.g., extensor) in the arm are
involved at the same time. Motor units (MU) in muscles “discharge” or “fire”
and generate “motor unit action potential” (MUAP) [4]. The superposition of
MUAPs forms sEMG signals. Usually, a gesture is relevant to a sEMG win-
dow that contains a sequence of frames, i.e., the sEMG signal shows temporal
and spatial correlation. In tasks such as skeleton-based action recognition, this
spatial-temporal feature can be extracted using graph convolutional networks
(GCNs) and temporal convolutional networks (TCNs) jointly [12,18]. Motivated
by them, we introduce GCNs and TCNs into sEMG-based gesture recognition
and propose our STCN-GR model. The pipeline of gesture recognition using
STCN-GR is presented in Fig. 1. Given a sEMG window, spatial graph convolu-
tion and temporal convolution will be performed several times alternately after
graph construction to obtain high-level features. Then the corresponding gesture
category will be obtained by the softmax classifier.

Graph Construction. Surface electromyography is usually acquired as muti-
channel temporal signals, To model this complex spatial-temporal structured
information appropriately, for the first time, we propose the concept of sEMG
graph and create a sEMG graph G = (V,E) for sEMG signals.

In constructed sEMG graph, the states of sEMG channels are represented
as the vertex set V = {vi|i = 1, 2, ..., N}, N is the number of sEMG channels ,
and each frame of gesture windows shares this graph. Particularly, the states of
sEMG channels will be referred to as vertices for distinguishing them from the
channels of the feature map below. Given a vertex vi and its neighbor vj , the
connectivity between vertex vi and vertex vj can be denoted as a spatial edge
evi,vj

, and all the edges form the spatial edge set E = {evi,vj
|vi, vj ∈ V }. It is

worth noting that every spatial edge e ∈ E (dark blue solid line in Fig. 1) can be
learned and updated using a learnable offset δ with the parameters of networks
dynamically. For each graph convolutional network layer, a unique topology is
learned to suit hierarchical structure base on the original graph.

Spatial Graph Convolution. In graph convolutional networks (GCNs), ver-
tices (dark blue circles in Fig. 1) are updated by aggregating neighbor vertices’
information along the spatial edges. Each vertex in the sEMG graph will go
through multiple layers and be updated several times. In the (m + 1)th layer,
the process of vertex feature aggregation can be formulated as [12]:
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Fig. 1. Pipeline of gesture recognition. Data of a sEMG window (red rectangle) are
input to STCN-GR after sEMG graph construction. Then gesture category will be
classified by the softmax classifier. The edges of the sEMG graph (dark blue solid lines)
are updated using a learnable offset δ with parameters of networks and the vertices
(dark blue circles) are also updated according to their neighbors and themselves. (Color
figure online)

hm+1
i =

∑

j∈Bi

1
cij

hm
j w(li(j)) (1)

where hm+1
i is the feature representation of vertex i through the aggregation

of the (m + 1)th layer, i = 1, 2, ..., N , m = 0, 1, 2, ...,M − 1), N and M are the
numbers of vertices and the total number of graph convolution layers. h0

i denotes
the initial state of vertex i. cij is a normalization factor. w(·) is the weighting
function, which is similar to the original convolution. li is a mapping function to
map vertex j with a unique weight vector [12]. Bi is the neighbors of vertex i.
It can be considered that neighbors are connected to each other. For a standard
3 × 3 convolution operation, the number of neighbors |B| can be considered as
9. More generally, the adjacency relationship of vertices can be denoted as an
adjacency matrix. The spatial graph convolution can be rewritten as [12] in a
matrix form:

Hm+1 =
K∑

k=1

Wm+1,k(HmÃm+1,k) (2)

where Hm ∈ R
Cm×T×N is the input feature map, Hm+1 ∈ R

Cm+1×T×N is the
output feature map after aggregation. C, T and N are the channels of the
feature map, length of the window and the number of vertices, respectively.
K is the spatial kernel size of the graph convolution, in our work, it is set
to 1. Wm+1,k ∈ R

Cm+1×Cm is a weight matrix that can realize a mapping:
R

Cm → R
Cm+1 . ˜Am+1,k ∈ R

N×N is the adjacency matrix, to note that, Ãm,k

denotes the “soft” connectivity of sEMG graph learned by the networks, which is
a significant improvement compared with original graph convolutional network
that uses “hard” fixed topology. The connectivity of sEMG graph is parame-
terized and can be optimized together with the other parameters of networks,
which increases the flexibility of the networks. Ãm,k is calculated by:

Ãmk = Āmk + ΔAmk (3)
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where Āmk = Λ
− 1

2
mkAmkΛ

− 1
2

mk , Amk is the connection relationship between vertices
(includes self loops), and the fully connected relationship is used as the basic
topology in our work. Λi,i

mk =
∑

j Ai,j
mk is the normalized diagonal matrix. As

for ΔAmk, it can be regarded as a supplement of Āmk, each element δi,j of
ΔAmk is a learnable parameter that learns an offset for each spatial edge ei,j
and captures import information for gesture recognition (illustrated in Fig. 1).
After M updates, vertices in the spatial graph include task-related information.
Combined with temporal features, networks can obtain high-level features, which
is beneficial for gesture classification.

We can find that graph convolution is similar to traditional convolutional
operation, but graph convolution is more flexible, its neighbors can be deter-
mined according to actual situation or tasks (traditional convolution has only
local grid neighbors), that’s why it can achieve good performance on the gesture
recognition tasks.

Temporal Convolution. For a T -frames data of a sEMG window, a spatial
feature map S ∈ R

C×T×N is obtained after graph convolution is finished, and
it is input to a temporal convolution network (TCN) to extract the temporal
features. At this stage, temporal feature extraction which uses temporal convo-
lution operation is performed on every vertex (i.e., state sequence s ∈ R

C×T×1).
In practice, K×1 convolution kernel is used to perform temporal convolution, K
and 1 are the kernel size along the temporal axis and spatial axis, respectively.
By changing the kernel size, the receptive field in the temporal dimension can
be adjusted, which means that it can process sequences of arbitrary lengths. In
our work, K = 9, the stride of 1, and zero paddings are utilized. Using dilated
convolutions and stacking TCN layers, history information can be seen in the
current time step. However, unlike [13] performs standard temporal convolution
operations on the overall sequence, for convenience, our temporal convolution
operations use simple convolution operations along the time dimension without
dilated convolutions or causal convolutions. In this way, temporal convolutions
can be simple enough to be embedded anywhere.

Spatial-Temporal Convolutional Networks. Our spatial-temporal convolu-
tional networks for gesture recognition (STCN-GR) follow similar architectures
as [12,18]. As shown in Fig. 2, a basic spatial-temporal convolution block (STCB,
box with blue dashed line) includes one GCN block and one TCN block to cap-
ture spatial and temporal information together. Besides, batch normalization
(BN) layers and ReLU layers are followed to speed up convergence and improve
the expression ability of networks. Residual blocks (RBs) are used to stabilize
the training, which uses 1 × 1 kernels to match input channels and out channels
(if need).

The overall architecture of networks is shown in Fig. 3. The STCN-GR is
stacked by M STCBs, in our work, M = 4. c1, c2, c3, c4 denote the number of
output channels of STCBs, which are set to 4, 8, 8, G (the number of gestures),
respectively. A global average pooling (GAP) layer is added after the last STCB
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Fig. 2. Illustration of spatial-temporal convolution block (STCB). GCN and TCN are
the graph convolutional network and temporal convolutional network, respectively,
and both of which are followed by batch normalization (BN) and ReLU. RB stands for
residual connection block. (Color figure online)

to improve generalization ability and get the final features, which replaces the
full connection layer and reduces the number of parameters. Then, an optional
dropout operation is performed. Through a softmax layer, class-conditional prob-
ability log p(yj |xi, θ) can be get to predict gestures. The loss of the ith sample is
defined as:

Li = −
G∑

j=1

1i(yj) log p(yj |xi, θ) (4)

Where 1 is the indicator function, G is the number of gestures, yj is the jth labels.
xi and θ are the input sEMG signals and parameters of networks, respectively.

Fig. 3. The overall architecture of STCN-GR. STCN-GR comprises M(M = 4) STCBs,
a global average pooling (GAP) layer, and an optional dropout layer. In this architec-
ture, c1, c2, c3, c4 are 4, 8, 8, G, respectively.

4 Experiments

4.1 Datasets and Settings

To evaluate the performance of STCN-GR, experiments are conducted on three
sEMG datasets for gesture recognition: CapgMyo DB-a, CapgMyo DB-b and
BandMyo. Different experiments are performed on these datasets to illustrate
the superior performance of the proposed STCN-GR.
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CapgMyo. CapgMyo [1] is a high-density surface electromyography (HD-
sEMG) database for gesture recognition, which is recorded by two-dimensional
arrays (8 × 16, total 128) of closely spaced electrodes. This dataset sampled
1000 Hz has three sub-datasets: DB-a, DB-b, and DB-c. 18, 10 and 10 subjects
are recruited for DB-a, DB-b and DB-c, respectively. DB-a is designed for evalu-
ating the intra-session performance and fine-tuning hyper-parameters of models,
DB-b and DB-c are used for inter-session and inter-subject evaluation [1]. In this
work, to compare performance with most existing works, DB-a and DB-b are
used. DB-a and DB-b both contain 8 isometric and isotonic hand gestures, each
gesture in them is held for 3–10 s and 10 trials are performed for each gesture.
We followed the pre-processing procedure like [1,7,17] and used the preprocessed
data which use a 45–55 Hz second-order Butterworth band-stop filter to remove
the power-line interference and only include the middle one-second data, 1000
frames of data for each trial.

BandMyo. BandMyo dataset [20] is a sparse armband dataset collected by a
Myo armband wore on the forearm. This dataset is comprised of finger movement
and wrist movement, other movements, a total of 15 gestures. Significantly, the
Myo armband just has 8 channels, which means much fewer channels compared
with HD-sEMG. 6 subjects are recruited to perform all of 15 gestures by following
video guidance, and all of 15 gestures are performed one by one in a trial. When
a trial is finished, the armband is taken off and participants will be given a
short rest. Briefly, participants wear the armband again and the acquisition
process is repeated 8 times (i.e., 8 trials). From the acquisition process, we can
know that domain shift [7] exists in one subject’s data for the slight change of
armband position. No preprocessing is used on this dataset, which is different
from CapgMyo datasets.

Experimental Settings. All experiments were conducted on a Linux server
(16 Intel(R) Xeon(R) Gold 5222 CPU @ 3.80 GHz) with a NVIDIA GeForce
RTX 3090 GPU. All the details in this paper are implemented by using the
PyTorch deep learning framework.

For all the experiments, STCN-GR was trained using Adam optimizer, and
a weight decay of 0.0001. The base learning rate was set to 0.01 and was divided
by 10 after the 5th, 10th, and 25th epochs on three datasets. For CapgMyo
DB-a and DB-b, the number of epochs and the batch size were 30 and 16,
respectively. 30 epochs and a batch size of 32 were utilized on BandMyo. To get
enough samples, the sliding window strategy is used like most works [6,7,11,20].
The window size and window step are 150 ms and 70 ms [7] on CapgMyo DB-a
and DB-b, respectively. Since the detailed parameters and training details are
not clear [20], 150 and 10 are set as window size and window step on BandMyo.
Following the same evaluation method [1,2,6,16,17] on CapgMyo, the model is
trained on the odd trials and tested on the even trials. The same evaluation
method is used on BandMyo like [20]. Before training, all sEMG signals were
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normalized in the temporal dimension. No pre-training process has been adopted
in our experiments, which is different from other works [2,4,6,17].

4.2 Comparison Results

To evaluate the overall performance of the proposed model in this paper, we
compare it with existing approaches on all three datasets. The best results
reported literatures are summarized in Table 1, which are all from the latest
approaches or the existing state-of-the-art approaches that can be found. Com-
parison results show that our STCN-GR achieves state-of-the-art performance
on all three sEMG datasets, which verifies the superiority of the proposed model.

Table 1. Comparison results on three datasets. The results of the other approaches
are the best results reported in literatures. The results in bold show that STCN-GR
achieves the best performances on all three datasets.

Accuracy (%)

CapgMyo DB-a CapgMyo DB-b BandMyo

GengNet [4] 99.5 98.6 57.8

DMA [1] 99.5 98.6 –

SSL-GR [2] 99.6 98.7 –

CNN-RNN [6] 99.7 – –

MS-CNN [17] 99.7 – –

2sRNN [7] 97.1 97.1 –

SA-CNN [5] 96.1 – –

SVM [20] 71.0 70.8 59.4

RF [20] 83.2 76.2 68.1

STF-GR [20] 91.7 90.3 71.7

STCN-GR (ours) 99.8 99.4 75.8

The experimental results in Table 1 show that, on three public sEMG datasets
for gesture recognition (CapgMyo DB-a, CapgMyo DB-b and BandMyo), the
results of STCN-GR are superior to that of previous best approaches by 0.1%,
0.7% and 4.1%, respectively. Since accuracy on CapgMyo DB-a is almost sat-
urated [5], it is a significant improvement on this dataset, though the improve-
ment is only 0.1%. The same reason can be found on CapgMyo DB-b. Since
the results of the other approaches shown in Table 1 are the best ones in their
reports, which means the window size may be 200 ms, 300 ms, even the entire
trail. However, just 150 ms is used as window size on CapgMyo in our STCN-
GR, and the best performance is achieved. In other words, better performance
is achieved using less data, which shows advantages both in accuracy and speed.
Due to inter-session domain shift [7] which is a very common phenomenon in
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practical applications, gesture recognition can be more difficult on the BandMyo
dataset compared with the CapgMyo dataset, and our STCN-GR also achieves
the state-of-the-art, which shows the powerful generalization ability.

4.3 Ablation Study

We examine the effectiveness of the proposed components by conducting exper-
iments on the first subject of three datasets. As is shown in Fig. 4. “stcn-gr” is
the proposed complete model STCN-GR, “tcn” and “gcn” are the models that
remove GCN and TCN components, respectively. Particularly, 1×1 convolutions
are applied to replace the GCNs to match the output channels. As seen from
Fig. 4, the “stcn-gr” always outperforms the other two models. As the number of
STCBs (Fig. 2) increases, the performance of “gcn” gradually approaches “stcn-
gr”, which indicates the core role of GCNs based on the learnable graph. What’s
more, the performance of “stcn-gr” decreases on some datasets (e.g., CapgMyo
DB-b) with the number of layers deepens, and the reason for it may be over-
fitting. From this ablation experiment, it can be seen that STCN-GR with 4
STCBs performs well on three datasets, which achieves superior performance
while maintains the uncomplicated structure of the networks.

Fig. 4. Ablation study on three datasets. (a) ∼ (c) are the results on CapgMyo DB-
a, Capgmyo DB-b and BandMyo, respectively. The “stcn-gr” is the proposed com-
plete model, the “tcn” and the “gcn” are the models that remove GCNs and TCNs,
respectively.

4.4 Visualization of the Learned Graphs

Figure 5 gives an illustration of learned adjacency matrices by our model based
on the first subject of BandMyo. The far left is the original graph, which are
followed by learned graphs of 4 STCBs. The darker color represents the stronger
connectivity. The visualization of learned graphs indicates that the connectiv-
ity with significant vertices (i.e., sEMG channels) will be strengthened, e.g., the
vertex 0 and vertex 6, while the connectivity with insignificant vertices will be
weakened with the deepening of network layers. Hence, important information
will be gathered on a small number of vertices, which is significant for the fol-
lowing classification task.
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Fig. 5. Visualization of the learned graph. (a) is the original adjacency matrix, (b) ∼
(e) are adjacency matrices learned by 4 STCB layers of STCN-GR. The darker color
indicates stronger connectivity. (Color figure online)

5 Conclusion

In this paper, we propose the spatial-temporal convolutional networks for sEMG-
based gesture recognition. The concept of sEMG graph is first proposed by us
to describe structured sEMG information, which provides a new perspective for
the research of sEMG-based tasks. The novel learnable topology of graph can
adjust the strength of connectivity between sEMG channels and gathers impor-
tant information on a small number of vertices. Spatial graph convolutional are
performed on the constructed sEMG graph followed by temporal convolution.
The proposed networks can fully utilize spatial-temporal information and extract
task-related features. The experimental results show that our model outperforms
the other approaches and achieves the state-of-the-art on all three datasets. In
our feature work, we will concentrate on solving the domain adaptation prob-
lem [1,7], includes the adaptation of inter-session domain shift and inter-subject
domain shift. Based on this work, the self-supervised and semi-supervised learn-
ing framework will be also taken into our consideration.
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