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Abstract. This paper explores synthetic image generators in dataset
preparation to train models that allow human handwritten character
recognition. We examined the most popular deep neural network archi-
tectures and presented a method based on autoencoder architecture and
a schematic character generator. As a comparative model, we used a
classifier trained on the whole NIST set of handwritten letters from the
Latin alphabet. Our experiments showed that the 80% synthetic images
in the training dataset achieved very high model accuracy, almost the
same level as the 100% handwritten images in the training dataset. Our
results prove that we can reduce the costs of creating, gathering, and
describing human handwritten datasets five times over — with only a 5%
loss in accuracy. Our method appears to be beneficial for a part of the
training process and avoids unnecessary manual annotation work.

Keywords: Handwritten text - Pattern recognition - Image
processing - Data augmentation - Synthetic dataset + Deep learning -
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1 Introduction

Identifying and extracting handwritten texts is still challenging in the scan-
ning process [6]. Handwriting styles characterize by high variability across peo-
ple; moreover, the inferior quality of handwritten text compared to printed
text make serious difficulties when transforming it to machine-readable text.
Therefore, many industries are concerned with handwritten texts, particularly
healthcare and pharmaceutical, insurance, banking, and public services. Over
recent years, widespread recognition technologies, like ICR (Intelligent Char-
acter Recognition) and IDR (Intelligent Document Recognition), have evolved.
Recent advancements in DNN (Deep Neural Networks), such as transformer
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architectures, have also developed progress in solving handwritten text recogni-
tion (HTR) [4]. However, models based on DNNs demand annotated datasets,
which takes time and money. The motivation of the paper — to alleviate the high
cost associated with annotating data to be used by machine learning algorithms
— is aligned with current academic and business concerns.

The paper proposes the unsupervised generation of character image samples
to alleviate the cost of manually collecting and annotating images. The pro-
posed method consists of the following steps: (1) textually describing characters
employing a set of points (coordinates) and lines linking them (straight or Bezier
curves), referred to as “scheme” by the authors; (2) parsing; (3) adding some
random shifts to the point coordinates and lines; (4) image rendering; (5) scal-
ing. Then, to improve the variability of the character appearance, we used two
approaches. First, the autoencoder is trained with synthetic images (generated
with a schema). Then the stable points in its latent space are fixed and used
to generate and variate more image samples. Second, the autoencoder is trained
with handwritten images, and is then used to process the synthetic images.

In the experimental part, three types of training sets are considered: (H) only
handwritten images, (S) only synthetically generated images, and (HS) a mix
of handwritten images with synthetically generated images. Using training set
(S) yields inferior results compared to using (H), and using training set (HS)
yields results closer to those produced using (H). The experiments use a NIST
hand-printed letters dataset.

We hypothesize that the model accuracy trained on the partially synthetic
dataset is similar to the model trained on a fully real dataset. Nevertheless,
preparing the dataset can dramatically save human labour, which significantly
impacts on its business applications.

The paper contributions are:

1. synthetic character image generation using our designed schemas,

2. autoencoder-based character generation processes,

3. studying classification results for various proportions of authentic handwrit-
ten and generated images in training data.’

In the following sections, we review relevant work on state-of-the-art methods
and datasets requirements for an HRT task (Sect.2); describe our solution for
data generation (Sect.3); outline the experimental setup that shows line of the
reasoning from the dataset selection and classification training to comparison
of solutions (Sect.4); discuss the results and limitations of this study (Sect.5);
conclude and offer directions for further research (Sect.6).

2 Related Work

The initial approaches to solving recognition challenges involved machine learn-
ing like hidden Markov models (HMM) or support vector machines (SVM) [16].

1 Our source code for the handwritten character generator, schema examples are in:
https://github.com/grant-TraDA.
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The performance of these techniques is limited due to the manual feature extrac-
tion for inputs and their insufficient learning ability. However, RNN/LSTM can
deal with sequential data (e.g. handwritten texts) to identify their patterns and
generate the data. Even better results have recently been gained with multilayer
perceptron neural networks [1]. Thus, sequence-to-sequence (seq2seq) models
with encoder-decoder networks and attention mechanisms have gained popu-
larity for solving recognition problems and machine translation, where output
generation is essential.

The HRT challenge is to cope with large amounts of labelled data [7,17].
Labels have to be exacted to match each character region with its name. This
is done mainly by direct recognition of a word or line. For example, in many
datasets, there are annotations of a word and its coordinates [18]. The character
level recognition is practically tricky since the first need is to segment a word
into characters. Tables 1 and 2 summarize the biggest and most popular datasets
of handwritten characters, and then gather, compare, and analyze the require-
ments for the handwriting recognition datasets. There are synthetic datasets
used for handwriting recognition training [2,8,9]. In [9], the authors present a
vast dataset, consisting of 9 million images, created with various fonts and aug-
mentation schemes. A similar approach was proposed by Jaderberg et al. [8], who
generated the synthetic data engine that assembled data based on a few inputs —
randomly chosen parameters — such as colours or fonts. Others [2] proposed a sys-
tem based on GANs to create synthetic images representing handwritten words.
All researchers confirm that enriching a real dataset with artificial observations
improves model quality.

Table 1. Handwritten datasets.

Datasets Description

NIST dataset [12] Dataset published by The US National Institute
of Science. It contains more than 800,000
character images from 3,600 writers. Each
person completed a single page questionnaire
with a few single words and one paragraph

MNIST database [10] It is a subset of the NIST Database with only
60,000 images of handwritten digits

Devangri characters [13] Database of handwritten Devangari characters
(Indian alphabet). It contains 1,800 samples
from 25 writers

Mathematics expressions [11] Set of 10,000 expressions with 101 different
mathematical symbols

Chinese characters [5] Nearly 1,000,000 Chinese character images

Arabic printed text [15] 115,000 words images (not single characters)
with 10 different Arabic fonts

Chars74K data [3] 74,000 images of digits
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3 Our Method — Synthetic Dataset Generation

3.1 Synthetic Schema-Based Character Generator

The synthetic character generator is a fundamental component of our research
(see Fig.1). We provided an initial schema for each character (see the example
in Fig.2). The schema is a text file describing how a character is formed: steps
that allowed the natural way of writing characters. For example, to create the
character “G”, a human has to make an incomplete circle with a lot at the
end. The generator loads the schema and randomly modifies it to generate the
proper character. All generated characters become an input for the classifier to
be trained.

raw sch_ema
Input text | gchema object | Random
schema "l parser g shift schema
object
image ~ image
128x128 32x32
Painter ——>»  Scaler ———>»  Output

Fig. 1. Diagram of our schema-based generator. The red part was a schema file with a
description of a particular character. The blue part was connected to a parser module.
It loaded the schema file and translated it to the Painter, which created a character
image from the schema. The yellow box represents an output character image. (Color
figure online)

Schema Description. The schema is a human-readable description of how a letter
should be written, e.g., making a straight line from top to bottom and adding
two halves of a circle on the right side of the line. This general description
was a source for all letters that followed the same handwriting. The schema
contains different keywords understandable by the generator (the Parser and
Painter modules) and formed a ‘standard’ character. The list below indicates
primary commands to make up a character:

— point < name >< x >< y >
“Point” is used to create a 2D named point with “x” and “y” coordinates.
— line < nameA >< nameB >
The generator paints a straight line between two points points “A” and “B”.
— bezier < nameA >< nameB >< nameC >< nameD >.
“Bezier” creates Bezier’s curve between points “A” and “D”. Points “B” and
“C” are used for deflection, so the curve does not go through them.
— circle < nameA >< nameB >< nameC >
Points “A”, “B” and “C” are passing by circle (or ellipse). The middle of the
centre and radiuses are calculated from the points.
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— connect_left < nameA >
connect_right < nameA >
In the commands above, point “A”, was used to connect the character to the
previous/next character. This keyword was used to merge subsequent letters
to generate whole words. This procedure is general, and it allows for the
writing of characters in any language or script.

Randomization of Generated Characters. Each schema precisely describes the
process of writing only one character, so this deterministic generator created
the same image each time. The characters in our datasets should imitate the
human way of writing, so the characters should be randomly generated. Firstly,
each point from the loaded schema was slightly randomly moved. Secondly, each
line was not painted straight — some random movements approximated hand
movement inaccuracy. Then, some of the pixels were erased to simulate image
scanning errors. As a result, many slightly different synthetic handwritten char-
acters were created.

An Ezample of a Synthetic Handwritten Character. Figure 2 presents the exam-
ple of schema for generating the character “G”. The generator parses the schema
and creates points (marked with red dots in Fig. 2). Points A, B, C, and D are
utilised for drawing a Bezier curve [19] (B and C are used to determine the curve,
A and D are the ends of the curve). Then the remainder of the straight lines is
painted. Figure 2 shows the drawing process of a character with random shifts
and examples of generated images.

pointA 19 6
=C pointB 3 3
D pointC 326
pointD 19 22
bezier ABCD
pointE 19 13

pointF 16 13
A lineAE G
"B lineEF

Fig. 2. Generation of a character “G”. On the left side the character with marked
points and the schema text. On the right — four different characters “G” generated
from the schema. (Color figure online)

A single schema provides an unlimited number of generated characters. All
the characters from one schema are similar, but not the same. That allows for the
preparation of massive and highly diverse training datasets for neural networks.
Figure 3 presents a single sample of each character generated with the above
solution.

3.2 Autoencoder-Based Generators

Many different networks can be used for a tandem of encoders and decoders.
Usually, the choice is determined by the task of the autoencoder. For a character
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ARCDEFSTUVWX
GHVJI KLYZMNQOP

Fig. 3. Examples of Latin alphabet characters from our generator.

generation task, we used our autoencoder: (1) as a standalone autoencoder —
changing the latent representation (the encoder outputs, see Fig.5), and (2) as
a schema-based autoencoder — feeding the autoencoder with synthetic schema-
based images (see Fig. 6).

Our autoencoder, convolutional-based (CNN-based) encoder-decoder neural
network, was deployed on both encoder and decoder (Fig. 4). Both models oper-
ate with two kinds of convolutional filters with sizes 64 and 128. However, the
order of filters in the decoder is reversed. The number and size of filters were cho-
sen while fine-tuning. Additional extra layers were added to rescale and reshape
data. Filters with smaller sizes could not have learned 25 character classes. On
the other hand, increasing the size and number of filters extended computation
time without visible impact on the images generated.
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Fig. 4. Autoencoder using CNN.

Standalone Autoencoder. This approach involves only the decoder, using so-
called character templates in the latent space to generate character images.
The decoder should be trained with the encoder on the handwritten dataset
to decode compressed characters, i.e., characters’ latent representations in the
trained autoencoder. The latent representations are randomly generated with
restrictions to use the shared information for each class of letters (so-called
character templates, see Fig. 5).

After encoding a few previously prepared samples of each character class, the
encoder output comprises a few compressed images of a single letter (their latent
representations). By comparing all of the compressed samples, the templates (the
latent representation) are prepared and decoded into the image of the chosen
character class. Figure 5 illustrates this process: two steps in using autoencoder
latent space to generate the character “K”. Encoding a few samples of “K”
shows that the shared values involve eight different numbers (marked red in
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Fig.5). Other values differ between each sample. This template is the latent
representation of “K”.

> Encoder > xx1X generator XX1X Decoder >
X0XX X0XX

101X 101X K
01X1 Noise 01X1 ,<

NN

Fig. 5. Sample character generation with the usage of latent space character templates
(boxes with red numbers). On the left, the process of generating latent representation
templates from the input handwritten characters of the same class (here, “K” charac-
ter). On the right, the inputs for the decoder during prediction (in generating images)
are randomized character templates (boxes with red numbers with injected random
numbers instead of crosses). (Color figure online)

The noise generator is fed with latent character representation templates and
used for generating compressed data. Decoding such template data with random
numbers (in place of the black crosses in Fig.5) allows for the generation of
different versions of each character class.

Schema-Based Autoencoder. This approach involves both encoder and decoder in
a single module. The autoencoder trained with a dataset of authentic handwrit-
ten images was fed with the synthetic characters, i.e., those produced from our
schema-based generator. Hence, the output had features more similar to human
handwriting, with more randomness and noise in the output character images
(compared with the solely schema-generated images). Figure 6 shows an exam-
ple of processing generated images with the autoencoder, which is trained with
the handwritten dataset and then fed with the schema-based generated charac-
ter. After processing the image with the trained autoencoder, the character is
gaining human handwriting features.

4 Research Design

Our research comprises preparation of partially synthetic handwritten charac-
ters datasets with autoencoders and schema-based generator. All the training
datasets (also the proportion of real and synthetic data) is tested against the
same state-of-the-art classifier architecture.
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Autocoder
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Reconstruction loss

Fig. 6. The autoencoder used to process schema-based generated images. The training
is done with a handwritten dataset (on the left). After the training, the schema-based
characters become inputs (on the right).

4.1 Experimental Database Preprocessing

We chose NIST [12] dataset because it met all the desirable requirements (see
Table 2). Hence, the remaining datasets were rejected. The NIST dataset [12]
consisted of handwritten characters (pictures) made by humans (each class con-
sisted of one character).

Table 2. Requirements for handwritten dataset comparison.

Requirement name Description

English letters The dataset should have all English letters. In
the best case, it should contain both small and
capital letters, but only capital letters will be
satisfactory. Our approach can be easily
extended to other scripts and languages; here,
we tested English as a benchmark

Character independence One input image should consist of one character.
Character separation and concatenation are not
the main goals of this benchmark research

Unified description All input images should be prepared in the
same way to avoid the unnecessary work of
re-description

Number of images The more, the better
Number of writers The more, the better
Extras The dataset can also have digits, non-English

letters, words etc

The first layer of the CNN neural network for image recognition was designed
with input neurons: one for each pixel of the input image (this is further explained
in Sect.4.3). Images from the NIST dataset, size 128x 128, required 16,384 neu-
rons on the first layer. Therefore, memory usage and the large white background
were the challenges. Empty pixels in the background were prepossessed in the
following steps: (1) cropping an image to a minimal ROI (region of interest); (2)
scaling it proportionally to the size of 32 x 32. Image size after scaling: 32 x S
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or S x 32 (S may vary from 32); (3) increasing the image size to 32 x 32 with
empty pixels (white background).

4.2 Training with Synthetic and Handwritten Data

We chose samples from the experimental database to create a training and test-
ing set in the following way. We experimented with different training datasets:
(1) a handwritten train dataset, (2) a synthetic (simulated handwritten) train
dataset, and (3) a mixed one. These datasets were used to train our classi-
fier before testing on the purely handwritten dataset. The test set was always
the same, consisted of the purely handwritten dataset from our database, and
used after the classifier was trained to ensure stable and comparable results.
The handwritten train dataset was used to compare and measure the classifier’s
performance in a training environment with all images/characters written by
human hands. The third mixed train dataset was changeable and depended on
the test scenario: (1) synthetic images from a schema-based generator, (2) syn-
thetic images generated with a standalone autodecoder, and (3) synthetic images
generated with a schema-based generator and passed through an autoencoder
and autodecoder to randomize characters.

4.3 Base Classifier for Character Recognition

VGG was selected as a classifier to train and test in different combinations
for handwritten and synthetic training datasets. Currently, VGG, an object-
recognition CNN that supports up to 19 layers, is one of the best models
among those from the ImageNet Large Scale Visual Recognition Competition
(ILSVRC) [14]. It was designed as an improvement on AlexNet, thanks to the
large kernel-size filters being replaced with multiple 3x3 kernel-sized filters [14].
In our study, we utilized VGG16 as a classifier of character images.

5 Experiments and Results

Our challenge was to evaluate how data augmentation with generated synthetic
data impacts the handwritten character classification task. Table 3 presents the
results.

Handwritten and Synthetic Inputs. The accuracy in the training dataset with
only generated inputs was around 40%, whereas solely handwritten inputs
allowed for results twice as good (around 80%; see Table 3). It is worth noting
that the solely synthetic images were very similar to each other, and the model
got trained very fast with the early stopping algorithm (after 1-2 epochs).
Considering that, we trained our classifier on a mixed dataset, which con-
tained both the handwritten and the generated (synthetic) images in various
proportions. They were measured between each class of character images: a
mixed dataset with 10% handwritten images meant that each character class
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Table 3. The classification results for the designed experiments. Note: the results
proceed from the test set.

Training dataset Loss [val] | Accuracy [%]
Solely human handwritten characters 0.71 79
Schema-based generator

Solely schema-based generated images 3.98 38
20% handwritten and 80% generated images 0.89 75
Standalone autoencoder dataset generator

Only generated images based on autoencoder templates | 3.17 39
20% handwritten and 80% generated images 0.91 77
Schema-based generator followed by the autoencoder as a noise generator
Only generated images 3.11 40
20% handwritten and 80% generated images 0.89 78

had 10% handwritten images and 90% generated images in the dataset. The
results on that dataset were quite surprising (see Fig. 7). The difference in accu-
racy between solely handwritten images and the dataset with 80% synthetic
images was only four percentage points. This means that we can reduce the cost
of creating, gathering, and describing human handwritten datasets five times
over with only a 5% accuracy loss. The experiment proved that the assumed
hypothesis about generated datasets applied in practice and brought tangible
and measurable benefits.

=« Lossvalue == Accuracy

125 : 100.00%

75.00%

50.00%

Loss value

Accuracy [%]

25.00%
025

0.00 0.00%
0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%  70.00% 80.00%  90.00%

% of generated images

Fig. 7. The classifier results for different proportions of handwritten and synthetic
images in the training set. In this test, the synthetic images were produced with our
schema-based generator. Note: accuracy — red line; loss value — blue dotted line. (Color
figure online)
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Autoencoder as Standalone Generator. We also checked how the autoencoder, as
a ‘standalone’ character generator, can be applied in image generation to enrich
handwritten images. Hence, letters were generated by the trained decoder with
pseudo-random input noise templates achieved from the encoder outputs.

The first step was to train both encoder and decoder with the authentic hand-
written dataset. When training is over, the models — the encoder and decoder
— were separated. The encoder was used to get template encoded data for each
class. So, the average encoded data from a few different images of the same
character was calculated. This data was used to prepare inputs for the decoder.
The noise generator got the templates for each class, modifying them randomly
(each value is multiplied by 0.5-1.5). Such data was utilized as an input to
the trained decoder. The decoder reproduced the original image from the input
data. Decoded images differed because of random changes in the previous step
but allowed us to quickly create a massive dataset of generated character images.
In turn, the generated dataset was used to train the classifier in the same way as
described in the previous tests with the original NIST dataset and noisy images
from the decoder.

It was not surprising that results for the standalone autoencoder generator
(see Table3) were quite similar, but slightly better than the results gathered
for schema-based generators. The classifier trained with only generated images
achieved nearly 39% classification accuracy, and the mixed dataset got above
77%. The mixed dataset used 20% handwritten images and 80% characters gen-
erated with an autoencoder.

Autoencoder as Noise Generator. The subsequent test involved a schema-based
generator as a source of character images. Images were generated with our
schema-based generator — similar to the first test. Each image was encoded and
decoded. Decoded images followed the handwriting of the trained dataset. That
allowed the easy creation of a lot of different images. It is worth noting that
we did not need the labelled real dataset to train the autoencoder. We needed
solely handwritten characters. Finally, the generated dataset was used to train
the classifier in the same way as in all our tests. The results were quite similar
to the standalone autoencoder generator (see Table3), even slightly better. It
showed that the schema-based generator followed by the autocoder as a noise
generator was better, as it needed less effort to create the solution.

6 Conclusions

Image generation can expand the size of existing databases at a low costs (in
money and time) and bring satisfying results in sample differentiation. Addition-
ally, image generation can be used to align datasets, where some of the classes
have significantly fewer samples than others, e.g., the NIST dataset.

The schema-based solution works for the character recognition task for mul-
tiple languages and scripts (but cannot be easily applied to image processing
in other tasks). The current lack of datasets that meet all the requirements for
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handwritten task recognition presents an opportunity for the schema generator
to create all the characters from schemes. Our results are encouraging.

Both tested autoencoder solutions need to be trained on the existing, non-

labelled datasets, they can be easily applied to nearly every project with image
processing. It is the most generic and the best of the tested solutions.

Our experiments confirm that inquiries into the possibilities of data augmen-

tation by generating synthetic data, which can replace the need for authentic
handwritten data to train deep learning models, is a direction researchers need
to focus on.
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