Chapter 1 ®
Basic Concepts Qs

This chapter collects well known concepts and results that will play a major role
in constructing approximate fixed point theory in the remaining chapters. We note
that we will reference the appropriate source papers after Sect. 1.2.8 (before this
subsection well known results are presented so that the book is self contained). A
brief introduction on fixed point theory is given at the end of this chapter.

1.1 Topological Spaces

1.1.1 The Notion of Topological Spaces

The topology on a set X is usually defined by specifying its open subsets of X.

Definition 1.1 A topology 7 on a set X is a family of subsets of X which satisfies
the following conditions:

1. The empty set ¢ and the whole X are both in 7.
2. t is closed under finite intersections.
3. t is closed under arbitrary unions.

The pair (X, ) is called a topological space.

The sets Y € t are called open sets of X and their complements Z = X \ Y are
closed of X. A subset of X may be neither closed nor open, or both. A set that is
both closed and open is called a clopen set.
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2 1 Basic Concepts

Examples 1.1

(i) Let X any set. Then T = {#J, X} is a topology on X, called the trivial topology
on X.

(ii) At the other extreme of the topological spectrum, if X is any nonempty set,
then T = P(X) the power set of X, is a topology on X, called the discrete
topology on X.

(iii) Let X = {a, b}, and set t = {0, {a}, {b}, {a, b}}. Then 7 is a topology on X.

(iv) Let (X, d) be a metric space. Let

T = {Y C X: forall x € Y, there exists § > O such that Bs(x)
—(yeX:dx, y) <8 gY}.

Then t is a topology, called the metric topology on X induced by d. This is the
usual topology one thinks of when dealing with metric spaces, but as we shall
see, there can be many more.

(v) Let X be any nonempty set. Then

T ={}U{Y € X: X \Y is finite }

is a topology on X, called the co-finite topology on X.

Definition 1.2 Let (X, t) be a topological spaceand Y € X. ThenY Nt = {¥Y N
U: U e t}is called the induced topology on Y.

Definition 1.3 Let (X, 7) be a topological space and ¥ C X. We define

(i) The interior of a subset ¥ C X is the largest open set contained in it. It will
be denoted by int Y. Equivalently, intY is the union of all open subsets of X
contained in Y.

(i) A point x € X is a limit point (or accumulation point) of Y if and only if for
every open set U containing x, it is true that U NY contains some point distinct
from x,i.e., Y N (U \ {x}) # @. Note that x need not belong to Y.

(iii)) The point x € Y is an isolated point of Y if there is some open set U such that
UNY = {x}. (In other words, there is some open set containing x but no other
points of Y.)

(iv) The closure of a subset Y, written Y, is the union of ¥ and its set of limit points,

Y =Y U{x € X: x isalimit point of Y}.

Remark 1.1 Tt follows from the definition that x € Y if and only if ¥ N U # @ for
any open set U containing x. Indeed, suppose that x € Y and that U is some open
set containing x. Then either x € Y or x is a limit point of ¥ (or both), in which
case Y NU # @. On the other hand, suppose that ¥ N U # @ for any open set
U containing x. Then if x is not an element of Y it is certainly a limit point. Thus
xeY.
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Proposition 1.1 Let (X, t) be a topological space and Y C X. The closure of Y is
the smallest closed set containing Y, that is,

Y = ﬂ{Z: Z isclosed and Y C Z}.

Corollary 1.1 A subset Y of a topological space is closed if and only if Y = Y.
Moreover, for any subset Y, Y =Y.

Proof 1f Y is closed, then Y is surely the smallest closed set containing Y. Thus
Y =Y. On the other hand, if ¥ = Y then Y is closed because Y is. Now let ¥ be

arbitrary. Then Y is closed and so equal to its closure, as above. Thatis, Y =Y. W
Definition 1.4 Let (X, 7) be a topological space.

1. A subfamily B of 7 is called a base if every open set can be written as a union of
sets in B.

2. A subfamily X is called a subbase if the finite intersections of its sets form a
base, i.e. every open set can be written as a union of finite intersections of sets
in X.

Examples 1.2

1. The collection B = {(a,b): a,b € R,a < b} is a base for the usual topology
on R.

2. Let S be the collection of all semi-infinite intervals of the real line of the forms
(—00, a), and (b, +00), where a € R. S is not a base for any topology on R.
To show this, suppose it were. Then, for example, (—oo, 1) and (0, +00) would
be in the topology generated by S, being unions of a single base element, and so
their intersection (0, 1) would be by the axiom 2) of topology. But (0, 1) clearly
cannot be written as a union of elements in S.

3. The collection S is a subbase for the usual topology on R.

Proposition 1.2 Let X be a set and let B be a collection of subsets of X. S is a base
for a topology t on X iff the following hold:

1. Bcovers X, i.e,Vx € X,3B € B such that x € B.
2. If x € By N By for some By, By € B, then B3 € B such that x € B3 € B| N B,.

Definition 1.5 Let (X, 7) be a topological space and € X. A subset U of X is
called a neighborhood of x if it contains an open set containing the point x. The
neighborhood system at x is Ny = {U C X: U is a neighborhood of x}.

Theorem 1.1 Let (X, t) be a topological space, and x € X. Then:

(a) IfU € Ny, thenx € U.

b) IfU,V € Ny, then U NV € N,.

(¢) IfU € Ny, there exists V € N such that U € N foreach 'y € V.

(d) IfU e Nyand U C V, then V C N.

(e) G C X isopen if and only if G contains a neighborhood of each of its points.
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Remark 1.2 Conversely, if in a set X a nonempty collection A of subsets of X is
assigned to each x € X so as to satisfy conditions (a) through (d) and if we use
(e) to define the notion of an open set, the result is a topology on X in which the
neighborhood system at x is precisely N.

Definition 1.6 Let (X, t) be a topological space. A (local) neighborhood base 5,
at a point x € X (or a fundamental system of neighborhoods of x) is a collection
B, € N, sothat U € N, implies that there exists B € B, so that B C U. We refer
to the elements of B, as basic neighborhoods of the point x.

Example 1.1 Consider (X, d) be a metric space equipped with the metric topology
7. For each x € X, fix a sequence (r,(x)),>1 of positive real numbers such that
lim r,(x) = 0 and consider By = {By, (x)(x): n > 1}. Then By is a neighborhood
n— o0

base at x foreach x € X.

Remark 1.3 Let (X, ) be a topological space, and for each x € X, suppose that 5,
is a neighborhood base at x. Then B = U By is a base for the topology t on X.
xeX

Definition 1.7 If (X, t) is a topological space and x € X and B is a set of open
sets, we say that B is a local base at x if each element of B includes x and for every
open set U that includes x there is some V € Bsuchthat V C U.

Remark 1.4 1f for each x € X the set B, is a local base at x, then U B, is a base

xeX

for the topology of X.
Definition 1.8 Let (X, ) be a topological space.

1. (X, 1) is said to be T; if for every x,y € X such that x # vy, there are
neighborhoods Uy of x and U, of y with y ¢ U, and x ¢ Uj.

2. (X, 7) is said to be T, (or Hausdorff) if for every x, y € X such that x # y, there
are neighborhoods Uy of x and Uy, of y with U, N U, = §.

We say that two subsets Y and Z can be separated by t if there exist U, V € t

withY CU,ZCVandUNV =0.

3. (X, 1) is said to be regular if whenever Y C X is closed and x ¢ Y, Y and {x}
can be separated.

4. (X, 7) is said to be normal if whenever Y1, Yo € X are closed and disjoint, then
Y1 and Y, can be separated.

5. (X, 1) is said to be T3 if it is 77 and regular.

6. (X, 1) is said to be T4 if it is 7 and normal.

Definition 1.9 Let (X, 7) be a topological space. An open cover of ¥ C X is a
collection G C 7 such that Y C Ugeg

A subset Y of a topological space (X, 7) is said to be compact if every open cover
of X admits a finite subcover.



1.1 Topological Spaces 5

Proposition 1.3 Suppose (X, 1) is a topological Hausdorf{f space.

1. Any compact set Y C X is closed.
2. IfY is a compact set, then a subset Z C Y is compact, if and only if Z is closed
(in X).

Proposition 1.4 For a subset Y of a topological space (X, 1), the following
statements are equivalent.

1. Y is compact.
2. If (Zy)aer is any family of closed sets such that Y N m Zy = 0, then Y N

ael
ﬂ Zy = W for some finite subset J C 1.
aclt
3. If (Zy)aer is any family of closed sets such that Y N ﬂ Zy # 1, for every finite
ael

subset J C I, then' Y N ﬂ Zy # 0.
ael
Proof The statements 2. and 3. are contrapositives. We shall show that 1. and 2.
are equivalent. The proof rests on the observation that if (Uy), is a collection of
sets, then ¥ C U U, if and only if ¥ N m(X \ Uy) = . We first show that 1.

o o
implies 2. Suppose that Y is compact and let (Z,),<; be a family of closed sets such
that Y N ﬂ Zy = 0. PutU, = X \ Zy. Then each U, is open, and by the above

ael
observation, ¥ C U U,. But then there is a finite set J such that Y C U Uy, and
ael ael
soY N m Zy = 1, which proves 2.
ael

Now suppose that 2. holds, and let (Uy)q be an open cover of Y. Then each
X\ Uy is closed and Y N ﬂ(X \ Uy) = 0. By 2., there is a finite set J such that

ael
Yn ﬂ (X \ Uy) = . This is equivalent to the statement that ¥ C U U,. Hence
aeclt ael
Y is compact. |

Remark 1.5 A topological space (X, t) is compact if and only if any family of
closed sets (Zy)qer in X having the finite intersection property (i.e., ﬂ Zoy £ 0
ael
for each finite subset J in /) is such ﬂ Zy # 0.
ael
Proposition 1.5 A nonempty subset Y of a topological space (X, t) is compact if

and only Y is compact with respect to the induced topology, that is, if and only if
(Y, ty) is compact. If (X, t) is Hausdorff then so (Y, ty).
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Proof Suppose first that Y is compact in (X, t), and let (G4)qe7 an open cover
of Y in (Y, ty). Then each G, has the form G, = Y N U, for some U, € 7. It
follows that (Uy)qer is an open cover of Y in (X, ). By hypothesis, there is a finite
subcover, Uy, --- , Uy, say. But then Gy, --- , G, is an open cover of Y in (Y, 1y),
that is, (Y, ty) is compact.

Conversely, suppose that (Y, ty) is compact. Let (Uy)qer be an open cover of
Y in (X, 7). Set G, = Y N U,. Then (Gy)yer is an open cover of (Y, ty). By
hypothesis, there is a finite subcover, say, G, - - - , G,. Clearly, Uy, - - - , Uy, is an
open cover for Y in (X, 7). That is, Y is compact in (X, 7).

Suppose that (X, t) is Hausdorff, and let x, y be any two distinct points of Y.
Then there is a pair of disjoint open sets U, V in X such thatx € U andy € V.
Evidently, G; = YNU and G, = YNV are openin (Y, ty), are disjoint and x € G
and y € G,. Hence (Y, ty) is Hausdorff, as required. |

Theorem 1.2 Let (X, d) be a metric space. Then X, equipped with the metric
topology is Ty.

Theorem 1.3 Let (X, t) be a compact, Hausdorff space. Then (X, t) is Ty.

Proof LetY, Z C X be two closed sets with Y N Z = (. We need to find two open
sets U,V C X,withY CU,Z C V,and U NV = (. Assume first that Z is a
singleton, Z = {z}.

For every y € Y we find open sets Uy and Vy, such that Uy 3 y, Vy > z, and
Uy NV, = . Using Proposition 1.3 we know that ¥ is compact, and since we

n
clearly have Y C U Uy, there exist y1, - -+, y, € Y such that U Uy, 2 Y. Then
yeY i=1

n n
we are done by taking U = U Uy, and V = ﬂ V.
i=1 i=1
Having proven the above particular case, we proceed now with the general case.
For every z € Z, we use the particular case to find two open sets U, and V, with
U,2Y,V, >z and U, NV, = §J. Arguing as above, the set Z is compact, and we

n
have Z C U V., so there exists z1, -+, z, € Z, such that ﬂ V., 2 Z. Then we
ze€Z i=1
n n
are done by taking U = ﬂ Ugand V = U Vi |
i=1 i=1

Definition 1.10 A topological space (X, t) is said to be separable if it admits a
countable dense subset.

Proposition 1.6 Let (X, d) be a compact metric space. Then (X, d) is separable.
Proof For each n > 1, the collection G, = {B1(x): x € X} is an open cover of X.

Since X is compact, we can find a finite subcover {Bi(x(jn): 1 <j < kp}of X.

1
It is then clear that if x € X, there exists 1 < j < k;, so that d(x, x(j n)) < —. As
n
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such, the collection
D={x(jnm:1=<j=<ky1=<n}

is a countable, dense set in X, proving that (X, d) is separable. ]

1.1.2 Comparison of Topologies

Any set X may carry several different topologies.

Definition 1.11 Let 7, ' be two topologies on the same set X. We say that 7 is
coarser (or weaker) than 7/, in symbols © C 7/, if for every subset of X which is
open for 1 is also open for 7’, or equivalently, if for every neighborhood of a point
in X with respect to 7 is also a neighborhood of that same point in the topology t’.
In this case 7’ is said to be finer (or stronger) than 7’.

Two topologies T and t’ on the same set X coincide when they give the
same open sets or the same closed sets or the same neighborhoods of each point,
equivalently, when 7 is both coarser and finer than 7’.

Two basis of neighborhoods of a set are equivalent when they define the same
topology.

Remark 1.6 Given two topologies on the same set, it may very well happen that
no-one is finer than the other. If it is possible to establish which one is finer, then we
say that the two topologies are comparable.

Example 1.2 The cofinite topology 7. on R, ie., 7. = {U C R: U = for R\
Uis finite}, and the topology t; having {(—o0, a): a € R} as a basis are incompa-
rable. In fact, it is easy to see that t; = {(—00,a): a € R} U {#J, R} as these are
the union of sets in the given basis. In particular, we have that R \ {0} is in 7. but
not t;. Moreover, we have that (—o0, 0) is in 7; but not 7.. Hence, 7, and t; are
incomparable.

Proposition 1.7 If 1, 1o are Hausdorff topologies on a set X such that t; is finer
than t1 and such that (X, t2) is compact, then 11 = 1.

Proof Let Y a 1tp-closed set. Since (X, 13) is compact then Y is tp-compact. Since
71 C 17 it follows that Y is tj-compact (any t1-open cover of Y is also a tp-open
cover of Y and has a finite subcover). Since t; is Hausdorff and Y is tj-compact
then it is also t1-closed, which completes the proof (we showed that every t;-closed
set is a T1-closed set). |

Definition 1.12 Let X be a set and let F be a family of mappings from X into
topological spaces:

F={fy: X > (Yy,7q) : x €1}
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Let 7 be the topology generated by the subbase
(fFNV) Ve, ael).

Then t is the weakest topology on X for which all the f, are continuous maps (it is
the intersection of all topologies having this property). It is called the weak topology
induced by F, or the F-topology of X.

Proposition 1.8 Let F' be a family of mappings X — (Yy, 1) where X is a set and
each (Yy, ty) is a Hausdorff topological space. Suppose F separates points in X
i.e, forany x,y € X with x # y, there is some f, € F such that fy(x) # fo(y).
Then the F-topology on X is Hausdorff.

Proof Suppose that x, y € X, with x # y. By hypothesis, there is some « € I such
that nfy (x) # fo(y). Since (Yy, o) is Hausdorff, there exist elements U, V € 14
such that f,(x) € U, fy(y) € Vand U NV = @. But then f;, '(U) and £, ' (V)
are open with respect to F-topology and x € fa_l W),y e fa_l(V) and fa_1 o)n
Sy =0, "

Definition 1.13 Let (X, t) be a topological space. X is called metrizable if it is
compatible with some metric d (i.e., T is generated by the open balls B, (x) = {y €
X, d(x,y) <r}).

Proposition 1.9 Let (X, t) be a compact topological space. If there is a sequence
{fn,n € N} of continuous real-valued functions that separates points in X then X
is metrizable.

Proof Since (X, 1) is compact and the f, are continuous then they are bounded.

Thus, we can normalize them such that || f;,|lco = sup | f(x)| < 1. Define:
xeX

o0

.y = 30 D = B0
n=1
This series converges. In fact, it converges uniformly on X x X hence the limit
is continuous. Because the f,, separate points d(x,y) = 0 iff x = 0. d is also
symmetric and satisfies the triangle inequality.
Thus d is a metric and we denote by t; the topology induced by this metric. We
need to show that 7; = 7. Consider the metric balls:

B,(x)={ye X,dx,y) <r}.
Since d is T-continuous on X x X, these balls are t-open and

Ty CT.
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By Proposition 1.7, since T is compact and t; is Hausdorff (like any metric space)
then 7 = 1. |

1.1.3 Nets and Convergence in Topology

Nets generalize the notion of sequences so that certain familiar results relating to continuity
and compactness of sequences in metric spaces can be proved in arbitrary topological
spaces. We now expand our notion of “sequence” (x,), to something for which the index
n need not be a natural number, but can instead take values in a (possibly uncountable)
partially ordered set.

Definition 1.14 A directed set (I, <) consists of a set I with a partial order < such
that for every pair «, B € I, there exists an element y € I with y > o and y > B.

Examples 1.3

1.

The natural numbers N with the relation < define a directed set (1, <) = (N, <).

2. If (X, 7) is a topological space and x € X, one can define a directed set (/, <)

where [ is the set of all neighborhoods of x in X, and U < V for U,V € I
means V C U. This is a directed set because given any pair of neighborhoods
U,V C X of x, the intersection U N V is also a neighborhood of x and thus
defines an element of / with U NV C U and U NV C V. Note that neither of
U and V need be contained in the other, so they might not satisfy either U < V
or V < U, hence < is only a partial order, not a total order. Moreover, for most
of the topological spaces we are likely to consider, I is uncountably infinite.

. Let (X, t) a topological space and let x € X. Then the set I, = {U € t,x € U}

is a directed set when equipped with the either the subset relation C, or more
usefully the superset relation 2.

. If (11, <1) and (12, <») are directed sets, then (/1 x I, <) is a directed set where

< is defined by

(a,b) < (x,y) ifandonlyif a <y xandb <3 y.

. Let I denote the set of all finite partitions of [0, 1], partially ordered by

inclusion (i.e., refinement). Let f be a continuous function on [0, 1], then to
P ={0=1n<1n < -+ < t, = 1} € I, we associate the quantity

Lp(f) = Zf(tl;])(t,- —t;_1). Themap f +— Lp(f)isanet (] is a directed
i=1

1
set), and from Calculus, }Jm} Lp(f)= / f(x)dx.
€ 0
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Definition 1.15 Let P be a property of elements of a directed set (I, <). We shall
say that:

1. P holds eventually if there exists «g € I such that P holds for each o > «p,
2. P holds frequently if for each « € I there exists B > « satisfying P.

Thus “eventually” means “for all successors of some element”, and “frequently”
means “for arbitrary large elements”.

Definition 1.16 Given a topological space (X, 7), a net (x4)qes is a function I —
X: o —> x4, where (I, <) is a directed set.

Definition 1.17 We say that a net (x4)qes in X converges to x € X if for every
neighborhood U C X of x, there exists «g € [ such that x, € U for every o > «p.

Example 1.3 A net (xq)qe; With (I, <) = (N, <) is simply a sequence, and
convergence of this net to x means the same thing as convergence of the sequence.

Definition 1.18 A net (xy)qes has a cluster point (also known as accumulation
point) at x € X if for every neighborhood U € X of x and for every op € I,
there exists o > ag with x, € U.

Definition 1.19 A net (yg)ges is a subnet of the net (xy)aes if yg = x4(p) for
some order preserving function ¢: J — [ such that for every o € I, there exists
an element By € J for which 8 > Bo implies ¢ (8) > «g (cofinal).

Example 1.4 If (x,), is a sequence, any subsequence (xi,), becomes a subnet
(yg)pey of the net (x,),en by setting / = Nand ¢: N — N:n — k,. Note
that this remains true if we slightly relax our notion of subsequences so that (k)
need not be a monotone increasing sequence in N but satisfies k,, — oo as n — oo.
Conversely, any subnet (yg)ges of a sequence (x,)yeny With (J, <) = (N, <)
is also a subsequence in this slightly relaxed sense, and can then be reduced to
a subsequence in the usual sense by skipping some terms (so that the function
n +—> k, becomes strictly increasing). Note however that a subnet of a sequence
need not be a subsequence in general, i.e., it is possible to define a subnet (yg)ges
of a sequence (xj,),eN such that J is uncountable, and one can derive concrete
examples of such objects.

Remark 1.7 1f (xq)aeq 1S a net converging to x, then every subnet (x4 (g))ges also
converges to x.

Theorem 1.4 Let Y be a subset of a topological space (X, t). Then x € Y if and
only if there is a net (xy)qey With x4 € Y such that x, —> Xx.

Proof We know that a point x € X belongs to Y if and only if every neighborhood
of x meets Y. Suppose then that (x4)yes is a net in Y such that x, — x. By
definition of convergence, (x4)qes is eventually in every neighborhood of x, so
certainly x € Y.

Suppose, on the other hand, that x € Y. Let N, be the collection of all
neighborhoods of x ordered by reverse inclusion. Then N is a directed set. We
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know that for each V € N, the set V N'Y is nonempty so let xy be any element of
vV NY.Then xy — x. |

Lemma 1.1 Let X be a set, and (xy)qeq a net in X. Let B be a family of subsets of
X, satisfying

1. xq is contained frequently in each element of B, and
2. the intersection of any two elements of B contains an element of B.

Then (xq)qes admits a subnet which is eventually contained in each element of B.

Proof Clearly, the family B is directed by the inverse inclusion. Consider the set
J={(a,B) el xB: x4 € B}

equipped with the coordinate-wise pre-ordering. It is easy to see that J is a directed
set. The function ¢: J — I, defined by ¢ (¢, B) = «, is nondecreasing and onto,
and hence tends to infinity. Consequently, (x¢(«,B))(«,B) 1S @ subnet of (xy)uer-
Moreover, given A € B, fix ag € I so that x4, € A, and observe that if (o, B) >
(ao, A) then x4(8,8) = xg € B C A. This completes the proof. ]

In metric spaces, a standard theorem states that sequential continuity is equivalent
to continuity. In arbitrary topological spaces this no longer true, but we have the
following generalization.

Theorem 1.5 For any two topological spaces X and Y, a map T: X — Y is
continuous if and only if for every net (xy)qer in X converging to a point x € X,
the net (T (xy))qer in Y converges to T (x).

Proposition 1.10 A point x of a topological space (X, t) is a cluster point of a net
(Xxo)aer in X if and only if there exists a subnet (xy(g)) ges that converges to x.

Proof If (x¢())pes is a subnet of (xq)ees converging to x, then for every
neighborhood U C X of x, there exists By € J such that x4y € U for every
B > PBo. Then for any og € I, the definition of a subnet implies that we can find
B1 € J with ¢(B) > ap for all B > B, and since J is a directed set, there exists
B2 € J with B, > Bp and Bo > Bi. It follows that for « = ¢(B2), @ > g and
Xo = X¢(By) € U, thus x is a cluster point of (x¢)ee;-

Conversely, if x is a cluster point of (x4)qer, We can define a convergent subnet
as follows. Define a new directed set

J = I x { neighborhoods of x in X},

with the partial order (o, U) < (B, V) defined to mean both @ < fand V C U.
Then for each (8, U) € J, the fact that x is a cluster point implies that we can
choose ¢(B,U) € I tobe any « € [ such that > B and x, € U. This defines
a function ¢: J — [ such that for any «¢p € I and any neighborhood Uy € X of
x,every (B,U) € J with (8,U) > (ap, Up) satisfies ¢ (8, U) > B > «p, hence
(xp(8,U)) pes 1s a subnet of (x4)qes. Moreover, for any neighborhood U C X of x,
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we can choose an arbitrary «g € I and observe that
B, V) > (a0, U) = xp8,v) €V C U,

thus (xg(8,0))(8,U)es converges to x. |

Theorem 1.6 A topological space (X, t) is compact if and only if every net in X
has a convergent subnet.

Proof Suppose X is compact but there exists a net (xy)yes in X with no cluster
point. The fact that every x € X is not a cluster point of (x,)yes then means that we
can find for each x € X an open neighborhood U, € X of x and an index o, € 1
such that xo ¢ Uy for all o > oy. But (Uy)xex is then an open cover of X and

therefore has a finite subcover, meaning there is a finite subset x1, - - - , xy € X such
N

that X = U U,,. Since (I, <) is a directed set, there also exists an element 8 € [

n=1

such that

B > ay, foreach n=1,---,N.
Then x4 ¢ U,, forevery n = 1,---, N, but since the sets Uy, cover X, this is a
contradiction.

Conversely, suppose that every net in X has a cluster point, but that X has a
collection O of open sets that cover X such that no finite subcollection in O covers
X. Define a directed set where [ is the set of all finite subcollections of O, with the
ordering relation defined by inclusion, i.e., for A, B € I,A < B means A € B.
Note that (1, <) is a directed set since for any two A, B € I, wehave AUB € [
with AUB D A and AU B D B. By assumption, none of the unions U forAel

UeA
cover X, so we can choose a point

xmex\|(Ju (1.1)

UeA

for each A € I, thus defining a net (x4)ae7. Then (x4)4es has a cluster point
x € X. Since the sets in O cover X, we have x € V for some V € O, and the
collection {V} is an element of I, hence there exists A > {V} such that x4 € V.
But this means A is a finite subcollection of O that includes V, thus contradicting
(1.1). |

Theorem 1.7 Let X be a set and let T and 1 be topologies on X. Then the
following are equivalent

1. 11 = 1.
2. Every (xq)acq in X, converges in 11 if and only if it converges in ;.
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Proposition 1.11 A topological space (X, t) is Hausdorff if and only if no net has
two distinct limits.

Proof Suppose (X, t) is Hausdorff and consider a net (xq)qes. Suppose for
contradiction that x and y are distinct limits of (x4 )ye7. Take disjoint neighborhoods
U of x and V of y. By definition of convergence, there is a o, such that x, € U
for all @ > oy and a «y such that x, € V for all « > a,. In particular we have
xg € U NV for an upper bound & of oy and oy in the directed set /, contradicting
the disjointness of U and V. Thus (x4)qes cannot have two distinct limits.
Conversely, suppose that (X, ) is not Hausdorff, so there are two distinct points
x and y such that any neighborhood of x intersects any neighborhood of y. So there

is a net (X(u,v)) NV (x)x N (y) such that
xpuyvyeinNyv

for neighborhoods U of x and V of y. Take any neighborhood Up of x and any
(U, V) € N(x) x N(y) with (U, V) = (Up, X). By definition we have U C Uy
and thus xy,vy € U NV C Uy. This proves that x(y vy — x and we can similarly
show that x(y, vy — . So the net (xw,v))N(x)xN(y) has two distinct limits, as
required. ]

1.2 Topological Vector Spaces

1.2.1 Linear Topologies

Definition 1.20 Let X be a vector space. A linear topology on X is a topology t
such that the maps

XxXs>@x,y)—>x+yeX (1.2)
Kx X3 (@,x)>axeX (1.3)

are continuous. For the map (1.2) we use the product topology T x 7. For the map
(1.3) we use the product topology tk X T, where 7 is the standard topology on K.

A topological vector space is a pair (X, 7) consisting of a vector space X and a
Hausdorff linear topology 7 on X.

Remark 1.8 If (X, t) is a topological vector space then it is clear from Defini-

N N

tion 1.20 that ZA,(C")x,E") — Z)\kxk as n — oo with respect to t if for each
k=1 k=1

k=1,---,Nasn — oowehave )L,(('” — At with respect to the euclidean topology

on K and x,in) — x; with respect to t.
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Examples 1.4

1. Every vector space X over K endowed with the trivial topology is a topological
vector space.

2. The field K, viewed as a vector space over itself, becomes a topological vector
space, when equipped with the standard (euclidean) topology tk.

3. Every normed vector space endowed with the topology given by the metric
induced by the norm is a topological vector space.

Proposition 1.12 Every vector space X over K endowed with the discrete topology
is not a topological vector space unless X = {0}.

Proof Assume by a contradiction that it is a topological vector space and take 6 #

1
x € X. The sequence o, = — in K converges to 0 in the euclidean topology.

Therefore, since the scalar muﬁiplication is continuous, o,x — 6, i.e., for any
neighborhood U of 6 in X there exists m € N such that a,x € U for all n > m.
In particular, we can take U = {6} since it is itself open in the discrete topology.
Hence, o, x = 0, which implies that x = 6 and so a contradiction. ]

Remark 1.9 In terms of net convergence, the continuity requirements for a linear
topology on X read:

* Whenever (x,) and (y,) are nets in X, such that x, — x and y, — 7y, it follows
that x4 + yo — x + y.

e Whenever (1) and (x,) are nets in K and X, respectively, such that 1, — A (in
K) and x, — x (in X), it follows that Ao xq, — Ax.

Example 1.5 Let I be an arbitrary nonempty set. The product space K’ (defined
as the space of all functions / — K) is obviously a vector space (with pointwise
addition and scalar multiplication). The product topology turns K/ into a topological
vector space.

Remark 1.10 If X is a vector space, then the following maps are continuous with
respect to any linear topology on X :

* The translations 7y,: X — X,y € X, defined by Ty (x) = x + y.
e The dilations Dy : X — X, o € K, defined by D, (x) = ax.

If 7 is a linear topology on a vector space X, then t is translation invariant.
That is, a subset U C X is open if and only if the translation y + U is open for
all y € X. Indeed, the continuity of addition implies that for each y € X, the
translation x — y-x is a linear homeomorphism. In particular, every neighborhood
of y is of the form y 4 U, where U is a neighborhood of zero. In other words, the
neighborhood system at zero determines the neighborhood system at every point of
X by translation. Also note that the dilation x — ox is a linear homeomorphism for
any « # 0. In particular, if U is a neighborhood of zero, then so is aU for all ¢ # 0.

Example 1.6 If a metric d on a vector space X is translation invariant, i.e.,
dx+z,y+2z) =d(x,y) forall x,y € X (i.e., the metric induced by a norm),
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then the topology induced by the metric is translation invariant and the addition
is always continuous. However, the multiplication by scalars does not need to be
necessarily continuous (take d to be the discrete metric, then the topology generated
by the metric is the discrete topology which is not compatible with the scalar
multiplication).

Proposition 1.13 If'Y is a linear subspace of a topological vector space (X, 1),
then so its closure Y. In particular, any maximal proper subspace is either dense or
closed.

Proof We must show thatif x, y € Y and A € K, then Ax + y € Y. There are nets
(x¢) and (yy) in Y, such that x, — x and y, —> y. By Remark 1.9, we deduce
that tx, —> tx and tx4 + yo —> £x 4+ y and we conclude that rx +y € Y, as
required.

If Y is a maximal proper subspace, the inclusion ¥ C Y implies either ¥ = Y, in

which case Y is closed, or Y = X, in which case Y is dense in X. ]
Notations Given a vector space X, a subset Y C X, and a vector x € X, we denote
the translation 7y (Y) simply by Y + x (x + Y), that is,
Y+x=x+Y={+x:ye¥}
Likewise, for an « € K we denote the dilation D, (Y) simply by oY, that is,
aY ={ay:yeY}.

Given another subset Z C X, we define

Y+Z={y+zyeYzez)=Jo+2 = Jr+2.
yeY zeZ

Remark 1.11 In general we only have the inclusion 2Y C Y + Y.
Lemma 1.2 Let t be a linear topology on the vector space X.

The algebraic sum of an open set and an arbitrary set is open.

Nonzero multiples of open sets are open.

If Yis open, then for any set Z we have Z +Y = Z + Y.

The algebraic sum of a compact set and a closed set is closed. (However, the
algebraic sum of two closed sets need not be closed.)

5. The algebraic sum of two compact sets is compact.

6. Scalar multiples of closed sets are closed.

7. Scalar multiples of compact sets are compact.

Kb~

Proof We shall prove only items 3. and 4.

3. Clearly Y+Z CY + Z. For the reverse inclusion, let x = z + y where z € Z and
y € Y. Then there is an open neighborhood U of 6 such that y + U C Y. Since
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z € Z, there exists some r € Z N (z — U). Then x =z4+y=t+z+(y—2) €
t+z+UCZ+Y.

4. Let Y be compact and Z be closed, and let a net (v, + 24 )aer satisfy yu +2z4 —>
x. Since Y is compact, we can assume (by passing to a subnet) that y, —> y €
Y. The continuity of the algebraic operations yields

20 =0at2a) = Yo —>X—y=2.

Since Z isclosed, z € Z,sox =y +z € Y + Z, proving that Y 4 Z is closed.
|
Proposition 1.14 Let T be a linear topology on the vector space X.

1. For every neighborhood V of 0, there exists a neighborhood W of 0, such that
W+WcCv.

2. For every neighborhood V of 0, and any compact set C C K, there exists a
neighborhood W of 0, such that cW C V.,V € C.

Proof 1.LetT: X x X — X denote the addition map (1.2). Since T is continuous
at (0,0) € X x X, the preimage 7! (V) is a neighborhood of (6, 6) in the product
topology. In particular, there exists neighborhoods Wi, W> of 6, such that W; x
W, C T_l(V), so if we take W = Wj N Wy, then W is still a neighborhood of 6
satisfying W x W C T-1(V), which is precisely the desired inclusion W4+ W C V.

2.Let G: KxX — X denote the multiplication map (1.3). Since G is continuous
at (0,0) € K x X, the preimage G~! (V) is a neighborhood of (0, #) in the product
topology. In particular, there exists a neighborhood 7 of 0 in K and a neighborhood
Wo of 6 in X such that I x Wy C G_I(V). Let then p > O such that / contains
the closed disk B_p(O) = {¢ € K: |x| < p}, so that we still have the inclusion
B,(0) x Wo C G~ (V)ie,

aekK ol <p=aWyCV. (1.4)
Since C € K is compact, there is some R > 0, such that
Y| <R, Yy eC. (1.5)

Let us then define W = (%)WO. First of all, since W is a non-zero dilation of Wy,
it is a neighborhood of 6. Secondly, if we start with some y € C and some w € W,

written as w = ( %)wo with wy € Wy, then
po
w = (—)wp.
14 (R) 0

By (1.5) we know that ‘,o?oz‘ <p,soby(l.4)wegetyweV. |



1.2 Topological Vector Spaces 17
1.2.2 Absorbing and Balancing Sets

Definition 1.21 A subset Y of a vector space X is convex if, whenever Y contains
two points x and y, Y also contains the segment or the straight line joining them,
ie.,

Vx’)’GY,VOf,,BzO such thatot—l—ﬁ:l,ax_}_ﬂyeyl

Examples 1.5

1. The convex subsets of R are simply the intervals of R. Examples of convex
subsets of R? are solid regular polygons. The Platonic solids are convex subsets
of R3. Hyperplanes and half spaces in R" are convex.

2. Balls in a normed space are convex.

3. Consider a topological space X and the set C(X) of all real valued functions
defined and continuous on X. C(X) with the pointwise addition and scalar
multiplication of functions is a vector space. Fixed g € C(X), the subset
Y ={feCX): f(x) > g(x),Vx € X}is convex.

4. Consider the vector space R[x] of all polynomials in one variable with real
coefficients. Fixed n € N and ¢ € R, the subset of all polynomials in R[x]
such that the coefficient of the term of degree n is equal to ¢ is convex.

Proposition 1.15 Ler X be a vector space. The following properties hold.

(a) Y and X are convex.

(b) Arbitrary intersections of convex sets are convex sets.

(¢) Unions of convex sets are generally not convex.

(d) The sum of two convex sets is convex.

(e) AsetY isconvexifandonlyifaY +BY = (a+ B)Y for all nonnegative scalars
o and B.

(f) The image and the preimage of a convex set under a linear map is convex.

Definition 1.22 Let Y be any subset of a vector space X. We define the convex hull
of X, denoted by conv(Y), to be the set of all finite convex linear combinations of
elements of Y, i.e.,

n n
conv(Y) = {Zaix,-: x; €Y, a; €]0,1], Zai =1lne N}.

i=1 i=1

Proposition 1.16 Letr Y, Z be arbitrary sets of a vector space X. The following
hold.

(a) conv(Y) is convex.

(b) Y C conv(Y).

(c) A set is convex if and only if it is equal to its own convex hull.
(d) IfY C Z then conv(Y) C conv(Z).
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(e) conv(conv(Y)) = conv(Y).

(f) conv(Y + Z) = conv(Y) 4+ conv(Z).

(g) The convex hull of Y is the smallest convex set containing Y, i.e., conv(Y) is
the intersection of all convex sets containing Y.

Definition 1.23 Let X be a vector space.

* A subset Y C X is said to be absorbing (or radial), if for every x € X, there
exists some scalar &« > 0, such that ax € Y. Roughly speaking, we may say that
a subset is absorbing if it can be made by dilation to swallow every point of the
whole space.

e A ssubset Y € X is said to be balancing (or circled), if for every ¢ € K with
|| < 1, one has the inclusion «Y C Y. Note that the line segment joining any
point x of a balanced set Y to —x liesin Y.

e Asubset Y € X is said to be symmetric, if for every x € Y, one has (—x) € Y,
namely (=Y) =Y.

e Asubset Y C X is said to be absolutely convex, if it is convex and balanced.

* AsubsetY C X is said to be starshaped about zero if it included the line segment
joining each of its points with zero. That is, if forany x € Y and any 0 < o < 1
we have ax € Y.

Remark 1.12 Note that an absorbing set must contain 6, and any set including an
absorbing set is itself absorbing. For any absorbing set Y, the set ¥ N (=Y) is
nonempty, absorbing, and symmetric. Every circled set is symmetric. Every circled
set is star-shaped about 6, as is every convex set containing 6.

Remark 1.13 Given t a linear topology of a vector space X, all neighborhoods of 6

are absorbing. Indeed, if we start with some x € X, the sequence x, = —x clearly
n

converges to 6, so every neighborhood of 6 will contain (many) terms x;,.
Examples 1.6

1. In a normed space the unit balls centered at the origin are absorbing and balanced.
2. The unit ball B centered at (%, 0) e R? is absorbing but not balanced in the real

vector space R? endowed with the euclidean norm. Indeed, B is a neighborhood
of the origin. However, B is not balanced because for example if we take x =
(1,0) e Band @ = —1 then ax ¢ B.

3. The polynomials R[X] are a balanced but not absorbing subset of the real space
C([0, 1], R) of continuous real valued functions on [0, 1]. Indeed, any multiple
of a polynomial is still a polynomial but not every continuous function can be
written as multiple of a polynomial.

4. The subset ¥ = {(z1,22) € C?: |z1] < |z2|} of the complex space C? with the
euclidean topology is balanced but intY is not balanced.
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Definition 1.24 Given 7 a linear topology of a vector space X, a subset Y € X is
said to be a barrel if it has the following properties:

1. Y is absorbing,
2. Y is absolutely convex,
3. Y is closed.

Proposition 1.17 Let X be a vector space and let T be a linear topology on X.
A. If B is a neighborhood base at 0, then:

1. ForeveryV € B, there exists W € B, such that W + W C V.
2. For every V € B and every compact set C C K, there exists W € B, such
thatyW C V,Vy e C.
3. For every x € X, the collection By = {V + x: V € B} is a neighborhood
base at x.
4. The topology t is Hausdorff, if and only if m V ={6}.
VeB

B. There exists a neighborhood base at 6, consisting of open balanced sets.
Proof

A. Statements 1. and 2. follow immediately from Proposition 1.14. Statement 3. is
clear, since translations are homeomorphisms.
4. Denote for simplicity the intersection ﬂ V by J, so clearly 6 € J.

VeB
Assume first T is Hausdorff. In particular, for each x € X \ {0}, the set X \ {x}

is an open neighborhood of 6, so there exists some V* € B with V* C X \ {x}.
We then clearly have the inclusion

JS Ve [X\ixh =16},
x#£0 xX#60

so J = {0}. Conversely, assume J = {6}, and let us show that t is Hausdorff.
Start with two points x, y € X with x # y, so that x —y # 6, and let us indicate
how to construct two disjoint neighborhoods, one for x and one for y. Using
translations, we can assume y = 6. Since § # x ¢ ﬂ V, there exists some

veB
V € B,suchthat x ¢ V. Using 1., thereissome W € B,suchthat W+ W C V,

so we still have x € W + W. This clearly forces
x+({(=DHV)NnV =0. (1.6)

Since V is a neighborhood of 6, so is (—1)V (non-zero dilation), then by 3.

the left-hand side of (1.5) is a neighborhood of x.
B. Let us take the D to be the collection of all open balanced sets that contain 6.
All we have to prove is the following statement: for every neighborhood V' of
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0, there exists W € D, such that W C V. Using 2. there exists some open set
O > 0, such that

yocVv, vy eK |yl =1 (1.7)

In particular, U « O is an open set contained in V. So U a0 €

aeK,0<|a|<1 aeK,0<|a|<1

V.
|

Definition 1.25 Assume 7 is a linear topology on a vector space X. A subset Y C X
is said to be T-bounded, if it satisfies the following condition:

for every neighborhood V of 0, there exists p > 0, such that Y C pV.

Example 1.7 Suppose 7 is a linear topology on a vector space X. If x € X ¢, then
{x} is bounded. Indeed, let V any neighborhood of 6. Then V is absorbing and so
x € pV for all sufficiently large p > 0, that is, {x} is bounded.

Proposition 1.18 Ler X be a vector space X endowed with a linear topology t.
Then

1. If Y C X is t-bounded, then its closure Y is also t-bounded.
2. If Y, Z C X are t-bounded, then sois Y + Z.
3. If Y € X is t-bounded and C C K is bounded, then so U aY.

aeC
4. All compact subsets in X are t-bounded.

Remark 1.14 Tt follows by induction, that any finite set in a vector space X endowed
with a linear topology 7 is bounded. Also, taking ¥ = {x} (in the above proposition)
we see that any translate of a bounded set is bounded.

Proposition 1.19 Any convergent sequence in topological vector space is bounded.

Proof Suppose that (x,), is a sequence in a topological vector space (X, t) such
that x, — x. Foreachn € N, set y, = x, — x, so that y, — 6. Let V any
neighborhood of 6. Let U be any balanced neighborhood of 6 such that U C V.
Then U C pU for all p with |p| > 1. Since y, —> 6, there is N € N such that
yp € U whenever n > N. Hence y, € U C tU C tV whenever n > N and
t>1.SetY = {y1,---,yu}and Z = {y,: n > N}. Then Y is a finite set so is
bounded and therefore Y C ¢V for all sufficiently large ¢. But then it follows that
Y U Z C tV for sufficiently large ¢, that is, {y,: n € N} is t-bounded and so is
{x,:neN}=x+ Y U2Z). [ |

Remark 1.15 A convergent net in a topological vector space need not be bounded.
For example, let I be R equipped with its usual order and let x, € R be given by
xg = e %. Then (x4)qes is an unbounded but convergent net (with limit 0) in the
real normed space R.
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Proposition 1.20 (‘Zero. Bounded” Rule) Suppose t is a linear topology in a
vector space X. If the net (a)))en € K converges to 0, and the net (x;) ecpn C X is
t-bounded, then (o) x)))en is convergent to 6.

Proof Start with some neighborhood V of 6. We wish to construct an index Ay € A
such that

o)Xy € V,VA> )\.V. (1.8)

Using Proposition 1.17 B., we can assume that V is balanced (otherwise we replace
it with a balanced open set V' C V). Using the boundedness condition we find
p > 0, such that

x, € pV, VA eA. (1.9)

Using the condition ) — 0, we then choose Ay € A, so that
1
lop] < —, VA > Ay.
0

To check (1.8), start with some A > Ay and apply (1.9) to write x; = pv, for some
v € V. Now we have

ax;, = (ap)v € (e p)V,

with |y p| < 1, so using the fact that V' is bounded, it follows that o3 x; € V. W
Definition 1.26 Let (X, t) be a topological vector space.

1. X is locally bounded if 6 has a bounded neighborhood.

2. X is locally compact if 6 has a neighborhood whose closure is compact.

3. X is metrizable if it is compatible with some metric d (i.e., T is generated by the
open balls B, (x) = {y € X,d(x,y) <r}).

4. X is normable if it can be endowed with a norm whose induced metric is
compatible with t.

5. X has the Heine-Borel property if every closed and bounded set is compact.

Proposition 1.21 Ler (X, ) be a topological vector space. For every x # 0 the set
Y = {nx, n € N} is not bounded.

Proof By separation, there exists an open neighborhood V of 6 that does not contain
x, hence nx ¢ nV, i.e., for every n,

Y ¢ nVv.
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Lemma 1.3
1. Let d be a translation invariant metric on a vector space X, then for alln € N
and x € X,
d(nx,0) <nd(x,0).
2. If x, — 0 in a metrizable topological vector space (X, 1), then there exist
positive scalars o, — 00 such that ayx, — 6.

Proof The first part is obvious by successive applications of the triangle inequality,

n

d(nx,0) < Zd(kx, (k — Dx) < nd(x, 6).
k=1

For the second, we note that since d(x,, ) — 0, there exists a diverging sequence
of positive integers ny, such that

1
d(-xk’ 9) S _27
M

from which we get that

1
d(ngxi,0) < ngd(x,0) < — — 0.
ny

Corollary 1.2 The only bounded subspace of a topological vector space is {6}.

Proposition 1.22 Let (X, t) be a topological vector space and let Y < X. Then,
Y is bounded if and only if for every sequence (x,), < Y and every sequence of
scalars o, — 0, o x;, — 6.

Proof Suppose that Y is bounded, it suffices to apply Proposition 1.20.
Suppose that for every sequence (x,), € Y and every sequence of scalars o, —

0, ayx, — 0. 1f Y is not bounded, then there exists an open neighborhood of 8 and
asequence 8, — 00, such thatno 8,V contains Y. Take then a sequence (x,), C Y
such that x,, ¢ 8, V. Thus,

Bylxn ¢V,

which implies that 8, Ix, = 6, which is a contradiction. |

Theorem 1.8 Let (X, t) be a topological vector space. Let Y, Z C X satisfy:

Y is compact, Z is closed and Y N Z = (.
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Then there exists an open neighborhood V of 0 such that
Y+Vv)n(Z+Vv)=4.

In other words, there exist disjoint open sets that contain Y and Z.

Proof Letx € Y. Since X \ Z is an open neighborhood of x, it follows that there
exists a symmetric open neighborhood V of 6 such that

x+Ve+ Vi + Ve C X\ Z,
ie.,
x+Vi+Vi+Vo)NZ=40.
Since V; is symmetric,
(x+Ve+Vo)N(Z+ Vi) =40

For every x € Y corresponds such a V. Since Y is compact, there exists a finite
collection (x;, V;)1<i<n such that

K < [ Joi + V.

i=1

Define

n
V=V
i=1

Then, for every i,
(x +Vy, +V,,) does not intersect (Z + Vy,),
SO
(x + Vi, +V) does not intersect (Z + V).

Taking the union over i :

n
Y+VcC U(x,- + Vi, + V) does not intersect (Z + V).

i=1
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Remark 1.16 A topological vector space is regular.
Proposition 1.23 Suppose 1 is a linear topology in a vector space X.

1. ForY C X,

Y = N Y +V).
v,open neighborhood of ¢

That is, the closure of a set is the intersection of all the open neighborhoods of
that set.

ForY,ZCX,Y+ZCY+Z.

If Y C X is a linear subspace, then so is Y.

For every B C X: If B is balanced so is B.

For every B C X: If B is balanced and 6 € int B then int B is balanced.

If Y C X is bounded so is Y.

Proof

Sk

1. Let x € Y. By definition, for every open neighborhood V of 4, x 4 V intersects
Y,of x € Y — V. Thus,

xe N ¥ -V)= N ¥ +V).

v.open neighborhood of ¢ v.,open neighborhood of ¢

Conversely, suppose that x ¢ Y. Then, there exists an open neighborhood V of §
such that x + V does not intersect Y, i.e., x ¢ ¥ — V, hence

x ¢ N Y + V).

v.open neighborhood of ¢

2.Letx € Y and y € Z. By the continuity of vector addition, for every open
neighborhood U of x 4 y there exists an open neighborhood V' of x and an open
neighborhood W of y such that

V+WCcCU.
By the definition of Y every neighborhood of x intersects ¥ and by the definition
of Z every neighborhood of y intersects W: that is, there existz € V. NY and
t € WN Z. Then,
z€Y and t € Z implies z+t €Y + Z,

and

zeV and t € W implies z+teV+WCU.
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In other words, every neighborhood of x + y € Y + Z intersects ¥ + Z, which
implies that x + y € Y + Z, and therefore

Y+ZCY+Z
3. Let Y be a linear subspace of X, which means that,
Y+YCY and Va e K, aY CY.
By the previous item,
Y+YCY+YCY.

Since scalar multiplication is a homeomorphism it maps the closure of a set into
the closure of its image, namely, for every o € K,

4. Since multiplication by a (non-zero) is a homeomorphism,
oB =aB.
If B is balanced, then for || < 1,
oB =aB C B,

hence B is balanced.
5. Again, for every 0 < || < 1,

a(intB) = int(e B) C intB.
Since for @ = 0, a(intB) = {0}, we must require that & € intB for the latter to
be balanced.
6. Let V be an open neighborhood of 6. Then there exists an open neighborhood

W of 6 such that W C V. Since Y is bounded, ¥ € aW C aW C aV for
sufficiently large «. It follows that for large enough «,

Y CaW CaV,

which proves that Y is bounded.
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Lemma 1.4 Suppose t is a linear topology in a vector space X.

1. IfY is convex sois Y.
2. IfY is convex so is intY.

Proof

1. The convexity of Y implies that for all « € [0, 1]:
aY +(1—-a)Y CY.
Leta € [0, 1], then
oY =aY and (1 —a)Y = (1 —a)Y.

By the second item:

Y +(l—a)Y=aY+(I—-a)Y Ca¥Y+(1—a)Y C Y,

which proves that Y is convex.
2. Suppose once again that Y is convex. Let x, y € intY. This means that there exist
open neighborhoods U, V of 6 such that

x+UCY and y4+V CY.
Since Y is convex:
acx+U0)+d-a)y+V)=(x+ A —-a)y)+aeU+ (1 —-a)V CY,

which proves that ax + (1 — &)y € intY, namely intY is convex.
|
Lemma 1.5 Suppose t is a linear topology in a vector space X. If Y is a convex
subset of X, then:

0<a<1l = a(intY) + (1 — @)Y C intY. (1.10)

In particular, if intY # @, then:
(a) The interior of Y is dense in Y, that is, intY =Y.
(b) The interior of Y coincides with the interior of Y, that is, intY = intY.

Proof The case « = 1 in (1.10) is immediate. So let x € intY,y € Y, and let

0 < @ < 1. Choose an open neighborhood U of 6 such that x + U C Y. Since

y — 1LU is a neighborhood of y, there is some z € Y N (y — ILU), SO
-« -«

that (1 — «)(y — z) belongs to aU. Since Y is convex, the (nonempty) open set
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V=ax+U)+(—-a)z =ax+aU+ (1 —a)z lies entirely in Y. Moreover, from
ax+(1—a)y =ax+(1—a)(y—2)+ax+(1—a)z e ax+aU+(1—a)z=V C Y,

we see that ox+ (1 —«)y € intY. This proves (1.10), and letting « —> 0 proves (a).

For (b), fix xo € intY and x € intY. Pick a neighborhood of 6 satisfying x +W C
Y. Since W is absorbing, there is some 0 < A < 1 such that A(x —xo) € W,sox +
Ax—xp) €Y. By (1.10), we have x —A(x —x9) = Axo+ (1 —A)x € intY. But then,

using (1.10) once more, we obtain x = > [x = A(x —x0)] + 2 [x +A(x —x0)] €
intY. Therefore, intY < intY C intY so that intY = intY. |
Definition 1.27 Let 7 be a linear topology in a vector space X and ¥ C X.

1. The closed convex hull of a set Y, denoted conv(Y), is the smallest closed convex
setincluding Y. By Lemma 1.4 1. it is the closure of conv(Y), that is, conv(Y) =
conv(Y).

2. The convex circled hull of Y is the smallest convex and circled set that includes
Y. It is the intersection of all convex and circled sets that include Y.

3. The closed convex circled hull of Y is the smallest closed convex circled set
including Y. It is the closure of the convex circled hull of Y.

Definition 1.28 Let X be a vector space and let T be a linear topology on X. Then
(X, 1) is said to be locally convex if there is a base of neighborhoods of the origin
in X consisting of convex sets.

Proposition 1.24 A locally convex space (X, t) always has a base of neighbor-
hoods of the origin consisting of open absorbing absolutely convex subsets.

Proof Let V be a neighborhood of 6 in X. Since (X, 7) is locally convex, there
exists W convex neighborhood of 6 such that W C V. Moreover, by Remark 1.13,
there exists U balanced neighborhood of 6 such that U € W. The balancedness of

U implies that U = U aU. Thus, using that W is a convex set containing U,

aeK,|a|<1
we get

N := conv U aU ]| =conv(U) S WCV

aekK,|a|<1

and so intN C V. Hence, the conclusion holds because intN is clearly open and
convex and it is also balanced since 6§ € intN and N is balanced. | |

1.2.3 Compactness and Completeness

Definition 1.29 Let (X, t) be a topological vector space.
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1. A net (xq)qes in X is said to be a Cauchy net if for each neighborhood V of 6
there exists o9 € I such that x, — xg € V whenever «, 8 > ag.

2. Aset Y € X is complete if each Cauchy net in X converges to a point of Y.

3. AsetY C X is sequentially complete if each Cauchy sequence in X converges
to a point of Y

Example 1.8 Every convergent net is Cauchy.

Proposition 1.25 A Cauchy sequence (and in particular a converging sequence) in
a topological vector space (X, t) is bounded.

Proof Let (x,), be a Cauchy sequence. Let W, V be two balanced open neighbor-
hoods of 6 satisfying
V+VCw.
By the definition of a Cauchy sequence, there exists an N such that forallm,n > N,
Xpn—xn €V,
and in particular
Vn>N x,exy+V.
Set s > 1 such that xy € sV (we know that such an s exists), then for alln > N,
X, €sV4+VCsV4+sV W,

Since for balanced sets sW C tW for s < t, and since every open neighborhood of
6 contains an open balanced neighborhood, this proves that the sequence is indeed
bounded. ]

Proposition 1.26 Ler {(X;, ti)}icr be afamily of topological vector spaces, and let

X = 1_[ X endowed with the product topology T = H T;. Then (X, t) is complete
iel iel

if and only if each factor (X;, 1;) is complete.

Proposition 1.27 Let (X, t) be a topological vector space with a countable base

of neighborhoods of 6. A set Y C X is complete if and only if Y is sequentially

complete.

Proof Let B = {V,: n € N} be a countable base of neighborhoods of 6. We can
assume that V| O V, D ..., indeed, otherwise we can substitute 3 with the base

ViLvinvp, VvinvaNvs, .-}

Let Y be complete, and (x,), a Cauchy sequence in Y. There exists a subnet
(X4 (@))aer converging to a point x € Y. Let us construct inductively a sequence
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(ax) in 1. Choose a so that xy() € x + Vi for each @ > «y. If we already have
ai, -+, o, choose o1 > oy sothat ¢ (axy1) > @ (o) + 1 and xg () € x + Vi
for each o > a 1. It is easy to verify that (x4(;))ken 1s a subsequence of (x,),
that converges to x.

Conversely, Let Y be sequentially complete, and (x4)yer @ Cauchy netin Y. Let
us construct inductively a sequence (o) in I. Choose o so that x, — x4, € Vj for
each o > oy. If we already have ay, - - - , &g, choose o1 > o so that xo —Xxgy,, €
Vi1 for each o > agy1. Then (xg,) is a Cauchy sequence since xq,, — Xg, € Vy
whenever m > n. Consequently, (xq,) converges to a point x € Y. Now, it is easy
to show that (xq)yes converges to x, too. |

Definition 1.30 A set Y in a topological vector space (X, 7) is totally bounded (or
precompact) if for each neighborhood V of 6 there is a finite set F € X such that
YCF+V.

It is easy to see that in normed spaces (or in topological metric spaces) this
definition coincides with the usual metric one: for each & > 0 there is a finite
set F C X such that dist(x, F) < e foreachx € Y.

Theorem 1.9 Let Y be a set in a topological vector space (X, t). Then Y is totally
bounded if and only if each net in Y admits a Cauchy subnet.

Proof Let (x4)qcs be anetin a totally bounded set Y. The family Z ={Z C Y}: B
be a maximal subfamily of Z that contains Y and is closed under making finite
intersections (existence of such B follows by Zorn’ s lemma). Let us show several
properties of 5.

(a) if F is a finite subfamily of Z such that U]-' € B, then F N B # . Let
F ={Z,---,Z,}. We claim that, for some index k, Z;y N B € Z for each
B € B. Indeed, if this not the case, for eachi € {1, --- , n} there exists B; € B

n n n

such that Z; N B; ¢ Z,butthen B > (| Jznn(\B: < | Jzi nB) ¢ 2,
i=1 i i=1

a contradiction. Our claim implies that the family of all finite intersections of

elements of B U{Zk} is closed under finite intersections and is contained in Z.

By maximality of 13, we must have Z; € B.

(b) For each set Z C Y, the family B contains either Z or Y \ Z. If Z ¢ Z, then
eventually x, € Y \ Z. Since the intersection of Y \ Z with any element of B
belongs to Z, the family of finite intersections of BU {Y \ Z} is contained in Z.
Thus Y \ Z € B by the maximality of 3. In the same way we getthat Y \ Z ¢ Z
then Z € B. Finally, if both Z and Y \ Z belong to Z the one of them belongs
to B by (a) (since Y € B).

(c) B contains arbitrarily small elements, in the sense that for each neighborhood
V of 0 there exists B € B such that B— B C V. Given a neighborhood V of 0,
there exists a neighborhood W of 8 with W — W C V. By total boundedness,
there exists a finite set F = {y1,---, y»} € Y such that Y C F 4+ W. Denoting
Yi=i+W)NYG@ =1,---,n), we have Y = U!_,Y;. Consider the set
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P={i e€{l,---,n}:Y; € Z} and its complement {1,---,n} \ P. Since

C= |J Yi¢Z wemusthaveP#f.LetZ=|JY,. Then¥\Z ¢ Z
ie{l, .n}\P ieP

(since Y \ Z C C). By (b), we must have Z € B. By (a), there exists k € P

with Y, € B. Noticethat Y, — Y, CW —-W C V.

To conclude the proof of this implication, notice that the family B satisfies the
assumptions of Lemma 1.1. Hence there exists a subnet of (x,) that is eventually
contained in each element of 5. By (c), this subnet is Cauchy.

Conversely, assume that Y is not totally bounded. There exists a neighborhood
V of 6 such that Y \ (F + V) # 0§ for each finite set ¥ C V. An easy inductive

construction gives a sequence (x,), such that x, 1 ¢ {x1,---, x,} + V for each n.
Since for two indexes m > n we have x,, — x, ¢ V, our sequence has no Cauchy
subnets. The proof is complete. |

Theorem 1.10 A set Y in a topological vector space is compact if and only if Y is
totally bounded and complete.

Proof Let Y be compact. Given an open neighborhood V of 8, the open cover {y +
V:y e Y}of Y admits a finite sub cover. This proves that Y is totally bounded. Let
(xq)aer be a Cauchy net in Y. By Theorem 1.6 (x4)yc; admits a subnet converging
to a point of Y. It easily follows that the net (x4 )y converges to the same limit.
Conversely, assume Y is totally bounded and complete. Given a net (xq)yes in
Y, it admits a Cauchy subnet by Theorem 1.9. Since Y is complete, this subnet
converges to a point of Y. Again, it follows that (x4)yec; converges to the same
point. By Theorem 1.6, Y is compact. |

1.2.4 Seminorms and Local Convexity

Definition 1.31 A seminorm on a vector space X is map p: X — R such that

p(x+y) = p(x) + py),
and
plax) = || p(x).
Definition 1.32 Let P := (p;)ics be a family of seminorms. It is called separating
if to each x # 6 corresponds a p; € P, such that p; (x) # 0. Note that the separation

condition is equivalent to

pix)=0,YViel =>x=6.
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Examples 1.7

1.

Suppose X = R” and let Y be a vector subspace of X. Set for any x € X
py(x) == inf [lx — y||
yeyY
where ||.|| is the Euclidean norm, i.e., py (x) is the distance from the point x to

Y in the usual sense. If dim(Y) > 1 then py is a seminorm and not a norm (Y is
exactly the kernel of py). When Y = {6}, py(.) = |||

. Let X be a vector space on which is defined a nonnegative sesquilinear Hermitian

form ¢: X x X — K. Then the function

Po(x) = p(x, x)?

is a seminorm. p,, is a norm if and only if ¢ is positive definite (i.e., ¢(x, x) >
0,Vx #£06).

. Let C(R) be the vector space of all real valued continuous functions on the real

line. For any bounded interval [a, b] with a, b € R and @ < b, we define for any
feCR):

Pla,p1(f) := sup |f(®)].

a<t<b

Pla,p] 1s @ seminorm but is never a norm because it might be that f () = 0 for
all t € [a, b] (and so that pj, () = 0) but f # 0. Other seminorms are the
following ones:

1
b v
q(f) :=1fO) and g,(f):= </ If(t)l”> for 1 < p < oo.

Proposition 1.28 Let p be a seminorm on a vector space X.

b AN W N~

p is symmetric.

p@) =0.

lp(x) — pWI < p(x — ).
p(x) = 0.

ker p is a linear subspace.

Proof By the properties of the seminorm:

1.
2.
3.

px—y)=p=0G—x)=I[-1pl—x)=ply—x.
p©) = p0.x) =0.p(x) =0.
This follows from the inequalities

px) < p()+pkx—y) and p(y) < px)+p(y —x) =pKx)+pkx —y).
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4. By the previous item, for every x :

0=<|p(x)—p@O] =< p).

5. Ifx,y ekerp:

plax + By) < p(ax) + p(By) = la| p(x) + [B] p(y) = 0.

Notation Let X be a vector space and p a seminorm on X. The sets
Bl ={xeX:p(x) <1} and B} ={x € X: p(x) < 1},

are said to be, respectively, the open and the closed unit semiball of p.

Proposition 1.29 Let t© be a linear topology on the vector space X. Then the
following conditions are equivalent:

1. the open unit semiball Bf of p is an open set.

2. p is continuous at the origin.

3. the closed unit semiball Ef of p is a barrel neighborhood of the origin.
4. p is continuous at every point.

Proof 1. = 2. Suppose that Bf is open in the topology t on X. Then for any ¢ > 0
we have that p_l([O, eD=xeX: plx) <e}= st is an open neighborhood of
the origin in X. This is enough to conclude that p: X — R™ is continuous at the
origin.

2. = 3. Suppose that p is continuous at the origin, then Ef = p_l([O, 1D
is a closed neighborhood of the origin. Since Bf is also absorbing and absolutely
convex, BY is a barrel.

3. = 4. Assume that 3. holds and fix § # x € X. We have for any
e > 0: p~l(—e + p).e + p)]) = {y € X: [p() —p@)| < ¢} 2 (v €
X:py—x)<e}=x+ 8§f, which is a closed neighborhood of x since 7 is a
linear topology on X and by the assumption 3. Hence, p is continuous.

4. = 1.If p is continuous on X then 1. holds because the preimage of an open
set under a continuous function is open and B = -1 ([0, 1]). |

Definition 1.33 Let X be a vector space. For K C X convex and radial at 6
(equivalently, K is absorbing), we define the Minkowski functional of K as

pr(x) = inf{t > 0: ; € K}.

Intuitively, pg(x) is the factor by which x must be shrunk in order to reach the
boundary of K.
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Definition 1.34 (Topology Induced from Seminorms) Let (p;);c; a family of
seminorms on a vector space X. Then the ith open strip of radius r centered at
xeXis

Bi(x)={y € X: pi(x —y) <r}.
Let A be the collection of all open strips in X :
A={B.(x):iel,r>0xeX}

The topology t(A) generated by A is called the topology induced by (p;)icy-

The fact that p; is a seminorm ensures that each open strip Bf (x) is convex.
Hence all finite intersections of open strips will also be convex.

Theorem 1.11 Let (p;)ics be a family of seminorms on a vector space X. Then

n
B:{mBﬁj(x):neN,ijel,r>0,x€X}
j=1

forms a base for the topology induced from these seminorms. In fact, if U is open
and x € U, then there existsanr > Qand iy, --- , i, € I such that

n
B/ () cU.
j=l1
Further, every element of B is convex.

Proof Suppose U C X and x € U. In order to show that 3 is a base for the
topology, we have to show that there exists some set B € B suchthatx € B C U.
By the characterization of the generated topology, U is a union of finite intersections
of elements of A. Hence we have

n
X € ﬂ B;j:(xj)

j=1

for somen > 0,i; € I,r; > 0, and x; € X. Then x € Bi;(xj), so, by definition
Pij (x — x;) < r; for each j. Therefore, if we set

r=min{r; — p;;(x —x;): j=1,---,n},
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then we have Bij (x) C B;j (xj) foreach j =1, ---,n. Hence

B=()B () eB,
j=1

and we have x € B C U. |

Proposition 1.30 Ler (p;)ic; be a family of seminorms on a vector space X.
Then the induced topology on X is Hausdorff if and only if the family (p;)icy is
separating.

Remark 1.17 If any one of the seminorms in our family is a norm, then the
corresponding topology is automatically Hausdorff (for example, this is the case
for C;°(R)). On the other hand, the topology can be Hausdorff even if no individual
seminorms in a norm (consider L lloc (R)).

Examples 1.8

1. Given an open subset © of R with the euclidean topology, the space C(2) of
real valued continuous functions on 2 with the so-called topology of uniform
convergence on compact sets is a locally convex topological vector space. This
topology is defined by the family P of all the seminorms on C(£2) given by

p(f) = malg(|f(x)|, VY K C Q compact.
xe

Moreover, the linear topology 7p induced from the family P is Hausdorff,
because the family P is clearly separating. In fact, if px (f) = 0,V K compact
subsets of €2 then in particular p(,)(f) := |f(x)| = 0V x € Q, which implies
f=0onQ.

More generally, for any X locally compact we have that C(X) with the
topology of uniform convergence on compact subsets of X is a locally convex
topological vector space.

2. Let Ny be the set of all non-negative integers. For any x = (x, -+, x;;) € R”
and @ = (a1, -+, o) € N one defines x* := x‘f‘1 -+ xpm. For any B € Nf,
m
the symbol D denotes the partial derivative of order || where |B| := Z Bi,
i=1

ie.,

pLdl Pl §Bm

Df = = e )
8)6'131 e gxDm E)xis1 axhm

(a) Let Q € R™ open in the euclidean topology. For any k € Ny, let ck(Q) be
the set of all real valued k—times continuously differentiable functions on €2,
i.e., all the derivatives of f of order < k exist (at every point of €2) and are
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continuous functions in 2. Clearly, when k = 0 we get the set C(2) for all
real valued continuous functions on €2 and when k = oo we get the so-called
set of all infinitely differentiable functions or smooth functions on 2. For any
k € Ny, C* (£2) (with pointwise addition and scalar multiplication) is a vector
space over R. The topology given by the following family of seminorms on

ck(Q):

pa.x(f):= sup sup |(D’3f)(x)], VK C QcompactVd € {0, 1, ---,k},
BeNy xeK
|Bl=d

makes C¥ () into a locally convex topological vector space. (Note that when
k = oo we have m € Ny. )

(b) The Schwartz space or space of rapidly decreasing functions on R™ is
defined as the set S(R™) of all real-valued functions which are defined
and infinitely differentiable on R” and which have the additional property
(regulating their growth at infinity) that all their derivatives tend to zero at
infinity faster than any inverse power of x, i.e.,

S@R™) = {f € C®°@®R™): sup [x*DF f(x)| < o0, Vo, B € N’O”}.

xeRm

If f is a smooth function with compact support in R” then f € S(R™),
since any derivative of f is continuous and supported on a compact subset of
R™, so x*(D? £(x)) has a maximum in R” by the extreme value theorem.

The Schwartz space S(R™) is a vector space over R and the topology
given by the family P of seminorms on S(R™):

Pa,p i= SUD |x“Dﬁf(x) , Va, B e Ny

xeR™M

makes S(R™) into a locally convex topological vector space. Indeed, the
family is clearly separating, because if po g(f) = 0, Y, 8 € N then in
particular pg o(f) = sup |f(x)] = 0 Vx € R™, which implies f = 0

xeRm
on R™.

Note that S(R™) is a linear subspace of C*°(R™), but its topology Tp on
S(R™) is finer than the subspace topology induced on it by C*°(R™).

Theorem 1.12 Let X be a vector space whose topology is induced from a family of
seminorms (p;)icy. Then given any net (xq)qecy and any x € X, we have

Xq >x & Viel, pi(x —xq) — 0.
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Proof =. Suppose that x, — x, and fix any i € [ and ¢ > 0. Then Bé (x) is an
open neighborhood of x, so by definition of convergence with respect to a net, there
exists an g € J such that

o >0y = Xy € Bé(x).

Therefore for all & > g we have p; (x — x4) < €, 50 pi(x — xq) — O.

<. Suppose that p;(x — x,) — 0 for every i € I, and let U be any open
neighborhood of x. Then by Theorem 1.11, we can find an r > 0 and finitely many
i1, ,1, € I such that

n
x e ﬂ B’ (x) C U.
j=1

Now, givenany j = 1, --- , n we have Pij (x — xq) — 0. Hence, for each j we can
find «; € J such that

a > aj :>p,-j(x—xo,) <r.

Since J is a directed set, there exists some o9 € J such that o9 > «; for j =
1,---,n. Thus, forall @ > a wehavep,-j(x —xq) <rforeachj=1,---,n,s0

n
i‘
Xq € ﬂ B/ (x) CU, o> ap.
j=1
Hence x, — x. |

Corollary 1.3 Let X be a vector space whose topology is induced from a family
of seminorms (p;)ici, let Y be any topological space, and fix x € X. Then the
following two statements are equivalent.

1. T: X — Y is continuous at x.
2. For any net (xy)qcJ,

pi(x —x4) > 0 foreachi €l = T(xyq) —> T(x)inY.
Proposition 1.31 Ler X be a vector space whose topology is induced from a family
of seminorms (p;)icy. Then,

1. foralli € I, p; is continuous.
2. AsetY C X is bounded if and only if p; is bounded on Y foralli € I.
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Proof

1. Let i € I. Because of the reverse triangle inequality, p; (x — x,) — 0 implies
pi(xq) — pi(x). Hence each seminorm p; is continuous with respect to the
induced topology.

2. Suppose Y < X is bounded. Take i € I. Then Blp’ is a neighborhood of 6.
Hence,

Y C pB/
for some p > 0 (by definition of boundedness). Hence, for all x € Y,

xefpyeX:p(y) <1} ={py € X: p(py) <p}={z€ X: p(2) <ph

ie., p(x) < p.
Conversely, if p;(Y) is bounded for every i € I. Then there are numbers r;
such that

sup pi(x) < r;.
xeY

Let U be a neighborhood of 8. Again

N&'®cu.

j=1

M;; _ x i x
Choosem > —=(1 < j <n). Ifx € Ythenp;;(—) < — <r; = — €
rij m k m
U=xemU.
|

Theorem 1.13 If X is a vector space whose topology T is induced from a separating
family of seminorms (p;)ic1, then (X, t) is a locally convex topological vector
space.

Proof We have already seen that there is a base for the topology t that consists
of convex open sets, so we just have to show that vector addition and scalar
multiplication are continuous with respect to this topology.

Suppose that ((Ay, Xq))aes is any net in K x X, and that (Ay, x4) — (A, X)
with respect to the product topology on K x X. This is equivalent to assuming that
A — AinKand x, — x in X. Fix any i € [ and any ¢ > 0. Suppose that
pi(x) # 0. Since p; (x — xo) — 0, there exist o1, a» € J such that

£
oo = |A—A|<min{ ,1},
* 2pi(x)
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and

&

= pilx — —.
o> o pilx —xq) < SED

By definition of directed set, there exists «g > o1, a2, so both of these inequalities
hold for o > «p. In particular, (Ay)g>«, is @ bounded net, with |Ay| < |A| + 1 for
all @ > «ag. Hence, for o > o9 we have

Pi(Ax — AgXg) < pi(Ax — AgX) + pi(AgX — AgXg)
= |)\ - )\a| Pi(x) + |)¥a| Pi(x — Xo)

° +
<-4 =-=%s.
22
If pi(x) = 0 then we similarly obtain p;(Ax — Agxy) < < for @ > «p. Thus we
have p; (Ax — Lyxy) — 0. Since this is true for every i, Theorem 1.12 implies that

AaXag — AX. |

Theorem 1.14 The topology of a locally convex topological vector space X is given
by the collection of seminorms obtained as Minkowski functionals py associated to
a local basis at 0 consisting of convex balanced open.

Proof The proof is straightforward. With or without local convexity, every neigh-

borhood of 6 contains a balanced neighborhood of 8. Thus, a locally convex

topological vector space has a local basis B at 8 of balanced convex open sets.
Every open U € B can be recovered from the corresponding seminorm by

U=intU ={x e X: pyx) < 1}.
Oppositely, every seminorm local basis open
{xeX: pyx) <r}

is simply rU. Thus, the original topology is at least as fine as the seminorm
topology. |

1.2.5 Metrizable Topological Vector Spaces

What does it take for a topological vector space (X, t) to be metrizable? Suppose
there is a metric d compatible with the topology t. Thus, all open sets are unions of
open balls, and in particular, the countable collection of balls B () forms a local

base at the origin.
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Theorem 1.15 A Hausdorff topological vector space is metrizable if and only if
zero has a countable neighborhood base. In this case, the topology is generated by
a translation invariant metric.

Proof Let (X, t) be a topological vector space. If 7 is metrizable, then t has
clearly a neighborhood base at 6. For the converse, assume that T has a countable
neighborhood base at 6. Choose a countable base {V,,} of circled neighborhoods of
6 such that V,, 11 + V41 + Vua1 € V, holds for each n. Now define the function
p: X — [0,00) by

1, if x¢Vp,
p(x) =275 if x € Vi \ Vigr,
0, it x=6.

Then it is easy to check that for each x € X we have the following:

. p(x) > 0if and only if x = 6.
x € Vj for some k if and only if p(x) < 27k
. p(x) = p(—x) and p(ax) < p(x) forall || < 1.
. lirrb,o(ax) =0.
o—>

We also note the following property : x, -5 @ ifand only p(x,) — 0.
Now by means of the function p we define the function IT: X — [0, co) via the
formula

n n
IMx) = inf{ Zp(x,-): X1, ,Xx, € X.and in =x}.
i=1 i=1

The function IT satisfies the following properties.

(a) TI(x) >0 foreachx € X.

b) Mx+y) <I(x)+TI(y) forallx,y € X.

1
(c) Ep(x) < II(x) < p(x) foreach x € X (so I1(x) = 0 if and only if x = 6).

Property (a) follows immediately from the definition of I1. Property () is
straightforward. The proof of (c¢) will be based upon the following property :

n n

1

If E plxi) < z—m,then E x; € Viy. (1.11)
i=1 i=1

1
To verify (1.11), we use induction on n. For n = 1 we have p(x]) < o and

consequently x; € V41 € V,, is trivially true. For the induction step, assume that

1
if {x;: i € I} is any collection of at most n vectors satisfying Z p(x;) < o for

iel
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n+1
some m € N, then Zx, € V,,. Suppose that Zp(x,) < 5 for some m € N.

iel i=1

Clearly, we have p(x;) < so x; € Vy4 foreach 1 < n + 1. We now

om+1’
distinguish two cases.
n+1

1
Case 1: Zp(xi) < STl

ll
n

1
Clearly Z p(x;) < i so by the induction hypothesis Zx, € Vipy1. Thus
i=l i=1

n+l n

in = in + X1 € Ving1 + Vg1 C Vi
i i=1

n+l1 1
Case 2: Zp(x,-) > ST
i=1
l n+l1
Let 1 <k < n+1 be the largest k such that Z p(x;
i=k

) > ST Ifk =n+1, then

n+1
1
so from Zp(x,) < — we have Zp(xl) < T But then,
i=1 i=1

1
p(xﬂ-l—l) 2m+19

n+1
asin Case 1, we get Z x; € V,;. Thus, we can assume that k < n + 1. Assume first

i=1
n+1 n+1

hatk > 1.F h 1 d ! b
that k > rom the inequa 1tles2p(x,) < 5-an Zp(xl) 2 om ST Weo tain
i=1 =k
k—1

Z pxi) < m— So our induction hypothesis yields Zx, € V1. Also by the
i=1

n+1
choice of k we have Z p(xi) < T and thus by our induction hypothesis also
i=k+1
n+1
we have Z X;i € Vius1. Therefore, in this case we obtain
i=k+1
n+1 k—1 n+1

in = in + xp + Z Xi € V1 + Vg1 + Vintr1 € Vi
[ i=1 i=k+1
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n+l 1 n+l n+l
If k = 1, then we have Z olxi) < AT SO Zx,- € V1. This implies in =
i=2 i=2 i=1
n+1
X1+ in € Vi1 + Vin+1 S Vy. This completes the induction and the proof of
i=2
(1.11).

1
Next, we verify (c¢). To this end, let x € X satisfy p(x) = o for some m > 0.
k
Also, assume by way of contradiction that the vectors x1, - - - , xi satisfy Z Xi =X

i=1

k k
1 1
and E o(xi) < Ep(x) = Smil But then, from (1.11) we get x = E X; €

i=1 i=1

Vint1, 80 p(x) < — T < 5 = p(x), which is impossible. This contradiction,

establishes the validity of (c¢).
Finally, for each x,y € X define d(x,y) = Il(x — y) and note that d is a
translation invariant metric that generates t. |

Definition 1.35 Let (X, t) be a topological vector space.

1. X is an F-space (completely metrizable topological vector space) if its topology
is induced by a complete translationally invariant metric. In other words, a
completely metrizable topological vector space is a complete topological vector
space having a countable neighborhood base at 8. Every Banach space is an F-
space. An F-space is a Banach space if in addition d(ax, ) = || d(x, 0).

2. X is a Fréchet space if it is a locally convex F'-space.

Definition 1.36 A complete topological vector space (Y, I') is called a topological
completion or simply a completion of another topological vector space (X, t) if
there is a linear homeomorphism 7: X — Y such that 7(X) is dense in Y,
identifying X with T (X), we can think of X as a subspace of Y.

Theorem 1.16 Every topological vector space has a unique (up to linear homeo-
morphism) topological completion.

It turns out that the existence of a countable local base is also sufficient for
metrizability. (It suffices that 7 is induced from a separating countable family of
seminorms (py),). Indeed, there exists a translation-invariant metric compatible
with 7. One can show that the following is a compatible metric:

appn(x —y)

d(x,y) = max -t — V)
Y T Y e — )

where (o), is any sequence of positive numbers that decays to O (it is easy to see
that the maximum is indeed attained). Clearly, d(x, x) = 0. Also, since the p,’s
are separating d(x, y) > 0 for x # y. Symmetry, as well as translational invariance
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are obvious. Finally, the triangle inequality follows from the fact that every p, is
subadditive, and that a < b + ¢ implies that

a b c
< + .
l+a ~ 14+b 1+c¢

It remains to show that this metric is compatible with the topology 7. One can also
define the following translation-invariant metric compatible with t

n pl‘l(x )7)
407 = Zz T+ paG— )

Example 1.9 Let s = {(xy)n>1: x € Kfor alln > 1}, the space of all scalar
sequences. The topology of pointwise convergence is described by the seminorms
pes (k = 1), pe((o)a=1) = 3¢ and the metric is

400
Vnl

ey = 3

, X = (xn)nzl’ y = (yn)nzl-
_yn|

_ 1
The ball B%(H) ={x:d(x,0) < Z} is not convex, since (1,0,0,---),(0,1,0,---)
— 3 1 31 _
€ By(0).but 2(1,0,0.--) + 7(0,1,0,--) = (7. 7.0.0.---) ¢ By (0).

Theorem 1.17 Let (X, t) be topological vector space that has a countable local
base. Then there is a metric d on X such that:

1. d is compatible with T (every t-open set is a union of d-open balls).

2. The open balls B, (0) are balanced.

3. disinvariant: d(x +z,y +z) =d(x, y).

4. If, in addition, X is locally convex, then d can be chosen such that all open balls
are convex.

Theorem 1.18 A topological vector space (X, t) is normable if and only if there
exists a convex bounded open neighborhood.

Proof If (X, t) is normable then By = {x: ||x|| < 1} is convex and bounded.
Suppose that there exists an open convex and bounded neighborhood V of 6. Set

U= ﬂav.

la|=1

Since U is the intersection of convex sets it is convex. It is balanced because for
every |[B] <1,

BU = () BaV = () IBlaV = BIU,

loe|=1 =1
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and by convexity,
IBIU = BIU + (1 —|BD{O} S U.

Since U contains 6, intU is balanced, it is also convex. Then there exists a convex
and balanced (and certainly bounded) open neighborhood W = intU C V. Set

Xl = pw(x),

where pw is the Minkowski functional of W. We will show that this indeed a norm.
Clearly, ||x|] = 0 if and only if x = 6. Since W is balanced then pwy(axx) =
|| pw (x). The triangle inequality follows from the properties of pw. It remains to
show this norm is compatible with the topology 7. This follows from the fact that

B (0) = {x: |lxll <r}={x: pwlx) <r}={x: pw()r—c) <1rcrw,

which means that B, (6) is bounded, hence
{Br(6): r >0}

is a local base. |

Example 1.10 Let Q be an open set in R™. We consider the space C(2) of all
continuous functions. Note that the sup-norm does not work here. There exist
unbounded continuous functions on open sets.

Every open set €2 in R™ can be written as

o0
Q:UK,,,

where K, € K,4+1, where the K, are compact, and € stands for compactly
embedded, i.e., K, is a compact set in the interior of K, ;1. We topologize C(£2)
with the separating family of seminorms,

pa(f) =max{[f(x)| : x € Kn} = || flk,-

(These are clearly seminorms, and they are separating because for every f # 0 there
exists an n such that fig, # 0).
Since the p,’s are monodically increasing,

D

n D n
NN B @ = ph) < é} =B} ©),

d=1k=1 d=1k=1
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which means that the B’i (0) form a convex local base for C(£2). In fact, B’i @)

D D
contains a neighborhood obtained by taking n, D to be the greatest of the two, from
which follows that

1
BY®) =1/ pu) < )

is a convex local base for C(€2), and the p,’s are continuous in this topology. We
can thus endow this topological space with a compatible metric, for example,

Z_npn(f B g)

() &) =mixy +oa(f —8)

We will now show that this space is complete. Recall that if a topological vector
space has a compatible metric with respect to which is complete, then it is called an
F-space. If, moreover, the space is locally convex, then it is called a Fréchet space.
Thus, C(€2) is a Fréchet space. Let (f;,), be a Cauchy sequence. This means that
for every ¢ > 0 there exists an N, such that for every d,n > N,

27K pr(fo — fa)
X— <
ko 1+ pr(fu — fa)

)

and so,

27K p(fo = fa)
—_— <

\4
k=1 L+ pe(fu — fa)

3

which means that (f,;), is a Cauchy sequence in each K (endowed with the sup-
norm), and hence converges uniformly to a function f. Given ¢ and let M such that
2—M g, then

2 Mpe(fu = )

ax <§é€,
k>M 1+ pe(fu — 1)

and there exists an N, such that for every n > N,

2 Mpe(fu = )
X— <

a 87
k<M 1+ pe(fu — )

which implies that f, — f, hence the space is indeed complete.

The question remains whether C(€2) with this topology is normable. For this, the
origin must have a convex bounded neighborhood. Recall that a set Y is bounded if
and only if {p,(f): f € Y}is bounded for every n, i.e., if

{sup{|f(xX)[ : x € Kn}: f €Y}
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is a bounded set for every n, or if
Vn>1 sup{lf(x)|:x € K,, feY} < oo.

Because the B'l (9) form a base, every neighborhood of 6 contains a set
B} (0),
13
hence,

1
sup(l £ ()| : x € Ky, f € V) = suplll fllk, 1l < )

The right hand side can be made as large as we please for n > k, i.e., no set is
bounded, and hence the space is not normable.

1.2.6 Finite Dimensional Topological Vector Spaces

Lemma 1.6 Let (X, 7) be a topological vector space. Any linear map T : K" — X
is continuous.

Proof Denote by (e;)1<i<n the standard basis in K" and set

uj="T(;) j=1,---,n.

n
By linearity, for any x = (x1, -+, x,) = ijej
j=1

n
T(x)= ijuj.
j=1

The map x + x; (which is linear map K" — K) is continuous and so are addition
and scalar multiplication in X. |

Proposition 1.32 Let (X, 7) be a topological vector space. Then :

1. Every finite dimensional subspace Y of X is a closed subset of X.
2. If Y is an n-dimensional subspace of X and (u;)1<i<n is a basis for Y, then
n

the map T: K" — Y defined by T(xy, - ,x,) = ijuj is a topological
j=1
isomorphism of K" equipped with its Euclidean topology, onto X. That is,
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n
specifically, a net (x%), = Zx;xu j converges to an element x =
j=1

o
n

ijuj € Y if and only if each net (x?’)a convergestoxj,1 < j <n.
j=1
Proof

1. We prove part 1 by induction on the dimension of the subspace Y. First, if Y has
dimension 1, let y # 6 € Y be abasis for Y. If (Ayy)y iSanetin Y that converges
to an element x € X, then the net (1,), must be eventually bounded in K, in the
sense that there must exist an index «g and a constant M such that |Ay| < M for
all @ > «g. Indeed, if the net (Ay)y Were not eventually bounded, let (X, ﬁ) g bea
subnet for which lién |Aa 5 | = 00. Then

1
y=1lim—~Ay,y
B hay "

1
= lim — lim A
by B agy

=0xx

=6.

which is a contradiction. So, the net (A4 ), is bounded. Let (A4 5B be a convergent
subnet of (Ay) With limit A. Then

x = liorlnkay = li/gnkaﬂ = Ay.

whence x € Y, and Y is closed.

Assume now that any n-1-dimensional subspace is closed, and let Y have
dimension n > 1. Let {y1, --- , y,} be a basis for Y, and write Y’ for the linear
span of yi, - - -, y,—1. Then elements y of ¥ can be written uniquely in the form
y =y +Ayy, fory’ € Y and A € K. Suppose that x is an element of the closure
of Y,ie,x = li;n(y(; 4+ Ao Vn). As before, we have that the net (1), must be

bounded. Indeed, if the net (1), Were not bounded, then let (A, /3) g be a subnet
for which li/gn |Xaﬁ | = 00. Then

1 s
0 =1lim —x = lim — + y,,
ﬁ )\o[ﬁ /3 (1/3 yn
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or

/
Y
Y = —limﬂ,
B Aay

implying that y, belongs to the closure of the closed subspace Y’, this is
impossible, showing that the net (14), is bounded. Hence, letting (Rap)p be a
convergent subnet of (Ay)q, SAy A = lién Aoy, We have

x = lim(yg, + Ao n).

showing that

— /
X — Ay, = hényaﬁ,

whence, since Y’ is closed, there exists a y' € Y’ such that x — Ay, = V.
Therefore, x = y' + Ay, € Y, and Y is closed, proving part 1.

2. We prove part 2 for real vector spaces. The map T: R” — Y of part 2 is
obviously linear, one to one and onto. Also, it is continuous by previous lemma.

n
Let us show that 77! is continuous. Thus, let (x%), = ij‘u i | converge
Jj=1 o

to 6 in Y. Suppose, by way of contradiction, that there exists an j for which
the net (xj‘)a does not converge to 0. Then let (x;?‘ﬁ) g be a subnet for which

. B . . . .
limx{" = x;, where x; either is &00 or is a nonzero real number. Write
B

x =xfuj + x"®. Then

I 1 B
o o
x”‘ﬁx =uj+ 7YX
J J
whence
.1 B
u; =—11m—ﬁx’°‘ ,
B x4

J

implying that u ; belongs to the (closed) subspace spanned by the vectors
ur, - aujJrl’." s Up.

and this is a contradiction, since the u;’s form a basis of Y. Therefore, each of
the nets (x;‘)o, converges to 0, and T~ is continuous.
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Corollary 1.4 There exists a unique topology on K" (viewed as a topological
vector space), and all n-dimensional topological vector spaces are topologically
isomorphic.

There are no infinite dimensional locally compact topological vector spaces. This
is essentially due to F. Riesz.

Theorem 1.19 A topological space is locally compact if and only if is finite
dimensional.

Proof Let (X, 7) be a topological vector space. If X is finite dimensional, then t
coincides with the Euclidean topology and since the closed balls are compact sets,
it follows that (X, 7) is locally compact.

For the converse assume that (X, t) is locally compact and let V be a compact

1
neighborhood of 6. From V C U (x + 3 V), we see that there exists a finite subset

xeV
{x1, -+, xx} of V such that
k | 1
VgLJl(xi+§V):{xl"",Xk}-f-EV. (1.12)
i=
. 1 )
Let Y be a linear span of x, - - - , x¢. From (1.12), we get V C Y + EV' This

1 1 1 1 1 1
implies =V C -(Y+=V)=Y+ —=V,so0V CY Y+=V)=Y+—=V.B
%mple.s2 _2( +3 ) t5VisoV < +( t% ) +t3 y
induction we see that
1
VY + 2—nV (1.13)
for each n. Next, fix x € V. From (1.13), it follows that for each n there exist y, € Y

and v, € V such that x = y, + 2—nv,,. Since V is compact, there exists a subnet

1
(vn,) of the sequence (v,) such that v, SveXx (and clearly T —> 0in R).
So
1

T
ynazx—zTuvna—>x—0v=x.

Since (Proposition 1.32 1.) Y is a closed subspace, x € Y. Thatis, V C Y. Since V
is also an absorbing set, it follows that X = Y, so that X is finite dimensional. W
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Theorem 1.20

1.

Let Y1, ---,Y, be compact convex sets in a vector space (X endowed with a
linear topology t). Then

conv(YiU---UY,)

is compact.
2. Let (X, t) be a locally convex topological vector space. If Y C X is totally

bounded then conv(Y) is totally bounded as well.
3. If (X, t) is a Fréchet space and K C X is compact then conv(K) is compact.
4. If K C R" is compact then conv(K) is compact.
Proof
1. Let § C R" be the simplex

n
SZ{(Slv"' 7sn) LS 205 Zsl = 1}‘
i=1
SetY =Y x --- x Y, and define the functiong¢p: S x ¥ — X:
n
p(s,y) = Zsl'yi-
i=1
Consider the set K = ¢(S x Y). It is the continuous image of a compact set and
it is therefore compact. Moreover,
K Dconv(YiU---UYy).

It is easy to show that K is convex, and since it includes all the Y;’s it must in

fact be equal to conv(Y] U --- U ¥p).
2. Let U be an open neighborhood of 6. Because X is locally convex there exists a

convex open neighborhood V of 6 such that
V+VCU.
Since Y is totally bounded there exists a finite set F such that
YCF+4+V Cconv(F)+ V.
Since the right hand side is convex

conv(Y) C conv(F) + V.
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By the first item conv(F) is compact, therefore there exists a finite set F’ such
that

conv(F)=F +V,
ie.,
convY) CF +V+VCF +U,

which proves that conv(Y) is totally bounded.

3. In every metric space the closure of a totally bounded set is totally bounded,
and if the space is complete it is compact. Since K is compact, then it is totally
bounded. By the previous item conv(K) is totally bounded and hence its closure
is compact.

4. S C R" be the convex simplex. One can show that conv(K) is the image of the
continuous map § X K :

n
(Sa-xla"'a-xn)'_) § SiXi,
i=1

whose domain is compact.
|

Corollary 1.5 Let X be a vector space endowed with a linear topology t. The
convex hull of a finite set (polytope) is compact.

Example 1.11 (Noncompact Convex Hull) Consider [, the space of all square

summable sequences. For each n let 4, = (0,---,0,—,0,0,---). Observe that
~———" 1N
n—1

1 (]
lunll2 = —, so uy, 59, Consequently,
n

Y ={uy,uz,u3,---}U {6}
is norm compact subset of /5. Since 6 € Y, it is easy to see that

k k
conv(Y) = {Zaiui: o; > 0 for each i and Zai <1 }

i=1 i=1

In particular, each vector of conv(Y) has only finitely many nonzero components.
We claim that conv(Y) is not norm compact. To see this, set

1
.p,

1 11 "1
g 000 =3 S,

i=1

| =
W | =

1
Xn = (55
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c (Y).N -1l (1 11 11 11 1 1
soxp €econv(Y). Nowx, —> x=(=, ===, =.=5, "+, —.—, —— e
" " 2°2'2273°23 n'2n’p 4120+l

in [. But x ¢ conv(Y), so conv(Y) is not even closed, let alone compact.

Remark 1.18 In the above example, the convex hull of a compact set failed to be
closed. The question remains whether the closure of the convex hull is compact. In
general, the answer is no. To see this, let X the space of sequences that are eventually
zero, equipped with the />-norm. Let Y as above, and note that conv(Y) (where the
closure is taken in X, not /) is not compact either. To see this, observe that the
sequence (x,), defined above has no convergent subsequence (in X).

Proposition 1.33 Let Y and Z are two nonempty convex subsets of a topological
vector space (X, t) such that Y is compact and Z is closed and bounded, then
conv(Y U Z) is closed.

Proof Letx; = (1 —a;)y; +ajzi — x,where0 <o; <1,y;, € Yandz; € Z
for each i. By passing to a subnet, we can assume that yy — y € Y and o; —>

— (1=
a € [0,1].If « > O, then z; —> M = z € Z, and consequently

x=(0—-a)y+az €conv(Y UZ).

Now consider the case ¢ = 0. The boundedness of Z and Proposition 1.20 imply
aizi — 0,80 x; = (I —ai)y; + ajzi —> y. Since the space is Hausdorff,
x=yeconv(YUZ). | |

1.2.7 The Weak Topology of Topological Vector Spaces
and the Weak™ Topology of Their Duals

If X is a topological vector space then the weak topology on it is coarser than the origin
topology : any set that is open in the original topology is open in the weak topology. From
this, it follows that it is easier for a sequence to converge in the weak topology than in the
original topology.

We will consider topological vector spaces (X, t) over the field K, K = R or
K = C. For definiteness we assume K = C.

Remark 1.19 Given a vector space X and a linear functional ¢: X — K, the map
Py = 1ol : X 3 x — |¢p(x)| € [0, oo defines a seminorm on X.

Definition 1.37 Let (X, t) be a topological vector space. The topological dual
space X' is the set of all continuous linear maps (X, 7) — K.

Next, we will discuss the geometric form of the Hahn-Banach theorems. The first
geometric version is

Lemma 1.7 Let (X, t) be a real topological vector space, and let V. C X be a
convex open set which contains 0. If xo € X \ V, there exists € X', such that
Y(xg) =land ¥ (x) < 1, forallx € V.
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It turns out that Lemma 1.7 is a particular case of a more general result:

Theorem 1.21 (Hahn-Banach Separation Theorem-Real Case) Ler (X, t) be a
real topological vector space, let Z, W C X be nonempty convex sets with Z open,
and Z N'W = §. Then there exists v € X', and a real number a, such that

Y(z) <a <y(w), forallze Z,w € W.
Proof Fix some points zg € Z, wg € W, and define the set

V=Z-WHwy—zo={z—w+wyg—20:2€ Z,we W}

It is straightforward that V is convex and contains 6. The equality

V= U(Z—w+wo—zo)
weW

shows that V is also open. Define the vector xg = wg — z9. Since ZN W = {, it is
clear that xg ¢ V. Use Lemma 1.7 to produce ¥ € X’ such that

@) ¥xo) =1,
(i) ¥(x) <1, forallx e V.

By the definition of xg and V, we have ¥ (wo) = ¥ (z0) + 1, and
Y(z) < ¥ (w) + ¥(z0) — ¥ (wo) + 1, forallz € Z,w € W,
which gives
Y(z) < ¥ (w), forallze Z,we W. (1.14)
Put
AL

The inequality (1.14) gives

Y(E) <a<yYw)), forallze Z,w € W. (1.15)
The proof will be complete once we prove the following :

Y(z) <aforallz € Z.
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Suppose the contrary, i.e., there exists some z; € Z with ¥(z;) = «. Using the
continuity of the map

R> B+ z1+ Bx € X,
there exists some ¢ > 0 such that
71+ Bxo € Z, forall B € [—¢, €].
In particular, by (1.15) one has
V(21 +exo) < @,
which means that
a+¢ <ca,

which is clearly impossible. |

Theorem 1.22 (Hahn-Banach Separation Theorem-Complex Case) Ler (X, 1)
be a complex topological vector space, let Z, W C X be nonempty convex sets with
Z open, and Z N W = (. Then there exists € X ' and a real number o, such that

Rey(z) <a <Rey(w), forallze Z,w e W.
Proof Regard X as a real topological vector space, and apply the real version to

produce an R-linear continuous functional 1 : X — R, and a real number «, such
that

1) <o <yY(w), x e X

Then the functional ¢ : X — C defined by
Y(x) =vyi1(x) —ivi(ix), x € X

will clearly satisfy the desired properties. |

Remark 1.20 Geometrically we can say that the hyperplane {Rey(x) = o}
separates the sets Z, W in broad sense.

There is another version of the Hahn-Banach separation theorem, which holds
for locally convex topological vector spaces.
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Theorem 1.23 Let (X, t) be a locally convex topological vector space. Suppose
C, D C X are convex sets, with C compact, D closed, and C N D = (. Then there
exists ¥ € X' and two numbers o, B € R, such that

Rey(x) <a < B <Rey(y), forallx € C,y € D.

Proof Let W = D — C. By Lemma 1.2, 4. W is closed. Since C N D = {4, we have
0 ¢ W. Since W is closed, its complement X \ W will then be a neighborhood of 6.
Since X is locally convex, there exists a convex open set Z, with6 € Z C X \ W.
In particular we have Z N W = (4. Applying the suitable version of the Hahn-
Banach separation theorem (real or complex case), we find a linear continuous map
¥ : X — Kand a real number y, such that

Rey(z) <y <Rey(w), forallze Z,w e W.
Notice that 6 € Z, we get y > 0. Then the inequality
y <Rey(w), forallw € W,
gives
Rey(y) —Rey(x) >y >0, forallx e C,y € D.

Then if we define

B = ingRe Y (y)anda = sup Re ¢ (x),
ye

xeC

we get B > o + y, and we are done.

Remark 1.21 Geometrically we can say that the hyperplane {Rey(x) = p}
separates the compact sets C and the closed set D in the strict sense.

One important feature of topological duals in the locally convex Hausdorff case
is described by the following result.

Proposition 1.34 If (X, t) is a locally convex topological vector space, then X'
separates the points of X, in the following sense: for any x,y € X, such that
X # v, there exists ¢ € X', such that ¢ (x) # ¢ ().

Proof Since X is locally convex and Hausdorff, there exists some open convex set
V > y such that x ¢ V. The existence of ¢ then follows from the Hahn-Banach
separation theorem. [ |

Definition 1.38 Let (X, 7) be a topological vector space. The weak topology
on X, which we denote by o (X, X’), is the initial topology for X’. That is,
o (X, X') is the coarsest topology on X such that each element of X' is continuous
(X,0(X,X")) — C.



1.2 Topological Vector Spaces 55

Equivalently, the weak topology on X is the seminorm topology given by the
seminorms |¢|, ¢ € X'.

Remark 1.22

e The topologies T and o (X, X’) are comparable, and 7 is at least as fine as
o (X, X'). Thatis, o (X, X") € 7. A vague rule is that the smaller X’ is compared
to the set of all linear maps (X, o (X, X')) — C, the smaller o (X, X") will be
compared to t.

e If X’ separates X then (X, o (X, X’)) is a locally convex topological vector
space. It is Hausdorff because o (X, X') is induced by the separating family
of seminorms py = [P, ¢ € X’. In particular if (X, 7) is a locally convex
topological vector space then (X, o (X, X)) is a locally convex topological
vector space.

Definition 1.39 Let (X, t) be a topological vector space and (xy)qyes a net in X.
We say that

1. The net (x4)qes converges strongly to x and we write

Xq = X If (xq)aer converges to x inthe original topology t.
2. The net (xq)qes converges weakly to x and we write

Xo — X if (Xq)aes converges to x in the topology o (X, X').

This condition is equivalent to the condition that py(xy — x) — 0,V¢ € X !,
which in turn is equivalent to

$(xa) > ¢(x), Yo e X'.
A simple consequence of the fact that o (X, X) C 7 is that
Xy = X = Xg — X,

i.e., every strongly convergent net is weakly convergent.
Similarly, we will speak about the strong neighborhood, strongly closed, strongly
bounded - - -, and weak neighborhood, weakly closed, weakly bounded - - -

Definition 1.40 We say that Y C X is weakly bounded if Y is a bounded subset
of (X,o(X,X"): for every neighborhood N of 8 in (X, o (X, X')) there is some
¢ >0suchthat Y C {cx: x € N} = ¢N (equivalently, ¢ (Y) is bounded in C).

Remark 1.23 1f (X, t) is an infinite dimensional locally convex topological vector
space, the weak topology o (X, X’) has a peculiar property: every weak neigh-
borhood of 6 contains a closed infinite dimensional linear subspace. Indeed, if
we start with some neighborhood V, then there exist ¢1,---,¢, € X’ and
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&1, -, & > 0, such that e1Bp, (0) N ---NeyBp, (0), where fori = 1,--- ,n,
de)[_ @) = {x € X,|¢i(x)] < 1}. So V will clearly contain the closed subspace
(ker ¢1) N --- N (ker ¢,). It follows that

dim X < n + dim(ker ¢1) N---N (ker ¢,,),

i.e., dim(ker ¢1) N --- N (ker ¢,) = co. Hence o (X, X’) is not locally bounded.

Proposition 1.35 In any finite-dimensional normed space, the weak topology
coincides with the topology generated by any norm.

Proof Let X be a finite-dimensional vector space, let (e, --- , eg) be a basis in
X, and let ¢1, - - -, ¢gq be its dual basis, defined by ¢;(ej) = &; ;. Then, ||x|l0 =

max |¢;(x)|is anormon X, and since X is finite-dimensional, all linear functionals
1<i<d

on X are also continuous.

We know that on finite dimensional vector space two norms are equivalent, so
it is enough to compare the weak topology to the topology t induced by || ||co- It is
clear that T © o (X, X’). On the other hand,

1Xlgy gy = SUP = [X]locs X € X,

I<i=d

and hence the open ||.||so-balls around any point and with any radius are open in the
weak topology. Hence, 7 € o (X, X'). ]

Theorem 1.24 Let X be an infinite-dimensional normed space and Sy = {x €
X: |lx|| = 1} be the unit sphere of X. The closure of the unit sphere in the weak
topology is the whole closed unit ball, i.e.,

o (X, X
SXU( )

={xeX:|xll =1}

Similarly, one can show that B1(f) = {x € X: ||x|| < 1} has empty interior for
o (X, X'). In particular it is not open. Despite these facts, there are sets whose weak
closure is equivalent to its strong closure.

Remark 1.24 1f (X, t) is a locally convex topological vector space, then for any

Y C X, then conv(Y)T = conv(Y)J(X’X ).

Theorem 1.25 IfY C X is convex and (X, t) is a locally convex topological vector
space, then

1. Y is o(X, X)-closed (weakly closed) if and only if Y is t-closed (strongly
closed).
2. Yiso(X, X')-dense if and only if Y is t-dense.
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Proof

1. Since o(X, X') C 1, then if Y is o (X, X’)-closed it is T-closed. Conversely, if
Y is t-closed and convex, let xo € X \ Y. Then by the Hahn-Banach separation
theorem (for complex vector spaces) there is some ¢ € X’ such that

supRe(¢p(x)) < y1 < y2 < Re(p(x0)).

xeY

Hence the neighborhood of x¢

x0+V =x0+ {x: ly ()| < Re(¢(x0)) — J/z}

has empty intersection with Y.
2. Obvious.

In particular, in a topological vector space, the closure of convex sets is convex.

If a sequence converges weakly, it need not converge in the original topology,
and Mazur’s theorem shows that if a sequence in a metrizable locally convex space
converges weakly then there is a sequence in the convex hull of the original sequence
that converges to the same limit as the weak limit of the original sequence.

Theorem 1.26 (Mazur)Let X be a metrizable locally convex space. If x, — x, then
there is a sequence (yi)m < X such that each y,, is a convex combination of finitely

many x, and such that y,, — x.

Proof The convex hull of a subset Y of X is the set of all convex combinations of
finitely many elements of Y. The convex hull of a set is convex and contains the
set. Let Z be the convex hull of the sequence (x;), and let W the weak closure
of Z. Since x, — x and x,, € Z, Theorem 1.25 tells us that W = Z,sox € Z.
But X is metrizable, so x being in the closure of Z implies that there is a sequence
(Ym)m € Z such that y,, — x. This sequence (y;,);, satisfies the claim. |

Let (X, 7) be a topological vector space. The dual space X' does not come with
an a priori topology.

Let x € X, and define f,: X' — C by fi(¢) = ¢(x). Now f, is linear. If
¢1,¢2 € X' are distinct, then ¢ — ¢» # 0 so there is some x € X such that
(1 — ¢2)(x) # 0, which tells us that fy(¢1) # fi(¢p2). Therefore the set {fy: x €
X} is a separating family of seminorms on X', hence generating a topology which
makes X’ a locally convex topological vector space. We denote this topology by
o (X', X) or w* and it is called the weak™ topology on X’. The open sets in the
weak™ topology are generated by the subbase

Bl ={peX" lpW)| <r}.
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Lemma 1.8

(a) The weak topology o (X', X) is the weakest topology on X' such that each map
fx is continuous.
(b) A sequence (¢,), converges to ¢ in o (X', X) ifand only if forall x € X

lim ¢, (x) = ¢(x).
n—-oo
(¢) AsetY C X' is bounded w.xt. o (X', X) if and only if for all x € X

{p(x). ¢ €Y}

is bounded in C.

Example 1.12 Recall that ¢, = [, and /] = l. Weak convergence of a sequence
(xn)kx € [ to zero (with /] viewed as a topological vector space) means that

+o00
Vy =k €l klgglo l;(xn)kYk =0.

Weak™ convergence of a sequence (x,,)x C [ to zero (with [ viewed as the dual of
the topological vector space cp) means that

+oo
YVy=h C li =0.
y=hOk Seo  lim ];(Xn)k)’k

Clearly, weak convergence implies weak™ convergence (but not the opposite).
A priori, one can look at the second dual Y of the locally convex vector space
(X, 0 (X', X)), ie.,
Y={1: X — C,wrt,o (X', X))

By construction, it follows that X C Y,
i.e., X can be embedded into Y. It turns out that X = Y, i.e., the dual of
(X, o (X', X)) can be identified with X.

Theorem 1.27 If1: X' — C is linear and continuous w.r.t, o (X', X), then there
exists x € X such that

AMp) =¢(x) Vo € X'.
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Proof By definition of continuity w.r.t, o (X ' X), for all € > 0O there are § > 0 and
X1, -+ , Xy such that

Mo: lp(xi)l <8,i=1,---,n} S (—€,€).

In particular, if ¢ is such that ¢ (x;) = O for all i, then A(¢) = 0. This show that

n
Ny 2Ny
i=1

Consider the linear mapping 7: X' — C"*! defined by

T(9) = A(@), -, d(x1), -, P(xn)).

By the assumption, 7'(X') is a subspace of C"*! and the point (1,0, --- , 0) is not
in 7(X’). Then there are &« = (rq, - - - , &tuy1) € C**! such

n+1

ol (X') = {@rh(@) + ) eipio1). ¢ € X'} =0 < e,
i=2

It follows that oy # 0 and

= .
i=1

o]

If X is in particular a normed space, then we know that (X', |.|x’) is a
Banach space. Hence, if 7 is the vector topology of X' generated by the norm
Ay o (X, X) St

Definition 1.41 We say that

» The sequence (¢,,), converges strongly to ¢ and we write

$n — ¢ if [pn — Sllx» —> 0.
« The sequence (¢,), converges weakly to ¢ and we write ¢, —* ¢ if (¢y)n
converges to ¢ in the topology o (X', X).

The Banach-Alaoglu theorem shows that certain subsets of X' are weak®
compact, i.e., they are compact subsets of o (X', X).
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Definition 1.42 Let X be a topological vector space and V be a neighborhood of 6.
Define the polar of V as

K=[¢ex:wun51Vxev}

Theorem 1.28 (Banach-Alaoglu) Let X be a topological vector space and V be
a neighborhood of 6. Then the polar K of V is compact in the weak™ topology
o (X', X).

Proof Since each V local neighborhood absorbing, then there is a y (x) € C such
that

x eyx)V.
Hence it follows that
lp(x)| <yx) xeX, ¢ €K.

Consider the topological space

P=][leeC: |l <y}

xeX

with the product topology o . By Tychonoff’s theorem (P, o) is compact.
By the construction, the elements of P are functions f: X — C (not necessarily
linear) such that

lfOl =y ).
In particular, the set K is the subset of P made of the linear functions.
We first show that K is the subset of P w.r.t the topology o. This follows from

the fact that if fj is in the o closure of K, then the scalars «, B and pointx,y € X
one has that

{ Lf(ax + By) = folax + By)| < & [f(x) = fo@)| <& [f(¥) = foV)I < 8}

(K #9.
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Take thus ¢ in the intersection, so that

| folax + By) —afo(x) = Bfo(W)| = |(folax + By) — f(ax + By))

+a(f(x) = fox) + (f) = fo(y)
<+l +1BDe.

Since ¢ is arbitrary, fj is linear. Moreover, since | fo(x)| < y(x), then forx € V

|fo()] < 1.

It follows that we have two topologies on K :

« the weak™ topology o (X', X) inherited by X',
* the product topology o inherited by P. Since K is closed in (P, o), then (K, o)
is compact.

To conclude, we need only to show that the two topologies coincide. This follows
because the bases of the two topologies are generated by the sets

Vo', x) = { lp(xi) —po(xi)| <e&,i=1--- n}

Vo = {1 (i) = folwl < e.i=1--.n}.
There is thus a one to one correspondence among local bases, hence the two
topologies coincide. |

Theorem 1.29 Let (X, t) be a separable topological vector space. Let K € X' be
weakly* compact. Then K is metrizable in the weak™ topology.

Proof Let {x,,n € N} be a dense subset of X and fy, () = ¢(x,) for ¢ € X'.
By the definition of the weak™ topology on X', the functionals f,, are weak*
continuous. Also, for every n,

fx,, (¢1) = fx,, (¢2),
ie.,
1 (xn) = P2(xn),

then ¢; = ¢ (continuous functionals that coincide on a dense set).
Thus, { fx,, n € N} is a countably family of continuous functionals that separates
points in X'. It follows by Proposition 1.9 that K is metrizable. ]
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Remark 1.25

1. The claim is not that X’ endowed with the weak™ topology is metrizable. For
example, this is not true in infinite-dimensional Banach spaces.

2. The topological space (X', 0(X’, X)) is never metrizable, unless X has a
countable vector base.

Theorem 1.30 Let X be a separable topological vector space. If V is a neighbor-
hood of 6 and if the sequence (¢,), < X' satisfies
|¢n(x)|§1, n215~xeva
then there is a subsequence (Pq(n))n and some ¢ € X' such that for all x € X,
lim @o(n)(x) = ¢ (x).
n— oo
Proof The Banach-Alaoglu theorem implies that the polar

K = {¢ex/: b)) <1 Vxe v},

is weak® compact. K with the subspace topology inherited from o (X', X) is
compact, hence by Theorem 1.29 it is metrizable. Since the sequence (¢,),
is contained in K, it has a subsequence (¢ (n))» that converges weakly to some
¢ € K. For each x € X, the functional fy: (X’,0(X’, X)) — C defined by
fx(¢) = ¢(x) is continuous, hence for all x € X we have f,(Paw))) — fx(P),
which is the claim. |

Theorem 1.31 [f (X, t) is locally convex and Y C X, then Y is bounded in (X, T)
if and only if Y is bounded in (X, o (X, X)).

Dual of Banach Spaces and Reflexive Spaces

A particular case is when X is normed: in this case X’ is a Banach space with norm
lollx = sup |@(x)|. One can introduce the second dual of X, i.e., denoted by

[lxlI=1
X". Clearly, there is a canonical immersion J of X into X”, by

J:X = X" J)(@) =), [T®lxr = lIxllx.

Since J: X — X" is continuous, it follows that J(X) is a closed subspace of X”.
In particular, either J(X) = X” or it is not dense.
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Lemma 1.9 (Helly) Let X be a Banach space, ¢ € X',i = 1---,n,n linear
functionalsin X' anda; € C,i = 1--- , n, n scalars. Then the following properties
are equivalent

1. forall & > 0 there is x¢, ||x¢ || < 1 such that
lp(xe) —ai| <€ i=1--,n,

2. forall By,---,B, €C

<1 Bigillx-

D Biai

Proof The first implication follows by

> Biai

+

> Bilei — dixe)| + | Y Bidhi(xe)

<e) 1B+ 1Y Bigilx,

since ||xg|| < 1. Conversely if 1. does not hold, then this means that the closure of
the set

@]l <1} c o

does not contains (aq, - - - , ). Thus there is (81, - - - , Bn) € C" such that

maxRe{iﬂiw), Il < 1} < Re{fﬂiai} < anﬂiai .

Since {x: ||x|| < 1} is balanced, it follows that 2. is false. |

Proposition 1.36 (Goldstine) If X is a Banach space, then J(By) is dense in Bxn
for the weak™ topology.

Proof If ¢ € X", take a neighborhood of the form
V= {77 €X't In(gi) —E@i) <&, ¢i€X'i= ln}

We need only to find x € X such that

[pi (x) — E(di)] < e.
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Since ||€||x» < 1, then

> BiE@0)

so that for Lemma 1.9 it follows that there is an x, € X which belongs to V. |

Definition 1.43 A Banach space is reflexive if J(X) = X”.

<1>_ Bidillx'.

It is important to observe that in the previous definition the canonical immersion
J isused: even for particular non-reflexive spaces, one can find a continuous linear
surjection from X to X",

Theorem 1.32 (Kakutani) The Banach space X is reflexive if and only if By is
compact for the weak topology o (X, X').

Proof 1f X is reflexive, then J: X — X” is continuous, injective and surjective.
Hence J~! is linear and continuous w.r.t. the strong topologies of X and X”.
Actually both J and J ~! are isometries.

It is clear that

J{X: lp(x)| < 8} = {n: Ingl < 8},

so that the topology J (o (X", X')) coincides with the topology o (X, X'). Since
By is weak™ compact, so By.

Conversely, if By is compact, then J(By) is closed, and by Proposition 1.36 it
coincide with the whole By . |

Theorem 1.33 If X is a Banach space and X' is separable, then X is separable.

Proof Let (¢,), be a dense countable setin X'. Let x,, € X, ||x,||x < 1, be a point
where

()] = %||¢n||x',

and consider the countable set

0= { Z a;x;: o belongs to a countable dense subset of(C}.

finite

Clearly Q is countable and dense in the vector space L generated by {x,},, so that
it remains to prove that L is dense in X.



1.2 Topological Vector Spaces 65

If L is not dense, then there is a non null continuous functional ¢ such that

¢ #0x ¢(x,) =0Vn.

Since (¢), is dense, there is ng such that [[¢ — ¢, ||x < &, so that

g llxr < | @ny Ceng)| < [(@ = buny) Gny) | + | (xny)| < &

Thus [[¢n, |lx' < 2e, which implies that ¢ = Ox. ]

Proposition 1.37 If Y C X is a closed subspace of a reflexive space, then Y is
reflexive.

Proof The proof follows by proving that the topology o (Y, Y’) coincide with the
topology ¥ N o (X, X) and By is closed for o (X, X') (closed for strong topology
and convex). |

Corollary 1.6 Let X be a normed space. Then, X is separable and reflexive if and
only if X' is separable and reflexive.

Proof Clearly if X is reflexive, the unit ball Bxs is compact for the topology
o (X', X") because of the Banach-Alaoglu theorem and the fact o (X', X”) =
o (X', X). Moreover if X is reflexive and separable, then X " is separable, hence
by Theorem 1.33 is separable.

Conversely, if X’ is reflexive, then X" is reflexive, so that M (X) is reflexive by
Proposition 1.37, hence X is reflexive. Moreover, we know from Theorem 1.33 that
X is separable, if X’ is separable. |

Definition 1.44 We say that X Banach space is uniformly convex if for all ¢ > 0
there exists § > O such that

X+y
Ixlx, Iyllx <1, IITII >1-8=Ilx—ylx <e

Theorem 1.34 (Milman) If X is a uniformly convex Banach space, then X is
reflexive.

Proof Let £ € X", ||€]lx» = 1. We want to prove that for all ¢ > 0 there is
x € X, ||x|lx < 1 such that

1§ = J)llxr <e.

Since J(X) is strongly closed (J is an isometry), then J is surjective.
Let ¢ € X’ be such that

lollx =1, §¢>1-34,
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where § is the constant chosen by the uniform convexity estimate corresponding to
¢, and consider the neighborhood of £ of the form

v=lnex ‘(& — @) < %‘ |

By Proposition 1.36, it follows that there is some x € By such that J(x) € V.

Assume that £ ¢ J(x) 4+ e Bx». Then we obtain a new neighborhood of & for the
weak™ topology which does not contains x. With the same procedure, we can find a
new X in this new neighborhood. Thus we have

8 _ 8
lp(x) — &(@)] < o lp(xX) — &(@)] < >
Adding we obtain
216@) < lp(x+X)|+6 < [lx + x|l +3.
xX+Xx _ L. ..
Then || > | > (1 —38), sothat ||x + X|| < &, which is a contradiction. |

1.2.8 [1-Sequences

Definition 1.45 Let (x,), be a bounded sequence in a Banach space X, and
e > 0. We say that (x,), admits e-/1-blocks if for every infinite M C N there
are ay,---,---a, € K with Z|ap| =1landi; < --- < i, in M such that

1Y apx, | <e.

Clearly there will be no subsequence of (x,), equivalent to the /1-basis iff (x;),
admits e-/1-blocks for arbitrary small & > 0.

Theorem 1.35 Let X be a real (for simplicity) Banach space and (x,),, a bounded
sequence. Suppose that, for some ¢ > 0, (x), admits small e-11-blocks. Then there
is a subsequence (xy, )k of (Xn)n such that (x,, )i is “close to being a weak Cauchy
sequence” in the following sense:

lim sup ¢ (x,,, ) — lin}(inf(p(xnk) <2e
k

for every ¢ € X' with ||| x = 1.
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Proof Suppose the theorem were not true. We claim that without loss of generality
we may assume that there is a § > 0 such that

©((xy)k) == sup (lim sup ¢ (x,,) — lirr}cinfq)(xnk) > 2¢ +8> (1.16)
il x=1 k

for all subsequences (xp,)r. In fact, if every subsequence contained another
subsequence with a p-value arbitrarily close to 2¢, the diagonal process would even
provide one where ¢((x,,)k) < 2¢ in contrast to our assumption.

Fix a t > 0 which will be specified later. After passing to a subsequence we may
assume that (x;,), satisfies the following conditions:

(i) If C and D are finite disjoint subsets of N there are a Ao € R and an ¢ € X’
with ||@||x» = 1 such that ¢ (x,) < Ag forn € C and ¢ (x,) > Ag + 2¢& + § for

neb.
(ii) Therearei; <--- <i,inN, ay,---a, € R with
Ylapl=1. 1) apl <. 1Y apxi,l <&
For (i), define, for r € N, T, to be the collection of all (iy,---,i,) (withi; <

- < ir) such that there are a 19 € R and a normalized ¢ such that ¢ (x;,) < Ag if p
is even and > A+ 2¢ + 6 otherwise. (1.16) implies that there is an M( for which all

(i, -+ ,ip)arein T, fori; < --- < i, in My. Let us assume that My = N. Let C and
D be finite disjoint subsets of 2N = {2,4,-.-}. We may selecti; < --- < i, in N
such that C C {i, | p even } and D C {i, | p odd }. Because of (i1, --- ,i,) € T, we

have settled (i) provided C and D are in 2N, and all what’s left to do is to consider
(x2)y instead of (x,),.

For (ii), By assumption we find i; < --- < iy, a1, ---a, € R such that
Z lapl = 1 and || Zapxi |l < & with arbitrarily large i;. Therefore we obtain
il <. < irll <it << irz2 <id << i,33 < - andassociateda;,.The

rj

numbers 7; := Y _ aj all lie in [—1, 1] so that we find j < k with [5; — m| < 27.

p=1

Leti; < .- < i, be the family i{ < --- < il < it << ifk,anddeﬁnethe
; 1 1 1,
J j k k

al’...arbyial ...Ear.j7._§al".'_§61.rk’

We are now ready to derive a contradiction. On the one hand, by (ii), we find
it < <ina-,a € Rsuchthat Y la,| = 1,1 ap| < 7 with
I Zapxi,,ﬂ < ¢&. On the other hand we may apply (i) with C := {i, |a, < 0}
and D := {i,|a, > 0}. We put o := — Zap, B = Zap, and we note that

peC peD
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1
o — B < t,a—i—ﬁ:lsothat|f3—§| < 7, hence

8
&2 1) apxi,ll < Y apd(xi,) = —how+(o+2e+8)B = —lholt+e+5 8.

This expression can be made larger than ¢ if T has been chosen sufficiently small
(note that the numbers |Ag| are bounded by sup ||x; ), a contradiction which proves
n

the theorem. n

Remark 1.26 Since the unit vector basis (x,), of real /1 the assumption of the
theorem holds with ¢ = 1 and since for every subsequence (x,,)r one may find
¢llx =1 with

lim sup ¢ (x,,, ) — lin}cinftp(xnk) =2
k

there can be no better constant than that given in our theorem.

Theorem 1.36 (Rosenthal’s Theorem) Let X be a Banach space and (x,), a
bounded sequence in X. If there exists no subsequence which is a weak Cauchy
sequence then one can find a subsequence (x,, )i which is equivalent with the unit

vector basis of I1 (i.e., (Ap)k Zkkxnk,from 11 to X, is an isomorphism).
In particular one has: If X does not contain an isomorphic copy of 11, then every
bounded sequence admits a subsequence which is a weak Cauchy sequence.

Proof Rosenthal’s theorem is the assertion that (x,), has a weak Cauchy subse-
quence provided it admits e-/1-blocks for all €. So, it is simple to derive the theorem
from Theorem 1.35. If (x,), and thus every subsequence has e-/1-blocks for all ¢,
apply Theorem 1.35 successively with ¢ running through a sequence tending to zero.
The diagonal sequence which is obtained from this construction will be a Cauchy
sequence. |

Remark 1.27

1. Since weakly convergent sequences are weakly Cauchy it follows immediately
that Rosenthal’s theorem holds in reflexive spaces.

2. Rosenthal’s theorem holds, whenever X is such that X’ is separable. Let (x,),
be bounded and ¢ be a fixed functional. If we apply the Bolzano-Weierstrass
theorem to the scalar sequence (¢ (x,)), we get a subsequence (x,, )x such that
(¢ (x4,))k converges. Applying the same idea to (x,, )¢ with a second functional,
say ¥, we get a subsequence of this subsequence such that the application of
produces something which is convergent. ¢, applied to this new subsequence,
also gives rise to convergence. Thus we have a subsequence of (x,), where
¢ and ¢ converge, and similarly one can achieve this for any prescribed finite
number of functionals. Even countably many functionals are manageable, by the
diagonal process. Since we are dealing with bounded sequences (y,), (typically
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subsequences of the original sequence) the collection of ¢ where (¢(y,))n
converges is a norm closed subspace of X'.

There is a generalization of Rosenthal’s theorem to Fréchet spaces which, it
seems, has been firstly by Diaz [44]. Thus the starting point for proving promised
generalizations is to understand what it means for a sequence in a locally convex
space be equivalent to the unit basis of /7.

We denote by l(l) the subspace of /; formed by elements with only finitely many
nonzero coordinates.

Barroso, Kalenda and Lin introduced the following notion of /{-sequences in
topological vector spaces [14].

Definition 1.46 Let (X, t) be a topological vector space and (x,), a sequence in
X. We say that (x,), is an [{-sequence if the mapping Ty : l? — X defined by

To((@)i=1) = Y _ aixi (1.17)

i=1

is an isomorphism of l? onto To(l(l)).
The following characterization of /{-sequences is given in [14].

Proposition 1.38 Ler (X, 1) be a locally convex space and (x,), a bounded
sequence in X. The following are equivalent:

(i) There is a continuous seminorm p on X such that

n n
p <Za[xi> > Zlail, neNay, - ,a, e R
i=1 i=1

(ii) (xp)y is an ly-sequence.
If X is sequentially complete, then these conditions are equivalent to the
following :

o0
(iii) The mapping T : 1} — X defined by T ((a;)i>1) = Zaixi is a well defined
i=1
isomorphism of 1| onto its image in X
Proof Let Ty: l? — X be defined by (1.17). As (x,), is bounded and X is locally
convex, it is easy to check that Ty is continuous.
Further, if (i) holds, then Ty is clearly one-to-one and TO_1 is continuous. This
proves (i) = (ii).
Conversely, suppose that (i7) holds. Set

U=To(fx el): xlp < 1)).
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As Ty is an isomorphism, U is an absolutely convex open subset of Ty (l(l)). We can
find V, an absolutely convex neighborhood of 6 in X such that V N Ty (/ ?) C U.Let
p the Minkowski functional of V. Then p is a continuous seminorm witnessing that
() holds. This proves (ii) = (i).

Now suppose that X is sequentially complete. As T is continuous and linear, it is
uniformly continuous and hence it maps Cauchy sequences to Cauchy sequences. In
particular the mapping Ty can be uniquely extended to a continuous linear mapping
T: 11 — X. This is obviously the mapping described in (iii). As l(l) is dense in /1,
we get (ii) < (iii). |

The following theorem is a variant of Rosenthal’s theorem [14]. Its proof is a
slight refinement of the proof of Lemma 3 in [44].

Theorem 1.37 Let (X, t) be a metrizable locally convex space. Then each bounded
sequence in X contains either a weakly Cauchy subsequence or a subsequence
which is an l1-sequence.

Proof Let (]|.|l,) be a sequence of seminorms generating the topology of X.
Without loss of generality we may assume that ||x||,, < ||x]l,+1 foralln and x € X.
Let U, = {x: ||x|]l, < 1} and let B, = U,? be the polar of U,. Assume that
(xm)m is a bounded sequence in X such that no its subsequence is an /-sequence.

Forn = 0,1,2,--- we construct a sequence (x),),, inductively as follows. Set
x,(,)l = x,, for all m € N. Assume that for a given n € N the sequence (x,’,‘fl)m has

been defined. By Rosenthal’s theorem one of the following possibilities takes place
(elements of X are viewed as functions on B;,):

(i) (x,’}fl )m has a subsequence which is equivalent to the /-basis on B,,.
(ii) (x,’,ll_l)m has a subsequence which point wise converges on B;,.

Let us show that the case (i) cannot occur. Indeed, suppose that (i) holds. Let
(ym)m be the respective subsequence. The equivalence to the /1 basis on B, means
that there is some C > 0 such that

m m
1D " aiyiln = C Y lail
i=1 i=1

for each m € N and each choice ay, - - - , a,, € R. By Proposition 1.38 (y,,),, is an
I1-sequence in X, which is a contradiction.

Thus the possibility (ii) takes place. Denote by (x),);, the respective subse-
quence. This completes the inductive construction.

Take the diagonal sequence (x,,). It is a subsequence of (x,,), which pointwise
converges on B, for each n € N. Moreover, if ¢ € X "is arbitrary, then there is n
and ¢ > 0 such that c¢ € B,. In particular, the linear span of the union of all B, s is
the whole dual X'. It follows that the sequence (x])') is weakly Cauchy. The proof is
complete. |
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Remark 1.28 Let X = [} endowed with its weak topology. Let (e,), denote the
canonical basic sequence. Then, the sequence (e,), contains neither a weakly
Cauchy subsequence nor a subsequence which is an /;-sequence. Indeed, suppose
that (x,), is an /;-sequence in X. Denote by Y its linear span. By the definition of an
l1-sequence we get that Y is isomorphic to (l?, II.Il1), hence it is metrizable. On the
other hand, by the definition of X we get that Y is equipped with its weak topology
which is not metrizable as Y has infinite dimension.

Further, the sequence (e, ), contains no weakly Cauchy subsequence in (/1, ||.[1)
and in (I, oy, (I1))) coincide, we get that (e,), contains no weakly Cauchy
subsequence in X. Thus the proof is completed.

The following is given in [14] and is about the coincidence of norm and weak
topologies.

Proposition 1.39 Let T be an arbitrary set. Then the norm and weak topologies
coincide on the positive cone of [1(I").

Proof Denote by C the positive cone of /1 (I"). Since the weak topology is weaker
than the norm one, it is enough to prove that the identity of C endowed with the
weak topology onto (C, |.||) is continuous. Let x € C and ¢ > 0 be arbitrary. Fix a
nonempty finite set F C I" such that

&
DX > Ixl = 4
yeF
Set

U={yec: ) —x) < ;o fory e F}
=iyeC: |y(y)—x(y <4|F| ory € Ft,
v={vec: Y ym- Y xn <z}

yel\F yel\F

Then both U and V are weak neighborhoods of x in C (recall that the dual of /{ (T")
is represented by I, (I")), hence so U N V. Moreover, if y € U N V, then

Iy —xl=Y_ Iy —xMl+ Y Iyy)—x(l < §+ D 0w +x()

yeF yel\F yel\F
& & & &
=7+ 2 O —xGN+2 Y 2 < g+ +27
yel\F yel\F

This shows that the identity is weak-to-norm continuous at x. The proof is
complete. ]
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1.2.9 The Fréchet-Urysohn Property

Definition 1.47 Let Y be a subset of a topological (Hausdorff) space X.

(1) Y is countably compact, if every sequence in Y has a cluster-point in Y.

(2) Y is sequentially compact, if every sequence in Y has a convergent subsequence
with limitin Y.

(3) Y is relatively countably compact, if every sequence in Y has a cluster-point
in X.

(4) Y is relatively sequentially compact, if every sequence in Y has a convergent
subsequence with limit in X.

It is easy to see that

(1) Every (relatively) compact set is (relatively) countably compact.
(2) Every (relatively) sequentially compact set is (relatively) countably compact.

Definition 1.48 A topological space (X, t) is called Fréchet-Urysohn if the clo-
sures of subsets of X_are described using sequences, i.e., if whenever ¥ € X and
x € X such that x € Y, there is a sequence (x,), in ¥ with x,, — x.

Example 1.13 Metrizable spaces and one point compactifications of discrete spaces
are Fréchet-Urysohn.

Definition 1.49 A completely regular Hausdorff topological space X is called a
g-space, if its relatively countably compact subsets are relatively compact.

Definition 1.50 A Hausdorff topological space X is said to be angelic if for every
relatively countably compact set Y € X, the following hold:

(1) Y is relatively compact,
(i1) for each x € Y, there exists a sequence (x,), € Y such that x, — x.

If K is a compact topological space then K is a Fréchet-Urysohn space if and
only if it is angelic. It can be said that a Hausdorff topological space X is angelic
if and only if X is a g-space for which any compact subspace is a Fréchet-Urysohn
space.

The following are some characterizations of Fréchet-Urysohn spaces.

Theorem 1.38 For a topological vector space (X, t) the following assertions are
equivalent:

1. X is Fréchet-Urysohn.

2. For every subset Y of X such that 0 € Y there exists a bounded subset Z of Y
such that 6 € Z.

3. Forany sequence (Yy,), of subsets of X, each with© € Y,,, there exists a sequence

Z, CY,,n €N, such that U Z, is bounded and 6 € U Zy foreachn € N.
n

n<k
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Proof Clearly 1. implies 2. Now assume 2. It is obvious that 3. holds if 6 € Y,
for infinitely many n. Therefore, we assume that 6 € Y_n \ Y, foreach n € N.
Consequently, there exists a null sequence (x;,), in X \ {6}. For each n € N there
exists a closed neighbourhood U, of zero such that 6 ¢ U, + x,. Let each W,, =
U, NY,.Clearly 6 is in each Wn\ W,, and not in the set

Y = U(Wn + Xp).

However, ® € Y: For U, an open neighborhood of 6, there exist k € N with x;y € U
and, V, a neighbourhood of § with V 4 x; C U. As thereis y € V N W; we also
have y + x; € UNY.Thus € Y \ Y. By hypothesis, there is Z C Y with Z
bounded and 6 € Z. There exists subsets Z, C W, =U,NY, such that

Z = J(Zu + x).

By construction, 6 does not belong to the closed sets

J W + x0).

k<n

Therefore 6 is not in any U (Zx + xi). This and 6 € Z imply that

k<n

0|z +x).

n<k

foreachn € N.Let V' and V be any balanced neighborhoods of § with V-V C V',
Fix n € N. There exists m > n, in N, such that x; € V for all kK > m. From

0@k +x0.

m>k

it follows that there existk > mand y € By with y +x; € V.Fromy € V — x; C
V —V C V/, wesee, foreach n € N, the set V' meets U Zk. As any neighborhood
n<k
of 0 contains V' and V as above, 6 is in the closure of each U Z;.. Note also that
n<k

U Z,, is bounded. Indeed, as
n

Z =@+ xn)
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and W = {x,,: m € N} are bounded and since

UzngU(Zn+xn)_{xn1:mGN}ZZ_Wa
n n

then U Z, is also bounded too. We have proved that 2. implies 3.
n
3. implies 1.: Assume that 6 € Y, and set ¥, = nY, for each n € N. Since
0 is in each Y, there exist Z, < Y,, as in 3.. So each U Zy is nonempty,
n<k
and, consequently, there exists a strictly increasing sequence (nz)x in N with Zn,
nonempty. For each k, let zx € Z,,. There exists a sequence (yx)x in ¥ such that
Zx = ni Yk for each k € N. Since (ny )y is strictly increasing and (zx)x = (nkYr)k 1S
bounded, the sequence (yx)x in Y converges to zero in X. The proof is complete. l

There are many nonmetrizable Fréchet-Urysohn spaces. To provide some exam-
ples, we have the following deep result of J. Bourgain, D. H. Fremlin and M.
Talagrand [24]:

Theorem 1.39 Let X be a Polish space (i.e., a separable completely metrizable
space). Denote by B1(X) the space of all real-valued functions on X which are of
the first Baire class and equip this space with the topology of pointwise convergence.
Suppose that Y < Bi(X) is relatively countably compact in B1(X) (i.e., each
sequence in Y has a cluster point in B1(X). Then the closure Y of Y in B1(X)
is compact and Fréchet-Urysohn.

A slightly weaker version is given in [101].

Corollary 1.7 Let X be a Polish space and Y be a set of real-valued continuous
functions on X. Suppose that each sequence in Y has a pointwise convergent
subsequence. Then the closure of Y in R? is a Fréchet-Urysohn compact space
contained in By (X).

Proof Y is obviously contained in B;(X). Moreover, let (f,), be any sequence
in Y. By the assumption there is a subsequence (fy,)x pointwise converging to
some function f. As the functions f,, are continuous, the limit function f is of
the first Baire class. Hence, it is a cluster point of ( f,,), in B1(X). So, Y is relatively
countably compact in B;(X). The assertion now follows from Theorem 1.39. W

We continue by the following example [14].

Proposition 1.40 Ler (X, ) be a metrizable locally convex space and Y be a
bounded subset of X. If Y is t-separable and contains no li-sequence, then the
set

———0(X.X) _

Y—-Y _{x—y:x,er}J(X’X)

is Fréchet-Urysohn when equipped with the weak topology.
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Proof As the closed linear span of Y is separable, we can without loss of generality
suppose that X is separable. Let (||.|l,), U, and B, (n € N) be as in the proof
of Theorem 1.37. Notice that B, is a metrizable weak*compact subset of X’.
Moreover, the linear span of the union of all B,/ls is the whole dual X’ (see the
end of the proof of Theorem 1.37). Let now P be the topological sum of the spaces
(By,0(X',X)),n € N. Then P is a Polish space. Denote by G: P — X’ the
canonical mapping of P onto the union of all B);s. Then G is continuous from P
to (X', o0(X’, X)). Define a mapping H: P — R’ by the formula H(x)(p) =
G(p)(x). Then H is a homeomorphism of (X, o (X, X')) onto H(X) equipped
with the pointwise convergence topology. Moreover, the functions from H(X) are
continuous on P.

Let Z = H(Y — Y). We claim that each sequence from Z has a pointwise
convergent subsequence. To show that it is enough to observe that each sequence
in Y — Y has weakly Cauchy subsequence. Indeed, let (z,), be a sequence in
Y — Y. Then z, = x, — y, for some x,,y, € Y. As Y contains no /-
sequence, by Theorem 1.37, we get a weakly subsequence (x,, )« of (x,),. Applying
Theorem 1.37 once more we get a weakly Cauchy subsequence (y, )k of (yn)a.
Then (z,, )k is a weakly Cauchy subsequence of (z,),. Thus Z is relatively
countably compact in Bj(P), which is the space of all Baire-one functions on P
equipped with the topology of pointwise convergence. By Theorem 1.39, the closure
of Z in R? is a Fréchet-Urysohn compact subset of B (P). In particular, the weak
closure of Y — Y is Fréchet-Urysohn when equipped with the weak topology. The
proof is complete. |

Note that the result of the above proposition generalizes the following in the
context of Banach spaces [101].

Proposition 1.41 Let X be a Banach space and Y be a bounded subset of X. If X
is norm-separable and contains no l1-sequence, then the set

o (X', X)

m O’(X,X)

={J(x—y):x,yeY}

is Fréchet-Urysohn when equipped with the weak™ topology, where J denotes the
canonical embedding of X into X". In particular,

— (X, X))

Y-Y :{x—y:x,er}J(X’X)

is Fréchet-Urysohn when equipped with the weak topology.

We have the following characterization of the Fréchet-Urysohn property in
locally convex spaces [14].
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Proposition 1.42 Letr (X, t) be a Hausdorff locally convex space such that there
is a metrizable locally convex topology on X compatible with the duality. The
following assertion are equivalent.

(i) Any bounded subset of X is Fréchet-Urysohn in the weak topology.
(ii) Any bounded sequence in X has a weakly Cauchy subsequence.
If, moreover, t itself is metrizable, then these assertions are equivalent to
the following one:
(iii) X contains no ly-sequence.

Proof Let p be a metrizable locally convex topology compatible with the duality .
By Theorem 1.37 (X, p) contains no /1-sequence if and only if (X, p) satisfies the
condition (i7). Further, the validity of (ii) for (X, p) is equivalent to its validity for
(X, 7). It follows that (ii) holds if and only if (X, p) contains no /;-sequence. In
particular, if p = 7, we get (i) < (ii).

(ii) = (i) Suppose that (ii) holds. Let ¥ be a bounded subset of (X, ) and
let x € X € belong to the weak closure of Y. We need to find a sequence in
Y converging to x. We first prove it under the additional assumption that Y is
separable. Then Y is bounded and separable in (X, p) as well. As (X, p) contains
no /1-sequence, by Proposition 1.40 we get that the weak closure of Y-Y is Fréchet-
Urysohn in the weak topology. Hence, in particular, there is a sequence in Y weakly
converging to x.

To prove the general case it is enough to show that there is a countable set Z C Y
such that x belongs to the weak closure of Z. In other words, it is enough to show
that the weak topology on X has countable tightness. To prove that observe that
(X,0(X, X")) is canonically homeomorphic to a subspace of C,(X', o (X', X)),
which is the space of all continuous functions on the space (X', o (X', X)) equipped
with the topology of pointwise convergence. Further notice that (X', o (X', X)) is
o-compact, this follows by the metrizability of p as X' = U mB,, using the

m,neN
notation from the proof of Theorem 1.37. Finally, as any finite power of a o -compact

and hence Lindel6f, we can conclude by the Arkhangel’skii-Pytkeev theorem [7].
(i) = (ii) Suppose that (ii) does not hold. Then there is a sequence (x;), in X
which is an /{-sequence in (X, p). Let Tp: l? — X be defined as in (1.17). Let S
denote the unit sphere in l?. Then 6 is in the weak closure of S (as l(l) is an infinite
dimensional normed space) but it is not the weak limit of any sequence from S (by
Schur’s theorem [75]). Thus, 6 is in the weak closure of 7p(S) without being the
weak limit of any sequence from 7 (S). Thus 7o (S) U {6} is a bounded set which is
not Fréchet-Urysohn in the weak topology. |

The following characterization of Banach spaces not containing /1 is given in
[101].
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Theorem 1.40 Let X be a Banach space. Then the following assertions are
equivalent.

1. X contains no isomorphic copy of 1.

2. Each bounded separable subset of X is Fréchet-Urysohn in the weak topology.

3. For each separable subset Y C X there are relatively weakly closed subsets
Y,,n € N such that Y = U Y, and each Y, is Fréchet-Urysohn in the weak

neN
topology.

Proof The implication 1. = 2. follows from Proposition 1.40.

The implication 2. = 1. follows from the fact that the unit ball of /; is not
Fréchet-Urysohn (as 6 is in the weak closure of the sphere and the sphere is weakly
sequentially closed by the Schur theorem [75]).

The implication 2. = 3. is trivial if we use the fact that a closed ball is weakly
closed.

Let us prove 3. = 2. To show 2. it is enough to prove that the unit ball of any
closed separable subspace of X is Fréchet-Urysohn in the weak topology. Let Z
be such a subspace. Let Y,,, n € N be the cover of Z provided by 3. As each Y,
is weakly closed, it is also norm-closed. By the Baire category theorem some Y,
has a nonempty interior in Y, so it contains a ball. We get that some ball in Y is
Fréchet-Urysohn, so the unit ball has this property as well. |

Remark 1.29 Note that the assertion 3. is a topological property of the space
(X, 0 (X, X)) (as norm separability coincides with weak separability).

As a consequence of Proposition 1.42 we get the following improvement of
Theorem 1.40.

Corollary 1.8 Let X be a Banach space. The following assertions are equivalent.

1. X contains no isomorphic copy of 11.
2. The closed unit ball of X is Fréchet-Urysohn in the weak topology.
3. There is a sequence (Y,)n>1 of weakly closed sets which are Fréchet-Urysohn in

oo
the weak topology such that X = U Yn.
n=1
Proof The equivalence 1. < 2. follows from Proposition 1.42. The implication
2. = 3. is trivial. The implication 3. = 1. follows from Theorem 1.40 (or,

alternatively, 3. = 2.) follows from the Baire category theorem as in Theorem
1.40. |

Definition 1.51 A Banach space (X, ||.||) is Asplund if and only if Y’ is separable
for each separable subspace ¥ C X.

Remark 1.30 A Banach space X is an Asplund space if each convex continuous
function 7: X — R is Fréchet differentiable on a dense G; set in X. Also it is
known that a Banach space X is Asplund if and only if X’ has the RNP [25].
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It is worthwhile to remark that there are separable Banach spaces having no
copy of I; for which X’ is nonseparable [93, 127]. On the other hand, the well-
known James’s space J is an example of a nonreflexive Banach space without an
unconditional basis which does not contain any copy of /; and yet has separable
dual.

Remark 1.31 Let us remark that the implication (ii) = (i) of Proposition 1.42 does
not hold for general locally convex spaces. Indeed, there are Banach spaces X such
that the closed unit ball of X’ is weak™ sequentially compact, but it is not Fréchet-
Urysohn in the weak™® topology. In particular, the dual closed unit ball is weak™
sequentially compact whenever X is Asplund [55], in particular if X = C(K) with
K scattered [55]. On the other hand, K is canonically homeomorphic to a subset of
the closed unit ball of C(K)' equipped with the weak™ topology, so it is enough to
observe that there are scattered compact spaces which are not Fréchet-Urysohn. As
a concrete example we can take K = [0, w1], the ordinal interval equipped with the
order topology (w is the first uncountable ordinal).

It is worth to compare Theorem 1.40 with a similar characterization of Asplund
spaces [101].

Theorem 1.41 Let X be a Banach space. Then the following assertions are
equivalent.

1. X is Asplund.

2. Each bounded separable subset of X is metrizable in the weak topology.

3. For each separable subset Y C X there are relatively weakly closed subsets
Yo,n € N, of Y such that Y = U Y,, and each Y, is metrizable in the weak

neN
topology.

Proof The equivalence of 1. and 2. follows from the well-known fact that the unit
ball of Y is metrizable in the weak topology if and only if Y’ is separable. The
equivalence of 2. and 3. can be proved similarly as corresponding equivalence in
the previous theorem. |

Remark 1.32 There is no analogue of Theorem 1.40 for convex sets. Indeed, let
X = [ and let C be the closed convex hull of the standard basis. Then C contains
an [1-sequence but is Fréchet-Urysohn in the weak topology. In fact, it is even
metrizable as it is easy to see that on the positive cone of /1 the weak and norm
topologies coincide.

1.3 Ultrametric Spaces

The origin of ultrametric spaces lies in valuation theory and dates back to Krasner
and Monna who developed this theory for ultrametric distances with real values
(non-Archimedean analysis). A systematic study of (general) ultrametric spaces was
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provided [16, 81, 84,113,120, 152, 154, 155, 157, 160, 169] and others. This study is
concerned with ultrametric whose distance functions take their values in an arbitrary
partially ordered set (with a smallest element 0) not just in the real numbers.

Definition 1.52 Let (I', <) be an ordered set with smallest element 0. Let X be a
nonempty set. A mapping d: X x X — I is called an ultrametric distance and
(X, d, ') an ultrametric space if d has the following properties for all x, y,z € X
andy e I':

dl) d(x,y)=0ifandonlyifx =y,
(d2) d(x,y)=d(y,x),
(d3) ifd(x,y) <yandd(y,z) <y,thend(x,z) <y.

If there is no ambiguity, we simply write X instead of (X, d, I').
If T is totally ordered , (d3) becomes
(d3)d(x,z) <max{d(x,y),d(y,z)} forallx, y, z € X.

Remark 1.33 The ultrametric space (X, d, I') is trivial, if there exists y € I" such
that forallx,y € X, x # y,d(x,y) = y.

Definition 1.53 Let (Y, djy, I'y) and (X, d, I') be ultrametric spaces such that Y C
X and I'y C I'. Assume that I'y has the induced order of I' and the same 0 as I
and that furthermore, djy (Y x Y) C T'y and dy(y, y") =d(y,y’) forall y, y’ € Y.
Then (Y, djy, I'y) is said to be a subspace of (X, d, I') and X is called an extension
of Y. Often we simply write d instead of d|y.

Definition 1.54 Let (X, d, ') be an ultrametric space. The space X is said to be
solid if for every y € I" and x € X there exists y € X such thatd(x,y) = y. If X
is solid, then d(X x X) =T

Definition 1.55 Let (X, d, ') be an ultrametric space. Let y € I'* = I' \ {0} and
a € X. The set By(a) = {x € X | d(a,x) < y} is called a ball. The element
a is said to be a center of By (a) and the element y to be a radius of B (a). If
x,y € X,x # y, then B(x, y) = By(x,y)(x) is called a principal ball.

Remark 1.34 Let (X,d, ") be an ultrametric space. If X is solid, every ball is
principal. If T is totally ordered, also the converse conclusion holds.

Definition 1.56 Let (X,d, ") be an ultrametric space. A nonempty Y of X is
said to be convex in X when for all y;, y € Y with y; # y, the principal ball
B(yi,y1) € Y.

Remark 1.35 Every principal ball is convex in X and furthermore, if ﬂ B(xi, yi) #
iel
) then ﬂ B(x;, yi) is convex in X.
iel
In the following lemma, we list some properties of balls which can easily be
verified [161].
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Lemma 1.10 Let (X, d, ') be an ultrametric space and let y, § € T'°.
1. Letx,y € X.

(a) If y <8 and B, (x) N By (y) # 0, then B, (x) C Bs(y),
(b) if Bs(y) C By (x), theny £ 8.

2. Concerning principal balls, if x,y, z,u € X,x # zand y # u, then

(a) B(x,z) C Bs(y) if and only if d(x, z) < 8 and x € Bs(y),
(b) if B(x,z) C Bs(y), thend(x,z) <6,
(c) if B(x,z) = B(y,u), thend(x,z) =d(y, u).

3. Let X be solidand x,y € X.

(a) By(x) S Bs(y) ifand only if y < é and x € Bs(y),
(b) if B,(x) C Bs(y), theny < 4.
(c) if By(x) = Bs(y), theny =§

4. If T is totally ordered and B, (x) C Bs(y), then s < y.

Definition 1.57 Let (X, d, I') be an ultrametric space. A set of balls which is totally
ordered by inclusion is said to be a chain.

Lemma 1.11 Ler (X, d, ') be an ultrametric space. Let C be a chain of balls of X
which does not have a smallest ball. Then there exists a limit ordinal ) and a strictly
decreasing family of balls (B;); <. such that each B; € C and for every ball C € C
there exists B; such that B; O C and hence ﬂ C= ﬂ B;.
i<A

Definition 1.58 Let (X,d,I") be an ultrametric space. X is called spherically
complete (resp., principally complete) if every chain of balls of X (resp., principal
balls of X) has a nonempty intersection.

Remark 1.36 Every spherically complete ultrametric space (X, d, I') is principally
complete. The converse is true when I' is totally ordered or the space is solid.

Definition 1.59 An ultrametric space (X, d, I') is said to be complete if every chain
of balls {B,, |i € I}, withinf{y; | i € I} = 0, has a nonempty intersection.

Remark 1.37 A spherically complete ultrametric space (X, d, ") is complete. If
" is totally ordered and if I'* does not have a smallest element, the ultrametric
distance induces on X a uniformity, hence also a topology. In this case, the concept
of completeness coincides with that given by the uniformity.

Several examples of different types of ultrametric spaces are discussed in [160].
Some where I is totally ordered and others where I is not totally ordered.

Examples 1.9

1. Let A be a totally ordered Abelian additive group, let oo be a symbol such that
oo ¢ A,and§+00 =00+ =00,00+00=00,8 <ooforalld € A. We
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denote by O the neutral element of A, thatis 0+ = 6 forevery § € A. Let K be
a commutative field, let v: K — A U {00} be a valuation of K, so we have

(v1) v(x) = ocoifandonlyif x =0,
2) v(xy) =v(x) 4+ v(y),
(©3) v(x +y) = min{v(x), v(y)}.

Let I'* be a totally ordered Abelian multiplicative group with neutral element
1, let 0 be a symbol such that 0 ¢ I'*, 0y = y0 =0,0.0 = 0,0 < y for every
y e *. Letf: AU{oo} —> I' = I"* U {0} be an order reversing bijection such
that 8(c0) = 0,0(8 +8') = 6(8).6(8'), s00(0) = 1.

Letd: K x K —> T be defined by d(x,y) = 0(v(x — y)), then (K,d, ") is
an ultrametric space which is said to be associated to the valued field (K, v, AU
{o0}).

2. Let T be a totally ordered set with smallest element 0, let '* = I'\{0}. Let R
be a nonempty set with a distinguished element 0. For each f: I'* —> R, let
supp(f) = {y € T'* | f(y) # 0} be the support of f. Let R[[I"]] be the
set of all f: I'* —> R with support which is empty or anti-well ordered. Let
d: R[[T]] x R[[T']] — T be defined by d(f, f) = O andif f # g,d(f, g) is
the largest element of the set {y € I'* | f(y) # g(y)}. Then (R[[T']],d,T) is
an ultrametric space which is solid and spherically complete.

3. Let I be a set with at least two elements, let (X;);c; be a family of sets X;,
each one having at least two elements. Let X = l—[ X;. Let P(I) be the set of

il
all subsets of 7, ordered by inclusion. And let d: l§( x X —> P(I) be defined
byd(f,g) ={i € I | fi # &}, where f = (fi)ies and g = (gi)ier. Then
(X,d,P(I)) is a solid and spherically complete ultrametric space. If each X; =
{0, 1}, we obtain the ultrametric space (P(I),d, P(I)) with d(A,B) = (AU
B)\(ANB)forall A,B C 1.

4. Let X be a topological space, let Y be a discrete topological space, let C(X, Y)
denote the set of continuous functions from X to Y and let CI/(X) the set
of clopen (i.e., closed and open) subsets of X. The mapping d: C(X,Y) x
C(X,Y) — CI(X) is defined by d(f,g) = {x € X | f(x) # g(x)}. Then
(C(X,Y),d,Cl(X)) is a solid ultrametric space, and it is spherically complete if
CI(X) is a complete sub-Boolean-algebra of P(X).

Definition 1.60 Let (X, d, I') be an ultrametric space and assume that I is totally
ordered. Let (Y, djy, I'y) be a subspace of (X, d, I") and assume that d(Y x ¥) =
d(X x X) = T.If for every x € X and for every y € Y, with x # y, there exists
y' € Y such that d(y/, x) < d(y, x), the extension ¥ < X is called immediate
and we write Yim < X. The extension ¥ < X is said to be dense (denoted by
Yde < X), if for every x € X and for every 0 < y € I there exists y in Y such that
d(y,x) < y.Thusif Yde < X then also Yim < X.
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Remark 1.38 If T'® does not have a smallest element, Definition 1.60 coincides
with that given by the topology of X. We remark that both notions, “immediate”
and “dense” can be defined more generally for ultrametric spaces, where I" is only
ordered [155].

The following is given in [161].
Theorem 1.42

1. Every ultrametric space (X,d,T), with T totally ordered, has an immediate
extension which is spherically complete. (We call such an extension a spherical
completion of X.)

2. Every ultrametric space (X,d,T"), with T totally ordered, has an extension
(X', d, T) such that X' is dense in X'. (We call such an extension a completion
of X.)

3. Let (Y, dy,I'y) be a subspace of Let (X, d, I'). Assume that I is totally ordered
and that FI.Y is coinitial in T'* and that furthermore d(Y xY) =Ty, d(X x X) =

I'. If X is complete, then there exists one and only one completion Y of Y which
is a subspace of X.

Proof The proofs of 1. and 2. are given in [155, 176].

3. Let S be the set of all ultrametric subspaces S such that Y is dense in S. Since
Y is dense in itself, S #. The set S is ordered by inclusion. Let {S; | i € I} bea
totally ordered subset of S. Then S = U S; is a subspace of X and Y is dense in

iel

S. Thus S € S is an upper bound for allT Si,i € I. By Zorn’s lemma, there exists
a maximal element in S which we denote again by S. We show that S is complete.
Since I'ly is coinitial in I'* and I'fy, = I'fg = d(S x $) \ {0} has in I'} the infimum
0 if and only if the infimum of A in I'* is 0, thus we may just write inf A = 0. We
assume that S is not complete. Then there exists a chain {B}‘ft, (a;j) | i € I} of balls
in S with

inf{y; |i eI} =0 and ﬂBfi(ai)zﬂ.

Since X is complete and for each i € I, B}‘ft_ (@) = SN B)‘f[_ (a;), where By, (a;)
denotes the ball with center a; and radius y; in X, there exists z € X such that
{z} = ﬂ By, (a;). Let 8" = S U {z}. Then §’ is a subspace of X which properly
contains S, so also Y. To prove that Y is dense in §’, it suffices to show that if
0 < y €T, there exists y € Y such that d(y,z) < y. Sinceinf{y; |i € [} =0
there exists y; with 0 < y; < y. Since Y is dense in S and @; € S, it follows that
there exists y € Y such that d(y, a;) < y;. Since, moreover, z € By, (a;), then
d(z,y) < max{d(z,a;),d(y,a;)} <y < y.Thus Y is densein S’. So &’ € S,
which contradicts the maximality of S in S. We have proved that S is complete,
hence a completion of Y in X. It remains to show that ¥ has at most one completion
in X. Assume that Y], Y2 are completions of Y in X. Let y| € Y1 Foreachy e I'*
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there exists y, € Y such that d(y1, y,) < y.If I'* has a smallest element, say y*
then

YI=yy*eYC17§.

If I'® does not have a smallest element, then inf{y | y € I'*} = 0, thus there exists
y2 € Y with

(5)= ) By(3)

yel'®

because Yz is complete. Hence y; = y; € Y2 Th1s shows that ¥, 1 C Y2 By the same
argumentation, we conclude that Yz - Y1, thus Y; | = Y2 | |

Definition 1.61 Let (X, d, I') be an ultrametric space and assume that I" is totally
ordered. Let A be a limit ordinal and let § = (x;); <, be a family of elements of X.
We say that & is a Cauchy family if for every y € I'® there exists igp = ip(y, &) < A
such thatifip <i < k < X, thend(x;, x¢) < y.The family § = (x;); <, is said to be
pseudo-convergent if there exists ig = ig(§) < A suchthatifip <i <k < pu <A,
then d (x;, x,) < d(x;, X,).

Remark 1.39 We note that if £ = (x;); <, is pseudo-convergent, the elements x;, for
iop(§) < i < X are all distincts and if ip(§) < i < k < u < A, then d(x;, x) =
d(x,, x,), this element is denoted by &;. Hence if ip <i < « < A, then §; > &.

Definition 1.62 Let (X, d, I') be an ultrametric space and assume that I" is totally
ordered. Let A be a limit ordinal and let £ = (x;); <) be a Cauchy family of elements
of X. The element y € X is a limit of the family & if for every y € I'* there exists
it =i1(y) < Asuchthatifi; <i < A, thend(y, x;) < y. The ultrametric space X
is complete if and only if every Cauchy family has a limit in X.

Remark 1.40 A Cauchy family £ = (x;); <) has at most one limit. Indeed, if y, z
are limits, then d(y,z) < y forally e I'*,soy = z.

Definition 1.63 Let (X, d, I') be an ultrametric space and assume that I" is totally
ordered. Let A be a limit ordinal and let £ = (x;); <, be a pseudo-convergent family
of elements of X. The element y € X is a pseudo-limit of the family & = (x;); <, if
there exists i} = i1(&, y),i0(§) < i1 < A,suchthatifi; <i < Athend(y, x;) < §&;.
If y is a pseudo-limit of £, then z € X is a pseudo-limit of £ if and only if d(y, z) <
& foralli suchthati;y <i < A.

The following is a characterization of spherical completeness [151].

Proposition 1.43 Let (X, d, I') be an ultrametric space and assume that T is totally
ordered. Then X is spherically complete if and only if every pseudo-convergent
family of X has a pseudo-limit in X.
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1.4 Admissible Functions

Throughout this subsection, we denote by (X, 7) a topological vector space, and by
Y a nonempty subset of X.

Below the definition of functions providing the possibility of working with
extended real seminorms in topological vector spaces.

Definition 1.64 An admissible function for Y on X is an extended real-valued
function p: X — [0, oo] such that

1. The mapping (x, y) — p(x, y) is continuouson ¥ x Y,

2. p(x+y) <pkx)+p(y foralx,yeX,
3. p(Ax) = |Al p(x),forall A € Rand x € X,
4. Ifx,yeYand p(x —y) =0, thenx = y.

Remark 1.41 Notice that if p is an admissible function for ¥ on X, then it defines
a metric on Y whose induced topology is coarser than t.

Remark 1.42 1t is instructive to compare the notion of continuity in the sense of 1.
with the usual one. It is easy to see that if p is continuous on X, then (x, y) +—
p(x,y) is continuous on Y x Y. Furthermore, if 1. — 3. hold then p is continuous
onY.

It is not true, in general, that if p is continuous on Y, then it satisfies 1. For
example, if X = Rand Y = [0, 00), then the mapping p: R — [0, oo] defined by

1
—, ifx >0,

) x
px) = o0, if x =0,
0, ifx <O,

is continuous on Y. However, the mapping 7: ¥ x ¥ — [0, oo] given by

T(x,y) = p(x — y) is not continuous at the point (1, 1). Indeed, it suffices to
1 1

see that (1 — —, 1) converges to (1, 1) in ¥ x Y, while that T (1 — = 1) = 0 and

T(1,1) =o0.

Barroso [12] proved that the class of admissible functions is sufficiently good to
imply that the Schauder-projection operator is continuous.

Proposition 1.44 Let p be an admissible function for Y on X. Then for any ¢ > 0
and p €Y, the function g: Y —> [0, 00) given by

g(x) = max{e — p(x — p), 0}

is continuous on 'Y .
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Proof Firstly, let us recall that the effective domain of p is the set
D(p)={x € X: p(x) < o0}.

Let xo be a point in ¥ and § > O be arbitrary. By assumption, there exists a
neighborhood U x V of (xg, p) in Y x Y such that

pxo—p)—38 <plx—2) <plxo—p)+34,

for all (x,z) € U x V.If xg — p ¢ D(p) then p(xo — p) = oo and, hence,
p(x — p) = oo forall x € U. In consequence, g(x) = g(xg) = Oforallx € U.
In case xg — p € D(p), we can conclude that x — p € D(p) for all x € U. In this
case, it is easy to see that g(xg) + 8 > g(x), for all x € U. On the other hand, if
g(x0) = 0, then clearly g(x) > g(xo) — § holds for every x € U. Assuming now
that g(xg) = ¢ — p(xg — p), we have g(xg) — 8§ <& — p(x — p) < g(x), for all
x € U.Inany case, we have proven that g is continuous at xo, and hence continuous
in Y. The proof is complete. |

The following is an example of an admissible function [12].

Proposition 1.45 Let Y be a compact convex subset of a topological vector space
(X, ) and F = {p, : n € N} a countable family of seminorms on X which separate
points of Y — Y and such that the topology I generated by F is coarser than t in
Y. Then the function p: X — [0, oo] defined as

P =D pal), xeX

n=1
is admissible.

Proof Since Y is compact and I' is coarser than t, each p, restricted to Y is 7-
continuous. Thus we have max{p,(x): x € Y < oo} for all n € N. By replacing the
seminorms p, by suitable positive multiples, if necessary, we may assume that

max{p,(x): x € ¥,} <271, (1.18)

for all n € N. Notice that p(x — y) < oo for all x, y € Y. Moreover, one readily
checks 2. —4.. Using now (1.18), we see that the sequence of functions p” (x —y) =

n
Z pi(x — y) is Cauchy w.r.t. the topology of uniform convergence on ¥ x Y.
i=1
Thus p" (x — y) converges uniformly on ¥ x ¥ to p(x — y). Furthermore, to verify
that 1— holds, we have only to ensure this for each p,. Let (x4, y4) be a net in
Y x Y converging to (x, y). Since t is finer than I" on Y, both p,(x, — x) and
on(yo — y) converge to 0. We may then apply the triangle inequality to conclude

lon(Xas Yo) — pn(x — ¥)| — 0. ]
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1.5 Some Fixed Point Theorems

Banach’s Contraction Mapping Principle is remarkable in its simplicity, yet it is
perhaps the most widely applied fixed point theorem in all of analysis. The principle
first appeared in explicit form in Banach’s thesis [11].

Theorem 1.43 (Banach’s Contraction Mapping Principle) Let (X, d) be a com-
plete metric space and let T: X —> X. If there exists an 0 < k < 1 such that
d(T(x), T(y)) <kd(x,y)forallx,y € X, then T has a unique fixed point.

Proof First we consider the case when:
diam(X) := sup{d(x, y): x,y € X} < o0.
Foreachn € N,let Y, = T"(X). Then
Yor1 =T"H(X) = T"T X)) S T"(X) = Y,

for all n € N. Therefore, {Y,,: n € N} is a decreasing sequence of nonempty subsets
of X. Next, notice that

0 < diam(Y;,4+1) < kdiam(Y,) foralln e N
and so, by induction,
0 < diam(Y;,41) < k"diam(Y,) foralln € N.

Therefore, lim diam(Y,) = lim diam(Y,) = 0. It then follows from Cantor’s
n—oo n—0oo

intersection property that

m Y, = {x} forsomex € X.
neN

Moreover, since x € Y,,,

T(x) € T(Y,) ST(Yy) = Yot1 S Yo,

T(x) € (] Yn = {x}. Thatis, T (x) = x.

neN
In the case when diam(X) = oo some extra work is required. In this case we

choose any xp € X and let

Z :={T"(x0): n € N}.
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Then T(Z) C Z and

d(T (x0), x0) -

di Z) <
iam(Z) < &

Hence from the previous argument there exists a point x € Z < X such that
T(x) = x. |

The Caristi fixed point theorem [35] is known as one of the very interesting
and useful generalizations of the Banach’s Contraction Mapping Principle for self-
mappings on a complete metric space. Neither continuity nor a Lipschitz condition
is required.

Theorem 1.44 (Caristi’s Fixed Point Theorem) Let (X, d) be a complete metric
space and let T : X —> X be a mapping such that

d(x, T(x)) = ¢(x) — (T (x))

forall x € X, where ¢: X —> [0, +00) is a lower semicontinuous mapping. Then
T has at least a fixed point.

The setting of generalized ultrametric spaces offers a highly flexible framework
in which to study the fixed point theory is necessary for logic programming
semantics [59, 85, 104, 113, 151, 153, 156, 157] and [177].

Definition 1.65 Let (X, d, I') be an ultrametric space. A mapping ¢: X — X is
said to be strictly contracting if for all x, x’ € X, with x # x/, d(p(x), p(x")) <
d(x,x"). An element z € X with ¢(z) = z is called a fixed point of ¢.

For strictly contracting maps on ultrametric spaces we have the following fixed
point theorem [151, 153, 160].

Theorem 1.45 Assume that (X, d, ') is a spherically complete ultrametric space
and that ¢: X —> X is strictly contracting. Then ¢ has exactly one fixed point
zeX.

Proof Assume, m, = d(x, ¢(x)) # O for every x € X. Let B, = By, . The set
B = {By | x € X} is ordered by inclusion. Let ¢ be a maximal chain in 5.
Since X is spherically complete, there exists an element z € ﬂ{ B, | B, € ¢}
Then B, € By for every By € €. Indeed, this is obvious, if z = x. If z # x
then d(¢(2), p(x)) < d(z,x) < 7y = d(x,9x)), 7, = d(¢(z),z) < m,. Hence
B, C By. Since € is a maximal chain in B, then B, is the smallest element of
C. But my;) = d(@(z), 9(9(2))) < d(z,¢9(z)) = m; and therefore By;) C By,
contradicting the maximality of €. Hence there exists an element x € X with ¢(x) =
x. If also ¢(y) = y for x # y, then d(x,y) = d(p(x), ¢(¥)) < d(x,y), which is
absurd. Thus there exists exactly one fixed point for ¢. ]

Remark 1.43 Analysing the proof of Theorem 1.45, we see that to prove the
existence of a fixed point for the mapping ¢: X — X, it suffices to assume
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the following property. For any x,y € X,d(p(x),¢(y)) < d(x,y) and for
x # @), d(px), p(p(x))) < d(x, p(x)).

In the special case when T is totally ordered, we obtain the following characteri-
zation of principal completeness [153].

Theorem 1.46 Let (X, d, ') be an ultrametric space and assume that T is totally
ordered. The following conditions are equivalent:

1. X is principally complete
2. Every strictly contracting mapping ¢ : X —> X has a fixed point.

Proof 1. = 2.: this was proved in Theorem 1.45.

2. = 1.: We assume that X is not principally complete, so there exists a
chain C of principal balls such that ﬂC = ¢. Hence C dos not have a smallest
ball and therefore the coinitial type A of C is a limit ordinal. Then there exists a
strictly decreasing family (B;); <, of balls B; € C such that ﬂ B; = ﬂC = 0.
We write B; = By, (a;) and we define ¢: X — X.If x fst there exists the
smallest k = k(x) < A such that x ¢ B, we define ¢(x) = a,. We show that ¢ is
strictly contracting. Let x, y € X, x # y. If k(x) = «(y) then 0 = d(p(x), p(¥)) <
d(x,y). If k(x) # k(y), say k(x) < k(y), from By(xy D By(y) and x ¢ By(x), y €
By we get d(x,y) > Vi) = d(@p(x), (¥)). So ¢ is strictly contracting. From
the definition of ¢, it is obvious that ¢ does not have a fixed point. |

Brouwer’s fixed point theorem, in mathematics, a theorem of algebraic topology
that was stated and proved by Brouwer [27, 28]. Inspired by the earlier work of the
French mathematician Poincaré, Brouwer investigated the behavior of continuous
functions mapping the closed ball of unit radius in n-dimensional Euclidean space
into itself.

Theorem 1.47 (Brouwer’s Fixed Point Theorem) Let X be an n-dimensional

Euclidean space. Then, any continuous map of {x e X: x| < 1} into itself has a
fixed point.
As a consequence, we get

Theorem 1.48 Any continuous map T of a compact convex K set in n-dimensional
Euclidean space X into itself has a fixed point.

Proof Assume first that K C By = {x e X: x| < 1}. Define G: By — K by

taking G (x) to be the unique point y € K such that || x —y|| < ||[x —z|| forall z € K.
Such a vector y exists and unique. Note that G(x) = x = y if x € K. Consider
T o G: Bx — K as a map from By into itself. The map H: By — By defined
by H(x) = T(G(x)) is continuous because G is continuous. Let x, — x. We have
lxp — G(xp)|| < |lx, — z|| for all z € K. Hence, if y is any limit point of {G(x,)}
then ||x — y|| < |lx — z|| for all z € K. This proves that G(x) is the only limit of
{G(x;,)} which lies in the compact set K. Hence G(x,) — G(x). By Theorem 1.47
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there exists x € By such that T(G(x)) = x. Since the range of T is contained
in K we get x € K. But then G(x) = x so T(x) = x. This proves the theorem

when K C By. For the general case choose R such that K C {x e X: x| < R}.

Let K| = {R_lx: x € K}. Then K is a compact convex set and the function
T1: K1 — K defined by T1(x) = R_IT(Rx) is continuous. By the first case there
exists x; € K such that R_IT(Rxl) =x1.If x = Rxy then T (x) = x. | |

Remark 1.44 (Kakutani’s Example) Theorem 1.47 does not hold in an infinite
dimensional Hilbert space:

if T(x) = (/1 —|x||?, x1, x2, - - -) then T maps {x el: x| < l} into itself

and is continuous. It has no fixed point.

Definition 1.66 Amap 7: Y — X where X is anormed space and ¥ C X is called
compact if T'(Z) is relatively compact whenever Z C Y is bounded.

Brouwer’s Theorem was extended to infinite dimensional spaces by Schauder in
the following way [174].

Theorem 1.49 (Schauder’s Fixed Point Theorem) Let Y be a closed bounded
convex set in a normed space (X, ||.|) and T a continuous map of Y into itself. If T
is compact then it has a fixed point.

Proof Let Z C X be compact. Let ¢ > 0 and B¢ (x1), Be(x2), -+, Be(xy) cover
Z where {x1,x2, - ,xy} C Z. Let mj(x) = max(e — ||x — x;||,0) and ¢(x) =
SN mi(x)x; N
% for x € Z. Itis obvious that each m; is continuous and Z mj(x) >
Zj:l mj(x) i

0 for all x € Z. Hence ¢ is continuous. If x € Z then m; (x) # 0 implies ||x —x;|| <

N N
D mi(x)(x; —x)| <& Y m;(x) which proves that [lp(x) — x|| <
i=1 i=1
(m;(x) # 0 for at least one 7). Further ¢(Z) C conv(Z).
Let W = T(Y). Then W is a compact subset of Y. For each n let ¢,: W —

¢ and hence

1
conv(W) C Y be a continuous map such that ||g,(x) — x|| < — forallx € W

for all n. This is possible by the reasoning above. Let 7, = ¢, ’c1> T so that T, is
a continuous map : W — Y. So there is a finite set {x{, x}, - - ,x;zvn} C W such
that ¢, (W) € W, := span({x{,xj, - ,x}ﬁ,n D.LetY, =Y NW,. ThenVY, is a
compact convex set in the finite dimensional space W,. We claim that 7}, maps Y,
into itself. First note that 7(Y,,) € T(Y) € W so T, = ¢, o T is defined on ¥,,.
Also ¢, takes values in conv({x], x5, --- ,x]’{;n }) € W, as well as in Y so it takes
values in Y. By Theorem 1.48 there exists y, € Y, such that T,,(y,) = y,. Since

1
yp € Y and T(y,) € W we have ||¢,(T(yn)) — T(yn)|| < — for all n. In other
n

1
words ||y, — T (yp)|| < — for all n. Since (T (y,)), S W and W is compact there is
n
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a subsequence (7 (y, j))n ; converging to some y. Now

1
3, = Y0 < T Gin)) = Y04 3, = TG < 1T 0Gin) =yl 4 = = 0.
J

This implies T (y) = y. |

1

Lemma 1.12 Let Yo = {x = (xp)n>1 € l2: |xu| < — foralln > l}. Then any
n

continuous map T : Yo — Yo has a fixed point.

Proof We first prove that the parallelepiped Yo is compact in /. We have Yy =

1
m ZnZy = {x = (Xp)m>1 € Lt x| < —}. Since the canonical projection
n>1 n
pn: lo = Kis continuous, it follows that Z,, = p”_1 (B1(0)) is closed for all n > 1,

o
1
and therefore Yy is a closed set. Since the series Z — converges, it follows that
n

n=1
1 1
for any ¢ > O there exists n, > 1 such that Z = < e&. Since |p,(x)] < - for
k=ng
o
all x € Yp and n > 1, it follows that Z |pk(x)|2 < g forall x € Yy, ie., Yy is
k=ng

relatively compact in /. Hence Yy is compact.

Let Y, = {(x1,x2,---,%,,0,0,---): x € Y} and define 7,,: ¥, — Y, by
T.x) = O1,y2,++ »¥n,0,0,---) where y = T (x1, x2, -+, Xx,,0,0,---). Y, can
be identified with compact convex set in K" and T}, is continuous, hence it has a fixed
point ™ Since (xn)n>1 € Yo and Yp is compact in (/2, ||.||2) there is a subsequence

(xn;)j converging to some x € Y. Let y" = T, x,-- x™,0,0,---)
so that x® = Tn(x(”)) = (yl("),yén),--- ,yfl’“,o, 0,---). It is clear that
lim (x{"),xén),n- ,x,(,"),O, 0,---) = x so lim y" = T(x). Hence x =
n— oo n—od

lim ) = Tim "7 8 0,0, = Tim Y™ =T(r). M
j—oo j—o0 j—oo

Lemma 1.13 If Z is a closed convex of Yy then every continuous map of Z into
itself has a fixed point.

Proof For each x € Yy there is a unique point P(x) € Z closet to x and the map
P: Yy — Ziscontinuous. If T: Z — Z is continuous then G: Yy — Yy defined
by G = T o P is continuous. Hence by Lemma 1.12 there exists x € Yy such that
T (P(x)) = x. Since the range of T is contained in Z we see that x = T (P (x)) € Z.
But then P(x) = x sox = T (x). |
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Proposition 1.46 Ler Y be a compact convex set in a locally convex topological
vector space (X, T). If Y has at least two points and T : Y — Y is continuous then
there is a proper subset Y1 of Y such that T (Y1) C Y| and Y| is also compact and
convex.

Proof We reduce the proof to the case when the topology t of X is replaced by the
weak topology. We introduce an ordering for subsets of X’ as follows: Z < W
if for any ¢ € Z and ¢ > 0 there exists a finite subset ¢, @2, - -+, ¢r of W and
6 > O0suchthat x,y € Y and |p;(x) — ¢;(¥)| < 6,1 <i < k imply | (T (x)) —
Y (T(y))| < e. We observe that if Z < W and ¢(x) = ¢(y) for all ¢ € Z then
Y (T (x)) = ¥ (T (y)). We claim that for any iy € Z there exists a countable family
W = {¢1, @2, - - - } such that {1/} < W. For this let ¢ > 0. First note that T is weak-
weak continuous and Y is compact convex in weak topology. By uniform continuity
of ¥ o T on Y with its weak topology, |V (T (x)) — ¥ (T (y))| < ¢ if x — y belongs to
a suitable weak neighbourhood of 6. Hence there exists ¢1, ¢2, -+ , ¢ and § > 0
such that |¢; (x) — @i (¥)| < 8,1 <i < kimplies | (T (x)) — ¥ (T (¥))| < &. Now

vary € over {—,n > 1} to get a countable set W C X'. For any ¢ > 0 choose
n

1
n such that — < e. There exists ¢1, ¢z, -+, ¢, and 6 > O such that |g;(x) —
n

1
0i()] < 8,1 <i < kimplies [Y(T(x)) — ¥(T(y))| < — < &. It follows that if

lp(x) —p(y)| < §forall p € W then | (T (x)) — w(T(y)ﬁ < e.Hence {¢} < W.
If we now repeat the argument for each element of W to get another countable set
W1, then repeat the argument for each element of W; and so on we end up with
countable family Wy such that with v it self, we get a countable subset P of X’
which contains ¢ with P < P.

If Y; is weakly compact, convex and contained in Y then it is a weakly closed
convex set, hence strongly closed. Hence it is a closed convex subset of Y in the
strong (i.e., original) topology, hence strongly compact also. Thus, we may and do
assume that the topology t of X is the weak topology. Now suppose x,y € Y, x #
y. Choose ¥ such that ¥ (x) # ¥ (y). Let P = {1 = ¢, ¥, - - -} be a countable
subset of X’ containing v such that P < P. Now v,,(Y) is compact for each n > 1.
Because if Q = {a1v¥, a2y, - - - } with each o, > 0 then Q < Q, we may suppose

1
[V ()] < - foralln > 1,forallz € Y. Define G: Y — I, by G(z) = (¥n(2))n>1-

G is continuous and its range S is contained in Yy = {x = (Xpn>1 € It |x,| <

1
— forall n > 1;. S has at least two points because ¥ (x) # ¥ (y). Let Tp: S — S
n

bethemap GoT o G~!. In other words, if s € S we pick z € Y such thats = G(2)
and define Ty(s) = G(T (z2)). To see that this is well defined note that s = G(z1) =
G(z2) implies ¥, (z1) = Yn(z2) for all n which implies ¥, (T (z1)) = ¥n(T (z2))
for all n (because P < P)so G(T(z1)) = G(T (z2)) so Ty is well defined. The fact
that P < P also implies that if ¥, (zn) —> ¥, (z) as m —> oo for each n then
Y (T(zm)) —> Y (T (2)) for each n. This means Tj is continuous. Lemma 1.13
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shows that Ty has a fixed point s1 € S. Let Y] = G_l({s1}). Letz € Y150G(z) =
s1. Then s1 = To(s1) = G(T (2)). Hence T (z) € Y;. Thus T (Y1) C Y;. Clearly Y3
is convex. It is a closed subset of S and hence it is compact. ]

Tychonoff extended Brouwer’s result to a compact convex subset of a locally
convex topological vector space [190].

Theorem 1.50 (Schauder-Tychonoff’s Fixed Point Theorem) Any continuous
map T from a compact convex subset Y of a locally convex topological vector space
(X, T) into Y has a fixed point.

Proof By Proposition 1.46 there is a minimal nonempty compact convex set Yy
such that 7'(Yp) < Yp and Y must be a singleton. |

The following result [98], called Markov-Kakutani fixed point theorem, is
powerful in that it determines a single fixed point for a whole family of mappings,
while theorems such as the Schauder-Tychonoff fixed point theorem determine
conditions on the space such that the restriction on the mapping is minimal, namely
that we only require the mapping 7 to be continuous.

Theorem 1.51 (Markov-Kakutani’s Fixed Point Theorem) Let Y be a compact

convex subset of a locally convex topological vector space (X, t). Let Ty: Y —

Y(a € I) be a family of continuous mappings that are affine (which means they
n n

satisfy the condition T, (Z Aixi) = Z AiTy (x;) whenever n € N, A; > 0 forall i

i=1 i=1
n

and Z)»,- =1).IfTyoTg =Tg o Ty forall a, B € I then there exists x € Y such

i=1
that Ty (x) = x foralla € 1.

Proof For each o € I, let Z, = {x € Y: Ty(x) = x}. From the Schauder-
Tychonoff fixed point theorem we know that Z, # ¢. Since 7, is a continuous
affine map, it follows that Z, is compact and convex. So to restate the conclusion

of the theorem we must show that m Zy # . Since Y is compact, we have, by

ael
Proposition 1.4 that we need only show that ﬂ Zy # ¥ for each nonempty finite
ael
subset J of I. To this end, let J = {oy, a2, - - - , , } be a nonempty finite subset of

1. We shall proceed by induction.
Let x be any element of Z,, then

Tozl (Totz (x)) = Tag(Tal (x)) = Taz(x).
That is, Ty, (x) is a fixed point of T, and so Ty, (x) € Zg,. Thus, Ty, (Zy,) € Zg,.
Hence, from the Schauder-Tychonoff fixed point theorem, Ty, has a fixed point in

Zy, . Therefore, Zy, N Zy, # ¥. Now, suppose that

ZyyNZyy #0N---NZy, where, 1 <j<n.
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Let Z = Zy NZqyy # DN ---NZy,. Then Z is nonempty, compact and convex. Let
x be any element of Z and let | <i < j then

Toz,- (T(lj+1 x)) = Toc/url (Toti x)) = TajH (x).

That is, TOZJ.Jrl (x) is a fixed point of T, and so To,j+1 (x) € Zy,.Since 1 <i < j was
arbitrary,

Tujpy (X) € Zoy N Zgy BN -+ NZy, = Z.

Hence, from the Schauder-Tychonoff fixed point theorem, Ty, has a fixed point in
Z. Therefore,

Zay N Zay 90N Zg; N Za,,, 7 0.

By induction, we see that ﬂ Zy # V. This completes the proof. ]

ael

We shall need some facts about the Kuratowski measure of noncompactnessu
introduced by Kuratowski [122]. This measure of noncompactness is used by Darbo
[40], Furi and Vignoli [61], Nussbaum [136], Petryshyn [150], and others.

The concept of Kuratowski’s measure of noncompactness is defined below.

Definition 1.67 Let (X, d) a metric space. If Y is a bounded subset of X (i.e.,
diam(Y) = sup{d(x,y): x,y € Y} < 00), the Kuratowski measure of noncom-
pactness of Y is defined by

n
w(Y) = inf[a >0: Y = | for some ¥; with diam(¥;) < 6,1 <i <n < oo}.
i=1

We give the following properties of . For the proofs see [136].

Proposition 1.47 Let (X, d) be a metric space. If Y is a bounded subset of X, then
n¥) = pn¥).
Proposition 1.48 Ler (X, d) be a complete metric space. Then
1. for every bounded subset Y of X, u(Y) = 0 if and only if Y is compact.
2. If (Yn)n>1 is a decreasing sequence of closed, bounded nonempty subsets of X
andif lim w(Y,) =0, thenY = ﬂ Y, is compact and nonempty.
n—-aoo a1

If (X, ||.|]) is a normed space, the norm ||.|| gives a metric on X and one can take
the Kuratowski measure of noncompactness p on X with respect to this metric.
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Proposition 1.49 Ler (X, ||.||) be a normed space, Y, Z two bounded subsets of X,
x0 € X and ) € K. Then

L YY) = [Alu().

2. u(conv(Y)) = u(Y).
3.ou¥ +2) <)+ p(2).
4. u(¥ U{xo}) = u(Y).

Closely associated with the measure of noncompactness is the concept of k-set
contraction.

Definition 1.68 If Y| is a subset of a metric space (X1, d1), and (X2, d>) is a second
metric space and T: Y1 — X5 is a continuous map, we shall say that T is a k-set-
contraction if w2 (7T (Z)) < u1(Z), for all bounded sets Z C Y|, where u; denotes
the Kuratowski measure of noncompactness on (X;, d;).

Theorem 1.52 (Darbo’s Fixed Point Theorem) Let Y be a closed bounded convex
set in a Banach space (X, ||.||) andlet T: Y — Y be a k-set-contraction with k < 1.
Then T has a fixed point in Y [40].

There is a more useful generalization of Darbo’s fixed point theorem.

Theorem 1.53 Let Y be a closed bounded convex set in a Banach space (X, ||.|)

and T: Y — Y a continuous map. Define Y1 = conv(T(Y)) and Y, =

conv(T (Yy,—1)) for n > 1 and assume that if lim w(Y,) = 0 where u denotes
n—-aoo

the Kuratowski measure of noncompactness on X. Then T has a fixed point in Y.

If T in Theorem 1.53 is a k-set contraction with £ < 1, thenif lim w(Y,) =0,
n—s0o0

but the conditions of Theorem 1.53 may be satisfied in cases of interest for which T
is not a k-set contraction with k < 1.

The following result is an extension of Darbo’s fixed point theorem [61, 136,
172].

Theorem 1.54 (Sadovskii’s Fixed Point Theorem) Ler Y be a closed bounded
convex set in a Banach space (X, |.||) and let T: Y — Y be a continuous -
condensing map (i.e., w(T(Z)) < wu(Z), for all bounded sets Z < Y for which
w(Z) > 0). Then T has a fixed point in Y.

1.6 Nonexpansive Mappings

Definition 1.69 A mapping T is nonexpansive if |T(x) — T(y)|| < |lx — y|| for
all x, y in its domain.

Definition 1.70 Let X be a Banach space and Y be a nonempty bounded closed
convex subset of X. We say that Y has the fixed point property for nonexpansive
mapping if for every nonexpansive mapping 7: ¥ — Y, Y contains a fixed
point x* (i.e., T(x™) = x¥), X has the fixed point property (FPP for short) if
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any nonempty bounded closed convex subset of X has the fixed point property for
nonexpansive mapping, X has the weak fixed point property (WFPP for short) if any
weakly compact convex subset of X has the fixed point property for nonexpansive

mapping.
Remark 1.45 For a reflexive Banach space, FPP and WFPP are obviously the
same.

Definition 1.71 Let Y be a nonempty set. A nonempty subset Yy of Y is called
invariant under 7 or T -invariant for a mapping T: Y — Y if T(Yp) C Yo. Let Y
be a class of subsets of Y. We say that an element Yy € ) is YV-minimal for T if
there exists no proper T -invariant subset of Yy in the class ).

We are interested mainly in the case that Y is a subset of a Banach space X and
Y is the class of weakly compact subsets of X or the class of closed convex subsets
of X.

Remark 1.46 1If Y is a closed convex subset of a Banach space X and 7: Y — Y,
then a decreasing sequence of nonempty, closed, convex, T-invariant sets may be
obtained by setting

Yo=Y and Y, =conv(T(Yy)) Vn > 1.

We set

The set Y is closed, convex and T-invariant. But it may be empty. Of course this
situation cannot occur if Y is weakly compact.

Proposition 1.50 If X is a Banach space, Y C X is a nonempty, weakly compact,
convex setand T : Y —> Y, then there exists a nonempty, closed, convex setY C Y
which is minimal invariant for T.

Proof Let I be the family of all nonempty, closed, convex subsets of ¥ which are
T-invariant. We order I" by reverse inclusion, namely if Y1, Y» € I, then

YI<Vh<Y,CY.

By the finite intersection property for the weak topology, every chain in I has an
upper bound (namely the intersection of the elements in the chain). So by the Zorn
lemma, I" has a maximal element Y € I'. Evidently Y is T -invariant. | |

Remark 1.47 Note that if ¥ C Y is a nonempty, closed, convex and minimal 7'-
invariant set, then

Y = conv(T(Y)).
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IfY e Tin Proposition 1.50 is a singleton, i.e., Y = {y}, then

Ty =y,

i.e., it is a fixed point of T'.

The famous question whether a Banach space has the fixed point property had
remained open for a long time. It has been answered in the negative by Sadovski
[172] and Alspach [4] who constructed the following examples, respectively.

Examples 1.10
1. Let X =cpand Y = {x € cq, ||x]lcc < 1}. Define T: Y — Y by

T(x)=(1,x1,x,x3,...), forall x = (x1,x,x3,...) €Y.

2. Let X = L'(0, 1) and

! 1
Y:{xeX,Ofx(t)fland/ x(t)dtzz}.
0
DefineT: Y — Y by

min{l, 2x(2t)}, if0 <t < —,

T(x)() =
max{0, 2x(2t — 1) — 1}, if = <1 < .

N = N =

Then Y is bounded, closed, and convex, and T is an isometry |7 (x) — T (y)|l1 =
lx — y|l1, forall x, y € Y and is fixed point free.

Namely, co and L'(0, 1) do not have the fixed point property. The above two
examples suggest that to obtain positive results for the existence of fixed points for
nonexpansive mappings, it is necessary to impose some restrictions either on 7' or
on the Banach space X.

The following well-known result is due to Kirk [107].

Theorem 1.55 Let X be a reflexive Banach space and Y a closed bounded convex
subset of X. Let Y have normal structure. If T : Y — Y is nonexpansive, then T has
a fixed point.

Remark 1.48 Theorem 1.55 remains true if X is any Banach space and Y is a convex
weakly compact subset having normal structure.

An immediate consequence of Theorem 1.55 is the following well-known result,
which was proved independently by Browder [29], Gohde [69] and Kirk [107].
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Theorem 1.56 Let X be a uniformly convex Banach space and Y a nonempty
closed bounded convex subset of X. If T: Y — Y is nonexpansive, then T has

a fixed point.
Remark 1.49 For nonexpansive maps, no characterization of FPP or WFPP seems
to be known [21].
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