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Preface

A point x is a fixed point of a mapping T if T(x) = x. Fixed point theorems
assert that (under various conditions) a fixed point exists. For instance, we will be
concerned with a (continuous) mapping 7 of a subset Y of a metric space X (with a
metric d) and with points which are almost fixed, in the sense that

d(T(x),x) < e.

We call such a point “e-fixed.” Where convexity is mentioned, we assume that
Y is a subset of a topological vector space. There are other concepts of “almost
fixed.” In general, almost fixed points have usually appeared in a secondary role,
in discussions of fixed points. This amounts almost to a reversal of reality. In
most proofs of fixed point theorems, the constructive part of the argument yields
almost fixed points, and a non-constructive compactness argument then gives the
existence of a fixed point. Thus, almost fixed points unlike fixed points can be found
numerically. For most applications involving computation, it is important to know
just what can be calculated (applications to economics). There are also cases where
the existence of a fixed point is non-trivial or uncertain, whereas almost fixed are
easily found, so perhaps this means that almost fixed are the natural objects to use.

At the same time, an active branch of current research is devoted to the existence
of approximate fixed points for single-valued maps. Basically, given a bounded,
closed convex set Y of a topological vector space X and amap 7: Y — Y, one
wants to find a sequence (x,), € Y such that

xp — T (x,) — 6.

A sequence with this property will be called an approximate fixed point sequence.
The main motivation for this topic is purely mathematical and comes from
several instances of the failure of the fixed point property in convex sets that
are no longer assumed to be compact. This gives rise to the natural question
of whether a given space without the fixed point property might still have the
approximate fixed point property. Approximate fixed point results have a lot of
applications in many interesting problems. They arise naturally in the study of some
problems in economics and game theory, and one can apply them to asymptotic fixed
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viii Preface

point theory and to study the existence of limiting-weak solutions for differential
equations in reflexive Banach spaces.

The book has five main chapters.

In Chap. I, we present basic notions in topologic space theory and introduce
the classical topological vector spaces, locally convex spaces, and ultrametric
spaces. Special attention is devoted to weak topology and weak™ topology and
their properties related to compactness, to /{-sequences, in particular, Rosenthal’s
theorem, and the Fréchet-Urysohn property. This includes the most recent work in
great detail. Also, we give a brief survey on classical fixed point theorems.

Chapter 2 introduces the reader to the almost fixed point theory in metric spaces
(normed spaces). Results on the existence of e-fixed points and approximate fixed
point sequences for different classes of mapping are presented, in particular where
there are no fixed points. Special effort is devoted to approximate fixed points of
nonexpansive mappings in unbounded sets.

In Chap. 3, we indicate how the fixed point of a strictly contracting self-mapping
of a spherically ultrametric space can either be reached or approximated. One of the
merits is that we deal with ultrametric spaces having sets of distances that are not
necessarily totally ordered, but the results then apply to general kinds of algorithms.

Chapter 4 deals with synthetic approaches to problems of fixed points. We are
concerned with the theory of regular-global-inf functions which satisfy conditions
weaker than continuity and with an original synthetic approach based on conver-
gence with continuity (by sequence). Some results and applications to fixed point
theorems for different classes of mappings and in different classes of topological
spaces are discussed.

Chapter 5 is devoted to almost fixed and approximate fixed point theories in
topological vector spaces. First, we introduce the notion of the (convexly) almost
fixed point property, and by using the KKM principle for the closed and open valued
cases, we present existence results for almost fixed points of different classes of
lower semicontinuous and upper semicontinuous multifunctions on convex subsets
of topological vector spaces and having totally bounded ranges. These results
are applied to obtain the most well-known fixed point theorems in analytical
fixed point theory. Second, we discuss the approximate fixed point property for
a (closed) convex (bounded) subset of topological vector spaces. We present
some recent existence results of approximate fixed point nets (approximate fixed
point sequences) (weak approximate fixed point sequences) for different classes of
mappings (continuous, Lipschitz, sequentially continuous, affine, demicontinuous,
strongly continuous, the range is totally bounded) of a (closed) convex (bounded)
subset of topological vector spaces. These results are related to the nature of the
convex set and to the properties of the ambient space. Applications to asymptotic
fixed point theory and the existence of limiting-weak solutions for differential
equations in reflexive Banach spaces are given.

Sfax, Tunisia Afif Ben Amar

Galway, Ireland Donal O’Regan
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Chapter 1 ®
Basic Concepts Qs

This chapter collects well known concepts and results that will play a major role
in constructing approximate fixed point theory in the remaining chapters. We note
that we will reference the appropriate source papers after Sect. 1.2.8 (before this
subsection well known results are presented so that the book is self contained). A
brief introduction on fixed point theory is given at the end of this chapter.

1.1 Topological Spaces

1.1.1 The Notion of Topological Spaces

The topology on a set X is usually defined by specifying its open subsets of X.

Definition 1.1 A topology 7 on a set X is a family of subsets of X which satisfies
the following conditions:

1. The empty set ¢ and the whole X are both in 7.
2. t is closed under finite intersections.
3. t is closed under arbitrary unions.

The pair (X, ) is called a topological space.

The sets Y € t are called open sets of X and their complements Z = X \ Y are
closed of X. A subset of X may be neither closed nor open, or both. A set that is
both closed and open is called a clopen set.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 1
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2 1 Basic Concepts

Examples 1.1

(i) Let X any set. Then T = {#J, X} is a topology on X, called the trivial topology
on X.

(ii) At the other extreme of the topological spectrum, if X is any nonempty set,
then T = P(X) the power set of X, is a topology on X, called the discrete
topology on X.

(iii) Let X = {a, b}, and set t = {0, {a}, {b}, {a, b}}. Then 7 is a topology on X.

(iv) Let (X, d) be a metric space. Let

T = {Y C X: forall x € Y, there exists § > O such that Bs(x)
—(yeX:dx, y) <8 gY}.

Then t is a topology, called the metric topology on X induced by d. This is the
usual topology one thinks of when dealing with metric spaces, but as we shall
see, there can be many more.

(v) Let X be any nonempty set. Then

T ={}U{Y € X: X \Y is finite }

is a topology on X, called the co-finite topology on X.

Definition 1.2 Let (X, t) be a topological spaceand Y € X. ThenY Nt = {¥Y N
U: U e t}is called the induced topology on Y.

Definition 1.3 Let (X, 7) be a topological space and ¥ C X. We define

(i) The interior of a subset ¥ C X is the largest open set contained in it. It will
be denoted by int Y. Equivalently, intY is the union of all open subsets of X
contained in Y.

(i) A point x € X is a limit point (or accumulation point) of Y if and only if for
every open set U containing x, it is true that U NY contains some point distinct
from x,i.e., Y N (U \ {x}) # @. Note that x need not belong to Y.

(iii)) The point x € Y is an isolated point of Y if there is some open set U such that
UNY = {x}. (In other words, there is some open set containing x but no other
points of Y.)

(iv) The closure of a subset Y, written Y, is the union of ¥ and its set of limit points,

Y =Y U{x € X: x isalimit point of Y}.

Remark 1.1 Tt follows from the definition that x € Y if and only if ¥ N U # @ for
any open set U containing x. Indeed, suppose that x € Y and that U is some open
set containing x. Then either x € Y or x is a limit point of ¥ (or both), in which
case Y NU # @. On the other hand, suppose that ¥ N U # @ for any open set
U containing x. Then if x is not an element of Y it is certainly a limit point. Thus
xeY.



1.1 Topological Spaces 3

Proposition 1.1 Let (X, t) be a topological space and Y C X. The closure of Y is
the smallest closed set containing Y, that is,

Y = ﬂ{Z: Z isclosed and Y C Z}.

Corollary 1.1 A subset Y of a topological space is closed if and only if Y = Y.
Moreover, for any subset Y, Y =Y.

Proof 1f Y is closed, then Y is surely the smallest closed set containing Y. Thus
Y =Y. On the other hand, if ¥ = Y then Y is closed because Y is. Now let ¥ be

arbitrary. Then Y is closed and so equal to its closure, as above. Thatis, Y =Y. W
Definition 1.4 Let (X, 7) be a topological space.

1. A subfamily B of 7 is called a base if every open set can be written as a union of
sets in B.

2. A subfamily X is called a subbase if the finite intersections of its sets form a
base, i.e. every open set can be written as a union of finite intersections of sets
in X.

Examples 1.2

1. The collection B = {(a,b): a,b € R,a < b} is a base for the usual topology
on R.

2. Let S be the collection of all semi-infinite intervals of the real line of the forms
(—00, a), and (b, +00), where a € R. S is not a base for any topology on R.
To show this, suppose it were. Then, for example, (—oo, 1) and (0, +00) would
be in the topology generated by S, being unions of a single base element, and so
their intersection (0, 1) would be by the axiom 2) of topology. But (0, 1) clearly
cannot be written as a union of elements in S.

3. The collection S is a subbase for the usual topology on R.

Proposition 1.2 Let X be a set and let B be a collection of subsets of X. S is a base
for a topology t on X iff the following hold:

1. Bcovers X, i.e,Vx € X,3B € B such that x € B.
2. If x € By N By for some By, By € B, then B3 € B such that x € B3 € B| N B,.

Definition 1.5 Let (X, 7) be a topological space and € X. A subset U of X is
called a neighborhood of x if it contains an open set containing the point x. The
neighborhood system at x is Ny = {U C X: U is a neighborhood of x}.

Theorem 1.1 Let (X, t) be a topological space, and x € X. Then:

(a) IfU € Ny, thenx € U.

b) IfU,V € Ny, then U NV € N,.

(¢) IfU € Ny, there exists V € N such that U € N foreach 'y € V.

(d) IfU e Nyand U C V, then V C N.

(e) G C X isopen if and only if G contains a neighborhood of each of its points.
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Remark 1.2 Conversely, if in a set X a nonempty collection A of subsets of X is
assigned to each x € X so as to satisfy conditions (a) through (d) and if we use
(e) to define the notion of an open set, the result is a topology on X in which the
neighborhood system at x is precisely N.

Definition 1.6 Let (X, t) be a topological space. A (local) neighborhood base 5,
at a point x € X (or a fundamental system of neighborhoods of x) is a collection
B, € N, sothat U € N, implies that there exists B € B, so that B C U. We refer
to the elements of B, as basic neighborhoods of the point x.

Example 1.1 Consider (X, d) be a metric space equipped with the metric topology
7. For each x € X, fix a sequence (r,(x)),>1 of positive real numbers such that
lim r,(x) = 0 and consider By = {By, (x)(x): n > 1}. Then By is a neighborhood
n— o0

base at x foreach x € X.

Remark 1.3 Let (X, ) be a topological space, and for each x € X, suppose that 5,
is a neighborhood base at x. Then B = U By is a base for the topology t on X.
xeX

Definition 1.7 If (X, t) is a topological space and x € X and B is a set of open
sets, we say that B is a local base at x if each element of B includes x and for every
open set U that includes x there is some V € Bsuchthat V C U.

Remark 1.4 1f for each x € X the set B, is a local base at x, then U B, is a base

xeX

for the topology of X.
Definition 1.8 Let (X, ) be a topological space.

1. (X, 1) is said to be T; if for every x,y € X such that x # vy, there are
neighborhoods Uy of x and U, of y with y ¢ U, and x ¢ Uj.

2. (X, 7) is said to be T, (or Hausdorff) if for every x, y € X such that x # y, there
are neighborhoods Uy of x and Uy, of y with U, N U, = §.

We say that two subsets Y and Z can be separated by t if there exist U, V € t

withY CU,ZCVandUNV =0.

3. (X, 1) is said to be regular if whenever Y C X is closed and x ¢ Y, Y and {x}
can be separated.

4. (X, 7) is said to be normal if whenever Y1, Yo € X are closed and disjoint, then
Y1 and Y, can be separated.

5. (X, 1) is said to be T3 if it is 77 and regular.

6. (X, 1) is said to be T4 if it is 7 and normal.

Definition 1.9 Let (X, 7) be a topological space. An open cover of ¥ C X is a
collection G C 7 such that Y C Ugeg

A subset Y of a topological space (X, 7) is said to be compact if every open cover
of X admits a finite subcover.
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Proposition 1.3 Suppose (X, 1) is a topological Hausdorf{f space.

1. Any compact set Y C X is closed.
2. IfY is a compact set, then a subset Z C Y is compact, if and only if Z is closed
(in X).

Proposition 1.4 For a subset Y of a topological space (X, 1), the following
statements are equivalent.

1. Y is compact.
2. If (Zy)aer is any family of closed sets such that Y N m Zy = 0, then Y N

ael
ﬂ Zy = W for some finite subset J C 1.
aclt
3. If (Zy)aer is any family of closed sets such that Y N ﬂ Zy # 1, for every finite
ael

subset J C I, then' Y N ﬂ Zy # 0.
ael
Proof The statements 2. and 3. are contrapositives. We shall show that 1. and 2.
are equivalent. The proof rests on the observation that if (Uy), is a collection of
sets, then ¥ C U U, if and only if ¥ N m(X \ Uy) = . We first show that 1.

o o
implies 2. Suppose that Y is compact and let (Z,),<; be a family of closed sets such
that Y N ﬂ Zy = 0. PutU, = X \ Zy. Then each U, is open, and by the above

ael
observation, ¥ C U U,. But then there is a finite set J such that Y C U Uy, and
ael ael
soY N m Zy = 1, which proves 2.
ael

Now suppose that 2. holds, and let (Uy)q be an open cover of Y. Then each
X\ Uy is closed and Y N ﬂ(X \ Uy) = 0. By 2., there is a finite set J such that

ael
Yn ﬂ (X \ Uy) = . This is equivalent to the statement that ¥ C U U,. Hence
aeclt ael
Y is compact. |

Remark 1.5 A topological space (X, t) is compact if and only if any family of
closed sets (Zy)qer in X having the finite intersection property (i.e., ﬂ Zoy £ 0
ael
for each finite subset J in /) is such ﬂ Zy # 0.
ael
Proposition 1.5 A nonempty subset Y of a topological space (X, t) is compact if

and only Y is compact with respect to the induced topology, that is, if and only if
(Y, ty) is compact. If (X, t) is Hausdorff then so (Y, ty).
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Proof Suppose first that Y is compact in (X, t), and let (G4)qe7 an open cover
of Y in (Y, ty). Then each G, has the form G, = Y N U, for some U, € 7. It
follows that (Uy)qer is an open cover of Y in (X, ). By hypothesis, there is a finite
subcover, Uy, --- , Uy, say. But then Gy, --- , G, is an open cover of Y in (Y, 1y),
that is, (Y, ty) is compact.

Conversely, suppose that (Y, ty) is compact. Let (Uy)qer be an open cover of
Y in (X, 7). Set G, = Y N U,. Then (Gy)yer is an open cover of (Y, ty). By
hypothesis, there is a finite subcover, say, G, - - - , G,. Clearly, Uy, - - - , Uy, is an
open cover for Y in (X, 7). That is, Y is compact in (X, 7).

Suppose that (X, t) is Hausdorff, and let x, y be any two distinct points of Y.
Then there is a pair of disjoint open sets U, V in X such thatx € U andy € V.
Evidently, G; = YNU and G, = YNV are openin (Y, ty), are disjoint and x € G
and y € G,. Hence (Y, ty) is Hausdorff, as required. |

Theorem 1.2 Let (X, d) be a metric space. Then X, equipped with the metric
topology is Ty.

Theorem 1.3 Let (X, t) be a compact, Hausdorff space. Then (X, t) is Ty.

Proof LetY, Z C X be two closed sets with Y N Z = (. We need to find two open
sets U,V C X,withY CU,Z C V,and U NV = (. Assume first that Z is a
singleton, Z = {z}.

For every y € Y we find open sets Uy and Vy, such that Uy 3 y, Vy > z, and
Uy NV, = . Using Proposition 1.3 we know that ¥ is compact, and since we

n
clearly have Y C U Uy, there exist y1, - -+, y, € Y such that U Uy, 2 Y. Then
yeY i=1

n n
we are done by taking U = U Uy, and V = ﬂ V.
i=1 i=1
Having proven the above particular case, we proceed now with the general case.
For every z € Z, we use the particular case to find two open sets U, and V, with
U,2Y,V, >z and U, NV, = §J. Arguing as above, the set Z is compact, and we

n
have Z C U V., so there exists z1, -+, z, € Z, such that ﬂ V., 2 Z. Then we
ze€Z i=1
n n
are done by taking U = ﬂ Ugand V = U Vi |
i=1 i=1

Definition 1.10 A topological space (X, t) is said to be separable if it admits a
countable dense subset.

Proposition 1.6 Let (X, d) be a compact metric space. Then (X, d) is separable.
Proof For each n > 1, the collection G, = {B1(x): x € X} is an open cover of X.

Since X is compact, we can find a finite subcover {Bi(x(jn): 1 <j < kp}of X.

1
It is then clear that if x € X, there exists 1 < j < k;, so that d(x, x(j n)) < —. As
n
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such, the collection
D={x(jnm:1=<j=<ky1=<n}

is a countable, dense set in X, proving that (X, d) is separable. ]

1.1.2 Comparison of Topologies

Any set X may carry several different topologies.

Definition 1.11 Let 7, ' be two topologies on the same set X. We say that 7 is
coarser (or weaker) than 7/, in symbols © C 7/, if for every subset of X which is
open for 1 is also open for 7’, or equivalently, if for every neighborhood of a point
in X with respect to 7 is also a neighborhood of that same point in the topology t’.
In this case 7’ is said to be finer (or stronger) than 7’.

Two topologies T and t’ on the same set X coincide when they give the
same open sets or the same closed sets or the same neighborhoods of each point,
equivalently, when 7 is both coarser and finer than 7’.

Two basis of neighborhoods of a set are equivalent when they define the same
topology.

Remark 1.6 Given two topologies on the same set, it may very well happen that
no-one is finer than the other. If it is possible to establish which one is finer, then we
say that the two topologies are comparable.

Example 1.2 The cofinite topology 7. on R, ie., 7. = {U C R: U = for R\
Uis finite}, and the topology t; having {(—o0, a): a € R} as a basis are incompa-
rable. In fact, it is easy to see that t; = {(—00,a): a € R} U {#J, R} as these are
the union of sets in the given basis. In particular, we have that R \ {0} is in 7. but
not t;. Moreover, we have that (—o0, 0) is in 7; but not 7.. Hence, 7, and t; are
incomparable.

Proposition 1.7 If 1, 1o are Hausdorff topologies on a set X such that t; is finer
than t1 and such that (X, t2) is compact, then 11 = 1.

Proof Let Y a 1tp-closed set. Since (X, 13) is compact then Y is tp-compact. Since
71 C 17 it follows that Y is tj-compact (any t1-open cover of Y is also a tp-open
cover of Y and has a finite subcover). Since t; is Hausdorff and Y is tj-compact
then it is also t1-closed, which completes the proof (we showed that every t;-closed
set is a T1-closed set). |

Definition 1.12 Let X be a set and let F be a family of mappings from X into
topological spaces:

F={fy: X > (Yy,7q) : x €1}
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Let 7 be the topology generated by the subbase
(fFNV) Ve, ael).

Then t is the weakest topology on X for which all the f, are continuous maps (it is
the intersection of all topologies having this property). It is called the weak topology
induced by F, or the F-topology of X.

Proposition 1.8 Let F' be a family of mappings X — (Yy, 1) where X is a set and
each (Yy, ty) is a Hausdorff topological space. Suppose F separates points in X
i.e, forany x,y € X with x # y, there is some f, € F such that fy(x) # fo(y).
Then the F-topology on X is Hausdorff.

Proof Suppose that x, y € X, with x # y. By hypothesis, there is some « € I such
that nfy (x) # fo(y). Since (Yy, o) is Hausdorff, there exist elements U, V € 14
such that f,(x) € U, fy(y) € Vand U NV = @. But then f;, '(U) and £, ' (V)
are open with respect to F-topology and x € fa_l W),y e fa_l(V) and fa_1 o)n
Sy =0, "

Definition 1.13 Let (X, t) be a topological space. X is called metrizable if it is
compatible with some metric d (i.e., T is generated by the open balls B, (x) = {y €
X, d(x,y) <r}).

Proposition 1.9 Let (X, t) be a compact topological space. If there is a sequence
{fn,n € N} of continuous real-valued functions that separates points in X then X
is metrizable.

Proof Since (X, 1) is compact and the f, are continuous then they are bounded.

Thus, we can normalize them such that || f;,|lco = sup | f(x)| < 1. Define:
xeX

o0

.y = 30 D = B0
n=1
This series converges. In fact, it converges uniformly on X x X hence the limit
is continuous. Because the f,, separate points d(x,y) = 0 iff x = 0. d is also
symmetric and satisfies the triangle inequality.
Thus d is a metric and we denote by t; the topology induced by this metric. We
need to show that 7; = 7. Consider the metric balls:

B,(x)={ye X,dx,y) <r}.
Since d is T-continuous on X x X, these balls are t-open and

Ty CT.
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By Proposition 1.7, since T is compact and t; is Hausdorff (like any metric space)
then 7 = 1. |

1.1.3 Nets and Convergence in Topology

Nets generalize the notion of sequences so that certain familiar results relating to continuity
and compactness of sequences in metric spaces can be proved in arbitrary topological
spaces. We now expand our notion of “sequence” (x,), to something for which the index
n need not be a natural number, but can instead take values in a (possibly uncountable)
partially ordered set.

Definition 1.14 A directed set (I, <) consists of a set I with a partial order < such
that for every pair «, B € I, there exists an element y € I with y > o and y > B.

Examples 1.3

1.

The natural numbers N with the relation < define a directed set (1, <) = (N, <).

2. If (X, 7) is a topological space and x € X, one can define a directed set (/, <)

where [ is the set of all neighborhoods of x in X, and U < V for U,V € I
means V C U. This is a directed set because given any pair of neighborhoods
U,V C X of x, the intersection U N V is also a neighborhood of x and thus
defines an element of / with U NV C U and U NV C V. Note that neither of
U and V need be contained in the other, so they might not satisfy either U < V
or V < U, hence < is only a partial order, not a total order. Moreover, for most
of the topological spaces we are likely to consider, I is uncountably infinite.

. Let (X, t) a topological space and let x € X. Then the set I, = {U € t,x € U}

is a directed set when equipped with the either the subset relation C, or more
usefully the superset relation 2.

. If (11, <1) and (12, <») are directed sets, then (/1 x I, <) is a directed set where

< is defined by

(a,b) < (x,y) ifandonlyif a <y xandb <3 y.

. Let I denote the set of all finite partitions of [0, 1], partially ordered by

inclusion (i.e., refinement). Let f be a continuous function on [0, 1], then to
P ={0=1n<1n < -+ < t, = 1} € I, we associate the quantity

Lp(f) = Zf(tl;])(t,- —t;_1). Themap f +— Lp(f)isanet (] is a directed
i=1

1
set), and from Calculus, }Jm} Lp(f)= / f(x)dx.
€ 0
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Definition 1.15 Let P be a property of elements of a directed set (I, <). We shall
say that:

1. P holds eventually if there exists «g € I such that P holds for each o > «p,
2. P holds frequently if for each « € I there exists B > « satisfying P.

Thus “eventually” means “for all successors of some element”, and “frequently”
means “for arbitrary large elements”.

Definition 1.16 Given a topological space (X, 7), a net (x4)qes is a function I —
X: o —> x4, where (I, <) is a directed set.

Definition 1.17 We say that a net (x4)qes in X converges to x € X if for every
neighborhood U C X of x, there exists «g € [ such that x, € U for every o > «p.

Example 1.3 A net (xq)qe; With (I, <) = (N, <) is simply a sequence, and
convergence of this net to x means the same thing as convergence of the sequence.

Definition 1.18 A net (xy)qes has a cluster point (also known as accumulation
point) at x € X if for every neighborhood U € X of x and for every op € I,
there exists o > ag with x, € U.

Definition 1.19 A net (yg)ges is a subnet of the net (xy)aes if yg = x4(p) for
some order preserving function ¢: J — [ such that for every o € I, there exists
an element By € J for which 8 > Bo implies ¢ (8) > «g (cofinal).

Example 1.4 If (x,), is a sequence, any subsequence (xi,), becomes a subnet
(yg)pey of the net (x,),en by setting / = Nand ¢: N — N:n — k,. Note
that this remains true if we slightly relax our notion of subsequences so that (k)
need not be a monotone increasing sequence in N but satisfies k,, — oo as n — oo.
Conversely, any subnet (yg)ges of a sequence (x,)yeny With (J, <) = (N, <)
is also a subsequence in this slightly relaxed sense, and can then be reduced to
a subsequence in the usual sense by skipping some terms (so that the function
n +—> k, becomes strictly increasing). Note however that a subnet of a sequence
need not be a subsequence in general, i.e., it is possible to define a subnet (yg)ges
of a sequence (xj,),eN such that J is uncountable, and one can derive concrete
examples of such objects.

Remark 1.7 1f (xq)aeq 1S a net converging to x, then every subnet (x4 (g))ges also
converges to x.

Theorem 1.4 Let Y be a subset of a topological space (X, t). Then x € Y if and
only if there is a net (xy)qey With x4 € Y such that x, —> Xx.

Proof We know that a point x € X belongs to Y if and only if every neighborhood
of x meets Y. Suppose then that (x4)yes is a net in Y such that x, — x. By
definition of convergence, (x4)qes is eventually in every neighborhood of x, so
certainly x € Y.

Suppose, on the other hand, that x € Y. Let N, be the collection of all
neighborhoods of x ordered by reverse inclusion. Then N is a directed set. We
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know that for each V € N, the set V N'Y is nonempty so let xy be any element of
vV NY.Then xy — x. |

Lemma 1.1 Let X be a set, and (xy)qeq a net in X. Let B be a family of subsets of
X, satisfying

1. xq is contained frequently in each element of B, and
2. the intersection of any two elements of B contains an element of B.

Then (xq)qes admits a subnet which is eventually contained in each element of B.

Proof Clearly, the family B is directed by the inverse inclusion. Consider the set
J={(a,B) el xB: x4 € B}

equipped with the coordinate-wise pre-ordering. It is easy to see that J is a directed
set. The function ¢: J — I, defined by ¢ (¢, B) = «, is nondecreasing and onto,
and hence tends to infinity. Consequently, (x¢(«,B))(«,B) 1S @ subnet of (xy)uer-
Moreover, given A € B, fix ag € I so that x4, € A, and observe that if (o, B) >
(ao, A) then x4(8,8) = xg € B C A. This completes the proof. ]

In metric spaces, a standard theorem states that sequential continuity is equivalent
to continuity. In arbitrary topological spaces this no longer true, but we have the
following generalization.

Theorem 1.5 For any two topological spaces X and Y, a map T: X — Y is
continuous if and only if for every net (xy)qer in X converging to a point x € X,
the net (T (xy))qer in Y converges to T (x).

Proposition 1.10 A point x of a topological space (X, t) is a cluster point of a net
(Xxo)aer in X if and only if there exists a subnet (xy(g)) ges that converges to x.

Proof If (x¢())pes is a subnet of (xq)ees converging to x, then for every
neighborhood U C X of x, there exists By € J such that x4y € U for every
B > PBo. Then for any og € I, the definition of a subnet implies that we can find
B1 € J with ¢(B) > ap for all B > B, and since J is a directed set, there exists
B2 € J with B, > Bp and Bo > Bi. It follows that for « = ¢(B2), @ > g and
Xo = X¢(By) € U, thus x is a cluster point of (x¢)ee;-

Conversely, if x is a cluster point of (x4)qer, We can define a convergent subnet
as follows. Define a new directed set

J = I x { neighborhoods of x in X},

with the partial order (o, U) < (B, V) defined to mean both @ < fand V C U.
Then for each (8, U) € J, the fact that x is a cluster point implies that we can
choose ¢(B,U) € I tobe any « € [ such that > B and x, € U. This defines
a function ¢: J — [ such that for any «¢p € I and any neighborhood Uy € X of
x,every (B,U) € J with (8,U) > (ap, Up) satisfies ¢ (8, U) > B > «p, hence
(xp(8,U)) pes 1s a subnet of (x4)qes. Moreover, for any neighborhood U C X of x,
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we can choose an arbitrary «g € I and observe that
B, V) > (a0, U) = xp8,v) €V C U,

thus (xg(8,0))(8,U)es converges to x. |

Theorem 1.6 A topological space (X, t) is compact if and only if every net in X
has a convergent subnet.

Proof Suppose X is compact but there exists a net (xy)yes in X with no cluster
point. The fact that every x € X is not a cluster point of (x,)yes then means that we
can find for each x € X an open neighborhood U, € X of x and an index o, € 1
such that xo ¢ Uy for all o > oy. But (Uy)xex is then an open cover of X and

therefore has a finite subcover, meaning there is a finite subset x1, - - - , xy € X such
N

that X = U U,,. Since (I, <) is a directed set, there also exists an element 8 € [

n=1

such that

B > ay, foreach n=1,---,N.
Then x4 ¢ U,, forevery n = 1,---, N, but since the sets Uy, cover X, this is a
contradiction.

Conversely, suppose that every net in X has a cluster point, but that X has a
collection O of open sets that cover X such that no finite subcollection in O covers
X. Define a directed set where [ is the set of all finite subcollections of O, with the
ordering relation defined by inclusion, i.e., for A, B € I,A < B means A € B.
Note that (1, <) is a directed set since for any two A, B € I, wehave AUB € [
with AUB D A and AU B D B. By assumption, none of the unions U forAel

UeA
cover X, so we can choose a point

xmex\|(Ju (1.1)

UeA

for each A € I, thus defining a net (x4)ae7. Then (x4)4es has a cluster point
x € X. Since the sets in O cover X, we have x € V for some V € O, and the
collection {V} is an element of I, hence there exists A > {V} such that x4 € V.
But this means A is a finite subcollection of O that includes V, thus contradicting
(1.1). |

Theorem 1.7 Let X be a set and let T and 1 be topologies on X. Then the
following are equivalent

1. 11 = 1.
2. Every (xq)acq in X, converges in 11 if and only if it converges in ;.
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Proposition 1.11 A topological space (X, t) is Hausdorff if and only if no net has
two distinct limits.

Proof Suppose (X, t) is Hausdorff and consider a net (xq)qes. Suppose for
contradiction that x and y are distinct limits of (x4 )ye7. Take disjoint neighborhoods
U of x and V of y. By definition of convergence, there is a o, such that x, € U
for all @ > oy and a «y such that x, € V for all « > a,. In particular we have
xg € U NV for an upper bound & of oy and oy in the directed set /, contradicting
the disjointness of U and V. Thus (x4)qes cannot have two distinct limits.
Conversely, suppose that (X, ) is not Hausdorff, so there are two distinct points
x and y such that any neighborhood of x intersects any neighborhood of y. So there

is a net (X(u,v)) NV (x)x N (y) such that
xpuyvyeinNyv

for neighborhoods U of x and V of y. Take any neighborhood Up of x and any
(U, V) € N(x) x N(y) with (U, V) = (Up, X). By definition we have U C Uy
and thus xy,vy € U NV C Uy. This proves that x(y vy — x and we can similarly
show that x(y, vy — . So the net (xw,v))N(x)xN(y) has two distinct limits, as
required. ]

1.2 Topological Vector Spaces

1.2.1 Linear Topologies

Definition 1.20 Let X be a vector space. A linear topology on X is a topology t
such that the maps

XxXs>@x,y)—>x+yeX (1.2)
Kx X3 (@,x)>axeX (1.3)

are continuous. For the map (1.2) we use the product topology T x 7. For the map
(1.3) we use the product topology tk X T, where 7 is the standard topology on K.

A topological vector space is a pair (X, 7) consisting of a vector space X and a
Hausdorff linear topology 7 on X.

Remark 1.8 If (X, t) is a topological vector space then it is clear from Defini-

N N

tion 1.20 that ZA,(C")x,E") — Z)\kxk as n — oo with respect to t if for each
k=1 k=1

k=1,---,Nasn — oowehave )L,(('” — At with respect to the euclidean topology

on K and x,in) — x; with respect to t.
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Examples 1.4

1. Every vector space X over K endowed with the trivial topology is a topological
vector space.

2. The field K, viewed as a vector space over itself, becomes a topological vector
space, when equipped with the standard (euclidean) topology tk.

3. Every normed vector space endowed with the topology given by the metric
induced by the norm is a topological vector space.

Proposition 1.12 Every vector space X over K endowed with the discrete topology
is not a topological vector space unless X = {0}.

Proof Assume by a contradiction that it is a topological vector space and take 6 #

1
x € X. The sequence o, = — in K converges to 0 in the euclidean topology.

Therefore, since the scalar muﬁiplication is continuous, o,x — 6, i.e., for any
neighborhood U of 6 in X there exists m € N such that a,x € U for all n > m.
In particular, we can take U = {6} since it is itself open in the discrete topology.
Hence, o, x = 0, which implies that x = 6 and so a contradiction. ]

Remark 1.9 In terms of net convergence, the continuity requirements for a linear
topology on X read:

* Whenever (x,) and (y,) are nets in X, such that x, — x and y, — 7y, it follows
that x4 + yo — x + y.

e Whenever (1) and (x,) are nets in K and X, respectively, such that 1, — A (in
K) and x, — x (in X), it follows that Ao xq, — Ax.

Example 1.5 Let I be an arbitrary nonempty set. The product space K’ (defined
as the space of all functions / — K) is obviously a vector space (with pointwise
addition and scalar multiplication). The product topology turns K/ into a topological
vector space.

Remark 1.10 If X is a vector space, then the following maps are continuous with
respect to any linear topology on X :

* The translations 7y,: X — X,y € X, defined by Ty (x) = x + y.
e The dilations Dy : X — X, o € K, defined by D, (x) = ax.

If 7 is a linear topology on a vector space X, then t is translation invariant.
That is, a subset U C X is open if and only if the translation y + U is open for
all y € X. Indeed, the continuity of addition implies that for each y € X, the
translation x — y-x is a linear homeomorphism. In particular, every neighborhood
of y is of the form y 4 U, where U is a neighborhood of zero. In other words, the
neighborhood system at zero determines the neighborhood system at every point of
X by translation. Also note that the dilation x — ox is a linear homeomorphism for
any « # 0. In particular, if U is a neighborhood of zero, then so is aU for all ¢ # 0.

Example 1.6 If a metric d on a vector space X is translation invariant, i.e.,
dx+z,y+2z) =d(x,y) forall x,y € X (i.e., the metric induced by a norm),
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then the topology induced by the metric is translation invariant and the addition
is always continuous. However, the multiplication by scalars does not need to be
necessarily continuous (take d to be the discrete metric, then the topology generated
by the metric is the discrete topology which is not compatible with the scalar
multiplication).

Proposition 1.13 If'Y is a linear subspace of a topological vector space (X, 1),
then so its closure Y. In particular, any maximal proper subspace is either dense or
closed.

Proof We must show thatif x, y € Y and A € K, then Ax + y € Y. There are nets
(x¢) and (yy) in Y, such that x, — x and y, —> y. By Remark 1.9, we deduce
that tx, —> tx and tx4 + yo —> £x 4+ y and we conclude that rx +y € Y, as
required.

If Y is a maximal proper subspace, the inclusion ¥ C Y implies either ¥ = Y, in

which case Y is closed, or Y = X, in which case Y is dense in X. ]
Notations Given a vector space X, a subset Y C X, and a vector x € X, we denote
the translation 7y (Y) simply by Y + x (x + Y), that is,
Y+x=x+Y={+x:ye¥}
Likewise, for an « € K we denote the dilation D, (Y) simply by oY, that is,
aY ={ay:yeY}.

Given another subset Z C X, we define

Y+Z={y+zyeYzez)=Jo+2 = Jr+2.
yeY zeZ

Remark 1.11 In general we only have the inclusion 2Y C Y + Y.
Lemma 1.2 Let t be a linear topology on the vector space X.

The algebraic sum of an open set and an arbitrary set is open.

Nonzero multiples of open sets are open.

If Yis open, then for any set Z we have Z +Y = Z + Y.

The algebraic sum of a compact set and a closed set is closed. (However, the
algebraic sum of two closed sets need not be closed.)

5. The algebraic sum of two compact sets is compact.

6. Scalar multiples of closed sets are closed.

7. Scalar multiples of compact sets are compact.

Kb~

Proof We shall prove only items 3. and 4.

3. Clearly Y+Z CY + Z. For the reverse inclusion, let x = z + y where z € Z and
y € Y. Then there is an open neighborhood U of 6 such that y + U C Y. Since
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z € Z, there exists some r € Z N (z — U). Then x =z4+y=t+z+(y—2) €
t+z+UCZ+Y.

4. Let Y be compact and Z be closed, and let a net (v, + 24 )aer satisfy yu +2z4 —>
x. Since Y is compact, we can assume (by passing to a subnet) that y, —> y €
Y. The continuity of the algebraic operations yields

20 =0at2a) = Yo —>X—y=2.

Since Z isclosed, z € Z,sox =y +z € Y + Z, proving that Y 4 Z is closed.
|
Proposition 1.14 Let T be a linear topology on the vector space X.

1. For every neighborhood V of 0, there exists a neighborhood W of 0, such that
W+WcCv.

2. For every neighborhood V of 0, and any compact set C C K, there exists a
neighborhood W of 0, such that cW C V.,V € C.

Proof 1.LetT: X x X — X denote the addition map (1.2). Since T is continuous
at (0,0) € X x X, the preimage 7! (V) is a neighborhood of (6, 6) in the product
topology. In particular, there exists neighborhoods Wi, W> of 6, such that W; x
W, C T_l(V), so if we take W = Wj N Wy, then W is still a neighborhood of 6
satisfying W x W C T-1(V), which is precisely the desired inclusion W4+ W C V.

2.Let G: KxX — X denote the multiplication map (1.3). Since G is continuous
at (0,0) € K x X, the preimage G~! (V) is a neighborhood of (0, #) in the product
topology. In particular, there exists a neighborhood 7 of 0 in K and a neighborhood
Wo of 6 in X such that I x Wy C G_I(V). Let then p > O such that / contains
the closed disk B_p(O) = {¢ € K: |x| < p}, so that we still have the inclusion
B,(0) x Wo C G~ (V)ie,

aekK ol <p=aWyCV. (1.4)
Since C € K is compact, there is some R > 0, such that
Y| <R, Yy eC. (1.5)

Let us then define W = (%)WO. First of all, since W is a non-zero dilation of Wy,
it is a neighborhood of 6. Secondly, if we start with some y € C and some w € W,

written as w = ( %)wo with wy € Wy, then
po
w = (—)wp.
14 (R) 0

By (1.5) we know that ‘,o?oz‘ <p,soby(l.4)wegetyweV. |
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1.2.2 Absorbing and Balancing Sets

Definition 1.21 A subset Y of a vector space X is convex if, whenever Y contains
two points x and y, Y also contains the segment or the straight line joining them,
ie.,

Vx’)’GY,VOf,,BzO such thatot—l—ﬁ:l,ax_}_ﬂyeyl

Examples 1.5

1. The convex subsets of R are simply the intervals of R. Examples of convex
subsets of R? are solid regular polygons. The Platonic solids are convex subsets
of R3. Hyperplanes and half spaces in R" are convex.

2. Balls in a normed space are convex.

3. Consider a topological space X and the set C(X) of all real valued functions
defined and continuous on X. C(X) with the pointwise addition and scalar
multiplication of functions is a vector space. Fixed g € C(X), the subset
Y ={feCX): f(x) > g(x),Vx € X}is convex.

4. Consider the vector space R[x] of all polynomials in one variable with real
coefficients. Fixed n € N and ¢ € R, the subset of all polynomials in R[x]
such that the coefficient of the term of degree n is equal to ¢ is convex.

Proposition 1.15 Ler X be a vector space. The following properties hold.

(a) Y and X are convex.

(b) Arbitrary intersections of convex sets are convex sets.

(¢) Unions of convex sets are generally not convex.

(d) The sum of two convex sets is convex.

(e) AsetY isconvexifandonlyifaY +BY = (a+ B)Y for all nonnegative scalars
o and B.

(f) The image and the preimage of a convex set under a linear map is convex.

Definition 1.22 Let Y be any subset of a vector space X. We define the convex hull
of X, denoted by conv(Y), to be the set of all finite convex linear combinations of
elements of Y, i.e.,

n n
conv(Y) = {Zaix,-: x; €Y, a; €]0,1], Zai =1lne N}.

i=1 i=1

Proposition 1.16 Letr Y, Z be arbitrary sets of a vector space X. The following
hold.

(a) conv(Y) is convex.

(b) Y C conv(Y).

(c) A set is convex if and only if it is equal to its own convex hull.
(d) IfY C Z then conv(Y) C conv(Z).
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(e) conv(conv(Y)) = conv(Y).

(f) conv(Y + Z) = conv(Y) 4+ conv(Z).

(g) The convex hull of Y is the smallest convex set containing Y, i.e., conv(Y) is
the intersection of all convex sets containing Y.

Definition 1.23 Let X be a vector space.

* A subset Y C X is said to be absorbing (or radial), if for every x € X, there
exists some scalar &« > 0, such that ax € Y. Roughly speaking, we may say that
a subset is absorbing if it can be made by dilation to swallow every point of the
whole space.

e A ssubset Y € X is said to be balancing (or circled), if for every ¢ € K with
|| < 1, one has the inclusion «Y C Y. Note that the line segment joining any
point x of a balanced set Y to —x liesin Y.

e Asubset Y € X is said to be symmetric, if for every x € Y, one has (—x) € Y,
namely (=Y) =Y.

e Asubset Y C X is said to be absolutely convex, if it is convex and balanced.

* AsubsetY C X is said to be starshaped about zero if it included the line segment
joining each of its points with zero. That is, if forany x € Y and any 0 < o < 1
we have ax € Y.

Remark 1.12 Note that an absorbing set must contain 6, and any set including an
absorbing set is itself absorbing. For any absorbing set Y, the set ¥ N (=Y) is
nonempty, absorbing, and symmetric. Every circled set is symmetric. Every circled
set is star-shaped about 6, as is every convex set containing 6.

Remark 1.13 Given t a linear topology of a vector space X, all neighborhoods of 6

are absorbing. Indeed, if we start with some x € X, the sequence x, = —x clearly
n

converges to 6, so every neighborhood of 6 will contain (many) terms x;,.
Examples 1.6

1. In a normed space the unit balls centered at the origin are absorbing and balanced.
2. The unit ball B centered at (%, 0) e R? is absorbing but not balanced in the real

vector space R? endowed with the euclidean norm. Indeed, B is a neighborhood
of the origin. However, B is not balanced because for example if we take x =
(1,0) e Band @ = —1 then ax ¢ B.

3. The polynomials R[X] are a balanced but not absorbing subset of the real space
C([0, 1], R) of continuous real valued functions on [0, 1]. Indeed, any multiple
of a polynomial is still a polynomial but not every continuous function can be
written as multiple of a polynomial.

4. The subset ¥ = {(z1,22) € C?: |z1] < |z2|} of the complex space C? with the
euclidean topology is balanced but intY is not balanced.
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Definition 1.24 Given 7 a linear topology of a vector space X, a subset Y € X is
said to be a barrel if it has the following properties:

1. Y is absorbing,
2. Y is absolutely convex,
3. Y is closed.

Proposition 1.17 Let X be a vector space and let T be a linear topology on X.
A. If B is a neighborhood base at 0, then:

1. ForeveryV € B, there exists W € B, such that W + W C V.
2. For every V € B and every compact set C C K, there exists W € B, such
thatyW C V,Vy e C.
3. For every x € X, the collection By = {V + x: V € B} is a neighborhood
base at x.
4. The topology t is Hausdorff, if and only if m V ={6}.
VeB

B. There exists a neighborhood base at 6, consisting of open balanced sets.
Proof

A. Statements 1. and 2. follow immediately from Proposition 1.14. Statement 3. is
clear, since translations are homeomorphisms.
4. Denote for simplicity the intersection ﬂ V by J, so clearly 6 € J.

VeB
Assume first T is Hausdorff. In particular, for each x € X \ {0}, the set X \ {x}

is an open neighborhood of 6, so there exists some V* € B with V* C X \ {x}.
We then clearly have the inclusion

JS Ve [X\ixh =16},
x#£0 xX#60

so J = {0}. Conversely, assume J = {6}, and let us show that t is Hausdorff.
Start with two points x, y € X with x # y, so that x —y # 6, and let us indicate
how to construct two disjoint neighborhoods, one for x and one for y. Using
translations, we can assume y = 6. Since § # x ¢ ﬂ V, there exists some

veB
V € B,suchthat x ¢ V. Using 1., thereissome W € B,suchthat W+ W C V,

so we still have x € W + W. This clearly forces
x+({(=DHV)NnV =0. (1.6)

Since V is a neighborhood of 6, so is (—1)V (non-zero dilation), then by 3.

the left-hand side of (1.5) is a neighborhood of x.
B. Let us take the D to be the collection of all open balanced sets that contain 6.
All we have to prove is the following statement: for every neighborhood V' of
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0, there exists W € D, such that W C V. Using 2. there exists some open set
O > 0, such that

yocVv, vy eK |yl =1 (1.7)

In particular, U « O is an open set contained in V. So U a0 €

aeK,0<|a|<1 aeK,0<|a|<1

V.
|

Definition 1.25 Assume 7 is a linear topology on a vector space X. A subset Y C X
is said to be T-bounded, if it satisfies the following condition:

for every neighborhood V of 0, there exists p > 0, such that Y C pV.

Example 1.7 Suppose 7 is a linear topology on a vector space X. If x € X ¢, then
{x} is bounded. Indeed, let V any neighborhood of 6. Then V is absorbing and so
x € pV for all sufficiently large p > 0, that is, {x} is bounded.

Proposition 1.18 Ler X be a vector space X endowed with a linear topology t.
Then

1. If Y C X is t-bounded, then its closure Y is also t-bounded.
2. If Y, Z C X are t-bounded, then sois Y + Z.
3. If Y € X is t-bounded and C C K is bounded, then so U aY.

aeC
4. All compact subsets in X are t-bounded.

Remark 1.14 Tt follows by induction, that any finite set in a vector space X endowed
with a linear topology 7 is bounded. Also, taking ¥ = {x} (in the above proposition)
we see that any translate of a bounded set is bounded.

Proposition 1.19 Any convergent sequence in topological vector space is bounded.

Proof Suppose that (x,), is a sequence in a topological vector space (X, t) such
that x, — x. Foreachn € N, set y, = x, — x, so that y, — 6. Let V any
neighborhood of 6. Let U be any balanced neighborhood of 6 such that U C V.
Then U C pU for all p with |p| > 1. Since y, —> 6, there is N € N such that
yp € U whenever n > N. Hence y, € U C tU C tV whenever n > N and
t>1.SetY = {y1,---,yu}and Z = {y,: n > N}. Then Y is a finite set so is
bounded and therefore Y C ¢V for all sufficiently large ¢. But then it follows that
Y U Z C tV for sufficiently large ¢, that is, {y,: n € N} is t-bounded and so is
{x,:neN}=x+ Y U2Z). [ |

Remark 1.15 A convergent net in a topological vector space need not be bounded.
For example, let I be R equipped with its usual order and let x, € R be given by
xg = e %. Then (x4)qes is an unbounded but convergent net (with limit 0) in the
real normed space R.
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Proposition 1.20 (‘Zero. Bounded” Rule) Suppose t is a linear topology in a
vector space X. If the net (a)))en € K converges to 0, and the net (x;) ecpn C X is
t-bounded, then (o) x)))en is convergent to 6.

Proof Start with some neighborhood V of 6. We wish to construct an index Ay € A
such that

o)Xy € V,VA> )\.V. (1.8)

Using Proposition 1.17 B., we can assume that V is balanced (otherwise we replace
it with a balanced open set V' C V). Using the boundedness condition we find
p > 0, such that

x, € pV, VA eA. (1.9)

Using the condition ) — 0, we then choose Ay € A, so that
1
lop] < —, VA > Ay.
0

To check (1.8), start with some A > Ay and apply (1.9) to write x; = pv, for some
v € V. Now we have

ax;, = (ap)v € (e p)V,

with |y p| < 1, so using the fact that V' is bounded, it follows that o3 x; € V. W
Definition 1.26 Let (X, t) be a topological vector space.

1. X is locally bounded if 6 has a bounded neighborhood.

2. X is locally compact if 6 has a neighborhood whose closure is compact.

3. X is metrizable if it is compatible with some metric d (i.e., T is generated by the
open balls B, (x) = {y € X,d(x,y) <r}).

4. X is normable if it can be endowed with a norm whose induced metric is
compatible with t.

5. X has the Heine-Borel property if every closed and bounded set is compact.

Proposition 1.21 Ler (X, ) be a topological vector space. For every x # 0 the set
Y = {nx, n € N} is not bounded.

Proof By separation, there exists an open neighborhood V of 6 that does not contain
x, hence nx ¢ nV, i.e., for every n,

Y ¢ nVv.
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Lemma 1.3
1. Let d be a translation invariant metric on a vector space X, then for alln € N
and x € X,
d(nx,0) <nd(x,0).
2. If x, — 0 in a metrizable topological vector space (X, 1), then there exist
positive scalars o, — 00 such that ayx, — 6.

Proof The first part is obvious by successive applications of the triangle inequality,

n

d(nx,0) < Zd(kx, (k — Dx) < nd(x, 6).
k=1

For the second, we note that since d(x,, ) — 0, there exists a diverging sequence
of positive integers ny, such that

1
d(-xk’ 9) S _27
M

from which we get that

1
d(ngxi,0) < ngd(x,0) < — — 0.
ny

Corollary 1.2 The only bounded subspace of a topological vector space is {6}.

Proposition 1.22 Let (X, t) be a topological vector space and let Y < X. Then,
Y is bounded if and only if for every sequence (x,), < Y and every sequence of
scalars o, — 0, o x;, — 6.

Proof Suppose that Y is bounded, it suffices to apply Proposition 1.20.
Suppose that for every sequence (x,), € Y and every sequence of scalars o, —

0, ayx, — 0. 1f Y is not bounded, then there exists an open neighborhood of 8 and
asequence 8, — 00, such thatno 8,V contains Y. Take then a sequence (x,), C Y
such that x,, ¢ 8, V. Thus,

Bylxn ¢V,

which implies that 8, Ix, = 6, which is a contradiction. |

Theorem 1.8 Let (X, t) be a topological vector space. Let Y, Z C X satisfy:

Y is compact, Z is closed and Y N Z = (.
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Then there exists an open neighborhood V of 0 such that
Y+Vv)n(Z+Vv)=4.

In other words, there exist disjoint open sets that contain Y and Z.

Proof Letx € Y. Since X \ Z is an open neighborhood of x, it follows that there
exists a symmetric open neighborhood V of 6 such that

x+Ve+ Vi + Ve C X\ Z,
ie.,
x+Vi+Vi+Vo)NZ=40.
Since V; is symmetric,
(x+Ve+Vo)N(Z+ Vi) =40

For every x € Y corresponds such a V. Since Y is compact, there exists a finite
collection (x;, V;)1<i<n such that

K < [ Joi + V.

i=1

Define

n
V=V
i=1

Then, for every i,
(x +Vy, +V,,) does not intersect (Z + Vy,),
SO
(x + Vi, +V) does not intersect (Z + V).

Taking the union over i :

n
Y+VcC U(x,- + Vi, + V) does not intersect (Z + V).

i=1
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Remark 1.16 A topological vector space is regular.
Proposition 1.23 Suppose 1 is a linear topology in a vector space X.

1. ForY C X,

Y = N Y +V).
v,open neighborhood of ¢

That is, the closure of a set is the intersection of all the open neighborhoods of
that set.

ForY,ZCX,Y+ZCY+Z.

If Y C X is a linear subspace, then so is Y.

For every B C X: If B is balanced so is B.

For every B C X: If B is balanced and 6 € int B then int B is balanced.

If Y C X is bounded so is Y.

Proof

Sk

1. Let x € Y. By definition, for every open neighborhood V of 4, x 4 V intersects
Y,of x € Y — V. Thus,

xe N ¥ -V)= N ¥ +V).

v.open neighborhood of ¢ v.,open neighborhood of ¢

Conversely, suppose that x ¢ Y. Then, there exists an open neighborhood V of §
such that x + V does not intersect Y, i.e., x ¢ ¥ — V, hence

x ¢ N Y + V).

v.open neighborhood of ¢

2.Letx € Y and y € Z. By the continuity of vector addition, for every open
neighborhood U of x 4 y there exists an open neighborhood V' of x and an open
neighborhood W of y such that

V+WCcCU.
By the definition of Y every neighborhood of x intersects ¥ and by the definition
of Z every neighborhood of y intersects W: that is, there existz € V. NY and
t € WN Z. Then,
z€Y and t € Z implies z+t €Y + Z,

and

zeV and t € W implies z+teV+WCU.
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In other words, every neighborhood of x + y € Y + Z intersects ¥ + Z, which
implies that x + y € Y + Z, and therefore

Y+ZCY+Z
3. Let Y be a linear subspace of X, which means that,
Y+YCY and Va e K, aY CY.
By the previous item,
Y+YCY+YCY.

Since scalar multiplication is a homeomorphism it maps the closure of a set into
the closure of its image, namely, for every o € K,

4. Since multiplication by a (non-zero) is a homeomorphism,
oB =aB.
If B is balanced, then for || < 1,
oB =aB C B,

hence B is balanced.
5. Again, for every 0 < || < 1,

a(intB) = int(e B) C intB.
Since for @ = 0, a(intB) = {0}, we must require that & € intB for the latter to
be balanced.
6. Let V be an open neighborhood of 6. Then there exists an open neighborhood

W of 6 such that W C V. Since Y is bounded, ¥ € aW C aW C aV for
sufficiently large «. It follows that for large enough «,

Y CaW CaV,

which proves that Y is bounded.
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Lemma 1.4 Suppose t is a linear topology in a vector space X.

1. IfY is convex sois Y.
2. IfY is convex so is intY.

Proof

1. The convexity of Y implies that for all « € [0, 1]:
aY +(1—-a)Y CY.
Leta € [0, 1], then
oY =aY and (1 —a)Y = (1 —a)Y.

By the second item:

Y +(l—a)Y=aY+(I—-a)Y Ca¥Y+(1—a)Y C Y,

which proves that Y is convex.
2. Suppose once again that Y is convex. Let x, y € intY. This means that there exist
open neighborhoods U, V of 6 such that

x+UCY and y4+V CY.
Since Y is convex:
acx+U0)+d-a)y+V)=(x+ A —-a)y)+aeU+ (1 —-a)V CY,

which proves that ax + (1 — &)y € intY, namely intY is convex.
|
Lemma 1.5 Suppose t is a linear topology in a vector space X. If Y is a convex
subset of X, then:

0<a<1l = a(intY) + (1 — @)Y C intY. (1.10)

In particular, if intY # @, then:
(a) The interior of Y is dense in Y, that is, intY =Y.
(b) The interior of Y coincides with the interior of Y, that is, intY = intY.

Proof The case « = 1 in (1.10) is immediate. So let x € intY,y € Y, and let

0 < @ < 1. Choose an open neighborhood U of 6 such that x + U C Y. Since

y — 1LU is a neighborhood of y, there is some z € Y N (y — ILU), SO
-« -«

that (1 — «)(y — z) belongs to aU. Since Y is convex, the (nonempty) open set
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V=ax+U)+(—-a)z =ax+aU+ (1 —a)z lies entirely in Y. Moreover, from
ax+(1—a)y =ax+(1—a)(y—2)+ax+(1—a)z e ax+aU+(1—a)z=V C Y,

we see that ox+ (1 —«)y € intY. This proves (1.10), and letting « —> 0 proves (a).

For (b), fix xo € intY and x € intY. Pick a neighborhood of 6 satisfying x +W C
Y. Since W is absorbing, there is some 0 < A < 1 such that A(x —xo) € W,sox +
Ax—xp) €Y. By (1.10), we have x —A(x —x9) = Axo+ (1 —A)x € intY. But then,

using (1.10) once more, we obtain x = > [x = A(x —x0)] + 2 [x +A(x —x0)] €
intY. Therefore, intY < intY C intY so that intY = intY. |
Definition 1.27 Let 7 be a linear topology in a vector space X and ¥ C X.

1. The closed convex hull of a set Y, denoted conv(Y), is the smallest closed convex
setincluding Y. By Lemma 1.4 1. it is the closure of conv(Y), that is, conv(Y) =
conv(Y).

2. The convex circled hull of Y is the smallest convex and circled set that includes
Y. It is the intersection of all convex and circled sets that include Y.

3. The closed convex circled hull of Y is the smallest closed convex circled set
including Y. It is the closure of the convex circled hull of Y.

Definition 1.28 Let X be a vector space and let T be a linear topology on X. Then
(X, 1) is said to be locally convex if there is a base of neighborhoods of the origin
in X consisting of convex sets.

Proposition 1.24 A locally convex space (X, t) always has a base of neighbor-
hoods of the origin consisting of open absorbing absolutely convex subsets.

Proof Let V be a neighborhood of 6 in X. Since (X, 7) is locally convex, there
exists W convex neighborhood of 6 such that W C V. Moreover, by Remark 1.13,
there exists U balanced neighborhood of 6 such that U € W. The balancedness of

U implies that U = U aU. Thus, using that W is a convex set containing U,

aeK,|a|<1
we get

N := conv U aU ]| =conv(U) S WCV

aekK,|a|<1

and so intN C V. Hence, the conclusion holds because intN is clearly open and
convex and it is also balanced since 6§ € intN and N is balanced. | |

1.2.3 Compactness and Completeness

Definition 1.29 Let (X, t) be a topological vector space.
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1. A net (xq)qes in X is said to be a Cauchy net if for each neighborhood V of 6
there exists o9 € I such that x, — xg € V whenever «, 8 > ag.

2. Aset Y € X is complete if each Cauchy net in X converges to a point of Y.

3. AsetY C X is sequentially complete if each Cauchy sequence in X converges
to a point of Y

Example 1.8 Every convergent net is Cauchy.

Proposition 1.25 A Cauchy sequence (and in particular a converging sequence) in
a topological vector space (X, t) is bounded.

Proof Let (x,), be a Cauchy sequence. Let W, V be two balanced open neighbor-
hoods of 6 satisfying
V+VCw.
By the definition of a Cauchy sequence, there exists an N such that forallm,n > N,
Xpn—xn €V,
and in particular
Vn>N x,exy+V.
Set s > 1 such that xy € sV (we know that such an s exists), then for alln > N,
X, €sV4+VCsV4+sV W,

Since for balanced sets sW C tW for s < t, and since every open neighborhood of
6 contains an open balanced neighborhood, this proves that the sequence is indeed
bounded. ]

Proposition 1.26 Ler {(X;, ti)}icr be afamily of topological vector spaces, and let

X = 1_[ X endowed with the product topology T = H T;. Then (X, t) is complete
iel iel

if and only if each factor (X;, 1;) is complete.

Proposition 1.27 Let (X, t) be a topological vector space with a countable base

of neighborhoods of 6. A set Y C X is complete if and only if Y is sequentially

complete.

Proof Let B = {V,: n € N} be a countable base of neighborhoods of 6. We can
assume that V| O V, D ..., indeed, otherwise we can substitute 3 with the base

ViLvinvp, VvinvaNvs, .-}

Let Y be complete, and (x,), a Cauchy sequence in Y. There exists a subnet
(X4 (@))aer converging to a point x € Y. Let us construct inductively a sequence
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(ax) in 1. Choose a so that xy() € x + Vi for each @ > «y. If we already have
ai, -+, o, choose o1 > oy sothat ¢ (axy1) > @ (o) + 1 and xg () € x + Vi
for each o > a 1. It is easy to verify that (x4(;))ken 1s a subsequence of (x,),
that converges to x.

Conversely, Let Y be sequentially complete, and (x4)yer @ Cauchy netin Y. Let
us construct inductively a sequence (o) in I. Choose o so that x, — x4, € Vj for
each o > oy. If we already have ay, - - - , &g, choose o1 > o so that xo —Xxgy,, €
Vi1 for each o > agy1. Then (xg,) is a Cauchy sequence since xq,, — Xg, € Vy
whenever m > n. Consequently, (xq,) converges to a point x € Y. Now, it is easy
to show that (xq)yes converges to x, too. |

Definition 1.30 A set Y in a topological vector space (X, 7) is totally bounded (or
precompact) if for each neighborhood V of 6 there is a finite set F € X such that
YCF+V.

It is easy to see that in normed spaces (or in topological metric spaces) this
definition coincides with the usual metric one: for each & > 0 there is a finite
set F C X such that dist(x, F) < e foreachx € Y.

Theorem 1.9 Let Y be a set in a topological vector space (X, t). Then Y is totally
bounded if and only if each net in Y admits a Cauchy subnet.

Proof Let (x4)qcs be anetin a totally bounded set Y. The family Z ={Z C Y}: B
be a maximal subfamily of Z that contains Y and is closed under making finite
intersections (existence of such B follows by Zorn’ s lemma). Let us show several
properties of 5.

(a) if F is a finite subfamily of Z such that U]-' € B, then F N B # . Let
F ={Z,---,Z,}. We claim that, for some index k, Z;y N B € Z for each
B € B. Indeed, if this not the case, for eachi € {1, --- , n} there exists B; € B

n n n

such that Z; N B; ¢ Z,butthen B > (| Jznn(\B: < | Jzi nB) ¢ 2,
i=1 i i=1

a contradiction. Our claim implies that the family of all finite intersections of

elements of B U{Zk} is closed under finite intersections and is contained in Z.

By maximality of 13, we must have Z; € B.

(b) For each set Z C Y, the family B contains either Z or Y \ Z. If Z ¢ Z, then
eventually x, € Y \ Z. Since the intersection of Y \ Z with any element of B
belongs to Z, the family of finite intersections of BU {Y \ Z} is contained in Z.
Thus Y \ Z € B by the maximality of 3. In the same way we getthat Y \ Z ¢ Z
then Z € B. Finally, if both Z and Y \ Z belong to Z the one of them belongs
to B by (a) (since Y € B).

(c) B contains arbitrarily small elements, in the sense that for each neighborhood
V of 0 there exists B € B such that B— B C V. Given a neighborhood V of 0,
there exists a neighborhood W of 8 with W — W C V. By total boundedness,
there exists a finite set F = {y1,---, y»} € Y such that Y C F 4+ W. Denoting
Yi=i+W)NYG@ =1,---,n), we have Y = U!_,Y;. Consider the set
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P={i e€{l,---,n}:Y; € Z} and its complement {1,---,n} \ P. Since

C= |J Yi¢Z wemusthaveP#f.LetZ=|JY,. Then¥\Z ¢ Z
ie{l, .n}\P ieP

(since Y \ Z C C). By (b), we must have Z € B. By (a), there exists k € P

with Y, € B. Noticethat Y, — Y, CW —-W C V.

To conclude the proof of this implication, notice that the family B satisfies the
assumptions of Lemma 1.1. Hence there exists a subnet of (x,) that is eventually
contained in each element of 5. By (c), this subnet is Cauchy.

Conversely, assume that Y is not totally bounded. There exists a neighborhood
V of 6 such that Y \ (F + V) # 0§ for each finite set ¥ C V. An easy inductive

construction gives a sequence (x,), such that x, 1 ¢ {x1,---, x,} + V for each n.
Since for two indexes m > n we have x,, — x, ¢ V, our sequence has no Cauchy
subnets. The proof is complete. |

Theorem 1.10 A set Y in a topological vector space is compact if and only if Y is
totally bounded and complete.

Proof Let Y be compact. Given an open neighborhood V of 8, the open cover {y +
V:y e Y}of Y admits a finite sub cover. This proves that Y is totally bounded. Let
(xq)aer be a Cauchy net in Y. By Theorem 1.6 (x4)yc; admits a subnet converging
to a point of Y. It easily follows that the net (x4 )y converges to the same limit.
Conversely, assume Y is totally bounded and complete. Given a net (xq)yes in
Y, it admits a Cauchy subnet by Theorem 1.9. Since Y is complete, this subnet
converges to a point of Y. Again, it follows that (x4)yec; converges to the same
point. By Theorem 1.6, Y is compact. |

1.2.4 Seminorms and Local Convexity

Definition 1.31 A seminorm on a vector space X is map p: X — R such that

p(x+y) = p(x) + py),
and
plax) = || p(x).
Definition 1.32 Let P := (p;)ics be a family of seminorms. It is called separating
if to each x # 6 corresponds a p; € P, such that p; (x) # 0. Note that the separation

condition is equivalent to

pix)=0,YViel =>x=6.
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Examples 1.7

1.

Suppose X = R” and let Y be a vector subspace of X. Set for any x € X
py(x) == inf [lx — y||
yeyY
where ||.|| is the Euclidean norm, i.e., py (x) is the distance from the point x to

Y in the usual sense. If dim(Y) > 1 then py is a seminorm and not a norm (Y is
exactly the kernel of py). When Y = {6}, py(.) = |||

. Let X be a vector space on which is defined a nonnegative sesquilinear Hermitian

form ¢: X x X — K. Then the function

Po(x) = p(x, x)?

is a seminorm. p,, is a norm if and only if ¢ is positive definite (i.e., ¢(x, x) >
0,Vx #£06).

. Let C(R) be the vector space of all real valued continuous functions on the real

line. For any bounded interval [a, b] with a, b € R and @ < b, we define for any
feCR):

Pla,p1(f) := sup |f(®)].

a<t<b

Pla,p] 1s @ seminorm but is never a norm because it might be that f () = 0 for
all t € [a, b] (and so that pj, () = 0) but f # 0. Other seminorms are the
following ones:

1
b v
q(f) :=1fO) and g,(f):= </ If(t)l”> for 1 < p < oo.

Proposition 1.28 Let p be a seminorm on a vector space X.

b AN W N~

p is symmetric.

p@) =0.

lp(x) — pWI < p(x — ).
p(x) = 0.

ker p is a linear subspace.

Proof By the properties of the seminorm:

1.
2.
3.

px—y)=p=0G—x)=I[-1pl—x)=ply—x.
p©) = p0.x) =0.p(x) =0.
This follows from the inequalities

px) < p()+pkx—y) and p(y) < px)+p(y —x) =pKx)+pkx —y).
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4. By the previous item, for every x :

0=<|p(x)—p@O] =< p).

5. Ifx,y ekerp:

plax + By) < p(ax) + p(By) = la| p(x) + [B] p(y) = 0.

Notation Let X be a vector space and p a seminorm on X. The sets
Bl ={xeX:p(x) <1} and B} ={x € X: p(x) < 1},

are said to be, respectively, the open and the closed unit semiball of p.

Proposition 1.29 Let t© be a linear topology on the vector space X. Then the
following conditions are equivalent:

1. the open unit semiball Bf of p is an open set.

2. p is continuous at the origin.

3. the closed unit semiball Ef of p is a barrel neighborhood of the origin.
4. p is continuous at every point.

Proof 1. = 2. Suppose that Bf is open in the topology t on X. Then for any ¢ > 0
we have that p_l([O, eD=xeX: plx) <e}= st is an open neighborhood of
the origin in X. This is enough to conclude that p: X — R™ is continuous at the
origin.

2. = 3. Suppose that p is continuous at the origin, then Ef = p_l([O, 1D
is a closed neighborhood of the origin. Since Bf is also absorbing and absolutely
convex, BY is a barrel.

3. = 4. Assume that 3. holds and fix § # x € X. We have for any
e > 0: p~l(—e + p).e + p)]) = {y € X: [p() —p@)| < ¢} 2 (v €
X:py—x)<e}=x+ 8§f, which is a closed neighborhood of x since 7 is a
linear topology on X and by the assumption 3. Hence, p is continuous.

4. = 1.If p is continuous on X then 1. holds because the preimage of an open
set under a continuous function is open and B = -1 ([0, 1]). |

Definition 1.33 Let X be a vector space. For K C X convex and radial at 6
(equivalently, K is absorbing), we define the Minkowski functional of K as

pr(x) = inf{t > 0: ; € K}.

Intuitively, pg(x) is the factor by which x must be shrunk in order to reach the
boundary of K.
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Definition 1.34 (Topology Induced from Seminorms) Let (p;);c; a family of
seminorms on a vector space X. Then the ith open strip of radius r centered at
xeXis

Bi(x)={y € X: pi(x —y) <r}.
Let A be the collection of all open strips in X :
A={B.(x):iel,r>0xeX}

The topology t(A) generated by A is called the topology induced by (p;)icy-

The fact that p; is a seminorm ensures that each open strip Bf (x) is convex.
Hence all finite intersections of open strips will also be convex.

Theorem 1.11 Let (p;)ics be a family of seminorms on a vector space X. Then

n
B:{mBﬁj(x):neN,ijel,r>0,x€X}
j=1

forms a base for the topology induced from these seminorms. In fact, if U is open
and x € U, then there existsanr > Qand iy, --- , i, € I such that

n
B/ () cU.
j=l1
Further, every element of B is convex.

Proof Suppose U C X and x € U. In order to show that 3 is a base for the
topology, we have to show that there exists some set B € B suchthatx € B C U.
By the characterization of the generated topology, U is a union of finite intersections
of elements of A. Hence we have

n
X € ﬂ B;j:(xj)

j=1

for somen > 0,i; € I,r; > 0, and x; € X. Then x € Bi;(xj), so, by definition
Pij (x — x;) < r; for each j. Therefore, if we set

r=min{r; — p;;(x —x;): j=1,---,n},



34 1 Basic Concepts

then we have Bij (x) C B;j (xj) foreach j =1, ---,n. Hence

B=()B () eB,
j=1

and we have x € B C U. |

Proposition 1.30 Ler (p;)ic; be a family of seminorms on a vector space X.
Then the induced topology on X is Hausdorff if and only if the family (p;)icy is
separating.

Remark 1.17 If any one of the seminorms in our family is a norm, then the
corresponding topology is automatically Hausdorff (for example, this is the case
for C;°(R)). On the other hand, the topology can be Hausdorff even if no individual
seminorms in a norm (consider L lloc (R)).

Examples 1.8

1. Given an open subset © of R with the euclidean topology, the space C(2) of
real valued continuous functions on 2 with the so-called topology of uniform
convergence on compact sets is a locally convex topological vector space. This
topology is defined by the family P of all the seminorms on C(£2) given by

p(f) = malg(|f(x)|, VY K C Q compact.
xe

Moreover, the linear topology 7p induced from the family P is Hausdorff,
because the family P is clearly separating. In fact, if px (f) = 0,V K compact
subsets of €2 then in particular p(,)(f) := |f(x)| = 0V x € Q, which implies
f=0onQ.

More generally, for any X locally compact we have that C(X) with the
topology of uniform convergence on compact subsets of X is a locally convex
topological vector space.

2. Let Ny be the set of all non-negative integers. For any x = (x, -+, x;;) € R”
and @ = (a1, -+, o) € N one defines x* := x‘f‘1 -+ xpm. For any B € Nf,
m
the symbol D denotes the partial derivative of order || where |B| := Z Bi,
i=1

ie.,

pLdl Pl §Bm

Df = = e )
8)6'131 e gxDm E)xis1 axhm

(a) Let Q € R™ open in the euclidean topology. For any k € Ny, let ck(Q) be
the set of all real valued k—times continuously differentiable functions on €2,
i.e., all the derivatives of f of order < k exist (at every point of €2) and are
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continuous functions in 2. Clearly, when k = 0 we get the set C(2) for all
real valued continuous functions on €2 and when k = oo we get the so-called
set of all infinitely differentiable functions or smooth functions on 2. For any
k € Ny, C* (£2) (with pointwise addition and scalar multiplication) is a vector
space over R. The topology given by the following family of seminorms on

ck(Q):

pa.x(f):= sup sup |(D’3f)(x)], VK C QcompactVd € {0, 1, ---,k},
BeNy xeK
|Bl=d

makes C¥ () into a locally convex topological vector space. (Note that when
k = oo we have m € Ny. )

(b) The Schwartz space or space of rapidly decreasing functions on R™ is
defined as the set S(R™) of all real-valued functions which are defined
and infinitely differentiable on R” and which have the additional property
(regulating their growth at infinity) that all their derivatives tend to zero at
infinity faster than any inverse power of x, i.e.,

S@R™) = {f € C®°@®R™): sup [x*DF f(x)| < o0, Vo, B € N’O”}.

xeRm

If f is a smooth function with compact support in R” then f € S(R™),
since any derivative of f is continuous and supported on a compact subset of
R™, so x*(D? £(x)) has a maximum in R” by the extreme value theorem.

The Schwartz space S(R™) is a vector space over R and the topology
given by the family P of seminorms on S(R™):

Pa,p i= SUD |x“Dﬁf(x) , Va, B e Ny

xeR™M

makes S(R™) into a locally convex topological vector space. Indeed, the
family is clearly separating, because if po g(f) = 0, Y, 8 € N then in
particular pg o(f) = sup |f(x)] = 0 Vx € R™, which implies f = 0

xeRm
on R™.

Note that S(R™) is a linear subspace of C*°(R™), but its topology Tp on
S(R™) is finer than the subspace topology induced on it by C*°(R™).

Theorem 1.12 Let X be a vector space whose topology is induced from a family of
seminorms (p;)icy. Then given any net (xq)qecy and any x € X, we have

Xq >x & Viel, pi(x —xq) — 0.
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Proof =. Suppose that x, — x, and fix any i € [ and ¢ > 0. Then Bé (x) is an
open neighborhood of x, so by definition of convergence with respect to a net, there
exists an g € J such that

o >0y = Xy € Bé(x).

Therefore for all & > g we have p; (x — x4) < €, 50 pi(x — xq) — O.

<. Suppose that p;(x — x,) — 0 for every i € I, and let U be any open
neighborhood of x. Then by Theorem 1.11, we can find an r > 0 and finitely many
i1, ,1, € I such that

n
x e ﬂ B’ (x) C U.
j=1

Now, givenany j = 1, --- , n we have Pij (x — xq) — 0. Hence, for each j we can
find «; € J such that

a > aj :>p,-j(x—xo,) <r.

Since J is a directed set, there exists some o9 € J such that o9 > «; for j =
1,---,n. Thus, forall @ > a wehavep,-j(x —xq) <rforeachj=1,---,n,s0

n
i‘
Xq € ﬂ B/ (x) CU, o> ap.
j=1
Hence x, — x. |

Corollary 1.3 Let X be a vector space whose topology is induced from a family
of seminorms (p;)ici, let Y be any topological space, and fix x € X. Then the
following two statements are equivalent.

1. T: X — Y is continuous at x.
2. For any net (xy)qcJ,

pi(x —x4) > 0 foreachi €l = T(xyq) —> T(x)inY.
Proposition 1.31 Ler X be a vector space whose topology is induced from a family
of seminorms (p;)icy. Then,

1. foralli € I, p; is continuous.
2. AsetY C X is bounded if and only if p; is bounded on Y foralli € I.
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Proof

1. Let i € I. Because of the reverse triangle inequality, p; (x — x,) — 0 implies
pi(xq) — pi(x). Hence each seminorm p; is continuous with respect to the
induced topology.

2. Suppose Y < X is bounded. Take i € I. Then Blp’ is a neighborhood of 6.
Hence,

Y C pB/
for some p > 0 (by definition of boundedness). Hence, for all x € Y,

xefpyeX:p(y) <1} ={py € X: p(py) <p}={z€ X: p(2) <ph

ie., p(x) < p.
Conversely, if p;(Y) is bounded for every i € I. Then there are numbers r;
such that

sup pi(x) < r;.
xeY

Let U be a neighborhood of 8. Again

N&'®cu.

j=1

M;; _ x i x
Choosem > —=(1 < j <n). Ifx € Ythenp;;(—) < — <r; = — €
rij m k m
U=xemU.
|

Theorem 1.13 If X is a vector space whose topology T is induced from a separating
family of seminorms (p;)ic1, then (X, t) is a locally convex topological vector
space.

Proof We have already seen that there is a base for the topology t that consists
of convex open sets, so we just have to show that vector addition and scalar
multiplication are continuous with respect to this topology.

Suppose that ((Ay, Xq))aes is any net in K x X, and that (Ay, x4) — (A, X)
with respect to the product topology on K x X. This is equivalent to assuming that
A — AinKand x, — x in X. Fix any i € [ and any ¢ > 0. Suppose that
pi(x) # 0. Since p; (x — xo) — 0, there exist o1, a» € J such that

£
oo = |A—A|<min{ ,1},
* 2pi(x)
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and

&

= pilx — —.
o> o pilx —xq) < SED

By definition of directed set, there exists «g > o1, a2, so both of these inequalities
hold for o > «p. In particular, (Ay)g>«, is @ bounded net, with |Ay| < |A| + 1 for
all @ > «ag. Hence, for o > o9 we have

Pi(Ax — AgXg) < pi(Ax — AgX) + pi(AgX — AgXg)
= |)\ - )\a| Pi(x) + |)¥a| Pi(x — Xo)

° +
<-4 =-=%s.
22
If pi(x) = 0 then we similarly obtain p;(Ax — Agxy) < < for @ > «p. Thus we
have p; (Ax — Lyxy) — 0. Since this is true for every i, Theorem 1.12 implies that

AaXag — AX. |

Theorem 1.14 The topology of a locally convex topological vector space X is given
by the collection of seminorms obtained as Minkowski functionals py associated to
a local basis at 0 consisting of convex balanced open.

Proof The proof is straightforward. With or without local convexity, every neigh-

borhood of 6 contains a balanced neighborhood of 8. Thus, a locally convex

topological vector space has a local basis B at 8 of balanced convex open sets.
Every open U € B can be recovered from the corresponding seminorm by

U=intU ={x e X: pyx) < 1}.
Oppositely, every seminorm local basis open
{xeX: pyx) <r}

is simply rU. Thus, the original topology is at least as fine as the seminorm
topology. |

1.2.5 Metrizable Topological Vector Spaces

What does it take for a topological vector space (X, t) to be metrizable? Suppose
there is a metric d compatible with the topology t. Thus, all open sets are unions of
open balls, and in particular, the countable collection of balls B () forms a local

base at the origin.
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Theorem 1.15 A Hausdorff topological vector space is metrizable if and only if
zero has a countable neighborhood base. In this case, the topology is generated by
a translation invariant metric.

Proof Let (X, t) be a topological vector space. If 7 is metrizable, then t has
clearly a neighborhood base at 6. For the converse, assume that T has a countable
neighborhood base at 6. Choose a countable base {V,,} of circled neighborhoods of
6 such that V,, 11 + V41 + Vua1 € V, holds for each n. Now define the function
p: X — [0,00) by

1, if x¢Vp,
p(x) =275 if x € Vi \ Vigr,
0, it x=6.

Then it is easy to check that for each x € X we have the following:

. p(x) > 0if and only if x = 6.
x € Vj for some k if and only if p(x) < 27k
. p(x) = p(—x) and p(ax) < p(x) forall || < 1.
. lirrb,o(ax) =0.
o—>

We also note the following property : x, -5 @ ifand only p(x,) — 0.
Now by means of the function p we define the function IT: X — [0, co) via the
formula

n n
IMx) = inf{ Zp(x,-): X1, ,Xx, € X.and in =x}.
i=1 i=1

The function IT satisfies the following properties.

(a) TI(x) >0 foreachx € X.

b) Mx+y) <I(x)+TI(y) forallx,y € X.

1
(c) Ep(x) < II(x) < p(x) foreach x € X (so I1(x) = 0 if and only if x = 6).

Property (a) follows immediately from the definition of I1. Property () is
straightforward. The proof of (c¢) will be based upon the following property :

n n

1

If E plxi) < z—m,then E x; € Viy. (1.11)
i=1 i=1

1
To verify (1.11), we use induction on n. For n = 1 we have p(x]) < o and

consequently x; € V41 € V,, is trivially true. For the induction step, assume that

1
if {x;: i € I} is any collection of at most n vectors satisfying Z p(x;) < o for

iel
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n+1
some m € N, then Zx, € V,,. Suppose that Zp(x,) < 5 for some m € N.

iel i=1

Clearly, we have p(x;) < so x; € Vy4 foreach 1 < n + 1. We now

om+1’
distinguish two cases.
n+1

1
Case 1: Zp(xi) < STl

ll
n

1
Clearly Z p(x;) < i so by the induction hypothesis Zx, € Vipy1. Thus
i=l i=1

n+l n

in = in + X1 € Ving1 + Vg1 C Vi
i i=1

n+l1 1
Case 2: Zp(x,-) > ST
i=1
l n+l1
Let 1 <k < n+1 be the largest k such that Z p(x;
i=k

) > ST Ifk =n+1, then

n+1
1
so from Zp(x,) < — we have Zp(xl) < T But then,
i=1 i=1

1
p(xﬂ-l—l) 2m+19

n+1
asin Case 1, we get Z x; € V,;. Thus, we can assume that k < n + 1. Assume first

i=1
n+1 n+1

hatk > 1.F h 1 d ! b
that k > rom the inequa 1tles2p(x,) < 5-an Zp(xl) 2 om ST Weo tain
i=1 =k
k—1

Z pxi) < m— So our induction hypothesis yields Zx, € V1. Also by the
i=1

n+1
choice of k we have Z p(xi) < T and thus by our induction hypothesis also
i=k+1
n+1
we have Z X;i € Vius1. Therefore, in this case we obtain
i=k+1
n+1 k—1 n+1

in = in + xp + Z Xi € V1 + Vg1 + Vintr1 € Vi
[ i=1 i=k+1
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n+l 1 n+l n+l
If k = 1, then we have Z olxi) < AT SO Zx,- € V1. This implies in =
i=2 i=2 i=1
n+1
X1+ in € Vi1 + Vin+1 S Vy. This completes the induction and the proof of
i=2
(1.11).

1
Next, we verify (c¢). To this end, let x € X satisfy p(x) = o for some m > 0.
k
Also, assume by way of contradiction that the vectors x1, - - - , xi satisfy Z Xi =X

i=1

k k
1 1
and E o(xi) < Ep(x) = Smil But then, from (1.11) we get x = E X; €

i=1 i=1

Vint1, 80 p(x) < — T < 5 = p(x), which is impossible. This contradiction,

establishes the validity of (c¢).
Finally, for each x,y € X define d(x,y) = Il(x — y) and note that d is a
translation invariant metric that generates t. |

Definition 1.35 Let (X, t) be a topological vector space.

1. X is an F-space (completely metrizable topological vector space) if its topology
is induced by a complete translationally invariant metric. In other words, a
completely metrizable topological vector space is a complete topological vector
space having a countable neighborhood base at 8. Every Banach space is an F-
space. An F-space is a Banach space if in addition d(ax, ) = || d(x, 0).

2. X is a Fréchet space if it is a locally convex F'-space.

Definition 1.36 A complete topological vector space (Y, I') is called a topological
completion or simply a completion of another topological vector space (X, t) if
there is a linear homeomorphism 7: X — Y such that 7(X) is dense in Y,
identifying X with T (X), we can think of X as a subspace of Y.

Theorem 1.16 Every topological vector space has a unique (up to linear homeo-
morphism) topological completion.

It turns out that the existence of a countable local base is also sufficient for
metrizability. (It suffices that 7 is induced from a separating countable family of
seminorms (py),). Indeed, there exists a translation-invariant metric compatible
with 7. One can show that the following is a compatible metric:

appn(x —y)

d(x,y) = max -t — V)
Y T Y e — )

where (o), is any sequence of positive numbers that decays to O (it is easy to see
that the maximum is indeed attained). Clearly, d(x, x) = 0. Also, since the p,’s
are separating d(x, y) > 0 for x # y. Symmetry, as well as translational invariance
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are obvious. Finally, the triangle inequality follows from the fact that every p, is
subadditive, and that a < b + ¢ implies that

a b c
< + .
l+a ~ 14+b 1+c¢

It remains to show that this metric is compatible with the topology 7. One can also
define the following translation-invariant metric compatible with t

n pl‘l(x )7)
407 = Zz T+ paG— )

Example 1.9 Let s = {(xy)n>1: x € Kfor alln > 1}, the space of all scalar
sequences. The topology of pointwise convergence is described by the seminorms
pes (k = 1), pe((o)a=1) = 3¢ and the metric is

400
Vnl

ey = 3

, X = (xn)nzl’ y = (yn)nzl-
_yn|

_ 1
The ball B%(H) ={x:d(x,0) < Z} is not convex, since (1,0,0,---),(0,1,0,---)
— 3 1 31 _
€ By(0).but 2(1,0,0.--) + 7(0,1,0,--) = (7. 7.0.0.---) ¢ By (0).

Theorem 1.17 Let (X, t) be topological vector space that has a countable local
base. Then there is a metric d on X such that:

1. d is compatible with T (every t-open set is a union of d-open balls).

2. The open balls B, (0) are balanced.

3. disinvariant: d(x +z,y +z) =d(x, y).

4. If, in addition, X is locally convex, then d can be chosen such that all open balls
are convex.

Theorem 1.18 A topological vector space (X, t) is normable if and only if there
exists a convex bounded open neighborhood.

Proof If (X, t) is normable then By = {x: ||x|| < 1} is convex and bounded.
Suppose that there exists an open convex and bounded neighborhood V of 6. Set

U= ﬂav.

la|=1

Since U is the intersection of convex sets it is convex. It is balanced because for
every |[B] <1,

BU = () BaV = () IBlaV = BIU,

loe|=1 =1
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and by convexity,
IBIU = BIU + (1 —|BD{O} S U.

Since U contains 6, intU is balanced, it is also convex. Then there exists a convex
and balanced (and certainly bounded) open neighborhood W = intU C V. Set

Xl = pw(x),

where pw is the Minkowski functional of W. We will show that this indeed a norm.
Clearly, ||x|] = 0 if and only if x = 6. Since W is balanced then pwy(axx) =
|| pw (x). The triangle inequality follows from the properties of pw. It remains to
show this norm is compatible with the topology 7. This follows from the fact that

B (0) = {x: |lxll <r}={x: pwlx) <r}={x: pw()r—c) <1rcrw,

which means that B, (6) is bounded, hence
{Br(6): r >0}

is a local base. |

Example 1.10 Let Q be an open set in R™. We consider the space C(2) of all
continuous functions. Note that the sup-norm does not work here. There exist
unbounded continuous functions on open sets.

Every open set €2 in R™ can be written as

o0
Q:UK,,,

where K, € K,4+1, where the K, are compact, and € stands for compactly
embedded, i.e., K, is a compact set in the interior of K, ;1. We topologize C(£2)
with the separating family of seminorms,

pa(f) =max{[f(x)| : x € Kn} = || flk,-

(These are clearly seminorms, and they are separating because for every f # 0 there
exists an n such that fig, # 0).
Since the p,’s are monodically increasing,

D

n D n
NN B @ = ph) < é} =B} ©),

d=1k=1 d=1k=1
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which means that the B’i (0) form a convex local base for C(£2). In fact, B’i @)

D D
contains a neighborhood obtained by taking n, D to be the greatest of the two, from
which follows that

1
BY®) =1/ pu) < )

is a convex local base for C(€2), and the p,’s are continuous in this topology. We
can thus endow this topological space with a compatible metric, for example,

Z_npn(f B g)

() &) =mixy +oa(f —8)

We will now show that this space is complete. Recall that if a topological vector
space has a compatible metric with respect to which is complete, then it is called an
F-space. If, moreover, the space is locally convex, then it is called a Fréchet space.
Thus, C(€2) is a Fréchet space. Let (f;,), be a Cauchy sequence. This means that
for every ¢ > 0 there exists an N, such that for every d,n > N,

27K pr(fo — fa)
X— <
ko 1+ pr(fu — fa)

)

and so,

27K p(fo = fa)
—_— <

\4
k=1 L+ pe(fu — fa)

3

which means that (f,;), is a Cauchy sequence in each K (endowed with the sup-
norm), and hence converges uniformly to a function f. Given ¢ and let M such that
2—M g, then

2 Mpe(fu = )

ax <§é€,
k>M 1+ pe(fu — 1)

and there exists an N, such that for every n > N,

2 Mpe(fu = )
X— <

a 87
k<M 1+ pe(fu — )

which implies that f, — f, hence the space is indeed complete.

The question remains whether C(€2) with this topology is normable. For this, the
origin must have a convex bounded neighborhood. Recall that a set Y is bounded if
and only if {p,(f): f € Y}is bounded for every n, i.e., if

{sup{|f(xX)[ : x € Kn}: f €Y}
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is a bounded set for every n, or if
Vn>1 sup{lf(x)|:x € K,, feY} < oo.

Because the B'l (9) form a base, every neighborhood of 6 contains a set
B} (0),
13
hence,

1
sup(l £ ()| : x € Ky, f € V) = suplll fllk, 1l < )

The right hand side can be made as large as we please for n > k, i.e., no set is
bounded, and hence the space is not normable.

1.2.6 Finite Dimensional Topological Vector Spaces

Lemma 1.6 Let (X, 7) be a topological vector space. Any linear map T : K" — X
is continuous.

Proof Denote by (e;)1<i<n the standard basis in K" and set

uj="T(;) j=1,---,n.

n
By linearity, for any x = (x1, -+, x,) = ijej
j=1

n
T(x)= ijuj.
j=1

The map x + x; (which is linear map K" — K) is continuous and so are addition
and scalar multiplication in X. |

Proposition 1.32 Let (X, 7) be a topological vector space. Then :

1. Every finite dimensional subspace Y of X is a closed subset of X.
2. If Y is an n-dimensional subspace of X and (u;)1<i<n is a basis for Y, then
n

the map T: K" — Y defined by T(xy, - ,x,) = ijuj is a topological
j=1
isomorphism of K" equipped with its Euclidean topology, onto X. That is,



46 1 Basic Concepts

n
specifically, a net (x%), = Zx;xu j converges to an element x =
j=1

o
n

ijuj € Y if and only if each net (x?’)a convergestoxj,1 < j <n.
j=1
Proof

1. We prove part 1 by induction on the dimension of the subspace Y. First, if Y has
dimension 1, let y # 6 € Y be abasis for Y. If (Ayy)y iSanetin Y that converges
to an element x € X, then the net (1,), must be eventually bounded in K, in the
sense that there must exist an index «g and a constant M such that |Ay| < M for
all @ > «g. Indeed, if the net (Ay)y Were not eventually bounded, let (X, ﬁ) g bea
subnet for which lién |Aa 5 | = 00. Then

1
y=1lim—~Ay,y
B hay "

1
= lim — lim A
by B agy

=0xx

=6.

which is a contradiction. So, the net (A4 ), is bounded. Let (A4 5B be a convergent
subnet of (Ay) With limit A. Then

x = liorlnkay = li/gnkaﬂ = Ay.

whence x € Y, and Y is closed.

Assume now that any n-1-dimensional subspace is closed, and let Y have
dimension n > 1. Let {y1, --- , y,} be a basis for Y, and write Y’ for the linear
span of yi, - - -, y,—1. Then elements y of ¥ can be written uniquely in the form
y =y +Ayy, fory’ € Y and A € K. Suppose that x is an element of the closure
of Y,ie,x = li;n(y(; 4+ Ao Vn). As before, we have that the net (1), must be

bounded. Indeed, if the net (1), Were not bounded, then let (A, /3) g be a subnet
for which li/gn |Xaﬁ | = 00. Then

1 s
0 =1lim —x = lim — + y,,
ﬁ )\o[ﬁ /3 (1/3 yn
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or

/
Y
Y = —limﬂ,
B Aay

implying that y, belongs to the closure of the closed subspace Y’, this is
impossible, showing that the net (14), is bounded. Hence, letting (Rap)p be a
convergent subnet of (Ay)q, SAy A = lién Aoy, We have

x = lim(yg, + Ao n).

showing that

— /
X — Ay, = hényaﬁ,

whence, since Y’ is closed, there exists a y' € Y’ such that x — Ay, = V.
Therefore, x = y' + Ay, € Y, and Y is closed, proving part 1.

2. We prove part 2 for real vector spaces. The map T: R” — Y of part 2 is
obviously linear, one to one and onto. Also, it is continuous by previous lemma.

n
Let us show that 77! is continuous. Thus, let (x%), = ij‘u i | converge
Jj=1 o

to 6 in Y. Suppose, by way of contradiction, that there exists an j for which
the net (xj‘)a does not converge to 0. Then let (x;?‘ﬁ) g be a subnet for which

. B . . . .
limx{" = x;, where x; either is &00 or is a nonzero real number. Write
B

x =xfuj + x"®. Then

I 1 B
o o
x”‘ﬁx =uj+ 7YX
J J
whence
.1 B
u; =—11m—ﬁx’°‘ ,
B x4

J

implying that u ; belongs to the (closed) subspace spanned by the vectors
ur, - aujJrl’." s Up.

and this is a contradiction, since the u;’s form a basis of Y. Therefore, each of
the nets (x;‘)o, converges to 0, and T~ is continuous.
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Corollary 1.4 There exists a unique topology on K" (viewed as a topological
vector space), and all n-dimensional topological vector spaces are topologically
isomorphic.

There are no infinite dimensional locally compact topological vector spaces. This
is essentially due to F. Riesz.

Theorem 1.19 A topological space is locally compact if and only if is finite
dimensional.

Proof Let (X, 7) be a topological vector space. If X is finite dimensional, then t
coincides with the Euclidean topology and since the closed balls are compact sets,
it follows that (X, 7) is locally compact.

For the converse assume that (X, t) is locally compact and let V be a compact

1
neighborhood of 6. From V C U (x + 3 V), we see that there exists a finite subset

xeV
{x1, -+, xx} of V such that
k | 1
VgLJl(xi+§V):{xl"",Xk}-f-EV. (1.12)
i=
. 1 )
Let Y be a linear span of x, - - - , x¢. From (1.12), we get V C Y + EV' This

1 1 1 1 1 1
implies =V C -(Y+=V)=Y+ —=V,so0V CY Y+=V)=Y+—=V.B
%mple.s2 _2( +3 ) t5VisoV < +( t% ) +t3 y
induction we see that
1
VY + 2—nV (1.13)
for each n. Next, fix x € V. From (1.13), it follows that for each n there exist y, € Y

and v, € V such that x = y, + 2—nv,,. Since V is compact, there exists a subnet

1
(vn,) of the sequence (v,) such that v, SveXx (and clearly T —> 0in R).
So
1

T
ynazx—zTuvna—>x—0v=x.

Since (Proposition 1.32 1.) Y is a closed subspace, x € Y. Thatis, V C Y. Since V
is also an absorbing set, it follows that X = Y, so that X is finite dimensional. W
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Theorem 1.20

1.

Let Y1, ---,Y, be compact convex sets in a vector space (X endowed with a
linear topology t). Then

conv(YiU---UY,)

is compact.
2. Let (X, t) be a locally convex topological vector space. If Y C X is totally

bounded then conv(Y) is totally bounded as well.
3. If (X, t) is a Fréchet space and K C X is compact then conv(K) is compact.
4. If K C R" is compact then conv(K) is compact.
Proof
1. Let § C R" be the simplex

n
SZ{(Slv"' 7sn) LS 205 Zsl = 1}‘
i=1
SetY =Y x --- x Y, and define the functiong¢p: S x ¥ — X:
n
p(s,y) = Zsl'yi-
i=1
Consider the set K = ¢(S x Y). It is the continuous image of a compact set and
it is therefore compact. Moreover,
K Dconv(YiU---UYy).

It is easy to show that K is convex, and since it includes all the Y;’s it must in

fact be equal to conv(Y] U --- U ¥p).
2. Let U be an open neighborhood of 6. Because X is locally convex there exists a

convex open neighborhood V of 6 such that
V+VCU.
Since Y is totally bounded there exists a finite set F such that
YCF+4+V Cconv(F)+ V.
Since the right hand side is convex

conv(Y) C conv(F) + V.
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By the first item conv(F) is compact, therefore there exists a finite set F’ such
that

conv(F)=F +V,
ie.,
convY) CF +V+VCF +U,

which proves that conv(Y) is totally bounded.

3. In every metric space the closure of a totally bounded set is totally bounded,
and if the space is complete it is compact. Since K is compact, then it is totally
bounded. By the previous item conv(K) is totally bounded and hence its closure
is compact.

4. S C R" be the convex simplex. One can show that conv(K) is the image of the
continuous map § X K :

n
(Sa-xla"'a-xn)'_) § SiXi,
i=1

whose domain is compact.
|

Corollary 1.5 Let X be a vector space endowed with a linear topology t. The
convex hull of a finite set (polytope) is compact.

Example 1.11 (Noncompact Convex Hull) Consider [, the space of all square

summable sequences. For each n let 4, = (0,---,0,—,0,0,---). Observe that
~———" 1N
n—1

1 (]
lunll2 = —, so uy, 59, Consequently,
n

Y ={uy,uz,u3,---}U {6}
is norm compact subset of /5. Since 6 € Y, it is easy to see that

k k
conv(Y) = {Zaiui: o; > 0 for each i and Zai <1 }

i=1 i=1

In particular, each vector of conv(Y) has only finitely many nonzero components.
We claim that conv(Y) is not norm compact. To see this, set

1
.p,

1 11 "1
g 000 =3 S,

i=1

| =
W | =

1
Xn = (55
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c (Y).N -1l (1 11 11 11 1 1
soxp €econv(Y). Nowx, —> x=(=, ===, =.=5, "+, —.—, —— e
" " 2°2'2273°23 n'2n’p 4120+l

in [. But x ¢ conv(Y), so conv(Y) is not even closed, let alone compact.

Remark 1.18 In the above example, the convex hull of a compact set failed to be
closed. The question remains whether the closure of the convex hull is compact. In
general, the answer is no. To see this, let X the space of sequences that are eventually
zero, equipped with the />-norm. Let Y as above, and note that conv(Y) (where the
closure is taken in X, not /) is not compact either. To see this, observe that the
sequence (x,), defined above has no convergent subsequence (in X).

Proposition 1.33 Let Y and Z are two nonempty convex subsets of a topological
vector space (X, t) such that Y is compact and Z is closed and bounded, then
conv(Y U Z) is closed.

Proof Letx; = (1 —a;)y; +ajzi — x,where0 <o; <1,y;, € Yandz; € Z
for each i. By passing to a subnet, we can assume that yy — y € Y and o; —>

— (1=
a € [0,1].If « > O, then z; —> M = z € Z, and consequently

x=(0—-a)y+az €conv(Y UZ).

Now consider the case ¢ = 0. The boundedness of Z and Proposition 1.20 imply
aizi — 0,80 x; = (I —ai)y; + ajzi —> y. Since the space is Hausdorff,
x=yeconv(YUZ). | |

1.2.7 The Weak Topology of Topological Vector Spaces
and the Weak™ Topology of Their Duals

If X is a topological vector space then the weak topology on it is coarser than the origin
topology : any set that is open in the original topology is open in the weak topology. From
this, it follows that it is easier for a sequence to converge in the weak topology than in the
original topology.

We will consider topological vector spaces (X, t) over the field K, K = R or
K = C. For definiteness we assume K = C.

Remark 1.19 Given a vector space X and a linear functional ¢: X — K, the map
Py = 1ol : X 3 x — |¢p(x)| € [0, oo defines a seminorm on X.

Definition 1.37 Let (X, t) be a topological vector space. The topological dual
space X' is the set of all continuous linear maps (X, 7) — K.

Next, we will discuss the geometric form of the Hahn-Banach theorems. The first
geometric version is

Lemma 1.7 Let (X, t) be a real topological vector space, and let V. C X be a
convex open set which contains 0. If xo € X \ V, there exists € X', such that
Y(xg) =land ¥ (x) < 1, forallx € V.
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It turns out that Lemma 1.7 is a particular case of a more general result:

Theorem 1.21 (Hahn-Banach Separation Theorem-Real Case) Ler (X, t) be a
real topological vector space, let Z, W C X be nonempty convex sets with Z open,
and Z N'W = §. Then there exists v € X', and a real number a, such that

Y(z) <a <y(w), forallze Z,w € W.
Proof Fix some points zg € Z, wg € W, and define the set

V=Z-WHwy—zo={z—w+wyg—20:2€ Z,we W}

It is straightforward that V is convex and contains 6. The equality

V= U(Z—w+wo—zo)
weW

shows that V is also open. Define the vector xg = wg — z9. Since ZN W = {, it is
clear that xg ¢ V. Use Lemma 1.7 to produce ¥ € X’ such that

@) ¥xo) =1,
(i) ¥(x) <1, forallx e V.

By the definition of xg and V, we have ¥ (wo) = ¥ (z0) + 1, and
Y(z) < ¥ (w) + ¥(z0) — ¥ (wo) + 1, forallz € Z,w € W,
which gives
Y(z) < ¥ (w), forallze Z,we W. (1.14)
Put
AL

The inequality (1.14) gives

Y(E) <a<yYw)), forallze Z,w € W. (1.15)
The proof will be complete once we prove the following :

Y(z) <aforallz € Z.
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Suppose the contrary, i.e., there exists some z; € Z with ¥(z;) = «. Using the
continuity of the map

R> B+ z1+ Bx € X,
there exists some ¢ > 0 such that
71+ Bxo € Z, forall B € [—¢, €].
In particular, by (1.15) one has
V(21 +exo) < @,
which means that
a+¢ <ca,

which is clearly impossible. |

Theorem 1.22 (Hahn-Banach Separation Theorem-Complex Case) Ler (X, 1)
be a complex topological vector space, let Z, W C X be nonempty convex sets with
Z open, and Z N W = (. Then there exists € X ' and a real number o, such that

Rey(z) <a <Rey(w), forallze Z,w e W.
Proof Regard X as a real topological vector space, and apply the real version to

produce an R-linear continuous functional 1 : X — R, and a real number «, such
that

1) <o <yY(w), x e X

Then the functional ¢ : X — C defined by
Y(x) =vyi1(x) —ivi(ix), x € X

will clearly satisfy the desired properties. |

Remark 1.20 Geometrically we can say that the hyperplane {Rey(x) = o}
separates the sets Z, W in broad sense.

There is another version of the Hahn-Banach separation theorem, which holds
for locally convex topological vector spaces.
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Theorem 1.23 Let (X, t) be a locally convex topological vector space. Suppose
C, D C X are convex sets, with C compact, D closed, and C N D = (. Then there
exists ¥ € X' and two numbers o, B € R, such that

Rey(x) <a < B <Rey(y), forallx € C,y € D.

Proof Let W = D — C. By Lemma 1.2, 4. W is closed. Since C N D = {4, we have
0 ¢ W. Since W is closed, its complement X \ W will then be a neighborhood of 6.
Since X is locally convex, there exists a convex open set Z, with6 € Z C X \ W.
In particular we have Z N W = (4. Applying the suitable version of the Hahn-
Banach separation theorem (real or complex case), we find a linear continuous map
¥ : X — Kand a real number y, such that

Rey(z) <y <Rey(w), forallze Z,w e W.
Notice that 6 € Z, we get y > 0. Then the inequality
y <Rey(w), forallw € W,
gives
Rey(y) —Rey(x) >y >0, forallx e C,y € D.

Then if we define

B = ingRe Y (y)anda = sup Re ¢ (x),
ye

xeC

we get B > o + y, and we are done.

Remark 1.21 Geometrically we can say that the hyperplane {Rey(x) = p}
separates the compact sets C and the closed set D in the strict sense.

One important feature of topological duals in the locally convex Hausdorff case
is described by the following result.

Proposition 1.34 If (X, t) is a locally convex topological vector space, then X'
separates the points of X, in the following sense: for any x,y € X, such that
X # v, there exists ¢ € X', such that ¢ (x) # ¢ ().

Proof Since X is locally convex and Hausdorff, there exists some open convex set
V > y such that x ¢ V. The existence of ¢ then follows from the Hahn-Banach
separation theorem. [ |

Definition 1.38 Let (X, 7) be a topological vector space. The weak topology
on X, which we denote by o (X, X’), is the initial topology for X’. That is,
o (X, X') is the coarsest topology on X such that each element of X' is continuous
(X,0(X,X")) — C.
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Equivalently, the weak topology on X is the seminorm topology given by the
seminorms |¢|, ¢ € X'.

Remark 1.22

e The topologies T and o (X, X’) are comparable, and 7 is at least as fine as
o (X, X'). Thatis, o (X, X") € 7. A vague rule is that the smaller X’ is compared
to the set of all linear maps (X, o (X, X')) — C, the smaller o (X, X") will be
compared to t.

e If X’ separates X then (X, o (X, X’)) is a locally convex topological vector
space. It is Hausdorff because o (X, X') is induced by the separating family
of seminorms py = [P, ¢ € X’. In particular if (X, 7) is a locally convex
topological vector space then (X, o (X, X)) is a locally convex topological
vector space.

Definition 1.39 Let (X, t) be a topological vector space and (xy)qyes a net in X.
We say that

1. The net (x4)qes converges strongly to x and we write

Xq = X If (xq)aer converges to x inthe original topology t.
2. The net (xq)qes converges weakly to x and we write

Xo — X if (Xq)aes converges to x in the topology o (X, X').

This condition is equivalent to the condition that py(xy — x) — 0,V¢ € X !,
which in turn is equivalent to

$(xa) > ¢(x), Yo e X'.
A simple consequence of the fact that o (X, X) C 7 is that
Xy = X = Xg — X,

i.e., every strongly convergent net is weakly convergent.
Similarly, we will speak about the strong neighborhood, strongly closed, strongly
bounded - - -, and weak neighborhood, weakly closed, weakly bounded - - -

Definition 1.40 We say that Y C X is weakly bounded if Y is a bounded subset
of (X,o(X,X"): for every neighborhood N of 8 in (X, o (X, X')) there is some
¢ >0suchthat Y C {cx: x € N} = ¢N (equivalently, ¢ (Y) is bounded in C).

Remark 1.23 1f (X, t) is an infinite dimensional locally convex topological vector
space, the weak topology o (X, X’) has a peculiar property: every weak neigh-
borhood of 6 contains a closed infinite dimensional linear subspace. Indeed, if
we start with some neighborhood V, then there exist ¢1,---,¢, € X’ and
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&1, -, & > 0, such that e1Bp, (0) N ---NeyBp, (0), where fori = 1,--- ,n,
de)[_ @) = {x € X,|¢i(x)] < 1}. So V will clearly contain the closed subspace
(ker ¢1) N --- N (ker ¢,). It follows that

dim X < n + dim(ker ¢1) N---N (ker ¢,,),

i.e., dim(ker ¢1) N --- N (ker ¢,) = co. Hence o (X, X’) is not locally bounded.

Proposition 1.35 In any finite-dimensional normed space, the weak topology
coincides with the topology generated by any norm.

Proof Let X be a finite-dimensional vector space, let (e, --- , eg) be a basis in
X, and let ¢1, - - -, ¢gq be its dual basis, defined by ¢;(ej) = &; ;. Then, ||x|l0 =

max |¢;(x)|is anormon X, and since X is finite-dimensional, all linear functionals
1<i<d

on X are also continuous.

We know that on finite dimensional vector space two norms are equivalent, so
it is enough to compare the weak topology to the topology t induced by || ||co- It is
clear that T © o (X, X’). On the other hand,

1Xlgy gy = SUP = [X]locs X € X,

I<i=d

and hence the open ||.||so-balls around any point and with any radius are open in the
weak topology. Hence, 7 € o (X, X'). ]

Theorem 1.24 Let X be an infinite-dimensional normed space and Sy = {x €
X: |lx|| = 1} be the unit sphere of X. The closure of the unit sphere in the weak
topology is the whole closed unit ball, i.e.,

o (X, X
SXU( )

={xeX:|xll =1}

Similarly, one can show that B1(f) = {x € X: ||x|| < 1} has empty interior for
o (X, X'). In particular it is not open. Despite these facts, there are sets whose weak
closure is equivalent to its strong closure.

Remark 1.24 1f (X, t) is a locally convex topological vector space, then for any

Y C X, then conv(Y)T = conv(Y)J(X’X ).

Theorem 1.25 IfY C X is convex and (X, t) is a locally convex topological vector
space, then

1. Y is o(X, X)-closed (weakly closed) if and only if Y is t-closed (strongly
closed).
2. Yiso(X, X')-dense if and only if Y is t-dense.
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Proof

1. Since o(X, X') C 1, then if Y is o (X, X’)-closed it is T-closed. Conversely, if
Y is t-closed and convex, let xo € X \ Y. Then by the Hahn-Banach separation
theorem (for complex vector spaces) there is some ¢ € X’ such that

supRe(¢p(x)) < y1 < y2 < Re(p(x0)).

xeY

Hence the neighborhood of x¢

x0+V =x0+ {x: ly ()| < Re(¢(x0)) — J/z}

has empty intersection with Y.
2. Obvious.

In particular, in a topological vector space, the closure of convex sets is convex.

If a sequence converges weakly, it need not converge in the original topology,
and Mazur’s theorem shows that if a sequence in a metrizable locally convex space
converges weakly then there is a sequence in the convex hull of the original sequence
that converges to the same limit as the weak limit of the original sequence.

Theorem 1.26 (Mazur)Let X be a metrizable locally convex space. If x, — x, then
there is a sequence (yi)m < X such that each y,, is a convex combination of finitely

many x, and such that y,, — x.

Proof The convex hull of a subset Y of X is the set of all convex combinations of
finitely many elements of Y. The convex hull of a set is convex and contains the
set. Let Z be the convex hull of the sequence (x;), and let W the weak closure
of Z. Since x, — x and x,, € Z, Theorem 1.25 tells us that W = Z,sox € Z.
But X is metrizable, so x being in the closure of Z implies that there is a sequence
(Ym)m € Z such that y,, — x. This sequence (y;,);, satisfies the claim. |

Let (X, 7) be a topological vector space. The dual space X' does not come with
an a priori topology.

Let x € X, and define f,: X' — C by fi(¢) = ¢(x). Now f, is linear. If
¢1,¢2 € X' are distinct, then ¢ — ¢» # 0 so there is some x € X such that
(1 — ¢2)(x) # 0, which tells us that fy(¢1) # fi(¢p2). Therefore the set {fy: x €
X} is a separating family of seminorms on X', hence generating a topology which
makes X’ a locally convex topological vector space. We denote this topology by
o (X', X) or w* and it is called the weak™ topology on X’. The open sets in the
weak™ topology are generated by the subbase

Bl ={peX" lpW)| <r}.
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Lemma 1.8

(a) The weak topology o (X', X) is the weakest topology on X' such that each map
fx is continuous.
(b) A sequence (¢,), converges to ¢ in o (X', X) ifand only if forall x € X

lim ¢, (x) = ¢(x).
n—-oo
(¢) AsetY C X' is bounded w.xt. o (X', X) if and only if for all x € X

{p(x). ¢ €Y}

is bounded in C.

Example 1.12 Recall that ¢, = [, and /] = l. Weak convergence of a sequence
(xn)kx € [ to zero (with /] viewed as a topological vector space) means that

+o00
Vy =k €l klgglo l;(xn)kYk =0.

Weak™ convergence of a sequence (x,,)x C [ to zero (with [ viewed as the dual of
the topological vector space cp) means that

+oo
YVy=h C li =0.
y=hOk Seo  lim ];(Xn)k)’k

Clearly, weak convergence implies weak™ convergence (but not the opposite).
A priori, one can look at the second dual Y of the locally convex vector space
(X, 0 (X', X)), ie.,
Y={1: X — C,wrt,o (X', X))

By construction, it follows that X C Y,
i.e., X can be embedded into Y. It turns out that X = Y, i.e., the dual of
(X, o (X', X)) can be identified with X.

Theorem 1.27 If1: X' — C is linear and continuous w.r.t, o (X', X), then there
exists x € X such that

AMp) =¢(x) Vo € X'.
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Proof By definition of continuity w.r.t, o (X ' X), for all € > 0O there are § > 0 and
X1, -+ , Xy such that

Mo: lp(xi)l <8,i=1,---,n} S (—€,€).

In particular, if ¢ is such that ¢ (x;) = O for all i, then A(¢) = 0. This show that

n
Ny 2Ny
i=1

Consider the linear mapping 7: X' — C"*! defined by

T(9) = A(@), -, d(x1), -, P(xn)).

By the assumption, 7'(X') is a subspace of C"*! and the point (1,0, --- , 0) is not
in 7(X’). Then there are &« = (rq, - - - , &tuy1) € C**! such

n+1

ol (X') = {@rh(@) + ) eipio1). ¢ € X'} =0 < e,
i=2

It follows that oy # 0 and

= .
i=1

o]

If X is in particular a normed space, then we know that (X', |.|x’) is a
Banach space. Hence, if 7 is the vector topology of X' generated by the norm
Ay o (X, X) St

Definition 1.41 We say that

» The sequence (¢,,), converges strongly to ¢ and we write

$n — ¢ if [pn — Sllx» —> 0.
« The sequence (¢,), converges weakly to ¢ and we write ¢, —* ¢ if (¢y)n
converges to ¢ in the topology o (X', X).

The Banach-Alaoglu theorem shows that certain subsets of X' are weak®
compact, i.e., they are compact subsets of o (X', X).
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Definition 1.42 Let X be a topological vector space and V be a neighborhood of 6.
Define the polar of V as

K=[¢ex:wun51Vxev}

Theorem 1.28 (Banach-Alaoglu) Let X be a topological vector space and V be
a neighborhood of 6. Then the polar K of V is compact in the weak™ topology
o (X', X).

Proof Since each V local neighborhood absorbing, then there is a y (x) € C such
that

x eyx)V.
Hence it follows that
lp(x)| <yx) xeX, ¢ €K.

Consider the topological space

P=][leeC: |l <y}

xeX

with the product topology o . By Tychonoff’s theorem (P, o) is compact.
By the construction, the elements of P are functions f: X — C (not necessarily
linear) such that

lfOl =y ).
In particular, the set K is the subset of P made of the linear functions.
We first show that K is the subset of P w.r.t the topology o. This follows from

the fact that if fj is in the o closure of K, then the scalars «, B and pointx,y € X
one has that

{ Lf(ax + By) = folax + By)| < & [f(x) = fo@)| <& [f(¥) = foV)I < 8}

(K #9.
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Take thus ¢ in the intersection, so that

| folax + By) —afo(x) = Bfo(W)| = |(folax + By) — f(ax + By))

+a(f(x) = fox) + (f) = fo(y)
<+l +1BDe.

Since ¢ is arbitrary, fj is linear. Moreover, since | fo(x)| < y(x), then forx € V

|fo()] < 1.

It follows that we have two topologies on K :

« the weak™ topology o (X', X) inherited by X',
* the product topology o inherited by P. Since K is closed in (P, o), then (K, o)
is compact.

To conclude, we need only to show that the two topologies coincide. This follows
because the bases of the two topologies are generated by the sets

Vo', x) = { lp(xi) —po(xi)| <e&,i=1--- n}

Vo = {1 (i) = folwl < e.i=1--.n}.
There is thus a one to one correspondence among local bases, hence the two
topologies coincide. |

Theorem 1.29 Let (X, t) be a separable topological vector space. Let K € X' be
weakly* compact. Then K is metrizable in the weak™ topology.

Proof Let {x,,n € N} be a dense subset of X and fy, () = ¢(x,) for ¢ € X'.
By the definition of the weak™ topology on X', the functionals f,, are weak*
continuous. Also, for every n,

fx,, (¢1) = fx,, (¢2),
ie.,
1 (xn) = P2(xn),

then ¢; = ¢ (continuous functionals that coincide on a dense set).
Thus, { fx,, n € N} is a countably family of continuous functionals that separates
points in X'. It follows by Proposition 1.9 that K is metrizable. ]
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Remark 1.25

1. The claim is not that X’ endowed with the weak™ topology is metrizable. For
example, this is not true in infinite-dimensional Banach spaces.

2. The topological space (X', 0(X’, X)) is never metrizable, unless X has a
countable vector base.

Theorem 1.30 Let X be a separable topological vector space. If V is a neighbor-
hood of 6 and if the sequence (¢,), < X' satisfies
|¢n(x)|§1, n215~xeva
then there is a subsequence (Pq(n))n and some ¢ € X' such that for all x € X,
lim @o(n)(x) = ¢ (x).
n— oo
Proof The Banach-Alaoglu theorem implies that the polar

K = {¢ex/: b)) <1 Vxe v},

is weak® compact. K with the subspace topology inherited from o (X', X) is
compact, hence by Theorem 1.29 it is metrizable. Since the sequence (¢,),
is contained in K, it has a subsequence (¢ (n))» that converges weakly to some
¢ € K. For each x € X, the functional fy: (X’,0(X’, X)) — C defined by
fx(¢) = ¢(x) is continuous, hence for all x € X we have f,(Paw))) — fx(P),
which is the claim. |

Theorem 1.31 [f (X, t) is locally convex and Y C X, then Y is bounded in (X, T)
if and only if Y is bounded in (X, o (X, X)).

Dual of Banach Spaces and Reflexive Spaces

A particular case is when X is normed: in this case X’ is a Banach space with norm
lollx = sup |@(x)|. One can introduce the second dual of X, i.e., denoted by

[lxlI=1
X". Clearly, there is a canonical immersion J of X into X”, by

J:X = X" J)(@) =), [T®lxr = lIxllx.

Since J: X — X" is continuous, it follows that J(X) is a closed subspace of X”.
In particular, either J(X) = X” or it is not dense.
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Lemma 1.9 (Helly) Let X be a Banach space, ¢ € X',i = 1---,n,n linear
functionalsin X' anda; € C,i = 1--- , n, n scalars. Then the following properties
are equivalent

1. forall & > 0 there is x¢, ||x¢ || < 1 such that
lp(xe) —ai| <€ i=1--,n,

2. forall By,---,B, €C

<1 Bigillx-

D Biai

Proof The first implication follows by

> Biai

+

> Bilei — dixe)| + | Y Bidhi(xe)

<e) 1B+ 1Y Bigilx,

since ||xg|| < 1. Conversely if 1. does not hold, then this means that the closure of
the set

@]l <1} c o

does not contains (aq, - - - , ). Thus there is (81, - - - , Bn) € C" such that

maxRe{iﬂiw), Il < 1} < Re{fﬂiai} < anﬂiai .

Since {x: ||x|| < 1} is balanced, it follows that 2. is false. |

Proposition 1.36 (Goldstine) If X is a Banach space, then J(By) is dense in Bxn
for the weak™ topology.

Proof If ¢ € X", take a neighborhood of the form
V= {77 €X't In(gi) —E@i) <&, ¢i€X'i= ln}

We need only to find x € X such that

[pi (x) — E(di)] < e.
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Since ||€||x» < 1, then

> BiE@0)

so that for Lemma 1.9 it follows that there is an x, € X which belongs to V. |

Definition 1.43 A Banach space is reflexive if J(X) = X”.

<1>_ Bidillx'.

It is important to observe that in the previous definition the canonical immersion
J isused: even for particular non-reflexive spaces, one can find a continuous linear
surjection from X to X",

Theorem 1.32 (Kakutani) The Banach space X is reflexive if and only if By is
compact for the weak topology o (X, X').

Proof 1f X is reflexive, then J: X — X” is continuous, injective and surjective.
Hence J~! is linear and continuous w.r.t. the strong topologies of X and X”.
Actually both J and J ~! are isometries.

It is clear that

J{X: lp(x)| < 8} = {n: Ingl < 8},

so that the topology J (o (X", X')) coincides with the topology o (X, X'). Since
By is weak™ compact, so By.

Conversely, if By is compact, then J(By) is closed, and by Proposition 1.36 it
coincide with the whole By . |

Theorem 1.33 If X is a Banach space and X' is separable, then X is separable.

Proof Let (¢,), be a dense countable setin X'. Let x,, € X, ||x,||x < 1, be a point
where

()] = %||¢n||x',

and consider the countable set

0= { Z a;x;: o belongs to a countable dense subset of(C}.

finite

Clearly Q is countable and dense in the vector space L generated by {x,},, so that
it remains to prove that L is dense in X.
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If L is not dense, then there is a non null continuous functional ¢ such that

¢ #0x ¢(x,) =0Vn.

Since (¢), is dense, there is ng such that [[¢ — ¢, ||x < &, so that

g llxr < | @ny Ceng)| < [(@ = buny) Gny) | + | (xny)| < &

Thus [[¢n, |lx' < 2e, which implies that ¢ = Ox. ]

Proposition 1.37 If Y C X is a closed subspace of a reflexive space, then Y is
reflexive.

Proof The proof follows by proving that the topology o (Y, Y’) coincide with the
topology ¥ N o (X, X) and By is closed for o (X, X') (closed for strong topology
and convex). |

Corollary 1.6 Let X be a normed space. Then, X is separable and reflexive if and
only if X' is separable and reflexive.

Proof Clearly if X is reflexive, the unit ball Bxs is compact for the topology
o (X', X") because of the Banach-Alaoglu theorem and the fact o (X', X”) =
o (X', X). Moreover if X is reflexive and separable, then X " is separable, hence
by Theorem 1.33 is separable.

Conversely, if X’ is reflexive, then X" is reflexive, so that M (X) is reflexive by
Proposition 1.37, hence X is reflexive. Moreover, we know from Theorem 1.33 that
X is separable, if X’ is separable. |

Definition 1.44 We say that X Banach space is uniformly convex if for all ¢ > 0
there exists § > O such that

X+y
Ixlx, Iyllx <1, IITII >1-8=Ilx—ylx <e

Theorem 1.34 (Milman) If X is a uniformly convex Banach space, then X is
reflexive.

Proof Let £ € X", ||€]lx» = 1. We want to prove that for all ¢ > 0 there is
x € X, ||x|lx < 1 such that

1§ = J)llxr <e.

Since J(X) is strongly closed (J is an isometry), then J is surjective.
Let ¢ € X’ be such that

lollx =1, §¢>1-34,
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where § is the constant chosen by the uniform convexity estimate corresponding to
¢, and consider the neighborhood of £ of the form

v=lnex ‘(& — @) < %‘ |

By Proposition 1.36, it follows that there is some x € By such that J(x) € V.

Assume that £ ¢ J(x) 4+ e Bx». Then we obtain a new neighborhood of & for the
weak™ topology which does not contains x. With the same procedure, we can find a
new X in this new neighborhood. Thus we have

8 _ 8
lp(x) — &(@)] < o lp(xX) — &(@)] < >
Adding we obtain
216@) < lp(x+X)|+6 < [lx + x|l +3.
xX+Xx _ L. ..
Then || > | > (1 —38), sothat ||x + X|| < &, which is a contradiction. |

1.2.8 [1-Sequences

Definition 1.45 Let (x,), be a bounded sequence in a Banach space X, and
e > 0. We say that (x,), admits e-/1-blocks if for every infinite M C N there
are ay,---,---a, € K with Z|ap| =1landi; < --- < i, in M such that

1Y apx, | <e.

Clearly there will be no subsequence of (x,), equivalent to the /1-basis iff (x;),
admits e-/1-blocks for arbitrary small & > 0.

Theorem 1.35 Let X be a real (for simplicity) Banach space and (x,),, a bounded
sequence. Suppose that, for some ¢ > 0, (x), admits small e-11-blocks. Then there
is a subsequence (xy, )k of (Xn)n such that (x,, )i is “close to being a weak Cauchy
sequence” in the following sense:

lim sup ¢ (x,,, ) — lin}(inf(p(xnk) <2e
k

for every ¢ € X' with ||| x = 1.
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Proof Suppose the theorem were not true. We claim that without loss of generality
we may assume that there is a § > 0 such that

©((xy)k) == sup (lim sup ¢ (x,,) — lirr}cinfq)(xnk) > 2¢ +8> (1.16)
il x=1 k

for all subsequences (xp,)r. In fact, if every subsequence contained another
subsequence with a p-value arbitrarily close to 2¢, the diagonal process would even
provide one where ¢((x,,)k) < 2¢ in contrast to our assumption.

Fix a t > 0 which will be specified later. After passing to a subsequence we may
assume that (x;,), satisfies the following conditions:

(i) If C and D are finite disjoint subsets of N there are a Ao € R and an ¢ € X’
with ||@||x» = 1 such that ¢ (x,) < Ag forn € C and ¢ (x,) > Ag + 2¢& + § for

neb.
(ii) Therearei; <--- <i,inN, ay,---a, € R with
Ylapl=1. 1) apl <. 1Y apxi,l <&
For (i), define, for r € N, T, to be the collection of all (iy,---,i,) (withi; <

- < ir) such that there are a 19 € R and a normalized ¢ such that ¢ (x;,) < Ag if p
is even and > A+ 2¢ + 6 otherwise. (1.16) implies that there is an M( for which all

(i, -+ ,ip)arein T, fori; < --- < i, in My. Let us assume that My = N. Let C and
D be finite disjoint subsets of 2N = {2,4,-.-}. We may selecti; < --- < i, in N
such that C C {i, | p even } and D C {i, | p odd }. Because of (i1, --- ,i,) € T, we

have settled (i) provided C and D are in 2N, and all what’s left to do is to consider
(x2)y instead of (x,),.

For (ii), By assumption we find i; < --- < iy, a1, ---a, € R such that
Z lapl = 1 and || Zapxi |l < & with arbitrarily large i;. Therefore we obtain
il <. < irll <it << irz2 <id << i,33 < - andassociateda;,.The

rj

numbers 7; := Y _ aj all lie in [—1, 1] so that we find j < k with [5; — m| < 27.

p=1

Leti; < .- < i, be the family i{ < --- < il < it << ifk,anddeﬁnethe
; 1 1 1,
J j k k

al’...arbyial ...Ear.j7._§al".'_§61.rk’

We are now ready to derive a contradiction. On the one hand, by (ii), we find
it < <ina-,a € Rsuchthat Y la,| = 1,1 ap| < 7 with
I Zapxi,,ﬂ < ¢&. On the other hand we may apply (i) with C := {i, |a, < 0}
and D := {i,|a, > 0}. We put o := — Zap, B = Zap, and we note that

peC peD
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1
o — B < t,a—i—ﬁ:lsothat|f3—§| < 7, hence

8
&2 1) apxi,ll < Y apd(xi,) = —how+(o+2e+8)B = —lholt+e+5 8.

This expression can be made larger than ¢ if T has been chosen sufficiently small
(note that the numbers |Ag| are bounded by sup ||x; ), a contradiction which proves
n

the theorem. n

Remark 1.26 Since the unit vector basis (x,), of real /1 the assumption of the
theorem holds with ¢ = 1 and since for every subsequence (x,,)r one may find
¢llx =1 with

lim sup ¢ (x,,, ) — lin}cinftp(xnk) =2
k

there can be no better constant than that given in our theorem.

Theorem 1.36 (Rosenthal’s Theorem) Let X be a Banach space and (x,), a
bounded sequence in X. If there exists no subsequence which is a weak Cauchy
sequence then one can find a subsequence (x,, )i which is equivalent with the unit

vector basis of I1 (i.e., (Ap)k Zkkxnk,from 11 to X, is an isomorphism).
In particular one has: If X does not contain an isomorphic copy of 11, then every
bounded sequence admits a subsequence which is a weak Cauchy sequence.

Proof Rosenthal’s theorem is the assertion that (x,), has a weak Cauchy subse-
quence provided it admits e-/1-blocks for all €. So, it is simple to derive the theorem
from Theorem 1.35. If (x,), and thus every subsequence has e-/1-blocks for all ¢,
apply Theorem 1.35 successively with ¢ running through a sequence tending to zero.
The diagonal sequence which is obtained from this construction will be a Cauchy
sequence. |

Remark 1.27

1. Since weakly convergent sequences are weakly Cauchy it follows immediately
that Rosenthal’s theorem holds in reflexive spaces.

2. Rosenthal’s theorem holds, whenever X is such that X’ is separable. Let (x,),
be bounded and ¢ be a fixed functional. If we apply the Bolzano-Weierstrass
theorem to the scalar sequence (¢ (x,)), we get a subsequence (x,, )x such that
(¢ (x4,))k converges. Applying the same idea to (x,, )¢ with a second functional,
say ¥, we get a subsequence of this subsequence such that the application of
produces something which is convergent. ¢, applied to this new subsequence,
also gives rise to convergence. Thus we have a subsequence of (x,), where
¢ and ¢ converge, and similarly one can achieve this for any prescribed finite
number of functionals. Even countably many functionals are manageable, by the
diagonal process. Since we are dealing with bounded sequences (y,), (typically
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subsequences of the original sequence) the collection of ¢ where (¢(y,))n
converges is a norm closed subspace of X'.

There is a generalization of Rosenthal’s theorem to Fréchet spaces which, it
seems, has been firstly by Diaz [44]. Thus the starting point for proving promised
generalizations is to understand what it means for a sequence in a locally convex
space be equivalent to the unit basis of /7.

We denote by l? the subspace of /; formed by elements with only finitely many
nonzero coordinates.

Barroso, Kalenda and Lin introduced the following notion of /{-sequences in
topological vector spaces [14].

Definition 1.46 Let (X, t) be a topological vector space and (x,), a sequence in
X. We say that (x,), is an [{-sequence if the mapping Ty : l? — X defined by

To((@)i=1) = Y _ aixi (1.17)

i=1

is an isomorphism of l? onto To(l(l)).
The following characterization of /{-sequences is given in [14].

Proposition 1.38 Ler (X, 1) be a locally convex space and (x,), a bounded
sequence in X. The following are equivalent:

(i) There is a continuous seminorm p on X such that

n n
p <Za[xi> > Zlail, neNay, - ,a, e R
i=1 i=1

(ii) (xp)y is an ly-sequence.
If X is sequentially complete, then these conditions are equivalent to the
following :

o0
(iii) The mapping T : 1} — X defined by T ((a;)i>1) = Zaix,- is a well defined
i=1
isomorphism of 1| onto its image in X
Proof Let Ty: l? — X be defined by (1.17). As (x,), is bounded and X is locally
convex, it is easy to check that Ty is continuous.
Further, if (i) holds, then Ty is clearly one-to-one and TO_1 is continuous. This
proves (i) = (ii).
Conversely, suppose that (i7) holds. Set

U=To(fx el): xlp < 1)).
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As Ty is an isomorphism, U is an absolutely convex open subset of Ty (l(l)). We can
find V, an absolutely convex neighborhood of 6 in X such that V N Ty (/ ?) C U.Let
p the Minkowski functional of V. Then p is a continuous seminorm witnessing that
() holds. This proves (ii) = (i).

Now suppose that X is sequentially complete. As T is continuous and linear, it is
uniformly continuous and hence it maps Cauchy sequences to Cauchy sequences. In
particular the mapping Ty can be uniquely extended to a continuous linear mapping
T: 11 — X. This is obviously the mapping described in (iii). As l(l) is dense in /1,
we get (ii) < (iii). |

The following theorem is a variant of Rosenthal’s theorem [14]. Its proof is a
slight refinement of the proof of Lemma 3 in [44].

Theorem 1.37 Let (X, t) be a metrizable locally convex space. Then each bounded
sequence in X contains either a weakly Cauchy subsequence or a subsequence
which is an l|-sequence.

Proof Let (]|.|l,) be a sequence of seminorms generating the topology of X.
Without loss of generality we may assume that ||x||,, < ||x]l,+1 foralln and x € X.
Let U, = {x: ||x|]l, < 1} and let B, = U,? be the polar of U,. Assume that
(xm)m is a bounded sequence in X such that no its subsequence is an /-sequence.

Forn = 0,1,2,--- we construct a sequence (x),),, inductively as follows. Set
x,(,)l = x,, for all m € N. Assume that for a given n € N the sequence (x,’,‘fl)m has

been defined. By Rosenthal’s theorem one of the following possibilities takes place
(elements of X are viewed as functions on B;,):

(i) (x,’}fl )m has a subsequence which is equivalent to the /-basis on B,,.
(ii) (x,’,ll_l)m has a subsequence which point wise converges on B;,.

Let us show that the case (i) cannot occur. Indeed, suppose that (i) holds. Let
(ym)m be the respective subsequence. The equivalence to the /1 basis on B, means
that there is some C > 0 such that

m m
1D " aiyiln = C Y lail
i=1 i=1

for each m € N and each choice ay, - - - , a,, € R. By Proposition 1.38 (y,,),, is an
I1-sequence in X, which is a contradiction.

Thus the possibility (ii) takes place. Denote by (x),);, the respective subse-
quence. This completes the inductive construction.

Take the diagonal sequence (x,,). It is a subsequence of (x,,), which pointwise
converges on B, for each n € N. Moreover, if ¢ € X "is arbitrary, then there is n
and ¢ > 0 such that c¢ € B,. In particular, the linear span of the union of all B, s is
the whole dual X'. It follows that the sequence (x])') is weakly Cauchy. The proof is
complete. |
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Remark 1.28 Let X = [} endowed with its weak topology. Let (e,), denote the
canonical basic sequence. Then, the sequence (e,), contains neither a weakly
Cauchy subsequence nor a subsequence which is an /;-sequence. Indeed, suppose
that (x,), is an /;-sequence in X. Denote by Y its linear span. By the definition of an
l1-sequence we get that Y is isomorphic to (l?, II.Il1), hence it is metrizable. On the
other hand, by the definition of X we get that Y is equipped with its weak topology
which is not metrizable as Y has infinite dimension.

Further, the sequence (e, ), contains no weakly Cauchy subsequence in (/1, ||.[1)
and in (I, oy, (I1))) coincide, we get that (e,), contains no weakly Cauchy
subsequence in X. Thus the proof is completed.

The following is given in [14] and is about the coincidence of norm and weak
topologies.

Proposition 1.39 Ler T be an arbitrary set. Then the norm and weak topologies
coincide on the positive cone of [1(T").

Proof Denote by C the positive cone of /1 (I"). Since the weak topology is weaker
than the norm one, it is enough to prove that the identity of C endowed with the
weak topology onto (C, |.||) is continuous. Let x € C and ¢ > 0 be arbitrary. Fix a
nonempty finite set F C I" such that

&
DX > Ixl = 4
yeF
Set

U={yec: ) —x) < ;o fory e F}
=iyeC: |y(y)—x(y <4|F| ory € Ft,
v={vec: Y ym- Y xn <z}

yel\F yel\F

Then both U and V are weak neighborhoods of x in C (recall that the dual of /{ (T")
is represented by I, (I")), hence so U N V. Moreover, if y € U N V, then

Iy —xl=Y_ Iy —xMl+ Y Iyy)—x(l < §+ D 0w +x()

yeF yel\F yel\F
& & & &
=7+ 2 O —xGN+2 Y 2 < g+ +27
yel\F yel\F

This shows that the identity is weak-to-norm continuous at x. The proof is
complete. ]
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1.2.9 The Fréchet-Urysohn Property

Definition 1.47 Let Y be a subset of a topological (Hausdorff) space X.

(1) Y is countably compact, if every sequence in Y has a cluster-point in Y.

(2) Y is sequentially compact, if every sequence in Y has a convergent subsequence
with limitin Y.

(3) Y is relatively countably compact, if every sequence in Y has a cluster-point
in X.

(4) Y is relatively sequentially compact, if every sequence in Y has a convergent
subsequence with limit in X.

It is easy to see that

(1) Every (relatively) compact set is (relatively) countably compact.
(2) Every (relatively) sequentially compact set is (relatively) countably compact.

Definition 1.48 A topological space (X, t) is called Fréchet-Urysohn if the clo-
sures of subsets of X_are described using sequences, i.e., if whenever ¥ € X and
x € X such that x € Y, there is a sequence (x,), in ¥ with x,, — x.

Example 1.13 Metrizable spaces and one point compactifications of discrete spaces
are Fréchet-Urysohn.

Definition 1.49 A completely regular Hausdorff topological space X is called a
g-space, if its relatively countably compact subsets are relatively compact.

Definition 1.50 A Hausdorff topological space X is said to be angelic if for every
relatively countably compact set Y € X, the following hold:

(1) Y is relatively compact,
(i1) for each x € Y, there exists a sequence (x,), € Y such that x, — x.

If K is a compact topological space then K is a Fréchet-Urysohn space if and
only if it is angelic. It can be said that a Hausdorff topological space X is angelic
if and only if X is a g-space for which any compact subspace is a Fréchet-Urysohn
space.

The following are some characterizations of Fréchet-Urysohn spaces.

Theorem 1.38 For a topological vector space (X, t) the following assertions are
equivalent:

1. X is Fréchet-Urysohn.

2. For every subset Y of X such that 0 € Y there exists a bounded subset Z of Y
such that 6 € Z.

3. Forany sequence (Yy,), of subsets of X, each with© € Y,,, there exists a sequence

Z, CY,,n €N, such that U Z, is bounded and 6 € U Zy foreachn € N.
n

n<k
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Proof Clearly 1. implies 2. Now assume 2. It is obvious that 3. holds if 6 € Y,
for infinitely many n. Therefore, we assume that 6 € Y_n \ Y, foreach n € N.
Consequently, there exists a null sequence (x;,), in X \ {6}. For each n € N there
exists a closed neighbourhood U, of zero such that 6 ¢ U, + x,. Let each W,, =
U, NY,.Clearly 6 is in each Wn\ W,, and not in the set

Y = U(Wn + Xp).

However, ® € Y: For U, an open neighborhood of 6, there exist k € N with x;y € U
and, V, a neighbourhood of § with V 4 x; C U. As thereis y € V N W; we also
have y + x; € UNY.Thus € Y \ Y. By hypothesis, there is Z C Y with Z
bounded and 6 € Z. There exists subsets Z, C W, =U,NY, such that

Z = J(Zu + x).

By construction, 6 does not belong to the closed sets

J W + x0).

k<n

Therefore 6 is not in any U (Zx + xi). This and 6 € Z imply that

k<n

0|z +x).

n<k

foreachn € N.Let V' and V be any balanced neighborhoods of § with V-V C V',
Fix n € N. There exists m > n, in N, such that x; € V for all kK > m. From

0@k +x0.

m>k

it follows that there existk > mand y € By with y +x; € V.Fromy € V — x; C
V —V C V/, wesee, foreach n € N, the set V' meets U Zk. As any neighborhood
n<k
of 0 contains V' and V as above, 6 is in the closure of each U Z;.. Note also that
n<k

U Z,, is bounded. Indeed, as
n

Z =@+ xn)
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and W = {x,,: m € N} are bounded and since

UzngU(Zn+xn)_{xn1:mGN}ZZ_Wa
n n

then U Z, is also bounded too. We have proved that 2. implies 3.
n
3. implies 1.: Assume that 6 € Y, and set ¥, = nY, for each n € N. Since
0 is in each Y, there exist Z, < Y,, as in 3.. So each U Zy is nonempty,
n<k
and, consequently, there exists a strictly increasing sequence (nz)x in N with Zn,
nonempty. For each k, let zx € Z,,. There exists a sequence (yx)x in ¥ such that
Zx = ni Yk for each k € N. Since (ny )y is strictly increasing and (zx)x = (nkYr)k 1S
bounded, the sequence (yx)x in Y converges to zero in X. The proof is complete. l

There are many nonmetrizable Fréchet-Urysohn spaces. To provide some exam-
ples, we have the following deep result of J. Bourgain, D. H. Fremlin and M.
Talagrand [24]:

Theorem 1.39 Let X be a Polish space (i.e., a separable completely metrizable
space). Denote by B1(X) the space of all real-valued functions on X which are of
the first Baire class and equip this space with the topology of pointwise convergence.
Suppose that Y < Bi(X) is relatively countably compact in B1(X) (i.e., each
sequence in Y has a cluster point in B1(X). Then the closure Y of Y in B1(X)
is compact and Fréchet-Urysohn.

A slightly weaker version is given in [101].

Corollary 1.7 Let X be a Polish space and Y be a set of real-valued continuous
functions on X. Suppose that each sequence in Y has a pointwise convergent
subsequence. Then the closure of Y in R? is a Fréchet-Urysohn compact space
contained in By (X).

Proof Y is obviously contained in B;(X). Moreover, let (f,), be any sequence
in Y. By the assumption there is a subsequence (fy,)x pointwise converging to
some function f. As the functions f,, are continuous, the limit function f is of
the first Baire class. Hence, it is a cluster point of ( f,,), in B1(X). So, Y is relatively
countably compact in B;(X). The assertion now follows from Theorem 1.39. W

We continue by the following example [14].

Proposition 1.40 Ler (X, ) be a metrizable locally convex space and Y be a
bounded subset of X. If Y is t-separable and contains no li-sequence, then the
set

———0(X.X) _

Y—-Y _{x—y:x,er}J(X’X)

is Fréchet-Urysohn when equipped with the weak topology.
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Proof As the closed linear span of Y is separable, we can without loss of generality
suppose that X is separable. Let (||.|l,), U, and B, (n € N) be as in the proof
of Theorem 1.37. Notice that B, is a metrizable weak*compact subset of X’.
Moreover, the linear span of the union of all B,/ls is the whole dual X’ (see the
end of the proof of Theorem 1.37). Let now P be the topological sum of the spaces
(By,0(X',X)),n € N. Then P is a Polish space. Denote by G: P — X’ the
canonical mapping of P onto the union of all B);s. Then G is continuous from P
to (X', o0(X’, X)). Define a mapping H: P — R’ by the formula H(x)(p) =
G(p)(x). Then H is a homeomorphism of (X, o (X, X')) onto H(X) equipped
with the pointwise convergence topology. Moreover, the functions from H(X) are
continuous on P.

Let Z = H(Y — Y). We claim that each sequence from Z has a pointwise
convergent subsequence. To show that it is enough to observe that each sequence
in Y — Y has weakly Cauchy subsequence. Indeed, let (z,), be a sequence in
Y — Y. Then z, = x, — y, for some x,,y, € Y. As Y contains no /-
sequence, by Theorem 1.37, we get a weakly subsequence (x,, )« of (x,),. Applying
Theorem 1.37 once more we get a weakly Cauchy subsequence (y, )k of (yn)a.
Then (z,, )k is a weakly Cauchy subsequence of (z,),. Thus Z is relatively
countably compact in Bj(P), which is the space of all Baire-one functions on P
equipped with the topology of pointwise convergence. By Theorem 1.39, the closure
of Z in R? is a Fréchet-Urysohn compact subset of B (P). In particular, the weak
closure of Y — Y is Fréchet-Urysohn when equipped with the weak topology. The
proof is complete. |

Note that the result of the above proposition generalizes the following in the
context of Banach spaces [101].

Proposition 1.41 Let X be a Banach space and Y be a bounded subset of X. If X
is norm-separable and contains no l1-sequence, then the set

o (X', X)

m O’(X,X)

={J(x—y):x,yeY}

is Fréchet-Urysohn when equipped with the weak™ topology, where J denotes the
canonical embedding of X into X". In particular,

— (X, X))

Y-Y :{x—y:x,er}J(X’X)

is Fréchet-Urysohn when equipped with the weak topology.

We have the following characterization of the Fréchet-Urysohn property in
locally convex spaces [14].
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Proposition 1.42 Letr (X, t) be a Hausdorff locally convex space such that there
is a metrizable locally convex topology on X compatible with the duality. The
following assertion are equivalent.

(i) Any bounded subset of X is Fréchet-Urysohn in the weak topology.
(ii) Any bounded sequence in X has a weakly Cauchy subsequence.
If, moreover, t itself is metrizable, then these assertions are equivalent to
the following one:
(iii) X contains no ly-sequence.

Proof Let p be a metrizable locally convex topology compatible with the duality .
By Theorem 1.37 (X, p) contains no /1-sequence if and only if (X, p) satisfies the
condition (i7). Further, the validity of (ii) for (X, p) is equivalent to its validity for
(X, 7). It follows that (ii) holds if and only if (X, p) contains no /;-sequence. In
particular, if p = 7, we get (i) < (ii).

(ii) = (i) Suppose that (ii) holds. Let ¥ be a bounded subset of (X, ) and
let x € X € belong to the weak closure of Y. We need to find a sequence in
Y converging to x. We first prove it under the additional assumption that Y is
separable. Then Y is bounded and separable in (X, p) as well. As (X, p) contains
no /1-sequence, by Proposition 1.40 we get that the weak closure of Y-Y is Fréchet-
Urysohn in the weak topology. Hence, in particular, there is a sequence in Y weakly
converging to x.

To prove the general case it is enough to show that there is a countable set Z C Y
such that x belongs to the weak closure of Z. In other words, it is enough to show
that the weak topology on X has countable tightness. To prove that observe that
(X,0(X, X")) is canonically homeomorphic to a subspace of C,(X', o (X', X)),
which is the space of all continuous functions on the space (X', o (X', X)) equipped
with the topology of pointwise convergence. Further notice that (X', o (X', X)) is
o-compact, this follows by the metrizability of p as X' = U mB,, using the

m,neN
notation from the proof of Theorem 1.37. Finally, as any finite power of a o -compact

and hence Lindel6f, we can conclude by the Arkhangel’skii-Pytkeev theorem [7].
(i) = (ii) Suppose that (ii) does not hold. Then there is a sequence (x;), in X
which is an /{-sequence in (X, p). Let Tp: l? — X be defined as in (1.17). Let S
denote the unit sphere in l?. Then 6 is in the weak closure of S (as l(l) is an infinite
dimensional normed space) but it is not the weak limit of any sequence from S (by
Schur’s theorem [75]). Thus, 6 is in the weak closure of 7p(S) without being the
weak limit of any sequence from 7 (S). Thus 7o (S) U {6} is a bounded set which is
not Fréchet-Urysohn in the weak topology. |

The following characterization of Banach spaces not containing /1 is given in
[101].
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Theorem 1.40 Let X be a Banach space. Then the following assertions are
equivalent.

1. X contains no isomorphic copy of 1.

2. Each bounded separable subset of X is Fréchet-Urysohn in the weak topology.

3. For each separable subset Y C X there are relatively weakly closed subsets
Y,,n € N such that Y = U Y, and each Y, is Fréchet-Urysohn in the weak

neN
topology.

Proof The implication 1. = 2. follows from Proposition 1.40.

The implication 2. = 1. follows from the fact that the unit ball of /; is not
Fréchet-Urysohn (as 6 is in the weak closure of the sphere and the sphere is weakly
sequentially closed by the Schur theorem [75]).

The implication 2. = 3. is trivial if we use the fact that a closed ball is weakly
closed.

Let us prove 3. = 2. To show 2. it is enough to prove that the unit ball of any
closed separable subspace of X is Fréchet-Urysohn in the weak topology. Let Z
be such a subspace. Let Y, n € N be the cover of Z provided by 3. As each Y,
is weakly closed, it is also norm-closed. By the Baire category theorem some Y,
has a nonempty interior in Y, so it contains a ball. We get that some ball in Y is
Fréchet-Urysohn, so the unit ball has this property as well. |

Remark 1.29 Note that the assertion 3. is a topological property of the space
(X, 0 (X, X)) (as norm separability coincides with weak separability).

As a consequence of Proposition 1.42 we get the following improvement of
Theorem 1.40.

Corollary 1.8 Let X be a Banach space. The following assertions are equivalent.

1. X contains no isomorphic copy of 11.
2. The closed unit ball of X is Fréchet-Urysohn in the weak topology.
3. There is a sequence (Y,)n>1 of weakly closed sets which are Fréchet-Urysohn in

oo
the weak topology such that X = U Yn.
n=1
Proof The equivalence 1. < 2. follows from Proposition 1.42. The implication
2. = 3. is trivial. The implication 3. = 1. follows from Theorem 1.40 (or,

alternatively, 3. = 2.) follows from the Baire category theorem as in Theorem
1.40. |

Definition 1.51 A Banach space (X, ||.||) is Asplund if and only if Y’ is separable
for each separable subspace ¥ C X.

Remark 1.30 A Banach space X is an Asplund space if each convex continuous
function 7: X — R is Fréchet differentiable on a dense G; set in X. Also it is
known that a Banach space X is Asplund if and only if X’ has the RNP [25].
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It is worthwhile to remark that there are separable Banach spaces having no
copy of I; for which X’ is nonseparable [93, 127]. On the other hand, the well-
known James’s space J is an example of a nonreflexive Banach space without an
unconditional basis which does not contain any copy of /; and yet has separable
dual.

Remark 1.31 Let us remark that the implication (ii) = (i) of Proposition 1.42 does
not hold for general locally convex spaces. Indeed, there are Banach spaces X such
that the closed unit ball of X’ is weak™ sequentially compact, but it is not Fréchet-
Urysohn in the weak™® topology. In particular, the dual closed unit ball is weak™
sequentially compact whenever X is Asplund [55], in particular if X = C(K) with
K scattered [55]. On the other hand, K is canonically homeomorphic to a subset of
the closed unit ball of C(K)’ equipped with the weak™ topology, so it is enough to
observe that there are scattered compact spaces which are not Fréchet-Urysohn. As
a concrete example we can take K = [0, w1], the ordinal interval equipped with the
order topology (w is the first uncountable ordinal).

It is worth to compare Theorem 1.40 with a similar characterization of Asplund
spaces [101].

Theorem 1.41 Let X be a Banach space. Then the following assertions are
equivalent.

1. X is Asplund.

2. Each bounded separable subset of X is metrizable in the weak topology.

3. For each separable subset Y C X there are relatively weakly closed subsets
Y,,n € N, of Y such that Y = U Y,, and each Y, is metrizable in the weak

neN
topology.

Proof The equivalence of 1. and 2. follows from the well-known fact that the unit
ball of Y is metrizable in the weak topology if and only if Y’ is separable. The
equivalence of 2. and 3. can be proved similarly as corresponding equivalence in
the previous theorem. |

Remark 1.32 There is no analogue of Theorem 1.40 for convex sets. Indeed, let
X = [ and let C be the closed convex hull of the standard basis. Then C contains
an [1-sequence but is Fréchet-Urysohn in the weak topology. In fact, it is even
metrizable as it is easy to see that on the positive cone of /1 the weak and norm
topologies coincide.

1.3 Ultrametric Spaces

The origin of ultrametric spaces lies in valuation theory and dates back to Krasner
and Monna who developed this theory for ultrametric distances with real values
(non-Archimedean analysis). A systematic study of (general) ultrametric spaces was
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provided [16, 81, 84,113,120, 152, 154, 155, 157, 160, 169] and others. This study is
concerned with ultrametric whose distance functions take their values in an arbitrary
partially ordered set (with a smallest element 0) not just in the real numbers.

Definition 1.52 Let (I', <) be an ordered set with smallest element 0. Let X be a
nonempty set. A mapping d: X x X — I is called an ultrametric distance and
(X, d, ') an ultrametric space if d has the following properties for all x, y,z € X
andy e I':

dl) d(x,y)=0ifandonlyifx =y,
(d2) d(x,y)=d(y,x),
(d3) ifd(x,y) <yandd(y,z) <y,thend(x,z) <y.

If there is no ambiguity, we simply write X instead of (X, d, I').
If T is totally ordered , (d3) becomes
(d3)d(x,z) <max{d(x,y),d(y,z)} forallx, y, z € X.

Remark 1.33 The ultrametric space (X, d, I') is trivial, if there exists y € I" such
that forallx,y € X, x # y,d(x,y) = y.

Definition 1.53 Let (Y, djy, I'y) and (X, d, I') be ultrametric spaces such that Y C
X and I'y C I'. Assume that I'y has the induced order of I' and the same 0 as I
and that furthermore, djy (Y x Y) C T'y and dy(y, y") =d(y,y’) forall y, y’ € Y.
Then (Y, djy, I'y) is said to be a subspace of (X, d, I') and X is called an extension
of Y. Often we simply write d instead of d|y.

Definition 1.54 Let (X, d, ') be an ultrametric space. The space X is said to be
solid if for every y € I" and x € X there exists y € X such thatd(x,y) = y. If X
is solid, then d(X x X) =T

Definition 1.55 Let (X, d, ') be an ultrametric space. Let y € I'* = I' \ {0} and
a € X. The set By(a) = {x € X | d(a,x) < y} is called a ball. The element
a is said to be a center of By (a) and the element y to be a radius of B (a). If
x,y € X,x # y, then B(x, y) = By(x,y)(x) is called a principal ball.

Remark 1.34 Let (X,d, ") be an ultrametric space. If X is solid, every ball is
principal. If T is totally ordered, also the converse conclusion holds.

Definition 1.56 Let (X,d, ") be an ultrametric space. A nonempty Y of X is
said to be convex in X when for all y;, y € Y with y; # y, the principal ball
B(yi,y1) € Y.

Remark 1.35 Every principal ball is convex in X and furthermore, if ﬂ B(xi, yi) #
iel
) then ﬂ B(x;, yi) is convex in X.
iel
In the following lemma, we list some properties of balls which can easily be
verified [161].
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Lemma 1.10 Let (X, d, ') be an ultrametric space and let y, § € T'°.
1. Letx,y € X.

(a) If y <8 and B, (x) N By (y) # 0, then B, (x) C Bs(y),
(b) if Bs(y) C By (x), theny £ 8.

2. Concerning principal balls, if x,y, z,u € X,x # zand y # u, then

(a) B(x,z) C Bs(y) if and only if d(x, z) < 8 and x € Bs(y),
(b) if B(x,z) C Bs(y), thend(x,z) <6,
(c) if B(x,z) = B(y,u), thend(x,z) =d(y, u).

3. Let X be solidand x,y € X.

(a) By(x) S Bs(y) ifand only if y < é and x € Bs(y),
(b) if B,(x) C Bs(y), theny < 4.
(c) if By(x) = Bs(y), theny =§

4. If T is totally ordered and B, (x) C Bs(y), then s < y.

Definition 1.57 Let (X, d, I') be an ultrametric space. A set of balls which is totally
ordered by inclusion is said to be a chain.

Lemma 1.11 Ler (X, d, ') be an ultrametric space. Let C be a chain of balls of X
which does not have a smallest ball. Then there exists a limit ordinal ) and a strictly
decreasing family of balls (B;); <. such that each B; € C and for every ball C € C
there exists B; such that B; O C and hence ﬂ C= ﬂ B;.
i<A

Definition 1.58 Let (X,d,I") be an ultrametric space. X is called spherically
complete (resp., principally complete) if every chain of balls of X (resp., principal
balls of X) has a nonempty intersection.

Remark 1.36 Every spherically complete ultrametric space (X, d, I') is principally
complete. The converse is true when I' is totally ordered or the space is solid.

Definition 1.59 An ultrametric space (X, d, I') is said to be complete if every chain
of balls {B,, |i € I}, withinf{y; | i € I} = 0, has a nonempty intersection.

Remark 1.37 A spherically complete ultrametric space (X, d, ") is complete. If
" is totally ordered and if I'* does not have a smallest element, the ultrametric
distance induces on X a uniformity, hence also a topology. In this case, the concept
of completeness coincides with that given by the uniformity.

Several examples of different types of ultrametric spaces are discussed in [160].
Some where I is totally ordered and others where I is not totally ordered.

Examples 1.9

1. Let A be a totally ordered Abelian additive group, let oo be a symbol such that
oo ¢ A,and§+00 =00+ =00,00+00=00,8 <ooforalld € A. We



1.3 Ultrametric Spaces 81

denote by O the neutral element of A, thatis 0+ = 6 forevery § € A. Let K be
a commutative field, let v: K — A U {00} be a valuation of K, so we have

(v1) v(x) = ocoifandonlyif x =0,
2) v(xy) =v(x) 4+ v(y),
(©3) v(x +y) = min{v(x), v(y)}.

Let I'* be a totally ordered Abelian multiplicative group with neutral element
1, let 0 be a symbol such that 0 ¢ I'*, 0y = y0 =0,0.0 = 0,0 < y for every
y e *. Letf: AU{oo} —> I' = I"* U {0} be an order reversing bijection such
that 8(c0) = 0,0(8 +8') = 6(8).6(8'), s00(0) = 1.

Letd: K x K —> T be defined by d(x,y) = 0(v(x — y)), then (K,d, ") is
an ultrametric space which is said to be associated to the valued field (K, v, AU
{o0}).

2. Let T be a totally ordered set with smallest element 0, let '* = I'\{0}. Let R
be a nonempty set with a distinguished element 0. For each f: I'* —> R, let
supp(f) = {y € T'* | f(y) # 0} be the support of f. Let R[[I"]] be the
set of all f: I'* —> R with support which is empty or anti-well ordered. Let
d: R[[T]] x R[[T']] — T be defined by d(f, f) = O andif f # g,d(f, g) is
the largest element of the set {y € I'* | f(y) # g(y)}. Then (R[[T']],d,T) is
an ultrametric space which is solid and spherically complete.

3. Let I be a set with at least two elements, let (X;);c; be a family of sets X;,
each one having at least two elements. Let X = l—[ X;. Let P(I) be the set of

il
all subsets of 7, ordered by inclusion. And let d: l§( x X —> P(I) be defined
byd(f,g) ={i € I | fi # &}, where f = (fi)ies and g = (gi)ier. Then
(X,d,P(I)) is a solid and spherically complete ultrametric space. If each X; =
{0, 1}, we obtain the ultrametric space (P(I),d, P(I)) with d(A,B) = (AU
B)\(ANB)forall A,B C 1.

4. Let X be a topological space, let Y be a discrete topological space, let C(X, Y)
denote the set of continuous functions from X to Y and let CI/(X) the set
of clopen (i.e., closed and open) subsets of X. The mapping d: C(X,Y) x
C(X,Y) — CI(X) is defined by d(f,g) = {x € X | f(x) # g(x)}. Then
(C(X,Y),d,Cl(X)) is a solid ultrametric space, and it is spherically complete if
CI(X) is a complete sub-Boolean-algebra of P(X).

Definition 1.60 Let (X, d, I') be an ultrametric space and assume that I is totally
ordered. Let (Y, djy, I'y) be a subspace of (X, d, I") and assume that d(Y x ¥) =
d(X x X) = T.If for every x € X and for every y € Y, with x # y, there exists
y' € Y such that d(y/, x) < d(y, x), the extension ¥ < X is called immediate
and we write Yim < X. The extension ¥ < X is said to be dense (denoted by
Yde < X), if for every x € X and for every 0 < y € I there exists y in Y such that
d(y,x) < y.Thusif Yde < X then also Yim < X.
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Remark 1.38 If T'® does not have a smallest element, Definition 1.60 coincides
with that given by the topology of X. We remark that both notions, “immediate”
and “dense” can be defined more generally for ultrametric spaces, where I" is only
ordered [155].

The following is given in [161].
Theorem 1.42

1. Every ultrametric space (X,d,T), with T totally ordered, has an immediate
extension which is spherically complete. (We call such an extension a spherical
completion of X.)

2. Every ultrametric space (X,d,T"), with T totally ordered, has an extension
(X', d, T) such that X' is dense in X'. (We call such an extension a completion
of X.)

3. Let (Y, dy,I'y) be a subspace of Let (X, d, I'). Assume that I is totally ordered
and that FI.Y is coinitial in T'* and that furthermore d(Y xY) =Ty, d(X x X) =

I'. If X is complete, then there exists one and only one completion Y of Y which
is a subspace of X.

Proof The proofs of 1. and 2. are given in [155, 176].

3. Let S be the set of all ultrametric subspaces S such that Y is dense in S. Since
Y is dense in itself, S #. The set S is ordered by inclusion. Let {S; | i € I} bea
totally ordered subset of S. Then S = U S; is a subspace of X and Y is dense in

iel

S. Thus S € S is an upper bound for allT Si,i € I. By Zorn’s lemma, there exists
a maximal element in S which we denote again by S. We show that S is complete.
Since I'ly is coinitial in I'* and I'fy, = I'fg = d(S x $) \ {0} has in I'} the infimum
0 if and only if the infimum of A in I'* is 0, thus we may just write inf A = 0. We
assume that S is not complete. Then there exists a chain {B}‘ft, (a;j) | i € I} of balls
in S with

inf{y; |i eI} =0 and ﬂBfi(ai)zﬂ.

Since X is complete and for each i € I, B}‘ft_ (@) = SN B)‘f[_ (a;), where By, (a;)
denotes the ball with center a; and radius y; in X, there exists z € X such that
{z} = ﬂ By, (a;). Let 8" = S U {z}. Then §’ is a subspace of X which properly
contains S, so also Y. To prove that Y is dense in §’, it suffices to show that if
0 < y €T, there exists y € Y such that d(y,z) < y. Sinceinf{y; |i € [} =0
there exists y; with 0 < y; < y. Since Y is dense in S and @; € S, it follows that
there exists y € Y such that d(y, a;) < y;. Since, moreover, z € By, (a;), then
d(z,y) < max{d(z,a;),d(y,a;)} <y < y.Thus Y is densein S’. So &’ € S,
which contradicts the maximality of S in S. We have proved that S is complete,
hence a completion of Y in X. It remains to show that ¥ has at most one completion
in X. Assume that Y], Y2 are completions of Y in X. Let y| € Y1 Foreachy e I'*
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there exists y, € Y such that d(y1, y,) < y.If I'* has a smallest element, say y*
then

YI=yy*eYC17§.

If I'® does not have a smallest element, then inf{y | y € I'*} = 0, thus there exists
y2 € Y with

(5)= ) By(3)

yel'®

because Yz is complete. Hence y; = y; € Y2 Th1s shows that ¥, 1 C Y2 By the same
argumentation, we conclude that Yz - Y1, thus Y; | = Y2 | |

Definition 1.61 Let (X, d, I') be an ultrametric space and assume that I" is totally
ordered. Let A be a limit ordinal and let § = (x;); <, be a family of elements of X.
We say that & is a Cauchy family if for every y € I'® there exists igp = ip(y, &) < A
such thatifip <i < k < X, thend(x;, x¢) < y.The family § = (x;); <, is said to be
pseudo-convergent if there exists ig = ig(§) < A suchthatifip <i <k < pu <A,
then d (x;, x,) < d(x;, X,).

Remark 1.39 We note that if £ = (x;); <, is pseudo-convergent, the elements x;, for
iop(§) < i < X are all distincts and if ip(§) < i < k < u < A, then d(x;, x) =
d(x,, x,), this element is denoted by &;. Hence if ip <i < « < A, then §; > &.

Definition 1.62 Let (X, d, I') be an ultrametric space and assume that I" is totally
ordered. Let A be a limit ordinal and let £ = (x;); <) be a Cauchy family of elements
of X. The element y € X is a limit of the family & if for every y € I'* there exists
it =i1(y) < Asuchthatifi; <i < A, thend(y, x;) < y. The ultrametric space X
is complete if and only if every Cauchy family has a limit in X.

Remark 1.40 A Cauchy family £ = (x;); <) has at most one limit. Indeed, if y, z
are limits, then d(y,z) < y forally e I'*,soy = z.

Definition 1.63 Let (X, d, I') be an ultrametric space and assume that I" is totally
ordered. Let A be a limit ordinal and let £ = (x;); <, be a pseudo-convergent family
of elements of X. The element y € X is a pseudo-limit of the family & = (x;); <, if
there exists i} = i1(&, y),i0(§) < i1 < A,suchthatifi; <i < Athend(y, x;) < §&;.
If y is a pseudo-limit of £, then z € X is a pseudo-limit of £ if and only if d(y, z) <
& foralli suchthati;y <i < A.

The following is a characterization of spherical completeness [151].

Proposition 1.43 Let (X, d, I') be an ultrametric space and assume that T is totally
ordered. Then X is spherically complete if and only if every pseudo-convergent
family of X has a pseudo-limit in X.
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1.4 Admissible Functions

Throughout this subsection, we denote by (X, 7) a topological vector space, and by
Y a nonempty subset of X.

Below the definition of functions providing the possibility of working with
extended real seminorms in topological vector spaces.

Definition 1.64 An admissible function for Y on X is an extended real-valued
function p: X — [0, oo] such that

1. The mapping (x, y) — p(x, y) is continuouson ¥ x Y,

2. p(x+y) <pkx)+p(y foralx,yeX,
3. p(Ax) = |Al p(x),forall A € Rand x € X,
4. Ifx,yeYand p(x —y) =0, thenx = y.

Remark 1.41 Notice that if p is an admissible function for ¥ on X, then it defines
a metric on Y whose induced topology is coarser than t.

Remark 1.42 1t is instructive to compare the notion of continuity in the sense of 1.
with the usual one. It is easy to see that if p is continuous on X, then (x, y) +—
p(x,y) is continuous on Y x Y. Furthermore, if 1. — 3. hold then p is continuous
onY.

It is not true, in general, that if p is continuous on Y, then it satisfies 1. For
example, if X = Rand Y = [0, 00), then the mapping p: R — [0, oo] defined by

1
—, ifx >0,

) x
px) = o0, if x =0,
0, ifx <O,

is continuous on Y. However, the mapping 7: ¥ x ¥ — [0, oo] given by

T(x,y) = p(x — y) is not continuous at the point (1, 1). Indeed, it suffices to
1 1

see that (1 — —, 1) converges to (1, 1) in ¥ x Y, while that T (1 — = 1) = 0 and

T(1,1) =o0.

Barroso [12] proved that the class of admissible functions is sufficiently good to
imply that the Schauder-projection operator is continuous.

Proposition 1.44 Let p be an admissible function for Y on X. Then for any ¢ > 0
and p €Y, the function g: Y —> [0, 00) given by

g(x) = max{e — p(x — p), 0}

is continuous on 'Y .
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Proof Firstly, let us recall that the effective domain of p is the set
D(p)={x € X: p(x) < o0}.

Let xo be a point in ¥ and § > O be arbitrary. By assumption, there exists a
neighborhood U x V of (xg, p) in Y x Y such that

pxo—p)—38 <plx—2) <plxo—p)+34,

for all (x,z) € U x V.If xg — p ¢ D(p) then p(xo — p) = oo and, hence,
p(x — p) = oo forall x € U. In consequence, g(x) = g(xg) = Oforallx € U.
In case xg — p € D(p), we can conclude that x — p € D(p) for all x € U. In this
case, it is easy to see that g(xg) + 8 > g(x), for all x € U. On the other hand, if
g(x0) = 0, then clearly g(x) > g(xo) — § holds for every x € U. Assuming now
that g(xg) = ¢ — p(xg — p), we have g(xg) — 8§ <& — p(x — p) < g(x), for all
x € U.Inany case, we have proven that g is continuous at xo, and hence continuous
in Y. The proof is complete. |

The following is an example of an admissible function [12].

Proposition 1.45 Let Y be a compact convex subset of a topological vector space
(X, ) and F = {p, : n € N} a countable family of seminorms on X which separate
points of Y — Y and such that the topology I generated by F is coarser than t in
Y. Then the function p: X — [0, oo] defined as

P =D pal), xeX

n=1
is admissible.

Proof Since Y is compact and I' is coarser than t, each p, restricted to Y is 7-
continuous. Thus we have max{p,(x): x € Y < oo} for all n € N. By replacing the
seminorms p, by suitable positive multiples, if necessary, we may assume that

max{p,(x): x € ¥,} <271, (1.18)

for all n € N. Notice that p(x — y) < oo for all x, y € Y. Moreover, one readily
checks 2. —4.. Using now (1.18), we see that the sequence of functions p” (x —y) =

n
Z pi(x — y) is Cauchy w.r.t. the topology of uniform convergence on ¥ x Y.
i=1
Thus p" (x — y) converges uniformly on ¥ x ¥ to p(x — y). Furthermore, to verify
that 1— holds, we have only to ensure this for each p,. Let (x4, y4) be a net in
Y x Y converging to (x, y). Since t is finer than I" on Y, both p,(x, — x) and
on(yo — y) converge to 0. We may then apply the triangle inequality to conclude

lon(Xas Yo) — pn(x — ¥)| — 0. ]
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1.5 Some Fixed Point Theorems

Banach’s Contraction Mapping Principle is remarkable in its simplicity, yet it is
perhaps the most widely applied fixed point theorem in all of analysis. The principle
first appeared in explicit form in Banach’s thesis [11].

Theorem 1.43 (Banach’s Contraction Mapping Principle) Let (X, d) be a com-
plete metric space and let T: X —> X. If there exists an 0 < k < 1 such that
d(T(x), T(y)) <kd(x,y)forallx,y € X, then T has a unique fixed point.

Proof First we consider the case when:
diam(X) := sup{d(x, y): x,y € X} < o0.
Foreachn € N,let Y, = T"(X). Then
Yor1 =T"H(X) = T"T X)) S T"(X) = Y,

for all n € N. Therefore, {Y,,: n € N} is a decreasing sequence of nonempty subsets
of X. Next, notice that

0 < diam(Y;,4+1) < kdiam(Y,) foralln e N
and so, by induction,
0 < diam(Y;,41) < k"diam(Y,) foralln € N.

Therefore, lim diam(Y,) = lim diam(Y,) = 0. It then follows from Cantor’s
n—oo n—0oo

intersection property that

m Y, = {x} forsomex € X.
neN

Moreover, since x € Y,,,

T(x) € T(Y,) ST(Yy) = Yot1 S Yo,

T(x) € (] Yn = {x}. Thatis, T (x) = x.

neN
In the case when diam(X) = oo some extra work is required. In this case we

choose any xp € X and let

Z :={T"(x0): n € N}.
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Then T(Z) C Z and

d(T (x0), x0) -

di Z) <
iam(Z) < &

Hence from the previous argument there exists a point x € Z < X such that
T(x) = x. |

The Caristi fixed point theorem [35] is known as one of the very interesting
and useful generalizations of the Banach’s Contraction Mapping Principle for self-
mappings on a complete metric space. Neither continuity nor a Lipschitz condition
is required.

Theorem 1.44 (Caristi’s Fixed Point Theorem) Let (X, d) be a complete metric
space and let T : X —> X be a mapping such that

d(x, T(x)) = ¢(x) — (T (x))

forall x € X, where ¢: X —> [0, +00) is a lower semicontinuous mapping. Then
T has at least a fixed point.

The setting of generalized ultrametric spaces offers a highly flexible framework
in which to study the fixed point theory is necessary for logic programming
semantics [59, 85, 104, 113, 151, 153, 156, 157] and [177].

Definition 1.65 Let (X, d, I') be an ultrametric space. A mapping ¢: X — X is
said to be strictly contracting if for all x, x’ € X, with x # x/, d(p(x), p(x")) <
d(x,x"). An element z € X with ¢(z) = z is called a fixed point of ¢.

For strictly contracting maps on ultrametric spaces we have the following fixed
point theorem [151, 153, 160].

Theorem 1.45 Assume that (X, d, ') is a spherically complete ultrametric space
and that ¢: X —> X is strictly contracting. Then ¢ has exactly one fixed point
zeX.

Proof Assume, m, = d(x, ¢(x)) # O for every x € X. Let B, = By, . The set
B = {By | x € X} is ordered by inclusion. Let ¢ be a maximal chain in 5.
Since X is spherically complete, there exists an element z € ﬂ{ B, | B, € ¢}
Then B, € By for every By € €. Indeed, this is obvious, if z = x. If z # x
then d(¢(2), p(x)) < d(z,x) < 7y = d(x,9x)), 7, = d(¢(z),z) < m,. Hence
B, C By. Since € is a maximal chain in B, then B, is the smallest element of
C. But my;) = d(@(z), 9(9(2))) < d(z,¢9(z)) = m; and therefore By;) C By,
contradicting the maximality of €. Hence there exists an element x € X with ¢(x) =
x. If also ¢(y) = y for x # y, then d(x,y) = d(p(x), ¢(¥)) < d(x,y), which is
absurd. Thus there exists exactly one fixed point for ¢. ]

Remark 1.43 Analysing the proof of Theorem 1.45, we see that to prove the
existence of a fixed point for the mapping ¢: X — X, it suffices to assume
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the following property. For any x,y € X,d(p(x),¢(y)) < d(x,y) and for
x # @), d(px), p(p(x))) < d(x, p(x)).

In the special case when T is totally ordered, we obtain the following characteri-
zation of principal completeness [153].

Theorem 1.46 Let (X, d, ') be an ultrametric space and assume that T is totally
ordered. The following conditions are equivalent:

1. X is principally complete
2. Every strictly contracting mapping ¢ : X —> X has a fixed point.

Proof 1. = 2.: this was proved in Theorem 1.45.

2. = 1.: We assume that X is not principally complete, so there exists a
chain C of principal balls such that ﬂC = ¢. Hence C dos not have a smallest
ball and therefore the coinitial type A of C is a limit ordinal. Then there exists a
strictly decreasing family (B;); <, of balls B; € C such that ﬂ B; = ﬂC = 0.
We write B; = By, (a;) and we define ¢: X — X.If x fst there exists the
smallest k = k(x) < A such that x ¢ B, we define ¢(x) = a,. We show that ¢ is
strictly contracting. Let x, y € X, x # y. If k(x) = «(y) then 0 = d(p(x), p(¥)) <
d(x,y). If k(x) # k(y), say k(x) < k(y), from By(xy D By(y) and x ¢ By(x), y €
By we get d(x,y) > Vi) = d(@p(x), (¥)). So ¢ is strictly contracting. From
the definition of ¢, it is obvious that ¢ does not have a fixed point. |

Brouwer’s fixed point theorem, in mathematics, a theorem of algebraic topology
that was stated and proved by Brouwer [27, 28]. Inspired by the earlier work of the
French mathematician Poincaré, Brouwer investigated the behavior of continuous
functions mapping the closed ball of unit radius in n-dimensional Euclidean space
into itself.

Theorem 1.47 (Brouwer’s Fixed Point Theorem) Let X be an n-dimensional

Euclidean space. Then, any continuous map of {x e X: x| < 1} into itself has a
fixed point.
As a consequence, we get

Theorem 1.48 Any continuous map T of a compact convex K set in n-dimensional
Euclidean space X into itself has a fixed point.

Proof Assume first that K C By = {x e X: x| < 1}. Define G: By — K by

taking G (x) to be the unique point y € K such that || x —y|| < ||[x —z|| forall z € K.
Such a vector y exists and unique. Note that G(x) = x = y if x € K. Consider
T o G: Bx — K as a map from By into itself. The map H: By — By defined
by H(x) = T(G(x)) is continuous because G is continuous. Let x, — x. We have
lxp — G(xp)|| < |lx, — z|| for all z € K. Hence, if y is any limit point of {G(x,)}
then ||x — y|| < |lx — z|| for all z € K. This proves that G(x) is the only limit of
{G(x;,)} which lies in the compact set K. Hence G(x,) — G(x). By Theorem 1.47
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there exists x € By such that T(G(x)) = x. Since the range of T is contained
in K we get x € K. But then G(x) = x so T(x) = x. This proves the theorem

when K C By. For the general case choose R such that K C {x e X: x| < R}.

Let K| = {R_lx: x € K}. Then K is a compact convex set and the function
T1: K1 — K defined by T1(x) = R_IT(Rx) is continuous. By the first case there
exists x; € K such that R_IT(Rxl) =x1.If x = Rxy then T (x) = x. | |

Remark 1.44 (Kakutani’s Example) Theorem 1.47 does not hold in an infinite
dimensional Hilbert space:

if T(x) = (/1 —|x||?, x1, x2, - - -) then T maps {x el: x| < l} into itself

and is continuous. It has no fixed point.

Definition 1.66 Amap 7: Y — X where X is anormed space and ¥ C X is called
compact if T'(Z) is relatively compact whenever Z C Y is bounded.

Brouwer’s Theorem was extended to infinite dimensional spaces by Schauder in
the following way [174].

Theorem 1.49 (Schauder’s Fixed Point Theorem) Let Y be a closed bounded
convex set in a normed space (X, ||.|) and T a continuous map of Y into itself. If T
is compact then it has a fixed point.

Proof Let Z C X be compact. Let ¢ > 0 and B¢ (x1), Be(x2), -+, Be(xy) cover
Z where {x1,x2, - ,xy} C Z. Let mj(x) = max(e — ||x — x;||,0) and ¢(x) =
SN mi(x)x; N
% for x € Z. Itis obvious that each m; is continuous and Z mj(x) >
Zj:l mj(x) i

0 for all x € Z. Hence ¢ is continuous. If x € Z then m; (x) # 0 implies ||x —x;|| <

N N
D mi(x)(x; —x)| <& Y m;(x) which proves that [lp(x) — x|| <
i=1 i=1
(m;(x) # 0 for at least one 7). Further ¢(Z) C conv(Z).
Let W = T(Y). Then W is a compact subset of Y. For each n let ¢,: W —

¢ and hence

1
conv(W) C Y be a continuous map such that ||g,(x) — x|| < — forallx € W

for all n. This is possible by the reasoning above. Let 7, = ¢, ’c1> T so that T, is
a continuous map : W — Y. So there is a finite set {x{, x}, - - ,x;zvn} C W such
that ¢, (W) € W, := span({x{,xj, - ,x}ﬁ,n D.LetY, =Y NW,. ThenVY, is a
compact convex set in the finite dimensional space W,. We claim that 7}, maps Y,
into itself. First note that 7(Y,,) € T(Y) € W so T, = ¢, o T is defined on ¥,,.
Also ¢, takes values in conv({x], x5, --- ,x]’{;n }) € W, as well as in Y so it takes
values in Y. By Theorem 1.48 there exists y, € Y, such that T,,(y,) = y,. Since

1
yp € Y and T(y,) € W we have ||¢,(T(yn)) — T(yn)|| < — for all n. In other
n

1
words ||y, — T (yp)|| < — for all n. Since (T (y,)), S W and W is compact there is
n



90 1 Basic Concepts

a subsequence (7 (y, j))n ; converging to some y. Now

1
3, = Y0 < T Gin)) = Y04 3, = TG < 1T 0Gin) =yl 4 = = 0.
J

This implies T (y) = y. |

1

Lemma 1.12 Let Yo = {x = (xp)n>1 € l2: |xu| < — foralln > l}. Then any
n

continuous map T : Yo — Yo has a fixed point.

Proof We first prove that the parallelepiped Yo is compact in /. We have Yy =

1
m ZnZy = {x = (Xp)m>1 € Lt x| < —}. Since the canonical projection
n>1 n
pn: lo = Kis continuous, it follows that Z,, = p”_1 (B1(0)) is closed for all n > 1,

o
1
and therefore Yy is a closed set. Since the series Z — converges, it follows that
n

n=1
1 1
for any ¢ > O there exists n, > 1 such that Z = < e&. Since |p,(x)] < - for
k=ng
o
all x € Yp and n > 1, it follows that Z |pk(x)|2 < g forall x € Yy, ie., Yy is
k=ng

relatively compact in /. Hence Yy is compact.

Let Y, = {(x1,x2,---,%,,0,0,---): x € Y} and define 7,,: ¥, — Y, by
T.x) = O1,y2,++ »¥n,0,0,---) where y = T (x1, x2, -+, Xx,,0,0,---). Y, can
be identified with compact convex set in K" and T}, is continuous, hence it has a fixed
point ™ Since (xn)n>1 € Yo and Yp is compact in (/2, ||.||2) there is a subsequence

(xn;)j converging to some x € Y. Let y" = T, x,-- x™,0,0,---)
so that x® = Tn(x(”)) = (yl("),yén),--- ,yfl’“,o, 0,---). It is clear that
lim (x{"),xén),n- ,x,(,"),O, 0,---) = x so lim y" = T(x). Hence x =
n— oo n—od

lim ) = Tim "7 8 0,0, = Tim Y™ =T(r). M
j—oo j—o0 j—oo

Lemma 1.13 If Z is a closed convex of Yy then every continuous map of Z into
itself has a fixed point.

Proof For each x € Yy there is a unique point P(x) € Z closet to x and the map
P: Yy — Ziscontinuous. If T: Z — Z is continuous then G: Yy — Yy defined
by G = T o P is continuous. Hence by Lemma 1.12 there exists x € Yy such that
T (P(x)) = x. Since the range of T is contained in Z we see that x = T (P (x)) € Z.
But then P(x) = x sox = T (x). |
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Proposition 1.46 Ler Y be a compact convex set in a locally convex topological
vector space (X, T). If Y has at least two points and T : Y — Y is continuous then
there is a proper subset Y1 of Y such that T (Y1) C Y| and Y| is also compact and
convex.

Proof We reduce the proof to the case when the topology t of X is replaced by the
weak topology. We introduce an ordering for subsets of X’ as follows: Z < W
if for any ¢ € Z and ¢ > 0 there exists a finite subset ¢, @2, - -+, ¢r of W and
6 > O0suchthat x,y € Y and |p;(x) — ¢;(¥)| < 6,1 <i < k imply | (T (x)) —
Y (T(y))| < e. We observe that if Z < W and ¢(x) = ¢(y) for all ¢ € Z then
Y (T (x)) = ¥ (T (y)). We claim that for any iy € Z there exists a countable family
W = {¢1, @2, - - - } such that {1/} < W. For this let ¢ > 0. First note that T is weak-
weak continuous and Y is compact convex in weak topology. By uniform continuity
of ¥ o T on Y with its weak topology, |V (T (x)) — ¥ (T (y))| < ¢ if x — y belongs to
a suitable weak neighbourhood of 6. Hence there exists ¢1, ¢2, -+ , ¢ and § > 0
such that |¢; (x) — @i (¥)| < 8,1 <i < kimplies | (T (x)) — ¥ (T (¥))| < &. Now

vary € over {—,n > 1} to get a countable set W C X'. For any ¢ > 0 choose
n

1
n such that — < e. There exists ¢1, ¢z, -+, ¢, and 6 > O such that |g;(x) —
n

1
0i()] < 8,1 <i < kimplies [Y(T(x)) — ¥(T(y))| < — < &. It follows that if

lp(x) —p(y)| < §forall p € W then | (T (x)) — w(T(y)ﬁ < e.Hence {¢} < W.
If we now repeat the argument for each element of W to get another countable set
W1, then repeat the argument for each element of W; and so on we end up with
countable family Wy such that with v it self, we get a countable subset P of X’
which contains ¢ with P < P.

If Y; is weakly compact, convex and contained in Y then it is a weakly closed
convex set, hence strongly closed. Hence it is a closed convex subset of Y in the
strong (i.e., original) topology, hence strongly compact also. Thus, we may and do
assume that the topology t of X is the weak topology. Now suppose x,y € Y, x #
y. Choose ¥ such that ¥ (x) # ¥ (y). Let P = {1 = ¢, ¥, - - -} be a countable
subset of X’ containing v such that P < P. Now v,,(Y) is compact for each n > 1.
Because if Q = {a1v¥, a2y, - - - } with each o, > 0 then Q < Q, we may suppose

1
[V ()] < - foralln > 1,forallz € Y. Define G: Y — I, by G(z) = (¥n(2))n>1-

G is continuous and its range S is contained in Yy = {x = (Xpn>1 € It |x,| <

1
— forall n > 1;. S has at least two points because ¥ (x) # ¥ (y). Let Tp: S — S
n

bethemap GoT o G~!. In other words, if s € S we pick z € Y such thats = G(2)
and define Ty(s) = G(T (z2)). To see that this is well defined note that s = G(z1) =
G(z2) implies ¥, (z1) = Yn(z2) for all n which implies ¥, (T (z1)) = ¥n(T (z2))
for all n (because P < P)so G(T(z1)) = G(T (z2)) so Ty is well defined. The fact
that P < P also implies that if ¥, (zn) —> ¥, (z) as m —> oo for each n then
Y (T(zm)) —> Y (T (2)) for each n. This means Tj is continuous. Lemma 1.13
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shows that Ty has a fixed point s1 € S. Let Y] = G_l({s1}). Letz € Y150G(z) =
s1. Then s1 = To(s1) = G(T (2)). Hence T (z) € Y;. Thus T (Y1) C Y;. Clearly Y3
is convex. It is a closed subset of S and hence it is compact. ]

Tychonoff extended Brouwer’s result to a compact convex subset of a locally
convex topological vector space [190].

Theorem 1.50 (Schauder-Tychonoff’s Fixed Point Theorem) Any continuous
map T from a compact convex subset Y of a locally convex topological vector space
(X, T) into Y has a fixed point.

Proof By Proposition 1.46 there is a minimal nonempty compact convex set Yy
such that 7'(Yp) < Yp and Y must be a singleton. |

The following result [98], called Markov-Kakutani fixed point theorem, is
powerful in that it determines a single fixed point for a whole family of mappings,
while theorems such as the Schauder-Tychonoff fixed point theorem determine
conditions on the space such that the restriction on the mapping is minimal, namely
that we only require the mapping 7 to be continuous.

Theorem 1.51 (Markov-Kakutani’s Fixed Point Theorem) Let Y be a compact

convex subset of a locally convex topological vector space (X, t). Let Ty: Y —

Y(a € I) be a family of continuous mappings that are affine (which means they
n n

satisfy the condition T, (Z Aixi) = Z AiTy (x;) whenever n € N, A; > 0 forall i

i=1 i=1
n

and Z)»,- =1).IfTyoTg =Tg o Ty forall a, B € I then there exists x € Y such

i=1
that Ty (x) = x foralla € 1.

Proof For each o € I, let Z, = {x € Y: Ty(x) = x}. From the Schauder-
Tychonoff fixed point theorem we know that Z, # ¢. Since 7, is a continuous
affine map, it follows that Z, is compact and convex. So to restate the conclusion

of the theorem we must show that m Zy # . Since Y is compact, we have, by

ael
Proposition 1.4 that we need only show that ﬂ Zy # ¥ for each nonempty finite
ael
subset J of I. To this end, let J = {oy, a2, - - - , , } be a nonempty finite subset of

1. We shall proceed by induction.
Let x be any element of Z,, then

Tozl (Totz (x)) = Tag(Tal (x)) = Taz(x).
That is, Ty, (x) is a fixed point of T, and so Ty, (x) € Zg,. Thus, Ty, (Zy,) € Zg,.
Hence, from the Schauder-Tychonoff fixed point theorem, Ty, has a fixed point in

Zy, . Therefore, Zy, N Zy, # ¥. Now, suppose that

ZyyNZyy #0N---NZy, where, 1 <j<n.
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Let Z = Zy NZqyy # DN ---NZy,. Then Z is nonempty, compact and convex. Let
x be any element of Z and let | <i < j then

Toz,- (T(lj+1 x)) = Toc/url (Toti x)) = TajH (x).

That is, TOZJ.Jrl (x) is a fixed point of T, and so To,j+1 (x) € Zy,.Since 1 <i < j was
arbitrary,

Tujpy (X) € Zoy N Zgy BN -+ NZy, = Z.

Hence, from the Schauder-Tychonoff fixed point theorem, Ty, has a fixed point in
Z. Therefore,

Zay N Zay 90N Zg; N Za,,, 7 0.

By induction, we see that ﬂ Zy # V. This completes the proof. ]

ael

We shall need some facts about the Kuratowski measure of noncompactnessu
introduced by Kuratowski [122]. This measure of noncompactness is used by Darbo
[40], Furi and Vignoli [61], Nussbaum [136], Petryshyn [150], and others.

The concept of Kuratowski’s measure of noncompactness is defined below.

Definition 1.67 Let (X, d) a metric space. If Y is a bounded subset of X (i.e.,
diam(Y) = sup{d(x,y): x,y € Y} < 00), the Kuratowski measure of noncom-
pactness of Y is defined by

n
w(Y) = inf[a >0: Y = | for some ¥; with diam(¥}) < 6,1 <i <n < oo}.
i=1

We give the following properties of . For the proofs see [136].

Proposition 1.47 Let (X, d) be a metric space. If Y is a bounded subset of X, then
n¥) = pn¥).
Proposition 1.48 Ler (X, d) be a complete metric space. Then
1. for every bounded subset Y of X, u(Y) = 0 if and only if Y is compact.
2. If (Yn)n>1 is a decreasing sequence of closed, bounded nonempty subsets of X
andif lim w(Y,) =0, thenY = ﬂ Y, is compact and nonempty.
n—-aoo a1

If (X, ||.|]) is a normed space, the norm ||.|| gives a metric on X and one can take
the Kuratowski measure of noncompactness p on X with respect to this metric.
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Proposition 1.49 Ler (X, ||.||) be a normed space, Y, Z two bounded subsets of X,
x0 € X and ) € K. Then

L YY) = [Alu().

2. u(conv(Y)) = u(Y).
3.ou¥ +2) <)+ p(2).
4. u(¥ U{xo}) = u(Y).

Closely associated with the measure of noncompactness is the concept of k-set
contraction.

Definition 1.68 If Y| is a subset of a metric space (X1, d1), and (X2, d>) is a second
metric space and T: Y1 — X5 is a continuous map, we shall say that T is a k-set-
contraction if w2 (7T (Z)) < u1(Z), for all bounded sets Z C Y|, where u; denotes
the Kuratowski measure of noncompactness on (X;, d;).

Theorem 1.52 (Darbo’s Fixed Point Theorem) Let Y be a closed bounded convex

set in a Banach space (X, ||.||) andlet T: Y — Y be a k-set-contraction with k < 1.
Then T has a fixed point in Y [40].

There is a more useful generalization of Darbo’s fixed point theorem.

Theorem 1.53 Let Y be a closed bounded convex set in a Banach space (X, ||.|)

and T: Y — Y a continuous map. Define Y1 = conv(T(Y)) and Y, =

conv(T (Yy,—1)) for n > 1 and assume that if lim w(Y,) = 0 where u denotes
n—-aoo

the Kuratowski measure of noncompactness on X. Then T has a fixed point in Y.

If T in Theorem 1.53 is a k-set contraction with £ < 1, thenif lim w(Y,) =0,
n—s0o0

but the conditions of Theorem 1.53 may be satisfied in cases of interest for which T
is not a k-set contraction with k < 1.

The following result is an extension of Darbo’s fixed point theorem [61, 136,
172].

Theorem 1.54 (Sadovskii’s Fixed Point Theorem) Ler Y be a closed bounded
convex set in a Banach space (X, |.||) and let T: Y — Y be a continuous -
condensing map (i.e., w(T(Z)) < wu(Z), for all bounded sets Z < Y for which
w(Z) > 0). Then T has a fixed point in Y.

1.6 Nonexpansive Mappings

Definition 1.69 A mapping T is nonexpansive if |T(x) — T(y)|| < |lx — y|| for
all x, y in its domain.

Definition 1.70 Let X be a Banach space and Y be a nonempty bounded closed
convex subset of X. We say that Y has the fixed point property for nonexpansive
mapping if for every nonexpansive mapping 7: ¥ — Y, Y contains a fixed
point x* (i.e., T(x™) = x¥), X has the fixed point property (FPP for short) if
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any nonempty bounded closed convex subset of X has the fixed point property for
nonexpansive mapping, X has the weak fixed point property (WFPP for short) if any
weakly compact convex subset of X has the fixed point property for nonexpansive

mapping.
Remark 1.45 For a reflexive Banach space, FPP and WFPP are obviously the
same.

Definition 1.71 Let Y be a nonempty set. A nonempty subset Yy of Y is called
invariant under 7 or T -invariant for a mapping T: Y — Y if T(Yp) C Yo. Let Y
be a class of subsets of Y. We say that an element Yy € ) is YV-minimal for T if
there exists no proper T -invariant subset of Yy in the class ).

We are interested mainly in the case that Y is a subset of a Banach space X and
Y is the class of weakly compact subsets of X or the class of closed convex subsets
of X.

Remark 1.46 1If Y is a closed convex subset of a Banach space X and 7: Y — Y,
then a decreasing sequence of nonempty, closed, convex, T-invariant sets may be
obtained by setting

Yo=Y and Y, =conv(T(Yy)) Vn > 1.

We set

The set Y is closed, convex and T-invariant. But it may be empty. Of course this
situation cannot occur if Y is weakly compact.

Proposition 1.50 If X is a Banach space, Y C X is a nonempty, weakly compact,
convex setand T : Y —> Y, then there exists a nonempty, closed, convex setY C Y
which is minimal invariant for T.

Proof Let I be the family of all nonempty, closed, convex subsets of ¥ which are
T-invariant. We order I" by reverse inclusion, namely if Y1, Y» € I, then

YI<Vh<Y,CY.

By the finite intersection property for the weak topology, every chain in I has an
upper bound (namely the intersection of the elements in the chain). So by the Zorn
lemma, I" has a maximal element Y € I'. Evidently Y is T -invariant. | |

Remark 1.47 Note that if ¥ C Y is a nonempty, closed, convex and minimal 7'-
invariant set, then

Y = conv(T(Y)).
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IfY e Tin Proposition 1.50 is a singleton, i.e., Y = {y}, then

Ty =y,

i.e., it is a fixed point of T'.

The famous question whether a Banach space has the fixed point property had
remained open for a long time. It has been answered in the negative by Sadovski
[172] and Alspach [4] who constructed the following examples, respectively.

Examples 1.10
1. Let X =cpand Y = {x € cq, ||x]lcc < 1}. Define T: Y — Y by

T(x)=(1,x1,x,x3,...), forall x = (x1,x,x3,...) €Y.

2. Let X = L'(0, 1) and

! 1
Y:{xeX,Ofx(t)fland/ x(t)dtzz}.
0
DefineT: Y — Y by

min{l, 2x(2t)}, if0 <t < —,

T(x)() =
max{0, 2x(2t — 1) — 1}, if = <1 < .

N = N =

Then Y is bounded, closed, and convex, and T is an isometry |7 (x) — T (y)|l1 =
lx — y|l1, forall x, y € Y and is fixed point free.

Namely, co and L'(0, 1) do not have the fixed point property. The above two
examples suggest that to obtain positive results for the existence of fixed points for
nonexpansive mappings, it is necessary to impose some restrictions either on 7' or
on the Banach space X.

The following well-known result is due to Kirk [107].

Theorem 1.55 Let X be a reflexive Banach space and Y a closed bounded convex
subset of X. Let Y have normal structure. If T : Y — Y is nonexpansive, then T has
a fixed point.

Remark 1.48 Theorem 1.55 remains true if X is any Banach space and Y is a convex
weakly compact subset having normal structure.

An immediate consequence of Theorem 1.55 is the following well-known result,
which was proved independently by Browder [29], Gohde [69] and Kirk [107].
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Theorem 1.56 Let X be a uniformly convex Banach space and Y a nonempty
closed bounded convex subset of X. If T: Y — Y is nonexpansive, then T has

a fixed point.
Remark 1.49 For nonexpansive maps, no characterization of FPP or WFPP seems
to be known [21].



Chapter 2 )
Almost Fixed Points Chock or

This chapter presents various almost fixed points results from the literature. In
proofs of many fixed point theorems, almost fixed points have usually appeared
in an auxiliary role. In certain cases, almost fixed points, unlike fixed points, can be
obtained numerically, and in some other cases, the existence of a fixed point is non-
trivial or uncertain, whereas almost fixed points are easily found. Therefore, almost
fixed points seem to be natural objects in many applications.

We will concerned with a (continuous) mapping T of a metric space (X, d) and
with points which are almost fixed, in the sense that

d(T(x),x) < e.

We call such a point “e-fixed”.

2.1 Relation Between e-Fixed and Fixed Points

Theorem 2.1 Let (X, d) be a metric space, 2 be a subset of X andletT: Q2 — X
be a continuous map. If x is fixed for T then any point y € Q2 sufficiently close to x
is e-fixed [183].

Proof d(T(y),y) < d(T(y), T(x))+d(T(x),x)+ d(x,y), which is less than &
for y sufficiently close to x. n

Here is a general argument showing that e-fixed points can be found construc-
tively where fixed points exist in compact sets [183].

Theorem 2.2 Let (X, d) be a metric space and 2 be a compact subset of X and let
T: Q — X be a continuous map. If T has e-fixed points for all ¢ > 0 then T has a
fixed point.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 99
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1
Proof We have points x,, such that d(T (x,), x,) < —. By compactness we can
n

assume that x,, — y in Q. Then by continuity, d(7 (y), y) = 0. [ ]

1
Note that this argument is not constructive, even if we can find —-fixed point by
n
some effective method (in a finite number of steps) it does not give us an effective
way to find (or even to approximate) the fixed point.
We can’t drop the word compact in Theorem 2.2.
Example 2.1 ([135]) Let T(x1, x2,...) = (1 — ||x]|, x1, X2, ...) in the closed unit
-1
ball of /2. Then T has no fixed point, but x, = k2 for 1 <k <nand x, = 6 for
n > kthen ||T(x) — x| = 2%1{Tl so that T has e-fixed points for all ¢ > 0.

Must an e-fixed point of 7' be a fixed point of some mapping close to 7'?

Theorem 2.3 Let (X, ||.]), 2 a convex subset of X, and x be an e-fixed point of
a mapping T of Q2 into Q2. Then there exists a mapping S of Q2 into 2, uniformly
within € of T, for which x is a fixed point [183].

Proof Let |T(x) —x|| =& < ¢. Define Sy = x if |[x = T(y)|| < 8 and S(y) =

x—=T()
T(y)+6— 22
O+ Tl

The convexity condition cannot be omitted from Theorem 2.3:

otherwise. | |

Example 2.2 ([183]) Let Q be the unit circle in C! with a small arc near 1

removed: Q = {em: g < 6 < 2w — %} (for small ¢). Let T be complex

conjugation, 7(z) = Z. Then p = ¢'? is e-fixed but no mapping with ¢ of T
(uniformly) can have a fixed point near p.

2.2 Finding e-Fixed Points Constructively Where Fixed
Points Are “Known” to Exist

In dealing with problems of analysis we should always distinguish between the
calculation of an approximate solution (one which nearly satisfies the requirements)
and the approximate calculation of an exact solution. Most algorithms for “calcu-
lating fixed points” actually yield e-fixed points which may or may not be close
to exact fixed points [102]. But sometimes there are reasons why the e-fixed point
found must be close to a fixed point [180, 189]

The following example in [183] demonstrates that an e-fixed point need not be
near a fixed point.

Example 2.3 Consider the following mapping of the closed interval [0, 1],
T:1[0,1] — [0, 1] defined by T (x) = max(0, min(x + «, 1)), where |¢| < .
Then if @ # 0, all points in [0, 1] are e-fixed but most of them are a long way from
the fixed point.
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This difficulty in approximating exact fixed points applies to all the deep fixed
point theorems which are commonly used in applications: those on continuous
mappings of compact sets (Brouwer, Schauder), Kakutani’s theorem on many-
valued mappings, and so on. (The exception is Banach’s Contraction Mapping
Principle, which does give approximations to an exact fixed point).

To see that e-fixed points can be found in these cases, it is often enough to follow
a standard proof of the existence of a fixed point up to the place, one line before the
end, just before compactness is mentioned, where the proof asserts that an e-fixed
point exists.

Theorem 2.4 Let (X, d) be a metric space and 2 be a compact subset of X and
let T: Q —> X be a continuous map. If T has a fixed point &, then we can find an
e-fixed point (for any ¢ > 0) constructively.

Proof Choose § > 050 that § < g and so that d(T (x), T(y)) < g ford(x, y) < 8.

Choose a finite é-net {x, x, ..., x¢} in Q. Calculate d(x;, T (x;)) for 1 <i <k
and one of these values must be less than ¢ for if d(x;, &) < & then

&

dxi, T(x;)) =d(x;,§) +d(E. T(E) +d(T (&), T(x:)) < §+0+ 5

A practical case where fixed points can be found constructively is Banach’s
Contraction Mapping Principle (or a close relative). If d(T(x),T(y)) <
cd(x,y) (forall x, y) where 0 < ¢ < 1, then if & is the fixed point and x is
ndx, T(x))

1—c
actually assert that T" (x) is close to & for n sufficiently large.

There is one interesting case where the e-fixed points are easily found, but getting
exact fixed points (even non-constructively) is tricky.

any starting point then we have d(T"(x),&) < ¢ so that we can

Definition 2.1 Let Y be a subset of a Banach space and 7: Y — Y a nonexpansive
mapping. An approximate fixed point set for T is a set of the type

F.(T)={x: (T(x)—x)| <¢} forsome & > 0.

The set Y is said to have the approximate fixed point property for nonexpansive
mapping (AFPP for short) if F(T) # ¢ for each ¢ > 0 and for each nonexpansive
mapping T: ¥ — Y thatis, inf{||(T (x) —x)||: x € Y} = 0.

Proposition 2.1 Let Y be a bounded and convex subset of a Banach space and
T:Y — Y a nonexpansive mapping. Then Y has the approximate fixed point

property.
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Proof Consider the mapping 7 := Al + (1 — A)T for A € (0, 1), where [
denotes the identity map of Y. Then T, is a contraction mapping for each A and
by Theorem 1.43 it has a fixed point x; € Y. Thus

X =Tl =1 =M)llxn —=T)| - O0asr — 1.

The sequence of successive approximations for nonexpansive mappings, unlike
contraction mappings, may fail to converge. For example, if

T:R—> R givenby T(x) =1 —x.

Then for xo = 1 we have T?"(xo) = 1 and T%""!(x¢) = 0 forn > 1. Also, rotation
about the origin in the plane is another example where (7" (xo)), (xo # 6) does not
converge.

More generally, if Y is a convex set in a normed space X and 7: Y — Y isa
nonexpansive mapping, then for A € (0, 1),

=i +1-MT

is a nonexpansive map and has the same fixed points as 7.

For fixed xo € Y, (T} (x0)), is defined T)f”r] (x0) = Ax, + (1 — A)T(x,,), where
xn = T, (x0).

An early result, concerning the convergence of the sequence of successive
approximations, is due to Krasnoselskii [118].

Theorem 2.5 Let X be a uniformly convex Banach space and Y a closed convex
bounded subset of X. If T : Y — Y is nonexpansive and T (Y) is relatively compact,

1
then for any xo € Y, the sequence (T} (xg))n of iterates of xo under T1 = E(I +7)
2 2
converges to a fixed point of T.

Schaefer [173] observed that the same result holds for any 7 with A € (0, 1),
and Edelstein [52] proved that strict convexity of X suffices.

The important and natural question is whether strict convexity can be removed.
This question was resolved in the affirmative in the following theorem [90].

Theorem 2.6 Let Y be a nonempty subset of a Banach space X andletT: Y — X
be a nonexpansive mapping. For xo € Y, define the sequence (x,), by

Xpg1 = (1 —cp)xn +cnT (x5), 2.1)

where the real sequence (c,), satisfies the following conditions:

(@ Y en=00,
n=0
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(b) 0 <c, <1 forall positive integers n,
(c) x, €Y for all positive integers n.

If (xp)n is bounded, then lim |x, — T (x,)|| = 0.
n—oo

The iteration method of Theorem 2.6 is referred to as the Mann iteration method
in light of [129]. One consequence of this theorem is that if Y is closed and T is
completely continuous, then T has a fixed point and the sequence (x,), defined by
(2.1) converges strongly to a fixed point of 7' [90].

Any sequence satisfying the conclusion of Theorem 2.6, ie., lim |x, —
n—od

T (x,)|| = 0, is called an approximate fixed point sequence for 7.

The importance of approximate fixed point sequences is that once a sequence
has been constructed and proved to be an appropriate fixed point sequence for a
nonexpansive map 7, the convergence of that sequence to a fixed point of T is
then achieved under some mild compactness-type assumptions either on T or on its
domain.

The concept of asymptotic regularity is due to Browder and Petryshyn in [32].

Definition 2.2 A mapping 7: X — X of a metric space (X, d) into itself is said to
be asymptotically regular at x € X if d(T"‘H (x), T"(x)) — O0asn — oo, it is said
to be asymptotically regular on X if it is so at each x € X.

Results on the asymptotic regularity of 7 were first obtained by Browder and
Petryshyn in [32]. They showed that if X is uniformly convex and 7: Y — Y
is a nonexpansive selfmapping on a closed, bounded, convex subset Y, then 7} is
asymptotically regular.

The asymptotic regularity is relevant to the existence of fixed points is seen from
the following simple observation [32].

Proposition 2.2 If T: X — X is continuous on a metric space (X,d) and
asymptotically regular at x € X , then any cluster point of {T" (x)} is a fixed point
of T.

Proof Let (T"*(x)); be a subsequence of (T"(x)), converging to y € X. By
continuity 7"**1(x) — T(y) and by asymptotic regularity T+ (x) - y, so
that T(y) = y. |

It follows that for continuous 7" asymptotic regularity of 7j at any x € Y implies
that 73 (y) = y for any cluster point y of {7}’ (x)}.

Asymptotic regularity is not only useful in proving that fixed points exist but also
in showing that in certain cases, the sequence of iterates at a point converges to the
fixed point as in the following result [54].

Proposition 2.3 Let T be a linear mapping of a normed space X into itself and
suppose that T is power bounded, i.e., for some ¢ > 0,

IT"l <c n=1,2,---),
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and asymprotically regular. If conv{T" (x)} contains a fixed point z of T for some
x € X, then (T" (x)), converges strongly to z.

Proof Let ¢ > 0 be given and suppose that y is a point in conv{7T" (x)} with

e
lz—yll < et D)

m
Setting y = ZAka(x) we obtain
k=1

T"x—2)=T"x = +T"(y—2)=T" (x — ZAka(x)) +T"(y —2)
k=1

=D (T"(x) = T" (@) + T"(y — 2.
k=1

Hence

ec

D M) = T (x))

k=1

Now by asymptotic regularity, a positive integer N exists with the property that
n > N implies

17" () = T )l < % (k=12---,m).

It follows that

1" =2l < Y M (%) I % .

k=1

forallm > N so that T"(x — z) = T"(x) —z — 0 asn — oo, proving the
proposition. |

Definition 2.3 A mapping T of a subset ¥ of a normed linear space into itself is
said to be uniformly asymptotically regular if for any § > O there exists an N such
thatforall x € Y and foralln > N, [T (x) — T"(x)|| < 8.

The following lemma was given in [54].

Lemma 2.1 Let T be a nonexpansive selfmapping of a convex subset Y of a normed
space X. For A € (0, 1) define a nonexpansive mapping T, = Al + (1 — A)T of
Y into itself. Let Z be a subset of Y such that for some a, ||T).(x) — x|| < a for all
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x in Z such that for some § > 0 and any positive integer n there exists an x in Z
(depending on n) with

177+ () = T @)l > 6. 2.2)

Then {T)'(x): x € Z,n € N} is unbounded.

Proof Assume by way of contradiction, that diam{7}'(x): x € Z,n € N} < p. Let
M and N be positive integers

M§>p+1and N M, —Ma
> an > max sy T (-
P (1 =M

Suppose that x satisfies (2.2) withn = N. Then since T}, is nonexpansive, (2.2) must
hold for all positive integers i < N. We simplify the notation by writing x; = T} (x)
and y; = T(T} (x)). These points satisfy the following conditions:

llxi+1 — x;|| is a monotone non-increasing sequence with (2.3)

a>|lxi —xoll =+ = lxy+1 — xnll > 6,

lvit1 — yill < |xix1 — x|l foralli =0, 1, --- , N( by the nonexpansiveness of T),
2.4)
and
1 A
Xi+1 = Ax; + (1 — X)y; sothat y; = mxH_l 1z )Lx,-. (2.5)

Note that (2.4) and (2.5) imply

(X1 —x) — i —xi—)| = llyi —yie1ll < llxi —xizall (2.6)

=

foralli =1,2,---, N. Also for any integer

L>;’
T (1 =AM

[6, a] can be covered by L subintervals each of length (1 — A)AM . Hence by (2.3)
and the fact that

N > max { M, M; ,
(1—1)aM
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we can find a subinterval I = [b, b + (1 — k)AM ] of [8, a] such that I contains at
least M of the numbers ||x;4+; — x;||, i.e., for some K,

lxg+iv1 —xk+ill € fori=1,2,--- | M. 2.7)
By a result of Banach and Mazur, we can embed the linear span of
{xi,»:0<i<N+1}
by a linear isometry into C[0, 1]. Viewing the x; as continuous real functions on

[0, 1], itis clear that a & € [0, 1] exists such that |xg 1 pr4+1(§) —xx+m(§)] = b. We
will assume that

xkim+16) —xkm () > b

as a similar argument holds in the other case. Then (2.6) and (2.7) imply

b

A
T3~ T Ckem @ = xiem-1(§) = b+ (1 - MM,

so that
1
Xk+mM (&) —xg+m-16) = b — (1 — nIM (A> '

Similarly

(1-2%

1 1
Xk m-1(E) =Xk m—2(§) = b— (11— (X + —2) ===

A

and in general,

(1 =29

Al

Xk 4mM+1—i (&) — Xk pm—i(€) = b— (1 —1)aM , fori=0,1,---,M—1.
Thus
Xk+m+1(E) = xgm(E)+ Db
1—2x 1— i1l

> Xk +M+1-i (€) +ib — (1 —)AM (T +oeet )J——1>
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I—2 1 — M-t
> xx+1(6) + Mb — (1 — )M <T++W>

>xg+1() + Mb -1,
since

1—2 1— M-l

(1—A>AM(T+--~+W—_I)s(l—A>A<AM—2+--~+1>51.

But b > 6 implies that Mb > M§ > p + 1, and so |[xg+m+1(8) — xx+1(§)| > p
contradicting the assumption that diam{7,’(x): x € Z,n € N} < p. |

As consequence, the following result is proved in [54].

Theorem 2.7 Let T be a nonexpansive selfmapping of a convex subset Y of a
normed space X. For ) € (0, 1) define a nonexpansive mapping T, = M +(1—A)T
of Y into itself. Then if the set {T}' (x): n € N} is bounded for some x € Y, T), is
asymptotically regular at x. Moreover, if Y is a bounded subset of X, then T), is
uniformly asymptotically regular on Y .

Proof Both statements follow immediately from Lemma 2.1, the first by setting
{x} = Z in the lemma and the second by setting ¥ = Z. |

Remark 2.1 Tt should be noted that by Theorem 2.7 the open question of whether
every nonexpansive mapping of a weakly compact convex subset of a normed space
into itself has a fixed point is equivalent to the question whether every uniformly
asymptotically regular such map has one.

Using a simple variant of the proof of Lemma 2.1, Edelstein and 0’Brien [54]
were able to derive a much stronger version of the Krasnoselskii result.

Theorem 2.8 Let T be a nonexpansive selfmapping of a convex subset Y (not
necessarily bounded) of a normed space X. For A € (0, 1) define a nonexpansive
mapping Ty = M + (1 —1)T of Y into itself. Suppose that for some x in Y, {T}' (x)}
has a cluster point y € Y. Then Ty (y) = y = T(y) and T} (x) — . In particular,
if the range of T is contained in a compact subset of Y, then (T} (x)), converges
strongly to a fixed point of T for any x € Y.

Proof 1t was shown in [51] that y is also a cluster point of {7}'(x)} and that
||TA"+1(y) =TIl = IITa(y) — yll for all n. As In Lemma 2.1 letting x,, = T} (y)
and y, = T(7y'(y)) we obtain a set of points, which by embedding can again be
assumed to be a subset of C[0, 1], which satisfy the following:

L lxiy1 — xill = lyi+1 — yill = p = 0,foralli =0,1,---,
2. xip1 = Ax; + (1 —A)y;, and
1 A
3oy —yicill = H T )L(xi+1 —Xj) — m(xz‘ —Xi—1)| =p-
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Now for any fixed N, 1. implies that for some & € [0, 1], |(xy+1 —xn)(E)| = p.
By 1. and 3. we must have (x,4+1 —x,)(§) = (xy+1—xn) (&) foralln < N. Without
loss of generality assume (xy4+1 — xy)(§) = p. Then foralln < N

N+ (E) = x,(E) + (N +1—n)p.

But if p > 0, we obtain a contradiction to the existence of a cluster point for {x;,}.
Hence p = 0and Ty (y) = y = T'(y). That T (x) — y now follows easily from the
non expansiveness of 7.

If the range of T is contained in a compact set, then {7} (x)} is bounded and so
by Theorem 2.7, T), is asymptotically regular at x. Since

T/ () = T (x) = (1 = DT (T} (x) = T (x)],
by asymptotic regularity any cluster point of {7 (7} (x))} will be a cluster point of

{T}" (x)} and the theorem follows. |

In [54], a number of results were extended, previously known only for uniformly
convex spaces, or in some cases, strictly convex spaces, to arbitrary normed linear
spaces.

Theorem 2.9 Let X be a normed space, Y a closed bounded convex subset of X
and T a nonexpansive mapping of Y to Y. Suppose that either

1. T is demicompact at 0, or
2. I — T maps closed bounded subsets of X into closed subsets of X, or
3. T is set-condensing or ball-condensing.

Then for every x € Y, (T} (x)), converges strongly to a fixed point of T .
Proof
1. Let x, = T, (x). Then

1
Xn — T (xy) = Con = To.00)) = 17— (T () = ' (x)).

1

1—2
Hence by Theorem 2.7 and the demicompactness of T at 6, {7} (x)} has a cluster
point in Y. The result follows by Theorem 2.8.

2. For any x consider the set Z = {T,'(x)} (the strong closure). By Theorem 2.7
0 € (I —T,)(Z) since (I — T,)(Z) is closed. Hence there is a subsequence
T{”‘ (x) — y € Y where y is a point such that (I — 7)) (y) = 6. Thus 7} (x) — y.

3. The condition that T be set-condensing or ball-condensing implies that {7}’ (x)}
has a cluster point and the result follows from Theorem 2.8.

The next result concerns affine, nonexpansive mappings. In [46] Dotson showed
that if X is a uniformly convex Banach space and 7: X — X is linear and
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nonexpansive, then (7}’ (x)), converges strongly to a fixed point of T for any x € X.
Combining Theorem 2.7 and Proposition 2.3 yields the same conclusion for any
normed linear space X.

Theorem 2.10 If T: Y — Y is an affine, nonexpansive mapping of a weakly
compact convex subset Y of a normed space X into itself, then for each x in Y,
(T} (x))n converges strongly to a fixed point of T [54].

Proof Since T is affine and nonexpansive, it has a fixed point in ¥ which by
translation we may assume as 6. Then T extends to a linear map of W = Sp(Y)
into W, so that 7, can be considered as a linear mapping of W into W, which
is asymptotically regular at x by Theorem 2.7. Also, since Y is weakly compact,
{T' (x)} has a weak cluster point z, in conv{7}' (x)}. The result will follow from
Proposition 2.3 by showing that z is a fixed point of 7.

Fix ¢ > 0 and by asymptotic regularity choose N such that

I
177 (x) = T (0| < 5

foralln > N. Since z € conV{Tf (x): n > N}, there exists

m
&
y=Y MTYH(x) € COmvV(T} (x): n = N} with ||z — y|| < 7+
i=0

By the affineness of 7},

m

. ; &

1) =yl < LI @) = T ol < 5
i=0

so that

1T0.(2) = zll = ITh(2) = T+ IT5.(y) =yl + 1y —zll <.

It follows that T} (z) = z. | |

When Y is only assumed to be weakly compact, it is known that in general
{T}" (x)} will not have any stronger cluster points [66]. However, Theorem 2.7 allows
to conclude weak convergence for spaces which satisfy the following condition
introduced by Opial [141]:

Definition 2.4 A normed space X satisfies the Opial’s condition if whenever x,, —
6 and x # 6 we have liminf || x, || < liminf ||[x — x,]|.
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For a normed space X, by Hahn-Banach’s theorem, for a given x in X, there
exists at least one ¢ € X’ such that ||¢|| = [|x|| and @(x) = ||x||2. For each x in X
define

) = {o € X'\ llgll = Il and o) = x]12}.

The mapping J: X — 2X' is called the normalized duality mapping of X.

Every Hilbert space and I”(1 < p < o0) space satisfy Opial’s condition.
This condition has been used in the study of the existence of fixed points for
nonexpansive maps. For example, Gossez and Lami Dozo [72] have shown that
for any normed space X, the weakly sequentially continuous duality map implies
that X satisfies Opial’s condition which in turn implies that X has normal structure,
but that none of the converse implications hold.

We have the following definition.

Definition 2.5 Let X be a normed space and Y € X. A mapping 7: ¥ — X is said
to be demiclosed if for any sequence (x,), in Y withx, = xpin Y and T'(x,) — y
in Y, then T (xg) = y.

It follows [32] that if T is asymptotically regular and / — T is demiclosed, then
any weak cluster point of {7"(x)} is a fixed point. It is also known [141] that if a
space satisfies Opial’s condition , then / — 7 is demiclosed for any nonexpansive
map T from a closed and bounded convex set into itself. In [54] the following was
proved.

Theorem 2.11 Let X be a normed space which satisfies Opial’s condition and let
T be a nonexpansive mapping of a weakly compact convex subset Y of X into itself.
Then for any x € Y, (T} (x)), converges weakly to a fixed point of T

Proof By the above quoted results any weak cluster point of {7}'(x)} is a fixed
point. If there exist two distinct weak cluster points of {7} (x)}, say y; and y»
and two subsequences (T)fl ¥ (x))x converging weakly to y; and (T)f’ '(x)); converging
weakly to y», then since ||}’ (x) — y; | is non-increasing, Opial’s condition implies
that

im |75 () = yill = Hm |7, () — yill < lim | 7% (x) = y2| = lim || 7 (x) — y2l,
and similarly,
Hm |7} (x) = yall = im | 73" (x) = y2 |l < Him || 75" (x) — yill = lim | 73" (%) =y .

The contradiction shows that exactly one weak cluster point exists and by weak
compactness 7} (x) — y. |

In [65], a new class of mappings was introduced.
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Definition 2.6 Let Y be a nonempty closed convex subset of Banach space X. For
a continuous strictly increasing function a: R — R with «(0) = 0 we say
T:Y — Y is an a-most convex mapping if forall x, y € Y and all A € [0, 1] we
have

Jr(Ax + (1 = 2)y) < amax{Jr(x), Jr(y)}),
where Jr is defined by
Jr(x) :=||T(x) —x||, forall x €Y.

In the case when «(t) = rt, for some r > 0, we say T is r-almost convex,
and simply refer to T as almost convex where r = 1. That is, 7' is almost convex
whenever

Jr(Ax + (1 = 1)y) = max{Jr (x), Jr (M}

forall x,y € Y and all A € [0, 1].
Affine maps are clearly almost convex, indeed they satisfy the seemingly stronger
inequality,

Jr(dx + (1 = 2)y) = AJr(x) + (1 =) J7r(y).

On the other hand, in [103], was proved that any o-most convex map is of “convex
1
type”, that is, if J7(x,) — 0and Jr(y,) — O then Jr (E(X" + yn)> — 0, so the

midpoint of two approximate fixed point sequences is itself an approximate fixed
point for T'.

Remark 2.2 a-most (or, quasi) convex functions have been considered in optimiza-
tion theory [36, 39], where « is referred to as a “forcing function® and is often also
required to be convex.

Beyond the affine mappings already mentioned, instances of a-most convex
maps include the following [65].

Examples 2.1

1. T:[0,1] — [0, 1]: x — x(1 — x) is not affine, but J;(x) = |x — T(x)| = x2
is a convex function, and so 7 is almost convex.
2. T: B,y — B, defined by

T((xp)n) == (x1 —sgn(x) | (xnnlloo, X2, X3, -+ )

is almost convex, as J7(x) = ||x ||« iS a convex function.
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3. Let (p,: R — R) be a family of functions which are equicontinuous at 0 and
satisfy

@n(0) = 0, @,(x) <x, and ¢ <0,

then T: (x,), > (¢n(xn)), is an almost convex mapping from cg into cp.

4. A self mapping T of a metric space (Y, d) is a contraction in the sense of
Bianchini [168] whenever there exists a number 2, 0 < h < 1, such that, for
eachx,y € X,

d(T(x), T(y)) < hmaxd(T (x), x),d(T(y), y).

If Y is a convex subset of a Banach space X, then this type of mapping is «-

almost convex .
Indeed,

JrGx 4+ (1 =2)y) < AJr(x) + (1 =2 J7r(y)
+ Ahmax{Jr (x), JT(Ax + (1 — A)y)}
+ (I = Mhmax{Jr (x), Jr(Ax + (1 — 1) y)}
=2MJr(x) + (A =)J7r(y) + hJr(Ax + (1 = 1)y)).

Therefore
2
JrOx 4+ (1 —21)y) < -7 max{Jr (x), Jr (y)}.

5. Let Y be a convex nonempty subset of a Banach space X. Every k-Lipchitzian
mapping T : Y — Y which satisfies

lx — yll = y(max{Jr(x), Jr(»}

where y : R — R™ is a continuous strictly increasing function with y (0) = 0
for all x, y € Y is o-almost convex.
Indeed
Jr(x + (1 =21)y) = AJr(x) + (1 =) J7r(y)
+ AT (x) = T(x + (1 =)yl
+ A =MIT) —TOx + 1 =1y
< B(max{Jr(x), Jr(»)}),

where 8(t) =t + gy(t).
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6. Every strict contraction 7: Y — X where Y is a convex nonempty subset of
a Banach space X satisfies the above condition, and therefore it is an «-almost
convex mapping.

2 1
kt and hence f(t) = ﬁt where 0 < k <

Indeed, we can take y (t) = 1

1 is the contraction constant of 7'.
7. Similar, though more tedious, calculations to those of the last three examples
establish that if 7: ¥ — X is a generalized nonexpansive map, that is,
IT(x) =TI < allx = yll +bx =T+ 1ly =TI
+ellx =TI+ Iy =T

where a, b and c are positive constants with a 4+ 2b + 2¢ < 1, and if either this
last inequality is strict, or b # 0, then T is r-almost convex. Indeed,

Jr(x + (1 —2)y) < (I+b+0c)1—0)

S U—b—00 a0 "X Jr)

3
% max{Jr (x), JT(y)}.

IA

8. A mapping T of a closed convex subset of a Banach space X is said to be of type
I" [33] if there exists a continuous strictly increasing convex function y : RT —
R™ with y(0) = 0 for which

YUAT () + A =T ) = TOx + A =)D < [llx =yl = 1T ) =TI

Such maps are @-almost convex, where «(t) = ¢ + yfl (21).
To see this, note that y ~! is strictly increasing and that
Jrx+ (1 —=Dy) =lrx+A -2y —Thx + A =)W

<lrx+A=2Ny—aTx+ (1 —=1MTy)|
+y 7l =yl = 1T @) =TI
=Ar(x)+ A =1JIr(y)
+y 7 e =TI+ Iy = T
< a(max{Jr (x), JT(M}.

As a consequence of this last example and [33] we have:

9. All nonexpansive self maps of closed bounded convex subsets in a uniformly
convex space are «-almost convex.
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Remark 2.3 Tt is worth noting that the class of maps which are a-almost convex on
a given domain Y is stable under equivalent renormings. Indeed, if m||x| < ||x||’ <
M||x| and T is a-almost convex with respect to the norm ||.|| then it is &’-almost

. t
convex with respect to ||.||’, where a’(t) = Ma(—).
m

Many other examples of «-almost convex mappings are a consequence of the
following result [65].

Proposition 2.4 If Y is a closed bounded convex set of a Banach space X, and
T:Y — Y, then at least one of the following applies.

1. T is r-almost convex, for some r > 0, or
2. inf{Jr(x): x € Y} = 0. That is, T admits approximate fixed points in Y.

Proof If T is not r-almost convex for any r > 0, then for each n € N taking r = n,
we see that there must exist points x, and y, in ¥ and A, € [0, 1] such that

00 > diamY > Jr(Apxy + (1 — Ayp)yn) = nmax{Jr (xn), JT (Yu)},

so Jr(x,) and Jr (y,) tend to 0 as n — oo. |

Using the previous proposition with non-zero minimal displacement given in
[67], we see that there r-almost convex self maps of weak compact convex sets
(including By,) with inf Jr (x) > 0. In particular such maps are fixed point free, and
can not be weakly continuous. Indeed, examples 2., 3. above show that unlike affine
maps, almost convex maps need not be weakly continuous. To see this note that in
co the standard basis vectors ¢, — 6, but

T(ep) =(—1,0,---,1,0,---), wherethe 1 occurs in the n’th position
- (=1,0,0,---)#T(®) =0.

Nonetheless, we have the following [65].

Proposition 2.5 Let X be a Banach space and let Y be a nonempty closed convex

subset of X. If T: Y — X is norm continuous and almost convex then Jr(x) :=

1T (x) — x|| is weak lower semicontinuous.

Proof Suppose that (x,), is a sequence in Y such that x, — x. Given ¢ > 0,
€

choose a subsequence (x,, )i such that J7 (x,,) < liminf Jr(x,) + >’ for all k, and

£
let § > 0 be such that |Jr(y) — Jr(x)| < 3 whenever ||y — x|| < & (possible, as T
and hence Jr is norm continuous at x). Since x,, — x, by Mazur’s theorem, there
exists Xngy s Xngys * 0 s Xngy, and Ay, Ay, .-+, Ay € (0, 1] with Zki = 1 such that
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lx = > Aixn, | < 8. But, then

m
&
Jr(x) < Jr (Z xixnk,) +5

i=1

m
A’.
=Jr ()»i)cnk1 + (I =21 Z ﬁxnki) +
i=2 1
m

A
=< max {‘]T(x”kl)’ Jr (Z mxnk,.) } + g

i=2

| ™

&
< max{Jr (xny ), -+ I (g, )} + 3

< liminf J7 (x,) + ¢,
n

and so we conclude that J7 is weak lower semicontinuous. |

Corollary 2.1 For X,Y and T as above, if in addition Y is weak compact, then

M(T):={x € Y: Jr(x) = inf Jr(y)}
yey

is a nonempty weak compact convex subset of Y. Indeed the same is true of any of
the sub-level sets for Jr.
In particular, such a T has a fixed point if and only if

inf Jr(x) =0,
xeY
that is, if and only if T admits an approximate fixed point sequence in Y. And, in

this case Fix(T) := M(T) is a nonempty weak compact convex set.

We do not know if Jr(x) is weak lower semicontinuous for arbitrary «-almost
convex maps, however, we have the following demiclosedness result [65].

Proposition 2.6 Let X be a Banach space and let Y be a nonempty closed convex
subset of X. If T: Y — X is norm continuous and a-almost convex then I — T is
demiclosed at 0.

Proof Suppose x, — xo and |J7(x,)| = ||({ — T)(x,)]| — 0. We may assume
without loss of generality that

Jr(xy) >0

for all positive integers 7.
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Fix ¢ > 0. Since T is continuous, there exists § > 0 such that
£
Jr(x0) < Jr(y) + >

whenever y € Y and ||y — xo] < §.
On the other hand, since « is continuous at 0 and «(0) = 0, there exists a positive
integer n such that

0 < a(Ur(in) < 5.
As Jr(x,) — 0and a(J7(x,)) — O, there exists ny > ny such that

0 < Jr(xny) < min{Jr (xp,), & (Jr (X))}
and

0 < a(J7(xn,)) < min{J7 (xy,), (Jr (x,))}.

Thus, by induction we can get a subsequence (x,, )k of (x,), satisfying

0 < Jr (xngyy) < min{J7 (xp,), o (J7 (Xn; )}
and

0 < a(Jr (xny)) < min{Jr (xy,), «(J7 (xn )},

for all positive integer k.
m

We assert that if m > 2 and Zkkx,,k is a convex combination of

k=1
Xny> Xny, t 5 Xn, then

Jr <Z Akxnk> < a(J7 (X))
k=1

Indeed, for m = 2 we have

Jr (M 1xn, + A2Xny) < a(max{Jr (xn,), J1 (Xn,)) = a(J1 (Xn,)).
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If we suppose that the assertion is true for k = m — 1, then

m m )\'
Jr (Z Akxnk) =Jr <x1xnl +d=a) T "A xnk) (2.8)
k=1 im =4
<a <max {JT(xnl), Jr (Z = i"/\l)xnk> }) (2.9)

k=2
< a(max{Jr (xp,), «(Jr (xp,))}) = (I (xp,)). (2.10)
To complete the proof we need only observe that by Mazur’s theorem, there exists
m
a convex combination Z AkXp, such that

k=1

m
1> Aexn, — xoll <8,

k=1
and then
m
Jr(x0) < Jr Z/\kxn +2< a(Jr (X)) + g - e
k=1 ‘ 2 ' 2
which concludes the proof. -

As an immediate consequence we have the following fixed point result for o-
almost convex maps [65].

Proposition 2.7 Let X be a Banach space, let Y be a nonempty weak compact
convex subset of X, and let T: Y — X be norm continuous and o-almost convex.
Then T has a fixed point in Y if and only if inf{J7(x): x € Y} = 0.

Proof (=) is obvious.

(<) Since inf{Jr(x): x € Y} = 0, we can find an approximate fixed point
sequence (x,), in Y which without loss of generality we can assume is weakly
convergent to xg € Y. The above proposition now applies to yield the result. |

As an immediate consequence of Proposition 2.6 we have the following [65].

Proposition 2.8 Let Y be a nonempty weak compact convex subset of the Banach
space X, and let T : Y — X be norm continuous, o-almost convex, and asymptoti-

1
cally regular at xy € Y, that is Jp(T" (x9)) —> O (for example, if T = 5(1 + V),

where V is a-almost convex and nonexpansive). Then the iterates T" (xy) weakly
converge to a fixed point of T if either

(i) T is a contraction, that is, ||T (x) — T (y)|| < |lx — y|| whenever x # y, or
(ii) X satisfies the Opial’s condition.
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Proof

(i) Suppose this were not the case, then we can find subsequences 7" (xg) — yo
and T"* (xg) — zo # yo. By the demiclosedness both yy and zo are fixed
points of T, a contradiction, since contractions can have at most one fixed
point.

(ii) This follows from standard arguments similar to those used in the nonexpan-
sive case [64].

The following characterization of reflexivity follows from the theorem of
Mil’man and Mil’man [132] and the above considerations [65].

Proposition 2.9 The Banach space X is reflexive if and only if whenever Y is a
nonempty closed bounded convex subset of X and T : Y — Y is norm continuous,
a-almost convex with inf{Jr (x): x € Y} = 0 it follows that T has a fixed point.

2.3 Approximate Fixed Points of Nonexpansive Mappings
in Unbounded Sets

It is less obvious that some unbounded convex sets have the approximate fixed point
property for nonexpansive mappings.

Definition 2.7 A set Y of a Banach space X is called linearly bounded if it has a
bounded intersection with all lines in X (¥ does not contain any half-line).

In [165], Reich characterized closed convex subsets of reflexive Banach spaces
which possess the approximate fixed point property for nonexpansive mappings.

Theorem 2.12 A closed convex subset of a reflexive Banach space has the AFPP if
it is linearly bounded.

Proof Let Y be a closed convex subset of a (real) reflexive Banach space X, and let
X’ be the dual of X. To show necessity, assume that {y +1z: 0 <t < o0} C Y

. 1 (y +12)
for some z # 6. If x isin Y, then (1 — ;)x + — belongs to Y for all ¢+ > 1.

Therefore we can define a mapping S: ¥ — Y by S(x) = x + z. This mapping is
nonexpansive and ||x — S(x)| = ||z|| forallx € Y.

Conversely, let T: Y — Y be any nonexpansive mapping, and denote
inf{[|(T'(x) — x)||:
x € Y} byd.Itis known [116, 164] that for each x € Y there is a functional j € X’

_Tn
with || j|| = d such that ()c—(x)’ j) > d? for all n > 1. It is also known [163]
n

T r
ol = d. Let a subsequence ( )

that lim

) converge weakly to w.
n—oo n n>1

Clearly ||w|| < d. On the other hand, ||w|d = ||w||||j||_z (—w, j) > d2, so that
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T"(x)

1
lw|| = d. Now let y be any point in Y. Since (1 — =)y + belongs to Y for
n

eachn > 1, we see that y + w also belongs to Y. Consequently, we may conclude
that the points y +mw belong to Y for allm > 1. If Y is linearly bounded, then this
fact implies that w = 6, so that d = 0 too. This completes the proof. |

Remark 2.4 Theorem 2.12 cannot be extended to all Banach spaces. To see this, let
x=1v = {x = (x1,x2,--+) € l1: ||xy]| <1 for all n}, and define T: Y —
Y by T(x1,x2,---) = (1, x1,x2,---). Then Y is linearly bounded and T is an
isometry, but inf{||(T (x) — x)||: x € Y} = 1.

Remark 2.5 If X is finite-dimensional and Y is linearly bounded, then Y is, in fact,
bounded. Hence in this case either Y is bounded and has the fixed property, or it is
unbounded and does not even have the AFPP.

In [179] Shafrir presented a more general geometric characterization of the
AFPP that is valid in an arbitrary Banach space. This result is true even for a more
general class of metric spaces with a convexity structure, namely hyperbolic spaces
introduced by Kirk [108].

Let (X, p) be a complete metric space. We say that a mapping c: R — X isa
metric embedding of R into X if p(c(s), c(¢)) = |s — ¢t| for all real s and ¢. The
image of R under a metric embedding is called a metric line. The image of a real
interval [a, b] under such a mapping is called a metric segment.

Assume that there is a family M of metric lines in X such that for every x, y €
X,x # y, there is a unique metric line in M that passes through x and y. The
closed metric segment connecting x and y will be denoted by [x, y]. For every
0 <t < 1 we shall denote by (1 — #)x @ ty the unique point z € [x, y] satisfying
p(x,z) =tp(x,y)and p(z,y) = (1 —)p(x, y).

Definition 2.8 We shall say that X, or more precisely (X, p, M), is a hyperbolic
space if

1691 1@1 <1( )
XD =y, —X D — -
P X @Y 5x@52) = 5002

for all x, y and z in X.
An equivalent requirement is that

p((I=—Dx&tz, 1 -y dtw) = (1 -0)px,y)+1p(z, w)

forall x, y,zand win X andall0 <z < 1.

Hyperbolic spaces were studied in [166]. The following are some examples of
these spaces.
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Examples 2.2

1. All Banach spaces are also hyperbolic spaces. So is the Hilbert ball B equipped
with the hyperbolic metric [68] and B", the Cartesian product of n Hilbert balls,
equipped with the hyperbolic metric [121].

2. The open unit ball of L(H), the space of all bounded linear self-mappings of a
complex Hilbert space H, with the hyperbolic metric.

3. Hadamard manifolds and simply connected Riemannian manifolds of nonposi-
tive curvature are finite dimensional examples of hyperbolic spaces [10].

4. New examples of hyperbolic spaces can be constructed from old ones by a
product procedure which is described in [166].

Definition 2.9 Let (X, p, M) be a hyperbolic space. A subset Y C X is said to
be convex if [x, y] C Y whenever x,y € Y. A mapping T: Y — Y is said to be
nonexpansive if p(T (x), T(y)) < p(x, y) forall x, y € Y. We shall say that has the
AFPP if inf{p(x, T (x)), x € Y} = 0 for every nonexpansive mapping 7: ¥ — Y.

In [179], Shafrir introduced the concepts of the directional curve, directional
sequence, and directionally bounded convex subsets of hyperbolic spaces.

Definition 2.10 Let (X, p, M) be a hyperbolic space. A curve y: [0, 00) — X is

said to be directional (with constant b) if there is b > 0 such that

t—s—=b=<pyk),y@®) <t—s

forallt > s > 0. A sequence (x,),>1 € X is said to be directional if:

(1) p(x1, xy) > 00 asn — oo,
(2) there is b > 0 such that

-1
PCnys X)) = Y p(nys X)) — b

i=1
forall x,, < x,, <--- < Xp,.

Definition 2.11 A convex subset Y of a hyperbolic space (X, p, M) is called
directionally bounded if it contains no directional curves.

Lemma 2.2 A convex subset of a hyperbolic space (X, p, M) is directionally
bounded if and only if it contains no directional sequences (does not contain any
approximate metric half-line) [179].

Proof Suppose Y contains a directional curve y (¢) with a constant b. Choose any
positive sequence (t,),>1 such #, 1 oo and define

xi=y@), i>1
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For x,,, < xp, <+ < x,, we have:

P(xnl, -xnl) = P(V(tm), )/(fnl)) = trl] - tnl - b
-1

-1
= Z(t”iﬂ - tn,-) —-b > Zp(xn;7xni+1) —b.
i=1 i=1

Conversely, if Y contains a directional sequence (#,),>1 with constant b we define

n—1

n=0 ty=Y plx xii1)

i=1

forn > 2,and y(t,) = x, forn > 1. We extend y to all of R by y ()

r—1,
(1 —ay)x, ®asx,4+1 wheret, <t < tyy;anda, = S Iftyy1 >t>1t,>
o Xn,s Xpt1)
tmt+1 > 8§ > ty, then
Py @),y () = p(y(tat1), ¥ () — p(¥ (tas1), ¥ (1))
> p(Y(tat+1), ¥ tm)) — (v (), ¥ (tm)) — p(¥ (tat1), ¥ (1))
= p&m, Xng1) — (8 —tm) — (Tag1 — 1)
n
> Y p(xi xig1) —b — (s = t) = (a1 — 1)
i=m
=t—s—0>b
[ |

Let Y be a closed convex subset of a hyperbolic space (X, p, M)andT: Y — Y
anonexpansive mapping. For any x € Y and r > 0 consider the mapping S: ¥ — Y
defined by

X®—1—T@)

S =
) t+1 t+1

T is a strict contraction, hence by Banach’s Contraction Mapping Principle, it has a
unique fixed point in ¥ which we shall denote by J;(x). The mappings {J;};~¢ thus
defined are easily seen to be nonexpansive and are called the resolvents of T, just as
in Banach spaces.

The resolvent identity

J(x) = J, (;x @ (1 - ;) Jt(x))

forany x € Y and 0 < s < t can be easily verified.
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For u and v in X and s > 0 we shall denote by (1 + s)u © sv the unique
point w on the metric line connecting # and v that satisfies p(w, u) = sp(u, v) and
p(w,v) =1+s5)ou,v).

The following is given in [179].

Theorem 2.13 A convex subset Y of a hyperbolic space (X, p, M) has the AFPP
if it is directionally bounded.

The following lemmas simplify the proof of the above theorem.

Lemma 2.3 ([166]) Vx €Y,

i px, Ji(x))
im ———

—00 t

= inf p(y, T(y)).
yeyY
Proof By the resolvent identity we have for ¢t > s > 0,

p(x, Js(x)) = p(x, J1(x)) — p(Jr (x), Js(x)) = ;p(x, Ji(x)),

hence

{p(x, Ji(x))
t

[t > O} is nonincreasing and

i p(x, Ji(x))
im ———~ =

t—00 t

L

2 J; .
exists. Since M = p(Ji(x), TJi(x)), it is clear that L > d =

inf{p(y, T(y)) |y € Y}
In order to prove the reverse inequality we fix y € Y and s > 0. Fort > s we
have
s s
"o (1 _ ;> T = +$)7,x) 6 sTJ,(x)

hence

PO 1) = p (1497 6sTM, Sx e (1-2) 1)

IA

“p((1+9)y ©sT. 1) + (1= 2) (1 +5)y 85T (). Ji(x)

A

~p((1+5)y ©5T (). 3) + 2p(r. 1)
+(1=2) p+ 9y 0sTOL )+ (1-2) p0v, Ji()
1 ’ t T

=s5p(y, T 2 1=2) oy, J
=sp(r. TON +2p0.0) + (1= 2) 0 S ().
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./ ,
So we conclude that M Py, x)

=p(,.TH)+ — Letting ¢t — oo we get

L < p(y, T(y)). Since y was arbitrary, L < d and the result follows.
For x € Y and a positive sequence (¢;);>1 we construct a sequence (y;)i>1 S Y
as follows:

$ = A, et = e ® 0, iz 1 .11
where
J 1

s = ](2:; E j>1.

|
Note that in normed spaces
(=)
i=1 "¢
yj=—"—"=".

Sj
Lemma 2.4 Let (y;);>1 be defined by (2.11). Then, form > landt > max{t; | 1 <

i <m},

p(yms Ji(x)) < (1 - S’"—f) p(x, Jy (X))

m

Proof We use induction on m. The case m = 1 is clear from the resolvent identity.
Suppose the result is true for m. Then

m 1
POty (X)) £ 2 p (s i () + —lp(fzmH(X), Ji(x))

Sm+1 Sm+1Im+
1,
s m 1 — mtl
< —p(x, J(x) — p(x, Ji(x) + ——p(x, J;(x))
Sm+1 Sm+11 Sm+1Im+1
m—+1
=px, Ji(x)) — p(x, Ji (x)).
Sm+11

Lemma 2.5 Let (y;)i>1 be defined by (2.11). Then for every m > 1,

md .
P(Ym,x) = —, whered = ynellfyp(y, T(y)).

Sm
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Proof Fix any t > max{t; | 1 <i < m}. Then by Lemma 2.4,

PO ¥) = (s Ji(0)) = (s Ji () = 2L I md

Sm t T Sm
|

Proof (Theorem 2.13) First we prove the necessity part. Suppose Y contains a
directional curve y(¢) with a constant . We define 7: Y — Y by T(x) =
y(Ax + 1 + b) where Ay = p(y(0), x). It is easy to see that T is nonexpansive. In
addition, for each x € Y we have

p(T(x),x) = p(y(Ax +1+b),x)
> p(y(Ax +14+b),y(0) — Ay
>A,+14+b—-b—A, =1

hence Y does not have the AFPP.
Now we prove the sufficiency part. If (a closed) Y does not have the AFPP, then
there is a nonexpansive mapping 7': ¥ — Y such that in)f/ p(y, T(y))=d > 0.We
ye

shall show that Y is not directionally bounded. Fix any x € Y. We shall construct a
sequence (y;);>1 defined by (2.11) with an appropriate choice of (;);>1. We choose
t1 such that

POy _ 1
1 2

so y1 = Jy, (x). Having chosen 11, #5, - - - , 1, and therefore y1, y2, - - -, ym, We next
choose t,,4+1 such that

@) tm+J1 > 2ty

X), 1
i) O Ut (X5 Ym) d+ ’
b1 2m+1

and define y,, 41 as in (2.11). The existence of t,,41 is guaranteed by Lemma 2.3.
We claim that (y;,)n,>1 thus defined is a directional sequence.
It is enough to show that

n—1
<Z pis yit1) = p(y1, yn))
n>2

i=1

is bounded.
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By our construction

1
pUn (), yi) _ A+ 551)
Si+1ti+1 T Sil

o (yi, Yi+1) =
for every i, so by Lemma 2.5 we have, forn > 2,

n—1 n—1 1
d+537)  dn
Zp(yi,yi+1)—p(y1,yn)SZ—Z“——+ nd+ > )

i=1 i=1

d n—1
5[ _;]S,ﬁ@(;i_i)

n

Si+1

n—1 n
<t1+t1d2 Z —

lljl-‘rl‘l

n—1

2
<t1+t1dZ—<t1(2d+1)

Hence (y;)i>1 is indeed directional, and by Lemma 2.2 this completes the proof.

In an infinite-dimensional real Banach space, there is a useful criterion that
enables us to check whether a convex subset is directionally bounded and hence
has the AFPP by Theorem 2.13. We denote by Sy and Sy the unit spheres of X
and X’ respectively.

The following is given in [179].

Lemma 2.6 Let y(t) be a directional curve with constant b in a Banach space X.
Then there is a functional ¢ € Sy’ such that

t—s—b<plyl)—y@E) <t—s forall0 <s <t.

—y(
Proof For r > b consider ¢, € J (M
ly (r) — ¥ (Ol
mapping of X) and let ¢ a weak™ limit of a subset of {¢,, r > b} as r tends to

infinity. For t > s > 0O take » > max(¢, b). Then

) (J is the normalized duality

oy (@) =) =¢(y(r) —y(0) =@ (y(r) — y (@) — (v (s) —y(0)
= ly@r)=yOl —=lly@r) —y®OIl —Illys) —yOl
>r—b—(@F—t)—s=t—s—>b.

We conclude that p(y () — y(s)) >t —s — b forany t > s > 0 and that ¢ € Sx.
The result follows. n
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As a consequence of the above lemma and Theorem 2.13, Shafrir proved the
following [179].

Theorem 2.14 A convex subset Y of an infinite-dimensional real Banach space X
has the AFPP if and only if for every sequence (xp)n>1 € Y such that ||x,|| — oo
asn — oo and every ¢ € Sy,

. Xn
lim sup ¢ <1
n—00 [l

Proof 1If Y does not have the AFPP, then by Theorem 2.13 it contains a directional
curve y(t). Taking x,, = y(n) and the functional ¢ € Sy’ given by Lemma 2.6 we

certainly have lim (p( )
n=>00 "\ [ xnll
The proof of necessity is similar to the proof of sufficiency of Theorem 2.13.

Suppose we have an unbounded sequence (x,),>1 € Y and a bounded functional
X X 1
¢ € Sy such that lim <p( ~ > = 1. We may assume that<p( t > >1—-—
n=00 "\ |y || (B 2"
for all n. We now define inductively sequences (n;);>1 and (y;);>1 € Y such that
(yi)i=1 is a directional sequence. We set n; = 1, y; = x1 and for i > 1 we choose
ni41 such that

l1%n; 0y — Yill 1
X0, | = 20lx, || and —"—— <1+ —
a | o 2+
and set
Zi—i—l Xn j
J=1 Tl

Vil =SS

DIIRE o

A computation similar to the one given in the proof of Theorem 2.13 shows that
(yi)i>1 is a directional sequence, hence Y does not have the AFPP. | |

Remark 2.6 In Theorem 2.14 we may replace “¢ € S/ by “@ which is an extreme
point of Sx”. Indeed, if Y contains a directional curve y (¢) then

a= 1/[ierlst, sup =y @ —rO))

is finite by Lemma 2.6. Note that “sup” can be replaced by “lim” since the function
H(t) =t — ¢ (y() — y(0)) is nondecreasing for ¢ > 0. The infimum « is attained
since if the sequence

an = sup (t — Yu(y () — y(0)))

t>0
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converges to a, then for any t > 0,1 — ¥ (y(t) — y(0)) < a where ¥ is a weak™
accumulation point of the net {,,}. The set

Z={p e Sx, sup (t — oy () — y(0) = a}
>

is a nonempty weak®-compact and convex subset of Sx/. Hence by the Krein-
Milman theorem [119] it contains an extreme point. Since Z is clearly an extremal
pty

subset of Sy, i.e., ¢, ¥ € Sy and € Z = ¢, € Z, this extreme point is

also an extreme point of Sx’.
The following example [179] illustrates Theorem 2.14 and Remark 2.6.
Example 2.4 Consider the subset Y of ¢ given by

Y = {(x)i=1 € co, |xi| < a; forevery i},

where (a,),>1 is a positive unbounded sequence. We claim that ¥ has the AFPP.
Indeed c6 = [, the extreme points of [ are (%e,),>1 where (e,),>1 denote the
coordinate functionals, all of them are bounded on Y, so for any such functional

©(n)

" lyall

¢ and any sequence (y;),>1 € Y for which ||y,|| — oo — 0. The result

follows from Remark 2.6.

The next result shows that we can replace directionally bounded by linearly
bounded in Theorem 2.13 if and only if the Banach space X is reflexive [179].

Proposition 2.10 In a Banach space X, every closed and convex subset that is
linearly bounded is directionally bounded if and only if X is reflexive.

Proof 1If X is reflexive and ¥ C X is a closed and convex subset which is not
directionally bounded, then there is a directional curve y (¢) contained in Y. Let
t, 1 oo be a sequence such that

y(tn)
— v
ly @)l
oy (tn))

By Lemma 2.6 there is ¢ € Sx’ such — 1, hence ¢(v) = 1 and v € Sy.

Iy (7
Fix any y € Y. We claim that the half line {y+sv |s > 0} is contained in Y. Indeed,

for any s > 0,

Uy @)l =)y v)
Iy @)l Iy @)l

—y+svel.

Conversely, suppose X is not reflexive. Then by James’ theorem [92] there is a
functional ¢ € Sy’ which does not attain its maximum on Sx. We choose a sequence
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(3i)i>1 from Sx such that

o0

Y (—pG) <1

i=1
We define
n
Xn =Zy,- forn >1,
i=1

and set Y = conv{x,,n > 1}. Y is not directionally bounded since it contains the
directional sequence (xp);>1:

n—1

n
Yol = xipal = b =l =Y vl -
i=2

i=1

n

> i

i=2

n
sn—1-3 o)<l

i=2

We claim that Y is linearly bounded. For

n n
7= Zcix,-, wherec; > 0, for all i and Zc,- =1,

i=1 i=1

we have

n n n

Yz =) ali—1)=) ic—1

i=1 i=1 i=1

S0
noie
9@ _ <Z’_llcl ) - 1
lzl — Xl T Y ic

It follows that if Y contains a half line {y + sv |s > 0} then

o0y +sv)
=0 [y + sv]
so ¢(v) = 1, contrary to our assumption. |

To deal with the construction of unbounded convex subsets which have the
AFPP, the following definition appears in [179].
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Definition 2.12 Let X be a Banach space. A sequence (x,),>1 € Sx is called a
(P)-sequence if for every functional ¢ € Sy, there is a functional ¥ € Sy such that

lim sup ¢ (x,) < 11m 1nf ¥ (x,).

n—o0

Clearly, a subsequence of a (P)-sequence is again a (P)-sequence. The following
is a straightforward consequence of the Hahn-Banach theorem.

Lemma 2.7 Suppose Y is a closed subspace of a Banach space X and (x,)n>1 €
Sy is a (P)-sequence in Y. Then (x,),>1 is a (P)-sequence in X as well.

Proof Let ¢ € Sy be given. Denote by a the norm of ¢ when restricted to Y.
Clearly, a < 1. If a = 0, we choose any ¥ € Sy with liminfy(x,) > 0,
n—o00

the existence of such a functional ¢ follows directly from the definition of a (P)-

X
sequence. If 0 < a < 1, we choose ¥ € Sy’ so that lim sup o
n—o00
In both cases we use the Hahn-Banach theorem to extend g to a norm-one functional

on X. ]

< liminf ¥ (x,).
n—oQ

Quite often, we will make use of the following description of (P)-sequences. Note
that a sequence (x,),>1 satisfying (1) is called a Pryce sequence [175].

Lemma 2.8 Let X be a Banach space and let (x,)n>1 S Sx satisfy

sup limsup ¢(x,) = sup hm 1nf o (xn). (D

peSyr n—>00 peSy

If the supremum on the left-hand side is not attained, then (x,),>1 is a (P)-sequence.
Conversely, if (x,)n>1 is a (P)-sequence, then (1) is satisfied and neither of the
suprema is attained [130].

Proof Suppose (1) is satisfied is satisfied and the supremum on the left-hand side
is not attained. Let ¢ € Sy’. Then

limsup ¢(x,) < sup limsup¢(x,) = sup hm 1nf¢ (xn).

n—o0o ¢€SX’ n—o0o ¢e

Therefore there exists a functional ¥ € Sy such that limsup ¢(x,) < hm mf W (x,).
n—oo
For the converse, observe that, trivially, for any bounded sequence (xn)nz 1 and

(7S] SX/,

lim sup ¢ (x,) > 11rn 1nf o (xp). 2)

n—o0

Hence sup limsup¢(x,) > sup liminf@(x,). The definition of a (P)-sequence
@eSyr n—>00 QESyr n—00
provides the other inequality needed for (1). By (1) and (2), if sup hm 1nf ¢ (xn)
PESy/
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is attained at some ¢ € Sx/, then sup limsup¢(x,) is attained at this ¢ as well.
¢peSy, n—>00

But for this particular ¢, this contradicts the existence of the functional v from the
definition of a (P)-sequence. |

Definition 2.13 Let X be a Banach space. We call a bounded sequence (x,),>1 in
X norm attaining if sup liminfe(x,) is attained on Sx.
peSy N0
The following lemma shows that (P)-sequences and sequences which do not
attain their norm are closely related [130].

Lemma 2.9 Let X be a Banach space and let (xp)n>1 € Sx. If (xp)n>1 is a (P)-
sequence, then no subsequence thereof is norm attaining. Conversely, if (x;)n>1
contains no norm attaining subsequences, then it contains a (P)-sequence.

Consequently, a Banach space contains no (P)-sequence if and only if every
bounded sequence in X contains a norm attaining subsequence.

Proof Every subsequence of a (P)-sequence is also a (P)-sequence, so it is not norm
attaining by Lemma 2.8.

Suppose the sequence (x,),>1 contains no norm attaining subsequences. By
[130], it contains a subsequence (x;, )x>1 such that

sup limsup ¢(x,,) = sup liminf@(x,,).
peSyr k—o0 peSy k=00

By Lemma 2.8, (x,, )«>1 is a (P)-sequence.

The last statement of the lemma for norm-one sequences is just a reformulation
of the previous two. Hence, to finish it is enough to observe that if there is a bounded
sequence (x,),>1 With no norm attaining subsequences, then there is a normalized
sequence which has this property as well. Clearly, (x;,),>1 contains a subsequence

X X
(Xp k=1 with lim [|x,, || = a > 0. Then limsupgo( Mk ) = limsupM
N k—o0 k— 00 ”xnk ” k— 00 a
for all ¢ € X'. Hence, if the supremum sup limsup ¢(x,,) is not attained, then
peSyr k—00

X
sup lim sup go( k ) is not attained either. |

peSyr k—>o0 ”xnk”

The following provides the existence of an unbounded convex subset ¥ which is
directionally bounded [179].

Lemma 2.10 If a Banach space X contains a (P)-sequence then X contains an
unbounded convex subset Y which is directionally bounded.

Proof Let (x,)n>1 C Sx be a (P)-sequence, define y, = nx, and consider ¥ =
conv{y,,n > 1}. We claim that Y is directionally bounded. If not, there is ¢ € Sy~

and (z,)n>1 in Y such that |z,| — oo and lim ¢ (n)
n—oo

z
a (P)-sequence, there is ¥ € Sx/ such that ¥ (x,) n> (1 + 38)p(x,) forn > ng

= 1. But since (xp)p>1 is
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and some ¢ > 0. This implies that ¥ (z,) > (1 + 2¢e)p(z,) for n > ny. We get for
n = n,

V() _

Znl

l1+e<

17

a contradiction. |

In [179], Shafrir asked whether in every Banach space there is an unbounded
closed convex subset which has the AFPP? He gave the following partial answer
[179].

Proposition 2.11 If a Banach space X does not contain an isomorphic copy of l1,
then there is a closed convex unbounded subset Y of X which has the AFPP.

Proof 1t is clear that we may assume that X is separable. First, we consider the
case when X is reflexive. By Proposition 2.10, it is sufficient to find an unbounded
closed and convex subset that is linearly bounded. Let (x,),>1 be a dense sequence
in Sy and for any n > 1 choose ¢, € J(x,). Note that for any y € X, |y|| =
sup{@,(¥) | n > 1}. Next we define a sequence (y,),>1 as follows:

n
yn €[ Ykerg; and fyull =n.
i=1

We set Y = conv{y, | n > 1} and claim that Y is linearly bounded. Indeed, if for

some v such that ||[v]| = 1,{y +sv | s > 0} C Y, then there exists some ng such
that

(pno(v) > 07
hence

@Yny(y +nv) —> 00 asn — 0.
But by our construction,

SUp @y, (x) < np — 1,
xeY

a contradiction.

Now, consider the case when X is not reflexive. Since X does not contain
[1 isomorphically, the Odel-Rosenthal theorem [45] states that Sy is weak™-
sequentially dense in Sy~. Let v € Sy~ be such that the maximum of ¢ on Sy
is not attained. Choose (x,),>1 € Sx such that x, —* ¥ asn — oo in X”. Clearly
(xn)n>1 1s a (P)-sequence and the result follows by Lemma 2.10. |
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It is interesting to note that although the above proposition does not cover the
case X = [j, its conclusion is still valid in this case, too. Shafrir constructed such a
subset in /1 [179].

Example 2.5 To show that there is an unbounded convex subset of /; which has the
AFPP, by Lemma 2.10 it is enough to find (P)-sequence in /;. Let (x,),>1 denote
the standard base of /1 and let o« = (o,),>1 C [ be such that

o0
o; >0 forall i and Zan =1.
i=1

Consider the sequence (xp,),>1 Where x,, = ¢ —e,. Form > 1letg,, = (a,(l"’)),,zl €

S;. be defined by ™ = 1 forn < m and a™ = —1 for n > m. We have
m oo
onCo) =14+ ai— Y a
i=l i=m+1

for n > m. Hence

sup lim ¢, (x,) =2 = lim |[lxg].
m>1 7100 n—00

We claim that for every ¢ € S, limsup@(x,) < 2. For ¢ = (a,)p>1 € S, We
n—>oo
have

o(x,) = @) —ay forall n.

If a, > O for all n then ¢(x,) < 1 for all n. Otherwise, if a; < 0 for some / then

¢(@) < 1 —«; and so for all n, ¢(x;) < 2 — . In any case limsup ¢(x,) < 2,
n—oo

X .
hence ( z ) is a (P)-sequence.
xXnll / =1

In [130], Matouskové and Reich answered Shafrir’s question in the affirmative.
It has been done by providing the following characterizations of reflexive Banach
spaces.

Theorem 2.15 For a Banach space X the following are equivalent:

(@) X is reflexive,
(ii) every bounded sequence (xp)n>1 contains a norm attaining subsequence, that

is, a subsequence (xy, )k>1 for which sup limsup ¢(x,,) is attained.
peSyr k—00
(iii) X does not contain any (P)-sequence.
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Proof (i) = (ii). Let (x,),>1 be a bounded sequence in a reflexive Banach space
X. There is a subsequence (x,,)k>1 of (x,),>1 such that x,, — x € X. Choose
¢ € Sy so that ¢(x) = ||x||. Then for any ¥ € Sy/, we have limsup ¢ (x,,) =

k— 00

Y(x) < x|

(i) = (iii). This is proved in Lemma 2.9. (iii) = (i). Suppose X does not
contain any (P)-sequences and suppose for a contradiction that X is not reflexive.
Let Y be a separable nonreflexive subspace of X. By Lemma 2.7, Y also does not
contain any (P)-sequences. This means that Y contains an isomorphic copy of /1 :
if it did not, then according to the proof of Proposition 2.11, ¥ would contain
a (P)-sequence. Let (x,),>1 be an isomorphic /;-basis in Y. (x,),>1 contains a
subsequence which converges pointwise on Y’. As this subsequence is again an
[1-basis, we may assume that (x,),> already has this property. Let T: [} < Y be
the embedding for which T'(e,) = xp, here (e,),>1 is the coordinate functionals.
Then the dual mapping T*: Y’ — I is surjective and we can choose ¢ € Y’ so
that T*(p) = (—1,1,—1,1,---). Then ¢(x,) = ¢(T(ey)) = T*(¢(e,)). Hence
@(x,) = (—1)", which is a contradiction. Consequently, X is reflexive. |

Corollary 2.2 Let X be an infinite-dimensional Banach space. Then X contains an
unbounded closed convex set with the AFPP.

Proof If X is reflexive, then X contains such a set according to Theorems 2.12
and 2.14. If X is not reflexive, then it contains, by Theorem 2.15, a (P)-sequence
(Xn)n>1. By Theorem 2.13 and Lemma 2.10, Y = conv{nx,|n > 1} has the
AFPP. |

In [167], Reich and Zaslavski showed the existence of an open and everywhere
dense set in the space of all nonexpansive self-mappings of any closed and convex
(not necessarily bounded) set in a hyperbolic space (endowed with the natural metric
of uniform convergence on bounded subsets) such that all its elements have the
AFPP.

We need some preliminary results.

Let (X, p, M) be a hyperbolic space and let Y be a nonempty, closed and p-
convex subset of X.

For each x € Y and each r > 0, set

Bx,r)={yeY, :plx,y) <r}

Denote by A the set of all nonexpansive self-mappings of Y. Fixw € Y.
We equip the set A with the uniformity determined by the base

Un) = {(T, SYeAx A: p(T(x), S(x)) < i forall x € B(w,n)},

where n is a natural number. It is not difficult to see that the uniform space A is
metrizable and complete.
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Definition 2.14 We say that a mapping T € A has the bounded approximate fixed
point property (or the BAFP property, for short) if there is a nonempty bounded
set Yo € Y such that for each ¢ > 0, T has an ¢-fixed point in Yy, that is, a point
Xxe € Yo which satisfies p(x., T (xz)) < &.

We have the following [167].

Proposition 2.12 Assume that T € A and that Yo C Y is a nonempty, closed,
p-convex and bounded subset of Y such that

T (Yo) < Yo. (2.12)
Then T has the BAFP .
Proof Let ¢ > 0 be given. Set
do =sup{p(y,2): ¥,z € Yo}. (2.13)
Choose y € (0, 1) such that
y(do+1) <e (2.14)
and fix
X € Yo. (2.15)
Foreachx € Y, set
Tx)=(0—y)Tkx) @ yx. (2.16)
By (2.12), (2.15) and (2.16),
T(Yp) < Y. 2.17)

Since T € A, by (2.16), for all x, y € Yy,

p(T(x), T(y) = p((1 =T x) &YX, (1 — )T ) ® yX)
<(1=y)p(Tx), T() < (1 —y)p(x,y).

(2.18)

By (2.17), (2.18) and Banach’s Contraction Mapping Principle, there is a point x,
such that

xe € Yo and T (x;) = xe. (2.19)
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By (2.19), (2.16), (2.13) and (2.14),

pxe, T(xe)) = p(T(x,), T(xe)) = p((1 — )T (x) ® ¥, T(xe))
<yp(X, T(xe)) < ydo < e.

Proposition 2.12 is proved. |
Proposition 2.12 immediately implies the following result.
Corollary 2.3 Assume that Y is bounded. Then any T € A has the BAFP property.

Corollary 2.3 does not, of course, hold if the set ¥ is unbounded. For example,
if Y is a Banach space and T is a translation mapping, then 7 does not possess the
BAFP property.

As a consequence of Proposition 2.12, the following result is proved [167].

Theorem 2.16 There exists an open and everywhere dense set B C A such that
each T € B has the BAFP property.

Proof In view of Proposition 2.12, in order to prove this theorem it is sufficient to

show that there exists an open and everywhere dense set 5y € A such that for each

T € By, there is a nonempty, closed, p-convex and bounded set Y7 € Y such that
T(Yr) S Yr.

It is not difficult to see that in order to prove this assertion, it suffices to show that

given a mapping 7 € A and a natural number n, there exists T € A and a natural
number k such that the following two properties hold:

() (T.T) eUn).
(ii) there is a nonempty, closed, p-convex and bounded set Z C Y such that

S(Z) € Z foreach S € A satisfying (S, ?) e U(k).
Choose a number y € (0, 1) such that
y(n+p(T(0),w)) < % (2.20)
Set
To)=1-y)TKE) ®yw, xecV. (2.21)
Since T € A, by (2.21), forallx,y € Y

p(T ), T(y) <A —y)p(Tx), TH)) <A —y)px,y). (2.22)
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By (2.22) and Banach’s Contraction Mapping Principle, there is a point X such that
T®) =%, (2.23)
Since T € A, by (2.20) and (2.21), we have for all x € B(w, n),

p(T(x), T(x)) = p(T(x), (1 = )T (x) ® yo)
=yp(Tx),w) <y [p(Tx), T(w) + p(T (), w)]

=yvpx, o) +yp(T(w),0) <yn+p(T (), o) < %
Thus
(T, T) e Un). (2.24)
Next, choose a natural number k such that
k>pX,0)+1 and % < y. (2.25)

By (2.25), for each x € B(X, 1) we have

px,w) < p(x,X) +pX, ) <1+ p(X, w) <k.

Hence
B, 1) € B(w, k). (2.26)
Let
x € B, 1) (2.27)
and let S € U (k) satisfy
(S, T) e U(k). (2.28)

By (2.28), (2.27), (2.23), (2.22) and (2.25)
~ ~ ~ .1 ~ o~
p(S(x),x) < p(S(x), T(x)) + p(T(x), x) < % + o(T(x), T(x))

=

1
+(1—)/),0(x,)~€)§%+(1—)/)<1.

B
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Thus
S(B(x,1)) € B(xX,1)

for all § € A satisfying (2.28). When combined with (2.24) and (2.26), this
inclusion completes the proof of Theorem 2.16. |

2.4 Finding e-Fixed Points Where There Are No Fixed Points

In the last section we found e-fixed points of a nonexpansive self-mapping of any
closed convex set (closed ball) of a Banach space even when there are no fixed
points, and the same argument obviously works for an open ball or in an incomplete
normed space.

If we remove a completeness or compactness assumption from the statement of a
fixed point theorem, we don’t normally expect that we will still get fixed points.
Indeed, it is usually easy to produce examples of fixed-point-free mappings by
moving points “towards some missing limit point” or “towards infinity”. But in
many of these cases (if the set is bounded) we can easily show that e-fixed points
exist.

We have the following example.

Example 2.6 Let
Y={xeC[0,1]: 0<x <1,x(0) =0, x(1) = 1}.

Y is a closed, convex and bounded subset of the space C[0, 1] of all real continuous
functions on [0, 1] and T: ¥ — Y defined by

Tx(t) =tx(t)

satisfies ||[T(x) — T(y)|| < |lx — y|| for x # y in Y. However, T has no fixed
points. It does have, though, e-fixed points. If x, is the nth power x,(t) = ", then
xp, — T (xp) — 6.

In [183], Smart presented a theorem given by Fort [60] for continuous mappings
of an open disc in R?, but the proof extends directly to R", and with a slight change
in the statement, to any normed space :

Theorem 2.17 [f either

1. Qisan open ball in R" and T maps Q into 2, or
2. Q2 is an open ball in a normed space and T maps 2 into a precompact subset
of @,

then T has an ¢-fixed point for each ¢ > 0.
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Proof

1. We can assume that €2 is a unit ball centered at 8. Then S = (1 — &)T maps
(1 — £)Q into itself so has a fixed point x by Brouwer’s theorem. Since S is
uniformly within ¢ of T, x is an e-fixed point of 7.

2. Similar, using the completion of 2 and Schauder’s theorem.

Remark 2.7 Fort’s theorem can be extended in various ways. For example, in 1),
can be any convex precompact set, while in 2., €2 can be any convex set if 7 maps 2
into a precompact subset of 2. The proofs use Schauder’s projection in a standard
way. Or in 2) we could assume merely that 7 maps each smaller concentric ball
into a compact set and the proof is unaltered. Or we can replace T with a suitable
multifunction U and obtain a point x such that d(x, Ux) < e.

2.5 Families of Mappings

It is natural to ask when a family of mappings has a common e-fixed point, that is,
a point which is e-fixed for all the mappings in the family. Consider first various
powers of a mapping 7. When Fort’s theorem gives us an x such that 7' (x) ~ x
(where ~ means “is approximately equal to”) it is tempting to argue that then also
T(x) ~ Tz(x) A ... ~ T"(x). This suggests: in the cases covered by Fort’s
theorem, can we say that, for every n and every ¢ > O, there exists x such that
IT"(x) —x|| <eforl <r <n?
In some special cases, there is an affirmative answer [183].

Theorem 2.18 Let ¢ > 0 and n be given. Then there is a point which is e-fixed
point for all T" (1 < r < n) if either

1. T is a uniformly continuous mapping of an open ball in RF
or

2. T is a uniformly continuous mapping of an open ball S in a normed space, into
a precompact subset of 2,

3. T is a continuous mapping of (0, 1) into (0, 1).

Proof We can prove 1. and 2. to the completion of €2 and 3. by an easy elementary
argument. |

Unfortunately, in spite of this evidence, the answer to the last question is “no”.
We give an example to show that the condition “uniformly continuous” cannot be
omitted from Theorem 2.18 1., 2.). Consider the open disc 2 = {x: ||x|| < 1} in
R%. We define a homeomorphism of 2 into Q by A: (r,0) — (r,0 + (1 — r)_l)
(in polar coordinates consider the image S under % of the radius J = {(r,0): 6 =
0,0 < r < 1}. Thus S = hJ is a spiral approaching the unit circle. There is a
continuous map U : § — § in which each point is moved out along the spiral until
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its argument has increased by . Clearly U has no e-fixed points for small € (actually
fore < (m+ 1)*l ). Also there is a retraction r of 2 onto J, thus hrh™! = R retracts
2 onto S. We can see that:

Example 2.7 ([183]) UR is a continuous mapping of the open disc €2 into 2 for
sufficiently small & and no point is e-fixed point for both UR and (U R)?. In fact
(UR)Z(x) = URUR(x) = UUR(x). Thus if x is e-fixed point for UR and for
(UR)2 we have |UR(x) — UUR(x)|| < 2¢ which is impossible if 2¢ < (7 + L

Remark 2.8 The theorem of Kakutani on common fixed points for an equicontinu-
ous group of affine mapping of a closed ball has an analogue giving common e-fixed
points for an open ball, and we simply extend the mappings to the closed ball and
use Kakutani’s theorem. Similar remarks apply to the theorems on common fixed
points of families of nonexpansive mappings given by Kirk. To obtain an e-fixed
analogue of the Markov-Kakutani theorem (Theorem 1.51) we apparently have to
assume that the family of mappings is equicontinuous: otherwise, we obtain only
a common fixed point for any finite subset of the family.

The examples of Huneke[87] and Boyce [26] give us commuting mappings of
[0, 1] with no common fixed point, by compactness we can see that they have no
common ¢-fixed points for ¢ sufficiently small.

The following result is proved in [111].

Theorem 2.19 Suppose Y is a nonempty bounded convex subset of a Banach space,
and suppose T and G are two commuting nonexpansive mappings of Y — Y at least
one of which is a-almost convex. Then F,(T) N G¢(T) # @ for each ¢ > O.

Proof Suppose T is a-almost convex. Let ¢ > 0, and let G, = (1 — A)I + AG. By
Theorem 2.25 it is possible to choose N € N so large that

G5(x) =G oGil(x)|| < ¢
forallx € Y andalln > N.Forany y € Y,

Jr(G(y) =1G(y) =T oG
=1G(y) = GoTW
=ly-TWI
= Jr(y).

Therefore for any x € Y,

Jr(Ghx) = Jr((1 = MG (x) + 4G 0 G~ (x))
< a(max{Jr (G}~ x), Jr(G o G}~ ()

= a(Jr(GT (%))



140 2 Almost Fixed Points

< o"(Jr (x)).

Since o is continuous at 0 it is possible to choose § > 0 so that Jr(x) < § =
a" (J7(x)) < &. Further we may assume & < ¢. Therefore if x € Fs(T) andn > N,
then G%(x) € F.(T) N G(T). Since Fs(T) # @, for each § > O the proof is
complete. |

2.6 Mappings Without e-Fixed Points

Definition 2.15 Let X be a topological space and Y a subset of X. Then a
continuous mapping R: X — Y is a retractionif the restriction of R to Y is the
identity map on Y, thatis, R(y) = y forall y € Y. Y is called a retract of X if such
a retraction exists.

Any nonempty space retracts to a point in the obvious way (the constant map
yields a retraction). If X is Hausdorff, then any retract of X must be closed.

If a mapping of a compact set has no fixed point then for ¢ sufficiently small it has
no e-fixed points. In [106], Kinoshita gave an example of a mapping of a compact
contractible subset ¥ of R? (the identity map ly of Y is homotopic to a constant
map) with no e-fixed points for small . On the other hand, if a set is not compact a
fixed-point-free mapping may well have e-fixed points for all ¢ > 0. Kakutani [99]
and Nirenberg [135] gave examples of fixed-point-free mappings of the unit ball
of Hilbert spaces but both these examples have ¢-fixed points for all ¢ > 0. These
examples are based on the existence of a retraction of the closed unit ball onto the
unit sphere [48]. This retraction is used in [183].

Theorem 2.20 There is a mapping of the closed unit ball of any infinite-
dimensional normed space with ¢-fixed points for ¢ < 1 — §, for any given
5,0<d < 1.

Proof We retract the ball of radius § onto its surface and follow this by retracting
the annulus A = {x: § < ||x|| < 1} radially onto the unit sphere which is radial in
A. The combined effect is a retraction R of the unit ball onto the unit sphere which
is radial in A. Then the map 7: x — —R(x) has the required property since if

xll < 8, 1T @) — x| > 1T — lIx]| = 1 — 8, while if [lx|| > 8, R(x) = ”x—” 50
X
that | T'(x) — x|l = [|—R(x) — x|l = (x| " + D]l > 1. ]
The following simple example illustrates the previous theorem [183].

Example 2.8 In the unit ball of ¢y the mapping T is free of e-fixed points for
1 .
£ = 7, where T(x1,x2,..) = (1 = |lxll. vixil. Vxal...). For if [lx]| =
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1 . 1 . 1 1
sup |x;| > T some |x;| is at least — so that for some i, |x;| > 7 and |x;j 1] < e

1 1 1 1
Thus )\/le-l —xi+1‘ > 571 = 7 On the other hand if ||x|| < T then
1 1 1 1
[(A—1xlD)—xi] = 1T =[x = |x1] = 1— 1 17 Thus ||T(x) — x| > 1

in either case.

There are unbounded sets where each continuous mapping has a fixed point
[182]. However, in all convex unbounded sets there are mappings without fixed
points [115].

Definition 2.16 Let Q2 be a nonempty subset of a normed space (X, ||.||). We say
that Q2 has e-fixed property if each continuous mapping of 2 into 2 has e-fixed
points for all € > 0.

The following result is given in [183].

Theorem 2.21 Let 2 be a nonempty subset of a normed space (X, ||.|). If K is a
retract of Q2 under a uniformly continuous retraction mapping r and if Q has the
&-fixed property then so does K.

Proof Suppose that ||r(x) —r(y)|| < e for ||x — y|| < é.If T is any mapping of
K into K then Tr maps 2 into K, thus Tr = rTr. Since Tr maps 2 into €2, there
exists u with ||Tr(u) — u| < §. Thus ||Tr(u) —rw)|| = [rTru) —ru)|| < & so
that r () is e-fixed point for T'. |

Remark 2.9 The sets €2 and S used in Example 2.7 show that Theorem 2.21 needs
the word “uniformly”.

2.7 Sets of e-Fixed Points

In a Euclidean space (or any strictly convex normed space) the set of fixed points
of a nonexpansive mapping is convex. This property does not extend to the set of
e-fixed points:

Example 2.9 ([183]) A mapping of the plane such that ||[T(p) — T(g)| <
lp —qll

V2

3
(2,0)isnota z-ﬁxed point.

for all points p and ¢, the points (2, 2) and (2, —2) are E-ﬁxed points but

1
We take T (x, y) = E(y, y) and find that

IT(2.2) = 2.2 =v2 =T 2. -2)|
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but
IT(2,0) — (2,0)] =2 =2.

We consider continuity properties of sets of e-fixed points, taken as functions of
the mapping. We write

Fo(T)={x:d(T(x),x) <¢} fore > 0,
and

Go(T)={x:d(T(x),x) <¢} fore > 0,
for set of e-fixed points of T'.

The following two results are proved in [183].
Theorem 2.22 Let 2 be a nonempty subset of a metric space (X, d). If T and T,
are mappings of Q and T, —> T uniformly then
F.(T) D limsup F¢(T,) D liminf G.(T,,)) D G.(T).

Proof If we have a sequence of points x, —> x with d(7;,(x,), x,) < ¢ then

d(T(x), x) < d(T(x), T (xn)) +d(T (xp), Tu(xn)) + d(Tp(xn), Xn) + d(xn, X),

so that (letting n —> o00) we have d(T'(x),x) < e. If on the other hand
d(T (x), x) < ¢ then for n sufficiently large

d(Ta(x), x) = d(Tp(x), T(x)) +d(T (x), x) < &.

Theorem 2.23 Let Q2 be a nonempty subset of a normed space (X, |.|). We
consider C(R2) the set of continuous mappings on 2 to 2, with the metric
d(S,T) = inf{l,sup||S(x) — T (x)||}, which gives uniform convergence. Then in

X
C(R2) x Q x [0, o[, we have
1. the set of triples (S, x, €) satisfying ||S(x) — x|| < ¢ is closed,
2. the set of triples (S, x, €) satisfying ||S(x) — x|| < € is open.

Proof Consider the set where f(S, x,¢) = ||S(x) — x| — € is non-positive, or is
negative. |

Theorem 2.23 suggests that F(T) and G.(T') are “nearly” continuous functions
of T. The following construction of an object which is continuous, by using all the
e-fixed point is given in [183].
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Definition 2.17 If Q2 is bounded we consider the almost fixed pyramid for 7 :
P(T) ={(x,&): IT(x) — x|l =& =m},

where m = diam(2).
Clearly P(T) is the union of all sets F(T) x {e} in Q2 x [0, m].

Theorem 2.24 If S and T are mappings of a bounded set Q2 then H(P(T), P(S)) <
IT — S|loc where H is the Hausdorff metric and ||.|| s is the uniform norm [183].

Proof 1If |T — S|lco = 6 then each point (x, &) of P(T) is within 6 of the point
(x, & + 6) of P(S). Similarly each point of P(S) is within 6 of a point of P(7). B

Remark 2.10 Tt might in fact be preferable to study the structure of the possibly
smaller set obtained by taking the closure of the set

FUT)={x e Q: |lx = T(x)| < ¢}

As the following example in [34] illustrates, the set FQ(T) can be much nicer
than F,(T).

Example 2.10 Let C be the rectangle [0, 2] x [—1, 1] in the Euclidean space Rz,
and define

T(x,y) = (x —min(x, 1), 0).

It is easy to see that T is nonexpansive and that the set F (T consists of the closed
unit disk intersected with the right half-plane along with the segment

{(x,0): 1 <x <2}

However F 10(T) consists of just the closed unit disk intersected with the right half-
plane.

Little is known about the structure of the sets F¢(7') in general. The following
result of Edelstein and O’Brien [54] shows that there is always a nonexpansive
mapping of Y into Fg(T), although there is nothing to assure that this mapping
is a retraction, or that such a retraction exists.

Theorem 2.25 Suppose Y is a nonempty bounded convex subset of a Banach space
and suppose T: Y — Y is nonexpansive. Then T). := M1l + (1 — A)T is uniformly
asymptotically regular for each ) € (0, 1). That is, given ¢ > O there exists N € N
such that || T} (x) — T):Hl(x)n < ¢&foralln > N and all x € Y. In particular, for
each ¢ > 0 there exists N € N such that forn > N, T}' : Y — F¢(T).
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Definition 2.18 A path in a metric space (X, d) is a continuous image of the unit
interval I = [0, 1] C R.If § = f(/) is a path then its length is defined as

N-1

1(8) =sup Y d(f(xi), f(xis1)

(xi) i=0

where 0 = xg < x1 < --- < xy = 1 is any partition of [0, 1]. If /(S) < oo then the
path is said to be rectifiable .

Definition 2.19 A metric space (X, d) is said to be a length space if the distance
between each two points x, y of X is the infimum of the lengths of rectifiable paths
joining them. In this case, d is said to be a length metric (otherwise known an inner
metric or intrinsic metric).

Definition 2.20 A length space X is called a geodesic if there is a path S joining
each two points x, y € X for which /(S) = d(x, y). Such a path is often called a
metric segment (or geodesic segment) with endpoints x and y.

There is a simple criterion which assures the existence of metric segments.

Definition 2.21 A metric space (X, d) is said to be metrically convex if given any
two points p, g € M there exists a point z € X, p # z # ¢, such that

d(p,z)+d(z,q) =d(p,q).

We have the following fact, first noticed by Bruck [34].

Theorem 2.26 Suppose Y is a nonempty bounded convex subset of a Banach space
and suppose T : Y — Y is nonexpansive. Then for each ¢ > 0, F;(T) is nonempty
and rectifiably pathwise connected.

Proof Forx € (0,1),let Ty, = Al + (1 — MT.If x € F_y):(Ty) thenx € Fo(T).
Also if y is on the segment joining x and T (x) then

Iy =TI = lly = Tl + 1 T (x) = )|
=y =T+ llx =yl
= llx = )]l

Thus if x € F,(T) then every point on the segment joining x and f(x) liesin F(T).
To see that Theorem 2.25 implies F,(T) is pathwise connected, letu, v € F¢(T) and
choose N so large that TAN (Y) € F.(T). Then the image under TAN of the segment
joining u# and v maps into a path joining TAN (#) and TAN (v). Moreover the segments
joining T)f (u) and T)f'H m),i = 0,---,N — 1 all lie in Fg(T). Similarly the
segments joining Tki (v) and TA"Jrl (v),i =0,---, N — 1. By piecing these together
one obtains a path S in F¢(7T) joining u and v. Moreover, [(s) < 2eN + |ju — v||. R



Chapter 3 )
Approximate Fixed Points in Ultrametric e
Spaces

A strictly contracting mapping of a spherically complete ultrametric space has a
unique fixed point. In this chapter, we indicate how to reach or approximate this
fixed point. In general, the fixed point can be approached by a pseudo-convergent
family.

3.1 The Process of Approximation

First, we deal with ultrametric spaces having sets of distances that are not necessar-
ily totally ordered.

Let (X, d, ") be a principally complete ultrametric space. We shall assume that
I'* does not have a smallest element. To exclude the trivial case, we also assume
that X has at least two elements.

Let ¢: X — X be a strictly contracting mapping, so by Theorem 1.45, ¢ has a
unique fixed point, which we denote by z.

Definition 3.1 If X is an ordinal number, let /(1) denote the set of ordinal numbers
W < A. Asitis known, A may be identified with /(1) and the cardinal of A is cardA =
card /(A). Let k be a limit ordinal with card k¥ > card I'. For every ordinal A such
that A < «, let P be the set of all families & = (a;);<) € X 1®) which satisfy the
following conditions :

1. ifi +1 < A, thena;+1 = ¢(a;) # a;,
2. (d(aj), aj+1)i+1<y 1s strictly decreasing,
3. if w is a limit ordinal, u < A, then d(ay, a;) < d(a;, aj+1) foralli < p.

If A = 1, P is naturally identified with X, so P; # @. Let P be the union of the
sets P, for A < k. If y € X, let P, be the set of families in P with ap = y. We say
that o = (a;); <, reaches z if there exists ip < A such that g;, = z.
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Remark 3.1

(i) If @ = (a;j)i< reaches z, then ¢(a;,) = z = a;,, hence by 1.,ip +1 = A. Thus
A is not a limit ordinal.

(ii) Let A be a limit ordinal, let @ = (a;)i<) € P and forevery i < Alet B; =
Bi(a) = By(g;,0(a))(@i), so by 1., B; is a principal ball. By Lemma 1.10, we
have B;+1 C B; and, in fact, B;;1 C Bj, because d(a;, aj+1) > d(ai+1, ai+2),
soa; ¢ Bjy1.Forevery limit ordinal u < A, let I, (o) = m B;(). Since X is

i<A
principally complete, it follows that I, () # .

Definition 3.2 We say that « = (a;)i<) € P is an asymptotic approximation

to z (or more simply, an approximation to z) if A is a limit ordinal and /) (¢) =

() Bi(e) = {z}.

i<A

Remark 3.2 We note that an approximation to z does not reach z, because A is a

limit ordinal.

The next result is due to Priess-Crampe and Ribenboim [161] and will be called
the Approximation Theorem. In important definite situations, the Approximation
Theorem provides an algorithm that directly can be implemented for the calculation
of asymptotic solutions, so for example in the case of some ordinary differential
equations or their systems, in Hardy fields.

Theorem 3.1 Let Y C X, Y # (. Assume that z cannot be reached by any o € P
such that ap € Y \ {z}. Then for every y € Y \ {z} there exists an asymptotic
approximation « = (a;)i <) to z such that ap = y.

Proof The proof requires some preliminary considerations about the set P. Let @ =
(ai)i<y and &' = (a});<; be families in P. We define @ < o’ when A < 1" and
alf = qg; for all i < X.Itis immediate to verify that < is an order relation. Moreover,
for every A, the order restricted to P, is trivial. Let y € Y, y 7 z. We claim that the
ordered set P, is inductive. Indeed, let C be a nonempty set, for every ¢ € C let

of = (a,'c)i<kC € Py,

assume that if ¢ # ¢/, then o # o and that the set A = {«“/c € C}isa totally
ordered subset of P, . It follows that if o # o, then A = A°". We recall that since
af € P,, it follows that A < k. We consider two cases.

1. L = {A./c € C} has a largest element A°!. Then a¢ # ! for every ¢ € C,
otherwise there exists ¢; € C such that «°' < «?, hence A, < A,, which is a
contradiction. In this case, a“! is an upper bound for A.

2. L does not have a largest element. Since A, < k for every ¢ € C, there exists
the smallest element p such that A, < u foreveryc € C.Sou < k. If u =
v + 1, then by the minimality of w, there exists ¢; € C such that v < A., and
therefore v = A, because u > A, . In this case, A, is the largest element in L,
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which has been excluded. We have shown that w is a limit ordinal. Now if i is
an ordinal such that i < u, by the minimality of u there exists L. € L such that
i < A. < u. Since L does not have a largest element, there exists ¢* € C such
thati < A, < Ac+ < . We define a; = aic*. It is immediate to verify that a; is
well-defined, independently of the choice of ¢* € C such that A, < A+ < . By
2., the family (d (aic*, afil))k u of elements of I is strictly decreasing, hence all
these elements are pairwise distinct. So cardu < I'. Since cardl" < cardk thus
wu < k, which implies that @ = (a;); <, belongs to P. Furthermore, «“ < & for
every ¢ € C. Hence @ is an upper bound for A. This concludes the proof that P,
is inductive. By Zorn’s lemma, there exists a maximal o € Py. That is, for every
y € Y \ {z} there exists a maximal & € P such thatap = y.

We assume that z is not reached by any family in Py for every y € Y \ {z}. By
2., forevery y € Y \ {z} there exists a maximal @ = (a;); <) € P such thatagp = y.
First we observe that A is a limit ordinal. We assume the contrary, let A = iy + 1.
Since z is not reached by « then a;, # z, so a;, # ¢(a;,), hence

d(p(aiy), 9*(aiy)) < d(aiy, p(aiy)).

Let &' = (a))i<at1, where a; = a; for alli < A and aj = ¢(a;,). So ' €
P,a < o. This is impossible, because « is maximal in P. Thus as stated, A is a
limit ordinal. Since X is principally complete and each B;(«) is a principal ball of

X, then I, (@) = ﬂ Bi(x) # 0. We show that I; () = {z}. Lett € I, (). We

i<A
note that ¢ # ¢g; for all i < A. Indeed, if there exists ip < A such that = a;, then
t ¢ Bj,+1 which is a contradiction. Now we show that ¢(¢) € I (o). We have

d(e(), aiv1) =d(p(t), ¢(a;)) < d(t,a;) < d(ai, aiy1)

for all i < A. It follows that d(z, ¢(¢)) < d(a;,aj+1) for every i < M. Hence
d(t,¢(t)) < d(a;,ait+1) forevery i < A. Let o’ = (a;)i<a41 defined by a; = a;
foralli < A and a; = t. So o’ € P, because d(t,a;) < d(a;,ait1) for every
i < A. We have o < o', which is contrary to the maximality of . This shows that
t = ¢(t), sot = z and we deduce that I, («) = {z}. Hence « is an asymptotic
approximation to z. |

Remark 3.3 Under the assumptions of the Approximation Theorem, if y € Y \ {z}
there exists the smallest limit ordinal A for which there exists an approximation
o = (aj)i<) to z such that ag = y. So the set

M ={a = (a;)i<) | « isan approximation to z and ay = y}
is not empty. For « € M and each limit ordinal «© < A the set I, () properly

contains z. The set I, (o) may be considered a measure of the accuracy of the
approximation ¢, when restricted to o, = (a;)i <y
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As a consequence, we have

Corollary 3.1 Ify € X,y # z, then either there exists a € Py which reaches z, or
if this is not the case, there exists an approximation o € Py to z [161].

Proof The corollary is a special case of the Approximation Theorem, taking ¥ =
{y}, where y # z. |

Remark 3.4 The proof of the Approximation Theorem suggests the method to reach
or to approximate the fixed point. Let y € Y. If y = z there is nothing to do. If
y # zletayg = y and a1 = ¢(ap) # ao. If a; = z, then z has been reached by
the family consisting only of ag, a;. If a1 # z let ay = ¢(ay) # a;. The procedure
may be iterated. It may happen that there exists ng > 2 such that a,, = z, so
z has been reached. Or, for every n < w,a, # z. Let @ = (a,)n<e- If the set
1, (o) consists of only one element, this element is the fixed point z. If 1,,(e) has
more than one element, we may choose any one of the elements of /,(«) and call
it ay. Then apt1 = @(ay) if aw # ¢(aw), aw+2 = P(aw+1) if aut # @(aw+1),
etc. It may happen that there exists n > 0 such that a,, = z, or one needs to
consider Ip,(a'), where o’ = (a))i <24, With a; = a; for i < w and a;, defined
as indicated for w < i < 2w. Even though there exists a family « € P which
reaches or approximates z, in general it is not possible to predict what will happen,
in particular, when the algorithm will stop.

3.2 The Case When I Is Totally Ordered

Henceforth we shall assume that I" is totally ordered and that I'* does not have a
smallest element.
We shall use the following notations :

* A = set of all approximations « to z,
e PC = set of all pseudo-convergent families in X.

The following is given in [161].
Proposition 3.1

1. ACPC.
2. Let PLA be the set of all pseudo-limits of all « € A. Then PLA = {z}.
3 IfacAifd e Pand o < o, then o’ reaches z.

Proof

1. We show that « is a pseudo-convergent family in X. Since « is an approximation
to z then A is a limit ordinal. We shall prove that if i < u < v < A, then
d(a;,ay) > d(ay, ay). For this purpose, we prove that

d(ai,aiy1) = d(a;i, ay).

The proof is by induction on w. It is trivial if © =i + 1.
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Leti + 1 < u. We consider two cases:

(a) u =« +1: Byinduction, d(a;, aj+1) = d(a;, a,), since a; # ay, it follows
that d(a;, a,) > d(aj4+1, a,) and therefore d(a;, a; 1) = d(a;, ay).
(b) p is alimit ordinal: By construction of «, we have

d(a;i,ay) <d(a;,aiy1)

foralli < A.Ifd(a;, a,) < d(a;, aj+1) for some i < A, then
d(a;, aiv+1) = d(a;, ay).

Since a,, # a;, it follows

d(ays1,aiv1) < d(ay, a;) < d(ay, aj+1),

hence d(a;,a;+1) = d(ay,ays1). This is absurd, so d(a;,ai+1) =
d(ay,ajy1) for all i < . This concludes the proof by induction. In a
similar way d(a,,a,) = d(a,,a,+1) for @ < v < A. It follows that if
i < <V <A,then

d(a;i,a;i+1) =d(ay, a;) > d(ay, ay) =d(ay, ay+1).

So we have proved that « is a pseudo-convergent family in X.

2. Assume that o € A, then I (@) = {z}, so
d(z,a;) < d(a;,aiy1) =d(ay, a;)

foralli < u < A. Thus z is a pseudo-limit of the pseudo-convergent family «.
Lett € X,t # z,thent € I)(a). So there exists ip < A such that d(z, a;,) j{
d(ajy+1, a;iy), thatis, t ¢ B; (o). Hence for every i such thatip <i < A, we also
have r ¢ B;(x), thatis, d(, a;) £ d(a;,ai+1) = d(ay,, a;) fori < p < A.Sot
is not a pseudo-limit of «.

3. Let o/ € P be such that « < «'. Since @' € P we have for every i <
A, d(ay,a)) < d(aj,aj,,) or equivalently, d(a;,a;) < d(a;,a;41) because
aj = aj,a;,; = ajy1. Hence a;, € L(a) = {z}. So o reaches z. Let

o = (aj)i<n € P and let X, = {d(ai,e(a;)) | i < X}. We note that

0 € %, if and only if « reaches z and, in this case, A is not a limit ordinal. Let

Ap ={d(x,9(x)) | x € X, x # z}. Then Xy \ {0} € A, S T*. Let (¥,d, T")

be subspace of (X, d, I'). If ¢ is such that ¢(Y) C Y, let Ag ={d(y, () |

y € Y,y # z}. Since X is principally complete (and T is totally ordered), X is

spherically complete. If, moreover, d(Y x Y) \ {0} is coinitial in d(X x X) \ {0},

then by Theorem 1.42, ¥ has one and exactly one completion Yin X.
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Proposition 3.2 Let « be an approximation to z. Then we have the following.

1.
2.

3.

X is coinitial in A.

Assume that (Y,d, ") is a subspace of (X,d, ") and that ¢(Y) C Y. Assume,
moreover, that d(Y x Y) \ {0} is coinitial in d(X x X) \ {0}. If z € ?\ Y, then
A} is coinitial in A,.

If 4 is coinitial in T'°, then « is a Cauchy family and z = lim a.

4. If X is solid, then A, =T'°, furthermore, o is a Cauchy family and z = lim a.
Proof
1. Assume that X, is coinitial in A,. So there exists x € X,x # z such that

d(x, p(x)) < d(ai,aiy1) foralli < A.Leta’ = (a;);<x+1 be defined by a; = g;
foralli < A and @, = x. Then @’ € P and @ < «'. By Proposition 3.1(3), o’
reaches z, while o does not reach z. So x = a) = z, and this is absurd.

. Since z € ?\ Y, there exists a limit ordinal p and a Cauchy family (y,),<,, with

yv € Y, such that z = lim y,. Let d(x, ¢(x)) € Ay. Since z = lim y,, there
v<p v<p
exists v < p such that d(y,, 7) < d(x, ¢(x)). Thus

d(e(n), 9(2) =d(p(y), 2) <d(yv,z) <d(x, p(x)),

which implies that

d(p(n), yv) = d(yv,2) < d(x, ¢(x)).

Hence Ag is coinitial in A.

. Let y € I'*, by assumption there exists ip < A such that

d(aiy, 9(aiy)) = d(aiy, dig+1) < -
By Proposition 3.1, « is pseudo-convergent. Hence
d(aj,ay) < d(aiy, aip+1) <y
for all i, u such that ig < i < u < A. By assumption, z € I («), so
d(z,a;) <d(ai, ¢(ai)) <y

for every i such that iy < i < A. This shows that « is a Cauchy family and
z =lima.

. Let0 < y € T'. Since X is solid, there exists x € X such that d(x, z) = y. So

X # z, hence

d(z,9(x)) =d(p(z), p(x)) < d(z, x),
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which implies that
d(x,9(x)) =d(z,x) =vy.

Thus A, = T'*. By 1., X, is coinitial in A, = I"*. Hence by 3., « is a Cauchy
family in X and z = lim .

If the ultrametric space (Y, d, I') is not spherically complete and ¢: ¥ — Y
is strictly contracting, the following result guarantees an appropriate extension of ¢
[152].

Theorem 3.2 Let (X,d,T") be an ultrametric space and that (X,d,T") is a
spherically complete. Let Y be a subspace of X. If ¥: Y — Y is strictly
contracting, there exists ¢ : X —> X such that ¢ is strictly contracting and extends
Y. If, moreover, d(Y x Y) \ {0} is coinitial in d(X x X) \ {0}, the restriction @7 of

@ to the completion Y of Y is uniquely determined.

Proof Letb € X \ Y. Forevery x € X let 7, = d(b,x) # 0. Foreach x € Y
consider in X the ball B;TX (Y (x). If 1y < m, then B;TV () C B,’TX (Y (x)))
because )

d(W(y), ¥ (x)) <d(y, x) < max{my, 7x} = 7.

Since X is spherically complete, the chain of balls (B;rx (¥ (x)))xex has a nonempty
intersection, let b’ € ﬂ B, ((¥(x)) and define ¢(b") = b'. We show that ¢: Y U

xeyY
(b} — X satisfies d(b', ¥ (x)) < d(b, x) = 7, for all x € Y. Since the extension
X of Y is immediate, there exists y € Y such that 7, < m,. Hence d (¥ (x), ¥ (y)) <
d(x,y) =d(b, x). Since b’ € BJ’TV((w(y)), then d(¥', ¥ (y)) < my < d(b, x). Thus

db', ¢ (x)) < max{d(®', ¥ (»)), d(¥ (), ¥ (x))} < d(b, x).

The proof of the extension of ¢: X —> X may be concluded by applying Zorn’s
lemma.

Let Y be the completion of ¥ in X and assume that ¢ and ¢’ are extensions of
¥ to Y which are strictly contracting. Assume there exists 7' € Y \ Y such that
@(z') # ¢'(Z). Since ¢ and ¢’ are strictly contracting, d(¢(z), ¥ (x)) < d(Z’, x)
and d(¢'(z'), ¥ (x)) < d(z', x) for all x € X. Hence

d(p(2), ¢'(2)) < max{d(p(), ¥ (x)), d(¢' (&), ¥ ()} < d(Z, x)

for all x € Y which is impossible, since the set {d(z’, x) | x € Y} is coinitial in
'\ {0}.Sop=¢". [ |
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In the next theorem [161], we shall study the following situation: (Y, d, T") is
an ultrametric space, the mapping ¥ : ¥ — Y is strictly contracting, and the
spherically complete ultrametric space (X, d, I') is an extension of Y, furthermore,
we assume that d(Y x Y) \ {0} is coinitial in d(X x X) \ {0}. (For example, X
could be the spherical completion of Y, see Theorem 1.42.) By Theorem 1.42, Y
has exactly one completion Yin X.In general, different extensions of v to strictly
contracting mappings of X will lead to different fixed points of these mappings. But
if z € Y then, since all these extensions coincide on Y, z is the fixed point of all
these mappings.

Theorem 3.3 Let Y, X and the mappings r, ¢ be as described above. Assume that
o = (a;1)ir <y, with ay € Y, is (with respect to ¢) an L approximation to z € X \'Y
and that, furthermore, L, is coinitial in T'®. Then 7 € Y and conversely, if 7 € Y \Y,
then there exists an approximation B = (b;)i<) to z such that bo = ag and b; € Y
foralli < A

Proof By Proposition 3.2, « is a Cauchy family and z = lima € Y. We now refer
to the proof of Theorem 3.1. Let «, P and the order relation on P be as described
there. Let Y be the set of all 8 = (b;); <, of P such that by = ag, b; € Y for every
i<Aandz € ﬂ B;, where B; = By, y (b)) (bi). (We note that b; # z for every
<A
i < X because z € ?\Y.)
First we show that Y, which the restriction of the order of P, is inductive. Let
C be a nonempty set, for every ¢ € C let B = B = (b7)i<x, € Y. Assume that
BC £ B, if ¢ # ¢/, and that B = {8 | ¢ € C} is totally ordered. If L = {A, | ¢ €
C} has a largest A.,, it follows, as shown in the proof of Theorem 3.1, that 8! is an
upper bound for B.
Thus there remains the case that L. does not have a largest element. We conclude,
as in part (b) of the proof of Theorem 3.1, that there exists the smallest ordinal u
such that 1. < u for every ¢ € C, that u < k and that  is a limit ordinal. Now we
define in a similar way, as explained there, a family ,3 (b )i<u Wthh belongs to
‘P and which furthermore has the following properties: by = ag, b; € Y for every
i<pandze ﬂgi,with
i<p

Bi = By, y () (i)

Thus E € Y is an upper bound for 5. Hence Y is inductive.

Moreover, T # {, because (a;/)i'<o, € Y. Thus by Zorn’s lemma, Y has a
maximal element 8 = (b;); <. Then A is a limit ordinal. Indeed, if not, let A = ip+1.
Since b;, € Y, also ¥ (b;,) € Y, s0

biy # 2. ¥ (big) # z, ¥ (biy) # big-
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Therefore

d(z, ¥ (biy)) < d(z, ¥ (bi,)) < d(z, biy),

hence

AW (big), ¥ (big)) = d(z, ¥ (biy)) < d(z, big) = d(biy, Y (biy)).

Thus if b} = b; fori < A and b} = ¥ (b;,), then B < B* = (b]); <341, furthermore
Z € Bagt .y (B3), so B* € Y contrary to the maximality of € Y. Hence A is

a limit ordinal. Since z € ﬂ B;(B), we have z € I,(B). Assume that there exists
i<A
t € Xsuchthatr #zandr € I,(B8). Then 0 < d(z, 7). Since z € Y \ Y, there exists
a Cauchy family (yy)v<, in Y, p a limit ordinal, such that z = lim y,. Thus there
v<p

exists vp < p such that d(z, y,,) < d(t, z). Then

d(W(yvy), 2) = d(@(n), 2) < d(yvy, 2) =d(1,2).

So

d( (yvp)s Yug) = d(yvy, 2) = d(t,2).

It follows that if b} = b; for i < A and b} = y,, then B’ = (b))i<siy1 > B
and, moreover, 8 € T, because z € B;, = Bd(}’voﬂ//(yvo)(yvo)' This contradicts the
maximality of 8 in Y. Hence I, (8) = {z}. |

The given results in this chapter are used in [158, 159] to provide solutions
or approximations to solutions of twisted polynomial equations and polynomial
differential equations.



Chapter 4 ®
Synthetic Approaches to Problems Qs
of Fixed Points

In this chapter, we introduce synthetic approaches to fixed point problems involving
regular-global-inf functions. Such functions satisfy a condition weaker than conti-
nuity. Additionally, under appropriate assumptions, it assures that approximate fixed
point sequences always approach the fixed point set.

4.1 Regular-Global-Inf Functions

It is well-known that continuity is an ideal property [38], while in some applications

the mapping under consideration may not be continuous, yet at the same time it

may be “not very discontinuous”. In [5] Angrisani introduced regular-global-inf

functions. Such functions satisfy a condition weaker than continuity, yet in many

circumstances, it is precisely the condition needed to assure either the uniqueness

or compactness of the set of solutions in fixed point and optimization problems.
We begin by a definition given in [6].

Definition 4.1 Let X be a topological space and 7: X —> R. The function T
is said to be a regular-global-inf (r.g.i.) at x € X if T(x) > igf(T) implies that
there exist ¢ > 0 such that ¢ < T(x) — iI}}f(T) and a neighborhood N, such that
T(y) > T(x) — ¢ for each y € N,. If this condition holds for each x € X, then T is
said to be anr.g.i. on X.

An equivalent condition to be r.g.i. on a metric space for i§f(T) # —oo0 is proved
by Kirk and Saliga [112].
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Proposition 4.1 Let X be a metric space and T: X —> R. Then T is anr.g.i. on
X if and only if, for any sequence (x,), C X, the conditions

lim T(x,) =inf(T), lim x,=x 1)
n—>00 X n—>00

imply T (x) = igf(T).

Proof Assume T is anr.g.i. on X and let (x,), C X satisfy lim T(x,) = ir)}f(T)
n—-oo
and lim x, = x € X. Suppose T(x) > iI}}f(T). Then there exist ¢ > 0,¢ <

n—-o0

T(x)— igf(T), and a neighborhood N, such that for all y € N,
Ty >T(x)—¢e> iI)}f(T).

This implies that

liminf T (x,) > T(x) —& > ir)}f(T),

a contradiction.
Now suppose the condition of the proposition holds and assume there exists x €
X such that T is not an r.g.i. at x. Then T'(x) > inf(T). Let ¢, > O satisfy ¢, <
X

T(x)— iI)}f(T) with lim &, = T(x) — iI)}f(T). Then for each n there exists y, € X
n—-0o0

1

with d(x, y,) < — € X such that T(y,) < T (x) — &,. This implies lim 7T (y,) =
n n—s-o00

inf(T) and lim (y,) = x. Therefore T'(x) = inf(T") a contradiction. |

X n—-00 X

Remark 4.1 If (X, d) is a metric space with 7: X —> R, and if ¢ € R, set

L.={xeX: Tk)<c}.
L. is called level set. It follows that T is anr.g.i. at x € X if and only if 7T (x) >
i§f(T) implies dist(x, L) > O for some ¢ > i%f(T).

As before we use the symbol p to denote the usual Kuratowski measure of
noncompactness. Conventionally, the form ¢ —> (i§f(T))+ when iI}}f(T) = —00
has the same significance as the form ¢ — i§f(T).

The following is a well-known result of Kuratowski [122].

Proposition 4.2 Let (X,d) be a complete metric space and let (Cp), be a
decreasing sequence of nonempty closed subsets of X with the property

lim u(Cy) = 0.
n—-o0
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Then m C,, = C is nonempty and compact, and moreover lim H(C,,C) =0in
n—-oo

n
the classical Hausdorff metric H.
The following two theorems are due to Angrisani [5].

Theorem 4.1 Let T: X —> R be an r.g.1. function defined on a complete metric

space X. If lim w(L.) = 0, then the set of the global minimum points of T
c—> (infx (T))*

is nonempty and compact.

Proof We construct a monotone decreasing sequence (c;), (¢, < ¢u—1), so that

lim ¢, = inf(T) and u(L.,) < —. We construct a monotone decreasing
n—>-+00 X n

sequence (a,), so that a, > iI)}f(T) and L., is a nonempty set, so that u(Lg,) <

1
—. We can also consider some monotone decreasing sequence (m,), so that

lim m, = inf(T). So we put ¢, = min{a,, m,}, foreachn € N.
n—> 400 X

We take a sequence (in X) (¢ )y, so that, foreachn € N, we have b, € L., i.e.,
we have T'(b,) < c,. It is proposed to show that a sequence of sets (M,), can be

constructed so that, for each n € N, we have M,,_| 2 M,,, diamM,, < — and
n

(%) (bn)n frequently belongs to each M;.

So, from (x), it follows that we can construct a subsequence (b, ), of (b,), so that,

1
for each n € N, we have by, € M,. By M,_1 2 M, and diamM, < —, such a
n

subsequence will be a Cauchy sequence, which therefore converges at a point we
shall show to be a global minimum for 7. Now we show that the sequence of sets
(M,,),, can be constructed.

We show that, if we have i € N and a set M; so that (b,), frequently belongs

to M;, we can construct a set M;1 so that M; O M;y, diam(M;;+;) < — and

(by)n frequently belongs to M; 1. For the fact that (b,), frequently belongs E[o the
sets of level and their diameter tends to nought (for the first step induction), we
can prove by induction that we can construct the sequence (M;); verifying the said
properties. Let i € N and let M; be a set so that (b,), frequently belongs to M;. Let
Miy1 = L, N M, where L, = L, N M; and M], is constructed as follow:

1 1
For the fact that ju(L;) < —, we have u(L!.) < —. So there is a cover of L, with
1 ! I !

1
sets of diameter less than or equal to —. Let M;, | be a set of such cover to which
l
frequently belong the terms of the sequence (b;,),. We recall that (b,), frequently
belongs to L’Cl, for the fact that (b,), definitely belongs to L., and frequently belongs
to M; and L, = L¢; N M;.
For construction M; 2 M;4.
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. 1
For the fact that Mi’ 11 has diameter less than or equal to —, also M;; has
i

1
diameter less than or equal to —. So M; has the required properties and we can

construct the sequence of sets (M,,), with the required properties. So, as we have
seen, we can chose a subsequence (by,), = (yu)n so that y, € M, and (y,), is
a Cauchy sequence, i.e., (because of the completeness of the space) (y,), has a
limit. Let y* be its limit. For every ¢ > iI)}f(T), (yn)n definitely belongs to L.,

by lim T(b,) = inf(T) (being T(b,) < ¢, and lim ¢, = inf(T)). So y*
n—>- 400 X n—>-—+00 X

belongs to the topological closure of L., i.e., d(y*, L.) = 0, for each ¢ > igf(T).

Thus owing to the fact that T is r.g.i. in X and therefore in y*, F(y*) = i§f(T).

This implies that the set Ly, 7 of the global minimum points of 7 is nonempty.
Clearly we have L, 2 Ly, foreachc > iI)}f(T). Thus, 4 (Lmint) = 0,1.€., LyinT

is relatively compact.
Now we shall show that Ly, 7 is closed and therefore is compact. If x* € Ch
(LminT), i.€., d(x*, LminT) = 0, then we have d(x*, L.) = 0 for each ¢ > iI)}f(T).

So,by Tisr.gi.in X, T (x*) = i§f(T). This concludes the proof. |

Remark 4.2 The last theorem assures that if 7 is a mapping of compact metric space
into itself with igf(T)) =0,andif F(x) =d(x,T(x)),x € Xisanr.g.i. on X, then

the fixed point set of 7' is nonempty and compact even when T is discontinuous.

Theorem 4.2 Let T : X —> R be a function defined on a complete metric space X

such as we have lim diam(L.) = 0. Thus T has one (and only one) global
c—> (infx (T))*

minimum point, if, and only if, it is r.g.1.

Proof Suppose that T isr.g.i.

Because the fact that, for every set A, u(A) < diam(A), the hypotheses of
Theorem 4.1 are verified and thus the set Ly, 7 of the global minimum points of T
is nonempty. But L, 7 must have a vanishing diameter. So there is one and only
one global minimum point of 7.

Conversely let us suppose that there is a global minimum point x* of T'.

First note that it is the only global minimum point of 7. So if x is a point of
X different from x*, we have T(x) > T(x*) = iI}}f(T). For every ¢ > ir}}f(T),

we have x* € L.. Let S, be the closed sphere of center x* and radius diam(L.).
For every ¢ > igf(T), we have S. D L.. Sod(x,x™) > d(x,L.) > d(x,S;) >

d(x,x*) — diam(L.). So, for c —> ir)}f(T),d(x, L.) — d(x,x*) > 0. This
implies that T is r.g.i. n
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The following is given in [6].

Theorem 4.3 Let T: X —> R be an r.g.1. function defined on a complete metric

space X so that we have lim diam(L.) = 0. Then T has one and only one
c—> (infx (T))*

global minimum point.
Proof Let lim ¢, = inf(T) and x, € L.,, as lim diam(L.,) = 0, we have
n—>-—+00 X n—>00

that (x,), is a Cauchy sequence. Thus, for the completeness of X, (x,), has a
limit. Let us call x the limit of (x,),. Thus T (x) = i&f(T). If, by reduction ad

absurdum, this were not so, as T is r.g.i, it should be d(x, L.,) > O for at least
one n, in contrast to the fact that x, — x and x,, € L, for m > n. Furthermore

lim diam(L.) = O implies that diam(Linf, (7)) = O and therefore x is the
c—> (infx (T))*

only point of global minimum. |

Remark 4.3 Let X be a complete metric space with a distance d(.,.) and T a
selfmapping in X. As observed in [5], Theorem 4.3 can be applied in the following
way.

If we define F(x) = d(x, T(x)), T has one and only one fixed point in case the
following three facts occur:

1. ir)}f(F) =0,
2. lim diam(L.) =0,
c—07F

3. Fisr.gi.in X.

In the study of contractive-type mappings, the goal usually is to show that the
Picard iterates of the mapping under consideration converges to a fixed point.
Motivated by this fact and by Theorem 4.2, Angrisani and Calvelli [6] gave the
following result on diameters of level sets.

Theorem 4.4 If X is a metric space and T a selfmapping in X with:
(%x) Ja<1Vx,ye X

d(T(x), T(y)) < amax{d(x, y),d(x,T(x)),d(y, T(y)),d(x,T(y),d(y, T (x))}

then as F(x) = d(x,T(x)) and L, = {x, F(x) < c}, we have igf(F) = 0,
lim+ diam(L.) = 0and F isr.g.i. in X.

c—0

Proof We first verify that i&f(F ) = 0. Applying () we have

d(T'(x), T/ (x)) <
o max{d(T =" (x), TI=' (), d(T" = (x), T (), (T~ (x), T4 (x),
AT (), T (), d(T7 7 (), TH ().
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Therefore, if 0 < i < j — 1,d(T'(x), T/(x)) < @ max d(T™(x), T"(x)).

i—1<m,n<j
Therefore, by induction on i, we have

(% % %) d(T'(x), T (x)) < o' . max d(T™(x), T" (x)).
=m,n<j

The maximum at the second member of the (x * *) will be reached by certain
numbers p, g sothat0 < p < g < j gives d(T?(x), T?(x)).If p > 0, we have

d(TP(x), TY(x)) <d(T'(x), T/ (x)) < max _ d(T"(x), T"()d(T' (x), T/ (x))

i—1<m,n<j

<« max d(Tm(x) T"(x)) = ad(T?(x), TY(x))

0<m,n<

and therefore d(T' (x), T/ (x)) < o'd(TP(x), T?(x)) < d(TP(x), T(x)) = 0. If
on the other hand p = 0, we have

d(x,T9(x)) <d(x,T(x)+d(T(x), TY(x)) <d(x, T(x))+(x0 max d(T"(x), T"(x))
<m,n<j
<d(x,T(x))+ ozo max d(T™(x), T"(x)) =d(x, T(x)) + ad(x, T?(x)).
<m,n<j

Therefore

o Jmax d(T"(x), T"(x)) =d(x, T?(x)) < (;)d(x T(x)).

<m,n<j

Therefore, if p = 0 or if p > 0, we have d(T" (x), T/ (x)) < (1“—Z)d(x, T(x))
-

n

and in particular d(T"(x), T""'(x)) < (1Oi
ir}}f(F) =

The rest of the proof proceeds in the following way. Letx, y € L., thusd(x, y) <
dx,T(x)) +d(T(x), T(y) +d(y, T(y)) <2c+d(T(x),T(y)

)d(x, T (x)). Consequently
o

d(T(x), T(y)) < a.max{d(x, y),d(x, T(x)),d(y, T(y)),d(x, T(y)),d(y, T(x))}
< a.max{d(x, y),d(x, T (x)),d(y, T(y)),d(x,y) +d(y, T(y)),d(y, x)

+d(x, T(x))
<< a.max{d(x,y),c,c,dx,y)+c,dx,y)+c} <alx,y) +c,

3
therefore d(x, y) < a(x, y) + 3¢, and therefore d(x, y) < 1—C —> 0+ 0,and
—o

consequently linz)Jr diam(L.) = 0.
c—>



4.1 Regular-Global-Inf Functions 161

Let us suppose that there is x € X so that F' is not r.g.i. in x. This fact implies
that there exists a sequence (x,), tending to x so that x, € L1 (and therefore

lim F(x,) = 0). This gives:
n—-aoo

d(x, T(x)) —d(x, xy) —d(xn, T(xp)) < d(T(x), T (xp))
< a.max{d(x, xp), d(x, T(x)), d(xn, T (xn)), d(x, T (xn)), d(xn, T (x))}
< a.max{d(x, x,), d(x, T(x)), d(xp, T (xp)), d(x, xp) + d(xn, T (xn)), d(xn, X)
+d(x, T(x))}.
Taking the limit as n —> o0, we obtain d(x, T'(x)) < ad(x, T (x)), i.e., F(x) =

d(x,T(x)) = 0, in contrast to the hypothesis that F is not r.g.i. in X, which is
absurd. |

Without continuity and compactness conditions, we obtain [6].
Corollary 4.1 Let X be a complete metric space and T a selfmapping with
d(T(x), T(y)) < a.max{d(x, y),d(x, T(x)),d(y, T(y)),d(x,T(y),d(y, T(x))}
4.1)
Thus T has one and only one fixed point.

Proof Given that F(x) = d(x,T(x)), for Theorem 4.4, we have iI)}f(F ) =
0, lim+ diam(L.) = 0 and F is r.g.i. in X. Therefore, for Theorem 4.3, F has
c—>0

a single global minimum point x (on which F takes the value of 0). Therefore
d(x, T(x)) =0if and only if x = x, i.e., x is the only fixed point of 7. |

Remark 4.4 Many properties of “contractivity” in [168] imply (4.1).
Definition 4.2 (Orbits) Let X beasetand T: X — X. For x, y € X, the orbit
of T atx is
O) = {x, T(), T(x), -}
and

O(x,y)=0(x)U0®W).

Walter [192] proved a far-reaching extension of Banach’s Contraction Mapping
Principle. We use this fact to show that Theorem 4.2 extends to a much wider class
of mappings under the additional assumption that the orbits of 7" are bounded. We
state Walter’s result below.

Theorem 4.5 Let X be a metric space and ¢: RT™ —> RT be a continuous
nondecreasing function and satisfies ¢(s) < s fors > 0. Assume T: X — X
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has bounded orbits and satisfies the following condition. For each x,y € X,
d(T (x), T(y)) < ¢(diam(O(x, y))).
Then T has a unique fixed point 7 € X and . lim T*(x) = Z for each x € X.
—>

Using this fact we obtain the following where we use some ideas of Hegediis in
[82].

Theorem 4.6 Let X be a complete metric space and suppose T: X —> X has
bounded orbits and satisfies: there exists a < 1 such that for each x,y € X,

d(T(x), T(y)) < adiam(O(x, y)). (%)

Suppose (x,)n C X satisfies lim d(x,, T (x,)) = 0. Then T has a unique fixed
n—-o0
point z € X and lim diam(L.) = 0. Moreover, lim d(x,,T(x,)) = 0 if and
n—-aoo

c—>0t
onlyif lim x, =z
n—-aoQ

Proof The existence of a unique fixed point z with lim 7"(x) = z for each x €
n—-oo

X follows from Theorem 4.5. Let ¢ > 0 and suppose d(u, z) < &. Then since
T(z) = z,

du,Tw)) <du,z) +d(T(u), T () <&+ adiam(0(u) U {z}).
Similarly, if d(u, T (u)) < ¢, then
du,z) <dwu,Tw)) +d(Tu), T(z)) <&+ adiam(0 ) U {z}).

We complete the argument by showing that diam(O («) U {z}) depends on & and
tends to 0 as ¢ —> 0. There are two cases.

1. diam(O(u) U {z}) = supd(T”(u), z). In this case let &' > 0 be arbitrary and
j2
choose p so that supd(T” (u), z) < d(T*”(u),z) + &’. Thenif p = 0, we have
P

diam(Ow) U {z})) <du,z) +¢& <e+¢

in which case diam(O (1) U {z}) < e and we are finished. On the other hand, if
p=>1,

diam(O (u) U {z}) < d(TP(u), T(z)) + &' < adiam(O (TP~ (u)) U {z}) + ¢’
< adiam(O(u) U {z}) +¢'.



4.1 Regular-Global-Inf Functions 163
This implies
diam(O () U {z}) = 0.

2. diam(O (u) U {z}) = supd(T? (u), u). Since plim d(T? W), u) =d(z,u) <s,
2 —> 00

we may assume there exists ¢ > 1 such that supd(T? (u), u) = d(T9(u), u), in
j2
which case we have

diam(O (u) U {z}) < d(u, 2) +d(T9(u), T(2)) < adiam(O(T7' ) U {z}) + ¢
< adiam(O(u) U {z}) + &.

In this case we have

diam(0 () U {z)) < ——.

T 1«
Therefore,
oe
du,z) <e=—=du,Tw) <&+ T—a
—a
oe €
du,T(uw) <e=du,z) <e+ =
l—« l—«
and

v e Le = du,v) <d,z)+d,z) < 2%.
—

Remark 4.5 By taking y = T (x) in (x) one has
d(T(x), T*(x)) < adiam(O(x, T (x))) = adiam(O(x)) forall x € X
and this quickly leads to
diam(O(T (x))) < adiam(O(x)) forall x € X.
This can be rewritten as
diam(0 (x)) < (1 — @)~ ![diam(O (x)) — diam(O (T (x)))] forall x € X.
Since d(x, T'(x)) < diam(O(x)), if the mapping ¢: X —> R defined by setting

¢(x) = diam(O(x)) is lower semicontinuous then this condition, which is much
weaker than (x), assure that 7" has at least one fixed point by Caristi’s theorem.
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A natural question was addressed by Kirk and Saliga in [112].

Does the conclusion of Theorem 4.6 remain valid under the weaker assumption
of Theorem 4.5? A partial answer to this question was given by Akkouchi in [2].

Let ® be the set of continuous functions ¢: R™ — R™T such that ¢ is
nondecreasing on R and such that the mapping x — x — ¢ (x) from [0, +o0[
onto [0, +oo[ is strictly increasing. We notice that @ contains strictly the set ¥
of continuous nondecreasing functions v : Rt — R™ and satisfying, ¥(s) <
as, Vs > 0, for some given o € [0, 1[. Akkouchi [2] gave the following example.

Example 4.1 Let a > 0 be a given number. For each s > 0, we set ¢,(s) :=
2

. Then ¢,: R* — R is continuous,

and 6,(s) = 5 — ¢pu(s) =

nondecreasing and ¢, (s) < s, Vs > 0. Moreover 6, is a strictly increasing bijective
mapping from R onto itself. Let us denote its inverse by v,. Then 1/, is given by

s+ 4
Ya(s) = HS#, for all s > 0. It is easy to verify that ¢, ¢ ®;. Indeed,

there exists no number « in [0, 1[ such that ¢,(s) < as, Vs > 0.

The following is due to Akkouchi [2].

Theorem 4.7 Let X be a complete metric space and suppose T: X —> X has
bounded orbits and satisfies the following condition

d(T(x), T(y)) < ¢(diam(O(x, y))) for allx,y € X,

where ¢ € ©. Then

1. T has a unique fixed point z € X and klim TF(x) = z for each x € X.
—00
2. lim diam(L.) = 0.

c—>07F
3. For each sequence (x;), < X, lim d(x,,T(x,)) = 0 if and only if
n—-o0
lim x, = z.
n—-oo

4. Themap F: x — d(x,T(x))isanr.gi. on X.

Proof Let ¢ € ® and let  denote the inverse of the strictly increasing mapping
s > s — ¢(s) on the interval [0, 4-o0o[. Then 1. is a consequence of Theorem 4.5.
To prove 2. and 3., we shall prove the following property:

Ve >0,VueX, du, Tw) <e = d(u,z) <&+ y(e). (P)
Let ¢ > 0 and suppose d(u, T (1)) < ¢. Then since T (z) = z,
d(u,z) =du,Tw))+d(T ), T(z)) < ¢(diam(O0 () U {z})).
The proof of the property (P) will be finished by showing that ¢ (diam(O (u) U

{z})) < ¥ (¢). To simplify the notations, we set T := diam(O (u) U{z}). We consider
two cases.
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(a)

(b)
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diam(O (u) U {z}) = supd(T”(u), z). In this case let p > 0 be arbitrary and
P
choose p, so that supd(T?(u),z) < d(T*?(u),z) + p. Then if p, = 0, we
p

have

diam(O(w) U {z}) <d(u,z) +p
<du, Tw)+d(T ), T)+p
< &+ ¢(diam(O (u) U {z})) + p,

from which we get T — ¢(t) < &€ + p. On the other hand, if p, > 1,

diam(O(u) U {z}) <d(T? (u), T(2)) + p
< ¢(diam(O (TP~ () U {z})) + p
< ¢(diam(O (u) U {z})) + p.
Hence, we get Tt — ¢ (t) < p. Therefore, in the two cases, we obtain T — ¢ (7) <
&+ p, from which (since p > 0 is arbitrary) T — ¢ (7) < €. Since by assumption
the function ¢ — t — ¢ () is strictly increasing on [0, +oo[ having ¥ as inverse

we obtain T < ¥r(¢g). It follows that ¢ (t) < ¢ o Y (e) < Y (e).
diam(O (u) U {z}) = supd(T?(u), u). Since limd(T? (u), u) = d(z, u), if one
p p

has supd(T? (u), u) = imd(T? (u), u) then
P p

diam(O(u) U {z}) =d(z,u) <du, Tw)) +d(T ), T(z))
< ¢+ ¢(diam(O(u) U {z})).
Thus we get T — ¢(t) < ¢, which gives as before ¢(t) < ¥ (e). Hence we
may assume there exists g < 1 such that diam(O (u) U {z}) = diam(O (u)) =
d(T%(u), u). In this case we have
diam(O (1) U {z}) = diam(O (v)) = d(T9(u), u)
<du,Tw)+d(Tw),Tu))
< ¢ (diam(O (T4~ () U{u}) + ¢
< ¢(diam(O (u)) + .

Thus the number T = diam(O (1) U {z}) satisfies T — ¢ (7) < ¥ (e). It follows
as before that ¢ (t) < ¥ (e).
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Therefore, taking all cases into account, we have
du, Tw) <e¢ = du,z) <e+y(e).
Thus we have proved the property (P). We deduce
u,vely, =du,v) <du,z) +dv,2) <2+ (),

and since lim+ ¥ (&) = 0 this proves 2. and 3.. To prove 4., we use Proposition 4.1
e—0

and the property (P). This completes the proof. ]

Remark 4.6

(a) To obtain the results of Theorem 4.7, we need only to suppose that s — s—¢ (s)
is strictly increasing on some given interval of the type [0, 8] (with 8 > 0).

(b) Tt is easy to see that all the conclusions of Theorem 4.7 are valid for every
nondecreasing continuous function ¢: RT™ — R™ for which there exists a
number 8 > 0 and a positive function i defined on ]0, 8] verifying:

(i) liII(l)I//(t) =0and
t—
(ii) YVt €]0,BL,Vs > 0,5 —¢p(s) <t = s <Y (1).
The following is a variant of Theorem 4.1 where proved even more [112].

Theorem 4.8 Let X be a complete metric space andletT: X — R beanr.g.i. for
which iI}}f(T) =co>0.If lim w(L:) =0, then the set L, of global minimum

c—>(co)t

points of T is nonempty and compact, and lim H (L., L¢,) = 0. Moreover; if

c—>(co)*
(x4)n is a sequence in X for which lim T (x,) = co, then lim dist(x,, L¢,) = 0.
n—aoo n—-oo
Proof Suppose T is anr.g.i. on X and let (¢,,), be a sequence of numbers for which
cn > copand lim ¢, = cp. In view of Proposition 4.2 ¥ = ﬂch is nonempty
n—oo

n
and compact. Let x € Y and n € N. Since x € L, there exists x, € L., such that

1
d(x,,x) < —. Therefore lim x, = x while
n n—o0

co < lim T(x,) < lim ¢, = co.
n—-00 n—-00

By Proposition 4.1, T'(x) = igf(T). Thus x € ﬂzcn, hence Y = ﬂzcn, and again
n n

by Proposition 4.2 lim H (ch, L¢,) = 0. Now suppose (x,), € X satisfies

c—>(co)t
lim T(x,) = co, and suppose there exists a subsequence (y,), of (x,), and a
n—-o0
number p > 0 such that dist(y,, L¢,) > p. Then the condition
lim w(L:)=0

c—>(co)t
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implies that
im ({yn, yns1,...H) =0
n—-oo

and thus (yn), has a subsequence which converges to y € X. Since T is an
r.g.i. on X this in turn implies T'(y) = co, i.e.,, y € L¢,. Clearly this contradicts
dist(yu, Ley) = p. u

Situations in which measures of noncompactness arise in the study of fixed
point theory usually involve the study of either condensing mappings or k-set
contractions. Continuity is always implicit in the definitions of these classes of
mappings.

As before we let F(x) = d(x, T(x)),x € X,and L, = {x € X: F(x) < c}.
Now Lg will denote the fixed point set of 7. Also for a subset ¥ of X we use the
notation

Ne(Y)={xeX:d(x,y) <& forsomey € Y}.

It is natural to ask if in many instances it suffices to replace the continuity
assumption with the weaker r.g.i. condition.

An affirmative answer in the following setting was given by Kirk and Saliga
[112].

Theorem 4.9 Let X be a complete metric space and let T : X —> X satisfy:

1. d(T(x), Tz(x)) <d(x,T(x)) forall x € X,
2. w(T(L¢)) <ku(L.) for somek < 1 and all ¢ > ir;f(F),

3. Fisanr.gi.on X.

Then the set L, of global minimum of F is nonempty and compact. Moreover,
if iI)}f(F) = 0 and if (xp)n < X satisfies lim d(x,, T(x,)) = O, then
n—-auo0

lim dist(x,, Lg) = 0.
n—-o0
Proof Let ¢ > inf(F). Then 2. implies lim w(T"(L.)) < lim k"u(L.) = 0.
X n—-oQo n—-0o0

Since 1. implies T (L.) € L.. Proposition 4.2 implies

Ye=(T"(Lc)

n

is nonempty and compact. Moreover Y. € L.. Now let (c,), be a sequence for
which ¢, — (i§f(F))+ and let

Y =Y,
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Then Y is nonempty and compact, and for each y € Y and n € N there

exists x, € L, such that d(y,x,) < —. We now have lim x, = y and
n n— o0

lim F(x,) = iI}}f(F ). By Proposition 4.1, y = iI}}f(F ) and this proves that the set
n—-0o0

of global minimum points contains Y. The fact that this set is also compact follows
from 2. and the fact that it is mapped into itself by 7. In view of Theorem 4.8, for
the final conclusion we need only show that iI)}f(F ) = 0 implies that

lim w(L:) =0.
c—07t
Assume lim w(L;)=r >0.By1.T: L. — L. foreach ¢ > 0 and by 2.:
c—07t

w(T(Le)) < ku(Le),

whence lim+ u(T(L.)) < kr. Now let ¢ > 0 and suppose u(T(L.)) = d. This
c—0

means that for any d’ > d there exists a finite collection {¥;} of subsets of X, each
having diameter < d’ and such that

T(Lo) < JY:.

If x € L, thend(x,T(x)) < c, and since T (x) € Y; for some i it follows that
x € N.(Yy), ie.,

L. C UNC(Yi)~

This in turn implies 1 (L.) < d’ + ¢, and since d’ > d is arbitrary,
W(Le) < u(T(Le)) +c <kp(Le) +c.

Letting ¢ —> 0" we obtain r < kr and this is clearly a contradiction if » > 0. W

Corollary 4.2 Let (X, d) be a complete metric space and suppose T: X —> X
satisfies

1. d(T (x), Tz(x)) <ad(x, T(x)) for some o € (0, 1) and all x € X,
2. w(T(Le)) < ku(Le) for some k < 1 and all ¢ > 0,
3. Fisanr.gi.on X.

Then the fixed point set Fix(T) of T is nonempty and compact. Moreover if
(xn)n C X satisfies lim d(x,, T(x,)) =0, then lim dist(x,, Fix(T)) = 0.
n—-0o0 n—-0o0
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Proof Condition 1. implies that (7" (x)), is a Cauchy sequence for each x € X,
and in particular that i§f(F ) =0. |

Meaningful applications of the precedent results would likely arise in a Banach
space context and in such a setting more can be said.

In [112], some interesting, be they only illustrative, results have been produced.

In the ensuing statements we always take F to be ||/ — T'||. The significance of
these results again lies in the fact that continuity is not assumed.

Theorem 4.10 Suppose K is a bounded closed convex subset of a Banach space
and suppose T: K —> K satisfies

1. igf(F ) = 0 for any nonempty closed convex T -invariant subset C of K,
2. u(T(A)) < u(A) forall A C K for which u(A) > 0
3. Fisanr.gi.on K.

Then the fixed point set Fix(T) of T is nonempty and compact.

Proof By a standard argument [196] it is possible to construct a nonempty closed
convex subset C € K for which conv(7T(C)) = C. Since pu(conv(7(C))) =
w(T(C)), this implies u(T(C)) = u(C) so in view of 2. C must be compact. 1.
and the fact that F is an r.g.i. on K imply Fix(7T) N C # . Condition 2. and the

fact that F is an r.g.i. implies Fix(7’) is compact. |
Remark 4.7 The assumption ilr;f(F ) = 0 is strong, especially in the absence of

conditions which at the same time imply continuity of 7. However there is a
relatively simple condition which simultaneously yields both this fact and second
assumption of 1. of Theorem 4.9.

For a convex subset K of a Banach space and x,y € K let [x, y] denote the
segment joining x and y, thatis [x, y] = {Ax + (1 —A)y: 0 < A < 1}.

A mapping T: K — K is called directionally nonexpansive if |7 (x) — T (m)||
foreachx € K andm € [x, T (x)]. If there exists « € (0, 1) such that this inequality
holds form = (1—«)x+aT (x) then we say that T is uniformly locally directionally
nonexpansive.

The following is a special case of a result proved in [108].

Proposition 4.3 Let K be bounded convex subset of a Banach space and suppose

T: K —> K is uniformly locally directionally nonexpansive. Then f = 5(1 +7)

is asymptotically regular. In particular

inf|lx — T(x)| = 0.
K
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Combining this fact with Theorem 4.9 we have the following:

Theorem 4.11 Let K be a bounded closed convex subset of a Banach space and
suppose T . K — K satisfies:

1. T is directionally nonexpansive on K,
2. w(T(L¢)) <ku(L.) for somek < 1 andall ¢ > 0,
3. Fisanr.gi.on K.

Then the fixed point set Fix(T) of T is nonempty and compact. Moreover if
(xn)n € K satisfies lim ||x, — T(x,)|| =0, then lim dist(x,, Fix(T)) = 0.
n—-oo n—-oo

Proof Since 1. implies both igf(F ) = 0and

ITx) — T2 < llx — TG for each x € K,

the conclusion is immediate from Theorem 4.9. |

The following is a corollary of Theorem 4.10. (Of course if T is continuous this
reduces to a special case of Sadovskii’s theorem).

Corollary 4.3 Let K be a bounded closed convex subset of a Banach space and
suppose T: K — K satisfies:

1. T is uniformly locally directionally nonexpansive on K,
2. u(T(A)) < u(A) forall A € K for which u(A) > 0
3. Fisanr.gi.on K.

Then the fixed point set Fix(T) of T is nonempty and compact.

We now take up a simple application of Theorem 4.2. For this theorem we assume
6: R™ — RT is any function for which t — 07 implies () —> 0.

Theorem 4.12 Let K be a bounded closed convex subset of a Banach space and
suppose T : K —> K satisfies:

1. T is uniformly locally directionally nonexpansive on K,
2.Tx) =TI = @max{[|T(x) =), ly = T} for each x, y € K.

Then T has a unique fixed point xo € K if and only if F is anr.g.i.on K.
Proof By Proposition 4.3 i2f(F) =0.Letc >0andletx,y € L.. Then by 2.,

lx =yl < ITx) =T +2¢ < Omax{||T(x) — ), Iy =TI} +2¢ — 0

asc¢c —> 07. Thus lim diam(L.) = 0. |
c—0F

Remark 4.8 We remark that the properties of mappings play the dominant role in

the preceding discussion, but it is also true that the geometry of the underlying
space may be a factor. In 1979, Moreau, [134] proved that if C is a closed subset
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of a Hilbert space H and if T: C — C is a nonexpansive mapping whose fixed
point set Fix(7') has nonempty interior, then for every x € C the Picard iterates of
T converge strongly to a point of Fix(7T"). Subsequently, Beauzamy observed that
this result also holds in a uniformly convex space [91] and in [114] it is shown that
this fact extends even to reflexive locally uniformly convex spaces.

It was observed in [114] that in the uniformly convex case the nonexpansive
assumption can be weakened. Essentially, it was shown that part of the analysis
does not require the full force of nonexpansiveness, only the existence of at least
one fixed point together with nonexpansiveness about each fixed point is sufficient.

Definition 4.3 A mapping 7: X — X where X is a Banach space, is called quasi-
nonexpansive provided 7 has at least fixed point in X (that is, Fix(7T') is nonempty),
and if p € Fix(T), then

IT(x) — pll < llx — p|| holdsforall x € X.

This concept, which Dotson [47] has labeled quasi-nonexpansive, was essentially
introduced, along, with some other related ideas, by Diaz and Metcalf [43]. It is clear
that a nonexpansive mapping with at least one fixed point is quasi-nonexpansive.
A linear quasi-nonexpansive mapping on a Banach space is nonexpansive on that
space. But there exist continuous and discontinuous nonlinear quasi-nonexpansive
mappings that are not nonexpansive. Dotson [47] gave the following example, which
is continuous quasi-nonexpansive but not nonexpansive.

Example 4.2 The mapping 7 : R — R defined by

% sin2 if 0
T(x) = ESIII;,I x #0,
0, if x =0.

is quasi-nonexpansive but not nonexpansive.
Following the approach in [114], the following is given in [112].

Theorem 4.13 Let C be a closed subset of a uniformly convex Banach space and
suppose T : C —> C is a mapping for which intFix(T') # @, and suppose also:

1. T is quasi-nonexpansive,
2. Fisanr.gi.onC.

Then for each x € C the Picard sequence (T"(x)), converges to a point of
Fix(T).
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To prove the previous theorem we recall the following fact, due independently to
Edelstein [53] and Steckin [184].

Proposition 4.4 Let X be a uniformly convex space. Then for each d > 0 and for

each c,c € X satisfying 0 < |lc — | =r < d,

lim diam(B(c,d —r + &) N (X\B(c', d))) = 0.

c—>0t

Moreover, the convergence is uniform for all such c, ¢’ lying in any bounded subset
of X.

Proof of Theorem 4.13 Let x € C and p € intFix(T). By 1.

d= lm |p—T"(x)]|
n—-oQ

always exists, and since p € intfix(T), if d = 0 then T"(x) = p for some n
and there is nothing to prove. Otherwise there exists ¥ > 0, with r < d, and g €
Fix(T') such that B(q,r) € Fix(T). For each n € N choose ¢, € Fix(T) so that
lp — gnll = r and so that

Ip = anll + llgn —T" O =llp = T" )]

It follows that lim ||g, — T"(x)|| = d —r.Let & > 0. Then for n sufficiently large
n—oo

T"(x) € B(qn,d — r + ¢). On the other hand, T"(x) € X\B(p,d) foralln € N.
By Proposition 4.4,

lin}ﬁ diam(B(gy,d —r + &) N (X\B(p, d))) = 0.

This implies (T"(x)), is a Cauchy sequence, so there exist z € C such that
lim T"(x) = z. At the same time lim F(T"(x)) = 0. Since F is an r.g.i.,
n—-0o0 n—-oo

T(z) =z [ |

Another geometric property proposed and studied by Rolewicz in [170, 171]
called property (B).

Definition 4.4 Let (X, ||.]|) be a Banach space and By its closed unit ball. Given
x € X\ By, the drop generated by x is the set D(x, By) := conv({x}U By ). Denote
by R(x, By) := D(x, Bx) \ Bx.

The following is due to Rolewicz in [170].

Theorem 4.14 A Banach space (X, ||.||) is uniformly convex if for any ¢ > 0 there
is 8 > Osuchthat 1 < ||x|| < 14§ implies that diam(R(x, By)) < e.

Related to the previous result, Rolewicz introduced in [171] the following
property.
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Definition 4.5 A Banach space (X, ||.||) is said to have the property (B) if for any
e > Othereis § > Osothat 1 < ||x|| < 14 & implies that u(R(x, By)) < €.

Any uniformly convex space has property (8). [171]. In [110] Kirk proved the
following result.

Proposition 4.5 Suppose X is a Banach space with property (B). Then for each
d > 0 and for each c, ¢’ € X satisfying 0 < |lc — || =r < d,

lin(l)+ w(B(c,d —r +¢)N(X\B(,d))) =0.

Moreover, the convergence is uniform for all such c, ¢’ lying in any bounded subset
of X.

The following convergence result is given in [112].
Theorem 4.15 Let C be a closed convex subset of a Banach space which has the

property (B). Suppose T: C —> C is a mapping for which intFix(T) # (, and
suppose also:

1. T is quasi-nonexpansive,
2. Fisanr.gi.onC.

1
Let f = E(I+ T). Then for each x € C the Picard sequence (" (x)), converges
to a point of Fix(T).
Proof We follow step by step the proof of Theorem 4.13 by replacing 7 with f and

‘diam’ with p. Notice in particular that Fix(f) = Fix(7T') and that if 1. holds for T
then it is also holds for f. Thus

lim diam(B(ga,d —r +¢) N (X\B(p.d))) =0
e—0

implies that (f"(x)), has a subsequence which converges to a point z € C. Since

f is asymptotically regular lim F(f"(x)) = 0, and since T is an r.g.i., z €
n—-o0

Fix(T). |

Definition 4.1 is formulated in a topological space and this raises the question

of whether there might be applications in a broader context. The fact that the weak

topology often plays a key role in fixed point theoretic considerations in functional
analysis suggests the following definition [112].

Definition 4.6 Let K be a subset of a Banach space X and let 7: X — R. Then
T is said to be a weak regular-global-inf (weak r.g.i) at x € K if T'(x) > ir[%f(T)
implies there exist ¢ > O such thate < 7' (x) — i%f(T) and a weak neighborhood N,

of x such that T (y) > T(x) — ¢ for each y € N,. If this condition holds for each
x € K, then T is said to be a weak r.g.i. on K.
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If the weak topology on K is metrizable, for example if X’ is separable and K is
weakly compact, then the analogue of Proposition 4.1 carries over [112].

Proposition 4.6 Let K be a weakly compact subset of a separable Banach space X
andletT: K —> R. Then T is a weak r.g.i on K if and only if for any sequence
(xp)n C K, the conditions

lim T(x,)=inf(T) and x, — x
n—-oo K

imply T (x) = igf(T).

The following classical result in the theory of nonexpansive mappings. It was
first explicitly formulated by Browder [31, 67] based on ideas of Gohde.

Theorem 4.16 Let K be a closed convex subset of a uniformly convex Banach

space Xand let T: K —> X be nonexpansive. Then the mapping (I — T) is

demiclosed on K. In particular, if lim ||T (x,) — x,|| = 0 and if x, — x, then
n—aoo

T(x) = x.

Thus under the assumptions of the above theorem (I — T') is a weak-r.g.i. on K.

4.2 Synthetic Approaches to Problems of Fixed Points
in Convex Metric Spaces

We give some fixed point results for mappings without a continuity condition on
Takahashi convex metric spaces as an application of synthetic approaches to fixed
point problems.

In the absence of linear structure, the concept of convexity can be introduced in
an abstract form. In metric spaces, at first, it was done by Menger. Then Takahashi
[186] introduced a new concept of convexity in metric spaces.

Definition 4.7 Let (X, d) be a metric space and / a closed unit interval. A mapping
W: X x X x I — X is said to be the convex structure on X if for all x, y,u €
X, Ael,

d(u, Wx,y,A) < Ad(u, x) + (1 — Md(u, y).
X together with a convex structure is called a Takahashi convex metric space

(X, d, W) or abbreviated TCS.

Example 4.3 Any convex subset of a normed space is a convex metric space with
W, y,A) =Ax+ 1 =2y

Definition 4.8 ([186]) Let (X, d, W) be a TCS. A nonempty subset K of X is said
to be convex if and only if W(x, y, X) € K whenever x,y € K and A € I.
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Proposition 4.7 Let (X,d, W) be a TCS. If x,y € X and A € I, then

Wx,y, 1) =xand W(x, y,0) =y,

Wx,x,A) =x,

dix, W(x,y,2) =1 —2)d(x,y)andd(y, W(x,y, 1)) = rd(x, y),
balls (either open or closed) in X are convex,

intersections of convex subsets of X are convex.

For fixed x, y € X let [x, y] = {W(x, y,A), A € I}.

Lk~

Definition 4.9 A TCS (X, d, W) has property (P) if for every xi, x2, y1, y2 €
X, Ael,

d(W(x1,x2, 1), W(y1, y2, X)) < Ad(x1, y1) + (1 — AM)d(x2, y2)

Obviously, in a normed space, the last inequality is always satisfied.

Example 4.4 ([186]) Let (X, d) be a linear metric space with the following proper-
ties:

1. d(x,y) =d(x —y,0),forall x, y € X,

2.dAx+ (1 —=2)y,0 <Ad(x,0)+ (1 —A)d(y,0) forallx,y e Xand X € I.
For W(x,y,A) = Ax+ (1 —A)y,x,y € Xand A € I, (X,d, W) is TCS with

property (P).

Remark 4.9 Property (P) implies that the convex structure W is continuous at least

in first two variables which gives that the closure of a convex set is convex.

Definition 4.10 A TCS (X, d, W) has property (Q) if for any finite subset A € X
convA is a compact set.

Example 4.5 ([186]) Let K be a compact convex subset of a Banach space and let
X be the set of all nonexpansive mappings on K into itself. Define a metric on X
by d(A,B) = sup |[A(x) — BXx)|,A,B € Xand W: X x X x I — X by

xekK
W(A, B,A)(x) = 2A(x)+ (1 —=X)B(x),forx € K and A € I. Then (X,d, W) isa
compact TCS, so X is with property (Q). The property (P) is also satisfied.

Remark 4.10 Talman in [187] introduced a new notion of convex structure for
metric space based on Takahashi notion the so called strong convex structure (SCS
for short). In SCS condition (Q) is always satisfied so it seems to be natural.

Any TCS satisfying (P) and (Q) has the next important property [187].
Proposition 4.8 Let (X, d, W) be a TCS with properties (P) and (Q). Then for any
bounded subset A C X

p(conv(A)) = ju(A).
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The following fixed point result for mappings without continuity condition on
Takahashi convex metric space is proved in [63].

Theorem 4.17 Let (X, d, W) be a TCS with properties (P) and (Q), K a closed
convex bounded subset of X, and T: K — K a mapping satisfying the
following :

1. igf(F ) = 0 for any nonempty closed convex T -invariant subset C of K, where

F(x)=dx, Tx)),x € K,
2. u(T(A)) < u(A) forall A C K for which u(A) > 0,
3. Fisrgi.onK.

Then the fixed point set Fix(T) of T is nonempty and compact.

Proof Choose a point m € K. Let o denote the family of all closed convex subsets
A of K for whichm € A and T(A) C A. Since K € 0,0 # (. Let

B= ﬂ A, C=conv(T(B)U {m)). 4.2)

Aeo

Convex structure W has property (P) so C is a convex set as a closure of convex
set. We are going to prove that B = C. Since B is a closed convex set containing
T(B) and {m}, C C B. This implies that 7(C) € T(B) € C so C € ¢ and hence
B C C. The last two statements clearly force B = C. The properties of measure p
and Proposition 4.8 imply that

n(B) = p(conv(T(B) U {m})) = n(B), (4.3)

so in view of 2. B must be compact. Now, Proposition 4.10 ensures that 7 has a
fixed point on B so Fix(T') is nonempty. Condition 2. implies that Fix(T') is totally
bounded. Since F isr.g.i. Fix(T) has to be closed. Finally, we conclude that Fix(T")
is compact. ]

The assumption i}}f(F ) = 0 is strong, especially in the absence of conditions

which at the same time imply continuity. Some sufficient conditions which are easier
to check and more suitable for application are given in [63].
We recall some well-known definitions.

Definition 4.11 The mapping 7: K — K is called directionally nonexpansive if
we have d(T (x), T(y)) < d(x,y) forallx € K and y € [x, T (x)]. If there exists
a € (0, 1) such that this inequality holds for y = W (T (x), x, ), then we say that
T is uniformly locally directionally nonexpansive.

The following is given in [63] and its elaborate proof is taken from [108].

Proposition 4.9 Let (X,d, W) be a TCS with property (P), K a closed convex
bounded subset of X, and T: K —> K a uniformly locally directionally
nonexpansive. Let Tyx = W (T (x), x, a). For the fixed xo € K, sequences (x,)n
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and (y,)n are defined as follows:
Xnt1 = Toxn, Yu=T(xy), n=0,1,2,... (4.4)
Then for eachi,n € N
ditn, Xi) = (1 = )" (disn, Xitn) —d i, %)) + (L +na)d (yi, xi),  (4.5)

lim_d(T (xy), x) = 0. (4.6)

Proof We prove (4.5) by induction on n. For n = 0 inequality (4.5) is trivial.
Assume that (4.5) holds for given n and all i. In order to prove that (4.5) holds
for n + 1, we proceed as follows: replacing i with i 4 1 in (4.5) yields

dYit14ns Xit1) = (L= )" (@ Oitnt1s Xigntr1) — d Vi1, Xig1)) 4.7
+1 + na)d (i1, Xit1)-
Also
dYit14ns Xit1) < dQigns1, WQitnt1, Xi, @)
+d(W(yi+n+1’xisa)v W(T(-xl')$xiva)) (48)
< (A —=a)dYitnt1,xi) +adYigns1, T(x)) < (1 —a)dYignt1, Xi)

+a Z d(T (Xip14k)s T (Xig1))
k=0

n
< (1= )dignt1, %) + @ Y d i1k Xi4x)
k=0

since Xjy1+k = W(T (Xjtr), Xit+k, @) and T is uniformly locally directionally
nonexpansive. Combining (4.7) and (4.8)

dYit14n %) = (1 — )" "™ @ i1, Xignt1) — dGis1, Xi41)) (4.9)

n
+ (=) (4 ne)d (g1, xip1) —a(l =)™ Y " d(xigipa Xigr)-
k=0

By Proposition 4.7 3.,

d(Xip1+k, Xitk) = dW (T (Xi4k), Xigk, @), Xitk) = od (Vipk, Xitk)s (4.10)
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SO

dYig14ns %) = (1= )" "™V @i, Xignr1) — dGig1, Xis1)) 4.11)

n
+(1 =) (4 ne)d it xivn) — (1 =)™ d ik, Xik).
k=0

On the other hand,
d(yn, xp) = d(T (xp), W(T (Xn-1), Xn—1, @) < d(T(xp), T (xn—1))
+d(T (xp—1), W(T (xp—1), Xp—1, @)) (4.12)
< d(xn, xp—1) + (1 = )d(T (xp—1), Xn—1)
= ad(yn—1, Xp-1) + (I —)d(Yp—1, Xn—1)
=d(Yn-1, Xn—1)

for any n € N, meaning that (d(y,, x,))» is a decreasing sequence. Now, using
inequality (1 + na) — (1 — a)™" < 0, we have that

dGignt1, X)) = (1= )" "D AdGignir, Xignr1) —dGip1, xip)  (413)
+ 1 =) (I +ne)d (i1, xip1) —a (1 =)~ (0 + Dd(yi, xi)

= (1 =) """V @Gignt1, Xitns1) — di, X))

+ (1 =) ' +na) — A — ) " Nd(yit, xi41)

F (A=) "D — a1 — )" + D) (i, xi)

> (1— )" "™ @ Gigntts Xignt1) — d i, %)

+ (=)' A +na) — (1 —a)" " )d (i, x)

(1 —a) Y — a1 =) + D) (i, x0)

= (1 =) """V @Gignt1, Xitns1) — dOi, x)) + (1 + (0 + Da)d (i, x;).-

Thus (4.5) holds for n 4+ 1, completing the proof of the inequality. Further, the
sequence (d(y,, X,)), is decreasing, so there exists lim d(y,, x,) = r > 0. Let
n—-:o0

us suppose that » > 0. Select a positive integer k such that

0 <d(yk, xr) — d(yk+no, xk+n0) <é&.
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Using (4.5), we obtain
d+r =r(1+ang) < (1 + ano)d(yk, xk)
< d(Yksng, X)) +e(l =)™ <d +r.
By the last contradiction we conclude that r = 0 and lim d(y,,x,) =
d(T (xp), x,) = 0 what we had to prove. e |

Combining the last result with Theorem 4.17 we have the following consequence.

Corollary 4.4 Let K be a closed convex bounded subset of complete TCS
(X, d, W) with properties (P) and (Q) and let T : K — K satisfy the following :

1. T is uniformly locally directionally nonexpansive on K,
2. u(T(A)) < u(A) forall A C K for which u(A) > 0,
3. Fisrgi.onK.

Then the fixed set Fix(T) of T is nonempty and compact.
Moreover, using Proposition 4.9 we also get some other fixed point results.

Corollary 4.5 Let K be a closed convex bounded subset of complete TCS
(X, d, W) with properties (P) and (Q) and let T : K —> K satisfy the following :

1. T is uniformly locally directionally nonexpansive on K,
2. d(T(x), T(y)) < 6(max{d(x, T(x)),d(y, T(y))}), where®: R" — RT isany
Sfunction for which lim 6(t) = 0.
t—07t
Then T has a unique fixed point xo € K if and only if F isr.g.i. on K.
Proof Proposition 4.9 gives inf(F) = 0 one can prove that lim diam(L.) = 0.
K c—0F

By Theorem 4.2, T has a unique fixed point if and only if F isr.g.i. on K. ]

Theorem 4.18 Let K be a closed convex bounded subset of complete TCS
(X, d, W) with properties (P) and (Q) and let T : K —> K satisfy the following :

1. T is directionally nonexpansive on K,
2. u(T(L¢)) < ku(Le), for somek < 1 and all c > 0,
3. Fisrgi.onK.

Then the fixed set Fix(T') of T is nonempty and compact. Moreover, if (x,,), € K
satisfies lim d(T (x,), x,) =0, then lim d(Fix(T), x,,) = 0.
n— oo n—>-0o0

Proof By Proposition 4.9, i}}f(F ) = 0. Since 1. implies that

d(T (x), T*(x)) < d(x, T(x)), Vx € K,

the conclusion follows immediately from Theorem 4.9. ]
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Next, we recall the concept of weakly quasi-nonexpansive mappings with respect
to a sequence introduced by Ahmed and Zeyada in [1].

Definition 4.12 Let (X, d) be a metric space and let (x,), be a sequence in
Y € X. Assume that 7: Y — X is a mapping with Fix(T) # § satisfying
lim d(x,,Fix(T)) = 0. Thus, for a given ¢ > 0 there exists nj(¢) € N such
n—oo

that d(x,, Fix(T)) < ¢ for all n > ni(¢). Mapping T is called weakly quasi-
nonexpansive mapping with respect to (x,), < Y if for every ¢ > 0 there exists
p(e) € Fix(T) such that for all n € N with n > n,, d(x,, p(¢)) < e.

Theorem 4.19 Let K be a closed convex bounded subset of complete TCS
(X, d, W) with properties (P) and (Q) and let T : K —> K satisfy the following :

T is directionally nonexpansive on K,

w(T (L)) < ku(L.), for some k < 1 and all ¢ > 0,

Fisr.gi.on K.

(xn)n € K satisfies nl_i)rgo d(xy, T(xp)) = 0and T is weakly quasi-nonexpansive

Ao~

with respect to (xp)p.
Then (x,), converges to a point in Fix(T).

Proof Our assertion is a consequence of Theorem 4.18. |
Using Proposition 4.9, the next corollary holds.

Corollary 4.6 Let K be a closed convex bounded subset of complete TCS
(X, d, W) with properties (P) and (Q) and let T : K —> K satisfy the following :

T is directionally nonexpansive on K,

u(T (L)) <ku(L.), for somek < 1 andall c > 0,

Fisr.gi.onK.

T is weakly quasi-nonexpansive with respect to sequence x, = T, (xo),n €
N,xge K,a € (0, 1).

KN~

Then (x,), converges to a point in Fix(T).

4.3 Approximation of Fixed Points by Means of Functions
Convergent with Continuity

In this section, we show that some results on fixed point theorems in particular for
nonexpansive mappings can be obtained based on convergence with continuity (by
sequence).

For results in this section we refer to [6].

Definition 4.13 Let X and Y two metric spaces. Let (f,), be a sequence of
functions from X into Y.
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The sequence ( f;,), converges with continuity at f in an element x of X if and
only if for each sequence in X, (x,), convergent at x, we have lim f,(x,) =
n—-o0
().
It is said that (f;;), at f in X if and only if converges with continuity in each
element of X.

Remark 4.11 Given two metric spaces X, Y there are non-continuous functions
from X into Y if, and only if, what follows is true: X is not discrete from the
topological point of view and Y has strictly cardinality than one.

Theorem 4.20 [fthere is a non-continuous function g from the metric space X into
the metric space Y, then we have:

1. The uniform convergence at a function f of a sequence of functions (f,,)n from
X into Y on compact subsets of X does not imply that (f,), converges with
continuity.

2. The convergence with continuity is not topological on the set of functions from
X into Y (i.e., there is not topology with respect to which the convergence with
continuity is the convergence).

Proof

1. We observe that the convergence with continuity at a function 4 implies the point
convergence at . As (f;), point converges at f and (f;), does not converge
with continuity at f, therefore (f,), does not converge with continuity. In
fact if (f,), converges with continuity at a function 4, this means that (f;,),
point converges at i and therefore 7 = f (for the uniqueness of the limit
point convergence for functions at values in a Hausdorff space), therefore ( f;,),
converge with continuity at f, which is absurd. Thus (f;), does not converge
with continuity and 1. is proved.

2. Take f = g and f, = g for each n € N. A sequence of functions all equal
to g converges uniformly at g in all the subsets of X, and in particular on the
compact subsets, therefore ( f;,), converges uniformly in all the compact subsets
of X at f = g. The fact that g is not continuous means that there exists in X at
least one sequence (x,), convergent at an element x € X, so that (g(x,)), does
not converge in Y at g(x), i.e., (f,(xn)), does not converge at f(x). This means
in particular that (f,,), does not converge with continuity at f in x, therefore
it does not converge with continuity at f in X. Therefore, there is a constant
sequence which does not converge with continuity and thus the convergence with
continuity is not topological on the set of functions from X to Y.

Proposition 4.10 Let g be a continuous function of X in X'. If the sequence
(fu)n converges with continuity at f in X', the sequence (f, o g), converges with
continuity at f o g in X.
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Proof lgnoox,, = x = 11_111008(%) = g(x) = h_>mooﬁ1 o glxm) =
lim fu(8(xa)) = f(8(x) = f 0 g(x). .

From Proposition 4.10 there comes immediately :

Proposition 4.11 Let g be a continuous function of X in X. If the sequence of
functions (f;)n converges with continuity at the identity function, the sequence ( f; o
g)n converges with continuity at g in X.

Lemma 4.1 If a sequence (fy,), converges with continuity at f in an element x of
a metric space X and (x,;)n is any sequence in X that tends to x, then

lim  fuCon) = f(0), e, Ve >03kYnm>k|fulxn) = f)] <e

n,m—>

(obviously the opposite is also true).

Proof Let us suppose that the thesis is untrue, there will thus exist a sequence
(Xm)m tending to x, so that V k I n,m > k| f,(xn) — f(x)| > &, and therefore
there will exist sequences (nj), and (myp), so that npy1,mpy1 > np and
|fnh(xmh) - f(x)| > &

The sequence (y,) , is therefore defined as follows: if k exists, so that p = ny,
we have y, = xp, , otherwise y, = x. By definition (y,) , tends to x, while ( f, (yx))
does not tend to f(x) in so far as it has a subsequence whose terms do not belong
to a neighborhood of f(x), i, contrast to the hypothesis that ( f;,), converges with
continuity at f. |

Note in the above paragraph, when speaking of convergence with continuity, it
has never been assumed that the function f and the functions of the sequence ( f;,),
are continuous. The following proposition shows that f is necessarily continuous
(even if the f, are not continuous).

One also points out that, to be sure of the continuity of f at a point x, it is not
sufficient to assume that ( f;,), converges with continuity at f in the single point x.

Proposition 4.12 [f the sequence of functions (f,), converges with continuity at
function f in the metric space X, function f is continuous in X.

Proof We shall prove that for each sequence (x,), tending to any x € X, (f(x;))x
tends to f(x) (which is the continuity of f). By Lemma 4.1 we have V ¢ >
03 kVnm > k|fim(xn)— f(x)] < e, and carrying out the limit on m,
taking into account the convergence with continuity of (f;), at f in x,, we have
Ve>03kVn>k|f(x,)— f(x)] <e,ie., (f(xy)), tends to f(x). |

Theorem 4.21 Let T be a continuous selfmapping in metric space X. Let (T,,), be
a sequence of selfmappings in X which converges with continuity at T in X. It is
assumed that there exists a sequence (xp); so that:

1. foreachn € N, x,, is a fixed point of T,,.
2. (xp)n has a subsequence converging at an element x € X.

Thus x is a fixed point of the selfmapping of T.
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Proof Let (xn )j be a subsequence of (x,), which converges at x. Thus x =
lim x,, = hm Tnj (xn;) =T (x). |
j—)OO
Clearly, if it is assumed that space X is compact, all sequences (x,), have a
convergent subsequence.
The following Lemma and Theorems come from Theorem 4.21.

Lemma 4.2 Let X be a compact metric space with a distance d(.,.) and T be a
continuous selfmapping in X. Let G be a family of selfmappings in X, so that there
exists a sequence of functions in G which converges with continuity at the identity
Sfunction and so that, if g € G then g o T has a fixed point in X.

Proof Let (g,), be a sequence of functions of G convergent with continuity at
the identity function. By Proposition 4.11, the sequence (g, o T), converges with
continuity at 7. Let x, be a fixed point of g, o T (which exists because g, belong
to G), as X is compact (x,), has a convergent subsequence. The result comes from
Theorem 4.21. |

Lemma 4.3 (Guseman and Peters) Let X ba compact metric space with a
distance d(.,.) and T a continuous selfmapping in X. Let G be a family of
selfmappings in X, so that there exists a sequence of functions in G which converges
uniformly at the identity function and so that, if g € G then g o T has a fixed point
in X. Thus T has a fixed point in X [74].

Proof Let (g,), be a sequence of functions in G converging uniformly at the
identity function. (g,), converges with continuity at the identity function, since for
each sequence (x,), in X converging at anyone element x € X, we have:

d(gn(xy), x) < d(gn(xp), xn) +d(xy, x).

The result comes from Lemma 4.2. | |

Theorem 4.22 Let X ba compact metric space with a distance d(., .). If the identity
function is the limit point of a sequence (T,), of weakly contractive selfmappings
in X (d(T,(x), T,(y)) <d(x,y) perx # y,x,y € X), thus each nonexpansive
selfmapping in X has a fixed point.

Proof From the compactness of X and from the fact that (7,), is a sequence of
weakly contractive selfmappings which converge punctually at the identity, it comes
that (7,), converges uniformly at the identity. In fact, let ¢ > 0, and let Re be the
set of spherical neighborhoods of the amplitude R: having as their centre anyone
element of X and let S s be a finite undercover of Re let x1, ..., x,; be the centers
of the spherical neighborhoods of S g thus we have on the ba51s of the hypotheses
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made, according to the way in which xi, ..., x,, have been defined and by the
triangular inequality, we have:

VxeX3die{l,...,m}d(T,(x),x) <d(T,(x), T,,(x;)) +d(x;, T,(x;)) +d(x;, x)
2d(xi, x) +d(xi, Ty(x)) < 2; +d (i, Ty ().

Now, since it can only take on a finite number of values and since we are
considering the point convergence, we definitely have (with respect to n), Vi €

{1,....,m}d(x;, T,(x;)) < g Therefore, for each x € X, definitely with the respect

£ &
to n, we have d(T,,(x),x) < 25 + 3 = ¢, i.e., (T,), converges uniformly at

identity. By Edelstein’s theorem [51], and because of the fact that the composition
of a weakly contractive selfmappings and of a nonexpansive selfmapping is weakly
contractive, it comes that the functions 7, o ¢ (where T;, is a term of the sequence
and 7 is a nonexpansive selfmapping) have a fixed point. Thus the result comes from
Lemma 4.3. |

Theorem 4.22 is simply Smart’s theorem [181].

Theorem 4.23 (Smart’s Theorem) If in a compact metric space the identity
selfmapping can be approximated uniformly to weakly contractive selfmappings,
then each nonexpansive selfmapping has a fixed point.

Remark 4.12 Tt should be observed that the expression of Theorem 4.23 point
convergence can be substituted for uniform convergence (i.e., the first part of the
proof of Theorem 4.22).

Smart’s theorem according to which one should be able to approximate the
identity function employing weakly contractive selfmappings, constitutes a first step
in the weakening of the classical hypothesis of convexity in normed spaces. In these
spaces in fact Smart’s hypotheses by “starshaped sets”.

Definition 4.14 A subset S of a vectorial space is said to be if there exists an
element p € S, sothat Vx € SVt € [0,1],(1 —#)p +tx € S, and such a p
is called a star centre of S.

Lemma 4.4 Let X be a normed space and d(., .) the distance that comes from the
norm. If S is a starshaped subset of X, each nonexpansive selfmapping in S will
have at least one fixed point.
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Proof The identity is uniformly approximate by the sequence (f,), given by
fan(x) = x + —(p — x) where p is a star centre of S. (The convergence is uniform
n

because S, being compact, is limited). The f,s are weakly contractive, in fact
1 1
d(fa(x), fa(y)) = lIx + =)=+ =)l =

1 1 1
A==)x=I=0=)lx—yll=0=-)dx,y) <d(x,y).
n n n

So the result comes from Smart ‘s theorem. |
We shall now express a theorem whose proof comes directly from Theorem 4.22.

Theorem 4.24 Let X be a compact metric space with a distance d(.,.) and let a
function f be from [0, 1) x X in X so that:

1. lim1 f(t,x) =x Vx € X,
t—>

2.d(f(t,x), f(t,y) <d(x,y) perx #y,x,ye X,te[0,]1).
Thus every nonexpansive selfmapping has a fixed point.

Theorem 4.25 Let X be a vectorial and metric space with a distance d(.,.)
invariable for translation and such as to make d(tx,ty) = td(x,y). Let S be a
starshaped and compact subset of X. Thus every nonexpansive selfmapping in S
has a fixed point.

Proof A function f can be defined so as to satisfy the hypotheses of Theorem 4.24,
as follows: f(t,x) = tx + (1 — t)P, where P is a fixed star centre. Note that 2.
comes from the invariability by translation of the distance. |



Chapter 5
Approximate Fixed Points in Topological o
Vector Spaces

In this chapter, we study problems concerning approximate fixed point property on
an ambient space with different topologies.

5.1 The KKM Principle and Almost Fixed Points

A multifunction 7: X — 2¥ is a map with the values T(x) € Y forx € X
and the fibers T_l(y) ={x € X:y e T(x)}fory € Y. For topological spaces
X and Y a multifunction 7T is upper semicontinuous (u.s.c.) if for each closed set
Z CY, T_I(Z) ={x € X: T(x)NZ # 0} is closed in X, lower semicontinuous
(I.s.c.) if for each open set Z C Y, T-'Z)y=(xeX: Tx)NZ # (J} is open in
X, and compact if T(X) = U{T(x): Xx € X} is contained in a compact subset Y.
T is said to be closed if its graph Gr(T) = {(x, y): x € X,y € T(x)} is closed in
X xY.

IfT: X — 2¥ is ws.c. with compact values, then T is closed. The converse is
true whenever Y is compact.

We have the following Knaster-Kuratowski-Mazurkiewicz (simply, KKM) theo-
rem [117].

Theorem 5.1 (KKM Principle) Let Y be the set of vertices of a simplex S and
T:Y —>2%a multifunction with closed values such that

convZ C T(Z) foreachZ C'Y. 5.1
Then
ﬂ T(Z) # @.
2€Z
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The following easily follows from the KKM principle [56, 117].

Lemma 5.1 Let Y be a subset of a topological vector space, Z a nonempty subset
of Y such that coovZ C Y, and T: Z — 2¥ a KKM map with closed (resp. open)
values. Then {T (2)};cz has the finite intersection property.

Note that a multifunction 7: Z — 2V is called a KKM map of
conv(N) € T(N) for each finite subset Nof Z.

In [3], Alexandroff and Pasynkoff gave an elementary proof of the essentiality
of the identity map of the boundary of a simplex by using a variant of the
KKM theorem. From Lemma 5.1, the following generalization of the Alexandroff-
Pasynkoff theorem is given in [145].

Theorem 5.2 Let Y be a subset of a topological vector space, (Z;)o<i<n a family
of (n + 1) closed (respectively, open) subsets covering Y, and (x;)o<i<n a family of
Y such that conv({x;,i = 0,---,n}) € X and conv({xg, -+ , X, -+, x,}) C Z;

n
foreachi =0, ---,n. Then mZ,- # .

i=0
Proof Let S := {x;,i =0,---,n}and let Wy := conv({xg, - -+ , x,—1}) € Z, and
W; := conv({xo, -+, Xi—1s -+ .xn)) € Zi_yforl <i <n.LetT:S — 2" bea
map defined by T (xg) = Z, and T (x;) = Z;—1 for 1 <i < n. Now we show that
T satisfies the requirement of Lemma 5.1. Note that

conv({xo. -+ . x,) S Y =|_JZ =T(S).
i=0

Moreover, for any proper subset {x;,, --- , x;,}, (0 <k <n,0<ip <--- <ix <n)
of §, we immediately have conv({x;,, - - - , x;, }) & Wi; € Z;;—1 = T (x;;) for some
J»0 < j <k, (with the convention i; = 0 if and only if i; — 1 = n) and hence

k
conv({xig, -+, x D) < [ T(xi)).
j=0

Consequently, condition (5.1) is satisfied. Now, the conclusion follows from
Lemma 5.1. | |

It is well-known that the Alexandroff-Pasynkoff theorem implies the Brouwer
theorem [147]. Therefore, Theorem 5.1 is also equivalent to the KKM theorem.
The following concept is well known [83].

Definition 5.1 Let X be a vector space endowed with a linear topology t. A
nonempty subset Y of X is said to be almost convex if, for any neighborhood V' of
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6 and for any finite set {x, - - - , x,} € Y, there exists a finite set {z1, -+ ,z,} C Y
such that

conv({zy, - ,zzp) €Y and z; —x; € V foralli=1,.-.-.- ,n.

We give some examples of almost convex sets:

(1) Any convex subset is almost convex.

(2) If we delete a certain subset of the boundary of a closed convex set, then we
obtain an almost convex set.

(3) Let C[0, 1] be the Banach space of all continuous real functions defined on the
unit interval [0, 1] and P[0, 1] its dense subset consisting of all polynomials.
Then any subset of C[0, 1] containing P[0, 1] is almost convex. In general, by
the various forms of the Stone-Weierstrass approximation theorem, we have a
lot of examples of almost convex sets.

Proposition 5.1 Let (X, t) be a topological vector space. If Y € X is an almost
convex set, then Y is the dense subset of conv(Y).

Corollary 5.1 Let (X, ) be a topological vector space and Y C X is an almost
convex set. Then the closure of Y is a convex set.

Definition 5.2 For a subset Y of a topological vector space X, a multifunction
T:Y — 2% is said to have (convexly) almost fixed point property if for any
(convex) neighborhood V of the origin 6, there exists an xy € Y such that
Txy)Nxy +V)#0.

Theorem 5.3 Let Y be a subset of a topological vector space, and T: Y — 2¥ a
closed compact multifunction. Then the following are equivalent:

(i) T has a fixed point.
(ii) T has the almost fixed point property.

Proof (i) = (ii): Clear.

(ii) = (i): For each neighborhood U of 6, then exist xy7, yy € Y such that
yu € T(xy) and yy € xy + U. Since T (Y) is relatively compact, we can choose
a subnet of the net (yy) with a cluster point xg € 7 (Y). Since X is Hausdorff, the
corresponding subnet of (xg7) also has the cluster point xg. Because the graph of T
isclosedin Y x T(Y), we have xog € T (xo). This completes our proof. |

Theorem 5.4 Let Y be a subset of a locally convex topological vector space, and
T:Y — 2" aclosed compact multifunction. Then the following are equivalent:

(@) T has a fixed point.
@ii) T has the convexly almost fixed point property.

Proof In alocally convex topological vector space, the convexly almost fixed point
property is equivalent to the almost fixed point property. |



190 5 Approximate Fixed Points in Topological Vector Spaces

Remark 5.1

(1) If T is not compact, then (ii) # (i). For example, let X = R and T'(x) :=
—1

{x } ifx £0,T(0) := {1, —1}.

X

1
(2) If T isnotclosed, then (ii) # (i). Forexample, let X = [0, 1]and T (x) := {5}
1 1
if -, T(=):={0, 1}.
if x # > (2) {0, 1}

From Lemma 5.1, Park gave the following very general almost fixed point
theorem [145].

Theorem 5.5 Let Y be a subset of a topological vector space X and Z an almost
convex dense of Y. Let T: Y — 2% be a lower (respectively, upper) semicontinuous
multifunction such that T (z) is convex for all z € Z. If there is a precompact subset
K of Y such that T (z) N K # 0 for each 7 € Z, then for any convex neighborhood
U of the origin 0 of X, there exists a point xy € Z suchthat T (xy) N (xy +U) # 0.

Proof There exists a symmetric neighborhood V of 6 such that V 4+ V C U. Since
K is precompact in X, there exists a finite subset {xg,---,x,} € K such that
n

K C U(xi + V). Moreover, since Z is almost convex and dense in X, there exists
i=0
a finite subset S = {zg, -+, z,} of Z such that z; — x; € V foreachi =0, --- ,n,
and W = conv({zg, - - - , zn}) C Z.
If T is lower semicontinuous, for each i, let

F(z;) = {w eW: TwNx +V)= @},
which is closed in W. Moreover, we have

NFe ={wew: Tay\Uwi +v)=n} =0.
i=0

i=0

n
since ) £ T(w) N K C T(w) ﬂ U(x,' + V) foreachw € Z.
i=0
If T is upper semicontinuous, for each i, let

F(z) = {w eW: Tw)N (x; +V) = (2)},

n

which is open in W. Moreover, we have m F(z;) = @ as in the above.

i=0
Now we apply Lemma 5.1 replacing (Y, Z) by (W, {zo, -, zx}). Since the
conclusion of Lemma 5.1 does not hold, in any case, condition (5.1) is violated.
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Hence, there exist a subset N := {z,, -~ -,z } € (S) and an xy € conv(N) € Z
such that xy ¢ F(N) or T (xy) N (x,'/. +V)#@forall j =0---, k. Note that

xip +V=uxi; =z, +z; +V Sz, +V+V Sz + U, (5.2)
Let L be a subspace of X generated by S and
M:={zeL:Tky)N(z+U) #0d}.

From (5.2) we get T (xy) N (zi; + U) # ¥ and hence z;; € M forall j = 0--- k.
Since L, T (xy), and U are all convex, it is easily checked that M is convex. There-
fore, xy € M and, by definition of M, we get T (xy) N (xy + U) # 0. |

In the case Z = Y, Theorem 5.5 reduces to the following:

Corollary 5.2 Let Y be a convex subset of a topological vector space X. Let
T:Y — 2% be a lower (respectively, upper) semicontinuous multifunction such
that T (x) is convex for all x € Y. If there is a precompact subset K of Y such that
T(x)NK # @ foreach x € Y, then T has the convexly almost fixed point property.

Ky Fan [58] obtained Corollary 5.2 for a locally convex topological vector
space X and for lower semicontinuous multifunction 7: ¥ — 2% Lassonde
[124] obtained Corollary 5.2 for a compact upper semicontinuous multifunction
T:Y —2Y having nonempty convex values.

The following fixed point result is due to Park and Tan [148] and extends the
Himmelberg-1dzik theorem and many other fixed point results in the analytical fixed
point theory.

Corollary 5.3 Let Y be a subset of a locally convex topological vector space X
and Z an almost convex dense subset of Y. Let T: Y — 2V be a compact upper
semicontinuous multifunction with closed values such that T (z) is nonempty convex
forall z € Z. Then T has a fixed point xo € X, that is, xo € T (xp).

Proof By Theorem 5.5, for each neighborhood U of 9, there exist xy, yy € Y such
that yy € T(xy) and yy € xy + U. Since T(Y) is relatively compact, we may
assume that the net (yy) converges to some xo € T(Y) C Y. Since X is Hausdorff,
the net (xy) also converges to xo. Because T is upper semicontinuous with closed
values, the graph of T is closed in ¥ x T (Y) and hence we have xo € T (xp). |

From Theorem 5.5, we have the following almost fixed point result [145].

Corollary 5.4 Let Y be a subset of a topological vector space X and Z an almost
convex dense subset of Y. Let T: Y — 2X bea multifunction such that

(1) T~ (y) is open for each y € X, and
(2) T(z) is convex for each 7 € Z.
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If there is a precompact subset K of Y such that T (z) N K # @ for each z € Z,
then for any convex neighborhood U of the origin 6 of X, there exists a point xy € Z
such that T (xy) N (xy + U) # 0.

Proof Since T is lower semicontinuous, Corollary 5.4 follows immediately from
Theorem 5.5. u

When X =Y, Corollary 5.4 reduces to the following:

Corollary 5.5 Let Y be a convex subset of a topological vector space X, and
T:Y — 2" bea multifunction such that

(1) T(x) is nonempty and convex for each x € Y,
(2) T~ (y) is open foreachy € Y, and
(3) T(X) is contained in a compact subset K of Y.

Then T has the convexly almost fixed point property.

Ben-El-Mechaiekh [17, 20] obtained that, if X is further to be locally convex in
Corollary 5.5, then T has a fixed point, and conjectured that, under the hypotheses
of Corollary 5.5, T would have a fixed point, so Corollary 5.5 is a partial solution.

We need the following definitions and examples with great importance in fixed
point theory.

A subset K of a topological vector space X is said of the Zima type, by Hadzi¢
[76], if for each neighborhood U of 6 € X there exists a neighborhood V of 8 € X
such that conv(VN(K — K)) C U.

A set Y € X is said to be convexly totally bounded, by Idzik [88], if for every
neighborhood V of 8 € X there exist a finite subset {x;: i € I} C Y and a finite
family of convex sets {Z;: i € I} suchthat Z; € V foreachi € [ and Y C
U{xi + Z;: i € I}. Note that {x; : i € I} can be chosen in X [89].

Idzik [88] gave examples of c.t.b. sets:

(1) Every compact set in a locally convex topological vector space.
(2) Any compact set in a topological vector space which is locally convex or is of
the Zima type.

Other examples of c.t.b. sets were given in [41]:

(3) Every compact convex subsetof X =1/,,0 < p < 1.
(4) More generally, every compact convex subset of a topological vector space X
on which its topological dual X’ separates points.

The well-known Schauder conjecture is as follows:

every continuous function, from a compact convex subset in a topological vector
space into itself, would have a fixed point.

One of the most general partial solutions is due to Idzik using the concept of c.t.b.
sets.

Theorem 5.6 Let Y be a convex subset of a topological vector space X and
T:Y — 2Y be a Kakutani map (that is, u.s.c. with nonempty compact convex
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values). If T (Y) is a compact c.t.b. subset of Y, then there exists an x € Y such that
x € T(x).

Further, Idzik [88] raised the following question:

Is every compact convex subset of a topological vector space convexly totally
bounded?

A positive answer to this question would resolve the Schauder conjecture.
However, Idzik’s problem was resolved negatively by the following [41].

Theorem 5.7 For 0 < p < 1, the space L (1), where . denotes the Lebesgue
measure on [0, 1], contains compact convex subsets which are not c.t.b.

Moreover, Weber introduced the following definition of strongly convexly totally
bounded sets [193, 194].

Definition 5.3 A subset ¥ of a topological vector space X is said to be strongly
convexly totally bounded (s.c.t.b.) if for every neighborhood V of 8 € X there exist
a convex subset Z of V and a finite subset N of Z suchthatY C N + Z.

The following is known [193].

Theorem 5.8 Let Y be a compact convex subset of a topological vector space
(X, t) and Z = spanY. Then the following conditions are equivalent:

(1) Yiss.c.tb.

(2) Y is of Zima type.

(3) Y is locally convex.

(4) Y is affinely embeddable in a locally convex topological vector space.

(5) X admits a Hausdorff locally convex linear topology o = o (X, X'), which
induces on Z a finer topology than t such that oly = t|y.

Further, Weber [193] raised the following question:
Is every convex c.t.b. set s.c.t.b.?

The following almost fixed point results for multifunctions having totally
bounded ranges were established by Park [146], where the closures of the ranges
satisfy more restrictive conditions than that of c.t.b. sets.

Theorem 5.9 Let Y be a convex subset of a topological vector space X and
T:Y - 2¥ aus.c. multifunction with convex values. If there is an s.c.t.b. subset
Z of Y such that T (x) N Z # @ for each x € Y, then T has the almost fixed point

property.
Proof For any neighborhood V of & € X, choose a symmetric open neighborhood
U of 0 such that U < V. Since Z is s.c.t.b. in X, there exist a finite subset

n
{x1,x2,+++,x,} € Z C Y and a convex subset W C U such that Z C U(xi + W).

i=1
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For each i, let
F(xij):={xeY: Tx)N(x;+ W) =0}

Then each F(x;) is open since T is u.s.c. Moreover, we have

ﬂF(xi):{xeY: T(x)ﬂU(xi+W):VJ}:VJ

n
since f§ £ T(x) N Z € T(x) N |_Jx; + W) foreachx € Y.
i=1
Now we apply Lemma 5.1 with {x1, - - - , x,,}. Since the conclusion of Lemma 5.1
does not hold, in any case, condition (5.1) is violated. Hence, there exist a subset
N = {x;, -+ ,xy} € {x1, -+ ,x,} and an xy € conv(N) C Y such that xy ¢
F(N) or T (xy) N (x;; + W) #@forall j =1---, k. Let L be the subspace of X
generated by {x1, --- , x,}, and

M:={yeL:Txy)N(y+W)#0}

Note that N € M. Since L, T (xy), and W are all convex, it is easily checked that
M is convex. Therefore, xy € convN C convM = M and, by definition of M, we
get T (xy) N (xy + W) # @. This shows that T (xy) N (xy + V) # @. This completes
our proof. |

Corollary 5.6 Let Y be a compact convex subset of a topological vector space X
satisfying one of the conditions (1)-(5) of Theorem 5.8. Let T: Y — 2% a us.c.
multifunction with convex values such that T (x) N'Y # O for each x € Y, then T
has the almost fixed point property.

Let X be a convex subset of a vector space and Y a topological space. Motivated
by earlier works, Chang and Yen [37] defined the following:

T € KKM(X,Y) & T: X — 2" is a multifunction such that the family
{S(x): x € X} has the finite intersection property whenever S: X — 2Y has closed
values and T (conv(Z)) € S(Z) for each nonempty finite subset Z of X.

The following is another almost fixed point result.

Theorem 5.10 Let Y be a convex subset of a topological vector space X and T €
KKM(Y, Y). If T(Y) is totally bounded, then T has the convexly almost fixed point
property.

Proof For any convex neighborhood V of 6 € X, we have an open convex neighbor-
hood €2 of 8 such that 2 € V and a nonempty finite subset {x1, x2, - -+ , x,} € T(Y)

n
such that 7(Y) C U(xi + €2). We may assume that {x1, x2,---, x,} € Y. In fact,
i=1

let U be a symmetric neighborhood of 6 € X such that U + U < . Suppose
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that {y1, y2, -, yu} € T(Y) C Y and W is an open convex neighborhood of 6
n

such that T(Y) C U(yi + W)and W C U. Since {y; + W:i = 1,--- ,n}is
i=1
an open cover of T(Y) C Y, we have (y; + W) N'Y # @ for each i. Choose an
n

xi € i + W)NY foreachi. Then T(Y) C U(xi + (yi — x;) + W) and the open
i=1 .

convex sety, —x; + WS —-W+WCU+U C Q. Then, T(Y) C U(xi + Q)
i=1

and x; € Y for each i. Let us define a multifunction F: ¥ — 2 by
Fx):=TX)\ (x +Q) foreachx €Y.
Then F is closed-valued and
n n
(VFa) =T\ Jui +2) =0
i=1 i=1

Since T € KKM(Y,Y) and {F(x): x € Y} does not have the finite intersection
property, we have T(convZ) ¢ F(Z) for a nonempty finite subset Z < Y.
Therefore, there exist xy € convZ C Y and yy € T(xy) € T(Y) such that

ywéF@=TX)\(z+Q) forallz € Z.

m
Therefore, yy € z+Qforallz € Z.Let Z :={z1,22, -+ , Zm}and xy := Z)‘J'ZJ"

=1
m m m mj
where 4; > Oand ) "A; = 1.Then yv = ) _Aj)yv € D Ajzj+ > *jQC
j=1 j=l1 j=1 j=1
xy + Q € xy + V. Therefore, yy € T(xy) N (xy + V) # @. This completes our
proof. |

Note that a particular form of Theorem 5.10 was obtained by Chang and Yen
[37].
From Theorem 5.10, we have the following corollary.

Corollary 5.7 Let Y be a convex subset of a locally convex topological vector space
XandT:Y — Y a continuous map such that T (Y) is totally bounded. Then T has
the almost fixed point property.

Proof Note that a continuous map 7: ¥ — Y belongs to KKM(Y, Y). [ ]

We remark that we can derive Corollary 5.7 directly from the KKM principle just
by following the proof of Theorem 5.9.
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Corollary 5.8 Let Y be a convex subset of a locally convex topological vector space
XandT:Y — Y a continuous map. If Y is totally bounded, then T has the almost
fixed point property.

Proof Note that T: ¥ — Y can be regarded as T: Y — Y. Since T(Y) C Y is
totally bounded, so is 7' (Y). Now, the conclusion follows from Corollary 5.7. |

Theorem 5.9 can be applied to obtain fixed point theorems [146].

Lemma 5.2 Let Y be a subset of a topological vector space X, K a compact subset
Y,and T: Y — 2¥ a closed map with nonempty values. If, for any neighborhood
V of 0 € X, there existsan xy € Y suchthat K N T(xy) N (xy + V) # 0, then T
has a fixed point xo € K, that is, xo € T (x0).

Proof For each neighborhood V of 6 € X, there exists a yy € K such that yy €
T(xy)N(xy + V). Since K is compact, we may assume that the net (yy) converges
to some xg € K C Y. Since Y is Hausdorff and yy € xy + V, the net (xy) also
converges to xg. Since (xy, yy) € Gr(T) and Gr(T) is closed, we have (xg, xp) €
Gr(T). This completes our proof. |

We have the following from Theorem 5.9 and Lemma 5.2:

Theorem 5.11 Let Y be a subset of a topological vector space X and T: Y — 2r
a compact u.s.c. multifunction with nonempty closed values. If T (Y) is an s.c.t.b.
subset of Y, then T has a fixed point xy € Y.

Proof Note that T is closed and K := T(Y) is a compact subset of Y. By
Theorem 5.3, any closed compact multifunction having the almost fixed point
property has a fixed point. |

Note that Theorem 5.11 is a particular case of Theorem 5.6 of Idzik. However,
its proof is based on the KKM principle only, and is more easily accessible.

Corollary 5.9 Let Y be a compact convex subset of a topological vector space
satisfying one of the conditions (1)—(5) of Theorem 5.8. Then any Kakutani map
T:Y — 2" has a fixed point.

The following is proved in [105].

Theorem 5.12 Let Y be a nonempty subset of a topological vector space X, V a

convex neighborhood of 6 in X, and T : Y — 2% a multifunction with convex values.

Suppose that there is a finite subset Z := {x1, X2, -+ , Xp} of Y such thatconvZ C Y
n

and T(Y) C U(xi + V). If one of the following conditions is satisfied:
i=1
1. T is upper semicontinuous and V is closed,

2. T is lower semicontinuous and V is open,

then T has a V -fixed point, that is, there exists a point xy € Y such that T (xg) N
(xo+ V) #0.
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Proof We will prove the result only for the case 1. A similar argument establishes
the result for the case 2. Suppose that T: ¥ — 2% is an upper semicontinuous
multifunction with convex values and V' is a convex closed neighborhood of 6 in X.
Define a multifunction F: ¥ — 2% by

Fx;) = [x EX: TN+ V)= @} for cach x; € Z.

Then F has open values in X since T is upper semicontinuous. Note that

N F&) = {x ex: T U+ V) =@} — 9.
i=1

i=1

By Lemma 5.1, F: Y — 2% is not a KKM map, that is, there is a finite subset

A = {y1,y2, -+, yn} of Z such that conv(Z) §Z F(A). Hence there is an xo €

conv(Z) such that xo ¢ F(y;) or T(xo)N(y; +V) #@forall j =1,2,---,m.Let
m m

X = eryj with0 <r; < 1and er = 1. Since z; € T (xp) N (y; + V) for
j=1 j=1
some zj, j =1,2,---,m and the sets T (xo) and V are convex, we conclude that

m
z0 = erzj € T(xp) N (xg+ V), thatis T(xp) N (xo + V) # @.
j=1

This completes the proof. |

Corollary 5.10 Let Y be a nonempty subset of a topological vector space X, V a

convex open (or closed) neighborhood of 6 in X, and T : Y — X a continuous map.

If there is a finite subset Z = {x1,x2,--- , Xy} of X such that conv(Z) C Y and
n

T(Y) C U(x,- + V), then T has a V -fixed point xy € X, thatis, T (xg) € xo + V.
i=1

Corollary 5.11 Let Y be a nonempty convex subset of a topological vector space X

and T:Y — Y a continuous map. If Y is totally bounded, then T has the convexly

almost fixed point property.

Proof Since X is totally bounded and 7(X) < X, the conclusion follows
immediately from Corollary 5.10. |
The following is given in [105]

Theorem 5.13 Let Y be a nonempty subset of a topological vector space X and

T:Y — 2Y an upper semicontinuous multifunction with convex values such that
T (Y) is totally bounded. Then for any convex closed neighborhood U of 0 in X, T
has a U-fixed point xy € X.
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Similarly, if T is lower semicontinuous, then T has a U -fixed point for any convex
open neighborhood U of 6 in X.

Proof By symmetry, it suffices to show the result for the upper semicontinuous

multifunction 7. Let T: ¥ — 27 an upper semicontinuous multifunction with

convex values and U a convex closed neighborhood of 6 in X. Then there exists

a neighborhood V of 6 in X such that V 4+ V C U. Since T (Y) is totally bounded,
n

there is a finite subset {y;, y2,--- , y,} of T(Y) such that T(Y) C U(y,- + V). For
i=1

eachi € {1,2,---,n} we can choose an x; € X such that y; — x; € V. From this it

follows that

Ty Joi+v)ycJw +v+v) < Jw + 0.

i=1 i=1 i=1

By Theorem 5.12, there exists a point xpy € X such that T (xy) N (xy + U) # 0.
This completes the proof. n

Corollary 5.12 Let Y be a nonempty convex subset of a topological vector space
XandT:Y — Y a continuous map such that T (Y) is totally bounded. Then T has
the convexly almost fixed point property.

If X is a locally convex or a metrizable topological vector space whose balls are
convex, then Corollaries 5.11 and 5.12 hold for any neighborhood U of 6 in X. Note
that Corollaries 5.11 and 5.12 generalize Theorem 2.17.

Corollary 5.12 does not guarantee the existence of fixed points of T as illustrated
in the following example [105].

Example 5.1 Let Y = {(x,y): x> + y> < 1} be the open unit disk in R? and

T:Y — Y defined by T(x,y) := (x,v1—x2) for each (x,y) € Y. Then the
continuous map 7 has no fixed point.

However, the following celebrated Himmelberg fixed point theorem [83] is
deduced from Theorem 5.13.

Theorem 5.14 Let Y be a nonempty convex subset of a locally convex topological
vector space X and T: Y — 2¥ a compact upper semicontinuous multifunction
with convex closed values. Then T has a fixed point xo € Y, that is, xo € T (xo).

Proof For any closed neighborhood U of 8 in X, by Theorem 5.13, there exists a
point xy € Y such that T (xy) N(xy + U) # @, say yy € T(xy) N (xy + U). Since
T is compact and yy € T(X) C X, we may suppose that the net (yy) converges to
some point xg € X. By the Hausdorffness of X, the net (xy/) also converges to xp.
Since the graph of T is closed, we have xo € T (xp). This completes the proof. W
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The following interesting corollaries are worth mentioning [105].

Corollary 5.13 Let Y be a nonempty convex subset of a locally convex topological
vector space X and T: Y — Y a compact continuous map. Then T has a fixed
point.

Corollary 5.13 was due to Hukuhara [86] with different proof, and includes fixed
point theorem due to Brouwer (for an n-simplex Y), Schauder (for a normed vector
space X), and Tychonoff (for a compact convex subset Y).

We have one more

Corollary 5.14 Let Y be a nonempty convex subset of a metrizable topological
vector space X whose balls are convex and T : Y — Y a compact continuous map.
Then T has a fixed point.

If X itself is compact, then Corollary 5.14 reduces to a result of Rassias [162].

Note that, since the KKM principle is equivalent to the Brouwer fixed point
theorem, each of Corollaries 5.10, 5.11, 5.12, 5.13, and 5.14 is also equivalent to
the Brouwer theorem.

As an application of Corollary 5.10, the following almost fixed point theorem in
a normed space is proved in [105].

Theorem 5.15 Let Y be a convex subset of a normed vector space X and T : Y —
N(Y) :={y € X: inf{|lx — y||: x € Y} < €} a continuous map which has totally
bounded range, where ¢ is a positive real number. Then inf{||x—T (x)||: x e Y} < e.

1
Proof For any natural n, V,, := {z € X: ||z|| < ¢ + —}. Since T'(Y) is covered
by the family {x + V,;: x € Y} and totally bounded, there exists a finite subset
k
{x1,x2,-++ ,xx}of Y suchthat T(Y) C U(xi + V,,). Therefore, by Corollary 5.10,
i=1
1
T has V,-fixed point x5 € Y, thatis, T (xj) € x5 + Vy or [[xg — T(xp) || < e+ —.
n
Therefore, we have the conclusion. ]

Note that Kirk [109] obtained Theorem 5.15 for the case when Y is a closed
convex subset of a Banach space.

We give a few definitions.

For topological spaces X and Y, an admissible class Uf(Y ,Z)ofmaps F: Y —
27 is one such that, for each F and each nonempty compact subset K of X, there
exists a map G € U (Y, Z) satisfying G(x) € F(x) for all x € K, where U,
consists of finite compositions of maps in a class ¢/ of maps satisfying the following
properties:

(i) U contains the class C of (single-valued) continuous functions,
(ii) each T € U, is upper semicontinuous (u.s.c.) with nonempty compact values,
and
(iii) for any polytope P, each T € U.(P, P) has a fixed point, where the
intermediate spaces are suitably chosen.
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The better admissible class B of multifunctions defined from a convex set Y to a
topological space Z is defined as follows:

F € B(Y,Z) & F: Y — 2% is a multifunction such that for any polytope P in
Y and any continuous map f: F(P) — P, f o (F|p) = 2" has a fixed point.

Subclasses of B are classes of continuous functions C, the Kakutani maps (u.s.c.
with nonempty compact convex values and codomains are convex spaces), the
Aronszajn multifunctions M (u.s.c. with Rs values) [73], the acyclic multifunctions
V (us.c. with compact acyclic values), the powers multifunctions V. (finite
compositions of acyclic multifunctions), the O’Neill maps N (continuous with
values of one or m acyclic components, where m is fixed) [73], the approachable
multifunctions A (whose domains and codomains are uniform spaces) [18, 19],
admissible multifunctions of Goérniewicz [70], o-selectional multifunctions of
Haddad and Lasry, permissible multifunctions of Dzedzej [50], the class K of
Lassonde[125], the class Vj of Park, Singh, and Watson [149], and approximable
multifunctions of Ben-El-Mechaiekh and Idzik, and many others.

These subclasses are all examples of the admissible class L{f. Some examples of
multifunctions in B not belonging to Z/If are known.

The following is known [143, 144].

Lemma 5.3 Let Y be a convex subset of a topological vector space X and Z a
Hausdorff space. Then

(1) U*(Y, Z) € KKM(Y, Z), and
(2) in the class of closed compact multifunctions, two subclasses B(Y, Z) and
KKM(Y, Z) coincide.

It should be noted that there are only a few examples of multifunctions in
KKM(Y, Z) which are not in ¥ or B [37].
The following fixed point result is given in [144, 146].

Theorem 5.16 Let Y be a convex subset of a locally convex topological vector
space X and T € B(Y,Y). If T is closed and compact, then T has a fixed point.

Proof By Theorem 5.3, any closed compact multifunction having the almost
fixed point property has a fixed point. Therefore, Theorem 5.16 follows from
Theorem 5.10 and Lemma 5.3. ]

Comparing Theorem 5.16 with Theorem 5.6, a fixed point theorem is given for
a much more general class of multifunctions under a more restrictive condition on
the space itself than Idzik’s.

Theorem 5.16 contains fixed point theorems due to Himmelberg [83], Lassonde
[123], Park [142], Park et al. [149], Chang and Yen [37], and many others.
Consequently, different proofs of those known results are given.
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Given Theorem 5.8, we have the following [146].

Corollary 5.15 Let Y be a compact convex subset of a topological vector space
and Let T € B(Y,Y) be a closed multifunction. Then T has a fixed point if one of
the following equivalent conditions hold:

(1) Y iss.c.t.b.
(2) Y is of Zima type.
(3) Y islocally convex.

The following is a generalized version of Fort’s theorem for better admissible
multifunctions on balls of a normed vector space [105].

Theorem 5.17 Let X be a normed vector space and B = {x € X: ||x| < d} for
some d > 0. Let T € B(B, B) be a closed multifunction. If T maps each smaller
concentric ball to a compact set in B, then for any ¢ > 0, there exists an xy € B
and a yy € T (xg) such that ||xo — yoll < e.

Proof Lete > 0be given. We may assume ¢ < d.Let C = {x € B: ||x|| <d —¢},
and define a retractionr: B — C by
(d—e)x

r(x) = [lx |l
X forx € C.

forx € B\ C,

Then G :=roT|c € B(C, C) and G is compact and closed since r is continuous
and T'|c is upper semicontinuous. Therefore, by Theorem 5.16, there exists a point
xp € C C B such that xg € G(xg) = r o T (xg). Hence, there exists a yg € T (xg) C
B such that r(yp) = xo. Since ||r(x) — x|| < & for all x € B and yg € B, we have
lxo — yoll = llr(30) — yoll < e. This completes the proof. |

Corollary 5.16 Let B" = {x e R": ||x|| < d} for somed > 0, and let T: B" —
B™ be continuous. Then for each ¢ > 0, there exists a point x € B" such that
Ix =TI <e.

Remark 5.2

(1) Forn =2and T: B? - B2, Corollary 5.16 is Fort’s theorem [60] obtained
with different proof.

(2) For T: B" — B", Corollary 5.16 is obtained by van der Walt [191] who
applied his result to show that the Euclidean plane R? has the almost fixed point
property with respect to continuous maps and finite covers by convex open sets
(that is, for every continuous 7 : R* — R? and a finite cover o of R? by convex
open sets, there exists a member U € « such that UNT (U) # @). This fact was
extended by Hazewinkel and van de Vel [80] to any locally convex topological
vector space instead of R?. Some related results can be seen in [88].
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5.2 Approximate Fixed Point Sequences

Definition 5.4 Let Y be a nonempty subset of a Hausdorff topological vector space
(X,7)and T: Y — Y be a mapping. A sequence (x,), in Y is called a t-

approximate fixed point sequence for T if x,, — T (x,) 55 0,asn — 0.

Definition 5.5 Let Y be a nonempty subset of a Hausdorff topological vector
space (X, ). We will say that Y has the t-approximate fixed point property if,
whenever we take another Hausdorff vector topology o in X, then every sequentially
continuous mapping 7: (Y, o) — (Y, 7) has a r-approximate fixed point sequence.

For the sake of simplicity, we shall use the term “t-afp property” to refer to sets
with this property.

Definition 5.6 A topological Hausdorff vector space (X, 7) is said to have the t-afp
property if every compact convex subset Y of X has the t-afp property.

Remark 5.3 We note, however, that it is not immediately clear what happens if o #
7. In this context, it is worthwhile to remark that r-convergence in Definition 5.5 is
the most natural way to approximate fixed points for 7. The reason for this is that
there are situations where o is finer than T and T has no o -approximate fixed points.

5.2.1 On Lipschitz and Approximate Lipschitz Fixed Point
Properties

In [115], Klee proved that a noncompact convex set in a normed space lacks the
fixed point property for continuous maps. In [126], Lin and Sternfeld asked if this
result remains true for Lipschitz mappings. They introduced the following

Definition 5.7

e Let (X1,d;) and (X3, dy) be metric spaces. A function 7: X; — Xp is a
Lipschitz map if

(T (x), T
i =sup [ 2Ty x| <

* (X1, d)) has the Lipschitz fixed point property (L.f.p.p.) if every Lipschitz self
map of X has a fixed point.

e (Xy,d)) is said to have the approximate Lipschitz fixed point property (approx.
L.f.p.p.) if every Lipschitz self map of X inf{d;(x, T (x)): x € X1} =0.
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Notations
Let (en)n>1 the canonical base of I, and set

o0
A, =conv({f, ey, ept1}),n>1, and A = U Ay (5.3)
n=1

Definition 5.8

* A metric space Y is a Lipschitz absolute retract (L.A.R.) if whenever a metric
space X contains Y as a closed set, there exists a Lipschitz retractionr: X — Y.

e A mapping h: (X1,d;) = (X2, d>) is a Lipschitz equivalence if 4 is Lipschitz,
one-to-one, and h~! is Lipschitz. If there exists a Lipschitz equivalence of X
onto X» then X and X, are said to be Lipschitz equivalent.

¢ Two metric functions d and p on a set are equivalent if the identity map
id: (X,d) — (X, p) is a Lipschitz equivalence.

The following is given in [126].

Lemma 5.4 Let (X, d) be a metric space, and let Y be a Lipschitz retract of X. If
Y lacks the L.f.p.p. (approx. L.f.p.p.) then so does X.

Proof We prove for the approx. L.f.p.p. Let r: X — Y be a retraction, and let
T:Y — Y beaLipschitzmap withinf{d(x, T(x)): x € Y} =a > 0.LetG: X —

X be definedby G =T or,and ¢ = m. (Note that |G|l < ITILlI7llL)-
L
Letx € X\Y.Ifdist(x,Y) > ethend(x, G(x)) > dist(x, Y) > e. If dist(x, Y) < ¢

let y € Y be such that d(x, y) < ¢, and then
d(x,Gx) =2d(y,G(y)) —d(x,y) —d(G(x),G(y)) za —e — |Gl Le =¢.

Hence d(x, G(x)) > e forall x € X. |

Definition 5.9 A metric space X is a Lipschitz absolute extensor (L.A.E.) if for
every metric space W, a closed subset Z of W, and a Lipschitz map 7: Z — X,
T admits a Lipschitz extension T: W — X.If there exists a A > 1 such that
||T||L < M|T||L,then X is saidtobe a A L.A.E.

We have the following example of a A L.A.E. [131].
Proposition 5.2 Risa 1 L.A.E.

Proof Let T: Z — R be a Lipschitz map, then T(w) = sup{T(z) —
IT|Ld(z, w): z € Z} is an extension of T with ||T || = ||T||L. |

Corollary 5.17 For every set B, I(E) is a 1 L.AE., where I (E) denotes the

—

Banach space of bounded real valued functions on B with the norm || f|lcoc =
sup{| f(x)|: x € E}.

Proof Apply Proposition 5.2 to each coordinate 7' (x, .), x € E, of a Lipschitz map
T:Z — l(B). |
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The following Lipschitz version of a theorem by Hausdorff [79] is given in [126].
The proof follows that of Arens [8]. A local version is given in [128].

Theorem 5.18 Let Y and W be two metric spaces, Z C W closed, and T: Z — Y
a Lipschitz map. There exists a metric space X which contains Y (isometrically) as
a closed set, a Lipschitz extension G: W — X of T.

Proof Note first that Y is isometric to a subset of /o (Y) (x = d(x,.) —d(., xo) is
an isometry, where xo € Y is some fixed point). Set C = [o(Y) x R, we realize
loo(Y) in C as I (Y) x {0} and we may assume that ¥ C [, (Y) x {0} € C. So, in
particular T: Z — I5(Y) x {0}, and since this is a L.A.E. (by Corollary 5.17) T
admits a Lipschitz extension H: W — [o(Y) x {0}. Let G: W — C be defined by
G(w) = H(w) + (0, dist(w, Z)) and set X = G(W) U Y. One checks easily that Y
isclosedin X and that G|z = T. u

As a consequence of Theorem 5.18, we have the following results on L.A.R. and
L.A.E. metric spaces [126].

Theorem 5.19 A metric space X is a L.AR. if and only if it is a L.A.E.

Proof L.A.E. = L.A.R.LetY be aL.A.E. and let X contain Y as a closed set.
Then a Lipschitz extension 7: X — Y of the identity mapping id: ¥ — Y isa
retraction.

L. AR.— L. A.E.LetYbealL. AR, letZ C Whbeclosed,andletT: Z — Y
be a Lipschitz map. By Theorem 5.18, there exists a space X which contains Y as
a closed set, and a Lipschitz extension G: W — X of T. Since Y is a L.AR. there
exists a Lipschitz retraction r: X — Y. Then T=roG:W—>Yisa Lipschitz
extension of 7. ]

Corollary 5.18 A retract of a L.A.R.is a L.AR.

Proof Let Y be a retract of a L.A.R. X with a Lipschitz retractionr: X — Y. We
prove the X isa L. A.E. Let Z C W be closed, and 7: Z — Y be given. Then also
T:Z — X, and since X is a L.A.E. there exists an extension G: W — X of T. It
follows that T =r o G: W — Yisa Lipschitz extension of 7. ]

Corollary 5.19 If X is Lipschitz equivalent to a L.A.R. then it is a L.A.R.

Proof This is trivial for a L.A.E., and hence follows from Theorem 5.19 |
The following properties of A are given in [126].

Proposition 5.3 There exists a Lipschitz retraction r: loo — A.

Proof We consider [, as a lattice with the natural order. Note that for x € A and

VElowO<y<ximpliesy € A.Lete=(1,1,1,---) € l, and x € l. Set

Ex)={c:e<0,(x —ee) AO e A}.

Clearly ||x]| € E(x). Lete: I — R™T be defined by e(x) = inf E(x). Then ¢ is a
Lipschitz map with ||e||z = 1. Indeed, for x and y in /o, x < y + ||x — y||. Hence
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e(¥)+|lx —y|l € E(x) and it follows that e(x) < &(y) + ||x — y||, and by symmetry
le(x)—e(¥)| < lx—y|l. Letnow r: I,c — A be defined by r(x) = (x —e(x).e) AO.
Then r is a Lipschitz retraction and ||r|; < 2. |

Proposition 5.4 The space A as well as the spaces Rt and (0,11 = {t e R: 0 <
t < 1} (with the metric induced from R) are Lipschitz absolute retracts.

Proof The fact that A is a L.A.R. follows from Corollary 5.17, Corollary 5.18 and
Proposition 5.3 Since RT is a retract of R, it is a L.A.R., too. To prove that (0, 1] is
aL.A.R., we show that (0, 1]is L.A.E. Solet Z C Wclosedand T: Z — (0, 1] be
given. Then also T: Z — [0, 1] and since [0, 1] a L.A.E., there exists a Lipschitz
extension G: W — [0, 1]. Then

~ 1

is a Lipschitz extension of 7. |
Proposition 5.5 Let Y be a noncompact convex subset of a normed space X.

1. If Y is not totally bounded then it contains a closed set which is Lipschitz

equivalent to either A or RY.
More precisely: If some bounded subset of Y is not totally bounded then

Y contains a closed set which is Lipschitz equivalent to A, while if some ball
{x € Y:|lx —xoll < 1} in Y is totally bounded (and Y itself is not) then Y
contains a closed set which is Lipschitz equivalent to R,

2. If Y is totally bounded then it contains a closed set which is Lipschitz equivalent
to (0, 1].

Proof Let Y be a noncompact convex subset of a normed space X. We distinguish
between the following two cases: Case (i): Y is not totally bounded, and Case
(ii): Y is totally bounded.

Cases (i). Here also we separate the proof into two cases.

Cases (i)a. Some bounded subset of Y is not totally bounded. In this case we may
assume without loss of generality that § € Y, and that Y] = {x € Y: ||x| < 1} is
not totally bounded. Hence, there exists some r > 0 such that Y; cannot be covered
by many finitely many balls of radius 2r. It follows that

1. For every finite-dimensional linear subspace Z of X, there exists some x € Y
with dist(x, Z) > r.

Indeed, if not then Z + B, (#) 2 Y| and from the compactness of {y € Z: ||y|| <
2} it follows that finitely many balls of radius 2r cover Y.

Now we select inductively a sequence (x,),>1 in Y; as follows: let x; € Y;
be any element with ||x1|| > r. Assume that x1, x3, - - - , X, have been selected. Set
W = span{x1, x2, - - - , X}, and apply 1. to find x| € Y7 with dist(x,+1, W) > r.
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Forn > 1 set

o
Al = conv({0, x,, xn41}) A = U Al

n=1

Then A’ is a closed subset of Y and is Lipschitz equivalent to A by the map
H: A — A’ which is defined by H(0) = 0, H(e,) = x,,n > 1, and H is linear
on each A,,.

Case(i)b. Some ball {x € Y: [lx — xol < 1} is totally bounded. Note that in this
case ¥ must be unbounded. Again we assume 6 € Y. Let X be the completion of
X, and let Y be the closure of Y in X. Set Y, = {x € Y: ||x|| < n}. Then Y] is
compact, and since (n + 1) Yoy1 €Sn™ Y C Y1, andn”'Y, ,, contains a unit vector

for each n, ﬂ n~'Y, must contain some vector yo with |lyoll = 1. Thentyp € ¥
n=1
for all + € RT. For each n > 1 pick some x, € Y with |[nyg — x,|| < (n + 10071

o0
Then U [xn, xn+1] is a closed subset of Y is Lipschitz equivalent to RT.
n=1
Caie (ii). Once again let Y denote the closure of Y in the completion of X. Pick
xo € Y\Yand x; € Y. Forn > 2 select x;,, € Y such that

(-2 bo) o

Then U[xn,xn+1] is a closed subset of Y which is Lipschitz equivalent to

< —(1+10).

n=1

0, 1]. [ |
Proposition 5.6 A lacks the approx. L.f.p.p.

In [126], Lin and Sternfeld gave a characterization of noncompact convex sets in
a normed space, having the approx. L.f.p.p.

Theorem 5.20 Let Y be a noncompact convex set in a normed space.

1. IfY is not totally bounded then it lacks the approx. L.f.p.p.
2. If Y is totally bounded then it has the approx. L.f.p.p., but lacks the L.f.p.p.

Proof

1. Follows from Lemma 5.4 and Propositions 5.4, 5.5 and 5.6.
2. The second part follows from Lemma 5.4 and Propositions 5.4, 5.5 and 5.6.
For the first part, Let ¥ be a noncompact totally bounded convex subset of
a normed space X, and let 7: ¥ — Y be a Lipschitz map. Let X denote the
completion of X, and Y the closure of Y in X. Then Y is compact, and 7" admits
an extension 7: Y — Y. By the Schauder fixed point theorem T has a fixed
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point xg € Y. Let (xn)n C Y be a sequence which converge to xg. Then (x,), is
an approximate fixed point for 7', i.e., lim [x, — T (x,)|| = 0, and it follows
n—-0oo

that Y has the approx. L.f.p.p.
]

The closed unit ball in an infinite-dimensional normed space lacks the approx.
L.f.p.p. [23]. For Banach spaces, we have this more general result.

Theorem 5.21 A closed noncompact convex set in a Banach space lacks the
approx. L.f.p.p.

Combine Theorem 5.20 with the Schauder fixed point theorem and we obtain:

Theorem 5.22 A convex set in a normed space has the L.£.p.p. if and only if it is
compact.

The precedent results bring out the necessity of considering weaker topologies
ensuring the sequential approximation of fixed points where no stronger conver-
gence can be expected.

When X is a Banach space, a nonexistence result was reported by Dominguez
Benavides et al. [22].

Theorem 5.23 Let Y be a closed convex of a Banach space X. If Y is not weakly
compact, then there exists a closed convex subset Z of Y and a continuous affine
map T : Z — Z such that inf{liminf |y — T"(x)|: x,y € Z} > 0.

It is natural then to look for weak-approximating fixed point sequences instead
of stronger ones.

Definition 5.10 Let (X, ||.|) be a Banach space and ¥ € X. A mapping T: ¥ —
X is called demicontinuous if it maps strongly convergent sequences into weakly
convergent sequences.

The next result is due to Moloney and Weng [133].

Proposition 5.7 Let X be a Hilbert space, Y a closed ball and T: Y — Y a
demicontinuous mapping. Then T admits a weak-approximate fixed point sequence,
that is, a sequence (x,)n, C Y such that (x, — T (x,)), converges weakly to 6.

To study the weak-approximate fixed property in Banach and abstract spaces, the
following results have been given by Barroso [12].

Theorem 5.24 Let Y be a compact convex subset of a topological vector space
(X, 7). Assume that Y has an admissible function on X. Then Y has the t-afp

property.

Proof Fix any n > 1. From 1. and the fact that p(6) = 0, it follows thatif x € ¥
thentheset Bi(x) = {y e Y: p(y —x) < l} is T-open in Y with respect to the
relative topolongy of X. Thus, the family {B %n(x): x € Y} is an open covering of
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the compact set Y. From compactness we can extract the finite sub covering, i.e., a
finite subset I',, = {x1, -+, xn,} of ¥ such that

Ny
Y = U B (x;).
i=1

Let P,: Y — conv([',) € conv([',) be the Schauder’s projection associated to
I',, and p, where co(I",,) denotes the t-closure of the convex hull of I';,. In view of
Proposition 1.44 it follows that P, is T-continuous. Moreover, by using 2. and 3. we
see that

1
p(Pr(x) —x) < —,
n

for all x € Y. Let now o be another Hausdorff vector topology in X and
T: (Y,o0) — (Y, t) asequentially continuous mapping. Then the mapping

Py oT: (conv(ly), o) — (conv(ly), 7)

is also sequentially continuous. Let us denote by G, the linear span of I',,. Observe
that the linear operator ®: G, — [ defined by ®(Z oix;) = Zaiei is
an algebraic isomorphism, where {e;} denotes the canonical basis of the space
E = (R, eucld). Here the word “eucld” indicates the euclidean topology. Thus,
if we denote by @, (resp. ;) the mapping ® from (G,, o) (resp. (G,, 7)) into E
then, it follows that both these maps are linear homeomorphisms. Hence, setting
Z, = & (conv(I',,)) we see that Z,, = &, (conv([',,)).

(Gomv (), 0) 222 (comv (), 7)

oz |-

(Zp,eucld) ——— (Z,, eucld)
According to the above diagram, [<I>, o(P,oT)o @;1] is a sequentially contin-

uous mapping from (Z,, eucld) into itself. Since Z,, is convex and compact with
respect to the eucld-topology, it follows from Brouwer’s fixed point theorem that

(@0 (PuioT)o 7! | ) =2,
for some z,, € Z,,. Thus (P, o T)(u,) = uy,, where u,, = CD_l(z,,). It follows that

1
o —Twy)) < —,
n
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for all n > 1. Using now Proposition 1.7 we can conclude that Y is sequentially
compact, for 7 is finer than 7, on Y, the metric topology induced by p. Thus, we may

assume (by passing to a subsequence if necessary) that u, —%5 xand T (un) LN v,
for some x, y € Y. Hence, in view of 1., we get

plx —y) =0,

and so x = y by 4.. This shows that u,, — T (u,) —%5 6 and concludes the proof. B
Next, some of the theoretical implications of Theorem 5.24 are given [12].

Corollary 5.20 Let Y be a compact convex subset of a topological vector space
(X, t) and F = {p,: n € N} a countable family of seminorms on X which separate
points of Y — Y and such that the topology U generated by F is coarser than t in
Y. Then Y has the t-afp property.

Proof By Proposition 1.45, Y has an admissible function on X. Theorem 5.24 now
implies that Y has the t-afp property. |

Corollary 5.21 Every (weakly) compact convex subset Y of a Hausdorff locally
convex space (X, T) whose topological dual space X' is weak® separable has the

(weak) t-afp property.

Proof Since X' is weak® separable, it follows that X " is total over X. Then, for a
weak™ dense sequence (¢,),, in X, it follows that

x = o (x)]

yields a countable family F of t-continuous (resp. weak continuous) seminorms on
X which separates points. In this case, notice that the topology I' determined by F
is coarser than t (resp. weak topology). Therefore, in view of Corollary 5.20, we
conclude that every compact (resp. weakly compact) convex subset of X has the
T-approximate (resp. weak) fixed point property. |

Remark 5.4 As a consequence of the preceding corollary it follows that every
separable Banach space has the weak-afp property. Indeed, if X is a separable
Banach space then by the Banach-Alaoglu theorem (Theorem 1.28), each dual ball
B, () centered at the origin with radius n, n > 1, is weak™ compact metric space
and hence a separable metric space. This implies that the dual X’ is weak™ separable.

In view of Lin-Sternfeld’s theorem the existence of weak-approximate fixed point
sequences.

Theorem 5.25 Let Y be a weakly compact convex subset of a Banach space
(X, I.11)- Then every demicontinuous mapping T : Y — Y has a weak-approximate
fixed point sequence.

Proof Without loss of generality, we may assume that 7T is fixed point free and X
is not separable. Pick y € Y and denote by O(y) = {T"(y), n € N} the orbit of y
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under T'. Now, we construct inductively a sequence (Y},), of closed convex subsets
of Y as follows. We set Yy = convO(y) and if n > 1 we put ¥,,;; = conv(T (¥y,)),
where the overline denotes the closure w.r.t the norm ||.||. It is easily verified that

O(T" () € T(Yn) C Yur1,

for all n > 1. We claim now that each Y, is separable. This is evident if n = 0 since

the closed linear span of O(y) is a separable Banach subspace of X. By induction

on n, and by the fact that 7' is demicontinuous together with Mazur’s theorem, we

conclude that if ¥, € {x: k > 1} for some {x;: k > 1} C Y, then T(¥,) C

W(T(x,’j): k > 1). This completes the proof of our claim. As a consequence, if
o

we set Zp = ﬂ Y,, then the following closed convex subset of ¥
n=k

o
W = U Zi,
k=0

must be separable too. Notice that, since Y is weakly compact, each Zj is nonempty.
Moreover, it is easy to see that T (Z;) € Zj41, for all k > 1. Hence, using again the
fact that T is demicontinuous, we see that W is invariant under 7. Finally, since
W C span(d;: j > 1), for some dense sequence (d;);>1 in W, we reach the
conclusion of theorem by means of Corollary 5.21. |

Here, as a direct application of Theorem 5.25, we obtain the following fixed point
result for continuous maps in general Banach spaces.

Corollary 5.22 Let Y be a weakly compact convex subset of a Banach space
X, I.) and T: Y — Y a continuous mapping. Suppose that (I — T)(Y) is
sequentially weakly closed. Then T has fixed point.

Proof By Theorem 5.25, there exists a sequence (x;,), in Y such that x,, — T'(x,) —
6. By assumption, we get8 € (I — T)(Y) and so T'(x) = x, for some x € Y. This
completes the proof. |

Definition 5.11 Let (X, ||.|) be aBanach spaceand Y € X. Amapping7: Y — X
is called

(a) proper if the preimage of each compact set is compact.
(b) weakly proper if the preimage of each weakly compact set is weakly compact.

The next result yields some sufficient conditions for concluding a map is strongly
continuous [13].
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Proposition 5.8 Let Y be a closed convex subset of a Banach space X and T: Y —
Y a mapping such that T™ is compact for some integer m > 2. Then T™ is strongly
continuous in any the following cases:

(a) T™ is proper and continuous. Moreover, if T is demicontinuous then it is
sequentially weakly continuous.

(b) T™ is sequentially weakly continuous. This holds, in particular, when T is
continuous and affine.

(¢) T is an isometry.

Proof Letbe x, — x forsomex € Y.

(a) As T™ is compact and proper, it follows that {x,} is relatively compact since
{x,} € T7"{T™(x,)}) and T~ ({T™(x,)}) is compact. Therefore, up to a
subsequence, we can conclude that x, — x and hence T (x,,) — T™ (x).

(b) Since T™ is sequentially weakly continuous, 7™ (x,) — T™(x). By using the
fact that 7" is compact and by passing to a subsequence if needed, we may
assume that 7™ (x,,) — y for some y in X. This implies that y = 7™ (x) and
proves the result.

(c) This item is easily proved with the aid of the fact that 7™ is compact.

]
Definition 5.12 Let Y be a nonempty subset of a Banach space X andlet7: Y —
Y be a continuous mapping. For x € Y let
y P = (T 0k =12}, T0) =x
be the positive semiorbit of x and

w((x) ={w e X: Ik — o0 such that Th(x) > was | — 00}

the w-limit set of x. A point x € Y is a k-periodic point of T (k > 2) if Tk (x) = x,
and Tl(x) #*x,0l=1,---,k—1.Aset Ziscalled ak-cycle (of T)if Z = y+(x)
for some k-periodic point x of 7.

The following definition will play an important role [178].

Definition 5.13 Let Y be a nonempty subset of a Banach space X andlet T: Y —
Y be a continuous mapping. A couple (Z1, Z) will be called admissible (with
respect to the mapping 7) if

1.0#£Z1CZCY,
2. the set Z; is compact, and
3. the set Z is convex and closed, T(Z) C Z.
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Some properties of an admissible couple are collected in [178].

Lemma 5.5 Let Y be a closed convex subset of a Banach space X and T: Y — Y
be a continuous mapping. Then the following statements hold:

1. If (Z1, Z) is an admissible couple and T(Z1) C Z1, then so is the couple (Zy, Z)
o0

where Zy = ﬂ Tk(Zl) has the property T (Zo) = Zy.

k=0
2. If (Z1, Z) is an admissible couple, then there exists the least convex closed set

Z» such that If (Z1, Z») is admissible.
Proof

1. As it was already mentioned, Z is a nonempty compact set such that 7 (Zg) C
Zo C Z1. If x € Zp is an arbitrary element, then there exists y; € Tk (Zy)
such that 7 (yx) = x and by the compactness of Z; there exists a subsequence
V| € Tl(Zl) which converges to y € Zg as! — oo. T(y) = x and hence
x € T(Zy).

2. Let

G = {W e 2X. Z1 CWCY, W isconvex, closed and T(W) C W}.

Let Z, = ﬂ W. Then Z; is the least element of G in the sense of the set

. . weG
inclusion.

Definition 5.14 The admissible couple (Z;, Z,) will be called minimal if Z; is the
least convex closed set containing Z;.

This fundamental lemma is stated in [178].

Lemma 5.6 Let Y be a closed convex subset of a Banach space X and T: Y — Y
be a continuous mapping. Let (Z1, Z3) be a minimal admissible couple. Then:

1.

o0
Zp = U Wi (5.4)
k=1

where (Wi)i>1 is a nondecreasing sequence of convex compact subsets of Z»
which are defined by the relations

W1 = conv(Zy), (5.5)

Wit1 = conv(W UT(Wy)), k=1,2,--- (5.6)
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2. Z, is separable.

o o0 o
3. IfU Wi is not closed, then U Wi \ U Wi is a G set.

k=1 k=1 k=1
4. If Z, € T(Zy), then conv(Zy) = Z».
Proof

1. By Theorem 1.20, Wy is convex and compact. Since Wi C Z;, we have that the
compact set Wiy U T (W) € Z; and the set W = conv(W; UT(Wy)) € Z,
is convex and compact. By mathematical induction we get that the sequence
(Wi)k>1 which is defined by (5.5) and (5.6) is a nondecreasing sequence of

o0 o0
convex compact subsets of Z,. Clearly U Wiy C Z5 and U Wy is a convex and
k=1 k=1

o0 o0
closed subset of Z,. Further, T (U Wk) - U W and, from the continuity

k=1 k=1
o0 o0 0
of T, we have T U Wi | C U Wk. Hence | Z;, U Wi | is an admissible

k=1 k=1 k=1

o
couple and since U Wi C Z», equality (5.4) follows.

k=1
2. Every compact metric space is separable, countable union of separable sets is

separable and the closure of separable set in a metric space is separable.

oo o0 o0 o o o0
3.ka\UWk;é@,thenUWk\UWk:ﬂ ﬂW,\Wk isa Gy set.
k=1 k=1 k=1 k=1 k=1 \I=1

4. Denote Z3 = conv(Z;). As T(Z3) C Z3, Z1 € Z3, we have that (Z;, Z3) is an
admissible couple and thus, the minimality of (Z;, Z,) implies that Z3 = Z,.

|
Lemma 5.7 Let Y be a closed convex subset of a Banach space X and T: Y — Y
be a continuous mapping. Let Z1,0 # Z1 C Y, be a compact set. Then there exists
a closed convex subset Z of Y such that Zy C Z and
conv(T(Z2)) = Z. 5.7
Proof Let

G = {W e 2. Z1 C W CY, W isconvex,closed and T(W) C W}
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and a be the cardinal number of the set G. By the Cantor theorem , the cardinal
number 2¢ > a. Let b be the initial ordinal number of power 2¢. Then we define a
transfinite { W, } of the type b with values in G in the following way:

Wo =Y,
conv(T (Wy—-1)), ifaa — 1 exists,
Wo = ﬂ Wg, in the other case (wis a limit number ) (5-8)

B<a

for o > 0. The sequence {W,} is non-increasing with respect to the set inclusion
and we claim: There exists an ordinal number § < b such that Wy = W51 which
on the basis of (5.8) means that Z = W,, satisfies (5.7).

If (5.7) were not true for any Z = W, then the sequence { W,,} would be injective
and the cardinal number of G would be greater or equal to 2¢ which, on the basis of
the Cantor theorem, is a contradiction with the properties of cardinal numbers. W

Lemma 5.8 Let Y be a nonempty subset of a Banach space X andletT: Y — Y.
Then the following statements are true:

1. Each point of a k-cycle of T is a fixed point of T*.
2. Each fixed point of T* is either a fixed point of T or belongs to an l-cycle of T
where l is a divisor of k.

Proof Only the statement 2. will be proved. Let x = TX(x) and let x #
T (x). Consider the sequence {x, T(x), -, Tk_l(x)}. Then two cases may occur.
Either all terms Tl(x),l = 1,---,k — 1 are different from x and the sequence
{x, T(x), -, Tk_l(x)} is injective and x belongs to a k-cycle of T, or there exists
an/,1 <[ < k such that x = Tl(x) and x # T"(x) form = 1,---,[ — 1. In this
case x belongs to an [-cycle of T and with respect to the fact that x = T*(x) we
must have that / is a divisor of k. |

The following is an approximate fixed point result for the case when T is weakly
proper [13].

Theorem 5.26 Let Y be a bounded, closed and convex subset of a Banach space
Xand T:Y — Y a continuous map such that T™ is compact for some integer
m > 1. Suppose that T is weakly proper. Then T has a weak-approximate fixed
point sequence.

Proof We can suppose that T is fixed point free. By the Schauder fixed point
theorem we have 7" (x) = x for some x € Y. Then by Lemma 5.8 there exists a
natural k > 2 suchthat W = {x, T (x), - - -, Tk_l(x)} is a k-cycle of T'. In particular
W is compact and T(W) = W. By Lemma 5.7, there exists a convex, closed set Z
suchthat W € Z C Y,conv(T(Z)) = Z and T(Z) € Z. Moreover, Z is the least
convex, closed set containing W. Since T is weakly proper, from the compactness

of T™(Z) and the fact that T"~*(Z) C T_k(T’"(Z)) forallk = 1,---,m, we
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can conclude with the aid of Mazur’s theorem that Z is weakly compact. The result
follows now from Theorem 5.25. ]

5.2.2 Onthe o (X, Z)-Approximate Fixed Point Property
in Topological Vector Spaces

Let X be a topological vector space, X' its topological dual and Z a subset of
X’. Some results concerning the o (X, Z)-approximate fixed property for bounded,
closed convex subsets Y of X are given.

Definition 5.15 Let Y be a nonempty subset of a topological vector space (X, 7),
Z a subspace of its topological dual X’ and 7: Y — Y be a continuous mapping. A
sequence (x;), in Y is called a o (X, Z)-approximate fixed point sequence for T if
(¢ (xp — T (x,))n converges to zero for all p € Z.

Definition 5.16 Let Y be a nonempty subset of a topological vector space (X, 7)
and Z a subspace of X’. We will say that ¥ has the o (X, Z)-approximate fixed point
property if every continuous mapping 7: ¥ — Y has a o (X, Z)-approximate fixed
point sequence.

For the sake of simplicity, we shall use the term “o (X, Z)-afp property” to refer
to sets with this property.

Definition 5.17 Let (X, ) be a topological vector space and Z a subspace of X'.
X is said to have the o (X, Z)-afp property if every bounded, closed convex subset
Y of X has the o (X, Z)-afp property.

Remark 5.5 When Z = X' we simply write weak-afp property instead writing
o (X, X'). In a similar way, we can also define the o (X', Z)-afp property for some
subset Z of X.

The following lemma is given in [14]. Its proof avoids paracompactness used in
[13] in the case of Banach spaces.

Lemma 5.9 Let (X, t) be a topological vector space, Z a subspace of its topolog-
ical dual X', T' = {¢1,- -, ¢u} a finite subset of Z, and Y a nonempty, bounded
convex subset of X. For any mapping T : Y — Y which is t-to-o (X, Z) sequentially
continuous, and any € > 0, there is y € Y such that

|¢z()’ - T(y))' <§é, fori = 1’ , 1.

Proof Equip the space R" with the max-norm ||.||« and define the mapping ¥ from
Y to R" by

V(x) = (91(x), -, @u(x)).
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It is clear that W is a continuous linear mapping. Since Y is bounded in X _7 is
bounded as well and hence the set W(Y) is bounded in R”. It follows that W (Y) is

n
totally bounded. Let U = H(TE, %) C R”". (It is an open ball with respect to the
i=1
max-norm.) There is a finite Z € W(Y) such that {z + U: z € Z} is an open cover
of W(Y). There is a finite W € W(Y) such that {z + U: z € W} is an open cover
of W(Y). Let v, be a fixed element in \If_l{z} forz € W.Set L = {y,,z € W}
and K = conv(L). Then, by Theorem 1.20 4. K is a finite-dimensional compact
convex subset of Y. Now for each x € K, let w, = y, be a fixed element such that
V(T (x)) € z+ U. Then

i (wy — T(x))| < %

fori =1, ..., n. Moreover, the restriction T |g is t-to-o (X, Z) as K is metrizable.
Further, W is o (X, Z)-continuous, hence the composed mapping ¥ o T|x is T-
continuous. Therefore we can, for each x € K, choose a t open neighborhood U,
of x (relatively in K) such that forany w € Uy and anyi =1, --- , n,

(T (@) — T(x))| < %

Then A = {U,: x € Y} is an open cover of K. Since K is compact, there exists
a locally finite partition of unity {¢,: x € K} on Y dominated by {Uy: x € K}.

Then the mapping F(w) = Z ¢x (w)wy is a continuous function from Kto K. By

xeK
Brouwer’s fixed point, it has a fixed point y € K. If ¢, (y) # 0, then y € U, and

16 (T (y) — T(x))| < % fori=1.--- .n.

Therefore, fori =1,--- ,n,

16 (y = TN = I (F(y) = T ()]
<D e WMei(we — T

xekK

=< Z ox (N (@i (wx = T ()| + [$i(T(x) =T () <e.

xekK

The proof is complete. n

As a consequence of Lemma 5.9, the following approximate fixed point results
in topological vector spaces are given in [14], where sets are not necessarily closed
and maps are not necessarily continuous.
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Proposition 5.9 Let (X, t) be a topological vector space, Z a subspace of its

topological dual X', Y a nonempty, bounded convex subset of X and T: Y — Y a t-
0 (X,Z)

to-o (X, Z) sequentially continuous mapping. Then 6 € {x — T (x): x € Y}
if X is a topological vector space with separable strong dual :

Proposition 5.10 Ler (X, t) be a topological vector space, Z a subspace of its
topological dual X', and Y a nonempty, bounded convex subset of X. Assume that
T:Y — Y which is t-to-o (X, Z) sequentially continuous. If, Z is separable in the
strong topology (i.e., the topology of uniform convergence on t-bounded subsets of
X), then there is a sequence (x,), in Y such that x,, — T (x,,) converge to 0 in the
topology o (X, Z) [14].

Proof Let (¢;); be a strongly dense sequence in Z. By Lemma 5.9 we can find for
any n € N a point x,, in ¥ so that

1
|pi (xp — T (xp))| < —, fori=1,---,n.
n

Then for all integer i > 1, |¢; (x, — T (x,))| = 0asn — oo. The denseness of (¢;);
in the strong topology on Z implies x, — T (x,) — 0 with regarding the topology
o (X, Z). This completes the proof. ]

As an immediate consequence we get easy proof of a well-known result of Fan
[57].

Corollary 5.23 Let (X, t) be a topological vector space such that its topological
dual X' separates the points of X. (This is satisfied, for example, if (X, t) is locally
convex.) Let Y C X be a nonempty compact convex set. Then each continuous
mapping T : Y — Y has a fixed point.

Proof Set W = {x — T'(x): x € Y}. Then W is compact as the image of Y by the
continuous map x +— x — T (x). So, W is also weakly compact. Since X’ separates
points of X, the weak topology is Hausdorff and hence W is weakly closed. By
Proposition 5.9 6 belongs to the weak closure of W, hence 6 € W, i.e., T has a
fixed point. |

In the following theorem, we collect some situations in which Proposition 5.10
can be applied [14].

Theorem 5.27 Let X be a normed space. Then the following statements hold
true:

(i) Assume that the completion of X is an Asplund space. Let T be a complete
metrizable locally convex topology on X compatible with the duality. Then
(X, ©) has the weak-afp property.

(i) If (X',o(X',X)) is No-monolithic (i.e., each separable subset of
(X', 0(X’', X)) has countable network), then (X', |.||) has the o (X', X)-afp
property.
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Proof

@)

Y

Let Y € X be a nonempty bounded closed convex setand 7: Y — Y a 7-
continuous mapping. Let a € Y and set W; = {a}. If W, is defined, then
let

W1 = conv (W, UT(Wy)) .

Then W), 41 is compact. So by Theorem 1.20 3., the set

0
W=UWn

n=1

is T-separable and T (W) C W. W is clearly norm-separable. Indeed, Let S C
W be a countable t-dense set. Denote by S’ the norm-closed convex hull of
S. Then S’ is norm-separable. Moreover, as it is a closed convex set, it is also
weakly closed by Theorem 1.25. Hence it is 7-closed as well, so in particular
W C §'. It follows that W is norm-separable. Therefore the closed linear span
of W is norm-separable as well. So, we can without loss of generality suppose
that X is separable. By our assumption X’ is separable, we can conclude by
Proposition 5.10.

It is enough to show that each nonempty separable closed convex bounded
subset of X’ has the o (X', X)-afp property. Let Z € X' be such a set. Set
Y = Z, and denote by W the quotient space X /Y. Denote by ¢ the canonical
quotient map g: X — W. The adjoint map g™ : W' — X' is an isometric
injection which is, moreover, weak™*-to-weak™ homeomorphism. The image
g (W) is equal to Yyt = (Zl)l, which is (by the bipolar theorem) the
weak™® closed linear span of Z. It follows that ¢*(W’) is weak® separable,
hence the weak™ topology of W' has countable network. Therefore the dual ball
(Bw, o (X', X)) is metrizable, thus W is separable. By Proposition 5.10 we get
that W' has the o (W', W)-afp property. As ¢* is both an isometry and weak™-
to-weak™ homeomorphism, we get that Z has the o (X', X)-afp property.

As a consequence we get

Corollary 5.24 Let X be an Asplund Banach space. Then X has the weak-afp
property [13].

Remark 5.6 There is a difference between approximation in the norm and in the
weak topology of a Banach space X. Let Y € X be a nonempty closed bounded set
and 7: Y — Y acontinuous mapping. For approximation in the norm, we have the
equivalence of the following three conditions:

(i) There is a sequence (x;), in Y such that x,, — T'(x,) —> 0.
(ii) The point 8 is in the norm-closure of the set {x — T(x): x € Y}.
(fii) inf{llx = T(x): x e Y|} =0.
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These three statements are trivially equivalent (by properties of metric spaces)
and are rather strong. For the weak topology, the situation is different. First, there
is no analogue of the third condition. Secondly, the analogue of the second one is
satisfied by Proposition 5.9. But the analogue of the first one is not satisfied always,
as the weak topology is not in general described by sequences.

We give two instructive examples.
Definition 5.18 A Banach space X is called

(i) weakly compactly generated if there is a weakly compact subset Y € X whose
linear span is dense in X.

(i) weakly Lindelof determined provided there is ¥ € X with dense linear span
such that for each ¢ € X’ there are only countably many x € Y with ¢ (x) # 0.

Basic properties of these classes of Banach spaces and complements on these
notions can be found in [55, 100].

Examples 5.1

1. Every reflexive Banach space is weakly compactly generated by its closed unit
ball.

2. Any separable Banach space is weakly compactly generated.

3. Any weakly compactly generated Banach space is weakly Lindelof determined.

Proposition 5.11 Let X be a Banach space. Then X' has the o (X', X)-afp property
in the following cases

e X is separable.

e X is weakly compactly generated. In particular, X = co(I") or X = Li(u) for
o -finite measure |L.

e X is weakly Lindeldf determined.

Proof Let X be weakly Lindelof determined. Then any bounded separable subset
of (X', 0(X’, X)) is metrizable. Therefore (X', 0 (X', X)) is Ng-monolithic. [ |

5.2.3 The Weak Approximate Fixed Point Property in
Metrizable Locally Convex Spaces and l1-Sequences

Using the slight generalization of Rosenthal’s /1 -theorem and the Fréchet-Urysohn

property of the space (¥ — ¥° "X 5(X, X')), the following is proved in [14].

Proposition 5.12 Let (X, t) be a metrizable locally convex space, Y < X a
nonempty convex bounded set which does not contains any li-sequence. Then Y
has the weak-afp property.

Proof Let T: Y — Y be a t-to-weak continuous mapping. First let us find a

nonempty separable convex W C Y with T(W) € W. To do that fix xo € Y
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and set Wy = {x¢}. Suppose that W,, C Y is a nonempty separable convex set. Then

T (W,) is a weakly separable subset of Y. As weakly separable sets are separable,

we can find S, € T(W,) a countable t-dense set. As T is metrizable and S, C Y,

there is a countable set 0, C Y with S, C Q,,. Set Wyni1 = conv(W, U Q). Then
o

Wy41 is a separable convex subset of Y containing W,,. Finally, Set W = U W,.

n=0
Then W is a nonempty convex separable subset of Y and, moreover,

T(W) = UT(W ) € Us_g UoicUWinicw
n=0 n=0 n=0

From Proposition 1.40 we get 6 € {x — T(x): x € W}J(X'X ). Thus, according to

Proposition 5.10, there exists a sequence (x;), in W so that x, — T (x,) —> 6 in
the weak topology. This proves the result. |

The following characterizes the heredity of the o (X, X')-afp property [14].

Theorem 5.28 Let X be a metrizable locally convex space and Y a nonempty
closed convex bounded subset of X. Then the following assertions are equivalent.

1. Each nonempty closed convex subset of Y has the weak-afp property.
2. Y contains no sequence equivalent to the standard basis of I;.

Proof 1. = 2. Let us suppose by contradiction that 2. Fix an /;-sequence (x,), in
Y, and denote by W the closed convex hull and by Z the closed linear span of the
set {x,: n € N}. Let Ty: l? — X be defined by (1.17). By our assumption 7y is an
isomorphism of l? onto To(l?). Denote by Sy its inverse. Then Sy is an isomorphism
of Tp (l(l)) onto l?. In particular, So maps Cauchy sequences to Cauchy sequences.

Thus Sp can be uniquely extended to a continuous linear mapping S: To(/ ?) — .

Note that To(l?) = Z and that S is an isomorphism of Z onto S(Z) C /1. As S is
linear, it is also a weak-to-weak homeomorphism.

We claim that the set W does not have the weak-afp property. Suppose on the
contrary that it has the weak-afp property. Then S(W) has the weak-afp property as
well. But then, by Schur’s theorem, S(W) has the afp property. By Theorem 5.20,
we get S(W) is totally bounded. But it cannot be the case as S(W) contains the
canonical basis of /1. This completes the proof.

2. = 1. Follows from Proposition 5.12. |

Corollary 5.25 Let X be a metrizable locally convex space not containing any [ -
sequence. Then X has the weak-afp property.

We have the following illustrative examples on the weak-afp property and the
o (X', X)-afp property [14].
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Proposition 5.13

1. If X = ¢ endowed with ||.||0o, then X' = 1| has the o (X', X)-afp property, but
does not have the weak-afp property.
2. If X = ls, then X' does not have the o (X', X)-afp property.

Proof As cy is separable, by Proposition 5.11, ¢; has the o (X', X)-afp property.
Further by Theorem 5.28, /1 does not have the weak-afp property.

1. As ¢ is separable, by Proposition 5.11, ¢{, has the o (X', X)-afp property. Further
by Theorem 5.28 does not have the weak-afp property.

2. The space I is a Grothendieck space. So, if X’ had the o (X', X)-afp property,
then it would have also the weak-afp property. But it is not the case as X’ contains
an isometric copy of /1.

5.2.4 The Weak Approximate Fixed Point Property
in Non-metrizable Locally Convex Spaces

In the previous subsection, the metrizability assumption was used several times to
obtain the weak-afp property. It is natural to ask if this assumption is necessary.

The following example given in [14] illustrates that the assumption of metriz-
ability cannot be dropped in the statement of Theorem 1.37.

Example 5.2 Let X = (I1,0(, li)). Let (eq)n>1 denote the canonical basic
sequence. By Remark 1.28, X contains no /j-sequence and the sequence (e)n>1
contains neither a weakly Cauchy subsequence nor a subsequence which is an /-
sequence. But X does not have the weak-afp property.

Proof Let Z be the closed convex hull of {e,: n > 1}. As Z is contained in the
positive cone of /1, by Proposition 1.39, the norm and weak topologies coincide on
Z. Thus Z has the weak-afp property in X if and only if it has the weak-afp property
in (I1, ||.]l1). But it does not have the weak-afp property in (/1, ||.]|1) as it contains
an /1-sequence when considered in the norm topology. ]

In [14], Barroso, Kalenda, and Lin raised the following open questions:
Let X be a Hausdorff locally convex space.

e Is it true that each bounded sequence in X has a weakly Cauchy subsequence
if and only if each bounded separable subset is Fréchet-Urysohn in the weak
topology?

e Isit true that X has the weak-afp property if and only if each bounded sequence
in X has a weakly Cauchy subsequence?

An affirmative answer to both questions is given in [14] where X admits a locally
convex topology compatible with the duality.
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Theorem 5.29 Let (X, t) be a Hausdorff locally convex space such there is a
metrizable locally convex topology on X compatible with the duality. Let Y be
a nonempty closed convex bounded subset of X. The following assertions are
equivalent.

1. Each nonempty closed convex subset of Y has the weak-afp property.
2. Each sequence in Y has a weakly Cauchy subsequence.

Proof Let p be a metrizable locally convex topology on X compatible with the
duality. As any metrizable locally convex topology is Mackey, we get o (X, X) C
T Cp.

2. = 1. Let Z C Y be a nonempty closed convex subsetof Y and T: Z — Z
a continuous map. We find a nonempty t-separable closed convex set W C Z with
T(W) € W (see the proof of Theorem 5.27). By Proposition 5.9 we get that 0
belongs to the weak closure of {x — T (x): x € W}. Further, as W is t-separable, it
is also p-separable. By Theorem 1.37 W contains no /1-sequence in (X, p), hence
by Proposition 1.40 the weak closure of W — W is Fréchet-Urysohn in the weak
topology, hence there is a sequence (xy,), in W such that x, — T (x,,) weakly converge
to 6.

1. = 2. Suppose that 2. does not hold, i.e., that there is a sequence in Y having
no weakly Cauchy subsequence. By Theorem 1.37 there is a sequence (x,), in ¥
which is an /{-sequence in (X, p). Let Z be the closed convex hull of {x,: n € N}
and W be the closed linear spans with respect to the topology 7, p or o (X, X') as
all these topologies have the same dual. By the proof of the implication 1. = 2. of
Theorem 5.28 there is a linear mapping G: W — [; which is an isomorphism of
(W, p) onto G(W) and, moreover, (Z, p) does not have the weak-afp property. We
claim that (Z, 7) does not have the weak-afp property. This will be done if we show
that the topologies p and 7 coincide on Y. To do that we recall that G is a p-to-norm
isomorphism and weak-to-weak homeomorphism of Z onto G(Z) and, moreover,
G (Z) is contained in the positive cone of /; the norm and weak topologies coincide.
It follows that p and o (X, X’) coincide on Z. As o (X, X') € 7 C p, the proof is
complete. |

In [14], Barroso et al. conjectured that at least the first question has negative
answer. They gave a candidate for a counterexample the space (X, o (X', X)) where
X is one of the Johnson-Lindenstrauss spaces constructed in [94].

5.3 Approximate Fixed Point Nets

For fixed point results, if one relaxes the compactness assumption, the assumption
of continuity must be strengthened. Another possibility is to relax the continuity
assumption.

In [9], attention is paid to sequential continuity and the following result is proved.
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Theorem 5.30 Let Y be a nonempty weakly compact subset of a metrizable locally
convex space X. If T: Y — Y is weakly sequentially continuous, then T has a fixed
point.

It is natural to ask whether the metrizability condition can be dropped?

The sequential continuity is a very weak condition. Sequential continuity does
not help in obtaining approximate fixed point sequences even for self maps of
compact convex sets. So, sequential continuity is too weak to ensure the existence
of fixed points.

To illustrate this fact, the following example is given in [15].

Example 5.3 There is a Hausdorff locally convex space X equipped with its weak
topology, a nonempty compact convex subset ¥ € X, and a sequentially continuous
map T: Y — Y with no approximate fixed point sequence.

Proof Let X = (Il,,0(l)y,lo0)) and Y = {n € X: u > Oand ||| < 1}. Then X
is a locally convex space, the topology is its weak one, and Y is a nonempty convex
compact subset of X. It remains to construct the function 7.

The space I, can be canonically identified with the space M(BN) of signed
Radon measures on the compact space SN (Cech-Stone compactification of natural
numbers). Let P: M(BN) — M (BN) be defined by

P(u) =Y u({n))s,, e M(BN),

n=1

where 8, denotes the Dirac measure supported by x. Then P is a bounded linear
operator. We set Yo = P(Y). Then Yy € Y and Y is a convex subset of l;o which
is not totally bounded in the norm. Hence, by Theorem 5.20, there is a Lipschitz
map G: Yy — Y, without an approximate fixed point sequence (with respect to the
norm).

Set T = G o P|y. We claim that T is weak®-to-weak™ sequentially continuous
and has no approximate fixed point sequence in the weak™ topology.

To show the first assertion, let (u,), be a sequence in Y weak™ converging to
some p € Y. Since [ is a Grothendieck space, i, — 1 weakly in [/ . Since P is a
bounded linear operator, it is also weak-to-weak continuous, hence P(u,) — P(u)
weakly in [/. Since P(I.,) is isometric to the space /;, by the Schur property we
have P(u,) — P(w) in the norm, so G(P(u,)) — G(P(w)) in the norm. We
conclude that T (i,) — T (u) in the norm, and hence is also in the weak™ topology.
This completes the proof that T is sequentially continuous.

Next, suppose that (i), is an approximate fixed point sequence in Y. Then
un — T (un) — 0 in the weak™ topology. By the Grothendieck property of /o, we
get that u, — T (u,) — 6 weakly in [ . Since P is a bounded linear operator, we
get P(u,) — P(T (un)) — 6 weakly, so P(u,) — P(T(u,)) — 6 in the norm by
the Schur theorem. Further,

P(un) — P(T(up)) = P(uy) — T () = P(un) — G(P (1)),
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so (P (un))n is an approximate fixed point sequence for G with respect to the norm.
This is a contradiction, completing the proof. |

Definition 5.19 Let Y be a nonempty subset of a Hausdorff topological vector
space (X,7) and T: Y — Y be a mapping. A net (xy)q in Y is called a t-
approximate fixed point net for 7 if x, — T (xy) -5 6, or equivalently that
Oe{x—Tx):xeY}

The lemma given below is a slight generalization of a result of Fan [56].

Lemma 5.10 Let Y be a subset of a topological vector space (X, T), Z a nonempty
finite subset of Y such that conv(Z) C Y and F: Z — 2¥ a multifunction with the
following two properties.

1. F(2) is sequentially closed in Y forall z € Z.
2. conv(W) C U F(2) forall W C Z.
zeW

Then ﬂ F(z) #0.
2€Z
The only generalization consists in assuming that the values 7 (z) are sequentially
closed in Y (not necessarily closed in X).

Lemma 5.11 Let Y be an almost convex subset of a topological vector space
(X, 1), let p be a continuous seminorm on X, and let T: Y — Y be a t-to-p
sequentially continuous map such that T (Y) is p-totally bounded . Then for each
& > Othereisx € Y with p(x — T(x)) < ¢ [I5].

Proof Let ¢ > 0 be arbitrary. Since T(Y) is p-totally bounded, and T(Y) C 7,
there is a finite set {x1,---,x,} € Y such that for any x € T (Y) there is some

£
ief{l,---,n}with p(x — x;) < 3 Since Y is almost convex, we can also find

. 3 .
a finite set {z1,---,z,} € Y so that p(z; — x;) < = foreachi = 1,---,n and

conv({z1, -+ ,zn}) € Y. Now, set Z = {z1,---, 2s}, and define a multifunction
F: Z — 2Y by putting, for each i,
£
F(z;) = {x eY: p(Tx)—x;) > 5}

Since p is continuous and T is sequentially continuous, each 7 (z;) is sequentially
closed in Y. Moreover, we have

ﬂF(zi) =.
i=1

This follows from the choice of xi,---,x,. By Lemma 5.10 applied to F, Z
and Y, we conclude that there exist a subset {zx,, -, 2x,} of Z and an x €
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conv({zk,, - -, Zk, }) such that x ¢ LmJ F(zk;). Hence p(T(x) — xi;) < % for
all j =1,---,m, so by the triangle in]ezq]uality,

p(T(x) —ij) <e¢ forall j=1,---,m.
Since x € conv({zy,, - - - , Zk, })» W€ get, by using again the triangle inequality,

px —T(x)) <e.

This completes the proof. |

As a consequence of the above lemma, the following generalization of Propo-
sitions 5.9 and 5.10 is given in [15] and shows that for approximate fixed points,
sequential continuity is strong enough.

Theorem 5.31 Let Y be an almost convex subset of a topological vector space
(X, 1), let o be a weaker locally convex topology on X, and let T: Y — Y be
a t-to-o sequentially continuous map such that T (Y) is o -totally bounded. Then T
has an approximate fixed point net.

As a consequence of the above theorem, the following optimal extension of
Corollary 5.7 to sequential continuous mapping is given [15].

Corollary 5.26 Let Y be a convex subset of a locally convex space X, and let
T:Y — Y be a sequentially continuous map such that T (Y) is totally bounded.
Then T has an approximate fixed point net.

Remark 5.7 When X is metrizable (or, more generally, Fréchet-Urysohn), we even
get an approximate fixed point sequence. In general, an approximate fixed point
sequence need not exist even if Y is compact (see Example 5.3) or if T is continuous
(this follows from Remark 1.28 and Example 5.2 if we observe that in weak
topology any bounded set is totally bounded).

The following interesting Propositions on approximate fixed point sequences and
fixed points of affine maps are worth mentioning [15].

Proposition 5.14 Let t© be a linear topology on the vector space X, Y C X a
nonempty bounded convex set, and T : Y — Y an affine selfmap. Then the mapping
T has an approximate fixed point sequence.

Proof Fix any y; € Y and define inductively the sequence (y,), by setting y,4+1 =
T (yn). Set

yit+---+w
—n .

Xp =
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Then

xn—T(x,,)zyl_n&HG

as Y is bounded. |

Remark 5.8 In Proposition 5.14 no continuity property of 7 is assumed, and we
obtain a generalization of a result in [62] where the result is proved for nets.

Proposition 5.15 Let X be a topological vector space, Y C X a nonempty bounded
convex set, and T : Y — Y an affine selfmap. If Y is countably compact, and T is
continuous, then T has a fixed point.

Proof Let (x,), be an approximate fixed point sequence given by Proposition 5.14.
Since Y is countably compact, there is some x € Y which is a cluster point of (x,),
hence there is some subnet (xy)q of (x,), which converges to x. By continuity of
T we get T (x,) —> T (x). However, (x4 — T (xy))q is a subnet of (x;, — T (x))n,
hence x4, — T (xy) —> 0. S0, x = T(x). |

The following Proposition shows that if the metrizability condition is dropped,
then in some very special cases sequential continuous maps have fixed points.

Proposition 5.16 Ler X be a topological vector space, Y C X a nonempty bounded
convex set,and T : Y — Y an affine selfmap. If Y is sequentially compact, and T is
sequential continuous, then T has a fixed point.

Proof The proof can be done in the same way as that of Proposition 5.15, we only
use sequential compactness to extract a subsequence (x,, ), converging to some
x € Y and then we use sequential continuity to deduce that 7' (x,,) — T'(x). W

In Proposition 5.16, the assumption of sequential compactness cannot be
replaced by compactness as witnessed by the following example [15].

Example 5.4 There is a Hausdorff locally convex space X equipped with its weak
topology, a nonempty compact convex subset ¥ C X, and an affine sequentially
continuous function 7': Y — Y with no fixed point.

Proof Let X = (I, 0(l%, lx)). We can regard X as signed Radon measures on
BN. Let Y be the subset of X consisting of probability measures. Then Y is compact
and convex. Now, pick a decomposition {Z,: n € N} of N into infinite disjoint
subsets. Next, we shall use this decomposition to define a sequence (k;;, ),, of natural
numbers as follows.

(i) k1 =2and k; ¢ Z;.
m+1

(i) kms1 > km, and kpy1 ¢ U Z; for each m € N.

i=1
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Let us define now a linear map 7: ¥ — Y by the formula

T(w) = pBN\N)S1 + D w(Z). 3,

m=1

where &, denotes the Dirac measure supported by x. Then T is a linear mapping
which is norm-to-norm continuous, and hence weak-to-weak continuous on lgo. As
I~ is a Grothendieck space, T is weak™-to-weak™ sequentially continuous. In other
words, it is sequentially continuous when considered from X to X. Further it is
obvious that T(Y) C Y.

Finally, T has no fixed point in Y. Indeed, suppose that u € Y is a fixed point,
ie., T(u) = p. Since T () = p is supported by the N, we have

p({1}) =T {1) = n(BNAN) = T(u)(BN\N) = 0.

Hence u is supported by the set {k,, : m € N}. Since u is a probability measure, we
can find the minimal m such that u({k,,}) # 0. However,

pkn}) = T () {kn}) = u(Zpn) =0,

as k; ¢ Z,, forl > m by condition (ii). This is a contradiction. |

It seems not to be clear whether the assumption that 7" is affine is essential in
the statement of Propositions 5.15 and 5.16. The proofs given works provided T
admits an approximate fixed point sequence. However, the best thing we can obtain
is an approximate fixed point by Corollary 5.26. Indeed, countably compact sets in
topological vector spaces are necessarily totally bounded [15].

Proposition 5.17 Ler (X, t) be a topological vector space, and let Y C X be a
relatively countably compact subset. Then Y is totally bounded.

Proof The proof will be done by contradiction. Suppose that Y is not totally
bounded. This means that there is V a balanced neighborhood of zero, such that
Y cannot be covered by finitely many translates of V. We can then construct by
induction a sequence (x,), in Y such that for each n € N we have

Xpg1 € {x1, -, x0) + VL
Then the set Z = {x,,n € N} is a closed discrete subset of X. Indeed, let W be
a balanced neighborhood of 6 such that W + W < V. Then for any x € X the
set x + W contains at most one element of Z. Indeed, suppose that m < n and
{xn’lv xﬂ} g X + W’ thus

X €EX+WCx, +WH+HWCx,, +V,

a contradiction. It follows that Z is an infinite subset of Y without an accumulation
point in X. Therefore Y is not relatively countably compact. |
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We have the following strengthening of Theorem 5.20 and a consequence of
Corollary 5.11.

Corollary 5.27 Let Y be a totally bounded convex subset of a normed space X.
Then every continuous map T : Y — Y admits an approximate fixed point sequence.

In [15], Barroso et al. raised the following open question :
Let X be a Hausdorff locally convex space, Y € X aconvexset,and7:Y — Y
a mapping. Suppose that one of the following two conditions is satisfied.

* Y is countably compact and T is continuous.
e Y is sequentially compact and T is sequentially continuous.

Does T necessarily admit a fixed point?

It follows from Proposition 5.17 and Corollary 5.26 that T has an approximate
fixed point net provided Y is countably compact and T is sequentially continuous.
However, Example 5.3 illustrates that 7" need not have an approximate fixed point
sequence even if Y is compact. And, Example 5.4 illustrates that even if 7 admits
an approximate fixed point sequence, it need not have a fixed point. It follows that
the above question is natural, as in the quoted examples the respective sets are not
sequentially compact and the respective maps are not continuous.

The proof of Proposition 5.15 shows that if we are able to construct an
approximate fixed point sequence, then we get the positive answer to the above
question. However, there is no idea how to do that.

Some special cases when the answers are positive were given in [15]:

(1) X is angelic: the countably compact sets are compact and sequentially
continuous maps on them are continuous.
(2) The countable subsets of ¥ have compact closures in Y.

The following theorem extends the assertion 1. of Theorem 5.20 to locally convex
spaces [15]. It shows that any nonempty bounded convex of a locally convex space
that is not totally bounded admits a uniformly continuous self map without an
approximate fixed point net.

Theorem 5.32 Let (X, t) be a locally convex space and Y C X a bounded convex
set. Let po be a continuous semi-norm such that Y is not po-totally bounded. Then
there is a mapping T : Y — Y with the following properties.

(i) T admits no approximate fixed point net.
(ii) For any continuous semi-norm p the mapping T is po-to-p Lipschitz.

Proof Without loss of generality, we can suppose that 6 € Y. It follows that there
exists 6 > 0 such that for any finite-dimensional subspace F' € X there is some
x € Y with dist,, (x, F) > 8. So, we can construct by induction a sequence (x,),
in Y such that

(@ po(x1) >34,
(b) distp,(xy+1, span{xy, --- , x,}) > 6 forany n € N.
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Let p be a continuous seminorm on X such that p > pg. Since Y is bounded,
there is M > 0 such that p(x,) < M for each n € N. Without loss of generality, we
can suppose that M > §. Let k1 < ky < k3 < k4 be natural numbers, and let «; be
scalars fori € {1, --- , 4}. Then clearly

4 4
p (Z a,-xk,.) <MY ail. (5.9)
i=1 i=1

Let
1 S i—1
Cl:m(ﬁ) fOI'lZI,"',4.
4

4
Then Zc,- < 1, and hence there is some i € {1, - - - , 4} such that |o;| > ¢; Z o]
i=1 i=1
Let i be the greatest such i. Then

V

4 4 4
p <ZO!;‘X/<,-) > Zasz -p Z aixy, | = Slaigl =M Y il
i=1

+1 i=ip+1

4
M
- 7) > el
i=1

|v v
§° g
M |
5 N
VoM
sl = o
g -
w ||M4> I
Fﬂ 5
; I
[«5)
o

The first inequality follows from the triangle inequality, and the second one follows

from condition (b) above, using the fact that p > pg and from the choice of M. The

third one follows from the choice of ip, the next equality is obvious. The last two
1 s

inequalities follow from the choice of the constants ¢y, - - - , c4. So, form = Y NTE

we get

4 4
my |y < p (Z oe,-xk,.) . (5.10)
i=1 i=1
Set

o
A, = conv({f, x,, xa11}) A= ] Ay

n=1
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Then A’ C Y. Moreover, by (5.9) and (5.10), we get that (A', po) is bi-Lipschitz
isomorphic to A defined by(5.3) considered with the metric inherited from /; and for
any continuous seminorm p on X satisfying p > po, the identity on A’ is po-to-p
bi-Lipschitz.

Let p be a continuous seminorm. Set p; = p 4+ po. Then p; is a continuous
seminorm satisfying p; > po. So, the identity on A’ is po-to-p; Lipschitz. Hence, it
is a fortiori po-to-p Lipschitz. It follows that the identity on A’ is po-to-t uniformly
continuous. Since pg is a continuous seminorm, the identity is clearly 7-to-pg
uniformly continuous. Let J: (X, ) — (X, po) be the identity mapping. Further,
let Z be the quotient (X, p())/po_1 (0). Then Z is a normed space. Let g : (X, pg) —
Z denote the quotient mapping. Then g o J is a continuous linear mapping, hence
it is uniformly continuous. Moreover, J is a uniform homeomorphism of A’ onto
J(A') and ¢ is an isometry of J(A’) onto g(J(A)). It follows that g(J(A")) is
bi-Lipschitz isomorphic to A. So, by Proposition 5.4 there is a Lipschitz retraction
ro: Z — q(J(A')). Then

r=(qu‘A/)_1 orpoqgoJ

is a uniformly continuous retraction of (X, ) onto A’. Moreover, r is pg-to-po
Lipschitz as g o J has this property, rg is Lipschitz, and g o J|a/ is an isometry of
(A, po) onto Z.

Since (A, pg) is bi-Lipschitz isomorphic to A, by Proposition 5.6 there is a
Lipschitz map Gg: (A', po) — (A, pg) without an approximate fixed point net
with respect to pg. Further, set

T =Goory.

Then T is a selfmap of Y which is pg-to-pg Lipschitz. Moreover, T is pg-to-p
Lipschitz for any continuous semi-norm p (as T(Y) < A’). Further, it has no
approximate fixed point net. To see this, it is enough to find an ¢ > 0 such that
po(x — T(x)) > e foreach x € Y. Let L be the pp-to-pg Lipschitz constant of 7.

Letn= inf |lx — Go(x)]. Set
xeq(J(Y))

Fix an arbitrary x € Y. If dist, (x, A') > g, then po(x — T(x)) > sas T(x) € A.
If dist, (x, A") < &, find y € A" with po(x — y) < &. Then

po(x —T(x)) = po(y — T(y)) — po(x —y) — po(T(x) — T(y))
>n— (14 L)po(x —y)
>(L+2e—(14+ L) =c¢.

This completes the proof. n
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Remark 5.9 Theorem 5.32 proves that the result of Corollary 5.26 is the best
possible in a sense: the assumption of total boundedness is essential even for
uniformly continuous maps.

5.4 Applications to Asymptotic Fixed Point Theory

Fixed point results for iterates 7™ for m sufficiently large are intrinsically related
to the problem for finding periodic solutions of ordinary differential equations,
differential-difference equations, and functional differential equations [77, 95-97],
and [195]. Jones [96] introduced the term “asymptotic fixed point theorems” to
describe such results.

The asymptotic fixed point property concerns the possibility of getting fixed point
results for continuous maps by imposing conditions in some of its iterates.

A long-standing conjecture in the fixed point theory probably due to Browder
and which was formulated by Nussbaum in 1972 in [138] reads as follows:

Conjecture Let (X, |.||) be a Banach space, Y € X a nonempty closed bounded
convex set and T: Y — Y be a continuous mapping such that 7™ is compact for
some m € N. Then T has a fixed point.

Nussbaum [137-140] proved this conjecture with the additional assumption that
T restricted to an appropriate open set is continuously Fréchet differentiable and
using algebraic topology methods. Similarly, Browder in [30] proved the above
conjecture under the assumption that Y is a compact absolute neighborhood retract
and T"(Y) is homologically trivial in Y. Deimling in [42] recalled the above
conjecture. In [71] Gérniewicz and Rozploch-Nowakowska with using algebraic
topology, proved the above conjecture by adding assumption that 7' is locally
compact. Steinlein [185], Hale, and Lopes [78] gave related results to the above
conjecture.

A partial solution of the above conjecture is the following [12].

Proposition 5.18 Ler Y be a weakly compact convex subset of a Banach space
(X, |I.) and T : Y — Y be a demicontinuous mapping. Suppose that T™ is strongly
continuous for some m € N. Then T has a fixed point.

Proof Let (x;), be a weak-approximate fixed point sequence for 7', for example
the one given in Theorem 5.25. From Eberlein’s theorem we conclude that up to a
subsequence, still denoted by (x,,),, X, — x in Y for some x € Y. In particular,
T (x;) — x. Since T™ is strongly continuous, this implies that T(y) = y where
y=T"(x). [ |

The following is an additional contribution to asymptotic fixed point theory [13].

Theorem 5.33 Let X be an Asplund space, Y a bounded, closed convex subset of
X and T: Y — Y a continuous map such that T™ is strongly continuous for some
integer m > 1. Assume that T is weakly completely continuous, that is, it maps
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weakly Cauchy sequences into weakly convergent sequences. Then T has a fixed
point.

Proof Without loss of generality, we may assume that X’ is separable. Let (x,),
be a sequence in Y such that (x, — T'(x,)), converges to 6 weakly (for example,
that given by Theorem 5.27). It follows from Rosenthal’s theorem that (x,), has a
weak Cauchy subsequence, say (x,, )x. Since T is weakly completely continuous,
by passing to a subsequence if needed, we can assume that 7 (x,,) — x € Y.
In particular, we have x,, — x. As T" is strongly continuous, it follows that
T"(xy,) — T™(x). Similarly, since T (x,,) — x, we have 7" (T (x,,)) — T" (x).
Thus we have T(T™ (x)) = T"™(x) and the proof is complete. [ ]

Remark 5.10 Alspach [4] constructed an example of a weakly convex subset of
L1[0, 1] which admits a fixed point free isometry 7: ¥ — Y. In particular, since
every isometry is proper, Alspach’s example in conjunction with Proposition 5.8
show that the assumption T"™ is strongly continuous in the previous theorem cannot
be dropped.

The following asymptotic fixed point results are due to Seda [178].

Theorem 5.34 Let Y be a closed convex subset of a Banach space X and T: Y —
Y be a continuous mapping, T is proper and there exists an integer n > 2 such that
T" is compact. Then T has a fixed point.

Proof By the Schauder fixed point theorem, the assumption 7" is compact implies
that there exists a point y € Y such that y = T"(y). Then Lemma 5.8 gives
that either y is a fixed point of 7', or there is a natural / > 2 such that C =
(v, T(y), -, Tl_l(y)} is an [-cycle of T whereby T(C) = C. Suppose that the
latter case is true. Then there exists a unique minimal admissible couple (C, Z»).
In view of Lemma 5.6, Z, satisfies (5.7). As T is proper, from the compactness of
T"(Z) it follows that 7! (T"(Z,)) as well as T"~1(Z,) are compact. Proceeding
in this way, step by step we get that T"~2(Z5), - - - , T(Z;) are compact and hence
Z» is compact, too. | |

Theorem 5.35 Let Y be a closed convex subset of a Banach space X and T: Y —
Y be a continuous mapping and there exists an integer n > 2 such that T" is
compact. Then in the compact set Z = T"(Y) either T has a fixed point or for
each prime number p > n there exists a p-cycle of T. Moreover, each cycle of T
lies in Z.

Proof As W = conv(Z) is a convex compact subset of Y, and for each k > n
Tk(W) C Z, there exists a fixed point x; € Z of Tk If T has no fixed point, then
xy belongs to an [-cycle of T where [ is a divisor of k. In case k = p, [ is p. Further
T(Z) € Z and hence, together with x, all elements of this p-cycle of T belong
to Z. The last statement follows from the fact that in each cycle of T there is an
element in Z. |
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5.4.1 Existence of Limit-Weak Solutions for Differential
Equations

We consider the problem of finding limiting-weak solutions for a class of ordinary
differential equations in reflexive Banach spaces. Such equations are closely related
to Peano’s theorem in infinite dimensional spaces.
We are concerned with the following vector-valued differential equations:
{ uy = f(t,u), inX, G.11)
u(0) = up € X,

where t € I = [0, y],o > 0, X is a reflexive Banach space and f: [ x X — X.
Here, the field f is assumed to be a Carathéodory mapping, that is,

(Hy) forallt el, f(¢,.): X — X is continuous.
(Hy) forallx € X, f(¢,.): X — X is measurable.

In [12], Barroso explored a new approach to (5.11). The basic idea is to weaken
the notion of solution in a way that allows us to derive general existence results even
without having additional conditions of continuity other than (Hj). To this aim, the
developed theory on weak approximate fixed points for continuous mappings will
be invoked.

The following notion of weak-approximate solution for (5.11) is due to Barroso
[12].

Definition 5.20 (Limiting Weak Solutions) We say that an X-valued function
u: I — X is a limiting-weak solution to the problem (5.11) if u € C(I, X) and
there exists a sequence (u,,), in C (I, X) such that

1. uy ~uin C(l, X),
2. foreacht € I,

t
uo+/ f(s,uy(s))ds — u(t), in X,
0

3. and, u is almost everywhere strongly differentiable in /.
where the above integral is understood in Bochner sense.

To get an existence result of limiting-weak solutions to (5.11), Barroso [12]
proved the following:

Theorem 5.36 Ler (X, ||.||) be a reflexive Banach space and f: I x X — X be a
Carathéodory mapping satisfying

I f(Gs, )| <als)e(lx]),for a.e.s € I, and all x € X, (5.12)
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where a € L,[0,y] for some 1 < p < oo, and ¢: [0,00) — (0,00) is
nondecreasing continuous function such that

fy (s)d </°o ds
oa(s ) _—
0 o @)

Then (5.11) has a limiting-weak solution.

For the proof of the above theorem, we will rely on the following weak
compactness result of Dunford [49].

Theorem 5.37 Let (2, X, 1) be a finite measure space and X be a Banach space
such that X and X' have the Radon-Nikodym property. A subset Y of Li(u, X) is
relatively weakly compact if

1. Y is bounded,
2. Y is uniformly integrable, and

3. foreach A € %, the set {/

udp: u € Y} is relatively weakly compact.
A

Proof Let us consider (€2, X, u) the usual Lebesgue measure space on I and denote
by Li(u, X) the standard Banach space of all equivalence classes of X-valued

Bochner integrable functions u defined on I equipped with its usual norm |.||1.
In what follows we shall use the following notations

A= {u € Li(u, X): lu@)ll < b(t) forae. 1 e 1},

B= {u e Li(w, X): v < a®)eb)) forae. 1 e 1],

where

t z
b(t) = J! (/ a(s)ds> and J(z) = f Lds.
0 luoll $(5)

A straightforward computation shows that both A and B are convex. Also, as is
readily seen, A is closed in L{(u, X). Moreover, since X is a reflexive space, we
can apply Theorem 5.37 to conclude that B is a relatively weakly compact set in
L1(u, X). Let us consider now the set

t
Y = {u e A: u(t) = uo—i—/ u(s)ds forae.t € I, andsome u € B}.
0

It is easy to see that Y is nonempty and convex. We claim now that Y is closed.
Indeed, let (u,), be a sequence in Y such that u,, —> u in L1 (u, X). Then

u,(t) — u()in X
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for a.e. ¢+ € I. In particular, u € A. On the other hand, since B is sequentially
weakly compact and

t
u, (t) = uop —i—/ u,(s)ds forae. t €1,
0

with u, € B,n > 1, we may assume that (u,), converges weakly to some u €
t

L1(j, X). Then, by fixing ¢ € X’ and taking into account that each / ¢()ds
0

defines a bounded linear functional on L (u, X), it follows that

t t t
¢ u(t) —uo) = lim ¢ (/ l'_‘n(s)ds> = lim / @ (itn(s))ds =/ ¢ (u(s))ds,
n—oo 0 n—oQ 0 0

t

for a.e. r € I. Hence ¢ (u(t) — ug) = ¢ (/ ﬁ(s)ds) for a.e. t € I. This implies
0

that

t
u(t) = ug —i—/ u(s)ds forae.t €1,
0

since ¢ was arbitrary. It remains to show that u € B. To this end, it suffices to
apply Mazur’s theorem since 5 is closed in L (/, X) and u,, — u in L{(I, X). This
concludes the proof that Y is closed.

Thus, by applying once more Theorem 5.37, we reach the conclusion that Y is
weakly compact in L1 (I, X). Let us define now a mapping F: Y — Y by

t
F)(t) = uo + / £(s.u(s))ds.
0

From now on, our strategy will be to obtain a weak-approximate fixed point
sequence for F in L(/, X) and then deduce that it is itself a weak-approximation of
fixed points for F in Wl’p(l, X), the Sobolev space consisting of all u € L, (I, X)
such that 1’ exists in the weak sense and belongs to L p(I, X). After this we will use
the fact that the embedding whp (I, X) — C(I, X) is continuous to recover the
corresponding weak convergence in C (7, X).

By using (H1)-(H3), we see that F is well-defined and that it is continuous with
respect to the norm-topology of Li(I, X). The last assertion follows easily from
Lebesgue’s theorem on dominated convergence. According to Theorem 5.25, there
exists a sequence (#,), in Y so that u, — F(u,) — 6 in L1(I, X). Observe that
u, € C(I,X) for all n > 1. Moreover, up to subsequences, we may assume that
both (u,), and (F (u,)), converge in the weak topology of L{(/, X) tosomeu € Y.
We claim now that u,, — F (u,) — 6 in C (I, X). Before proving this, we get a priori
L ,-estimates for arbitrary functions u € Y.
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Fixanyu € Y:
(1) Using (H>) we have

P
dt}
1 14 t p %
< luoll 117 + /0 (/0 IIf(s,u(s))Ilds> dz}
1 Y t p %
< luoll 117 + /0 (/0 a(s)<p(b(s))ds> dr}

1 1
< lluolllI17 + llallz 0,19 1blloc) Y 7,

1 Y
IF @)z, < lluollll]? + /
0

t
[ f(s,u(s))ds
0

where ||b|| o denotes the supremum norm of b on /.
(2) Analogously, one can shows that

1 1
luollL, 1117 + lleell 210,19 (1blloc) ¥ P .
(3) It follows now from (H>) and the L ,-assumption on « that
19: F )L, < e(llblloo)llllL, (0,115
and
0:ullL, < @Ublloo)lleclz 0,1
In consequence, the above estimates show that both (&), and (F (u,)), are
bounded sequences in Wl’p(l, X). In view of the reflexivity of Wl’f’(l, X),
by passing to a subsequence, if necessary, we can find v, w € whP(1, X)
such that u, — v and F(u,) — w in WYP(I, X). In particular, u =
v = w since the embedding Wl’f’(l, X) — Li(I, X) is continuous. Thus
up — F(uy) — 6 in WP(1, X). On the other hand, using now the fact the
embedding Wl”’(l, X) — C(I, X) is also continuous, it follows that
u, — F(u,) =6 in C(I, X), and
u, ~u in C(I, X).

Therefore

t
uo+/ f(s,un(s))ds — u(t) in X, (5.13)
0
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for all r € I, which proves 1. and 2. of Definition 5.20. It remains to prove the
optimal regularity of the limiting-weak solution «. To this end, we may apply
again Theorem 5.37 to conclude that

Z={f( ux()):n €N}

is relatively weakly compact in L1 (I, X). Hence, by passing to a subsequence
if necessary, we get

! !
/ f(s,un(s))ds — f v(s)ds in X, (5.14)
0 0

for all t € I and some v € L{(I, X). Combining (5.13) and (5.14) it follows
that

t
u(t) = uo +/ v(s)ds,
0

forall t € I. Hence, following the same arguments as [188], one can prove that
u is almost everywhere strongly differentiable in /. This completes the proof of
Theorem 5.36.
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Banach-Alaoglu’s theorem, 59
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Directionally bounded convex subset, 120
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Finite convex linear combinations, 17
Finite intersection property, 5
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Generalized nonexpansive map, 113
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Goldstine, 63

Grothendieck property, 223
Grothendieck space, 221

g-space, 72

H

Hausdorff metric, 157
Helley lemma, 63
Hyperbolic space, 119

1

Idzik’s problem, 193
Inner metric, 144
Interior, 2

Intrinsic metric, 144

J

James’s space, 78

Index
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Kakutani’s example, 89

Kakutani map, 192

KKM map, 188

KKM principle, 187

K-set contraction map, 94
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L
Length, 144
Length space, 144
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Limiting-weak solution, 233, 234
Limit ordinal, 83
Linear functional, 51
Linear homeomorphism, 14
Lipschitz equivalence mapping, 203
Lipschitz equivalent, 203
Lipschitz fixed point property (L.f.p.p.), 202
Lipschitz map, 202
Lipschitz retraction, 203
Locally convex, 27
Local neighborhood base, 4

M
Mann iteration method, 103
Mapping
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demicompact, 108
demicontinuous, 209
demicontinuous, 207, 231
invariant subset, 95
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most convex, 111
Markov-Kakutani’s fixed point theorem, 92
Mazur’s theorem, 57
Metric
equivalent, 203
translation invariant, 14
Metric embedding, 119
Metric line, 119
Metric segment, 119, 144
Metric space, 2
A L.AE., 203
Lipschitz absolute extensor (L.A.E.), 203
Lipschitz absolute retract (L.A.R.), 203
metrically convex, 144
Milman, 65
Minimal admissible couple, 212
Minkowski functional, 32
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closed, 187
compact, 187
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lower semicontinuous (1.s.c.), 187
upper semicontinuous (u.s.c.), 187

N
Neighborhood, 3
Neighborhood system, 3
Net, 10
T-approximate fixed point, 224, 225,228
bounded, 20
Cauchy, 28
converges, 10
converges strongly, 55
converges weakly, 55
point
accumulation, 10
cluster, 10
Nonexpansive mapping, 94, 120
approximate fixed point property (AFPP),
122,131
approximate fixed point property (AFPP),
101, 118-120, 124-126, 128,
131-133
approximate fixed point sequence, 103
bounded approximate fixed point property
(BAFP), 134,135
fixed point property (FPP), 94-97
subset has the fixed point property, 94
weak fixed point property (WFPP), 95
weak fixed point property (WFPP), 95, 97
Normalized duality mapping, 110
Non-zero minimal displacement, 114
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Open cover, 4

Open sets, 1

Open strip, 33

Opial’s condition, 109, 110, 117
Orbit, 161

P
Partition of unity, 216
Path, 144
Point
V-fixed, 196, 197
e-fixed, vii, 99-101, 134, 137-139, 141
k-periodic of, 211
e-fixed, 138, 139
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accumulation, 2
almost fixed, 99
cluster, 103, 107
fixed, vii
global minimum, 159
isolated, 2
limit , 2
Positive cone, 71
Positive semiorbit y T (x), 211
Preimage, 16
Principal ball, 79
Proper mapping, 210
Property
B), 172,173
o (X', X)-afp, 217,221
o (X', Z)-afp, 215
o (X, Z)-afp, 215
o (X, Z)-approximate fixed point, 215
t-afp, 202,207, 209
T-approximate fixed point, 202
e-fixed, 141
P), 175
(Q), 175
o (X', X)-afp, 221
almost fixed point, 189
asymptotic fixed point, 231
convexly almost fixed point, 189
Radon-Nikodym, 234
weak-afp, 209, 215, 217, 219-222
weak-approximate fixed, 209
Pseudo-convergent family, 83
Pseudo-limit, 83

Q

Quasi-nonexpansive mapping, 171

R

Radial subset, 18

Radius, 79

Rectifiable, 144

Regular-global-inf function (r.g.i.), 155
Relatively countably compact, 74, 75
Retract, 140

Retraction, 140

RNP, 77

Rosenthal’s theorem, 68

S

Sadovskii’s fixed point theorem, 94
Schauder-projection, 84
Schauder’s conjecture, 192
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Schauder’s fixed point theorem, 89
Schauder-Tychonoff’s fixed point theorem, 92
Schur’s Theorem, 76, 77
Schwartz space, 35
Second dual, 58, 62
Semiball, 32
Seminorm, 30
Separable in the strong topology, 217
Separated, 4
Separating family of seminorms, 30
Sequence
o (X, Z)-approximate fixed point, 215
T-approximate fixed point, 202
T-convergence, 202
I1-, 69-71,74-76,78,219-221
(P)—, 129,130
o (X, Z)-approximate fixed point, 215
l1-, 69,76
(P)—, 129,130
approximate fixed point, 115, 225
directional, 120
norm attaining bounded, 130
Pryce, 129
weak-approximate fixed point, 207, 209,
214,231
Set
w-limit, 211
o (X, X')-closed, 56
T-bounded, 20
k-cycle of, 211
p-totally bounded, 224
T-closed, 56
almost convex, 188
approximate fixed point, 101
clopen, 81
convexly totally bounded (c.t.b.), 192
countably compact, 72
drop generated, 172
global minimum points, 157, 158
level, 156
linearly bounded, 118
ordered, 79
partially ordered, 79
precompact, 29
relatively countably compact, 72
relatively sequentially compact, 72
sequentially compact, 72
strongly closed, 56
strongly convexly totally bounded (s.c.t.b.),
193
totally bounded, 29
Zima type, 192
Set-condensing mapping, 108
Solid, 79

Index

Starshaped about zero subset, 18
Starshaped subset, 184

Strictly contracting mapping, 87
Strong convex structure (SCS), 175
Subbase, 3

Subcover, 4

Subnet, 10

Symmetric subset, 18

T
Takahashi convex metric space (TCS), 174
Topological completion, 41
Topological dual space, 51
Topologically isomorphic, 48
Topological space, 1

No-monolithic, 217

compact, 4

Fréchet-Urysohn, 72

Hausdorff, 4

metrizable, 8

normal, 4

Polish, 74

regular, 4

separable, 6

Ty, 4

Ty, 4

T3, 4

Ty, 4
Topological vector space, 13

complete, 28

Heine-Borel property, 21

locally bounded, 21

locally compact, 21

metrizable, 21

normable, 21

property

o (X, Z)-afp, 215

sequentially complete, 28
Topology, 1

o(X', X), 57

w*, 57

o(X, X", 54

co-finite, 2

coarser, 7

coarset, 54

compatible, 8

compatible with the duality, 76

discrete, 2

euclidean, 13

finer, 7

induced, 84

induced , 2

induced from seminorms, 33
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initial, 54
linear, 13
metric, 2
stronger, 7
trivial, 2
weak, 54
weak*, 57
weaker, 7
weakest, 8
Totally ordered, 79
Translation invariant, 14
Translations, 14
Type I', 113

U
Ultrametric distance, 79
Ultrametric space, 79
complete, 80
principally complete, 80
subspace, 81
spherically complete, 80
Uniformity, 133
Uniformly asymptotically regular mapping,
104, 107

251

Uniformly locally directionally nonexpansive,

169, 176
Uniform space, 133

A\
Valuation, 81

W

Weak lower semicontinuous map, 114
Weakly bounded, 55

Weakly closed, 56

Weakly contractive mapping, 183

Weakly proper mapping, 210

Weakly quasi-nonexpansive mapping, 180
Weak regular-global-inf, 173

Weak r.g.i, 173

Weak sense, 235

Z
Zero. Bounded Rule, 21
Zorn’s lemma, 95
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