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Preface

A point x is a fixed point of a mapping T if T (x) = x. Fixed point theorems
assert that (under various conditions) a fixed point exists. For instance, we will be
concerned with a (continuous) mapping T of a subset Y of a metric space X (with a
metric d) and with points which are almost fixed, in the sense that

d(T (x), x) < ε.

We call such a point “ε-fixed.” Where convexity is mentioned, we assume that
Y is a subset of a topological vector space. There are other concepts of “almost
fixed.” In general, almost fixed points have usually appeared in a secondary role,
in discussions of fixed points. This amounts almost to a reversal of reality. In
most proofs of fixed point theorems, the constructive part of the argument yields
almost fixed points, and a non-constructive compactness argument then gives the
existence of a fixed point. Thus, almost fixed points unlike fixed points can be found
numerically. For most applications involving computation, it is important to know
just what can be calculated (applications to economics). There are also cases where
the existence of a fixed point is non-trivial or uncertain, whereas almost fixed are
easily found, so perhaps this means that almost fixed are the natural objects to use.

At the same time, an active branch of current research is devoted to the existence
of approximate fixed points for single-valued maps. Basically, given a bounded,
closed convex set Y of a topological vector space X and a map T : Y → Y , one
wants to find a sequence (xn)n ⊆ Y such that

xn − T (xn)→ θ.

A sequence with this property will be called an approximate fixed point sequence.
The main motivation for this topic is purely mathematical and comes from

several instances of the failure of the fixed point property in convex sets that
are no longer assumed to be compact. This gives rise to the natural question
of whether a given space without the fixed point property might still have the
approximate fixed point property. Approximate fixed point results have a lot of
applications in many interesting problems. They arise naturally in the study of some
problems in economics and game theory, and one can apply them to asymptotic fixed
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viii Preface

point theory and to study the existence of limiting-weak solutions for differential
equations in reflexive Banach spaces.

The book has five main chapters.
In Chap. 1, we present basic notions in topologic space theory and introduce

the classical topological vector spaces, locally convex spaces, and ultrametric
spaces. Special attention is devoted to weak topology and weak∗ topology and
their properties related to compactness, to l1-sequences, in particular, Rosenthal’s
theorem, and the Fréchet-Urysohn property. This includes the most recent work in
great detail. Also, we give a brief survey on classical fixed point theorems.

Chapter 2 introduces the reader to the almost fixed point theory in metric spaces
(normed spaces). Results on the existence of ε-fixed points and approximate fixed
point sequences for different classes of mapping are presented, in particular where
there are no fixed points. Special effort is devoted to approximate fixed points of
nonexpansive mappings in unbounded sets.

In Chap. 3, we indicate how the fixed point of a strictly contracting self-mapping
of a spherically ultrametric space can either be reached or approximated. One of the
merits is that we deal with ultrametric spaces having sets of distances that are not
necessarily totally ordered, but the results then apply to general kinds of algorithms.

Chapter 4 deals with synthetic approaches to problems of fixed points. We are
concerned with the theory of regular-global-inf functions which satisfy conditions
weaker than continuity and with an original synthetic approach based on conver-
gence with continuity (by sequence). Some results and applications to fixed point
theorems for different classes of mappings and in different classes of topological
spaces are discussed.

Chapter 5 is devoted to almost fixed and approximate fixed point theories in
topological vector spaces. First, we introduce the notion of the (convexly) almost
fixed point property, and by using the KKM principle for the closed and open valued
cases, we present existence results for almost fixed points of different classes of
lower semicontinuous and upper semicontinuous multifunctions on convex subsets
of topological vector spaces and having totally bounded ranges. These results
are applied to obtain the most well-known fixed point theorems in analytical
fixed point theory. Second, we discuss the approximate fixed point property for
a (closed) convex (bounded) subset of topological vector spaces. We present
some recent existence results of approximate fixed point nets (approximate fixed
point sequences) (weak approximate fixed point sequences) for different classes of
mappings (continuous, Lipschitz, sequentially continuous, affine, demicontinuous,
strongly continuous, the range is totally bounded) of a (closed) convex (bounded)
subset of topological vector spaces. These results are related to the nature of the
convex set and to the properties of the ambient space. Applications to asymptotic
fixed point theory and the existence of limiting-weak solutions for differential
equations in reflexive Banach spaces are given.

Sfax, Tunisia Afif Ben Amar

Galway, Ireland Donal O’Regan
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Chapter 1
Basic Concepts

This chapter collects well known concepts and results that will play a major role
in constructing approximate fixed point theory in the remaining chapters. We note
that we will reference the appropriate source papers after Sect. 1.2.8 (before this
subsection well known results are presented so that the book is self contained). A
brief introduction on fixed point theory is given at the end of this chapter.

1.1 Topological Spaces

1.1.1 The Notion of Topological Spaces

The topology on a set X is usually defined by specifying its open subsets of X.

Definition 1.1 A topology τ on a set X is a family of subsets of X which satisfies
the following conditions :
1. The empty set ∅ and the whole X are both in τ .
2. τ is closed under finite intersections.
3. τ is closed under arbitrary unions.

The pair (X, τ) is called a topological space.
The sets Y ∈ τ are called open sets of X and their complements Z = X \ Y are

closed of X. A subset of X may be neither closed nor open, or both. A set that is
both closed and open is called a clopen set.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Amar, D. O’Regan, Topology and Approximate Fixed Points, Developments
in Mathematics 71, https://doi.org/10.1007/978-3-030-92204-7_1
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2 1 Basic Concepts

Examples 1.1

(i) Let X any set. Then τ = {∅, X} is a topology on X, called the trivial topology
on X.

(ii) At the other extreme of the topological spectrum, if X is any nonempty set,
then τ = P(X) the power set of X, is a topology on X, called the discrete
topology on X.

(iii) Let X = {a, b}, and set τ = {∅, {a}, {b}, {a, b}}. Then τ is a topology on X.
(iv) Let (X, d) be a metric space. Let

τ =
{
Y ⊆ X : for all x ∈ Y, there exists δ > 0 such that Bδ(x)

= {y ∈ X : d(x, y) < δ} ⊆ Y
}
.

Then τ is a topology, called the metric topology onX induced by d. This is the
usual topology one thinks of when dealing with metric spaces, but as we shall
see, there can be many more.

(v) Let X be any nonempty set. Then

τcf = {∅} ∪ {Y ⊆ X : X \ Y is finite }

is a topology on X, called the co-finite topology on X.

Definition 1.2 Let (X, τ) be a topological space and Y ⊆ X. Then Y ∩ τ = {Y ∩
U : U ∈ τ } is called the induced topology on Y .

Definition 1.3 Let (X, τ) be a topological space and Y ⊆ X. We define

(i) The interior of a subset Y ⊆ X is the largest open set contained in it. It will
be denoted by intY . Equivalently, intY is the union of all open subsets of X
contained in Y .

(ii) A point x ∈ X is a limit point (or accumulation point) of Y if and only if for
every open set U containing x, it is true that U ∩Y contains some point distinct
from x, i.e., Y ∩ (U \ {x}) �= ∅. Note that x need not belong to Y .

(iii) The point x ∈ Y is an isolated point of Y if there is some open set U such that
U ∩Y = {x}. (In other words, there is some open set containing x but no other
points of Y .)

(iv) The closure of a subset Y , written Y , is the union of Y and its set of limit points,

Y = Y ∪ {x ∈ X : x is a limit point of Y }.

Remark 1.1 It follows from the definition that x ∈ Y if and only if Y ∩ U �= ∅ for
any open set U containing x. Indeed, suppose that x ∈ Y and that U is some open
set containing x. Then either x ∈ Y or x is a limit point of Y (or both), in which
case Y ∩ U �= ∅. On the other hand, suppose that Y ∩ U �= ∅ for any open set
U containing x. Then if x is not an element of Y it is certainly a limit point. Thus
x ∈ Y .
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Proposition 1.1 Let (X, τ) be a topological space and Y ⊆ X. The closure of Y is
the smallest closed set containing Y , that is,

Y =
⋂
{Z : Z is closed and Y ⊆ Z}.

Corollary 1.1 A subset Y of a topological space is closed if and only if Y = Y .

Moreover, for any subset Y, Y = Y .

Proof If Y is closed, then Y is surely the smallest closed set containing Y . Thus
Y = Y . On the other hand, if Y = Y then Y is closed because Y is. Now let Y be
arbitrary. Then Y is closed and so equal to its closure, as above. That is, Y = Y . �
Definition 1.4 Let (X, τ) be a topological space.

1. A subfamily B of τ is called a base if every open set can be written as a union of
sets in B.

2. A subfamily X is called a subbase if the finite intersections of its sets form a
base, i.e. every open set can be written as a union of finite intersections of sets
in X .

Examples 1.2

1. The collection B = {(a, b) : a, b ∈ R, a < b} is a base for the usual topology
on R.

2. Let S be the collection of all semi-infinite intervals of the real line of the forms
(−∞, a), and (b,+∞), where a ∈ R. S is not a base for any topology on R.
To show this, suppose it were. Then, for example, (−∞, 1) and (0,+∞) would
be in the topology generated by S , being unions of a single base element, and so
their intersection (0, 1) would be by the axiom 2) of topology. But (0, 1) clearly
cannot be written as a union of elements in S .

3. The collection S is a subbase for the usual topology on R.

Proposition 1.2 LetX be a set and let B be a collection of subsets ofX. S is a base
for a topology τ on X iff the following hold :
1. B covers X, i.e., ∀x ∈ X, ∃B ∈ B such that x ∈ B.
2. If x ∈ B1 ∩ B2 for some B1, B2 ∈ B, then B3 ∈ B such that x ∈ B3 ∈ B1 ∩ B2.

Definition 1.5 Let (X, τ) be a topological space and ∈ X. A subset U of X is
called a neighborhood of x if it contains an open set containing the point x. The
neighborhood system at x is Nx = {U ⊆ X : U is a neighborhood of x}.
Theorem 1.1 Let (X, τ) be a topological space, and x ∈ X. Then :
(a) If U ∈ Nx , then x ∈ U .
(b) If U,V ∈ Nx , then U ∩ V ∈ Nx .
(c) If U ∈ Nx , there exists V ∈ Nx such that U ∈ Ny for each y ∈ V .
(d) If U ∈ Nx and U ⊆ V , then V ⊆ Nx .
(e) G ⊆ X is open if and only if G contains a neighborhood of each of its points.
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Remark 1.2 Conversely, if in a set X a nonempty collection Nx of subsets of X is
assigned to each x ∈ X so as to satisfy conditions (a) through (d) and if we use
(e) to define the notion of an open set, the result is a topology on X in which the
neighborhood system at x is precisely Nx .

Definition 1.6 Let (X, τ) be a topological space. A (local) neighborhood base Bx
at a point x ∈ X (or a fundamental system of neighborhoods of x) is a collection
Bx ⊆ Nx so that U ∈ Nx implies that there exists B ∈ Bx so that B ⊆ U . We refer
to the elements of Bx as basic neighborhoods of the point x.

Example 1.1 Consider (X, d) be a metric space equipped with the metric topology
τ . For each x ∈ X, fix a sequence (rn(x))n≥1 of positive real numbers such that
lim
n→∞ rn(x) = 0 and consider Bx = {Brn(x)(x) : n ≥ 1}. Then Bx is a neighborhood

base at x for each x ∈ X.

Remark 1.3 Let (X, τ) be a topological space, and for each x ∈ X, suppose that Bx
is a neighborhood base at x. Then B =

⋃
x∈X

Bx is a base for the topology τ on X.

Definition 1.7 If (X, τ) is a topological space and x ∈ X and B is a set of open
sets, we say that B is a local base at x if each element of B includes x and for every
open set U that includes x there is some V ∈ B such that V ⊆ U .

Remark 1.4 If for each x ∈ X the set Bx is a local base at x, then
⋃
x∈X

Bx is a base

for the topology of X.

Definition 1.8 Let (X, τ) be a topological space.

1. (X, τ) is said to be T1 if for every x, y ∈ X such that x �= y, there are
neighborhoods Ux of x and Uy of y with y /∈ Ux and x /∈ Uy .

2. (X, τ) is said to be T2 (or Hausdorff) if for every x, y ∈ X such that x �= y, there
are neighborhoods Ux of x and Uy of y with Ux ∩ Uy = ∅.

We say that two subsets Y and Z can be separated by τ if there exist U,V ∈ τ
with Y ⊆ U,Z ⊆ V and U ∩ V = ∅.

3. (X, τ) is said to be regular if whenever Y ⊆ X is closed and x /∈ Y , Y and {x}
can be separated.

4. (X, τ) is said to be normal if whenever Y1, Y2 ⊆ X are closed and disjoint, then
Y1 and Y2 can be separated.

5. (X, τ) is said to be T3 if it is T1 and regular.
6. (X, τ) is said to be T4 if it is T1 and normal.

Definition 1.9 Let (X, τ) be a topological space. An open cover of Y ⊆ X is a
collection G ⊆ τ such that Y ⊆ ∪G∈G

A subset Y of a topological space (X, τ) is said to be compact if every open cover
of X admits a finite subcover.
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Proposition 1.3 Suppose (X, τ) is a topological Hausdorff space.

1. Any compact set Y ⊆ X is closed.
2. If Y is a compact set, then a subset Z ⊆ Y is compact, if and only if Z is closed

(in X).

Proposition 1.4 For a subset Y of a topological space (X, τ), the following
statements are equivalent.

1. Y is compact.
2. If (Zα)α∈I is any family of closed sets such that Y ∩

⋂
α∈I
Zα = ∅, then Y ∩

⋂
α∈J

Zα = ∅ for some finite subset J ⊆ I .

3. If (Zα)α∈I is any family of closed sets such that Y ∩
⋂
α∈J

Zα �= ∅, for every finite

subset J ⊆ I , then Y ∩
⋂
α∈I
Zα �= ∅.

Proof The statements 2. and 3. are contrapositives. We shall show that 1. and 2.
are equivalent. The proof rests on the observation that if (Uα)α is a collection of
sets, then Y ⊆

⋃
α

Uα if and only if Y ∩
⋂
α

(X \ Uα) = ∅. We first show that 1.

implies 2. Suppose that Y is compact and let (Zα)α∈I be a family of closed sets such
that Y ∩

⋂
α∈I
Zα = ∅. Put Uα = X \ Zα . Then each Uα is open, and by the above

observation, Y ⊆
⋃
α∈I
Uα . But then there is a finite set J such that Y ⊆

⋃
α∈J

Uα , and

so Y ∩
⋂
α∈J

Zα = ∅, which proves 2.

Now suppose that 2. holds, and let (Uα)α be an open cover of Y . Then each
X \ Uα is closed and Y ∩

⋂
α∈I
(X \ Uα) = ∅. By 2., there is a finite set J such that

Y ∩
⋂
α∈J
(X \ Uα) = ∅. This is equivalent to the statement that Y ⊆

⋃
α∈J

Uα . Hence

Y is compact. �
Remark 1.5 A topological space (X, τ) is compact if and only if any family of
closed sets (Zα)α∈I in X having the finite intersection property (i.e.,

⋂
α∈J

Zα �= ∅

for each finite subset J in I ) is such
⋂
α∈I
Zα �= ∅.

Proposition 1.5 A nonempty subset Y of a topological space (X, τ) is compact if
and only Y is compact with respect to the induced topology, that is, if and only if
(Y, τY ) is compact. If (X, τ) is Hausdorff then so (Y, τY ).
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Proof Suppose first that Y is compact in (X, τ), and let (Gα)α∈I an open cover
of Y in (Y, τY ). Then each Gα has the form Gα = Y ∩ Uα for some Uα ∈ τ . It
follows that (Uα)α∈I is an open cover of Y in (X, τ). By hypothesis, there is a finite
subcover, U1, · · · , Un, say. But then G1, · · · ,Gn is an open cover of Y in (Y, τY ),
that is, (Y, τY ) is compact.

Conversely, suppose that (Y, τY ) is compact. Let (Uα)α∈I be an open cover of
Y in (X, τ). Set Gα = Y ∩ Uα . Then (Gα)α∈I is an open cover of (Y, τY ). By
hypothesis, there is a finite subcover, say, G1, · · · ,Gm. Clearly, U1, · · · , Um, is an
open cover for Y in (X, τ). That is, Y is compact in (X, τ).

Suppose that (X, τ) is Hausdorff, and let x, y be any two distinct points of Y .
Then there is a pair of disjoint open sets U,V in X such that x ∈ U and y ∈ V .
Evidently,G1 = Y ∩U andG2 = Y ∩V are open in (Y, τY ), are disjoint and x ∈ G1
and y ∈ G2. Hence (Y, τY ) is Hausdorff, as required. �
Theorem 1.2 Let (X, d) be a metric space. Then X, equipped with the metric
topology is T4.

Theorem 1.3 Let (X, τ) be a compact, Hausdorff space. Then (X, τ) is T4.

Proof Let Y,Z ⊆ X be two closed sets with Y ∩ Z = ∅. We need to find two open
sets U,V ⊆ X, with Y ⊆ U,Z ⊆ V , and U ∩ V = ∅. Assume first that Z is a
singleton, Z = {z}.

For every y ∈ Y we find open sets Uy and Vy , such that Uy � y, Vy � z, and
Uy ∩ Vy = ∅. Using Proposition 1.3 we know that Y is compact, and since we

clearly have Y ⊆
⋃
y∈Y

Uy , there exist y1, · · · , yn ∈ Y such that
n⋃
i=1

Uyi ⊇ Y . Then

we are done by taking U =
n⋃
i=1

Uyi and V =
n⋂
i=1

Vyi .

Having proven the above particular case, we proceed now with the general case.
For every z ∈ Z, we use the particular case to find two open sets Uz and Vz with
Uz ⊇ Y, Vz � z, and Uz ∩ Vz = ∅. Arguing as above, the set Z is compact, and we

have Z ⊆
⋃
z∈Z
Vz, so there exists z1, · · · , zn ∈ Z, such that

n⋂
i=1

Vzi ⊇ Z. Then we

are done by taking U =
n⋂
i=1

Uzi and V =
n⋃
i=1

Vzi . �

Definition 1.10 A topological space (X, τ) is said to be separable if it admits a
countable dense subset.

Proposition 1.6 Let (X, d) be a compact metric space. Then (X, d) is separable.

Proof For each n ≥ 1, the collection Gn = {B 1
n
(x) : x ∈ X} is an open cover of X.

Since X is compact, we can find a finite subcover {B 1
n
(x(j,n)) : 1 ≤ j ≤ kn} of X.

It is then clear that if x ∈ X, there exists 1 ≤ j ≤ kn so that d(x, x(j,n)) <
1

n
. As
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such, the collection

D = {x(j,n) : 1 ≤ j ≤ kn, 1 ≤ n}

is a countable, dense set in X, proving that (X, d) is separable. �

1.1.2 Comparison of Topologies

Any set X may carry several different topologies.

Definition 1.11 Let τ, τ ′ be two topologies on the same set X. We say that τ is
coarser (or weaker) than τ ′, in symbols τ ⊆ τ ′, if for every subset of X which is
open for τ is also open for τ ′, or equivalently, if for every neighborhood of a point
in X with respect to τ is also a neighborhood of that same point in the topology τ ′.
In this case τ ′ is said to be finer (or stronger) than τ ′.

Two topologies τ and τ ′ on the same set X coincide when they give the
same open sets or the same closed sets or the same neighborhoods of each point,
equivalently, when τ is both coarser and finer than τ ′.

Two basis of neighborhoods of a set are equivalent when they define the same
topology.

Remark 1.6 Given two topologies on the same set, it may very well happen that
no-one is finer than the other. If it is possible to establish which one is finer, then we
say that the two topologies are comparable.

Example 1.2 The cofinite topology τc on R, i.e., τc = {U ⊆ R : U = ∅ or R \
U is finite}, and the topology τi having {(−∞, a) : a ∈ R} as a basis are incompa-
rable. In fact, it is easy to see that τi = {(−∞, a) : a ∈ R} ∪ {∅,R} as these are
the union of sets in the given basis. In particular, we have that R \ {0} is in τc but
not τi . Moreover, we have that (−∞, 0) is in τi but not τc. Hence, τc and τi are
incomparable.

Proposition 1.7 If τ1, τ2 are Hausdorff topologies on a set X such that τ2 is finer
than τ1 and such that (X, τ2) is compact, then τ1 = τ2.

Proof Let Y a τ2-closed set. Since (X, τ2) is compact then Y is τ2-compact. Since
τ1 ⊆ τ2 it follows that Y is τ1-compact (any τ1-open cover of Y is also a τ2-open
cover of Y and has a finite subcover). Since τ1 is Hausdorff and Y is τ1-compact
then it is also τ1-closed, which completes the proof (we showed that every τ2-closed
set is a τ1-closed set). �
Definition 1.12 Let X be a set and let F be a family of mappings from X into
topological spaces :

F = {fα : X→ (Yα, τα) : α ∈ I }.
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Let τ be the topology generated by the subbase

{f−1
α (V ) : V ∈ τα, α ∈ I }.

Then τ is the weakest topology on X for which all the fα are continuous maps (it is
the intersection of all topologies having this property). It is called the weak topology
induced by F , or the F -topology of X.

Proposition 1.8 Let F be a family of mappingsX→ (Yα, τα) whereX is a set and
each (Yα, τα) is a Hausdorff topological space. Suppose F separates points in X
i.e., for any x, y ∈ X with x �= y, there is some fα ∈ F such that fα(x) �= fα(y).
Then the F -topology on X is Hausdorff.

Proof Suppose that x, y ∈ X, with x �= y. By hypothesis, there is some α ∈ I such
that nfα(x) �= fα(y). Since (Yα, τα) is Hausdorff, there exist elements U,V ∈ τα
such that fα(x) ∈ U, fα(y) ∈ V and U ∩ V = ∅. But then f−1

α (U) and f−1
α (V )

are open with respect to F -topology and x ∈ f−1
α (U), y ∈ f−1

α (V ) and f−1
α (U) ∩

f−1
α (V ) = ∅. �

Definition 1.13 Let (X, τ) be a topological space. X is called metrizable if it is
compatible with some metric d (i.e., τ is generated by the open balls Br(x) = {y ∈
X, d(x, y) < r}).
Proposition 1.9 Let (X, τ) be a compact topological space. If there is a sequence
{fn, n ∈ N} of continuous real-valued functions that separates points in X then X
is metrizable.

Proof Since (X, τ) is compact and the fn are continuous then they are bounded.
Thus, we can normalize them such that ‖fn‖∞ = sup

x∈X
|fn(x)| ≤ 1. Define :

d(x, y) =
∞∑
n=1

|fn(x)− fn(y)|
2n

.

This series converges. In fact, it converges uniformly on X × X hence the limit
is continuous. Because the fn separate points d(x, y) = 0 iff x = 0. d is also
symmetric and satisfies the triangle inequality.

Thus d is a metric and we denote by τd the topology induced by this metric. We
need to show that τd = τ . Consider the metric balls :

Br(x) = {y ∈ X, d(x, y) < r}.

Since d is τ -continuous on X ×X, these balls are τ -open and

τd ⊆ τ.
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By Proposition 1.7, since τ is compact and τd is Hausdorff (like any metric space)
then τ = τd . �

1.1.3 Nets and Convergence in Topology

Nets generalize the notion of sequences so that certain familiar results relating to continuity
and compactness of sequences in metric spaces can be proved in arbitrary topological
spaces. We now expand our notion of “sequence” (xn)n to something for which the index
n need not be a natural number, but can instead take values in a (possibly uncountable)
partially ordered set.

Definition 1.14 A directed set (I,≺) consists of a set I with a partial order ≺ such
that for every pair α, β ∈ I , there exists an element γ ∈ I with γ � α and γ � β.

Examples 1.3

1. The natural numbers N with the relation ≤ define a directed set (I,≺) = (N,≤).
2. If (X, τ) is a topological space and x ∈ X, one can define a directed set (I,≺)

where I is the set of all neighborhoods of x in X, and U ≺ V for U,V ∈ I
means V ⊆ U . This is a directed set because given any pair of neighborhoods
U,V ⊆ X of x, the intersection U ∩ V is also a neighborhood of x and thus
defines an element of I with U ∩ V ⊆ U and U ∩ V ⊆ V . Note that neither of
U and V need be contained in the other, so they might not satisfy either U ≺ V
or V ≺ U , hence ≺ is only a partial order, not a total order. Moreover, for most
of the topological spaces we are likely to consider, I is uncountably infinite.

3. Let (X, τ) a topological space and let x ∈ X. Then the set Ix = {U ∈ τ, x ∈ U}
is a directed set when equipped with the either the subset relation ⊆, or more
usefully the superset relation ⊇.

4. If (I1,≺1) and (I2,≺2) are directed sets, then (I1× I2,≺) is a directed set where
≺ is defined by

(a, b) ≺ (x, y) if and only if a ≺1 x and b ≺2 y.

5. Let I denote the set of all finite partitions of [0, 1], partially ordered by
inclusion (i.e., refinement). Let f be a continuous function on [0, 1], then to
P = {0 = t0 < t1 < · · · < tn = 1} ∈ I , we associate the quantity

LP (f ) =
n∑
i=1

f (ti−1)(ti − ti−1). The map f �→ LP (f ) is a net (I is a directed

set), and from Calculus, lim
P∈I LP (f ) =

∫ 1

0
f (x)dx.
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Definition 1.15 Let P be a property of elements of a directed set (I,≺). We shall
say that :
1. P holds eventually if there exists α0 ∈ I such that P holds for each α � α0,
2. P holds frequently if for each α ∈ I there exists β � α satisfying P .

Thus “eventually” means “for all successors of some element”, and “frequently”
means “for arbitrary large elements”.

Definition 1.16 Given a topological space (X, τ), a net (xα)α∈I is a function I →
X : α �−→ xα , where (I,≺) is a directed set.

Definition 1.17 We say that a net (xα)α∈I in X converges to x ∈ X if for every
neighborhood U ⊆ X of x, there exists α0 ∈ I such that xα ∈ U for every α � α0.

Example 1.3 A net (xα)α∈I with (I,≺) = (N,≤) is simply a sequence, and
convergence of this net to x means the same thing as convergence of the sequence.

Definition 1.18 A net (xα)α∈I has a cluster point (also known as accumulation
point) at x ∈ X if for every neighborhood U ⊆ X of x and for every α0 ∈ I ,
there exists α � α0 with xα ∈ U .

Definition 1.19 A net (yβ)β∈J is a subnet of the net (xα)α∈I if yβ = xφ(β) for
some order preserving function φ : J → I such that for every α0 ∈ I , there exists
an element β0 ∈ J for which β � β0 implies φ(β) � α0 (cofinal).

Example 1.4 If (xn)n is a sequence, any subsequence (xkn)n becomes a subnet
(yβ)β∈J of the net (xn)n∈N by setting J = N and φ : N → N : n �−→ kn. Note
that this remains true if we slightly relax our notion of subsequences so that (kn)
need not be a monotone increasing sequence in N but satisfies kn →∞ as n→∞.
Conversely, any subnet (yβ)β∈J of a sequence (xn)n∈N with (J,≺) = (N,≤)
is also a subsequence in this slightly relaxed sense, and can then be reduced to
a subsequence in the usual sense by skipping some terms (so that the function
n �−→ kn becomes strictly increasing). Note however that a subnet of a sequence
need not be a subsequence in general, i.e., it is possible to define a subnet (yβ)β∈J
of a sequence (xn)n∈N such that J is uncountable, and one can derive concrete
examples of such objects.

Remark 1.7 If (xα)α∈I is a net converging to x, then every subnet (xφ(β))β∈J also
converges to x.

Theorem 1.4 Let Y be a subset of a topological space (X, τ). Then x ∈ Y if and
only if there is a net (xα)α∈I with xα ∈ Y such that xα −→ x.

Proof We know that a point x ∈ X belongs to Y if and only if every neighborhood
of x meets Y . Suppose then that (xα)α∈I is a net in Y such that xα −→ x. By
definition of convergence, (xα)α∈I is eventually in every neighborhood of x, so
certainly x ∈ Y .

Suppose, on the other hand, that x ∈ Y . Let Nx be the collection of all
neighborhoods of x ordered by reverse inclusion. Then Nx is a directed set. We
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know that for each V ∈ Nx the set V ∩ Y is nonempty so let xV be any element of
V ∩ Y . Then xV −→ x. �
Lemma 1.1 Let X be a set, and (xα)α∈I a net in X. Let B be a family of subsets of
X, satisfying

1. xα is contained frequently in each element of B, and
2. the intersection of any two elements of B contains an element of B.

Then (xα)α∈I admits a subnet which is eventually contained in each element of B.

Proof Clearly, the family B is directed by the inverse inclusion. Consider the set

J = {(α, B) ∈ I × B : xα ∈ B}

equipped with the coordinate-wise pre-ordering. It is easy to see that J is a directed
set. The function φ : J → I , defined by φ(α,B) = α, is nondecreasing and onto,
and hence tends to infinity. Consequently, (xφ(α,B))(α,B) is a subnet of (xα)α∈I .
Moreover, given A ∈ B, fix α0 ∈ I so that xα0 ∈ A, and observe that if (α, B) �
(α0, A) then xφ(β,B) = xβ ∈ B ⊆ A. This completes the proof. �

In metric spaces, a standard theorem states that sequential continuity is equivalent
to continuity. In arbitrary topological spaces this no longer true, but we have the
following generalization.

Theorem 1.5 For any two topological spaces X and Y , a map T : X → Y is
continuous if and only if for every net (xα)α∈I in X converging to a point x ∈ X,
the net (T (xα))α∈I in Y converges to T (x).

Proposition 1.10 A point x of a topological space (X, τ) is a cluster point of a net
(xα)α∈I in X if and only if there exists a subnet (xφ(β))β∈J that converges to x.

Proof If (xφ(β))β∈J is a subnet of (xα)α∈I converging to x, then for every
neighborhood U ⊆ X of x, there exists β0 ∈ J such that xφ(β) ∈ U for every
β � β0. Then for any α0 ∈ I , the definition of a subnet implies that we can find
β1 ∈ J with φ(β) � α0 for all β � β1, and since J is a directed set, there exists
β2 ∈ J with β2 � β0 and β2 � β1. It follows that for α = φ(β2), α � α0 and
xα = xφ(β2) ∈ U , thus x is a cluster point of (xα)α∈I .

Conversely, if x is a cluster point of (xα)α∈I , we can define a convergent subnet
as follows. Define a new directed set

J = I × { neighborhoods of x in X},

with the partial order (α,U) ≺ (β, V ) defined to mean both α ≺ β and V ⊆ U .
Then for each (β,U) ∈ J , the fact that x is a cluster point implies that we can
choose φ(β,U) ∈ I to be any α ∈ I such that α � β and xα ∈ U . This defines
a function φ : J → I such that for any α0 ∈ I and any neighborhood U0 ⊆ X of
x, every (β,U) ∈ J with (β,U) � (α0, U0) satisfies φ(β,U) � β � α0, hence
(xφ(β,U))β∈J is a subnet of (xα)α∈I . Moreover, for any neighborhood U ⊆ X of x,
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we can choose an arbitrary α0 ∈ I and observe that

(β, V ) � (α0, U) �⇒ xφ(β,V ) ∈ V ⊆ U,

thus (xφ(β,U))(β,U)∈J converges to x. �
Theorem 1.6 A topological space (X, τ) is compact if and only if every net in X
has a convergent subnet.

Proof Suppose X is compact but there exists a net (xα)α∈I in X with no cluster
point. The fact that every x ∈ X is not a cluster point of (xα)α∈I then means that we
can find for each x ∈ X an open neighborhood Ux ⊆ X of x and an index αx ∈ I
such that xαx /∈ Ux for all α � αx . But (Ux)x∈X is then an open cover of X and
therefore has a finite subcover, meaning there is a finite subset x1, · · · , xN ∈ X such

that X =
N⋃
n=1

Uxn . Since (I,≺) is a directed set, there also exists an element β ∈ I
such that

β � αxn for each n = 1, · · · , N.

Then xβ /∈ Uxn for every n = 1, · · · , N , but since the sets Uxn cover X, this is a
contradiction.

Conversely, suppose that every net in X has a cluster point, but that X has a
collection O of open sets that cover X such that no finite subcollection in O covers
X. Define a directed set where I is the set of all finite subcollections of O, with the
ordering relation defined by inclusion, i.e., for A,B ∈ I, A ≺ B means A ⊆ B.
Note that (I,≺) is a directed set since for any two A,B ∈ I , we have A ∪ B ∈ I
with A∪B ⊃ A and A∪B ⊃ B. By assumption, none of the unions

⋃
U∈A

for A ∈ I
cover X, so we can choose a point

xA ∈ X \
⋃
U∈A

U (1.1)

for each A ∈ I , thus defining a net (xA)A∈I . Then (xA)A∈I has a cluster point
x ∈ X. Since the sets in O cover X, we have x ∈ V for some V ∈ O, and the
collection {V } is an element of I , hence there exists A � {V } such that xA ∈ V .
But this means A is a finite subcollection of O that includes V , thus contradicting
(1.1). �
Theorem 1.7 Let X be a set and let τ1 and τ2 be topologies on X. Then the
following are equivalent

1. τ1 = τ2.
2. Every (xα)α∈I in X, converges in τ1 if and only if it converges in τ2.
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Proposition 1.11 A topological space (X, τ) is Hausdorff if and only if no net has
two distinct limits.

Proof Suppose (X, τ) is Hausdorff and consider a net (xα)α∈I . Suppose for
contradiction that x and y are distinct limits of (xα)α∈I . Take disjoint neighborhoods
U of x and V of y. By definition of convergence, there is a αx such that xα ∈ U
for all α � αx and a αy such that xα ∈ V for all α � αy . In particular we have
xα ∈ U ∩ V for an upper bound α of αx and αy in the directed set I , contradicting
the disjointness of U and V . Thus (xα)α∈I cannot have two distinct limits.

Conversely, suppose that (X, τ) is not Hausdorff, so there are two distinct points
x and y such that any neighborhood of x intersects any neighborhood of y. So there
is a net (x(U,V ))N (x)×N (y) such that

x(U,V ) ∈ U ∩ V

for neighborhoods U of x and V of y. Take any neighborhood U0 of x and any
(U, V ) ∈ N (x) × N (y) with (U, V ) � (U0, X). By definition we have U ⊆ U0
and thus x(U,V ) ∈ U ∩ V ⊆ U0. This proves that x(U,V ) → x and we can similarly
show that x(U,V ) → y. So the net (x(U,V ))N (x)×N (y) has two distinct limits, as
required. �

1.2 Topological Vector Spaces

1.2.1 Linear Topologies

Definition 1.20 Let X be a vector space. A linear topology on X is a topology τ
such that the maps

X ×X � (x, y) �→ x + y ∈ X (1.2)

K×X � (α, x) �→ αx ∈ X (1.3)

are continuous. For the map (1.2) we use the product topology τ × τ . For the map
(1.3) we use the product topology τK × τ , where τK is the standard topology on K.

A topological vector space is a pair (X, τ) consisting of a vector space X and a
Hausdorff linear topology τ on X.

Remark 1.8 If (X, τ) is a topological vector space then it is clear from Defini-

tion 1.20 that
N∑
k=1

λ
(n)
k x

(n)
k →

N∑
k=1

λkxk as n → ∞ with respect to τ if for each

k = 1, · · · , N as n→∞we have λ(n)k → λk with respect to the euclidean topology

on K and x(n)k → xk with respect to τ .
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Examples 1.4

1. Every vector space X over K endowed with the trivial topology is a topological
vector space.

2. The field K, viewed as a vector space over itself, becomes a topological vector
space, when equipped with the standard (euclidean) topology τK.

3. Every normed vector space endowed with the topology given by the metric
induced by the norm is a topological vector space.

Proposition 1.12 Every vector spaceX over K endowed with the discrete topology
is not a topological vector space unless X = {θ}.
Proof Assume by a contradiction that it is a topological vector space and take θ �=
x ∈ X. The sequence αn = 1

n
in K converges to 0 in the euclidean topology.

Therefore, since the scalar multiplication is continuous, αnx → θ, i.e., for any
neighborhood U of θ in X there exists m ∈ N such that αnx ∈ U for all n ≥ m.
In particular, we can take U = {θ} since it is itself open in the discrete topology.
Hence, αmx = θ, which implies that x = θ and so a contradiction. �
Remark 1.9 In terms of net convergence, the continuity requirements for a linear
topology on X read :
• Whenever (xα) and (yα) are nets in X, such that xα → x and yα → y, it follows

that xα + yα → x + y.
• Whenever (λα) and (xα) are nets in K and X, respectively, such that λα → λ (in

K) and xα → x (in X), it follows that λαxα → λx.

Example 1.5 Let I be an arbitrary nonempty set. The product space K
I (defined

as the space of all functions I → K) is obviously a vector space (with pointwise
addition and scalar multiplication). The product topology turns KI into a topological
vector space.

Remark 1.10 If X is a vector space, then the following maps are continuous with
respect to any linear topology on X :

• The translations Ty : X→ X, y ∈ X, defined by Ty(x) = x + y.
• The dilations Dα : X→ X,α ∈ K, defined by Dα(x) = αx.

If τ is a linear topology on a vector space X, then τ is translation invariant.
That is, a subset U ⊆ X is open if and only if the translation y + U is open for
all y ∈ X. Indeed, the continuity of addition implies that for each y ∈ X, the
translation x �→ y+x is a linear homeomorphism. In particular, every neighborhood
of y is of the form y + U , where U is a neighborhood of zero. In other words, the
neighborhood system at zero determines the neighborhood system at every point of
X by translation. Also note that the dilation x �→ αx is a linear homeomorphism for
any α �= 0. In particular, if U is a neighborhood of zero, then so is αU for all α �= 0.

Example 1.6 If a metric d on a vector space X is translation invariant, i.e.,
d(x + z, y + z) = d(x, y) for all x, y ∈ X (i.e., the metric induced by a norm),
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then the topology induced by the metric is translation invariant and the addition
is always continuous. However, the multiplication by scalars does not need to be
necessarily continuous (take d to be the discrete metric, then the topology generated
by the metric is the discrete topology which is not compatible with the scalar
multiplication).

Proposition 1.13 If Y is a linear subspace of a topological vector space (X, τ),
then so its closure Y . In particular, any maximal proper subspace is either dense or
closed.

Proof We must show that if x, y ∈ Y and λ ∈ K, then λx + y ∈ Y . There are nets
(xα) and (yα) in Y , such that xα −→ x and yα −→ y. By Remark 1.9, we deduce
that txα −→ tx and txα + yα −→ tx + y and we conclude that tx + y ∈ Y , as
required.

If Y is a maximal proper subspace, the inclusion Y ⊆ Y implies either Y = Y , in
which case Y is closed, or Y = X, in which case Y is dense in X. �
Notations Given a vector space X, a subset Y ⊆ X, and a vector x ∈ X, we denote
the translation Tx(Y ) simply by Y + x (x + Y ), that is,

Y + x = x + Y = {y + x : y ∈ Y }.

Likewise, for an α ∈ K we denote the dilation Dα(Y ) simply by αY , that is,

αY = {αy : y ∈ Y }.

Given another subset Z ⊆ X, we define

Y + Z = {y + z : y ∈ Y, z ∈ Z} =
⋃
y∈Y
(y + Z) =

⋃
z∈Z
(Y + z).

Remark 1.11 In general we only have the inclusion 2Y ⊆ Y + Y.
Lemma 1.2 Let τ be a linear topology on the vector space X.

1. The algebraic sum of an open set and an arbitrary set is open.
2. Nonzero multiples of open sets are open.
3. If Y is open, then for any set Z we have Z + Y = Z + Y.
4. The algebraic sum of a compact set and a closed set is closed. (However, the

algebraic sum of two closed sets need not be closed.)
5. The algebraic sum of two compact sets is compact.
6. Scalar multiples of closed sets are closed.
7. Scalar multiples of compact sets are compact.

Proof We shall prove only items 3. and 4.

3. Clearly Y +Z ⊆ Y +Z. For the reverse inclusion, let x = z+y where z ∈ Z and
y ∈ Y . Then there is an open neighborhood U of θ such that y + U ⊆ Y . Since
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z ∈ Z, there exists some t ∈ Z ∩ (z− U). Then x = z+ y = t + z+ (y − z) ∈
t + z+ U ⊆ Z + Y .

4. Let Y be compact and Z be closed, and let a net (yα+zα)α∈I satisfy yα+zα −→
x. Since Y is compact, we can assume (by passing to a subnet) that yα −→ y ∈
Y . The continuity of the algebraic operations yields

zα = (yα + zα)− yα −→ x − y = z.

Since Z is closed, z ∈ Z, so x = y + z ∈ Y + Z, proving that Y + Z is closed.

�
Proposition 1.14 Let τ be a linear topology on the vector space X.

1. For every neighborhood V of θ , there exists a neighborhood W of θ , such that
W +W ⊆ V.

2. For every neighborhood V of θ , and any compact set C ⊆ K, there exists a
neighborhoodW of θ , such that αW ⊆ V,∀ α ∈ C.

Proof 1. Let T : X×X→ X denote the addition map (1.2). Since T is continuous
at (θ, θ) ∈ X ×X, the preimage T −1(V ) is a neighborhood of (θ, θ) in the product
topology. In particular, there exists neighborhoods W1,W2 of θ , such that W1 ×
W2 ⊆ T −1(V ), so if we take W = W1 ∩W2, then W is still a neighborhood of θ
satisfyingW×W ⊆ T −1(V ), which is precisely the desired inclusionW+W ⊆ V.

2. LetG : K×X→ X denote the multiplication map (1.3). SinceG is continuous
at (0, θ) ∈ K×X, the preimage G−1(V ) is a neighborhood of (0, θ) in the product
topology. In particular, there exists a neighborhood I of 0 in K and a neighborhood
W0 of θ in X such that I × W0 ⊆ G−1(V ). Let then ρ > 0 such that I contains
the closed disk Bρ(0) = {α ∈ K : |α| ≤ ρ}, so that we still have the inclusion
Bρ(0)×W0 ⊆ G−1(V ) i.e.,

α ∈ K, |α| ≤ ρ �⇒ αW0 ⊆ V. (1.4)

Since C ⊆ K is compact, there is some R > 0, such that

|γ | ≤ R, ∀ γ ∈ C. (1.5)

Let us then define W = ( ρ
R
)W0. First of all, since W is a non-zero dilation of W0,

it is a neighborhood of θ . Secondly, if we start with some γ ∈ C and some w ∈ W ,

written as w = ( ρ
R
)w0 with w0 ∈ W0, then

γw = (ρα
R
)w0.

By (1.5) we know that
∣∣∣ρα
R

∣∣∣ ≤ ρ, so by (1.4) we get γw ∈ V. �
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1.2.2 Absorbing and Balancing Sets

Definition 1.21 A subset Y of a vector space X is convex if, whenever Y contains
two points x and y, Y also contains the segment or the straight line joining them,
i.e.,

∀ x, y ∈ Y,∀ α, β ≥ 0 such that α + β = 1, αx + βy ∈ Y.

Examples 1.5

1. The convex subsets of R are simply the intervals of R. Examples of convex
subsets of R2 are solid regular polygons. The Platonic solids are convex subsets
of R3. Hyperplanes and half spaces in R

n are convex.
2. Balls in a normed space are convex.
3. Consider a topological space X and the set C(X) of all real valued functions

defined and continuous on X. C(X) with the pointwise addition and scalar
multiplication of functions is a vector space. Fixed g ∈ C(X), the subset
Y := {f ∈ C(X) : f (x) ≥ g(x),∀ x ∈ X} is convex.

4. Consider the vector space R[x] of all polynomials in one variable with real
coefficients. Fixed n ∈ N and c ∈ R, the subset of all polynomials in R[x]
such that the coefficient of the term of degree n is equal to c is convex.

Proposition 1.15 Let X be a vector space. The following properties hold.

(a) ∅ and X are convex.
(b) Arbitrary intersections of convex sets are convex sets.
(c) Unions of convex sets are generally not convex.
(d) The sum of two convex sets is convex.
(e) A set Y is convex if and only if αY+βY = (α+β)Y for all nonnegative scalars

α and β.
(f ) The image and the preimage of a convex set under a linear map is convex.

Definition 1.22 Let Y be any subset of a vector space X. We define the convex hull
of X, denoted by conv(Y ), to be the set of all finite convex linear combinations of
elements of Y , i.e.,

conv(Y ) =
{
n∑
i=1

αixi : xi ∈ Y, αi ∈ [0, 1],
n∑
i=1

αi = 1, n ∈ N

}
.

Proposition 1.16 Let Y,Z be arbitrary sets of a vector space X. The following
hold.

(a) conv(Y ) is convex.
(b) Y ⊆ conv(Y ).
(c) A set is convex if and only if it is equal to its own convex hull.
(d) If Y ⊆ Z then conv(Y ) ⊆ conv(Z).
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(e) conv(conv(Y )) = conv(Y ).
(f ) conv(Y + Z) = conv(Y )+ conv(Z).
(g) The convex hull of Y is the smallest convex set containing Y , i.e., conv(Y ) is

the intersection of all convex sets containing Y .

Definition 1.23 Let X be a vector space.

• A subset Y ⊆ X is said to be absorbing (or radial), if for every x ∈ X, there
exists some scalar α > 0, such that αx ∈ Y . Roughly speaking, we may say that
a subset is absorbing if it can be made by dilation to swallow every point of the
whole space.

• A subset Y ⊆ X is said to be balancing (or circled), if for every α ∈ K with
|α| ≤ 1, one has the inclusion αY ⊆ Y . Note that the line segment joining any
point x of a balanced set Y to −x lies in Y .

• A subset Y ⊆ X is said to be symmetric, if for every x ∈ Y , one has (−x) ∈ Y ,
namely (−Y ) = Y .

• A subset Y ⊆ X is said to be absolutely convex, if it is convex and balanced.
• A subset Y ⊆ X is said to be starshaped about zero if it included the line segment

joining each of its points with zero. That is, if for any x ∈ Y and any 0 ≤ α ≤ 1
we have αx ∈ Y .

Remark 1.12 Note that an absorbing set must contain θ , and any set including an
absorbing set is itself absorbing. For any absorbing set Y , the set Y ∩ (−Y ) is
nonempty, absorbing, and symmetric. Every circled set is symmetric. Every circled
set is star-shaped about θ , as is every convex set containing θ .

Remark 1.13 Given τ a linear topology of a vector space X, all neighborhoods of θ

are absorbing. Indeed, if we start with some x ∈ X, the sequence xn = 1

n
x clearly

converges to θ , so every neighborhood of θ will contain (many) terms xn.

Examples 1.6

1. In a normed space the unit balls centered at the origin are absorbing and balanced.

2. The unit ball B centered at (
1

2
, 0) ∈ R

2 is absorbing but not balanced in the real

vector space R
2 endowed with the euclidean norm. Indeed, B is a neighborhood

of the origin. However, B is not balanced because for example if we take x =
(1, 0) ∈ B and α = −1 then αx /∈ B.

3. The polynomials R[X] are a balanced but not absorbing subset of the real space
C([0, 1],R) of continuous real valued functions on [0, 1]. Indeed, any multiple
of a polynomial is still a polynomial but not every continuous function can be
written as multiple of a polynomial.

4. The subset Y = {(z1, z2) ∈ C
2 : |z1| ≤ |z2|} of the complex space C

2 with the
euclidean topology is balanced but intY is not balanced.
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Definition 1.24 Given τ a linear topology of a vector space X, a subset Y ⊆ X is
said to be a barrel if it has the following properties :
1. Y is absorbing,
2. Y is absolutely convex,
3. Y is closed.

Proposition 1.17 Let X be a vector space and let τ be a linear topology on X.

A. If B is a neighborhood base at θ , then :
1. For every V ∈ B, there existsW ∈ B, such thatW +W ⊆ V .
2. For every V ∈ B and every compact set C ⊆ K, there exists W ∈ B, such

that γW ⊆ V,∀ γ ∈ C.
3. For every x ∈ X, the collection Bx = {V + x : V ∈ B} is a neighborhood

base at x.
4. The topology τ is Hausdorff, if and only if

⋂
V∈B

V = {θ}.

B. There exists a neighborhood base at θ , consisting of open balanced sets.

Proof

A. Statements 1. and 2. follow immediately from Proposition 1.14. Statement 3. is
clear, since translations are homeomorphisms.

4. Denote for simplicity the intersection
⋂
V∈B

V by J , so clearly θ ∈ J .

Assume first τ is Hausdorff. In particular, for each x ∈ X \ {θ}, the set X \ {x}
is an open neighborhood of θ , so there exists some V x ∈ B with V x ⊆ X \ {x}.
We then clearly have the inclusion

J ⊆
⋂
x �=θ

V x ⊆
⋂
x �=θ
(X \ {x}) = {θ},

so J = {θ}. Conversely, assume J = {θ}, and let us show that τ is Hausdorff.
Start with two points x, y ∈ X with x �= y, so that x−y �= θ, and let us indicate
how to construct two disjoint neighborhoods, one for x and one for y. Using
translations, we can assume y = θ . Since θ �= x /∈

⋂
V∈B

V , there exists some

V ∈ B, such that x /∈ V . Using 1., there is someW ∈ B, such thatW +W ⊆ V ,
so we still have x ∈ W +W . This clearly forces

x + ((−1)V ) ∩ V = ∅. (1.6)

Since V is a neighborhood of θ , so is (−1)V (non-zero dilation), then by 3.
the left-hand side of (1.5) is a neighborhood of x.

B. Let us take the D to be the collection of all open balanced sets that contain θ .
All we have to prove is the following statement : for every neighborhood V of
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θ , there exists W ∈ D, such that W ⊆ V . Using 2. there exists some open set
O � θ , such that

γO ⊆ V, ∀γ ∈ K, |γ | ≤ 1. (1.7)

In particular,
⋃

α∈K,0<|α|≤1

αO is an open set contained in V . So
⋃

α∈K,0<|α|≤1

αO ∈
V.

�
Definition 1.25 Assume τ is a linear topology on a vector spaceX. A subset Y ⊆ X
is said to be τ -bounded, if it satisfies the following condition :

for every neighborhood V of θ, there exists ρ > 0, such that Y ⊆ ρV.

Example 1.7 Suppose τ is a linear topology on a vector space X. If x ∈ X ∈, then
{x} is bounded. Indeed, let V any neighborhood of θ . Then V is absorbing and so
x ∈ ρV for all sufficiently large ρ > 0, that is, {x} is bounded.

Proposition 1.18 Let X be a vector space X endowed with a linear topology τ .
Then

1. If Y ⊆ X is τ -bounded, then its closure Y is also τ -bounded.
2. If Y,Z ⊆ X are τ -bounded, then so is Y + Z.
3. If Y ⊆ X is τ -bounded and C ⊆ K is bounded, then so

⋃
α∈C

αY .

4. All compact subsets in X are τ -bounded.

Remark 1.14 It follows by induction, that any finite set in a vector spaceX endowed
with a linear topology τ is bounded. Also, taking Y = {x} (in the above proposition)
we see that any translate of a bounded set is bounded.

Proposition 1.19 Any convergent sequence in topological vector space is bounded.

Proof Suppose that (xn)n is a sequence in a topological vector space (X, τ) such
that xn −→ x. For each n ∈ N, set yn = xn − x, so that yn −→ θ . Let V any
neighborhood of θ . Let U be any balanced neighborhood of θ such that U ⊆ V .
Then U ⊆ ρU for all ρ with |ρ| ≥ 1. Since yn −→ θ , there is N ∈ N such that
yn ∈ U whenever n > N . Hence yn ∈ U ⊆ tU ⊆ tV whenever n > N and
t ≥ 1. Set Y = {y1, · · · , yn} and Z = {yn : n > N}. Then Y is a finite set so is
bounded and therefore Y ⊆ tV for all sufficiently large t . But then it follows that
Y ∪ Z ⊆ tV for sufficiently large t , that is, {yn : n ∈ N} is τ -bounded and so is
{xn : n ∈ N} = x + (Y ∪ Z). �
Remark 1.15 A convergent net in a topological vector space need not be bounded.
For example, let I be R equipped with its usual order and let xα ∈ R be given by
xα = e−α . Then (xα)α∈I is an unbounded but convergent net (with limit 0) in the
real normed space R.
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Proposition 1.20 (“Zero. Bounded” Rule) Suppose τ is a linear topology in a
vector space X. If the net (αλ)λ∈� ⊆ K converges to 0, and the net (xλ)λ∈� ⊆ X is
τ -bounded, then (αλxλ)λ∈� is convergent to θ .

Proof Start with some neighborhood V of θ . We wish to construct an index λV ∈ �
such that

αλxλ ∈ V, ∀ λ � λV . (1.8)

Using Proposition 1.17 B., we can assume that V is balanced (otherwise we replace
it with a balanced open set V ′ ⊆ V ). Using the boundedness condition we find
ρ > 0, such that

xλ ∈ ρV, ∀ λ ∈ �. (1.9)

Using the condition αλ → 0, we then choose λV ∈ �, so that

|αλ| ≤ 1

ρ
,∀ λ � λV .

To check (1.8), start with some λ � λV and apply (1.9) to write xλ = ρv, for some
v ∈ V . Now we have

αλxλ = (αλρ)v ∈ (αλρ)V,

with |αλρ| ≤ 1, so using the fact that V is bounded, it follows that αλxλ ∈ V . �
Definition 1.26 Let (X, τ) be a topological vector space.

1. X is locally bounded if θ has a bounded neighborhood.
2. X is locally compact if θ has a neighborhood whose closure is compact.
3. X is metrizable if it is compatible with some metric d (i.e., τ is generated by the

open balls Br(x) = {y ∈ X, d(x, y) < r}).
4. X is normable if it can be endowed with a norm whose induced metric is

compatible with τ .
5. X has the Heine-Borel property if every closed and bounded set is compact.

Proposition 1.21 Let (X, τ) be a topological vector space. For every x �= θ the set
Y = {nx, n ∈ N} is not bounded.

Proof By separation, there exists an open neighborhood V of θ that does not contain
x, hence nx /∈ nV, i.e., for every n,

Y � nV.

�
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Lemma 1.3

1. Let d be a translation invariant metric on a vector space X, then for all n ∈ N

and x ∈ X,

d(nx, θ) ≤ nd(x, θ).

2. If xn → θ in a metrizable topological vector space (X, τ), then there exist
positive scalars αn →∞ such that αnxn → θ.

Proof The first part is obvious by successive applications of the triangle inequality,

d(nx, θ) ≤
n∑
k=1

d(kx, (k − 1)x) ≤ nd(x, θ).

For the second, we note that since d(xn, θ)→ 0, there exists a diverging sequence
of positive integers nk , such that

d(xk, θ) ≤ 1

n2
k

,

from which we get that

d(nkxk, θ) ≤ nkd(xk, θ) ≤ 1

nk
→ 0.

�
Corollary 1.2 The only bounded subspace of a topological vector space is {θ}.
Proposition 1.22 Let (X, τ) be a topological vector space and let Y ⊆ X. Then,
Y is bounded if and only if for every sequence (xn)n ⊆ Y and every sequence of
scalars αn → 0, αnxn → θ .

Proof Suppose that Y is bounded, it suffices to apply Proposition 1.20.
Suppose that for every sequence (xn)n ⊆ Y and every sequence of scalars αn →

θ, αnxn → θ . If Y is not bounded, then there exists an open neighborhood of θ and
a sequence βn →∞, such that no βnV contains Y . Take then a sequence (xn)n ⊆ Y
such that xn /∈ βnV . Thus,

β−1
n xn /∈ V,

which implies that β−1
n xn � θ , which is a contradiction. �

Theorem 1.8 Let (X, τ) be a topological vector space. Let Y,Z ⊆ X satisfy :

Y is compact, Z is closed and Y ∩ Z = ∅.
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Then there exists an open neighborhood V of θ such that

(Y + V ) ∩ (Z + V ) = ∅.

In other words, there exist disjoint open sets that contain Y and Z.

Proof Let x ∈ Y . Since X \ Z is an open neighborhood of x, it follows that there
exists a symmetric open neighborhood Vx of θ such that

x + Vx + Vx + Vx ⊆ X \ Z,

i.e.,

(x + Vx + Vx + Vx) ∩ Z = ∅.

Since Vx is symmetric,

(x + Vx + Vx) ∩ (Z + Vx) = ∅.

For every x ∈ Y corresponds such a Vx . Since Y is compact, there exists a finite
collection (xi, Vi)1≤i≤n such that

K ⊆
n⋃
i=1

(xi + Vi).

Define

V =
n⋂
i=1

Vxi .

Then, for every i,

(x + Vxi + Vxi ) does not intersect (Z + Vxi ),

so

(x + Vxi + V ) does not intersect (Z + V ).

Taking the union over i :

Y + V ⊆
n⋃
i=1

(xi + Vxi + V ) does not intersect (Z + V ).

�
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Remark 1.16 A topological vector space is regular.

Proposition 1.23 Suppose τ is a linear topology in a vector space X.

1. For Y ⊆ X,

Y =
⋂

V,open neighborhood of θ

(Y + V ).

That is, the closure of a set is the intersection of all the open neighborhoods of
that set.

2. For Y,Z ⊆ X, Y + Z ⊆ Y + Z.
3. If Y ⊆ X is a linear subspace, then so is Y .
4. For every B ⊆ X : If B is balanced so is B.
5. For every B ⊆ X : If B is balanced and θ ∈ intB then intB is balanced.
6. If Y ⊆ X is bounded so is Y .

Proof

1. Let x ∈ Y . By definition, for every open neighborhood V of θ , x + V intersects
Y , of x ∈ Y − V . Thus,

x ∈
⋂

V,open neighborhood of θ

(Y − V ) =
⋂

V,open neighborhood of θ

(Y + V ).

Conversely, suppose that x /∈ Y . Then, there exists an open neighborhood V of θ
such that x + V does not intersect Y, i.e., x /∈ Y − V , hence

x /∈
⋂

V,open neighborhood of θ

(Y + V ).

2. Let x ∈ Y and y ∈ Z. By the continuity of vector addition, for every open
neighborhood U of x + y there exists an open neighborhood V of x and an open
neighborhoodW of y such that

V +W ⊆ U.

By the definition of Y every neighborhood of x intersects Y and by the definition
of Z every neighborhood of y intersects W : that is, there exist z ∈ V ∩ Y and
t ∈ W ∩ Z. Then,

z ∈ Y and t ∈ Z implies z+ t ∈ Y + Z,

and

z ∈ V and t ∈ W implies z+ t ∈ V +W ⊆ U.
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In other words, every neighborhood of x + y ∈ Y + Z intersects Y + Z, which
implies that x + y ∈ Y + Z, and therefore

Y + Z ⊆ Y + Z.

3. Let Y be a linear subspace of X, which means that,

Y + Y ⊆ Y and ∀ α ∈ K, αY ⊆ Y.

By the previous item,

Y + Y ⊆ Y + Y ⊆ Y .

Since scalar multiplication is a homeomorphism it maps the closure of a set into
the closure of its image, namely, for every α ∈ K,

αY ⊆ Y .

4. Since multiplication by a (non-zero) is a homeomorphism,

αB = αB.

If B is balanced, then for |α| ≤ 1,

αB = αB ⊆ B,

hence B is balanced.
5. Again, for every 0 < |α| ≤ 1,

α(intB) = int(αB) ⊆ intB.

Since for α = 0, α(intB) = {θ}, we must require that θ ∈ intB for the latter to
be balanced.

6. Let V be an open neighborhood of θ . Then there exists an open neighborhood
W of θ such that W ⊆ V . Since Y is bounded, Y ⊆ αW ⊆ αW ⊆ αV for
sufficiently large α. It follows that for large enough α,

Y ⊆ αW ⊆ αV,

which proves that Y is bounded.

�
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Lemma 1.4 Suppose τ is a linear topology in a vector space X.

1. If Y is convex so is Y .
2. If Y is convex so is int Y .

Proof

1. The convexity of Y implies that for all α ∈ [0, 1] :

αY + (1 − α)Y ⊆ Y.

Let α ∈ [0, 1], then

αY = αY and (1 − α)Y = (1 − α)Y .

By the second item :

αY + (1 − α)Y = αY + (1 − α)Y ⊆ αY + (1 − α)Y ⊆ Y ,

which proves that Y is convex.
2. Suppose once again that Y is convex. Let x, y ∈ intY . This means that there exist

open neighborhoods U,V of θ such that

x + U ⊆ Y and y + V ⊆ Y.

Since Y is convex:

α(x + U)+ (1 − α)(y + V ) = (αx + (1 − α)y)+ αU + (1 − α)V ⊆ Y,

which proves that αx + (1 − α)y ∈ intY, namely intY is convex.

�
Lemma 1.5 Suppose τ is a linear topology in a vector space X. If Y is a convex
subset of X, then :

0 < α ≤ 1 �⇒ α(intY )+ (1 − α)Y ⊆ intY. (1.10)

In particular, if intY �= ∅, then :
(a) The interior of Y is dense in Y , that is, intY = Y .
(b) The interior of Y coincides with the interior of Y , that is, intY = intY .

Proof The case α = 1 in (1.10) is immediate. So let x ∈ intY, y ∈ Y , and let
0 < α < 1. Choose an open neighborhood U of θ such that x + U ⊆ Y . Since

y − α

1 − αU is a neighborhood of y, there is some z ∈ Y ∩ (y − α

1 − αU), so

that (1 − α)(y − z) belongs to αU . Since Y is convex, the (nonempty) open set
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V = α(x+U)+ (1−α)z = αx+αU + (1−α)z lies entirely in Y . Moreover, from

αx+(1−α)y = αx+(1−α)(y−z)+αx+(1−α)z ∈ αx+αU+(1−α)z = V ⊆ Y,

we see that αx+(1−α)y ∈ intY . This proves (1.10), and letting α −→ 0 proves (a).
For (b), fix x0 ∈ intY and x ∈ intY . Pick a neighborhood of θ satisfying x+W ⊆

Y . SinceW is absorbing, there is some 0 < λ < 1 such that λ(x − x0) ∈ W , so x +
λ(x−x0) ∈ Y . By (1.10), we have x−λ(x−x0) = λx0+(1−λ)x ∈ intY . But then,

using (1.10) once more, we obtain x = 1

2
[x − λ(x − x0)] + 1

2
[x + λ(x − x0)] ∈

intY . Therefore, intY ⊆ intY ⊆ intY so that intY = intY . �
Definition 1.27 Let τ be a linear topology in a vector space X and Y ⊆ X.

1. The closed convex hull of a set Y , denoted conv(Y ), is the smallest closed convex
set including Y . By Lemma 1.4 1. it is the closure of conv(Y ), that is, conv(Y ) =
conv(Y ).

2. The convex circled hull of Y is the smallest convex and circled set that includes
Y . It is the intersection of all convex and circled sets that include Y .

3. The closed convex circled hull of Y is the smallest closed convex circled set
including Y . It is the closure of the convex circled hull of Y .

Definition 1.28 Let X be a vector space and let τ be a linear topology on X. Then
(X, τ) is said to be locally convex if there is a base of neighborhoods of the origin
in X consisting of convex sets.

Proposition 1.24 A locally convex space (X, τ) always has a base of neighbor-
hoods of the origin consisting of open absorbing absolutely convex subsets.

Proof Let V be a neighborhood of θ in X. Since (X, τ) is locally convex, there
exists W convex neighborhood of θ such that W ⊆ V . Moreover, by Remark 1.13,
there exists U balanced neighborhood of θ such that U ⊆ W . The balancedness of
U implies that U =

⋃
α∈K,|α|≤1

αU . Thus, using thatW is a convex set containing U ,

we get

N := conv

⎛
⎝ ⋃
α∈K,|α|≤1

αU

⎞
⎠ = conv(U) ⊆ W ⊆ V

and so intN ⊆ V . Hence, the conclusion holds because intN is clearly open and
convex and it is also balanced since θ ∈ intN and N is balanced. �

1.2.3 Compactness and Completeness

Definition 1.29 Let (X, τ) be a topological vector space.



28 1 Basic Concepts

1. A net (xα)α∈I in X is said to be a Cauchy net if for each neighborhood V of θ
there exists α0 ∈ I such that xα − xβ ∈ V whenever α, β � α0.

2. A set Y ⊆ X is complete if each Cauchy net in X converges to a point of Y .
3. A set Y ⊆ X is sequentially complete if each Cauchy sequence in X converges

to a point of Y

Example 1.8 Every convergent net is Cauchy.

Proposition 1.25 A Cauchy sequence (and in particular a converging sequence) in
a topological vector space (X, τ) is bounded.

Proof Let (xn)n be a Cauchy sequence. Let W,V be two balanced open neighbor-
hoods of θ satisfying

V + V ⊆ W.

By the definition of a Cauchy sequence, there exists anN such that for allm, n ≥ N,

xn − xm ∈ V,

and in particular

∀ n > N xn ∈ xN + V.

Set s > 1 such that xN ∈ sV (we know that such an s exists), then for all n > N,

xn ∈ sV + V ⊆ sV + sV ⊆ W.

Since for balanced sets sW ⊆ tW for s < t , and since every open neighborhood of
θ contains an open balanced neighborhood, this proves that the sequence is indeed
bounded. �
Proposition 1.26 Let {(Xi, τi)}i∈I be a family of topological vector spaces, and let
X =

∏
i∈I
Xi endowed with the product topology τ =

∏
i∈I
τi . Then (X, τ) is complete

if and only if each factor (Xi, τi) is complete.

Proposition 1.27 Let (X, τ) be a topological vector space with a countable base
of neighborhoods of θ . A set Y ⊆ X is complete if and only if Y is sequentially
complete.

Proof Let B = {Vn : n ∈ N} be a countable base of neighborhoods of θ . We can
assume that V1 ⊇ V2 ⊇ · · · , indeed, otherwise we can substitute B with the base

{V1, V1 ∩ V2, V1 ∩ V2 ∩ V3, · · · }.

Let Y be complete, and (xn)n a Cauchy sequence in Y . There exists a subnet
(xφ(α))α∈I converging to a point x ∈ Y . Let us construct inductively a sequence
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(αk) in I . Choose α1 so that xφ(α) ∈ x + V1 for each α � α1. If we already have
α1, · · · , αk , choose αk+1 � αk so that φ(αk+1) � φ(αk)+ 1 and xφ(α) ∈ x + Vk+1
for each α � αk+1. It is easy to verify that (xφ(αk))k∈N is a subsequence of (xn)n
that converges to x.

Conversely, Let Y be sequentially complete, and (xα)α∈I a Cauchy net in Y . Let
us construct inductively a sequence (αk)k in I . Choose α1 so that xα − xα1 ∈ V1 for
each α � α1. If we already have α1, · · · , αk , choose αk+1 � αk so that xα−xαk+1 ∈
Vk+1 for each α � αk+1. Then (xαn) is a Cauchy sequence since xαm − xαn ∈ Vn
whenever m ≥ n. Consequently, (xαn) converges to a point x ∈ Y . Now, it is easy
to show that (xα)α∈I converges to x, too. �
Definition 1.30 A set Y in a topological vector space (X, τ) is totally bounded (or
precompact) if for each neighborhood V of θ there is a finite set F ⊆ X such that
Y ⊆ F + V .

It is easy to see that in normed spaces (or in topological metric spaces) this
definition coincides with the usual metric one : for each ε > 0 there is a finite
set F ⊆ X such that dist(x, F ) < ε for each x ∈ Y .

Theorem 1.9 Let Y be a set in a topological vector space (X, τ). Then Y is totally
bounded if and only if each net in Y admits a Cauchy subnet.

Proof Let (xα)α∈I be a net in a totally bounded set Y . The family Z = {Z ⊆ Y } : B
be a maximal subfamily of Z that contains Y and is closed under making finite
intersections (existence of such B follows by Zorn’s lemma). Let us show several
properties of B.

(a) if F is a finite subfamily of Z such that
⋃

F ∈ B, then F ∩ B �= ∅. Let
F = {Z1, · · · , Zn}. We claim that, for some index k, Zk ∩ B ∈ Z for each
B ∈ B. Indeed, if this not the case, for each i ∈ {1, · · · , n} there exists Bi ∈ B
such that Zi ∩ Bi /∈ Z , but then B � (

n⋃
i=1

Zi) ∩
n⋂
i

Bi ⊆
n⋃
i=1

(Zi ∩ Bi) /∈ Z ,

a contradiction. Our claim implies that the family of all finite intersections of
elements of B

⋃
{Zk} is closed under finite intersections and is contained in Z .

By maximality of B, we must have Zk ∈ B.
(b) For each set Z ⊆ Y , the family B contains either Z or Y \ Z. If Z /∈ Z , then

eventually xα ∈ Y \ Z. Since the intersection of Y \ Z with any element of B
belongs to Z , the family of finite intersections of B∪ {Y \Z} is contained in Z .
Thus Y \Z ∈ B by the maximality of B. In the same way we get that Y \Z /∈ Z
then Z ∈ B. Finally, if both Z and Y \ Z belong to Z the one of them belongs
to B by (a) (since Y ∈ B).

(c) B contains arbitrarily small elements, in the sense that for each neighborhood
V of θ there exists B ∈ B such that B −B ⊆ V . Given a neighborhood V of θ ,
there exists a neighborhood W of θ with W −W ⊆ V . By total boundedness,
there exists a finite set F = {y1, · · · , yn} ⊆ Y such that Y ⊆ F +W . Denoting
Yi = (yi + W) ∩ Y (i = 1, · · · , n), we have Y = ∪ni=1Yi . Consider the set
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P = {i ∈ {1, · · · , n} : Yi ∈ Z} and its complement {1, · · · , n} \ P . Since
C =

⋃
i∈{1,··· ,n}\P

Yi /∈ Z , we must have P �= ∅. Let Z =
⋃
i∈P
Yi . Then Y \Z /∈ Z

(since Y \ Z ⊆ C). By (b), we must have Z ∈ B. By (a), there exists k ∈ P
with Yk ∈ B. Notice that Yk − Yk ⊆ W −W ⊆ V .

To conclude the proof of this implication, notice that the family B satisfies the
assumptions of Lemma 1.1. Hence there exists a subnet of (xα) that is eventually
contained in each element of B. By (c), this subnet is Cauchy.

Conversely, assume that Y is not totally bounded. There exists a neighborhood
V of θ such that Y \ (F + V ) �= ∅ for each finite set F ⊆ V . An easy inductive
construction gives a sequence (xn)n such that xn+1 /∈ {x1, · · · , xn} + V for each n.
Since for two indexes m > n we have xm − xn /∈ V , our sequence has no Cauchy
subnets. The proof is complete. �
Theorem 1.10 A set Y in a topological vector space is compact if and only if Y is
totally bounded and complete.

Proof Let Y be compact. Given an open neighborhood V of θ , the open cover {y +
V : y ∈ Y } of Y admits a finite sub cover. This proves that Y is totally bounded. Let
(xα)α∈I be a Cauchy net in Y . By Theorem 1.6 (xα)α∈I admits a subnet converging
to a point of Y . It easily follows that the net (xα)α∈I converges to the same limit.

Conversely, assume Y is totally bounded and complete. Given a net (xα)α∈I in
Y , it admits a Cauchy subnet by Theorem 1.9. Since Y is complete, this subnet
converges to a point of Y . Again, it follows that (xα)α∈I converges to the same
point. By Theorem 1.6, Y is compact. �

1.2.4 Seminorms and Local Convexity

Definition 1.31 A seminorm on a vector space X is map p : X→ R such that

p(x + y) ≤ p(x)+ p(y),

and

p(αx) = |α|p(x).

Definition 1.32 Let P := (pi)i∈I be a family of seminorms. It is called separating
if to each x �= θ corresponds a pi ∈ P, such that pi(x) �= 0. Note that the separation
condition is equivalent to

pi(x) = 0,∀ i ∈ I ⇒ x = θ.
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Examples 1.7

1. Suppose X = R
n and let Y be a vector subspace of X. Set for any x ∈ X

pY (x) := inf
y∈Y ‖x − y‖

where ‖.‖ is the Euclidean norm, i.e., pY (x) is the distance from the point x to
Y in the usual sense. If dim(Y ) ≥ 1 then pY is a seminorm and not a norm (Y is
exactly the kernel of pY ). When Y = {θ}, pY (.) = ‖.‖.

2. LetX be a vector space on which is defined a nonnegative sesquilinear Hermitian
form ϕ : X ×X→ K. Then the function

pϕ(x) := ϕ(x, x) 1
2

is a seminorm. pϕ is a norm if and only if ϕ is positive definite (i.e., ϕ(x, x) >
0,∀ x �= θ ).

3. Let C(R) be the vector space of all real valued continuous functions on the real
line. For any bounded interval [a, b] with a, b ∈ R and a < b, we define for any
f ∈ C(R) :

p[a,b](f ) := sup
a≤t≤b

|f (t)| .

p[a,b] is a seminorm but is never a norm because it might be that f (t) = 0 for
all t ∈ [a, b] (and so that p[a,b](f ) = 0) but f �≡ 0. Other seminorms are the
following ones :

q(f ) := |f (0)| and qp(f ) :=
(∫ b

a

|f (t)|p
) 1
p

for 1 ≤ p <∞.

Proposition 1.28 Let p be a seminorm on a vector space X.

1. p is symmetric.
2. p(θ) = 0.
3. |p(x)− p(y)| ≤ p(x − y).
4. p(x) ≥ 0.
5. kerp is a linear subspace.

Proof By the properties of the seminorm :
1. p(x − y) = p(−(y − x)) = |−1|p(y − x) = p(y − x).
2. p(θ) = p(0.x) = 0.p(x) = 0.
3. This follows from the inequalities

p(x) ≤ p(y)+ p(x − y) and p(y) ≤ p(x)+ p(y − x) = p(x)+ p(x − y).
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4. By the previous item, for every x :

0 ≤ |p(x)− p(θ)| ≤ p(x).

5. If x, y ∈ kerp :

p(αx + βy) ≤ p(αx)+ p(βy) = |α|p(x)+ |β|p(y) = 0.

�
Notation Let X be a vector space and p a seminorm on X. The sets

B
p

1 = {x ∈ X : p(x) < 1} and B
p

1 = {x ∈ X : p(x) ≤ 1},

are said to be, respectively, the open and the closed unit semiball of p.

Proposition 1.29 Let τ be a linear topology on the vector space X. Then the
following conditions are equivalent :
1. the open unit semiball Bp1 of p is an open set.
2. p is continuous at the origin.
3. the closed unit semiball B

p

1 of p is a barrel neighborhood of the origin.
4. p is continuous at every point.

Proof 1.⇒ 2. Suppose that Bp1 is open in the topology τ onX. Then for any ε > 0
we have that p−1([0, ε[) = {x ∈ X : p(x) ≤ ε} = εBp1 is an open neighborhood of
the origin in X. This is enough to conclude that p : X → R

+ is continuous at the
origin.

2. ⇒ 3. Suppose that p is continuous at the origin, then B
p

1 = p−1([0, 1])
is a closed neighborhood of the origin. Since Bp1 is also absorbing and absolutely
convex, B

p

1 is a barrel.
3. ⇒ 4. Assume that 3. holds and fix θ �= x ∈ X. We have for any

ε > 0 : p−1([−ε + p(x), ε + p(x)]) = {y ∈ X : |p(y)− p(x)| ≤ ε} ⊇ {y ∈
X : p(y − x) ≤ ε} = x + εBp1 , which is a closed neighborhood of x since τ is a
linear topology on X and by the assumption 3. Hence, p is continuous.

4. ⇒ 1. If p is continuous on X then 1. holds because the preimage of an open
set under a continuous function is open and Bp1 = p−1([0, 1[). �
Definition 1.33 Let X be a vector space. For K ⊆ X convex and radial at θ
(equivalently, K is absorbing), we define the Minkowski functional of K as

pK(x) = inf{t > 0 : x
t
∈ K}.

Intuitively, pK(x) is the factor by which x must be shrunk in order to reach the
boundary of K .
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Definition 1.34 (Topology Induced from Seminorms) Let (pi)i∈I a family of
seminorms on a vector space X. Then the ith open strip of radius r centered at
x ∈ X is

Bir(x) = {y ∈ X : pi(x − y) < r}.

Let � be the collection of all open strips in X :

� = {Bir(x) : i ∈ I, r > 0, x ∈ X}.

The topology τ(�) generated by � is called the topology induced by (pi)i∈I .

The fact that pi is a seminorm ensures that each open strip Bir(x) is convex.
Hence all finite intersections of open strips will also be convex.

Theorem 1.11 Let (pi)i∈I be a family of seminorms on a vector space X. Then

B =
{ n⋂
j=1

B
ij
r (x) : n ∈ N, ij ∈ I, r > 0, x ∈ X

}

forms a base for the topology induced from these seminorms. In fact, if U is open
and x ∈ U , then there exists an r > 0 and i1, · · · , in ∈ I such that

n⋂
j=1

B
ij
r (x) ⊆ U.

Further, every element of B is convex.

Proof Suppose U ⊆ X and x ∈ U . In order to show that B is a base for the
topology, we have to show that there exists some set B ∈ B such that x ∈ B ⊆ U .
By the characterization of the generated topology,U is a union of finite intersections
of elements of �. Hence we have

x ∈
n⋂
j=1

B
ij
rj (xj )

for some n > 0, ij ∈ I, rj > 0, and xj ∈ X. Then x ∈ Bijrj (xj ), so, by definition
pij (x − xj ) < rj for each j . Therefore, if we set

r = min{rj − pij (x − xj ) : j = 1, · · · , n},



34 1 Basic Concepts

then we have B
ij
r (x) ⊆ Bijrj (xj ) for each j = 1, · · · , n. Hence

B =
n⋂
j=1

B
ij
r (x) ∈ B,

and we have x ∈ B ⊆ U . �
Proposition 1.30 Let (pi)i∈I be a family of seminorms on a vector space X.
Then the induced topology on X is Hausdorff if and only if the family (pi)i∈I is
separating.

Remark 1.17 If any one of the seminorms in our family is a norm, then the
corresponding topology is automatically Hausdorff (for example, this is the case
for C∞b (R)). On the other hand, the topology can be Hausdorff even if no individual
seminorms in a norm (consider L1

loc(R)).

Examples 1.8

1. Given an open subset � of Rm with the euclidean topology, the space C(�) of
real valued continuous functions on � with the so-called topology of uniform
convergence on compact sets is a locally convex topological vector space. This
topology is defined by the family P of all the seminorms on C(�) given by

pK(f ) := max
x∈K

|f (x)| , ∀ K ⊆ � compact.

Moreover, the linear topology τP induced from the family P is Hausdorff,
because the family P is clearly separating. In fact, if pK(f ) = 0,∀ K compact
subsets of � then in particular p{x}(f ) := |f (x)| = 0 ∀ x ∈ �, which implies
f ≡ 0 on �.

More generally, for any X locally compact we have that C(X) with the
topology of uniform convergence on compact subsets of X is a locally convex
topological vector space.

2. Let N0 be the set of all non-negative integers. For any x = (x1, · · · , xm) ∈ R
m

and α = (α1, · · · , αm) ∈ N
m
0 one defines xα := xα1

1 · · · xαmm . For any β ∈ N
m
0 ,

the symbol Dβ denotes the partial derivative of order |β| where |β| :=
m∑
i=1

βi,

i.e.,

Dβ := ∂ |β|

∂x
β1
1 · · · ∂xβmm

= ∂β1

∂x
β1
1

· · · ∂
βm

∂x
βm
m

.

(a) Let � ⊆ R
m open in the euclidean topology. For any k ∈ N0, let Ck(�) be

the set of all real valued k−times continuously differentiable functions on�,
i.e., all the derivatives of f of order ≤ k exist (at every point of �) and are
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continuous functions in �. Clearly, when k = 0 we get the set C(�) for all
real valued continuous functions on� and when k = ∞ we get the so-called
set of all infinitely differentiable functions or smooth functions on�. For any
k ∈ N0, C

k(�) (with pointwise addition and scalar multiplication) is a vector
space over R. The topology given by the following family of seminorms on
Ck(�) :

pd,K(f ) := sup
β∈Nm0|β|≤d

sup
x∈K

∣∣(Dβf )(x)∣∣ , ∀ K ⊆ � compact ∀ d ∈ {0, 1, · · · , k},

makesCk(�) into a locally convex topological vector space. (Note that when
k = ∞ we have m ∈ N0. )

(b) The Schwartz space or space of rapidly decreasing functions on R
m is

defined as the set S(Rm) of all real-valued functions which are defined
and infinitely differentiable on R

m and which have the additional property
(regulating their growth at infinity) that all their derivatives tend to zero at
infinity faster than any inverse power of x, i.e.,

S(Rm) =
{
f ∈ C∞(Rm) : sup

x∈Rm
∣∣xαDβf (x)∣∣ <∞, ∀α, β ∈ N

m
0

}
.

If f is a smooth function with compact support in R
m then f ∈ S(Rm),

since any derivative of f is continuous and supported on a compact subset of
R
m, so xα(Dβf (x)) has a maximum in R

m by the extreme value theorem.
The Schwartz space S(Rm) is a vector space over R and the topology

given by the family P of seminorms on S(Rm) :

pα,β := sup
x∈Rm

∣∣xαDβf (x)∣∣ , ∀α, β ∈ N
m
0

makes S(Rm) into a locally convex topological vector space. Indeed, the
family is clearly separating, because if pα,β(f ) = 0, ∀α, β ∈ N

m
0 then in

particular p0,0(f ) = sup
x∈Rm

|f (x)| = 0 ∀ x ∈ R
m, which implies f ≡ 0

on R
m.

Note that S(Rm) is a linear subspace of C∞(Rm), but its topology τP on
S(Rm) is finer than the subspace topology induced on it by C∞(Rm).

Theorem 1.12 Let X be a vector space whose topology is induced from a family of
seminorms (pi)i∈I . Then given any net (xα)α∈J and any x ∈ X, we have

xα → x ⇔ ∀ i ∈ I, pi(x − xα)→ 0.
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Proof ⇒. Suppose that xα → x, and fix any i ∈ I and ε > 0. Then Biε(x) is an
open neighborhood of x, so by definition of convergence with respect to a net, there
exists an α0 ∈ J such that

α � α0 ⇒ xα ∈ Biε(x).

Therefore for all α � α0 we have pi(x − xα) < ε, so pi(x − xα)→ 0.
⇐. Suppose that pi(x − xα) → 0 for every i ∈ I , and let U be any open

neighborhood of x. Then by Theorem 1.11, we can find an r > 0 and finitely many
i1, · · · , in ∈ I such that

x ∈
n⋂
j=1

B
ij
r (x) ⊆ U.

Now, given any j = 1, · · · , n we have pij (x − xα)→ 0. Hence, for each j we can
find αj ∈ J such that

α � αj ⇒ pij (x − xα) < r.

Since J is a directed set, there exists some α0 ∈ J such that α0 � αj for j =
1, · · · , n. Thus, for all α � α0 we have pij (x − xα) < r for each j = 1, · · · , n, so

xα ∈
n⋂
j=1

B
ij
r (x) ⊆ U, α � α0.

Hence xα → x. �
Corollary 1.3 Let X be a vector space whose topology is induced from a family
of seminorms (pi)i∈I , let Y be any topological space, and fix x ∈ X. Then the
following two statements are equivalent.

1. T : X→ Y is continuous at x.
2. For any net (xα)α∈J ,

pi(x − xα)→ 0 for each i ∈ I ⇒ T (xα)→ T (x) in Y.

Proposition 1.31 Let X be a vector space whose topology is induced from a family
of seminorms (pi)i∈I . Then,

1. for all i ∈ I, pi is continuous.
2. A set Y ⊆ X is bounded if and only if pi is bounded on Y for all i ∈ I .
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Proof

1. Let i ∈ I . Because of the reverse triangle inequality, pi(x − xα) → 0 implies
pi(xα) → pi(x). Hence each seminorm pi is continuous with respect to the
induced topology.

2. Suppose Y ⊆ X is bounded. Take i ∈ I . Then Bpi1 is a neighborhood of θ .
Hence,

Y ⊆ ρBpi1

for some ρ > 0 (by definition of boundedness). Hence, for all x ∈ Y,

x ∈ {ρy ∈ X : p(y) < 1} = {ρy ∈ X : p(ρy) < ρ} = {z ∈ X : p(z) < ρ},

i.e., p(x) < ρ.
Conversely, if pi(Y ) is bounded for every i ∈ I . Then there are numbers ri

such that

sup
x∈Y

pi(x) < ri.

Let U be a neighborhood of θ . Again

n⋂
j=1

B
ij
r (θ) ⊆ U.

Choose m >
Mij

rij
(1 ≤ j ≤ n). If x ∈ Y then pij (

x

m
) <

Mij

m
< rij ⇒

x

m
∈

U ⇒ x ∈ mU.
�

Theorem 1.13 IfX is a vector space whose topology τ is induced from a separating
family of seminorms (pi)i∈I , then (X, τ) is a locally convex topological vector
space.

Proof We have already seen that there is a base for the topology τ that consists
of convex open sets, so we just have to show that vector addition and scalar
multiplication are continuous with respect to this topology.

Suppose that ((λα, xα))α∈J is any net in K × X, and that (λα, xα) → (λ, x)

with respect to the product topology on K× X. This is equivalent to assuming that
λα → λ in K and xα → x in X. Fix any i ∈ I and any ε > 0. Suppose that
pi(x) �= 0. Since pi(x − xα)→ 0, there exist α1, α2 ∈ J such that

α � α1 ⇒ |λ− λα| < min

{
ε

2pi(x)
, 1

}
,
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and

α � α2 ⇒ pi(x − xα) < ε

2(|λ| + 1)
.

By definition of directed set, there exists α0 � α1, α2, so both of these inequalities
hold for α � α0. In particular, (λα)α�α0 is a bounded net, with |λα| < |λ| + 1 for
all α � α0. Hence, for α � α0 we have

pi(λx − λαxα) ≤ pi(λx − λαx)+ pi(λαx − λαxα)
= |λ− λα|pi(x)+ |λα|pi(x − xα)
<
ε

2
+ ε

2
= ε.

If pi(x) = 0 then we similarly obtain pi(λx − λαxα) < ε

2
for α � α0. Thus we

have pi(λx − λαxα)→ 0. Since this is true for every i, Theorem 1.12 implies that
λαxα → λx. �
Theorem 1.14 The topology of a locally convex topological vector spaceX is given
by the collection of seminorms obtained as Minkowski functionals pU associated to
a local basis at θ consisting of convex balanced open.

Proof The proof is straightforward. With or without local convexity, every neigh-
borhood of θ contains a balanced neighborhood of θ . Thus, a locally convex
topological vector space has a local basis B at θ of balanced convex open sets.

Every open U ∈ B can be recovered from the corresponding seminorm by

U = intU = {x ∈ X : pU(x) < 1}.

Oppositely, every seminorm local basis open

{x ∈ X : pU(x) < r}

is simply rU . Thus, the original topology is at least as fine as the seminorm
topology. �

1.2.5 Metrizable Topological Vector Spaces

What does it take for a topological vector space (X, τ) to be metrizable? Suppose
there is a metric d compatible with the topology τ . Thus, all open sets are unions of
open balls, and in particular, the countable collection of balls B 1

n
(θ) forms a local

base at the origin.
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Theorem 1.15 A Hausdorff topological vector space is metrizable if and only if
zero has a countable neighborhood base. In this case, the topology is generated by
a translation invariant metric.

Proof Let (X, τ) be a topological vector space. If τ is metrizable, then τ has
clearly a neighborhood base at θ . For the converse, assume that τ has a countable
neighborhood base at θ . Choose a countable base {Vn} of circled neighborhoods of
θ such that Vn+1 + Vn+1 + Vn+1 ⊆ Vn holds for each n. Now define the function
ρ : X→ [0,∞) by

ρ(x) =
⎧⎨
⎩

1, if x /∈ V1,

2−k, if x ∈ Vk \ Vk+1,

0, if x = θ.

Then it is easy to check that for each x ∈ X we have the following :
1. ρ(x) ≥ 0 if and only if x = θ .
2. x ∈ Vk for some k if and only if ρ(x) ≤ 2−k
3. ρ(x) = ρ(−x) and ρ(αx) ≤ ρ(x) for all |α| ≤ 1.
4. lim
α→0

ρ(αx) = 0.

We also note the following property : xn τ−→ θ if and only ρ(xn) −→ 0.
Now by means of the function ρ we define the function � : X→ [0,∞) via the

formula

�(x) = inf

{ n∑
i=1

ρ(xi) : x1, · · · , xn ∈ X. and
n∑
i=1

xi = x
}
.

The function � satisfies the following properties.

(a) �(x) ≥ 0 for each x ∈ X.
(b) �(x + y) ≤ �(x)+�(y) for all x, y ∈ X.

(c)
1

2
ρ(x) ≤ �(x) ≤ ρ(x) for each x ∈ X (so�(x) = 0 if and only if x = θ ).

Property (a) follows immediately from the definition of �. Property (b) is
straightforward. The proof of (c) will be based upon the following property :

If
n∑
i=1

ρ(xi) <
1

2m
, then

n∑
i=1

xi ∈ Vm. (1.11)

To verify (1.11), we use induction on n. For n = 1 we have ρ(x1) <
1

2m
, and

consequently x1 ∈ Vm+1 ⊆ Vm is trivially true. For the induction step, assume that

if {xi : i ∈ I } is any collection of at most n vectors satisfying
∑
i∈I
ρ(xi) <

1

2m
for
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some m ∈ N, then
∑
i∈I
xi ∈ Vm. Suppose that

n+1∑
i=1

ρ(xi) <
1

2m
for some m ∈ N.

Clearly, we have ρ(xi) <
1

2m+1 , so xi ∈ Vm+1 for each 1 ≤ n + 1. We now

distinguish two cases.

Case 1 :
n+1∑
i=1

ρ(xi) <
1

2m+1

Clearly
n∑
i=1

ρ(xi) <
1

2m+1 , so by the induction hypothesis
n∑
i=1

xi ∈ Vm+1. Thus

n+1∑
i=1

xi =
n∑
i=1

xi + xn+1 ∈ Vm+1 + Vm+1 ⊆ Vm.

Case 2 :
n+1∑
i=1

ρ(xi) ≥ 1

2m+1

Let 1 ≤ k ≤ n+1 be the largest k such that
n+1∑
i=k
ρ(xi) ≥ 1

2m+1 . If k = n+1, then

ρ(xn+1) = 1

2m+1 , so from
n+1∑
i=1

ρ(xi) <
1

2m
we have

n∑
i=1

ρ(xi) <
1

2m+1 . But then,

as in Case 1, we get
n+1∑
i=1

xi ∈ Vm. Thus, we can assume that k < n+ 1. Assume first

that k > 1. From the inequalities
n+1∑
i=1

ρ(xi) <
1

2m
and

n+1∑
i=k
ρ(xi) ≥ 1

2m+1
, we obtain

k−1∑
i=1

ρ(xi) <
1

2m+1 . So our induction hypothesis yields
k−1∑
i=1

xi ∈ Vm+1. Also by the

choice of k we have
n+1∑
i=k+1

ρ(xi) <
1

2m+1 , and thus by our induction hypothesis also

we have
n+1∑
i=k+1

xi ∈ Vm+1. Therefore, in this case we obtain

n+1∑
i=1

xi =
k−1∑
i=1

xi + xk +
n+1∑
i=k+1

xi ∈ Vm+1 + Vm+1 + Vm+1 ⊆ Vm.
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If k = 1, then we have
n+1∑
i=2

ρ(xi) <
1

2m+1
, so

n+1∑
i=2

xi ∈ Vm+1. This implies
n+1∑
i=1

xi =

x1 +
n+1∑
i=2

xi ∈ Vm+1 + Vm+1 ⊆ Vm. This completes the induction and the proof of

(1.11).

Next, we verify (c). To this end, let x ∈ X satisfy ρ(x) = 1

2m
for some m ≥ 0.

Also, assume by way of contradiction that the vectors x1, · · · , xk satisfy
k∑
i=1

xi = x

and
k∑
i=1

ρ(xi) <
1

2
ρ(x) = 1

2m+1 . But then, from (1.11) we get x =
k∑
i=1

xi ∈

Vm+1, so ρ(x) ≤ 1

2m+1 <
1

2m
= ρ(x), which is impossible. This contradiction,

establishes the validity of (c).
Finally, for each x, y ∈ X define d(x, y) = �(x − y) and note that d is a

translation invariant metric that generates τ . �
Definition 1.35 Let (X, τ) be a topological vector space.

1. X is an F -space (completely metrizable topological vector space) if its topology
is induced by a complete translationally invariant metric. In other words, a
completely metrizable topological vector space is a complete topological vector
space having a countable neighborhood base at θ . Every Banach space is an F -
space. An F -space is a Banach space if in addition d(αx, θ) = |α| d(x, θ).

2. X is a Fréchet space if it is a locally convex F -space.

Definition 1.36 A complete topological vector space (Y, �) is called a topological
completion or simply a completion of another topological vector space (X, τ) if
there is a linear homeomorphism T : X → Y such that T (X) is dense in Y ,
identifying X with T (X), we can think of X as a subspace of Y .

Theorem 1.16 Every topological vector space has a unique (up to linear homeo-
morphism) topological completion.

It turns out that the existence of a countable local base is also sufficient for
metrizability. (It suffices that τ is induced from a separating countable family of
seminorms (pn)n). Indeed, there exists a translation-invariant metric compatible
with τ . One can show that the following is a compatible metric:

d(x, y) = max
n

αnpn(x − y)
1 + pn(x − y) ,

where (αn)n is any sequence of positive numbers that decays to 0 (it is easy to see
that the maximum is indeed attained). Clearly, d(x, x) = 0. Also, since the pn’s
are separating d(x, y) > 0 for x �= y. Symmetry, as well as translational invariance
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are obvious. Finally, the triangle inequality follows from the fact that every pn is
subadditive, and that a ≤ b + c implies that

a

1 + a ≤
b

1 + b +
c

1 + c .

It remains to show that this metric is compatible with the topology τ . One can also
define the following translation-invariant metric compatible with τ

d(x, y) =
+∞∑
n=1

2−n pn(x − y)
1 + pn(x − y) .

Example 1.9 Let s = {(xn)n≥1 : x ∈ K for all n ≥ 1}, the space of all scalar
sequences. The topology of pointwise convergence is described by the seminorms
pk, (k ≥ 1), pk((xn)n≥1) = |xk| and the metric is

d(x, y) =
+∞∑
n=1

2−n
|xn − yn|

1 + |xn − yn| , x = (xn)n≥1, y = (yn)n≥1.

The ball B 1
4
(θ) = {x : d(x, θ) ≤ 1

4
} is not convex, since (1, 0, 0, · · · ), (0, 1, 0, · · · )

∈ B 1
4
(θ), but

3

4
(1, 0, 0, · · · )+ 1

4
(0, 1, 0, · · · ) = (3

4
,

1

4
, 0, 0, · · · ) /∈ B 1

4
(θ).

Theorem 1.17 Let (X, τ) be topological vector space that has a countable local
base. Then there is a metric d on X such that :
1. d is compatible with τ (every τ -open set is a union of d-open balls).
2. The open balls Br(θ) are balanced.
3. d is invariant : d(x + z, y + z) = d(x, y).
4. If, in addition, X is locally convex, then d can be chosen such that all open balls

are convex.

Theorem 1.18 A topological vector space (X, τ) is normable if and only if there
exists a convex bounded open neighborhood.

Proof If (X, τ) is normable then B1 = {x : ‖x‖ < 1} is convex and bounded.
Suppose that there exists an open convex and bounded neighborhood V of θ . Set

U =
⋂
|α|=1

αV.

Since U is the intersection of convex sets it is convex. It is balanced because for
every |β| ≤ 1,

βU =
⋂
|α|=1

βαV =
⋂
|α|=1

|β|αV = |β|U,
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and by convexity,

|β|U = |β|U + (1 − |β|){θ} ⊆ U.

Since U contains θ , intU is balanced, it is also convex. Then there exists a convex
and balanced (and certainly bounded) open neighborhoodW = intU ⊆ V. Set

‖x‖ = pW(x),

where pW is the Minkowski functional ofW . We will show that this indeed a norm.
Clearly, ‖x‖ = 0 if and only if x = θ . Since W is balanced then pW(αx) =
|α|pW(x). The triangle inequality follows from the properties of pW . It remains to
show this norm is compatible with the topology τ . This follows from the fact that

Br(θ) = {x : ‖x‖ < r} = {x : pW(x) < r} = {x : pW(x
r
) < 1} ⊆ rW,

which means that Br(θ) is bounded, hence

{
Br(θ) : r > 0

}

is a local base. �
Example 1.10 Let � be an open set in R

m. We consider the space C(�) of all
continuous functions. Note that the sup-norm does not work here. There exist
unbounded continuous functions on open sets.

Every open set � in R
m can be written as

� =
∞⋃
n=1

Kn,

where Kn � Kn+1, where the Kn are compact, and � stands for compactly
embedded, i.e., Kn is a compact set in the interior of Kn+1. We topologize C(�)
with the separating family of seminorms,

pn(f ) = max{|f (x)| : x ∈ Kn} = ‖f ‖Kn.

(These are clearly seminorms, and they are separating because for every f �= 0 there
exists an n such that f|Kn �= 0).

Since the pn’s are monodically increasing,

D⋂
d=1

n⋂
k=1

Bk1
d

(θ) =
D⋂
d=1

n⋂
k=1

{f : pk(f ) < 1

d
} = Bn1

D

(θ),
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which means that the Bn1
D

(θ) form a convex local base for C(�). In fact, Bn1
D

(θ)

contains a neighborhood obtained by taking n,D to be the greatest of the two, from
which follows that

Bn1
n

(θ) = {f : pn(f ) < 1

n
}

is a convex local base for C(�), and the pn’s are continuous in this topology. We
can thus endow this topological space with a compatible metric, for example,

d(f, g) = max
n

2−npn(f − g)
1 + pn(f − g) .

We will now show that this space is complete. Recall that if a topological vector
space has a compatible metric with respect to which is complete, then it is called an
F-space. If, moreover, the space is locally convex, then it is called a Fréchet space.
Thus, C(�) is a Fréchet space. Let (fn)n be a Cauchy sequence. This means that
for every ε > 0 there exists an N , such that for every d, n > N,

max
k

2−kpk(fn − fd)
1 + pk(fn − fd) < ε,

and so,

(∀ k ≥ 1)
2−kpk(fn − fd)
1 + pk(fn − fd) < ε,

which means that (fn)n is a Cauchy sequence in each Kk (endowed with the sup-
norm), and hence converges uniformly to a function f . Given ε and letM such that
2−M < ε, then

max
k>M

2−Mpk(fn − f )
1 + pk(fn − f ) < ε,

and there exists an N , such that for every n > N,

max
k≤M

2−Mpk(fn − f )
1 + pk(fn − f ) < ε,

which implies that fn −→ f , hence the space is indeed complete.
The question remains whether C(�) with this topology is normable. For this, the

origin must have a convex bounded neighborhood. Recall that a set Y is bounded if
and only if {pn(f ) : f ∈ Y } is bounded for every n, i.e., if

{sup{|f (x)| : x ∈ Kn} : f ∈ Y }
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is a bounded set for every n, or if

∀ n ≥ 1 sup{|f (x)| : x ∈ Kn, f ∈ Y } <∞.

Because the Bn1
n

(θ) form a base, every neighborhood of θ contains a set

Bk1
k

(θ),

hence,

sup{|f (x)| : x ∈ Kn, f ∈ Y } ≥ sup{‖f ‖Kn : ‖f ‖Kk <
1

k
}.

The right hand side can be made as large as we please for n > k, i.e., no set is
bounded, and hence the space is not normable.

1.2.6 Finite Dimensional Topological Vector Spaces

Lemma 1.6 Let (X, τ) be a topological vector space. Any linear map T : Kn → X

is continuous.

Proof Denote by (ei)1≤i≤n the standard basis in K
n and set

uj = T (ej ) j = 1, · · · , n.

By linearity, for any x = (x1, · · · , xn) =
n∑
j=1

xj ej

T (x) =
n∑
j=1

xjuj .

The map x �→ xj (which is linear map K
n → K) is continuous and so are addition

and scalar multiplication in X. �
Proposition 1.32 Let (X, τ) be a topological vector space. Then :
1. Every finite dimensional subspace Y of X is a closed subset of X.
2. If Y is an n-dimensional subspace of X and (ui)1≤i≤n is a basis for Y , then

the map T : Kn → Y defined by T (x1, · · · , xn) =
n∑
j=1

xjuj is a topological

isomorphism of K
n equipped with its Euclidean topology, onto X. That is,
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specifically, a net (xα)α =
⎛
⎝

n∑
j=1

xαj uj

⎞
⎠
α

converges to an element x =
n∑
j=1

xjuj ∈ Y if and only if each net (xαj )α converges to xj , 1 ≤ j ≤ n.

Proof

1. We prove part 1 by induction on the dimension of the subspace Y . First, if Y has
dimension 1, let y �= θ ∈ Y be a basis for Y . If (λαy)α is a net in Y that converges
to an element x ∈ X, then the net (λα)α must be eventually bounded in K, in the
sense that there must exist an index α0 and a constantM such that |λα| ≤ M for
all α � α0. Indeed, if the net (λα)α were not eventually bounded, let (λαβ )β be a
subnet for which lim

β

∣∣λαβ
∣∣ = ∞. Then

y = lim
β

1

λαβ
λαβ y

= lim
β

1

λαβ
lim
β
λαβ y

= 0 × x
= θ.

which is a contradiction. So, the net (λα)α is bounded. Let (λαβ )β be a convergent
subnet of (λα)α with limit λ. Then

x = lim
α
λαy = lim

β
λαβ = λy.

whence x ∈ Y , and Y is closed.
Assume now that any n-1-dimensional subspace is closed, and let Y have

dimension n > 1. Let {y1, · · · , yn} be a basis for Y , and write Y ′ for the linear
span of y1, · · · , yn−1. Then elements y of Y can be written uniquely in the form
y = y′ + λyn, for y′ ∈ Y ′ and λ ∈ K. Suppose that x is an element of the closure
of Y , i.e., x = lim

α
(y′α + λαyn). As before, we have that the net (λα)α must be

bounded. Indeed, if the net (λα)α were not bounded, then let (λαβ )β be a subnet
for which lim

β

∣∣λαβ
∣∣ = ∞. Then

θ = lim
β

1

λαβ
x = lim

β

y′αβ
λαβ

+ yn,
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or

yn = − lim
β

y′αβ
λαβ
,

implying that yn belongs to the closure of the closed subspace Y ′, this is
impossible, showing that the net (λα)α is bounded. Hence, letting (λαβ )β be a
convergent subnet of (λα)α , say λ = lim

β
λαβ , we have

x = lim
β
(y′αβ + λαβ yn),

showing that

x − λyn = lim
β
y′αβ ,

whence, since Y ′ is closed, there exists a y′ ∈ Y ′ such that x − λyn = y′.
Therefore, x = y′ + λyn ∈ Y , and Y is closed, proving part 1.

2. We prove part 2 for real vector spaces. The map T : Rn → Y of part 2 is
obviously linear, one to one and onto. Also, it is continuous by previous lemma.

Let us show that T −1 is continuous. Thus, let (xα)α =
⎛
⎝

n∑
j=1

xαj uj

⎞
⎠
α

converge

to θ in Y . Suppose, by way of contradiction, that there exists an j for which

the net (xαj )α does not converge to 0. Then let (xα
β

j )β be a subnet for which

lim
β
xα

β

j = xj , where xj either is ±∞ or is a nonzero real number. Write

xα = xαj uj + x′α . Then

1

xα
β

j

xα
β = uj + 1

xα
β

j

x′αβ ,

whence

uj = − lim
β

1

xα
β

j

x′αβ ,

implying that uj belongs to the (closed) subspace spanned by the vectors

u1, · · · , uj+1, · · · , un.

and this is a contradiction, since the uj ’s form a basis of Y . Therefore, each of
the nets (xαj )α converges to 0, and T −1 is continuous.

�
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Corollary 1.4 There exists a unique topology on K
n (viewed as a topological

vector space), and all n-dimensional topological vector spaces are topologically
isomorphic.

There are no infinite dimensional locally compact topological vector spaces. This
is essentially due to F. Riesz.

Theorem 1.19 A topological space is locally compact if and only if is finite
dimensional.

Proof Let (X, τ) be a topological vector space. If X is finite dimensional, then τ
coincides with the Euclidean topology and since the closed balls are compact sets,
it follows that (X, τ) is locally compact.

For the converse assume that (X, τ) is locally compact and let V be a compact

neighborhood of θ . From V ⊆
⋃
x∈V
(x + 1

2
V ), we see that there exists a finite subset

{x1, · · · , xk} of V such that

V ⊆
k⋃
i=1

(xi + 1

2
V ) = {x1, · · · , xk} + 1

2
V. (1.12)

Let Y be a linear span of x1, · · · , xk . From (1.12), we get V ⊆ Y + 1

2
V . This

implies
1

2
V ⊆ 1

2
(Y + 1

2
V ) = Y + 1

22V , so V ⊆ Y + (Y + 1

22V ) = Y +
1

22V . By

induction we see that

V ⊆ Y + 1

2n
V (1.13)

for each n. Next, fix x ∈ V . From (1.13), it follows that for each n there exist yn ∈ Y
and vn ∈ V such that x = yn + 1

2n
vn. Since V is compact, there exists a subnet

(vnα ) of the sequence (vn) such that vnα
τ−→ v ∈ X (and clearly

1

2nα
−→ 0 in R).

So

ynα = x −
1

2nα
vnα

τ−→ x − 0v = x.

Since (Proposition 1.32 1.) Y is a closed subspace, x ∈ Y . That is, V ⊆ Y . Since V
is also an absorbing set, it follows that X = Y , so that X is finite dimensional. �
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Theorem 1.20

1. Let Y1, · · · , Yn be compact convex sets in a vector space (X endowed with a
linear topology τ). Then

conv(Y1 ∪ · · · ∪ Yn)

is compact.
2. Let (X, τ) be a locally convex topological vector space. If Y ⊆ X is totally

bounded then conv(Y ) is totally bounded as well.
3. If (X, τ) is a Fréchet space and K ⊆ X is compact then conv(K) is compact.
4. If K ⊆ R

n is compact then conv(K) is compact.

Proof

1. Let S ⊆ R
n be the simplex

S = {(s1, · · · , sn) : si ≥ 0,
n∑
i=1

si = 1}.

Set Y = Y1 × · · · × Yn and define the function ϕ : S × Y → X :

ϕ(s, y) =
n∑
i=1

siyi .

Consider the set K = ϕ(S × Y ). It is the continuous image of a compact set and
it is therefore compact. Moreover,

K ⊇ conv(Y1 ∪ · · · ∪ Yn).

It is easy to show that K is convex, and since it includes all the Yi’s it must in
fact be equal to conv(Y1 ∪ · · · ∪ Yn).

2. Let U be an open neighborhood of θ . Because X is locally convex there exists a
convex open neighborhood V of θ such that

V + V ⊆ U.

Since Y is totally bounded there exists a finite set F such that

Y ⊆ F + V ⊆ conv(F )+ V.

Since the right hand side is convex

conv(Y ) ⊆ conv(F )+ V.
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By the first item conv(F ) is compact, therefore there exists a finite set F ′ such
that

conv(F ) = F ′ + V,

i.e.,

conv(Y ) ⊆ F ′ + V + V ⊆ F ′ + U,

which proves that conv(Y ) is totally bounded.
3. In every metric space the closure of a totally bounded set is totally bounded,

and if the space is complete it is compact. Since K is compact, then it is totally
bounded. By the previous item conv(K) is totally bounded and hence its closure
is compact.

4. S ⊆ R
n be the convex simplex. One can show that conv(K) is the image of the

continuous map S ×K :

(s, x1, · · · , xn) �→
n∑
i=1

sixi,

whose domain is compact.

�
Corollary 1.5 Let X be a vector space endowed with a linear topology τ . The
convex hull of a finite set (polytope) is compact.

Example 1.11 (Noncompact Convex Hull) Consider l2, the space of all square

summable sequences. For each n let un = (0, · · · , 0︸ ︷︷ ︸
n−1

,
1

n
, 0, 0, · · · ). Observe that

‖un‖2 = 1

n
, so un

‖.‖2−→ θ . Consequently,

Y = {u1, u2, u3, · · · } ∪ {θ}

is norm compact subset of l2. Since θ ∈ Y , it is easy to see that

conv(Y ) =
{ k∑
i=1

αiui : αi ≥ 0 for each i and
k∑
i=1

αi ≤ 1

}
.

In particular, each vector of conv(Y ) has only finitely many nonzero components.
We claim that conv(Y ) is not norm compact. To see this, set

xn = (1
2
,

1

2
.

1

22 ,
1

3
.

1

23 , · · · ,
1

n
.

1

2n
, 0, 0, · · · ) =

n∑
i=1

1

2i
ui,
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so xn ∈ conv(Y ). Now xn
‖.‖2−→ x = (1

2
,

1

2
.

1

22 ,
1

3
.

1

23 , · · · ,
1

n
.

1

2n
,

1

n+ 1
.

1

2n+1 , · · · )
in l2. But x /∈ conv(Y ), so conv(Y ) is not even closed, let alone compact.

Remark 1.18 In the above example, the convex hull of a compact set failed to be
closed. The question remains whether the closure of the convex hull is compact. In
general, the answer is no. To see this, letX the space of sequences that are eventually
zero, equipped with the l2-norm. Let Y as above, and note that conv(Y ) (where the
closure is taken in X, not l2) is not compact either. To see this, observe that the
sequence (xn)n defined above has no convergent subsequence (in X).

Proposition 1.33 Let Y and Z are two nonempty convex subsets of a topological
vector space (X, τ) such that Y is compact and Z is closed and bounded, then
conv(Y ∪ Z) is closed.

Proof Let xi = (1 − αi)yi + αizi −→ x, where 0 ≤ αi ≤ 1, yi ∈ Y and zi ∈ Z
for each i. By passing to a subnet, we can assume that yi −→ y ∈ Y and αi −→
α ∈ [0, 1]. If α > 0, then zi −→ x − (1 − α)y

α
= z ∈ Z, and consequently

x = (1 − α)y + αz ∈ conv(Y ∪ Z).
Now consider the case α = 0. The boundedness of Z and Proposition 1.20 imply

αizi −→ θ , so xi = (1 − αi)yi + αizi −→ y. Since the space is Hausdorff,
x = y ∈ conv(Y ∪ Z). �

1.2.7 The Weak Topology of Topological Vector Spaces
and the Weak∗ Topology of Their Duals

If X is a topological vector space then the weak topology on it is coarser than the origin
topology : any set that is open in the original topology is open in the weak topology. From
this, it follows that it is easier for a sequence to converge in the weak topology than in the
original topology.

We will consider topological vector spaces (X, τ) over the field K,K = R or
K = C. For definiteness we assume K = C.

Remark 1.19 Given a vector space X and a linear functional φ : X → K, the map
pφ = |φ| : X � x �→ |φ(x)| ∈ [0,∞[ defines a seminorm on X.

Definition 1.37 Let (X, τ) be a topological vector space. The topological dual
space X′ is the set of all continuous linear maps (X, τ)→ K.

Next, we will discuss the geometric form of the Hahn-Banach theorems. The first
geometric version is

Lemma 1.7 Let (X, τ) be a real topological vector space, and let V ⊆ X be a
convex open set which contains θ . If x0 ∈ X \ V , there exists ψ ∈ X′, such that
ψ(x0) = 1 and ψ(x) < 1, for all x ∈ V .
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It turns out that Lemma 1.7 is a particular case of a more general result :
Theorem 1.21 (Hahn-Banach Separation Theorem-Real Case) Let (X, τ) be a
real topological vector space, let Z,W ⊆ X be nonempty convex sets with Z open,
and Z ∩W = ∅. Then there exists ψ ∈ X′, and a real number α, such that

ψ(z) < α ≤ ψ(w), for all z ∈ Z,w ∈ W.

Proof Fix some points z0 ∈ Z,w0 ∈ W , and define the set

V = Z −W + w0 − z0 = {z− w + w0 − z0 : z ∈ Z,w ∈ W }.

It is straightforward that V is convex and contains θ . The equality

V =
⋃
w∈W

(Z − w + w0 − z0)

shows that V is also open. Define the vector x0 = w0 − z0. Since Z ∩W = ∅, it is
clear that x0 /∈ V . Use Lemma 1.7 to produce ψ ∈ X′ such that

(i) ψ(x0) = 1,
(ii) ψ(x) < 1, for all x ∈ V .

By the definition of x0 and V , we have ψ(w0) = ψ(z0)+ 1, and

ψ(z) < ψ(w)+ ψ(z0)− ψ(w0)+ 1, for all z ∈ Z,w ∈ W,

which gives

ψ(z) < ψ(w), for all z ∈ Z,w ∈ W. (1.14)

Put

α = inf
w∈W ψ(w).

The inequality (1.14) gives

ψ(z) ≤ α ≤ ψ(w), for all z ∈ Z,w ∈ W. (1.15)

The proof will be complete once we prove the following :

ψ(z) < α for all z ∈ Z.
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Suppose the contrary, i.e., there exists some z1 ∈ Z with ψ(z1) = α. Using the
continuity of the map

R � β �→ z1 + βx0 ∈ X,

there exists some ε > 0 such that

z1 + βx0 ∈ Z, for all β ∈ [−ε, ε].

In particular, by (1.15) one has

ψ(z1 + εx0) ≤ α,

which means that

α + ε ≤ α,

which is clearly impossible. �
Theorem 1.22 (Hahn-Banach Separation Theorem-Complex Case) Let (X, τ)
be a complex topological vector space, let Z,W ⊆ X be nonempty convex sets with
Z open, and Z ∩W = ∅. Then there exists ψ ∈ X′, and a real number α, such that

Reψ(z) < α ≤ Reψ(w), for all z ∈ Z,w ∈ W.

Proof Regard X as a real topological vector space, and apply the real version to
produce an R-linear continuous functional ψ1 : X → R, and a real number α, such
that

ψ1(z) < α ≤ ψ1(w), x ∈ X

Then the functional ψ : X→ C defined by

ψ(x) = ψ1(x)− iψ1(ix), x ∈ X

will clearly satisfy the desired properties. �
Remark 1.20 Geometrically we can say that the hyperplane {Reψ(x) = α}
separates the sets Z,W in broad sense.

There is another version of the Hahn-Banach separation theorem, which holds
for locally convex topological vector spaces.
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Theorem 1.23 Let (X, τ) be a locally convex topological vector space. Suppose
C,D ⊆ X are convex sets, with C compact, D closed, and C ∩D = ∅. Then there
exists ψ ∈ X′ and two numbers α, β ∈ R, such that

Reψ(x) ≤ α < β ≤ Reψ(y), for all x ∈ C, y ∈ D.

Proof LetW = D−C. By Lemma 1.2, 4. W is closed. Since C ∩D = ∅, we have
θ /∈ W . SinceW is closed, its complement X \W will then be a neighborhood of θ .
Since X is locally convex, there exists a convex open set Z, with θ ∈ Z ⊆ X \W .
In particular we have Z ∩ W = ∅. Applying the suitable version of the Hahn-
Banach separation theorem (real or complex case), we find a linear continuous map
ψ : X→ K and a real number γ , such that

Reψ(z) < γ ≤ Reψ(w), for all z ∈ Z,w ∈ W.

Notice that θ ∈ Z, we get γ > 0. Then the inequality

γ ≤ Reψ(w), for all w ∈ W,

gives

Reψ(y)− Reψ(x) ≥ γ > 0, for all x ∈ C, y ∈ D.

Then if we define

β = inf
y∈DReψ(y) andα = sup

x∈C
Reψ(x),

we get β ≥ α + γ , and we are done. �
Remark 1.21 Geometrically we can say that the hyperplane {Reψ(x) = β}
separates the compact sets C and the closed set D in the strict sense.

One important feature of topological duals in the locally convex Hausdorff case
is described by the following result.

Proposition 1.34 If (X, τ) is a locally convex topological vector space, then X′
separates the points of X, in the following sense : for any x, y ∈ X, such that
x �= y, there exists φ ∈ X′, such that φ(x) �= φ(y).
Proof Since X is locally convex and Hausdorff, there exists some open convex set
V � y such that x /∈ V . The existence of φ then follows from the Hahn-Banach
separation theorem. �
Definition 1.38 Let (X, τ) be a topological vector space. The weak topology
on X, which we denote by σ(X,X′), is the initial topology for X′. That is,
σ(X,X′) is the coarsest topology on X such that each element of X′ is continuous
(X, σ (X,X′))→ C.



1.2 Topological Vector Spaces 55

Equivalently, the weak topology on X is the seminorm topology given by the
seminorms |φ| , φ ∈ X′.

Remark 1.22

• The topologies τ and σ(X,X′) are comparable, and τ is at least as fine as
σ(X,X′). That is, σ(X,X′) ⊆ τ . A vague rule is that the smallerX′ is compared
to the set of all linear maps (X, σ (X,X′)) → C, the smaller σ(X,X′) will be
compared to τ .

• If X′ separates X then (X, σ (X,X′)) is a locally convex topological vector
space. It is Hausdorff because σ(X,X′) is induced by the separating family
of seminorms pφ = |φ| , φ ∈ X′. In particular if (X, τ) is a locally convex
topological vector space then (X, σ (X,X′)) is a locally convex topological
vector space.

Definition 1.39 Let (X, τ) be a topological vector space and (xα)α∈I a net in X.
We say that

1. The net (xα)α∈I converges strongly to x and we write

xα → x if (xα)α∈I converges to x in the original topology τ.

2. The net (xα)α∈I converges weakly to x and we write

xα ⇀ x if (xα)α∈I converges to x in the topology σ(X,X′).

This condition is equivalent to the condition that pφ(xα − x) → 0,∀φ ∈ X′,
which in turn is equivalent to

φ(xα)→ φ(x), ∀φ ∈ X′.

A simple consequence of the fact that σ(X,X′) ⊆ τ is that

xα → x �⇒ xα ⇀ x,

i.e., every strongly convergent net is weakly convergent.
Similarly, we will speak about the strong neighborhood, strongly closed, strongly

bounded · · · , and weak neighborhood, weakly closed, weakly bounded · · ·
Definition 1.40 We say that Y ⊆ X is weakly bounded if Y is a bounded subset
of (X, σ (X,X′)) : for every neighborhood N of θ in (X, σ (X,X′)) there is some
c ≥ 0 such that Y ⊆ {cx : x ∈ N} = cN (equivalently, φ(Y ) is bounded in C).

Remark 1.23 If (X, τ) is an infinite dimensional locally convex topological vector
space, the weak topology σ(X,X′) has a peculiar property : every weak neigh-
borhood of θ contains a closed infinite dimensional linear subspace. Indeed, if
we start with some neighborhood V , then there exist φ1, · · · , φn ∈ X′ and
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ε1, · · · , εn > 0, such that ε1BPφ1
(θ) ∩ · · · ∩ εnBPφn (θ), where for i = 1, · · · , n,

BPφi
(θ) = {x ∈ X, |φi(x)| < 1}. So V will clearly contain the closed subspace

(ker φ1) ∩ · · · ∩ (ker φn). It follows that

dimX ≤ n+ dim(ker φ1) ∩ · · · ∩ (ker φn),

i.e., dim(ker φ1) ∩ · · · ∩ (ker φn) = ∞. Hence σ(X,X′) is not locally bounded.

Proposition 1.35 In any finite-dimensional normed space, the weak topology
coincides with the topology generated by any norm.

Proof Let X be a finite-dimensional vector space, let (e1, · · · , ed) be a basis in
X, and let φ1, · · · , φd be its dual basis, defined by φi(ej ) = δi,j . Then, ‖x‖∞ =
max

1≤i≤d
|φi(x)| is a norm onX, and sinceX is finite-dimensional, all linear functionals

on X are also continuous.
We know that on finite dimensional vector space two norms are equivalent, so

it is enough to compare the weak topology to the topology τ induced by ‖‖∞. It is
clear that τ ⊇ σ(X,X′). On the other hand,

|x|φ1,··· ,φd = sup
1≤i≤d

= ‖x‖∞, x ∈ X,

and hence the open ‖.‖∞-balls around any point and with any radius are open in the
weak topology. Hence, τ ⊆ σ(X,X′). �
Theorem 1.24 Let X be an infinite-dimensional normed space and SX = {x ∈
X : ‖x‖ = 1} be the unit sphere of X. The closure of the unit sphere in the weak
topology is the whole closed unit ball, i.e.,

SX
σ(X,X′) = {x ∈ X : ‖x‖ ≤ 1}.

Similarly, one can show that B1(θ) = {x ∈ X : ‖x‖ < 1} has empty interior for
σ(X,X′). In particular it is not open. Despite these facts, there are sets whose weak
closure is equivalent to its strong closure.

Remark 1.24 If (X, τ) is a locally convex topological vector space, then for any

Y ⊆ X, then conv(Y )
τ = conv(Y )

σ(X,X′)
.

Theorem 1.25 If Y ⊆ X is convex and (X, τ) is a locally convex topological vector
space, then

1. Y is σ(X,X′)-closed (weakly closed) if and only if Y is τ -closed (strongly
closed).

2. Y is σ(X,X′)-dense if and only if Y is τ -dense.
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Proof

1. Since σ(X,X′) ⊆ τ , then if Y is σ(X,X′)-closed it is τ -closed. Conversely, if
Y is τ -closed and convex, let x0 ∈ X \ Y . Then by the Hahn-Banach separation
theorem (for complex vector spaces) there is some φ ∈ X′ such that

sup
x∈Y

Re(φ(x)) ≤ γ1 < γ2 ≤ Re(φ(x0)).

Hence the neighborhood of x0

x0 + V = x0 +
{
x : |γ (x)| ≤ Re(φ(x0))− γ2

}

has empty intersection with Y .
2. Obvious.

�
In particular, in a topological vector space, the closure of convex sets is convex.
If a sequence converges weakly, it need not converge in the original topology,

and Mazur’s theorem shows that if a sequence in a metrizable locally convex space
converges weakly then there is a sequence in the convex hull of the original sequence
that converges to the same limit as the weak limit of the original sequence.

Theorem 1.26 (Mazur)LetX be a metrizable locally convex space. If xn ⇀ x, then
there is a sequence (ym)m ⊆ X such that each ym is a convex combination of finitely
many xn and such that ym → x.

Proof The convex hull of a subset Y of X is the set of all convex combinations of
finitely many elements of Y . The convex hull of a set is convex and contains the
set. Let Z be the convex hull of the sequence (xn)n and let W the weak closure
of Z. Since xn ⇀ x and xn ∈ Z, Theorem 1.25 tells us that W = Z, so x ∈ Z.
But X is metrizable, so x being in the closure of Z implies that there is a sequence
(ym)m ⊆ Z such that ym → x. This sequence (ym)m satisfies the claim. �

Let (X, τ) be a topological vector space. The dual space X′ does not come with
an a priori topology.

Let x ∈ X, and define fx : X′ → C by fx(φ) = φ(x). Now fx is linear. If
φ1, φ2 ∈ X′ are distinct, then φ1 − φ2 �= 0 so there is some x ∈ X such that
(φ1 − φ2)(x) �= 0, which tells us that fx(φ1) �= fx(φ2). Therefore the set {fx : x ∈
X} is a separating family of seminorms on X′, hence generating a topology which
makes X′ a locally convex topological vector space. We denote this topology by
σ(X′, X) or w∗ and it is called the weak∗ topology on X′. The open sets in the
weak∗ topology are generated by the subbase

Bxr = {φ ∈ X′ : |φ(x)| < r}.
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Lemma 1.8

(a) The weak topology σ(X′, X) is the weakest topology on X′ such that each map
fx is continuous.

(b) A sequence (φn)n converges to φ in σ(X′, X) if and only if for all x ∈ X

lim
n−→∞φn(x) = φ(x).

(c) A set Y ⊆ X′ is bounded w.r.t. σ(X′, X) if and only if for all x ∈ X

{φ(x), φ ∈ Y }

is bounded in C.

Example 1.12 Recall that c′0 = l1 and l′1 = l∞. Weak convergence of a sequence
(xn)k ⊆ l1 to zero (with l1 viewed as a topological vector space) means that

∀ y = (yk)k ⊆ l∞ lim
k→∞

+∞∑
k=1

(xn)kyk = 0.

Weak∗ convergence of a sequence (xn)k ⊆ l1 to zero (with l1 viewed as the dual of
the topological vector space c0) means that

∀ y = h(yk)k ⊆ c0 lim
k→∞

+∞∑
k=1

(xn)kyk = 0.

Clearly, weak convergence implies weak∗ convergence (but not the opposite).

A priori, one can look at the second dual Y of the locally convex vector space
(X, σ (X′, X)), i.e.,

Y = {λ : X′ → C,w.r.t, σ (X′, X)}.

By construction, it follows that X ⊆ Y,
i.e., X can be embedded into Y . It turns out that X = Y , i.e., the dual of

(X, σ (X′, X)) can be identified with X.

Theorem 1.27 If λ : X′ → C is linear and continuous w.r.t, σ(X′, X), then there
exists x ∈ X such that

λ(φ) = φ(x) ∀φ ∈ X′.
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Proof By definition of continuity w.r.t, σ(X′, X), for all ε > 0 there are δ > 0 and
x1, · · · , xn such that

λ{φ : |φ(xi)| ≤ δ, i = 1, · · · , n} ⊆ (−ε, ε).

In particular, if φ is such that φ(xi) = 0 for all i, then λ(φ) = 0. This show that

Nφ ⊇
n⋂
i=1

Nxi .

Consider the linear mapping T : X′ → C
n+1 defined by

T (φ) = (λ(φ), · · · , φ(x1), · · · , φ(xn)).

By the assumption, T (X′) is a subspace of Cn+1 and the point (1, 0, · · · , 0) is not
in T (X′). Then there are α = (α1, · · · , αn+1) ∈ C

n+1 such

αT (X′) = {α1λ(φ)+
n+1∑
i=2

αiφ(xi−1), φ ∈ X′} = 0 < �α1.

It follows that α1 �= 0 and

λφ =
n∑
i=1

αi+1

α1
φ(xi).

�
If X is in particular a normed space, then we know that (X′, ‖.‖X′) is a

Banach space. Hence, if τ is the vector topology of X′ generated by the norm
, ‖.‖X′ , σ (X′, X) ⊆ τ .

Definition 1.41 We say that

• The sequence (φn)n converges strongly to φ and we write

φn −→ φ if ‖φn − φ‖X′ −→ 0.

• The sequence (φn)n converges weakly to φ and we write φn ⇀
∗ φ if (φn)n

converges to φ in the topology σ(X′, X).

The Banach-Alaoglu theorem shows that certain subsets of X′ are weak∗
compact, i.e., they are compact subsets of σ(X′, X).
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Definition 1.42 LetX be a topological vector space and V be a neighborhood of θ .
Define the polar of V as

K =
{
φ ∈ X′ : |φ(x)| ≤ 1 ∀ x ∈ V

}
.

Theorem 1.28 (Banach-Alaoglu) Let X be a topological vector space and V be
a neighborhood of θ . Then the polar K of V is compact in the weak∗ topology
σ(X′, X).

Proof Since each V local neighborhood absorbing, then there is a γ (x) ∈ C such
that

x ∈ γ (x)V .

Hence it follows that

|φ(x)| ≤ γ (x) x ∈ X, φ ∈ K.

Consider the topological space

P =
∏
x∈X

{α ∈ C : |α| ≤ γ (x)},

with the product topology σ . By Tychonoff’s theorem (P, σ ) is compact.
By the construction, the elements of P are functions f : X→ C (not necessarily

linear) such that

|f (x)| ≤ γ (x).

In particular, the set K is the subset of P made of the linear functions.
We first show that K is the subset of P w.r.t the topology σ . This follows from

the fact that if f0 is in the σ closure of K , then the scalars α, β and point x, y ∈ X
one has that

{
|f (αx + βy)− f0(αx + βy)| < ε, |f (x)− f0(x)| < ε, |f (y)− f0(y)| < ε

}

⋂
K �= ∅.
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Take thus φ in the intersection, so that

|f0(αx + βy)− αf0(x)− βf0(y)| =
∣∣∣∣(f0(αx + βy)− f (αx + βy))

+ α(f (x)− f0(x))+ (f (y)− f0(y))

∣∣∣∣
< (1 + |α)| + |β|)ε.

Since ε is arbitrary, f0 is linear. Moreover, since |f0(x)| ≤ γ (x), then for x ∈ V

|f0(x)| ≤ 1.

It follows that we have two topologies on K :
• the weak∗ topology σ(X′, X) inherited by X′,
• the product topology σ inherited by P . Since K is closed in (P, σ ), then (K, σ)

is compact.

To conclude, we need only to show that the two topologies coincide. This follows
because the bases of the two topologies are generated by the sets

Vσ(X′,X) =
{
|φ(xi)− φ0(xi)| < ε, i = 1 · · · , n

}
,

Vσ =
{
|f (xi)− f0(xi)| < ε, i = 1 · · · , n

}
.

There is thus a one to one correspondence among local bases, hence the two
topologies coincide. �
Theorem 1.29 Let (X, τ) be a separable topological vector space. Let K ⊆ X′ be
weakly∗ compact. Then K is metrizable in the weak∗ topology.

Proof Let {xn, n ∈ N} be a dense subset of X and fxn(φ) = φ(xn) for φ ∈ X′.
By the definition of the weak∗ topology on X′, the functionals fxn are weak∗
continuous. Also, for every n,

fxn(φ1) = fxn(φ2),

i.e.,

φ1(xn) = φ2(xn),

then φ1 = φ2 (continuous functionals that coincide on a dense set).
Thus, {fxn, n ∈ N} is a countably family of continuous functionals that separates

points in X′. It follows by Proposition 1.9 that K is metrizable. �
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Remark 1.25

1. The claim is not that X′ endowed with the weak∗ topology is metrizable. For
example, this is not true in infinite-dimensional Banach spaces.

2. The topological space (X′, σ (X′, X)) is never metrizable, unless X has a
countable vector base.

Theorem 1.30 Let X be a separable topological vector space. If V is a neighbor-
hood of θ and if the sequence (φn)n ⊆ X′ satisfies

|φn(x)| ≤ 1, n ≥ 1, x ∈ V,

then there is a subsequence (φα(n))n and some φ ∈ X′ such that for all x ∈ X,

lim
n→∞φα(n)(x) = φ(x).

Proof The Banach-Alaoglu theorem implies that the polar

K =
{
φ ∈ X′ : |φ(x)| ≤ 1 ∀ x ∈ V

}
,

is weak∗ compact. K with the subspace topology inherited from σ(X′, X) is
compact, hence by Theorem 1.29 it is metrizable. Since the sequence (φn)n
is contained in K , it has a subsequence (φα(n))n that converges weakly to some
φ ∈ K . For each x ∈ X, the functional fx : (X′, σ (X′, X)) → C defined by
fx(φ) = φ(x) is continuous, hence for all x ∈ X we have fx(φα(n))) → fx(φ),
which is the claim. �
Theorem 1.31 If (X, τ) is locally convex and Y ⊆ X, then Y is bounded in (X, τ)
if and only if Y is bounded in (X, σ (X,X′)).

Dual of Banach Spaces and Reflexive Spaces

A particular case is when X is normed : in this case X′ is a Banach space with norm
‖φ‖X′ = sup

‖x‖=1
|φ(x)| . One can introduce the second dual of X, i.e., denoted by

X′′. Clearly, there is a canonical immersion J of X into X′′, by

J : X→ X′′, J (x)(φ) = φ(x), ‖J (x)‖X′′ = ‖x‖X.

Since J : X → X′′ is continuous, it follows that J (X) is a closed subspace of X′′.
In particular, either J (X) = X′′ or it is not dense.
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Lemma 1.9 (Helly) Let X be a Banach space, φ ∈ X′, i = 1 · · · , n, n linear
functionals in X′ and αi ∈ C, i = 1 · · · , n, n scalars. Then the following properties
are equivalent :
1. for all ε > 0 there is xε, ‖xε‖ < 1 such that

|φ(xε)− αi | ≤ ε i = 1 · · · , n,

2. for all β1, · · · , βn ∈ C

∣∣∣∣∣
n∑
i

βiαi

∣∣∣∣∣ ≤ ‖
n∑
i

βiφi‖X′ .

Proof The first implication follows by

∣∣∣∣∣
n∑
i

βiαi

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i

βi(αi − φi(xε))
∣∣∣∣∣+
∣∣∣∣∣
n∑
i

βiφi(xε)

∣∣∣∣∣

≤ ε
n∑
i

|βi | + ‖
n∑
i

βiφi‖X′ ,

since ‖xε‖ ≤ 1. Conversely if 1. does not hold, then this means that the closure of
the set

(φ1, · · · , φn)
{
x : ‖x‖ ≤ 1

}
⊆ C

n

does not contains (α1, · · · , αn). Thus there is (β1, · · · , βn) ∈ C
n such that

max Re

{ n∑
i

βiφi(x), ‖x‖ ≤ 1

}
< Re

{ n∑
i

βiαi

}
≤
∣∣∣∣∣
n∑
i

βiαi

∣∣∣∣∣ .

Since {x : ‖x‖ ≤ 1} is balanced, it follows that 2. is false. �
Proposition 1.36 (Goldstine) IfX is a Banach space, then J (BX) is dense in BX′′
for the weak∗ topology.

Proof If ξ ∈ X′′, take a neighborhood of the form

V =
{
η ∈ X′ : |η(φi)− ξ(φi)| < ε, φi ∈ X′, i = 1 · · · n

}
.

We need only to find x ∈ X such that

|φi(x)− ξ(φi)| < ε.
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Since ‖ξ‖X′′ ≤ 1, then

∣∣∣∣∣
n∑
i

βiξ(φi)

∣∣∣∣∣ ≤ ‖
n∑
i

βiφi‖X′ ,

so that for Lemma 1.9 it follows that there is an xε ∈ X which belongs to V . �
Definition 1.43 A Banach space is reflexive if J (X) = X′′.

It is important to observe that in the previous definition the canonical immersion
J is used : even for particular non-reflexive spaces, one can find a continuous linear
surjection from X to X′′.

Theorem 1.32 (Kakutani) The Banach space X is reflexive if and only if BX is
compact for the weak topology σ(X,X′).

Proof If X is reflexive, then J : X → X′′ is continuous, injective and surjective.
Hence J−1 is linear and continuous w.r.t. the strong topologies of X and X′′.
Actually both J and J−1 are isometries.

It is clear that

J

{
x : |φ(x)| < ε

}
=
{
η : |ηφ| < ε

}
,

so that the topology J−1(σ (X′′, X′)) coincides with the topology σ(X,X′). Since
BX′′ is weak∗ compact, so BX.

Conversely, if BX is compact, then J (BX) is closed, and by Proposition 1.36 it
coincide with the whole BX′′ . �
Theorem 1.33 If X is a Banach space and X′ is separable, then X is separable.

Proof Let (φn)n be a dense countable set in X′. Let xn ∈ X, ‖xn‖X ≤ 1, be a point
where

|φn(xn)| ≥ 1

2
‖φn‖X′ ,

and consider the countable set

Q =
{∑

finite

αixi : αi belongs to a countable dense subset of C

}
.

Clearly Q is countable and dense in the vector space L generated by {xn}n, so that
it remains to prove that L is dense in X.
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If L is not dense, then there is a non null continuous functional φ such that

φ �= 0X′ φ(xn) = 0 ∀ n.

Since (φn)n is dense, there is nφ such that ‖φ − φnφ‖X′ < ε, so that

‖φnφ‖X′ ≤
∣∣φnφ (xnφ )

∣∣ ≤ ∣∣(φ − φnφ )(xnφ )
∣∣+ ∣∣φ(xnφ )

∣∣ ≤ ε.

Thus ‖φnφ‖X′ ≤ 2ε, which implies that φ = 0X′ . �
Proposition 1.37 If Y ⊆ X is a closed subspace of a reflexive space, then Y is
reflexive.

Proof The proof follows by proving that the topology σ(Y, Y ′) coincide with the
topology Y ∩ σ(X,X′) and BY is closed for σ(X,X′) (closed for strong topology
and convex). �
Corollary 1.6 Let X be a normed space. Then, X is separable and reflexive if and
only if X′ is separable and reflexive.

Proof Clearly if X is reflexive, the unit ball BX′ is compact for the topology
σ(X′, X′′) because of the Banach-Alaoglu theorem and the fact σ(X′, X′′) =
σ(X′, X). Moreover if X is reflexive and separable, then X′′ is separable, hence
by Theorem 1.33 is separable.

Conversely, if X′ is reflexive, then X′′ is reflexive, so that M(X) is reflexive by
Proposition 1.37, hence X is reflexive. Moreover, we know from Theorem 1.33 that
X is separable, if X′ is separable. �
Definition 1.44 We say that X Banach space is uniformly convex if for all ε > 0
there exists δ > 0 such that

‖x‖X, ‖y‖X ≤ 1, ‖x + y
2

‖ ≥ 1 − δ �⇒ ‖x − y‖X < ε.

Theorem 1.34 (Milman) If X is a uniformly convex Banach space, then X is
reflexive.

Proof Let ξ ∈ X′′, ‖ξ‖X′′ = 1. We want to prove that for all ε > 0 there is
x ∈ X, ‖x‖X ≤ 1 such that

‖ξ − J (x)‖X′′ < ε.

Since J (X) is strongly closed (J is an isometry), then J is surjective.
Let φ ∈ X′ be such that

‖φ‖X′ = 1, ξφ > 1 − δ,
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where δ is the constant chosen by the uniform convexity estimate corresponding to
ε, and consider the neighborhood of ξ of the form

V =
{
η ∈ X′′ :

∣∣∣∣(ξ − η)(φ) <
δ

2

∣∣∣∣
}
.

By Proposition 1.36, it follows that there is some x ∈ BX such that J (x) ∈ V.
Assume that ξ /∈ J (x)+ εBX′′ . Then we obtain a new neighborhood of ξ for the

weak∗ topology which does not contains x. With the same procedure, we can find a
new x in this new neighborhood. Thus we have

|φ(x)− ξ(φ)| ≤ δ

2
, |φ(x)− ξ(φ)| ≤ δ

2
.

Adding we obtain

2 |ξ(φ)| ≤ |φ(x + x)| + δ ≤ ‖x + x‖ + δ.

Then ‖x + x
2

‖ ≥ (1 − δ), so that ‖x + x‖ < ε, which is a contradiction. �

1.2.8 l1-Sequences

Definition 1.45 Let (xn)n be a bounded sequence in a Banach space X, and
ε > 0. We say that (xn)n admits ε-l1-blocks if for every infinite M ⊆ N there
are a1, · · · , · · · ar ∈ K with

∑
|aρ | = 1 and i1 < · · · < ir in M such that

‖
∑
aρxiρ‖ ≤ ε.

Clearly there will be no subsequence of (xn)n equivalent to the l1-basis iff (xn)n
admits ε-l1-blocks for arbitrary small ε > 0.

Theorem 1.35 Let X be a real (for simplicity) Banach space and (xn)n a bounded
sequence. Suppose that, for some ε > 0, (xn)n admits small ε-l1-blocks. Then there
is a subsequence (xnk )k of (xn)n such that (xnk )k is “close to being a weak Cauchy
sequence” in the following sense :

lim sup
k

φ(xnk )− lim inf
k

φ(xnk ) ≤ 2ε

for every φ ∈ X′ with ‖φ‖X′ = 1.
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Proof Suppose the theorem were not true. We claim that without loss of generality
we may assume that there is a δ > 0 such that

ϕ((xnk )k) := sup
‖φ‖X′=1

(
lim sup

k

φ(xnk )− lim inf
k

φ(xnk ) > 2ε + δ
)

(1.16)

for all subsequences (xnk )k . In fact, if every subsequence contained another
subsequence with a ϕ-value arbitrarily close to 2ε, the diagonal process would even
provide one where ϕ((xnk )k) ≤ 2ε in contrast to our assumption.

Fix a τ > 0 which will be specified later. After passing to a subsequence we may
assume that (xn)n satisfies the following conditions :
(i) If C and D are finite disjoint subsets of N there are a λ0 ∈ R and an φ ∈ X′

with ‖φ‖X′ = 1 such that φ(xn) < λ0 for n ∈ C and φ(xn) > λ0 + 2ε + δ for
n ∈ D.

(ii) There are i1 < · · · < ir in N, a1, · · · ar ∈ R with

∑
|aρ | = 1, |

∑
aρ | < τ, ‖

∑
aρxiρ‖ ≤ ε

For (i), define, for r ∈ N, Tr to be the collection of all (i1, · · · , ir ) (with i1 <
· · · < ir ) such that there are a λ0 ∈ R and a normalized φ such that φ(xiρ ) < λ0 if ρ
is even and> λ0+2ε+ δ otherwise. (1.16) implies that there is anM0 for which all
(i1, · · · , ir ) are in Tr for i1 < · · · < ir inM0. Let us assume thatM0 = N. LetC and
D be finite disjoint subsets of 2N = {2, 4, · · · }. We may select i1 < · · · < ir in N

such that C ⊆ {iρ | ρ even } and D ⊆ {iρ | ρ odd }. Because of (i1, · · · , ir ) ∈ Tr we
have settled (i) provided C and D are in 2N, and all what’s left to do is to consider
(x2n)n instead of (xn)n.

For (ii), By assumption we find i1 < · · · < ir , a1, · · · ar ∈ R such that∑
|aρ | = 1 and ‖

∑
aρxiρ‖ ≤ ε with arbitrarily large i1. Therefore we obtain

i11 < · · · < i1r1 < i21 < · · · < i2r2 < i31 < · · · < i3r3 < · · · and associated aiρ . The

numbers ηj :=
rj∑
ρ=1

ajρ all lie in [−1, 1] so that we find j < k with |ηj − ηk| ≤ 2τ .

Let i1 < · · · < ir be the family ij1 < · · · < ijrj < ik1 < · · · < ikrk , and define the

a1, · · · ar by
1

2
a
j

1 , · · ·
1

2
a
j
rj ,−

1

2
ak1, · · · −

1

2
akrk .

We are now ready to derive a contradiction. On the one hand, by (ii), we find
i1 < · · · < ir , a1, · · · , · · · ar ∈ R such that

∑
|aρ | = 1, |

∑
aρ | ≤ τ with

‖
∑
aρxiρ‖ ≤ ε. On the other hand we may apply (i) with C := {iρ | aρ < 0}

and D := {iρ | aρ > 0}. We put α := −
∑
ρ∈C

aρ , β :=
∑
ρ∈D

aρ , and we note that
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|α − β| ≤ τ, α + β = 1 so that |β − 1

2
| ≤ τ , hence

ε ≥ ‖
∑
aρxiρ‖ ≤

∑
aρφ(xiρ ) ≥ −λ0α+(λ0+2ε+δ)β ≥ −|λ0|τ+ε+ δ

2
−τδ.

This expression can be made larger than ε if τ has been chosen sufficiently small
(note that the numbers |λ0| are bounded by sup

n
‖xn‖), a contradiction which proves

the theorem. �
Remark 1.26 Since the unit vector basis (xn)n of real l1 the assumption of the
theorem holds with ε = 1 and since for every subsequence (xnk )k one may find
‖φ‖X′ = 1 with

lim sup
k

φ(xnk )− lim inf
k

φ(xnk ) = 2

there can be no better constant than that given in our theorem.

Theorem 1.36 (Rosenthal’s Theorem) Let X be a Banach space and (xn)n a
bounded sequence in X. If there exists no subsequence which is a weak Cauchy
sequence then one can find a subsequence (xnk )k which is equivalent with the unit

vector basis of l1 (i.e., (λk)k �→
∑
λkxnk , from l1 to X, is an isomorphism).

In particular one has : IfX does not contain an isomorphic copy of l1, then every
bounded sequence admits a subsequence which is a weak Cauchy sequence.

Proof Rosenthal’s theorem is the assertion that (xn)n has a weak Cauchy subse-
quence provided it admits ε-l1-blocks for all ε. So, it is simple to derive the theorem
from Theorem 1.35. If (xn)n and thus every subsequence has ε-l1-blocks for all ε,
apply Theorem 1.35 successively with ε running through a sequence tending to zero.
The diagonal sequence which is obtained from this construction will be a Cauchy
sequence. �
Remark 1.27

1. Since weakly convergent sequences are weakly Cauchy it follows immediately
that Rosenthal’s theorem holds in reflexive spaces.

2. Rosenthal’s theorem holds, whenever X is such that X′ is separable. Let (xn)n
be bounded and φ be a fixed functional. If we apply the Bolzano-Weierstrass
theorem to the scalar sequence (φ(xn))n we get a subsequence (xnk )k such that
(φ(xnk ))k converges. Applying the same idea to (xnk )k with a second functional,
say ψ , we get a subsequence of this subsequence such that the application of ψ
produces something which is convergent. φ, applied to this new subsequence,
also gives rise to convergence. Thus we have a subsequence of (xn)n where
φ and ψ converge, and similarly one can achieve this for any prescribed finite
number of functionals. Even countably many functionals are manageable, by the
diagonal process. Since we are dealing with bounded sequences (yn)n (typically
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subsequences of the original sequence) the collection of φ where (φ(yn))n
converges is a norm closed subspace of X′.

There is a generalization of Rosenthal’s theorem to Fréchet spaces which, it
seems, has been firstly by Díaz [44]. Thus the starting point for proving promised
generalizations is to understand what it means for a sequence in a locally convex
space be equivalent to the unit basis of l1.

We denote by l01 the subspace of l1 formed by elements with only finitely many
nonzero coordinates.

Barroso, Kalenda and Lin introduced the following notion of l1-sequences in
topological vector spaces [14].

Definition 1.46 Let (X, τ) be a topological vector space and (xn)n a sequence in
X. We say that (xn)n is an l1-sequence if the mapping T0 : l01 → X defined by

T0((ai)i≥1) =
∞∑
i=1

aixi (1.17)

is an isomorphism of l01 onto T0(l
0
1).

The following characterization of l1-sequences is given in [14].

Proposition 1.38 Let (X, τ) be a locally convex space and (xn)n a bounded
sequence in X. The following are equivalent :
(i) There is a continuous seminorm p on X such that

p

(
n∑
i=1

aixi

)
≥

n∑
i=1

|ai |, n ∈ N, a1, · · · , an ∈ R.

(ii) (xn)n is an l1-sequence.
If X is sequentially complete, then these conditions are equivalent to the

following :
(iii) The mapping T : l1 → X defined by T ((ai)i≥1) =

∞∑
i=1

aixi is a well defined

isomorphism of l1 onto its image in X

Proof Let T0 : l01 → X be defined by (1.17). As (xn)n is bounded and X is locally
convex, it is easy to check that T0 is continuous.

Further, if (i) holds, then T0 is clearly one-to-one and T −1
0 is continuous. This

proves (i)⇒ (ii).
Conversely, suppose that (ii) holds. Set

U = T0({x ∈ l01 : ‖x‖l1 < 1}).
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As T0 is an isomorphism, U is an absolutely convex open subset of T0(l
0
1). We can

find V , an absolutely convex neighborhood of θ in X such that V ∩T0(l
0
1) ⊂ U . Let

p the Minkowski functional of V . Then p is a continuous seminorm witnessing that
(i) holds. This proves (ii)⇒ (i).

Now suppose thatX is sequentially complete. As T0 is continuous and linear, it is
uniformly continuous and hence it maps Cauchy sequences to Cauchy sequences. In
particular the mapping T0 can be uniquely extended to a continuous linear mapping
T : l1 → X. This is obviously the mapping described in (iii). As l01 is dense in l1,
we get (ii)⇔ (iii). �

The following theorem is a variant of Rosenthal’s theorem [14]. Its proof is a
slight refinement of the proof of Lemma 3 in [44].

Theorem 1.37 Let (X, τ) be a metrizable locally convex space. Then each bounded
sequence in X contains either a weakly Cauchy subsequence or a subsequence
which is an l1-sequence.

Proof Let (‖.‖n) be a sequence of seminorms generating the topology of X.
Without loss of generality we may assume that ‖x‖n ≤ ‖x‖n+1 for all n and x ∈ X.
Let Un = {x : ‖x‖n < 1} and let Bn = U0

n be the polar of Un. Assume that
(xm)m is a bounded sequence in X such that no its subsequence is an l1-sequence.
For n = 0, 1, 2, · · · we construct a sequence (xnm)m inductively as follows. Set
x0
m = xm for all m ∈ N. Assume that for a given n ∈ N the sequence (xn−1

m )m has
been defined. By Rosenthal’s theorem one of the following possibilities takes place
(elements of X are viewed as functions on Bn) :
(i) (xn−1

m )m has a subsequence which is equivalent to the l1-basis on Bn.
(ii) (xn−1

m )m has a subsequence which point wise converges on Bn.

Let us show that the case (i) cannot occur. Indeed, suppose that (i) holds. Let
(ym)m be the respective subsequence. The equivalence to the l1 basis on Bn means
that there is some C > 0 such that

‖
m∑
i=1

aiyi‖n ≥ C
m∑
i=1

|ai |

for each m ∈ N and each choice a1, · · · , am ∈ R. By Proposition 1.38 (ym)m is an
l1-sequence in X, which is a contradiction.

Thus the possibility (ii) takes place. Denote by (xnm)m the respective subse-
quence. This completes the inductive construction.

Take the diagonal sequence (xmm). It is a subsequence of (xm)m which pointwise
converges on Bn for each n ∈ N. Moreover, if φ ∈ X′ is arbitrary, then there is n
and c > 0 such that cφ ∈ Bn. In particular, the linear span of the union of all B ′ns is
the whole dual X′. It follows that the sequence (xmm) is weakly Cauchy. The proof is
complete. �
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Remark 1.28 Let X = l1 endowed with its weak topology. Let (en)n denote the
canonical basic sequence. Then, the sequence (en)n contains neither a weakly
Cauchy subsequence nor a subsequence which is an l1-sequence. Indeed, suppose
that (xn)n is an l1-sequence inX. Denote by Y its linear span. By the definition of an
l1-sequence we get that Y is isomorphic to (l01 , ‖.‖1), hence it is metrizable. On the
other hand, by the definition of X we get that Y is equipped with its weak topology
which is not metrizable as Y has infinite dimension.

Further, the sequence (en)n contains no weakly Cauchy subsequence in (l1, ‖.‖1)

and in (l1, σ (l1, (l1)
′)) coincide, we get that (en)n contains no weakly Cauchy

subsequence in X. Thus the proof is completed.

The following is given in [14] and is about the coincidence of norm and weak
topologies.

Proposition 1.39 Let � be an arbitrary set. Then the norm and weak topologies
coincide on the positive cone of l1(�).

Proof Denote by C the positive cone of l1(�). Since the weak topology is weaker
than the norm one, it is enough to prove that the identity of C endowed with the
weak topology onto (C, ‖.‖) is continuous. Let x ∈ C and ε > 0 be arbitrary. Fix a
nonempty finite set F ⊆ � such that

∑
γ∈F

x(γ ) > ‖x‖ − ε
4
.

Set

U =
{
y ∈ C : |y(γ )− x(γ )| < ε

4 |F | for γ ∈ F
}
,

V =
{
y ∈ C :

∑
γ∈�\F

y(γ )−
∑
γ∈�\F

x(γ ) <
ε

4

}
.

Then both U and V are weak neighborhoods of x in C (recall that the dual of l1(�)
is represented by l∞(�)), hence so U ∩ V . Moreover, if y ∈ U ∩ V , then

‖y − x‖ =
∑
γ∈F

|y(γ )− x(γ )| +
∑
γ∈�\F

|y(γ )− x(γ )| < ε
4
+
∑
γ∈�\F

(y(γ )+ x(γ ))

= ε

4
+
∑
γ∈�\F

(y(γ )− x(γ ))+ 2
∑
γ∈�\F

x(γ ) <
ε

4
+ ε

4
+ 2.

ε

4
.

This shows that the identity is weak-to-norm continuous at x. The proof is
complete. �
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1.2.9 The Fréchet-Urysohn Property

Definition 1.47 Let Y be a subset of a topological (Hausdorff) space X.

(1) Y is countably compact, if every sequence in Y has a cluster-point in Y .
(2) Y is sequentially compact, if every sequence in Y has a convergent subsequence

with limit in Y .
(3) Y is relatively countably compact, if every sequence in Y has a cluster-point

in X.
(4) Y is relatively sequentially compact, if every sequence in Y has a convergent

subsequence with limit in X.

It is easy to see that

(1) Every (relatively) compact set is (relatively) countably compact.
(2) Every (relatively) sequentially compact set is (relatively) countably compact.

Definition 1.48 A topological space (X, τ) is called Fréchet-Urysohn if the clo-
sures of subsets of X are described using sequences, i.e., if whenever Y ⊆ X and
x ∈ X such that x ∈ Y , there is a sequence (xn)n in Y with xn → x.

Example 1.13 Metrizable spaces and one point compactifications of discrete spaces
are Fréchet-Urysohn.

Definition 1.49 A completely regular Hausdorff topological space X is called a
g-space, if its relatively countably compact subsets are relatively compact.

Definition 1.50 A Hausdorff topological space X is said to be angelic if for every
relatively countably compact set Y ⊆ X, the following hold :
(i) Y is relatively compact,

(ii) for each x ∈ Y , there exists a sequence (xn)n ⊆ Y such that xn −→ x.

If K is a compact topological space then K is a Fréchet-Urysohn space if and
only if it is angelic. It can be said that a Hausdorff topological space X is angelic
if and only if X is a g-space for which any compact subspace is a Fréchet-Urysohn
space.

The following are some characterizations of Fréchet-Urysohn spaces.

Theorem 1.38 For a topological vector space (X, τ) the following assertions are
equivalent :
1. X is Fréchet-Urysohn.
2. For every subset Y of X such that θ ∈ Y there exists a bounded subset Z of Y

such that θ ∈ Z.
3. For any sequence (Yn)n of subsets ofX, each with θ ∈ Yn, there exists a sequence

Zn ⊆ Yn, n ∈ N, such that
⋃
n

Zn is bounded and θ ∈
⋃
n≤k
Zk for each n ∈ N.
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Proof Clearly 1. implies 2. Now assume 2. It is obvious that 3. holds if θ ∈ Yn
for infinitely many n. Therefore, we assume that θ ∈ Yn \ Yn, for each n ∈ N.
Consequently, there exists a null sequence (xn)n in X \ {θ}. For each n ∈ N there
exists a closed neighbourhood Un of zero such that θ /∈ Un + xn. Let each Wn =
Un ∩ Yn. Clearly θ is in eachWn \Wn and not in the set

Y =
⋃
n

(Wn + xn).

However, θ ∈ Y : For U , an open neighborhood of θ , there exist k ∈ N with xk ∈ U
and, V , a neighbourhood of θ with V + xk ⊆ U . As there is y ∈ V ∩Wk we also
have y + xk ∈ U ∩ Y . Thus θ ∈ Y \ Y . By hypothesis, there is Z ⊆ Y with Z
bounded and θ ∈ Z. There exists subsets Zn ⊆ Wn = Un ∩ Yn such that

Z =
⋃
n

(Zn + xn).

By construction, θ does not belong to the closed sets

⋃
k<n

(Uk + xk).

Therefore θ is not in any
⋃
k<n

(Zk + xk). This and θ ∈ Z imply that

θ ∈
⋃
n≤k
(Zk + xk),

for each n ∈ N. Let V ′ and V be any balanced neighborhoods of θ with V−V ⊆ V ′.
Fix n ∈ N. There exists m ≥ n, in N, such that xk ∈ V for all k ≥ m. From

θ ∈
⋃
m≥k
(Zk + xk),

it follows that there exist k ≥ m and y ∈ Bk with y + xk ∈ V . From y ∈ V − xk ⊆
V −V ⊆ V ′, we see, for each n ∈ N, the set V ′ meets

⋃
n≤k
Zk . As any neighborhood

of θ contains V ′ and V as above, θ is in the closure of each
⋃
n≤k
Zk . Note also that

⋃
n

Zn is bounded. Indeed, as

Z =
⋃
n

(Zn + xn)
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andW = {xm : m ∈ N} are bounded and since

⋃
n

Zn ⊆
⋃
n

(Zn + xn)− {xm : m ∈ N} = Z −W,

then
⋃
n

Zn is also bounded too. We have proved that 2. implies 3.

3. implies 1. : Assume that θ ∈ Y , and set Yn = nY, for each n ∈ N. Since
θ is in each Yn, there exist Zn ⊆ Yn, as in 3.. So each

⋃
n≤k
Zk is nonempty,

and, consequently, there exists a strictly increasing sequence (nk)k in N with Znk
nonempty. For each k, let zk ∈ Znk . There exists a sequence (yk)k in Y such that
zk = nkyk for each k ∈ N. Since (nk)k is strictly increasing and (zk)k = (nkyk)k is
bounded, the sequence (yk)k in Y converges to zero in X. The proof is complete. �

There are many nonmetrizable Fréchet-Urysohn spaces. To provide some exam-
ples, we have the following deep result of J. Bourgain, D. H. Fremlin and M.
Talagrand [24] :
Theorem 1.39 Let X be a Polish space (i.e., a separable completely metrizable
space). Denote by B1(X) the space of all real-valued functions on X which are of
the first Baire class and equip this space with the topology of pointwise convergence.
Suppose that Y ⊆ B1(X) is relatively countably compact in B1(X) (i.e., each
sequence in Y has a cluster point in B1(X). Then the closure Y of Y in B1(X)

is compact and Fréchet-Urysohn.

A slightly weaker version is given in [101].

Corollary 1.7 Let X be a Polish space and Y be a set of real-valued continuous
functions on X. Suppose that each sequence in Y has a pointwise convergent
subsequence. Then the closure of Y in R

p is a Fréchet-Urysohn compact space
contained in B1(X).

Proof Y is obviously contained in B1(X). Moreover, let (fn)n be any sequence
in Y . By the assumption there is a subsequence (fnk )k pointwise converging to
some function f . As the functions fnk are continuous, the limit function f is of
the first Baire class. Hence, it is a cluster point of (fn)n in B1(X). So, Y is relatively
countably compact in B1(X). The assertion now follows from Theorem 1.39. �

We continue by the following example [14].

Proposition 1.40 Let (X, τ) be a metrizable locally convex space and Y be a
bounded subset of X. If Y is τ -separable and contains no l1-sequence, then the
set

Y − Yσ(X,X′) = {x − y : x, y ∈ Y }σ(X,X′)

is Fréchet-Urysohn when equipped with the weak topology.



1.2 Topological Vector Spaces 75

Proof As the closed linear span of Y is separable, we can without loss of generality
suppose that X is separable. Let (‖.‖n), Un and Bn (n ∈ N) be as in the proof
of Theorem 1.37. Notice that Bn is a metrizable weak∗compact subset of X′.
Moreover, the linear span of the union of all B ′ns is the whole dual X′ (see the
end of the proof of Theorem 1.37). Let now P be the topological sum of the spaces
(Bn, σ (X

′, X)), n ∈ N. Then P is a Polish space. Denote by G : P → X′ the
canonical mapping of P onto the union of all B ′ns. Then G is continuous from P

to (X′, σ (X′, X)). Define a mapping H : P → R
P by the formula H(x)(p) =

G(p)(x). Then H is a homeomorphism of (X, σ (X,X′)) onto H(X) equipped
with the pointwise convergence topology. Moreover, the functions from H(X) are
continuous on P .

Let Z = H(Y − Y ). We claim that each sequence from Z has a pointwise
convergent subsequence. To show that it is enough to observe that each sequence
in Y − Y has weakly Cauchy subsequence. Indeed, let (zn)n be a sequence in
Y − Y . Then zn = xn − yn for some xn, yn ∈ Y . As Y contains no l1-
sequence, by Theorem 1.37, we get a weakly subsequence (xnk )k of (xn)n. Applying
Theorem 1.37 once more we get a weakly Cauchy subsequence (ynk )k of (yn)n.
Then (znk )k is a weakly Cauchy subsequence of (zn)n. Thus Z is relatively
countably compact in B1(P ), which is the space of all Baire-one functions on P
equipped with the topology of pointwise convergence. By Theorem 1.39, the closure
of Z in R

P is a Fréchet-Urysohn compact subset of B1(P ). In particular, the weak
closure of Y − Y is Fréchet-Urysohn when equipped with the weak topology. The
proof is complete. �

Note that the result of the above proposition generalizes the following in the
context of Banach spaces [101].

Proposition 1.41 Let X be a Banach space and Y be a bounded subset of X. If X
is norm-separable and contains no l1-sequence, then the set

Y − Yσ(X′,X) = {J (x − y) : x, y ∈ Y }σ(X′,X)

is Fréchet-Urysohn when equipped with the weak∗ topology, where J denotes the
canonical embedding of X into X′′. In particular,

Y − Yσ(X,X′) = {x − y : x, y ∈ Y }σ(X,X′)

is Fréchet-Urysohn when equipped with the weak topology.

We have the following characterization of the Fréchet-Urysohn property in
locally convex spaces [14].
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Proposition 1.42 Let (X, τ) be a Hausdorff locally convex space such that there
is a metrizable locally convex topology on X compatible with the duality. The
following assertion are equivalent.

(i) Any bounded subset of X is Fréchet-Urysohn in the weak topology.
(ii) Any bounded sequence in X has a weakly Cauchy subsequence.

If, moreover, τ itself is metrizable, then these assertions are equivalent to
the following one:

(iii) X contains no l1-sequence.

Proof Let ρ be a metrizable locally convex topology compatible with the duality .
By Theorem 1.37 (X, ρ) contains no l1-sequence if and only if (X, ρ) satisfies the
condition (ii). Further, the validity of (ii) for (X, ρ) is equivalent to its validity for
(X, τ). It follows that (ii) holds if and only if (X, ρ) contains no l1-sequence. In
particular, if ρ = τ , we get (i)⇔ (ii).
(ii) ⇒ (i) Suppose that (ii) holds. Let Y be a bounded subset of (X, τ) and

let x ∈ X ∈ belong to the weak closure of Y . We need to find a sequence in
Y converging to x. We first prove it under the additional assumption that Y is
separable. Then Y is bounded and separable in (X, ρ) as well. As (X, ρ) contains
no l1-sequence, by Proposition 1.40 we get that the weak closure of Y -Y is Fréchet-
Urysohn in the weak topology. Hence, in particular, there is a sequence in Y weakly
converging to x.

To prove the general case it is enough to show that there is a countable set Z ⊆ Y
such that x belongs to the weak closure of Z. In other words, it is enough to show
that the weak topology on X has countable tightness. To prove that observe that
(X, σ (X,X′)) is canonically homeomorphic to a subspace of Cp(X

′, σ (X′, X)),
which is the space of all continuous functions on the space (X′, σ (X′, X)) equipped
with the topology of pointwise convergence. Further notice that (X′, σ (X′, X)) is
σ -compact, this follows by the metrizability of ρ as X′ =

⋃
m,n∈N

mBn using the

notation from the proof of Theorem 1.37. Finally, as any finite power of a σ -compact
and hence Lindelöf, we can conclude by the Arkhangel’skii-Pytkeev theorem [7].
(i)⇒ (ii) Suppose that (ii) does not hold. Then there is a sequence (xn)n in X

which is an l1-sequence in (X, ρ). Let T0 : l01 → X be defined as in (1.17). Let S
denote the unit sphere in l01 . Then θ is in the weak closure of S (as l01 is an infinite
dimensional normed space) but it is not the weak limit of any sequence from S (by
Schur’s theorem [75]). Thus, θ is in the weak closure of T0(S) without being the
weak limit of any sequence from T0(S). Thus T0(S) ∪ {θ} is a bounded set which is
not Fréchet-Urysohn in the weak topology. �

The following characterization of Banach spaces not containing l1 is given in
[101].
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Theorem 1.40 Let X be a Banach space. Then the following assertions are
equivalent.

1. X contains no isomorphic copy of l1.
2. Each bounded separable subset of X is Fréchet-Urysohn in the weak topology.
3. For each separable subset Y ⊆ X there are relatively weakly closed subsets
Yn, n ∈ N such that Y =

⋃
n∈N

Yn and each Yn is Fréchet-Urysohn in the weak

topology.

Proof The implication 1.⇒ 2. follows from Proposition 1.40.
The implication 2. ⇒ 1. follows from the fact that the unit ball of l1 is not

Fréchet-Urysohn (as θ is in the weak closure of the sphere and the sphere is weakly
sequentially closed by the Schur theorem [75]).

The implication 2. ⇒ 3. is trivial if we use the fact that a closed ball is weakly
closed.

Let us prove 3. ⇒ 2. To show 2. it is enough to prove that the unit ball of any
closed separable subspace of X is Fréchet-Urysohn in the weak topology. Let Z
be such a subspace. Let Yn, n ∈ N be the cover of Z provided by 3. As each Yn
is weakly closed, it is also norm-closed. By the Baire category theorem some Yn
has a nonempty interior in Y , so it contains a ball. We get that some ball in Y is
Fréchet-Urysohn, so the unit ball has this property as well. �
Remark 1.29 Note that the assertion 3. is a topological property of the space
(X, σ (X,X′)) (as norm separability coincides with weak separability).

As a consequence of Proposition 1.42 we get the following improvement of
Theorem 1.40.

Corollary 1.8 LetX be a Banach space. The following assertions are equivalent.

1. X contains no isomorphic copy of l1.
2. The closed unit ball of X is Fréchet-Urysohn in the weak topology.
3. There is a sequence (Yn)n≥1 of weakly closed sets which are Fréchet-Urysohn in

the weak topology such that X =
∞⋃
n=1

Yn.

Proof The equivalence 1. ⇔ 2. follows from Proposition 1.42. The implication
2. ⇒ 3. is trivial. The implication 3. ⇒ 1. follows from Theorem 1.40 (or,
alternatively, 3. ⇒ 2.) follows from the Baire category theorem as in Theorem
1.40. �
Definition 1.51 A Banach space (X, ‖.‖) is Asplund if and only if Y ′ is separable
for each separable subspace Y ⊆ X.

Remark 1.30 A Banach space X is an Asplund space if each convex continuous
function T : X → R is Fréchet differentiable on a dense Gδ set in X. Also it is
known that a Banach space X is Asplund if and only if X′ has the RNP [25].
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It is worthwhile to remark that there are separable Banach spaces having no
copy of l1 for which X′ is nonseparable [93, 127]. On the other hand, the well-
known James’s space J is an example of a nonreflexive Banach space without an
unconditional basis which does not contain any copy of l1 and yet has separable
dual.

Remark 1.31 Let us remark that the implication (ii)⇒ (i) of Proposition 1.42 does
not hold for general locally convex spaces. Indeed, there are Banach spaces X such
that the closed unit ball of X′ is weak∗ sequentially compact, but it is not Fréchet-
Urysohn in the weak∗ topology. In particular, the dual closed unit ball is weak∗
sequentially compact whenever X is Asplund [55], in particular if X = C(K) with
K scattered [55]. On the other hand, K is canonically homeomorphic to a subset of
the closed unit ball of C(K)′ equipped with the weak∗ topology, so it is enough to
observe that there are scattered compact spaces which are not Fréchet-Urysohn. As
a concrete example we can take K = [0, w1], the ordinal interval equipped with the
order topology (w1 is the first uncountable ordinal).

It is worth to compare Theorem 1.40 with a similar characterization of Asplund
spaces [101].

Theorem 1.41 Let X be a Banach space. Then the following assertions are
equivalent.

1. X is Asplund.
2. Each bounded separable subset of X is metrizable in the weak topology.
3. For each separable subset Y ⊆ X there are relatively weakly closed subsets
Yn, n ∈ N, of Y such that Y =

⋃
n∈N

Yn and each Yn is metrizable in the weak

topology.

Proof The equivalence of 1. and 2. follows from the well-known fact that the unit
ball of Y is metrizable in the weak topology if and only if Y ′ is separable. The
equivalence of 2. and 3. can be proved similarly as corresponding equivalence in
the previous theorem. �
Remark 1.32 There is no analogue of Theorem 1.40 for convex sets. Indeed, let
X = l1 and let C be the closed convex hull of the standard basis. Then C contains
an l1-sequence but is Fréchet-Urysohn in the weak topology. In fact, it is even
metrizable as it is easy to see that on the positive cone of l1 the weak and norm
topologies coincide.

1.3 Ultrametric Spaces

The origin of ultrametric spaces lies in valuation theory and dates back to Krasner
and Monna who developed this theory for ultrametric distances with real values
(non-Archimedean analysis). A systematic study of (general) ultrametric spaces was
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provided [16, 81, 84, 113, 120, 152, 154, 155, 157, 160, 169] and others. This study is
concerned with ultrametric whose distance functions take their values in an arbitrary
partially ordered set (with a smallest element 0) not just in the real numbers.

Definition 1.52 Let (�,≤) be an ordered set with smallest element 0. Let X be a
nonempty set. A mapping d : X × X −→ � is called an ultrametric distance and
(X, d, �) an ultrametric space if d has the following properties for all x, y, z ∈ X
and γ ∈ � :
(d1) d(x, y) = 0 if and only if x = y,
(d2) d(x, y) = d(y, x),
(d3) if d(x, y) ≤ γ and d(y, z) ≤ γ , then d(x, z) ≤ γ .

If there is no ambiguity, we simply write X instead of (X, d, �).
If � is totally ordered , (d3) becomes
(d3′) d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X.

Remark 1.33 The ultrametric space (X, d, �) is trivial, if there exists γ ∈ � such
that for all x, y ∈ X, x �= y, d(x, y) = γ .

Definition 1.53 Let (Y, d|Y , �Y ) and (X, d, �) be ultrametric spaces such that Y ⊂
X and �Y ⊂ �. Assume that �Y has the induced order of � and the same 0 as �
and that furthermore, d|Y (Y × Y ) ⊂ �Y and d|Y (y, y′) = d(y, y′) for all y, y′ ∈ Y .
Then (Y, d|Y , �Y ) is said to be a subspace of (X, d, �) and X is called an extension
of Y . Often we simply write d instead of d|Y .

Definition 1.54 Let (X, d, �) be an ultrametric space. The space X is said to be
solid if for every γ ∈ � and x ∈ X there exists y ∈ X such that d(x, y) = γ . If X
is solid, then d(X ×X) = �.

Definition 1.55 Let (X, d, �) be an ultrametric space. Let γ ∈ �• = � \ {0} and
a ∈ X. The set Bγ (a) = {x ∈ X | d(a, x) ≤ γ } is called a ball. The element
a is said to be a center of Bγ (a) and the element γ to be a radius of Bγ (a). If
x, y ∈ X, x �= y, then B(x, y) = Bd(x,y)(x) is called a principal ball.

Remark 1.34 Let (X, d, �) be an ultrametric space. If X is solid, every ball is
principal. If � is totally ordered, also the converse conclusion holds.

Definition 1.56 Let (X, d, �) be an ultrametric space. A nonempty Y of X is
said to be convex in X when for all y1, y2 ∈ Y with y1 �= y2 the principal ball
B(y1, y1) ⊆ Y .

Remark 1.35 Every principal ball is convex inX and furthermore, if
⋂
i∈I
B(xi, yi) �=

∅ then
⋂
i∈I
B(xi, yi) is convex in X.

In the following lemma, we list some properties of balls which can easily be
verified [161].
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Lemma 1.10 Let (X, d, �) be an ultrametric space and let γ, δ ∈ �•.

1. Let x, y ∈ X.

(a) If γ ≤ δ and Bγ (x) ∩ Bγ (y) �= ∅, then Bγ (x) ⊆ Bδ(y),
(b) if Bδ(y) ⊂ Bγ (x), then γ � δ.

2. Concerning principal balls, if x, y, z, u ∈ X, x �= z and y �= u, then

(a) B(x, z) ⊆ Bδ(y) if and only if d(x, z) ≤ δ and x ∈ Bδ(y),
(b) if B(x, z) ⊂ Bδ(y), then d(x, z) < δ,
(c) if B(x, z) = B(y, u), then d(x, z) = d(y, u).

3. Let X be solid and x, y ∈ X.

(a) Bγ (x) ⊆ Bδ(y) if and only if γ ≤ δ and x ∈ Bδ(y),
(b) if Bγ (x) ⊂ Bδ(y), then γ < δ.
(c) if Bγ (x) = Bδ(y), then γ = δ

4. If � is totally ordered and Bγ (x) ⊂ Bδ(y), then δ < γ .

Definition 1.57 Let (X, d, �) be an ultrametric space. A set of balls which is totally
ordered by inclusion is said to be a chain.

Lemma 1.11 Let (X, d, �) be an ultrametric space. Let C be a chain of balls of X
which does not have a smallest ball. Then there exists a limit ordinal λ and a strictly
decreasing family of balls (Bi)i<λ such that each Bi ∈ C and for every ball C ∈ C
there exists Bi such that Bi ⊇ C and hence

⋂
C =

⋂
i<λ

Bi .

Definition 1.58 Let (X, d, �) be an ultrametric space. X is called spherically
complete (resp., principally complete) if every chain of balls of X (resp., principal
balls of X) has a nonempty intersection.

Remark 1.36 Every spherically complete ultrametric space (X, d, �) is principally
complete. The converse is true when � is totally ordered or the space is solid.

Definition 1.59 An ultrametric space (X, d, �) is said to be complete if every chain
of balls {Bγi | i ∈ I }, with inf{γi | i ∈ I } = 0, has a nonempty intersection.

Remark 1.37 A spherically complete ultrametric space (X, d, �) is complete. If
� is totally ordered and if �• does not have a smallest element, the ultrametric
distance induces on X a uniformity, hence also a topology. In this case, the concept
of completeness coincides with that given by the uniformity.

Several examples of different types of ultrametric spaces are discussed in [160].
Some where � is totally ordered and others where � is not totally ordered.

Examples 1.9

1. Let � be a totally ordered Abelian additive group, let ∞ be a symbol such that
∞ /∈ �, and δ +∞ = ∞+ δ = ∞,∞+∞ = ∞, δ < ∞ for all δ ∈ �. We



1.3 Ultrametric Spaces 81

denote by 0 the neutral element of�, that is 0+ δ = δ for every δ ∈ �. LetK be
a commutative field, let v : K −→ � ∪ {∞} be a valuation of K , so we have

(v1) v(x) = ∞ if and only if x = 0,
(v2) v(xy) = v(x)+ v(y),
(v3) v(x + y) ≥ min{v(x), v(y)}.

Let �• be a totally ordered Abelian multiplicative group with neutral element
1, let 0 be a symbol such that 0 /∈ �•, 0γ = γ 0 = 0, 0.0 = 0, 0 < γ for every
γ ∈ �•. Let θ : �∪ {∞} −→ � = �• ∪ {0} be an order reversing bijection such
that θ(∞) = 0, θ(δ + δ′) = θ(δ).θ(δ′), so θ(0) = 1.

Let d : K ×K −→ � be defined by d(x, y) = θ(v(x − y)), then (K, d, �) is
an ultrametric space which is said to be associated to the valued field (K, v,�∪
{∞}).

2. Let � be a totally ordered set with smallest element 0, let �• = �\{0}. Let R
be a nonempty set with a distinguished element 0. For each f : �• −→ R, let
supp(f ) = {γ ∈ �• | f (γ ) �= 0} be the support of f . Let R[[�]] be the
set of all f : �• −→ R with support which is empty or anti-well ordered. Let
d : R[[�]] × R[[�]] −→ � be defined by d(f, f ) = 0 and if f �= g, d(f, g) is
the largest element of the set {γ ∈ �• | f (γ ) �= g(γ )}. Then (R[[�]], d, �) is
an ultrametric space which is solid and spherically complete.

3. Let I be a set with at least two elements, let (Xi)i∈I be a family of sets Xi ,
each one having at least two elements. Let X =

∏
i∈I
Xi . Let P(I ) be the set of

all subsets of I , ordered by inclusion. And let d : X × X −→ P(I ) be defined
by d(f, g) = {i ∈ I | fi �= gi}, where f = (fi)i∈I and g = (gi)i∈I . Then
(X, d,P(I )) is a solid and spherically complete ultrametric space. If each Xi =
{0, 1}, we obtain the ultrametric space (P(I ), d,P(I )) with d(A,B) = (A ∪
B)\(A ∩ B) for all A,B ⊆ I .

4. Let X be a topological space, let Y be a discrete topological space, let C(X, Y )
denote the set of continuous functions from X to Y and let Cl(X) the set
of clopen (i.e., closed and open) subsets of X. The mapping d : C(X, Y ) ×
C(X, Y ) −→ Cl(X) is defined by d(f, g) = {x ∈ X | f (x) �= g(x)}. Then
(C(X, Y ), d, Cl(X)) is a solid ultrametric space, and it is spherically complete if
Cl(X) is a complete sub-Boolean-algebra of P(X).

Definition 1.60 Let (X, d, �) be an ultrametric space and assume that � is totally
ordered. Let (Y, d|Y , �Y ) be a subspace of (X, d, �) and assume that d(Y × Y ) =
d(X × X) = �. If for every x ∈ X and for every y ∈ Y , with x �= y, there exists
y′ ∈ Y such that d(y′, x) < d(y, x), the extension Y ≺ X is called immediate
and we write Y im ≺ X. The extension Y ≺ X is said to be dense (denoted by
Yde ≺ X), if for every x ∈ X and for every 0 < γ ∈ � there exists y in Y such that
d(y, x) < γ . Thus if Yde ≺ X then also Y im ≺ X.
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Remark 1.38 If �• does not have a smallest element, Definition 1.60 coincides
with that given by the topology of X. We remark that both notions, “immediate”
and “dense” can be defined more generally for ultrametric spaces, where � is only
ordered [155].

The following is given in [161].

Theorem 1.42

1. Every ultrametric space (X, d, �), with � totally ordered, has an immediate
extension which is spherically complete. (We call such an extension a spherical
completion of X.)

2. Every ultrametric space (X, d, �), with � totally ordered, has an extension
(X′, d, �) such that X′ is dense in X′. (We call such an extension a completion
of X.)

3. Let (Y, d|Y , �Y ) be a subspace of Let (X, d, �). Assume that � is totally ordered
and that �•|Y is coinitial in �• and that furthermore d(Y ×Y ) = �Y , d(X×X) =
�. If X is complete, then there exists one and only one completion Ŷ of Y which
is a subspace of X.

Proof The proofs of 1. and 2. are given in [155, 176].
3. Let S be the set of all ultrametric subspaces S such that Y is dense in S . Since

Y is dense in itself, S �=. The set S is ordered by inclusion. Let {Si | i ∈ I } be a
totally ordered subset of S . Then S =

⋃
i∈I
Si is a subspace of X and Y is dense in

S. Thus S ∈ S is an upper bound for all Si, i ∈ I . By Zorn’s lemma, there exists
a maximal element in S which we denote again by S. We show that S is complete.
Since �•|Y is coinitial in �• and �•|Y = �•|S = d(S × S) \ {0} has in �•|S the infimum
0 if and only if the infimum of � in �• is 0, thus we may just write inf� = 0. We
assume that S is not complete. Then there exists a chain {BSγi (ai) | i ∈ I } of balls
in S with

inf{γi | i ∈ I } = 0 and
⋂
BSγi (ai) = ∅.

Since X is complete and for each i ∈ I, BSγi (ai) = S ∩ BSγi (ai), where Bγi (ai)
denotes the ball with center ai and radius γi in X, there exists z ∈ X such that
{z} =

⋂
Bγi (ai). Let S′ = S ∪ {z}. Then S′ is a subspace of X which properly

contains S, so also Y . To prove that Y is dense in S′, it suffices to show that if
0 < γ ∈ �, there exists y ∈ Y such that d(y, z) < γ . Since inf{γi | i ∈ I } = 0
there exists γi with 0 < γi < γ. Since Y is dense in S and ai ∈ S, it follows that
there exists y ∈ Y such that d(y, ai) < γi . Since, moreover, z ∈ Bγi (ai), then
d(z, y) ≤ max{d(z, ai), d(y, ai)} ≤ γi < γ . Thus Y is dense in S′. So S′ ∈ S ,
which contradicts the maximality of S in S . We have proved that S is complete,
hence a completion of Y in X. It remains to show that Y has at most one completion
in X. Assume that Ŷ1, Ŷ2 are completions of Y in X. Let ŷ1 ∈ Ŷ1. For each γ ∈ �•
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there exists yγ ∈ Y such that d(ŷ1, yγ ) < γ . If �• has a smallest element, say γ ∗
then

ŷ1 = yγ ∗ ∈ Y ⊂ Ŷ2.

If �• does not have a smallest element, then inf{γ | γ ∈ �•} = 0, thus there exists
ŷ2 ∈ Ŷ2 with

{ŷ2} =
⋂
γ∈�•

Bγ (yγ )

because Ŷ2 is complete. Hence ŷ1 = ŷ2 ∈ Ŷ2. This shows that Ŷ1 ⊆ Ŷ2. By the same
argumentation, we conclude that Ŷ2 ⊆ Ŷ1, thus Ŷ1 = Ŷ2. �
Definition 1.61 Let (X, d, �) be an ultrametric space and assume that � is totally
ordered. Let λ be a limit ordinal and let ξ = (xi)i<λ be a family of elements of X.
We say that ξ is a Cauchy family if for every γ ∈ �• there exists i0 = i0(γ, ξ) < λ
such that if i0 ≤ i < κ < λ, then d(xi, xk) < γ . The family ξ = (xi)i<λ is said to be
pseudo-convergent if there exists i0 = i0(ξ) < λ such that if i0 ≤ i < κ < μ < λ,
then d(xκ, xμ) < d(xi, xκ).

Remark 1.39 We note that if ξ = (xi)i<λ is pseudo-convergent, the elements xi , for
i0(ξ) ≤ i < λ are all distincts and if i0(ξ) ≤ i < κ < μ < λ, then d(xi, xκ) =
d(xκ, xμ), this element is denoted by ξi . Hence if i0 ≤ i < κ < λ, then ξi > ξκ .

Definition 1.62 Let (X, d, �) be an ultrametric space and assume that � is totally
ordered. Let λ be a limit ordinal and let ξ = (xi)i<λ be a Cauchy family of elements
of X. The element y ∈ X is a limit of the family ξ if for every γ ∈ �• there exists
i1 = i1(γ ) < λ such that if i1 ≤ i < λ, then d(y, xi) < γ . The ultrametric space X
is complete if and only if every Cauchy family has a limit in X.

Remark 1.40 A Cauchy family ξ = (xi)i<λ has at most one limit. Indeed, if y, z
are limits, then d(y, z) < γ for all γ ∈ �•, so y = z.
Definition 1.63 Let (X, d, �) be an ultrametric space and assume that � is totally
ordered. Let λ be a limit ordinal and let ξ = (xi)i<λ be a pseudo-convergent family
of elements of X. The element y ∈ X is a pseudo-limit of the family ξ = (xi)i<λ if
there exists i1 = i1(ξ, y), i0(ξ) ≤ i1 < λ, such that if i1 ≤ i < λ then d(y, xi) ≤ ξi .
If y is a pseudo-limit of ξ , then z ∈ X is a pseudo-limit of ξ if and only if d(y, z) <
ξi for all i such that i1 ≤ i < λ.

The following is a characterization of spherical completeness [151].

Proposition 1.43 Let (X, d, �) be an ultrametric space and assume that � is totally
ordered. Then X is spherically complete if and only if every pseudo-convergent
family of X has a pseudo-limit in X.
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1.4 Admissible Functions

Throughout this subsection, we denote by (X, τ) a topological vector space, and by
Y a nonempty subset of X.

Below the definition of functions providing the possibility of working with
extended real seminorms in topological vector spaces.

Definition 1.64 An admissible function for Y on X is an extended real-valued
function ρ : X −→ [0,∞] such that

1. The mapping (x, y) �→ ρ(x, y) is continuous on Y × Y ,
2. ρ(x + y) ≤ ρ(x)+ ρ(y) for all x, y ∈ X,
3. ρ(λx) = |λ| ρ(x), for all λ ∈ R and x ∈ X,
4. If x, y ∈ Y and ρ(x − y) = 0, then x = y.

Remark 1.41 Notice that if ρ is an admissible function for Y on X, then it defines
a metric on Y whose induced topology is coarser than τ .

Remark 1.42 It is instructive to compare the notion of continuity in the sense of 1.
with the usual one. It is easy to see that if ρ is continuous on X, then (x, y) �→
ρ(x, y) is continuous on Y × Y . Furthermore, if 1. − 3. hold then ρ is continuous
on Y .

It is not true, in general, that if ρ is continuous on Y , then it satisfies 1. For
example, if X = R and Y = [0,∞), then the mapping ρ : R −→ [0,∞] defined by

ρ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

x
, if x > 0,

∞, if x = 0,
0, if x < 0,

is continuous on Y . However, the mapping T : Y × Y −→ [0,∞] given by
T (x, y) = ρ(x − y) is not continuous at the point (1, 1). Indeed, it suffices to

see that (1 − 1

k
, 1) converges to (1, 1) in Y × Y , while that T (1 − 1

k
, 1) = 0 and

T (1, 1) = ∞.

Barroso [12] proved that the class of admissible functions is sufficiently good to
imply that the Schauder-projection operator is continuous.

Proposition 1.44 Let ρ be an admissible function for Y on X. Then for any ε > 0
and p ∈ Y, the function g : Y −→ [0,∞) given by

g(x) = max{ε − ρ(x − p), 0}

is continuous on Y .
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Proof Firstly, let us recall that the effective domain of ρ is the set

D(ρ) = {x ∈ X : ρ(x) <∞}.

Let x0 be a point in Y and δ > 0 be arbitrary. By assumption, there exists a
neighborhood U × V of (x0, p) in Y × Y such that

ρ(x0 − p)− δ ≤ ρ(x − z) ≤ ρ(x0 − p)+ δ,

for all (x, z) ∈ U × V . If x0 − p /∈ D(ρ) then ρ(x0 − p) = ∞ and, hence,
ρ(x − p) = ∞ for all x ∈ U. In consequence, g(x) = g(x0) = 0 for all x ∈ U .
In case x0 − p ∈ D(ρ), we can conclude that x − p ∈ D(ρ) for all x ∈ U . In this
case, it is easy to see that g(x0) + δ ≥ g(x), for all x ∈ U. On the other hand, if
g(x0) = 0, then clearly g(x) ≥ g(x0) − δ holds for every x ∈ U. Assuming now
that g(x0) = ε − ρ(x0 − p), we have g(x0) − δ ≤ ε − ρ(x − p) ≤ g(x), for all
x ∈ U . In any case, we have proven that g is continuous at x0, and hence continuous
in Y . The proof is complete. �

The following is an example of an admissible function [12].

Proposition 1.45 Let Y be a compact convex subset of a topological vector space
(X, τ) and F = {ρn : n ∈ N} a countable family of seminorms on X which separate
points of Y − Y and such that the topology � generated by F is coarser than τ in
Y . Then the function ρ : X→ [0,∞] defined as

ρ(x) =
∞∑
n=1

ρn(x), x ∈ X

is admissible.

Proof Since Y is compact and � is coarser than τ , each ρn restricted to Y is τ -
continuous. Thus we have max{ρn(x) : x ∈ Y <∞} for all n ∈ N. By replacing the
seminorms ρn by suitable positive multiples, if necessary, we may assume that

max{ρn(x) : x ∈ Yn} ≤ 2−n−1, (1.18)

for all n ∈ N. Notice that ρ(x − y) < ∞ for all x, y ∈ Y . Moreover, one readily
checks 2.−4.. Using now (1.18), we see that the sequence of functions ρn(x−y) =
n∑
i=1

ρi(x − y) is Cauchy w.r.t. the topology of uniform convergence on Y × Y .

Thus ρn(x − y) converges uniformly on Y × Y to ρ(x − y). Furthermore, to verify
that 1− holds, we have only to ensure this for each ρn. Let (xα, yα) be a net in
Y × Y converging to (x, y). Since τ is finer than � on Y , both ρn(xα − x) and
ρn(yα − y) converge to 0. We may then apply the triangle inequality to conclude
|ρn(xα, yα)− ρn(x − y)| → 0. �
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1.5 Some Fixed Point Theorems

Banach’s Contraction Mapping Principle is remarkable in its simplicity, yet it is
perhaps the most widely applied fixed point theorem in all of analysis. The principle
first appeared in explicit form in Banach’s thesis [11].

Theorem 1.43 (Banach’s Contraction Mapping Principle) Let (X, d) be a com-
plete metric space and let T : X −→ X. If there exists an 0 < k < 1 such that
d(T (x), T (y)) ≤ kd(x, y) for all x, y ∈ X, then T has a unique fixed point.

Proof First we consider the case when :

diam(X) := sup{d(x, y) : x, y ∈ X} <∞.

For each n ∈ N, let Yn = T n(X). Then

Yn+1 = T n+1(X) = T n(T (X)) ⊆ T n(X) = Yn
for all n ∈ N. Therefore, {Yn : n ∈ N} is a decreasing sequence of nonempty subsets
of X. Next, notice that

0 ≤ diam(Yn+1) ≤ kdiam(Yn) for all n ∈ N

and so, by induction,

0 ≤ diam(Yn+1) ≤ kndiam(Yn) for all n ∈ N.

Therefore, lim
n→∞ diam(Yn) = lim

n→∞ diam(Yn) = 0. It then follows from Cantor’s

intersection property that

⋂
n∈N

Yn = {x} for some x ∈ X.

Moreover, since x ∈ Yn,

T (x) ∈ T (Yn) ⊆ T (Yn) = Yn+1 ⊆ Yn,

T (x) ∈
⋂
n∈N

Yn = {x}. That is, T (x) = x.
In the case when diam(X) = ∞ some extra work is required. In this case we

choose any x0 ∈ X and let

Z := {T n(x0) : n ∈ N}.
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Then T (Z) ⊆ Z and

diam(Z) ≤ d(T (x0), x0)

1 − k <∞.

Hence from the previous argument there exists a point x ∈ Z ⊆ X such that
T (x) = x. �

The Caristi fixed point theorem [35] is known as one of the very interesting
and useful generalizations of the Banach’s Contraction Mapping Principle for self-
mappings on a complete metric space. Neither continuity nor a Lipschitz condition
is required.

Theorem 1.44 (Caristi’s Fixed Point Theorem) Let (X, d) be a complete metric
space and let T : X −→ X be a mapping such that

d(x, T (x)) ≤ ϕ(x)− ϕ(T (x))

for all x ∈ X, where ϕ : X −→ [0,+∞) is a lower semicontinuous mapping. Then
T has at least a fixed point.

The setting of generalized ultrametric spaces offers a highly flexible framework
in which to study the fixed point theory is necessary for logic programming
semantics [59, 85, 104, 113, 151, 153, 156, 157] and [177].

Definition 1.65 Let (X, d, �) be an ultrametric space. A mapping ϕ : X −→ X is
said to be strictly contracting if for all x, x′ ∈ X, with x �= x′, d(ϕ(x), ϕ(x′)) <
d(x, x′). An element z ∈ X with ϕ(z) = z is called a fixed point of ϕ.

For strictly contracting maps on ultrametric spaces we have the following fixed
point theorem [151, 153, 160].

Theorem 1.45 Assume that (X, d, �) is a spherically complete ultrametric space
and that ϕ : X −→ X is strictly contracting. Then ϕ has exactly one fixed point
z ∈ X.

Proof Assume, πx = d(x, ϕ(x)) �= 0 for every x ∈ X. Let Bx = Bπx . The set
B = {Bx | x ∈ X} is ordered by inclusion. Let C be a maximal chain in B.
Since X is spherically complete, there exists an element z ∈

⋂
{Bx | Bx ∈ C}.

Then Bz ⊆ Bx for every Bx ∈ C. Indeed, this is obvious, if z = x. If z �= x

then d(ϕ(z), ϕ(x)) ≤ d(z, x) ≤ πx = d(x, ϕ(x)), πz = d(ϕ(z), z) ≤ πx . Hence
Bz ⊆ Bx . Since C is a maximal chain in B, then Bz is the smallest element of
C. But πϕ(z) = d(ϕ(z), ϕ(ϕ(z))) < d(z, ϕ(z)) = πz and therefore Bϕ(z) � Bz,
contradicting the maximality of C. Hence there exists an element x ∈ X with ϕ(x) =
x. If also ϕ(y) = y for x �= y, then d(x, y) = d(ϕ(x), ϕ(y)) < d(x, y), which is
absurd. Thus there exists exactly one fixed point for ϕ. �
Remark 1.43 Analysing the proof of Theorem 1.45, we see that to prove the
existence of a fixed point for the mapping ϕ : X −→ X, it suffices to assume
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the following property. For any x, y ∈ X, d(ϕ(x), ϕ(y)) ≤ d(x, y) and for
x �= ϕ(x), d(ϕ(x), ϕ(ϕ(x))) < d(x, ϕ(x)).

In the special case when � is totally ordered, we obtain the following characteri-
zation of principal completeness [153].

Theorem 1.46 Let (X, d, �) be an ultrametric space and assume that � is totally
ordered. The following conditions are equivalent :
1. X is principally complete
2. Every strictly contracting mapping ϕ : X −→ X has a fixed point.

Proof 1. �⇒ 2. : this was proved in Theorem 1.45.
2. �⇒ 1. : We assume that X is not principally complete, so there exists a

chain C of principal balls such that
⋂

C = ∅. Hence C dos not have a smallest
ball and therefore the coinitial type λ of C is a limit ordinal. Then there exists a
strictly decreasing family (Bi)i<λ of balls Bi ∈ C such that

⋂
i<λ

Bi =
⋂

C = ∅.

We write Bi = Bγi (ai) and we define ϕ : X −→ X. If x ∈ X there exists the
smallest κ = κ(x) < λ such that x /∈ Bκ , we define ϕ(x) = aκ . We show that ϕ is
strictly contracting. Let x, y ∈ X, x �= y. If κ(x) = κ(y) then 0 = d(ϕ(x), ϕ(y)) <
d(x, y). If κ(x) �= κ(y), say κ(x) < κ(y), from Bκ(x) ⊃ Bκ(y) and x /∈ Bκ(x), y ∈
Bκ(x) we get d(x, y) > γκ(x) ≥ d(ϕ(x), ϕ(y)). So ϕ is strictly contracting. From
the definition of ϕ, it is obvious that ϕ does not have a fixed point. �

Brouwer’s fixed point theorem, in mathematics, a theorem of algebraic topology
that was stated and proved by Brouwer [27, 28]. Inspired by the earlier work of the
French mathematician Poincaré, Brouwer investigated the behavior of continuous
functions mapping the closed ball of unit radius in n-dimensional Euclidean space
into itself.

Theorem 1.47 (Brouwer’s Fixed Point Theorem) Let X be an n-dimensional

Euclidean space. Then, any continuous map of
{
x ∈ X : ‖x‖ ≤ 1

}
into itself has a

fixed point.

As a consequence, we get

Theorem 1.48 Any continuous map T of a compact convexK set in n-dimensional
Euclidean space X into itself has a fixed point.

Proof Assume first that K ⊆ BX =
{
x ∈ X : ‖x‖ ≤ 1

}
. Define G : BX → K by

takingG(x) to be the unique point y ∈ K such that ‖x−y‖ ≤ ‖x−z‖ for all z ∈ K .
Such a vector y exists and unique. Note that G(x) = x = y if x ∈ K . Consider
T ◦ G : BX → K as a map from BX into itself. The map H : BX → BX defined
by H(x) = T (G(x)) is continuous because G is continuous. Let xn → x. We have
‖xn − G(xn)‖ ≤ ‖xn − z‖ for all z ∈ K . Hence, if y is any limit point of {G(xn)}
then ‖x − y‖ ≤ ‖x − z‖ for all z ∈ K . This proves that G(x) is the only limit of
{G(xn)} which lies in the compact set K . Hence G(xn)→ G(x). By Theorem 1.47
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there exists x ∈ BX such that T (G(x)) = x. Since the range of T is contained
in K we get x ∈ K . But then G(x) = x so T (x) = x. This proves the theorem

when K ⊆ BX. For the general case choose R such that K ⊆
{
x ∈ X : ‖x‖ ≤ R

}
.

Let K1 = {R−1x : x ∈ K}. Then K1 is a compact convex set and the function
T1 : K1 → K1 defined by T1(x) = R−1T (Rx) is continuous. By the first case there
exists x1 ∈ K1 such that R−1T (Rx1) = x1. If x = Rx1 then T (x) = x. �
Remark 1.44 (Kakutani’s Example) Theorem 1.47 does not hold in an infinite
dimensional Hilbert space :

if T (x) = (
√

1 − ‖x‖2, x1, x2, · · · ) then T maps
{
x ∈ l2 : ‖x‖ ≤ 1

}
into itself

and is continuous. It has no fixed point.

Definition 1.66 A map T : Y → X whereX is a normed space and Y ⊆ X is called
compact if T (Z) is relatively compact whenever Z ⊆ Y is bounded.

Brouwer’s Theorem was extended to infinite dimensional spaces by Schauder in
the following way [174].

Theorem 1.49 (Schauder’s Fixed Point Theorem) Let Y be a closed bounded
convex set in a normed space (X, ‖.‖) and T a continuous map of Y into itself. If T
is compact then it has a fixed point.

Proof Let Z ⊆ X be compact. Let ε > 0 and Bε(x1), Bε(x2), · · · , Bε(xN) cover
Z where {x1, x2, · · · , xN } ⊆ Z. Let mi(x) = max(ε − ‖x − xi‖, 0) and ϕ(x) =∑N
i=1mi(x)xi∑N
j=1mj(x)

for x ∈ Z. It is obvious that each mi is continuous and
N∑
j=1

mj(x) >

0 for all x ∈ Z. Hence ϕ is continuous. If x ∈ Z thenmi(x) �= 0 implies ‖x−xi‖ <
ε and hence

∥∥∥∥∥
N∑
i=1

mi(x)(xi − x)
∥∥∥∥∥ < ε

N∑
i=1

mi(x) which proves that ‖ϕ(x)− x‖ < ε
(mi(x) �= 0 for at least one i). Further ϕ(Z) ⊆ conv(Z).

Let W = T (Y ). Then W is a compact subset of Y . For each n let ϕn : W →
conv(W) ⊆ Y be a continuous map such that ‖ϕn(x) − x‖ < 1

n
for all x ∈ W

for all n. This is possible by the reasoning above. Let Tn = ϕn ◦ T so that Tn is
a continuous map : W → Y . So there is a finite set {xn1 , xn2 , · · · , xnNn} ⊆ W such
that ϕn(W) ⊆ Wn := span({xn1 , xn2 , · · · , xnNn}). Let Yn = Y ∩ Wn. Then Yn is a
compact convex set in the finite dimensional space Wn. We claim that Tn maps Yn
into itself. First note that T (Yn) ⊆ T (Y ) ⊆ W so Tn = ϕn ◦ T is defined on Yn.
Also ϕn takes values in conv({xn1 , xn2 , · · · , xnNn}) ⊆ Wn as well as in Y so it takes
values in Yn. By Theorem 1.48 there exists yn ∈ Yn such that Tn(yn) = yn. Since

yn ∈ Y and T (yn) ∈ W we have ‖ϕn(T (yn)) − T (yn)‖ < 1

n
for all n. In other

words ‖yn − T (yn)‖ < 1

n
for all n. Since (T (yn))n ⊆ W andW is compact there is
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a subsequence (T (ynj ))nj converging to some y. Now

‖ynj − y‖ ≤ ‖T (ynj )− y‖ + ‖ynj − T (ynj )‖ < ‖T (ynj )− y‖ +
1

nj
→ 0.

This implies T (y) = y. �

Lemma 1.12 Let Y0 =
{
x = (xn)n≥1 ∈ l2 : |xn| ≤ 1

n
for all n ≥ 1

}
. Then any

continuous map T : Y0 → Y0 has a fixed point.

Proof We first prove that the parallelepiped Y0 is compact in l2. We have Y0 =⋂
n≥1

Zn,Zn =
{
x = (xm)m≥1 ∈ l2 : |xn| ≤ 1

n

}
. Since the canonical projection

pn : l2 → K is continuous, it follows that Zn = p−1
n (B 1

n
(0)) is closed for all n ≥ 1,

and therefore Y0 is a closed set. Since the series
∞∑
n=1

1

n2 converges, it follows that

for any ε > 0 there exists nε ≥ 1 such that
∞∑
k=nε

1

k2 ≤ ε. Since |pn(x)| ≤ 1

n
for

all x ∈ Y0 and n ≥ 1, it follows that
∞∑
k=nε

|pk(x)|2 ≤ ε for all x ∈ Y0, i.e., Y0 is

relatively compact in l2. Hence Y0 is compact.
Let Yn = {(x1, x2, · · · , xn, 0, 0, · · · ) : x ∈ Y } and define Tn : Yn → Yn by

Tn(x) = (y1, y2, · · · , yn, 0, 0, · · · ) where y = T (x1, x2, · · · , xn, 0, 0, · · · ). Yn can
be identified with compact convex set in K

n and Tn is continuous, hence it has a fixed
point x(n). Since (xn)n≥1 ⊆ Y0 and Y0 is compact in (l2, ‖.‖2) there is a subsequence
(xnj )j converging to some x ∈ Y . Let yn = T (x

(n)
1 , x

(n)
2 , · · · , x(n)n , 0, 0, · · · )

so that x(n) = Tn(x
(n)) = (y

(n)
1 , y

(n)
2 , · · · , y(n)n , 0, 0, · · · ). It is clear that

lim
n→∞(x

(n)
1 , x

(n)
2 , · · · , x(n)n , 0, 0, · · · ) = x so lim

n→∞ y
(n) = T (x). Hence x =

lim
j→∞ x

(nj ) = lim
j→∞(y

(nj )

1 , y
(nj )

2 , · · · , y(nj )n , 0, 0, · · · ) = lim
j→∞ y

(nj ) = T (x). �

Lemma 1.13 If Z is a closed convex of Y0 then every continuous map of Z into
itself has a fixed point.

Proof For each x ∈ Y0 there is a unique point P(x) ∈ Z closet to x and the map
P : Y0 → Z is continuous. If T : Z → Z is continuous then G : Y0 → Y0 defined
by G = T ◦ P is continuous. Hence by Lemma 1.12 there exists x ∈ Y0 such that
T (P (x)) = x. Since the range of T is contained inZ we see that x = T (P (x)) ∈ Z.
But then P(x) = x so x = T (x). �
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Proposition 1.46 Let Y be a compact convex set in a locally convex topological
vector space (X, τ). If Y has at least two points and T : Y → Y is continuous then
there is a proper subset Y1 of Y such that T (Y1) ⊆ Y1 and Y1 is also compact and
convex.

Proof We reduce the proof to the case when the topology τ of X is replaced by the
weak topology. We introduce an ordering for subsets of X′ as follows : Z ≤ W

if for any ψ ∈ Z and ε > 0 there exists a finite subset ϕ1, ϕ2, · · · , ϕk of W and
δ > 0 such that x, y ∈ Y and |ϕi(x) − ϕi(y)| < δ, 1 ≤ i ≤ k imply |ψ(T (x)) −
ψ(T (y))| < ε. We observe that if Z ≤ W and ϕ(x) = ϕ(y) for all ϕ ∈ Z then
ψ(T (x)) = ψ(T (y)). We claim that for any ψ ∈ Z there exists a countable family
W = {ϕ1, ϕ2, · · · } such that {ψ} ≤ W . For this let ε > 0. First note that T is weak-
weak continuous and Y is compact convex in weak topology. By uniform continuity
of ψ ◦T on Y with its weak topology, |ψ(T (x))−ψ(T (y))| < ε if x−y belongs to
a suitable weak neighbourhood of θ . Hence there exists ϕ1, ϕ2, · · · , ϕk and δ > 0
such that |ϕi(x) − ϕi(y)| < δ, 1 ≤ i ≤ k implies |ψ(T (x))− ψ(T (y))| < ε. Now

vary ε over {1

n
, n ≥ 1} to get a countable set W ⊆ X′. For any ε > 0 choose

n such that
1

n
< ε. There exists ϕ1, ϕ2, · · · , ϕk and δ > 0 such that |ϕi(x) −

ϕi(y)| < δ, 1 ≤ i ≤ k implies |ψ(T (x)) − ψ(T (y))| < 1

n
< ε. It follows that if

|ϕ(x)− ϕ(y)| < δ for all ϕ ∈ W then |ψ(T (x))−ψ(T (y))| < ε. Hence {ψ} ≤ W .
If we now repeat the argument for each element of W to get another countable set
W1, then repeat the argument for each element of W1 and so on we end up with
countable family W0 such that with ψ it self, we get a countable subset P of X′
which contains ψ with P ≤ P .

If Y1 is weakly compact, convex and contained in Y then it is a weakly closed
convex set, hence strongly closed. Hence it is a closed convex subset of Y in the
strong (i.e., original) topology, hence strongly compact also. Thus, we may and do
assume that the topology τ of X is the weak topology. Now suppose x, y ∈ Y, x �=
y. Choose ψ such that ψ(x) �= ψ(y). Let P = {ψ1 = ψ,ψ2, · · · } be a countable
subset of X′ containing ψ such that P ≤ P . Now ψn(Y ) is compact for each n ≥ 1.
Because if Q = {α1ψ, α2ψ2, · · · } with each αn > 0 then Q ≤ Q, we may suppose

|ψn(z)| ≤ 1

n
for all n ≥ 1, for all z ∈ Y . DefineG : Y → l2 byG(z) = (ψn(z))n≥1.

G is continuous and its range S is contained in Y0 =
{
x = (xn)n≥1 ∈ l2 : |xn| ≤

1

n
for all n ≥ 1

}
. S has at least two points because ψ(x) �= ψ(y). Let T0 : S → S

be the mapG ◦ T ◦G−1. In other words, if s ∈ S we pick z ∈ Y such that s = G(z)
and define T0(s) = G(T (z)). To see that this is well defined note that s = G(z1) =
G(z2) implies ψn(z1) = ψn(z2) for all n which implies ψn(T (z1)) = ψn(T (z2))

for all n (because P ≤ P ) so G(T (z1)) = G(T (z2)) so T0 is well defined. The fact
that P ≤ P also implies that if ψn(zm) −→ ψn(z) as m −→ ∞ for each n then
ψn(T (zm)) −→ ψn(T (z)) for each n. This means T0 is continuous. Lemma 1.13
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shows that T0 has a fixed point s1 ∈ S. Let Y1 = G−1({s1}). Let z ∈ Y1 so G(z) =
s1. Then s1 = T0(s1) = G(T (z)). Hence T (z) ∈ Y1. Thus T (Y1) ⊆ Y1. Clearly Y1
is convex. It is a closed subset of S and hence it is compact. �

Tychonoff extended Brouwer’s result to a compact convex subset of a locally
convex topological vector space [190].

Theorem 1.50 (Schauder-Tychonoff’s Fixed Point Theorem) Any continuous
map T from a compact convex subset Y of a locally convex topological vector space
(X, τ) into Y has a fixed point.

Proof By Proposition 1.46 there is a minimal nonempty compact convex set Y0
such that T (Y0) ⊆ Y0 and Y0 must be a singleton. �

The following result [98], called Markov-Kakutani fixed point theorem, is
powerful in that it determines a single fixed point for a whole family of mappings,
while theorems such as the Schauder-Tychonoff fixed point theorem determine
conditions on the space such that the restriction on the mapping is minimal, namely
that we only require the mapping T to be continuous.

Theorem 1.51 (Markov-Kakutani’s Fixed Point Theorem) Let Y be a compact
convex subset of a locally convex topological vector space (X, τ). Let Tα : Y →
Y (α ∈ I ) be a family of continuous mappings that are affine (which means they

satisfy the condition Tα(
n∑
i=1

λixi) =
n∑
i=1

λiTα(xi) whenever n ∈ N, λi ≥ 0 for all i

and
n∑
i=1

λi = 1). If Tα ◦ Tβ = Tβ ◦ Tα for all α, β ∈ I then there exists x ∈ Y such

that Tα(x) = x for all α ∈ I .

Proof For each α ∈ I , let Zα = {x ∈ Y : Tα(x) = x}. From the Schauder-
Tychonoff fixed point theorem we know that Zα �= ∅. Since Tα is a continuous
affine map, it follows that Zα is compact and convex. So to restate the conclusion
of the theorem we must show that

⋂
α∈I
Zα �= ∅. Since Y is compact, we have, by

Proposition 1.4 that we need only show that
⋂
α∈J

Zα �= ∅ for each nonempty finite

subset J of I . To this end, let J = {α1, α2, · · · , αn} be a nonempty finite subset of
I . We shall proceed by induction.

Let x be any element of Zα1 then

Tα1(Tα2(x)) = Tα2(Tα1(x)) = Tα2(x).

That is, Tα2(x) is a fixed point of Tα1 and so Tα2(x) ∈ Zα1 . Thus, Tα2(Zα1) ⊆ Zα1 .
Hence, from the Schauder-Tychonoff fixed point theorem, Tα2 has a fixed point in
Zα1 . Therefore, Zα1 ∩ Zα2 �= ∅. Now, suppose that

Zα1 ∩ Zα2 �= ∅ ∩ · · · ∩ Zαj where, 1 ≤ j ≤ n.
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Let Z = Zα1 ∩Zα2 �= ∅∩ · · · ∩Zαj . Then Z is nonempty, compact and convex. Let
x be any element of Z and let 1 ≤ i ≤ j then

Tαi (Tαj+1(x)) = Tαj+1(Tαi (x)) = Tαj+1(x).

That is, Tαj+1(x) is a fixed point of Tαi and so Tαj+1(x) ∈ Zαi . Since 1 ≤ i ≤ j was
arbitrary,

Tαj+1(x) ∈ Zα1 ∩ Zα2 �= ∅ ∩ · · · ∩ Zαj = Z.

Hence, from the Schauder-Tychonoff fixed point theorem, Tαj+1 has a fixed point in
Z. Therefore,

Zα1 ∩ Zα2 �= ∅ ∩ · · · ∩ Zαj ∩ Zαj+1 �= ∅.

By induction, we see that
⋂
α∈J

Zα �= ∅. This completes the proof. �

We shall need some facts about the Kuratowski measure of noncompactnessμ
introduced by Kuratowski [122]. This measure of noncompactness is used by Darbo
[40], Furi and Vignoli [61], Nussbaum [136], Petryshyn [150], and others.

The concept of Kuratowski’s measure of noncompactness is defined below.

Definition 1.67 Let (X, d) a metric space. If Y is a bounded subset of X (i.e.,
diam(Y ) = sup{d(x, y) : x, y ∈ Y } < ∞), the Kuratowski measure of noncom-
pactness of Y is defined by

μ(Y ) = inf
{
δ > 0 : Y =

n⋃
i=1

Yi for some Yi with diam(Yi) ≤ δ, 1 ≤ i ≤ n <∞
}
.

We give the following properties of μ. For the proofs see [136].

Proposition 1.47 Let (X, d) be a metric space. If Y is a bounded subset of X, then
μ(Y ) = μ(Y ).
Proposition 1.48 Let (X, d) be a complete metric space. Then

1. for every bounded subset Y of X, μ(Y ) = 0 if and only if Y is compact.
2. If (Yn)n≥1 is a decreasing sequence of closed, bounded nonempty subsets of X

and if lim
n−→∞μ(Yn) = 0, then Y =

⋂
n≥1

Yn is compact and nonempty.

If (X, ‖.‖) is a normed space, the norm ‖.‖ gives a metric on X and one can take
the Kuratowski measure of noncompactness μ on X with respect to this metric.
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Proposition 1.49 Let (X, ‖.‖) be a normed space, Y,Z two bounded subsets of X,
x0 ∈ X and λ ∈ K. Then

1. μ(λY ) = |λ|μ(Y ).
2. μ(conv(Y )) = μ(Y ).
3. μ(Y + Z) ≤ μ(Y )+ μ(Z).
4. μ(Y ∪ {x0}) = μ(Y ).

Closely associated with the measure of noncompactness is the concept of k-set
contraction.

Definition 1.68 If Y1 is a subset of a metric space (X1, d1), and (X2, d2) is a second
metric space and T : Y1 → X2 is a continuous map, we shall say that T is a k-set-
contraction if μ2(T (Z)) ≤ μ1(Z), for all bounded sets Z ⊆ Y1, where μi denotes
the Kuratowski measure of noncompactness on (Xi, di).

Theorem 1.52 (Darbo’s Fixed Point Theorem) Let Y be a closed bounded convex
set in a Banach space (X, ‖.‖) and let T : Y → Y be a k-set-contraction with k < 1.
Then T has a fixed point in Y [40].

There is a more useful generalization of Darbo’s fixed point theorem.

Theorem 1.53 Let Y be a closed bounded convex set in a Banach space (X, ‖.‖)
and T : Y → Y a continuous map. Define Y1 = conv(T (Y )) and Yn =
conv(T (Yn−1)) for n > 1 and assume that if lim

n−→∞μ(Yn) = 0 where μ denotes

the Kuratowski measure of noncompactness on X. Then T has a fixed point in Y .

If T in Theorem 1.53 is a k-set contraction with k < 1, then if lim
n−→∞μ(Yn) = 0,

but the conditions of Theorem 1.53 may be satisfied in cases of interest for which T
is not a k-set contraction with k < 1.

The following result is an extension of Darbo’s fixed point theorem [61, 136,
172].

Theorem 1.54 (Sadovskii’s Fixed Point Theorem) Let Y be a closed bounded
convex set in a Banach space (X, ‖.‖) and let T : Y → Y be a continuous μ-
condensing map (i.e., μ(T (Z)) < μ(Z), for all bounded sets Z ⊆ Y for which
μ(Z) > 0). Then T has a fixed point in Y .

1.6 Nonexpansive Mappings

Definition 1.69 A mapping T is nonexpansive if ‖T (x)− T (y)‖ ≤ ‖x − y‖ for
all x, y in its domain.

Definition 1.70 Let X be a Banach space and Y be a nonempty bounded closed
convex subset of X. We say that Y has the fixed point property for nonexpansive
mapping if for every nonexpansive mapping T : Y −→ Y , Y contains a fixed
point x∗ (i.e., T (x∗) = x∗), X has the fixed point property (FPP for short) if
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any nonempty bounded closed convex subset of X has the fixed point property for
nonexpansive mapping,X has the weak fixed point property (WFPP for short) if any
weakly compact convex subset of X has the fixed point property for nonexpansive
mapping.

Remark 1.45 For a reflexive Banach space, FPP and WFPP are obviously the
same.

Definition 1.71 Let Y be a nonempty set. A nonempty subset Y0 of Y is called
invariant under T or T -invariant for a mapping T : Y −→ Y if T (Y0) ⊂ Y0. Let Y
be a class of subsets of Y . We say that an element Y0 ∈ Y is Y-minimal for T if
there exists no proper T -invariant subset of Y0 in the class Y .

We are interested mainly in the case that Y is a subset of a Banach space X and
Y is the class of weakly compact subsets of X or the class of closed convex subsets
of X.

Remark 1.46 If Y is a closed convex subset of a Banach space X and T : Y −→ Y ,
then a decreasing sequence of nonempty, closed, convex, T -invariant sets may be
obtained by setting

Y0 = Y and Yn+1 = conv(T (Yn)) ∀ n ≥ 1.

We set

Ŷ =
∞⋂
n=1

Yn.

The set Ŷ is closed, convex and T -invariant. But it may be empty. Of course this
situation cannot occur if Y is weakly compact.

Proposition 1.50 If X is a Banach space, Y ⊆ X is a nonempty, weakly compact,
convex set and T : Y −→ Y , then there exists a nonempty, closed, convex set Ŷ ⊆ Y
which is minimal invariant for T .

Proof Let � be the family of all nonempty, closed, convex subsets of Y which are
T -invariant. We order � by reverse inclusion, namely if Y1, Y2 ∈ �, then

Y1 ≤ Y2 ⇐⇒ Y2 ⊂ Y1.

By the finite intersection property for the weak topology, every chain in � has an
upper bound (namely the intersection of the elements in the chain). So by the Zorn
lemma, � has a maximal element Ŷ ∈ �. Evidently Ŷ is T -invariant. �
Remark 1.47 Note that if Ŷ ⊆ Y is a nonempty, closed, convex and minimal T -
invariant set, then

Ŷ = conv(T (Ŷ )).
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If Ŷ ∈ � in Proposition 1.50 is a singleton, i.e., Ŷ = {y}, then

T (y) = y,

i.e., it is a fixed point of T .

The famous question whether a Banach space has the fixed point property had
remained open for a long time. It has been answered in the negative by Sadovski
[172] and Alspach [4] who constructed the following examples, respectively.

Examples 1.10

1. Let X = c0 and Y = {x ∈ c0, ‖x‖∞ ≤ 1}. Define T : Y −→ Y by

T (x) = (1, x1, x2, x3, . . .), for all x = (x1, x2, x3, . . .) ∈ Y.

2. Let X = L1(0, 1) and

Y =
{
x ∈ X, 0 ≤ x(t) ≤ 1 and

∫ 1

0
x(t)dt = 1

2

}
.

Define T : Y −→ Y by

T (x)(t) =

⎧⎪⎪⎨
⎪⎪⎩

min{1, 2x(2t)}, if 0 ≤ t ≤ 1

2
,

max{0, 2x(2t − 1)− 1}, if
1

2
< t ≤ 1.

Then Y is bounded, closed, and convex, and T is an isometry ‖T (x)−T (y)‖1 =
‖x − y‖1, for all x, y ∈ Y and is fixed point free.

Namely, c0 and L1(0, 1) do not have the fixed point property. The above two
examples suggest that to obtain positive results for the existence of fixed points for
nonexpansive mappings, it is necessary to impose some restrictions either on T or
on the Banach space X.

The following well-known result is due to Kirk [107].

Theorem 1.55 Let X be a reflexive Banach space and Y a closed bounded convex
subset ofX. Let Y have normal structure. If T : Y → Y is nonexpansive, then T has
a fixed point.

Remark 1.48 Theorem 1.55 remains true ifX is any Banach space and Y is a convex
weakly compact subset having normal structure.

An immediate consequence of Theorem 1.55 is the following well-known result,
which was proved independently by Browder [29], Göhde [69] and Kirk [107].
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Theorem 1.56 Let X be a uniformly convex Banach space and Y a nonempty
closed bounded convex subset of X. If T : Y → Y is nonexpansive, then T has
a fixed point.

Remark 1.49 For nonexpansive maps, no characterization of FPP or WFPP seems
to be known [21].



Chapter 2
Almost Fixed Points

This chapter presents various almost fixed points results from the literature. In
proofs of many fixed point theorems, almost fixed points have usually appeared
in an auxiliary role. In certain cases, almost fixed points, unlike fixed points, can be
obtained numerically, and in some other cases, the existence of a fixed point is non-
trivial or uncertain, whereas almost fixed points are easily found. Therefore, almost
fixed points seem to be natural objects in many applications.

We will concerned with a (continuous) mapping T of a metric space (X, d) and
with points which are almost fixed, in the sense that

d(T (x), x) < ε.

We call such a point “ε-fixed”.

2.1 Relation Between ε-Fixed and Fixed Points

Theorem 2.1 Let (X, d) be a metric space,� be a subset ofX and let T : � −→ X

be a continuous map. If x is fixed for T then any point y ∈ � sufficiently close to x
is ε-fixed [183].

Proof d(T (y), y) ≤ d(T (y), T (x)) + d(T (x), x) + d(x, y), which is less than ε
for y sufficiently close to x. �

Here is a general argument showing that ε-fixed points can be found construc-
tively where fixed points exist in compact sets [183].

Theorem 2.2 Let (X, d) be a metric space and � be a compact subset of X and let
T : �→ X be a continuous map. If T has ε-fixed points for all ε > 0 then T has a
fixed point.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Proof We have points xn such that d(T (xn), xn) ≤ 1

n
. By compactness we can

assume that xn −→ y in �. Then by continuity, d(T (y), y) = 0. �

Note that this argument is not constructive, even if we can find
1

n
-fixed point by

some effective method (in a finite number of steps) it does not give us an effective
way to find (or even to approximate) the fixed point.

We can’t drop the word compact in Theorem 2.2.

Example 2.1 ([135]) Let T (x1, x2, . . .) = (1 − ‖x‖, x1, x2, . . .) in the closed unit

ball of l2. Then T has no fixed point, but xn = k −1
2 for 1 ≤ k ≤ n and xn = θ for

n > k then ‖T (x)− x‖ = 2
1
2 k

−1
2 so that T has ε-fixed points for all ε > 0.

Must an ε-fixed point of T be a fixed point of some mapping close to T ?

Theorem 2.3 Let (X, ‖.‖), � a convex subset of X, and x be an ε-fixed point of
a mapping T of � into �. Then there exists a mapping S of � into �, uniformly
within ε of T , for which x is a fixed point [183].

Proof Let ‖T (x)− x‖ = δ < ε. Define Sy = x if ‖x − T (y)‖ ≤ δ and S(y) =
T (y)+ δ x − T (y)‖x − T (y)‖ otherwise. �

The convexity condition cannot be omitted from Theorem 2.3 :
Example 2.2 ([183]) Let � be the unit circle in C

1 with a small arc near 1

removed : � = {eiθ : ε
2

≤ θ ≤ 2π − ε

2
} (for small ε). Let T be complex

conjugation, T (z) = z. Then p = ei
ε
2 is ε-fixed but no mapping with ε of T

(uniformly) can have a fixed point near p.

2.2 Finding ε-Fixed Points Constructively Where Fixed
Points Are “Known” to Exist

In dealing with problems of analysis we should always distinguish between the
calculation of an approximate solution (one which nearly satisfies the requirements)
and the approximate calculation of an exact solution. Most algorithms for “calcu-
lating fixed points” actually yield ε-fixed points which may or may not be close
to exact fixed points [102]. But sometimes there are reasons why the ε-fixed point
found must be close to a fixed point [180, 189]

The following example in [183] demonstrates that an ε-fixed point need not be
near a fixed point.

Example 2.3 Consider the following mapping of the closed interval [0, 1],
T : [0, 1] → [0, 1] defined by T (x) = max(0,min(x + α, 1)), where |α| < ε.
Then if α �= 0, all points in [0, 1] are ε-fixed but most of them are a long way from
the fixed point.
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This difficulty in approximating exact fixed points applies to all the deep fixed
point theorems which are commonly used in applications : those on continuous
mappings of compact sets (Brouwer, Schauder), Kakutani’s theorem on many-
valued mappings, and so on. (The exception is Banach’s Contraction Mapping
Principle, which does give approximations to an exact fixed point).

To see that ε-fixed points can be found in these cases, it is often enough to follow
a standard proof of the existence of a fixed point up to the place, one line before the
end, just before compactness is mentioned, where the proof asserts that an ε-fixed
point exists.

Theorem 2.4 Let (X, d) be a metric space and � be a compact subset of X and
let T : � −→ X be a continuous map. If T has a fixed point ξ , then we can find an
ε-fixed point (for any ε > 0) constructively.

Proof Choose δ > 0 so that δ <
ε

2
and so that d(T (x), T (y)) <

ε

2
for d(x, y) < δ.

Choose a finite δ-net {x1, x2, . . . , xk} in �. Calculate d(xi, T (xi)) for 1 ≤ i ≤ k

and one of these values must be less than ε for if d(xi, ξ) < δ then

d(xi, T (xi)) ≤ d(xi, ξ)+ d(ξ, T (ξ))+ d(T (ξ), T (xi)) ≤ ε

2
+ 0 + ε

2
.

�
A practical case where fixed points can be found constructively is Banach’s

Contraction Mapping Principle (or a close relative). If d(T (x), T (y)) ≤
cd(x, y) (for all x, y) where 0 < c < 1, then if ξ is the fixed point and x is

any starting point then we have d(T n(x), ξ) ≤ cn
d(x, T (x))

1 − c so that we can

actually assert that T n(x) is close to ξ for n sufficiently large.
There is one interesting case where the ε-fixed points are easily found, but getting

exact fixed points (even non-constructively) is tricky.

Definition 2.1 Let Y be a subset of a Banach space and T : Y → Y a nonexpansive
mapping. An approximate fixed point set for T is a set of the type

Fε(T ) = {x : ‖(T (x)− x)‖ ≤ ε} for some ε ≥ 0.

The set Y is said to have the approximate fixed point property for nonexpansive
mapping (AFPP for short) if Fε(T ) �= ∅ for each ε ≥ 0 and for each nonexpansive
mapping T : Y → Y that is, inf{‖(T (x)− x)‖: x ∈ Y } = 0.

Proposition 2.1 Let Y be a bounded and convex subset of a Banach space and
T : Y → Y a nonexpansive mapping. Then Y has the approximate fixed point
property.
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Proof Consider the mapping Tλ := λI + (1 − λ)T for λ ∈ (0, 1), where I
denotes the identity map of Y . Then Tλ is a contraction mapping for each λ and
by Theorem 1.43 it has a fixed point xλ ∈ Y . Thus

‖xλ − T (xλ)‖ = (1 − λ)‖xλ − T (xλ)‖ → 0 as λ→ 1.

�
The sequence of successive approximations for nonexpansive mappings, unlike

contraction mappings, may fail to converge. For example, if

T : R→ R given by T (x) = 1 − x.

Then for x0 = 1 we have T 2n(x0) = 1 and T 2n+1(x0) = 0 for n ≥ 1. Also, rotation
about the origin in the plane is another example where (T n(x0))n(x0 �= θ) does not
converge.

More generally, if Y is a convex set in a normed space X and T : Y → Y is a
nonexpansive mapping, then for λ ∈ (0, 1),

Tλ = λI + (1 − λ)T

is a nonexpansive map and has the same fixed points as T .
For fixed x0 ∈ Y , (T nλ (x0))n is defined T n+1

λ (x0) = λxn + (1 − λ)T (xn), where
xn = T nλ (x0).

An early result, concerning the convergence of the sequence of successive
approximations, is due to Krasnoselskii [118].

Theorem 2.5 Let X be a uniformly convex Banach space and Y a closed convex
bounded subset ofX. If T : Y → Y is nonexpansive and T (Y ) is relatively compact,

then for any x0 ∈ Y , the sequence (T n1
2
(x0))n of iterates of x0 under T 1

2
:= 1

2
(I+T )

converges to a fixed point of T .

Schaefer [173] observed that the same result holds for any Tλ with λ ∈ (0, 1),
and Edelstein [52] proved that strict convexity of X suffices.

The important and natural question is whether strict convexity can be removed.
This question was resolved in the affirmative in the following theorem [90].

Theorem 2.6 Let Y be a nonempty subset of a Banach space X and let T : Y → X

be a nonexpansive mapping. For x0 ∈ Y , define the sequence (xn)n by

xn+1 := (1 − cn)xn + cnT (xn), (2.1)

where the real sequence (cn)n satisfies the following conditions :

(a)

∞∑
n=0

cn = ∞,
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(b) 0 ≤ cn ≤ 1 for all positive integers n,
(c) xn ∈ Y for all positive integers n.

If (xn)n is bounded, then lim
n→∞‖xn − T (xn)‖ = 0.

The iteration method of Theorem 2.6 is referred to as the Mann iteration method
in light of [129]. One consequence of this theorem is that if Y is closed and T is
completely continuous, then T has a fixed point and the sequence (xn)n defined by
(2.1) converges strongly to a fixed point of T [90].

Any sequence satisfying the conclusion of Theorem 2.6, i.e., lim
n→∞‖xn −

T (xn)‖ = 0, is called an approximate fixed point sequence for T .
The importance of approximate fixed point sequences is that once a sequence

has been constructed and proved to be an appropriate fixed point sequence for a
nonexpansive map T , the convergence of that sequence to a fixed point of T is
then achieved under some mild compactness-type assumptions either on T or on its
domain.

The concept of asymptotic regularity is due to Browder and Petryshyn in [32].

Definition 2.2 A mapping T : X→ X of a metric space (X, d) into itself is said to
be asymptotically regular at x ∈ X if d(T n+1(x), T n(x))→ 0 as n→∞, it is said
to be asymptotically regular on X if it is so at each x ∈ X.

Results on the asymptotic regularity of Tλ were first obtained by Browder and
Petryshyn in [32]. They showed that if X is uniformly convex and T : Y → Y

is a nonexpansive selfmapping on a closed, bounded, convex subset Y , then Tλ is
asymptotically regular.

The asymptotic regularity is relevant to the existence of fixed points is seen from
the following simple observation [32].

Proposition 2.2 If T : X → X is continuous on a metric space (X, d) and
asymptotically regular at x ∈ X , then any cluster point of {T n(x)} is a fixed point
of T .

Proof Let (T nk (x))k be a subsequence of (T n(x))n converging to y ∈ X. By
continuity T nk+1(x) → T (y) and by asymptotic regularity T nk+1(x) → y, so
that T (y) = y. �

It follows that for continuous T asymptotic regularity of Tλ at any x ∈ Y implies
that Tλ(y) = y for any cluster point y of {T nλ (x)}.

Asymptotic regularity is not only useful in proving that fixed points exist but also
in showing that in certain cases, the sequence of iterates at a point converges to the
fixed point as in the following result [54].

Proposition 2.3 Let T be a linear mapping of a normed space X into itself and
suppose that T is power bounded, i.e., for some c ≥ 0,

‖T n‖ ≤ c (n = 1, 2, · · · ),
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and asymptotically regular. If conv{T n(x)} contains a fixed point z of T for some
x ∈ X, then (T n(x))n converges strongly to z.

Proof Let ε > 0 be given and suppose that y is a point in conv{T n(x)} with

‖z− y‖ < ε

2(c + 1)
.

Setting y =
m∑
k=1

λkT
k(x) we obtain

T n(x − z) = T n(x − y)+ T n(y − z) = T n
(
x −

m∑
k=1

λkT
k(x)

)
+ T n(y − z)

=
m∑
k=1

λk(T
n(x)− T n+k(x))+ T n(y − z).

Hence

‖T n(x − z)‖ ≤
∥∥∥∥∥
m∑
k=1

λk(T
n(x)− T n+k(x))

∥∥∥∥∥+
εc

2(c + 1)
.

Now by asymptotic regularity, a positive integer N exists with the property that
n ≥ N implies

‖T n(x)− T n+k(x)‖ < ε
2
(k = 1, 2, · · · ,m).

It follows that

‖T n(x − z)‖ <
m∑
k=1

λk

(ε
2

)
+ ε

2
= ε

for all n ≥ N so that T n(x − z) = T n(x) − z → 0 as n → ∞, proving the
proposition. �
Definition 2.3 A mapping T of a subset Y of a normed linear space into itself is
said to be uniformly asymptotically regular if for any δ > 0 there exists an N such
that for all x ∈ Y and for all n ≥ N , ‖T n+1(x)− T n(x)‖ < δ.

The following lemma was given in [54].

Lemma 2.1 Let T be a nonexpansive selfmapping of a convex subset Y of a normed
space X. For λ ∈ (0, 1) define a nonexpansive mapping Tλ = λI + (1 − λ)T of
Y into itself. Let Z be a subset of Y such that for some a, ‖Tλ(x)− x‖ < a for all
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x in Z such that for some δ > 0 and any positive integer n there exists an x in Z
(depending on n) with

‖T n+1
λ (x)− T nλ (x)‖ > δ. (2.2)

Then {T nλ (x) : x ∈ Z, n ∈ N} is unbounded.

Proof Assume by way of contradiction, that diam{T nλ (x) : x ∈ Z, n ∈ N} ≤ ρ. Let
M and N be positive integers

Mδ > ρ + 1 and N > max

{
M,

Ma

(1 − λ)λM
}
.

Suppose that x satisfies (2.2) with n = N . Then since Tλ is nonexpansive, (2.2) must
hold for all positive integers i ≤ N . We simplify the notation by writing xi = T iλ(x)
and yi = T (T iλ(x)). These points satisfy the following conditions :

‖xi+1 − xi‖ is a monotone non-increasing sequence with (2.3)

a ≥ ‖x1 − x0‖ ≥ · · · ≥ ‖xN+1 − xN‖ > δ,

‖yi+1 − yi‖ ≤ ‖xi+1 − xi‖ for all i = 0, 1, · · · , N( by the nonexpansiveness of T ),
(2.4)

and

xi+1 = λxi + (1 − λ)yi so that yi = 1

1 − λxi+1 − λ

1 − λxi. (2.5)

Note that (2.4) and (2.5) imply

∥∥∥∥
1

1 − λ(xi+1 − xi)− λ

1 − λ(xi − xi−1)

∥∥∥∥ = ‖yi − yi−1‖ ≤ ‖xi − xi−1‖ (2.6)

for all i = 1, 2, · · · , N . Also for any integer

L ≥ a

(1 − λ)λM ,

[δ, a] can be covered by L subintervals each of length (1 − λ)λM . Hence by (2.3)
and the fact that

N > max

{
M,M

a

(1 − λ)λM
}
,
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we can find a subinterval I = [b, b + (1 − λ)λM ] of [δ, a] such that I contains at
leastM of the numbers ‖xi+1 − xi‖, i.e., for some K ,

‖xK+i+1 − xK+i‖ ∈ I for i = 1, 2, · · · ,M. (2.7)

By a result of Banach and Mazur, we can embed the linear span of

{xi, yi : 0 ≤ i ≤ N + 1}

by a linear isometry into C[0, 1]. Viewing the xi as continuous real functions on
[0, 1], it is clear that a ξ ∈ [0, 1] exists such that |xK+M+1(ξ)− xK+M(ξ)| ≥ b. We
will assume that

xK+M+1(ξ)− xK+M(ξ) ≥ b

as a similar argument holds in the other case. Then (2.6) and (2.7) imply

b

1 − λ −
λ

1 − λ(xK+M(ξ)− xK+M−1(ξ)) ≤ b + (1 − λ)λM,

so that

xK+M(ξ)− xK+M−1(ξ) ≥ b − (1 − λ)2λM
(

1

λ

)
.

Similarly

xK+M−1(ξ)−xK+M−2(ξ) ≥ b−(1−λ)2λM
(

1

λ
+ 1

λ2

)
= b−(1−λ)λM (1 − λ

2)

λ2
,

and in general,

xK+M+1−i (ξ)− xK+M−i (ξ) ≥ b− (1− λ)λM (1 − λ
i)

λi
, for i = 0, 1, · · · ,M − 1.

Thus

xK+M+1(ξ) ≥ xK+M(ξ)+ b
...

≥ xK+M+1−i (ξ)+ ib − (1 − λ)λM
(

1 − λ
λ

+ · · · + 1 − λi−1

λi−1

)

...
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≥ xK+1(ξ)+Mb − (1 − λ)λM
(

1 − λ
λ

+ · · · + 1 − λM−1

λM−1

)

≥ xK+1(ξ)+Mb − 1,

since

(1 − λ)λM
(

1 − λ
λ

+ · · · + 1 − λM−1

λM−1

)
≤ (1 − λ)λ(λM−2 + · · · + 1) ≤ 1.

But b ≥ δ implies that Mb ≥ Mδ > ρ + 1, and so |xK+M+1(ξ) − xK+1(ξ)| > ρ
contradicting the assumption that diam{T nλ (x) : x ∈ Z, n ∈ N} ≤ ρ. �

As consequence, the following result is proved in [54].

Theorem 2.7 Let T be a nonexpansive selfmapping of a convex subset Y of a
normed spaceX. For λ ∈ (0, 1) define a nonexpansive mapping Tλ = λI+(1−λ)T
of Y into itself. Then if the set {T nλ (x) : n ∈ N} is bounded for some x ∈ Y , Tλ is
asymptotically regular at x. Moreover, if Y is a bounded subset of X, then Tλ is
uniformly asymptotically regular on Y .

Proof Both statements follow immediately from Lemma 2.1, the first by setting
{x} = Z in the lemma and the second by setting Y = Z. �
Remark 2.1 It should be noted that by Theorem 2.7 the open question of whether
every nonexpansive mapping of a weakly compact convex subset of a normed space
into itself has a fixed point is equivalent to the question whether every uniformly
asymptotically regular such map has one.

Using a simple variant of the proof of Lemma 2.1, Edelstein and 0’Brien [54]
were able to derive a much stronger version of the Krasnoselskii result.

Theorem 2.8 Let T be a nonexpansive selfmapping of a convex subset Y (not
necessarily bounded) of a normed space X. For λ ∈ (0, 1) define a nonexpansive
mapping Tλ = λI + (1−λ)T of Y into itself. Suppose that for some x in Y , {T nλ (x)}
has a cluster point y ∈ Y . Then Tλ(y) = y = T (y) and T nλ (x)→ y. In particular,
if the range of T is contained in a compact subset of Y , then (T nλ (x))n converges
strongly to a fixed point of T for any x ∈ Y .

Proof It was shown in [51] that y is also a cluster point of {T nλ (x)} and that
‖T n+1
λ (y)− T nλ (y)‖ = ‖Tλ(y)− y‖ for all n. As In Lemma 2.1 letting xn = T nλ (y)

and yn = T (T nλ (y)) we obtain a set of points, which by embedding can again be
assumed to be a subset of C[0, 1], which satisfy the following :
1. ‖xi+1 − xi‖ = ‖yi+1 − yi‖ = ρ ≥ 0, for all i = 0, 1, · · · ,
2. xi+1 = λxi + (1 − λ)yi , and

3. ‖yi − yi−1‖ =
∥∥∥∥

1

1 − λ(xi+1 − xi)− λ

1 − λ(xi − xi−1)

∥∥∥∥ = ρ.
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Now for any fixed N , 1. implies that for some ξ ∈ [0, 1], |(xN+1 − xN)(ξ)| = ρ.
By 1. and 3.we must have (xn+1−xn)(ξ) = (xN+1−xN)(ξ) for all n ≤ N . Without
loss of generality assume (xN+1 − xN)(ξ) = ρ. Then for all n ≤ N

(xN+1)(ξ) = xn(ξ)+ (N + 1 − n)ρ.

But if ρ > 0, we obtain a contradiction to the existence of a cluster point for {xn}.
Hence ρ = 0 and Tλ(y) = y = T (y). That T nλ (x)→ y now follows easily from the
non expansiveness of Tλ.

If the range of T is contained in a compact set, then {T nλ (x)} is bounded and so
by Theorem 2.7, Tλ is asymptotically regular at x. Since

T n+1
λ (x)− T nλ (x) = (1 − λ)[T (T nλ (x))− T nλ (x)],

by asymptotic regularity any cluster point of {T (T nλ (x))} will be a cluster point of
{T nλ (x)} and the theorem follows. �

In [54], a number of results were extended, previously known only for uniformly
convex spaces, or in some cases, strictly convex spaces, to arbitrary normed linear
spaces.

Theorem 2.9 Let X be a normed space, Y a closed bounded convex subset of X
and T a nonexpansive mapping of Y to Y . Suppose that either

1. T is demicompact at θ , or
2. I − T maps closed bounded subsets of X into closed subsets of X, or
3. T is set-condensing or ball-condensing.

Then for every x ∈ Y , (T nλ (x))n converges strongly to a fixed point of T .

Proof

1. Let xn = T nλ (x). Then

xn − T (xn) = 1

1 − λ(xn − Tλ(xn)) =
1

1 − λ(T
n
λ (x)− T n+1

λ (x)).

Hence by Theorem 2.7 and the demicompactness of T at θ , {T nλ (x)} has a cluster
point in Y . The result follows by Theorem 2.8.

2. For any x consider the set Z = {T nλ (x)} (the strong closure). By Theorem 2.7
θ ∈ (I − Tλ)(Z) since (I − Tλ)(Z) is closed. Hence there is a subsequence
T
nk
λ (x)→ y ∈ Y where y is a point such that (I−Tλ)(y) = θ . Thus T nλ (x)→ y.

3. The condition that T be set-condensing or ball-condensing implies that {T nλ (x)}
has a cluster point and the result follows from Theorem 2.8.

�
The next result concerns affine, nonexpansive mappings. In [46] Dotson showed

that if X is a uniformly convex Banach space and T : X → X is linear and



2.2 Finding ε-Fixed Points Constructively Where Fixed Points Are “Known”. . . 109

nonexpansive, then (T nλ (x))n converges strongly to a fixed point of T for any x ∈ X.
Combining Theorem 2.7 and Proposition 2.3 yields the same conclusion for any
normed linear space X.

Theorem 2.10 If T : Y → Y is an affine, nonexpansive mapping of a weakly
compact convex subset Y of a normed space X into itself, then for each x in Y ,
(T nλ (x))n converges strongly to a fixed point of T [54].

Proof Since T is affine and nonexpansive, it has a fixed point in Y which by
translation we may assume as θ . Then T extends to a linear map of W = Sp(Y )
into W , so that Tλ can be considered as a linear mapping of W into W , which
is asymptotically regular at x by Theorem 2.7. Also, since Y is weakly compact,
{T nλ (x)} has a weak cluster point z, in conv{T nλ (x)}. The result will follow from
Proposition 2.3 by showing that z is a fixed point of Tλ.

Fix ε > 0 and by asymptotic regularity choose N such that

‖T n+1
λ (x)− T nλ (x)‖ <

ε

2

for all n ≥ N . Since z ∈ conv{T nλ (x) : n ≥ N}, there exists

y =
m∑
i=0

λiT
N+1
λ (x) ∈ conv{T nλ (x) : n ≥ N} with ‖z− y‖ < ε

4
.

By the affineness of Tλ,

‖Tλ(y)− y‖ ≤
m∑
i=0

λi‖T N+i+1
λ (x)− T N+iλ (x)‖ < ε

2

so that

‖Tλ(z)− z‖ ≤ ‖Tλ(z)− Tλ(y)‖ + ‖Tλ(y)− y‖ + ‖y − z‖ < ε.

It follows that Tλ(z) = z. �
When Y is only assumed to be weakly compact, it is known that in general

{T nλ (x)}will not have any stronger cluster points [66]. However, Theorem 2.7 allows
to conclude weak convergence for spaces which satisfy the following condition
introduced by Opial [141] :
Definition 2.4 A normed space X satisfies the Opial’s condition if whenever xn ⇀
θ and x �= θ we have lim inf ‖xn‖ < lim inf ‖x − xn‖.
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For a normed space X, by Hahn-Banach’s theorem, for a given x in X, there
exists at least one ϕ ∈ X′ such that ‖ϕ‖ = ‖x‖ and ϕ(x) = ‖x‖2. For each x in X
define

J (x) =
{
ϕ ∈ X′, ‖ϕ‖ = ‖x‖ and ϕ(x) = ‖x‖2

}
.

The mapping J : X→ 2X
′

is called the normalized duality mapping of X.
Every Hilbert space and lp(1 < p < ∞) space satisfy Opial’s condition.

This condition has been used in the study of the existence of fixed points for
nonexpansive maps. For example, Gossez and Lami Dozo [72] have shown that
for any normed space X, the weakly sequentially continuous duality map implies
that X satisfies Opial’s condition which in turn implies that X has normal structure,
but that none of the converse implications hold.

We have the following definition.

Definition 2.5 LetX be a normed space and Y ⊆ X. A mapping T : Y → X is said
to be demiclosed if for any sequence (xn)n in Y with xn ⇀ x0 in Y and T (xn)→ y

in Y , then T (x0) = y.

It follows [32] that if T is asymptotically regular and I − T is demiclosed, then
any weak cluster point of {T n(x)} is a fixed point. It is also known [141] that if a
space satisfies Opial’s condition , then I − T is demiclosed for any nonexpansive
map T from a closed and bounded convex set into itself. In [54] the following was
proved.

Theorem 2.11 Let X be a normed space which satisfies Opial’s condition and let
T be a nonexpansive mapping of a weakly compact convex subset Y of X into itself.
Then for any x ∈ Y , (T nλ (x))n converges weakly to a fixed point of T .

Proof By the above quoted results any weak cluster point of {T nλ (x)} is a fixed
point. If there exist two distinct weak cluster points of {T nλ (x)}, say y1 and y2
and two subsequences (T nkλ (x))k converging weakly to y1 and (T nlλ (x))l converging
weakly to y2, then since ‖T nλ (x)− yi‖ is non-increasing, Opial’s condition implies
that

lim ‖T nλ (x)− y1‖ = lim ‖T nkλ (x)− y1‖ < lim ‖T nkλ (x)− y2‖ = lim ‖T nλ (x)− y2‖,

and similarly,

lim ‖T nλ (x)− y2‖ = lim ‖T nlλ (x)− y2‖ < lim ‖T nlλ (x)− y1‖ = lim ‖T nλ (x)− y1‖.

The contradiction shows that exactly one weak cluster point exists and by weak
compactness T nλ (x) ⇀ y. �

In [65], a new class of mappings was introduced.
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Definition 2.6 Let Y be a nonempty closed convex subset of Banach space X. For
a continuous strictly increasing function α : R+ → R

+ with α(0) = 0 we say
T : Y → Y is an α-most convex mapping if for all x, y ∈ Y and all λ ∈ [0, 1] we
have

JT (λx + (1 − λ)y) ≤ α(max{JT (x), JT (y)}),

where JT is defined by

JT (x) := ‖T (x)− x‖, for all x ∈ Y.

In the case when α(t) = rt , for some r > 0, we say T is r-almost convex,
and simply refer to T as almost convex where r = 1. That is, T is almost convex
whenever

JT (λx + (1 − λ)y) ≤ max{JT (x), JT (y)},

for all x, y ∈ Y and all λ ∈ [0, 1].
Affine maps are clearly almost convex, indeed they satisfy the seemingly stronger

inequality,

JT (λx + (1 − λ)y) ≤ λJT (x)+ (1 − λ)JT (y).

On the other hand, in [103], was proved that any α-most convex map is of “convex

type”, that is, if JT (xn)→ 0 and JT (yn)→ 0 then JT

(
1

2
(xn + yn)

)
→ 0, so the

midpoint of two approximate fixed point sequences is itself an approximate fixed
point for T .

Remark 2.2 α-most (or, quasi) convex functions have been considered in optimiza-
tion theory [36, 39], where α is referred to as a “forcing function“ and is often also
required to be convex.

Beyond the affine mappings already mentioned, instances of α-most convex
maps include the following [65].

Examples 2.1

1. T : [0, 1] → [0, 1] : x �→ x(1 − x) is not affine, but JT (x) = |x − T (x)| = x2

is a convex function, and so T is almost convex.
2. T : Bc0 → Bc0 defined by

T ((xn)n) := (x1 − sgn(x1)‖(xn)n‖∞, x2, x3, · · · )

is almost convex, as JT (x) = ‖x‖∞ is a convex function.
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3. Let (ϕn : R → R) be a family of functions which are equicontinuous at 0 and
satisfy

ϕn(0)→ 0, ϕn(x) ≤ x, and ϕ′′n ≤ 0,

then T : (xn)n �→ (ϕn(xn))n is an almost convex mapping from c0 into c0.
4. A self mapping T of a metric space (Y, d) is a contraction in the sense of

Bianchini [168] whenever there exists a number h, 0 < h < 1, such that, for
each x, y ∈ X,

d(T (x), T (y)) ≤ hmax d(T (x), x), d(T (y), y).

If Y is a convex subset of a Banach space X, then this type of mapping is α-
almost convex .

Indeed,

JT (λx + (1 − λ)y) ≤ λJT (x)+ (1 − λ)JT (y)
+ λhmax{JT (x), JT (λx + (1 − λ)y)}
+ (1 − λ)hmax{JT (x), JT (λx + (1 − λ)y)}
≤ 2(λJT (x)+ (1 − λ)JT (y))+ hJT (λx + (1 − λ)y)).

Therefore

JT (λx + (1 − λ)y) ≤ 2

1 − h max{JT (x), JT (y)}.

5. Let Y be a convex nonempty subset of a Banach space X. Every k-Lipchitzian
mapping T : Y → Y which satisfies

‖x − y‖ ≤ γ (max{JT (x), JT (y)})

where γ : R+ → R
+ is a continuous strictly increasing function with γ (0) = 0

for all x, y ∈ Y is α-almost convex.
Indeed

JT (λx + (1 − λ)y) ≤ λJT (x)+ (1 − λ)JT (y)
+ λ‖T (x)− T (λx + (1 − λ)y)‖
+ (1 − λ)‖T (y)− T (λx + (1 − λ)y)‖
≤ β(max{JT (x), JT (y)}),

where β(t) = t + k
2
γ (t).
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6. Every strict contraction T : Y → X where Y is a convex nonempty subset of
a Banach space X satisfies the above condition, and therefore it is an α-almost
convex mapping.

Indeed, we can take γ (t) = 2

1 − k t and hence β(t) = 1

1 − k t where 0 < k <

1 is the contraction constant of T .
7. Similar, though more tedious, calculations to those of the last three examples

establish that if T : Y → X is a generalized nonexpansive map, that is,

‖T (x)− T (y)‖ ≤ a‖x − y‖ + b(‖x − T (x)‖ + ‖y − T (y)‖)
+ c(‖x − T (y)‖ + ‖y − T (x)‖)

where a, b and c are positive constants with a + 2b + 2c ≤ 1, and if either this
last inequality is strict, or b �= 0, then T is r-almost convex. Indeed,

JT (λx + (1 − λ)y) ≤ (1 + b + c)(1 − c)
(1 − b − c)(1 − a − 2c)

max{JT (x), JT (y)}

≤ 3

2b
max{JT (x), JT (y)}.

8. A mapping T of a closed convex subset of a Banach space X is said to be of type
� [33] if there exists a continuous strictly increasing convex function γ : R+ →
R
+ with γ (0) = 0 for which

γ (‖λT (x)+ (1 − λ)T (y)− T (λx + (1 − λ)y)‖) ≤ |‖x − y‖ − ‖T (x)− T (y)‖| .

Such maps are α-almost convex, where α(t) = t + γ−1(2t).
To see this, note that γ−1 is strictly increasing and that

JT (λx + (1 − λ)y) = ‖λx + (1 − λ)y − T (λx + (1 − λ)y)‖
≤ ‖λx + (1 − λ)y − λT x + (1 − λ)T y)‖
+ γ−1(|‖x − y‖ − ‖T (x)− T (y)‖|)
≤ λJT (x)+ (1 − λ)JT (y)
+ γ−1(‖x − T (x)‖ + ‖y − T (y)‖)
≤ α(max{JT (x), JT (y)}).

As a consequence of this last example and [33] we have :
9. All nonexpansive self maps of closed bounded convex subsets in a uniformly

convex space are α-almost convex.
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Remark 2.3 It is worth noting that the class of maps which are α-almost convex on
a given domain Y is stable under equivalent renormings. Indeed, if m‖x‖ ≤ ‖x‖′ ≤
M‖x‖ and T is α-almost convex with respect to the norm ‖.‖ then it is α′-almost

convex with respect to ‖.‖′, where α′(t) = Mα( t
m
).

Many other examples of α-almost convex mappings are a consequence of the
following result [65].

Proposition 2.4 If Y is a closed bounded convex set of a Banach space X, and
T : Y → Y , then at least one of the following applies.

1. T is r-almost convex, for some r > 0, or
2. inf{JT (x) : x ∈ Y } = 0. That is, T admits approximate fixed points in Y .

Proof If T is not r-almost convex for any r > 0, then for each n ∈ N taking r = n,
we see that there must exist points xn and yn in Y and λn ∈ [0, 1] such that

∞ > diamY ≥ JT (λnxn + (1 − λn)yn) ≥ nmax{JT (xn), JT (yn)},

so JT (xn) and JT (yn) tend to 0 as n→∞. �
Using the previous proposition with non-zero minimal displacement given in

[67], we see that there r-almost convex self maps of weak compact convex sets
(including Bl2 ) with inf JT (x) > 0. In particular such maps are fixed point free, and
can not be weakly continuous. Indeed, examples 2., 3. above show that unlike affine
maps, almost convex maps need not be weakly continuous. To see this note that in
c0 the standard basis vectors en ⇀ θ , but

T (en) = (−1, 0, · · · , 1, 0, · · · ), where the 1 occurs in the n’th position

⇀ (−1, 0, 0, · · · ) �= T (θ) = θ.

Nonetheless, we have the following [65].

Proposition 2.5 Let X be a Banach space and let Y be a nonempty closed convex
subset of X. If T : Y → X is norm continuous and almost convex then JT (x) :=
‖T (x)− x‖ is weak lower semicontinuous.

Proof Suppose that (xn)n is a sequence in Y such that xn ⇀ x. Given ε > 0,

choose a subsequence (xnk )k such that JT (xnk ) < lim inf JT (xn)+ ε
2

, for all k, and

let δ > 0 be such that |JT (y)− JT (x)| < ε

2
whenever ‖y − x‖ < δ (possible, as T

and hence JT is norm continuous at x). Since xnk ⇀ x, by Mazur’s theorem, there

exists xnk1 , xnk2 , · · · , xnkm and λ1, λ2, · · · , λm ∈ (0, 1] with
∑
λi = 1 such that
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‖x −
∑
λixnki

‖ < δ. But, then

JT (x) < JT

(
m∑
i=1

λixnki

)
+ ε

2

= JT
(
λixnk1

+ (1 − λ1)

m∑
i=2

λi

(1 − λ1)
xnki

)
+ ε

2

≤ max

{
JT (xnk1

), JT

(
m∑
i=2

λi

(1 − λ1)
xnki

)}
+ ε

2

≤ · · ·
≤ max{JT (xnk1 ), · · · , JT (xnkm )} +

ε

2

< lim inf
n

JT (xn)+ ε,

and so we conclude that JT is weak lower semicontinuous. �
Corollary 2.1 For X, Y and T as above, if in addition Y is weak compact, then

M(T ) := {x ∈ Y : JT (x) = inf
y∈Y JT (y)}

is a nonempty weak compact convex subset of Y . Indeed the same is true of any of
the sub-level sets for JT .

In particular, such a T has a fixed point if and only if

inf
x∈Y JT (x) = 0,

that is, if and only if T admits an approximate fixed point sequence in Y . And, in
this case Fix(T ) := M(T ) is a nonempty weak compact convex set.

We do not know if JT (x) is weak lower semicontinuous for arbitrary α-almost
convex maps, however, we have the following demiclosedness result [65].

Proposition 2.6 Let X be a Banach space and let Y be a nonempty closed convex
subset of X. If T : Y → X is norm continuous and α-almost convex then I − T is
demiclosed at θ .

Proof Suppose xn ⇀ x0 and |JT (xn)| = ‖(I − T )(xn)‖ → 0. We may assume
without loss of generality that

JT (xn) > 0

for all positive integers n.
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Fix ε > 0. Since T is continuous, there exists δ > 0 such that

JT (x0) < JT (y)+ ε
2
,

whenever y ∈ Y and ‖y − x0‖ < δ.
On the other hand, since α is continuous at 0 and α(0) = 0, there exists a positive

integer n1 such that

0 < α(JT (xn1)) <
ε

2
.

As JT (xn)→ 0 and α(JT (xn))→ 0, there exists n2 > n1 such that

0 < JT (xn2) < min{JT (xn1), α(JT (xn1))}

and

0 < α(JT (xn2)) < min{JT (xn1), α(JT (xn1))}.

Thus, by induction we can get a subsequence (xnk )k of (xn)n satisfying

0 < JT (xnk+1) < min{JT (xnk ), α(JT (xnk ))}

and

0 < α(JT (xnk+1)) < min{JT (xnk ), α(JT (xnk ))},

for all positive integer k.

We assert that if m ≥ 2 and
m∑
k=1

λkxnk is a convex combination of

xn1 , xn2 , · · · , xnm then

JT

(
m∑
k=1

λkxnk

)
≤ α(JT (xn1)).

Indeed, for m = 2 we have

JT (λ1xn1 + λ2xn2) ≤ α(max{JT (xn1), JT (xn2)) = α(JT (xn1)).
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If we suppose that the assertion is true for k = m− 1, then

JT

(
m∑
k=1

λkxnk

)
= JT

(
λ1xn1 + (1 − λ1)

m∑
k=2

λk

(1 − λ1)
xnk

)
(2.8)

≤ α
(

max

{
JT (xn1), JT

(
m∑
k=2

λk

(1 − λ1)
xnk

)})
(2.9)

≤ α(max{JT (xn1), α(JT (xn2))}) = α(JT (xn1)). (2.10)

To complete the proof we need only observe that by Mazur’s theorem, there exists

a convex combination
m∑
k=1

λkxnk such that

‖
m∑
k=1

λkxnk − x0‖ < δ,

and then

JT (x0) < JT

(
m∑
k=1

λkxnk

)
+ ε

2
≤ α(JT (xn1))+

ε

2
< ε,

which concludes the proof. �
As an immediate consequence we have the following fixed point result for α-

almost convex maps [65].

Proposition 2.7 Let X be a Banach space, let Y be a nonempty weak compact
convex subset of X, and let T : Y → X be norm continuous and α-almost convex.
Then T has a fixed point in Y if and only if inf{JT (x) : x ∈ Y } = 0.

Proof (�⇒) is obvious.
(⇐�) Since inf{JT (x) : x ∈ Y } = 0, we can find an approximate fixed point

sequence (xn)n in Y which without loss of generality we can assume is weakly
convergent to x0 ∈ Y . The above proposition now applies to yield the result. �

As an immediate consequence of Proposition 2.6 we have the following [65].

Proposition 2.8 Let Y be a nonempty weak compact convex subset of the Banach
space X, and let T : Y → X be norm continuous, α-almost convex, and asymptoti-

cally regular at x0 ∈ Y , that is JT (T
n(x0)) −→ 0 (for example, if T = 1

2
(I + V ),

where V is α-almost convex and nonexpansive). Then the iterates T n(x0) weakly
converge to a fixed point of T if either

(i) T is a contraction, that is, ‖T (x)− T (y)‖ < ‖x − y‖ whenever x �= y, or
(ii) X satisfies the Opial’s condition.
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Proof

(i) Suppose this were not the case, then we can find subsequences T nk (x0) ⇀ y0
and T mk (x0) ⇀ z0 �= y0. By the demiclosedness both y0 and z0 are fixed
points of T , a contradiction, since contractions can have at most one fixed
point.

(ii) This follows from standard arguments similar to those used in the nonexpan-
sive case [64].

�
The following characterization of reflexivity follows from the theorem of

Mil’man and Mil’man [132] and the above considerations [65].

Proposition 2.9 The Banach space X is reflexive if and only if whenever Y is a
nonempty closed bounded convex subset of X and T : Y → Y is norm continuous,
α-almost convex with inf{JT (x) : x ∈ Y } = 0 it follows that T has a fixed point.

2.3 Approximate Fixed Points of Nonexpansive Mappings
in Unbounded Sets

It is less obvious that some unbounded convex sets have the approximate fixed point
property for nonexpansive mappings.

Definition 2.7 A set Y of a Banach space X is called linearly bounded if it has a
bounded intersection with all lines in X (Y does not contain any half-line).

In [165], Reich characterized closed convex subsets of reflexive Banach spaces
which possess the approximate fixed point property for nonexpansive mappings.

Theorem 2.12 A closed convex subset of a reflexive Banach space has the AFPP if
it is linearly bounded.

Proof Let Y be a closed convex subset of a (real) reflexive Banach space X, and let
X′ be the dual of X. To show necessity, assume that {y + tz : 0 ≤ t < ∞} ⊆ Y

for some z �= θ . If x is in Y , then (1 − 1

t
)x + (y + tz)

t
belongs to Y for all t ≥ 1.

Therefore we can define a mapping S : Y → Y by S(x) = x + z. This mapping is
nonexpansive and ‖x − S(x)‖ = ‖z‖ for all x ∈ Y .

Conversely, let T : Y → Y be any nonexpansive mapping, and denote
inf{‖(T (x)− x)‖:
x ∈ Y } by d. It is known [116, 164] that for each x ∈ Y there is a functional j ∈ X′

with ‖j‖ = d such that
(x − T n(x)

n
, j
)
≥ d2 for all n ≥ 1. It is also known [163]

that lim
n→∞

‖T n(x)‖
n

= d. Let a subsequence
(T n(x)

n

)
n≥1

converge weakly to w.

Clearly ‖w‖ ≤ d. On the other hand, ‖w‖d = ‖w‖‖j‖ ≥ (−w, j) ≥ d2, so that
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‖w‖ = d. Now let y be any point in Y . Since (1 − 1

n
)y + T

n(x)

n
belongs to Y for

each n ≥ 1, we see that y + w also belongs to Y . Consequently, we may conclude
that the points y+mw belong to Y for all m ≥ 1. If Y is linearly bounded, then this
fact implies that w = θ , so that d = 0 too. This completes the proof. �
Remark 2.4 Theorem 2.12 cannot be extended to all Banach spaces. To see this, let
X = l1, Y = {x = (x1, x2, · · · ) ∈ l1 : ‖xn‖ ≤ 1 for all n}, and define T : Y →
Y by T (x1, x2, · · · ) = (1, x1, x2, · · · ). Then Y is linearly bounded and T is an
isometry, but inf{‖(T (x)− x)‖: x ∈ Y } = 1.

Remark 2.5 If X is finite-dimensional and Y is linearly bounded, then Y is, in fact,
bounded. Hence in this case either Y is bounded and has the fixed property, or it is
unbounded and does not even have the AFPP.

In [179] Shafrir presented a more general geometric characterization of the
AFPP that is valid in an arbitrary Banach space. This result is true even for a more
general class of metric spaces with a convexity structure, namely hyperbolic spaces
introduced by Kirk [108].

Let (X, ρ) be a complete metric space. We say that a mapping c : R → X is a
metric embedding of R into X if ρ(c(s), c(t)) = |s − t | for all real s and t . The
image of R under a metric embedding is called a metric line. The image of a real
interval [a, b] under such a mapping is called a metric segment.

Assume that there is a family M of metric lines in X such that for every x, y ∈
X, x �= y, there is a unique metric line in M that passes through x and y. The
closed metric segment connecting x and y will be denoted by [x, y]. For every
0 ≤ t ≤ 1 we shall denote by (1 − t)x ⊕ ty the unique point z ∈ [x, y] satisfying
ρ(x, z) = tρ(x, y) and ρ(z, y) = (1 − t)ρ(x, y).
Definition 2.8 We shall say that X, or more precisely (X, ρ,M), is a hyperbolic
space if

ρ

(
1

2
x ⊕ 1

2
y,

1

2
x ⊕ 1

2
z

)
≤ 1

2
ρ(y, z)

for all x, y and z in X.
An equivalent requirement is that

ρ ((1 − t)x ⊕ tz, (1 − t)y ⊕ tw) ≤ (1 − t)ρ(x, y)+ tρ(z,w)

for all x, y, z and w in X and all 0 ≤ t ≤ 1.

Hyperbolic spaces were studied in [166]. The following are some examples of
these spaces.
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Examples 2.2

1. All Banach spaces are also hyperbolic spaces. So is the Hilbert ball B equipped
with the hyperbolic metric [68] and Bn, the Cartesian product of n Hilbert balls,
equipped with the hyperbolic metric [121].

2. The open unit ball of L(H), the space of all bounded linear self-mappings of a
complex Hilbert space H , with the hyperbolic metric.

3. Hadamard manifolds and simply connected Riemannian manifolds of nonposi-
tive curvature are finite dimensional examples of hyperbolic spaces [10].

4. New examples of hyperbolic spaces can be constructed from old ones by a
product procedure which is described in [166].

Definition 2.9 Let (X, ρ,M) be a hyperbolic space. A subset Y ⊆ X is said to
be convex if [x, y] ⊆ Y whenever x, y ∈ Y . A mapping T : Y → Y is said to be
nonexpansive if ρ(T (x), T (y)) ≤ ρ(x, y) for all x, y ∈ Y . We shall say that has the
AFPP if inf{ρ(x, T (x)), x ∈ Y } = 0 for every nonexpansive mapping T : Y → Y .

In [179], Shafrir introduced the concepts of the directional curve, directional
sequence, and directionally bounded convex subsets of hyperbolic spaces.

Definition 2.10 Let (X, ρ,M) be a hyperbolic space. A curve γ : [0,∞) → X is
said to be directional (with constant b) if there is b ≥ 0 such that

t − s − b ≤ ρ(γ (s), γ (t)) ≤ t − s

for all t ≥ s ≥ 0. A sequence (xn)n≥1 ⊆ X is said to be directional if :
(1) ρ(x1, xn)→∞ as n→∞,
(2) there is b ≥ 0 such that

ρ(xn1 , xnl ) ≥
l−1∑
i=1

ρ(xni , xni+1)− b

for all xn1 < xn2 < · · · < xnl .
Definition 2.11 A convex subset Y of a hyperbolic space (X, ρ,M) is called
directionally bounded if it contains no directional curves.

Lemma 2.2 A convex subset of a hyperbolic space (X, ρ,M) is directionally
bounded if and only if it contains no directional sequences (does not contain any
approximate metric half-line) [179].

Proof Suppose Y contains a directional curve γ (t) with a constant b. Choose any
positive sequence (tn)n≥1 such tn ↑ ∞ and define

xi = γ (t), i ≥ 1.
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For xn1 < xn2 < · · · < xnl we have :

ρ(xnl , xn1) = ρ(γ (tnl ), γ (tn1)) ≥ tnl − tn1 − b

=
l−1∑
i=1

(tni+1 − tni )− b ≥
l−1∑
i=1

ρ(xni , xni+1)− b.

Conversely, if Y contains a directional sequence (tn)n≥1 with constant b we define

t1 = 0, tn =
n−1∑
i=1

ρ(xi, xi+1)

for n ≥ 2, and γ (tn) = xn for n ≥ 1. We extend γ to all of R
+ by γ (t) =

(1−at )xn⊕atxn+1 where tn ≤ t < tn+1 and at = t − tn
ρ(xn, xn+1)

. If tn+1 > t ≥ tn ≥
tm+1 > s ≥ tm, then

ρ(γ (t), γ (s)) ≥ ρ(γ (tn+1), γ (s))− ρ(γ (tn+1), γ (t))

≥ ρ(γ (tn+1), γ (tm))− ρ(γ (ts), γ (tm))− ρ(γ (tn+1), γ (t))

= ρ(xm, xn+1)− (s − tm)− (tn+1 − t)

≥
n∑
i=m

ρ(xi, xi+1)− b − (s − tm)− (tn+1 − t)

= t − s − b

�
Let Y be a closed convex subset of a hyperbolic space (X, ρ,M) and T : Y → Y

a nonexpansive mapping. For any x ∈ Y and t > 0 consider the mapping S : Y → Y

defined by

S(y) = 1

t + 1
x ⊕ t

t + 1
T (y).

T is a strict contraction, hence by Banach’s Contraction Mapping Principle, it has a
unique fixed point in Y which we shall denote by Jt (x). The mappings {Jt }t>0 thus
defined are easily seen to be nonexpansive and are called the resolvents of T , just as
in Banach spaces.

The resolvent identity

Jt (x) = Jt
( s
t
x ⊕

(
1 − s

t

)
Jt (x)

)

for any x ∈ Y and 0 < s ≤ t can be easily verified.



122 2 Almost Fixed Points

For u and v in X and s > 0 we shall denote by (1 + s)u ! sv the unique
point w on the metric line connecting u and v that satisfies ρ(w, u) = sρ(u, v) and
ρ(w, v) = (1 + s)ρ(u, v).

The following is given in [179].

Theorem 2.13 A convex subset Y of a hyperbolic space (X, ρ,M) has the AFPP
if it is directionally bounded.

The following lemmas simplify the proof of the above theorem.

Lemma 2.3 ([166]) ∀ x ∈ Y ,

lim
t→∞

ρ(x, Jt (x))

t
= inf
y∈Y ρ(y, T (y)).

Proof By the resolvent identity we have for t ≥ s > 0,

ρ(x, Js(x)) ≥ ρ(x, Jt (x))− ρ(Jt (x), Js(x)) ≥ s

t
ρ(x, Jt (x)),

hence

{
ρ(x, Jt (x))

t
|t > 0

}
is nonincreasing and

lim
t→∞

ρ(x, Jt (x))

t
= L

exists. Since
ρ(x, Jt (x))

t
= ρ(Jt (x), T Jt (x)), it is clear that L ≥ d =

inf{ρ(y, T (y)) | y ∈ Y }.
In order to prove the reverse inequality we fix y ∈ Y and s > 0. For t ≥ s we

have

s

t
x ⊕

(
1 − s

t

)
Jt (x) = (1 + s)Jt (x)! sT Jt (x)

hence

ρ(y, Jt (x)) ≤ ρ
(

1 + s)y ! sT (y), s
t
x ⊕

(
1 − s

t

)
Jt (x)

)

≤ s

t
ρ((1 + s)y ! sT (y), x)+

(
1 − s

t

)
ρ((1 + s)y ! sT (y), Jt (x))

≤ s

t
ρ((1 + s)y ! sT (y), y)+ s

t
ρ(y, x)

+
(

1 − s
t

)
ρ((1 + s)y ! sT (y), y)+

(
1 − s

t

)
ρ(y, Jt (x))

= sρ(y, T (y))+ s
t
ρ(y, x)+

(
1 − s

t

)
ρ(y, Jt (x)).
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So we conclude that
ρ(y, Jt (x))

t
≤ ρ(y, T (y)) + ρ(y, x)

t
. Letting t → ∞ we get

L ≤ ρ(y, T (y)). Since y was arbitrary, L ≤ d and the result follows.
For x ∈ Y and a positive sequence (ti)i≥1 we construct a sequence (yi)i≥1 ⊆ Y

as follows :

y1 = Jt (x), yi+1 = si

si + 1
yi ⊕ 1

si+1ti+1
Jti+1(x), i ≥ 1, (2.11)

where

sj =
j∑
k=1

1

tk
, j ≥ 1.

�
Note that in normed spaces

yj =
(∑j

i=1
Jti (x)

ti

)

sj
.

Lemma 2.4 Let (yi)i≥1 be defined by (2.11). Then, form ≥ 1 and t ≥ max{ti | 1 ≤
i ≤ m},

ρ(ym, Jt (x)) ≤
(

1 − m

smt

)
ρ(x, Jt (x)).

Proof We use induction on m. The case m = 1 is clear from the resolvent identity.
Suppose the result is true for m. Then

ρ(ym+1, Jt (x)) ≤ sm

sm+1
ρ(ym, Jt (x))+ 1

sm+1tm+1
ρ(Jtm+1(x), Jt (x))

≤ sm

sm+1
ρ(x, Jt (x))− m

sm+1t
ρ(x, Jt (x))+

1 − tm+1
t

sm+1tm+1
ρ(x, Jt (x))

= ρ(x, Jt (x))− m+ 1

sm+1t
ρ(x, Jt (x)).

�
Lemma 2.5 Let (yi)i≥1 be defined by (2.11). Then for every m ≥ 1,

ρ(ym, x) ≥ md

sm
, where d = inf

y∈Y ρ(y, T (y)).
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Proof Fix any t ≥ max{ti | 1 ≤ i ≤ m}. Then by Lemma 2.4,

ρ(ym, x) ≥ ρ(x, Jt (x))− ρ(ym, Jt (x)) ≥ m

sm

ρ(x, Jt (x))

t
≥ md

sm
.

�
Proof (Theorem 2.13) First we prove the necessity part. Suppose Y contains a
directional curve γ (t) with a constant b. We define T : Y → Y by T (x) =
γ (Ax + 1 + b) where Ax ≡ ρ(γ (0), x). It is easy to see that T is nonexpansive. In
addition, for each x ∈ Y we have

ρ(T (x), x) = ρ(γ (Ax + 1 + b), x)
≥ ρ(γ (Ax + 1 + b), γ (0))− Ax
≥ Ax + 1 + b − b − Ax = 1

hence Y does not have the AFPP.
Now we prove the sufficiency part. If (a closed) Y does not have the AFPP, then

there is a nonexpansive mapping T : Y → Y such that inf
y∈Y ρ(y, T (y)) = d > 0. We

shall show that Y is not directionally bounded. Fix any x ∈ Y . We shall construct a
sequence (yi)i≥1 defined by (2.11) with an appropriate choice of (ti)i≥1. We choose
t1 such that

ρ(x, Jt1(x))

t1
≤ d + 1

2
,

so y1 = Jt1(x). Having chosen t1, t2, · · · , tm, and therefore y1, y2, · · · , ym, we next
choose tm+1 such that

(i) tm+1 ≥ 2tm

(ii)
ρ(Jtm+1(x), ym)

tm+1
≤ d + 1

2m+1 ,

and define ym+1 as in (2.11). The existence of tm+1 is guaranteed by Lemma 2.3.
We claim that (ym)m≥1 thus defined is a directional sequence.

It is enough to show that

(
n−1∑
i=1

ρ(yi, yi+1)− ρ(y1, yn)

)

n≥2

is bounded.
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By our construction

ρ(yi, yi+1) = ρ(Jti+1(x), yi)

si+1ti+1
≤ (d + 1

2i+1 )

si+1

for every i, so by Lemma 2.5 we have, for n ≥ 2,

n−1∑
i=1

ρ(yi, yi+1)− ρ(y1, yn) ≤
n−1∑
i=1

(d + 1
2i+1 )

si+1
− dn
sn

+ t1(d + 1

2
)

≤
n−1∑
i=1

[
(d + 1

2i
)

si
− d

sn

]
≤ t1 + d

n−1∑
i=1

(
1

si
− 1

sn

)

≤ t1 + t21d
n−1∑
i=1

n∑
j=i+1

1

tj

≤ t1 + t21d
n−1∑
i=1

2

ti+1
≤ t1(2d + 1).

Hence (yi)i≥1 is indeed directional, and by Lemma 2.2 this completes the proof. �
In an infinite-dimensional real Banach space, there is a useful criterion that

enables us to check whether a convex subset is directionally bounded and hence
has the AFPP by Theorem 2.13. We denote by SX and SX′ the unit spheres of X
and X′ respectively.

The following is given in [179].

Lemma 2.6 Let γ (t) be a directional curve with constant b in a Banach space X.
Then there is a functional ϕ ∈ SX′ such that

t − s − b ≤ ϕ(γ (t)− γ (s)) ≤ t − s for all 0 ≤ s ≤ t.

Proof For r > b consider ϕr ∈ J
(
(γ (r)− γ (0))
‖γ (r)− γ (0)‖

)
(J is the normalized duality

mapping of X) and let ϕ a weak∗ limit of a subset of {ϕr, r > b} as r tends to
infinity. For t ≥ s ≥ 0 take r > max(t, b). Then

ϕr(γ (t)− γ (s)) = ϕr(γ (r)− γ (0))− ϕr(γ (r)− γ (t))− ϕr(γ (s)− γ (0))
≥ ‖γ (r)− γ (0)‖ − ‖γ (r)− γ (t)‖ − ‖γ (s)− γ (0)‖
≥ r − b − (r − t)− s = t − s − b.

We conclude that ϕ(γ (t)− γ (s)) ≥ t − s − b for any t ≥ s ≥ 0 and that ϕ ∈ SX′ .
The result follows. �



126 2 Almost Fixed Points

As a consequence of the above lemma and Theorem 2.13, Shafrir proved the
following [179].

Theorem 2.14 A convex subset Y of an infinite-dimensional real Banach space X
has the AFPP if and only if for every sequence (xn)n≥1 ⊆ Y such that ‖xn‖ → ∞
as n→∞ and every ϕ ∈ SX′ ,

lim sup
n→∞

ϕ

(
xn

‖xn‖
)
< 1.

Proof If Y does not have the AFPP, then by Theorem 2.13 it contains a directional
curve γ (t). Taking xn = γ (n) and the functional ϕ ∈ SX′ given by Lemma 2.6 we

certainly have lim
n→∞ϕ

(
xn

‖xn‖
)
= 1.

The proof of necessity is similar to the proof of sufficiency of Theorem 2.13.
Suppose we have an unbounded sequence (xn)n≥1 ⊆ Y and a bounded functional

ϕ ∈ SX′ such that lim
n→∞ϕ

(
xn

‖xn‖
)
= 1.We may assume that ϕ

(
xn

‖xn‖
)
≥ 1 − 1

2n
for all n. We now define inductively sequences (ni)i≥1 and (yi)i≥1 ⊆ Y such that
(yi)i≥1 is a directional sequence. We set n1 = 1, y1 = x1 and for i ≥ 1 we choose
ni+1 such that

‖xni+1‖ ≥ 2‖xni‖ and
‖xni+1 − yi‖
‖xni+1‖

≤ 1 + 1

2i+1

and set

yi+1 ≡

(∑i+1
j=1

xnj
‖xnj ‖

)

∑i+1
j=1

1
‖xnj ‖

.

A computation similar to the one given in the proof of Theorem 2.13 shows that
(yi)i≥1 is a directional sequence, hence Y does not have the AFPP. �
Remark 2.6 In Theorem 2.14 we may replace “ϕ ∈ SX′” by “ϕ which is an extreme
point of SX′”. Indeed, if Y contains a directional curve γ (t) then

a = inf
ψ∈SX′

sup
t>0

(
t − ψ(γ (t)− γ (0)))

is finite by Lemma 2.6. Note that “sup” can be replaced by “lim” since the function
H(t) = t − ψ(γ (t)− γ (0)) is nondecreasing for t > 0. The infimum a is attained
since if the sequence

an = sup
t>0

(
t − ψn(γ (t)− γ (0))

)
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converges to a, then for any t > 0, t − ψ(γ (t) − γ (0)) ≤ a where ψ is a weak∗
accumulation point of the net {ψn}. The set

Z = {ϕ ∈ SX′ , sup
t>0

(
t − ϕ(γ (t)− γ (0))) = a}

is a nonempty weak∗-compact and convex subset of SX′ . Hence by the Krein-
Milman theorem [119] it contains an extreme point. Since Z is clearly an extremal

subset of SX′ , i.e., ϕ,ψ ∈ SX′ and
ϕ + ψ

2
∈ Z ⇒ ϕ,ψ ∈ Z, this extreme point is

also an extreme point of SX′ .

The following example [179] illustrates Theorem 2.14 and Remark 2.6.

Example 2.4 Consider the subset Y of c0 given by

Y = {(xi)i≥1 ∈ c0, |xi | ≤ ai for every i
}
,

where (an)n≥1 is a positive unbounded sequence. We claim that Y has the AFPP.
Indeed c′0 = l1, the extreme points of l1 are (±en)n≥1 where (en)n≥1 denote the
coordinate functionals, all of them are bounded on Y , so for any such functional

ϕ and any sequence (yn)n≥1 ⊆ Y for which ‖yn‖ → ∞, ϕ(yn)‖yn‖ → 0. The result

follows from Remark 2.6.

The next result shows that we can replace directionally bounded by linearly
bounded in Theorem 2.13 if and only if the Banach space X is reflexive [179].

Proposition 2.10 In a Banach space X, every closed and convex subset that is
linearly bounded is directionally bounded if and only if X is reflexive.

Proof If X is reflexive and Y ⊆ X is a closed and convex subset which is not
directionally bounded, then there is a directional curve γ (t) contained in Y . Let
tn ↑ ∞ be a sequence such that

γ (tn)

‖γ (tn)‖ ⇀ v.

By Lemma 2.6 there is ϕ ∈ SX′ such
ϕ(γ (tn))

‖γ (tn)‖ → 1, hence ϕ(v) = 1 and v ∈ SX.

Fix any y ∈ Y . We claim that the half line {y+sv | s > 0} is contained in Y . Indeed,
for any s > 0,

(‖γ (tn)‖ − s)y
‖γ (tn)‖ + s γ (tn)‖γ (tn)‖ ⇀ y + sv ∈ Y.

Conversely, suppose X is not reflexive. Then by James’ theorem [92] there is a
functional ϕ ∈ SX′ which does not attain its maximum on SX. We choose a sequence
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(yi)i≥1 from SX such that

∞∑
i=1

(1 − ϕ(yi)) ≤ 1.

We define

xn =
n∑
i=1

yi for n ≥ 1,

and set Y = conv{xn, n ≥ 1}. Y is not directionally bounded since it contains the
directional sequence (xn)n≥1 :

n−1∑
i=1

|xi − xi+1| − |x1 − xn| =
n∑
i=2

|yi | −
∣∣∣∣∣
n∑
i=2

yi

∣∣∣∣∣ ≤ n− 1 −
n∑
i=2

ϕ(yi) ≤ 1.

We claim that Y is linearly bounded. For

z =
n∑
i=1

cixi, where ci ≥ 0, for all i and
n∑
i=1

ci = 1,

we have

n∑
i=1

ici ≥ ϕ(z) ≥
n∑
i=1

ci(i − 1) =
n∑
i=1

ici − 1

so

ϕ(z)

|z| ≥

(∑n
i=1 ici − 1

)

∑n
i=1 ci |xi |

≥ 1 − 1∑n
i=1 ici

.

It follows that if Y contains a half line {y + sv | s > 0} then

lim
s→∞

ϕ(y + sv)
|y + sv‖ = 1,

so ϕ(v) = 1, contrary to our assumption. �
To deal with the construction of unbounded convex subsets which have the

AFPP, the following definition appears in [179].
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Definition 2.12 Let X be a Banach space. A sequence (xn)n≥1 ⊆ SX is called a
(P)-sequence if for every functional ϕ ∈ SX′ , there is a functional ψ ∈ SX′ such that

lim sup
n→∞

ϕ(xn) < lim inf
n→∞ ψ(xn).

Clearly, a subsequence of a (P)-sequence is again a (P)-sequence. The following
is a straightforward consequence of the Hahn-Banach theorem.

Lemma 2.7 Suppose Y is a closed subspace of a Banach space X and (xn)n≥1 ⊆
SY is a (P)-sequence in Y . Then (xn)n≥1 is a (P)-sequence in X as well.

Proof Let ϕ ∈ SX′ be given. Denote by a the norm of ϕ when restricted to Y .
Clearly, a ≤ 1. If a = 0, we choose any ψ ∈ SX′ with lim inf

n→∞ ψ(xn) > 0,

the existence of such a functional ψ follows directly from the definition of a (P)-

sequence. If 0 < a < 1, we choose ψ ∈ SY ′ so that lim sup
n→∞

ϕ(xn)

a
< lim inf

n→∞ ψ(xn).

In both cases we use the Hahn-Banach theorem to extend g to a norm-one functional
on X. �

Quite often, we will make use of the following description of (P)-sequences. Note
that a sequence (xn)n≥1 satisfying (1) is called a Pryce sequence [175].

Lemma 2.8 Let X be a Banach space and let (xn)n≥1 ⊆ SX satisfy

sup
ϕ∈SX′

lim sup
n→∞

ϕ(xn) = sup
ϕ∈SX′

lim inf
n→∞ ϕ(xn). (1)

If the supremum on the left-hand side is not attained, then (xn)n≥1 is a (P)-sequence.
Conversely, if (xn)n≥1 is a (P)-sequence, then (1) is satisfied and neither of the
suprema is attained [130].

Proof Suppose (1) is satisfied is satisfied and the supremum on the left-hand side
is not attained. Let ϕ ∈ SX′ . Then

lim sup
n→∞

ϕ(xn) < sup
φ∈SX′

lim sup
n→∞

φ(xn) = sup
φ∈SX′

lim inf
n→∞ φ(xn).

Therefore there exists a functionalψ ∈ SX′ such that lim sup
n→∞

ϕ(xn) < lim inf
n→∞ ψ(xn).

For the converse, observe that, trivially, for any bounded sequence (xn)n≥1 and
ϕ ∈ SX′ ,

lim sup
n→∞

ϕ(xn) ≥ lim inf
n→∞ ϕ(xn). (2)

Hence sup
ϕ∈SX′

lim sup
n→∞

ϕ(xn) ≥ sup
ϕ∈SX′

lim inf
n→∞ ϕ(xn). The definition of a (P)-sequence

provides the other inequality needed for (1). By (1) and (2), if sup
φ∈SX′

lim inf
n→∞ φ(xn)
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is attained at some ϕ ∈ SX′ , then sup
φ∈SX′

lim sup
n→∞

φ(xn) is attained at this ϕ as well.

But for this particular ϕ, this contradicts the existence of the functional ψ from the
definition of a (P)-sequence. �
Definition 2.13 Let X be a Banach space. We call a bounded sequence (xn)n≥1 in
X norm attaining if sup

ϕ∈SX′
lim inf
n→∞ ϕ(xn) is attained on SX′ .

The following lemma shows that (P)-sequences and sequences which do not
attain their norm are closely related [130].

Lemma 2.9 Let X be a Banach space and let (xn)n≥1 ⊆ SX. If (xn)n≥1 is a (P)-
sequence, then no subsequence thereof is norm attaining. Conversely, if (xn)n≥1
contains no norm attaining subsequences, then it contains a (P)-sequence.

Consequently, a Banach space contains no (P)-sequence if and only if every
bounded sequence in X contains a norm attaining subsequence.

Proof Every subsequence of a (P)-sequence is also a (P)-sequence, so it is not norm
attaining by Lemma 2.8.

Suppose the sequence (xn)n≥1 contains no norm attaining subsequences. By
[130], it contains a subsequence (xnk )k≥1 such that

sup
ϕ∈SX′

lim sup
k→∞

ϕ(xnk ) = sup
ϕ∈SX′

lim inf
k→∞ ϕ(xnk ).

By Lemma 2.8, (xnk )k≥1 is a (P)-sequence.
The last statement of the lemma for norm-one sequences is just a reformulation

of the previous two. Hence, to finish it is enough to observe that if there is a bounded
sequence (xn)n≥1 with no norm attaining subsequences, then there is a normalized
sequence which has this property as well. Clearly, (xn)n≥1 contains a subsequence

(xnk )k≥1 with lim
k→∞‖xnk‖ = a > 0. Then lim sup

k→∞
ϕ

(
xnk

‖xnk‖
)
= lim sup

k→∞
ϕ(xnk )

a

for all ϕ ∈ X′. Hence, if the supremum sup
ϕ∈SX′

lim sup
k→∞

ϕ(xnk ) is not attained, then

sup
ϕ∈SX′

lim sup
k→∞

ϕ

(
xnk

‖xnk‖
)

is not attained either. �

The following provides the existence of an unbounded convex subset Y which is
directionally bounded [179].

Lemma 2.10 If a Banach space X contains a (P)-sequence then X contains an
unbounded convex subset Y which is directionally bounded.

Proof Let (xn)n≥1 ⊆ SX be a (P)-sequence, define yn = nxn and consider Y =
conv{yn, n ≥ 1}. We claim that Y is directionally bounded. If not, there is ϕ ∈ SX′
and (zn)n≥1 in Y such that |zn| → ∞ and lim

n→∞
ϕ(zn)

|zn| = 1. But since (xn)n≥1 is

a (P)-sequence, there is ψ ∈ SX′ such that ψ(xn) > (1 + 3ε)ϕ(xn) for n ≥ n0
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and some ε > 0. This implies that ψ(zn) > (1 + 2ε)ϕ(zn) for n ≥ n1. We get for
n ≥ n2,

1 + ε < ψ(zn)|zn| ≤ 1,

a contradiction. �
In [179], Shafrir asked whether in every Banach space there is an unbounded

closed convex subset which has the AFPP? He gave the following partial answer
[179].

Proposition 2.11 If a Banach space X does not contain an isomorphic copy of l1,
then there is a closed convex unbounded subset Y of X which has the AFPP.

Proof It is clear that we may assume that X is separable. First, we consider the
case when X is reflexive. By Proposition 2.10, it is sufficient to find an unbounded
closed and convex subset that is linearly bounded. Let (xn)n≥1 be a dense sequence
in SX and for any n ≥ 1 choose ϕn ∈ J (xn). Note that for any y ∈ X, ‖y‖ =
sup{ϕn(y) | n ≥ 1}. Next we define a sequence (yn)n≥1 as follows :

yn ∈
n⋂
i=1

kerϕi and ‖yn‖ = n.

We set Y = conv{yn | n ≥ 1} and claim that Y is linearly bounded. Indeed, if for
some v such that ‖v‖ = 1, {y + sv | s > 0} ⊆ Y , then there exists some n0 such
that

ϕn0(v) > 0,

hence

ϕn0(y + nv)→∞ as n→∞.

But by our construction,

sup
x∈Y

ϕn0(x) ≤ n0 − 1,

a contradiction.
Now, consider the case when X is not reflexive. Since X does not contain

l1 isomorphically, the Odel-Rosenthal theorem [45] states that SX is weak∗-
sequentially dense in SX′′ . Let ψ ∈ SX′′ be such that the maximum of ψ on SX′
is not attained. Choose (xn)n≥1 ⊆ SX such that xn ⇀

∗ ψ as n→∞ in X′′. Clearly
(xn)n≥1 is a (P)-sequence and the result follows by Lemma 2.10. �
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It is interesting to note that although the above proposition does not cover the
case X = l1, its conclusion is still valid in this case, too. Shafrir constructed such a
subset in l1 [179].

Example 2.5 To show that there is an unbounded convex subset of l1 which has the
AFPP, by Lemma 2.10 it is enough to find (P)-sequence in l1. Let (xn)n≥1 denote
the standard base of l1 and let α = (αn)n≥1 ⊆ l1 be such that

αi > 0 for all i and
∞∑
i=1

αn = 1.

Consider the sequence (xn)n≥1 where xn = α−en. Form ≥ 1 let ϕm = (a(m)n )n≥1 ∈
Sl∞ be defined by a(m)n = 1 for n ≤ m and a(m)n = −1 for n > m. We have

ϕm(xn) = 1 +
m∑
i=1

αi −
∞∑

i=m+1

αn

for n > m. Hence

sup
m≥1

lim
n→∞ϕm(xn) = 2 = lim

n→∞‖xn‖.

We claim that for every ϕ ∈ Sl∞ , lim sup
n→∞

ϕ(xn) < 2. For ϕ = (an)n≥1 ∈ Sl∞ we

have

ϕ(xn) = ϕ(α)− an for all n.

If an > 0 for all n then ϕ(xn) ≤ 1 for all n. Otherwise, if al ≤ 0 for some l then
ϕ(α) ≤ 1 − αi and so for all n, ϕ(xn) ≤ 2 − αl . In any case lim sup

n→∞
ϕ(xn) < 2,

hence

(
xn

‖xn‖
)

n≥1
is a (P)-sequence.

In [130], Matoušková and Reich answered Shafrir’s question in the affirmative.
It has been done by providing the following characterizations of reflexive Banach
spaces.

Theorem 2.15 For a Banach space X the following are equivalent :
(i) X is reflexive,
(ii) every bounded sequence (xn)n≥1 contains a norm attaining subsequence, that

is, a subsequence (xnk )k≥1 for which sup
ϕ∈SX′

lim sup
k→∞

ϕ(xnk ) is attained.

(iii) X does not contain any (P)-sequence.
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Proof (i) ⇒ (ii). Let (xn)n≥1 be a bounded sequence in a reflexive Banach space
X. There is a subsequence (xnk )k≥1 of (xn)n≥1 such that xnk ⇀ x ∈ X. Choose
ϕ ∈ SX′ so that ϕ(x) = ‖x‖. Then for any ψ ∈ SX′ , we have lim sup

k→∞
ψ(xnk ) =

ψ(x) ≤ ‖x‖.
(ii) ⇒ (iii). This is proved in Lemma 2.9. (iii) ⇒ (i). Suppose X does not

contain any (P)-sequences and suppose for a contradiction that X is not reflexive.
Let Y be a separable nonreflexive subspace of X. By Lemma 2.7, Y also does not
contain any (P)-sequences. This means that Y contains an isomorphic copy of l1 :
if it did not, then according to the proof of Proposition 2.11, Y would contain
a (P)-sequence. Let (xn)n≥1 be an isomorphic l1-basis in Y . (xn)n≥1 contains a
subsequence which converges pointwise on Y ′. As this subsequence is again an
l1-basis, we may assume that (xn)n≥1 already has this property. Let T : l1 ↪→ Y be
the embedding for which T (en) = xn, here (en)n≥1 is the coordinate functionals.
Then the dual mapping T ∗ : Y ′ → l∞ is surjective and we can choose ϕ ∈ Y ′ so
that T ∗(ϕ) = (−1, 1,−1, 1, · · · ). Then ϕ(xn) = ϕ(T (en)) = T ∗(ϕ(en)). Hence
ϕ(xn) = (−1)n, which is a contradiction. Consequently, X is reflexive. �
Corollary 2.2 Let X be an infinite-dimensional Banach space. Then X contains an
unbounded closed convex set with the AFPP.

Proof If X is reflexive, then X contains such a set according to Theorems 2.12
and 2.14. If X is not reflexive, then it contains, by Theorem 2.15, a (P)-sequence
(xn)n≥1. By Theorem 2.13 and Lemma 2.10, Y = conv{nxn | n ≥ 1} has the
AFPP. �

In [167], Reich and Zaslavski showed the existence of an open and everywhere
dense set in the space of all nonexpansive self-mappings of any closed and convex
(not necessarily bounded) set in a hyperbolic space (endowed with the natural metric
of uniform convergence on bounded subsets) such that all its elements have the
AFPP.

We need some preliminary results.
Let (X, ρ,M) be a hyperbolic space and let Y be a nonempty, closed and ρ-

convex subset of X.
For each x ∈ Y and each r > 0, set

B(x, r) = {y ∈ Y, : ρ(x, y) ≤ r}.

Denote by A the set of all nonexpansive self-mappings of Y . Fix ω ∈ Y .
We equip the set A with the uniformity determined by the base

U(n) =
{
(T , S) ∈ A×A : ρ(T (x), S(x)) ≤ 1

n
for all x ∈ B(ω, n)

}
,

where n is a natural number. It is not difficult to see that the uniform space A is
metrizable and complete.
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Definition 2.14 We say that a mapping T ∈ A has the bounded approximate fixed
point property (or the BAFP property, for short) if there is a nonempty bounded
set Y0 ⊆ Y such that for each ε > 0, T has an ε-fixed point in Y0, that is, a point
xε ∈ Y0 which satisfies ρ(xε, T (xε)) ≤ ε.

We have the following [167].

Proposition 2.12 Assume that T ∈ A and that Y0 ⊆ Y is a nonempty, closed,
ρ-convex and bounded subset of Y such that

T (Y0) ⊆ Y0. (2.12)

Then T has the BAFP .

Proof Let ε > 0 be given. Set

d0 = sup{ρ(y, z) : y, z ∈ Y0}. (2.13)

Choose γ ∈ (0, 1) such that

γ (d0 + 1) < ε (2.14)

and fix

x̃ ∈ Y0. (2.15)

For each x ∈ Y , set

T̃ (x) = (1 − γ )T (x)⊕ γ x̃. (2.16)

By (2.12), (2.15) and (2.16),

T̃ (Y0) ⊆ Y0. (2.17)

Since T ∈ A, by (2.16), for all x, y ∈ Y0,

ρ(T̃ (x), T̃ (y)) = ρ((1 − γ )T (x)⊕ γ x̃, (1 − γ )T (y)⊕ γ x̃)
≤ (1 − γ )ρ(T (x), T (y)) ≤ (1 − γ )ρ(x, y). (2.18)

By (2.17), (2.18) and Banach’s Contraction Mapping Principle, there is a point xε
such that

xε ∈ Y0 and T̃ (xε) = xε. (2.19)
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By (2.19), (2.16), (2.13) and (2.14),

ρ(xε, T (xε)) = ρ(T̃ (xε), T (xε)) = ρ((1 − γ )T (xε)⊕ γ x̃, T (xε))
≤ γρ(̃x, T (xε)) ≤ γ d0 < ε.

Proposition 2.12 is proved. �
Proposition 2.12 immediately implies the following result.

Corollary 2.3 Assume that Y is bounded. Then any T ∈ A has the BAFP property.

Corollary 2.3 does not, of course, hold if the set Y is unbounded. For example,
if Y is a Banach space and T is a translation mapping, then T does not possess the
BAFP property.

As a consequence of Proposition 2.12, the following result is proved [167].

Theorem 2.16 There exists an open and everywhere dense set B ⊆ A such that
each T ∈ B has the BAFP property.

Proof In view of Proposition 2.12, in order to prove this theorem it is sufficient to
show that there exists an open and everywhere dense set B0 ⊆ A such that for each
T ∈ B0, there is a nonempty, closed, ρ-convex and bounded set YT ⊆ Y such that

T (YT ) ⊆ YT .

It is not difficult to see that in order to prove this assertion, it suffices to show that
given a mapping T ∈ A and a natural number n, there exists T̃ ∈ A and a natural
number k such that the following two properties hold :
(i) (T , T̃ ) ∈ U(n),
(ii) there is a nonempty, closed, ρ-convex and bounded set Z ⊆ Y such that

S(Z) ⊆ Z for each S ∈ A satisfying (S, T̃ ) ∈ U(k).

Choose a number γ ∈ (0, 1) such that

γ (n+ ρ(T (ω), ω)) < 1

2n
. (2.20)

Set

T̃ (x) = (1 − γ )T (x)⊕ γω, x ∈ Y. (2.21)

Since T ∈ A, by (2.21), for all x, y ∈ Y

ρ(T̃ (x), T̃ (y)) ≤ (1 − γ )ρ(T (x), T (y)) ≤ (1 − γ )ρ(x, y). (2.22)
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By (2.22) and Banach’s Contraction Mapping Principle, there is a point x̃ such that

T̃ (̃x) = x̃. (2.23)

Since T ∈ A, by (2.20) and (2.21), we have for all x ∈ B(ω, n),

ρ(T (x), T̃ (x)) = ρ(T (x), (1 − γ )T (x)⊕ γω)
≤ γρ(T (x), ω) ≤ γ [ρ(T (x), T (ω))+ ρ(T (ω), ω)]

≤ γρ(x, ω)+ γρ(T (ω), ω) ≤ γ (n+ ρ(T (ω), ω)) < 1

2n
.

Thus

(T , T̃ ) ∈ U(n). (2.24)

Next, choose a natural number k such that

k > ρ(̃x, ω)+ 1 and
1

k
< γ. (2.25)

By (2.25), for each x ∈ B(̃x, 1) we have

ρ(x, ω) ≤ ρ(x, x̃)+ ρ(̃x, ω) ≤ 1 + ρ(̃x, ω) < k.

Hence

B(̃x, 1) ⊆ B(ω, k). (2.26)

Let

x ∈ B(̃x, 1) (2.27)

and let S ∈ U(k) satisfy

(S, T̃ ) ∈ U(k). (2.28)

By (2.28), (2.27), (2.23), (2.22) and (2.25)

ρ(S(x), x̃) ≤ ρ(S(x), T̃ (x))+ ρ(T̃ (x), x̃) ≤ 1

k
+ ρ(T̃ (x), T̃ (̃x))

≤ 1

k
+ (1 − γ )ρ(x, x̃) ≤ 1

k
+ (1 − γ ) < 1.
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Thus

S(B(̃x, 1)) ⊆ B(̃x, 1)

for all S ∈ A satisfying (2.28). When combined with (2.24) and (2.26), this
inclusion completes the proof of Theorem 2.16. �

2.4 Finding ε-Fixed Points Where There Are No Fixed Points

In the last section we found ε-fixed points of a nonexpansive self-mapping of any
closed convex set (closed ball) of a Banach space even when there are no fixed
points, and the same argument obviously works for an open ball or in an incomplete
normed space.

If we remove a completeness or compactness assumption from the statement of a
fixed point theorem, we don’t normally expect that we will still get fixed points.
Indeed, it is usually easy to produce examples of fixed-point-free mappings by
moving points “towards some missing limit point” or “towards infinity”. But in
many of these cases (if the set is bounded) we can easily show that ε-fixed points
exist.

We have the following example.

Example 2.6 Let

Y = {x ∈ C[0, 1] : 0 ≤ x ≤ 1, x(0) = 0, x(1) = 1}.

Y is a closed, convex and bounded subset of the space C[0, 1] of all real continuous
functions on [0, 1] and T : Y → Y defined by

T x(t) = tx(t)

satisfies ‖T (x) − T (y)‖ < ‖x − y‖ for x �= y in Y . However, T has no fixed
points. It does have, though, ε-fixed points. If xn is the nth power xn(t) = tn, then
xn − T (xn)→ θ .

In [183], Smart presented a theorem given by Fort [60] for continuous mappings
of an open disc in R

2, but the proof extends directly to R
n, and with a slight change

in the statement, to any normed space :
Theorem 2.17 If either

1. � is an open ball in R
n and T maps � into �, or

2. � is an open ball in a normed space and T maps � into a precompact subset
of �,

then T has an ε-fixed point for each ε > 0.
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Proof

1. We can assume that � is a unit ball centered at θ . Then S = (1 − ε)T maps
(1 − ε)� into itself so has a fixed point x by Brouwer’s theorem. Since S is
uniformly within ε of T , x is an ε-fixed point of T .

2. Similar, using the completion of � and Schauder’s theorem.

�
Remark 2.7 Fort’s theorem can be extended in various ways. For example, in 1),�
can be any convex precompact set, while in 2., � can be any convex set if T maps�
into a precompact subset of �. The proofs use Schauder’s projection in a standard
way. Or in 2) we could assume merely that T maps each smaller concentric ball
into a compact set and the proof is unaltered. Or we can replace T with a suitable
multifunction U and obtain a point x such that d(x,Ux) < ε.

2.5 Families of Mappings

It is natural to ask when a family of mappings has a common ε-fixed point, that is,
a point which is ε-fixed for all the mappings in the family. Consider first various
powers of a mapping T . When Fort’s theorem gives us an x such that T (x) ≈ x

(where ≈ means “is approximately equal to”) it is tempting to argue that then also
T (x) ≈ T 2(x) ≈ . . . ≈ T n(x). This suggests : in the cases covered by Fort’s
theorem, can we say that, for every n and every ε > 0, there exists x such that
‖T r(x)− x‖ ≤ ε for 1 ≤ r ≤ n?

In some special cases, there is an affirmative answer [183].

Theorem 2.18 Let ε > 0 and n be given. Then there is a point which is ε-fixed
point for all T r(1 ≤ r ≤ n) if either

1. T is a uniformly continuous mapping of an open ball in R
k

or
2. T is a uniformly continuous mapping of an open ball � in a normed space, into

a precompact subset of �,
3. T is a continuous mapping of (0, 1) into (0, 1).

Proof We can prove 1. and 2. to the completion of � and 3. by an easy elementary
argument. �

Unfortunately, in spite of this evidence, the answer to the last question is “no”.
We give an example to show that the condition “uniformly continuous” cannot be
omitted from Theorem 2.18 1., 2.). Consider the open disc � = {x : ‖x‖ < 1} in
R

2. We define a homeomorphism of � into � by h : (r, θ) −→ (r, θ + (1 − r)−1)

(in polar coordinates consider the image S under h of the radius J = {(r, θ) : θ =
0, 0 ≤ r < 1}. Thus S = hJ is a spiral approaching the unit circle. There is a
continuous map U : S −→ S in which each point is moved out along the spiral until
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its argument has increased by π . ClearlyU has no ε-fixed points for small ε (actually
for ε < (π+1)−1). Also there is a retraction r of� onto J , thus hrh−1 = R retracts
� onto S. We can see that :
Example 2.7 ([183]) UR is a continuous mapping of the open disc � into � for
sufficiently small ε and no point is ε-fixed point for both UR and (UR)2. In fact
(UR)2(x) = URUR(x) = UUR(x). Thus if x is ε-fixed point for UR and for
(UR)2 we have ‖UR(x)− UUR(x)‖ < 2ε which is impossible if 2ε < (π+1)−1.

Remark 2.8 The theorem of Kakutani on common fixed points for an equicontinu-
ous group of affine mapping of a closed ball has an analogue giving common ε-fixed
points for an open ball, and we simply extend the mappings to the closed ball and
use Kakutani’s theorem. Similar remarks apply to the theorems on common fixed
points of families of nonexpansive mappings given by Kirk. To obtain an ε-fixed
analogue of the Markov-Kakutani theorem (Theorem 1.51) we apparently have to
assume that the family of mappings is equicontinuous : otherwise, we obtain only
a common fixed point for any finite subset of the family.

The examples of Huneke[87] and Boyce [26] give us commuting mappings of
[0, 1] with no common fixed point, by compactness we can see that they have no
common ε-fixed points for ε sufficiently small.

The following result is proved in [111].

Theorem 2.19 Suppose Y is a nonempty bounded convex subset of a Banach space,
and suppose T andG are two commuting nonexpansive mappings of Y → Y at least
one of which is α-almost convex. Then Fε(T ) ∩Gε(T ) �= ∅ for each ε > 0.

Proof Suppose T is α-almost convex. Let ε > 0, and let Gλ = (1 − λ)I + λG. By
Theorem 2.25 it is possible to choose N ∈ N so large that

‖Gnλ(x)−G ◦Gnλ(x)‖ ≤ ε

for all x ∈ Y and all n ≥ N . For any y ∈ Y ,

JT (G(y)) = ‖G(y)− T ◦G(y)‖
= ‖G(y)−G ◦ T (y)‖
≤ ‖y − T (y)‖
= JT (y).

Therefore for any x ∈ Y,

JT (G
n
λx) = JT ((1 − λ)Gn−1

λ (x)+ λG ◦Gn−1
λ (x))

≤ α(max{JT (Gn−1
λ x), JT (G ◦Gn−1

λ (x))})
= α(JT (Gn−1

λ (x)))
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≤ · · ·
≤ αn(JT (x)).

Since αn is continuous at 0 it is possible to choose δ > 0 so that JT (x) ≤ δ ⇒
αn(JT (x)) ≤ ε. Further we may assume δ ≤ ε. Therefore if x ∈ Fδ(T ) and n ≥ N ,
then Gnλ(x) ∈ Fε(T ) ∩ Gε(T ). Since Fδ(T ) �= ∅, for each δ > 0 the proof is
complete. �

2.6 Mappings Without ε-Fixed Points

Definition 2.15 Let X be a topological space and Y a subset of X. Then a
continuous mapping R : X → Y is a retractionif the restriction of R to Y is the
identity map on Y , that is, R(y) = y for all y ∈ Y . Y is called a retract of X if such
a retraction exists.

Any nonempty space retracts to a point in the obvious way (the constant map
yields a retraction). If X is Hausdorff, then any retract of X must be closed.

If a mapping of a compact set has no fixed point then for ε sufficiently small it has
no ε-fixed points. In [106], Kinoshita gave an example of a mapping of a compact
contractible subset Y of R3 (the identity map 1Y of Y is homotopic to a constant
map) with no ε-fixed points for small ε. On the other hand, if a set is not compact a
fixed-point-free mapping may well have ε-fixed points for all ε > 0. Kakutani [99]
and Nirenberg [135] gave examples of fixed-point-free mappings of the unit ball
of Hilbert spaces but both these examples have ε-fixed points for all ε > 0. These
examples are based on the existence of a retraction of the closed unit ball onto the
unit sphere [48]. This retraction is used in [183].

Theorem 2.20 There is a mapping of the closed unit ball of any infinite-
dimensional normed space with ε-fixed points for ε < 1 − δ, for any given
δ, 0 < δ < 1.

Proof We retract the ball of radius δ onto its surface and follow this by retracting
the annulus A = {x : δ ≤ ‖x‖ ≤ 1} radially onto the unit sphere which is radial in
A. The combined effect is a retraction R of the unit ball onto the unit sphere which
is radial in A. Then the map T : x −→ −R(x) has the required property since if

‖x‖ ≤ δ, ‖T (x)− x‖ ≥ ‖T (x)‖ − ‖x‖ ≥ 1 − δ, while if ‖x‖ ≥ δ, R(x) = x

‖x‖ so

that ‖T (x)− x‖ = ‖−R(x)− x‖ = (‖x‖−1 + 1)‖x‖ > 1. �
The following simple example illustrates the previous theorem [183].

Example 2.8 In the unit ball of c0 the mapping T is free of ε-fixed points for

ε ≤ 1

4
, where T (x1, x2, . . .) = (1 − ‖x‖,√|x1|,

√|x2|, . . .). For if ‖x‖ =
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sup |xi | ≥ 1

4
, some |xi | is at least

1

4
so that for some i, |xi | ≥ 1

4
and |xi+1| < 1

4
.

Thus
∣∣∣
√|xi | − xi+1

∣∣∣ > 1

2
− 1

4
= 1

4
. On the other hand if ‖x‖ <

1

4
, then

|(1 − ‖x‖)− x1| ≥ 1 − ‖x‖ − |x1| ≥ 1 − 1

4
− 1

4
= 1

2
. Thus ‖T (x)− x‖ > 1

4
in either case.

There are unbounded sets where each continuous mapping has a fixed point
[182]. However, in all convex unbounded sets there are mappings without fixed
points [115].

Definition 2.16 Let � be a nonempty subset of a normed space (X, ‖.‖). We say
that � has ε-fixed property if each continuous mapping of � into � has ε-fixed
points for all ε > 0.

The following result is given in [183].

Theorem 2.21 Let � be a nonempty subset of a normed space (X, ‖.‖). If K is a
retract of � under a uniformly continuous retraction mapping r and if � has the
ε-fixed property then so does K .

Proof Suppose that ‖r(x)− r(y)‖ < ε for ‖x − y‖ < δ. If T is any mapping of
K into K then T r maps � into K , thus T r = rT r . Since T r maps � into �, there
exists u with ‖T r(u)− u‖ < δ. Thus ‖T r(u)− r(u)‖ = ‖rT r(u)− r(u)‖ < ε so
that r(u) is ε-fixed point for T . �
Remark 2.9 The sets � and S used in Example 2.7 show that Theorem 2.21 needs
the word “uniformly”.

2.7 Sets of ε-Fixed Points

In a Euclidean space (or any strictly convex normed space) the set of fixed points
of a nonexpansive mapping is convex. This property does not extend to the set of
ε-fixed points :
Example 2.9 ([183]) A mapping of the plane such that ‖T (p)− T (q)‖ ≤
‖p − q‖√

2
for all points p and q, the points (2, 2) and (2,−2) are

3

2
-fixed points but

(2, 0) is not a
3

2
-fixed point.

We take T (x, y) = 1

2
(y, y) and find that

‖T (2, 2)− (2, 2)‖ = √
2 = ‖T (2,−2)‖
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but

‖T (2, 0)− (2, 0)‖ = √
2 = 2.

We consider continuity properties of sets of ε-fixed points, taken as functions of
the mapping. We write

Fε(T ) = {x : d(T (x), x) ≤ ε} for ε ≥ 0,

and

Gε(T ) = {x : d(T (x), x) ≤ ε} for ε > 0,

for set of ε-fixed points of T .
The following two results are proved in [183].

Theorem 2.22 Let � be a nonempty subset of a metric space (X, d). If T and Tn
are mappings of � and Tn −→ T uniformly then

Fε(T ) ⊃ lim supFε(Tn) ⊃ lim infGε(Tn) ⊃ Gε(T ).

Proof If we have a sequence of points xn −→ x with d(Tn(xn), xn) ≤ ε then

d(T (x), x) ≤ d(T (x), T (xn))+ d(T (xn), Tn(xn))+ d(Tn(xn), xn)+ d(xn, x),

so that (letting n −→ ∞) we have d(T (x), x) ≤ ε. If on the other hand
d(T (x), x) < ε then for n sufficiently large

d(Tn(x), x) ≤ d(Tn(x), T (x))+ d(T (x), x) < ε.

�
Theorem 2.23 Let � be a nonempty subset of a normed space (X, ‖.‖). We
consider C(�) the set of continuous mappings on � to �, with the metric
d(S, T ) = inf{1, sup

x
‖S(x)− T (x)‖}, which gives uniform convergence. Then in

C(�)×�× [0,∞[, we have

1. the set of triples (S, x, ε) satisfying ‖S(x)− x‖ ≤ ε is closed,
2. the set of triples (S, x, ε) satisfying ‖S(x)− x‖ < ε is open.

Proof Consider the set where f (S, x, ε) = ‖S(x)− x‖ − ε is non-positive, or is
negative. �

Theorem 2.23 suggests that Fε(T ) and Gε(T ) are “nearly” continuous functions
of T . The following construction of an object which is continuous, by using all the
ε-fixed point is given in [183].
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Definition 2.17 If � is bounded we consider the almost fixed pyramid for T :

P(T ) = {(x, ε) : ‖T (x)− x‖ ≤ ε ≤ m},

where m = diam(�).

Clearly P(T ) is the union of all sets Fε(T )× {ε} in �× [0,m].
Theorem 2.24 If S and T are mappings of a bounded set� thenH(P (T ), P (S)) ≤
‖T − S‖∞ where H is the Hausdorff metric and ‖.‖∞ is the uniform norm [183].

Proof If ‖T − S‖∞ = θ then each point (x, ε) of P(T ) is within θ of the point
(x, ε + θ) of P(S). Similarly each point of P(S) is within θ of a point of P(T ). �
Remark 2.10 It might in fact be preferable to study the structure of the possibly
smaller set obtained by taking the closure of the set

F 0
ε (T ) = {x ∈ � : ‖x − T (x)‖ < ε}.

As the following example in [34] illustrates, the set F 0
ε (T ) can be much nicer

than Fε(T ).

Example 2.10 Let C be the rectangle [0, 2] × [−1, 1] in the Euclidean space R
2,

and define

T (x, y) = (x − min(x, 1), 0).

It is easy to see that T is nonexpansive and that the set F1(T ) consists of the closed
unit disk intersected with the right half-plane along with the segment

{(x, 0) : 1 ≤ x ≤ 2}.

However F 0
1 (T ) consists of just the closed unit disk intersected with the right half-

plane.

Little is known about the structure of the sets Fε(T ) in general. The following
result of Edelstein and O’Brien [54] shows that there is always a nonexpansive
mapping of Y into Fε(T ), although there is nothing to assure that this mapping
is a retraction, or that such a retraction exists.

Theorem 2.25 Suppose Y is a nonempty bounded convex subset of a Banach space
and suppose T : Y → Y is nonexpansive. Then Tλ := λI + (1 − λ)T is uniformly
asymptotically regular for each λ ∈ (0, 1). That is, given ε > 0 there exists N ∈ N

such that ‖T nλ (x)− T n+1
λ (x)‖ ≤ ε for all n ≥ N and all x ∈ Y . In particular, for

each ε > 0 there exists N ∈ N such that for n ≥ N , T nλ : Y → Fε(T ).
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Definition 2.18 A path in a metric space (X, d) is a continuous image of the unit
interval I = [0, 1] ⊆ R. If S = f (I) is a path then its length is defined as

l(S) = sup
(xi )

N−1∑
i=0

d(f (xi), f (xi+1))

where 0 = x0 < x1 < · · · < xN = 1 is any partition of [0, 1]. If l(S) <∞ then the
path is said to be rectifiable .

Definition 2.19 A metric space (X, d) is said to be a length space if the distance
between each two points x, y of X is the infimum of the lengths of rectifiable paths
joining them. In this case, d is said to be a length metric (otherwise known an inner
metric or intrinsic metric).

Definition 2.20 A length space X is called a geodesic if there is a path S joining
each two points x, y ∈ X for which l(S) = d(x, y). Such a path is often called a
metric segment (or geodesic segment) with endpoints x and y.

There is a simple criterion which assures the existence of metric segments.

Definition 2.21 A metric space (X, d) is said to be metrically convex if given any
two points p, q ∈ M there exists a point z ∈ X, p �= z �= q, such that

d(p, z)+ d(z, q) = d(p, q).

We have the following fact, first noticed by Bruck [34].

Theorem 2.26 Suppose Y is a nonempty bounded convex subset of a Banach space
and suppose T : Y → Y is nonexpansive. Then for each ε > 0, Fε(T ) is nonempty
and rectifiably pathwise connected.

Proof For λ ∈ (0, 1), let Tλ = λI + (1 − λ)T . If x ∈ F(1−λ)ε(Tλ) then x ∈ Fε(T ).
Also if y is on the segment joining x and Tλ(x) then

‖y − Tλ(y)‖ ≤ ‖y − Tλ(x)‖ + ‖Tλ(x)− Tλ(y)‖
≤ ‖y − Tλ(x)‖ + ‖x − y‖
= ‖x − Tλ(x)‖.

Thus if x ∈ Fε(T ) then every point on the segment joining x and f (x) lies in Fε(T ).
To see that Theorem 2.25 implies Fε(T ) is pathwise connected, let u, v ∈ Fε(T ) and
choose N so large that T Nλ (Y ) ⊆ Fε(T ). Then the image under T Nλ of the segment
joining u and v maps into a path joining T Nλ (u) and T Nλ (v). Moreover the segments
joining T iλ(u) and T i+1

λ (u), i = 0, · · · , N − 1 all lie in Fε(T ). Similarly the
segments joining T iλ(v) and T i+1

λ (v), i = 0, · · · , N − 1. By piecing these together
one obtains a path S in Fε(T ) joining u and v. Moreover, l(s) ≤ 2εN +‖u− v‖. �



Chapter 3
Approximate Fixed Points in Ultrametric
Spaces

A strictly contracting mapping of a spherically complete ultrametric space has a
unique fixed point. In this chapter, we indicate how to reach or approximate this
fixed point. In general, the fixed point can be approached by a pseudo-convergent
family.

3.1 The Process of Approximation

First, we deal with ultrametric spaces having sets of distances that are not necessar-
ily totally ordered.

Let (X, d, �) be a principally complete ultrametric space. We shall assume that
�• does not have a smallest element. To exclude the trivial case, we also assume
that X has at least two elements.

Let ϕ : X −→ X be a strictly contracting mapping, so by Theorem 1.45, ϕ has a
unique fixed point, which we denote by z.

Definition 3.1 If λ is an ordinal number, let l(λ) denote the set of ordinal numbers
μ < λ. As it is known, λmay be identified with l(λ) and the cardinal of λ is cardλ =
card l(λ). Let κ be a limit ordinal with card κ > card �. For every ordinal λ such
that λ < κ , let P be the set of all families α = (ai)i<λ ∈ Xl(λ) which satisfy the
following conditions :
1. if i + 1 < λ, then ai+1 = ϕ(ai) �= ai ,
2. (d(ai), ai+1)i+1<λ is strictly decreasing,
3. if μ is a limit ordinal, μ < λ, then d(aμ, ai) < d(ai, ai+1) for all i < μ.

If λ = 1,P1 is naturally identified with X, so P1 �= ∅. Let P be the union of the
sets Pλ for λ < κ . If y ∈ X, let Py be the set of families in P with a0 = y. We say
that α = (ai)i<λ reaches z if there exists i0 < λ such that ai0 = z.
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Remark 3.1

(i) If α = (ai)i<λ reaches z, then ϕ(ai0) = z = ai0 , hence by 1., i0 + 1 = λ. Thus
λ is not a limit ordinal.

(ii) Let λ be a limit ordinal, let α = (ai)i<λ ∈ P and for every i < λ let Bi =
Bi(α) = Bd(ai ,ϕ(ai ))(ai), so by 1., Bi is a principal ball. By Lemma 1.10, we
have Bi+1 ⊆ Bi and, in fact, Bi+1 ⊂ Bi , because d(ai, ai+1) > d(ai+1, ai+2),
so ai /∈ Bi+1. For every limit ordinal μ ≤ λ, let Iμ(α) =

⋂
i<λ

Bi(α). Since X is

principally complete, it follows that Iμ(α) �= ∅.

Definition 3.2 We say that α = (ai)i<λ ∈ P is an asymptotic approximation
to z (or more simply, an approximation to z) if λ is a limit ordinal and Iλ(α) =⋂
i<λ

Bi(α) = {z}.

Remark 3.2 We note that an approximation to z does not reach z, because λ is a
limit ordinal.

The next result is due to Priess-Crampe and Ribenboim [161] and will be called
the Approximation Theorem. In important definite situations, the Approximation
Theorem provides an algorithm that directly can be implemented for the calculation
of asymptotic solutions, so for example in the case of some ordinary differential
equations or their systems, in Hardy fields.

Theorem 3.1 Let Y ⊆ X, Y �= ∅. Assume that z cannot be reached by any α ∈ P
such that a0 ∈ Y \ {z}. Then for every y ∈ Y \ {z} there exists an asymptotic
approximation α = (ai)i<λ to z such that a0 = y.

Proof The proof requires some preliminary considerations about the set P . Let α =
(ai)i<λ and α′ = (a′i )i<λ′ be families in P . We define α ≤ α′ when λ ≤ λ′ and
a′i = ai for all i < λ. It is immediate to verify that ≤ is an order relation. Moreover,
for every λ, the order restricted to Pλ is trivial. Let y ∈ Y, y �= z. We claim that the
ordered set Py is inductive. Indeed, let C be a nonempty set, for every c ∈ C let

αc = (aci )i<λc ∈ Py,

assume that if c �= c′, then αc �= αc′ and that the set A = {αc/ c ∈ C} is a totally
ordered subset of Py . It follows that if αc �= αc′ , then λc �= λc′ . We recall that since
αc ∈ Py , it follows that λc < κ . We consider two cases.

1. L = {λc/c ∈ C} has a largest element λc1 . Then αc �= αc1 for every c ∈ C,
otherwise there exists c2 ∈ C such that αc1 < αc2 , hence λc1 < λc2 , which is a
contradiction. In this case, αc1 is an upper bound for A.

2. L does not have a largest element. Since λc < κ for every c ∈ C, there exists
the smallest element μ such that λc < μ for every c ∈ C. So μ ≤ κ . If μ =
ν + 1, then by the minimality of μ, there exists c1 ∈ C such that ν ≤ λc1 and
therefore ν = λc1, because μ > λc1 . In this case, λc1 is the largest element in L,
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which has been excluded. We have shown that μ is a limit ordinal. Now if i is
an ordinal such that i < μ, by the minimality of μ there exists λc ∈ L such that
i ≤ λc < μ. Since L does not have a largest element, there exists c∗ ∈ C such
that i ≤ λc < λc∗ < μ. We define ãi = ac∗i . It is immediate to verify that ãi is
well-defined, independently of the choice of c∗ ∈ C such that λc < λc∗ < μ. By
2., the family (d(ac

∗
i , a

c∗
i+1))i<μ of elements of � is strictly decreasing, hence all

these elements are pairwise distinct. So cardμ ≤ �. Since card� < cardκ thus
μ < κ , which implies that α̃ = (ãi)i<μ belongs to P . Furthermore, αc < α̃ for
every c ∈ C. Hence α̃ is an upper bound for A. This concludes the proof that Py
is inductive. By Zorn’s lemma, there exists a maximal α ∈ Py . That is, for every
y ∈ Y \ {z} there exists a maximal α ∈ P such that a0 = y.

We assume that z is not reached by any family in Py for every y ∈ Y \ {z}. By
2., for every y ∈ Y \ {z} there exists a maximal α = (ai)i<λ ∈ P such that a0 = y.
First we observe that λ is a limit ordinal. We assume the contrary, let λ = i0 + 1.
Since z is not reached by α then ai0 �= z, so ai0 �= ϕ(ai0), hence

d(ϕ(ai0), ϕ
2(ai0)) < d(ai0 , ϕ(ai0)).

Let α′ = (a′i )i<λ+1, where a′i = ai for all i < λ and a′λ = ϕ(ai0). So α′ ∈
P, α < α′. This is impossible, because α is maximal in P . Thus as stated, λ is a
limit ordinal. Since X is principally complete and each Bi(α) is a principal ball of
X, then Iλ(α) =

⋂
i<λ

Bi(α) �= ∅. We show that Iλ(α) = {z}. Let t ∈ Iλ(α). We

note that t �= ai for all i < λ. Indeed, if there exists i0 < λ such that t = ai0 then
t /∈ Bi0+1 which is a contradiction. Now we show that ϕ(t) ∈ Iλ(α). We have

d(ϕ(t), ai+1) = d(ϕ(t), ϕ(ai)) < d(t, ai) ≤ d(ai, ai+1)

for all i < λ. It follows that d(t, ϕ(t)) ≤ d(ai, ai+1) for every i < λ. Hence
d(t, ϕ(t)) < d(ai, ai+1) for every i < λ. Let α′ = (a′i )i<λ+1 defined by a′i = ai
for all i < λ and a′λ = t . So α′ ∈ P , because d(t, ai) ≤ d(ai, ai+1) for every
i < λ. We have α < α′, which is contrary to the maximality of α. This shows that
t = ϕ(t), so t = z and we deduce that Iλ(α) = {z}. Hence α is an asymptotic
approximation to z. �
Remark 3.3 Under the assumptions of the Approximation Theorem, if y ∈ Y \ {z}
there exists the smallest limit ordinal λ for which there exists an approximation
α = (ai)i<λ to z such that a0 = y. So the set

M = {α = (ai)i<λ | α is an approximation to z and a0 = y}

is not empty. For α ∈ M and each limit ordinal μ < λ the set Iμ(α) properly
contains z. The set Iμ(α) may be considered a measure of the accuracy of the
approximation α, when restricted to α|μ = (ai)i<μ



148 3 Approximate Fixed Points in Ultrametric Spaces

As a consequence, we have

Corollary 3.1 If y ∈ X, y �= z, then either there exists α ∈ Py which reaches z, or
if this is not the case, there exists an approximation α ∈ Py to z [161].

Proof The corollary is a special case of the Approximation Theorem, taking Y =
{y}, where y �= z. �
Remark 3.4 The proof of the Approximation Theorem suggests the method to reach
or to approximate the fixed point. Let y ∈ Y . If y = z there is nothing to do. If
y �= z let a0 = y and a1 = ϕ(a0) �= a0. If a1 = z, then z has been reached by
the family consisting only of a0, a1. If a1 �= z let a2 = ϕ(a1) �= a1. The procedure
may be iterated. It may happen that there exists n0 > 2 such that an0 = z, so
z has been reached. Or, for every n < ω, an �= z. Let α = (an)n<ω. If the set
Iω(α) consists of only one element, this element is the fixed point z. If Iω(α) has
more than one element, we may choose any one of the elements of Iω(α) and call
it aω. Then aω+1 = ϕ(aω) if aω �= ϕ(aω), aω+2 = ϕ(aω+1) if aω+ �= ϕ(aω+1),
etc. It may happen that there exists n ≥ 0 such that aω+n = z, or one needs to
consider I2ω(α

′), where α′ = (a′i )i<2ω, with a′i = ai for i < ω and a′i , defined
as indicated for ω ≤ i ≤ 2ω. Even though there exists a family α ∈ P which
reaches or approximates z, in general it is not possible to predict what will happen,
in particular, when the algorithm will stop.

3.2 The Case When � Is Totally Ordered

Henceforth we shall assume that � is totally ordered and that �• does not have a
smallest element.

We shall use the following notations :
• A = set of all approximations α to z,
• PC = set of all pseudo-convergent families in X.

The following is given in [161].

Proposition 3.1

1. A ⊆ PC.
2. Let PLA be the set of all pseudo-limits of all α ∈ A. Then PLA = {z}.
3. If α ∈ A, if α′ ∈ P and α < α′, then α′ reaches z.

Proof

1. We show that α is a pseudo-convergent family in X. Since α is an approximation
to z then λ is a limit ordinal. We shall prove that if i < μ < ν < λ, then
d(ai, aμ) > d(aμ, aν). For this purpose, we prove that

d(ai, ai+1) = d(ai, aμ).

The proof is by induction on μ. It is trivial if μ = i + 1.
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Let i + 1 < μ. We consider two cases :
(a) μ = κ + 1 : By induction, d(ai, ai+1) = d(ai, aκ), since ai �= aκ , it follows

that d(ai, aκ) > d(ai+1, aμ) and therefore d(ai, ai+1) = d(ai, aμ).
(b) μ is a limit ordinal : By construction of α, we have

d(ai, aμ) ≤ d(ai, ai+1)

for all i < λ. If d(ai, aμ) < d(ai, ai+1) for some i < λ, then

d(ai, ai+1) = d(ai, aμ).

Since aμ �= ai , it follows

d(aμ+1, ai+1) < d(aμ, ai) < d(aμ, ai+1),

hence d(ai, ai+1) = d(aμ, aμ+1). This is absurd, so d(ai, ai+1) =
d(aμ, ai+1) for all i < μ. This concludes the proof by induction. In a
similar way d(aμ, aν) = d(aμ, aμ+1) for μ < ν < λ. It follows that if
i < μ < ν < λ, then

d(ai, ai+1) = d(aμ, ai) > d(aμ, aν) = d(aμ, aμ+1).

So we have proved that α is a pseudo-convergent family in X.

2. Assume that α ∈ A, then Iλ(α) = {z}, so

d(z, ai) ≤ d(ai, ai+1) = d(aμ, ai)

for all i < μ < λ. Thus z is a pseudo-limit of the pseudo-convergent family α.
Let t ∈ X, t �= z, then t ∈ Iλ(α). So there exists i0 < λ such that d(t, ai0) �
d(ai0+1, ai0), that is, t /∈ Bi0(α). Hence for every i such that i0 < i < λ, we also
have t /∈ Bi(α), that is, d(t, ai) � d(ai, ai+1) = d(aμ, ai) for i < μ < λ. So t
is not a pseudo-limit of α.

3. Let α′ ∈ P be such that α < α′. Since α′ ∈ P we have for every i <
λ, d(a′λ, a′i ) ≤ d(a′i , a′i+1) or equivalently, d(a′λ, ai) ≤ d(ai, ai+1) because
a′i = ai, a

′
i+1 = ai+1. Hence a′λ ∈ Iλ(α) = {z}. So α′ reaches z. Let

α = (ai)i<λ ∈ P and let �α = {d(ai, ϕ(ai)) | i < λ}. We note that
0 ∈ �α if and only if α reaches z and, in this case, λ is not a limit ordinal. Let
�ϕ = {d(x, ϕ(x)) | x ∈ X, x �= z}. Then �α \ {0} ⊆ �ϕ ⊆ �•. Let (Y, d, �)
be subspace of (X, d, �). If ϕ is such that ϕ(Y ) ⊆ Y , let �Yϕ = {d(y, ϕ(y)) |
y ∈ Y, y �= z}. Since X is principally complete (and � is totally ordered), X is
spherically complete. If, moreover, d(Y × Y ) \ {0} is coinitial in d(X×X) \ {0},
then by Theorem 1.42, Y has one and exactly one completion Ŷ in X.

�
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Proposition 3.2 Let α be an approximation to z. Then we have the following.

1. �α is coinitial in �ϕ .
2. Assume that (Y, d, �) is a subspace of (X, d, �) and that ϕ(Y ) ⊆ Y . Assume,

moreover, that d(Y × Y ) \ {0} is coinitial in d(X × X) \ {0}. If z ∈ Ŷ \ Y , then
�Yϕ is coinitial in �ϕ .

3. If �α is coinitial in �•, then α is a Cauchy family and z = limα.
4. If X is solid, then �ϕ = �•, furthermore, α is a Cauchy family and z = limα.

Proof

1. Assume that �α is coinitial in �ϕ . So there exists x ∈ X, x �= z such that
d(x, ϕ(x)) < d(ai, ai+1) for all i < λ. Let α′ = (a′i )i<λ+1 be defined by a′i = ai
for all i < λ and a′λ = x. Then α′ ∈ P and α < α′. By Proposition 3.1(3), α′
reaches z, while α does not reach z. So x = a′λ = z, and this is absurd.

2. Since z ∈ Ŷ \Y , there exists a limit ordinal ρ and a Cauchy family (yν)ν<ρ , with
yν ∈ Y , such that z = lim

ν<ρ
yν . Let d(x, ϕ(x)) ∈ �ϕ . Since z = lim

ν<ρ
yν , there

exists ν < ρ such that d(yν, z) ≤ d(x, ϕ(x)). Thus

d(ϕ(yν), ϕ(z)) = d(ϕ(yν), z) < d(yν, z) ≤ d(x, ϕ(x)),

which implies that

d(ϕ(yν), yν) = d(yν, z) ≤ d(x, ϕ(x)).

Hence �Yϕ is coinitial in �ϕ .
3. Let γ ∈ �•, by assumption there exists i0 < λ such that

d(ai0 , ϕ(ai0)) = d(ai0 , ai0+1) ≤ γ.

By Proposition 3.1, α is pseudo-convergent. Hence

d(ai, aμ) < d(ai0 , ai0+1) ≤ γ

for all i, μ such that i0 < i < μ < λ. By assumption, z ∈ Iλ(α), so

d(z, ai) ≤ d(ai, ϕ(ai)) < γ

for every i such that i0 < i < λ. This shows that α is a Cauchy family and
z = limα.

4. Let 0 < γ ∈ �. Since X is solid, there exists x ∈ X such that d(x, z) = γ . So
x �= z, hence

d(z, ϕ(x)) = d(ϕ(z), ϕ(x)) < d(z, x),
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which implies that

d(x, ϕ(x)) = d(z, x) = γ.

Thus �ϕ = �•. By 1., �α is coinitial in �ϕ = �•. Hence by 3., α is a Cauchy
family in X and z = limα.

�
If the ultrametric space (Y, d, �) is not spherically complete and ϕ : Y −→ Y

is strictly contracting, the following result guarantees an appropriate extension of ϕ
[152].

Theorem 3.2 Let (X, d, �) be an ultrametric space and that (X, d, �) is a
spherically complete. Let Y be a subspace of X. If ψ : Y −→ Y is strictly
contracting, there exists ϕ : X −→ X such that ϕ is strictly contracting and extends
ψ . If, moreover, d(Y × Y ) \ {0} is coinitial in d(X×X) \ {0}, the restriction ϕ|Ŷ of

ϕ to the completion Ŷ of Y is uniquely determined.

Proof Let b ∈ X \ Y . For every x ∈ X let πx = d(b, x) �= 0. For each x ∈ Y
consider in X the ball B ′πx ((ψ(x)). If πy ≤ πx then B ′πy ((ψ(y))) ⊆ B ′πx ((ψ(x)))
because

d(ψ(y), ψ(x)) ≤ d(y, x) ≤ max{πy, πx} = πx.

SinceX is spherically complete, the chain of balls (B ′πx ((ψ(x)))x∈X has a nonempty

intersection, let b′ ∈
⋂
x∈Y

B ′πx ((ψ(x)) and define ϕ(b′) = b′. We show that ϕ : Y ∪
{b} −→ X satisfies d(b′, ψ(x)) < d(b, x) = πx for all x ∈ Y . Since the extension
X of Y is immediate, there exists y ∈ Y such that πy < πx . Hence d(ψ(x), ψ(y)) <
d(x, y) = d(b, x). Since b′ ∈ B ′πy ((ψ(y)), then d(b′, ψ(y)) ≤ πy < d(b, x). Thus

d(b′, ψ(x)) ≤ max{d(b′, ψ(y)), d(ψ(y), ψ(x))} < d(b, x).

The proof of the extension of ϕ : X −→ X may be concluded by applying Zorn’s
lemma.

Let Ŷ be the completion of Y in X and assume that ϕ and ϕ′ are extensions of
ψ to Ŷ which are strictly contracting. Assume there exists z′ ∈ Ŷ \ Y such that
ϕ(z′) �= ϕ′(z′). Since ϕ and ϕ′ are strictly contracting, d(ϕ(z′), ψ(x)) < d(z′, x)
and d(ϕ′(z′), ψ(x)) < d(z′, x) for all x ∈ X. Hence

d(ϕ(z′), ϕ′(z′)) ≤ max{d(ϕ(z′), ψ(x)), d(ϕ′(z′), ψ(x))} < d(z′, x)

for all x ∈ Y which is impossible, since the set {d(z′, x) | x ∈ Y } is coinitial in
� \ {0}. So ϕ = ϕ′. �



152 3 Approximate Fixed Points in Ultrametric Spaces

In the next theorem [161], we shall study the following situation: (Y, d, �) is
an ultrametric space, the mapping ψ : Y −→ Y is strictly contracting, and the
spherically complete ultrametric space (X, d, �) is an extension of Y , furthermore,
we assume that d(Y × Y ) \ {0} is coinitial in d(X × X) \ {0}. (For example, X
could be the spherical completion of Y , see Theorem 1.42.) By Theorem 1.42, Y
has exactly one completion Ŷ in X. In general, different extensions of ψ to strictly
contracting mappings ofX will lead to different fixed points of these mappings. But
if z ∈ Ŷ then, since all these extensions coincide on Ŷ , z is the fixed point of all
these mappings.

Theorem 3.3 Let Y,X and the mappings ψ, ϕ be as described above. Assume that
α = (ai′)i′<λ′ , with ai′ ∈ Y , is (with respect to ϕ) an approximation to z ∈ X \ Y
and that, furthermore,�α is coinitial in �•. Then z ∈ Ŷ and conversely, if z ∈ Ŷ \Y ,
then there exists an approximation β = (bi)i<λ to z such that b0 = a0 and bi ∈ Y
for all i < λ.

Proof By Proposition 3.2, α is a Cauchy family and z = limα ∈ Ŷ . We now refer
to the proof of Theorem 3.1. Let κ,P and the order relation on P be as described
there. Let ϒ be the set of all β = (bi)i<λ of P such that b0 = a0, bi ∈ Y for every
i < λ and z ∈

⋂
i<λ

Bi , where Bi = Bd(bi ,ψ(bi ))(bi). (We note that bi �= z for every

i < λ because z ∈ Ŷ \ Y .)
First we show that ϒ , which the restriction of the order of P , is inductive. Let

C be a nonempty set, for every c ∈ C let βc = β = (bci )i<λc ∈ ϒ . Assume that

βc �= βc′ , if c �= c′, and that B = {βc | c ∈ C} is totally ordered. If L = {λc | c ∈
C} has a largest λc1 , it follows, as shown in the proof of Theorem 3.1, that βc1 is an
upper bound for B.

Thus there remains the case that L does not have a largest element. We conclude,
as in part (b) of the proof of Theorem 3.1, that there exists the smallest ordinal μ
such that λc < μ for every c ∈ C, that μ ≤ k and that μ is a limit ordinal. Now we
define in a similar way, as explained there, a family β̃ = (̃bi)i<μ which belongs to
P and which furthermore has the following properties : b̃0 = a0, b̃i ∈ Y for every
i < μ and z ∈

⋂
i<μ

B̃i , with

B̃i = Bd(̃bi ,ψ(̃bi ))(̃bi).

Thus β̃ ∈ ϒ is an upper bound for B. Hence ϒ is inductive.
Moreover, ϒ �= ∅, because (ai′)i′<ω0 ∈ ϒ . Thus by Zorn’s lemma, ϒ has a

maximal element β = (bi)i<λ. Then λ is a limit ordinal. Indeed, if not, let λ = i0+1.
Since bi0 ∈ Y , also ψ(bi0) ∈ Y , so

bi0 �= z, ψ(bi0) �= z, ψ(bi0) �= bi0 .
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Therefore

d(z, ψ2(bi0)) < d(z, ψ(bi0)) < d(z, bi0),

hence

d(ψ(bi0), ψ
2(bi0)) = d(z, ψ(bi0)) < d(z, bi0) = d(bi0 , ψ(bi0)).

Thus if b∗i = bi for i < λ and b∗λ = ψ(bi0), then β < β∗ = (b∗i )i<λ+1, furthermore
z ∈ Bd(b∗λ,ψ(b∗λ))(b∗λ), so β∗ ∈ ϒ contrary to the maximality of β ∈ ϒ . Hence λ is

a limit ordinal. Since z ∈
⋂
i<λ

Bi(β), we have z ∈ Iλ(β). Assume that there exists

t ∈ X such that t �= z and t ∈ Iλ(β). Then 0 < d(t, z). Since z ∈ Ŷ \ Y , there exists
a Cauchy family (yν)ν<ρ in Y, ρ a limit ordinal, such that z = lim

ν<ρ
yν . Thus there

exists ν0 < ρ such that d(z, yν0) ≤ d(t, z). Then

d(ψ(yν0), z) = d(ϕ(yν0), z) < d(yν0 , z) ≤ d(t, z).

So

d(ψ(yν0), yν0) = d(yν0 , z) ≤ d(t, z).

It follows that if b′i = bi for i < λ and b′λ = yν0 then β ′ = (b′i )i<λ+1 > β

and, moreover, β ′ ∈ ϒ , because z ∈ Bλ = Bd(yν0 ,ψ(yν0 )(yν0). This contradicts the
maximality of β in ϒ . Hence Iλ(β) = {z}. �

The given results in this chapter are used in [158, 159] to provide solutions
or approximations to solutions of twisted polynomial equations and polynomial
differential equations.



Chapter 4
Synthetic Approaches to Problems
of Fixed Points

In this chapter, we introduce synthetic approaches to fixed point problems involving
regular-global-inf functions. Such functions satisfy a condition weaker than conti-
nuity. Additionally, under appropriate assumptions, it assures that approximate fixed
point sequences always approach the fixed point set.

4.1 Regular-Global-Inf Functions

It is well-known that continuity is an ideal property [38], while in some applications
the mapping under consideration may not be continuous, yet at the same time it
may be “not very discontinuous”. In [5] Angrisani introduced regular-global-inf
functions. Such functions satisfy a condition weaker than continuity, yet in many
circumstances, it is precisely the condition needed to assure either the uniqueness
or compactness of the set of solutions in fixed point and optimization problems.

We begin by a definition given in [6].

Definition 4.1 Let X be a topological space and T : X −→ R. The function T
is said to be a regular-global-inf (r.g.i.) at x ∈ X if T (x) > inf

X
(T ) implies that

there exist ε > 0 such that ε < T (x) − inf
X
(T ) and a neighborhood Nx such that

T (y) > T (x)− ε for each y ∈ Nx . If this condition holds for each x ∈ X, then T is
said to be an r.g.i. on X.

An equivalent condition to be r.g.i. on a metric space for inf
X
(T ) �= −∞ is proved

by Kirk and Saliga [112].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Amar, D. O’Regan, Topology and Approximate Fixed Points, Developments
in Mathematics 71, https://doi.org/10.1007/978-3-030-92204-7_4

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92204-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-92204-7_4


156 4 Synthetic Approaches to Problems of Fixed Points

Proposition 4.1 Let X be a metric space and T : X −→ R. Then T is an r.g.i. on
X if and only if, for any sequence (xn)n ⊂ X, the conditions

lim
n−→∞ T (xn) = inf

X
(T ), lim

n−→∞ xn = x (1)

imply T (x) = inf
X
(T ).

Proof Assume T is an r.g.i. on X and let (xn)n ⊂ X satisfy lim
n−→∞ T (xn) = inf

X
(T )

and lim
n−→∞ xn = x ∈ X. Suppose T (x) > inf

X
(T ). Then there exist ε > 0, ε <

T (x)− inf
X
(T ), and a neighborhood Nx such that for all y ∈ Nx

T (y) > T (x)− ε > inf
X
(T ).

This implies that

lim inf T (xn) ≥ T (x)− ε > inf
X
(T ),

a contradiction.
Now suppose the condition of the proposition holds and assume there exists x ∈

X such that T is not an r.g.i. at x. Then T (x) > inf
X
(T ). Let εn > 0 satisfy εn <

T (x)− inf
X
(T ) with lim

n−→∞ εn = T (x)− inf
X
(T ). Then for each n there exists yn ∈ X

with d(x, yn) <
1

n
∈ X such that T (yn) ≤ T (x)− εn. This implies lim

n−→∞ T (yn) =
inf
X
(T ) and lim

n−→∞(yn) = x. Therefore T (x) = inf
X
(T ) a contradiction. �

Remark 4.1 If (X, d) is a metric space with T : X −→ R, and if c ∈ R, set

Lc := {x ∈ X : T (x) ≤ c}.

Lc is called level set. It follows that T is an r.g.i. at x ∈ X if and only if T (x) >
inf
X
(T ) implies dist(x, Lc) > 0 for some c > inf

X
(T ).

As before we use the symbol μ to denote the usual Kuratowski measure of
noncompactness. Conventionally, the form c −→ (inf

X
(T ))+ when inf

X
(T ) = −∞

has the same significance as the form c −→ inf
X
(T ).

The following is a well-known result of Kuratowski [122].

Proposition 4.2 Let (X, d) be a complete metric space and let (Cn)n be a
decreasing sequence of nonempty closed subsets of X with the property

lim
n−→∞μ(Cn) = 0.
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Then
⋂
n

Cn = C is nonempty and compact, and moreover lim
n−→∞H(Cn,C) = 0 in

the classical Hausdorff metric H .

The following two theorems are due to Angrisani [5].

Theorem 4.1 Let T : X −→ R be an r.g.i. function defined on a complete metric
space X. If lim

c−→(infX(T ))+
μ(Lc) = 0, then the set of the global minimum points of T

is nonempty and compact.

Proof We construct a monotone decreasing sequence (cn)n(cn < cn−1), so that

lim
n−→+∞ cn = inf

X
(T ) and μ(Lcn) ≤ 1

n
. We construct a monotone decreasing

sequence (an)n so that an > inf
X
(T ) and Lan is a nonempty set, so that μ(Lan) ≤

1

n
. We can also consider some monotone decreasing sequence (mn)n so that

lim
n−→+∞mn = inf

X
(T ). So we put cn = min{an,mn}, for each n ∈ N.

We take a sequence (in X) (cn)n, so that, for each n ∈ N, we have bn ∈ Lcn , i.e.,
we have T (bn) ≤ cn. It is proposed to show that a sequence of sets (Mn)n can be

constructed so that, for each n ∈ N, we haveMn−1 ⊇ Mn, diamMn ≤ 1

n
and

(∗) (bn)n frequently belongs to eachMi.

So, from (∗), it follows that we can construct a subsequence (bkn)n of (bn)n so that,

for each n ∈ N, we have bkn ∈ Mn. By Mn−1 ⊇ Mn and diamMn ≤ 1

n
, such a

subsequence will be a Cauchy sequence, which therefore converges at a point we
shall show to be a global minimum for T . Now we show that the sequence of sets
(Mn)n can be constructed.

We show that, if we have i ∈ N and a set Mi so that (bn)n frequently belongs

to Mi , we can construct a set Mi+1 so that Mi ⊇ Mi+1, diam(Mi+1) ≤ 1

i
and

(bn)n frequently belongs to Mi+1. For the fact that (bn)n frequently belongs to the
sets of level and their diameter tends to nought (for the first step induction), we
can prove by induction that we can construct the sequence (Mi)i verifying the said
properties. Let i ∈ N and letMi be a set so that (bn)n frequently belongs toMi . Let
Mi+1 = L′ci ∩M ′

i+1, where L′ci = Lci ∩Mi andM ′
i+1 is constructed as follow :

For the fact thatμ(Lci ) ≤
1

i
, we haveμ(L′ci ) ≤

1

i
. So there is a cover ofL′ci with

sets of diameter less than or equal to
1

i
. Let M ′

i+1 be a set of such cover to which

frequently belong the terms of the sequence (bn)n. We recall that (bn)n frequently
belongs toL′ci for the fact that (bn)n definitely belongs toLci and frequently belongs
toMi and L′ci = Lci ∩Mi .

For constructionMi ⊇ Mi+1.
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For the fact that M ′
i+1 has diameter less than or equal to

1

i
, also Mi+1 has

diameter less than or equal to
1

i
. So Mi+1 has the required properties and we can

construct the sequence of sets (Mn)n with the required properties. So, as we have
seen, we can chose a subsequence (bkn)n = (yn)n so that yn ∈ Mn and (yn)n is
a Cauchy sequence, i.e., (because of the completeness of the space) (yn)n has a
limit. Let y∗ be its limit. For every c > inf

X
(T ), (yn)n definitely belongs to Lc,

by lim
n−→+∞ T (bn) = inf

X
(T ) (being T (bn) ≤ cn and lim

n−→+∞ cn = inf
X
(T )). So y∗

belongs to the topological closure of Lc, i.e., d(y∗, Lc) = 0, for each c > inf
X
(T ).

Thus owing to the fact that T is r.g.i. in X and therefore in y∗, F(y∗) = inf
X
(T ).

This implies that the set Lmin T of the global minimum points of T is nonempty.
Clearly we have Lc ⊇ Lmin T for each c > inf

X
(T ). Thus, μ(Lmin T ) = 0, i.e., Lmin T

is relatively compact.
Now we shall show that Lmin T is closed and therefore is compact. If x∗ ∈ Ch

(Lmin T ), i.e., d(x∗, Lmin T ) = 0, then we have d(x∗, Lc) = 0 for each c ≥ inf
X
(T ).

So, by T is r.g.i. in X, T (x∗) = inf
X
(T ). This concludes the proof. �

Remark 4.2 The last theorem assures that if T is a mapping of compact metric space
into itself with inf

X
(T )) = 0, and if F(x) = d(x, T (x)), x ∈ X is an r.g.i. onX, then

the fixed point set of T is nonempty and compact even when T is discontinuous.

Theorem 4.2 Let T : X −→ R be a function defined on a complete metric spaceX
such as we have lim

c−→(infX(T ))+
diam(Lc) = 0. Thus T has one (and only one) global

minimum point, if, and only if, it is r.g.i.

Proof Suppose that T is r.g.i.
Because the fact that, for every set A,μ(A) ≤ diam(A), the hypotheses of

Theorem 4.1 are verified and thus the set Lmin T of the global minimum points of T
is nonempty. But Lmin T must have a vanishing diameter. So there is one and only
one global minimum point of T .

Conversely let us suppose that there is a global minimum point x∗ of T .
First note that it is the only global minimum point of T . So if x is a point of

X different from x∗, we have T (x) > T (x∗) = inf
X
(T ). For every c ≥ inf

X
(T ),

we have x∗ ∈ Lc. Let Sc be the closed sphere of center x∗ and radius diam(Lc).
For every c ≥ inf

X
(T ), we have Sc ⊇ Lc. So d(x, x∗) ≥ d(x, Lc) ≥ d(x, Sc) ≥

d(x, x∗) − diam(Lc). So, for c −→ inf
X
(T ), d(x, Lc) −→ d(x, x∗) > 0. This

implies that T is r.g.i. �
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The following is given in [6].

Theorem 4.3 Let T : X −→ R be an r.g.i. function defined on a complete metric
space X so that we have lim

c−→(infX(T ))+
diam(Lc) = 0. Then T has one and only one

global minimum point.

Proof Let lim
n−→+∞ cn = inf

X
(T ) and xn ∈ Lcn , as lim

n−→∞ diam(Lcn) = 0, we have

that (xn)n is a Cauchy sequence. Thus, for the completeness of X, (xn)n has a
limit. Let us call x the limit of (xn)n. Thus T (x) = inf

X
(T ). If, by reduction ad

absurdum, this were not so, as T is r.g.i, it should be d(x, Lcn) > 0 for at least
one n, in contrast to the fact that xn −→ x and xm ∈ Lcn for m ≥ n. Furthermore

lim
c−→(infX(T ))+

diam(Lc) = 0 implies that diam(LinfX(T )) = 0 and therefore x is the

only point of global minimum. �
Remark 4.3 Let X be a complete metric space with a distance d(., .) and T a
selfmapping in X. As observed in [5], Theorem 4.3 can be applied in the following
way.

If we define F(x) = d(x, T (x)), T has one and only one fixed point in case the
following three facts occur:

1. inf
X
(F ) = 0,

2. lim
c−→0+

diam(Lc) = 0,

3. F is r.g.i. in X.

In the study of contractive-type mappings, the goal usually is to show that the
Picard iterates of the mapping under consideration converges to a fixed point.
Motivated by this fact and by Theorem 4.2, Angrisani and Calvelli [6] gave the
following result on diameters of level sets.

Theorem 4.4 If X is a metric space and T a selfmapping in X with:

(∗∗) ∃α < 1∀x, y ∈ X

d(T (x), T (y)) ≤ αmax{d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))}

then as F(x) = d(x, T (x)) and Lc = {x, F (x) ≤ c}, we have inf
X
(F ) = 0,

lim
c−→0+

diam(Lc) = 0 and F is r.g.i. in X.

Proof We first verify that inf
X
(F ) = 0. Applying (∗∗) we have

d(T i(x), T j (x)) ≤
αmax{d(T i−1(x), T j−1(x)), d(T i−1(x), T i(x)), d(T j−1(x), T j (x)),

d(T i−1(x), T j (x)), d(T j−1(x), T i(x))}.
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Therefore, if 0 < i ≤ j − 1, d(T i(x), T j (x)) ≤ α max
i−1≤m,n≤j d(T

m(x), T n(x)).

Therefore, by induction on i, we have

(∗ ∗ ∗) d(T i(x), T j (x)) ≤ αi max
0≤m,n≤j d(T

m(x), T n(x)).

The maximum at the second member of the (∗ ∗ ∗) will be reached by certain
numbers p, q so that 0 ≤ p ≤ q ≤ j gives d(T p(x), T q(x)). If p > 0, we have

d(T p(x), T q(x)) ≤ d(T i(x), T j (x)) ≤ α max
i−1≤m,n≤j d(T

m(x), T n(x))d(T i(x), T j (x))

≤ α max
0≤m,n≤j d(T

m(x), T n(x)) = αd(T p(x), T q(x))

and therefore d(T i(x), T j (x)) ≤ αid(T p(x), T q(x)) ≤ d(T p(x), T q(x)) = 0. If
on the other hand p = 0, we have

d(x, T q(x)) ≤ d(x, T (x))+d(T (x), T q(x)) ≤ d(x, T (x))+α max
0≤m,n≤j d(T

m(x), T n(x))

≤ d(x, T (x))+ α max
0≤m,n≤j d(T

m(x), T n(x)) = d(x, T (x))+ αd(x, T q(x)).

Therefore

max
0≤m,n≤j d(T

m(x), T n(x)) = d(x, T q(x)) ≤ ( 1

1 − α )d(x, T (x)).

Therefore, if p = 0 or if p > 0, we have d(T i(x), T j (x)) ≤ ( α
i

1 − α )d(x, T (x))
and in particular d(T n(x), T n+1(x)) ≤ (

αn

1 − α )d(x, T (x)). Consequently

inf
X
(F ) = 0.

The rest of the proof proceeds in the following way. Let x, y ∈ Lc, thus d(x, y) ≤
d(x, T (x))+ d(T (x), T (y))+ d(y, T (y)) ≤ 2c + d(T (x), T (y))

d(T (x), T (y)) ≤ α.max{d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))}
≤ α.max{d(x, y), d(x, T (x)), d(y, T (y)), d(x, y)+ d(y, T (y)), d(y, x)

+ d(x, T (x))
≤≤ α.max{d(x, y), c, c, d(x, y)+ c, d(x, y)+ c} ≤ α(x, y)+ c,

therefore d(x, y) ≤ α(x, y)+ 3c, and therefore d(x, y) ≤ 3c

1 − α −→c−→0+ 0, and

consequently lim
c−→0+

diam(Lc) = 0.
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Let us suppose that there is x ∈ X so that F is not r.g.i. in x. This fact implies
that there exists a sequence (xn)n tending to x so that xn ∈ L 1

n
(and therefore

lim
n−→∞F(xn) = 0). This gives :

d(x, T (x))− d(x, xn)− d(xn, T (xn)) ≤ d(T (x), T (xn))
≤ α.max{d(x, xn), d(x, T (x)), d(xn, T (xn)), d(x, T (xn)), d(xn, T (x))}
≤ α.max{d(x, xn), d(x, T (x)), d(xn, T (xn)), d(x, xn)+ d(xn, T (xn)), d(xn, x)
+ d(x, T (x))}.

Taking the limit as n −→ ∞, we obtain d(x, T (x)) ≤ αd(x, T (x)), i.e., F(x) =
d(x, T (x)) = 0, in contrast to the hypothesis that F is not r.g.i. in X, which is
absurd. �

Without continuity and compactness conditions, we obtain [6].

Corollary 4.1 Let X be a complete metric space and T a selfmapping with

d(T (x), T (y)) ≤ α.max{d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))}.
(4.1)

Thus T has one and only one fixed point.

Proof Given that F(x) = d(x, T (x)), for Theorem 4.4, we have inf
X
(F ) =

0, lim
c−→0+

diam(Lc) = 0 and F is r.g.i. in X. Therefore, for Theorem 4.3, F has

a single global minimum point x (on which F takes the value of 0). Therefore
d(x, T (x)) = 0 if and only if x = x, i.e., x is the only fixed point of T . �
Remark 4.4 Many properties of “contractivity” in [168] imply (4.1).

Definition 4.2 (Orbits) Let X be a set and T : X −→ X. For x, y ∈ X, the orbit
of T at x is

O(x) = {x, T (x), T 2(x), · · · }

and

O(x, y) = O(x) ∪O(y).

Walter [192] proved a far-reaching extension of Banach’s Contraction Mapping
Principle. We use this fact to show that Theorem 4.2 extends to a much wider class
of mappings under the additional assumption that the orbits of T are bounded. We
state Walter’s result below.

Theorem 4.5 Let X be a metric space and φ : R+ −→ R
+ be a continuous

nondecreasing function and satisfies φ(s) < s for s > 0. Assume T : X −→ X
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has bounded orbits and satisfies the following condition. For each x, y ∈ X,

d(T (x), T (y)) ≤ φ(diam(O(x, y))).

Then T has a unique fixed point z ∈ X and lim
k−→∞ T

k(x) = z for each x ∈ X.
Using this fact we obtain the following where we use some ideas of Hegedüs in

[82].

Theorem 4.6 Let X be a complete metric space and suppose T : X −→ X has
bounded orbits and satisfies : there exists α < 1 such that for each x, y ∈ X,

d(T (x), T (y)) ≤ αdiam(O(x, y)). (∗)

Suppose (xn)n ⊂ X satisfies lim
n−→∞ d(xn, T (xn)) = 0. Then T has a unique fixed

point z ∈ X and lim
c−→0+

diam(Lc) = 0. Moreover, lim
n−→∞ d(xn, T (xn)) = 0 if and

only if lim
n−→∞ xn = z.

Proof The existence of a unique fixed point z with lim
n−→∞ T

n(x) = z for each x ∈
X follows from Theorem 4.5. Let ε > 0 and suppose d(u, z) ≤ ε. Then since
T (z) = z,

d(u, T (u)) ≤ d(u, z)+ d(T (u), T (z)) ≤ ε + αdiam(O(u) ∪ {z}).

Similarly, if d(u, T (u)) ≤ ε, then

d(u, z) ≤ d(u, T (u))+ d(T (u), T (z)) ≤ ε + αdiam(O(u) ∪ {z}).

We complete the argument by showing that diam(O(u) ∪ {z}) depends on ε and
tends to 0 as ε −→ 0+. There are two cases.

1. diam(O(u) ∪ {z}) = sup
p
d(T p(u), z). In this case let ε′ > 0 be arbitrary and

choose p so that sup
p
d(T p(u), z) ≤ d(T p(u), z)+ ε′. Then if p = 0, we have

diam(O(u) ∪ {z}) ≤ d(u, z)+ ε′ ≤ ε + ε′

in which case diam(O(u) ∪ {z}) ≤ ε and we are finished. On the other hand, if
p ≥ 1,

diam(O(u) ∪ {z}) ≤ d(T p(u), T (z))+ ε′ ≤ αdiam(O(T p−1(u)) ∪ {z})+ ε′
≤ αdiam(O(u) ∪ {z})+ ε′.
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This implies

diam(O(u) ∪ {z}) = 0.

2. diam(O(u) ∪ {z}) = sup
p
d(T p(u), u). Since lim

p−→∞ d(T
p(u), u) = d(z, u) ≤ ε,

we may assume there exists q ≥ 1 such that sup
p
d(T p(u), u) = d(T q(u), u), in

which case we have

diam(O(u) ∪ {z}) ≤ d(u, z)+ d(T q(u), T (z)) ≤ αdiam(O(T q−1(u)) ∪ {z})+ ε
≤ αdiam(O(u) ∪ {z})+ ε.

In this case we have

diam(O(u) ∪ {z}) ≤ ε

1 − α .

Therefore,

d(u, z) ≤ ε �⇒ d(u, T (u)) ≤ ε + αε

1 − α

d(u, T (u)) ≤ ε �⇒ d(u, z) ≤ ε + αε

1 − α = ε

1 − α
and

u, v ∈ Lc �⇒ d(u, v) ≤ d(u, z)+ d(v, z) ≤ 2
ε

1 − α .

�
Remark 4.5 By taking y = T (x) in (∗) one has

d(T (x), T 2(x)) ≤ αdiam(O(x, T (x))) = αdiam(O(x)) for all x ∈ X

and this quickly leads to

diam(O(T (x))) ≤ αdiam(O(x)) for all x ∈ X.

This can be rewritten as

diam(O(x)) ≤ (1 − α)−1[diam(O(x))− diam(O(T (x)))] for all x ∈ X.

Since d(x, T (x)) ≤ diam(O(x)), if the mapping ϕ : X −→ R defined by setting
ϕ(x) = diam(O(x)) is lower semicontinuous then this condition, which is much
weaker than (∗), assure that T has at least one fixed point by Caristi’s theorem.



164 4 Synthetic Approaches to Problems of Fixed Points

A natural question was addressed by Kirk and Saliga in [112].
Does the conclusion of Theorem 4.6 remain valid under the weaker assumption

of Theorem 4.5? A partial answer to this question was given by Akkouchi in [2].
Let  be the set of continuous functions φ : R+ → R

+ such that φ is
nondecreasing on R

+ and such that the mapping x �→ x − φ(x) from [0,+∞[
onto [0,+∞[ is strictly increasing. We notice that  contains strictly the set  1
of continuous nondecreasing functions ψ : R+ → R

+ and satisfying, ψ(s) <
αs,∀s > 0, for some given α ∈ [0, 1[. Akkouchi [2] gave the following example.

Example 4.1 Let a > 0 be a given number. For each s > 0, we set φa(s) :=
as

s + a and θa(s) := s − φa(s) = s2

s + a . Then φa : R+ → R
+ is continuous,

nondecreasing and φa(s) < s,∀s > 0.Moreover θa is a strictly increasing bijective
mapping from R

+ onto itself. Let us denote its inverse by ψa . Then ψa is given by

ψa(s) = s +√
s2 + 4as

2
, for all s > 0. It is easy to verify that φa /∈  1. Indeed,

there exists no number α in [0, 1[ such that φa(s) < αs,∀s > 0.

The following is due to Akkouchi [2].

Theorem 4.7 Let X be a complete metric space and suppose T : X −→ X has
bounded orbits and satisfies the following condition :

d(T (x), T (y)) ≤ φ(diam(O(x, y))) for all x, y ∈ X,

where φ ∈  . Then

1. T has a unique fixed point z ∈ X and lim
k−→∞ T

k(x) = z for each x ∈ X.
2. lim
c−→0+

diam(Lc) = 0.

3. For each sequence (xn)n ⊆ X, lim
n−→∞ d(xn, T (xn)) = 0 if and only if

lim
n−→∞ xn = z.

4. The map F : x �→ d(x, T (x)) is an r.g.i. on X.

Proof Let φ ∈  and let ψ denote the inverse of the strictly increasing mapping
s �→ s − φ(s) on the interval [0,+∞[. Then 1. is a consequence of Theorem 4.5.
To prove 2. and 3., we shall prove the following property :

∀ε > 0,∀u ∈ X, d(u, T (u)) ≤ ε �⇒ d(u, z) ≤ ε + ψ(ε). (P)

Let ε > 0 and suppose d(u, T (u)) ≤ ε. Then since T (z) = z,

d(u, z) ≤ d(u, T (u))+ d(T (u), T (z)) ≤ ψ(diam(O(u) ∪ {z})).

The proof of the property (P) will be finished by showing that φ(diam(O(u) ∪
{z})) ≤ ψ(ε). To simplify the notations, we set τ := diam(O(u)∪{z}). We consider
two cases.
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(a) diam(O(u) ∪ {z}) = sup
p
d(T p(u), z). In this case let ρ > 0 be arbitrary and

choose pρ so that sup
p
d(T p(u), z) ≤ d(T pρ (u), z) + ρ. Then if pρ = 0, we

have

diam(O(u) ∪ {z}) ≤ d(u, z)+ ρ
≤ d(u, T (u))+ d(T (u), T (z))+ ρ
≤ ε + φ(diam(O(u) ∪ {z}))+ ρ,

from which we get τ − φ(τ) ≤ ε + ρ. On the other hand, if pρ ≥ 1,

diam(O(u) ∪ {z}) ≤ d(T pρ (u), T (z))+ ρ
≤ φ(diam(O(T pρ−1(u)) ∪ {z}))+ ρ
≤ φ(diam(O(u) ∪ {z}))+ ρ.

Hence, we get τ−φ(τ) ≤ ρ. Therefore, in the two cases, we obtain τ−φ(τ) ≤
ε+ρ, from which (since ρ > 0 is arbitrary) τ −φ(τ) ≤ ε. Since by assumption
the function t �→ t −φ(t) is strictly increasing on [0,+∞[ having ψ as inverse
we obtain τ ≤ ψ(ε). It follows that φ(τ) ≤ φ ◦ ψ(ε) ≤ ψ(ε).

(b) diam(O(u) ∪ {z}) = sup
p
d(T p(u), u). Since lim

p
d(T p(u), u) = d(z, u), if one

has sup
p
d(T p(u), u) = lim

p
d(T p(u), u) then

diam(O(u) ∪ {z}) = d(z, u) ≤ d(u, T (u))+ d(T (u), T (z))
≤ ε + φ(diam(O(u) ∪ {z})).

Thus we get τ − φ(τ) ≤ ε, which gives as before φ(τ) ≤ ψ(ε). Hence we
may assume there exists q ≤ 1 such that diam(O(u) ∪ {z}) = diam(O(u)) =
d(T q(u), u). In this case we have

diam(O(u) ∪ {z}) = diam(O(u)) = d(T q(u), u)
≤ d(u, T (u))+ d(T (u), T q(u))
≤ φ(diam(O(T q−1(u)) ∪ {u}))+ ε
≤ φ(diam(O(u))+ ε.

Thus the number τ = diam(O(u) ∪ {z}) satisfies τ − φ(τ) ≤ ψ(ε). It follows
as before that φ(τ) ≤ ψ(ε).
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Therefore, taking all cases into account, we have

d(u, T (u)) ≤ ε �⇒ d(u, z) ≤ ε + ψ(ε).

Thus we have proved the property (P). We deduce

u, v ∈ Lε �⇒ d(u, v) ≤ d(u, z)+ d(v, z) ≤ 2(ε + ψ(ε)),

and since lim
ε→0+

ψ(ε) = 0 this proves 2. and 3.. To prove 4., we use Proposition 4.1

and the property (P). This completes the proof. �
Remark 4.6

(a) To obtain the results of Theorem 4.7, we need only to suppose that s �→ s−φ(s)
is strictly increasing on some given interval of the type [0, β] (with β > 0).

(b) It is easy to see that all the conclusions of Theorem 4.7 are valid for every
nondecreasing continuous function φ : R+ → R

+ for which there exists a
number β > 0 and a positive function ψ defined on ]0, β] verifying :
(i) lim

t→0
ψ(t) = 0 and

(ii) ∀ t ∈]0, β],∀s > 0, s − φ(s) ≤ t �⇒ s ≤ ψ(t).
The following is a variant of Theorem 4.1 where proved even more [112].

Theorem 4.8 LetX be a complete metric space and let T : X −→ R be an r.g.i. for
which inf

X
(T ) = c0 ≥ 0. If lim

c−→(c0)+
μ(Lc) = 0, then the set Lc0 of global minimum

points of T is nonempty and compact, and lim
c−→(c0)+

H(Lc, Lc0) = 0. Moreover, if

(xn)n is a sequence inX for which lim
n−→∞ T (xn) = c0, then lim

n−→∞ dist(xn, Lc0) = 0.

Proof Suppose T is an r.g.i. onX and let (cn)n be a sequence of numbers for which
cn > c0 and lim

n−→∞ cn = c0. In view of Proposition 4.2 Y =
⋂
n

Lcn is nonempty

and compact. Let x ∈ Y and n ∈ N. Since x ∈ Lcn there exists xn ∈ Lcn such that

d(xn, x) ≤ 1

n
. Therefore lim

n−→∞ xn = x while

c0 ≤ lim
n−→∞ T (xn) ≤ lim

n−→∞ cn = c0.

By Proposition 4.1, T (x) = inf
X
(T ). Thus x ∈

⋂
n

Lcn , hence Y =
⋂
n

Lcn , and again

by Proposition 4.2 lim
c−→(c0)+

H(Lcn, Lc0) = 0. Now suppose (xn)n ⊆ X satisfies

lim
n−→∞ T (xn) = c0, and suppose there exists a subsequence (yn)n of (xn)n and a

number ρ > 0 such that dist(yn, Lc0) ≥ ρ. Then the condition

lim
c−→(c0)+

μ(Lc) = 0
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implies that

lim
n−→∞μ({yn, yn+1, . . .}) = 0

and thus (yn)n has a subsequence which converges to y ∈ X. Since T is an
r.g.i. on X this in turn implies T (y) = c0, i.e., y ∈ Lc0 . Clearly this contradicts
dist(yn, Lc0) ≥ ρ. �

Situations in which measures of noncompactness arise in the study of fixed
point theory usually involve the study of either condensing mappings or k-set
contractions. Continuity is always implicit in the definitions of these classes of
mappings.

As before we let F(x) = d(x, T (x)), x ∈ X, and Lc = {x ∈ X : F(x) ≤ c}.
Now L0 will denote the fixed point set of T . Also for a subset Y of X we use the
notation

Nξ(Y ) = {x ∈ X : d(x, y) ≤ ξ for some y ∈ Y }.

It is natural to ask if in many instances it suffices to replace the continuity
assumption with the weaker r.g.i. condition.

An affirmative answer in the following setting was given by Kirk and Saliga
[112].

Theorem 4.9 Let X be a complete metric space and let T : X −→ X satisfy:

1. d(T (x), T 2(x)) ≤ d(x, T (x)) for all x ∈ X,
2. μ(T (Lc)) ≤ kμ(Lc) for some k < 1 and all c > inf

X
(F ),

3. F is an r.g.i. on X.

Then the set Lc0 of global minimum of F is nonempty and compact. Moreover,
if inf

X
(F ) = 0 and if (xn)n ⊆ X satisfies lim

n−→∞ d(xn, T (xn)) = 0, then

lim
n−→∞ dist(xn, L0) = 0.

Proof Let c > inf
X
(F ). Then 2. implies lim

n−→∞μ(T
n(Lc)) ≤ lim

n−→∞ k
nμ(Lc) = 0.

Since 1. implies T (Lc) ⊆ Lc. Proposition 4.2 implies

Yc =
⋂
n

T n(Lc)

is nonempty and compact. Moreover Yc ⊆ Lc. Now let (cn)n be a sequence for
which cn −→ (inf

X
(F ))+ and let

Y =
⋂
Ycn .
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Then Y is nonempty and compact, and for each y ∈ Y and n ∈ N there

exists xn ∈ Lcn , such that d(y, xn) ≤ 1

n
. We now have lim

n−→∞ xn = y and

lim
n−→∞F(xn) = inf

X
(F ). By Proposition 4.1, y = inf

X
(F ) and this proves that the set

of global minimum points contains Y . The fact that this set is also compact follows
from 2. and the fact that it is mapped into itself by T . In view of Theorem 4.8, for
the final conclusion we need only show that inf

X
(F ) = 0 implies that

lim
c−→0+

μ(Lc) = 0.

Assume lim
c−→0+

μ(Lc) = r ≥ 0. By 1.T : Lc −→ Lc for each c > 0 and by 2. :

μ(T (Lc)) ≤ kμ(Lc),

whence lim
c−→0+

μ(T (Lc)) ≤ kr . Now let c > 0 and suppose μ(T (Lc)) = d. This

means that for any d ′ > d there exists a finite collection {Yi} of subsets of X, each
having diameter ≤ d ′ and such that

T (Lc) ⊆
⋃
i

Yi .

If x ∈ Lc, then d(x, T (x)) ≤ c, and since T (x) ∈ Yi for some i it follows that
x ∈ Nc(Yi), i.e.,

Lc ⊆
⋃
i

Nc(Yi).

This in turn implies μ(Lc) ≤ d ′ + c, and since d ′ > d is arbitrary,

μ(Lc) ≤ μ(T (Lc))+ c ≤ kμ(Lc)+ c.

Letting c −→ 0+ we obtain r ≤ kr and this is clearly a contradiction if r > 0. �
Corollary 4.2 Let (X, d) be a complete metric space and suppose T : X −→ X

satisfies :
1. d(T (x), T 2(x)) ≤ αd(x, T (x)) for some α ∈ (0, 1) and all x ∈ X,
2. μ(T (Lc)) ≤ kμ(Lc) for some k < 1 and all c > 0,
3. F is an r.g.i. on X.

Then the fixed point set Fix(T ) of T is nonempty and compact. Moreover if
(xn)n ⊆ X satisfies lim

n−→∞ d(xn, T (xn)) = 0, then lim
n−→∞ dist(xn,Fix(T )) = 0.
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Proof Condition 1. implies that (T n(x))n is a Cauchy sequence for each x ∈ X,
and in particular that inf

X
(F ) = 0. �

Meaningful applications of the precedent results would likely arise in a Banach
space context and in such a setting more can be said.

In [112], some interesting, be they only illustrative, results have been produced.
In the ensuing statements we always take F to be ‖I − T ‖. The significance of

these results again lies in the fact that continuity is not assumed.

Theorem 4.10 Suppose K is a bounded closed convex subset of a Banach space
and suppose T : K −→ K satisfies

1. inf
C
(F ) = 0 for any nonempty closed convex T -invariant subset C of K ,

2. μ(T (A)) < μ(A) for all A ⊆ K for which μ(A) > 0
3. F is an r.g.i. on K .

Then the fixed point set Fix(T ) of T is nonempty and compact.

Proof By a standard argument [196] it is possible to construct a nonempty closed
convex subset C ⊆ K for which conv(T (C)) = C. Since μ(conv(T (C))) =
μ(T (C)), this implies μ(T (C)) = μ(C) so in view of 2. C must be compact. 1.
and the fact that F is an r.g.i. on K imply Fix(T ) ∩ C �= ∅. Condition 2. and the
fact that F is an r.g.i. implies Fix(T ) is compact. �
Remark 4.7 The assumption inf

K
(F ) = 0 is strong, especially in the absence of

conditions which at the same time imply continuity of T . However there is a
relatively simple condition which simultaneously yields both this fact and second
assumption of 1. of Theorem 4.9.

For a convex subset K of a Banach space and x, y ∈ K let [x, y] denote the
segment joining x and y, that is [x, y] = {λx + (1 − λ)y : 0 ≤ λ ≤ 1}.

A mapping T : K −→ K is called directionally nonexpansive if ‖T (x)− T (m)‖
for each x ∈ K andm ∈ [x, T (x)]. If there exists α ∈ (0, 1) such that this inequality
holds form = (1−α)x+αT (x) then we say that T is uniformly locally directionally
nonexpansive.

The following is a special case of a result proved in [108].

Proposition 4.3 Let K be bounded convex subset of a Banach space and suppose

T : K −→ K is uniformly locally directionally nonexpansive. Then f = 1

2
(I + T )

is asymptotically regular. In particular

inf
K
‖x − T (x)‖ = 0.
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Combining this fact with Theorem 4.9 we have the following :
Theorem 4.11 Let K be a bounded closed convex subset of a Banach space and
suppose T : K −→ K satisfies :
1. T is directionally nonexpansive on K ,
2. μ(T (Lc)) ≤ kμ(Lc) for some k < 1 and all c > 0,
3. F is an r.g.i. on K .

Then the fixed point set Fix(T ) of T is nonempty and compact. Moreover if
(xn)n ⊆ K satisfies lim

n−→∞‖xn − T (xn)‖ = 0, then lim
n−→∞ dist(xn,Fix(T )) = 0.

Proof Since 1. implies both inf
K
(F ) = 0 and

‖T (x)− T 2(x)‖ ≤ ‖x − T (x)‖ for each x ∈ K,

the conclusion is immediate from Theorem 4.9. �
The following is a corollary of Theorem 4.10. (Of course if T is continuous this

reduces to a special case of Sadovskii’s theorem).

Corollary 4.3 Let K be a bounded closed convex subset of a Banach space and
suppose T : K −→ K satisfies :
1. T is uniformly locally directionally nonexpansive on K ,
2. μ(T (A)) < μ(A) for all A ⊆ K for which μ(A) > 0
3. F is an r.g.i. on K .

Then the fixed point set Fix(T ) of T is nonempty and compact.

We now take up a simple application of Theorem 4.2. For this theorem we assume
θ : R+ −→ R

+ is any function for which t −→ 0+ implies θ(t) −→ 0.

Theorem 4.12 Let K be a bounded closed convex subset of a Banach space and
suppose T : K −→ K satisfies :
1. T is uniformly locally directionally nonexpansive on K ,
2. ‖T (x)− T (y)‖ ≤ θ(max{‖T (x)− x)‖, ‖y − T (y)‖}) for each x, y ∈ K .

Then T has a unique fixed point x0 ∈ K if and only if F is an r.g.i. on K .

Proof By Proposition 4.3 inf
K
(F ) = 0. Let c > 0 and let x, y ∈ Lc. Then by 2.,

‖x − y‖ ≤ ‖T (x)− T (y)‖+2c ≤ θ(max{‖T (x)− x)‖, ‖y − T (y)‖})+2c −→ 0

as c −→ 0+. Thus lim
c−→0+

diam(Lc) = 0. �

Remark 4.8 We remark that the properties of mappings play the dominant role in
the preceding discussion, but it is also true that the geometry of the underlying
space may be a factor. In 1979, Moreau, [134] proved that if C is a closed subset
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of a Hilbert space H and if T : C −→ C is a nonexpansive mapping whose fixed
point set Fix(T ) has nonempty interior, then for every x ∈ C the Picard iterates of
T converge strongly to a point of Fix(T ). Subsequently, Beauzamy observed that
this result also holds in a uniformly convex space [91] and in [114] it is shown that
this fact extends even to reflexive locally uniformly convex spaces.

It was observed in [114] that in the uniformly convex case the nonexpansive
assumption can be weakened. Essentially, it was shown that part of the analysis
does not require the full force of nonexpansiveness, only the existence of at least
one fixed point together with nonexpansiveness about each fixed point is sufficient.

Definition 4.3 A mapping T : X→ X where X is a Banach space, is called quasi-
nonexpansive provided T has at least fixed point in X (that is, Fix(T ) is nonempty),
and if p ∈ Fix(T ), then

‖T (x)− p‖ ≤ ‖x − p‖ holds for all x ∈ X.

This concept, which Dotson [47] has labeled quasi-nonexpansive, was essentially
introduced, along, with some other related ideas, by Diaz and Metcalf [43]. It is clear
that a nonexpansive mapping with at least one fixed point is quasi-nonexpansive.
A linear quasi-nonexpansive mapping on a Banach space is nonexpansive on that
space. But there exist continuous and discontinuous nonlinear quasi-nonexpansive
mappings that are not nonexpansive. Dotson [47] gave the following example, which
is continuous quasi-nonexpansive but not nonexpansive.

Example 4.2 The mapping T : R→ R defined by

T (x) =
⎧⎨
⎩
x

2
sin

1

x
, if x �= 0,

0, if x = 0.

is quasi-nonexpansive but not nonexpansive.

Following the approach in [114], the following is given in [112].

Theorem 4.13 Let C be a closed subset of a uniformly convex Banach space and
suppose T : C −→ C is a mapping for which intFix(T ) �= ∅, and suppose also :
1. T is quasi-nonexpansive,
2. F is an r.g.i. on C.

Then for each x ∈ C the Picard sequence (T n(x))n converges to a point of
Fix(T ).
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To prove the previous theorem we recall the following fact, due independently to
Edelstein [53] and Steckin [184].

Proposition 4.4 Let X be a uniformly convex space. Then for each d > 0 and for
each c, c′ ∈ X satisfying 0 < ‖c − c′‖ = r < d,

lim
c−→0+

diam(B(c, d − r + ε) ∩ (X\B(c′, d))) = 0.

Moreover, the convergence is uniform for all such c, c′ lying in any bounded subset
of X.

Proof of Theorem 4.13 Let x ∈ C and p ∈ intFix(T ). By 1.

d = lim
n−→∞‖p − T n(x)‖

always exists, and since p ∈ intfix(T ), if d = 0 then T n(x) = p for some n
and there is nothing to prove. Otherwise there exists r > 0, with r < d, and q ∈
Fix(T ) such that B(q, r) ⊆ Fix(T ). For each n ∈ N choose qn ∈ Fix(T ) so that
‖p − qn‖ = r and so that

‖p − qn‖ + ‖qn − T n(x)‖ = ‖p − T n(x)‖.

It follows that lim
n−→∞‖qn − T n(x)‖ = d−r . Let ε > 0. Then for n sufficiently large

T n(x) ∈ B(qn, d − r + ε). On the other hand, T n(x) ∈ X\B(p, d) for all n ∈ N.
By Proposition 4.4,

lim
ε−→0+

diam(B(qn, d − r + ε) ∩ (X\B(p, d))) = 0.

This implies (T n(x))n is a Cauchy sequence, so there exist z ∈ C such that
lim
n−→∞ T

n(x) = z. At the same time lim
n−→∞F(T

n(x)) = 0. Since F is an r.g.i.,

T (z) = z. �
Another geometric property proposed and studied by Rolewicz in [170, 171]

called property (β).

Definition 4.4 Let (X, ‖.‖) be a Banach space and BX its closed unit ball. Given
x ∈ X \BX, the drop generated by x is the setD(x,BX) := conv({x}∪Bx). Denote
by R(x, Bx) := D(x,BX) \ BX.

The following is due to Rolewicz in [170].

Theorem 4.14 A Banach space (X, ‖.‖) is uniformly convex if for any ε > 0 there
is δ > 0 such that 1 < ‖x‖ < 1 + δ implies that diam(R(x, Bx)) < ε.

Related to the previous result, Rolewicz introduced in [171] the following
property.
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Definition 4.5 A Banach space (X, ‖.‖) is said to have the property (β) if for any
ε > 0 there is δ > 0 so that 1 < ‖x‖ < 1 + δ implies that μ(R(x, Bx)) < ε.

Any uniformly convex space has property (β). [171]. In [110] Kirk proved the
following result.

Proposition 4.5 Suppose X is a Banach space with property (β). Then for each
d > 0 and for each c, c′ ∈ X satisfying 0 < ‖c − c′‖ = r < d,

lim
c−→0+

μ(B(c, d − r + ε) ∩ (X\B(c′, d))) = 0.

Moreover, the convergence is uniform for all such c, c′ lying in any bounded subset
of X.

The following convergence result is given in [112].

Theorem 4.15 Let C be a closed convex subset of a Banach space which has the
property (β). Suppose T : C −→ C is a mapping for which intFix(T ) �= ∅, and
suppose also :
1. T is quasi-nonexpansive,
2. F is an r.g.i. on C.

Let f = 1

2
(I+T ). Then for each x ∈ C the Picard sequence (f n(x))n converges

to a point of Fix(T ).

Proof We follow step by step the proof of Theorem 4.13 by replacing T with f and
‘diam’ with μ. Notice in particular that Fix(f ) = Fix(T ) and that if 1. holds for T
then it is also holds for f . Thus

lim
ε−→0+

diam(B(qn, d − r + ε) ∩ (X\B(p, d))) = 0

implies that (f n(x))n has a subsequence which converges to a point z ∈ C. Since
f is asymptotically regular lim

n−→∞F(f
n(x)) = 0, and since T is an r.g.i., z ∈

Fix(T ). �
Definition 4.1 is formulated in a topological space and this raises the question

of whether there might be applications in a broader context. The fact that the weak
topology often plays a key role in fixed point theoretic considerations in functional
analysis suggests the following definition [112].

Definition 4.6 Let K be a subset of a Banach space X and let T : X −→ R. Then
T is said to be a weak regular-global-inf (weak r.g.i) at x ∈ K if T (x) > inf

K
(T )

implies there exist ε > 0 such that ε < T (x)− inf
K
(T ) and a weak neighborhood Nx

of x such that T (y) > T (x) − ε for each y ∈ Nx . If this condition holds for each
x ∈ K , then T is said to be a weak r.g.i. on K .
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If the weak topology on K is metrizable, for example if X′ is separable and K is
weakly compact, then the analogue of Proposition 4.1 carries over [112].

Proposition 4.6 LetK be a weakly compact subset of a separable Banach spaceX
and let T : K −→ R. Then T is a weak r.g.i on K if and only if for any sequence
(xn)n ⊂ K , the conditions

lim
n−→∞ T (xn) = inf

K
(T ) and xn ⇀ x

imply T (x) = inf
K
(T ).

The following classical result in the theory of nonexpansive mappings. It was
first explicitly formulated by Browder [31, 67] based on ideas of Göhde.

Theorem 4.16 Let K be a closed convex subset of a uniformly convex Banach
space Xand let T : K −→ X be nonexpansive. Then the mapping (I − T ) is
demiclosed on K . In particular, if lim

n−→∞‖T (xn)− xn‖ = 0 and if xn ⇀ x, then

T (x) = x.

Thus under the assumptions of the above theorem (I − T ) is a weak-r.g.i. on K .

4.2 Synthetic Approaches to Problems of Fixed Points
in Convex Metric Spaces

We give some fixed point results for mappings without a continuity condition on
Takahashi convex metric spaces as an application of synthetic approaches to fixed
point problems.

In the absence of linear structure, the concept of convexity can be introduced in
an abstract form. In metric spaces, at first, it was done by Menger. Then Takahashi
[186] introduced a new concept of convexity in metric spaces.

Definition 4.7 Let (X, d) be a metric space and I a closed unit interval. A mapping
W : X × X × I −→ X is said to be the convex structure on X if for all x, y, u ∈
X, λ ∈ I,

d(u,W(x, y, λ)) ≤ λd(u, x)+ (1 − λ)d(u, y).

X together with a convex structure is called a Takahashi convex metric space
(X, d,W) or abbreviated TCS.

Example 4.3 Any convex subset of a normed space is a convex metric space with
W(x, y, λ) = λx + (1 − λ)y
Definition 4.8 ([186]) Let (X, d,W) be a TCS. A nonempty subset K of X is said
to be convex if and only ifW(x, y, λ) ∈ K whenever x, y ∈ K and λ ∈ I .
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Proposition 4.7 Let (X, d,W) be a TCS. If x, y ∈ X and λ ∈ I , then

1. W(x, y, 1) = x andW(x, y, 0) = y,
2. W(x, x, λ) = x,
3. d(x,W(x, y, λ)) = (1 − λ)d(x, y) and d(y,W(x, y, λ)) = λd(x, y),
4. balls (either open or closed) in X are convex,
5. intersections of convex subsets of X are convex.

For fixed x, y ∈ X let [x, y] = {W(x, y, λ), λ ∈ I }.
Definition 4.9 A TCS (X, d,W) has property (P) if for every x1, x2, y1, y2 ∈
X, λ ∈ I,

d(W(x1, x2, λ),W(y1, y2, λ)) ≤ λd(x1, y1)+ (1 − λ)d(x2, y2)

Obviously, in a normed space, the last inequality is always satisfied.

Example 4.4 ([186]) Let (X, d) be a linear metric space with the following proper-
ties:

1. d(x, y) = d(x − y, 0), for all x, y ∈ X,
2. d(λx + (1 − λ)y, 0) ≤ λd(x, 0)+ (1 − λ)d(y, 0) for all x, y ∈ X and λ ∈ I .

For W(x, y, λ) = λx + (1 − λ)y, x, y ∈ X and λ ∈ I, (X, d,W) is TCS with
property (P).

Remark 4.9 Property (P) implies that the convex structureW is continuous at least
in first two variables which gives that the closure of a convex set is convex.

Definition 4.10 A TCS (X, d,W) has property (Q) if for any finite subset A ⊆ X
convA is a compact set.

Example 4.5 ([186]) Let K be a compact convex subset of a Banach space and let
X be the set of all nonexpansive mappings on K into itself. Define a metric on X
by d(A,B) = sup

x∈K
‖A(x)− B(x)‖, A,B ∈ X and W : X × X × I −→ X by

W(A,B, λ)(x) = λA(x)+ (1− λ)B(x), for x ∈ K and λ ∈ I . Then (X, d,W) is a
compact TCS, so X is with property (Q). The property (P) is also satisfied.

Remark 4.10 Talman in [187] introduced a new notion of convex structure for
metric space based on Takahashi notion the so called strong convex structure (SCS
for short). In SCS condition (Q) is always satisfied so it seems to be natural.

Any TCS satisfying (P) and (Q) has the next important property [187].

Proposition 4.8 Let (X, d,W) be a TCS with properties (P) and (Q). Then for any
bounded subset A ⊆ X

μ(conv(A)) = μ(A).
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The following fixed point result for mappings without continuity condition on
Takahashi convex metric space is proved in [63].

Theorem 4.17 Let (X, d,W) be a TCS with properties (P) and (Q), K a closed
convex bounded subset of X, and T : K −→ K a mapping satisfying the
following :
1. inf

C
(F ) = 0 for any nonempty closed convex T -invariant subset C of K , where

F(x) = d(x, T (x)), x ∈ K ,
2. μ(T (A)) < μ(A) for all A ⊆ K for which μ(A) > 0,
3. F is r.g.i. on K .

Then the fixed point set Fix(T ) of T is nonempty and compact.

Proof Choose a point m ∈ K . Let σ denote the family of all closed convex subsets
A of K for which m ∈ A and T (A) ⊆ A. Since K ∈ σ, σ �= ∅. Let

B =
⋂
A∈σ

A, C = conv(T (B) ∪ {m}). (4.2)

Convex structure W has property (P) so C is a convex set as a closure of convex
set. We are going to prove that B = C. Since B is a closed convex set containing
T (B) and {m}, C ⊂ B. This implies that T (C) ⊆ T (B) ⊆ C so C ∈ σ and hence
B ⊆ C. The last two statements clearly force B = C. The properties of measure μ
and Proposition 4.8 imply that

μ(B) = μ(conv(T (B) ∪ {m})) = μ(B), (4.3)

so in view of 2. B must be compact. Now, Proposition 4.10 ensures that T has a
fixed point on B so Fix(T ) is nonempty. Condition 2. implies that Fix(T ) is totally
bounded. Since F is r.g.i. Fix(T ) has to be closed. Finally, we conclude that Fix(T )
is compact. �

The assumption inf
K
(F ) = 0 is strong, especially in the absence of conditions

which at the same time imply continuity. Some sufficient conditions which are easier
to check and more suitable for application are given in [63].

We recall some well-known definitions.

Definition 4.11 The mapping T : K −→ K is called directionally nonexpansive if
we have d(T (x), T (y)) ≤ d(x, y) for all x ∈ K and y ∈ [x, T (x)]. If there exists
α ∈ (0, 1) such that this inequality holds for y = W(T (x), x, α), then we say that
T is uniformly locally directionally nonexpansive.

The following is given in [63] and its elaborate proof is taken from [108].

Proposition 4.9 Let (X, d,W) be a TCS with property (P), K a closed convex
bounded subset of X, and T : K −→ K a uniformly locally directionally
nonexpansive. Let Tαx = W(T (x), x, α). For the fixed x0 ∈ K , sequences (xn)n
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and (yn)n are defined as follows :

xn+1 = Tαxn, yn = T (xn), n = 0, 1, 2, . . . (4.4)

Then for each i, n ∈ N

d(yi+n, xi) ≥ (1− α)−n(d(yi+n, xi+n)− d(yi, xi))+ (1+ nα)d(yi, xi), (4.5)

lim
n−→∞ d(T (xn), xn) = 0. (4.6)

Proof We prove (4.5) by induction on n. For n = 0 inequality (4.5) is trivial.
Assume that (4.5) holds for given n and all i. In order to prove that (4.5) holds
for n+ 1, we proceed as follows : replacing i with i + 1 in (4.5) yields

d(yi+1+n, xi+1) ≥ (1 − α)−n(d(yi+n+1, xi+n+1)− d(yi+1, xi+1)) (4.7)

+(1 + nα)d(yi+1, xi+1).

Also

d(yi+1+n, xi+1) ≤ d(yi+n+1,W(yi+n+1, xi, α))

+ d(W(yi+n+1, xi, α),W(T (xi), xi, α)) (4.8)

≤ (1 − α)d(yi+n+1, xi)+ αd(yi+n+1, T (xi)) ≤ (1 − α)d(yi+n+1, xi)

+ α
n∑
k=0

d(T (xi+1+k), T (xi+k))

≤ (1 − α)d(yi+n+1, xi)+ α
n∑
k=0

d(xi+1+k, xi+k)

since xi+1+k = W(T (xi+k), xi+k, α) and T is uniformly locally directionally
nonexpansive. Combining (4.7) and (4.8)

d(yi+1+n, xi) ≥ (1 − α)−(n+1)(d(yi+n+1, xi+n+1)− d(yi+1, xi+1)) (4.9)

+ (1 − α)−1(1 + nα)d(yi+1, xi+1)− α(1 − α)−1
n∑
k=0

d(xi+1+k, xi+k).

By Proposition 4.7 3.,

d(xi+1+k, xi+k) = d(W(T (xi+k), xi+k, α), xi+k) = αd(yi+k, xi+k), (4.10)
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so

d(yi+1+n, xi) ≥ (1 − α)−(n+1)(d(yi+n+1, xi+n+1)− d(yi+1, xi+1)) (4.11)

+(1 − α)−1(1 + nα)d(yi+1, xi+1)− α2(1 − α)−1
n∑
k=0

d(yi+k, xi+k).

On the other hand,

d(yn, xn) = d(T (xn),W(T (xn−1), xn−1, α)) ≤ d(T (xn), T (xn−1))

+ d(T (xn−1),W(T (xn−1), xn−1, α)) (4.12)

≤ d(xn, xn−1)+ (1 − α)d(T (xn−1), xn−1)

= αd(yn−1, xn−1)+ (1 − α)d(yn−1, xn−1)

= d(yn−1, xn−1)

for any n ∈ N, meaning that (d(yn, xn))n is a decreasing sequence. Now, using
inequality (1 + nα)− (1 − α)−n ≤ 0, we have that

d(yi+n+1, xi) ≥ (1 − α)−(n+1)(d(yi+n+1, xi+n+1)− d(yi+1, xi+1)) (4.13)

+ (1 − α)−1(1 + nα)d(yi+1, xi+1)− α−2(1 − α)−1(n+ 1)d(yi, xi)

= (1 − α)−(n+1)(d(yi+n+1, xi+n+1)− d(yi, xi))
+ ((1 − α)−1(1 + nα)− (1 − α)−(n+1))d(yi+1, xi+1)

+ ((1 − α)−(n+1) − α−2(1 − α)−1(n+ 1))d(yi, xi)

≥ (1 − α)−(n+1)(d(yi+n+1, xi+n+1)− d(yi, xi))
+ ((1 − α)−1(1 + nα)− (1 − α)−(n+1))d(yi, xi)

+ ((1 − α)−(n+1) − α−2(1 − α)−1(n+ 1))d(yi, xi)

= (1 − α)−(n+1)(d(yi+n+1, xi+n+1)− d(yi, xi))+ (1 + (n+ 1)α)d(yi, xi).

Thus (4.5) holds for n + 1, completing the proof of the inequality. Further, the
sequence (d(yn, xn))n is decreasing, so there exists lim

n−→∞ d(yn, xn) = r ≥ 0. Let

us suppose that r > 0. Select a positive integer k such that

0 ≤ d(yk, xk)− d(yk+n0 , xk+n0) < ε.
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Using (4.5), we obtain

d + r ≤ r(1 + αn0) ≤ (1 + αn0)d(yk, xk)

≤ d(yk+n0 , xk)+ ε(1 − α)−n0 < d + r.

By the last contradiction we conclude that r = 0 and lim
n−→∞ d(yn, xn) =

d(T (xn), xn) = 0 what we had to prove. �
Combining the last result with Theorem 4.17 we have the following consequence.

Corollary 4.4 Let K be a closed convex bounded subset of complete TCS
(X, d,W)with properties (P) and (Q) and let T : K −→ K satisfy the following :
1. T is uniformly locally directionally nonexpansive on K ,
2. μ(T (A)) < μ(A) for all A ⊆ K for which μ(A) > 0,
3. F is r.g.i. on K .

Then the fixed set Fix(T ) of T is nonempty and compact.

Moreover, using Proposition 4.9 we also get some other fixed point results.

Corollary 4.5 Let K be a closed convex bounded subset of complete TCS
(X, d,W)with properties (P) and (Q) and let T : K −→ K satisfy the following :
1. T is uniformly locally directionally nonexpansive on K ,
2. d(T (x), T (y)) ≤ θ(max{d(x, T (x)), d(y, T (y))}), where θ : R+ −→ R

+ is any
function for which lim

t−→0+
θ(t) = 0.

Then T has a unique fixed point x0 ∈ K if and only if F is r.g.i. on K .

Proof Proposition 4.9 gives inf
K
(F ) = 0 one can prove that lim

c−→0+
diam(Lc) = 0.

By Theorem 4.2, T has a unique fixed point if and only if F is r.g.i. on K . �
Theorem 4.18 Let K be a closed convex bounded subset of complete TCS
(X, d,W)with properties (P) and (Q) and let T : K −→ K satisfy the following :
1. T is directionally nonexpansive on K ,
2. μ(T (Lc)) ≤ kμ(Lc), for some k < 1 and all c > 0,
3. F is r.g.i. on K .

Then the fixed set Fix(T ) of T is nonempty and compact. Moreover, if (xn)n ⊆ K
satisfies lim

n−→∞ d(T (xn), xn) = 0, then lim
n−→∞ d(Fix(T), xn) = 0.

Proof By Proposition 4.9, inf
K
(F ) = 0. Since 1. implies that

d(T (x), T 2(x)) ≤ d(x, T (x)), ∀x ∈ K,

the conclusion follows immediately from Theorem 4.9. �
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Next, we recall the concept of weakly quasi-nonexpansive mappings with respect
to a sequence introduced by Ahmed and Zeyada in [1].

Definition 4.12 Let (X, d) be a metric space and let (xn)n be a sequence in
Y ⊆ X. Assume that T : Y −→ X is a mapping with Fix(T ) �= ∅ satisfying
lim
n→∞ d(xn,Fix(T )) = 0. Thus, for a given ε > 0 there exists n1(ε) ∈ N such

that d(xn,Fix(T )) < ε for all n ≥ n1(ε). Mapping T is called weakly quasi-
nonexpansive mapping with respect to (xn)n ⊆ Y if for every ε > 0 there exists
p(ε) ∈ Fix(T ) such that for all n ∈ N with n ≥ nε, d(xn, p(ε)) < ε.
Theorem 4.19 Let K be a closed convex bounded subset of complete TCS
(X, d,W)with properties (P) and (Q) and let T : K −→ K satisfy the following :
1. T is directionally nonexpansive on K ,
2. μ(T (Lc)) ≤ kμ(Lc), for some k < 1 and all c > 0,
3. F is r.g.i. on K .
4. (xn)n ⊆ K satisfies lim

n→∞ d(xn, T (xn)) = 0 and T is weakly quasi-nonexpansive

with respect to (xn)n.

Then (xn)n converges to a point in Fix(T ).

Proof Our assertion is a consequence of Theorem 4.18. �
Using Proposition 4.9, the next corollary holds.

Corollary 4.6 Let K be a closed convex bounded subset of complete TCS
(X, d,W)with properties (P) and (Q) and let T : K −→ K satisfy the following :
1. T is directionally nonexpansive on K ,
2. μ(T (Lc)) ≤ kμ(Lc), for some k < 1 and all c > 0,
3. F is r.g.i. on K .
4. T is weakly quasi-nonexpansive with respect to sequence xn = T nα (x0), n ∈

N, x0 ∈ K,α ∈ (0, 1).
Then (xn)n converges to a point in Fix(T ).

4.3 Approximation of Fixed Points by Means of Functions
Convergent with Continuity

In this section, we show that some results on fixed point theorems in particular for
nonexpansive mappings can be obtained based on convergence with continuity (by
sequence).

For results in this section we refer to [6].

Definition 4.13 Let X and Y two metric spaces. Let (fn)n be a sequence of
functions from X into Y .
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The sequence (fn)n converges with continuity at f in an element x of X if and
only if for each sequence in X, (xn)n convergent at x, we have lim

n−→∞ fn(xn) =
f (x).

It is said that (fn)n at f in X if and only if converges with continuity in each
element of X.

Remark 4.11 Given two metric spaces X, Y there are non-continuous functions
from X into Y if, and only if, what follows is true: X is not discrete from the
topological point of view and Y has strictly cardinality than one.

Theorem 4.20 If there is a non-continuous function g from the metric spaceX into
the metric space Y , then we have :
1. The uniform convergence at a function f of a sequence of functions (fn)n from
X into Y on compact subsets of X does not imply that (fn)n converges with
continuity.

2. The convergence with continuity is not topological on the set of functions from
X into Y (i.e., there is not topology with respect to which the convergence with
continuity is the convergence).

Proof

1. We observe that the convergence with continuity at a function h implies the point
convergence at h. As (fn)n point converges at f and (fn)n does not converge
with continuity at f , therefore (fn)n does not converge with continuity. In
fact if (fn)n converges with continuity at a function h, this means that (fn)n
point converges at h and therefore h = f (for the uniqueness of the limit
point convergence for functions at values in a Hausdorff space), therefore (fn)n
converge with continuity at f , which is absurd. Thus (fn)n does not converge
with continuity and 1. is proved.

2. Take f = g and fn = g for each n ∈ N. A sequence of functions all equal
to g converges uniformly at g in all the subsets of X, and in particular on the
compact subsets, therefore (fn)n converges uniformly in all the compact subsets
of X at f = g. The fact that g is not continuous means that there exists in X at
least one sequence (xn)n convergent at an element x ∈ X, so that (g(xn))n does
not converge in Y at g(x), i.e., (fn(xn))n does not converge at f (x). This means
in particular that (fn)n does not converge with continuity at f in x, therefore
it does not converge with continuity at f in X. Therefore, there is a constant
sequence which does not converge with continuity and thus the convergence with
continuity is not topological on the set of functions from X to Y .

�
Proposition 4.10 Let g be a continuous function of X in X′. If the sequence
(fn)n converges with continuity at f in X′, the sequence (fn ◦ g)n converges with
continuity at f ◦ g in X.
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Proof lim
n−→∞ xn = x �⇒ lim

n−→∞ g(xn) = g(x) �⇒ lim
n−→∞ fn ◦ g(xn) =

lim
n−→∞ fn(g(xn)) = f (g(x)) = f ◦ g(x). �

From Proposition 4.10 there comes immediately :
Proposition 4.11 Let g be a continuous function of X in X. If the sequence of
functions (fn)n converges with continuity at the identity function, the sequence (fn◦
g)n converges with continuity at g in X.

Lemma 4.1 If a sequence (fn)n converges with continuity at f in an element x of
a metric space X and (xm)m is any sequence in X that tends to x, then

lim
n,m−→∞ fn(xm) = f (x), i.e., ∀ ε > 0 ∃ k ∀ n,m > k |fn(xm)− f (x)| < ε

(obviously the opposite is also true).

Proof Let us suppose that the thesis is untrue, there will thus exist a sequence
(xm)m tending to x, so that ∀ k ∃ n,m > k |fn(xm)− f (x)| ≥ ε, and therefore
there will exist sequences (nh)h and (mh)h so that nh+1,mh+1 > nh and∣∣fnh(xmh)− f (x)

∣∣ ≥ ε.
The sequence (yp)p is therefore defined as follows : if k exists, so that p = nk,

we have yp = xmk , otherwise yp = x. By definition (yp)p tends to x, while (fn(yn))
does not tend to f (x) in so far as it has a subsequence whose terms do not belong
to a neighborhood of f (x), i, contrast to the hypothesis that (fn)n converges with
continuity at f . �

Note in the above paragraph, when speaking of convergence with continuity, it
has never been assumed that the function f and the functions of the sequence (fn)n
are continuous. The following proposition shows that f is necessarily continuous
(even if the fn are not continuous).

One also points out that, to be sure of the continuity of f at a point x, it is not
sufficient to assume that (fn)n converges with continuity at f in the single point x.

Proposition 4.12 If the sequence of functions (fn)n converges with continuity at
function f in the metric space X, function f is continuous in X.

Proof We shall prove that for each sequence (xn)n tending to any x ∈ X, (f (xn))n
tends to f (x) (which is the continuity of f ). By Lemma 4.1 we have ∀ ε >
0 ∃ k ∀ n,m > k |fm(xn)− f (x)| < ε, and carrying out the limit on m,
taking into account the convergence with continuity of (fn)n at f in xn, we have
∀ ε > 0 ∃ k ∀n > k |f (xn)− f (x)| ≤ ε, i.e., (f (xn))n tends to f (x). �
Theorem 4.21 Let T be a continuous selfmapping in metric space X. Let (Tn)n be
a sequence of selfmappings in X which converges with continuity at T in X. It is
assumed that there exists a sequence (xn)n so that :
1. for each n ∈ N, xn is a fixed point of Tn.
2. (xn)n has a subsequence converging at an element x ∈ X.

Thus x is a fixed point of the selfmapping of T .
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Proof Let (xnj )j be a subsequence of (xn)n which converges at x. Thus x =
lim
j−→∞ xnj = lim

j−→∞ Tnj (xnj ) = T (x). �

Clearly, if it is assumed that space X is compact, all sequences (xn)n have a
convergent subsequence.

The following Lemma and Theorems come from Theorem 4.21.

Lemma 4.2 Let X be a compact metric space with a distance d(., .) and T be a
continuous selfmapping in X. Let G be a family of selfmappings in X, so that there
exists a sequence of functions in G which converges with continuity at the identity
function and so that, if g ∈ G then g ◦ T has a fixed point in X.

Proof Let (gn)n be a sequence of functions of G convergent with continuity at
the identity function. By Proposition 4.11, the sequence (gn ◦ T )n converges with
continuity at T . Let xn be a fixed point of gn ◦ T (which exists because gn belong
to G), as X is compact (xn)n has a convergent subsequence. The result comes from
Theorem 4.21. �
Lemma 4.3 (Guseman and Peters) Let X ba compact metric space with a
distance d(., .) and T a continuous selfmapping in X. Let G be a family of
selfmappings inX, so that there exists a sequence of functions inG which converges
uniformly at the identity function and so that, if g ∈ G then g ◦ T has a fixed point
in X. Thus T has a fixed point in X [74].

Proof Let (gn)n be a sequence of functions in G converging uniformly at the
identity function. (gn)n converges with continuity at the identity function, since for
each sequence (xn)n in X converging at anyone element x ∈ X, we have :

d(gn(xn), x) ≤ d(gn(xn), xn)+ d(xn, x).

The result comes from Lemma 4.2. �
Theorem 4.22 LetX ba compact metric space with a distance d(., .). If the identity
function is the limit point of a sequence (Tn)n of weakly contractive selfmappings
in X (d(Tn(x), Tn(y)) < d(x, y) per x �= y, x, y ∈ X), thus each nonexpansive
selfmapping in X has a fixed point.

Proof From the compactness of X and from the fact that (Tn)n is a sequence of
weakly contractive selfmappings which converge punctually at the identity, it comes
that (Tn)n converges uniformly at the identity. In fact, let ε > 0, and let Rε

3
be the

set of spherical neighborhoods of the amplitude Rε
3

having as their centre anyone
element of X and let S ε

3
be a finite undercover of Rε

3
, let x1, . . . , xm be the centers

of the spherical neighborhoods of S ε
3
, thus we have, on the basis of the hypotheses
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made, according to the way in which x1, . . . , xm have been defined and by the
triangular inequality, we have :

∀ x ∈ X ∃ i ∈ {1, . . . , m}d(Tn(x), x) ≤ d(Tn(x), Tn(xi))+d(xi, Tn(xi))+d(xi, x)

2d(xi, x)+ d(xi, Tn(xi)) ≤ 2
ε

3
+ d(xi, Tn(xi)).

Now, since it can only take on a finite number of values and since we are
considering the point convergence, we definitely have (with respect to n), ∀i ∈
{1, . . . , m} d(xi, Tn(xi)) ≤ ε

3
. Therefore, for each x ∈ X, definitely with the respect

to n, we have d(Tn(x), x) < 2
ε

3
+ ε

3
= ε, i.e., (Tn)n converges uniformly at

identity. By Edelstein’s theorem [51], and because of the fact that the composition
of a weakly contractive selfmappings and of a nonexpansive selfmapping is weakly
contractive, it comes that the functions Tn ◦ t (where Tn is a term of the sequence
and t is a nonexpansive selfmapping) have a fixed point. Thus the result comes from
Lemma 4.3. �

Theorem 4.22 is simply Smart’s theorem [181].

Theorem 4.23 (Smart’s Theorem) If in a compact metric space the identity
selfmapping can be approximated uniformly to weakly contractive selfmappings,
then each nonexpansive selfmapping has a fixed point.

Remark 4.12 It should be observed that the expression of Theorem 4.23 point
convergence can be substituted for uniform convergence (i.e., the first part of the
proof of Theorem 4.22).

Smart’s theorem according to which one should be able to approximate the
identity function employing weakly contractive selfmappings, constitutes a first step
in the weakening of the classical hypothesis of convexity in normed spaces. In these
spaces in fact Smart’s hypotheses by “starshaped sets”.

Definition 4.14 A subset S of a vectorial space is said to be if there exists an
element p ∈ S, so that ∀ x ∈ S ∀ t ∈ [0, 1], (1 − t)p + tx ∈ S, and such a p
is called a star centre of S.

Lemma 4.4 Let X be a normed space and d(., .) the distance that comes from the
norm. If S is a starshaped subset of X, each nonexpansive selfmapping in S will
have at least one fixed point.
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Proof The identity is uniformly approximate by the sequence (fn)n given by

fn(x) = x + 1

n
(p − x) where p is a star centre of S. (The convergence is uniform

because S, being compact, is limited). The f ′ns are weakly contractive, in fact

d(fn(x), fn(y)) = ‖x + 1

n
(p − x)− (y + 1

n
(p − y))‖ =

‖(1 − 1

n
)(x − y)‖ = (1 − 1

n
)‖x − y‖ = (1 − 1

n
)d(x, y) < d(x, y).

So the result comes from Smart’s theorem. �
We shall now express a theorem whose proof comes directly from Theorem 4.22.

Theorem 4.24 Let X be a compact metric space with a distance d(., .) and let a
function f be from [0, 1)×X in X so that :
1. lim
t−→1

f (t, x) = x ∀x ∈ X,
2. d(f (t, x), f (t, y)) < d(x, y) per x �= y, x, y ∈ X, t ∈ [0, 1).

Thus every nonexpansive selfmapping has a fixed point.

Theorem 4.25 Let X be a vectorial and metric space with a distance d(., .)
invariable for translation and such as to make d(tx, ty) = td(x, y). Let S be a
starshaped and compact subset of X. Thus every nonexpansive selfmapping in S
has a fixed point.

Proof A function f can be defined so as to satisfy the hypotheses of Theorem 4.24,
as follows : f (t, x) = tx + (1 − t)P , where P is a fixed star centre. Note that 2.
comes from the invariability by translation of the distance. �



Chapter 5
Approximate Fixed Points in Topological
Vector Spaces

In this chapter, we study problems concerning approximate fixed point property on
an ambient space with different topologies.

5.1 The KKM Principle and Almost Fixed Points

A multifunction T : X → 2Y is a map with the values T (x) ⊆ Y for x ∈ X

and the fibers T −1(y) = {x ∈ X : y ∈ T (x)} for y ∈ Y . For topological spaces
X and Y a multifunction T is upper semicontinuous (u.s.c.) if for each closed set
Z ⊆ Y, T −1(Z) = {x ∈ X : T (x) ∩ Z �= ∅} is closed in X, lower semicontinuous
(l.s.c.) if for each open set Z ⊆ Y, T −1(Z) = {x ∈ X : T (x) ∩ Z �= ∅} is open in
X, and compact if T (X) =

⋃
{T (x) : x ∈ X} is contained in a compact subset Y .

T is said to be closed if its graph Gr(T ) = {(x, y) : x ∈ X, y ∈ T (x)} is closed in
X × Y .

If T : X → 2Y is u.s.c. with compact values, then T is closed. The converse is
true whenever Y is compact.

We have the following Knaster-Kuratowski-Mazurkiewicz (simply, KKM) theo-
rem [117].

Theorem 5.1 (KKM Principle) Let Y be the set of vertices of a simplex S and
T : Y → 2S a multifunction with closed values such that

convZ ⊆ T (Z) for each Z ⊆ Y. (5.1)

Then

⋂
z∈Z
T (Z) �= ∅.
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The following easily follows from the KKM principle [56, 117].

Lemma 5.1 Let Y be a subset of a topological vector space, Z a nonempty subset
of Y such that convZ ⊆ Y , and T : Z → 2Y a KKM map with closed (resp. open)
values. Then {T (z)}z∈Z has the finite intersection property.

Note that a multifunction T : Z→ 2Y is called a KKM map of

conv(N) ⊆ T (N) for each finite subset NofZ.

In [3], Alexandroff and Pasynkoff gave an elementary proof of the essentiality
of the identity map of the boundary of a simplex by using a variant of the
KKM theorem. From Lemma 5.1, the following generalization of the Alexandroff-
Pasynkoff theorem is given in [145].

Theorem 5.2 Let Y be a subset of a topological vector space, (Zi)0≤i≤n a family
of (n+ 1) closed (respectively, open) subsets covering Y , and (xi)0≤i≤n a family of
Y such that conv({xi, i = 0, · · · , n}) ⊆ X and conv({x0, · · · , x̂i , · · · , xn}) ⊆ Zi

for each i = 0, · · · , n. Then
n⋂
i=0

Zi �= ∅.

Proof Let S := {xi, i = 0, · · · , n} and let W0 := conv({x0, · · · , xn−1}) ⊆ Zn and
Wi := conv({x0, · · · , x̂i−1, · · · , xn}) ⊆ Zi−1 for 1 ≤ i ≤ n. Let T : S → 2Y be a
map defined by T (x0) = Zn and T (xi) = Zi−1 for 1 ≤ i ≤ n. Now we show that
T satisfies the requirement of Lemma 5.1. Note that

conv({x0, · · · , xn}) ⊆ Y =
n⋃
i=0

Zi = T (S).

Moreover, for any proper subset {xi0 , · · · , xik }, (0 ≤ k < n, 0 ≤ i0 < · · · < ik ≤ n)
of S, we immediately have conv({xi0 , · · · , xik }) ⊆ Wij ⊆ Zij−1 = T (xij ) for some
j, 0 ≤ j ≤ k, (with the convention ij = 0 if and only if ij − 1 ≡ n) and hence

conv({xi0 , · · · , xik }) ⊆
k⋃
j=0

T (xij ).

Consequently, condition (5.1) is satisfied. Now, the conclusion follows from
Lemma 5.1. �

It is well-known that the Alexandroff-Pasynkoff theorem implies the Brouwer
theorem [147]. Therefore, Theorem 5.1 is also equivalent to the KKM theorem.

The following concept is well known [83].

Definition 5.1 Let X be a vector space endowed with a linear topology τ . A
nonempty subset Y of X is said to be almost convex if, for any neighborhood V of
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θ and for any finite set {x1, · · · , xn} ⊆ Y , there exists a finite set {z1, · · · , zn} ⊆ Y
such that

conv({z1, · · · , zn}) ⊆ Y and zi − xi ∈ V for all i = 1, · · · , n.

We give some examples of almost convex sets :
(1) Any convex subset is almost convex.
(2) If we delete a certain subset of the boundary of a closed convex set, then we

obtain an almost convex set.
(3) Let C[0, 1] be the Banach space of all continuous real functions defined on the

unit interval [0, 1] and P [0, 1] its dense subset consisting of all polynomials.
Then any subset of C[0, 1] containing P [0, 1] is almost convex. In general, by
the various forms of the Stone-Weierstrass approximation theorem, we have a
lot of examples of almost convex sets.

Proposition 5.1 Let (X, τ) be a topological vector space. If Y ⊆ X is an almost
convex set, then Y is the dense subset of conv(Y ).

Corollary 5.1 Let (X, τ) be a topological vector space and Y ⊆ X is an almost
convex set. Then the closure of Y is a convex set.

Definition 5.2 For a subset Y of a topological vector space X, a multifunction
T : Y → 2X is said to have (convexly) almost fixed point property if for any
(convex) neighborhood V of the origin θ , there exists an xV ∈ Y such that
T (xV ) ∩ (xV + V ) �= ∅.

Theorem 5.3 Let Y be a subset of a topological vector space, and T : Y → 2Y a
closed compact multifunction. Then the following are equivalent :
(i) T has a fixed point.
(ii) T has the almost fixed point property.

Proof (i)⇒ (ii) : Clear.
(ii) ⇒ (i) : For each neighborhood U of θ , then exist xU , yU ∈ Y such that

yU ∈ T (xU ) and yU ∈ xU + U . Since T (Y ) is relatively compact, we can choose
a subnet of the net (yU ) with a cluster point x0 ∈ T (Y ). Since X is Hausdorff, the
corresponding subnet of (xU ) also has the cluster point x0. Because the graph of T
is closed in Y × T (Y ), we have x0 ∈ T (x0). This completes our proof. �
Theorem 5.4 Let Y be a subset of a locally convex topological vector space, and
T : Y → 2Y a closed compact multifunction. Then the following are equivalent :
(i) T has a fixed point.
(ii) T has the convexly almost fixed point property.

Proof In a locally convex topological vector space, the convexly almost fixed point
property is equivalent to the almost fixed point property. �
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Remark 5.1

(1) If T is not compact, then (ii) � (i). For example, let X = R and T (x) :={
x − 1

x

}
if x �= 0, T (0) := {1,−1}.

(2) If T is not closed, then (ii)� (i). For example, letX = [0, 1] and T (x) := {1

2
}

if x �= 1

2
, T (

1

2
) := {0, 1}.

From Lemma 5.1, Park gave the following very general almost fixed point
theorem [145].

Theorem 5.5 Let Y be a subset of a topological vector space X and Z an almost
convex dense of Y . Let T : Y → 2X be a lower (respectively, upper) semicontinuous
multifunction such that T (z) is convex for all z ∈ Z. If there is a precompact subset
K of Y such that T (z) ∩K �= ∅ for each z ∈ Z, then for any convex neighborhood
U of the origin θ ofX, there exists a point xU ∈ Z such that T (xU )∩(xU +U) �= ∅.

Proof There exists a symmetric neighborhood V of θ such that V + V ⊆ U . Since
K is precompact in X, there exists a finite subset {x0, · · · , xn} ⊆ K such that

K ⊆
n⋃
i=0

(xi + V ). Moreover, since Z is almost convex and dense in X, there exists

a finite subset S = {z0, · · · , zn} of Z such that zi − xi ∈ V for each i = 0, · · · , n,
andW = conv({z0, · · · , zn}) ⊆ Z.

If T is lower semicontinuous, for each i, let

F(zi) :=
{
w ∈ W : T (w) ∩ (xi + V ) = ∅

}
,

which is closed inW . Moreover, we have

n⋂
i=0

F(zi) =
{
w ∈ W : T (w)

⋂ n⋃
i=0

(xi + V ) = ∅
}
= ∅.

since ∅ �= T (w) ∩K ⊆ T (w)
⋂ n⋃

i=0

(xi + V ) for each w ∈ Z.

If T is upper semicontinuous, for each i, let

F(zi) :=
{
w ∈ W : T (w) ∩ (xi + V ) = ∅

}
,

which is open inW . Moreover, we have
n⋂
i=0

F(zi) = ∅ as in the above.

Now we apply Lemma 5.1 replacing (Y, Z) by (W, {z0, · · · , zn}). Since the
conclusion of Lemma 5.1 does not hold, in any case, condition (5.1) is violated.
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Hence, there exist a subset N := {zi0, · · · , zik } ∈ 〈S〉 and an xU ∈ conv(N) ⊆ Z
such that xU /∈ F(N) or T (xU ) ∩ (xij + V ) �= ∅ for all j = 0 · · · , k. Note that

xij + V = xij − zij + zij + V ⊆ zij + V + V ⊆ zij + U. (5.2)

Let L be a subspace of X generated by S and

M := {z ∈ L : T (xU ) ∩ (z+ U) �= ∅}.

From (5.2) we get T (xU ) ∩ (zij + U) �= ∅ and hence zij ∈ M for all j = 0 · · · , k.
Since L, T (xU ), and U are all convex, it is easily checked thatM is convex. There-
fore, xU ∈ M and, by definition ofM , we get T (xU ) ∩ (xU + U) �= ∅. �

In the case Z = Y , Theorem 5.5 reduces to the following :
Corollary 5.2 Let Y be a convex subset of a topological vector space X. Let
T : Y → 2X be a lower (respectively, upper) semicontinuous multifunction such
that T (x) is convex for all x ∈ Y . If there is a precompact subset K of Y such that
T (x) ∩K �= ∅ for each x ∈ Y , then T has the convexly almost fixed point property.

Ky Fan [58] obtained Corollary 5.2 for a locally convex topological vector
space X and for lower semicontinuous multifunction T : Y → 2X. Lassonde
[124] obtained Corollary 5.2 for a compact upper semicontinuous multifunction
T : Y → 2Y having nonempty convex values.

The following fixed point result is due to Park and Tan [148] and extends the
Himmelberg-Idzik theorem and many other fixed point results in the analytical fixed
point theory.

Corollary 5.3 Let Y be a subset of a locally convex topological vector space X
and Z an almost convex dense subset of Y . Let T : Y → 2Y be a compact upper
semicontinuous multifunction with closed values such that T (z) is nonempty convex
for all z ∈ Z. Then T has a fixed point x0 ∈ X, that is, x0 ∈ T (x0).

Proof By Theorem 5.5, for each neighborhood U of θ , there exist xU , yU ∈ Y such
that yU ∈ T (xU ) and yU ∈ xU + U . Since T (Y ) is relatively compact, we may
assume that the net (yU ) converges to some x0 ∈ T (Y ) ⊆ Y . Since X is Hausdorff,
the net (xU ) also converges to x0. Because T is upper semicontinuous with closed
values, the graph of T is closed in Y × T (Y ) and hence we have x0 ∈ T (x0). �

From Theorem 5.5, we have the following almost fixed point result [145].

Corollary 5.4 Let Y be a subset of a topological vector space X and Z an almost
convex dense subset of Y . Let T : Y → 2X be a multifunction such that

(1) T −(y) is open for each y ∈ X, and
(2) T (z) is convex for each z ∈ Z.
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If there is a precompact subset K of Y such that T (z) ∩ K �= ∅ for each z ∈ Z,
then for any convex neighborhoodU of the origin θ ofX, there exists a point xU ∈ Z
such that T (xU ) ∩ (xU + U) �= ∅.

Proof Since T is lower semicontinuous, Corollary 5.4 follows immediately from
Theorem 5.5. �

When X = Y , Corollary 5.4 reduces to the following :
Corollary 5.5 Let Y be a convex subset of a topological vector space X, and
T : Y → 2Y be a multifunction such that

(1) T (x) is nonempty and convex for each x ∈ Y ,
(2) T −(y) is open for each y ∈ Y , and
(3) T (X) is contained in a compact subset K of Y .

Then T has the convexly almost fixed point property.

Ben-El-Mechaiekh [17, 20] obtained that, if X is further to be locally convex in
Corollary 5.5, then T has a fixed point, and conjectured that, under the hypotheses
of Corollary 5.5, T would have a fixed point, so Corollary 5.5 is a partial solution.

We need the following definitions and examples with great importance in fixed
point theory.

A subset K of a topological vector space X is said of the Zima type, by Hadžić
[76], if for each neighborhood U of θ ∈ X there exists a neighborhood V of θ ∈ X
such that conv(V ∩ (K −K)) ⊆ U .

A set Y ⊆ X is said to be convexly totally bounded, by Idzik [88], if for every
neighborhood V of θ ∈ X there exist a finite subset {xi : i ∈ I } ⊆ Y and a finite
family of convex sets {Zi : i ∈ I } such that Zi ⊆ V for each i ∈ I and Y ⊆⋃
{xi + Zi : i ∈ I }. Note that {xi : i ∈ I } can be chosen in X [89].
Idzik [88] gave examples of c.t.b. sets :

(1) Every compact set in a locally convex topological vector space.
(2) Any compact set in a topological vector space which is locally convex or is of

the Zima type.

Other examples of c.t.b. sets were given in [41] :
(3) Every compact convex subset of X = lp, 0 < p < 1.
(4) More generally, every compact convex subset of a topological vector space X

on which its topological dual X′ separates points.

The well-known Schauder conjecture is as follows :
every continuous function, from a compact convex subset in a topological vector

space into itself, would have a fixed point.
One of the most general partial solutions is due to Idzik using the concept of c.t.b.

sets.

Theorem 5.6 Let Y be a convex subset of a topological vector space X and
T : Y → 2Y be a Kakutani map (that is, u.s.c. with nonempty compact convex
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values). If T (Y ) is a compact c.t.b. subset of Y , then there exists an x ∈ Y such that
x ∈ T (x).

Further, Idzik [88] raised the following question :
Is every compact convex subset of a topological vector space convexly totally

bounded?
A positive answer to this question would resolve the Schauder conjecture.

However, Idzik’s problem was resolved negatively by the following [41].

Theorem 5.7 For 0 ≤ p < 1, the space Lp(μ), where μ denotes the Lebesgue
measure on [0, 1], contains compact convex subsets which are not c.t.b.

Moreover, Weber introduced the following definition of strongly convexly totally
bounded sets [193, 194].

Definition 5.3 A subset Y of a topological vector space X is said to be strongly
convexly totally bounded (s.c.t.b.) if for every neighborhood V of θ ∈ X there exist
a convex subset Z of V and a finite subset N of Z such that Y ⊆ N + Z.

The following is known [193].

Theorem 5.8 Let Y be a compact convex subset of a topological vector space
(X, τ) and Z = spanY . Then the following conditions are equivalent :
(1) Y is s.c.t.b.
(2) Y is of Zima type.
(3) Y is locally convex.
(4) Y is affinely embeddable in a locally convex topological vector space.
(5) X admits a Hausdorff locally convex linear topology σ = σ(X,X′), which

induces on Z a finer topology than τ such that σ |Y = τ |Y .

Further, Weber [193] raised the following question :

Is every convex c.t.b. set s.c.t.b.?

The following almost fixed point results for multifunctions having totally
bounded ranges were established by Park [146], where the closures of the ranges
satisfy more restrictive conditions than that of c.t.b. sets.

Theorem 5.9 Let Y be a convex subset of a topological vector space X and
T : Y → 2X a u.s.c. multifunction with convex values. If there is an s.c.t.b. subset
Z of Y such that T (x) ∩ Z �= ∅ for each x ∈ Y , then T has the almost fixed point
property.

Proof For any neighborhood V of θ ∈ X, choose a symmetric open neighborhood
U of θ such that U ⊆ V . Since Z is s.c.t.b. in X, there exist a finite subset

{x1, x2, · · · , xn} ⊆ Z ⊆ Y and a convex subsetW ⊆ U such that Z ⊆
n⋃
i=1

(xi+W).
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For each i, let

F(xi) := {x ∈ Y : T (x) ∩ (xi +W) = ∅}.

Then each F(xi) is open since T is u.s.c. Moreover, we have

n⋂
i

F (xi) =
{
x ∈ Y : T (x) ∩

n⋃
i

(xi +W) = ∅
}
= ∅

since ∅ �= T (x) ∩ Z ⊆ T (x) ∩
n⋃
i=1

(xi +W) for each x ∈ Y .

Now we apply Lemma 5.1 with {x1, · · · , xn}. Since the conclusion of Lemma 5.1
does not hold, in any case, condition (5.1) is violated. Hence, there exist a subset
N := {xi1 , · · · , xik } ⊆ {x1, · · · , xn} and an xV ∈ conv(N) ⊆ Y such that xV /∈
F(N) or T (xV ) ∩ (xij +W) �= ∅ for all j = 1 · · · , k. Let L be the subspace of X
generated by {x1, · · · , xn}, and

M := {y ∈ L : T (xV ) ∩ (y +W) �= ∅}.

Note that N ⊆ M . Since L, T (xV ), and W are all convex, it is easily checked that
M is convex. Therefore, xV ∈ convN ⊆ convM = M and, by definition of M , we
get T (xV )∩ (xV +W) �= ∅. This shows that T (xV )∩ (xV +V ) �= ∅. This completes
our proof. �
Corollary 5.6 Let Y be a compact convex subset of a topological vector space X
satisfying one of the conditions (1)-(5) of Theorem 5.8. Let T : Y → 2X a u.s.c.
multifunction with convex values such that T (x) ∩ Y �= ∅ for each x ∈ Y , then T
has the almost fixed point property.

Let X be a convex subset of a vector space and Y a topological space. Motivated
by earlier works, Chang and Yen [37] defined the following :
T ∈ KKM(X, Y ) ⇔ T : X → 2Y is a multifunction such that the family

{S(x) : x ∈ X} has the finite intersection property whenever S : X→ 2Y has closed
values and T (conv(Z)) ⊆ S(Z) for each nonempty finite subset Z of X.

The following is another almost fixed point result.

Theorem 5.10 Let Y be a convex subset of a topological vector space X and T ∈
KKM(Y, Y ). If T (Y ) is totally bounded, then T has the convexly almost fixed point
property.

Proof For any convex neighborhood V of θ ∈ X, we have an open convex neighbor-
hood� of θ such that� ⊆ V and a nonempty finite subset {x1, x2, · · · , xn} ⊆ T (Y )
such that T (Y ) ⊆

n⋃
i=1

(xi +�). We may assume that {x1, x2, · · · , xn} ⊆ Y . In fact,

let U be a symmetric neighborhood of θ ∈ X such that U + U ⊆ �. Suppose
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that {y1, y2, · · · , yn} ⊆ T (Y ) ⊆ Y and W is an open convex neighborhood of θ

such that T (Y ) ⊆
n⋃
i=1

(yi + W) and W ⊆ U . Since {yi + W : i = 1, · · · , n} is

an open cover of T (Y ) ⊆ Y , we have (yi + W) ∩ Y �= ∅ for each i. Choose an

xi ∈ (yi +W) ∩ Y for each i. Then T (Y ) ⊆
n⋃
i=1

(xi + (yi − xi)+W) and the open

convex set yi − xi +W ⊆ −W +W ⊆ U + U ⊆ �. Then, T (Y ) ⊆
n⋃
i=1

(xi + �)

and xi ∈ Y for each i. Let us define a multifunction F : Y → 2Y by

F(x) := T (Y ) \ (x +�) for each x ∈ Y.

Then F is closed-valued and

n⋂
i=1

F(xi) = T (Y ) \
n⋃
i=1

(xi +�) = ∅.

Since T ∈ KKM(Y, Y ) and {F(x) : x ∈ Y } does not have the finite intersection
property, we have T (convZ) � F(Z) for a nonempty finite subset Z ⊆ Y .
Therefore, there exist xV ∈ convZ ⊆ Y and yV ∈ T (xV ) ⊆ T (Y ) such that

yV /∈ F(z) = T (Y ) \ (z+�) for all z ∈ Z.

Therefore, yV ∈ z+� for all z ∈ Z. LetZ := {z1, z2, · · · , zm} and xV :=
m∑
j=1

λj zj ,

where λj ≥ 0 and
m∑
j=1

λj = 1. Then yV = (

m∑
j=1

λj )yV ∈
m∑
j=1

λj zj +
m∑
j=1

λj� ⊆
xV + � ⊆ xV + V . Therefore, yV ∈ T (xV ) ∩ (xV + V ) �= ∅. This completes our
proof. �

Note that a particular form of Theorem 5.10 was obtained by Chang and Yen
[37].

From Theorem 5.10, we have the following corollary.

Corollary 5.7 Let Y be a convex subset of a locally convex topological vector space
X and T : Y → Y a continuous map such that T (Y ) is totally bounded. Then T has
the almost fixed point property.

Proof Note that a continuous map T : Y → Y belongs to KKM(Y, Y ). �
We remark that we can derive Corollary 5.7 directly from the KKM principle just

by following the proof of Theorem 5.9.
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Corollary 5.8 Let Y be a convex subset of a locally convex topological vector space
X and T : Y → Y a continuous map. If Y is totally bounded, then T has the almost
fixed point property.

Proof Note that T : Y → Y can be regarded as T : Y → Y . Since T (Y ) ⊆ Y is
totally bounded, so is T (Y ). Now, the conclusion follows from Corollary 5.7. �

Theorem 5.9 can be applied to obtain fixed point theorems [146].

Lemma 5.2 Let Y be a subset of a topological vector spaceX,K a compact subset
Y , and T : Y → 2Y a closed map with nonempty values. If, for any neighborhood
V of θ ∈ X, there exists an xV ∈ Y such that K ∩ T (xV ) ∩ (xV + V ) �= ∅, then T
has a fixed point x0 ∈ K , that is, x0 ∈ T (x0).

Proof For each neighborhood V of θ ∈ X, there exists a yV ∈ K such that yV ∈
T (xV )∩ (xV +V ). SinceK is compact, we may assume that the net (yV ) converges
to some x0 ∈ K ⊆ Y . Since Y is Hausdorff and yV ∈ xV + V , the net (xV ) also
converges to x0. Since (xV , yV ) ∈ Gr(T ) and Gr(T ) is closed, we have (x0, x0) ∈
Gr(T ). This completes our proof. �

We have the following from Theorem 5.9 and Lemma 5.2 :
Theorem 5.11 Let Y be a subset of a topological vector space X and T : Y → 2Y

a compact u.s.c. multifunction with nonempty closed values. If T (Y ) is an s.c.t.b.
subset of Y , then T has a fixed point x0 ∈ Y .

Proof Note that T is closed and K := T (Y ) is a compact subset of Y . By
Theorem 5.3, any closed compact multifunction having the almost fixed point
property has a fixed point. �

Note that Theorem 5.11 is a particular case of Theorem 5.6 of Idzik. However,
its proof is based on the KKM principle only, and is more easily accessible.

Corollary 5.9 Let Y be a compact convex subset of a topological vector space
satisfying one of the conditions (1)–(5) of Theorem 5.8. Then any Kakutani map
T : Y → 2Y has a fixed point.

The following is proved in [105].

Theorem 5.12 Let Y be a nonempty subset of a topological vector space X, V a
convex neighborhood of θ inX, and T : Y → 2X a multifunction with convex values.
Suppose that there is a finite subsetZ := {x1, x2, · · · , xn} of Y such that convZ ⊆ Y
and T (Y ) ⊆

n⋃
i=1

(xi + V ). If one of the following conditions is satisfied :

1. T is upper semicontinuous and V is closed,
2. T is lower semicontinuous and V is open,

then T has a V -fixed point, that is, there exists a point x0 ∈ Y such that T (x0) ∩
(x0 + V ) �= ∅.
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Proof We will prove the result only for the case 1. A similar argument establishes
the result for the case 2. Suppose that T : Y → 2X is an upper semicontinuous
multifunction with convex values and V is a convex closed neighborhood of θ in X.
Define a multifunction F : Y → 2X by

F(xi) =
{
x ∈ X : T (x) ∩ (xi + V ) = ∅

}
for each xi ∈ Z.

Then F has open values in X since T is upper semicontinuous. Note that

n⋂
i=1

F(xi) =
{
x ∈ X : T (x)

⋂ n⋃
i=1

(xi + V ) = ∅
}
= ∅.

By Lemma 5.1, F : Y → 2X is not a KKM map, that is, there is a finite subset
A := {y1, y2, · · · , yn} of Z such that conv(Z) � F(A). Hence there is an x0 ∈
conv(Z) such that x0 /∈ F(yi) or T (x0)∩ (yj +V ) �= ∅ for all j = 1, 2, · · · ,m. Let

x0 =
m∑
j=1

rj yj with 0 ≤ rj ≤ 1 and
m∑
j=1

rj = 1. Since zj ∈ T (x0) ∩ (yj + V ) for

some zj , j = 1, 2, · · · ,m and the sets T (x0) and V are convex, we conclude that

z0 :=
m∑
j=1

rj zj ∈ T (x0) ∩ (x0 + V ), that is T (x0) ∩ (x0 + V ) �= ∅.

This completes the proof. �
Corollary 5.10 Let Y be a nonempty subset of a topological vector space X, V a
convex open (or closed) neighborhood of θ inX, and T : Y → X a continuous map.
If there is a finite subset Z := {x1, x2, · · · , xn} of X such that conv(Z) ⊆ Y and

T (Y ) ⊆
n⋃
i=1

(xi + V ), then T has a V -fixed point x0 ∈ X, that is, T (x0) ∈ x0 + V .

Corollary 5.11 Let Y be a nonempty convex subset of a topological vector spaceX
and T : Y → Y a continuous map. If Y is totally bounded, then T has the convexly
almost fixed point property.

Proof Since X is totally bounded and T (X) ⊆ X, the conclusion follows
immediately from Corollary 5.10. �

The following is given in [105]

Theorem 5.13 Let Y be a nonempty subset of a topological vector space X and

T : Y → 2Y an upper semicontinuous multifunction with convex values such that
T (Y ) is totally bounded. Then for any convex closed neighborhood U of θ in X, T
has a U -fixed point xU ∈ X.
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Similarly, if T is lower semicontinuous, then T has aU -fixed point for any convex
open neighborhood U of θ in X.

Proof By symmetry, it suffices to show the result for the upper semicontinuous

multifunction T . Let T : Y → 2Y an upper semicontinuous multifunction with
convex values and U a convex closed neighborhood of θ in X. Then there exists
a neighborhood V of θ in X such that V + V ⊆ U . Since T (Y ) is totally bounded,

there is a finite subset {y1, y2, · · · , yn} of T (Y ) such that T (Y ) ⊆
n⋃
i=1

(yi + V ). For

each i ∈ {1, 2, · · · , n} we can choose an xi ∈ X such that yi − xi ∈ V . From this it
follows that

T (Y ) ⊆
n⋃
i=1

(yi + V ) ⊆
n⋃
i=1

(xi + V + V ) ⊆
n⋃
i=1

(xi + U).

By Theorem 5.12, there exists a point xU ∈ X such that T (xU )∩ (xU +U) �= ∅.
This completes the proof. �
Corollary 5.12 Let Y be a nonempty convex subset of a topological vector space
X and T : Y → Y a continuous map such that T (Y ) is totally bounded. Then T has
the convexly almost fixed point property.

If X is a locally convex or a metrizable topological vector space whose balls are
convex, then Corollaries 5.11 and 5.12 hold for any neighborhood U of θ inX. Note
that Corollaries 5.11 and 5.12 generalize Theorem 2.17.

Corollary 5.12 does not guarantee the existence of fixed points of T as illustrated
in the following example [105].

Example 5.1 Let Y = {(x, y) : x2 + y2 < 1} be the open unit disk in R
2 and

T : Y → Y defined by T (x, y) := (x,
√

1 − x2) for each (x, y) ∈ Y . Then the
continuous map T has no fixed point.

However, the following celebrated Himmelberg fixed point theorem [83] is
deduced from Theorem 5.13.

Theorem 5.14 Let Y be a nonempty convex subset of a locally convex topological
vector space X and T : Y → 2Y a compact upper semicontinuous multifunction
with convex closed values. Then T has a fixed point x0 ∈ Y , that is, x0 ∈ T (x0).

Proof For any closed neighborhood U of θ in X, by Theorem 5.13, there exists a
point xU ∈ Y such that T (xU )∩ (xU +U) �= ∅, say yU ∈ T (xU )∩ (xU +U). Since
T is compact and yU ∈ T (X) ⊆ X, we may suppose that the net (yU ) converges to
some point x0 ∈ X. By the Hausdorffness of X, the net (xU ) also converges to x0.
Since the graph of T is closed, we have x0 ∈ T (x0). This completes the proof. �
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The following interesting corollaries are worth mentioning [105].

Corollary 5.13 Let Y be a nonempty convex subset of a locally convex topological
vector space X and T : Y → Y a compact continuous map. Then T has a fixed
point.

Corollary 5.13 was due to Hukuhara [86] with different proof, and includes fixed
point theorem due to Brouwer (for an n-simplex Y ), Schauder (for a normed vector
space X), and Tychonoff (for a compact convex subset Y ).

We have one more

Corollary 5.14 Let Y be a nonempty convex subset of a metrizable topological
vector space X whose balls are convex and T : Y → Y a compact continuous map.
Then T has a fixed point.

If X itself is compact, then Corollary 5.14 reduces to a result of Rassias [162].
Note that, since the KKM principle is equivalent to the Brouwer fixed point

theorem, each of Corollaries 5.10, 5.11, 5.12, 5.13, and 5.14 is also equivalent to
the Brouwer theorem.

As an application of Corollary 5.10, the following almost fixed point theorem in
a normed space is proved in [105].

Theorem 5.15 Let Y be a convex subset of a normed vector space X and T : Y →
Nε(Y ) := {y ∈ X : inf{‖x − y‖: x ∈ Y } ≤ ε} a continuous map which has totally
bounded range, where ε is a positive real number. Then inf{‖x−T (x)‖: x ∈ Y } ≤ ε.
Proof For any natural n, Vn := {z ∈ X : ‖z‖ ≤ ε + 1

n
}. Since T (Y ) is covered

by the family {x + Vn : x ∈ Y } and totally bounded, there exists a finite subset

{x1, x2, · · · , xk} of Y such that T (Y ) ⊆
k⋃
i=1

(xi +Vn). Therefore, by Corollary 5.10,

T has Vn-fixed point xn0 ∈ Y , that is, T (xn0 ) ∈ xn0 + Vn or ‖xn0 − T (xn0 )‖ ≤ ε +
1

n
.

Therefore, we have the conclusion. �
Note that Kirk [109] obtained Theorem 5.15 for the case when Y is a closed

convex subset of a Banach space.
We give a few definitions.
For topological spaces X and Y , an admissible class Ukc (Y, Z) of maps F : Y →

2Z is one such that, for each F and each nonempty compact subset K of X, there
exists a map G ∈ Uc(Y, Z) satisfying G(x) ⊆ F(x) for all x ∈ K , where Uc
consists of finite compositions of maps in a class U of maps satisfying the following
properties :
(i) U contains the class C of (single-valued) continuous functions,
(ii) each T ∈ Uc is upper semicontinuous (u.s.c.) with nonempty compact values,

and
(iii) for any polytope P , each T ∈ Uc(P, P ) has a fixed point, where the

intermediate spaces are suitably chosen.
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The better admissible class B of multifunctions defined from a convex set Y to a
topological space Z is defined as follows :
F ∈ B(Y, Z)⇔ F : Y → 2Z is a multifunction such that for any polytope P in

Y and any continuous map f : F(P )→ P, f ◦ (F |P )→ 2P has a fixed point.
Subclasses of B are classes of continuous functions C, the Kakutani maps (u.s.c.

with nonempty compact convex values and codomains are convex spaces), the
Aronszajn multifunctions M (u.s.c. with Rδ values) [73], the acyclic multifunctions
V (u.s.c. with compact acyclic values), the powers multifunctions Vc (finite
compositions of acyclic multifunctions), the O’Neill maps N (continuous with
values of one or m acyclic components, where m is fixed) [73], the approachable
multifunctions A (whose domains and codomains are uniform spaces) [18, 19],
admissible multifunctions of Górniewicz [70], σ -selectional multifunctions of
Haddad and Lasry, permissible multifunctions of Dzedzej [50], the class K

+
c of

Lassonde[125], the class V
+
c of Park, Singh, and Watson [149], and approximable

multifunctions of Ben-El-Mechaiekh and Idzik, and many others.
These subclasses are all examples of the admissible class Ukc . Some examples of

multifunctions in B not belonging to Ukc are known.
The following is known [143, 144].

Lemma 5.3 Let Y be a convex subset of a topological vector space X and Z a
Hausdorff space. Then

(1) Ukc (Y, Z) ⊆ KKM(Y, Z), and
(2) in the class of closed compact multifunctions, two subclasses B(Y, Z) and

KKM(Y, Z) coincide.

It should be noted that there are only a few examples of multifunctions in
KKM(Y, Z) which are not in Ukc or B [37].

The following fixed point result is given in [144, 146].

Theorem 5.16 Let Y be a convex subset of a locally convex topological vector
space X and T ∈ B(Y, Y ). If T is closed and compact, then T has a fixed point.

Proof By Theorem 5.3, any closed compact multifunction having the almost
fixed point property has a fixed point. Therefore, Theorem 5.16 follows from
Theorem 5.10 and Lemma 5.3. �

Comparing Theorem 5.16 with Theorem 5.6, a fixed point theorem is given for
a much more general class of multifunctions under a more restrictive condition on
the space itself than Idzik’s.

Theorem 5.16 contains fixed point theorems due to Himmelberg [83], Lassonde
[123], Park [142], Park et al. [149], Chang and Yen [37], and many others.
Consequently, different proofs of those known results are given.
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Given Theorem 5.8, we have the following [146].

Corollary 5.15 Let Y be a compact convex subset of a topological vector space
and Let T ∈ B(Y, Y ) be a closed multifunction. Then T has a fixed point if one of
the following equivalent conditions hold :
(1) Y is s.c.t.b.
(2) Y is of Zima type.
(3) Y is locally convex.

The following is a generalized version of Fort’s theorem for better admissible
multifunctions on balls of a normed vector space [105].

Theorem 5.17 Let X be a normed vector space and B = {x ∈ X : ‖x‖ < d} for
some d > 0. Let T ∈ B(B,B) be a closed multifunction. If T maps each smaller
concentric ball to a compact set in B, then for any ε > 0, there exists an x0 ∈ B
and a y0 ∈ T (x0) such that ‖x0 − y0‖ ≤ ε.
Proof Let ε > 0 be given. We may assume ε < d. Let C = {x ∈ B : ‖x‖ ≤ d − ε},
and define a retraction r : B → C by

r(x) =
⎧⎨
⎩
(d − ε)x
‖x‖ for x ∈ B \ C,
x for x ∈ C.

ThenG := r ◦T |C ∈ B(C,C) andG is compact and closed since r is continuous
and T |C is upper semicontinuous. Therefore, by Theorem 5.16, there exists a point
x0 ∈ C ⊆ B such that x0 ∈ G(x0) = r ◦ T (x0). Hence, there exists a y0 ∈ T (x0) ⊆
B such that r(y0) = x0. Since ‖r(x) − x‖ ≤ ε for all x ∈ B and y0 ∈ B, we have
‖x0 − y0‖ = ‖r(y0)− y0‖ ≤ ε. This completes the proof. �
Corollary 5.16 Let Bn = {x ∈ R

n : ‖x‖ < d} for some d > 0, and let T : Bn →
Bn be continuous. Then for each ε > 0, there exists a point x ∈ Bn such that
‖x − T (x)‖ ≤ ε.
Remark 5.2

(1) For n = 2 and T : B2 → B2, Corollary 5.16 is Fort’s theorem [60] obtained
with different proof.

(2) For T : Bn → Bn, Corollary 5.16 is obtained by van der Walt [191] who
applied his result to show that the Euclidean plane R2 has the almost fixed point
property with respect to continuous maps and finite covers by convex open sets
(that is, for every continuous T : R2 → R

2 and a finite cover α of R2 by convex
open sets, there exists a member U ∈ α such that U ∩T (U) �= ∅). This fact was
extended by Hazewinkel and van de Vel [80] to any locally convex topological
vector space instead of R2. Some related results can be seen in [88].
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5.2 Approximate Fixed Point Sequences

Definition 5.4 Let Y be a nonempty subset of a Hausdorff topological vector space
(X, τ) and T : Y → Y be a mapping. A sequence (xn)n in Y is called a τ -
approximate fixed point sequence for T if xn − T (xn) τ−→ θ , as n −→∞.

Definition 5.5 Let Y be a nonempty subset of a Hausdorff topological vector
space (X, τ). We will say that Y has the τ -approximate fixed point property if,
whenever we take another Hausdorff vector topology σ inX, then every sequentially
continuous mapping T : (Y, σ )→ (Y , τ ) has a τ -approximate fixed point sequence.

For the sake of simplicity, we shall use the term “τ -afp property” to refer to sets
with this property.

Definition 5.6 A topological Hausdorff vector space (X, τ) is said to have the τ -afp
property if every compact convex subset Y of X has the τ -afp property.

Remark 5.3 We note, however, that it is not immediately clear what happens if σ �=
τ . In this context, it is worthwhile to remark that τ -convergence in Definition 5.5 is
the most natural way to approximate fixed points for T . The reason for this is that
there are situations where σ is finer than τ and T has no σ -approximate fixed points.

5.2.1 On Lipschitz and Approximate Lipschitz Fixed Point
Properties

In [115], Klee proved that a noncompact convex set in a normed space lacks the
fixed point property for continuous maps. In [126], Lin and Sternfeld asked if this
result remains true for Lipschitz mappings. They introduced the following

Definition 5.7

• Let (X1, d1) and (X2, d2) be metric spaces. A function T : X1 → X2 is a
Lipschitz map if

‖T ‖L = sup

{
d2(T (x), T (y))

d1(x, y)
: x, y ∈ X1

}
<∞.

• (X1, d1) has the Lipschitz fixed point property (L.f.p.p.) if every Lipschitz self
map of X1 has a fixed point.

• (X1, d1) is said to have the approximate Lipschitz fixed point property (approx.
L.f.p.p.) if every Lipschitz self map of X1 inf{d1(x, T (x)) : x ∈ X1} = 0.
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Notations
Let (en)n≥1 the canonical base of l∞ and set

�n = conv({θ, en, en+1}), n ≥ 1, and � =
∞⋃
n=1

�n. (5.3)

Definition 5.8

• A metric space Y is a Lipschitz absolute retract (L.A.R.) if whenever a metric
space X contains Y as a closed set, there exists a Lipschitz retraction r : X→ Y .

• A mapping h : (X1, d1)→ (X2, d2) is a Lipschitz equivalence if h is Lipschitz,
one-to-one, and h−1 is Lipschitz. If there exists a Lipschitz equivalence of X1
onto X2 then X1 and X2 are said to be Lipschitz equivalent.

• Two metric functions d and ρ on a set are equivalent if the identity map
id : (X, d)→ (X, ρ) is a Lipschitz equivalence.

The following is given in [126].

Lemma 5.4 Let (X, d) be a metric space, and let Y be a Lipschitz retract of X. If
Y lacks the L.f.p.p. (approx. L.f.p.p.) then so does X.

Proof We prove for the approx. L.f.p.p. Let r : X → Y be a retraction, and let
T : Y → Y be a Lipschitz map with inf{d(x, T (x)) : x ∈ Y } = α > 0. LetG : X→
X be defined byG = T ◦ r , and ε = α

(‖G‖L + 2)
. (Note that ‖G‖L ≤ ‖T ‖L‖r‖L).

Let x ∈ X\Y . If dist(x, Y ) ≥ ε then d(x,G(x)) ≥ dist(x, Y ) ≥ ε. If dist(x, Y ) < ε
let y ∈ Y be such that d(x, y) < ε, and then

d(x,G(x)) ≥ d(y,G(y))− d(x, y)− d(G(x),G(y)) ≥ α − ε − ‖G‖Lε = ε.

Hence d(x,G(x)) ≥ ε for all x ∈ X. �
Definition 5.9 A metric space X is a Lipschitz absolute extensor (L.A.E.) if for
every metric space W , a closed subset Z of W , and a Lipschitz map T : Z → X,
T admits a Lipschitz extension T̃ : W → X. If there exists a λ ≥ 1 such that
‖T̃ ‖L ≤ λ‖T ‖L, then X is said to be a λ L.A.E.

We have the following example of a λ L.A.E. [131].

Proposition 5.2 R is a 1 L.A.E.

Proof Let T : Z → R be a Lipschitz map, then T̃ (w) = sup{T (z) −
‖T ‖Ld(z,w) : z ∈ Z} is an extension of T with ‖T̃ ‖L = ‖T ‖L. �
Corollary 5.17 For every set !, l∞(!) is a 1 L.A.E., where l∞(!) denotes the
Banach space of bounded real valued functions on ! with the norm ‖f ‖∞ =
sup{|f (x)| : x ∈ !}.
Proof Apply Proposition 5.2 to each coordinate T (x, .), x ∈ !, of a Lipschitz map
T : Z→ l∞(!). �
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The following Lipschitz version of a theorem by Hausdorff [79] is given in [126].
The proof follows that of Arens [8]. A local version is given in [128].

Theorem 5.18 Let Y andW be two metric spaces, Z ⊆ W closed, and T : Z→ Y

a Lipschitz map. There exists a metric space X which contains Y (isometrically) as
a closed set, a Lipschitz extension G : W → X of T .

Proof Note first that Y is isometric to a subset of l∞(Y ) (x �→ d(x, .)− d(., x0) is
an isometry, where x0 ∈ Y is some fixed point). Set C = l∞(Y ) × R, we realize
l∞(Y ) in C as l∞(Y )× {0} and we may assume that Y ⊆ l∞(Y )× {0} ⊆ C. So, in
particular T : Z → l∞(Y ) × {0}, and since this is a L.A.E. (by Corollary 5.17) T
admits a Lipschitz extension H : W → l∞(Y )×{0}. LetG : W → C be defined by
G(w) = H(w)+ (0, dist(w,Z)) and set X = G(W) ∪ Y . One checks easily that Y
is closed in X and that G|Z = T . �

As a consequence of Theorem 5.18, we have the following results on L.A.R. and
L.A.E. metric spaces [126].

Theorem 5.19 A metric space X is a L.A.R. if and only if it is a L.A.E.

Proof L.A.E. �⇒ L.A.R. Let Y be a L.A.E. and let X contain Y as a closed set.
Then a Lipschitz extension T : X → Y of the identity mapping id : Y → Y is a
retraction.
L.A.R. �⇒ L.A.E. Let Y be a L.A.R., let Z ⊆ W be closed, and let T : Z→ Y

be a Lipschitz map. By Theorem 5.18, there exists a space X which contains Y as
a closed set, and a Lipschitz extension G : W → X of T . Since Y is a L.A.R. there
exists a Lipschitz retraction r : X → Y . Then T̃ = r ◦ G : W → Y is a Lipschitz
extension of T . �
Corollary 5.18 A retract of a L.A.R. is a L.A.R.

Proof Let Y be a retract of a L.A.R. X with a Lipschitz retraction r : X → Y . We
prove the X is a L.A.E. Let Z ⊆ W be closed, and T : Z → Y be given. Then also
T : Z → X, and since X is a L.A.E. there exists an extension G : W → X of T . It
follows that T̃ = r ◦G : W → Y is a Lipschitz extension of T . �
Corollary 5.19 If X is Lipschitz equivalent to a L.A.R. then it is a L.A.R.

Proof This is trivial for a L.A.E., and hence follows from Theorem 5.19 �
The following properties of � are given in [126].

Proposition 5.3 There exists a Lipschitz retraction r : l∞ → �.

Proof We consider l∞ as a lattice with the natural order. Note that for x ∈ � and
y ∈ l∞ 0 ≤ y ≤ x implies y ∈ �. Let e = (1, 1, 1, · · · ) ∈ l∞, and x ∈ l∞. Set

E(x) = {ε : ε ≤ 0, (x − εe) ∧ 0 ∈ �}.

Clearly ‖x‖ ∈ E(x). Let ε : l∞ → R
+ be defined by ε(x) = infE(x). Then ε is a

Lipschitz map with ‖ε‖L = 1. Indeed, for x and y in l∞, x ≤ y + ‖x − y‖. Hence
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ε(y)+‖x−y‖ ∈ E(x) and it follows that ε(x) ≤ ε(y)+‖x−y‖, and by symmetry
|ε(x)−ε(y)| ≤ ‖x−y‖. Let now r : l∞ → � be defined by r(x) = (x−ε(x).e)∧0.
Then r is a Lipschitz retraction and ‖r‖L ≤ 2. �
Proposition 5.4 The space � as well as the spaces R+ and (0, 1] = {t ∈ R : 0 <
t ≤ 1} (with the metric induced from R) are Lipschitz absolute retracts.

Proof The fact that � is a L.A.R. follows from Corollary 5.17, Corollary 5.18 and
Proposition 5.3 Since R

+ is a retract of R, it is a L.A.R., too. To prove that (0, 1] is
a L.A.R., we show that (0, 1] is L.A.E. So let Z ⊆ W closed and T : Z→ (0, 1] be
given. Then also T : Z → [0, 1] and since [0, 1] a L.A.E., there exists a Lipschitz
extension G : W → [0, 1]. Then

T̃ (w) = G(w) 1

1 + dist(w,Z)
: W → (0, 1]

is a Lipschitz extension of T . �
Proposition 5.5 Let Y be a noncompact convex subset of a normed space X.

1. If Y is not totally bounded then it contains a closed set which is Lipschitz
equivalent to either � or R+.

More precisely : If some bounded subset of Y is not totally bounded then
Y contains a closed set which is Lipschitz equivalent to �, while if some ball
{x ∈ Y : ‖x − x0‖ ≤ 1} in Y is totally bounded (and Y itself is not) then Y
contains a closed set which is Lipschitz equivalent to R

+.
2. If Y is totally bounded then it contains a closed set which is Lipschitz equivalent

to (0, 1].
Proof Let Y be a noncompact convex subset of a normed space X. We distinguish
between the following two cases : Case (i) : Y is not totally bounded, and Case
(ii) : Y is totally bounded.

Cases (i). Here also we separate the proof into two cases.
Cases (i)a. Some bounded subset of Y is not totally bounded. In this case we may

assume without loss of generality that θ ∈ Y , and that Y1 = {x ∈ Y : ‖x‖ ≤ 1} is
not totally bounded. Hence, there exists some r > 0 such that Y1 cannot be covered
by many finitely many balls of radius 2r . It follows that

1. For every finite-dimensional linear subspace Z of X, there exists some x ∈ Y1
with dist(x, Z) ≥ r .

Indeed, if not then Z+Br(θ) ⊇ Y1 and from the compactness of {y ∈ Z : ‖y‖ ≤
2} it follows that finitely many balls of radius 2r cover Y1.

Now we select inductively a sequence (xn)n≥1 in Y1 as follows : let x1 ∈ Y1
be any element with ‖x1‖ ≥ r . Assume that x1, x2, · · · , xn have been selected. Set
W = span{x1, x2, · · · , xn}, and apply 1. to find xn+1 ∈ Y1 with dist(xn+1,W) ≥ r .
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For n ≥ 1 set

�′
n = conv({θ, xn, xn+1}) �′ =

∞⋃
n=1

�′
n.

Then �′ is a closed subset of Y and is Lipschitz equivalent to � by the map
H : � → �′ which is defined by H(θ) = θ,H(en) = xn, n ≥ 1, and H is linear
on each �n.

Case(i)b. Some ball {x ∈ Y : ‖x − x0‖ ≤ 1} is totally bounded. Note that in this
case Y must be unbounded. Again we assume θ ∈ Y . Let X̃ be the completion of
X, and let Y be the closure of Y in X̃. Set Yn = {x ∈ Y : ‖x‖ ≤ n}. Then Y1 is
compact, and since (n+1)−1Yn+1 ⊆ n−1Yn ⊆ Y1, and n−1Yn contains a unit vector

for each n,
∞⋂
n=1

n−1Yn must contain some vector y0 with ‖y0‖ = 1. Then ty0 ∈ Y

for all t ∈ R
+. For each n ≥ 1 pick some xn ∈ Y with ‖ny0 − xn‖ < (n + 10)−1.

Then
∞⋃
n=1

[xn, xn+1] is a closed subset of Y is Lipschitz equivalent to R
+.

Case (ii). Once again let Y denote the closure of Y in the completion of X. Pick
x0 ∈ Y \ Y and x1 ∈ Y . For n ≥ 2 select xn ∈ Y such that

∥∥∥∥
((

1 − 1

n

)
x0 + 1

n
x1

)
− xn

∥∥∥∥ < 2−(n+10).

Then
∞⋃
n=1

[xn, xn+1] is a closed subset of Y which is Lipschitz equivalent to

(0, 1]. �
Proposition 5.6 � lacks the approx. L.f.p.p.

In [126], Lin and Sternfeld gave a characterization of noncompact convex sets in
a normed space, having the approx. L.f.p.p.

Theorem 5.20 Let Y be a noncompact convex set in a normed space.

1. If Y is not totally bounded then it lacks the approx. L.f.p.p.
2. If Y is totally bounded then it has the approx. L.f.p.p., but lacks the L.f.p.p.

Proof

1. Follows from Lemma 5.4 and Propositions 5.4, 5.5 and 5.6.
2. The second part follows from Lemma 5.4 and Propositions 5.4, 5.5 and 5.6.

For the first part, Let Y be a noncompact totally bounded convex subset of
a normed space X, and let T : Y → Y be a Lipschitz map. Let X̃ denote the
completion of X, and Y the closure of Y in X̃. Then Y is compact, and T admits
an extension T̃ : Y → Y . By the Schauder fixed point theorem T̃ has a fixed
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point x0 ∈ Y . Let (xn)n ⊆ Y be a sequence which converge to x0. Then (xn)n is
an approximate fixed point for T , i.e., lim

n−→∞‖xn − T (xn)‖ = 0, and it follows

that Y has the approx. L.f.p.p.

�
The closed unit ball in an infinite-dimensional normed space lacks the approx.

L.f.p.p. [23]. For Banach spaces, we have this more general result.

Theorem 5.21 A closed noncompact convex set in a Banach space lacks the
approx. L.f.p.p.

Combine Theorem 5.20 with the Schauder fixed point theorem and we obtain :
Theorem 5.22 A convex set in a normed space has the L.f.p.p. if and only if it is
compact.

The precedent results bring out the necessity of considering weaker topologies
ensuring the sequential approximation of fixed points where no stronger conver-
gence can be expected.

When X is a Banach space, a nonexistence result was reported by Domínguez
Benavides et al. [22].

Theorem 5.23 Let Y be a closed convex of a Banach space X. If Y is not weakly
compact, then there exists a closed convex subset Z of Y and a continuous affine
map T : Z→ Z such that inf{lim inf ‖y − T n(x)‖: x, y ∈ Z} > 0.

It is natural then to look for weak-approximating fixed point sequences instead
of stronger ones.

Definition 5.10 Let (X, ‖.‖) be a Banach space and Y ⊆ X. A mapping T : Y →
X is called demicontinuous if it maps strongly convergent sequences into weakly
convergent sequences.

The next result is due to Moloney and Weng [133].

Proposition 5.7 Let X be a Hilbert space, Y a closed ball and T : Y → Y a
demicontinuous mapping. Then T admits a weak-approximate fixed point sequence,
that is, a sequence (xn)n ⊆ Y such that (xn − T (xn))n converges weakly to θ .

To study the weak-approximate fixed property in Banach and abstract spaces, the
following results have been given by Barroso [12].

Theorem 5.24 Let Y be a compact convex subset of a topological vector space
(X, τ). Assume that Y has an admissible function on X. Then Y has the τ -afp
property.

Proof Fix any n ≥ 1. From 1. and the fact that ρ(θ) = 0, it follows that if x ∈ Y
then the set B 1

n
(x) = {y ∈ Y : ρ(y − x) < 1

n
} is τ -open in Y with respect to the

relative topology of X. Thus, the family {B 1
n
(x) : x ∈ Y } is an open covering of
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the compact set Y . From compactness we can extract the finite sub covering, i.e., a
finite subset �n = {x1, · · · , xNn} of Y such that

Y =
Nn⋃
i=1

B 1
n
(xi).

Let Pn : Y → conv(�n) ⊆ conv(�n) be the Schauder’s projection associated to
�n and ρ, where co(�n) denotes the τ -closure of the convex hull of �n. In view of
Proposition 1.44 it follows that Pn is τ -continuous. Moreover, by using 2. and 3. we
see that

ρ(Pn(x)− x) < 1

n
,

for all x ∈ Y . Let now σ be another Hausdorff vector topology in X and
T : (Y, σ )→ (Y, τ ) a sequentially continuous mapping. Then the mapping

Pn ◦ T : (conv(�n), σ )→ (conv(�n), τ )

is also sequentially continuous. Let us denote by Gn the linear span of �n. Observe
that the linear operator  : Gn → E defined by  (

∑
αixi) =

∑
αiei is

an algebraic isomorphism, where {ei} denotes the canonical basis of the space
E = (RNn, eucld). Here the word “eucld” indicates the euclidean topology. Thus,
if we denote by  σ (resp.  τ ) the mapping  from (Gn, σ ) (resp. (Gn, τ )) into E

then, it follows that both these maps are linear homeomorphisms. Hence, setting
Zn =  τ (conv(�n)) we see that Zn =  σ (conv(�n)).

(conv(Γn), σ)
Pn◦T

(conv(Γn), τ)

Φτ

(Zn, eucld)

Φ−1
σ

(Zn, eucld)

According to the above diagram,
[
 τ ◦ (Pn ◦ T ) ◦ −1

σ

]
is a sequentially contin-

uous mapping from (Zn, eucld) into itself. Since Zn is convex and compact with
respect to the eucld-topology, it follows from Brouwer’s fixed point theorem that

[
 τ ◦ (Pn ◦ T ) ◦ −1

σ

]
(zn) = zn,

for some zn ∈ Zn. Thus (Pn ◦ T )(un) = un, where un =  −1(zn). It follows that

ρ(un − T (un)) < 1

n
,
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for all n ≥ 1. Using now Proposition 1.7 we can conclude that Y is sequentially
compact, for τ is finer than τρ on Y , the metric topology induced by ρ. Thus, we may

assume (by passing to a subsequence if necessary) that un
τ−→ x and T (un)

τ−→ y,
for some x, y ∈ Y . Hence, in view of 1., we get

ρ(x − y) = 0,

and so x = y by 4.. This shows that un − T (un) τ−→ θ and concludes the proof. �
Next, some of the theoretical implications of Theorem 5.24 are given [12].

Corollary 5.20 Let Y be a compact convex subset of a topological vector space
(X, τ) and F = {ρn : n ∈ N} a countable family of seminorms on X which separate
points of Y − Y and such that the topology � generated by F is coarser than τ in
Y . Then Y has the τ -afp property.

Proof By Proposition 1.45, Y has an admissible function on X. Theorem 5.24 now
implies that Y has the τ -afp property. �
Corollary 5.21 Every (weakly) compact convex subset Y of a Hausdorff locally
convex space (X, τ) whose topological dual space X′ is weak∗ separable has the
(weak) τ -afp property.

Proof Since X′ is weak∗ separable, it follows that X′ is total over X. Then, for a
weak∗ dense sequence (φn)n in X′, it follows that

x �→ |φ(x)|

yields a countable family F of τ -continuous (resp. weak continuous) seminorms on
X which separates points. In this case, notice that the topology � determined by F
is coarser than τ (resp. weak topology). Therefore, in view of Corollary 5.20, we
conclude that every compact (resp. weakly compact) convex subset of X has the
τ -approximate (resp. weak) fixed point property. �
Remark 5.4 As a consequence of the preceding corollary it follows that every
separable Banach space has the weak-afp property. Indeed, if X is a separable
Banach space then by the Banach-Alaoglu theorem (Theorem 1.28), each dual ball
Bn(θ) centered at the origin with radius n, n ≥ 1, is weak∗ compact metric space
and hence a separable metric space. This implies that the dualX′ is weak∗ separable.

In view of Lin-Sternfeld’s theorem the existence of weak-approximate fixed point
sequences.

Theorem 5.25 Let Y be a weakly compact convex subset of a Banach space
(X, ‖.‖). Then every demicontinuous mapping T : Y → Y has a weak-approximate
fixed point sequence.

Proof Without loss of generality, we may assume that T is fixed point free and X
is not separable. Pick y ∈ Y and denote by O(y) = {T n(y), n ∈ N} the orbit of y



210 5 Approximate Fixed Points in Topological Vector Spaces

under T . Now, we construct inductively a sequence (Yn)n of closed convex subsets
of Y as follows. We set Y0 = convO(y) and if n ≥ 1 we put Yn+1 = conv(T (Yn)),
where the overline denotes the closure w.r.t the norm ‖.‖. It is easily verified that

O(T n+1(y)) ⊆ T (Yn) ⊆ Yn+1,

for all n ≥ 1. We claim now that each Yn is separable. This is evident if n = 0 since
the closed linear span of O(y) is a separable Banach subspace of X. By induction
on n, and by the fact that T is demicontinuous together with Mazur’s theorem, we
conclude that if Yn ⊆ {xnk : k ≥ 1} for some {xnk : k ≥ 1} ⊆ Yn, then T (Yn) ⊆
conv(T (xnk ) : k ≥ 1). This completes the proof of our claim. As a consequence, if

we set Zk =
∞⋂
n=k
Yn, then the following closed convex subset of Y

W =
∞⋃
k=0

Zk,

must be separable too. Notice that, since Y is weakly compact, each Zk is nonempty.
Moreover, it is easy to see that T (Zk) ⊆ Zk+1, for all k ≥ 1. Hence, using again the
fact that T is demicontinuous, we see that W is invariant under T . Finally, since
W ⊆ span(dj : j ≥ 1), for some dense sequence (dj )j≥1 in W , we reach the
conclusion of theorem by means of Corollary 5.21. �

Here, as a direct application of Theorem 5.25, we obtain the following fixed point
result for continuous maps in general Banach spaces.

Corollary 5.22 Let Y be a weakly compact convex subset of a Banach space
(X, ‖.‖) and T : Y → Y a continuous mapping. Suppose that (I − T )(Y ) is
sequentially weakly closed. Then T has fixed point.

Proof By Theorem 5.25, there exists a sequence (xn)n in Y such that xn−T (xn) ⇀
θ . By assumption, we get θ ∈ (I − T )(Y ) and so T (x) = x, for some x ∈ Y . This
completes the proof. �
Definition 5.11 Let (X, ‖.‖) be a Banach space and Y ⊆ X. A mapping T : Y → X

is called

(a) proper if the preimage of each compact set is compact.
(b) weakly proper if the preimage of each weakly compact set is weakly compact.

The next result yields some sufficient conditions for concluding a map is strongly
continuous [13].
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Proposition 5.8 Let Y be a closed convex subset of a Banach spaceX and T : Y →
Y a mapping such that T m is compact for some integer m ≥ 2. Then T m is strongly
continuous in any the following cases :
(a) T m is proper and continuous. Moreover, if T is demicontinuous then it is

sequentially weakly continuous.
(b) T m is sequentially weakly continuous. This holds, in particular, when T is

continuous and affine.
(c) T is an isometry.

Proof Let be xn ⇀ x for some x ∈ Y .

(a) As T m is compact and proper, it follows that {xn} is relatively compact since
{xn} ⊆ T −m({T m(xn)}) and T −m({T m(xn)}) is compact. Therefore, up to a
subsequence, we can conclude that xn → x and hence T m(xn)→ T m(x).

(b) Since T m is sequentially weakly continuous, T m(xn) ⇀ T m(x). By using the
fact that T m is compact and by passing to a subsequence if needed, we may
assume that T m(xn) → y for some y in X. This implies that y = T m(x) and
proves the result.

(c) This item is easily proved with the aid of the fact that T m is compact.

�
Definition 5.12 Let Y be a nonempty subset of a Banach space X and let T : Y →
Y be a continuous mapping. For x ∈ Y let

γ+(x) = {T k(x) : k = 1, 2, · · · }, T 0(x) = x

be the positive semiorbit of x and

ω(x) = {ω ∈ X : ∃ kl →∞ such that T kl (x)→ ω as l→∞}

the ω-limit set of x. A point x ∈ Y is a k-periodic point of T (k ≥ 2) if T k(x) = x,
and T l(x) �= x, l = 1, · · · , k − 1. A set Z is called a k-cycle (of T ) if Z = γ+(x)
for some k-periodic point x of T .

The following definition will play an important role [178].

Definition 5.13 Let Y be a nonempty subset of a Banach space X and let T : Y →
Y be a continuous mapping. A couple (Z1, Z) will be called admissible (with
respect to the mapping T ) if

1. ∅ �= Z1 ⊆ Z ⊆ Y,
2. the set Z1 is compact, and
3. the set Z is convex and closed, T (Z) ⊆ Z.
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Some properties of an admissible couple are collected in [178].

Lemma 5.5 Let Y be a closed convex subset of a Banach space X and T : Y → Y

be a continuous mapping. Then the following statements hold :
1. If (Z1, Z) is an admissible couple and T (Z1) ⊆ Z1, then so is the couple (Z0, Z)

where Z0 =
∞⋂
k=0

T k(Z1) has the property T (Z0) = Z0.

2. If (Z1, Z) is an admissible couple, then there exists the least convex closed set
Z2 such that If (Z1, Z2) is admissible.

Proof

1. As it was already mentioned, Z0 is a nonempty compact set such that T (Z0) ⊆
Z0 ⊆ Z1. If x ∈ Z0 is an arbitrary element, then there exists yk ∈ T k(Z1)

such that T (yk) = x and by the compactness of Z1 there exists a subsequence
yl ∈ T l(Z1) which converges to y ∈ Z0 as l → ∞. T (y) = x and hence
x ∈ T (Z0).

2. Let

G =
{
W ∈ 2X : Z1 ⊆ W ⊆ Y,W is convex, closed and T (W) ⊆ W

}
.

Let Z2 =
⋂
W∈G

W . Then Z2 is the least element of G in the sense of the set

inclusion.

�
Definition 5.14 The admissible couple (Z1, Z2) will be called minimal if Z2 is the
least convex closed set containing Z1.

This fundamental lemma is stated in [178].

Lemma 5.6 Let Y be a closed convex subset of a Banach space X and T : Y → Y

be a continuous mapping. Let (Z1, Z2) be a minimal admissible couple. Then :
1.

Z2 =
∞⋃
k=1

Wk (5.4)

where (Wk)k≥1 is a nondecreasing sequence of convex compact subsets of Z2
which are defined by the relations

W1 = conv(Z1), (5.5)

Wk+1 = conv(Wk ∪ T (Wk)), k = 1, 2, · · · (5.6)
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2. Z2 is separable.

3. If
∞⋃
k=1

Wk is not closed, then
∞⋃
k=1

Wk \
∞⋃
k=1

Wk is a Gδ set.

4. If Z1 ⊆ T (Z1), then conv(Z2) = Z2.

Proof

1. By Theorem 1.20, W1 is convex and compact. Since W1 ⊆ Z2, we have that the
compact set W1 ∪ T (W1) ⊆ Z2 and the set W2 = conv(W1 ∪ T (W1)) ⊆ Z2
is convex and compact. By mathematical induction we get that the sequence
(Wk)k≥1 which is defined by (5.5) and (5.6) is a nondecreasing sequence of

convex compact subsets of Z2. Clearly
∞⋃
k=1

Wk ⊆ Z2 and
∞⋃
k=1

Wk is a convex and

closed subset of Z2. Further, T

( ∞⋃
k=1

Wk

)
⊆

∞⋃
k=1

Wk and, from the continuity

of T , we have T

⎛
⎝

∞⋃
k=1

Wk

⎞
⎠ ⊆

∞⋃
k=1

Wk . Hence

⎛
⎝Z1,

∞⋃
k=1

Wk

⎞
⎠ is an admissible

couple and since
∞⋃
k=1

Wk ⊆ Z2, equality (5.4) follows.

2. Every compact metric space is separable, countable union of separable sets is
separable and the closure of separable set in a metric space is separable.

3.
∞⋃
k=1

Wk \
∞⋃
k=1

Wk �= ∅, then
∞⋃
k=1

Wk \
∞⋃
k=1

Wk =
∞⋂
k=1

⎛
⎝

∞⋂
l=1

Wl \Wk
⎞
⎠ is a Gδ set.

4. Denote Z3 = conv(Z2). As T (Z3) ⊆ Z3, Z1 ⊆ Z3, we have that (Z1, Z3) is an
admissible couple and thus, the minimality of (Z1, Z2) implies that Z3 = Z2.

�
Lemma 5.7 Let Y be a closed convex subset of a Banach space X and T : Y → Y

be a continuous mapping. Let Z1,∅ �= Z1 ⊆ Y , be a compact set. Then there exists
a closed convex subset Z of Y such that Z1 ⊆ Z and

conv(T (Z)) = Z. (5.7)

Proof Let

G =
{
W ∈ 2X : Z1 ⊆ W ⊆ Y,W is convex, closed and T (W) ⊆ W

}



214 5 Approximate Fixed Points in Topological Vector Spaces

and a be the cardinal number of the set G. By the Cantor theorem , the cardinal
number 2a > a. Let b be the initial ordinal number of power 2a . Then we define a
transfinite {Wα} of the type b with values in G in the following way :

W0 = Y,

Wα =
⎧⎨
⎩

conv(T (Wα−1)), ifα − 1 exists,⋂
β<α

Wβ, in the other case (α is a limit number ) (5.8)

for α > 0. The sequence {Wα} is non-increasing with respect to the set inclusion
and we claim : There exists an ordinal number δ < b such that Wδ = Wδ+1 which
on the basis of (5.8) means that Z = Wα satisfies (5.7).

If (5.7) were not true for any Z = Wδ , then the sequence {Wα}would be injective
and the cardinal number ofG would be greater or equal to 2a which, on the basis of
the Cantor theorem, is a contradiction with the properties of cardinal numbers. �
Lemma 5.8 Let Y be a nonempty subset of a Banach space X and let T : Y → Y .
Then the following statements are true :
1. Each point of a k-cycle of T is a fixed point of T k .
2. Each fixed point of T k is either a fixed point of T or belongs to an l-cycle of T

where l is a divisor of k.

Proof Only the statement 2. will be proved. Let x = T k(x) and let x �=
T (x). Consider the sequence {x, T (x), · · · , T k−1(x)}. Then two cases may occur.
Either all terms T l(x), l = 1, · · · , k − 1 are different from x and the sequence
{x, T (x), · · · , T k−1(x)} is injective and x belongs to a k-cycle of T , or there exists
an l, 1 < l < k such that x = T l(x) and x �= T m(x) for m = 1, · · · , l − 1. In this
case x belongs to an l-cycle of T and with respect to the fact that x = T k(x) we
must have that l is a divisor of k. �

The following is an approximate fixed point result for the case when T is weakly
proper [13].

Theorem 5.26 Let Y be a bounded, closed and convex subset of a Banach space
X and T : Y → Y a continuous map such that T m is compact for some integer
m ≥ 1. Suppose that T is weakly proper. Then T has a weak-approximate fixed
point sequence.

Proof We can suppose that T is fixed point free. By the Schauder fixed point
theorem we have T m(x) = x for some x ∈ Y . Then by Lemma 5.8 there exists a
natural k ≥ 2 such thatW = {x, T (x), · · · , T k−1(x)} is a k-cycle of T . In particular
W is compact and T (W) = W . By Lemma 5.7, there exists a convex, closed set Z
such that W ⊆ Z ⊆ Y, conv(T (Z)) = Z and T (Z) ⊆ Z. Moreover, Z is the least
convex, closed set containing W . Since T is weakly proper, from the compactness
of T m(Z) and the fact that T m−k(Z) ⊆ T −k(T m(Z)) for all k = 1, · · · ,m, we
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can conclude with the aid of Mazur’s theorem that Z is weakly compact. The result
follows now from Theorem 5.25. �

5.2.2 On the σ(X,Z)-Approximate Fixed Point Property
in Topological Vector Spaces

Let X be a topological vector space, X′ its topological dual and Z a subset of
X′. Some results concerning the σ(X,Z)-approximate fixed property for bounded,
closed convex subsets Y of X are given.

Definition 5.15 Let Y be a nonempty subset of a topological vector space (X, τ),
Z a subspace of its topological dual X′ and T : Y → Y be a continuous mapping. A
sequence (xn)n in Y is called a σ(X,Z)-approximate fixed point sequence for T if
(φ(xn − T (xn))n converges to zero for all φ ∈ Z.

Definition 5.16 Let Y be a nonempty subset of a topological vector space (X, τ)
and Z a subspace ofX′. We will say that Y has the σ(X,Z)-approximate fixed point
property if every continuous mapping T : Y → Y has a σ(X,Z)-approximate fixed
point sequence.

For the sake of simplicity, we shall use the term “σ(X,Z)-afp property” to refer
to sets with this property.

Definition 5.17 Let (X, τ) be a topological vector space and Z a subspace of X′.
X is said to have the σ(X,Z)-afp property if every bounded, closed convex subset
Y of X has the σ(X,Z)-afp property.

Remark 5.5 When Z = X′ we simply write weak-afp property instead writing
σ(X,X′). In a similar way, we can also define the σ(X′, Z)-afp property for some
subset Z of X.

The following lemma is given in [14]. Its proof avoids paracompactness used in
[13] in the case of Banach spaces.

Lemma 5.9 Let (X, τ) be a topological vector space, Z a subspace of its topolog-
ical dual X′, � = {φ1, · · · , φn} a finite subset of Z, and Y a nonempty, bounded
convex subset ofX. For any mapping T : Y → Y which is τ -to-σ(X,Z) sequentially
continuous, and any ε > 0, there is y ∈ Y such that

|φi(y − T (y))| < ε, for i = 1, · · · , n.

Proof Equip the space Rn with the max-norm ‖.‖∞ and define the mapping" from
Y to R

n by

"(x) = (φ1(x), · · · , φn(x)).
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It is clear that " is a continuous linear mapping. Since Y is bounded in X, Y is
bounded as well and hence the set "(Y) is bounded in R

n. It follows that "(Y) is

totally bounded. Let U =
n∏
i=1

(
−ε
2
,
ε

2
) ⊆ R

n. (It is an open ball with respect to the

max-norm.) There is a finite Z ⊆ "(Y) such that {z + U : z ∈ Z} is an open cover
of "(Y). There is a finite W ⊆ "(Y) such that {z + U : z ∈ W } is an open cover
of "(Y). Let yz be a fixed element in "−1{z} for z ∈ W . Set L = {yz, z ∈ W }
and K = conv(L). Then, by Theorem 1.20 4. K is a finite-dimensional compact
convex subset of Y . Now for each x ∈ K , let wx = yz be a fixed element such that
"(T (x)) ∈ z+ U . Then

|φi(wx − T (x))| < ε
2
,

for i = 1, · · · , n.Moreover, the restriction T |K is τ -to-σ(X,Z) asK is metrizable.
Further, " is σ(X,Z)-continuous, hence the composed mapping " ◦ T |K is τ -
continuous. Therefore we can, for each x ∈ K , choose a τ open neighborhood Ux
of x (relatively in K) such that for any ω ∈ Ux and any i = 1, · · · , n,

|φi(T (ω)− T (x))| < ε
2
.

Then � = {Ux : x ∈ Y } is an open cover of K . Since K is compact, there exists
a locally finite partition of unity {ϕx : x ∈ K} on Y dominated by {Ux : x ∈ K}.
Then the mapping F(ω) =

∑
x∈K

ϕx(ω)wx is a continuous function from Kto K . By

Brouwer’s fixed point, it has a fixed point y ∈ K . If ϕx(y) �= 0, then y ∈ Ux and

|φi(T (y)− T (x))| < ε
2
, for i = 1, · · · , n.

Therefore, for i = 1, · · · , n,
|φi(y − T (y))| = |φi(F (y)− T (y))|

≤
∑
x∈K

ϕx(y)|φi(wx − T (y))|

≤
∑
x∈K

ϕx(y)(|φi(wx − T (y))| + |φi(T (x)− T (y))|) < ε.

The proof is complete. �
As a consequence of Lemma 5.9, the following approximate fixed point results

in topological vector spaces are given in [14], where sets are not necessarily closed
and maps are not necessarily continuous.
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Proposition 5.9 Let (X, τ) be a topological vector space, Z a subspace of its
topological dualX′, Y a nonempty, bounded convex subset ofX and T : Y → Y a τ -

to-σ(X,Z) sequentially continuous mapping. Then θ ∈ {x − T (x) : x ∈ Y }σ(X,Z).
if X is a topological vector space with separable strong dual :

Proposition 5.10 Let (X, τ) be a topological vector space, Z a subspace of its
topological dual X′, and Y a nonempty, bounded convex subset of X. Assume that
T : Y → Y which is τ -to-σ(X,Z) sequentially continuous. If, Z is separable in the
strong topology (i.e., the topology of uniform convergence on τ -bounded subsets of
X), then there is a sequence (xn)n in Y such that xn − T (xn) converge to θ in the
topology σ(X,Z) [14].

Proof Let (φi)i be a strongly dense sequence in Z. By Lemma 5.9 we can find for
any n ∈ N a point xn in Y so that

|φi(xn − T (xn))| < 1

n
, for i = 1, · · · , n.

Then for all integer i ≥ 1, |φi(xn−T (xn))| → 0 as n→∞. The denseness of (φi)i
in the strong topology on Z implies xn − T (xn) → 0 with regarding the topology
σ(X,Z). This completes the proof. �

As an immediate consequence we get easy proof of a well-known result of Fan
[57].

Corollary 5.23 Let (X, τ) be a topological vector space such that its topological
dual X′ separates the points of X. (This is satisfied, for example, if (X, τ) is locally
convex.) Let Y ⊆ X be a nonempty compact convex set. Then each continuous
mapping T : Y → Y has a fixed point.

Proof Set W = {x − T (x) : x ∈ Y }. Then W is compact as the image of Y by the
continuous map x �→ x − T (x). So,W is also weakly compact. Since X′ separates
points of X, the weak topology is Hausdorff and hence W is weakly closed. By
Proposition 5.9 θ belongs to the weak closure of W , hence θ ∈ W , i.e., T has a
fixed point. �

In the following theorem, we collect some situations in which Proposition 5.10
can be applied [14].

Theorem 5.27 Let X be a normed space. Then the following statements hold
true :
(i) Assume that the completion of X is an Asplund space. Let τ be a complete

metrizable locally convex topology on X compatible with the duality. Then
(X, τ) has the weak-afp property.

(ii) If (X′, σ (X′, X)) is N0-monolithic (i.e., each separable subset of
(X′, σ (X′, X)) has countable network), then (X′, ‖.‖) has the σ(X′, X)-afp
property.
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Proof

(i) Let Y ⊆ X be a nonempty bounded closed convex set and T : Y → Y a τ -
continuous mapping. Let a ∈ Y and set W1 = {a}. If Wn is defined, then
let

Wn+1 = conv (Wn ∪ T (Wn)) .

ThenWn+1 is compact. So by Theorem 1.20 3., the set

W =
∞⋃
n=1

Wn

is τ -separable and T (W) ⊆ W . W is clearly norm-separable. Indeed, Let S ⊆
W be a countable τ -dense set. Denote by S′ the norm-closed convex hull of
S. Then S′ is norm-separable. Moreover, as it is a closed convex set, it is also
weakly closed by Theorem 1.25. Hence it is τ -closed as well, so in particular
W ⊆ S′. It follows thatW is norm-separable. Therefore the closed linear span
ofW is norm-separable as well. So, we can without loss of generality suppose
that X is separable. By our assumption X′ is separable, we can conclude by
Proposition 5.10.

(ii) It is enough to show that each nonempty separable closed convex bounded
subset of X′ has the σ(X′, X)-afp property. Let Z ⊆ X′ be such a set. Set
Y = Z⊥ and denote byW the quotient space X/Y . Denote by q the canonical
quotient map q : X → W . The adjoint map q∗ : W ′ → X′ is an isometric
injection which is, moreover, weak∗-to-weak∗ homeomorphism. The image
q∗(W ′) is equal to Y⊥ = (Z⊥)⊥, which is (by the bipolar theorem) the
weak∗ closed linear span of Z. It follows that q∗(W ′) is weak∗ separable,
hence the weak∗ topology ofW ′ has countable network. Therefore the dual ball
(BW ′ , σ (X′, X)) is metrizable, thusW is separable. By Proposition 5.10 we get
thatW ′ has the σ(W ′,W)-afp property. As q∗ is both an isometry and weak∗-
to-weak∗ homeomorphism, we get that Z has the σ(X′, X)-afp property.

�
As a consequence we get

Corollary 5.24 Let X be an Asplund Banach space. Then X has the weak-afp
property [13].

Remark 5.6 There is a difference between approximation in the norm and in the
weak topology of a Banach space X. Let Y ⊆ X be a nonempty closed bounded set
and T : Y → Y a continuous mapping. For approximation in the norm, we have the
equivalence of the following three conditions :
(i) There is a sequence (xn)n in Y such that xn − T (xn) −→ θ.

(ii) The point θ is in the norm-closure of the set {x − T (x) : x ∈ Y }.
(iii) inf{‖x − T (x) : x ∈ Y‖} = 0.
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These three statements are trivially equivalent (by properties of metric spaces)
and are rather strong. For the weak topology, the situation is different. First, there
is no analogue of the third condition. Secondly, the analogue of the second one is
satisfied by Proposition 5.9. But the analogue of the first one is not satisfied always,
as the weak topology is not in general described by sequences.

We give two instructive examples.

Definition 5.18 A Banach space X is called

(i) weakly compactly generated if there is a weakly compact subset Y ⊆ X whose
linear span is dense in X.

(ii) weakly Lindelöf determined provided there is Y ⊆ X with dense linear span
such that for each φ ∈ X′ there are only countably many x ∈ Y with φ(x) �= 0.

Basic properties of these classes of Banach spaces and complements on these
notions can be found in [55, 100].

Examples 5.1

1. Every reflexive Banach space is weakly compactly generated by its closed unit
ball.

2. Any separable Banach space is weakly compactly generated.
3. Any weakly compactly generated Banach space is weakly Lindelöf determined.

Proposition 5.11 LetX be a Banach space. ThenX′ has the σ(X′, X)-afp property
in the following cases

• X is separable.
• X is weakly compactly generated. In particular, X = c0(�) or X = L1(μ) for
σ -finite measure μ.

• X is weakly Lindelöf determined.

Proof Let X be weakly Lindelöf determined. Then any bounded separable subset
of (X′, σ (X′, X)) is metrizable. Therefore (X′, σ (X′, X)) is N0-monolithic. �

5.2.3 The Weak Approximate Fixed Point Property in
Metrizable Locally Convex Spaces and l1-Sequences

Using the slight generalization of Rosenthal’s l1-theorem and the Fréchet-Urysohn

property of the space (Y − Yσ(X,X′), σ (X,X′)), the following is proved in [14].

Proposition 5.12 Let (X, τ) be a metrizable locally convex space, Y ⊆ X a
nonempty convex bounded set which does not contains any l1-sequence. Then Y
has the weak-afp property.

Proof Let T : Y → Y be a τ -to-weak continuous mapping. First let us find a
nonempty separable convex W ⊆ Y with T (W) ⊆ W . To do that fix x0 ∈ Y
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and setW0 = {x0}. Suppose thatWn ⊆ Y is a nonempty separable convex set. Then
T (Wn) is a weakly separable subset of Y . As weakly separable sets are separable,
we can find Sn ⊆ T (Wn) a countable τ -dense set. As τ is metrizable and Sn ⊆ Y ,
there is a countable setQn ⊆ Y with Sn ⊆ Qn. SetWn+1 = conv(Wn ∪Qn). Then

Wn+1 is a separable convex subset of Y containing Wn. Finally, Set W =
∞⋃
n=0

Wn.

ThenW is a nonempty convex separable subset of Y and, moreover,

T (W) =
∞⋃
n=0

T (Wn) ⊆
∞⋃
n=0

Sn ⊆
∞⋃
n=0

Qn ⊆
∞⋃
n=0

Wn+1 ⊆ W.

From Proposition 1.40 we get θ ∈ {x − T (x) : x ∈ W }σ(X,X′). Thus, according to
Proposition 5.10, there exists a sequence (xn)n in W so that xn − T (xn) −→ θ in
the weak topology. This proves the result. �

The following characterizes the heredity of the σ(X,X′)-afp property [14].

Theorem 5.28 Let X be a metrizable locally convex space and Y a nonempty
closed convex bounded subset ofX. Then the following assertions are equivalent.

1. Each nonempty closed convex subset of Y has the weak-afp property.
2. Y contains no sequence equivalent to the standard basis of l1.

Proof 1. ⇒ 2. Let us suppose by contradiction that 2. Fix an l1-sequence (xn)n in
Y , and denote by W the closed convex hull and by Z the closed linear span of the
set {xn : n ∈ N}. Let T0 : l01 → X be defined by (1.17). By our assumption T0 is an
isomorphism of l01 onto T0(l

0
1). Denote by S0 its inverse. Then S0 is an isomorphism

of T0(l
0
1) onto l01 . In particular, S0 maps Cauchy sequences to Cauchy sequences.

Thus S0 can be uniquely extended to a continuous linear mapping S : T0(l
0
1)→ l1.

Note that T0(l
0
1) = Z and that S is an isomorphism of Z onto S(Z) ⊆ l1. As S is

linear, it is also a weak-to-weak homeomorphism.
We claim that the set W does not have the weak-afp property. Suppose on the

contrary that it has the weak-afp property. Then S(W) has the weak-afp property as
well. But then, by Schur’s theorem, S(W) has the afp property. By Theorem 5.20,
we get S(W) is totally bounded. But it cannot be the case as S(W) contains the
canonical basis of l1. This completes the proof.

2.⇒ 1. Follows from Proposition 5.12. �
Corollary 5.25 Let X be a metrizable locally convex space not containing any l1-
sequence. Then X has the weak-afp property.

We have the following illustrative examples on the weak-afp property and the
σ(X′, X)-afp property [14].
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Proposition 5.13

1. If X = c0 endowed with ‖.‖∞, then X′ = l1 has the σ(X′, X)-afp property, but
does not have the weak-afp property.

2. If X = l∞, then X′ does not have the σ(X′, X)-afp property.

Proof As c0 is separable, by Proposition 5.11, c′0 has the σ(X′, X)-afp property.
Further by Theorem 5.28, l1 does not have the weak-afp property.

1. As c0 is separable, by Proposition 5.11, c′0 has the σ(X′, X)-afp property. Further
by Theorem 5.28 does not have the weak-afp property.

2. The space l∞ is a Grothendieck space. So, if X′ had the σ(X′, X)-afp property,
then it would have also the weak-afp property. But it is not the case asX′ contains
an isometric copy of l1.

�

5.2.4 The Weak Approximate Fixed Point Property
in Non-metrizable Locally Convex Spaces

In the previous subsection, the metrizability assumption was used several times to
obtain the weak-afp property. It is natural to ask if this assumption is necessary.

The following example given in [14] illustrates that the assumption of metriz-
ability cannot be dropped in the statement of Theorem 1.37.

Example 5.2 Let X = (l1, σ (l1, l
′
1)). Let (en)n≥1 denote the canonical basic

sequence. By Remark 1.28, X contains no l1-sequence and the sequence (en)n≥1
contains neither a weakly Cauchy subsequence nor a subsequence which is an l1-
sequence. But X does not have the weak-afp property.

Proof Let Z be the closed convex hull of {en : n ≥ 1}. As Z is contained in the
positive cone of l1, by Proposition 1.39, the norm and weak topologies coincide on
Z. Thus Z has the weak-afp property inX if and only if it has the weak-afp property
in (l1, ‖.‖1). But it does not have the weak-afp property in (l1, ‖.‖1) as it contains
an l1-sequence when considered in the norm topology. �

In [14], Barroso, Kalenda, and Lin raised the following open questions :
Let X be a Hausdorff locally convex space.

• Is it true that each bounded sequence in X has a weakly Cauchy subsequence
if and only if each bounded separable subset is Fréchet-Urysohn in the weak
topology?

• Is it true that X has the weak-afp property if and only if each bounded sequence
in X has a weakly Cauchy subsequence?

An affirmative answer to both questions is given in [14] whereX admits a locally
convex topology compatible with the duality.
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Theorem 5.29 Let (X, τ) be a Hausdorff locally convex space such there is a
metrizable locally convex topology on X compatible with the duality. Let Y be
a nonempty closed convex bounded subset of X. The following assertions are
equivalent.

1. Each nonempty closed convex subset of Y has the weak-afp property.
2. Each sequence in Y has a weakly Cauchy subsequence.

Proof Let ρ be a metrizable locally convex topology on X compatible with the
duality. As any metrizable locally convex topology is Mackey, we get σ(X,X′) ⊆
τ ⊆ ρ.

2. ⇒ 1. Let Z ⊆ Y be a nonempty closed convex subset of Y and T : Z → Z

a continuous map. We find a nonempty τ -separable closed convex set W ⊆ Z with
T (W) ⊆ W (see the proof of Theorem 5.27). By Proposition 5.9 we get that θ
belongs to the weak closure of {x − T (x) : x ∈ W }. Further, asW is τ -separable, it
is also ρ-separable. By Theorem 1.37 W contains no l1-sequence in (X, ρ), hence
by Proposition 1.40 the weak closure of W − W is Fréchet-Urysohn in the weak
topology, hence there is a sequence (xn)n inW such that xn−T (xn)weakly converge
to θ .

1. ⇒ 2. Suppose that 2. does not hold, i.e., that there is a sequence in Y having
no weakly Cauchy subsequence. By Theorem 1.37 there is a sequence (xn)n in Y
which is an l1-sequence in (X, ρ). Let Z be the closed convex hull of {xn : n ∈ N}
and W be the closed linear spans with respect to the topology τ, ρ or σ(X,X′) as
all these topologies have the same dual. By the proof of the implication 1.⇒ 2. of
Theorem 5.28 there is a linear mapping G : W → l1 which is an isomorphism of
(W, ρ) onto G(W) and, moreover, (Z, ρ) does not have the weak-afp property. We
claim that (Z, τ) does not have the weak-afp property. This will be done if we show
that the topologies ρ and τ coincide on Y . To do that we recall thatG is a ρ-to-norm
isomorphism and weak-to-weak homeomorphism of Z onto G(Z) and, moreover,
G(Z) is contained in the positive cone of l1 the norm and weak topologies coincide.
It follows that ρ and σ(X,X′) coincide on Z. As σ(X,X′) ⊆ τ ⊆ ρ, the proof is
complete. �

In [14], Barroso et al. conjectured that at least the first question has negative
answer. They gave a candidate for a counterexample the space (X, σ (X′, X)) where
X is one of the Johnson-Lindenstrauss spaces constructed in [94].

5.3 Approximate Fixed Point Nets

For fixed point results, if one relaxes the compactness assumption, the assumption
of continuity must be strengthened. Another possibility is to relax the continuity
assumption.

In [9], attention is paid to sequential continuity and the following result is proved.
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Theorem 5.30 Let Y be a nonempty weakly compact subset of a metrizable locally
convex space X. If T : Y → Y is weakly sequentially continuous, then T has a fixed
point.

It is natural to ask whether the metrizability condition can be dropped?
The sequential continuity is a very weak condition. Sequential continuity does

not help in obtaining approximate fixed point sequences even for self maps of
compact convex sets. So, sequential continuity is too weak to ensure the existence
of fixed points.

To illustrate this fact, the following example is given in [15].

Example 5.3 There is a Hausdorff locally convex space X equipped with its weak
topology, a nonempty compact convex subset Y ⊆ X, and a sequentially continuous
map T : Y → Y with no approximate fixed point sequence.

Proof Let X = (l′∞, σ (l′∞, l∞)) and Y = {μ ∈ X : μ ≥ 0 and ‖μ‖ ≤ 1}. Then X
is a locally convex space, the topology is its weak one, and Y is a nonempty convex
compact subset of X. It remains to construct the function T .

The space l′∞ can be canonically identified with the space M(βN) of signed
Radon measures on the compact space βN (Cech-Stone compactification of natural
numbers). Let P : M(βN)→ M(βN) be defined by

P(μ) =
∞∑
n=1

μ({n})δn, μ ∈ M(βN),

where δx denotes the Dirac measure supported by x. Then P is a bounded linear
operator. We set Y0 = P(Y ). Then Y0 ⊆ Y and Y0 is a convex subset of l′∞ which
is not totally bounded in the norm. Hence, by Theorem 5.20, there is a Lipschitz
map G : Y0 → Y0 without an approximate fixed point sequence (with respect to the
norm).

Set T = G ◦ P |Y . We claim that T is weak∗-to-weak∗ sequentially continuous
and has no approximate fixed point sequence in the weak∗ topology.

To show the first assertion, let (μn)n be a sequence in Y weak∗ converging to
some μ ∈ Y . Since l∞ is a Grothendieck space, μn → μ weakly in l′∞. Since P is a
bounded linear operator, it is also weak-to-weak continuous, hence P(μn)→ P(μ)

weakly in l′∞. Since P(l′∞) is isometric to the space l1, by the Schur property we
have P(μn) → P(μ) in the norm, so G(P (μn)) → G(P (μ)) in the norm. We
conclude that T (μn)→ T (μ) in the norm, and hence is also in the weak∗ topology.
This completes the proof that T is sequentially continuous.

Next, suppose that (μn)n is an approximate fixed point sequence in Y . Then
μn − T (μn) → θ in the weak∗ topology. By the Grothendieck property of l∞ we
get that μn − T (μn) → θ weakly in l′∞. Since P is a bounded linear operator, we
get P(μn) − P(T (μn))→ θ weakly, so P(μn) − P(T (μn))→ θ in the norm by
the Schur theorem. Further,

P(μn)− P(T (μn)) = P(μn)− T (μn) = P(μn)−G(P (μn)),
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so (P (μn))n is an approximate fixed point sequence forG with respect to the norm.
This is a contradiction, completing the proof. �
Definition 5.19 Let Y be a nonempty subset of a Hausdorff topological vector
space (X, τ) and T : Y → Y be a mapping. A net (xα)α in Y is called a τ -
approximate fixed point net for T if xα − T (xα)

τ−→ θ , or equivalently that
θ ∈ {x − T (x) : x ∈ Y }.

The lemma given below is a slight generalization of a result of Fan [56].

Lemma 5.10 Let Y be a subset of a topological vector space (X, τ), Z a nonempty
finite subset of Y such that conv(Z) ⊆ Y and F : Z → 2Y a multifunction with the
following two properties.

1. F(z) is sequentially closed in Y for all z ∈ Z.
2. conv(W) ⊆

⋃
z∈W

F(z) for allW ⊆ Z.

Then
⋂
z∈Z
F(z) �= ∅.

The only generalization consists in assuming that the values T (z) are sequentially
closed in Y (not necessarily closed in X).

Lemma 5.11 Let Y be an almost convex subset of a topological vector space
(X, τ), let p be a continuous seminorm on X, and let T : Y → Y be a τ -to-p
sequentially continuous map such that T (Y ) is p-totally bounded . Then for each
ε > 0 there is x ∈ Y with p(x − T (x)) < ε [15].

Proof Let ε > 0 be arbitrary. Since T (Y ) is p-totally bounded, and T (Y ) ⊆ Y ,
there is a finite set {x1, · · · , xn} ⊆ Y such that for any x ∈ T (Y ) there is some

i ∈ {1, · · · , n} with p(x − xi) < ε

2
. Since Y is almost convex, we can also find

a finite set {z1, · · · , zn} ⊆ Y so that p(zi − xi) < ε

2
for each i = 1, · · · , n and

conv({z1, · · · , zn}) ⊆ Y . Now, set Z = {z1, · · · , zn}, and define a multifunction
F : Z→ 2Y by putting, for each i,

F(zi) =
{
x ∈ Y : p(T (x)− xi) ≥ ε

2

}
.

Since p is continuous and T is sequentially continuous, each T (zi) is sequentially
closed in Y . Moreover, we have

n⋂
i=1

F(zi) = ∅.

This follows from the choice of x1, · · · , xn. By Lemma 5.10 applied to F,Z
and Y , we conclude that there exist a subset {zk1, · · · , zkm} of Z and an x ∈
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conv({zk1, · · · , zkm}) such that x /∈
m⋃
j=1

F(zkj ). Hence p(T (x) − xkj ) <
ε

2
for

all j = 1, · · · ,m, so by the triangle inequality,

p(T (x)− zkj ) < ε for all j = 1, · · · ,m.

Since x ∈ conv({zk1 , · · · , zkm}), we get, by using again the triangle inequality,

p(x − T (x)) < ε.

This completes the proof. �
As a consequence of the above lemma, the following generalization of Propo-

sitions 5.9 and 5.10 is given in [15] and shows that for approximate fixed points,
sequential continuity is strong enough.

Theorem 5.31 Let Y be an almost convex subset of a topological vector space
(X, τ), let σ be a weaker locally convex topology on X, and let T : Y → Y be
a τ -to-σ sequentially continuous map such that T (Y ) is σ -totally bounded. Then T
has an approximate fixed point net.

As a consequence of the above theorem, the following optimal extension of
Corollary 5.7 to sequential continuous mapping is given [15].

Corollary 5.26 Let Y be a convex subset of a locally convex space X, and let
T : Y → Y be a sequentially continuous map such that T (Y ) is totally bounded.
Then T has an approximate fixed point net.

Remark 5.7 When X is metrizable (or, more generally, Fréchet-Urysohn), we even
get an approximate fixed point sequence. In general, an approximate fixed point
sequence need not exist even if Y is compact (see Example 5.3) or if T is continuous
(this follows from Remark 1.28 and Example 5.2 if we observe that in weak
topology any bounded set is totally bounded).

The following interesting Propositions on approximate fixed point sequences and
fixed points of affine maps are worth mentioning [15].

Proposition 5.14 Let τ be a linear topology on the vector space X, Y ⊆ X a
nonempty bounded convex set, and T : Y → Y an affine selfmap. Then the mapping
T has an approximate fixed point sequence.

Proof Fix any y1 ∈ Y and define inductively the sequence (yn)n by setting yn+1 =
T (yn). Set

xn = y1 + · · · + yn
n

.
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Then

xn − T (xn) = y1 − yn+1

n
−→ θ

as Y is bounded. �
Remark 5.8 In Proposition 5.14 no continuity property of T is assumed, and we
obtain a generalization of a result in [62] where the result is proved for nets.

Proposition 5.15 LetX be a topological vector space, Y ⊆ X a nonempty bounded
convex set, and T : Y → Y an affine selfmap. If Y is countably compact, and T is
continuous, then T has a fixed point.

Proof Let (xn)n be an approximate fixed point sequence given by Proposition 5.14.
Since Y is countably compact, there is some x ∈ Y which is a cluster point of (xn)n,
hence there is some subnet (xα)α of (xn)n which converges to x. By continuity of
T we get T (xα) −→ T (x). However, (xα − T (xα))α is a subnet of (xn − T (xn))n,
hence xα − T (xα) −→ θ . So, x = T (x). �

The following Proposition shows that if the metrizability condition is dropped,
then in some very special cases sequential continuous maps have fixed points.

Proposition 5.16 LetX be a topological vector space, Y ⊆ X a nonempty bounded
convex set, and T : Y → Y an affine selfmap. If Y is sequentially compact, and T is
sequential continuous, then T has a fixed point.

Proof The proof can be done in the same way as that of Proposition 5.15, we only
use sequential compactness to extract a subsequence (xnk )k converging to some
x ∈ Y and then we use sequential continuity to deduce that T (xnk ) −→ T (x). �

In Proposition 5.16, the assumption of sequential compactness cannot be
replaced by compactness as witnessed by the following example [15].

Example 5.4 There is a Hausdorff locally convex space X equipped with its weak
topology, a nonempty compact convex subset Y ⊆ X, and an affine sequentially
continuous function T : Y → Y with no fixed point.

Proof Let X = (l′∞, σ (l′∞, l∞)). We can regard X as signed Radon measures on
βN. Let Y be the subset ofX consisting of probability measures. Then Y is compact
and convex. Now, pick a decomposition {Zn : n ∈ N} of N into infinite disjoint
subsets. Next, we shall use this decomposition to define a sequence (km)m of natural
numbers as follows.

(i) k1 ≥ 2 and k1 /∈ Z1.

(ii) km+1 > km, and km+1 /∈
m+1⋃
i=1

Zi for each m ∈ N.
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Let us define now a linear map T : Y → Y by the formula

T (μ) = μ(βN \ N).δ1 +
∞∑
m=1

μ(Zm).δkm,

where δx denotes the Dirac measure supported by x. Then T is a linear mapping
which is norm-to-norm continuous, and hence weak-to-weak continuous on l′∞. As
l∞ is a Grothendieck space, T is weak∗-to-weak∗ sequentially continuous. In other
words, it is sequentially continuous when considered from X to X. Further it is
obvious that T (Y ) ⊆ Y .

Finally, T has no fixed point in Y . Indeed, suppose that μ ∈ Y is a fixed point,
i.e., T (μ) = μ. Since T (μ) = μ is supported by the N, we have

μ({1}) = T (μ)({1}) = μ(βN \ N) = T (μ)(βN \ N) = 0.

Hence μ is supported by the set {km : m ∈ N}. Since μ is a probability measure, we
can find the minimal m such that μ({km}) �= 0. However,

μ({km}) = T (μ)({km}) = μ(Zm) = 0,

as kl /∈ Zm for l ≥ m by condition (ii). This is a contradiction. �
It seems not to be clear whether the assumption that T is affine is essential in

the statement of Propositions 5.15 and 5.16. The proofs given works provided T
admits an approximate fixed point sequence. However, the best thing we can obtain
is an approximate fixed point by Corollary 5.26. Indeed, countably compact sets in
topological vector spaces are necessarily totally bounded [15].

Proposition 5.17 Let (X, τ) be a topological vector space, and let Y ⊆ X be a
relatively countably compact subset. Then Y is totally bounded.

Proof The proof will be done by contradiction. Suppose that Y is not totally
bounded. This means that there is V a balanced neighborhood of zero, such that
Y cannot be covered by finitely many translates of V . We can then construct by
induction a sequence (xn)n in Y such that for each n ∈ N we have

xn+1 /∈ {x1, · · · , xn} + V.

Then the set Z = {xn, n ∈ N} is a closed discrete subset of X. Indeed, let W be
a balanced neighborhood of θ such that W + W ⊆ V . Then for any x ∈ X the
set x + W contains at most one element of Z. Indeed, suppose that m < n and
{xm, xn} ⊆ x +W , thus

xn ∈ x +W ⊆ xm +W +W ⊆ xm + V,

a contradiction. It follows that Z is an infinite subset of Y without an accumulation
point in X. Therefore Y is not relatively countably compact. �
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We have the following strengthening of Theorem 5.20 and a consequence of
Corollary 5.11.

Corollary 5.27 Let Y be a totally bounded convex subset of a normed space X.
Then every continuous map T : Y → Y admits an approximate fixed point sequence.

In [15], Barroso et al. raised the following open question :
Let X be a Hausdorff locally convex space, Y ⊆ X a convex set, and T : Y → Y

a mapping. Suppose that one of the following two conditions is satisfied.

• Y is countably compact and T is continuous.
• Y is sequentially compact and T is sequentially continuous.

Does T necessarily admit a fixed point?
It follows from Proposition 5.17 and Corollary 5.26 that T has an approximate

fixed point net provided Y is countably compact and T is sequentially continuous.
However, Example 5.3 illustrates that T need not have an approximate fixed point
sequence even if Y is compact. And, Example 5.4 illustrates that even if T admits
an approximate fixed point sequence, it need not have a fixed point. It follows that
the above question is natural, as in the quoted examples the respective sets are not
sequentially compact and the respective maps are not continuous.

The proof of Proposition 5.15 shows that if we are able to construct an
approximate fixed point sequence, then we get the positive answer to the above
question. However, there is no idea how to do that.

Some special cases when the answers are positive were given in [15] :
(1) X is angelic : the countably compact sets are compact and sequentially

continuous maps on them are continuous.
(2) The countable subsets of Y have compact closures in Y .

The following theorem extends the assertion 1. of Theorem 5.20 to locally convex
spaces [15]. It shows that any nonempty bounded convex of a locally convex space
that is not totally bounded admits a uniformly continuous self map without an
approximate fixed point net.

Theorem 5.32 Let (X, τ) be a locally convex space and Y ⊆ X a bounded convex
set. Let p0 be a continuous semi-norm such that Y is not p0-totally bounded. Then
there is a mapping T : Y → Y with the following properties.

(i) T admits no approximate fixed point net.
(ii) For any continuous semi-norm p the mapping T is p0-to-p Lipschitz.

Proof Without loss of generality, we can suppose that θ ∈ Y . It follows that there
exists δ > 0 such that for any finite-dimensional subspace F ⊆ X there is some
x ∈ Y with distp0(x, F ) > δ. So, we can construct by induction a sequence (xn)n
in Y such that

(a) p0(x1) > δ,

(b) distp0(xn+1, span{x1, · · · , xn}) > δ for any n ∈ N.
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Let p be a continuous seminorm on X such that p ≥ p0. Since Y is bounded,
there isM > 0 such that p(xn) ≤ M for each n ∈ N. Without loss of generality, we
can suppose that M > δ. Let k1 < k2 < k3 < k4 be natural numbers, and let αi be
scalars for i ∈ {1, · · · , 4}. Then clearly

p

(
4∑
i=1

αixki

)
≤ M

4∑
i=1

|αi |. (5.9)

Let

ci = 1

22i+1

(
δ

M

)i−1

for i = 1, · · · , 4.

Then
4∑
i=1

ci < 1, and hence there is some i ∈ {1, · · · , 4} such that |αi | ≥ ci
4∑
i=1

|αi |.
Let i0 be the greatest such i. Then

p

(
4∑
i=1

αixki

)
≥ p

⎛
⎝

i0∑
i=1

αixki

⎞
⎠− p

⎛
⎝

4∑
i=i0+1

αixki

⎞
⎠ ≥ δ|αi0 | −M

4∑
i=i0+1

|αi |

≥
⎛
⎝δci0 −M

4∑
i=i0+1

ci

⎞
⎠

4∑
i=1

|αi | = δ
(
ci0 −

M

δ

) 4∑
i=1

|αi |

≥ 1

2
δci0

4∑
i=1

|αi | ≥ 1

32
.
δ4

M3

4∑
i=1

|αi |.

The first inequality follows from the triangle inequality, and the second one follows
from condition (b) above, using the fact that p ≥ p0 and from the choice ofM . The
third one follows from the choice of i0, the next equality is obvious. The last two

inequalities follow from the choice of the constants c1, · · · , c4. So, form = 1

32
.
δ4

M3
we get

m

4∑
i=1

|αi | ≤ p
(

4∑
i=1

αixki

)
. (5.10)

Set

�′
n = conv({θ, xn, xn+1}) �′ =

∞⋃
n=1

�′
n.
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Then �′ ⊆ Y . Moreover, by (5.9) and (5.10), we get that (�′, p0) is bi-Lipschitz
isomorphic to� defined by(5.3) considered with the metric inherited from l1 and for
any continuous seminorm p on X satisfying p ≥ p0, the identity on �′ is p0-to-p
bi-Lipschitz.

Let p be a continuous seminorm. Set p1 = p + p0. Then p1 is a continuous
seminorm satisfying p1 ≥ p0. So, the identity on�′ is p0-to-p1 Lipschitz. Hence, it
is a fortiori p0-to-p Lipschitz. It follows that the identity on�′ is p0-to-τ uniformly
continuous. Since p0 is a continuous seminorm, the identity is clearly τ -to-p0
uniformly continuous. Let J : (X, τ) → (X, p0) be the identity mapping. Further,
let Z be the quotient (X, p0)/p

−1
0 (0). Then Z is a normed space. Let q : (X, p0)→

Z denote the quotient mapping. Then q ◦ J is a continuous linear mapping, hence
it is uniformly continuous. Moreover, J is a uniform homeomorphism of �′ onto
J (�′) and q is an isometry of J (�′) onto q(J (�′)). It follows that q(J (�′)) is
bi-Lipschitz isomorphic to �. So, by Proposition 5.4 there is a Lipschitz retraction
r0 : Z→ q(J (�′)). Then

r = (q ◦ J|�′)−1 ◦ r0 ◦ q ◦ J

is a uniformly continuous retraction of (X, τ) onto �′. Moreover, r is p0-to-p0
Lipschitz as q ◦ J has this property, r0 is Lipschitz, and q ◦ J|�′ is an isometry of
(�′, p0) onto Z.

Since (�′, p0) is bi-Lipschitz isomorphic to �, by Proposition 5.6 there is a
Lipschitz map G0 : (�′, p0) → (�′, p0) without an approximate fixed point net
with respect to p0. Further, set

T = G0 ◦ r|Y .

Then T is a selfmap of Y which is p0-to-p0 Lipschitz. Moreover, T is p0-to-p
Lipschitz for any continuous semi-norm p (as T (Y ) ⊆ �′). Further, it has no
approximate fixed point net. To see this, it is enough to find an ε > 0 such that
p0(x − T (x)) ≥ ε for each x ∈ Y . Let L be the p0-to-p0 Lipschitz constant of T .
Let η = inf

x∈q(J (Y )) ‖x −G0(x)‖. Set

ε = η

L+ 2
.

Fix an arbitrary x ∈ Y . If distp0(x,�
′) ≥ ε, then p0(x − T (x)) ≥ ε as T (x) ∈ �′.

If distp0(x,�
′) < ε, find y ∈ �′ with p0(x − y) < ε. Then

p0(x − T (x)) ≥ p0(y − T (y))− p0(x − y)− p0(T (x)− T (y))
≥ η − (1 + L)p0(x − y)
> (L+ 2)ε − (1 + L)ε = ε.

This completes the proof. �
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Remark 5.9 Theorem 5.32 proves that the result of Corollary 5.26 is the best
possible in a sense : the assumption of total boundedness is essential even for
uniformly continuous maps.

5.4 Applications to Asymptotic Fixed Point Theory

Fixed point results for iterates T m for m sufficiently large are intrinsically related
to the problem for finding periodic solutions of ordinary differential equations,
differential-difference equations, and functional differential equations [77, 95–97],
and [195]. Jones [96] introduced the term “asymptotic fixed point theorems” to
describe such results.

The asymptotic fixed point property concerns the possibility of getting fixed point
results for continuous maps by imposing conditions in some of its iterates.

A long-standing conjecture in the fixed point theory probably due to Browder
and which was formulated by Nussbaum in 1972 in [138] reads as follows :
Conjecture Let (X, ‖.‖) be a Banach space, Y ⊆ X a nonempty closed bounded
convex set and T : Y → Y be a continuous mapping such that T m is compact for
some m ∈ N. Then T has a fixed point.

Nussbaum [137–140] proved this conjecture with the additional assumption that
T restricted to an appropriate open set is continuously Fréchet differentiable and
using algebraic topology methods. Similarly, Browder in [30] proved the above
conjecture under the assumption that Y is a compact absolute neighborhood retract
and T n(Y ) is homologically trivial in Y . Deimling in [42] recalled the above
conjecture. In [71] Górniewicz and Rozploch-Nowakowska with using algebraic
topology, proved the above conjecture by adding assumption that T is locally
compact. Steinlein [185], Hale, and Lopes [78] gave related results to the above
conjecture.

A partial solution of the above conjecture is the following [12].

Proposition 5.18 Let Y be a weakly compact convex subset of a Banach space
(X, ‖.‖) and T : Y → Y be a demicontinuous mapping. Suppose that T m is strongly
continuous for some m ∈ N. Then T has a fixed point.

Proof Let (xn)n be a weak-approximate fixed point sequence for T , for example
the one given in Theorem 5.25. From Eberlein’s theorem we conclude that up to a
subsequence, still denoted by (xn)n, xn ⇀ x in Y for some x ∈ Y . In particular,
T (xn) ⇀ x. Since T m is strongly continuous, this implies that T (y) = y where
y = T m(x). �

The following is an additional contribution to asymptotic fixed point theory [13].

Theorem 5.33 Let X be an Asplund space, Y a bounded, closed convex subset of
X and T : Y → Y a continuous map such that T m is strongly continuous for some
integer m ≥ 1. Assume that T is weakly completely continuous, that is, it maps
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weakly Cauchy sequences into weakly convergent sequences. Then T has a fixed
point.

Proof Without loss of generality, we may assume that X′ is separable. Let (xn)n
be a sequence in Y such that (xn − T (xn))n converges to θ weakly (for example,
that given by Theorem 5.27). It follows from Rosenthal’s theorem that (xn)n has a
weak Cauchy subsequence, say (xnk )k . Since T is weakly completely continuous,
by passing to a subsequence if needed, we can assume that T (xnk ) ⇀ x ∈ Y .
In particular, we have xnk ⇀ x. As T m is strongly continuous, it follows that
T m(xnk )→ T m(x). Similarly, since T (xnk ) ⇀ x, we have T m(T (xnk ))→ T m(x).
Thus we have T (T m(x)) = T m(x) and the proof is complete. �
Remark 5.10 Alspach [4] constructed an example of a weakly convex subset of
L1[0, 1] which admits a fixed point free isometry T : Y → Y . In particular, since
every isometry is proper, Alspach’s example in conjunction with Proposition 5.8
show that the assumption T m is strongly continuous in the previous theorem cannot
be dropped.

The following asymptotic fixed point results are due to Šeda [178].

Theorem 5.34 Let Y be a closed convex subset of a Banach space X and T : Y →
Y be a continuous mapping, T is proper and there exists an integer n ≥ 2 such that
T n is compact. Then T has a fixed point.

Proof By the Schauder fixed point theorem, the assumption T n is compact implies
that there exists a point y ∈ Y such that y = T n(y). Then Lemma 5.8 gives
that either y is a fixed point of T , or there is a natural l ≥ 2 such that C =
{y, T (y), · · · , T l−1(y)} is an l-cycle of T whereby T (C) = C. Suppose that the
latter case is true. Then there exists a unique minimal admissible couple (C,Z2).
In view of Lemma 5.6, Z2 satisfies (5.7). As T is proper, from the compactness of
T n(Z2) it follows that T −1(T n(Z2)) as well as T n−1(Z2) are compact. Proceeding
in this way, step by step we get that T n−2(Z2), · · · , T (Z2) are compact and hence
Z2 is compact, too. �
Theorem 5.35 Let Y be a closed convex subset of a Banach space X and T : Y →
Y be a continuous mapping and there exists an integer n ≥ 2 such that T n is
compact. Then in the compact set Z = T n(Y ) either T has a fixed point or for
each prime number p ≥ n there exists a p-cycle of T . Moreover, each cycle of T
lies in Z.

Proof As W = conv(Z) is a convex compact subset of Y , and for each k ≥ n

T k(W) ⊆ Z, there exists a fixed point xk ∈ Z of T k . If T has no fixed point, then
xk belongs to an l-cycle of T where l is a divisor of k. In case k = p, l is p. Further
T (Z) ⊆ Z and hence, together with xp, all elements of this p-cycle of T belong
to Z. The last statement follows from the fact that in each cycle of T there is an
element in Z. �
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5.4.1 Existence of Limit-Weak Solutions for Differential
Equations

We consider the problem of finding limiting-weak solutions for a class of ordinary
differential equations in reflexive Banach spaces. Such equations are closely related
to Peano’s theorem in infinite dimensional spaces.

We are concerned with the following vector-valued differential equations :
{
ut = f (t, u), in X,
u(0) = u0 ∈ X, (5.11)

where t ∈ I = [0, γ ] , α > 0, X is a reflexive Banach space and f : I × X → X.
Here, the field f is assumed to be a Carathéodory mapping, that is,

(H1) for all t ∈ I, f (t, .) : X→ X is continuous.
(H2) for all x ∈ X, f (t, .) : X→ X is measurable.

In [12], Barroso explored a new approach to (5.11). The basic idea is to weaken
the notion of solution in a way that allows us to derive general existence results even
without having additional conditions of continuity other than (H1). To this aim, the
developed theory on weak approximate fixed points for continuous mappings will
be invoked.

The following notion of weak-approximate solution for (5.11) is due to Barroso
[12].

Definition 5.20 (Limiting Weak Solutions) We say that an X-valued function
u : I → X is a limiting-weak solution to the problem (5.11) if u ∈ C(I,X) and
there exists a sequence (un)n in C(I,X) such that

1. un ⇀ u in C(I,X),
2. for each t ∈ I,

u0 +
∫ t

0
f (s, un(s))ds ⇀ u(t), in X,

3. and, u is almost everywhere strongly differentiable in I .

where the above integral is understood in Bochner sense.

To get an existence result of limiting-weak solutions to (5.11), Barroso [12]
proved the following :
Theorem 5.36 Let (X, ‖.‖) be a reflexive Banach space and f : I × X → X be a
Carathéodory mapping satisfying

‖f (s, x)‖ ≤ α(s)ϕ(‖x‖), for a. e.s ∈ I, and all x ∈ X, (5.12)
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where α ∈ Lp [0, γ ] for some 1 < p < ∞, and ϕ : [0,∞) → (0,∞) is
nondecreasing continuous function such that

∫ γ

0
α(s)ds <

∫ ∞

0

ds

ϕ(s)
.

Then (5.11) has a limiting-weak solution.

For the proof of the above theorem, we will rely on the following weak
compactness result of Dunford [49].

Theorem 5.37 Let (�,�,μ) be a finite measure space and X be a Banach space
such that X and X′ have the Radon-Nikodým property. A subset Y of L1(μ,X) is
relatively weakly compact if

1. Y is bounded,
2. Y is uniformly integrable, and

3. for each � ∈ �, the set

{∫

�

udμ : u ∈ Y
}

is relatively weakly compact.

Proof Let us consider (�,�,μ) the usual Lebesgue measure space on I and denote
by L1(μ,X) the standard Banach space of all equivalence classes of X-valued
Bochner integrable functions u defined on I equipped with its usual norm ‖.‖1.
In what follows we shall use the following notations

A =
{
u ∈ L1(μ,X) : ‖u(t)‖ ≤ b(t) for a.e. t ∈ I

}
,

B =
{
u ∈ L1(μ,X) : ‖v(t)‖ ≤ α(t)ϕ(b(t)) for a.e. t ∈ I

}
,

where

b(t) = J−1
(∫ t

0
α(s)ds

)
and J (z) =

∫ z

‖u0‖
1

ϕ(s)
ds.

A straightforward computation shows that both A and B are convex. Also, as is
readily seen, A is closed in L1(μ,X). Moreover, since X is a reflexive space, we
can apply Theorem 5.37 to conclude that B is a relatively weakly compact set in
L1(μ,X). Let us consider now the set

Y =
{
u ∈ A : u(t) = u0 +

∫ t

0
ū(s)ds for a.e. t ∈ I, and some ū ∈ B

}
.

It is easy to see that Y is nonempty and convex. We claim now that Y is closed.
Indeed, let (un)n be a sequence in Y such that un −→ u in L1(μ,X). Then

un(t) −→ u(t) in X
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for a.e. t ∈ I . In particular, u ∈ A. On the other hand, since B is sequentially
weakly compact and

un(t) = u0 +
∫ t

0
ūn(s)ds for a.e. t ∈ I,

with ūn ∈ B, n ≥ 1, we may assume that (un)n converges weakly to some u ∈
L1(μ,X). Then, by fixing φ ∈ X′ and taking into account that each

∫ t

0
φ(.)ds

defines a bounded linear functional on L1(μ,X), it follows that

φ(u(t)− u0) = lim
n→∞φ

(∫ t

0
ūn(s)ds

)
= lim
n→∞

∫ t

0
φ(ūn(s))ds =

∫ t

0
φ(ū(s))ds,

for a.e. t ∈ I . Hence φ(u(t) − u0) = φ
(∫ t

0
ū(s)ds

)
for a.e. t ∈ I . This implies

that

u(t) = u0 +
∫ t

0
ū(s)ds for a.e. t ∈ I,

since φ was arbitrary. It remains to show that u ∈ B. To this end, it suffices to
apply Mazur’s theorem since B is closed in L1(I,X) and un ⇀ u in L1(I,X). This
concludes the proof that Y is closed.

Thus, by applying once more Theorem 5.37, we reach the conclusion that Y is
weakly compact in L1(I,X). Let us define now a mapping F : Y → Y by

F(u)(t) = u0 +
∫ t

0
f (s, u(s))ds.

From now on, our strategy will be to obtain a weak-approximate fixed point
sequence for F in L1(I,X) and then deduce that it is itself a weak-approximation of
fixed points for F in W 1,p(I,X), the Sobolev space consisting of all u ∈ Lp(I,X)
such that u′ exists in the weak sense and belongs to Lp(I,X). After this we will use
the fact that the embedding W 1,p(I,X) ↪→ C(I,X) is continuous to recover the
corresponding weak convergence in C(I,X).

By using (H1)-(H2), we see that F is well-defined and that it is continuous with
respect to the norm-topology of L1(I,X). The last assertion follows easily from
Lebesgue’s theorem on dominated convergence. According to Theorem 5.25, there
exists a sequence (un)n in Y so that un − F(un) ⇀ θ in L1(I,X). Observe that
un ∈ C(I,X) for all n ≥ 1. Moreover, up to subsequences, we may assume that
both (un)n and (F (un))n converge in the weak topology of L1(I,X) to some u ∈ Y .
We claim now that un−F(un) ⇀ θ in C(I,X). Before proving this, we get a priori
Lp-estimates for arbitrary functions u ∈ Y .
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Fix any u ∈ Y :
(1) Using (H2) we have

‖F(u)‖Lp ≤ ‖u0‖|I |
1
p +

{∫ γ

0

∥∥∥∥
∫ t

0
f (s, u(s))ds

∥∥∥∥
p

dt

} 1
p

≤ ‖u0‖|I |
1
p +

{∫ γ

0

(∫ t

0
‖f (s, u(s))‖ds

)p
dt

} 1
p

≤ ‖u0‖|I |
1
p +

{∫ γ

0

(∫ t

0
α(s)ϕ(b(s))ds

)p
dt

} 1
p

≤ ‖u0‖|I |
1
p + ‖α‖L1[0,γ ]ϕ(‖b‖∞)γ

1
p ,

where ‖b‖∞ denotes the supremum norm of b on I .
(2) Analogously, one can shows that

‖u0‖Lp |I |
1
p + ‖α‖L1[0,γ ]ϕ(‖b‖∞)γ

1
p .

(3) It follows now from (H2) and the Lp-assumption on α that

‖∂tF (u)‖Lp ≤ ϕ(‖b‖∞)‖α‖Lp[0,γ ],

and

‖∂tu‖Lp ≤ ϕ(‖b‖∞)‖α‖Lp[0,γ ].

In consequence, the above estimates show that both (un)n and (F (un))n are
bounded sequences in W 1,p(I,X). In view of the reflexivity of W 1,p(I,X),
by passing to a subsequence, if necessary, we can find v,w ∈ W 1,p(I,X)

such that un ⇀ v and F(un) ⇀ w in W 1,p(I,X). In particular, u =
v = w since the embedding W 1,p(I,X) ↪→ L1(I,X) is continuous. Thus
un − F(un) ⇀ θ in W 1,p(I,X). On the other hand, using now the fact the
embeddingW 1,p(I,X) ↪→ C(I,X) is also continuous, it follows that

un − F(un) ⇀ θ in C(I,X), and

un ⇀ u in C(I,X).

Therefore

u0 +
∫ t

0
f (s, un(s))ds ⇀ u(t) in X, (5.13)
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for all t ∈ I , which proves 1. and 2. of Definition 5.20. It remains to prove the
optimal regularity of the limiting-weak solution u. To this end, we may apply
again Theorem 5.37 to conclude that

Z = {f (., un(.)) : n ∈ N}

is relatively weakly compact in L1(I,X). Hence, by passing to a subsequence
if necessary, we get

∫ t

0
f (s, un(s))ds ⇀

∫ t

0
v(s)ds in X, (5.14)

for all t ∈ I and some v ∈ L1(I,X). Combining (5.13) and (5.14) it follows
that

u(t) = u0 +
∫ t

0
v(s)ds,

for all t ∈ I . Hence, following the same arguments as [188], one can prove that
u is almost everywhere strongly differentiable in I . This completes the proof of
Theorem 5.36.

�
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A
Absolutely convex subset, 18
Absorbing subset, 18
Admissible class, 199
Admissible couple, 211–213
Admissible function, 84, 85
Affine mapping, 92
Almost fixed pyramid, 143
Angelic space, 72
Approximate Lipschitz fixed point property

(approx. L.f.p.p.), 202
Approximation Theorem, 146
Asplund space, 77, 78, 231
Asymptotically regular mapping, 103
Asymptotic approximation, 146

B
Baire-one functions, 75
Baire class, 74
Balancing subset, 18
Ball-condensing mapping, 108
Banach-Alaoglu’s theorem, 59
Banach’s Contraction Mapping Principle, 86
Banach space

reflexive, 64
uniformly convex, 65
weakly compactly generated, 219
weakly Lindelöf determined, 219

Barrel subset, 19
Base, 3
Better admissible class B, 200
Bochner sense, 233
Brouwer’s fixed point theorem, 88

C
Canonical immersion, 62
Canonically homeomorphic,

76, 78
Cantor’s intersection property, 86
Cantor theorem, 214
Carathéodory mapping, 233
Caristi’s fixed point Theorem, 87
Cauchy family, 83
Cech-Stone compactification, 223
Center, 79
Chain, 80
Circled subset, 18
Closed circled hull, 27
Closed convex circled hull, 27
Closed convex hull, 27
Closed sets, 1
Closure, 2
Cofinal, 10
Coincide, 7
Coinitial, 82
Compact contractible subset,

140
Compact map, 89
Comparable topologies, 7
Completely metrizable topological vector

space, 41
Completion, 41
Continuous map, 11
Converges with continuity,
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Convex, 17, 79
Convex hull, 17
Convex structure, 174
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D
Darbo’s fixed point theorem, 94
Dilations, 14
Dirac measure, 223
Directed set, 9

eventually, 10
frequently, 10

Directional curve, 120
Directionally bounded convex subset, 120
Directionally nonexpansive, 169, 176

E
Equivalent basis of neighborhoods, 7
Equivalent to the l1-basis , 66
Extension, 79

completion, 82
dense, 81
immediate, 81
spherical completion, 82

F
Fibers, 187
Finite convex linear combinations, 17
Finite intersection property, 5
Fréchet space, 41
Fréchet-Urysohn property, 75
F-space, 41
F-topology, 8
Fundamental system of neighborhoods, 4

G
Generalized nonexpansive map, 113
Geodesic segment, 144
Goldstine, 63
Grothendieck property, 223
Grothendieck space, 221
g-space, 72

H
Hausdorff metric, 157
Helley lemma, 63
Hyperbolic space, 119

I
Idzik’s problem, 193
Inner metric, 144
Interior, 2
Intrinsic metric, 144

J
James’s space, 78

K
Kakutani’s example, 89
Kakutani map, 192
KKM map, 188
KKM principle, 187
K-set contraction map, 94
Kuratowski measure of noncompactness, 93

L
Length, 144
Length space, 144

geodesic, 144
Limiting-weak solution, 233, 234
Limit ordinal, 83
Linear functional, 51
Linear homeomorphism, 14
Lipschitz equivalence mapping, 203
Lipschitz equivalent, 203
Lipschitz fixed point property (L.f.p.p.), 202
Lipschitz map, 202
Lipschitz retraction, 203
Locally convex, 27
Local neighborhood base, 4

M
Mann iteration method, 103
Mapping
α-most convex, 111–113, 115, 117
demiclosed, 110, 115, 174
demicompact, 108
demicontinuous, 209
demicontinuous, 207, 231
invariant subset, 95
minimal subset, 95
most convex, 111

Markov-Kakutani’s fixed point theorem, 92
Mazur’s theorem, 57
Metric

equivalent, 203
translation invariant, 14

Metric embedding, 119
Metric line, 119
Metric segment, 119, 144
Metric space, 2
λ L.A.E., 203
Lipschitz absolute extensor (L.A.E.), 203
Lipschitz absolute retract (L.A.R.), 203
metrically convex, 144

Milman, 65
Minimal admissible couple, 212
Minkowski functional, 32
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Multifunction, 187
closed, 187
compact, 187
graph, 187
lower semicontinuous (l.s.c.), 187
upper semicontinuous (u.s.c.), 187

N
Neighborhood, 3
Neighborhood system, 3
Net, 10
τ -approximate fixed point, 224, 225, 228
bounded, 20
Cauchy, 28
converges, 10
converges strongly, 55
converges weakly, 55
point

accumulation, 10
cluster, 10

Nonexpansive mapping, 94, 120
approximate fixed point property (AFPP),

122, 131
approximate fixed point property (AFPP),

101, 118–120, 124–126, 128,
131–133

approximate fixed point sequence, 103
bounded approximate fixed point property

(BAFP), 134, 135
fixed point property (FPP), 94–97
subset has the fixed point property, 94
weak fixed point property (WFPP), 95
weak fixed point property (WFPP), 95, 97

Normalized duality mapping, 110
Non-zero minimal displacement, 114

O
Open cover, 4
Open sets, 1
Open strip, 33
Opial’s condition, 109, 110, 117
Orbit, 161

P
Partition of unity, 216
Path, 144
Point
V -fixed, 196, 197
ε-fixed, vii, 99–101, 134, 137–139, 141
k-periodic of, 211
ε-fixed, 138, 139

accumulation, 2
almost fixed, 99
cluster, 103, 107
fixed, vii
global minimum, 159
isolated, 2
limit , 2

Positive cone, 71
Positive semiorbit γ+(x), 211
Preimage, 16
Principal ball, 79
Proper mapping, 210
Property
(β), 172, 173
σ(X′, X)-afp, 217, 221
σ(X′, Z)-afp, 215
σ(X,Z)-afp, 215
σ(X,Z)-approximate fixed point, 215
τ -afp, 202, 207, 209
τ -approximate fixed point, 202
ε-fixed, 141
(P), 175
(Q), 175
σ(X′, X)-afp, 221
almost fixed point, 189
asymptotic fixed point, 231
convexly almost fixed point, 189
Radon-Nikodým, 234
weak-afp, 209, 215, 217, 219–222
weak-approximate fixed, 209

Pseudo-convergent family, 83
Pseudo-limit, 83

Q
Quasi-nonexpansive mapping, 171

R
Radial subset, 18
Radius, 79
Rectifiable, 144
Regular-global-inf function (r.g.i.), 155
Relatively countably compact, 74, 75
Retract, 140
Retraction, 140
RNP, 77
Rosenthal’s theorem, 68

S
Sadovskii’s fixed point theorem, 94
Schauder-projection, 84
Schauder’s conjecture, 192
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Schauder’s fixed point theorem, 89
Schauder-Tychonoff’s fixed point theorem, 92
Schur’s Theorem, 76, 77
Schwartz space, 35
Second dual, 58, 62
Semiball, 32
Seminorm, 30
Separable in the strong topology, 217
Separated, 4
Separating family of seminorms, 30
Sequence
σ(X,Z)-approximate fixed point, 215
τ -approximate fixed point, 202
τ -convergence, 202
l1-, 69–71, 74–76, 78, 219–221
(P)−, 129, 130
σ(X,Z)-approximate fixed point, 215
l1-, 69, 76
(P)−, 129, 130
approximate fixed point, 115, 225
directional, 120
norm attaining bounded, 130
Pryce, 129
weak-approximate fixed point, 207, 209,

214, 231
Set
ω-limit, 211
σ(X,X′)-closed, 56
τ -bounded, 20
k-cycle of, 211
p-totally bounded, 224
τ -closed, 56
almost convex, 188
approximate fixed point, 101
clopen, 81
convexly totally bounded (c.t.b.), 192
countably compact, 72
drop generated, 172
global minimum points, 157, 158
level, 156
linearly bounded, 118
ordered, 79
partially ordered, 79
precompact, 29
relatively countably compact, 72
relatively sequentially compact, 72
sequentially compact, 72
strongly closed, 56
strongly convexly totally bounded (s.c.t.b.),

193
totally bounded, 29
Zima type, 192

Set-condensing mapping, 108
Solid, 79

Starshaped about zero subset, 18
Starshaped subset, 184
Strictly contracting mapping, 87
Strong convex structure (SCS), 175
Subbase, 3
Subcover, 4
Subnet, 10
Symmetric subset, 18

T
Takahashi convex metric space (TCS), 174
Topological completion, 41
Topological dual space, 51
Topologically isomorphic, 48
Topological space, 1

N0-monolithic, 217
compact, 4
Fréchet-Urysohn, 72
Hausdorff, 4
metrizable, 8
normal, 4
Polish, 74
regular, 4
separable, 6
T1, 4
T2, 4
T3, 4
T4, 4

Topological vector space, 13
complete, 28
Heine-Borel property, 21
locally bounded, 21
locally compact, 21
metrizable, 21
normable, 21
property
σ(X,Z)-afp, 215

sequentially complete, 28
Topology, 1
σ(X′, X), 57
w∗, 57
σ(X,X′), 54
co-finite, 2
coarser, 7
coarset, 54
compatible, 8
compatible with the duality, 76
discrete, 2
euclidean, 13
finer, 7
induced, 84
induced , 2
induced from seminorms, 33
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initial, 54
linear, 13
metric, 2
stronger, 7
trivial, 2
weak, 54
weak∗, 57
weaker, 7
weakest, 8

Totally ordered, 79
Translation invariant, 14
Translations, 14
Type �, 113

U
Ultrametric distance, 79
Ultrametric space, 79

complete, 80
principally complete, 80
subspace, 81
spherically complete, 80

Uniformity, 133
Uniformly asymptotically regular mapping,

104, 107

Uniformly locally directionally nonexpansive,
169, 176

Uniform space, 133

V
Valuation, 81

W
Weak lower semicontinuous map, 114
Weakly bounded, 55
Weakly closed, 56
Weakly contractive mapping, 183
Weakly proper mapping, 210
Weakly quasi-nonexpansive mapping, 180
Weak regular-global-inf, 173
Weak r.g.i, 173
Weak sense, 235

Z
Zero. Bounded Rule, 21
Zorn’s lemma, 95
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