Geometric and Exotic Contextuality )
in Quantum Reality L

Michel Planat

1 Introduction

What is quantum reality? Quoting Niels Bohr: We are suspended in language in such
a way that we cannot say what is up and what is down. The world “reality” is also
a word, a word which we must learn to use correctly (Bohr, 1997). Today, the words
‘quantum holism’ are often used to qualify the inseparability of distant quantum
objects known as quantum entanglement or quantum non-locality (Esfeld, 1999;
Ferrero et al., 2004; Miller, 2014). The concept of ‘quantum contextuality’ seems
to be more appropriate because it is used to describe our objective experience of
quantum measurements. In a contextual world, the measured value of an observable
depends on which other mutually compatible measurements might be performed
and cannot simply be thought as revealing a pre-existing value. It is not only that the
whole supersedes the parts but that the observer interprets the quantum world with
his available sensors and words. Quantum contextuality is able to feature counter-
intuitive aspects of the quantum language and is now considered as more general
than quantum entanglement and quantum non-locality (at least when one refers to
Bell’s theorem).

In this line of thought, the Bell-Kochen-Specker theorem (BKS) is able to rule
out non-contextual hidden variable theories by resorting to mathematical statements
about coloring of rays located on maximal orthonormal bases in a d-dimensional
Hilbert space (with d at least 3) (Peres, 1993; Quantum contextuality, 2021). A
very transparent ‘proof” of the BKS theorem makes use of 18 rays and 9 maximal
orthonormal bases of two qubits (i.e. in the 4-dimensional Hilbert space) (Cabello
et al., 1996). This topic will be described in some details in Sect. 2.

In the past few years, the author developed a group theoretical approach of quan-
tum contextuality that he called ‘geometric contextuality’. The idea is to take seri-

M. Planat ()

Université de Bourgogne/Franche-Comté, Institut FEMTO-ST CNRS UMR 6174, 15 B Avenue
des Montboucons, 25044 Besancon, France

e-mail: michel.planat@femto-st.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 469
S. Wuppuluri and I. Stewart (eds.), From Electrons to Elephants and Elections,
The Frontiers Collection, https://doi.org/10.1007/978-3-030-92192-7_26


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92192-7_26&domain=pdf
mailto:michel.planat@femto-st.fr
https://doi.org/10.1007/978-3-030-92192-7_26

470 M. Planat

ously Bohr’s suggestion that quantum theory is a language. Most of the time, words
in this language only need two letters and the theory resorts to the so-called ‘dessins
d’enfants’ of Grothendieck (Planat, 2015, 2016; Planat and Zainuddin, 2017). This
topic is developed in Sect. 3 by restricting to the case of two qubits in order to keep
the technicalities simple enough.

Then, in Sect 4, the topic ‘exotic contextuality’ offers an opportunity to reintro-
duce a four-dimensional space-time in our interpretation of the quantum world. Our
objects are four-manifolds. Quantum measurements may be seen as taking place in
‘parallel’ worlds/contexts that mathematically are homeomorphic but non diffeomor-
phic to each other (Planat, 2020). This idea looks like the many worlds interpretation
of quantum mechanics (DeWitt, 1970) while being different in the mathematical
approach.

2 A Glance at Two-Qubit Parity Proofs of the BKS
Theorem

A parity proof of BKS theorem is a set of v rays that form / bases (/ odd) such that
each ray occurs an even number of times over these bases. A proof of BKS theorem
is critical if it cannot be further simplified by deleting even a single ray or a single
basis. The smallest BKS proof in dimension 4 is a parity proof and corresponds
to arrangements of real observables arising from the two-qubit Pauli group, more
specifically as eigenstates of two-qubit operators forming a (3 x 3)-grid (also known
as a Mermin’s square) as follows

IX— XI— XX—
| | Il

ZX— XZ— YY— (1)
| | Il

ZI— 1Z— ZZ—

where [ is the two-dimensional identity matrix, X, ¥ and Z are the Pauli spin
matrices, and the operator products are Kronecker products.

The simplification of arguments in favour of a contextual view of quantum mea-
surements started with Peres’ note (1993) and Mermin’s report (1993). Observe that
in (1), the three operators in each row and each column mutually commute and their
product is the identity matrix, except for the right hand side column whose product is
minus the identity matrix. There is no way of assigning multiplicative properties to
the eigenvalues 1 of the nine operators while still keeping the same multiplicative
properties for the operators. Paraphrasing (Peres, 1993), the result of a measurement
depends “in a way not understood, on the choice of other quantum measurements,
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that may possibly be performed”. Mermin’s ‘proof” of the BKS theorem stated in
terms of two-qubit observables can now be reformulated in terms of rays and maximal
bases.

We shall employ a signature of the proofs in terms of the distance D,; between
two orthonormal bases a and b defined as (Planat, 2012)

, 1 ;1)
Doy =1= =y 2 (a7 ) - ®

The distance (2) vanishes when the bases are the same and is maximal (equal to
unity) when the two bases a and b are mutually unbiased, |(a; |b j)|2 = 1/d, and only
then. We shall see that the bases of a BKS proof employ a selected set of distances
which happens to be a universal feature of the proof.

Using the list of the unnormalized eigenvectors (numbered consecutively)

1:[1000], 2:[0100], 3:[0010], 4:[0001], 5:[L1111], 6:[1111]
7 :[1111], 8:[1111], 9:[1111], 10:[1111], 11 :[1111], 12:[1111]
13 :[1100], 14 :[1100], 15:[0011], 16:[0011], 17:[0101], 18:[0101]

19; [1010], 20:[1010], 21:[1001], 22:[1001], 23:[0110], 24 :[0110]
3)

one gets 24 complete orthogonal bases are as follows

1:{1,2,3,4},2:{5,6,7,8},3:{9, 10, 11, 12}, 4 : {13, 14, 15, 16},

5:{17,18,19,20}, 6 : {21,22,23,24},7 : {1,2,15, 16}, 8 : {1,3, 17, 18},

9:{1,4,23,24},10: {2,3,21,22}, 11 : {2,4, 19,20}, 12 : {3, 4, 13, 14},

13:(5,6,14,16},14 : {5,7, 18,20}, 15 : {5,8,21,23},16 : {6, 7, 22, 24},

17: (6,8, 17,19}, 18 : {7,8, 13, 15},19 : {9, 10, 13, 16}, 20 : {9, 11, 18, 19},

21: {9, 12,22,23},22: {10, 11, 21,24}, 23 : {10, 12, 17,20}, 24 : {11, 12, 14, 15}.
“)

Then, by normalizing rays, one obtains a finite set of distances between the 24
bases

D ={a,a2,a3, 04,05} ={/1/3,/7/12,/2/3,/5/6, 1}

~ {0.58, 0.76, 0.82, 0.91, 1.000}.

Table 1 provides a histogram of distances for various parity proofs v — [.
The table reveals that there exist four main types of parity proofs arising from the
24 rays, that are of the type 18 — 9, 20 — 11, 22 — 13 and 24 — 15. Types 20 — 11
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Table 1 The histogram of distances for various parity proofs v — / obtained from Mermin’s square

Proof v — [ | # Proofs ay an as ay as
24-15 16 18 18 9 54 6
22-13A 96 12 18 3 42 3
22-13B 144 12 18 4 42 2
20-11A 96 6 18 0 30 1
20-11B 144 6 18 1 30 0
18-9 16 0 18 0 18 0

and 22 — 13 subdivide into two non-isomorphic ones A and B as shown in Table 1
(Planat, 2012; Pavici¢ et al., 2005; Waegell and Aravind, 2011).

The 16 proofs of the 18 — 9 type can be displayed as the 4 x 4 square (5) in which
two adjacent proofs share three bases. Observe that each 2 x 2 square of adjacent
proofs has the same shared base, which is taken as an index (e.g. the upper left-hand-
side 2 x 2 square has index 7 and the lower right-hand-side square has index 10).
All four indices in each row and in each column correspond to four disjoint bases
that together partition the 24 rays.

7 8 10 7 9 11 8 9 12 10 11 12
131416 | — | 141518 | — | 161718 } — | 131517 | —
222324 19 20 22 20 21 24 19 21 23

|7 | 20 l12 23
7 9 11 7 8 10 10 11 12 8 9 12
161718 | — | 131517 |- 131416 | — | 141518 | —
19 21 23 20 21 24 19 20 22 222324

l17 10 14 lo )
8 9 12 10 11 12 7 8 10 7 9 11
131517 |- 161718 | — | 141518 | — | 131416 | —
19 20 22 222324 19 21 23 20 21 24

l12 |23 |7 20
10 11 12 8 9 12 7 9 11 7 8 10
141518 | — | 131416 | — | 131517 |} - | 161718 | —
2021 24 19 21 23 222324 19 20 22

14 lo l17 l10

Diagrams for the proofs How can we account for the distance signature of a given
proof? A simple diagram does the job.

The diagram for the 18 — 9 proof is simply a 3 x 3 square. Below we give an
explicit construction of the first proof that corresponds to the upper left-hand-side
corner in (5). The 9 vertices of the graph are the 9 bases of the proof, the one-point
crossing graph between the bases is the graph (6), with aut = G7, = Z% X Dy. There
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are 9 (distinct) edges that encode the 18 rays, a selected vertex/base of the graph is
encoded by the union of the four edges/rays that are adjacent to it.

12 13 2 3
(1516>_1_ (1718>_3_ (2122)_2

l16 | 18

[22
56 5 7 6 7
(14 16>_5_ (1820)_7_ (2224)‘6 (6)
l14 20 |24
1112 10 12 10 11
(14 15)_12_<1720>_10_ (21 24)_11
15 l17 [21

As for the distances between the bases, two bases located in the same row (or the
same column) have distance a, = +/7/12, while two bases not in the same row (or
column) have distance a4 = +/5/6 > ay, as readily discernible from Table 2 and the
histogram in Table 1. Indeed, any proof of the 18 — 9 type has the same diagram as
(6).

Similar diagrams can be drawn to reflect the histogram of distances in proofs of
a larger size. Below we restrict to the case of a 20 — 11A proof (where only the
distance between two bases is made explicit, but not the common rays of the bases)

10 12 112 10 11
<17 20) @ <14 15) —a— (21 24> ..ay = /5/6...

lap = /7/12 | ap |an

13 12 1 4 e 12

1718) "7 \1516) ~ 4?7 \2324 )4~ A |34 (7)
laz laz laz las =1

57\ (56\ (538 _ 56

1820) "7 \1416) — 2023 )M =75 \ 78
laz laz laz

The proof consists of 11 bases, 9 of them have the same mutual diagram as in
(6) and their mutual distance is ay = +/7/12 (as shown) or ay = +/5/6 (not shown),
depending on whether they are located in the same row (or the same column) of the
3 x 3 square, or not. The extra two bases of the right-hand-side column are mutually
unbiased (with distance as = 1), their distance to any base of the same row is 1/ V3
and their distance to any base of the first row is a4 (as shown).

3 Geometric Contextuality

Interpreting quantum theory is a long standing effort and not a single approach can
exhaust all facets of this fascinating subject. Quantum information owes much to the
concept of a (generalized) Pauli group for understanding quantum observables, their
commutation, entanglement, contextuality and many other aspects, e.g. quantum
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computing. Quite recently, it has been shown that quantum commutation relies on
some finite geometries such as generalized polygons and polar spaces (Planat, 2011).
Finite geometries connect to the classification of simple groups as understood by
prominent researchers as Jacques Tits, Cohen Thas and many others (Planat and
Zainuddin, 2017; Thas et al., 2004).

In the Atlas of finite group representations (Wilson et al., 2015), one starts with
a free group G with relations, then the finite group under investigation P is the
permutation representation of the cosets of a subgroup of finite index d of G (obtained
thanks to the Todd-Coxeter algorithm). As a way of illustrating this topic, one can
refer to (Planat and Zainuddin, 2017, Table3) to observe that a certain subgroup
of index 15 of the symplectic group S;(2) corresponds to the 2Q B (two-qubit)
commutation of the 15 observables in terms of the generalized quadrangle of order
two, denoted G Q(2, 2) (alias the doily). For 3Q B, a subgroup of index 63 in the
symplectic group Se(2) does the job and the commutation relies on the symplectic
polar space W5(2) (Planat and Zainuddin, 2017, Table7). An alternative way to
approach 3Q B commutation is in terms of the generalized hexagon G H (2, 2) (or its
dual) which occurs from a subgroup of index 63 in the unitary group Us(3) (Planat
and Zainuddin, 2017, Table 8). Similar geometries can be defined for multiple qudits
(instead of qubits).

The straightforward relationship of quantum commutation to the appropriate sym-
metries and finite groups was made possible thanks to techniques that we briefly
summarize.

3.1 Finite Geometries from Cosets (Planat, 2015; Planat and
Zainuddin, 2017; Planat et al., 2015)

Let H be a subgroup of index d of a free group G with generators and relations.
A coset table over the subgroup H is built by means of a Coxeter-Todd algorithm.
Given the coset table, on builds a permutation group P that is the image of G given
by its action on the cosets of H. In this paper, the software Magma (Bosma, 2019)
is used to perform these operations.

One needs to define the rank » of the permutation group P. First one asks that
the d-letter group P acts faithfully and transitively on the set Q@ = {1, 2, ..., d}. The
action of P on a pair of distinct elements of €2 is defined as (o, 8)” = (a?, B?),
p € P, a # B. The orbits of P on the product set 2 x 2 are called orbitals. The
number of orbits is called the rank r of P on 2. Such a rank of P is at least two, and
it also known that two-transitive groups may be identified to rank two permutation
groups.

One selects a pair (o, 8) € 2 x Q,a # B and one introduces the two-point stabi-
lizer subgroup P g) = {p € Pl(a, B)? = (o, B)}. There are 1 < m < r such non-
isomorphic (two-point stabilizer) subgroups of P. Selecting one of them with o # B,
one defines a point/line incidence geometry G whose points are the elements of the
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bla

ab? b lapl b%ap !

Fig. 1 The generalized quadrangle of order two G Q(2, 2). The picture provides a representation
in terms of the fifteen 2Q B observables that are commuting by triples: the lines of the geometry.
Bold lines are for an embedded 3 x 3 grid (also called Mermin square) that is a basic model of
Kochen-Specker theorem (e.g. Planat and Zainuddin, 2017, Fig. 1 or (Planat, 2012)). The second
representation is in terms of the cosets of the permutation group arising from the index 15 subgroup
of G = Ag (the 6-letter alternating group)

set 2 and whose lines are defined by the subsets of €2 that share the same two-point
stabilizer subgroup. Two lines of G are distinguished by their (isomorphic) stabiliz-
ers acting on distinct subsets of 2. A non-trivial geometry is obtained from P as
soon as the rank of the representation P of P is r > 2, and at the same time, the
number of non isomorphic two-point stabilizers of P is m > 2. Further, G is said to
be contextual (shows geometrical contextuality) if at least one of its lines/edges is
such that a set/pair of vertices is encoded by non-commuting cosets (Planat, 2015).
Figure 1 illustrates the application of the two-point stabilizer subgroup approach
justdescribed for the index 15 subgroup of the symplectic group is S, (2) = A¢ whose
finite representation is
H = (a, bla®> = b* = (ab)’ = (ab?)’ = 1). The finite geometry organizing the
coset representatives is the generalized quadrangle G Q(2, 2). The other represen-
tation is in terms of the two-qubit Pauli operators, as first found in (Planat, 2011;
Saniga and Planat, 2007). It is easy to check that all lines not passing through the
coset e contains some mutually not commuting cosets so that the G Q (2, 2) geome-
try is contextual. The embedded (3 x 3)-grid shown in bold (the so-called Mermin
square) allows a 2Q B proof of Kochen-Specker theorem (Planat, 2012).
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3.2 The Kochen-Specker Theorem with a Mermin Square
of Two-Qubit Observables

Let us show how to recover the geometry of the Mermin square, i.e. the (3 x 3) grid
embedded in the generalized G Q(2, 2) of Fig. 1. Recall that it is the basic model
of two-qubit contextuality (Planat and Zainuddin, 2017, Fig. 1) (Planat, 2012). One
starts with the free group G = (a, b|b2> and one makes use of the mathematical
software Magma (Bosma, 2019). Then one derives the (unique) subgroup H of
G that is of index nine and possesses a permutation representation P isomorphic
to the finite group Z3 x Z3 reflecting the symmetry of the grid. The permutation
representation is as follows:

P =(91(1,2,4,8,7,3)(5,9,6), (2,5)(3,6)(4,7)(3,9)) ,
where the list [1, ..., 9] means the list of coset representatives

-2

[e,a,ail,a2,ab,a71b,a ,a3,aba].

The permutation representation P can be seen on a torus as in Fig. 2i.

a? a'1b

Fig. 2 The map (i) leading to Mermin’s square (j). The two-point stabilizer subgroups of the
permutation representation P corresponding to the dessin (one for each line) are as follows:
51=1(2,3)4,7)(5,6),520 =(1,7)(2,8)(6,9),53 = (1,43, 8)(5,9),54 = (2,6)(3,5)(8,9),55 =
(1,9)(4,5)(6,7),s6 = (1, 8)(2, 7)(3, 4), where the points of the square (resp. the edges of the dessin
d’enfant) are labeled as [1, .., 9] = [e, a,a "}, a?,ab,a 'b,a™?,a’, abal]
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Next, we apply the procedure described at the top of this subsection. There are
two types of two-point stabilizer subgroups isomorphic to the single element group Z,
or to the two-element group Z, . Both define the geometry of a (3 x 3) grid comprising
six lines identified, by their non-identical, but isomorphic two-point stabilizers s; to
s¢, made explicit in the caption of Fig.2. The first grid (not shown) is considered
non-contextual in the sense that the cosets on a line are commuting. The second
grid, shown in Fig.2j, is contextual in the sense that the right column does not have
all its triples of cosets mutually commuting. The non-commuting cosets on this line
reflect the contextuality that occurs when one takes two-qubit coordinates for the
points of the grid, see (Planat, 2015) for more details about the relationship between
non-commuting cosets and geometric contextuality.

4 Exotic Contextuality

We already approached the topic of quantum contextuality (QC) in two ways. In
Sect.2, we found how the 3 x 3 grid (or Mermin square) can be considered as a
building block of QC by proving the BKS theorem, either at level of two-qubit
operators that parametrize the grid or at the level of rays that correspond to eigenstates
attached to the operators of the grid. In Sect. 3, a group theoretical language with two-
letter words was found to nicely mimic QC in the Mermin square and its embedding
generalized quadrangle G Q (2, 2)—the locus of of the two-qubit Pauli group. In such
an approach, geometric contextuality corresponds to QC. Now, we jump to a possible
interpretation of this language by seeing the QC-geometries as creatures of exotic
four-manifolds that one may identify to our familiar space-time (Planat, 2020).

We introduce the concept of exotic contextuality for such an interpretation. More-
over, such a type of contextuality is related to a model of quantum computing based
on magic states that we developed in a series of papers (Planat and Gedik, 2017;
Planat et al., 2018, 2019). In quantum information theory, the two-qubit configura-
tion and its properties: quantum entanglement and quantum contextuality have been
discussed at length as prototypes of peculiarities or resources in the quantum world.
Our Sect. 3.2 mainly featured the quantum contextuality of two-qubit systems. Our
model of quantum computing is based on the concept of a magic state—a state that
has to be added to the eigenstates of the d-dimensional Pauli group- in order to
allow universal quantum computation. This was started by Bravyi & Kitaev in 2005
(Bravyi and Kitaev, 2005) for qubits (d = 2). A subset of magic states consists of
states associated to minimal informationally complete measurements, that we called
MIC states (Planat and Gedik, 2017). We require that magic states should be MIC
states as well. For getting the candidate MIC states, one uses the fact that a permu-
tation may be realized as a permutation matrix/gate and that mutually commuting
matrices share eigenstates. They are either of the stabilizer type (as elements of the
Pauli group) or of the magic type. One keeps magic states that are MIC states in order
to preserve a complete information during the computation and measurements.
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A further step in our quantum computing model was to introduce a 3-dimensional
manifold M* whose fundamental group G = 7;(M?) would be the source of MIC
states (Planat et al., 2018, 2019). Recall that G is a free group with relations and
that a d-dimensional MIC state may be obtained from the permutation group that
organizes the cosets of an appropriate subgroup of index d of G.

It was considered by us quite remarkable that two group geometrical axioms very
often govern the MIC states of interest (Planat et al., 2019), viz (i) the normal (or
conjugate) closure {g~'hg|g € G and h € H} of the appropriate subgroup H of G
equals G itself and (ii) there is no geometry (a triple of cosets do not produce equal
pairwise stabilizer subgroups). See (Planat et al., 2019, Sect. 1.1) for our method of
building a finite geometry from coset classes. But these rules had to be modified by
allowing either the simultaneous falsification of (i) and (ii) or by tolerating a few
exceptions. If it happens that (ii) is violated, one gets geometric contextuality, the
parallel to quantum contextuality (Planat, 2015) that one featured in Sect. 3.

Itis known that there exist infinitely many 4-manifolds that are homeomorphic but
non diffeomorphic to each other (Akbulut, 1991a, 2016; Gompf and Stipsicz, 1999;
Scorpian, 2011). They can be seen as distinct copies of space-time not identifiable
to the ordinary Euclidean space-time. A cornerstone of our approach is an ‘exotic’
4-manifold called an Akbulut cork W that is contractible, compact and smooth, but
not diffeomorphic to the 4-ball (Akbulut, 1991a). In our approach, we do not need
the full toolkit of 4-manifolds since we are focusing on W and its neighboors only.
All what we need is to understand the handlebody decomposition of a 4-manifold,
the fundamental group r; (8 W) of the 3-dimensional boundary d W of W, and related
fundamental groups. Following the methodology of our previous work (Planat and
Gedik, 2017; Planat et al., 2018), the subgroup structure of such ,’s corresponds to
the Hilbert spaces of interest. Our view is close to the many-worlds interpretation of
quantum mechanics where all possible outcomes of quantum measurements are real-
ized in some ‘world’ and are objectively real (DeWitt, 1970). One arrives at a many-
manifolds view of quantum computing -reminiscent of the many-worlds- where the
many-manifolds are in an exotic class and can be seen as many-quantum generalized
measurements, the latter being POVM’s (positive operator valued measures).

4.1 Excerpts on the Theory of 4-manifolds and Exotic R*’s

Handlebody of a 4-manifold. Let us introduce some excerpts of the theory of 4-
manifolds needed for our paper (Akbulut, 2016; Gompf and Stipsicz, 1999; Scorpian,
2011). It concerns the decomposition of a 4-manifold into one- and two-dimensional
handles as shown in Fig.3 (Akbulut, 2016, Figs. 1.1 and 1.2). Let B"” and S" be the
n-dimensional ball and the n-dimensional sphere, respectively. An observer is placed
at the boundary 3 B* = S° of the 0-handle B* and watch the attaching regions of the
1- and 2-handles. The attaching region of 1-handle is a pair of balls B (the yellow
balls), and the attaching region of 2-handles is a framed knot (the red knotted circle)
or a knot going over the 1-handle (shown in blue). Notice that the 2-handles are
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20

1-handle
<

B4

2-handles ™.

B4 3-handles 1-handles (b)

(@)

Fig. 3 a Handlebody of a 4-manifold with the structure of 1- and 2-handles over the 0-handle B*,
b the structure of a 1-handle as a dotted circle S' x B3

attached after the 1-handles. For closed 4-manifolds, there is no need of visualizing
a 3-handle since it can be directly attached to the O-handle. The 1-handle can also
be figured out as a dotted circle S' x B> obtained by squeezing together the two
three-dimensional balls B> so that they become flat and close together (Gompf and
Stipsicz, 1999, p. 169) as shown in Fig. 3b. For the attaching region of a 2- and a 3-
handle one needs to enrich our knowledge by introducing the concept of an Akbulut
cork to be described later on. The surgering of a 2-handle to a 1-handle is illustrated
in Fig.4a (see also Gompf and Stipsicz, 1999, Fig.5.33). The O-framed 2-handle
(left) and the ‘dotted’ 1-handle (right) are diffeomorphic at their boundary d. The
boundary of a 2- and a 3-handle is intimately related to the Akbulut cork shown in
Fig.4b as described at the Sect. 4.1.

Akbulut cork. A Mazur manifold is a contractible, compact, smooth 4-manifold (with
boundary) not diffeomorphic to the standard 4-ball B* (Akbulut, 2016). Its boundary
is a homology 3-sphere. If one restricts to Mazur manifolds that have a handle
decomposition into a single 0-handle, a single 1-handle and a single 2-handle then
the manifold has to be of the form of the dotted circle S! x B? (as in Fig.4a) (right)
union a 2-handle.

Recall that, given p, g, r (with p < g < r), the Brieskorn 3-manifold X (p, q, r)
is the intersection in the complex 3-space C> of the 5-dimensional sphere S° with
the surface of equation z{ + zJ + z; = 0. The smallest known Mazur manifold is
the Akbulut cork W (Akbulut, 1991a,b) pictured in Fig.4b and its boundary is the
Brieskorn homology sphere 2 (2, 5, 7).
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C

(b)

Fig.4 a A O-framed 2-handle S? x B? (left) and a dotted 1-handle S' x B3 (right) are diffeomor-
phic at their boundary 8 = 2 x S' , b two equivalent pictures of the Akbulut cork W

According to Akbulut and Durusoy (2005), there exists an involution f : W —

dW that surgers the dotted 1-handle S' x B? to the O-framed 2-handle S> x B?
and back, in the interior of W. Akbulut cork is shown in Fig.4b. The Akbulut cork
has a simple definition in terms of the framings £1 of (-3, 3, —3) pretzel knot
also called K = 94¢ (Akbulut and Durusoy, 2005, Fig.3). It has been shown that
oW =%2,57=K({,1)and W = K(—1, 1).
Exotic manifold R*. An exotic R* is a differentiable manifold that is homeomorphic
but not diffeomorphic to the Euclidean space R*. An exotic R* is called small if it
can be smoothly embedded as an open subset of the standard R* and is called large
otherwise. Here we are concerned with an example of a small exotic R*. Let us quote
Theorem 1 of (Akbulut, 1991a).

There is a smooth contractible 4-manifold V with 0V = oW, such that V is
homeomorphic but not diffeomorphic to W relative to the boundary.

Sketch of proof (Akbulut, 1991a):

Leta bealoopin dW asinFig. 5a. o isnot slice in W (does not bound an imbedded
smooth B2 in W) but ¢ (@) is slice. Then ¢ does not extend to a self-diffeomorphism
oW - W.

It is time to recall that a cobordism between two oriented m-manifolds M and N is
any oriented (m + 1)-manifold Wy such that the boundary is d Wy = M U N, where
M appears with the reverse orientation. The cobordism M x [0, 1] is called the trivial
cobordism. Next, a cobordism W, between M and N is called an h-cobordism if W, is
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3-handle g 2-handle

W (g

Fig. 5 a The loop « is not slice on the Akbulut cork, b t}_le non-trivial h-cobordism between small
exotic manifolds V and W, ¢ the mediating 4-manifold W

homotopically like the trivial cobordism. The h-cobordism due to S. Smale in 1960,
states that if M"™ and N™ are compact simply-connected oriented M-manifolds that
are h-cobordant through the simply-connected (m + 1)-manifold Wé’”" ,then M and
N are diffeomorphic (Scorpian, 2011, p. 29). But this theorem fails in dimension 4. If
M and N are cobordant 4-manifolds, then N can be obtained from M by cutting out
a compact contractible submanifold W and gluing it back in by using an involution
of 3W. The 4-manifold W is a ‘fake’ version of the 4-ball B* called an Akbulut cork
(Scorpian, 2011, Fig.2.23).

The h-cobordism under question in our example may be described by attaching
an algebraic cancelling pair of 2- and 3-handles to the interior of Akbulut cork W as
pictured in Fig. 5b (see Akbulut, 1991a, p. 343). The 4-manifold W mediating V and
W is as shown in Fig. 5c [alias the O-surgery L7a6(0, 1)(0, 1)] (see Akbulut, 1991a,
p. 355).

Following (Akbulut, 1991b), the result is relative since V itself is diffeomorphic
to W but such a diffeomorphism cannot extend to the identity map dV — dW on
the boundary. In (Akbulut, 1991b), two exotic manifolds Q; and Q, are built that
are homeomorphic but not diffeomorphic to each other in their interior.

By the way, the exotic R* manifolds Q; and Q, are related by a diffeomorphism
Q1#S5? x §? ~ Q ~ Q,#5% x S? (where # is the connected sum between two man-
ifolds) and Q is called the middle level between such connected sums. This is shown
in Fig.6 for the two R* manifolds Q; and Q, (Akbulut, 1991b), (Gompf, 1993,
Fig.2).
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(a)

ﬂ 1
@L/% (b)

Fig.6 Exotic R* manifolds Q1 shownin (a) and Q, shown in (b). The connected sums Q#5% x §2
and Q,#S% x §? are diffeomorphic with middle level Q shown in (c)

(€)

4.2 Finite Geometry of Small Exotic R*’s, Quantum
Computing and Quantum Contextuality

In the present paper, we choose G as the fundamental group 7r; (M*) of a 4-manifold
M* that is the boundary W of Akbulut cork W, or governs the Akbulut h-cobordism.
More precisely, one takes the manifold M* as W in Fig. 5 and Q in Fig. 6. Manifolds
Q1 and Q, are the small exotic R*’s of Ref. (Akbulut, 1991b, Figs. 1 and 2). There
are homeomorphic but not diffeomorphic to each other in their interiors. This choice
has two important consequences.

In the present paper, we choose G as the fundamental group m;(M*) of a 4-
manifold M* that is the boundary W of Akbulut cork W, or governs the Akbulut
h-cobordism. More precisely, one takes the manifold M* as W in Fig.5 and Q in
Fig.6. Manifolds Q; and Q, are the small exotic R*’s of Ref. (Akbulut, 1991b,
Figs. 1 and 2). There are homeomorphic but not diffeomorphic to each other in their
interiors. This choice has two important consequences.

Recall the introduction of this section that that axioms (i) and (ii) are expected to
govern the subgroup structure of groups G relevant to our model of quantum comput-
ing based on magic states. For the aforementioned manifolds M*, the fundamental
group G = 7 (M*) is such that (i) is always satisfied and that (ii) most often is true or
geometric contextuality occurs with corresponding finite geometries of great interest
such as the Fano plane PG (2, 2) (at index 7), the Mermin’s pentagram (at index 10),
the finite projective space PG (3, 2) or its subgeometry G Q(2, 2) -known to control
2-qubit commutation (Planat et al., 2019, Fig. 1) (at index 15), the Grassmannian
Gr(2, 8) -containing Cayley-Dickson algebras (at index 28 ) and a few maximally
multipartite graphs.
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Second, this new frame of ‘exotic contextuality’ provides a physical interpretation
of quantum computation and measurements as follows. Let us imagine that R* is our
familiar space-time. Thus the ‘fake’ 4-ball W -the Akbulut cork- allows the existence
of smoothly embedded open subsets of space-time -the exotic R* manifolds such as
Q; and Q- that we interpret in this model as 4-manifolds associated to quantum
measurements.

The boundary OW of Akbulut cork. As announced earlieroW = K (1, 1) = X£(2,5,7)
is a Brieskorn sphere with fundamental group

m1(2(2,5,7) = (a, blaBab*aBab’, a*bAb), where A=a"',B=0b"".

The cardinality structure of subgroups of this fundamental group is found to be
the sequence

nalm(£(2,5,7)1=10,0,0,0,0, 0,2,1,0,3, 0,0,0,12, 145, 178,47,0,0,4,---].

All the subgroups H of the above list satisfy axiom (i).

Up to index 28, exceptions to axiom (ii) can be found at index d = 14, 16, 20
featuring the geometry of multipartite graphs K éd/ ? withd /2 parties, atindexd = 15
and finally at index 28. Here and below the bold notation features the existence of
such exceptions.

Apart from these exceptions, the permutation group organizing the cosets is an
alternating group A,. The coset graph is the complete graph K, on d vertices. One
cannot find a triple of cosets with strictly equal pairwise stabilizer subgroups of A4
(no geometry), thus (ii) is satisfied.

Atindex 15, when (ii) is not satisfied, the permutation group organizing the cosets
is isomorphic to A7. The stabilized geometry is the finite projective space PG (3, 2)
(with 15 points, 15 planes and 35 lines) as illustrated in Fig.7a. The geometry is
contextual in the sense that all lines not going through the identity element do not
show mutually commuting cosets.

At index 28, when (ii) is not satisfied, there are two cases. In the first case, the
group P is of order 2% 8! and the geometry is the multipartite graph K f). In the
second case, the permutation group is P = Ag and the geometry is the configuration
[284, 563] on 28 points and 56 lines of size 3. In (Saniga, 2015), it was shown that
the geometry in question corresponds to the combinatorial Grassmannian of type
Gr(2, 8), alias the configuration obtained from the points off the hyperbolic quadric
Q7 (5,2) in the complex projective space PG (53, 2). Interestingly, Gr(2, 8) can be
nested by gradual removal of a so-called ‘Conwell heptad’ and be identified to the
tail of the sequence of Cayley-Dickson algebras (Saniga, 2015; Saniga et al., 2015,
Table4).
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(a) (b)

Fig. 7 a A picture of the smallest finite projective space PG (3, 2). It is found at Frans Marcelis
website (Marcelis, 2020). The coset coordinates are for a Fano plane PG(2,2) of PG(3,2).b A
picture of the generalized quadrangle of order two G Q(2, 2) embedded in PG (3, 2). It may also
be found at Frans Marcelis website

One expects a connection of the 28-point configuration to a del Pezzo surface

of degree 2 (since the 56 lines of such a del Pezzo surface map in pairs to the 28
bitangents of a quartic).
The [286, 563] configuration. Below are given some hints about the configuration that
is stabilized at the index 28 subgroup H of the fundamental group ; (0 W) whose
permutation group P organizing the cosets is isomorphic to Ag. Recall that d W is the
boundary of Akbulut cork W. The 28-letter permutation group P has two generators
as follows

P = (28|g1, g2) with g1 =(2,4,8,6,3)(5,10,15,13,9)(11, 12, 18,25, 17)
(14,20, 19, 24,21)(16, 22, 26, 28,23), g>» =(1,2,5,11,6,7,3)(4,8,12,19,22,14,9)
(10, 16, 24, 27,21, 26, 17)(13, 20, 18, 25, 28, 23, 15).

Using the method described in Sect. 3.1, one derives the configuration [28, 563]
on 28 points and 56 lines. As shown in [Table4] (Saniga, 2015), the configuration
is isomorphic to the combinatorial Grassmannian Gr(2, 8) and nested by a sequence
of binomial configurations isomorphic to Gr(2,i), i < 8, associated with Cayley-
Dickson algebras. This statement is checked by listing the 56 lines on the 28 points
of the configuration as follows
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Fig. 8 The Cayley-Salmon
configuration built around
the Desargues configuration
(itself built around the Pasch
configuration) as in (Saniga
et al., 2015, Fig. 12)

{1,7,27}, - Gr(2,3)

{1, 15,23}, {15, 17,27}, {7, 17,23}, = Gr(2,4)

{1,5,26}, {5, 18,27}, {5, 15, 24}, {23, 24, 26}, {17, 18, 24}, {7, 18, 26}, — Gr(2, 5)

{12, 14,17}, {1, 9, 22}, {5, 8,9}, {9, 14, 15}, {7, 12, 22}, {8, 12, 18},

{8, 14, 24}, {8, 22, 26}, {14, 22, 23}, {9, 12, 27}, - Gr(2, 6)

{3, 10, 15}, {3, 6, 24}, {3, 17, 25}, {3, 23, 28}, {1, 10, 28}, {3, 14, 19}, {7, 25, 28}, {6, 8, 19},

{19, 22, 28}, {5, 6, 10}, {12, 19, 25}, {10, 25, 27}, {9, 10, 19}, {6, 18, 25}, {6, 26, 28}, — Gr(2,7)
{4, 11, 12}, {11, 21, 25}, {6, 20, 21}, {2, 3, 21}, {2, 4, 14}, {7, 11, 16}, {2, 16, 23}, {1, 13, 16},

{2, 11, 17}, {4, 19, 21}, {16, 20, 26}, {2, 13, 15}, {11, 13, 27}, {16, 21, 28}, {2, 20, 24},

{5, 13,20}, {11, 18, 20}, {4, 9, 13}, {4, 8, 20}, {4, 16, 22}, {10, 13, 21} — Gr(2,8).

More precisely, the distinguished configuration [215, 353] isomorphic to Gr(2, 7)
in the list above is stabilized thanks to the subgroup of P isomorphic to A;7. The
distinguished Cayley-Salmon configuration [154, 203] isomorphic to Gr(2, 6) in the
list is obtained thanks to one of the two subgroups of P isomorphic to Ag. The
upper stages of the list correspond to a Desargues configuration [103, 103], to a
Pasch configuration [6;, 43] and to a single line[3, 13] and are isomorphic to the
Grassmannians Gr(2,5), Gr(2,4) and Gr(2, 3), respectively. The Cayley-Salmon
configuration configuration is shown on Fig. 8, see also (Saniga et al., 2015, Fig. 12).
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For the embedding of Cayley-Salmon configuration into [21s, 353] configuration,
see (Saniga et al., 2015, Fig. 18).

Frank Marcelis provides a parametrization of the Cayley-Salmon configuration
in terms of 3-qubit operators (Marcelis, 2020).

Not surprisingly, geometric contextuality (in the coset coordinatization not given
here) is a common feature of all lines except for the ones going through the identity
element.

As a final note for this subsection, we found Brieskorn spheres other than
¥ (2, 5, 7) whose fundamental group admits an index 28 subgroup isomorphic to Ag
whose geometry is the configuration with 28 points and 56 lines. Three-manifolds
¥(3,4,5), X(3,4,7) and X (3, 5, 7) are such Brieskorn spheres.

5 Conclusion

To conclude, it has been shown that the group theoretical language seems efficient
for describing quantum reality. We introduced the concepts of geometric and exotic
contextuality for quantum theory and quantum measurements. In other papers dealing
with slightly different subjects, we found that ‘informationally complete’ magic
states may be defined as irreducible characters of an appropriate finite group. These
characters are useful in the context of quark and lepton mixings (Planat et al., 2020a)
and in the context of the universal code of life—the genetic code (Planat et al., 2020b,
2021). What next? Proteins are the language of life. We have much to learn about
quantum mechanics by decoding its 20-letter language, e.g.
MGFTCPNSDCLYSRSEWSNRALREEGLSFSMRCPGACCGAML

V ..., is the beginning of the sentence of spike protein of SARS-Cov-2. Under-
standing the contextuality of life is the next step of this type of research.

References

Akbulut, S. (2016). 4-manifolds, Oxford graduate texts in mathematics (Vol. 25). Oxford University
Press.

Akbulut, S., & Durusoy, S. (2005). An involution acting nontrivially on Heegard-Floer homology.
In Geometry and topology of manifolds (Fields Inst. Commun., Amer. Math. Soc., Providence,
Rhode Island), (Vol. 47, pp. 1-9).

Akbulut, S. (1991). A fake compact contractible 4-manifold. Journal of Differential Geometry, 33,
335-356.

Akbulut, S. (1991). An exotic 4-manifold. Journal of Differential Geometry, 33, 357-361.

Bohr, N. Philosophy of Science Vol. 37 (1934), p. 157, and in The Truth of Science : Physical
Theories and Reality (1997) by Roger Gerhard Newton, p. 176.

Bosma, W., Cannon, J. J., Fieker, C., & Steel, A. (Eds.), Handbook of Magma functions, Edition
2.23 (2017), 5914pp. Accessed on January 1, 2019.

Bravyi, S., & Kitaev, A. (2005). Universal quantum computation with ideal Clifford gates and noisy
ancillas. Physical Review A,71, 022316.



Geometric and Exotic Contextuality in Quantum Reality 487

Cabello, A., Estebaranz, J. M., & Garcia-Alcaine, G. (1996). Physics Letters A, 212, 183.

DeWitt, B. S. (1970). Quantum mechanics and reality. Physics Today, 23, 30.

Esfeld, M. (1999). Quantum holism and the philosophy of mind. Journal of Consciousness Studies,
6, 23-28.

Ferrero, M., Salgado, D., & Sanchez-Gémez, J. L. (2004). Is the epistemic view of quantum mechan-
ics incomplete? Foundations of Physics, 34, 1993-2003.

Gompf, R. E. (1993). An exotic menagerie, 37, 199-223.

Gompf, R. E., & Stipsicz, A. L. (1999). 4-manifolds and Kirby calculus, Graduate Studies in Math-
ematics (Vol. 20). American Mathematical Society.

Marcelis, F. (2020). https:/fgmarcelis.wordpress.com/pg32/pg32-1/ and https://fgmarcelis.
wordpress.com/mermin-cayley-salmon-desargues. Accessed on January 1, 2020.

Mermin, N. D. (1993). Hidden variables and the two theorems of John Bell Rev. Modern of Physics,
65, 803-815.

Miller, E. (2014). Quantum entanglement, Bohmian mechanics, an humean supervenience. Aus-
tralasian Journal of Philosophy, 92, 567-83.

Pavici¢, M., Merlet, J.-P.,, McKay, B. D., & Megill, N. D. (2005). Kochen-Specker vectors. Journal
of Physics A: Mathematical Generation,38, 1577-1592.

Peres, A. (1993). Quantum theory, concepts and methods. Dordrecht: Kluwer.

Planat, M. (2011). Pauli graphs when the Hilbert space dimension contains a square: Why the
Dedekind psi function? Journal Physics A Mathematical Theoretical44, 045301.

Planat, M., & Gedik, Z. (2017). Magic informationally complete POVMs with permutations. Royal
Society Open Science,4, 170387.

Planat, M., Giorgetti, A., Holweck, F., & Saniga, M. (2015). Quantum contextual finite geometries
from dessins d’enfants. International Journal of Geometric Methods in Modern Physics,12,
1550067.

Planat, M. (2012). On small proofs of the Bell-Kochen-Specker theorem for two, three and four
qubits. The European Physical Journal Plus, 127, 86.

Planat, M. (2015). Geometry of contextuality from Grothendieck’s Coset space. Quantum Informa-
tion Processing, 14, 2563-2575.

Planat, M. (2016). Two-letter words and a fundamental homomorphism ruling geometric contextu-
ality. Symmetry, Culture and Science, 1, 1-16.

Planat, M. (2020). Quantum computation and measurements from an exotic space-time R*. Sym-
metry, 12, 736.

Planat, M., Aschheim, R., Amaral, M. M., Fang, F., & Irwin, K. (2020). Complete quantum infor-
mation in the DNA genetic code. Symmetry, 12, 1993.

Planat, M., Aschheim, R., Amaral, M. M., & Irwin, K. (2018). Universal quantum computing and
three-manifolds. Symmetry, 10, 773.

Planat, M., Aschheim, R., Amaral, M. M., & Irwin, K. (2019). Group geometrical axioms for magic
states of quantum computing. Mathematics, 7, 948.

Planat, M., Aschheim, R., Amaral, M. M., & Irwin, K. (2020). Informationally complete characters
for quark and lepton mixings. Symmetry, 12, 1000.

Planat, M., Chester, D., Aschheim, R., Amaral, M. M., Fang, F., & Irwin, K. (2021). Finite groups
for the Kummer surface: The genetic code and quantum gravity. Quantum Reports, 3, 68-79.
Planat, M., & Zainuddin, H. (2017). Zoology of Atlas-Groups: Dessins D’enfants, finite geometries

and quantum commutation. Mathematics (MDPI), 5, 6.

Quantum contextuality, https://en.wikipedia.org/wiki/Quantum_contextuality. Accessed on Jan-
uary 15, 2021.

Saniga, M. (2015). The complement of binary Klein quadric as a combinatoriam Grassmannian.
Mathematics, 3, 481-486.

Saniga, M., Holweck, F., & Pracna, P. (2015). From Cayley-Dickson algebras to combinatorial
Grassmannians. Mathematics, 3, 1192—-1221.

Saniga, M., & Planat, M. (2007). Multiple qubits as symplectic polar spaces of order two. Advanced
Studies in Theoretical Physics, 1, 1.


https://fgmarcelis.wordpress.com/pg32/pg32-1/
https://fgmarcelis.wordpress.com/mermin-cayley-salmon-desargues
https://fgmarcelis.wordpress.com/mermin-cayley-salmon-desargues
https://en.wikipedia.org/wiki/Quantum_contextuality

488 M. Planat

Scorpian, A. (2011). The wild world of 4-manifolds. American Mathematical Society.

Thas, J., & van Maldeghem, H. (2004).Generalized polygons in finite projective spaces. In Distance-
Regular Graphs and Finite Geometry, in Special Issue: Conference on Association Schemes,
Codes and Designs, Proceedings of the 2004 Workshop on Distance-regular Graphs and Finite
Geometry (Com 2 MaC 2004), Busan, Korea, 19-23 July 2004.

Waegell, M., & Aravind, P. K. (2011). Parity proofs of the Kochen-Specker Theorem Basedon the
24 Rays of Peres, Foundation of Physics,41 1786-99.

Wilson, R., Walsh, P., Tripp, J., Suleiman, 1., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray,
J., & Abbott, R. (2015). ATLAS of finite group representations, Version 3. Available online: http://
brauer.maths.qmul.ac.uk/Atlas/v3/exc/TF42/. Accessed on June 2015.


http://brauer.maths.qmul.ac.uk/Atlas/v3/exc/TF42/
http://brauer.maths.qmul.ac.uk/Atlas/v3/exc/TF42/

	 Geometric and Exotic Contextuality in Quantum Reality
	1 Introduction
	2 A Glance at Two-Qubit Parity Proofs of the BKS Theorem
	3 Geometric Contextuality
	3.1 Finite Geometries from Cosets ch26Planat2015,ch26Zoology2017,ch26PGHS2015
	3.2 The Kochen-Specker Theorem with a Mermin Square of Two-Qubit Observables

	4 Exotic Contextuality
	4.1 Excerpts on the Theory of 4-manifolds and Exotic R4's
	4.2 Finite Geometry of Small Exotic R4's, Quantum Computing and Quantum Contextuality

	5 Conclusion
	References




