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1 Introduction

This paper addresses various topics and different issues related essentially to general
relativity theory and quantum field theories, and, more generally, to the interactions
between geometry and physics. It aims at presenting recent works and discussing
new ideas and results from these topics. It focuses on the subject of the geometric and
topological structures and invariants which enriched in a remarkable way cosmology
and quantum field theories in the last century, say, starting from Einstein’s general
relativity until string theory. In the last three decades, new and deep developments
in this direction have emerged from cosmology and theoretical physics.

The general goal of the paper is to examine some striking aspects of the role of
geometrical and topological concepts and methods in the developments of theoret-
ical physics, especially in cosmology, quantum field theory, string theory, quantum
gravity and non-commutative geometry, and then to show the great significance of
these concepts and methods for a better understanding of our universe and the phys-
ical world at the very small scale. From the beginning we would like to stress the
crucial fact that many physical phenomena appear to be related to deep geomet-
rical and topological invariants (Atiyah, 1988) and furthermore that they are effect
which emerge, in a sense, from the geometric structure of space–time (Connes &
Chamseddine, 2006; Vafa, 1998).
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2 Einstein’s General Relativity and the Interaction
Between Curvature and Matter

The first good example we would like to mention of this new point of view, which
however rely upon ideas advocated by Riemann, Clifford and Poincaré, is that of
general relativity,which showed that gravitywas an effect of the space–time curvature
(Boi, 2004, 2006b; Penrose, 2004; Regge, 1992). More precisely, with the general
relativity theory, actual (physical) geometry enters the picture of Minkowski space–
time (which, mathematically speaking, is a manifold with a Lorentz metric, i.e., a
non-degenerate pseudo-Riemannian metric of signature + … + −; Rn with metric
(dx1)2 + … + (dxn–1)2−(dt)2) by assuming the world-history of each particle is a
geodesic and that the Ricci curvature of the metric reflects the structure of matter
and energy present at each point. The Einstein field equations,

Rμυ−1/2gμυ R + �gμυ = 8πGTμυ

states that mass and pressure warp space–time. These equations relate the metric
to matter distribution. Thus, according to the general theory of relativity, the gravi-
tational force has to be reinterpreted as the curvature of space–time in the proximity
of a massive object. When the energy is very concentrated, then the deformation of
space–time may change sufficiently its topological structure and not only its metric
(Baez & Muniain, 1994; Boi, 2004a; Regge, 1992). Let us stress that general rela-
tivity related two fundamental concepts which had, till then, been considered as
entirely independent, namely, the concepts of space and time, on the one hand, and
the concepts of matter and motion, on the other. Indeed, the geometry of space–
time is not given a priori, for, in some sense, depends on the underlying physical
structure of space-time. General relativity theory predicts at least three fundamental
phenomena of the physical reality: (i) the gravitational waves; (ii) the black holes;
(iii) the expanding of the Universe.

One of the most important ideas of general relativity was that space–time, not
space, was the fundamental intrinsic object and that its structure was to be deter-
mined by physical phenomena. Einstein’s main discoveries were as follow: (i)
Spacetime is a pseudo- Riemannian manifold, i.e., its metric ds2 is not Euclidean
but has the signature (+,−,−,−) at each point. In presence of matter (the gravi-
tational field), general relativity, based on the geometric concepts discovered by
Riemann (see Riemann, 1854; and Boi 2019a), replaces the flat (pseudo) metric of
Poincaré, Einstein (special relativity) and Minkowski, ds2 = dx2 + dy2 + dz2−dt2,
by a curved spacetime metric whose components form the gravitational potential
gμυ , ds2 = gμυ dxμ dxυ. (ii) Gravitation is just the physical manifestation of the
curvature of spacetime (as foreseen by Clifford in 1876, see (Clifford, 1876)). (iii)
Light travels along geodesics. Another point should, however, be added. (iv) The
metric of (flat) space–time is not Euclidean but has the form ds2 = dx2 − dx2 − dx2

− dx2 at each point. This is what nowadays is called a Lorentzian structure. However,
even in the absence of matter, the geometry of space–time could not be asserted to
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be flat but only Ricci flat, i.e., that its Ricci tensor, which can be calculated from the
Riemannian curvature tensor, is 0 (Penrose, 2004; Regge, 1992).

3 Quantum Mechanics and the Idea of Non-Commutativity

The next essential advance in twenty-century physics has been quantum mechanics.
Let us summarize some fundamental idea of this theory (Cao, 1997; Heisenberg,
1930). In quantummechanics and relativistic quantum field theory formulated byW.
Heisenberg, P. Jordan, W. Pauli, P. Dirac and E. Wigner, the position and velocity of
a particle (at the subatomic scale) are non-commuting operators acting on a Hilbert
space, and classical notions such as “the trajectory of a particle” do not apply. In the
19th and early twentieth century physics, many aspects of nature were described in
terms of fields—the electric and magnetic fields, and the gravitational field. So, since
fields interacts with particles, to give an internally coherent account of nature, the
quantum concepts must be applied to fields as well as to particles. When this is done,
quantities such as the components of the electric field at different points in space–
time become non-commutative. When one constructs a Hilbert space in which these
operators act, one finds many surprises. The distinction between fields and particles
break down, since the Hilbert space of a quantum field is constructed in terms of
particle-like excitations. Conventional particles such as electrons are reinterpreted
as arising from the quantization of a field. In the process, one finds the prediction of
“antimatter”: for every particle there must be a corresponding antiparticle, with the
same mass and opposite electric charge (Coleman, 1985).

The quantum field theories (QFT’s) that have proved to be very important in
describing elementary particle physics are gauge theories (Zeidler, 2011). The clas-
sical example of gauge theory is the theory of electromagnetism. The gauge group
is the Abelian group U(1). If the (physical) potential A denotes the U(1) gauge
connection, which locally can be regarded, mathematically speaking, as a one-form
on space–time, then the curvature or electromagnetic field tensor is the two-form F
= dA, and Maxwell’s equation read: 0 = dF = d*F. Here * is the Hodge duality
operator.

4 Gauge Theories: From H. Weyl to Yang-Mills

The second main step of the geometrization of physics in the twenty-century has
been gauge theory, thanks to which several new deep geometrical and topological
structures have emerged (Bourguignon&Lawson, 1982; Boi, 2011). Gauge theory is
a quantumfield theory obeying to the geometrical principle of local gauge invariance.
Gauge theory was introduced by Hermann Weyl in 1918 as an attempt to unify
general relativity with electromagnetism (Weyl, 1918, 1929). However, the theory
of Weyl failed because of lacking of an appropriate quantum physics framework.
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Gauge idea rebirths with the formulation of non-Abelian Yang-Mills theory in 1954
by Yang and Mills (Boi, 2019b; Yang & Mills, 1954). This new theory stems from
the recognition of the structural similarity, from the mathematical viewpoint, of non-
Abelian gauge (quantum) fields with general relativity and the understanding that
both are connections (Yang, 1977; Bourguignon & Lawson, 1982). This last, defined
over a fiber bundle and possessing a curvature, is a very deep geometrical concept
introduced byWeyl and Cartan, which generalize the concept of parallel transport of
Levi–Civita to a newmathematical object: that of a non-point-like space or manifold
in which precisely the points are replaced by the fibers (Boi, 2004a).

The very idea of Yang and Mills consists in suggesting a new program of
geometrization of physics, this time applied to the physical forces supporting the
quantum world. They proposed that the strong nuclear interactions be described by a
(quantum) field theory in the same manner than electromagnetism, which is exactly
local gauge invariant, as it is general relativity. More precisely, they postulated that
the local gauge was the SU(2) isotopic spin-group or SU(2) isotopic spin-connection
on which the non-Abelian group (a compact Lie group1) acts. This idea was “revo-
lutionary” because it changed the very concept of “identity” of what has been ever
assumed to be an “elementary particle”. The novel idea that the isotopic spin connec-
tion, and therefore the potentialAμ (where, in order to relate the phases functionλ(xi)
at different points, the familiar gauge transformation for Aμ was written in terms of
the phase change:Aμ → Aμ−1/e ∂μλ) acts like the SU(2) symmetry group is themost
important result of Yang-Mills theory. The concept of isotopic-spin connection lies at
the heart of local gauge theory. It shows explicitly how the gauge symmetry group is
built into the dynamics of the interaction between particles and fields (Atiyah, 1990;
Yang, 1977). Moreover, some of the important physical characteristics of the field
can be deduced directly from the connection (the potential), which can be viewed as
a linear combination of the generators of the SU(2) group. We can, in fact, associate
this formal operation with real physical processes.

Let’s add few specifications on the mathematical structure of gauge theory (for a
more comprehensive exposition, see Bourguignon & Lawson, 1982; Manin, 1988;
Zeidler, 2011). Yang-Mills or non-Abelian gauge theory can, at the classical level,
be described similarly to the “classical” Abelian gauge theory, with U(1) (see above)
replaced by a more general compact gauge group G. The definition of curvature
must be modified to F = dA + A ∧ A, and Yang-Mills equations: 0 = dAF = dA*F,
where dA is the gauge-covariant extension of the exterior algebra derivative. These
equations can be derived from the Yang-Mills Lagrangian

L = 1/4g2 ∫ T r TrF ∧ ∗F,

where Tr denotes an invariant quadratic form on the Lie algebra of G. The Yang-
Mills equations are non-linear, so, in contrast to the Maxwell equations, but like

1 Finite groups are spacial cases of compact Lie groups. For example, the rotation group SO(3) of
the three-dimensional Euclidean space or the gauge group U(1) × SU(2) × SU(3) of the Standard
Model in elementary particle physics are compact Lie groups.



Topological Quantum Field Theory and the Emergence of Physical Space–Time … 407

the Einstein equations for the gravitational field, they are not explicitly solvable in
general. But they have certain properties in common with the Maxwell equations
and, in particular, they describe at the classical level massless waves that travel at
the speed of light.

The first (classical) Yang-Mills theory corresponds to the quantum version of
Maxwell theory—known as Quantum Electrodynamics—, which gave a very accu-
rate account of the quantum behaviour of electromagnetic fields and forces. The
non-Abelian gauge theory were introduced for describing the other forces in nature,
notably the weak force (responsible among other things for certain forms of radioac-
tivity) and the strong or nuclear force (responsible among other things for the
binding of protons and neutrons into nuclei). For the weak force, we have now
the Weinberg-Salam-Glashow electroweak theory with gauge group: H = SU(2) ×
U(1).

The masslessness of classical Yang-Mills waves was avoided by elaborating the
theory with an additional “Higgs field”. This is a scalar field, transforming in a two-
dimensional representation of H, whose non-zero and approximately constant value
in the vacuum state reduces the structure group fromH toU(1) sub-group (diagonally
embedded inSU(2) × U(1)).This theory describes both the electromagnetic andweak
forces, in a more or less unified way; because of the reduction of the structure group
to U(1), the long-range fields are those of electromagnetism only, in accord with
what we see in nature.

To sumupwhatwe said about gauge theory, let’s stress thatYang andMills showed
for the first time that local gauge symmetry was a powerful fundamental principle
that provided new insights into the newly discovered “internal” quantum numbers
like isotopic spin. In their theory, isotopic spin was not just a label for the charge
states of particles, but it was crucially involved in determining the fundamental forms
of the interaction between these particles. The most important philosophical point
is that in the gauge theories of quantum fields, symmetries of nature determine the
properties of forces; therefore, it is allowed to say that mathematical groups and
invariants are at the origin of the dynamics of physical forces.

Let’s add that in the search for a non-linear generalization ofMaxwell’s equations
to explain elementary particles, there are various symmetry properties one would
require. These are: (i) External (spatial–temporal) symmetries invariant under the
Lorentz and Poincare’s groups and under the conformal group if one is taking the
rest-mass to be zero; (ii) Internal (physical) symmetries invariant under the non-
Abelian groups like SU(2) or SU(3) to account for the known feature of weak and
strong interactions, respectively; (iii) Covariance or its supersymmetric coupling by
working on a complex topological space–time.
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5 String Theory and the Supersymmetric Picture
of the QuantumWorld

The next fundamental step in the geometrization of physics has been realized by
string theory, a quantum field theory that tries to unify in a coherent picture general
relativity and quantum mechanics at a deeper level than that of the Standard Model
of particle physics (Witten, 1995). String theory entails beautiful geometrical and
topological new structures, more rich and powerful with respect to those developed
before by the other quantum field theories. It is yet theoretically incomplete and
hitherto physically untested (Marino, 2005; Vafa, 1998).

It isworth of recalling that originally stringprogramgoback, in a sense, to the ideas
putted forward by the German mathematician Bernard Riemann about hundred-fifth
years early. According to him, one can make two fundamental assumptions. (i) First,
on a given n- dimensional manifolds there are many possible metric structures (i.e.,
many different functions for measuring the distance between any pair of infinitesi-
mally near points), so that the problem of which structure is the one appropriate for
physical space required empirical methods for its solution. In other words, Riemann
stated explicitly in 1854 (Riemann, 1854) that the question of the geometry of phys-
ical space does not make sense independently of physical phenomena. And (ii) space
does not exist independently of phenomena and its structure depends on the extent
to what we can observe and what happens in the physical world. From the previous
follows, say, a corollary even more insightful: in its infinitely small parts (nowadays
we would say at the quantum level) space may not be accurately described even by
the geometrical notions of Riemannian geometry (Ashtekar & Lewandowski, 2004).

This last idea,which is hinted inRiemann’s statement (ii), remain dormant until the
search for a unifiedfield theory at the quantum level forced the physicists to reconsider
the structure of space–time at extremely small distances. One of the ideas to which
their efforts led them was that the geometry of spacetime was supersymmetric with
the usual coordinates supplemented by several anticommuting (fermionic) ones. This
is a model that reflects the highly fuzzy structure of spacetime in small regions (at the
quantum scale 10−33 cm) where one can pass back and forth between bosonic and
fermionic particles. Modern string theory (i.e., superstring theory) takes Riemann’s
vision even further, and replaces the points of spacetime by strings, thereby making
the geometry even more non-commutative (see Connes, 1994, 1996; and Landi,
1999).

Let’s address briefly some conceptual aspects and issues of superstring theory.
Superstring theory relies on the two ideas of supersymmetry and spacetime structure
of eleven dimensions. Supersymmetry require that for each known particle having
integer spin 0, 1, 2, and so on, measured in quantum units—there is a particle with the
same mass but half-integer spin (1/2, 3/2, 5/2 and so on), and vice-versa. Supersym-
metry transforms the coordinate of space and time such that the laws of physics are the
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same for all observers. Einstein’s general theory of relativity derives from this condi-
tion, and so supersymmetry implies gravity. In fact, supersymmetry predicts “super-
gravity”, in which a particle with a spin of 2—the graviton—transmits gravitational
interactions and has as a partner a graviton, with spin of 3/2.

Superstring is based on the fundamental notion of T-duality, which relates two
kinds of particles that arise when a string loop around a compact (spatial) dimension.
One kind, call them “vibrating particles”, is analogous to those predicted by Kaluza
and Klein and comes from vibrations of the loop of the string. Such particles are
energetic if the circle is small. In addition, the string can wind many times around
the circle, its energy become higher the more times it wraps around and the larger the
circle. Moreover, each energy level represents a new particle—call them “winding
particle”. T-duality states that the winding particles for a circle of radius R are the
same as the “vibrating particles” for a circle of radius 1/R, and vice-versa. So, to a
physicist, the two sets of particles are indistinguishable: a fat compact dimension
may yield apparently the same particles as thin one.

String theory, if correct, entails a radical change in our concepts of spacetime. That
is what one would expect of a theory that reconciles general relativity with quantum
mechanics. The answer involves duality again. A vibrating string is described by an
auxiliary two-dimensional field theory, whose Lagrangian is roughly

L = 1/2
∫

dτ dσ(∂X/∂τ)2 + (∂X/∂σ)2.

Here, X(τ , σ) is the position of the string at proper time τ, at a coordinate σ

along the string. In string theory, the auxiliary two-dimensional field theory plays
a more fundamental role than spacetime, and spacetime exists only to the extent
that it can be reconstructed from the two-dimensional theory. In other words, duality
symmetries of the two-dimensional field theory put a basic restriction on the validity
of the classical notion of spacetime.

All the attempts mentioned, which are aimed at solving one of the central prob-
lems in twentieth-century physics, i.e.: how to combine gravity and the other forces
into a unitary theoretical explanation of the physical word, essentially depend on
the possibility of building a new geometrical framework conceptually richer than
Riemannian geometry. In fact, as we saw, it plays a fundamental role in non-Abelian
gauge theories and in superstring theory, thanks to which a great variety of new
mathematical structure has emerged. A very interesting hypothesis is that the global
topological properties of the manifold’s model of spacetime play a major role in
quantum field theory and that, consequently, several physical quantum effects arise
from the non-local metrical and topological structures of these manifold (Isham,
1988; Labastida & Lozano, 1989). Thus, the unification of general relativity and
quantum theory requires some fundamental breakthrough in our understanding of the
relationship between spacetime and quantumprocesses (Penrose, 2004). In particular
the superstring theory, but also, in a different manner, loop quantum gravity, lead to
the guess that the usual structure of spacetime at the quantum scale must be dropped
out from physical thought (Carfora, 2011). Non-Abelian gauge theories satisfy the
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basic physical requirements pertaining to the symmetries of particle physics because
they are geometric in character. They profoundly elucidate the fundamental role
played by bundles, connections and curvature in explaining the essential laws of
nature. Kaluza-Klein theories and more remarkably superstring theory showed that
spacetime symmetries and internal (quantum) symmetries might be unified through
the introduction of new structures of space with a different topology. This essen-
tially means that “hidden” symmetries of fundamental physics can be related to
the phenomenon of topological change of certain class of (presumably) non-smooth
manifolds (Atiyah, 1990). This entails a number of extremely importantmathematical
and physical consequences, which partly are discussed in this paper.

6 New Developments and Conceptual Issues in Quantum
Field Theory

Let us now address some of the recent most fundamental developments in mathemat-
ical and theoretical physics, and in particular, the fact that these developments point
forwards the search for a new scheme of spacetime structure at the quantum scale.
Quantum mechanics culminated in the “standard model” of particle interactions,
which is a quantum field theory. The fundamental ingredients of nature that appear
in the underlying equations are fields: the familiar electromagnetic field, and some
twenty or so other fields. The so-called elementary particles, like photons and quarks
and electrons, are “quanta” of the fields-bundles of the field’s energy andmomentum.
The properties of these fields and their interactions are largely dictated by princi-
ples of symmetry, including Einstein’s special principle of relativity, together with
a principle of “renormalizability”, which dictates that the fields can only interact
with each other in certain specially ways. The standard model has passed every test
that can be imposed with existing experimental facilities. However, many unsolved
problems and open questions remain. We do not know why it obeys certain symme-
tries and not others, or why it contains six types of quarks, and not more or less.
Finally, gravitation cannot be brought into the quantum field theoretic framework of
the standard model, because gravitational interactions do not satisfy the principles of
renormalizability that governs the other interactions. This constitutes at present one
the most fundamental and challenging issues of researches in theoretical physics and
mathematics. Both topological quantum field theories and non-commutative geom-
etry dedicatemuch effort to find out a solution to the very hard and key problem of the
renormalization of the standard model. This problem might be answered, following
different paths, by the Witten’s topological string approach (Witten, 1988) and the
Connes’s non-commutative approach (Connes, 1996).

The not-yet-achieved incorporation of the fundamental ideas of a dynamical
space–time geometry into a quantum theory of matter is one of the central open
problems of contemporary physics, whose solution may well require another radical
change in the physicist’s conception of nature and space–time. We think that a real
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understanding of the cosmological questions and of the nature of elementary parti-
cles can ever been achieved without a simultaneous deeper understanding of the
nature of space–time itself. It is well-known that quantum mechanics taught us that
the classical notions of the position and velocity of a particle were only approxima-
tions of the truth. Notably, it is not clear whether the Riemannian geometry—even
in a revised and generalized form—is adequate for the description of the small-
scale structure of space–time (Isham, 1988; Penrose, 2004). The Planck length lP
= (G�/c3) 1/2∼10−33 cm is considered as a natural lower limit for the precision at
which coordinates of an event in space–timemake sense. Nevertheless, not only does
quantum mechanics have some striking geometrical characters, but its description
of the world also reveals a wealth of deep underlying mysteries—even bordering on
paradox—which cannot arise merely from an inadequate human understanding of
the implications of the theory’s mathematical formalism. Instead, at some level, there
must be a deviation from purely unitary evolution, so that state-vector reduction can
become a real phenomenon (Ashtekar & Lewandowski, 2004). Moreover, because of
the (mysterious) non-local nature of quantum entanglement, whatever the nature of
this revolution might be, the final theory that will emerge must have a fundamentally
non-local character. In effect, according to certain mathematical-physical theories,
such as topological quantum field theories and especially superstring theory, the
local information of the space–time fields and of the other fields is stored in global
(topological) structures of space–time (Boi, 2004).

7 Non-Commutative Geometry and the Quantum Fields

This is also truth for non-commutative geometry, where the quantum field equations
are calculated for the full set of internal space metric fluctuations allowed by the
non-commutative geometry axioms in the spectral triple formulation of the standard
model (Connes & Chamseddine, 2006). These calculations have been given both
from the perspective of the spectral triple and from the perspective of Fredholm
module.2 It has been showed that studying these Fredholm modules using algebraic
K theory and K homology leads to a suggested non-commutative version of Morse
theory—awell-known tool for studying the topology ofmanifolds—which is applied
to the finite spectral action. According to the spectral action principle, which has
been introduced ten years ago by Connes and Chamseddine, the standard model of
particle physics is formulated with a product (whose image is called the total space)
of two spectral triples—one that represents the Euclidean space–time manifold and
the other the zero-dimensional internal space of particles charges. The space–time
coordinate functions remain commutative but the internal space is a non-commutative
“manifold”. The spectral action principle is an important step towards the unification

2 Recall that if A is an involutive algebra over the complex numbersC, then a Fredholm module over
A consists of an involutive representation of A on a Hilbert space H, together with a self-adjoint
operator F, of square 1 and such that the commutator [F, a] is a compact operator for all a ∈ A.
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of gravity with particle physics; the Einstein-Hilbert action plusWeinberg-Glashow-
Salam theory all result from a calculation of the eigenvalues of the Dirac operator on
the total space and since the Dirac operator encodes the metric, the spectral action
principle is a purely geometrical theory (Connes, 1995).

Formally, a spectral triple (A, H, D) provides the analog of a Riemannian
spin manifold to non-commutative geometry (here we follow closely Connes and
Chamseddine, 1996). It consists of an involutive, non-necessarily commutative
algebra A, a Hilbert space H: a finitely generated projective module on which the
algebra is represented, and a Dirac operator D that gives a notion of distance, and
from which is built a differential algebra. A very important technical point is that the
geometry of any closed (even dimensional) Riemannian spin manifold can be fully
described by a (real and even) spectral triple and a non-commutative geometry is
essentially the same structure but with the generalization that the algebra of coordi-
nates is allowed to be non-commuting. For the standard model the internal Hilbert
space is H = H ⊕ H ⊕ H C ⊕ HC, where LRLR

H = (C2 ⊗ CN ⊗ C3) ⊕ (C2 ⊗ CN), L

H = ((C ⊕ C) ⊗ CN ⊗ C3) ⊕ (C ⊗ CN), R

and whose basis is labeled by the elementary fermions and their antiparticles. The
symbol c is used to indicate the section represented by the antiparticles. The even
triple has the Z/2-grading operator χ, the chirality (eigenvalues + 1 or −1). In either
case of HL and HR, the first direct summand is the quarks and the second the leptons.
N Stands for the numbers of generations. For example, the left-handed up and down
quarks form an isospin doublet and their right-handed counterparts are singlets and
there are three colors for quarks and none for leptons. The charges on the particles
are identified by the faithful representation of the algebra on the Hilbert space. In the
definition of H above we see a second Z/2-grading that splits the Hilbert space into
two orthogonal subspaces for particles and antiparticles: H + ⊕ H – or H ⊕ HC.
This is called S0 reality and is not an axiom but applies to the standard model as it
excludes Majorana masses. The S0 reality grading operator ε satisfies:

[D, ε] = 0, [J, ε]+ = 0, ε∗ = ε, ε2 = 1.

8 The “ontology” of Newtonian Physics and Quantum
Field Theory

Let us nowaddress the important point concerning the differences between the “ontol-
ogy” of classical physics and that of quantum physics. (Here this term stands for the
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nature and the kind of properties ascribed to the most fundamental physical entities
fromwhich a specific theory is built up and also to themathematical objects bymeans
of which one construct a definite space–time theory or model). One may affirm that
Newtonian physics had a clear ontology: the world consisted of massive particles
situated in Euclidean space. In that sense, the nature of space played a fundamental
role. In the mathematical developments of Newtonian mechanics, however, the role
of space is not clear. There is not much difference between the description of two
particles moving in R3 and that of a single particle moving in R6, nor between that
of a pivoted rigid body and that of a point moving on the group-manifold SO3. In
quantum mechanics the idea of space is even more elusive, for there seems to be no
ontology, and, whatever wave-functions are, they are certainly not functions defined
in space. Still, for about seventy years we have known that elementary particles must
be described not by quantum mechanics but by quantum field theory, and in the
field theory the role of space is quite different. Although it is an important fact that
quantum field theory cannot be reconciled with general relativity, one could empha-
size that the two theories have a virtual feature in common, for in both of them the
points of space play a central and objective dynamical role. In quantum field theory
two electrons are not described by a wave-function on R6; instead they constitute a
state of a field inR3 which is excited in the neighborhood of two points. The points of
space index the observables in the theory. The mathematics of quantum field theory
is an attempt to describe the nature of space, but it proposes to look at space in a
completely different way (Manin, 1988; Zeidler, 2011).

Like quantum field theory, Penrose’s twistor theory is a radical attempt to get
rid of space as a primary concept (Penrose, 1977). The Connes’s program of non-
commutative geometry amounts to a huge generalization of the classical notion of a
manifold (Connes, 1994). Finally, string theory proposed a scheme for making space
as an approximation to some more general kind of structure. One striking difference
(maybe the essential one) between general relativity and quantum mechanics lie in
the fact that, whereas in general relativity it seems impossible to separate the postu-
late of (continuous) space–time localization of events and the theory of gravitation
from the (inner) geometric structure of space–time, on the other hand, it is precisely
this postulate of the indistinguishability of the physical fields from the space–time
geometry that got lost in quantum mechanics. It is particularly contradicted by the
Bohr principle of complementarity and the Heisenberg uncertainty relations, which
states the impossibility of knowing simultaneously the exact position and velocity
of particles (electrons). These relations are indeed based on a model in which the
electron jumps quickly from one orbit to another, radiating all energy thus liberated
in the form of a global package, a quantum of light.

9 What It Could Be a Quantum Geometry of Space–time?

Many attempts have been made, starting from the sixties, to understand what kind
of geometry and topology and therefore what kind of space–time model could be



414 L. Boi

truly appropriate to describe the behavior of physical space both at the very large
and quantum levels (Isham, 1988; Penrose, 2004). Among them, the most attractive
and promising ones seem to be string theory, non-commutative geometry and loop
quantum gravity (Ashtekar & Lewandowski, 2004; Carfora, 2011). The nature of
quantum geometry is the central issue of non-perturbative quantum gravity. Is the
familiar continuum picture then only an approximation? If so, what are the ‘atoms’
of geometry? What are its fundamental excitations? Is there a discrete underlying
structure? If so, how does the continuum picture arise from this fundamental discrete-
ness? By a quantized geometry, it is meant (Baez & Muniain, 1994) that there exist
physical quantities which can take on continuous values classically but are such
that the corresponding quantum operators have a discrete spectrum. In the resulting
quantum geometry, Riemannian geometry can then emerge only as an approximation
on a large scale. This topic can be discussed either from the perspective of topolog-
ical quantum field theory and superstring theory or from that of non-commutative
geometry.

The most attractive feature of non-commutative geometry is that it develops a
new notion of geometric space where points do not play the central role, thus giving
much more freedom for describing the subatomic-scale nature of spacetime. The
theory proposed a framework which is sufficiently general to treat discrete space,
Riemannian manifolds, configurations spaces of quantum field theory, and the duals
of discrete groups which are not necessarily commutative. The development of a
non-commutative geometry has been recently one of the most important attempts to
unify (mathematically) quantumfield theorywith gravitation. In addition, its physical
implications have found lately a confirmation in that it predicted a physical model
for coupling gravity with matter (Connes, 1996).

The other fundamental change in our conception of spacetime and physics comes
from superstring theory. Indeed, recent developments in theoretical physics suggest
that a newkind of quantumgeometrymay enter physics, and that spacetime itselfmay
be reinterpreted as an approximate, derived concept that one can extract from a two-
dimensional field theory (Katz & Vafa, 1997; Witten, 1995). Intuitively, strings are
viewed as one-dimensional objects whose modes of vibration represent the elemen-
tary particles. In addition, in string theory the one-dimensional trajectory (world-line)
of a particle in space–time is replaced by a two-dimensional orbit (world-tube) of
the string. The main conceptual point of the string program is that it entails some
revolutionary ideas about our conception of space and space–time. Indeed, space is
not more thought as formed up of points-like elements and therefore the particles
not either. Space as well is endowed with a point-less structure. Instead of point-
like elements, the space seems to be filled out of other kinds of geometrical objects,
richer andmore complex, like knots ofmany types, Riemannian surfaces, topological
(unconventional) objects, and so on. The most interesting point is that space must be
considered as a dynamical thing, which may change with respect to its metrical and
topological properties (Boi, 2009b; Vafa, 1998). The main physical aspect of string
theory is that all particles which we previously thought of as elementary, that is, as
little points without any structure in them, turn out in fact not to be points at all but
basically little loops of string which move through space, oscillating around it. We
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have thus that the different physical properties of matter emerge somehow from the
different structural and dynamical patterns of these strings and loops in space. For
example, the electric charge might be seen as a quality of the motion of the string
rather than something which is just added on to a particle as fundamental object.

The idea of replacing point particles by strings sounds so naïve that it may be hard
to believe that it is truly fundamental. But in fact, this naïve-sounding step is probably
as basic as introducing the complex numbers in mathematics. If the real and complex
numbers are regarded as real vector spaces, one has dimR(R) = 1, dimR(C) = 2. The
orbit of a point particle in space–time is one-dimensional and should be regarded as
a real manifold, while the orbit of a string in space–time is two-dimensional (over
the reals) and should be regarded as a complex Riemann surface. Physics without
strings is somehow analogous to mathematics without complex numbers.

10 New Insights Into the Nature of Space–time

We now outline some new ideas relating to the structure of space–time in the most
recent physical theories, to start with general relativity. (i) The geometric structure of
space–time gives rise to the dynamics of this same space–time, and in particular of
the gravitational field. (ii) Even the other (fermionic and bosonic) fields describing
matter and its electroweak and strong interactions seems to emerge as dynamical
effects from the topological (global) structure of space–time. Conversely, the space–
time itself must be henceforth thought of, in some sense, as a derived (changing)
object whose metric and topological structures may be subject, to some extent, to
the quantum fluctuations of these same fields. For example, one of the predictions of
T-duality in string theory is that geometry and topology are ambiguous at the string
length lS = √

α’. Furthermore, space is ambiguous at the Planck length lP � lS.
Another more complicated and richer example of T-duality is the mirror symmetry
and topology change in Calabi-Yau spaces. There are different types of dualities
that play an important role in the recent developments of theoretical physics. One
conclusion is, thus, that spacetime is likely to be an emergent, approximate, classical
concept. The challenge is to have emergent spacetime,while preserving some locality
(macroscopic locality, causality, analyticity, etc.). (iii) The recent developments of
theoretical physics enable us to think that the discrete and continuous character of the
laws of physics are but special cases according with each other in the framework of a
new unitary mathematical-physical theory. With the theory of supergravity, and still
more with string theory, we get a consistent theoretical framework which is finite and
which simultaneously incorporate both quantum gravity and chiral supersymmetric
gauge theories in a natural fashion. Supergravity generalizes a gauge theory proposed
by H. Weyl in 1923 in order to unify the Einstein’s theory of gravitation with the
electromagnetic theory, and another by Kaluza and Klein in the 1920s, in which they
suggested to further unify the concepts of internal and space–time symmetries by
reducing the former to the latter through the introduction of some extra dimension
of space, more precisely, a fifth (space-like) dimension, which has the topology of a



416 L. Boi

circle. (iv) The physical (dynamical) and space–time symmetries dictate, at different
extents, the various forces of nature and the interactions between particles. This is a
very general principle and it is the crucial idea at the heart of quantum field theories.
In fact, all physical phenomena seem to be founded upon such principle (Coleman,
1985). However, at a deeper level, one is increasingly led to believe that, beside
symmetries (including, space–time, physical, broken symmetries, and maybe other
“hidden” symmetries), topological structures and invariants might have an evenmore
important role in determining physical phenomena at the very large and extremely
small scales (Atiyah, 1989).

11 Topological Quantum Field Theory

Topological quantum field (TQFT) emerged in the eighties as a new relation between
mathematics and physics. The relation connected some of the most advanced ideas in
the two fields. The nineties have been characterized by its development, originating
unexpected results in topology and testing some of the most fundamental ideas in
quantum field theory and string theory. The first TQFT was formulated by Witten
in 1988 (Witten, 1988). He constructed the theory now known as Donaldson-Witten
theory, which constitutes a quantum field theory representation of the Donaldson
invariants of four-manifolds (1983–84) (Donaldson, 1983). His work was strongly
influenced by M. Atiyah. In 1988 Witten formulated also another two-dimensional
TQFTs which have been widely studied during the last three decades: topological
sigma models in two dimensions and Chern-Simons gauge theory in three dimen-
sions (Marino, 2005). These theories are related, respectively, to Gromov invariants
(Gromov, 1985), and to knot and link invariants as the Jones polynomial and its
generalizations (Atiyah, 1988; Thurston, 1997; Turaev, 1994). TQFT has provided
an entirely new approach to study topological invariants. Being a quantum field
theory, TQFT can be analyzed from different point of view. The richness inherent to
quantum field theory can be exploited to obtain different perspectives on the topolog-
ical invariants involved in TQFT. This line of thought has shown to be very fruitful
in the last two decades and new topological invariants as well new relations between
them have been obtained.

TQFT have been studied from both, perturbative and non-perturbative points of
view. In the case of Chern-Simons gauge theory, non-perturbative methods have
been applied to obtain properties of knot and link invariants, as well as general
procedures for their computation. Perturbative methods have also been studied for
this theory providing integral representations for Vassiliev invariants. In Donaldson-
Witten theory perturbative methods have proved its relation to Donaldson invariants
(Donaldson, 1990). Non-perturbative methods have been applied after the work by
Seiberg and Witten on N = 2 supersymmetric Yang-Mills theory. The outcome of
this application is a totally unexpected relation between Donaldson invariants and a
new set of topological invariants called Seiberg-Witten invariants.
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Donaldson-Witten theory is a TQFT of cohomological type. TQFTs of this type
can be formulated in a variety of frameworks. The most geometric one corresponds
to the Mathai-Quillen formalism. In this formalism a TQFT is constructed out of
a moduli problem. Topological invariants are then defined as integrals of a certain
Euler class (or wedge products of the Euler class with other forms) over the resulting
moduli space. A different framework is the one based on the twisting of N = 2
supersymmetry. In this case, information on the physical theory can be used in the
TQFT. Indeed, it has been in this framework where Seiberg-Witten invariants have
shown up. After Seiberg and Witten worked out the low energy effective action of
N = 2 supersymmetric Yang-Mills theory, it became clear that a twisted version
of this effective action could lead to topological invariants related to Donaldson
invariants. The twisted action revealed a new moduli space, the moduli space of
Abelian monopoles (Witten, 1994). Its geometric structure has been derived in the
context of the Mathai-Quillen formalism. Invariants associated to this moduli space
should be related to Donaldson invariants. This turned out to be the case. The relevant
invariants for the case of SU(2) as gauge group are the Seiberg-Witten invariants.

Donaldson-Witten theory has been generalized after studying its coupling to topo-
logical matter fields. The resulting theory can be regarded as a twisted form of N = 2
supersymmetric Yang-Mills theory coupled to hypermultiplets, or, in the context of
the Mathai-Quillen formalism, as the TQFT associated to the moduli space of non-
Abelian monopoles. Perturbative and non-perturbative methods have been applied
to this theory for the case of SU(2) as gauge group and one hypermultiplet of matter
in the fundamental representation. In this case, again, it turns out that the general-
ized Donaldson invariants can be written in terms of Seiberg-Witten invariants. One
would expect that in general the invariants associated to non-Abelian monopoles
could be expressed in terms of some other simpler invariants, being Seiberg-Witten
invariants just the first subset of the full set of invariants.
The present situation in three and four dimensions relative to Chern-Simons gauge
theory and Donaldson-Witten theory, respectively, can be described as follows.

These theories share some common features. Their topological invariants are
labeled with group-theoretical data: Wilson lines for different representations
and gauge groups (Jones polynomials and its generalizations), and non-Abelian
monopoles for different representations and gauge groups (generalized Donaldson
polynomials); these invariants can be written in terms of topological invariants which
are independent of the group and representation chosen: Vassiliev invariants and
Seiberg-Witten invariants. This structure leads to the idea of universality classes
of topological invariants. In this respect Vassiliev invariants constitute a class in the
sense that all Chern-Simons or quantumgroup knot invariants for semi-simple groups
can be expressed in terms of them. Similarly, Seiberg-Witten invariants constitute
another class since generalized Donaldson invariants associated to several moduli
spaces canbewritten in termsof them.This certainly holds for the twocases described
above but presumably it holds for other groups. It is very likely that Seiberg-Witten
invariants are the first set of a series of invariants, each defining a universality class.
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12 Concluding Remarks

We stressed the crucial fact that many physical phenomena, at the quantum and at the
cosmological level as well, appear to be deeply related to some geometrical and topo-
logical invariants, and furthermore that these phenomena are effects which emerge, in
a sense, from the geometric and topological structure of space–time (Atiyah, 1990).
The first good example of this new point of view, which actually rely upon ideas
advocated by Riemann and Clifford, is that of general relativity, which showed that
gravity is a manifestation of the curvature of space–time. The Einstein’s field equa-
tions relate the metric to matter distribution. Thus, according to the general theory
of relativity, the gravitational force has to be reinterpreted as the curvature of space–
time in the proximity of a massive object.When the energy is very concentrated, then
the deformation of space–time may change sufficiently its topological structure.

Topological quantum field theory (TQFT) appear as a very rich and promising
research program in theoretical physics. Two conceptual points appear to be very
significant, and likely promising for physics, in TQFT. (i) The first is the assumption
of an effective correlation between knots and link invariants and the physical observ-
ables and states of quantum field theories and gauge theories. (ii) The second is, on
the one hand, the idea of the fuzziness of physical space–time and of its emergence
from the dynamical fluctuations of its metrical structure, on the other, the idea of the
geometric and topological nature of physical phenomena at different scales.

More precisely, the main ideas we have addressed in this paper are the following:

(1) The geometric and topological deformations and invariants could generate the
dynamics of space and time, of the quantum field and the gravitational field
as well. For example, in string theory, the picture is that the different physical
properties of matter are linked to the different topological configurations of
strings and loops moving through space and oscillating around it. For instance,
the electric charge might be seen as a quality of the motion of the string rather
than something which is just added on to a particle as a fundamental object.

(2) The fermionic and bosonic fields composing matter and its electroweak and
strong interactions seems to emerge as dynamical effects from the topological
(global) deformations of the varying structure of space–time. Conversely, the
space itself must be henceforth thought of, in some precise sense, as a derived
and changing object whose metric and topological structures may be subject,
to some extent, to the quantum fluctuations of these same fields. We already
gave two very significative examples illustrating these facts, both relating to
T-duality in string theory: the first predict the ambiguous character of geometry
and topology at the string length scale; the second concerns mirror symmetry
and topological change inCalabi-Yau spaces.AfterRiemann’s revolution in the
geometric vision of physical space, which goes very far beyond the discovering
of what we now call “Riemannian geometry”, for he has not only the idea that
the distribution ofmatter in the universe depends upon the variation of curvature
of space–time, but also the vision of a geometry for the microscopic (quantum)
physicalworld as a dynamical and fluctuating object, the next revolution should



Topological Quantum Field Theory and the Emergence of Physical Space–Time … 419

be to think that space–time might be an emergent, approximate, non-classical
concept. The challenge is to prove the validity of the emergent global nature
of space–time while preserving some locality (macroscopic locality, causality,
analyticity, etc.) On of the most remarkable constituents of quantum geometry
might be knots and other tangled structures. If different aspects of the link
between the Jones polynomial andmathematical physics have been intensively
studied in the last three decades and are quite well-known, the relationship
between knots and quantum physics remain still almost unexplored. Recently,
Witten suggested that, in quantum physics, a knot may be regarded as the
orbit in space–time of a charged particle. One way of calculating the Jones
polynomial in quantum theory involves usingChern-Simons function for gauge
fields. But to use the Chern-Simons function, the knot must be a path in a
space–time of three dimensions rather than the four dimensions of the real
world.

(3) The recent developments of theoretical physics enable us to think that the
discrete and continuous character of the laws of physics are but special situa-
tions according with each other in the context of a new unitary mathematical-
physical theory.With the theory of supergravity, and still more with superstring
theory, we get a consistent theoretical framework which is finite and which
simultaneously incorporate both quantum gravity and chiral supersymmetric
gauge theories in a natural fashion. Supergravity generalizes a gauge theory
proposed by H. Weyl in 1923 in order to unify the Einstein’s theory of gravita-
tion with the electromagnetic theory, and another by Kaluza and Klein in the
1920s, in which they suggested to further unify the concepts of internal and
space–time symmetries by the former to the latter through the introduction of
some extra dimension of space, more precisely, a fifth (space-like) dimension,
which has the topology of a circle.

(4) The physical (“internal”) and space–time (“external”) symmetries, which we
tend to consider both dynamical because they can equally produce some phys-
ical effects, dictate, at different extents, the various forces of nature and the
interactions between particles. This is a very general and meaningful principle
and it is the crucial idea setting at the core of gauge quantum field theories. In
fact, the most physical phenomena at different scales seem to be founded upon
such principle. However, at a deeper level, one is increasingly led to believe
that, beside symmetries—including space–time, physical and broken symme-
tries, and maybe other “hidden” symmetries –, topological deformations and
invariants might have an evenmore important role in determining the dynamics
of physical phenomena at the extremely small and very large scales. This is
essentially related with the phenomenon of topological changes. It is much
conceivable to think, on the one hand, that it can exist a deep link between
symmetries and topological changes, and, on the other, that topological defor-
mation be a new dynamical variable not depending on physical parameters but
which may produce important physical effects as well.
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All the previous aspects and ideas play an important role in the TQFT. Topological
quantum field theory is a third sort of idealization of the physical world, besides
general relativity and quantum field theory, which is attractative and deep from
the mathematical and philosophical point of view as well. It is a background-free
quantum field theory with no local degrees of freedom. The interesting thing is the
presence of ‘global’ degrees of freedom (Baez & Muniain, 1994; Turaev, 1994).3

Two spaces-times which are locally indistinguishable, since locally both look like the
same model of space–time, can, hovewer, be distinguished globally, for example, by
measuring the volume of the whole space–time or studying the behavior of geodesics
that wrap around a 3-dimensional torus.

An axiomatic approach to topological quantum field theory was proposed by
Atiyah (Atiyah, 1990). An important feature of TQFTs is that they do not presume
a fixed topology for space or space–time. In other words, when dealing with an
n-dimensional TQFT, we are free to choose any (n−1)-dimensional manifold to
represent space at a given time. Moreover given two such manifolds, say S and
S’, we are free to choose any n-dimensional manifold M to represent the portion
of spacetime between S and S’. For his construction, Atiyah used the notion of
cobordism, introduced by R. Thom in the 1950s (Thom, 1954), and he developped
a formalism in which he found that cobordism construction obeys to the algebraic
properties of associativity (of manifolds), the non-commutativity of the composition
of cobordism (this is related with the famous non-commutativity of observable in
quantum theory) and an identity cobordism. The operations are dynamical in the
sense that they formalize the notion of “passage of time” (temporal evolution) in a
context where the topology of space–time is arbitrary and there is no background
fixed metric. Atiyah’s axioms relate this notion to quantum theory as follows. First,
a TQFT must assign a Hilbert Space Z(S) to each (n–1)-dimensional manifold S.
Vectors in this Hilbert space represent possible states of the universe given that space
is the manifold S. Second, the TQFT must assign a linear operator Z(M): Z(S) →
Z(S’) to each n-dimensional cobordism M: S → S’. This operator describes how
states change given that the portion of space–time between S and S’ is the manifold
M. In other words, if space is initially the manifold S and the state of the universe
is ψ, after the passage of time corresponding to M the state of the universe will be
Z(M) ψ.

Baez and Muniain (1994) emphasized that the analogy between differantial
topology and quantum theory “is exactly the sort of clue we should pursue for

3 A good example is quantum gravity in 3-dimensional space–time. Classicaly, Einstein’s equations
predict qualitatively very different phenomena depending on the dimension of space–time. If space–
time has 4 or more dimensions, Einstein’s equations imply that the metric has local degrees of
freedom. In other words, the curvature of space–time at a given point is not completely determined
by the flow of energy and momentum through that point: it is an independent variable in its own
right. For example, even in the vacuum, where the energy–momentum tensor vanishes, localized
ripples of curvature can propagate in the form of gravitational radiation. In 3-dimensional space–
time, hovewer, Einstein’s equations suffice to completely determine the curvature at a given point
of space-tume in terms of the flow of energy and momentum through that point. We thus say that
metric has no local degrees of freedom. In particular, in the vacuum the metric is flat, so every small
patch of empty space–time looks exactley like every other.
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a deeper understanding of quantum gravity. At first glance, general relativity and
quantum theory look very different mathematically: one deals with space and space-
time, the other with Hilbert spaces and operators. (…) Topological quantum field
theory suggests that perhaps they are not so different after all! Even better, it suggests
a concrete program of synthesizing the two, which many mathematical physicists
are currently pursuing. Sometimes this goes by the name of ‘quantum topology’”.

It seems likely that differential topology and quantum theory must merge if we
are to understand background-free quantum field theories. In classical (Newtonian)
physics, one treat space as a background on which states of the world are posed, and,
similarly, one treat spacetime as a background onwhich the process of change occurs.
But it could be that these be idealizations which we must overcome in a background-
free theory, i.e. a theory with global degrees of liberty given by topological change.
As Baez and Muniain pointed out, the concepts of ‘space’ and ‘state’ are, in fact,
two aspects of a unified whole, and likewise for the concepts of ‘spacetime’ and
‘process’. This fact might open new and significant perspectives for themathematical
and philosophical understanting of the physical world.
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