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Abstract. For the underwater acoustic targets recognition, it is a chal-
lenging task to provide good classification accuracy for underwater acous-
tic target using radiated acoustic signals. Generally, due to the complex
and changeable underwater environment, when the difference between
the two types of targets is not large in some sensitive characteristics, the
classifier based on single feature training cannot output correct classi-
fication. In addition, the complex background noise of target will also
lead to the degradation of feature data quality. Here, we present a fea-
ture fusion strategy to identify underwater acoustic targets with one-
dimensional Convolutional Neural Network. This method mainly con-
sists of three steps. Firstly, considering the phase spectrum information
is usually ignored, the Long and Short-Term Memory (LSTM) network
is adopted to extract phase features and frequency features of the acous-
tic signal in the real marine environment. Secondly, for leveraging the
frequency-based features and phase-based features in a single model, we
introduce a feature fusion method to fuse the different features. Finally,
the newly formed fusion features are used as input data to train and
validate the model. The results show the superiority of our algorithm,
as compared with the only single feature data, which meets the intelli-
gent requirements of underwater acoustic target recognition to a certain
extent.
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1 Introduction

Passive sonar is widely used in the underwater target recognition because of its
excellent concealment and long working distance. It is usually designed to detect
and identify targets from the ubiquitous clutter, a typical scenario shown in
Fig. 1. During the passive sonar detection, pattern classification method is used
to detect the underlying pattern or structures in the acoustic signal received
by the front end. The sonar target classification system recognition process is
illustrated in Fig. 2. The methods for underwater acoustic targets classification
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are far from practical application, especially in a real-ocean environment. The
reasons include the acoustic characteristics of different types of targets overlap,
the complex and changeable ocean environment, the low signal-to-noise ratio of
the receiving signal, high-quality data is rare and costly to obtain. These factors
make the process of object classification a complicated problem. So far, the
recognition of underwater acoustic signals has attracted widespread attention
from scholars.
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Fig. 1. Sonar working schematic diagram. An object can use the sonar equipment
to analyze the underwater signals. The figure on the left shows the array element
acquiring target information. The figure on the right shows a vertical line array sonar,
the hydrophone array used is composed of 24 array elements, namely Ch1 to Ch24,
and the array elements are equally spaced.

Aiming at the problem of underwater acoustic signal identification, a vari-
ety of identification methods are proposed. The characteristic parameters of
time-domain waveforms and time-frequency analysis, nonlinear characteristic
parameters [1,2] and spectrum analysis with the line spectrum characteristics,
Low-Frequency Analysis and Recording(LOFAR), high-order spectra, Detection
of Envelope Modulation on Noise(DEMON) are used commonly. The extracted
auditory characteristic parameters commonly include Mel Frequency Cepstrum
Coefficient(MFCC), Linear Predictive Cepstral Coefficient(LPCC) [3–5].

With the development of big data technology and the improvement of com-
puter computing power, Machine Learning(ML), especially Deep Learning(DL)
has been widely used in related application fields, e.g., Support Vector Machines,
Back Propagation Neural Networks, K-Nearest Neighbor is employed for under-
water acoustic signal recognition [6–10]. However, with the increase of the
amount of data, ML can hardly meet the needs of existing recognition tasks.
DL showed strong data processing and feature learning capabilities by the com-
monly used of Denoising Auto-Encoder (DAE) [11], LSTM [12], Deep Convo-
lutional Neural Networks (DCNN) [13]. More and more scholars have begun to
apply DL to the underwater acoustic target recognition, e.g., Z. Xiangyang et
al. proposed a method of transforming the original one-dimensional underwa-
ter acoustic signal into a multi-dimensional acoustic spectrogram [14]. H. Yang
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et al. proposed an LSTM-based DAE collaborative network [15]. H. Yang et al.
proposed an end-to-end deep neural network based on auditory perception-Deep
Convolutional Neural Network (ADCNN) [16], Y. Gao et al. proposed the com-
bination of Deep Convolutional Generative Adversarial Network (DCGAN) and
Densely Connected Convolutional Networks (DenseNet), which extracts deep
features for underwater acoustic targets [17]. J. Chen et al. proposed a LOFAR
spectrum enhancement (LSE)-based underwater target recognition scheme [18].
Considering the relative scarcity of underwater acoustic data sets for training,
G. Jin et al. presented a novel framework that applied the LOFAR spectrum
for preprocessing to retain key features and utilized Generative Adversarial Net-
works (GAN) for the expansion of samples to improve the performance classi-
fication [19]. The above works show that deep network has powerful modeling
ability for complex functions with high dimensional input.

...

Signal Processing Target detection Feature extraction classifier

Identify target

TimeVoltage 
oscilation

Transmitter

Time
Transducer'
s vibration Transducer Transducer

Receiver

Array sonar

Fig. 2. The sonar target recognition process. Sonar equipment can detect objects
through electro-acoustic conversion and information processing.

The deep network models rely only on a single spectral feature, such as the
STFT feature [20] and the LPS feature [21], some important characteristics of
radiated noise from underwater targets may be lost. In this paper, by extracting
these two kinds of features, the advantages of LSTM system in complex under-
water acoustic signal modeling are further studied. In addition, the audio signal
has timing characteristics, the LSTM network is usually more excellent than
other networks for processing the timing information. Influenced by this, we do
this by exploring two different properties of the radiated noise training data set:
the frequency spectrum and the phase spectrum in low-frequency band. The
framework of the proposed underwater target classification model is described
in Fig. 3. Our experimental results show that the proposed method performs
significantly better than the single feature in terms of recognition accuracy. The
contributions of this paper are summarised as follows:

(1) The model is used to automatically learn the effective feature representa-
tion of complex target signals, and it can greatly improve the performance
of pattern recognition system compared with the previous manual feature
extraction.

(2) We construct a joint feature for the depth model based on the spectrum
and phase spectrum information, and make full use of the advantages of the
depth structure to achieve feature complementarity and reduce the impact
of the inherent defects of a single feature.
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(3) Our method is tested on the underwater acoustic signals which is different
from the previous work under simulation conditions and achieves outstand-
ing performance compared with the single method.
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Fig. 3. The proposed frequency-phase spectrum identify model.

2 Method

2.1 Model Overview

In the first phase, we need to extract the low-level features of different domains
based on LSTM network and the multi-domain feature vectors are spliced into
joint feature inputs suitable for model training. The joint feature is composed of
the frequency spectrum feature and phase spectrum feature. In this paper, the
feature subsets of frequency and phase are fused directly in the series form to
form multi-category fusion features. In the classification stage, CNN was used to
classify and identify the targets. The design of the framework based on CNN is
described in Fig. 4. In the prediction classification stage, the above process was
repeated to obtain the fusion feature subset of the test samples, and the trained
classifier was used to identify the target category.
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Fig. 4. The framework based on Convolutional Neural Network.
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2.2 Frequency-Phase Spectrum Analysis

In the actual marine environment, the underwater acoustic signal is commonly
affected by the following two aspects: 1) environmental noise; 2) experimen-
tal platform noise. Figure 5 displays the time-domain waveform of the original
underwater acoustic signal, which is part of the underwater target in the data
set. The strong background noise caused that the time-domain waveform of the
original underwater acoustic signal shows noise-like characteristics. In order to
verify the effectiveness of multidimensional feature fusion method proposed in
this paper, we choose to analyze the frequency spectrum and the phase spectrum
of signals by Fourier Transform on the time-domain waveform, Fourier Trans-
form is shown in Eq. (1). Figure 6(a) and Fig. 6(b) are respectively the frequency
spectrum and phase spectrum of the underwater acoustic signal, in which the
red line represents the signal with sailing ship target and the blue line represents
the signal without sailing ship target (background noise).

Fig. 5. Time-domain waveform.

Continuous spectrum and line spectrum make up the frequency spectrum of
the underwater acoustic signal commonly. The ship-radiated noise when railing
includes three kinds of low-frequency line spectrum, which all in 100 Hz–600 Hz.
Therefore, in Fig. 6(a) the frequency spectrum comparison chart, the peak-to-
peak value of the signal with the sailing ship is significantly higher than the
background noise 420 Hz–460 Hz and 520 Hz–560 Hz because of line spectrum.
In the phase spectrum comparison chart, the difference of peak-to-peak value
is equally obvious within the aforementioned frequency range. If the features of
the underwater acoustic signal are analyzed only from the frequency spectrum,
that will lose part information of the signal. Taking the frequency spectrum and



614 P. Qi et al.

phase spectrum of the underwater acoustic signal as the input of the recogni-
tion model can effectively compensate for the lack of underwater acoustic signal
characteristics.

F (ω) = F [f(t)] =
∫ ∞

−∞
f(t)e−iwtdt (1)

Where, f(t) refers to the time-domain data of original underwater acoustic
signal.

2.3 Frequency-Phase Feature Fusion Recognition

Figure 3 describes the process of expressing feature extraction. The frequency
feature and phase feature can be obtained from the spectrogram. The process
can finally extract two-dimensional features and form new feature vectors. The
new feature vectors �N can be expressed as:

�Ni = {Fi(t), Pi(t)} (2)

where t is time series, Fi(t) is the frequency characteristic value at time i,
Pi(t) is the phase characteristic value at time i.

In this paper, the joint feature input N is build for deep learning network
to identify underwater acoustic signal. In Sect. 2.2, we analyze feature of the
signal. The peak-to-peak value of frequency spectrum and phase spectrum is
obviously different in 100 Hz–600 Hz. Therefore, when preprocessing the under-
water acoustic signal, we need to obtain the frequency spectrum and the phase
spectrum of the underwater acoustic signal by Fourier transform in 100 Hz–600
Hz and normalize them by the Deviation Standard method. Take processed fre-
quency spectrum and phase spectrum as the input of model, and feature learning
from them through LSTM network. The dimensions of the feature are 50. Then,
obtain fusion feature by concatenating. The dimensions of the fused feature are
100. Finally, the recognition result can be implemented by the FC layers and
Sigmoid function. The specific Algorithm1 of the proposed multi-dimensional
fusion feature is as follows:

Algorithm 1. Multi-dimensional Fusion Feature.
Require: original underwater acoustic signals s(t);
Ensure: fusion feature vector;
1: Initialization: LSTM, Dropout(rate=0.25),BatchNormalization(BN),P,F,N;
2: Let x(t) ← s(t);
3: Calculate x(k) using Equation (1);
4: Decompose x(k) into freq(k) and phase(k);
5: Calculate Frequency feature F using BN(Dropout(LSTM(freq(k))));
6: Calculate Phase feature P using BN(Dropout(LSTM(phase(k))));
7: Calculate output feature N ← F + P ;
8: return N ;
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Fig. 6. The frequency and phase comparative chart by Fourier transform of the time-
domain waveform, where the first row shows a frequency spectrum of underwater target.
Wherein, the ordinate is the spectrum value. The second row shows a phase spectrum
of underwater target. Wherein, the ordinate is the phase value.

3 Experiments

In this section, we introduce the implementation details and quality assessment
criteria. Finally, the experimental results are given which proves the superiority
of the method proposed in this paper.

3.1 Dataset and Experiment Platform

The method is verified by two kinds of signal data: is there a sailing ship. Each
signal in this paper comes from a passive sonar in the marine and a sampling
rate of 25600 Hz. The total number of samples of the model is 1.8 × 104, in
which the number of the signal with a sailing ship is 1.0 × 104, the number of
the signal without a sailing ship is 0.8 × 104. In order to ensure the validity of
the verification results, the paper randomly selected 1.72× 104 from the sample
library to form a number of training sets, the remaining samples as the test set.
We train our model on the NVIDIA TITAN XP by CUDA 9.0 and Keras.
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3.2 Implementation Details

Comparative Experiments. For fairness, in this paper, we use homologous
underwater acoustic signals. By the data processing, we obtain the frequency
spectrum, the phase spectrum, and the MFCC feature. The dimensions of the
overall MFCC feature are 96, which includes MFCC parameter, first-order differ-
ence MFCC, and second-order difference MFCC. Our model uses the frequency
spectrum, and the phase spectrum as the input data. Comparative experiments
use frequency spectrum, phase spectrum, and MFCC feature as single input.

Table 1. LSTM network parameters

Input data Input Nodes LSTM NO Layers Feature Dimension FC Layer

Frequency 500 1 1 50 2

Phase 500 1 1 50 2

MFCC 96 1 1 50 2

Feature fusion 1000 2 1 100 2

Training Setup. The model has trained with 1.72 × 104 samples, the learning
rate is 5×10−6 by 700 epochs. The LSTM layer params of experiments in Table 1.
A dropout layer is inserted after the LSTM layer with the dropout rate of 0.25.

Quality Assessment Criteria. This paper mainly focuses on the classification
problem of the 2 types of acoustic signals. In order to evaluate the proposed
method, we used the data samples from real marine data, F1 score and accuracy
rate as evaluation indexes. We used the true negative rate, true positive rate,
false positive rate, and false negative rate from ML and use F1-score which is
the harmonic mean recall of Recall rate (R) and Precision rate (P) to evaluate
the model’s recognition effect of underwater targets in the test set. The F1-score
calculation formula is shown in Eq. (3), and the Accuracy Rate is shown in
Eq. (4).

F1 = 2 × P × R

P + R
(3)

Where P is Precision rate, R is Recall rate.

Accuracy Rate =
Aacc

Ttotal
× 100% (4)

Where A is the total number of objects that can be correctly identified, T is
the total number of the two targets.

3.3 Experimental Results

In this paper, we compare the performance of the proposed method with other
methods, i.e., MFCC, frequency, and phase on the validation set. In this paper,
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Table 2. Confusion matrix of experimental results

Recognition
result

Method Prediction
real label

Prediction
goalless label

In total

Real targeted
lable

Sigle feature Frequency 341 77 418

Phase 302 116

MFCC 349 69

Fusion feature Our method 381 37

Real goalless
label

Sigle feature Frequency 307 75 382

Phase 322 60

MFCC 329 53

Fusion feature Our method 337 45

the F1 score and accuracy are adopted as the evaluation indexes. As can be
seen from Table 2, the F1-score in frequency, phase and MFCC is 64%, 57.9%
and 63.1% respectively, the calculated F1-Score is 72.1% with our method by
Eq. (3), compared with frequency feature and phase feature, the fusion feature
can improve the performance of recognition precision.

To simulate practical applications of recognition for ship-radiated noise, the
classification accuracy of each acoustic event is used to measure the classifica-
tion performance of the model, which is defined as the percentage of all acoustic
events that are correctly classified. The classification accuracy of the proposed
method and the comparison method is shown in Table 3. As we can see from

Fig. 7. Loss and accuracy of the model, where the left shows the classification loss of the
proposed method with frequency, phase and MFCC, the right shows the classification
accuracy of the proposed method with frequency, phase and MFCC.
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Table 3, compared with a single feature of underwater acoustic target recogni-
tion methods, the proposed fusion method effectively improves the classification
accuracy of the underwater acoustic target.

To further show the effectiveness of our proposed model, the recognition per-
formance results on the validation set are illustrated in Fig. 7, which details the
classification accuracy improvement of feature fusion relative to phase spectrum,
frequency spectrum, and MFCC in each class. As shown in Fig. 7, in the pro-
cess of model training, there is no over-fitting or under-fitting phenomenon, and
there is no gradient disappearance or gradient explosion. By testing the model
with measured data, with the number of model training steps increases, the pro-
posed method can achieve a higher recognition accuracy on the validation set.
We provide a confusion matrix for the recognition result of the proposed model,
as shown in Fig. 8. Each row of the confusion matrix correspond to the real label
and each column corresponds to the predicted label.

Fig. 8. The confusion matrix of the proposed model obtained from testing data.

Table 3. The classification results of proposed method and compared methods

Method Model Accuracy

Frequency One-DCNN 81.00%

Phase One-DCNN 78.00%

MFCC One-DCNN 84.75%

Fusion-Feature One-DCNN 89.75%
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4 Conclusion

This paper focuses on how to introduce the acoustic feature of the frequency-
phase spectrum and two types of feature fusion model into the passive recogni-
tion problem. In order to alleviate the identify difficulty in the actual marine,
the recognition method based on frequency-phase spectrum analysis is proposed.
In this method, the LSTM is used for multi-class feature extract. By analyzing
the target and background noise, two kinds of target data are obtained. Experi-
ments show that the frequency-phase spectrum recognition method proposed can
effectively distinguish the above two types of target, and the recognition results
of the two types of feature fusion are better than other cases. In addition, our
method strengthens the interpretability of the features extracted compared to
deep learning technology.

In this paper, only the two discriminant methods were studied and intro-
duced. However, due to the lack of relevant research on optimization selection,
the comparison of the discriminant effects after optimization between the two
methods needs to be further studied and discussed in the future.
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