
Stochastic Recurrent Neural Network
for Multistep Time Series Forecasting

Zexuan Yin(B) and Paolo Barucca

Department of Computer Science, University College London,
London WC1E 7JE, UK

{zexuan.yin.20,p.barucca}@ucl.ac.uk

Abstract. Time series forecasting based on deep architectures has been
gaining popularity in recent years due to their ability to model com-
plex non-linear temporal dynamics. The recurrent neural network is one
such model capable of handling variable-length input and output. In
this paper, we leverage recent advances in deep generative models and
the concept of state space models to propose a stochastic adaptation
of the recurrent neural network for multistep-ahead time series fore-
casting, which is trained with stochastic gradient variational Bayes. To
capture the stochasticity in time series temporal dynamics, we incorpo-
rate a latent random variable into the recurrent neural network to make
its transition function stochastic. Our model preserves the architectural
workings of a recurrent neural network for which all relevant informa-
tion is encapsulated in its hidden states, and this flexibility allows our
model to be easily integrated into any deep architecture for sequential
modelling. We test our model on a wide range of datasets from finance
to healthcare; results show that the stochastic recurrent neural network
consistently outperforms its deterministic counterpart.

Keywords: State space models · Deep generative models · Variational
inference

1 Introduction

Time series forecasting is an important task in industry and academia, with
applications in fields such as retail demand forecasting [1], finance [2–4], and
traffic flow prediction [5]. Traditionally, time series forecasting was dominated
by linear models such as the autoregressive integrated moving average model
(ARIMA), which required prior knowledge about time series structures such as
seasonality and trend. With an increasing abundance of data and computational
power however, deep learning models have gained much research interest due
to their ability to learn complex temporal relationships with a purely data-
driven approach; thus requiring minimal human intervention and expertise in the
subject matter. In this work, we combine deep learning with state space models
(SSM) for sequential modelling. Our work follows recent trend that combines
c© Springer Nature Switzerland AG 2021
T. Mantoro et al. (Eds.): ICONIP 2021, LNCS 13108, pp. 14–26, 2021.
https://doi.org/10.1007/978-3-030-92185-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92185-9_2&domain=pdf
http://orcid.org/0000-0002-1306-3858
http://orcid.org/0000-0003-4588-667X
https://doi.org/10.1007/978-3-030-92185-9_2

Stochastic Recurrent Neural Network for Multistep Time Series Forecasting 15

the powerful modelling capabilities of deep learning models with well understood
theoretical frameworks such as SSMs.

Recurrent neural networks (RNN) are a popular class of neural networks
for sequential modelling. There exists a great abundance of literature on time
series modelling with RNNs across different domains [6–16]. However, vanilla
RNNs have deterministic transition functions, which may limit their expressive
power at modelling sequences with high variability and complexity [18]. There is
recent evidence that the performance of RNNs on complex sequential data such
as speech, music, and videos can be improved when uncertainty is incorporated
in the modelling process [19–24]. This approach makes an RNN more expressive,
as instead of outputting a single deterministic hidden state at every time step, it
now considers many possible future paths before making a prediction. Inspired
by this, we propose an RNN cell with stochastic hidden states for time series
forecasting, which is achieved by inserting a latent random variable into the
RNN update function. Our approach corresponds to a state space formulation
of time series modelling where the RNN transition function defines the latent
state equation, and another neural network defines the observation equation
given the RNN hidden state. The main contributions of our paper are as follows:

1. we propose a novel deep stochastic recurrent architecture for multistep-ahead
time series forecasting which leverages the ability of regular RNNs to model
long-term dynamics and the stochastic framework of state space models.

2. we conduct experiments using publicly available datasets in the fields of
finance, traffic flow prediction, air quality forecasting, and disease transmis-
sion. Results demonstrate that our stochastic RNN consistently outperforms
its deterministic counterpart, and is capable of generating probabilistic fore-
casts

2 Related Works

2.1 Recurrent Neural Networks

The recurrent neural network (RNN) is a deep architecture specifically designed
to handle sequential data, and has delivered state-of-the-art performance in areas
such as natural language processing [25]. The structure of the RNN is such that at
each time step t, the hidden state of the network - which learns a representation of
the raw inputs - is updated using the external input for time t as well as network
outputs from the previous step t−1. The weights of the network are shared across
all time steps and the model is trained using back-propagation. When used to
model long sequences of data, the RNN is subject to the vanishing/exploding
gradient problem [26]. Variants of the RNN such as the LSTM [27] and the GRU
[28] were proposed to address this issue. These variants use gated mechanisms
to regulate the flow of information. The GRU is a simplification of the LSTM
without a memory cell, which is more computationally efficient to train and
offers comparable performance to the LSTM [29].

16 Z. Yin and P. Barucca

2.2 Stochastic Gradient Variational Bayes

The authors in [21] proposed the idea of combining an RNN with a variational
auto-encoder (VAE) to leverage the RNN’s ability to capture time dependencies
and the VAE’s role as a generative model. The proposed structure consists of an
encoder that learns a mapping from data to a distribution over latent variables,
and a decoder that maps latent representations to data. The model can be
efficiently trained with Stochastic Gradient Variational Bayes (SGVB) [30] and
enables efficient, large-scale unsupervised variational learning on sequential data.
Consider input x of arbitrary size, we wish to model the data distribution p(x)
given some unobserved latent variable z (again, of arbitrary dimension). The
aim is maximise the marginal likelihood function p(x) =

∫
p(x|z)p(z) dz, which

is often intractable when the likelihood p(x|z) is expressed by a neural network
with non-linear layers. Instead we apply variational inference and maximise the
evidence lower-bound (ELBO):

log p(x) = log
∫

p(x|z)p(z) dz = log
∫

p(x|z)p(z)
q(z)
q(z)

dz

≥ Ez∼q(z |x)[log p(x|z)] − KL(q(z|x)||p(z)) = ELBO, (1)

where q(z|x) is the variational approximation to true the posterior distribution
p(z|x) and KL is the Kullback-Leibler divergence. For the rest of this paper we
refer to p(x|z) as the decoding distribution and q(z|x) as the encoding distri-
bution. The relationship between the marginal likelihood p(x) and the ELBO
is given by

log p(x) = Ez∼q(z |x)[log p(x|z)] − KL(q(z|x)||p(z))
+KL(q(z|x)||(p(z|x)), (2)

where the third KL term specifies the tightness of the lower bound. The expec-
tation Ez∼q(z |x)[log p(x|z)] can be interpreted as an expected negative recon-
structed error, and KL(q(z|x)||p(z)) serves as a regulariser.

2.3 State Space Models

State space models provide a unified framework for time series modelling; they
refer to probabilistic graphical models that describe relationships between obser-
vations and the underlying latent variable [35]. Exact inference is feasible only for
hidden Markov models (HMM) and linear Gaussian state space models (LGSS)
and both are not suitable for long-term prediction [31]. SSMs can be viewed a
probabilistic extension of RNNs. Inside an RNN, the evolution of the hidden
states h is governed by a non-linear transition function f : ht+1 = f(ht,xt+1)
where x is the input vector. For an SSM however, the hidden states are assumed
to be random variables. It is therefore intuitive to combine the non-linear gated
mechanisms of the RNN with the stochastic transitions of the SSM; this creates
a sequential generative model that is more expressive than the RNN and better

Stochastic Recurrent Neural Network for Multistep Time Series Forecasting 17

capable of modelling long-term dynamics than the SSM. There are many recent
works that draw connections between SSM and VAE using an RNN. The authors
in [18] and [19] propose a sequential VAE with nonlinear state transitions in the
latent space, in [32] the authors investigate various inference schemes for vari-
ational RNNs, in [22] the authors propose to stack a stochastic SSM layer on
top of a deterministic RNN layer, in [23] the authors propose a latent transition
scheme that is stochastic conditioned on some inferable parameters, the authors
in [33] propose a deep Kalman filter with exogenous inputs, the authors in [34]
propose a stochastic variant of the Bi-LSTM, and in [37] the authors use an
RNN to parameterise a LGSS.

3 Stochastic Recurrent Neural Network

3.1 Problem Statement

For a multivariate dataset comprised of N+1 time series, the covariates x1:T+τ =
{x1,x2, ...xT+τ} ∈ R

N×(T+τ) and the target variable y1:T ∈ R
1×T . We refer to

the period {T + 1, T + 2, ...T + τ} as the prediction period, where τ ∈ Z
+ is the

number of prediction steps and we wish to model the conditional distribution

P (yT+1:T+τ |y1:T ,x1:T+τ). (3)

3.2 Stochastic GRU Cell

Here we introduce the update equations of our stochastic GRU, which forms the
backbone of our temporal model:

ut = σ(W u · xt + Cu · zt + Mu · ht−1 + bu) (4)
rt = σ(W r · xt + Cr · zt + M r · ht−1 + br) (5)

h̃t = tanh(W h · xt + Ch · zt + rt � Mh · ht−1 + bh) (6)

ht = ut � ht−1 + (1 − ut) � h̃t, (7)

where σ is the sigmoid activation function, zt is a latent random variable which
captures the stochasticity of the temporal process, ut and rt represent the update
and reset gates, W , C and M are weight matrices, b is the bias matrix, ht is the
GRU hidden state and � is the element-wise Hadamard product. Our stochastic
adaptation can be seen as a generalisation of the regular GRU, i.e. when C = 0,
we have a regular GRU cell [28].

3.3 Generative Model

The role of the generative model is to establish probabilistic relationships
between the target variable yt, the intermediate variables of interest (ht,zt),
and the input xt. Our model uses neural networks to describe the non-linear
transition and emission processes, and we preserve the architectural workings of

18 Z. Yin and P. Barucca

an RNN - relevant information is encoded within the hidden states that evolve
with time, and the hidden states contain all necessary information required to
estimate the target variable at each time step. A graphical representation of the
generative model is shown in Fig. 1a, the RNN transitions are now stochastic,
faciliated by the random variable zt. The joint probability distribution of the
generative model can be factorised as follows:

pθ(y2:T ,z2:T ,h2:T |x1:T) =
T∏

t=2

pθ1(yt|ht)pθ2(ht|ht−1,zt,xt)pθ3(zt|ht−1) (8)

where

pθ3(zt|ht−1) = N(μ(ht−1),σ2(ht−1)I) (9)
ht = GRU(ht−1,zt,xt) (10)

yt ∼ pθ1(yt|ht) = N(μ(ht), σ2(ht)), (11)

where GRU is the stochastic GRU update function given by (4)–(7). (9) defines
the prior distribution of zt, which we assume to have an isotropic Gaussian
prior (covariance matrix is diagonal) parameterised by a multi-layer perceptron
(MLP). When conditioning on past time series for prediction, we use (9), (10)
and the last available hidden state hlast to calculate h1 for the next sequence,
otherwise we initialise them to 0. We refer to the collection of parameters of the
generative model as θ, i.e. θ = {θ1, θ2, θ3}. We refer to (11) as our generative
distribution, which is parameterised by an MLP.

(a) Generative model (b) Inference model

Fig. 1. Proposed generative and inference models

3.4 Inference Model

We wish to maximise the marginal log-likelihood function log pθ(y2:T |x2:T), how-
ever the random variable zt of the non-linear SSM cannot be analytically inte-
grated out. We instead maximise the variational lower bound (ELBO) with

Stochastic Recurrent Neural Network for Multistep Time Series Forecasting 19

respect to the generative model parameters θ and some inference model param-
eter which we call φ [36]. The variational approximation of the true posterior
p(z2:T ,h2:T |y1:T ,x1:T) can be factorised as follows:

qφ(z2:T ,h2:T |y1:T ,x1:T) =
T∏

t=2

qφ(zt|y1:T)qφ(ht|ht−1,zt,xt) (12)

and
qφ(ht|ht−1,zt,xt) = pθ2(ht|ht−1,zt,xt), (13)

where pθ2 is the same as in (8); this is due to the fact that the GRU transition
function is fully deterministic conditioned on knowing zt and hence pθ2 is just
a delta distribution centered at the GRU output value given by (4)–(7). The
graphical model of the inference network is given in Fig. 1a. Since the purpose
of the inference model is to infer the filtering distribution qφ(zt|y1:t), and that
an RNN hidden state contains a representation of current and past inputs, we
use a second GRU model with hidden states gt as our inference model, which
takes the observed target values yt and previous hidden state gt−1 as inputs and
maps gt to the inferred value of zt:

gt = GRU(gt−1,yt) (14)

zt ∼ qφ(zt|y1:t) = N(μ(gt),σ
2(gt)I). (15)

3.5 Model Training

The objective function of our stochastic RNN is the ELBO L(θ, φ) given by:

L(θ, φ) =

∫ ∫
qφ log

pθ

qφ
dz2:T dh2:T

=

T∑

n=2

Eqφ [log pθ(yt|ht)] − KL(qφ(zt|y1:t)||pθ(zt|ht−1)), (16)

where pθ and qφ are the generative and inference distributions given by (8) and
(12) respectively. During training, we use the posterior network (15) to infer
the latent variable zt used for reconstruction. During testing we use the prior
network (9) to forecast 1-step-ahead zt, which has been trained using the KL
term in the ELBO function. We seek to optimise the ELBO with respect to
decoder parameters θ and encoder parameters φ jointly, i.e. we wish to find:

(θ∗, φ∗) = argmax
θ,φ

L(θ, φ). (17)

Since we do not back-propagate through a sampling operation, we apply the
reparameterisation trick [30] to write

z = μ + σ � ε, (18)

where ε ∼ N(0, I) and we sample from ε instead. The KL divergence term in
(16) can be analytically computed since we assume the prior and posterior of zt

to be normally distributed.

20 Z. Yin and P. Barucca

3.6 Model Prediction

Given the last available GRU hidden state hlast, prediction window τ and covari-
ates xT+1:T+τ , we generate predicted target values in an autoregressive manner,
assuming that at every time step the hidden state of the GRU ht contains all
relevant information up to time t. The prediction algorithm of our stochastic
GRU is given by Algorithm 1.

Input: τ, hlast, xT+1:T+τ

Output: yT+1:T+τ

for t ← 1 to τ do
zt ∼ pθ3(zt|hlast)
ht ← GRU(hlast, zt, xt)
yt ∼ pθ1(yt|ht)
hlast ← ht

end
Algorithm 1: Prediction algorithm for stochastic GRU

4 Experiments

We highlight the model performance on 6 publicly available datasets:

1. Equity options trading price time series available from the Chicago Board
Options Exchange (CBOE) datashop. This dataset describes the minute-level
traded prices of an option throughout the day. We study 3 options with
Microsoft and Amazon stocks as underlyings where xt = underlying stock
price and yt = traded option price

2. The Beijing PM2.5 multivariate dataset describes hourly PM2.5 (a type of air
pollution) concentrations of the US Embassy in Beijing, and is freely available
from the UCI Machine Learning Repository. The covariates we use are xt =
temperature, pressure, cumulated wind speed, Dew point, cumulated hours
of rainfall and cumulated hours of snow, and yt = PM2.5 concentration. We
use data from 01/11/2014 onwards

3. The Metro Interstate Traffic Volume dataset describes the hourly interstate
94 Westbound traffic volume for MN DoT ATR station 301, roughly midway
between Minneapolis and ST Paul, MN. This dataset is available on the UCI
Machine Learning Repository. The covariates we use in this experiment are
xt = temperature, mm of rainfall in the hour, mm of snow in the hour, and
percentage of cloud cover, and yt = hourly traffic volume. We use data from
02/10/2012 9AM onwards

4. The Hungarian Chickenpox dataset describes weekly chickenpox cases (child-
hood disease) in different Hungarian counties. This dataset is also available
on the UCI Machine Learning Repository. For this experiment, yt = number
of chickenpox cases in the Hungarian capital city Budapest, xt = number
of chickenpox cases in Pest, Bacs, Komarom and Heves, which are 4 nearby
counties. We use data from 03/01/2005 onwards

Stochastic Recurrent Neural Network for Multistep Time Series Forecasting 21

We generate probabilistic forecasts using 500 Monte-Carlo simulations and we
take the mean predictions as our point forecasts to compute the error metrics.
We tested the number of simulations from 100 to 1000 and found that above
500, the differences in performance were small, and with fewer than 500 we
could not obtain realistic confidence intervals for some time series. We provide
graphical illustrations of the prediction results in Fig. 2a–2f. We compare our
model performance against an AR(1) model assuming the prediction is the same
as the last observed value (yT+τ = yT), a standard LSTM model and a standard
GRU model. For the performance metric, we normalise the root-mean-squared-
error (rmse) to enable comparison between time series:

nrmse =

√∑N
i=1(yi−ŷi)2

N

ȳ
, (19)

where ȳ = mean(y), ŷi is the mean predicted value of yi, and N is the predic-
tion size. For replication purposes, in Table 1 we provide (in order): number of
training, validation and conditioning steps, (non-overlapping) sequence lengths
used for training, number of prediction steps, dimensions of zt, ht and gt, details
about the MLPs corresponding to (9) (zt prior) and (15) (zt post) in the form
of (n layers, n hidden units per layer), and lastly the size of the hidden states
of the benchmark RNNs (LSTM and GRU). we use the ADAM optimiser with
a learning rate of 0.001. In Table 2, 3, 4 and 5 we observe that the nrmse of the
stochastic GRU is lower than its deterministic counterpart for all datasets inves-
tigated and across all prediction steps. This shows that our proposed method
can better capture both long and short-term dynamics of the time series. With
respect to multistep time series forecasting, it is often difficult to accurately
model the long-term dynamics. Our approach provides an additional degree of
freedom facilitated by the latent random variable which needs to be inferred
using the inference network; we believe this allows the stochastic GRU to bet-
ter capture the stochasticity of the time series at every time step. In Fig. 2e for
example, we observe that our model captures well the long-term cyclicity of the
traffic volume, and in Fig. 2d where the time series is much more erratic, our
model can still accurately predict the general shape of the time series in the
prediction period.

Table 1. Model and training parameters

Dataset Train Val Cond Seq length Pred zt ht gt zt prior zt post RNN hid

Options 300 30 10 10 30 50 64 64 (4,64) (4,64) 64

PM2.5 1200 200 10 10 30 50 64 64 (4,64) (4,64) 64

Traffic

volume

1000 200 20 20 30 30 128 128 (4,128) (4,128) 128

Hungarian

chickenpox

300 150 10 10 30 50 128 128 (4,128) (4,128) 128

22 Z. Yin and P. Barucca

Table 2. nrmse for 30 steps-ahead options price predictions

Option Description Ours AR(1) LSTM GRU

MSFT call strike 190, expiry 17/09/2021 0.0010 0.0109 0.0015 0.0015

MSFT put strike 315, expiry 16/07/2021 0.0004 0.0049 0.0006 0.0007

AMZN put strike 3345, expiry 22/01/2021 0.0032 0.0120 0.0038 0.0038

Table 3. nrmse for 30 steps-ahead PM2.5 concentration predictions

Steps 5 10 15 20 25 30

Ours 0.1879 0.2474 0.4238 0.4588 0.6373 0.6523

AR(1) 0.3092 1.0957 0.7330 0.6846 1.0045 1.1289

LSTM 0.4797 0.6579 0.4728 0.4638 0.8324 0.8318

GRU 0.4846 0.5553 0.4789 0.4919 0.6872 0.6902

Table 4. nrmse for 30 steps-ahead traffic volume predictions

Steps 5 10 15 20 25 30

Ours 0.4284 0.2444 0.2262 0.2508 0.2867 0.2605

AR(1) 1.2039 1.0541 1.0194 1.0283 1.1179 1.0910

LSTM 0.8649 0.5936 0.4416 0.4362 0.5591 0.5446

GRU 0.8425 0.5872 0.4457 0.4376 0.5510 0.5519

Table 5. nrmse for 30 steps-ahead Hungarian chickenpox predictions

Steps 5 10 15 20 25 30

Ours 0.6585 0.6213 0.5795 0.5905 0.6548 0.5541

AR(1) 0.7366 0.7108 0.9126 0.9809 1.0494 1.0315

LSTM 0.7215 0.6687 0.9057 1.0717 0.8471 0.7757

GRU 0.6795 0.6379 0.6825 0.6196 0.6355 0.6739

Table 6. nrmse of MLP benchmark and our proposed model for 30 steps-ahead fore-
casts

MSFT call MSFT put AMZN put PM2.5 Metro Chickenpox

Ours 0.0010 0.0004 0.0032 0.6523 0.2605 0.5541

MLP 0.0024 0.0005 0.0141 0.7058 0.6059 0.5746

Stochastic Recurrent Neural Network for Multistep Time Series Forecasting 23

(a) MSFT call option, strike 190, expiry
17/09/2021

(b) MSFT put option, strike 315, expiry
16/07/2021

(c) AMZN put option, strike 3345, expiry
22/01/2021

(d) PM2.5 concentration forecasts up to 30
steps ahead

(e) Traffic volume forecasts up to 30 steps
ahead

(f) Hungarian chickenpox cases forecasts up
to 30 steps ahead

Fig. 2. Model prediction results on different datasets

To investigate the effectiveness of our temporal model, we compare our pre-
diction errors against a model without a temporal component, which is con-
structed using a 3-layer MLP with 5 hidden nodes and ReLU activation func-
tions. Since we are using covariates in the prediction period (3), we would like
to verify that our model can outperform a simple regression-type benchmark
which approximates a function of the form yt = fψ(xt); we use the MLP to
parameterise the function fψ. We observe in Table 6 that our proposed model
outperforms a regression-type benchmark for all the experiments, which shows
the effectiveness of our temporal model. It is also worth noting that in our exper-
iments we use the actual values of the future covariates. In a real forecasting set-
ting, the future covariates themselves could be outputs of other mathematical
models, or they could be estimated using expert judgement.

5 Conclusion

In this paper we have presented a stochastic adaptation of the Gated Recurrent
Unit which is trained with stochastic gradient variational Bayes. Our model
design preserves the architectural workings of an RNN, which encapsulates all
relevant information into the hidden state, however our adaptation takes inspi-
ration from the stochastic transition functions of state space models by injecting

24 Z. Yin and P. Barucca

a latent random variable into the update functions of the GRU, which allows
the GRU to be more expressive at modelling highly variable transition dynam-
ics compared to a regular RNN with deterministic transition functions. We have
tested the performance of our model on different publicly available datasets and
results demonstrate the effectiveness of our design. Given that GRUs are now
popular building blocks for much more complex deep architectures, we believe
that our stochastic GRU could prove useful as an improved component which can
be integrated into sophisticated deep learning models for sequential modelling.

Acknowledgments. We would like to thank Dr Fabio Caccioli (Dpt of Computer
Science, UCL) for proofreading this manuscript and for his questions and feedback.

References

1. Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H, Tran, Q., Seaman, B.: Sales
demand forecast in E-commerce using a long short-term memory neural network
methodology. In: ICONIP, Sydney, NSW, Australia, pp. 462–474 (2019)

2. McNally, S., Roche, J., Caton, S.: Predicting the price of Bitcoin using machine
learning. In: PDP, Cambridge, UK, pp. 339–343 (2018)

3. Hu, Z., Zhao, Y., Khushi, M.: A Survey of Forex and stock price prediction using
deep learning. Appl. Syst. Innov. 4(9) (2021). https://doi.org/10.3390/asi4010009

4. Zhang, R., Yuan, Z., Shao, X.: A new combined CNN-RNN model for sector stock
price analysis. In: COMPSAC, Tokyo, Japan (2018)

5. Lv, Y., Duan, Y., Kang, W.: Traffic flow prediction with big data: a deep learning
approach. IEEE Trans. Intell. Transp. 16(2), 865–873 (2014)

6. Dolatabadi, A., Abdeltawab, H., Mohamed, Y.: Hybrid deep learning-based model
for wind speed forecasting based on DWPT and bidirectional LSTM Network.
IEEE Access. 8, 229219–229232 (2020). https://doi.org/10.1109/ACCESS.2020.
3047077

7. Alazab, M., Khan, S., Krishnan, S., Pham, Q., Reddy, M., Gadekallu, T.: A multi-
directional LSTM model for predicting the stability of a smart grid. IEEE Access.
8, 85454–85463 (2020). https://doi.org/10.1109/ACCESS.2020.2991067

8. Liu, T., Wu, T., Wang, M, Fu, M, Kang, J., Zhang, H.: Recurrent neural networks
based on LSTM for predicting geomagnetic field. In: ICARES, Bali, Indonesia
(2018)

9. Lai, G., Chang, W., Yang, Y., Liu, H.: Modelling long-and short-term temporal
patterns with deep neural networks. In: SIGIR (2018)

10. Apaydin, H., Feizi, H., Sattari, M.T., Cloak, M.S., Shamshirband, S., Chau, K.W.:
Comparative analysis of recurrent neural network architectures for reservoir inflow
forecasting: Water. vol. 12 (2020). https://doi.org/10.3390/w12051500

11. Di Persio, L., Honchar, O.: Analysis of recurrent neural networks for short-term
energy load forecasting. In: AIP (2017)

12. Meng, X., Wang, R., Zhang, X., Wang, M., Ma, H., Wang, Z.: Hybrid neural
network based on GRU with uncertain factors for forecasting ultra-short term
wind power. In: IAI (2020)

13. Khaldi, R., El Afia, A., Chiheb, R.: Impact of multistep forecasting strategies on
recurrent neural networks performance for short and long horizons. In: BDIoT
(2019)

https://doi.org/10.3390/asi4010009
https://doi.org/10.1109/ACCESS.2020.3047077
https://doi.org/10.1109/ACCESS.2020.3047077
https://doi.org/10.1109/ACCESS.2020.2991067
https://doi.org/10.3390/w12051500

Stochastic Recurrent Neural Network for Multistep Time Series Forecasting 25

14. Mattos, C.L.C., Barreto, G.A.: A stochastic variational framework for recurrent
gaussian process models. Neural Netw. 112, 54–72 (2019). https://doi.org/10.
1016/j.neunet.2019.01.005

15. Seleznev, A., Mukhin, D., Gavrilov, A., Loskutov, E., Feigin, A.: Bayesian frame-
work for simulation of dynamical systems from multidimensional data using recur-
rent neural network. Chaos, vol. 29 (2019). https://doi.org/10.1063/1.5128372

16. Alhussein, M., Aurangzeb, K., Haider, S.: Hybrid CNN-LSTM model for short-
term individual household load forecasting. IEEE Access. 8, 180544–180557 (2020).
https://doi.org/10.1109/ACCESS.2020.3028281

17. Sezer, O., Gudelek, M., Ozbayoglu, A.: Financial time series forecasting with deep
learning: a systematic literature review: 2005–2019. Appl. Soft Comput. 90 (2020).
https://doi.org/10.1016/j.asoc.2020.106181

18. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., Bengio, Y.: A recurrent
latent variable model for sequential data. In: NIPS, Montreal, Canada (2015)

19. Bayer, J., Osendorfer, C.: Learning stochastic recurrent networks. arXiv preprint.
arXiv: 1411.7610 (2014)

20. Goyal, A., Sordoni, A., Cote, M., Ke, N., Bengio, Y.: Z-forcing: training stochastic
recurrent networks. In: NIPS, California, USA, pp. 6716–6726 (2017)

21. Fabius, O., Amersfoort, J.R.: Variational recurrent auto-encoders. arXiv preprint.
arXiv 1412, 6581 (2017)

22. Fraccaro, M., Sønderby, S., Paquet, U., Winther, O.: Sequential neural models with
stochastic layers. In: NIPS, Barcelona, Spain (2016)

23. Karl, M., Soelch, M., Bayer, J., Smagt, P.: Deep Variational Bayes Filters: Unsu-
pervised learning of state space models from raw data. In: ICLR, Toulon, France
(2017)

24. Franceschi, J., Delasalles, E., Chen, M., Lamprier, S., Gallinari, P.: Stochastic
latent residual video prediction. In: ICML, pp. 3233–3246 (2020)

25. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).
https://doi.org/10.1109/MCI.2018.2840738

26. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: ICML, Atlanta, GA, USA, pp. 1310–1318 (2013)

27. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

28. Cho, K., Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural
machine translation: encoder-decoder approaches. In: SSST, Doha, Qatar, pp. 103–
111 (2014)

29. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empiral evaluation of gated recurrent
neural networks on sequence modelling. arXiv preprint. arXiv: 1412.3555 (2014)

30. Kingma, D., Welling, M.: Auto-encoding variational Bayes. In: ICLR, Banff,
Canada (2014)

31. Liitiainen, E., Lendasse, A.: Long-term prediction of time series using state-space
models. In: ICANN, Athens, Greece (2006)

32. Krishnan, R., Shalit, U., Sontag, D.: Structured inference networks for nonlinear
state space models. In: AAAI, California, USA, pp. 2101–2109 (2017)

33. Krishnan, R., Shalit, U., Sontag, D.: Deep Kalman filters. arXiv preprint. arXiv
1511, 05121 (2015)

34. Shabanian, S., Arpit, D., Trischler, A., Bengio, Y.: Variational bi-LSTMs. arXiv
preprint. arXiv 1711, 05717 (2017)

35. Durbin, J., Koopman, S.: Time Series Analysis by State Space Methods, vol. 38.
Oxford University Press, Oxford (2012)

https://doi.org/10.1016/j.neunet.2019.01.005
https://doi.org/10.1016/j.neunet.2019.01.005
https://doi.org/10.1063/1.5128372
https://doi.org/10.1109/ACCESS.2020.3028281
https://doi.org/10.1016/j.asoc.2020.106181
http://arxiv.org/abs/1411.7610
https://doi.org/10.1109/MCI.2018.2840738
http://arxiv.org/abs/1412.3555

26 Z. Yin and P. Barucca

36. Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational
methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

37. Rangapuram, S., Seeger, M., Gasthaus, J., Stella, L., Yang, Y., Janushowski, T.:
Deep state space models for time series forecasting. In: NIPS, Montreal, Canada
(2018)

	Stochastic Recurrent Neural Network for Multistep Time Series Forecasting
	1 Introduction
	2 Related Works
	2.1 Recurrent Neural Networks
	2.2 Stochastic Gradient Variational Bayes
	2.3 State Space Models

	3 Stochastic Recurrent Neural Network
	3.1 Problem Statement
	3.2 Stochastic GRU Cell
	3.3 Generative Model
	3.4 Inference Model
	3.5 Model Training
	3.6 Model Prediction

	4 Experiments
	5 Conclusion
	References

