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Chapter 7
Biotechnological Interventions for Creating 
Novel Resistance Against Major Insect 
Pests of Rice

Pavneet Kaur, Kumari Neelam, Ankita Babbar, and Yogesh Vikal

7.1  Introduction

Rice is considered one of the most important cereal crops in the Asia-Pacific region. 
It has been estimated that half the world’s population subsists wholly or partially on 
rice. Rice is mainly grown in tropical and subtropical areas worldwide spanning 
north at 53° N latitude and toward south at 39° S latitude and from sea level to alti-
tudes of 3000 m. The warm and humid environment in which rice is grown is con-
ducive to the proliferation of insects and pests. Globally, there are around 100 insect 
species to which rice plant remains vulnerable from sowing till harvest. The attack 
of insect pests is one of the major yield-limiting factors in rice causing up to 20–30% 
yield losses annually (Salim et al. 2001). Insects are the most abundant life form on 
earth, and their continuous evolution has become a major constraint to the global 
production of food and fiber. Insect pests, as a part of the natural ecosystem, pose 
serious constraints to the world’s agricultural produce and thereby hamper the food 
security levels. Currently, many of the crops are suffering a yearly loss of about 36 
billion USD in India due to insect pests (Dhaliwal et al. 2015; Rathee and Dalal 
2018). In addition to direct impacts on yield, insects also reduce yields by making 
crops more susceptible to disease-causing pathogens (Haq et al. 2004). The insects/
pests hamper the crop by negatively targeting the physiological and metabolic path-
ways at the different growth phases of rice. Several insects attack during the nursery 
stage leading to thrips (Stenchaetothrips uniformis), green leafhopper (Nephotettix 
malayanus and N. virescens), rice caseworm (Nymphula depunctalis), paddy stem 
borer (Scirpophaga incertulas), and swarming caterpillar (Spodoptera mauritia). In 
rice, a different range of biotic stress develops as a result of the infestation of insects 
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in major field conditions, including stem borer (Sesamia inferens, Scirpophaga 
incertulas, S. innotata, Chilo suppressalis, C. polychrysus, C. auricilius), gall midge 
(Orseolia oryzae), swarming caterpillar (Spodoptera mauritia), leaf folder 
(Cnaphalocrocis medinalis), rice horned caterpillar (Melanitis leda ismene Cramer 
and Mycalesis sp.), yellow hairy caterpillar (Psalis pennatula), grasshopper 
 (Hieroglyphus banian), rice hispa (Dicladispa armigera), whorl maggot (Hydrellia 
philippina Ferino), green leafhopper (Nephotettix nicropictus, N. malayanus, and 
N. virescens), brown planthopper (Nilaparvata lugens), white-backed planthopper 
(Sogatella furcifera), mealy bug (Brevennia rehi), rice earhead bug (Leptocorisa 
acuta), and thrips (Stenchaetothrips biformis) (Plate 7.1).

The infestation of various insects follows different modes of action in order to 
infect the host plant. Majority of the insects are classified as chewing insects, pierc-
ing insects, and sucking insects. Chewing damage is caused by insects with mouth-
parts that lead to mechanical damage of tissues, thereby promoting ingestion. The 
latter type includes hoppers, responsible for invading plant cells and sucking nutri-
ents from vascular tissues. However, the extend of disease occurrence is highly 
dependent on the severity and exposure frequency of insects.

Over the years, the widespread use of insecticides/pesticides has led to the evolu-
tion of pesticide-resistant insects and reduction in beneficial insect population, 
along with the harmful impact on food safety, humans, and the environment (Fitt 
1994; Gatehouse et al. 1994; Gunning et al. 1991; Haq et al. 2004). These problems 
have led researchers to develop different insect control approaches using various 
tools and techniques of genetic engineering, molecular biology, and plant biotech-
nology that are more environmentally friendly. The various techniques used in terms 
of biotechnological aspects have been successfully devised in various crops for crop 
improvement, viz., attaining herbicide tolerance in soybean, cotton, corn, and canola 
crops (Gianessi 2005). Herbicide tolerance has been proven to be beneficial for 
farmers by increasing crop productivity and environmental benefits for soil and 
water quality and eliminating the need for manual removal of weeds. The current 
biotechnological approaches significantly aim for improving abiotic and biotic 
stress tolerance in various crops worldwide. Similarly, plant biotechnology targets a 
varied number of regulatory components associated with the growth and develop-
ment of crops aiding in their evolution and domestication, by improving their 
respective quality and yield attributes. Another aspect of biotechnology involves 
genomic hybrid breeding, providing a promising approach for attaining true supe-
rior hybrids with the minimum cost expense (Plate 7.2).

Considerable progress has been made in the past to incorporate resistance against 
insects/pests of rice. All these methodologies exploit the prevailing phenomenon of 
host plant resistance in an environmentally favorable manner. The significant insect- 
pest damage in the case of economically valuable crops, like cotton, tobacco, 
tomato, corn, sorghum, sunflower, pulses, rice, maize, and wheat, can be reduced by 
employing the modern biotechnological tools through critical analysis and engi-
neering of biological processes. In the insect research field, biotechnological tools 
have been applied to study various issues, such as insect identification, insect 
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Plate 7.1 (a) Leaf hopper. (b) Stem borer. (c) Pygmy grasshopper. (d) Chinch bug. (e) Armyworm. 
(f) Chinese grasshopper. (g) Stink bug. (h) Rice delphacid. (i) Rice hispa. (j) Brown planthopper. 
(k) White-backed planthopper. (l) Rice thrip
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control, and insect genetic relationships. It has a significant role in improving the 
potency and cost-effectiveness and in expanding the markets for bioinsecticides 
(Talukdar 2013). Genetic modification of the crops through biotechnology can 
potentially provide a much larger array of novel insecticidal genes along with con-
ventional breeding. Since the commercialization of genetically modified crops in 
1996, farmers have adopted the technology at such a dramatic rate, that in 2011, 
16.7 million farmers in 29 counties planted 160 million hectares of biotech crops. In 
India alone, Bt cotton has increased cotton yields by up to 60% and has reduced 
insecticide sprays by around half. This in turn has led to an income increase of up to 
the US $11.9 billion per annum (James 2011). Thus, the insect control strategies 
that integrate advanced knowledge in biotechnology will contribute to the sustain-
ability of agriculture. Extensive knowledge regarding the genotype of insect- 
resistant rice using biotechnological approaches unveils a wide range of molecular 
mechanisms that can open new avenues in the field of improvement.

Crop protection through effective management of insect pests and pathogens has 
remained the primary target for various advances in biotechnology. These advances 
could take place by progressing in genetic engineering and molecular biology, 
which have resulted in identification, isolation, characterization, and modification 
of resistance genes from diverse biological sources. Employment of DNA-based 
markers provides additional efficiency and precision via marker-assisted selection 
for the introgression of various resistant genes in rice cultivars. Recombinant DNA 

Plate 7.2 Applications of biotechnology in different aspects of crop improvement

P. Kaur et al.



185

(rDNA) technology has significantly expanded conventional crop protection by pro-
viding dramatic improvement in manipulating genes from diverse and exotic sources 
and inserting them into microorganisms and crop plants to confer resistance to 
insect pests and increased effectiveness of biocontrol agents. The availability of 
fully characterized genes, in turn, led to the development of plant biotechnology, 
making the transgenic expression of such genes possible in crop plants. Several 
such genes have already been exploited in different crop plants irrespective of any 
genetic barrier. However, only a limited number of such genes have afforded desired 
field resistance to transgenic plants against limited insect pest species. Currently, 
biotechnology is being applied for the precise characterization of insect pest species 
as well as the identification and characterization of novel genes for meaningful 
insect resistance. RNA interference (RNAi), on the other, hand has emerged as a 
powerful technique for downregulating gene expression in insects, whereas CRISPR 
Cas involves genome editing techniques for understanding the functions of target 
genes in diverse organisms. Additionally, a systematic study of the complete reper-
toire of metabolites/chemicals of any organism has given birth to a new area of 
research called “metabolomics.” Integration of genomics and proteomics with 
metabolomics will enrich our understanding of the gene-function relationship that 
can be utilized in achieving crop improvement with a view to insect resistance. In 
this chapter, we will discuss various insect pests of rice, along with the biotechno-
logical interventions, viz., genetic engineering, genomics, and the functional 
genomics approaches for managing the yield losses of rice.

7.2  Insects of Rice

The suitable environment favoring rice production promotes the proliferation of 
insects hampering its growth. These insects are enemies of rice production respon-
sible for the reduction in total rice produce. The crop is attacked by more than 100 
insect species, infesting varied plant parts by its specialized infesting organs and 
toxins (Table 7.1). Diverse insects attack the rice crop at a different stage of the life 
cycle. Majority of insects infesting rice plants attack during the vegetative stage 
belonging to the order Hemiptera, Homoptera, Orthoptera, Thysanoptera, 
Coleoptera, Lepidoptera, and Diptera. Among the insects attacking during the 
reproductive stage, green-horned caterpillar belongs to the minor pests of rice as its 
severity is too low. Among all insects, planthoppers, leafhopper, and leaf folders 
account for the cause of major alarming threats to rice production. Timely identifi-
cation of insects is a key for accurate disease management strategy. The morpho-
logical identification of all these insects is aided by DNA barcoding differentiating 
insects in distinct species.

7 Biotechnological Interventions for Creating Novel Resistance Against Major Insect…
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7.3  Biotechnological Approaches

With the advent of genetic engineering and several tools of biotechnology, viz., 
genetic engineering tissue culture (anther culture, embryo culture), genetic transfor-
mation for insect resistance, inhibitors of several digestive enzymes, marker-assisted 
selection (MAS) for plant resistance to insect, pyramiding of resistant genes into a 
single cultivar, and development of insect-resistant plants using RNAi and CRISPR 
Cas have been accelerated. The acceptability of biotechnology products may be 
greater along with the increase in better understanding of biotechnological processes.

7.3.1  Genetic Engineering

The expanding knowledge regarding the genome and harboring genes has prompted 
advancement in the development of transgenics for the incorporation of resistance-
conferring genes in commercially important rice varieties. Tissue culture offers the 
potential to contribute to the improvement of crop plants through the manipulation 
of plants at the cellular level. With the commencement of genetic transformation, it 
has become possible to replicate and introduce genes into the crop plants to produce 
resistance to insect pests. Insect-resistant genetically modified crops are offering 
great benefits for farmers. Gene resistance against various insects has been intro-
duced into crop plants, such as maize, cotton, potato, tobacco, potatoes, rice, broc-
coli, lettuce, walnuts, apples, alfalfa, and soybean (Griffiths 1998). As the products 
of most transgenes are ingested by the insect pest and therefore act through the gut, 
most of the focus has been on transgene-encoded proteins that target the insect mid-
gut and/or the peritrophic membrane to disrupt digestion or nutrition (Czapla and 
Lang 1990; Hopkins and Harper 2001; Murdock et al. 1990; Eisemann et al. 1994; 
Harper et al. 1998). Generally, the detrimental effects on larval and insect growth 
result from limited assimilation of nutrients (Williams 1999; Lopes et  al. 2004; 
Zavala and Baldwin 2004; Silva et  al. 2006). The use of transgenic plants that 
express insecticidal agents thus reduces the population of insect pests, usage of 
chemical insecticide, and the ecological damage they may cause (Schuler et  al. 
1998). To date, the most successful transgenes for insect control have been the 
genes encoding insecticidal toxins from the soil bacterium Bacillus thuringiensis 
(Table 7.2).

Bt cotton has been genetically adapted by the accumulation of one or more genes 
from general soil bacteria, Bacillus thuringiensis. These genes produce insecticidal 
proteins, and therefore, genetically transformed plants generate one or more toxins. 
Bollworms are responsible for 60–70% of damage to cotton plants. Boll guard I and 
Boll guard II exhibited a reduction in the number of damaged bolls of 61 and 95%, 
respectively, compared with the conventional variety (Estruch et  al. 1996). VIP 
3A + Cry 1Ab expressing line gives the maximum mortality of susceptible and resis-
tant strain of Heliothis virescens as compared to individual toxin expressing line and 
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Table 7.2 Bt transgenic plants expressing genes for insect resistance

Crop Gene(s) for insect resistance Target insect References

Tobacco Magi6 peptide Spodoptera frugiperda Hernandez-Campuzano 
et al. (2009)

cry1Ac and cry3A Helicoverpa armigera 
Hubner

Yuan et al. (2017a, b)

cry1Ac and cry2A Phthorimaea operculella 
Zeller

Bakhsh et al. (2018)

SmchiC Botrytis cinerea and S. 
frugiperda

Navarro-González 
et al. (2019)

Arginine kinase Helicoverpa armigera 
Hubner

Ai et al. (2019)

Vigna mungo protease 
inhibitor (VmPI)

Spodoptera litura Mudiyappanayar and 
Koundal (2020)

Tomato Proteinase inhibitor 2 (Pin2) Tuta absoluta (Meyrick) Hamza et al. (2018)
cry2AX1 H. armigera and S. litura Sushmitha et al. (2018)

Potato cry1Ab P. operculella Zeller Salehian et al. (2021a)
cry3A Colorado potato beetle Salehian et al. (2021b)

Sugarcane Vip3A Chilo infuscatellus Riaz et al. (2020)
Maize Cry1Ab/Cry2Aj Ostrinia furnacalis, H. 

armigera, and Mythimna 
separata

Liu et al. (2018)

Cry1Ab, Vip3Aa20 S. frugiperda Eghrari et al. (2021)
Rice cry1Ac and CpTI Chilo suppressalis, 

Cnaphalocrocis medinalis, 
and Scirpophaga incertulas

Han et al. (2008)

Maize proteinase inhibitor 
and potato carboxypeptidase 
inhibitor fusion gene

C. suppressalis Quilis et al. (2014)

Rice miR-14 C. suppressalis He et al. (2019)
Rice Asal Sogatella furcifera 

(WBPH), Nephotettix sp. 
(GLH), and Nilaparvata 
lugens (BPH)

Yarasi et al. (2008)

Asal and Galanthus nivalis 
(gna) lectin genes

S. furcifera, Nephotettix 
sp., and Nilaparvata lugens 
(BPH)

Bharathi et al. (2011)

Dioscorea batatas tuber 
lectin 1 (DB1)

N. lugens Yoshimura et al. 
(2012)

Asal N. lugens Chandrasekhar et al. 
(2014)

Cry1Ac::Asal S. incertulas, C. medinalis, 
and N. lugens

Boddupally et al. 
(2018)

Cry1Ab and Vip3A fusion 
protein

C. suppressalis and C. 
medinalis

Xu et al. (2018a, b)
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non-Bt line. Bt is very specific to particular insect pests and does not have any direct 
effect on any of the nontargeted beneficial insects. Bt rice provides resistance against 
various stem borers such as the following: striped stem borer (Chilo suppressalis), 
yellow stem borer (Scirpophaga incertulas), and pink stem borer (Sesamia infer-
ens). More than 70 transgenic Bt rice lines of three selected cultivars, IR64, Pusa 
Basmati-1, and Karnal local, have been produced using the artificial shortened Bt 
gene, cry1Ac. The Bt brinjal provides resistance against brinjal shoot and fruit borer. 
The first transgenic brinjal carried a synthetic Bt-cry1Ab gene. At all locations, the 
Bt variety (MHB Bt) had significantly less brinjal fruit and shoot borer larvae and 
percent fruit damage. The transgenic Bt tomato expressing Cry1Ab protein, CpTi 
gene, etc. is effective against Helicoverpa armigera. Leaf-specific overexpression 
of the potato PI–II and carboxypeptidase inhibitors (PCI) results in resistance to 
Heliothis obsoleta and Liriomyza trifolii larvae in homozygote tomato lines express-
ing high levels of the transgenes. The transgenic sugarcane lines were generated 
expressing Vip3A toxin driven by polyubiquitin promoter for resistance against sug-
arcane stem borer. A direct correlation was observed between the Vip3A protein and 
Vip3A transgene expression in the transgenic sugarcane lines. In in vitro insect bio-
assay on V1, Vip3A transgenic sugarcane lines exhibited high resistance to C. infus-
catellus with up to 100% mortality compared to the control sugarcane line. Thus, a 
single copy insertion of the Vip3A gene in transgenic sugarcane lines renders them 
resistant to borer, and these lines can be potentially used for the generation of insect-
resistant transgenic sugarcane and could also be employed in gene pyramiding with 
Bt toxin to prolong resistance (Riaz et al. 2020).

Han et al. (2008) reported genetically modified rice lines containing cry1Ac and 
CptI (cowpea trypsin inhibitor) to provide resistance against Chilo suppressalis, 
Cnaphalocrocis medinalis, and Scirpophaga incertulas pests for rice. The transgen-
ics so developed reveals fluctuation in disease reaction toward the survival of 
Sesamia inferens (Pink Stem borer) larvae. Thus, further investigations were devised 
to delay its population density. Quilis et al. (2014) explained the role of proteinase 
inhibitors including maize proteinase inhibitor (MPI) and potato carboxypeptidase 
inhibitor (PCI) in insect resistance. Their fusion, followed by an introduction to rice 
plants, revealed a reduction in larval weight of C. suppressalis (striped stem borer), 
which is a major pest of rice. Also, the plants expressing mpi-pci fusion gene dis-
play enhanced resistance against Magnaporthe oryzae, the causal organism for rice 
blast. Thus, the fusion gene was reported to provide resistance for insects and patho-
gens as well in rice. He et al. (2019) demonstrated the transgenic lines with overex-
pressing miR-14, an insect-specific mRNA leading to the death of striped stem borer 
individuals. The miR-14 has been reported to regulate metamorphosis in a variety of 
insects (Jayachandran et al. 2013; Liu et al. 2013; Varghese and Cohen 2007). Its 
overexpression resulted in interference with normal metamorphosis development of 
the insect by eliminating the functions of ecdysone after molting. Developing trans-
genic insect-resistant rice lines using miRNA significantly broadens the scope of 
target genes for pest control. Yarasi et al. (2008) reported the introduction of Allium 
sativum leaf lectin gene (asal) into indica rice cultivars susceptible to brown plan-
thopper (BPH), green leafhopper (GLH), and white-backed planthopper (WBPH). 
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The calli were cocultivated with Agrobacterium comprising of pSB111 vector har-
boring asal, along with the herbicide resistance gene bar, under the control of 
CaMV35S promoter. The bioassay involving the expression of foreign gene reveals 
entomotoxic effects on BPH, GLH, and WBPH insects, with their decreasing sur-
vival, development, and fecundity of the insects. Also, the asal transgenic rice lines 
are a promising source of resistant cultivars. Among the sap-sucking pests, Bharathi 
et al. (2011) demonstrated the positive correlation of transgenic rice plants bearing 
pyramided asal and gna (Galanthus nivalis) lectin genes with the enhanced resis-
tance conferred by the plant. Against BPH, transgenic lines have been developed, 
harboring Dioscorea batatas tuber lectin 1, and asal gene shows a high level of 
resistance against Nilaparvata lugens independently reported by Yoshimura et al. 
(2012) and Chandrasekhar et al. (2014). Boddupally et al. (2018) reported trans-
genic rice plants with Cry1Ac: ASAL fusion protein to provide resistance against 
the yellow stem borer (YSB), leaf folder (LF), and brown planthopper (BPH). The 
bioassays revealed 100%, 80–100%, and 70–80% mortality rate of pests of YSB, 
LF, and BPH, respectively. The study implied the enhanced efficacy of Cry1Ac::Asal 
fusion protein in minimizing pest population and providing insect resistance. 
Similarly, Xu et  al. (2018a, b) reported the expression of the fusion protein of 
Cry1Ab and Vip3A protein in transgenic rice lines displayed efficient resistance 
against two major pests, viz., C. suppressalis and C. medinalis. Henceforth, these 
studies imply the role of transgenic rice plants harbors the significant potential for 
insect resistance management following various tissue culture and genetic engineer-
ing protocols.

7.3.2  Marker-Assisted Selection (MAS)

Locating and identifying genes of interest responsible for resistance is crucial for 
breeding insect-resistant varieties. The molecular marker-assisted selection of crops 
is one of the most fundamental applications of biotech tools. This progress has been 
facilitated by the construction of high-density genetic maps of certain plants and 
insects. Researchers have utilized molecular markers in crops linked to genes 
expressing resistance to several major insect pests. Molecular markers have been 
effectively applied for rice improvement. The main advantages of molecular mark-
ers include consistency, biosafety, time-saving, and efficient and accurate selection 
of complex traits (Jena and Mackill 2008). Application of molecular markers 
includes selecting the plants harboring specific genomic regions responsible for the 
expression of traits of interest (Das et al. 2017). The identified molecular markers 
are either linked to a single major gene for resistance or a group of loci controlling 
the expression of quantitative resistance known as quantitative trait loci (QTL). The 
first known case of QTL mapping for plant resistance to insects was in tomato, 
Lycopersicon esculentum Mill. The wild species of tomato, L. hirsutum f. glabra-
tum, conferring resistance to arthropod pests had a principal toxic factor, viz., 2-tri-
decanone (2-TD). A mapping population of 74 F2 individuals was evaluated for the 
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amount of 2-TD, and the marker loci on three different linkage groups were found 
associated with expression levels of 2-TD. In case of yellow stem borer (YSB) resis-
tance, the detection of major quantitative trait loci could be of considerable value 
for insect resistance breeding programs, since their incorporation in susceptible 
genotypes permits a direct increase of the resistance level in the improved geno-
types. Identification of markers associated with YSB resistance facilitates selection 
in applied breeding given the inherent difficulties in field-based screening for this 
pest. Linkage analysis with the F2 phenotypic scores and RAPD data revealed that 
the RAPD markers K6695, C1320, and AH5660 were at a distance of 12.8  cM, 
15.2  cM, and 14.9  cM, respectively, from the gene (s) of interest (Kammar and 
Nitin 2019).

At present, considerable attention has been focused on the resourceful wild spe-
cies of rice for breeding purposes. The genus Oryza harbors 22 wild and 2 cultivated 
species. Among these, wild accessions represent an exclusive collection of rich 
germplasm bearing huge potential in crop improvement. Khush states that culti-
vated and wild species belong to different categories of genome, viz., AA, BB, CC, 
BBCC, CCDD, EE, FF, GG, HHJJ, and HHKK. Wide hybridization has been suc-
cessfully applied since many years for providing resistance against various biotic 
and abiotic stresses in rice. It has been used to delimit the genotypes possessing 
exclusive properties for providing resistance, and thus selection of such genomes 
allows precise introgression for disease resistance. We will discuss some of the 
examples in the next paragraph.

The wild relative of rice, O. australiensis (accession 100,882), belonging to the 
EE genome displayed strong resistance and thus serves as a potential source of BPH 
resistance development. The BPH10 and BPH18 identified from O. australiensis 
harbor resistance to four biotypes of BPH, both belonging to the long arm of chro-
mosome 12. Also, another QTL named qBPH4.2 was found on the short arm of 
chromosome 4 and narrowed down to a 300 kb genomic region of the Nipponbare 
genome bracketed by RM261 and S1 markers (Hu et al. 2015a). O. officinalis has 
been found a significantly important source for BPH resistance comprising of 
bph11, BPH12, BPH13, BPH14, BPH15, qBPH3, and qBPH4. This wild species 
has been reported for the successful identification and introgression of various resis-
tance gene(s)/QTLs WBPH7, WBPH8, qSBPH3d, qSBPH7a, and qSBPH12b 
against other planthoppers, viz., WBPH and SBPH. O. rufipogon stands as a pro-
genitor of present-day cultivated rice possessing enriched genetic diversity and, 
thus, a significant reservoir for crop improvement programs in rice. This wild rela-
tive harbors diverse QTLs contributing tolerance toward various biotic and abiotic 
stresses (Ma et al. 2015; Vaughan et al. 2003; Xiao et al. 1998). BPH resistance 
from O. minuta belonging to BBCC genome has been successfully transferred to 
cultivated rice, henceforth responsible for providing a wide spectrum BPH resis-
tance. Three dominant genes BPH20, BPH21, and BPH23 have been reported for 
successful introgression from O. minuta. Also, O. glaberrima belonging to the cul-
tivated rice category has been reported as a resistance source for BPH, GRH, and 
GLH. Apart from the usefulness of O. nivara genome against various abiotic 
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stresses, it has been successfully used to derive BPH resistance in the form of 
BPH34 gene.

Collard and Mackill (2007) have reviewed the application of molecular markers 
in various rice improvement programs with superior advantages of molecular mark-
ers in terms of time, consistency, biosafety efficiency and accuracy. A diverse set of 
DNA markers have been effectively employed to identify resistance gene(s)/QTLs 
following MAS for integrating different resistance gene(s)/QTLs into the rice culti-
vars lacking the desired disease tolerance traits. Various genes and QTLs were iden-
tified from a wide rice germplasm worldwide against BPH, WBPH, SBPH, gall 
midge, green rice leafhopper, green leafhopper, and rice leaf folder for developing 
resistant varieties (Table 7.3).

Table 7.3 Details of the donor resources along with linked markers used in MAS

Source
Gene (s)/QTLs 
name Chr Linked markers References

Cheongcheongbyeo BPH1 12L pBPH4-14 Cha et al. (2008)
ASD7 bph2 12L RM1246-463 Sun et al. (2006)
Rathu Heenati BPH3, BPH17 6S, 4S RM1929-8072,

RM8213-5953
Jairin et al. (2007b)
Sun et al. (2005)

Babawee bph4 6S RM589-586 Jairin et al. (2010)
ARC10550 bph5 – – Khush et al. (1985)
Swarnalata BPH6 4L RM16994-119 Kabir and Khush 

(1988), Qiu et al. 
(2010)

T12 bph7 12L RM3448-313 Kabir and Khush 
(1988), Qiu et al. 
(2014)

Chin Saba bph8 – – Nemoto et al. (1989)
Pokkali BPH9 12L InD2-RsaI Nemoto et al. (1989), 

Zhao et al. (2016)
O. australiensis BPH10, BPH18, 

qBPH4.2
12L, 
12L, 
4S

RG457-CDO459,
BIM3-BN162,
RM261-XC4-27

Ishii et al. (1994)
Ji et al. (2016)
Hu et al. (2015a)

O. officinalis bph11, BPH12, 
BPH13, BPH14, 
BPH15

3L, 4S, 
3S, 3L, 
4S

G1318,
RM16459-1305,
RZ892-RG191, S
M1-G1318,
RG1-RG2

Hirabayashi et al. 
(1998)
Qiu et al. (2012)
Renganayaki et al. 
(2002)
Du et al. (2009)
Yang et al. (2004)

qBPH3, qBPH4 3,
4

t6-f3,
P17-xc4-27

Hu et al. (2015b)

WBPH7, WBPH8 3,
4

R1925-G1318,
R288-S11182

Tan et al. (2004)

qSBPH3d, 
qSBPH7a, 
qSBPH12b

3,
7,
12

RM218-745,
RM7012-6338,
RM463-6256

Zhang et al. (2014)

(continued)
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Source
Gene (s)/QTLs 
name Chr Linked markers References

M1635–7 BPH16 12 RM6732-R10289 Hirabayashi et al. 
(2004)

O. rufipogon bph18(t), bph19(t), 
bph22(t), bph23(t), 
bph24(t), BPH27, 
bph29, bph30, 
BPH36

4L, 12,
4,
8,
–,
4L, 6S, 
10S, 
4S

RM273-6506,
RM17,
RM8212-261,
RM2655-3572,
–,
RM16846-16853,
BYL8-BID2,
RM222-244,
RM16465-16502

Li et al. (2006)
Li et al. (2006)
Hou et al. (2011)
Hou et al. (2011)
Deen et al. (2010)
Huang et al. (2013)
Wang et al. (2015)
Yang et al. (2012)
Li et al. (2019)

qWPH2, qWBPH5, 
qWBPH9

2,
5,
9

RM1285-555,
RM3870-RZ70,
RG451-RM245

Chen et al. (2010a, b)

GRH5 8 RM3754-3761 Fujita et al. (2006)
AS20–1 bph19(t) 3S RM6308, 

RM3134
Chen et al. (2006)

O. minuta BPH20(t), 
BPH21(t), 
BPH23(t)

4S, 
12L,

B42:B4, M510, 
RM5953, 
S12094A-B122

Rahman et al. (2009)
Rahman et al. (2009)
Ram et al. (2010)

O. glaberrima BPH22(t) – – Ram et al. (2010)
qGRH9 9 RM215-RM2482 Fujita et al. (2010)

ADR52 bph25, BPH26 6S, 
12L

S00310-RM8101, 
DS72B4-DS173B

Myint et al. (2012)
Tamura et al. (2014)

WBPH3 – – Hernandez and Khush 
(1981)

Balamawee BPH27(t) 4L Q52, Q20 He et al. (2013)
DV85 BPH28(t)/QBPH11 1L InDel55, InDel66 Wu et al. (2014)
AC-1613 BPH30 4S SSR28, SSR69 Wang et al. (2018)
CR2711–76 BPH31 3L PA26, RM2334 Prahalada et al. (2017)
PTB33 BPH32 6S RM19291, 

RM8072
Ren et al. (2016)

KOLAYAL BPH33 4S H99, H101 Hu et al. (2018)
O. nivara BPH34 4L RM16994, 

RM17007
Kumar et al. (2018)

IR64 BPH37 1 RM302, YM35 Yang et al. (2019)
Khazar BPH38(t) 1L SNP-693369, 

id10112165
Balachiranjeevi et al. 
(2019)

Salkathi qBPH4.3 4 RM551, RM335 Mohanty et al. (2017)
qBPH4.4 4 RM335, RM5633

IR71033–121-15 qBPH6(t) 6 RM469, RM568 Jairin et al. (2007a)
Nagina 22 WBPH1 7 – Sidhu et al. (1979)
ARC10239 WBPH2 6 RZ667 Angeles et al. (1981), 

Liu et al. (2002)

Table 7.3 (continued)
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Source
Gene (s)/QTLs 
name Chr Linked markers References

Podiwi A8 wbph4 – – Hernandez and Khush 
(1981)

N’Diang Marie WBPH5 – – Wu and Khush (1985)
Guiyigu WBPH6 11 RM167 Li et al. (2004)
Sinna Sivappu wbph9(t), 

wbph10(t), 
wbph11(t), 
WBPH12(t)

6,
12,
4,
4

RM589-539,
SSR12-
17.2-RM28487, 
RM3643-1223, 
RM16592-16649

Ramesh et al. (2014)

Asominori Ovc, qOVA-1-3, 
qOVA-4, qOVA-5-1, 
qOVA-5-2

6,
1,
4,
5,
5

R2373-C946,
XNpb346-C112,
R1854,
XNpb251-R3313,
C1268

Yamasaki et al. (2003)

Chuanjiang 06 qWL6 6 M3, M5 Yang et al. (2014)
qRLF-3, qRLF-4, 
qRLF-8

3,
4,
8

RM1022-7,
RM3276-255,
RM72-331

Rao et al. (2010)

IR54751 qWBPH3.2, 
qWBPH11

3,
11

InDel3-23-
InDel3-26, 
DJ53973-SNP56

Fan et al. (2018)

Mudgo qSBPH2b, 
qSBPH3d, 
qSBPH12a

2,
3,
12

RM29-5791,
RM5442-3199,
I12-17, RM3331

Duan et al. (2009)

Kasalath qSBPH2, qSBPH3, 
qSBPH8, qSBPH11

2,
3,
8,
11

R712-R1843,
C1135-C80,
R1943-C390,
G257-S2260

Duan et al. (2010)

N22 qSBPH2, qSBPH3, 
qSBPH5, qSBPH7, 
qSBPH11

2,
3,
5,
7,
11

RM263-1385,
RM22-545,
RM153-413,
RM234-429,
RM209-RM21

Wang et al. (2013)

9194 qSBPH1, qSBPH5, 
qSBPH8, qSBPH9

1,
5,
8,
9

RM3738-8236, 
RM18452-163,
RM210-3845,
RM257-160

Sun et al. (2017)

WR24 qSBPH5, qSBPH7, 
qSBPH10

5,
7,
10

Indel 5–11, 
RM3664, 
RM6403-234,
RM25664-228

Xu et al. (2018b)

W1263 GM1 9S RM444-219 Biradar et al. (2004)
Phalguna GM2 4 RM241-317 Himabindu et al. 

(2007)
RP2068-18-3-5 gm3 4 RM17480-

gm3SSR4
Sama et al. (2014)

Abhaya GM4 8L RM22551-22562 Divya et al. (2015)

Table 7.3 (continued)
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Source
Gene (s)/QTLs 
name Chr Linked markers References

ARC5984 GM5 12 RM101-309 Dubey and Chandel 
(2010)

Duokang #1 GM6 4L RG214-RG476 Katiyar et al. (2001)
RP2333–156-8 GM7 4 F8LB-SA598 Sardesai et al. (2002)
Aganni GM8 8S RM22685-22709 Divya et al. (2018)
Line9 GM9 – Shrivastava et al. 

(2003)
BG 380–2 GM10 – – Kumar et al. (2005)
CR57-MR1523 GM11 12 RM28574-28706 Himabindu et al. 

(2010)
IR24 GRH1 5 R569-C309 Kadowaki et al. 

(2003)
DV85 GRH2 11 R2458-C50 Kadowaki et al. 

(2003)
Rantaj emas 2 GRH3 6 C288B-C133A Saka et al. (2006)
DV85 GRH4 3 C1186-R2982 Kadowaki et al. 

(2003)
SML17, 
IRGC105715

GRH6 4 RM8213-C708 Fujita et al. (2004), 
Tamura et al. (2004)

Maddani Karuppan GLH 7 – – Rezaul Karim and 
Pathak (1982)

DV85 glh8 – – Ghani and Khush 
(1998)

IR28 GLH 9 – – Angeles and Khush 
(1999)

IR36 glh10 – – Angeles and Khush 
(2000a)IR20965-11-3-3 GLH 11 – –

ARC10313 GLH 12 – – Angeles and Khush 
(2000b)Asmaita GLH 13 – –

ARC11554 GLH 14 4 Y3635-RZ262 Sebastian et al. (1996)
Taichung Native 1 qRLF-1 1 RM3412-6716 Rao et al. (2010)

qRLF-2 2 RM207-48

Table 7.3 (continued)

7.3.3  Gene Pyramiding

Improved insect resistance has also been achieved through the employment of mul-
tiple resistance genes in a single plant, also known as gene stacking or gene pyra-
miding. Multiple insect-resistant genes stacking in the transgenic Bt crops have 
been employed to confer resistance to the insects and herbicides. The first trans-
genic Bt crop (cotton) with stacked genes, Cry1Ac and Cry2Ab2, registered for use 
in the USA in 2002, was Bollgard II. These stacked genes in the transgenic cotton 
have been very effective against the pink bollworms (Pectinophora gossypiella) 
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(Stefey et al. 2009). These genes (Cry1Ac and Cry1C), also stacked in transgenic Bt 
broccoli, had the potential to delay resistance to the diamondback moth (Plutella 
xylostella) more effectively than the transgenic plants with single Bt gene (Zhao 
et al. 2003). Wang et al. (2017) developed LuoYang69 restorer line of 93–11, har-
boring two pyramided BPH resistance genes, BPH6 and BPH9, using marker-
assisted selection. The resultant line displays an enhanced resistance reaction toward 
BPH. He et al. (2020) reported pyramiding of BPH3, BPH14, BPH18, and BPH32 
resistance genes in Guang 8B rice variety. The study suggested additional increase 
in resistance level by the introduction of four genes. Venkanna et al. (2018) provided 
evidence for stacking three gall midge resistance genes—Gm1, gm3, and Gm8—in 
an improved line WGL-1068, developed as the F5 generation of the cross between 
Kavya (susceptible cultivar) and gall midge-resistant introgression line Samba 
Mahsuri. Apart from gall midge resistance, the improved line possesses high-yield-
ing and fine-grain characters better than elite variety Kavya. Wang et  al. (2017) 
developed LuoYang69 restorer line of 93-11 harboring two pyramided BPH resis-
tance genes BPH6 and BPH9 using marker-assisted selection. The resultant line 
displays an enhanced resistance reaction towards BPH. He et al. (2020) reported 
pyramiding of BPH3, BPH14, BPH18 and BPH32 resistance genes in Guang 8B 
rice variety. The study suggested an additional increase in resistance level by the 
introduction of 4 genes. Venkana et al. (2018) provided evidence for stacking 3 gall 
midge resistance genes; Gm1, gm3 and Gm8 in an improved line WGL-1068 devel-
oped as F5 generation of the cross between Kavya (susceptible cultivar) with gall 
midge resistant introgression line Samba Mahsuri. Apart from gall midge resis-
tance, the improved line possesses high yielding and fine-grain characters better 
than elite variety Kavya. Jena et al. (2017) developed 25 NILs, among which 16 
lines belonged to multiple resistance gene combinations. Apart from these, multiple 
disease resistance programs have revolutionized breeding programs recently. Reinke 
et al. (2018) developed various moderately resistant lines, harboring brown plan-
thopper, rice stripe virus, rice blast, and bacterial blight-resistant genes in different 
combinations. Following the marker-assisted selection, the MR lines selected were 
encompassing BPH18, qSTV11SG, Pib and Pik, and Xa40 or Xa3 to provide stable 
resistance with effect on major agronomic traits. The pyramiding of genes harbors 
profound antibiosis reactions during BPH infestation as compared to single resis-
tance gene bearing lines. This way, critically developed pyramided lines can act as 
a rich genetic source for breeding purposes in light of insect resistance (Plate 7.3).

7.3.4  Functional Genomics

Functional genomics emerges as an advanced field of biotechnology that has pre-
sented diverse platforms in agricultural research programs. Rice is considered as a 
model plant for functional genomics studies owing to its smaller genome, sequenced 
genome, vast transformation methodologies, and abundant germplasm availability 
(Jiang et al. 2012). Among the rice germplasm, the availability of wild relatives, rice 
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Plate 7.3 Gene pyramiding in elite rice cultivar with multiple insect resistance genes

mutant libraries and rice genome-based databases, opens new avenues for func-
tional genomics studies relating to other crop plants as well. This field deals with the 
functional characterization of various genes in the genome, which is obtained 
through gain or loss of functions in plants. Wei and Chen (2018) presented a report 
focusing on the comparison of the basic helix-loop-helix transcription factors 
(bHLH) in Arabidopsis, rice, maize, and wheat. The comparative functional genom-
ics studies were carried using available genome assembly databases. Among the 
family, different subfamilies confirmed their role in iron uptake, anther develop-
ment, disease tolerance via different defense pathways, and secondary metabolite 
production. The resultant information regarding constitutive and differentially 
expressing bHLH can serve as a hub of its functional characterization in Gramineae 
species, thus contributing toward molecular breeding approaches. The fungus 
Magnaporthe oryzae is considered to secrete proteins that are responsible for dis-
ease reactions in rice plants. However, the functions of effector proteins are not 
explored in a way to enhance disease resistance. Guo et  al. (2019) deduced the 
functional aspect of various proteins of the fungus, following transient expression 
assays of 98 in planta-expressed M. oryzae. The researcher devised eight novel pro-
teins, MoCDIP6 to MoCDIP13, responsible for rice blast owing to death. Thus, 
similar studies can help to accelerate the understanding of mechanisms underlying 
the pathogenic infection, which in turn can be utilized as a key source for 
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developing resistant cultivars. Among the genes pertaining to host, Li et al. (2020) 
utilized the transgenic plants with insect-inducible promoters as an important strat-
egy for resistance against the striped rice stem borer (Chilo suppressalis). This first 
reporter of SSB-inducible promoter states the upregulation of hydroperoxide lyase 
gene (OsHPL2) post insect feeding. Thus, cloning strategy was directed toward the 
promoter of this gene, devising the promoter and positive regulatory regions exhib-
iting SSB larval mortality. Thus, functional information related to the host as well 
as pathogen genes and promoters can serve as a potential source for accelerating the 
insect-resistant rice cultivars.

7.3.5  RNA Interference (RNAi)

Since the discovery that dsRNA can silence genes, RNAi has been developed as an 
effective tool for regulating gene expression (Vogel et  al. 2019). This approach 
bears significant potential in the field of crop improvement due to its preferential 
target specificity and low negative environmental effect (Chung et al. 2021). RNAi 
or gene silencing has been used to inhibit virus replication in transgenic plants and 
has the potential to be developed commercially for insect management also. RNAi 
constructs directed toward targeting insect-derived genes are considered as a prom-
ising approach for agricultural pest control (Chung et al. 2021). Insect genes can be 
downregulated by injection of dsRNA or by oral administration of high concentra-
tions of exogenously supplied dsRNA as part of an artificial diet, but a much more 
efficient method of delivering dsRNA is needed before RNAi technology can be 
used to control pests in the field (Mao et al. 2007; Bettencourt et al. 2002). Before 
now, a very sensitive RNAi response has been observed in the Western corn root-
worm (WCR) D. virgifera virgifera, to oral administration of dsRNA and the first 
RNAi-based insecticides for the control of this insect have already been approved 
by the US Environmental Protection Agency (EPA). This plant-incorporated protec-
tant (PIP) employs pyramid strategy where several different Bt proteins (crystalline 
toxins) and dsRNA targeting the WCR Snf7 gene, will be expressed in the plant 
(Head et al. 2017). Contrarily, downregulation of Snf7, a gene that plays an essential 
role in protein trafficking, will also result in mortality (Bolognesi et al. 2012). So 
this integrated strategy is intended to target the insect while also reducing the 
chances for insects to develop resistance against the PIP (Head et  al. 2017). As 
RNAi is a growing tool within the field of biotechnology, it will definitely show up 
as a strong insecticidal strategy for crop improvement (Kunte et al. 2019).

Insect genes that serve as a target for successful RNAi constructs include the fol-
lowing: gene encoding enzymes of basal insect metabolism, effectors responsible 
for plant defense suppression, detoxifying and digestive enzymes, genes involved in 
detoxification of defensive secondary metabolites of the hosts, etc. (Chung et al. 
2021). He et al. (2019) reported the expression of artificial miRNAs in transgenic 
rice, providing profound resistance to Chilo suppressalis (rice stem borer). The 
course of action involved in the process includes high mortality and developmental 
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defects, owing to targeting the ecdysone receptor of insects. In addition, Kola et al. 
(2019) determined that the knockdown of acetylcholinesterase gene of Scirpophaga 
incertulas (rice yellow stem borer) using dsRNA construct in transgenic rice leads 
to reduced larval weight. Thus, the genome of insects and pests carrying specific 
genes facilitating the disease occurrence can be targeted by different constructs fol-
lowing specific delivery methodologies to cure the potential spread of disease. 
Recently, nanoparticles, such as chitosan, liposomes, and cationic dendrimers, offer 
advantages in delivering dsRNA/small interfering (si)RNA (siRNA) to improve 
RNAi efficiency, thus promoting the development and practice of RNAi-based 
insect management strategies (Yan et al. 2021) (Table 7.4).

Table 7.4 RNAi for insect resistance

Target 
pest Target gene Function Effect References

BPH Entomomyces 
delphacidicola 
arginine-succinate 
lyase (EdArg4)

Arginine biosynthesis Delayed nymphal 
development, 
thickened wings, 
enlarged 
antennae, legs, 
and anal tubes in 
adults

Yuan et al. 
(2017a, b)

Trehalase (TRE) Wing bud formation and 
molting

Deformed wings Zhang et al. 
(2017)

20-Hydroxyecdysone Molting and 
metamorphosis

Decrease in 
transcript level, 
reduction in 
fecundity

Yu et al. 
(2014)

Vacuolar ATP synthase 
subunit E (V-ATPase-E, 
21E01)

Membrane transporter 
binding protein

Decreased 
expression of 
target gene

Li et al. 
(2011)

Hexose transporter, 
carboxypeptidase, 
trypsin like serine 
protease

Transport of glucose, 
hydrolysis of protein

Depletion in 
transcript level 
and no effect on 
larval survival

Zha et al. 
(2011)

Trehalose phosphate 
synthase (TPS)

Production of 
trehalose-6-phosphate

Decreased 
survival rate

Chen et al. 
(2010a, b)

Yellow 
stem 
borer

CytochromeP450 
derivative (CYP6) and 
aminopeptidase N 
(APN)

Metabolism of 
insecticides and protein 
digestion

Detrimental effect 
on larval growth 
and development

Kola et al. 
(2016)

WBPH Halloween gene 
disembodied (dib)

Encodes cytochrome 
P450 monooxygenase 
CYP302AI 
(22-hydroxylase) which 
plays a role in 
ecdysteroidogenesis

Reduction in dib 
and EcR 
(ecdysone 
receptor) 
transcript, 
development and 
survival of 
nymphs was 
impaired

Wan et al. 
(2014)

P. Kaur et al.



201

7.3.6  CRISPR Cas

Clustered regularly interspaced short palindromic repeats (CRISPR) and the 
CRISPR-associated gene Cas9 represent a valuable system for specific editing of 
genes in diverse species. So far, genome editing has been demonstrated in model 
species, like Arabidopsis, as well as important crops, like rice, wheat, maize, etc. 
Genome editing system has unfolded several possibilities that enable precise and 
efficient targeted modifications in diverse agronomic traits, including durable resis-
tance against insect pests and pathogens. CRISPR/Cas9 mediated editing has been 
used to generate insect- and pathogen-resistant crops by knocking out of host sus-
ceptibility genes, exploiting the effector-target interaction, engineering synthetic 
immune receptor eliciting broad-spectrum resistance, etc. Modification of insect 
genomes through CRISPR/Cas9 has been used either to create gene drive or to 
counteract resistance to various insecticides. Lu et al. (2018) reported the knock-
down of CYP71A1 (encoding tryptamine 5-hydroxylase) following CRISPR/Cas9 
methodology, leading to an increased level of salicylic acid and decreased serotonin 
levels, thereby providing resistance against BPH in rice (Du et al. 2020). Further, 
expressing insecticidal bacterial genes, anti-nutritional proteins like protease inhibi-
tors, lectins, host-delivered RNAi and the modification of defense-signaling path-
ways can be utilized for insect resistance (Bisht et  al. 2019). The experiment 
conducted by Li et  al. (2020) demonstrates five genes, OsWRKY2, OsWRKY14, 
OsWRKY26, OsWRKY69, and OsWRKY93, induced in response to Magnaporthe 
oryzae infection. The increased transcript level of OsWRKY93 pertains to resistance 
conferred against M. oryzae in rice. The results were validated with the develop-
ment of oswrky93-1 CRISPR knockout mutant’s susceptibility toward M. oryzae 
infection. These results clearly indicate that the senescence-inducible gene 
OsWRKY93 is also a positive regulator of the defense response and can be utilized 
for attaining resistance against M. oryzae.

7.3.7  Proteomics and Metabolomics

Proteomics and metabolomics are the two new emerging omics technologies that 
have the potential to provide complete information on the biological and metabolic 
processes of an organism. These technologies have been successfully exploring the 
differences in gene expression, protein and metabolite abundance, and modification 
of the posttranslational protein and providing a different level of views for the cel-
lular processes that occur in cells. A proteomics and metabolomics study was exe-
cuted on four wheat cultivars against wheat stem sawfly (WSS) infestation. Using 
liquid chromatography-mass spectrometry, the reported cultivars were infested with 
WSS, and variations in stem proteins and metabolites were detected. The proteome 
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included 1830 proteins, contributing in five major biological processes, i.e., meta-
bolic processes and stimuli response, metabolome spanning eight chemical super 
classes of alkaloids, benzenoids, and lipids. Following infestation, the varieties 
under study showed molecular response to WSS. The data validated variation in the 
wheat stem molecular response against WSS infestation that supports different 
breeding approaches for insect resistance in wheat (Lavergne et al. 2020).

Henceforth, studying the proteome and metabolome level of the plant is critical 
to understand the host response under biotic stress. Erb and Kliebenstein (2020) 
proposed that metabolites involved in defense reactions in rice include volatile 
indole, glucosinolates, benzoxazinoids, phenylpropanoid phytoalexins, diterpenoid 
phytoalexins, and phenylamine. Kang et al. (2019) conducted a comparative metab-
olomics analysis to reveal the differences in metabolite profiles of susceptible rice 
cultivar (TN1) and two resistant cultivars (IR36 and IR56) in response to BPH infes-
tations. The gas chromatography-mass spectrometry (GC-MS) and liquid chroma-
tography-mass spectrometry (LC-MS) investigations reveal the differentially 
expressed metabolites that included the defense-related metabolites, viz., induction 
of cyanoamino acids and lipid metabolism in IR36 and changes in thiamine, taurine, 
and hypotaurine metabolism in IR56 during BPH infection. Apart from these, quer-
cetin and spermidine content were elevated in TN1 and IR36 owing harm to BPH 
insects. Thus, differences in metabolite profile upon BPH infestations reveal the 
metabolic mechanism and pathways that can be exploited as a resource for effective 
pest control. Furthermore, Uawisetwathana et al. (2019) reported the increment in 
flavonoid glycosides level subjected to resistant reaction in rice against BPH. Apart 
from BPH, Cheah et al. (2020) reported the proteomic analysis aided by SWATH-MS 
to identify the proteome profile of Qingliu and TN1 under the attack of 
Cnaphalocrocis medinalis. The results described the overrepresentation of proteins 
involved in photosynthesis, amino acid metabolic processes, and processes involv-
ing secondary metabolites. Also, Dong et al. (2017) reported comparative analysis 
of protein profiles in the leaf sheath of Pf9279-4 and 02428 representing small 
brown planthopper (Laodelphax striatellus Fallén, Homoptera, Delphacidae)-
resistant and susceptible genotypes. The protein expression profile of both geno-
types reveals that proteins induced by SBPH feeding were majorly employed in 
photosynthesis, cell wall-related proteins, amino acid metabolism, stress response, 
energy metabolism, carbohydrate metabolic process, and transcriptional regulation. 
The resistant genotype revealed a higher level of superoxide dismutase and glutathi-
one and a defense pathway governed by salicylic acid. Liu et al. (2016) revealed that 
resistant rice plants infected with Cnaphalocrocis medinalis and Chilo suppressalis, 
respectively, displayed induction of photosynthesis that activated the biosynthesis 
of certain amino acids and metabolites. The differential proteome and metabolome 
levels among the host-adapted and non-adapted pathogens infer the knowledge 
regarding the adaptability of pathogens in terms of rice resistance at the proteomics 
and metabolomics level.
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7.4  Integrated Pest Management

Biotechnology in the context of insect pest management can provide controlled, 
specific, and early by-products for insect pest control, which will have more sub-
stantial implications for agriculture than simply improved IPM. Currently, biotech-
nology is being applied for the precise characterization of insect pest species as well 
as identification and characterization of novel genes from the host for significant 
insect resistance. The development of insect-resistant crop varieties suppressing 
insect pest abundance with minimal environmental loss is the main aim of insect 
pest management. Till now, many resistant genes have been identified from host 
plants and diverse exotic sources and inserted into microorganisms and crop plants 
to confer resistance to insect pests and have improved understanding of gene action 
and metabolic pathways. For example, the insecticidal Cry family genes from 
Bacillus thuringiensis expressing insecticidal Cry proteins (Bt toxins) are deployed 
against an equally vast range of insect pest species. A parallel search on other pos-
sible non-Bt insect-resistant proteins has identified a large number of genes, holding 
great potential to interfere with the development and nutrition of different insect 
pests. Important gene(s), which have attracted scientific attention for rendering sim-
ilar insect resistance potential in different crop plants, are vegetative insecticidal 
proteins (VIPs) (produced by different bacterial species including B. cereus and 
B. thuringiensis, toxic to coleopteran and lepidopteran insects), biotin-binding pro-
teins (avidin and streptavidin are insect growth-inhibiting proteins whose genes 
could potentially be expressed in plants to provide inbuilt resistance to insect pests.), 
chitinases (target chitin in the peritrophic membrane of the midgut, causing a reduc-
tion in survival and growth), proteinase inhibitors (interfere with the activity of 
midgut proteinases, causing nutritional limitations), bean α-amylase inhibitors 
(α-amylase inhibitor peptides from some legume seeds impart resistance to coleop-
teran seed weevils), plant lectins (constitute direct defense responses in plants 
against attack by phytophagous insects), and scorpion and spider Venoms (exert a 
neurotoxic effect in other insect species) (Gupta and Jindal 2014). Biotechnology, 
as applied to insects now, provides ample opportunities for the identification and 
utilization of new genes to open a new field for their exploitation in effective insect 
pest control. The future prospects for biotechnological applications to mediate crop 
protection against insects using novel approaches along with wide-scale adoption of 
genetically modified biotech crops worldwide have formed high potential of bio-
technology for the improvement of crops.

7.5  Conclusion

Biotechnology has been central to the acceleration of crop improvement over the 
last two decades. Among the most impactful biotechnology-derived traits, insect-
pest resistance has greatly contributed to the worldwide increase in agricultural 
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productivity and stabilization of food security. The existence of multiple insect pests 
simultaneously in the field becomes inopportune for the plant survival; thus, incor-
poration of broad-spectrum resistance genes is required to minimize the loss and 
investment of rice farmers in the future. The methodologies in biotechnology and 
molecular biology serve as tools in developing resistant varieties to hasten crop 
improvement. For the past decades, rapid technological advances have made the 
discovery and analysis of plant and insect genomes accessible for research and 
improvement. Diverse techniques, like genetic engineering, wide hybridization, 
MAS, RNAi, and CRISPR, have provided a boost in identifying putative insect 
effectors, cloning insect resistance genes, selecting traits that are difficult to mea-
sure and observe, and revealing the key components of plant-insect resistance sig-
nals. Advances in biotechnology techniques like MAS have already been used to 
pyramid multiple insect resistance genes to cultivate durable, broad-spectrum insect 
resistance rice. At the same time, the new emerging technologies such as CRISPR/
Cas9 gene editing to convert insect-susceptible alleles to insect resistance alleles, 
in vivo, provide the potential to design crops that can be patched in real time to 
combat evolving pests. Recent development in RNAi has provided an efficient 
means for identification and functional analysis of new plant genes, which are spe-
cifically expressed in response to the insect-pest attacks. Furthermore, the emerging 
biotechnological technologies will enhance the insect resistance and regulate plant 
immunity in rice varieties. However, in order to fully exploit the enormous potential 
of biotechnology, appropriate biosafety regulatory frameworks need to be effec-
tively implemented. These integrated approaches can commute the dynamic threat 
of insects and ably contribute to sustainable development.
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