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Abstract. We study possible steady states of an infinitely long tube
made of a hyperelastic membrane and conveying either an inviscid, or a
viscous fluid with power-law rheology. The tube model is geometrically
and physically nonlinear; the fluid model is limited to smooth changes in
the tube’s radius. For the inviscid case, we analyse the tube’s stretch and
flow velocity range at which standing solitary waves of both the swelling
and the necking type exist. For the viscous case, we show that a steady-
state solution exists only for sufficiently small flow speeds and that it
has a form of a kink wave; solitary waves do not exist. For the case of a
semi-infinite tube (infinite either upstream or downstream), there exist
both kink and solitary wave solutions. For finite-length tubes, there exist
solutions of any kind, i.e. in the form of pieces of kink waves, solitary
waves, and periodic waves.

Keywords: Tubes conveying fluid · Solitary wave · Hyperelastic
material · Non-Newtonian fluid

1 Introduction

Nonlinear waves in fluid-filled elastic tubes play an important role in problems
of the cardiovascular system [5,33]. Solitary wave solutions are used for the
analysis of pulse waves as well as for the study of the formation of aneurysms
[1,7,14]. In connection with solitary waves, several experimental studies of bulge
formation and propagation in elastic tubes have been conducted [18,28,31,38].
Theoretical analysis of nonlinear solitary waves in fluid-filled elastic tubes was
initially performed with a number of simplified assumptions, such as neglect-
ing axial displacement, weakly nonlinear waves, and a long-wave approximation
[8,40], in applications to pulsatile blood flow in arteries. However, it was shown
[6] that the exact equations of motion for a hyperelastic membrane tube convey-
ing an inviscid fluid have two first integrals and, consequently, can be analysed
directly without any additional assumptions. In particular, the existence of soli-
tary waves was proved analytically for the exact membrane tube model. Using
the exact model, steady solitary waves for different models of hyperelastic tube
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material were studied [12]. The relation between the approximate and exact for-
mulations and between the corresponding weakly and fully nonlinear solitary
waves was established [9].

The bifurcation diagram shows that a travelling solitary wave separates at
zero amplitude from a linear wave that has a finite travelling speed [23]. When
the solitary wave amplitude grows, its travelling speed decreases, and the solitary
wave branch ends, depending on the material model and properties, as either
a standing solitary wave (i.e. a static localised bulge) or a kink wave [23]. A
standing solitary wave solution can be considered to be a mathematical model
of aneurysm in a blood vessel. As a more adequate description of aneurysm
formation, an initial localised wall thinning was introduced into the tube model
in [11] and [22], where bulged solutions and their stability were studied. It was
shown that there are two types of bulged tube states, one with a smaller and one
with a larger amplitude. For the vanishing tube imperfection, the first state tends
to a uniform tube, while the second state tends to a standing solitary wave. It was
shown that the first state is stable, while the second state is not. However, the
presence of a fluid flow stabilises the standing solitary wave [10,21] so that both
solutions can be stable. In this series of studies, the membrane tube was modelled
by an exact, geometrically and physically nonlinear model, but the fluid model
was simplistic, with the fluid assumed to be inviscid with a constant velocity
distribution in each cross-section. With respect to biomechanical applications,
the tube model also had several limitations. First, actual blood vessel properties
[2] are anisotropic so that hyperelastic blood vessel models should include an
anisotropic part [4,36]. Next, blood vessel walls are sufficiently thick so that
their bending stiffness and corresponding shell effects (studied, e.g., in [26]) can
be important. Finally, axisymmetry of deformations was assumed, which is not
always the case in the cardiovascular system. Nevertheless, this series of studies
is an important step towards understanding the nonlinear dynamics of real blood
vessels.

Another type of studies, that of fluid flow in collapsible tubes [17,19], deals
with viscous fluids, but the tube model, in its 1-dimensional formulation, is
either linear or extremely simplified nonlinear in the form of the ‘tube law’
[24,25,32,39]. Although they are more advanced in terms of fluid mechanics, this
type of models does not admit of a bifurcation of a uniform tube to a bulged
solitary wave solution. Also, all studies of collapsible tubes consider Newtonian
fluid flows; however, it is known that blood in small vessels has essentially non-
Newtonian rheology [3,13,16,27,30]. [41] improved the 1-dimensional fluid model
to include non-Newtonian power-law rheology, which was used for the analysis
of steady states [35] and stability [37] of linearly elastic tubes conveying fluid,
under the assumption of long-wave and low-frequency motions.

The goal of the present paper is to combine the two approaches used in
the two series of studies, to analyse a geometrically and physically nonlinear
hyperelastic membrane tube conveying a viscous non-Newtonian fluid. In Sect. 2,
we upgrade the exact tube model [6] by including non-Newtonian fluid viscosity
under the assumptions used in [41]. The rest of the paper deals with steady-state
solutions of this system. In Sect. 3, we analyse the first integrals of the system
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of equations and introduce the phase plane used in the subsequent analysis.
Section 4 is devoted to solitary wave analysis, including a non-constant cross-
section velocity distribution but neglecting fluid viscosity. In Sect. 5, we include
fluid viscosity in the analysis. We prove that for the Gent tube material and
sufficiently small fluid velocities, there exists a unique steady-steady solution for
an infinitely long tube, of which the tube radius changes monotonically so that
no solitary waves are possible. For semi-infinite tubes (infinite either upstream
or downstream), a second solitary wave solution exists. For finite-length tubes,
several solitary wave, periodic wave, and monotonic solutions exist. Section 6
summarises the results and concludes the paper.

Fig. 1. Cylindrical membrane tube in the initial and the deformed state.

Fig. 2. The undeformed dx and the deformed dx∗ element of the tube (a); fluid forces
(b).

2 Equations of Motion of an Elastic Tube Containing a
Flowing Viscous Fluid

2.1 Formulation of the Problem and Preliminary Relationships

We consider a cylindrical membrane tube with a circular cross-section with a
thickness of h and a radius of R, made of hyperelastic material (Fig. 1). The
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Fig. 3. Forces acting on a deformed shell element.

ratio h/R is sufficiently small for the bending stresses to be neglected compared
to the membrane stresses. The tube conveys a non-Newtonian viscous fluid whose
rheology obeys a power law. We restrict ourselves to axisymmetric motion with
two components of the displacement vector, longitudinal (axial) u and radial w.

[6] gave a self-contained derivation of the exact equations of motion for the
case of an inviscid fluid. Here we briefly revisit this derivation to take fluid
viscosity and rheology into consideration. The equations of motion are derived
in Lagrangian cylindrical coordinates corresponding to the undeformed state
of the tube. The x axis is directed along the tube’s axis, and the angle θ is
the circumferential direction. The axial and circumferential length elements are
denoted by dx and ds; the area element is dA = dxds (Fig. 1). In the deformed
state, the lengths and area of the same elements, as well as other values, will be
denoted by a star.

In what follows, we will need a relationship between the length of the element
dx before and after deformation and the angle ϕ between them. From Fig. 2a we
have

dx∗ =
√

(1 + u′)2 + w′2dx, ϕ = arctan
(

w′

1 + u′

)
,

where the prime denotes differentiation with respect to the Lagrangian coordi-
nate x. The lengths of the element ds and the sizes of the area dA before and
after deformation are related as

ds∗ =
(
1 +

w

R

)
ds, dA∗ =

√
(1 + u′)2 + w′2

(
1 +

w

R

)
dA.

2.2 Equations of the Tube Motion

Consider fluid forces acting in the axial direction on a tube element with an
undeformed area dA (Figs. 2b, 3a). After simple algebra, for pressure and friction
forces we have

−p sin ϕdA∗ = −pw′
(
1 +

w

R

)
dA, τ cos ϕdA∗ = τ (1 + u′)

(
1 +

w

R

)
dA.
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The force resulting from elastic tensile stress (Fig. 3a) is expressed as follows:

F (x + dx) cos(ϕ + dϕ) − F (x) cos ϕ =

(
σ1h

∗(1 + w/R)
√

(1 + u′)2 + w′2 (1 + u′)

)′
dA,

where F = σ1h
∗ds∗ and σ1 is the longitudinal physical component of Cauchy

stress. Here we assumed a uniform distribution of stresses over the tube thickness,
which corresponds to the membrane model.

Balancing these forces with the inertial force ρ∗h∗üdA∗ = ρhüdA, where ρ is
the material density, we obtain the longitudinal equation of motion:

ρhü = −pw′
(
1 +

w

R

)
+τ(1+u′)

(
1 +

w

R

)
+

(
σ1h

∗(1 + w/R)
√

(1 + u′)2 + w′2 (1 + u′)

)′
. (1)

Similarly, for fluid forces acting in the radial direction (Figs. 2b, 3a), we
obtain

p cos ϕdA∗ = p(1 + u′)
(
1 +

w

R

)
dA, τ sinϕdA∗ = τw′

(
1 +

w

R

)
dA.

The radial force from elastic stresses is the sum of the longitudinal stress at ends
x and x + dx (Fig. 3a),

F (x + dx) sin(ϕ + dϕ) − F (x) sin ϕ =

(

σ1h
∗(1 + w/R)

w′
√

(1 + u′)2 + w′2

)′
dA,

and the circumferential stress at ends s and s + ds (Fig. 3b),

−G(θ + dθ) sin(dθ/2) − G(θ) sin(dθ/2) = −σ2h
∗
√

(1 + u′)2 + w′2

R
dA,

where σ2 is the circumferential physical component of the Cauchy stress.
Balancing the radial elastic and fluid forces with the intertial force

ρ∗h∗dA∗ẅ = ρhdAẅ, we obtain the radial equation of motion:

ρhẅ = p(1 + u′)
(
1 +

w

R

)
+ τw′

(
1 +

w

R

)

+

(

σ1h
∗(1 + w/R)

w′
√

(1 + u′)2 + w′2

)′
− σ2h

∗
√

(1 + u′)2 + w′2

R
. (2)

2.3 Equations of Fluid Motion

Next, we consider the motion of the fluid. We will assume that its rheology obeys
the Ostwald-de Waele power law, which for pure shear reads

τ12 = μ

(
dv1
dx2

)n
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and for the general case is

τ ij = 2μ
(√

2I2(e)
)n−1

eij , I2 =
√

eijeij , (3)

where τ ij and eij are the components of the viscous stress tensor and strain rate
tensor. The special case of n = 1 corresponds to a Newtonian viscous fluid, and
μ = 0 corresponds to an ideal fluid.

Assuming that the motion is slow (quasi-stationary) and that the wavelengths
are large, a Poiseuille velocity distribution is established in each tube cross-
section at each moment:

vx(x, r) = vf (x)
3n + 1
n + 1

(

1 −
(

r

R + w

)n+1
n

)

, (4)

where vf (x) is the average velocity in the section. Under this assumption, the
Navier-Stokes equations integrated over the cross-section give a spatially one-
dimensional system of equations, as shown by [41]. A different form of this system
was obtained in [37]; Eqs. (2.10) and (2.11) of that paper in the present notations
have the form

∂w

∂t
+ vf

∂w

∂q
+

R + w

2
∂vf

∂q
= 0,

∂vf

∂t
+

3n + 1
2n + 1

vf
∂vf

∂q
− 2n

2n + 1
vf

R + w

∂w

∂t
+

1
ρf

∂p

∂q

+
μ

ρf

2(3n + 1)n

nn

vn
f

(R + w)n+1
= 0,

(5)

where q is the Eulerian coordinate of the tube axis.
To have both tube and fluid equations formulated in the same coordinate

system, we now switch to Lagrangian coordinates in the fluid equations (5). The
transformation from Eulerian to Lagrangian coordinates is expressed as

∂f

∂q
=

f ′

1 + u′ ,
∂f

∂t
= ḟ − f ′ u̇

1 + u′

for any function f . Substituting these into system (5), and slightly transforming
the resulting equations, we obtain

ẇ + ẇu′ − w′u̇ + vfw′ +
1
2
(R + w)v′

f = 0, (6)

ρf

(
v̇f + v̇fu′ − v′

f u̇ +
3n + 1
2n + 1

vfv′
f − 2n

2n + 1
vf

R + w
(ẇ + ẇu′ − w′u̇)

)

+ p′ + μ
2(3n + 1)n

nn

vn
f

(R + w)n+1
(1 + u′) = 0. (7)



Solitary Waves 41

2.4 Expression for Viscous Friction τ

To close the system, let us obtain an expression for the viscous friction τ included
in the equations of the tube motion. For the Poiseuille velocity distribution (4),
the wall friction comes only from the component τ = τrx, which is expressed as

τ = μ

(
∂vx

∂r

)n

.

Using the distribution (4), we obtain the friction at the tube wall

τ(x, t) = μ

(
vf (x, t)

R + w(x, t)

)n (
1 + 3n

n

)n

. (8)

2.5 Closed System of Equations

Hereunder we will assume the incompressibility of the tube material, which
excludes the deformed thickness from Eqs. (1) and (2):

h∗ =
h

√
(1 + u′)2 + w′2(1 + w/R)

. (9)

Then the system consisting of Eqs. (1), (2), (6), (7), and (8), supplemented by a
hyperelastic model of the tube’s material, is a closed system of equations based
on the geometrically and physically nonlinear theory of the membrane tube [6]
and the approximate one-dimensional equations of motion of a power-law fluid
derived under the assumptions used in [41] and [37]. Thus, this system generalises
both the equations of [6] by taking into account the viscosity and rheology of the
fluid and the equations of [41] and [37] by taking into account the geometric and
physical nonlinearity of the tube. In particular, for n = 0 (a uniform velocity
profile) and μ = 0 (an inviscid fluid), the system of equations coincides with the
system of [6].

3 Steady-State Equations

Next, we will study the possible steady states of the tube conveying fluid, by
setting all time derivatives equal to zero. Then the system consisting of Eqs. (1),
(2), (6), and (7), taking into account Eq. (9), will take the form

− pw′
(
1 +

w

R

)
+ τ(1 + us)

(
1 +

w

R

)
+

(
σ1h

(1 + us)2 + w′2 (1 + us)
)′

= 0, (10)

p(1+us)
(
1 +

w

R

)
+τw′

(
1 +

w

R

)
+

(
σ1h

w′

(1 + us)2 + w′2

)′
− σ2h

R + w
= 0, (11)

vfw′ +
1
2
(R + w)v′

f = 0, (12)

ρf
3n + 1
2n + 1

vfv′
f + p′ +

2τ

R + w
(1 + us) = 0, (13)

where us(x) ≡ u′(x) (the function u(x) itself is not present in the steady-state
equations).
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3.1 Integration of the Fluid Equations

Note that Eq. (12) is integrated and gives the relationship between fluid velocity
and radial displacement (conservation of fluid mass):

vf (w) = vf0
(R + w0)2

(R + w)2
.

With the use of this relationship, Eq. (13) is also integrated in the absence of
viscosity (generalised Bernoulli equation):

pinv(w) = p0 + ρf
3n + 1
2n + 1

v2
f0

2

(

1 −
(

R + w0

R + w

)4
)

.

In the presence of viscosity, the pressure takes the form

p(x) = pinv(x) + f(x), f(x) = −
∫ x

x0

2τ

R + w
(1 + us)dx, (14)

where f(x) is a monotonically decreasing function reflecting viscous pressure
loss.

3.2 First Integrals of the Tube Equations

Let us now consider Eqs. (10) and (11). It is known that for an inviscid fluid,
they have two first integrals [6,9]. Let us denote the principal (axial and circum-
ferential) stretches:

λ1 =
√

(1 + us)2 + w′2, λ2 = 1 +
w

R
.

Then these equations can be rewritten in the form
(

σ1

λ2
1

(1 + us)
)′

− p
R

h
λ2λ

′
2 +

τ

h
(1 + us)λ2 = 0, (15)

(
σ1

λ′
2

λ2
1

)′
− σ2

R2λ2
+ p

1
Rh

(1 + us)λ2 +
τ

h
λ′
2λ2 = 0, (16)

p = pinv + f, pinv = p0 + ρf
3n + 1
2n + 1

v2
f0

2

(

1 −
(

λ20

λ2

)4
)

.

Note that hereunder, we use the notations of [6] for the principal stretches, which
differ from the notations of [9] in that the axial and circumferential stretches are
switched.

Next, we define a hyperelastic material model that for the incompressible
case reads

σi = λiWi, Wi =
∂W

∂λi
, i = 1, 2,
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where W (λ1, λ2) = Ŵ (λ1, λ2, (λ1λ2)−1) and Ŵ (λ1, λ2, λ3) is the strain energy
function (see [12] for details).

Representing the pressure in the form of the sum of ‘inviscid’ pressure pinv

and the viscous pressure loss f , we integrate Eq. (15) and obtain

W1

λ1
(1 + us) − p0

R

h

λ2
2

2
− ρf

R

h

3n + 1
2n + 1

v2
f0

4
λ2
2

(

1 +
(

λ20

λ2

)4
)

= C1(x) + F (x),

C1(x) = −
∫ x

x0

τ

h
(1 + us)λ2dx, F (x) =

∫ x

x0

f
R

h
λ2λ

′
2dx.

Let us consider in more detail the behaviour of F (x), integrating by parts:

F (x) =
∫

f
R

h

d

dx

(
λ2
2

2

)
dx = f

R

h

λ2
2

2
−

∫
f ′ R

h

λ2
2

2
dx

= f
R

h

λ2
2

2
+

∫
τ

h
(1 + us)λ2dx.

It is seen that the first term can be combined with p0 on the left-hand side, and
the second (integral) term is cancelled by the same term in C1(x). Finally, we
get

W1

λ1
(1 + us) − p0(x)

R

h

λ2
2

2
− ρf

R

h

3n + 1
2n + 1

v2
f0

4
λ2
2

(

1 +
(

λ20

λ2

)4
)

= C1, (17)

where C1 = const. Hence, the effect of viscous friction consists of a monotonic
pressure decrease, p0(x) = p0 + f(x), due to friction losses f(x).

To derive the other first integral, consider the sum of Eq. (15) multiplied by
(1 + us) and Eq. (16) multiplied by R2λ′

2:

(
σ1

λ2
1

(1 + us)
)′

(1 + us) +
(

σ1
λ′
2

λ2
1

)′
R2λ′

2 − σ2λ
′
2

λ2
= − τ

h
(1 + us)2λ2 − τ

h
R2λ′2

2 λ2.

After simple algebra, the resulting equation is rewritten as

σ′
1 − W ′ = − τ

h
λ2
1λ2.

Integrating, we get

W − σ1 = C2(x), C2(x) =
∫ x

x1

τ

h
λ2
1λ2dx, (18)

where C2(x) is a monotonously growing function.
In the absence of friction, p0(x) = const, C2(x) = const, and expressions (17)

and (18) are the first integrals. In the presence of friction, p0(x) is a monotonously
decreasing function, and C2(x) is a monotonously increasing function; moreover,
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they themselves depend on the solution. Strictly speaking, expressions (17) and
(18) are no longer the first integrals, but we will call them so for brevity.

Both first integrals (17) and (18) have a clear physical meaning. Equation
(17) reflects the conservation of the resultant force in the axial direction at
each cross-section. Equation (18) is the equilibrium equation of a membrane
element, in projection onto the deformed element; in particular, fluid pressure
is not present in Eq. (18), because it is cancelled at the projection. Note that
the fluid friction acts separately in these equations: only through pressure losses
in Eq. (17) and only through increasing upstream (and decreasing downstream)
traction force in Eq. (18).

3.3 Non-dimensionalisation and Transition to Variables λ1 and λ2

We proceed to dimensionless quantities by choosing the non-deformed tube
radius R as the length scale, the shear modulus of the tube material G as
the stress scale, and the fluid density ρf as the density scale. In addition, to
get rid of the factors R/h, for pressure p and friction τ we choose the scale
P = Gh/R, and for the fluid speed vf the scale

√
P/ρf . Also, we switch from

the unknowns us(x) and w(x) to the principal stretches λ1(x) and λ2(x), which
have the dimensionless form

λ1 =
√

(1 + us)2 + w′2, λ2 = 1 + w.

Expressing us and w through λ1 and λ2, the first integrals can be rewritten in
the form

λ′
2

= λ1

√√√√1 − 1
W1(λ1, λ2)2

(

p0(x)
λ2
2

2
+

3n + 1
2n + 1

v2
f0

4
λ2
2

(

1 +
(

λ20

λ2

)4
)

+ C1

)2

,

(19)

W (λ1, λ2) − λ1W1(λ1, λ2) = C2(x). (20)
Expression (20) is the algebraic relationship between λ1, λ2, and x. If C2(x) is
known, then from this expression we find implicitly λ1 = λ1(λ2, C2(x)). Substi-
tuting into Eq. (19), we obtain an ordinary differential equation for the function
λ2(x).

To simplify the non-dimensional expression (8) for the friction, we introduce
the Reynolds number of the power-law fluid in the definition of [29]:

Re =
ρf (R + w)nv2−n

f

μ

8nn

(3n + 1)n
.

Then the expression for dimensionless friction is written as

τ =
8v2

f

Re
. (21)

Here, both the dimensionless average velocity vf and the Reynolds-Metzner-Reed
number Re are not constants; i.e. they are functions of x.
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3.4 Phase Plane

To study the possible types of solutions, it is useful to increase the order of the
differential Eq. (19) to the second order, thus getting rid of C1, and to investigate
the phase plane of the resulting equation, as in [35]. Differentiating Eq. (19), we
get

λ′′
2 =

λ′
1λ

′
2

λ1
− λ1

λ′
2W1

{√
λ2
1 − λ′2

2

(

p′
0

λ2
2

2

+ λ2λ
′
2

[

p0 +
3n + 1
2n + 1

v2
f0

2

(

1 −
(

λ20

x

)4
)])

− λ2
1 − λ′2

2

λ1
W ′

1

}

. (22)

To find the expression λ′
1(λ1, λ2, λ

′
2), we differentiate Eq. (20) to obtain

λ′
1 = λ′

2

W2 − λ1W12

λ1W11
− C ′

2

λ1W11
,

where Wij = ∂2W/∂λi∂λj . Next, to compute W ′
1(λ1, λ2), we write

W ′
1 = W11λ

′
1 + W12λ

′
2 = λ′

2

W2 − λ1W12

λ1
− C ′

2

λ1
+ W12λ

′
2 =

λ′
2

λ1
W2 − C ′

2

λ1
.

Substituting these expressions into Eq. (22) and noting that the term with p′
0 is

cancelled by the term −C ′
2/λ1 in the expansion of W ′

1, we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ′ = Y,

Y ′ = − τ
XY

W11
+ Y 2 W2 − λ1W12

λ2
1W11

− λ1

W1

{

X
√

λ2
1 − Y 2

(

p0(x) +
3n + 1
2n + 1

v2
f0

2

(

1 −
(

λ20

X

)4
))

− λ2
1 − Y 2

λ2
1

W2

}
.

(23)

where X ≡ λ2, λ1(X,x) is the function obtained by solving algebraic equation
(20) for a given value of C2(x), and the axial Lagrangian coordinate x acts as
an analogue of time in a dynamic system.

4 Steady States in the Case of an Inviscid Fluid

In this section, we set τ = 0, i.e. consider an inviscid fluid, but keep a non-
constant cross-sectional velocity distribution (4). Therefore, p0(x) = const,
C2(x) = const, and, consequently, λ1 = λ1(X). We obtain the following
autonomous system of equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ′ = Y,

Y ′ = Y 2W2 − λ1W12

λ2
1W11

− λ1

W1

{

X
√

λ2
1 − Y 2

(

p0 +
3n + 1
2n + 1

v2
f0

2

(

1 −
(

λ20

X

)4
))

− λ2
1 − Y 2

λ2
1

W2

}
.

(24)

It can immediately be seen that for the inviscid fluid, the non-constant veloc-
ity distribution is expressed only in the factor (3n + 1)/(2n + 1), which tends
to 1 as n → 0, i.e. as the velocity distribution tends to a constant. Hence, the
effect of the cross-sectional velocity distribution consists of increasing the effec-
tive mean flow velocity by a factor

√
(3n + 1)/(2n + 1) compared to a constant

distribution. In particular, for a regular parabolic velocity profile (n = 1), the
effective velocity is increased by ≈15% with respect to the uniform profile.

4.1 Phase-Plane Structure

As can be seen, the phase plane of Eq. (24) is symmetric about the X axis, is
two-sheeted (due to the square root), and is defined only for |Y | < |λ1(X)|. We
will call the lines Y = ±λ1(X) the limit lines: they are the transition lines of
the integral curves from one sheet of the Riemann surface to the other. It is
easy to verify that the limit lines are integral trajectories themselves, but the
uniqueness theorem for an integral trajectory passing through a given point is
not valid for limit lines. Physically, the points lying on the limit lines correspond
to the vertical tangent to the tube surface (us = −1). In this case, the assumption
of flow laminarity inside the tube is not correct: the flow will detach from the
walls and switch to a complex unsteady motion. We will call such a situation the
tube’s collapse; it is obvious that the steady state without collapse corresponds
to only one sheet of the phase plane, corresponding to the positive value of the
square root. Further, we restrict ourselves to considering this sheet of the phase
plane.

The stationary points of the phase plane (Xs, Ys) are determined by Ys = 0,
and Xs are the roots of the equation

S(X) = −X

(

p0 +
3n + 1
2n + 1

v2
f0

2

(

1 −
(

λ20

X

)4
))

+
W2(λ1(X),X)

λ1(X)
= 0. (25)

They correspond to possible uniform states of an infinitely long tube. The type of
stationary points is determined by the value of dS(Xs)/dX: for W1 > 0 (tensile
axial stress in the tube wall), they are of a centre type when dS(Xs)/dX < 0
and of a saddle type when dS(Xs)/dX > 0; for W1 < 0 (compressive axial
stress), the types are reversed. The integral curves emerging from the saddle
point (separatrices) and returning back to the same point correspond to standing
solitary waves.
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The phase plane of Eq. (24) is characterised by three parameters: p0, vf0,
and C2. The parameter C1 defines only a specific integral curve in the phase
plane. To determine the physical meaning of these parameters, we assume that
the tube state is homogeneous as x → ±∞; i.e. all its parameters tend to con-
stants. This far-field state is characterised by stretches λ10 and λ20. After setting
these stretches, the constant C2 and, therefore, the function λ1(X) are uniquely
determined from Eq. (20). The fluid pressure p0 is expressed from the equilibrium
condition using Eq. (16):

p0 =
W2(λ10, λ20)

λ10λ20
. (26)

The fluid velocity at infinity, vf0, can be set arbitrarily.

4.2 Material Model

Since further study without specification of the material model is impossible, we
will consider the Gent model of incompressible hyperelastic material [15,20]:

W (λ1, λ2) = Ŵ (λ1, λ2, (λ1λ2)−1),

Ŵ (λ1, λ2, λ3) = −1
2
GJm ln

(
1 − λ2

1 + λ2
2 + λ2

3 − 3
Jm

)
,

with the shear modulus G = 106 Pa and Jm = 97.3 corresponding to rubber
properties. By direct calculations, we find

Wi =
∂W (λ1, λ2)

∂λi
= Ga

(
λ2

i − (λ1λ2)−2
)
λ−1

i , i = 1, 2,

W11 =
∂W1(λ1, λ2)

∂λ1
= Ga

(
a
2λ−2

1 (λ2
1 − (λ1λ2)−2)2

Jm
+ (1 + 3λ−4

1 λ−2
2 )

)
,

W12 =
∂W1(λ1, λ2)

∂λ2
= Ga

(
a
2(λ1λ2)−1(λ2

1 − (λ1λ2)−2)(λ2
2 − (λ1λ2)−2)

Jm

+ 2(λ1λ2)−3
)
, a =

(
1 − λ2

1 + λ2
2 + (λ1λ2)−2 − 3

Jm

)−1

.

The Gent model is chosen for analysis because, although being sufficiently
simple, it correctly reproduces real nonlinear properties of many hyperelastic
materials, including rubber (Jm ∼ 100) and arterial wall tissues (Jm ∼ 1) [20].
Also, the Gent material has limited stretch that reflects the limited extensibility
of molecular chains. Because of the latter feature, the phase plane is defined for
those values of X ≡ λ2 for which there is at least one λ1 such that a(λ1, λ2) > 0.
This gives the range Xlim− < X < Xlim+, where Xlim− and Xlim+ are the
positive roots of the equation X3 + (Jm + 3)X + 2 = 0. It can be proved that in
this range of X, Eq. (20) always has a solution λ1 = λ1(X,C2) for any real value
of C2. Thus, this stretch range X is the region of the material model’s validity
and, accordingly, the region of definition of the phase plane. For Jm = 97.3, we
have Xlim− = 0.01994 and Xlim+ = 10.0050.
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Fig. 4. Plot of the function S(X) for λ10 = 1 and λ20 = 1.5, 1.1763, 1.15, 1.14, 1.11
(a), for λ20 = 1.5, 1.69, 1.9 (b).

4.3 Phase Plane and Solitary Wave Solutions in the Case of a
Quiescent Fluid

Let us first consider a phase plane with vf0 = 0 and far-field stretches λ10 = 1
and λ20 = 1.5 (an axially unstretched but inflated state), which, according to
Eq. (26), correspond to p0 ≈ 0.808. In this case, there are three stationary
points: Xs = 1.5, 1.85, and 7.35 (Fig. 4a). The first point is of the saddle type
(corresponding to a homogeneous far-field state), the second point is of the centre
type, and the third point is of the saddle type. The vector field corresponding
to the phase plane is shown in Fig. 5. Hereunder, we use the following notation
of stationary points: the first letter is the type of point (c is the centre, and s
is the saddle), and the second digit is the number of the stationary point; the
far-field state always corresponds to number 1. As can be seen, there exists a
solitary wave solution: the separatrix of the saddle s1, enveloping the centre c2
and returning to the original saddle. The solutions inside the saddle separatrix
loop correspond to periodic tube swellings; any solution outside the separatrix
loop tends to X → 0 and Y → −∞ and approaches the limit line; i.e. such
solutions exist only for a finite tube length. The separatrices of the saddle s3 are
not closed: the separatrices going to the left cross the limit line; the separatrices
going to the right reach the value Xlim+, at which the material reaches its
stretch limit. Thus, with the parameters considered, there exists, in addition to
the uniform state, the only standing solitary wave in the form of a localised tube
swelling.

Reducing stretch λ20 causes the centre c2 and saddle s3 to come closer
together (Fig. 4a). The solitary wave solution disappears at λ20 ≈ 1.1763, when
the separatrix of the first saddle s1 becomes the separatrix of the saddle s3
(Fig. 6a), and the solitary wave transforms into a kink. With a further decrease
in λ20, the initial swelling solitary wave disappears, but a standing necking soli-
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Fig. 5. Vector field of system (24) and separatrices of the stationary saddle points at
λ10 = 1 and λ20 = 1.5. General view (a), enlarged view in the area of the separatrix
loop (b).

tary wave (corresponding to a much more inflated far-field state) appears, in
which the left separatrix of the saddle s3 goes around the centre c2 (Fig. 6b).
For λ20 ≈ 1.14, the saddle s3 and the centre merge (Fig. 4a), and the ampli-
tude of the necking solitary wave tends to zero, after which there remains the
only stationary point, the saddle s1, corresponding to the original far-field state.
Obviously, for lower values of λ20 solitary wave solutions do not exist (Fig. 7).

Let us now consider a change in the phase plane with an increased λ20 from
1.5 and higher. The saddle point s1, corresponding to the uniform state, moves to
the right, and the centre c2 moves to the left; for λ20 = 1.69, they pass through
each other (Fig. 4b). For λ20 > 1.69, the type of stationary points changes: the
saddle point s1 becomes the centre c1, and the centre c2 becomes the saddle s2.
In this case, the solitary wave solution now corresponds to a less inflated far-field
tube state (Fig. 8), while for the original far-field state, there remains only the
uniform-tube solution. The parameter range in which there exists a family of
standing swelling solitary waves for a quiescent fluid was first obtained by [34].

Another bifurcation of the phase plane occurs at λ20 = 1.73. In this case,
a range of X appears for which W1(λ1(X),X) < 0 (Fig. 9); i.e. the region in
which the axial stress becomes compressive. In this range, the vector field (24)
turns around, and at the points at which W1 = 0, it has a singularity (note that
W11(λ1(X),X) is always positive; i.e. there are only singularities associated with
zero longitudinal stress). Thus, solutions starting in the region W1 > 0 cannot
penetrate the area left of the line W1 = 0 but end on the limit line (Fig. 8).
With a further increase in λ20, the range in which W1 < 0 expands and captures
the saddle s2, which then again becomes the centre c2 (Fig. 10). There are no
standing solitary wave solutions.
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Fig. 6. Vector field of system (24) and separatrices of the stationary saddle points for
λ10 = 1 and λ20 = 1.1763 (a), λ20 = 1.15 (b).
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Fig. 7. Vector field of system (24) and separatrices of the stationary saddle point for
λ10 = 1 and λ20 = 1.11.

4.4 Phase Plane and Solitary Waves in the Case of a Moving Fluid

To be specific, we put n = 0 (a uniform fluid velocity distribution); as noted
above, other values of n yield rescaling of vf0, but the qualitative picture will
obviously remain the same. With far-field parameters λ10 = 1.5, λ20 = 0, and
vf0 < 0.0624, the structure of the phase plane is the same as for a quiescent fluid.
For vf0 ≥ 0.0624, in addition to the three stationary points, two more points
appear in the vicinity of X = 0.038: the centre c4 and the saddle s5. As the
fluid velocity increases, the saddle moves to the left and, for vf0 > 0.37, leaves
the phase plane through the left boundary; we will not consider it further. The
centre moves to the right (Fig. 11) and is located to the left of the saddle s1, which
corresponds to the far-field state. Due to the presence of a centre, the vector field
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Fig. 8. Vector field of system (24) and separatrices of the stationary saddle points for
λ10 = 1 and λ20 = 1.9. General view (a), enlarged view in the area of the separatrix
loop (b). The vertical dashed line is the singularity of the vector field W1(X) = 0.
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Fig. 9. Plot W1(λ1(X), X) for λ20 = 1.5, 1.7, 1.9, 2.1.

turns around for small X (Fig. 12): if for vf0 = 0 it was directed downwards,
now it is directed upwards, and there are closed trajectories enveloping a new
stationary centre.

There are two standing solitary waves simultaneously emerging from the
saddle s1 corresponding to the uniform state: the localised swelling in which the
separatrix loop envelops the right centre c2 and the localised necking in which
it envelops the left centre c4 (Fig. 12). Both solutions are shown in Fig. 13 as
functions λ2(x).

An increase in the flow velocity vf0 leads to changes in the phase plane, as
with an increase in λ20 for the quiescent fluid. Namely, the right centre c2 moves
to the left, and at vf0 ≈ 0.58, it merges and passes through the saddle s1,which
corresponds to a homogeneous state (Fig. 11). Then the types of both stationary
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Fig. 10. Vector field of system (24) and integral trajectories enveloping the centres for
λ10 = 1 and λ20 = 2.1. The vertical dashed line is the singularity of the vector field
W1(X) = 0.

vf0=0.4

(a) (b)

vf0=1.0 vf0=0.4

vf0=1.00.4

0.2

0

-0.2

-0.4

1 3 4 5 6 7 X

S

0.05

0

-0.05

-0.10

0.5 1.0 2.0X

S

Fig. 11. Plot of the function S(X) at λ10 = 1, λ20 = 1.5, and vf0 = 0.4, 0.58, 0.64,
1.0 (a), enlarged view in the region of small X (b). The arrows show the direction of
movement of the roots with increasing vf0.

points are reversed. The swelling and necking solitary waves still exist, but their
conditions at infinity correspond to a smaller λ20 than in the original far-field
state (Fig. 14a).

At vf0 ≈ 0.64, the two left stationary points, the saddle s2 and the centre
c4, approach, merge, and disappear (Fig. 11). For larger values of the velocity,
two stationary points remain: the centre c1, which corresponds to the far-field
state (Fig. 14b), and the saddle s3, which corresponds to much larger stretches;
no standing solitary wave solutions exist. With an increase in speed, the saddle
s3 gradually moves to the right, and for vf0 > 9, it leaves the phase plane
through its right boundary. At higher speeds, the only stationary point remains,
the centre c1.
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Fig. 12. Vector field of system (24) and separatrices of the stationary saddle points for
λ10 = 1, λ20 = 1.5, and vf0 = 0.4. General view (a), enlarged view in the area of the
separatrix loops (b).
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Fig. 13. Swelling (a) and necking (b) solitary waves λ2(x) for λ10 = 1, λ20 = 1.5, and
vf0 = 0.4.

5 Steady States in the Case of a Viscous Fluid

As can be seen from system (23), for τ 	= 0 the vector field becomes non-
symmetric with respect to the X axis due to the term −τXY/W11. For the
Gent model W11 > 0; therefore, each centre point becomes a stable focus; each
saddle point remains a saddle, but its separatrices rotate somewhat clockwise.
In addition, the values of p0 and C2, which were associated with the tube state
at infinity for an inviscid fluid, become non-constant in the viscous case: p0(x) is
a decreasing function, C2(x) is a growing function, and therefore λ1 = λ1(X,x).
Note that the functions p0(x) and C2(x) themselves depend on the solution;
i.e. system (23), strictly speaking, is not a system of differential equations.
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Fig. 14. Vector field of system (24) and separatrices of the stationary saddle points for
λ10 = 1, λ20 = 1.5, and vf0 = 0.63 (a), vf0 = 1.0 (b).

Parameters λ20 and vf0, which also corresponded to the tube state at infinity
for the case of an inviscid fluid, can now refer to any tube cross-section. The
stationary points of the phase plane, i.e. the solutions of Eq. (25), now also
depend on x. The motion of the integral curve can be represented as the motion
along the vector field, which itself changes with x; moreover, for each solution
the vector field changes in its own way.

5.1 Stretch Limit States as x → ±∞
First, consider possible deformed steady states, i.e. λ1 and λ2 independent from
x as x → ±∞. In this case, we have

p0(x) = −2τ
λ1

λ2
x = −Px, P = 2τ

λ1

λ2
> 0 C2(x) = τλ2

1λ2x.

The constants in p0(x) and C2(x) for large values of |x| can be neglected.
Consider the solution of Eq. (20) for the Gent material model (Sect. 4.2):

W − λ1W1 =
1
2
GJm ln a − Ga

(
λ2
1 − (λ1λ2)−2

)
= C2(x) = τλ2

1λ2x.

Obviously, this equation can be satisfied as x → ±∞ only if a(x) ∼ Ax → ∞
with A = const, i.e.

a−1 = 1 − λ2
1 + λ2

2 + (λ1λ2)−2 − 3
Jm

→ 0. (27)

Neglecting the first term (ln a 
 a), we obtain

A = − τ

G
λ2
1λ2

(
λ2
1 − (λ1λ2)−2

)−1
.
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Since a > 0, it is also necessary that the following inequalities are satisfied:

λ2
1 − (λ1λ2)−2 < 0, x → +∞; λ2

1 − (λ1λ2)−2 > 0, x → −∞. (28)

Expression (27) gives the relationship between the possible limit values of λ1

and λ2. The limit value of W2 has the form

W2 = Ga
(
λ2
2 − (λ1λ2)−2

)
λ−1
2 = Bx, B = −τλ2

1

λ2
2 − (λ1λ2)−2

λ2
1 − (λ1λ2)−2

.

Next, consider Eq. (25) as x → ±∞. Leaving only the leading terms, we have

− Pλ2x − Bx

λ1
= 0 ⇒ 2 =

λ2
2 − (λ1λ2)−2

λ2
1 − (λ1λ2)−2

. (29)

Let us prove that there always exist unique limit states satisfying Eqs. (27)
and (29) and inequalities (28). Rewrite them, denoting λ2

1 = l1 and λ2
2 = l2:

l21l2 + l1l
2
2 − (3 + Jm)l1l2 + 1 = 0, (30)

2(1 − l21l2) = 1 − l1l
2
2, (31)

1 − l1l
2
2 > 0, x → +∞; 1 − l1l

2
2 < 0, x → −∞. (32)

Equations (30) and (31) are equivalent to the system

l1l2(l1 + l2 − (3 + Jm)) = −1 = l1l2(l2 − 2l1).

From here we obtain

l1 =
3 + Jm

3
, l2 = l1 ±

√
l21 − 1

l1
.

As l1 > 1, the value of l2 is always real and positive.
It is easy to verify that the ‘plus’ sign before the root satisfies inequality

(32) as x → −∞ and the ‘minus’ sign as x → +∞. As x → −∞, the tube is
swollen and axially stretched (λ1 > 1, λ2 > 1): far upstream, the stretched state
tends to the limit state, and the tensile stresses tend to infinity. In this case,
the axial stress in the tube wall σ1 is balanced by the fluid viscous force, which
axially stretches the tube sections lying upstream, and the circumferential stress
σ2 is balanced by pressure, which grows unlimitedly upstream. As x → +∞,
the tube is also axially stretched but compressed in the circumferential direction
(λ1 > 1, λ2 < 1). In this case, both axial and circumferential stresses are com-
pressive and tend to infinity. The axial stress σ1 downstream is balanced by the
viscous force, which compresses the tube axially, and the circumferential stress
σ2 is balanced by pressure, which decreases unlimitedly due to viscous losses.
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We note that the limit states do not depend neither on the fluid properties nor
on the values of the constants but depend only on parameter Jm of the tube
material.

By direct calculation, taking into account Eq. (29) and a large value of a, it
can be proved that for both limit states dS/dX > 0, which means that the limit
stationary point of a ‘frozen’ vector field at large |x| is saddle point as x → −∞
and stable focus point as x → +∞.

For Jm = 97.3, which corresponds to rubber, we have limit axial stretch
λ1 = 5.782156, and limit circumferential stretches λ2 = 0.021149 as x → +∞
and λ2 = 8.177176 as x → −∞.

5.2 Evolution of the Tube When Moving from Infinity

Let us now investigate the possibility of combining limit states as x → −∞ and
x → +∞ by a single integral curve, i.e. constructing a steady solution for the
entire infinitely long tube conveying a viscous fluid. To do this, we divide the tube
into three sections. Two sections are neighbourhoods of infinities as x → −∞
and x → +∞, where the limit stationary points continuously move when x
changes, but they remain the only stationary points of the phase plane (or, if
other stationary points appear, they do not interact with the limit stationary
point). The third section is the central section, where new stationary points
appear and can interact with stationary points that came from neighbourhoods
of infinity. In a certain cross-section of the central segment, we put the origin of
the x axis, and specify stretches λ1 = λ10 and λ2 = λ0 and fluid velocity vf0. We
do not specify pressure in this cross-section; below we will show that there is only
one pressure value that provides the existence of a solution for −∞ < x < ∞.
In this section, we study the behaviour of integral trajectories with a motion of
limit stationary points.

Evolution of the Tube as x → −∞. First, consider the limit saddle point as
x → −∞. As the absolute value of x decreases, the value of Xs corresponding
to this stationary point decreases; in the central part of the tube, this saddle
continuously passes to the left saddle s3 in Fig. 5. Moreover, it is easy to see
from the local structure of the vector field in the vicinity of the moving saddle
that there always exists an integral curve, which for each x is located near the
moving saddle point and does not ‘fall’ onto the separatrix leaving it. Moreover,
for x → −∞, such an integral curve tends to the limit position of the saddle (a
limit state of the tube). Thus, the moving saddle ‘leads’ such an integral curve.
When the saddle moves to the left, the integral curve follows below it; the lower
the curve the higher the speed of the saddle. When the saddle moves to the right,
the integral trajectory, on the contrary, follows the saddle above it.

The existence of an integral trajectory following the moving saddle can also
be seen from the explicit solution of the model problem

X ′′ + 2cX ′ = A(X − X0(x)), A > 0, c > 0,
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where X0(x) is the variable position of the saddle and X(x) is an unknown
function. The solution of this equation has the form

X(x) = X0(x)

+ e−cx

(
1

2
√

κ

(∫ x

x0

e−√
κξβ(ξ)dξe

√
κx −

∫ x

x0

e
√

κξβ(ξ)dξe−√
κx

)

+ c1e
√

κx + c2e
−√

κx

)
, κ = A + c2, β(x) = (−X ′′

0 − 2cX ′
0)e

ct.

It is easy to see that if the saddle position has moved along a finite segment
x from one fixed position to another (in this case, β(x) 	= 0 only on a finite
segment x, and the integrals tend to constants as x → +∞), then there exists
a solution that asymptotically tends to the initial state as x → −∞ and to the
final state as x → +∞.

Thus, before reaching the central section of the tube, where the interaction
of the stationary points occurs, there exists an integral trajectory coming from
−∞ following the saddle.

Evolution of the Tube as x → +∞. Now consider the integral trajectory
following from x → +∞ to the central section. It will be shown below that it is
necessary that in the central part of the tube the stationary point continuously
passes to the right saddle s1 in Fig. 5. For such a continuous evolution, it is neces-
sary that during the motion from x → +∞, no new stationary point emerges. If
such a point arises (it must be a focus that in the inviscid case corresponds to the
centre c4 in Fig. 12), it will separate two stationary points: the analogues of the
right saddle s1 in Fig. 12 and the saddle point s5 lying near the left boundary of
the phase plane and corresponding to the limit state at x → +∞. A continuous
transition of one stationary point to another with a change in x takes place only
for sufficiently small vf0, for which there is no ‘intermediate’ stationary point.
In particular, the calculation shows that for λ1(0) = λ10 = 1, λ2(0) = λ20 = 1.5,
and the initial condition p0(0) defined by the equilibrium condition in inviscid
flow (26), the transition to x → +∞ occurs without the formation of an inter-
mediate stationary point for vf0 ≤ 0.0635, which is close to the value at which
the intermediate stationary point is absent for x = 0 (Sect. 4.4).

Below, we will assume that this condition is satisfied; otherwise, as will be
shown below, it is impossible to connect the limit states of the tube as x → ±∞.

The limit stationary point for x → +∞ is a stable focus. It is easy to see from
the structure of the vector field that when the focus moves, there is a trajectory
that remains in its vicinity and rotates around it; when the focus movement
stops, the trajectory asymptotically tends to it. As a result, as in the case of a
saddle at x → −∞, there is an integral trajectory ‘following’ the focus motion.

The existence of such a trajectory is also evident from the explicit solution
of the model problem

X ′′ + 2cX ′ = −B(X − X0(x)), B > 0, c > 0,
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where X0(x) is the variable focus position and X(x) is an unknown function.
The solution of this equation has the form

X(x) = X0(x)

+
e−cx

√
δ

(∫
cos(

√
δξ)β(ξ)dx sin(

√
δx) −

∫
sin(

√
δξ)β(ξ)dx cos(

√
δx)

)

+ c1 cos(
√

δx)e−cx + c2 sin(
√

δx)e−cx, δ = B − c2.

It is seen that if the location of the focus tends to a constant as x → ∞, then all
the trajectories, including those coming out of the vicinity of its initial position,
asymptotically approach its final position.

Hereunder we will assume that the central section of the tube, where we
must connect the trajectory coming out from x → −∞ and going to x → +∞,
is inflated: for the inviscid case, there are several stationary points, and there
exist standing solitary waves. Then the axial stress in the central section is tensile
so that W1 > 0. However, it was shown above that as x → +∞, the axial stress
is compressive, i.e. W1 < 0, which means that there is a point Xc at which
W1 = 0; along the vertical line X = Xc the vector field (23) has a singularity.
In addition, when passing through a singularity, the type of the stationary point
changes: a saddle becomes a focus and vice versa. Only one integral trajectory
passes through the singularity line; all other trajectories end at the limit line
Y = λ1(X,x). Namely, when a stationary point passes through a line of zero
axial stress below the stationary point, the vectors are horizontal. If we follow
the vector field at a distance from the stationary point at which the length of
the horizontal vector is equal to the stationary point’s speed, a smooth passage
through the singularity is ensured; all other integral trajectories turn up or down
before the singularity and end at the limit line.

The following model equation is an illustration of the transition through a
singularity:

X ′′ = A
X + x

X
. (33)

The equation’s stationary point is a saddle for x < 0 and a centre for x > 0. The
vector fields for x = −0.5 and x = 0.5 are shown in Fig. 15. Its exact solution
X(x) = −x for each x corresponds to a stationary point; on the phase plane,
due to the motion of the stationary point, the integral trajectory moves under it
along the line Y = −1. Any other solution, starting from x < 0, cannot penetrate
the line X = 0 and remains to its right, turning up or down before this line.

It is important that this unique trajectory corresponds to the transition to
x → +∞ only when the point Xc at which the change in sign of W1 takes place
is unique. If there are more such points, then it is impossible to have a trajectory
penetrating several singularities: the condition of passing through the first one
selects a single integral curve that can no longer, except for special cases, pass
through other singularities. Further, we will assume that point Xc is unique. For
the parameters λ1(0) = λ10 = 1 and λ2(0) = λ20 = 1.5 and the initial condition
p0(0) determined from Eq. (26), the transition to x → +∞ occurs with a single
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Fig. 15. Phase plane of the ‘frozen’ Eq. (33) for x = −0.5 (a) and x = 0.5 (b). The
arrow shows the direction of the stationary point’s motion with increasing x.

Xc for vf0 ≤ 0.0565. In particular, this condition is satisfied in the example
constructed below in Sect. 5.4.

Note that for fluid velocities exceeding the critical values (at which either
an intermediate stationary point or more than one Xc appear) and for realistic
values of fluid viscosity, the inability to continue the trajectory as x → +∞ arises
at sufficiently large values of x, exceeding hundreds or thousands of tube radii.
As a result, although it is mathematically impossible to continue the solution to
infinity, the region of its existence exceeds any lengths of tubes conveying fluid
that are encountered in applications.

5.3 Connection of Integral Trajectories from Infinities in the
Central Part of the Tube

Thus, from both left and right infinities, at a sufficiently low speed vf0, it is
possible to continue an integral trajectory to the central region of the tube, where
both stationary points are saddles. Expecting solutions with a solitary wave form,
we will assume that in the central part, the structure of the ‘frozen’ phase plane
qualitatively corresponds to Fig. 5 (except that the centre c2 becomes a stable
focus). When increasing x (moving downstream), the focus and the right saddle
merge and disappear; when decreasing x (moving upstream), the focus and the
left saddle merge and disappear; in both cases, there is a homoclinic bifurcation
of the vector field. The remaining saddle evolves into a limit state, as shown in
the previous section.

For such a configuration, in which at a certain x a stable focus exists between
the two saddles, it is impossible to transform the limit saddles into each other
with a change in x. However, under certain conditions, there is an integral trajec-
tory connecting the saddles and bypassing the focus from below. More precisely,
from the vicinity of the right saddle with increasing x, the integral trajectory
comes into the vicinity of the left saddle. For this, it is necessary that the focus
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Fig. 16. Transition in the central part of the tube from the vicinity of the stationary
point as x → −∞ to the neighbourhood of the stationary point as x → +∞ for the
initial (x = 0) parameters λ10 = 1, λ20 = 1.5, vf0 = 0.05, and p0 ≈ 0.484. The integral
curve in the phase plane (the vector field corresponds to the state at x = 0, the arrows
show the direction of motion of the stationary points with increasing x) (a); plot λ2(x)
(b).

is located between the saddles in such a way that the integral trajectory from
the neighbourhood of one stationary point comes into the neighbourhood of the
other (Fig. 16). To realise such a configuration, there are two free parameters in
the problem, since the pressure p0 and C2 are defined to within a constant. In
the absence of viscosity, these constants are determined by the parameters at
infinity, but in the presence of viscosity, these constants can be chosen arbitrar-
ily, since both pressure and C2 tend to infinity at x → ∞. Only one of these
parameters is essentially arbitrary, since their simultaneous change in a certain
combination corresponds only to a shift in the origin of the x axis (or, equiv-
alently, a shift of the entire tube to the left or to the right). Thus, due to this
one free parameter, e.g. pressure, it is possible to locate the focus so that the
integral trajectories for x → −∞ and x → +∞ are connected in the central part
of the tube with a focus bypass from below.

Small changes in pressure will lead to small changes in the integral trajectory,
up to the moment of intersection with the singularity (the line of change in the
sign of W1, i.e. a change of tensile longitudinal stress to compressive stress). As
shown in Sect. 5.2, there is only one trajectory that penetrates this singularity,
while the other trajectories on the phase plane turn up or down and end at
the limit line. Thus, the parameter (e.g. pressure) has the only value at which
the integral trajectory passes through the singularity. After that, the trajectory
moves in an uncontrolled way. However, since it moves in the vicinity of a stable
focus (which moves to the left with increasing x), it does not leave its vicinity
and asymptotically tends to the limit state as x → +∞.
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Now we can explain why it is necessary that during the evolution of a sta-
tionary point as x → +∞, an intermediate stationary point should not occur
(Sect. 5.2). As in the central tube section, at a certain position of the three sta-
tionary points, it would be possible to connect the two outer points by passing
the middle point from below (unlike in the central part, here the saddles and
focuses are switched if the interaction occurs at W1 < 0; however, this does not
preclude the possibility of their connection by an integral trajectory). To do this,
the middle stationary point must be located between the outer points in such
a position that the trajectory from the neighbourhood of the right point comes
into the neighbourhood of the left point. However, we do not have other free
parameters to organise such a connection. Therefore, the only way to continue
the trajectory to x → +∞ is to prevent the occurrence of the focus, which is
ensured by the requirement that the fluid velocity in the central tube segment
is sufficiently small: vf0 < vf0cr. The only special case may be a fluid velocity
vf0 > vf0cr such that the desired location of the stationary points occurs simul-
taneously with penetration of the singularity; however, this exceptional case is
not of general interest, since it cannot be realised in reality: an arbitrarily small
deviation from this value vf0 will lead to the end of the trajectory at the limit
line and the tube’s collapse.

5.4 An Example of a Solution for an Infinitely Long Tube

Consider an example of a solution for an infinitely long tube. The calculations
were performed numerically, separately for the central tube section and the
neighbourhoods of infinity. In the central region, the full differential equation
(19) was solved by the Euler method taking into account the algebraic relation
(20). The calculation took into account the change in p0(x) and C2(x) according
to formulas (14) and (18) (in dimensionless form). The values of the integrals
were updated at each x-step by the rectangle method simultaneously with the
numerical integration of Eq. (19).

In the vicinity of infinities, the numerical integration of the full problem is
practically impossible, because the integral trajectories tend to ‘fall’ onto the
separatrices coming out of the saddles and, therefore, are extremely sensitive to
the initial conditions. For example, to keep the trajectory near a stationary point
at a distance of ∼1 tube radius, an accuracy of setting the initial conditions
of ∼10−6 is required; and the required accuracy increases exponentially with
increasing tube length. Thus, although a solution remaining in the vicinity of the
saddle exists, it is almost impossible to obtain it numerically on a long x-interval.
To calculate the evolution of the position of the stationary points, it was assumed
that their motion is rather slow and that the derivative λ′

2 in Eq. (19) can be
neglected. Then, replacing it by zero, this equation becomes algebraic; it was
solved numerically for given values of p0(x) and C2(x). A segment of the x axis
of a sufficiently large length (directed either to +∞ or −∞) was divided into a
sufficiently fine grid, along which the integrals p0(x) and C2(x) and, accordingly,
the position of the stationary point λ2(x) changed. Although this approach is
approximate, it yields a rather accurate calculation of the stationary points’
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Fig. 17. Plot S(X) (a) and phase plane and integral curve in the absence of viscosity
(b) for the parameters λ1(0) = λ10 = 1, λ2(0) = λ20 = 1.5, vf0 = 0.05, and p0 ≈ 0.477.
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Fig. 18. The calculated evolution of the position of the stationary point to infinity for
x < 0 (a) and for x > 12 (b) for the initial (x = 0) parameters λ10 = 1, λ20 = 1.5,
vf0 = 0.05, and p0 ≈ 0.484. The dashed lines are the limit values.

motion, because outside the central section they move slowly; for x → ±∞ their
positions tend to fixed values, while the speed of motion λ′

2(x) tends to zero.
In the calculations, for simplicity, the power-law index n = 0 was taken;

however, it is clear that for any other value, the solution will be qualitatively
the same. Since the fluid friction in this case is constant, formula (21) can be
rewritten as follows: τ = 8v2

f0/Re0, where the index ‘0’ corresponds to an ini-
tial section of the tube. In the calculations, the initial Reynolds-Metzner-Read
number Re0 = 100 was set.
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We set the parameters λ1(0) = λ10 = 1, λ2(0) = λ20 = 1.5, and vf0 = 0.05
and selected a pressure p0 = 0.477 so that the focus of the ‘frozen’ vector field
is located between two saddles, which have common separatrices (Fig. 17). We
take this position for x = 0 and consider this value to be the left border of
the central tube section. However, due to viscosity, the vector field shown in
Fig. 17 will evolve: the right saddle and centre approach each other, while the
left saddle moves to the left. Therefore, taking into account viscosity, the integral
trajectory at this initial value p0 will come to the right of the neighbourhood
of the left saddle, and a pressure correction is necessary. Calculations show that
for p0 ≈ 0.484, the trajectory, taking into account viscosity, comes into the
vicinity of the left saddle (Fig. 16). Thus, this and very similar initial pressure
values provide the connection of the neighbourhoods of the stationary points
that come from infinity by a single integral curve.

The numerically calculated motion of the stationary points when moving to
infinity for x < 0 and x > 12 is shown in Fig. 18. As can be seen, they are
continuously moving to their asymptotic values. Note that at x ≈ 580, the value
of W1(x) becomes negative and then retains its sign for an unlimited increase in
x; at the change in sign, the stationary point’s location is X ≈ 1.13. Since after
changing the sign, the saddle becomes a stable focus, the monotonic decrease in
X(x) is replaced by an oscillatory motion.

In dimensional terms, taking a ratio h/R = 0.1, the shear modulus of rubber
G = 106 Pa, and a fluid density ρf = 1000 kg/m3, the constructed solution
corresponds to a fluid velocity vf0 = 0.5 m/s and a pressure p0 = 48.4 kPa. A
Reynolds number Re = 100 corresponds to a fluid friction τ = 20 Pa.

5.5 Existence of Solitary-Wave-Like Solutions

The solution constructed above corresponds to a monotonic downstream change
from the inflated limit state to the compressed limit state of the tube. Let us
show that a solitary wave solution, i.e. a solution enveloping focus, does not exist.
It can be seen from the calculations that, with an increase in x in the central
part of the tube, the focus moves to the right, and both saddles move to the left.
Suppose that p0(0) is chosen so that the trajectory, starting from the vicinity of
the right saddle point, just does not reach the left saddle point and makes one
revolution around the focus point. However, due to the movement of the focus
to the right, and the movement of the right saddle to the left, the position of
the trajectory after the revolution will be above the right saddle. The trajectory
will then follow the upper right separatrix to the boundary of the phase plane,
where the tube will collapse.

Thus, solutions in the form of a standing solitary wave, i.e. with a single local
swelling or necking of the tube, do not exist for an infinitely long tube. However,
they exist for a semi-infinite tube. For a tube that is unbounded as x → −∞, an
example is given in the previous paragraph; it is possible to select p0(0) and a
final value x > 0 to make one revolution around the focus; as a result, we have a
necking solitary wave. For a tube that is unbounded as x → +∞, we can choose
p0(0) and start the path above the initial position of the upper right separatrix
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Fig. 19. Solitary-wave-like solutions for an infinitely long tube as x → −∞ (a, b) and
for an infinitely long tube as x → +∞ (c, d). The integral trajectory on the phase
plane (the vector field corresponds to x = 0) (a, c), and the solution λ2(x) (b, d) are
shown.

of the left saddle, after which it continues indefinitely as x → +∞. The result is
a swelling solitary wave. Both examples of solitary waves at semi-infinite tubes
are shown in Fig. 19.

Obviously, for a tube of finite length, there are solutions that monotonically
connect two states and make a certain number of revolutions around the focus
(but always a finite number because sooner or later the focus will disappear from
the phase plane due to the influence of viscosity), each revolution corresponding
to swelling or necking of the tube.
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6 Conclusions

In this paper, we analysed the possible steady states of an elastic tube made of
an incompressible hyperelastic Gent material (rubber), conveying a viscous fluid
with power-law rheology. It is proved that for a quiescent fluid (or, equivalently,
if a constant pressure is set in the tube) in a tube that is axially unstretched at
infinity (λ10 = 1), a standing solitary wave in the form of a localised swelling
exists for a range of far-field circumferential stretches 1.18 < λ20 < 1.69. This
result was previously obtained in [34].

In the case of the motion of an inviscid fluid (generally, with a non-uniform
cross-sectional velocity distribution) for λ10 = 1, λ20 = 1.5, and a dimensionless
velocity 0.063 ≤ vf0 ≤ 0.58, there exists, simultaneously with the standing
swelling solitary wave, a standing necking solitary wave. At a lower fluid velocity,
there is only a swelling solitary wave; for larger velocities, no solitary waves exist.
Note that in a model of a geometrically and physically linear tube, in which only
the nonlinearity of the flow was taken into account [35], there always exists, for
any nonzero flow velocity, only a standing necking solitary wave. Thus, both
the existence of a standing swelling solitary wave and the limited range of fluid
velocities for which a standing necking solitary wave exists are consequences of
the physical and geometrical nonlinearities of the tube model.

When a viscous fluid moves, there are limit stretch states of the tube as
x → −∞ and x → +∞, with the stretches λ1 and λ2 tending to constants
but the stresses tending to infinities to compensate for the fluid pressure and
the longitudinal stress caused by the fluid viscosity, which are infinitely growing
upstream and infinitely decreasing downstream. The transition between these
limit states occurs in the central section of the tube and exists only if the fluid
velocity is sufficiently small. In this case, for given stretches λ1 and λ2 and flow
speed vf in a chosen cross-section, there is a unique solution linking the states
at infinity in the form of a monotonic decrease in the radius downstream, i.e.
a kink-like solution. Localised swelling or necking solutions for a tube that is
infinitely long in both directions do not exist. However, such solutions exist if
the tube is infinitely long in only one direction, either downstream or upstream.
But solutions in which a semi-infinite tube has multiple neckings or swellings
do not exist. For finite-length tubes, there exist ‘pieces’ of both swelling and
necking solitary waves, as well as close-to-solitary-wave solutions with a finite
number of successive swellings or neckings.

The principal point of constructing a solution in an infinitely long tube con-
veying a viscous fluid is the existence of a limited material stretch that reflects
the limited extensibility of polymeric molecular chains, which is a principal fea-
ture of Gent material [15,20]. For other conventional hyperelastic models, such
as Ogden material, there is no limited stretch so that the tube will infinitely
swell upstream and narrow downstream. However, for realistic fluid viscosity,
the difference in the tube’s limit behaviour will manifest itself at thousands of
diameters upstream and downstream from the central segment so that for prac-
tical applications, the results of the present study can be transferred to other
hyperelastic rubber models without any changes.
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Finally, we note that the stability of the obtained solutions is not analysed
in this study, and this could be a topic of a separate investigation.

I thank A.T. Il’ichev for stimulating discussions on the problem. This work
was supported by a grant of the Russian Foundation for Basic Research No. 18-
29-10020.
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