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Abstract. Using the system of equations corresponding to the classical theory of
orthotropic cylindrical shells, the free vibrations of thin elastic orthotropic can-
tilever cylindrical panel are investigated. In order to calculate the natural frequen-
cies and to identify the respective natural modes, the generalized Kantorovich-
Vlasov method of reduction to ordinary differential equations is used. Dispersion
equations for finding the natural frequencies of possible types of vibrations are
derived.An asymptotic relation between the dispersion equations of the problem at
hand and the analogous problem for a cantilever rectangular plate is established. A
relation between the dispersion equations of the problem and the boundary-value
problem of a semi-infinite orthotropic cantilever cylindrical panel is derived. As
an example, the values of dimensionless characteristics of natural frequencies are
derived for an orthotropic cantilever cylindrical panel.

Keywords: Boundary vibrations · Eigenfrequencies · Cylindrical panel

1 Introduction

It is known that, at the free edge of an orthotropic plate planar and flexural vibrations can
occur independently of each other [1–6]. When the plate is bent these vibrations become
coupled and giving raise to two new types of vibrations localized at the free edge: pre-
dominantly tangential and predominantly bending vibrations. The transformation of the
one type of vibration into the other occurs at the free end of a thin cylindrical elastic
panel. For these vibrations a complex distribution of frequencies of natural vibrations
occurs depending on the geometrical and mechanical parameters of finite and infinite
cylindrical panels [4–11]. With the increase of the number of free edges of a cylindrical
panel the distribution becomes increasingly complex [5–11]. Recently free vibrations
of a thin elastic orthotropic cylindrical panel with free edges were investigated [20].
Using generalized Kantorovich-Vlasov method the corresponding dispersion equations
are derived to find the natural frequencies of possible types of vibrations. In general,
the form of dispersion equations depends on the boundary conditions. Therefore, the
frequency distributions will be different for different boundary conditions. It would be
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interesting to investigate the change in distribution of natural frequencieswith the change
in boundary conditions by considering cantilever plates (orthotropic rectangular plates
with one rigid clamped edge and the other three edges free) and cantilever cylindrical
panels (orthotropic cylindrical panels with one rigid clamped end and the other three
edges free). The investigation of the edge resonance of cantilever plates and cantilever
cylindrical panels is of practical importance since such elements are important compo-
nents of modern structures and constructions. Therefore, the question of free vibrations
of these elements is of vital importance and it demands special attention. Meanwhile,
it is one of the most difficult problems in the theory of vibrations of plates and shells
[5]. In practice these difficulties are resolved by using a combination of analytical and
asymptotic theories, as well as by numerical methods.

In the present work, for the first time, free vibrations of cantilever plate and can-
tilever cylindrical panel are investigated. It is shown that due to difference in boundary
conditions the dispersion equations of the considered problem is different from the one
derived in [20]. It is proved that the problem prevents separation of variables for the
given boundary conditions. It can be proved that such problems for cylindrical shells of
orthotropic materials with simple boundary conditions are self-conjugate and nonnega-
tive definite. Therefore, the generalized Kantorovich-Vlasov method can be applied to
them [12–16]. As the basic functions the following eigenfunctions of the problem are
used:

wVIII = θ8w, w|β=0,s = w′∣∣
β=0,s = w′′∣∣

β=0,s = w′′′∣∣
β=0,s = 0, 0 ≤ β ≤ s, (1)

The problem (1) is a self-conjugate and has a positive simple discrete spectrum
with a limit point at the infinity. The eigenfunctions corresponding to the eigenvalues
θ8m,m = 1,∞, of the problem (1) have the form:
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This eigenfunctions with their first and second derivatives define an orthogonal basis
in a Hilbert space L2[0, s] [16]. Here θm ,m = 1,+∞, are the positive zeros of the
determinant of Vronsky for functions (3) at the point β = s. Let us define

β ′
m =

s∫

0

(

w′
m(θmβ)

)2
dβ/

s∫

0

(wm(θmβ))2dβ,

β ′′
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s∫

0

(

w′′
m(θmβ)

)2
dβ/
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0

(

w′
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)2
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Notice that, the derivatives in formulas (3) and (4) are taken with respect to θmβ and
β ′
m → 1, β ′′

m → 1 at m → +∞.

2 The Statement of the Problem and the Basic Equations

It is assumed that the generatrices of the cylindrical panel are orthogonal to the ends of
the panel. The curvilinear coordinates (α, β) are defined on the median surface of the
shell where α(0 ≤ α ≤ l) and β(0 ≤ β ≤ s) are the lengths of the generatrix and the
directing circumference, respectively; l – is the length of the panel; and s – is the length
of the directing circumference.

As the initial equations describing vibrations of the panel, we will use the equations
corresponding to the classical theory of orthotropic cylindrical shells written in the
selected curvilinear coordinates α and β (Fig. 1):
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∂α2 − B66

∂2u1
∂β2 − (B12 + B66)

∂2u2
∂α∂β

+ B12

R

∂u3
∂α

= λu1 ,

− (B12 + B66)
∂2u1
∂α∂β

− B66
∂2u2
∂α2 − B22

∂2u2
∂β2 + B22

R

∂u3
∂β

− μ4

R2

(

4B66
∂2u2
∂α2

+B22
∂2u2
∂β2

)

− μ4

R

(

B22
∂3u3
∂β3 + (B12 + 4B66)

∂3u3
∂β∂α2

)

= λu2, (5)

μ4
(

B11
∂4u3
∂α4 + 2(B12 + 2B66)

∂4u3
∂α2∂β2 + B22

∂4u3
∂β4

)

+ μ4

R

(

B22
∂3u2
∂β3 + (B12 + 4B66)

∂3u2
∂β∂α2

)

− B12

R

∂ u1
∂α

− B22

R

∂ u2
∂β

+ B22

R2 u3 = λu3

Here, u1, u2 and u3 are projections of the displacement vector on the directions α

and β, and on the normal to the median surface of the shell, respectively; R is the radius
of the directing circumference of the median surface; μ4 = h2/12 (h is the thickness of
the shell); λ = ω2ρ, where ω is the angular frequency, ρ is the density of the material;
Bij are the elasticity coefficients. The boundary conditions has the form [17]:
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Fig. 1. Middle surface of a cylindrical panel
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Relations (6) and (8) are the conditions of free edges for α = 0 and β = 0, s,
respectively, while conditions (7) indicate that the edge α = l is rigid-clamped.

3 The Derivation and Analysis of the Characteristic Equations

Let’s formally replace the spectral parameter λ by λ1, λ2 and λ3 in the first, second, and
third equations of the system (5), respectively. The solution of system (5) is searched in
the form

(u1, u2, u3) = {umwm(θmβ), vmw
′
m(θmβ),wm(θmβ)} exp(θmχα), m = 1,+∞.

(9)

Here,wm(θmβ),m = 1,∞, are determined from (2) and um, vm and χ are unknown
constants. In this case, the conditions (8) are obeyed automatically. Let us insert
Eq. (9) into Eq. (5). The obtained equations are multiplied by the vector functions
(

wm(θmβ),w′
m(θmβ),wm(θmβ)

)

in a scalar way and then integrated in the limits from 0
to s. From the first two equations we have
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(cm + ε2ma
2gmdm)vcm = εm

{

bm − a2gmlm
}

, (11)

From the third equation, by taking into account the relations (10) and (11), the
characteristic equation is obtained
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Let χj, j = 1, 4, be pairwise different roots of Eq. (12) with non-positive real parts and

χ4+j = −χj, j = 1, 4 . Let (u(j)
1 , u(j)

2 , u(j)
3 ), j = 1, 8, be nontrivial solutions of type (9)

of the system (5) at χ = χj, j = 1, 8, respectively. The solution of the problem (5–8) is
searched in the form

ui =
∑8

j=1
u(j)
i wj, i = 1, 3. (14)

Let us insert Eq. (14) into the boundary conditions (6) and (7). Each of the obtained
equation is multiplied by w(θmβ), except of the second one, which is multiplied by
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w′(θmβ), and then integrated in the limits from 0 to s. As a result, we obtain the system
of equations.

8
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The superscript j in parentheses means that the corresponding function is taken at
χ = χj. In order to the system (15) has a nontrivial solution, it is necessary and sufficient
that
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It is shown numerically that the left side of this equality becomes small when any
two roots of Eq. (12) become close to each other. This highly complicates calculations
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and can lead to false solutions. It turns out that from the left side of Eq. (17) a multiplier
that tends to zero can be separated when the roots approach each other. Let us introduce
the following notations:

[zizj] = θml(exp(zi) − exp(zj))/(zi − zj), [zizjzk ] = θml
([zizj] − [zizk ]

)

/(zj − zk),

[z1z2z3z4] = θml([z1z2z3] − [z1z2z4])/(z3 − z4),

σ1 = σ1(χ1, χ2, χ3, χ4) = χ1 + χ2 + χ3 + χ4,

σ2 = σ2(χ1, χ2, χ3, χ4) = χ1χ2 + χ1χ3 + χ1χ4 + χ2χ3 + χ2χ4 + χ3χ4,

σ3 = σ3(χ1, χ2, χ3, χ4) = χ1χ2χ3 + χ1χ2χ4 + χ1χ3χ4 + χ2χ3χ4,

σ4 = σ4(χ1, χ2, χ3, χ4) = χ1χ2χ3χ4,

σ k = σk(χ1, χ2, χ3, 0), σ k = σk(χ1, χ2, 0, 0), k = 1, 4. (19)

In this case, σ 4 = σ 4 = σ 3 = 0. Let fn, n = 1, 6, be a symmetric polynomial of
nth order in variables χ1, χ2, χ3, χ4. It is known that it can be uniquely expressed in
terms of elementary symmetric polynomials. By introducing the notations.

fn = fn(σ1, σ2, σ3, σ4); f n = fn(σ 1, σ 2, σ 3, 0); f n = fn(σ 1, σ 2, 0, 0), n = 1, 6;
(20)
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1 − 3σ 2

1 σ2 + σ 2
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1 − 4σ 3
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2
2 + 3σ 2

1σ 3 − 2σ 2σ 3 ; f 6 = σ
6
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4
1σ 2 + 6σ

2
1σ

2
2 − σ

3
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and performing elementary operations with columns of determinant (17), we obtain
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ij
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= K2 Det

∥
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∥
∥
8
i,j=1 , m = 1,∞ , (22)

K = (χ1 − χ2)(χ1 − χ3)(χ1 − χ4)(χ2 − χ3)(χ2 − χ4)(χ3 − χ4) . (23)

The expressions for mij are given in Appendix 1. The Eq. (17) are equivalent to the
equations

Det
∥
∥mij

∥
∥8
i,j=1 = 0 , m = 1,∞ . (24)

By taking into account the possible relations between λ1, λ2 and λ3 we conclude
that Eq. (24) determine frequencies of the corresponding types of vibrations. For λ1 =
λ2 = λ3 = λ, the Eq. (12) are the characteristic equations of the system (5), and the
Eq. (24) are the dispersion equations of the problem (5–8).

In Sect. 6, the asymptotics of the dispersion Eq. (24) for εm = 1/θmR → 0 (transition
to a cantilever rectangular plate or to vibrations localized at the free edges of the cantilever
cylindrical panel) and for θml → ∞ (transition to a semi-infinite cantilever cylindrical
panel or to vibrations localized at the free edges of the cantilever cylindrical panel) are
investigated. For checking the reliability of the asymptotic relations found in Sect. 6, the
free planar and bending vibrations of a cantilever rectangular plate are investigated in
the next two sections.
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4 Planar Vibrations of an Orthotropic Cantilever Rectangular
Plate

Let an orthotropic rectangular plate is defined in a triorthogonal system of rectilinear
coordinates (α, β, γ )with the origin on the free face plane such that the coordinate plane
αβ coincides with the midsurface of the plate and the principal axes of symmetry of the
material are aligned with the coordinate lines (Fig. 2). Let s and l be the width and the
length of the plate, respectively. The problem of the existence of free planar vibrations
of a cantilever rectangular plate is investigated. As the initial equations consider the
equations of low-amplitude planar vibrations of the classical theory of orthotropic plates
[17]

− B11
∂2u1
∂α2 − B66

∂2u1
∂β2 − (B12 + B66)

∂2u2
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− (B12 + B66)
∂2u1
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− B66
∂2u2
∂α2 − B22

∂2u2
∂β2 = λu2 , (25)

Fig. 2. Rectangular plate with rigid clamped edge

Here α (0 ≤ α ≤ l) and β (0 < β < s) are the orthogonal rectilinear coordinates
of a point on the middle surface; u1 and u2 are the displacements in α and β directions,
respectively; Bik , i, k = 1, 2, 6, are the coefficients of elasticity; λ = ω2ρ, where ω

is the natural frequency; and ρ is the density of the material. The boundary conditions
have the form [17]

∂u1
∂α

+ B12

B11

∂u2
∂β

∣
∣
∣
∣
α=0

= ∂u2
∂α

+ ∂u1
∂β

∣
∣
∣
∣
α=0

= 0 , (26)

u1|α=l = u2|α=l = 0, (27)

B12

B11

∂ u1
∂α

+ ∂ u2
∂β

∣
∣
∣
∣
β=0,s

= ∂ u2
∂α

+ ∂ u1
∂β

∣
∣
∣
∣
β=0,s

= 0 . (28)

Here conditions (26) and (28) mean that the edges α = 0 and β = 0, s are free, while
conditions (27) indicate that the edge α = l is rigid-clamped. The problem (25–28) does
not allow separation of variables. The differential operator corresponding to this prob-
lem is self-conjugate and nonnegative definite. Therefore, the generalized Kantorovich-
Vlasov method of the reduction to ordinary differential equations can be used to find
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vibration eigenfrequencies and eigenmodes [12–16]. The solution of the system (25) is
searched in the form

(u1, u2) = {umwm(θmβ), vmw
′
m(θmβ)} exp(θmyα), m = 1,+∞ . (29)

In this case, the conditions (28) are satisfied automatically. Let us insert (29)
into Eq. (25). Then, the obtained equations are multiplied by vector functions
(

wm(θmβ),w′
m(θmβ)

)

in a scalar way and integrated in the limits from 0 to s. As a
result, the system of equations is obtained

(y2 − B66

B11
(β ′

m − η2m))um − B12 + B66

B11
yβ ′

m vm = 0,

B12 + B66

B66
yum + (y2 − B22

B66
β ′′
m + η2m)vm = 0,

(30)

where η2m = λ/
(

θ2mB66
)

, θm, and β ′
m, β ′′

m, are determined in Eqs. (2) and (4), respec-
tively. By equating the determinant of system (30) to zero, the following characteristic
equation of the system of Eq. (25) is found:

cm = y4 − B2y
2 + B11 + B66

B11
η2my

2 + (β ′
m − η2m)

(
B22

B11
β ′′
m − B66

B11
η2m

)

= 0 , m = 1,+∞ . (31)

Let y1 and y2 be various roots of Eq. (31) with non-positive real parts and y2+j =
−yj , j = 1, 2. As the solution of system (30) for y = yj , j = 1, 4, we take

u(j)
m = B12 + B66

B11
β ′ yj, v(j)

m = y2j − B66

B11
(β ′

m − η2m) , j = 1, 4 . (32)

The solution of the problem (25–28) can be presented in the form

u1 =
∑4

j=1
u(j)
m wm(θmβ) exp(θmyjα)wj, u2 =

∑4

j=1
v(j)
m w′

m(θmβ) exp(θmyjα)wj.

(33)

Let us insert Eq. (33) into the boundary conditions (26) and (27). Each of the obtained
equation is multiplied by w(θmβ), except of the second one, which is multiplied by
w′(θmβ), and then integrated in the limits from 0 to s. As a result, the system of equations
is obtained

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4
∑

j=1

R(m)
1j wj = 0,

4
∑

j=1

R(m)
5j exp(zj)wj = 0,

4
∑

j=1

R(m)
2j wj = 0,

4
∑

j=1

R(m)
6j exp(zj)wj = 0.

m = 1,+∞ . (34)

R(m)
1j = y2j + B12

B11
(β ′

m − η2m), R(m)
2j = yj

(

y2j + B12

B11
β ′
m + B66

B11
η2m

)

,

R(m)
5j = y2j − B66

B11
(β ′

m − η2m), R(m)
6j = yj

B12 + B66

B11
β ′
m , zj = θmyjl , j = 1, 4 . (35)
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By equating the determinant�e of the system (34) to zero and performing elementary
operationswith columns of the determinant the following dispersion equation is obtained

�e = exp(−z1 − z2) (y2 − y1)
2 Det

∥
∥lij

∥
∥
4
i,j = 0 . (36)

l11 = R(m)
11 , l12 = y1 + y2, l13 = l11 exp(z1) , l14 = l12 exp(z2) + l11[z1z2];

l21 = R(m)
21 , l22 = y1y2 +

(

B11B22β
′′
m − B2

12β
′
m − B12B66β

′
m

)

/(B11B66) − η2m,

l23 = −l21 exp(z1), l24 = −l22 exp(z2) − l21[z1z2];
n31 = R31 = y2j − B66

B11
(β ′

m − η2m), n32 = y1 + y2,

l31 = n31 exp(z1), l32 = n32 exp(z2) + n31[z1z2]; l33 = n31, l34 = n32,

n41 = B12 + B66

B11
y1β

′
m , n42 = B12 + B66

B11
β ′
m;

l41 = n41 exp(z1), l42 = n42 exp(z2) + n41[z1z2]; l43 = −n41, l44 = −n42,

zj = θmyjl , [z1z2] = θml (exp(z2) − exp(z1))/(z2 − z1). (37)

The Eq. (36) is equivalent to the equation

Det
∣
∣lij

∣
∣
4
i,j=1 =((B12 + B66)/B11)

2K2m(η2m)Q(η2m)(1 + β ′
m exp(2(z1 + z2)))

− 4( l21 l11n32n42 + l12 l22n31n41) exp(z1 + z2)

+ (l11l22 + l21l12)(n32n41 + n31n42)(exp(2z1) + exp(2z2))

+ 2(l11l21(n31n42 + n32n41) + n31n41(l11l22 + l21l12))(exp(z2)

− exp(z1))[z1z2] + 4 l11l21n41n31[z1z2]2 = 0 . (38)

K2m

(

η(2)
m

)

= (β ′
m − η2m)

(

B11B22β
′′
m − B2

12β
′
m

B11B66
− η2m

)

− η2my1y2 ,

Q(η2m) = y1y2 + B66

B11
(β ′

m − η2m) .

If y1 and y2 are the roots of Eq. (31) with negative real parts, then, at θml → ∞, the
roots of Eq. (38) are approximated by the roots of the equation

K2m

(

η(2)
m

)

= (β ′
m − η2m)

(

B11B22β
′′
m − B2

12β
′
m

B11B66
− η2m

)

− η2my1y2 = 0 . (39)

The Eq. (39) is an analogue of the Rayleigh equation for a long enough orthotropic
rectangular plate with a free side (compare with [8–11]). Thus, the eigenfrequencies of
the problem (25–28) can be found from (38).

To find the corresponding eigenmodes, the coefficients wj , j = 1, 4 have to be
determined from the system of Eq. (34) and inserted into (33). We can take

w1 = R(m)
1 exp(z1 + 2z2) + R(m)

52 R(m)
2 exp(z1) − 2R(m)

12 R(m)
22 R(m)

51 exp(z2)

R(m)
51 R(m)

1 − R(m)
51 R(m)

2 exp(2z1) + 2R(m)
11 R(m)

21 R(m)
52 exp(z1 + z2)

,
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w2 = R(m)
51 R(m)

2 − R(m)
51 R(m)

1 exp(2z1 + z2) − 2R(m)
11 R(m)

21 R(m)
52 exp(z1)

R(m)
51 R(m)

1 − R(m)
51 R(m)

2 exp(2z1) + 2R(m)
11 R(m)

21 R(m)
52 exp(z1 + z2)

,

w3 = −R(m)
52 R(m)

1 exp(z1) + R(m)
52 R(m)

2 exp(z1 + 2z2) − 2R(m)
12 R(m)

22 R(m)
51 exp(2z1 + z2)

R(m)
51 R(m)

1 − R(m)
51 R(m)

2 exp(2z1) + 2R(m)
11 R(m)

21 R(m)
52 exp(z1 + z2)

,

w4 = exp(z2), R(m)
1 = R(m)

11 R(m)
22 − R(m)

12 R(m)
21 , R(m)

2 = R(m)
11 R(m)

22 + R(m)
12 R(m)

21 . (40)

as solutions to the system of Eq. (34) at a given dimensionless eigenfrequency
characteristic ηm.

5 Bending Vibrations of an Orthotropic Cantilever Rectangular
Plate

Consider an orthotropic rectangular plate with thickness h, width s, and length l
(Fig. 2). Consider now the problem of the existence of free bending vibrations of a
cantilever rectangular plate. Let us start with the equation of low-amplitude bending
vibrations of the classical theory of orthotropic plates [17]

μ4
(

B11
∂4u3
∂α4 + 2(B12 + 2B66)

∂4u3
∂α2∂β2 + B22

∂4u3
∂β4

)

= λu3 , (41)

where α (0 ≤ α ≤ l) and β (0 ≤ β ≤ s) are the orthogonal rectilinear coordinates of a
point of the median plane of the plate; u3 is the normal component of the displacement
vector of a point of the median plane; Bik , i, k = 1, 2, 6 are the elasticity coefficients;
μ4 = h2/12; λ = ω2ρ, whereω is the natural frequency; ρ is the density of the material.

The boundary conditions are given as follows:

∂2u3
∂α2 + B12

B11

∂2u3
∂β2

∣
∣
∣
∣
α=0

= ∂3u3
∂α3 + B12 + 4B66

B11

∂3u3
∂α∂β2

∣
∣
∣
∣
α=0

= 0, (42)

u3|α=l = ∂u3
∂α

∣
∣
∣
∣
α=l

= 0 , (43)

B12

B22

∂2u3
∂α2 + ∂2u3

∂β2

∣
∣
∣
∣
β=0,s

= ∂3u3
∂β3 + B12 + 4B66

B22

∂3u3
∂β∂α2

∣
∣
∣
∣
β=0,s

= 0 , (44)

Here the conditions (42) and (44) mean that the edges α = 0 and β = 0, s are free;
while the conditions (43) indicate that the edge α = l is rigid-clamped. The problem
(41–44) does not allow separation of variables. The differential operator corresponding
to this problem is self-conjugate and nonnegative definite. Therefore, the generalized
Kantorovich-Vlasov method of the reduction to ordinary differential equations can be
used to find the vibration eigenfrequencies and eigenmodes [12–16]. The solution of the
system (41) is searched in the form

u3 = wm(θmβ) exp(θmyα), m = 1,+∞ , (45)
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where wm(θmβ) is defined in (2). The conditions (44) are satisfied automatically. Sub-
stitute (45) into Eq. (41). After multiplying the resulting equation by wm(θmβ) and
integrating it in the limits from 0 to s the characteristic equation is obtained

Rmm = a2
(
B11

B22
y4 − 2(B12 + 2B66)

B22
β ′
my

2 + β ′
mβ ′′

m

)

− B66

B22
η2m = 0 , m = 1,+∞ ,

(46)

η2m = λ

θ2mB66
, a2 = θ2mh

2/12 , (47)

where θm and β ′
m, β ′′

m are defined in Eqs. (2) and (4), respectively. Let y3 and y4 be various
roots of Eq. (46) with non-positive real parts, y2+j = −yj , j = 3, 4. The solution of the
problem (41–44) is searched in the form

u3 =
∑6

j=3
wm(θmβ) exp(θmyjα) wj . (48)

By insertingEq. (48) into the boundary conditions (42) and (43), and aftermultiplying
the resulting equations by wm(θmβ), and integrating them in the limits from 0 to s, the
system of equations is obtained

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

6
∑

j=3

R(m)
3j Wj = 0,

6
∑

j=3

R(m)
4j Wj = 0,

6
∑

j=3

R(m)
7j Wj = 0,

6
∑

j=3

R(m)
8j Wj = 0 .

(49)

R(m)
3j = y2j − B12

B11
β ′
m, R(m)

4j = y3j − B12 + 4B66

B11
β ′
myj,

R(m)
7j = exp(zj) , R(m)

8j = yj exp(zj) ; zj = θmyjl , j = 3, 6 . (50)

By equating the determinant of system (49) �b to zero and performing elementary
operations on the columns of the determinant, the dispersion equation is obtained

�b = exp(−z3 − z4) (y4 − y3)
2 Det

∥
∥bij

∥
∥
4
i,j = 0 , (51)

b11 = R(m)
33 , b12 = y3 + y4, b13 = b11 exp(z3) ,

b14 = b12 exp(z4) + b11[z3z4];
b21 = R(m)

43 , b22 = y3y4 + β ′
m B12/B11,

b23 = −b21 exp(z3),

b24 = −b22 exp(z4) − b21[z3z4]
b31 = exp(z3), b32 = [z3z4],
b33 = 1, b34 = 0; b41 = y3 exp(z3),

b42 = exp(z4) + y3[z3z4],
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b43 = −y3,

b44 = −1; [z3z4] = θml (exp(z4) − exp(z3))/(z4 − z3); zj = θmyjl , j = 3, 4 . (52)

The Eq. (51) is equivalent to the equation

Det
∣
∣bij

∣
∣
4
i,j=1 = − K1m(ηm) (1 + exp( 2 (z3 + z4))) − 4y3 b12 b22 exp (z3 + z4)

+ (b11b22 + b21b12)(exp(2z3) + exp(2z4))

+ 2[b11b21 + y3(b11b22 + b21b12)(exp(z4) − exp(z3))[z3z4]
+ 4y3b11b21[z3z4]2 = 0, m = 1,∞ . (53)

K1m

(

η2m

)

= y23y
2
4 + 4

B66

B11
β ′
my3y4 −

(
B12

B11

)

β ′2
m . (54)

If y3 and y4 are the roots of Eq. (46) with negative real parts, then, at θml → ∞, the
roots of Eq. (53) are approximated by the roots of the equation

K1m

(

η2m

)

= y23y
2
4 + 4

B66

B11
β ′
my3y4 −

(
B12

B11

)2
(

β ′
m

)2 = 0 , m = 1,∞ . (55)

The Eq. (55) is an analogue of the Konenkov equation for a long enough orthotropic
rectangular plate with a free side (compare with [8–11, 19, 20]). Thus, eigenfrequencies
of the problem (41–44) can be found from (53).

To find the corresponding eigenmodes, the coefficients wj , j = 3, 6 have to be
determined from the system of Eq. (49) and inserted into Eq. (48). As solutions to the
system of Eq. (49) at a given dimensionless eigenfrequency characteristic ηm, it can be
taken

W3 = R(m)
3 exp(z3 + z4) − R(m)

4 exp(z3) + 2R(m)
34 R(m)

44 exp(z4)

R(m)
3 − R(m)

4 exp(2z3) + 2R(m)
33 R(m)

43 exp(z3 + z4)
,

W4 = R(m)
3 exp(2z3 + z4) − R(m)

4 exp(z4) + 2R(m)
33 R(m)

43 exp(z3)

R(m)
3 − R(m)

4 exp(2z3) + 2R(m)
33 R(m)

43 exp(z3 + z4)
,

W5 = exp(z3)[R(m)
3 + R(m)

4 exp(z4) − 2R(m)
34 R(m)

44 exp(z3)]
R(m)
3 − R(m)

4 exp(2z3) + 2R(m)
33 R(m)

43 exp(z3 + z4)
,

W6 = − exp(z4); R(m)
3 = R(m)

33 R(m)
44 − R(m)

34 R(m)
43 , R(m)

4 = R(m)
33 R(m)

44 + R(m)
34 R(m)

43 . (56)

6 Asymptotics of Dispersion Eq. (24)

6.1 Asymptotics of Dispersion Eq. (24) at εm → 0

Using the previous formulas,we assume thatη1m = η2m = η3m = ηm. Then, as εm → 0 ,
Eq. (12) transform into
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cm = y4 − B2y
2 + B11 + B66

B11
η2my

2 + (β ′
m − η2m)

(
B22

B11
β ′′
m − B66

B11
η2m

)

= 0 , m = 1,+∞ , (57)

Rmm = a2
(
B11

B22
y4 − 2(B12 + 2B66)

B22
β ′
my

2 + β ′
mβ ′′

m

)

− B66

B22
η2m = 0 , m = 1,+∞ .

(58)

Here the limiting process εm → 0 is understood in the sense that by fixing the radius
R and b– the distance between the boundary generatrices of the cylindrical panel, a
transition to a cylindrical panel of radius R′ = nR and to the limit ε′

m = 1/(nθmR) =
εm/n → 0 at n → ∞ is performed.

The Eqs. (57) and (58) are characteristic equations for the equations of planar and
bendingvibrations of orthotropic cantilever plates, respectively. The roots of theEqs. (57)
and (58) with non-positivec real parts, as in Sects. 4 and 5, are denoted by y1, y2 and
y3, y4, respectively. In the same way as in [19], it is proved that for

εm << 1; yi �= yj, i �= j, (59)

the roots χ2 of Eq. (12) can be presented as

χ2
i = y2i + α

(m)
i ε2m + β

(m)
i ε4m + ..., i = 1, 4 , m = 1,+∞ . (60)

Under the condition (59), considering the relations (16), (22) and (60) and the fact
that

M (m)
3j = M (m)

4j = M (m)
7j = M (m)

8j = O(ε2m), j = 1, 2 , (61)

Equation (24) can be reduced to the form

Det
∥
∥mij

∥
∥
∣
∣8
i,j=1 = N 2(η2m)K2

3m(η2m)Det
∣
∣lij

∣
∣4
i,j=1Det

∣
∣bij

∣
∣4
i,j=1 + O(ε2m) = 0, m = 1,+∞ ,

(62)

where Det
∣
∣lij

∣
∣4
i,j=1 and Det

∣
∣bij

∣
∣4
i,j=1 are determined by (38) and (53), respectively,

and

N (η2m) = (y3 + y1)(y3 + y2)(y4 + y1)(y4 + y2),

K3m(η2m) = (β ′
m − η2m)

(
B22

B11
β ′′
m − B66

B11
η2m

)(
B12

B12 + B66
− a2

(B12 + 4B66)

B66
β ′
m

)2

+
(

B2 − B11 + B66

B11
η2m

)

×
(

B12

B12 + B66
− a2

(B12 + 4B66)

B66
β ′
m

)

×
(
B22β

′
m + B12η

2
m

B12 + B66
+ (β ′

m − β ′′
m)

B12B22

B66(B12 + B66)
+ a2

B22

B66
β ′
mβ ′′

m

)

+
(
B22β

′
m + B12η

2
m

B12 + B66
+ (β ′

m − β ′′
m)

B12B22

B66(B12 + B66)
+ a2

B22

B66
β ′
mβ ′′

m

)2

.

(63)
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From Eq. (62), it follows that in the limit εm → 0, Eq. (24) decompose into the
totality of equations

Det
∣
∣lij

∣
∣4
i,j=1 = 0,m = 1,+∞;Det∣∣bij

∣
∣4
i,j=1 = 0,m = 1,+∞;K3M (η2m) = 0,

m = 1,+∞.
(64)

Here the first two equations are the dispersion equations of the planar and bend-
ing vibrations, respectively, as in the similar problems for an orthotropic cantilever
rectangular plate.

The roots of the third equation correspond to planar vibrations of a cylindrical panel.
The third equation appears as the result of using the equation of the corresponding
classical theory of orthotropic cylindrical shells.

If y1, y2 and y3, y4 are the roots of the Eqs. (57) and (58), respectively, with negative
real parts, then, at θml → ∞, Eqs. (24) and (62) will be transformed into the equations

Det
∥
∥mij

∥
∥
8
i,j=1 = ((B12 + B66)/B11)

2N 2(η2m)Q(η2m)K1m(η2m)K2m(η2m)K2
3m(η2m)

+ O(ε2m) +
∑4

j=1
O(exp(zj)) = 0, m = 1,+∞ . (65)

From Eq. (65), it follows that, for εm → 0 and θml → ∞, the roots of dispersion
Eq. (24) are approximated by roots of the equations.

K1m(η2m) = 0, m = 1,+∞; K2m(η2m) = 0, m = 1,+∞; K3m(η2m) = 0, m = 1,+∞ .

(66)

The first two equations of (66) are the dispersion equations of the bending and planar
vibrations of long enough orthotropic cantilever rectangular plate with free sides (see
Eqs. (55) and (39)). Hence, for small εm and large θml, the approximate values of the
roots of Eq. (24) correspond to the roots of Eqs. (64) and (66) (compare Tables 1 and 2).

6.2 Asymptotics of Dispersion Eq. (24) at θml → ∞
In the previous formulas it was assumed that the roots χ1, χ2, χ3, and χ4 (the roots of
Eq. (12)) have negative real parts. Then Eq. (24) can be reduced to the form

Det
∥
∥mij

∥
∥8
i,j=1 = Det

∥
∥mij

∥
∥4
i,j=1.Det

∥
∥mij

∥
∥8,4
i=5,j=1 +

∑4

j=1
O(exp(θmχj l)) = 0 , m = 1,+∞ .

(67)

Hence, it follows that for θml → ∞ the roots of Eq. (24) are approximated by roots
of the equations

Det
∥
∥mij

∥
∥
4
i,j=1 = 0 , m = 1,+∞; Det

∥
∥mij

∥
∥
8,4
i=5,j=1 = 0, m = 1,+∞ . (68)

The first totality of Eq. (68) determines all possible localized free vibrations at the
free end faces of an orthotropic semi-infinite cylindrical panel, or determines all possible
localized free vibrations at the free faces of an orthotropic cantilever cylindrical panel.
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The second totality of Eq. (68) determines all possible localized free vibrations at
the free end faces of an orthotropic semi-infinite cantilever cylindrical panel.

Notice, that if εm → 0, the equations of (68) have the following asymptotic forms

Det
∥
∥mij

∥
∥
4
i,j=1 = ((B12 + B66)/B11)

2N (η2m)K1m(η2m)K2m(η2m)K3m(η2m)

+ O(ε2m) , m = 1,+∞ ,

Det
∥
∥mij

∥
∥8,4
i=5,j=1 = N (η2m)K3m(η2m)Q(η2m) + O(ε2m) , m = 1,+∞ . (69)

Thus, by taking into account (68) and (69), we conclude that the dispersion Eq. (24)
for θml → ∞ and εm → 0 take the form (65).

7 Numerical Results

In the Table 1 the values of some ηm roots of the first two equations of (64) and (66) are
given for an orthotropic cantilever rectangular boron plastic plate with parameters [18]

ρ = 2 · 103 kg/M 3; E1 = 2.646. 1011N/M 2 ;
E2 = 1.323 · 1010; G = 9.604 · 109 ; ν1 = 0.2 ; ν2 = 0.01 . (70)

In the Table 2 some dimensionless characteristics of the eigenvalues ηm for predom-
inantly bending, predominantly planar and nonsymmetrical vibrations of an orthotropic
cantilever cylindrical boron plastic panel with the same mechanical characteristics and
the geometrical parameters: R = 40 ; s = 4.00167; l = 5, l = 15 . are given.

In the Table 2 after the characteristics of eigenfrequencies the type of vibration is
indicated: b- predominantly bending, e- predominantly planar. For 1 ≤ m ≤ 16, the
third equation of (64) has no roots. The elasticity modules E1 and E2 correspond to the
directions of generatrix and directrix, respectively.

In the Table 2, the case with η1 = η2 = η3 = η corresponds to the problem (5–8).
The case with η1 = η2 = 0 and η3 = η corresponds to the problem (5–8), where are no
tangential components of the inertia force, i.e., we have the predominantly bending type
of vibrations. The case with η1 = η2 = η, η3 = 0 corresponds to the predominantly
planar type of vibrations.

The following equalities hold for isotropic materials:

B12

B11
= B12

B22
= υ ,

B66

B11
= B66

B22
= 1 − υ

2
. (71)

Hence, in the dispersion equations and the characteristics calculations it can be set

B11 = B22 = 1, B12 = υ, B66 = (1 − υ)/2 .
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Table 1. Characteristics of Eigenfrequencies of a cantilever rectangular Boron Plate with s =
4, l = 5, l = 15.

m θm
K1(ηm) = 0, l = 5;
K1(ηm) = 0, l = 15.

Det
∣
∣bij

∣
∣4
i,j=1 = 0, l = 5;

Det
∣
∣bij

∣
∣4
i,j=1 = 0, l = 15.

K2(ηm) = 0, l = 5;
K2(ηm) = 0, l = 15.

Det
∣
∣lij

∣
∣4
i,j=1 = 0, l = 5;

Det
∣
∣lij

∣
∣4
i,j=1 = 0, l = 15.

1 1.95473 0.01089 0.01188 – –

0.01089 0.01097 – –

2 2.74891 0.01918
0.01918

0.01972
0.01922

0.96592
0.96592

0.99608
0.96819

3 3.52957 0.02442
0.02442

0.02483
0.02446

0.97732
0.97732

1.01011
0.97768

4 4.27693 0.02860
0.02860

0.02891
0.02862

0.95744
0.95744

0.97798
0.95758

5 5.04581 0.03433
0.03433

0.03458
0.03435

0.96497
0.96497

0.97703
0.96501

6 6.09849 0.04134
0.04134

0.04154
0.04136

0.96410
0.96410

0.97014
0.96411

7 7.21629 0.04896
0.04896

0.04912
0.04897

0.96422
0.96422

0.96730
0.96422

8 8.32693 0.05648
0.05648

0.05662
0.05649

0.96419
0.96419

0.96579
0.96419

9 9.43718 0.06401
0.06401

0.06413
0.06407

0.96419
0.96419

0.96504
0.96419

10 10.5474 0.07154
0.07154

0.07165
0.07155

0.96419
0.96419

0.96465
0.96419

11 11.6577 0.07908
0.07908

0.07917
0.07912

0.96419
0.96419

0.96444
0.96419

12 12.7680 0.08661
0.08661

0.08669
0.08661

0.96419
0.96419

0.96432
0.96419

13 13.8782 0.09414
0.09414

0.09421
0.09414

0.96419
0.96419

0.96426
0.96419

14 14.9887 0.10167
0.10167

0.10174
0.10167

0.96419
0.96419

0.96423
0.96419

15 16.0962 0.10918
0.10918

0.11047
0.10925

0.96419
0.96419

0.96421
0.96419

16 17.1935 0.11663
0.11663

0.11668
0.11663

0.96419
0.96419

0.96420
0.96419
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Table 2. Characteristics of Eigenfrequencies for Predominantly Bending, Predominantly Pla-
nar and Nonsymmetrical Vibrations of an Cantilever Cylindrical Boron Plastic Panel with
s = 4.00167, l = 5, l = 15.

m θm

η1m = η2m = 0,

η3m = ηm, l = 5.

η1m = η2m = 0,

η3m = ηm, l = 15.

η1m = η2m = ηm,

η3m = 0, l = 5.

η1m = η2m = ηm,

η3m = 0, l = 15.

η1m = η2m = η3m = ηm ,

l = 5 .

η1m = η2m = η3m = ηm ,

l = 15 .

1 1.95391 0.01127 b – 0.01127 b –

0.01006 b – 0.01006 b –

2 2.74776 0.01990 b
0.01942 b

0.99609 e
0.99608 e

0.01990 b 0.99759 e
0.01947 b 0.99608 e

3 3.52810 0.02479 b
0.02440 b

1.00341 e
0.97515 e

0.02479 b 1.01795 e
0.02440 b 0.97132 e

4 4.27542 0.02871 b
0.02861 b

0.97534 e
0.95499 e

0.02890 b 0.97836 e
0.02861 b 0.96969 e

5 5.04492 0.03458 b
0.03435 b

0.97309 e
0.96230 e

0.03458 b 0.97570 e
0.03430 b 0.96391 e

6 6.09841 0.04154 b
0.04136 b

0.96971 e
0.96370 e

0.04154 b 0.97053 e
0.04136 b 0.96445 e

7 7.21629 0.04911 b
0.04896 b

0.96684 e
0.96382 e

0.04911 b 0.96727 e
0.04896 b 0.96420 e

8 8.32693 0.05662 b
0.05649 b

0.96557 e
0.96398 e

0.05662 b 0.96580 e
0.05649 b 0.96419 e

9 9.43718 0.06413 b
0.06413 b

0.96492 e
0.96407 e

0.06413 b 0.96505 e
0.06413 b 0.96419 e

10 10.5474 0.07165 b
0.07155 b

0.96457 e
0.96411 e

0.07165 b 0.96466 e
0.07155 b 0.96419 e

11 11.6577 0.07917 b
0.07908 b

0.96439 e
0.96414 e

0.07917 b 0.96444 e
0.07908 b 0.96419 e

12 12.7679 0.08669 b
0.08661 b

0.96429 e
0.96416 e

0.08669 b 0.96433 e
0.08661 b 0.96419 e

13 13.8785 0.09422 b
0.09422 b

0.96423 e
0.96417 e

0.09422 b 0.96427 e
0.09422 b 0.96419 e

14 14.9864 0.10172 b
0.10172 b

0.96421 e
0.96417 e

0.10172 b 0.96423 e
0.10172 b 0.96419 e

15 16.1102 0.10934 b
0.10928 b

0.96418 e
0.96601 e

0.10934 b 0.96422 e
0.10928 b 0.96419 e

16 17.2065 0.11677 b
0.11672 b

0.96419 e
0.96418 e

0.11677 b 0.96421 e
0.11672 b 0.96419 e
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8 Conclusion

Numerical calculations show that the first eigenfrequencies localized at the free end of
the cantilever cylindrical panel where the normal component of inertia force is not zero
are the frequencies of the predominantly bending type.Alongwith the first frequencies of
quasitransverse vibrations, there are frequencies of undampedquasitangential vibrations.
With the increase of m, these vibrations become of Rayleigh type. The analysis of the
numerical data indicates that for εm → 0 free vibrations of cantilever cylindrical panel
decompose into quasitransverse and quasitangential vibrations, and their frequencies
tend to the frequencies of a cantilever rectangular plate. Numerical results show that
asymptotic formulas (62) and (65) of dispersion Eq. (24) and the mechanism presented
here are good reference points for finding the eigenfrequencies of the problem (5–8). The
first eigenfrequencies of vibrations of cantilever cylindrical panel depend on the chosen
basic functions satisfying the same boundary conditions. For θm → ∞, the frequencies
of vibrations at free end faces of a finite cantilever cylindrical panel become practically
independent of the basic functions and of the boundary conditions on generatrices [8, 9,
20].

Note that in the current work and in [20] the same basic functions are used for
Kantorovich-Vlasov method and the characteristic equations of the classical equations
of cylindrical shells and plates coincide. Meanwhile due to the different boundary con-
ditions the dispersion equations of the problems are different and lead to different
distributions of natural frequencies.

Appendix

The analytical expressions for mij are given below:

m11 = Hχ4
1 + d1χ

2
1 + d2; m12 = Hf 3 + d1f 1;

m13 = Hf 2 + d1, ; m14 = Hf ;
m21 = Tχ5

1 + d3χ
3
1 + d4χ1; m22 = Tf 4 + d3f 2 + d4 ;

m23 = Tf 3 + d3f 1; m24 = Tf2 + d3;
m31 = δmχ6

1 + d5χ
4
1 + d6χ

2
1 + d7;

m32 = δmf 5 + d5f 3 + d6f 1;
m33 = δmf 4 + d5f 2 + d6;
m34 = δmf3 + d5f1;
m41 = δmχ7

1 + d8χ
5
1 + d9χ

3
1 + d10χ1;

m42 = δmf 6 + d8f 4 + d9f 2 + d10;
m43 = δmf 5 + d8f 3 + d9f 1;
m44 = δmf4 + d8f2 + d9; δm = 1 + 4a2 ε2m ;

mi5 = (−1)i−1mi1 exp(z1);
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mi6 = (−1)i−1(mi2 exp(z2) + mi1[z1z2]) ;
mi7 = (−1)i−1(mi3 exp(z3) + mi2[z2z3] + mi1[z1z2z3]);
mi8 = (−1)i−1(mi4 exp(z4) + mi3[z3z4] + mi2[z2z3z4] + mi1[z1z2z3z4]), i = 1, 4;

(72)

n51 = Fχ4
1 + γ1χ

2
1 + γ2,

n52 = F f 3 + γ1f 1 ,

n53 = F f 2 + γ1 , n54 = F f1;
n61 = γ3χ

3
1 + γ4χ1,

n62 = γ3f 2 + γ4 ,

n63 = γ3f 1 , n64 = γ3;
n71 = δmχ4

1 + γ5χ
2
1 + γ6,

n72 = δmf 3 + γ5f 1 ,

n73 = δm f 2 + γ5 ,

n54 = δmf1;
n81 = δmχ5

1 + γ5χ
3
1 + γ6χ1 ,

n82 = δmf 4 + γ5f 2 + γ6 ;
n83 = δmf 3 + γ5f 1;
m84 = δmf2 + γ5;

mi1 = ni1 exp(z1); mi2 = ni2 exp(z2) + ni1[z1z2] ;
mi3 = ni3 exp(z3) + ni2[z2z3] + ni1[z1z2z3];
mi4 = ni4 exp(z4) + ni3[z3z4] + ni2[z2z3z4] + ni1[z1z2z3z4], i = 5, 8 ;

m5 4+j = n5 j , m6 4+j = −n6 j , m7 4+j = n7 j , m8 4+j = −n8 j ;

H = −a2
B12 + 4B66

B11
β ′
m; T = −B12

B66
a2δmβ ′

m; F = −a2
B12 + 4B66

B11
;
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γ1 = B1 + a2
B11B22β

′′
m + B12B66β

′
m + 4B2

66β
′
m

B11B66
− a2

B12 + 4B66

B11
η21m;

γ2 = −B22

B11
(1 + a2β ′′)(β ′

m − η21m);

γ3 = B12

B11
δm − a2β ′

m
(B12 + B66)(B12 + 4B66)

B11B66
;

γ4 = B12B22

B11B66
(β ′

m − β ′′
m) + B22

B11
β ′
m + B12

B11
η22m
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+ a2
B22(B12 + 4B66)

B11B66
β ′
mβ ′′

m − a2ε2mβ ′′
m
B12B22

B11B66
;

γ5 = B66

B11
η21m + η22m − B2 − a2ε2m

(
B22

B66
β ′′
m + 4B66

B11
(β ′

m − η21m)

)

;

γ6 = (β ′
m − η21m)

(
B22

B11
β ′
m − B66

B11
η22m + a2ε2mβ ′′

m
B22

B11

)

;
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