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Abstract. Using the system of equations corresponding to the classical theory of
orthotropic cylindrical shells, the free vibrations of thin elastic orthotropic can-
tilever cylindrical panel are investigated. In order to calculate the natural frequen-
cies and to identify the respective natural modes, the generalized Kantorovich-
Vlasov method of reduction to ordinary differential equations is used. Dispersion
equations for finding the natural frequencies of possible types of vibrations are
derived. An asymptotic relation between the dispersion equations of the problem at
hand and the analogous problem for a cantilever rectangular plate is established. A
relation between the dispersion equations of the problem and the boundary-value
problem of a semi-infinite orthotropic cantilever cylindrical panel is derived. As
an example, the values of dimensionless characteristics of natural frequencies are
derived for an orthotropic cantilever cylindrical panel.

Keywords: Boundary vibrations - Eigenfrequencies - Cylindrical panel

1 Introduction

Itis known that, at the free edge of an orthotropic plate planar and flexural vibrations can
occur independently of each other [1-6]. When the plate is bent these vibrations become
coupled and giving raise to two new types of vibrations localized at the free edge: pre-
dominantly tangential and predominantly bending vibrations. The transformation of the
one type of vibration into the other occurs at the free end of a thin cylindrical elastic
panel. For these vibrations a complex distribution of frequencies of natural vibrations
occurs depending on the geometrical and mechanical parameters of finite and infinite
cylindrical panels [4—11]. With the increase of the number of free edges of a cylindrical
panel the distribution becomes increasingly complex [5—11]. Recently free vibrations
of a thin elastic orthotropic cylindrical panel with free edges were investigated [20].
Using generalized Kantorovich-Vlasov method the corresponding dispersion equations
are derived to find the natural frequencies of possible types of vibrations. In general,
the form of dispersion equations depends on the boundary conditions. Therefore, the
frequency distributions will be different for different boundary conditions. It would be
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interesting to investigate the change in distribution of natural frequencies with the change
in boundary conditions by considering cantilever plates (orthotropic rectangular plates
with one rigid clamped edge and the other three edges free) and cantilever cylindrical
panels (orthotropic cylindrical panels with one rigid clamped end and the other three
edges free). The investigation of the edge resonance of cantilever plates and cantilever
cylindrical panels is of practical importance since such elements are important compo-
nents of modern structures and constructions. Therefore, the question of free vibrations
of these elements is of vital importance and it demands special attention. Meanwhile,
it is one of the most difficult problems in the theory of vibrations of plates and shells
[5]. In practice these difficulties are resolved by using a combination of analytical and
asymptotic theories, as well as by numerical methods.

In the present work, for the first time, free vibrations of cantilever plate and can-
tilever cylindrical panel are investigated. It is shown that due to difference in boundary
conditions the dispersion equations of the considered problem is different from the one
derived in [20]. It is proved that the problem prevents separation of variables for the
given boundary conditions. It can be proved that such problems for cylindrical shells of
orthotropic materials with simple boundary conditions are self-conjugate and nonnega-
tive definite. Therefore, the generalized Kantorovich-Vlasov method can be applied to
them [12-16]. As the basic functions the following eigenfunctions of the problem are
used:
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with a limit point at the infinity. The eigenfunctions corresponding to the eigenvalues
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This eigenfunctions with their first and second derivatives define an orthogonal basis
in a Hilbert space L»[0, s] [16]. Here 6,,, m = 1, 400, are the positive zeros of the
determinant of Vronsky for functions (3) at the point 8 = s. Let us define

N

By = f (W, (6mPB)) dB/ f Wi OmB))*d B,

0
s

B —/(W”(Gmﬁ) dﬁ// W, On ) dp . “4)
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Notice that, the derivatives in formulas (3) and (4) are taken with respect to 6,,8 and
B, — 1,8y — 1 atm — +o0.

2 The Statement of the Problem and the Basic Equations

It is assumed that the generatrices of the cylindrical panel are orthogonal to the ends of
the panel. The curvilinear coordinates (¢, 8) are defined on the median surface of the
shell where (0 < o < [) and B(0 < B < s) are the lengths of the generatrix and the
directing circumference, respectively; [ — is the length of the panel; and s — is the length
of the directing circumference.

As the initial equations describing vibrations of the panel, we will use the equations
corresponding to the classical theory of orthotropic cylindrical shells written in the
selected curvilinear coordinates « and 8 (Fig. 1):
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Here, u, up and u3 are projections of the displacement vector on the directions «
and B, and on the normal to the median surface of the shell, respectively; R is the radius
of the directing circumference of the median surface; u* = h?/12 (h is the thickness of
the shell); A = w?p, where w is the angular frequency, p is the density of the material;
Bj; are the elasticity coefficients. The boundary conditions has the form [17]:
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Fig. 1. Middle surface of a cylindrical panel
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Relations (6) and (8) are the conditions of free edges for« = 0 and 8 = O, s,
respectively, while conditions (7) indicate that the edge o = [ is rigid-clamped.

3 The Derivation and Analysis of the Characteristic Equations

Let’s formally replace the spectral parameter A by A1, A2 and A3 in the first, second, and
third equations of the system (5), respectively. The solution of system (5) is searched in
the form

(ur, uz, u3) = {UpWmnOmB)s VW, OmB), Wi (Omp)} exp(@mxe), m =1, +o0.

Here,w,, (6,,8), m = 1, 0o, are determined from (2) and u,,, v,, and x are unknown
constants. In this case, the conditions (8) are obeyed automatically. Let us insert
Eq. (9) into Eq. (5). The obtained equations are multiplied by the vector functions
(Wi (6mB), Wi (OmPB), wm(6mB)) in a scalar way and then integrated in the limits from 0
to s. From the first two equations we have
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(cm + Siazgmdm)vcm = Em{ by — azgmlm]s (11)

From the third equation, by taking into account the relations (10) and (11), the
characteristic equation is obtained
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Let xj, j = 1, 4, be pairwise different roots of Eq. (12) with non-positive real parts and

Xarji=—Xj»J =1, 1,4. Let (u1 Sy ,u3)) j =1, 8, be nontrivial solutions of type (9)

of the system (5) at x = x;, j = 1, 8, respectively. The solution of the problem (5-8) is
searched in the form

8 : —
@ ;
u; = i1 u wj, i=1,3. (14)

Let us insert Eq. (14) into the boundary conditions (6) and (7). Each of the obtained
equation is multiplied by w(6,,8), except of the second one, which is multiplied by
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w'(6,,8), and then integrated in the limits from O to s. As a result, we obtain the system
of equations.
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The superscript j in parentheses means that the corresponding function is taken at
X = x;- In order to the system (15) has a nontrivial solution, it is necessary and sufficient
that
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It is shown numerically that the left side of this equality becomes small when any
two roots of Eq. (12) become close to each other. This highly complicates calculations
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and can lead to false solutions. It turns out that from the left side of Eq. (17) a multiplier
that tends to zero can be separated when the roots approach each other. Let us introduce
the following notations:

[2izj] = Oml (exp(zi) — exp(z))/ (@i — 3)s [zizjzx] = Ol (2] — [zizk])/ (z — 2,
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03 = 03(X1, X25 X3, X4) = X1X2X3 + X1X2X4 + X1X3X4 + X2 X3 X4,

04 = 04(X1, X2, X3, X4) = X1X2X3X4>
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In this case, 54 = 64 = 03 = 0. Let f,, n = 1, 6, be a symmetric polynomial of
nth order in variables x1, x2, x3, xa. It is known that it can be uniquely expressed in
terms of elementary symmetric polynomials. By introducing the notations.
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The expressions for m;; are given in Appendix 1. The Eq. (17) are equivalent to the
equations

8 —
ije1 =0, m=100. (24)

Det|my|

By taking into account the possible relations between A1, A and A3 we conclude
that Eq. (24) determine frequencies of the corresponding types of vibrations. For A1 =
Ay = A3 = A, the Eq. (12) are the characteristic equations of the system (5), and the
Eq. (24) are the dispersion equations of the problem (5-8).

In Sect. 6, the asymptotics of the dispersion Eq. (24) for ¢,,, = 1/6,,R — 0 (transition
to acantilever rectangular plate or to vibrations localized at the free edges of the cantilever
cylindrical panel) and for ,,/ — oo (transition to a semi-infinite cantilever cylindrical
panel or to vibrations localized at the free edges of the cantilever cylindrical panel) are
investigated. For checking the reliability of the asymptotic relations found in Sect. 6, the
free planar and bending vibrations of a cantilever rectangular plate are investigated in
the next two sections.
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4 Planar Vibrations of an Orthotropic Cantilever Rectangular
Plate

Let an orthotropic rectangular plate is defined in a triorthogonal system of rectilinear
coordinates (¢, B, y) with the origin on the free face plane such that the coordinate plane
af coincides with the midsurface of the plate and the principal axes of symmetry of the
material are aligned with the coordinate lines (Fig. 2). Let s and [ be the width and the
length of the plate, respectively. The problem of the existence of free planar vibrations
of a cantilever rectangular plate is investigated. As the initial equations consider the
equations of low-amplitude planar vibrations of the classical theory of orthotropic plates
[17]

B 82u1 B 82141 B B 82u2 g
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Fig. 2. Rectangular plate with rigid clamped edge

Here o (0 <o <I)and B (0 < B < s) are the orthogonal rectilinear coordinates
of a point on the middle surface; u; and u, are the displacements in « and 8 directions,
respectively; Bix, i,k = 1,2, 6, are the coefficients of elasticity; A = a)zp, where w
is the natural frequency; and p is the density of the material. The boundary conditions
have the form [17]

3 B2 0 3 3
an ot 9k g, (26)
da ' By B |y_o 0o 0B |,—o
Utly=; = u2lg=; =0, (27)
B2 0 3 3 3
Sipow  ouz _ dm  om =0. (28)
B11 d« 9B lg=0,s dor 0B lg=0,s

Here conditions (26) and (28) mean that the edges « = 0 and 8 = 0, s are free, while
conditions (27) indicate that the edge « = [ is rigid-clamped. The problem (25-28) does
not allow separation of variables. The differential operator corresponding to this prob-
lem is self-conjugate and nonnegative definite. Therefore, the generalized Kantorovich-
Vlasov method of the reduction to ordinary differential equations can be used to find
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vibration eigenfrequencies and eigenmodes [12—16]. The solution of the system (25) is
searched in the form

(u1, w2) = {UupwWmOnB), VW, (6mPB)} expOmya), m =1, +00. (29)

In this case, the conditions (28) are satisfied automatically. Let us insert (29)
into Eq. (25). Then, the obtained equations are multiplied by vector functions
(wm(Gmﬁ), w;n(Qm,B)) in a scalar way and integrated in the limits from O to s. As a
result, the system of equations is obtained
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where n,zn =/ (9,3,366), 6, and ,8,/,1, /3,’[,, are determined in Egs. (2) and (4), respec-
tively. By equating the determinant of system (30) to zero, the following characteristic
equation of the system of Eq. (25) is found:
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Let y; and y, be various roots of Eq. (31) with non-positive real parts and y,4; =
—yj, j =1, 2. As the solution of system (30) fory =y;,j = 1, 4, we take
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The solution of the problem (25-28) can be presented in the form
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Let us insert Eq. (33) into the boundary conditions (26) and (27). Each of the obtained
equation is multiplied by w(6,,8), except of the second one, which is multiplied by
w' (0 B), and then integrated in the limits from 0 to 5. As a result, the system of equations
is obtained
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By equating the determinant A, of the system (34) to zero and performing elementary
operations with columns of the determinant the following dispersion equation is obtained

A = exp(—21 — 22) (2 = yn)? Det |y |}, =0 . (36)
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The Eq. (36) is equivalent to the equation
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If y1 and y; are the roots of Eq. (31) with negative real parts, then, at 6,/ — o0, the
roots of Eq. (38) are approximated by the roots of the equation

B11Bxnpl — B2,B,
Kom (nf,f’) = (B}, — ni)( mo L2t =y =0. (39

B11Bgg

The Eq. (39) is an analogue of the Rayleigh equation for a long enough orthotropic
rectangular plate with a free side (compare with [8—11]). Thus, the eigenfrequencies of
the problem (25-28) can be found from (38).

To find the corresponding eigenmodes, the coefficients w;, j = 1, 4 have to be
determined from the system of Eq. (34) and inserted into (33). We can take

Rim) exp(z1 + 220) + Rg;)Rgm) exp(z1) — 2Ri’g)R(2';)Rg;’) exp(z2)
RIVR™ — RUPRY™ exp(2z1) + 2RV RVPRE exp(zi + 22)

wp =
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KR — RERE explazy +2) — RYRERE expn

" RIVR™ — RUVRY™ exp(2z1) + 2RV RIVRY exp(zi +22)

s = _Rgg) R(lm) exp(z1) + Rg';')Rgm) exp(z1 +2z2) — ZRE'S)R;';)R%’) exp(2z1 + 22)
Rg’;’)RY") - Rg’f)R;m) exp(2z1) + 2R(1"11)R§"11)Rgg) exp(z1 + 22)

= explen), R{" = RYRY — RIVRY, RY = RPRY 4 RIVRS). (40)

as solutions to the system of Eq. (34) at a given dimensionless eigenfrequency
characteristic 1,,.

5 Bending Vibrations of an Orthotropic Cantilever Rectangular
Plate

Consider an orthotropic rectangular plate with thickness 4, width s, and length !
(Fig. 2). Consider now the problem of the existence of free bending vibrations of a
cantilever rectangular plate. Let us start with the equation of low-amplitude bending
vibrations of the classical theory of orthotropic plates [17]

(B 84£+2(B +2B )ﬂﬂe Fus\ (41)
M Ry 12 66 da20p? 22 B ) = 3,
where o (0 < a <[)and 8 (0 < B < s) are the orthogonal rectilinear coordinates of a
point of the median plane of the plate; u3 is the normal component of the displacement
vector of a point of the median plane; By, i,k = 1, 2, 6 are the elasticity coefficients;
u* = h?/12; & = w?p, where w is the natural frequency; p is the density of the material.
The boundary conditions are given as follows:

32 By 82 33 By +4Bgs 93
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3u3
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Here the conditions (42) and (44) mean that the edges « = 0 and B8 = 0, s are free;
while the conditions (43) indicate that the edge o = [ is rigid-clamped. The problem
(41-44) does not allow separation of variables. The differential operator corresponding
to this problem is self-conjugate and nonnegative definite. Therefore, the generalized
Kantorovich-Vlasov method of the reduction to ordinary differential equations can be
used to find the vibration eigenfrequencies and eigenmodes [12—16]. The solution of the
system (41) is searched in the form

u3 = W (Onp) exp(@pyx), m=1,+00, (45)
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where wy,,(6,,8) is defined in (2). The conditions (44) are satisfied automatically. Sub-
stitute (45) into Eq. (41). After multiplying the resulting equation by w,,(6,,8) and
integrating it in the limits from O to s the characteristic equation is obtained

B 2(B12 + 2B, B
R = a?(Sitys - 2B 020 gy oy g g} Do g = oo,
B B B
(46)
2 A 2 _ 2,2
ps , a”=6,h"/12 | (47)

- 93,366

where 6,, and B, , B, are defined in Eqs. (2) and (4), respectively. Let y3 and y4 be various
roots of Eq. (46) with non-positive real parts, y21; = —y; , j = 3, 4. The solution of the
problem (41-44) is searched in the form

6
us =3 Wn(Onf) expOnyjer) W (48)
By inserting Eq. (48) into the boundary conditions (42) and (43), and after multiplying

the resulting equations by wy,(6,,8), and integrating them in the limits from O to s, the
system of equations is obtained

6 6

(m) (m)
Y Ry'W;=0, Y Ry"W; =0,
j=3 j=3

(49)
6 6
(m) (m)
SRPw =0 3w =0
=3 =
B By + 4B
(my _ 2 DI12 (my _ 3 _DI2 66 o/
Ry™=0j = g, Pmw Ry =2 = —p—Puis
R%ﬂ) = exp(z)) jo?” =yjexp(z) ; zj = Omyil,j=3,6. (50)

By equating the determinant of system (49) A, to zero and performing elementary
operations on the columns of the determinant, the dispersion equation is obtained

Ap = exp(—z3 — 24) (s — y3)* Det by [}, =0 , (51)

bii =Ry, bix=ys+ys biz = b1 exp(z).
b1a = bip exp(z4) + b11lz3zal;

by =Ry, by =yiys+ B}, Bia/Bi1,

bz = —ba1 exp(z3),

bya = —b2s exp(z4) — b21lz324]

b1 =exp(z3), b3z = [z3z4],

b33 =1, b3s =0; bs = y;3exp(z3),

bay = exp(z4) + y3lz3zal,
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baz = —ys,
bay = —1; [z324] = Ol (exp(z4) — exp(23)) /(24 — 23); zj = Owyjl . j =3.4. (52)

The Eq. (51) is equivalent to the equation

4

Dez|bij}i,j:1 =

— Kim(m) (1 +exp( 2 (z3 + z4))) — 4y3 12 b2o exp (z3 + 24)
+ (b11b22 + b21b12) (exp(2z3) + exp(224))
+ 2[b11b21 + y3(b11b22 + b21b12) (exp(z4) — exp(z3))[2324]
+4ysbibalzzal’ =0, m=T,00. (53)

Beg Bz
Klm(n,i) =35 + 4= Bryava — (—)ﬁ,’ﬁ- (54)
B B

If y3 and y4 are the roots of Eq. (46) with negative real parts, then, at 6,/ — o0, the
roots of Eq. (53) are approximated by the roots of the equation

2
Kin(n) =33 +4?ﬂ,’ny3y4 - (@) ()’ =0.m=Tcc. (55
11 By

The Eq. (55) is an analogue of the Konenkov equation for a long enough orthotropic
rectangular plate with a free side (compare with [8-11, 19, 20]). Thus, eigenfrequencies
of the problem (41-44) can be found from (53).

To find the corresponding eigenmodes, the coefficients w;, j = 3,6 have to be
determined from the system of Eq. (49) and inserted into Eq. (48). As solutions to the
system of Eq. (49) at a given dimensionless eigenfrequency characteristic 1,,, it can be
taken

(m

RY"” exp(z3 +z4) — RY" exp(z3) + 2RS, Ry, exp(z4)
Ws == _ pim R ’
Ry — R, exp(2z3) + 2R33° Ry exp(z3 + z4)
_ Ré’") exp(2z3 + z4) — Rgm) exp(z4) + 2Rgn31
Rgm) _ Rf‘m) exp(2z3) + 2R§’§') ng’) exp(z3 + z4)
exp(z3)[RY" + RY" exp(zs) — 2RYy RYy exp(z3)]
R§'”) - Rim) exp(2z3) + 2R§'§1)R%1) exp(z3 +z4)

We = —expCeo; RS = RIRE — RYREY. R = RIRYY + RIS . (56)

) p(m)
R,y exp(z
W, 43 €Xp(z3)

Ws =

6 Asymptotics of Dispersion Eq. (24)

6.1 Asymptotics of Dispersion Eq. (24) at e, — 0

Using the previous formulas, we assume that 1, = 12;, = 13 = - Then,ase,, — 0,
Eq. (12) transform into
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Cm:)74—32}’2“'31%”3%6 2 2+(ﬁm M (@ﬁm_iﬁ %n)ZO’m:l’+oo’ 7
B 2(B12 + 2B B

Rmm:a2<iy4_ ( 12 66)[8/ 2_{_[3 13”>_ﬁnr2n:0,m:1,+oo
By By By

Here the limiting process €,, — 0 is understood in the sense that by fixing the radius
R and b- the distance between the boundary generatrices of the cylindrical panel, a
transition to a cylindrical panel of radius R" = nR and to the limit &/, = 1/(n6,R) =
em/n — 0 at n — oo is performed.

The Egs. (57) and (58) are characteristic equations for the equations of planar and
bending vibrations of orthotropic cantilever plates, respectively. The roots of the Egs. (57)
and (58) with non-positivec real parts, as in Sects. 4 and 5, are denoted by y1, y» and
Y3, ya, respectively. In the same way as in [19], it is proved that for

em << 1y yi&y, i #], 59)
the roots x2 of Eq. (12) can be presented as
xF=y a2+ ™Mt 4., i=1,4, m=T, +oo . (60)

Under the condition (59), considering the relations (16), (22) and (60) and the fact
that

My =M =My = M = 0(el). j=1.2, (61)

Equation (24) can be reduced to the form

Det|[my ||} ,_, = N2(2)K3, (i2)Det|ly} ,_ Detlby[;,_ + 0(2) =0, m=T,Fo0,

(62)

ij=1 "

where Det|l,-j|?'j: ! and Det|b,-j|?j:1 are determined by (38) and (53), respectively,
and

N2 = 3 +y) 3 +y2) 04 + y1) 4 + y2),
B B B By, + 4B 2
Kam(n2) = (B, — ><ﬁﬁ % 3,,)( L p0Bot 66)/3,’")

Bl Bi2 + Bes Bee
B11 + Bss Bio (B12 + 4Bgs)
Bt (B awatie,
B Bi2 + Beg Bes
Bxnpl, + Bian? / Bi2B2» By
(M + By = B+ a* =B Bl
B12 + Beg Bes(B12 + Bes) Bee
2
B2 B, + Bian Bi2B2» 322
(M + By =B+ a* ,3m,3”
B12 + Bes Bee(B12 + Bes)

(63)
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From Eq. (62), it follows that in the limit ¢,, — 0, Eq. (24) decompose into the
totality of equations

4 —_— 4 _
Det|l,'j|l.’j:1 =0,m=1, +o0; Det}b,'j|l.7j:1 =0,m=1, +o0; K3y (n,zn) =0, 64)
m=1, +00.

Here the first two equations are the dispersion equations of the planar and bend-
ing vibrations, respectively, as in the similar problems for an orthotropic cantilever
rectangular plate.

The roots of the third equation correspond to planar vibrations of a cylindrical panel.
The third equation appears as the result of using the equation of the corresponding
classical theory of orthotropic cylindrical shells.

If y1, y2 and y3, y4 are the roots of the Egs. (57) and (58), respectively, with negative
real parts, then, at 6,,/ — o0, Egs. (24) and (62) will be transformed into the equations

8

ii=1 = (B2 + Bo6)/B1)> N> () Q1) Kt () Ko (1) K3, (07)

4 P
+0@2) + ZFI O(exp(z)) =0, m=T, 400 . (65)

Det |

From Eq. (65), it follows that, for ¢,, — 0 and 6,,/ — o0, the roots of dispersion
Eq. (24) are approximated by roots of the equations.

Kin(2) =0, m=1,400; Kan(n2) =0, m=1,+00; K3u(n2) =0, m=1, o0 .
(66)

The first two equations of (66) are the dispersion equations of the bending and planar
vibrations of long enough orthotropic cantilever rectangular plate with free sides (see
Egs. (55) and (39)). Hence, for small ¢, and large 6,,/, the approximate values of the
roots of Eq. (24) correspond to the roots of Egs. (64) and (66) (compare Tables 1 and 2).

6.2 Asymptotics of Dispersion Eq. (24) at 0,,] —> oo

In the previous formulas it was assumed that the roots 1, x2, x3, and x4 (the roots of
Eq. (12)) have negative real parts. Then Eq. (24) can be reduced to the form

4
ij=1

8,4

4
Det”m,-j H ?,j:l = Det ||mlj || .Det ||mlj || izsj=1 Zj:l O(exp(Buxil)) =0, m=1,+00 .

(67)

Hence, it follows that for 6,,/ — oo the roots of Eq. (24) are approximated by roots
of the equations

4 —
ij=1—

8,4 —
Det“min 0,m=1, +o0; DethiniZSJ.:1 =0, m=1,+o00. (68)

The first totality of Eq. (68) determines all possible localized free vibrations at the
free end faces of an orthotropic semi-infinite cylindrical panel, or determines all possible

localized free vibrations at the free faces of an orthotropic cantilever cylindrical panel.
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The second totality of Eq. (68) determines all possible localized free vibrations at
the free end faces of an orthotropic semi-infinite cantilever cylindrical panel.
Notice, that if ,, — 0, the equations of (68) have the following asymptotic forms

4
Det||my|[; ._ = (Bi2 + Bss)/Bi11)*N (1) K1 (1) Ko (1) K (13,
+0(e;), m=1,+00,
8,4 -
Det||mi ;"5 i, = N Kam(13) Q015 + O(ez) . m=T1,+00 . (69)

Thus, by taking into account (68) and (69), we conclude that the dispersion Eq. (24)
for 6,,] — oo and &,, — 0 take the form (65).

7 Numerical Results

In the Table 1 the values of some 7, roots of the first two equations of (64) and (66) are
given for an orthotropic cantilever rectangular boron plastic plate with parameters [18]

p=2-102kg/M3; E; =2.646.10""N/M?;
E, = 1.323-10'% G =9.604-10°; v, =0.2; v, = 0.01. (70)

In the Table 2 some dimensionless characteristics of the eigenvalues 7, for predom-
inantly bending, predominantly planar and nonsymmetrical vibrations of an orthotropic
cantilever cylindrical boron plastic panel with the same mechanical characteristics and
the geometrical parameters: R = 40; s = 4.00167; [ =5, [ = 15. are given.

In the Table 2 after the characteristics of eigenfrequencies the type of vibration is
indicated: b- predominantly bending, e- predominantly planar. For 1 < m < 16, the
third equation of (64) has no roots. The elasticity modules E| and E, correspond to the
directions of generatrix and directrix, respectively.

In the Table 2, the case with n; = 12 = n3 = n corresponds to the problem (5-8).
The case with n; = 2 = 0 and 3 = n corresponds to the problem (5-8), where are no
tangential components of the inertia force, i.e., we have the predominantly bending type
of vibrations. The case with n; = 12 = n, n3 = 0 corresponds to the predominantly
planar type of vibrations.

The following equalities hold for isotropic materials:

By, By Bss Beg 1—v
12 _ iz, 266 _ 266 _ . (71)
Bii  Bx Bin  Bn 2

Hence, in the dispersion equations and the characteristics calculations it can be set

By =Bn=1, Bp=v, Beg=(1-v)/2.
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Table 1. Characteristics of Eigenfrequencies of a cantilever rectangular Boron Plate with s =
4, 1=5,1=15.

Ki(m) =0,1=35;

Detlbyl!,_; =0, 1=5;

Ka(nm) =0, 1=5;

Detliyl},_y =0.1=5:

m | Oy
Ky(m) =0, 1=15. | Detlpy|}_ =0, 1=15. | K2mm) =0, 1=15 | perft|} =0, 1=15.
i,j=1 Jlij=1
1| 1.95473 | 0.01089 0.01188 - -
0.01089 0.01097 - -
2274891 |0.01918 0.01972 0.96592 0.99608
0.01918 0.01922 0.96592 0.96819
31352057 | 0.02442 0.02483 097732 101011
0.02442 0.02446 097732 0.97768
4 |4.27693 | 0.02860 0.02891 0.95744 0.97798
0.02860 0.02862 0.95744 0.95758
5 |5.04581 | 0.03433 0.03458 0.96497 0.97703
0.03433 0.03435 0.96497 0.96501
6 | 609849 |0.04134 0.04154 0.96410 0.97014
0.04134 0.04136 0.96410 0.96411
7 |7.21629 | 0.04896 0.04912 0.96422 0.96730
0.04896 0.04897 0.96422 0.96422
8 1832693 |0.05648 0.05662 0.96419 0.96579
0.05648 0.05649 0.96419 0.96419
9 |9.43718 | 0.06401 0.06413 0.96419 0.96504
0.06401 0.06407 0.96419 0.96419
10 | 10.5474 | 0.07154 0.07165 0.96419 0.96465
0.07154 0.07155 0.96419 0.96419
11 | 11,6577 | 0.07908 0.07917 0.96419 0.96444
0.07908 0.07912 0.96419 0.96419
12 | 127680 | 0.08661 0.08669 0.96419 0.96432
0.08661 0.08661 0.96419 0.96419
13 | 13.8782 | 0.09414 0.09421 0.96419 0.96426
0.09414 0.09414 0.96419 0.96419
14 | 149887 | 0.10167 0.10174 0.96419 0.96423
0.10167 0.10167 0.96419 0.96419
15 | 16,0962 | 0.10918 0.11047 0.96419 0.96421
0.10918 0.10925 0.96419 0.96419
16 | 17.1935 | 0.11663 0.11668 0.96419 0.96420
0.11663 0.11663 0.96419 0.96419
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Table 2. Characteristics of Eigenfrequencies for Predominantly Bending, Predominantly Pla-
nar and Nonsymmetrical Vibrations of an Cantilever Cylindrical Boron Plastic Panel with
s =4.00167, I =5, [ =15.

Nm = M2m =0, Nim = Mm = NMm> Mm = M2m = M3m = Mm »
M3m = Nm, [ =5. mm =0,1=5. I=5.
m Om
Nm = mm =0, Mm = M2m = Nm; Nim = M2m = M3m = Nm »
M3m = Nm, L = 15. nm =0,1=15. I1=15.
1 1.95391 0.01127 b - 0.01127 b -
0.01006 b - 0.01006 b —
2 2.74776 0.01990 b 0.99609 e 0.01990 b 0.99759 e
0.01942 b 0.99608 e 0.01947 b 0.99608 e
3 3.52810 0.02479 b 1.00341 e 0.02479b 1.01795 e
0.02440 b 0.97515 ¢ 0.02440b 0.97132 ¢
4 4.27542 0.02871 b 0.97534 ¢ 0.02890 b 0.97836 ¢
0.02861 b 0.95499 ¢ 0.02861 b 0.96969 e
5 5.04492 0.03458 b 0.97309 e 0.03458 b 0.97570 e
0.03435b 0.96230 ¢ 0.03430b 0.96391 ¢
6 6.09841 0.04154 b 0.96971 e 0.04154 b 0.97053 e
0.04136 b 0.96370 ¢ 0.04136 b 0.96445 e
7 7.21629 0.04911 b 0.96684 ¢ 0.04911 b 0.96727 ¢
0.04896 b 0.96382 ¢ 0.04896 b 0.96420 e
8 8.32693 0.05662 b 0.96557 e 0.05662 b 0.96580 e
0.05649 b 0.96398 e 0.05649 b 0.96419 e
9 9.43718 0.06413 b 0.96492 ¢ 0.06413 b 0.96505 e
0.06413 b 0.96407 e 0.06413b0.96419 e
10 10.5474 0.07165 b 0.96457 e 0.07165 b 0.96466 e
0.07155b 0.96411¢ 0.07155b0.96419 ¢
11 11.6577 0.07917 b 0.96439 ¢ 0.07917 b 0.96444 ¢
0.07908 b 0.96414 ¢ 0.07908 b 0.96419 e
12 12.7679 0.08669 b 0.96429 ¢ 0.08669 b 0.96433 e
0.08661 b 0.96416 ¢ 0.08661 b 0.96419 e
13 13.8785 0.09422 b 0.96423 ¢ 0.09422 b 0.96427 e
0.09422 b 0.96417 e 0.09422 b 0.96419 e
14 14.9864 0.10172 b 0.96421 ¢ 0.10172 b 0.96423 ¢
0.10172 b 0.96417 ¢ 0.10172b 0.96419 e
15 16.1102 0.10934 b 0.96418 ¢ 0.10934 b 0.96422 ¢
0.10928 b 0.96601 e 0.10928 b 0.96419 e
16 17.2065 0.11677 b 0.96419 ¢ 0.11677 b 0.96421 e
0.11672 b 0.96418 ¢ 0.11672b 0.96419 e
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8 Conclusion

Numerical calculations show that the first eigenfrequencies localized at the free end of
the cantilever cylindrical panel where the normal component of inertia force is not zero
are the frequencies of the predominantly bending type. Along with the first frequencies of
quasitransverse vibrations, there are frequencies of undamped quasitangential vibrations.
With the increase of m, these vibrations become of Rayleigh type. The analysis of the
numerical data indicates that for ¢,, — 0 free vibrations of cantilever cylindrical panel
decompose into quasitransverse and quasitangential vibrations, and their frequencies
tend to the frequencies of a cantilever rectangular plate. Numerical results show that
asymptotic formulas (62) and (65) of dispersion Eq. (24) and the mechanism presented
here are good reference points for finding the eigenfrequencies of the problem (5-8). The
first eigenfrequencies of vibrations of cantilever cylindrical panel depend on the chosen
basic functions satisfying the same boundary conditions. For 8,, — oo, the frequencies
of vibrations at free end faces of a finite cantilever cylindrical panel become practically
independent of the basic functions and of the boundary conditions on generatrices [8, 9,
20].

Note that in the current work and in [20] the same basic functions are used for
Kantorovich-Vlasov method and the characteristic equations of the classical equations
of cylindrical shells and plates coincide. Meanwhile due to the different boundary con-
ditions the dispersion equations of the problems are different and lead to different
distributions of natural frequencies.

Appendix
The analytical expressions for m;; are given below:

myy = Hy{ +dixi +do; m12=H?3+d1?1?
mi3 = Hf, +dy,; ms = Hf;

my =Txi +d3x; + dax; m22=Tf4+d3f2+d4;
my3 = Tf3+daf 13 mog = Tfs + ds;

m3| = Smxlﬁ ~|—d5x]4 ~|—d6x]2 + dy;

M3y = Suf s +dsf 3+ def 1:
m33=8m]?4+d5]?2+d6;

ma4 = Sufs + dsf1;

ma = Smxf +dg)(]5 +d9)(13 + diox1;
m42=8m]%6+d8?4+d9?2+d10;

my3 = 8uf s + dgf 5 + dof 1

My = Sufa +difs +doy Sy =1+4a> el

mis = (=1 'myy exp(z1);
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mig = (—1) " mp exp(z2) + mi[z122]) ;

mig = (=1 miz exp(z3) + mplz223] + min [212223));

mig = (—1)"" N mig exp(za) + mislz3zal + minlzazzzal + milzizazazal), i =1, 4;
(72)

nsi = Fxt +nixi+ .
n52=F?3+VL7=Cl,
nsy=Ffy+y, nsa =Ffi
el = Y3Xi + vaxi,

ney = )/;24-3/4,

nes = yaf | . nea = ¥3;

n71 = Suxi + vsxi + ve.
n72=57r;3+y5?1,

n73 =8nfy+ s,
ns4 = dpf1;

ng1 = 8uxi +vsXi + Yoxi
n82=5rr;4+)/5?2+)/6§
ng3 = 8uf 3+ ¥vsf 1

mg4 = Smfa + vs;

mj1 = n;1 exp(z1); mp = np exp(z2) + niilz122];
mi3 = n;3exp(z3) + ni2[z2z3] + nit[z122231;

mi4 = nj4 exp(z4) + ni3lz3z4] + niplz2z324] + nirlz1222324], 1 =15, 8;

M5 4j = N5, M6 4+j = —N6j, M] 44j = N7j, Mg 44j = —Ng;;

By + 4B B Bi2 + 4B
_ g 12 +4Be6 ,, T:—ﬁazamﬂ,’n; Fe_g 12+ 6.

H= :
Bii " Bes Bii
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B,,B,, - B} B,B B
d ==u 12 127766 +4g 1266 ' a2 +
1 B“ B - Bn 771m B121 —=(B =)
B, (B, +4B
‘a ﬂ( g, —%(ﬂ;—nﬁ,)}
B, 1
d, = 32 (8, nlm)(B()()an +B, (B, - B, )+d’ BBy (B, — ))
BB, B B B,
d —125 +a 4n? —3B,—2—2p 12y i 4qte? B T2 (B —nl ) |;
3 B, B, B ﬂ Mom 2 “:Bm B“771m mPm B, B —11)
B B B,,(B,, +4B,,) B,
d,=| =2, +—”772mjﬂ,'n +a2ﬁ$,(uﬁ g3 4—77 B =, ]
! [Bll : Bll ? B]lBﬁﬁ 1] : ( 1 )
—a*Elp &((Blzﬁ”*'étgasﬂ,) 4n? J BBy, 2202 prg Bl
g B.. w v g B m
d z%mzm k- BB, 5, _§122§r’n = B,BB, B azgi[BnBzzlf:p;B_ BLS, + 4556 (ﬁ:n —n )j
1 1566 1566 1
B, B, B,," + B.,B 3. B, + B, B,
B]I B B]2| ] B]I Bl] l
BB ﬂr: -B rir ’ B '
+€i{az%(ﬁm _nlzm)_iBlﬁm:|;
By B,
B B
d, =—=2B.(B, ~ 771,11)( 2 g By —= B+ Zm}
B, Bn B Bn
B B,\B,, 3 — B}, 3. — B,,B, 3., + 4B 3,
e Vi 12 12Bss 560,
B, B, By
_azg [B 4266 72 4B ]2 ﬂ 4366 lsz
Bu B,
B BB, f" + BB, f3. + 4B’ B, +5B (B, +4B,,)
d :i 2 2 _ 11722 m 1266/"m 66. 2 12 66 + 12 66 B ’
9 B, hmll2m Blzl M+ B, ﬂm’]Zm B, LB
Bu g g o3 o2 uBole “Bulh “AB Bl (g (Bt 4Bl p g
B Bl] Bl]
B,+4B B B
dyy =——"25,(8, _771»1 [ :1 -—2p+ inzzm}
B, B, B, B,
. +a2311322/3,’,2 + B12Bes ), +4B§6ﬁ/ 2312 +4Bgs 5

NMms
B11Bss Bi1 tm
By
v=—p(l+ a’B") (B, — Nt

312 5, (B12 4 Bes)(B12 + 4Bee)
Y3 = 8m —da m
B B11Bss

Bi>2By By B1a
= =B =B+ B+ =
B11Bss 11 1
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B> (B + 4B B»B
g 22(B12 66) BB — 02931:3;,2 12 22;
B11Bes B11Bgg
Bes By 4Bgs
Vs = —— iy + N3y — B2 — e, (—ﬁ,ﬁi +—= (B} — M) ):
B Bes By
B» Bes By
2 / 2 2.2 ol
Yo = (B, — 1 )(-ﬂ - =N, tae —
m 1m B11 m B11 2m m mB11
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