
Reducing of Residual Stresses in Metal
Parts Produced By SLM Additive

Technology with Selective
Induction Heating

Sergei A. Lychev1 and Montaser Fekry2,3(B)

1 Institute for Problems in Mechanics, Russian Academy of Sciences, 101 Vernadsky
Avenue, Bldg 1, Moscow 119526, Russia

lychevsa@mail.ru
2 Department of Mechanics and Control Processes, Moscow Institute of Physics

and Technology, Moscow, Russia
montaser.fekry@yahoo.com

3 Department of Mathematics, Faculty of Science, South Valley University,
Qena, Egypt

Abstract. In the present paper a mathematical model for the tempera-
ture and residual stress fields evolution in growing thermoelastic cylinder
is investigated. It is based on the idea of analyzing a sequence of bound-
ary value problems describing the steps of the growth process. The main
goal is to give qualitative clarification and modeling for residual stress
accumulation and distortion in the final geometric shape, which appears
in additive manufacturing, particularly in SLM or SLS technological pro-
cesses. We proposed such way to control these unwanted phenomena. The
main idea is to apply inhomogeneous inductive heating by skin effect phe-
nomena during the additive process. In so doing one can compensate the
incompatibility of thermoelastic deformations caused by sequential addi-
tion of heated up to melting temperature material by controlled inho-
mogeneous thermal expansion resulting from such way of heating. The
process can be controlled by changing the frequency of an alternating
electric current and the amplitude supplied to the growing body. This
controling leads to minimize residual stresses and/or shape distortion of
the body during and after additive process completion. For the axisym-
metric cylindrical problem investigated below, it is possible to obtain
optimal control parameters based on analytical solution of sequence of
boundary value problems. This solution is the main result of present
paper.
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1 Introduction

Selective Laser Melting and Sintering (SLM and SLS) are promising technology
for manufacturing 3D metal parts with complicate shape and specified inhomo-
geneity. The main theme is that the part is being created sequentially, piece by
piece, due to melting and fusing metallic powders together in precise geometric
shape [1–4]. There are, nonetheless, some challenges that hamper the practical
application of such technologies. One of the most tangible is related with inho-
mogeneous thermal expansion of added material in the course of technological
process. The main reason behind the latter is that the metallic particles are
heated to the melting temperature and then attached to manufactured com-
ponent part, which temperature is less then the temperature of the particles.
After temperature equalisation an incompatible deformations arise both in bulk
of the body and attached part. This causes distortion of geometrical shape and
accumulation of residual stresses.

Residual stresses can be defined as those stresses that remain in a material or
body after manufacturing in the absence of external forces or thermal gradients.
Residual stresses have the same effect on materials and their performance as
externally applied stresses [5–12]. It leads to undesirable consequences, such as
a shape distortion, local discontinuity, loss of stability.

Up to now a variety of ways to reduce residual stresses in SLM manufactured
parts are known. Most use the modulation of melting beam or overall heating
of the part during additive process [13–17]. These allow to reduce the inhomo-
geneity of temperature field and, consequently, to reduce residual stresses. In
present work we propose to take a further step: to heat the part during SLM
process in specific non-uniform manner which upon the technological (melting)
heating results in almost constant temperature profiles and hence in low resid-
ual stresses. In order to generate such specific heating, an induction with high
frequency current modulated in time can be used. One may observe here the
similarity with skin-effect induced by alternating current.

2 Growing Process

The concept of a solids growth refers to a new branch of continuum mechanics
[18–23], therefore it seems appropriate here to clarify the definition of the grow-
ing solid. In a broad sense growing process defines the alteration of the body
composition occurring in the course of deformation. The growing process may
be accompanied by a change of topological properties of the body. It can be said
that the altering of the body composition is the accession of new material points
and (or) formation of new constrains between particles already included into the
composition. It should also be noted that the change of topological properties
can occur without the influx of material and can be caused by the transition
of the boundary points into the interior. In modern continuum mechanics there
are many different approaches to the studying of the growth phenomenon. For
today a large number of papers devoted to mechanics of growing solids have
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been published. References may be found in the review [8]. The works [24,25]
are devoted to the development of geometric methods adopted for the mechan-
ics of incompatible strains arising as the result of the growing process. In the
works [18–21] the growth is investigated as the continuous process of deposition
of strained material surfaces to a deformable 3D body. It is known that under
certain additional assumptions on the continuity of functions that define the
stress-strain state of adhered material surfaces, the continuous growing process
can be considered as the limit of a sequence of discrete processes [26,27].

A discretely accreted body is represented as a finite family of added layers
to the initial body

B0 ⊂ B1 ⊂ ... ⊂ Bk ⊂ ... ⊂ BN , (1)

where B0 is the initial body and Bk is B0 after adding k layers. The sequence
(1) is associated with the sequence of numbers

0 ⊂ τ1 ⊂ ... ⊂ τk ⊂ ... ⊂ τN , < ... < (2)

determining the accretion times, i.e. the times at which the layers Bk\Bk−1,
k = 1, ..., N are added to the body B0. The sequences (1) and (2) together
determine the body growth scenario. In general case, the strain, temperature,
and velocity fields of the assembly Bk are inconsistent with the fields of the
assembly Bk−1. Therefore, the dynamic processes in the growing body vary by
jump at the attachment times.

The process of dynamic discrete accretion can be modeled by successively
solving the boundary value problems for the bodies Bk. Then the initial data
for the step is determined by the values of the corresponding fields at the final
time moment of the preceding one and by the values associated with the attached
elements. Formally, the recursive sequence of problems in the linear approxima-
tion can be stated as follows:

∀x ∈ B0 L0u0 + B0 = 0, ∀x ∈ ∂B0 D0u0 = 0, u0|t=0 = u0
0, u̇0|t=0 = v0

0,

...

∀x ∈ Bn Lnun + B0
n = 0, ∀x ∈ ∂Bn Dnun = 0, un|t=τn = 0, u̇n|t=τn = v0

n,

B0
n = B0

n−1 +

{
Ln−1un−1|t=τn

for x ∈ Bn−1,

0 for x ∈ Bn\Bn−1,

v0
n =

{
u̇n−1|t=τn

for x ∈ Bn−1,

v0 for x ∈ Bn\Bn−1,

here L0, ...,Ln are differential operators determined by the same differential oper-
ation (the field equations) but in different domains, D0, ...,Dn are operators of
boundary conditions, B0 are external volume force and density of heat source,
v0 are the velocities associated with the attached elements, and u0, ...,un are
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Fig. 1. Schematics for thermoelastic growing process.

increments of the displacement and temperature fields with respect to the begin-
ning of the step. The dot denotes the derivative with respect to time, and u0

0,v
0
0

are the initial data for the first step.
The schematics for thermoelastic growing process is shown on Fig. 1 . One

can see on this figure the sequence of cylindrical cross sections for the first few
steps and the final step of descrete growth. The coloured rendering denotes the
temperature distribution which is also shown on inserted semi-transparent plots.
All this illustration is based on analytical solution, set out later in the paper.

3 Initial-Boundary Problem at a Step

At the outset the analytical solution of the boundary value problem for the
body at step k is obtained. To stay within the framework of the linear theory,
it’s supposed that the displacements and excess temperatures, as well as their
gradients, are small.

The growing body is considered as a thermally and electrically conducting
elastic cylinder C = {(r, θ, z) : 0 � r < R, 0 � z � L, 0 � θ < 2π}, therefore the
problem is formulated in the cylindrical coordinates (r, θ, z), that are related to
the Cartesian coordinates (x, y, z) as follows

r =
√

x2 + y2, θ = tan−1 y

x
, z = z,

er = cos θ i + sin θ j, eθ = − sin θ i + cos θ j, ez = k,

where, (er, eθ, ez) and (i, j,k) are the basis of the cylindrical and Cartesian
coordinates respectively.
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3.1 Skin Effect

Here the skin effect phenomenon in a cylinder is briefly discussed, which can be
obtained from Maxwell’s equations [28,29]:

∇ · E = 0, ∇ × E = −∂B
∂t

,

∇ · B = 0, ∇ × B = μ0

(
J + ε0

∂E
∂t

)
.

(3)

Here E is the electric field, B is the magnetic field, J is the total electric current
density per unit area, μ0 is the permeability, and ε0 is the electric permittivity.

With the assumption that the material is isotropic, the relation between
current density J, electrical conductivity σ and applied electric field E can be
written as

J = σE. (4)

Taking into account that for an ideal conductor
∂E
∂t

= 0, and with the aid of

constitutive relation (4), applying the curl operator to the second equation of
(3). This results in

∇2J − μ0σJ̇ = 0, (5)

where

∇2 =
∂2

∂r2
+

1
r

∂

∂r
.

Consider time-harmonic AC current with angular frequency ω and amplitude
phasor J = Je−iωtez, where the current flows in the z direction. Under this
assumption Eq.(5) reduces to

∂2 J

∂r2
+

1
r

∂J

∂r
+ k2 J = 0. (6)

Here

k =
1 + i

δ
, δ =

√
2

ωμ0σ
, i =

√
−1,

δ denotes the skin depth, which is defined as the depth below the surface of the
conductor at which the current density has fallen to 1/e (about 0.37) of the total
current.

To complete the boundary value problem, consider the boundary conditions

E · n|r=R = 0,

∫
C
J · ds = I, ds = rdrez,

where n denotes unit normal to cylindrical part of the boundary and I is the
total current.

The general solution of Eq.(6), which is bounded at r = 0, takes the form

J = CJ0(kr), (7)
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where J0(..) is the Bessel function of the first kind and zero order.
One can obtain the value for constant C from the integral boundary condition

I = 2π

∫ R

0

CJ0(kr)rdr, (8)

that relates total current with distribution of the current density.
From the following relation between Bessel functions

∂

∂r
rmJm(r) = rmJm−1(r),

the integral (8) can be calculated in analytical form, therefore the solution (7),
which expresses the distribution of alternating current in a cylinder of radius R,
can be written as

J =
kI

2πR

J0(kr)
J1(kR)

.

Figure 2 shows the alternating current density in the Copper cylinder for
three different frequencies ω3 > ω2 > ω1,

σ = 5.9 × 107 S m−1, μ0 = 1.256629 × 10−6 H m−1,

{ω1, ω2, ω3} = {5, 7, 9} × 2π × 105 s−1.

According to the Joule-Lenz law, the power of heating generated by an elec-
trical conductor is proportional to the product of its resistance and the square of
the current, thus, the temperature in that conductor will be concentrated near
the surface.


 =
1
2σ

|J|2.

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

J

0 0 1 2 3

Fig. 2. The current density in cylinder with different frequencies.
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3.2 Heat Transfer

The distribution of the temperature can be obtained from the solution of the
heat conduction problem

Λ∇2Θ − ρκΘ̇ + 
∗ = 0,

∂rΘ|r=R = 0, Θ|t=0 = Θ0,
(9)

where Θ is the temperature change above the uniform reference temperature T0,
ρ is the mass density, Λ is the coefficient of thermal conductivity, κ is the specific
heat per unit mass at constant strain and 
∗ is the heat source.

To facilitate the solution, the following non-dimensional variables are used

ř =
r

R
, Θ̌ =

Θ

T0
, ť =

1
R

√
μ

ρ
t. (10)

In the dimensionless variables (10), the equation (9) (after dropping the
dimensionless symbol for simplicity) takes the form:

∇2Θ − BΘ̇ + 
 = 0, (11)

where the following dimensionless quantities are introduced


 =
R2

ΛT0

∗, B =

κR
√

μρ

Λ
.

The boundary and initial conditions in the dimensionless variables are stated as

∂rΘ|r=R = 0, Θ|t=0 = Θ0.

Note that in the dimensionless form the radius of the initial cylinder takes the
value “1”, and since the radius of the growing cylinder increases in a constant
rate during the process we call the non-dimensional radius by R.

With the Duhamel’s principle [30], the solution of the heat equation (11)
can be represented as the sum of particular solution Θp of the inhomogeneous
equation and the solution Θh of the homogeneous one

Θ = Θh + Θp.

The solution Θh meets the boundary value problem

∇2Θh − BΘ̇h = 0,

∂rΘh|r=R = 0, Θh|t=0 = Θ0.
(12)

By separation of variables one can get the solution for (12) as follows

Θh = Θ̄(r)e
−γ2

B t, (13)

where Θ̄ is non-trivial solution of Sturm Liouville problem

∂2Θ̄

∂r2
+

1
r

∂Θ̄

∂r
+ γ2Θ̄ = 0, ∂rΘ̄|r=1 = 0. (14)
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The bounded solution of eq. (14) at r = 0 (14) can be represented as follows

Θ̄ = J0(γr),

The boundary condition at r = R gives a sequence values for γ

γ ∈ {γm, m = 0, 1, ...∞},

where γm are the roots of the equation J1(γR) = 0, here are some roots for
R = 1,

{0, 3.83, 7.01, 10.17, 13.32, 16.47, 19.61, ...}.

Note: The first root of J1(γR) = 0 is γ0 = 0 and the other roots are numer-
ically calculated in “Mathematica” by the order

γm =
1
RBesselJZero[1,m].

Thus, the non-trivial solutions (eigenfunctions) for Sturm Liouville problem (14)
can be represented as follows

Θ̄0 = 1, Θ̄m = J0(γmr), m,= 1, 2, ...∞.

Due to the self-conjugate property of differential operator, defined with Eq. (14)
and corresponding boundary conditions, all these solutions together constitute
an orthogonal system. Hovewer, they are determined up to an arbitrary multi-
pliers. It is appropriate to take them such that the system becomes normalized.
To this end we calculate the normalization factors

Nm =

√
2πL

∫ R

0

[J0(γmr)]2rdr = R
√

πL|J0(γm)|,

and divide solutions obtained above by them. Finally we get the orthonormal
eigenfunctions system

Θ̄0 =
1

R
√

πL
, Θ̄m =

J0(γmr)
R

√
πL|J0(γm)|

, m,= 1, 2, ...∞. (15)

Table 1 shows graphs for three eigenfunctions with its derivatives with respect
to r, it’s clear that solutions satisfy the boundary conditions.
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Table 1. Some of eigenfunctions Θ̄m and their derivatives.

Θ̄4 = 0.922J0(10.17r) Θ̄7 = 1.27J0(19.61r) Θ̄10 = 1.55J0(29.04r)

Θ̄
m

0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.5

0.5

1.0

0.2 0.4 0.6 0.8 1.0

0.5

0.5

1.0

1.5

∂
r
Θ̄

m 0.2 0.4 0.6 0.8 1.0

4

2

2

0.2 0.4 0.6 0.8 1.0

15

10

5

5

10

0.2 0.4 0.6 0.8 1.0

20

10

10

Now one can obtain the representation of solution for (12) in terms of expan-
sion

Θh =
∞∑

m=0

Ch
mJ0(γmr)e− γ2

m
B t, Ch

m =
2
√

πL

R|J0(γm)|

∫ R

0

Θ0J0(γmr)rdr. (16)

With Dugamel’s principle one can obtain partial solution Θp for inhomogeneous
problem (11) in such a way

Θp =
∞∑

m=0

J0(γmr)
∫ t

0

Cp
m(s)e− γ2

m
B (t−s)ds, Cp

m =
2
√

πL

J0(γm)

∫ R

0


(r)J0(γmr)rdr.

(17)
The sum of the series (16) and (17) provides formal solution for heat prob-
lem stated above. All elements in this representation except eigenvalues γm are
obtained in closed form. In contrast with them the γ’s are calculated numer-
ically as the roots of transcendental equation. Some omissions may occure in
their search that may cause the incompleteness for the solution. In this regard
the verification is desirable at this stage.

To verify the completeness of eigenfunction-system and convergence of partial
sum sequences we provide test expansions with “good and bad” examples. The
former is the bump function, which is twice differentiable and obey boundary
conditions stated above, and the latter is discontinuous function

G1(r) = 64
( r

R
)3

[
1 − 3r

R + 3
( r

R
)2

−
( r

R
)3

]
, G2(r) =

{
1, R

3 ≤ r ≤ 2R
3

0, otherwise
.

The graphs for partial sums together with original functions are shown on
Figs. 3 and 4. The sequences for corresponding Fourier cofficients are represented
graphically on Fig. 5
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As it can be seen from the figures, the partial sums of expansions for smooth
function and for discontinuous function are significantly different, where conver-
gence to the original smooth function is more satisfied even for small orders of
partial sums. Thus, we numerically approve the completeness and covergency
for proposed formal series.
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(a) for 4 Eignfunctions
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0.2

0.4

0.6

0.8

1.0

(b) for 25 Eignfunctions

Fig. 3. Partial sums of different orders for the function G1(r).

(a) for 25 Eignfunctions (b) for 100 Eignfunctions

Fig. 4. Partial sums of different orders for the function G2(r).
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(a) for the function G1(r)

5 10 15 20 25

- 1.5

- 1.0

- 0.5
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1.0

1.5

(b) for the function G2(r)

Fig. 5. Fourier cofficients for 25 corresponding eignfunctions.
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3.3 Stress-Strain Problem

In the absence of body forces, the basic equations for temperature rate-dependent
linear isotropic thermoelastic medium can be written as follows [31,32]:

μ∇2u + (λ + μ)∇∇ · u − γ∇Θ = ρü, (18)

where β = (3λ + 2μ)α, α is the coefficient of linear thermal expansion, λ and μ
are Lame’s constants.

To facilitate the solution, the non-dimensional parameters (10) are used
beside

ǔ =
u
R

.

With dimensionless variables, the equations (18) (after dropping the dimen-
sionless symbol for simplicity) takes the form:

∇2u + k∇∇ · u − A∇Θ = ü, (19)

where
k =

λ + μ

μ
, A =

γT0

μ
.

The boundary and initial conditions in the dimensionless form are stated as

σr|r=R = 0, u|t=0 = u0, u̇|t=0 = v0,

the dimensionless stress components take the form

σr = (k − 1)∇ · u + 2
∂u

∂r
− AΘ, σθ = (k − 1)∇ · u + 2

u

r
− AΘ.

The separation of variables once again is used to solve the problem (18).
Suppose that

u = U(r)T (t).

In such a case Eq. (19) can be resolved to the form

[∇2U + k∇∇ · U]T − UT̈ = X , (20)

where the notation X = X (r, t) = A∇Θ is introduced for brevity.
Now suppose that the following Sturm Liouville problem

∇2U + k∇∇ · U = −η2U, (21)

has solutions Ui, i = 1, 2, ..,∞, which are corresponding to the eigenvalues
ηi, i = 1, 2, ..,∞. Due to the fact that the differential operator, defined with
Eq.(20) with the corresponding is self conjugate, the system of its eigenfunc-
tions, that are the solutions of Sturm Liouville problem (21) is complete and
orthonormal. After appropriate normalization it becomes orthonormal. We will
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address this issue in more detail in next section. Here we suppose that such
eigensystem is already known and one can obtain with it formal solution for
(19), i.e.

u =
∞∑

i=1

Ui(r)Ti(t). (22)

Using such a representation for u the Eq. (20) can be transformed to

∞∑
i=1

[−η2
i UiTi − UiT̈i] = X . (23)

With the following notation for inner product

〈Ui,Uj〉 = 2πL

∫ R

0

Ui · Uj rdr =

{
1 i = j

0 i 
= j
,

one can get ordinary differential equations of the time variable t as follow

− η2
j Tj − T̈j = Yj , (24)

where
Yj(t) = 〈Uj(r),X (r, t)〉 .

The initial conditions define the following relations

u|t=0 =
∞∑

i=1

Ui(r)Ti(0) = u0, Tj(0) = 〈Uj ,u0〉 = u0
j ,

u̇|t=0 =
∞∑

i=1

Ui(r)Ṫi(0) = v0, Ṫj(0) = 〈Uj ,v0〉 = v0
j .

(25)

Finally, the general solution of the non-homogeneous equation (24) can be
obtained as the sum of the solution of the corresponding homogeneous equation
and a particular solution of the nonhomogeneous equation, i.e.

Tj = u0
j cos(ηjt) +

v0
j

ηj
sin(ηjt) − 1

ηj

∫ t

0

Yj(s) sin [ηj(t − s)] ds.

3.4 Eigenproblem

Keeping in mind, that all fields in considered problem depend only on radial
coordinate r and time, we assume the dynamic displacement vector can be rep-
resented as ǔ = ǔ er. Then the Eq. (21), where U = U er, takes the form

∂2U

∂r2
+

1
r

∂U

∂r
− U

r2
+

η2

(k + 1)
U = 0, (26)
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the solution of Eq. (26) can be represented in terms of Bessel function

U = c1J1(ar), a =

√
η2

k + 1
, (27)

where c1 is arbitrary constant. Using the boundary conditions for the stresses
on cylinder’s surface, we obtain a homogeneous algebraic equation

a(k + 1)J0(ar) − 2J1(ar)
r

= 0. (28)

The roots of Eq. (28) form a sequence of eigenvalues ηq, q = 1, ..,∞.
The complete system of eigenfunctions can be given as following

Uq =
J1(aqr)

Nq
, aq =

√
η2

q

k + 1
,

where the normalization factor Nq is given in the form

Nq =

√
2πL

∫ R

0
J1(aqr)2rdr =

[
πLR

(
RJ0(aq)

2 − 2J0(aq)J1(aq)

aqR + RJ1(aq)
2

)] 1
2

.

Table 2 shows graphs for three eigenfunctions, which represent the displace-
ment component in r direction, and the corresponding stress component σq

r , it’s
clear that solutions satisfy the boundary condition.

Table 2. Some of eigenfunctions Uq and their derivatives.

U4 = 1.71J1(11.75r) U7 = 2.3J1(21.19r) U10 = 2.76J1(30.62r)

U
q

σ
q r

Test expansions of the eigenfunctions system Uq, for the discontinuous func-
tion G2(r), which is mentioned in Subsect. (3.2) are provided. Figure 6 shows
partial sums of different order.
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(a) for 25 Eignfunctions (b) for 150 Eignfunctions

Fig. 6. Test expansion for different numbers of eignfunctions.

From the stresses-displacement components relations, one can calculate the
intensity of normal stresses τ , which is defined by the formula

τ =

√
1
2
(σr − σθ)2.

4 Computational Analysis and Discussion

In the rest of the paper we provide computational analysis for the thermoe-
lastic growth of circular cylindrical solids, manufactured from one of the two
metallic materials, copper which is diamagnetic, and titanium, purported to be
paramagnetic.

The considered dimensions of the cylinder are radius R = 0.5 cm and lenght
L = 2 cm. Calculations have been carried out with following material data
[33,34]:

λ, GPa μ, GPa ρ, kg/m3 α, K−1 Λ, W/(mK) κ, J/(kgK) σ, S/m μ0, H/m

Titanium 113.8 44 4510 8.6 × 10−6 17 521 2.38 × 106 1.26 × 10−6

Copper 89.47 40.95 8960 16.4 × 10−6 385 385 5.9 × 107 1.256629 × 10−6

In a dimensionless form, the process starts at r = 1 as the radius of the
initial cylinder, and then grows at 0.01, which represents the thickness of the
new layer, every 4 s (duration of a step).

It is assumed that there are no mass forces and at the initial time moment,
the growing body was free from stresses and at rest.

In case of inhomogeneous heating, the metallic particles are heated to a tem-
perature slightly lower than the melting temperature (the melting temperature
of Copper and Titanium are 1360 K and 1940 K respectively) and then attached
to the main part, which has temperature is less then the temperature of the
particles, And because the body retains most of the heat during the process,
the heat source must be controlled at every step as showen in Fig. 7 so that the
body does not melte complitlly.
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Fig. 7. The distribution of the heat source power during the process.

(a) without heating (b) with in-homogeneous heating

Fig. 8. The temperature distribution inside the body (Titanium).

Figures 8 and 9 show the temperature distribution in the whole body show
the temperature distribution in the whole body during the process for two cases:
without heating and with external in-homogeneous heating of the growing body.

Figures 10 and 11 illustrate the temperature distribution on the moving
boundary for the two cases. It’s clear that, by using external heating, the gradient
of temperature on the growing surface significantly decrease, thereby reducing
residual stresses.



190 S. A. Lychev and M. Fekry

(a) without heating (b) with in-homogeneous heating

Fig. 9. The temperature distribution inside the body (Copper).
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Fig. 10. The temperature distribution on the moving boundary for Copper.
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Fig. 11. The temperature distribution on the moving boundary for Titanium.

Figures 12 and 13 present the stress intensity distribution at some moment
after ending the process for two cases: without heating and with external in-
homogeneous heating of the growing body.

The main finding of the study can be outlined as follows. The inductive heat-
ing significantly affect on the residual stress distribution and being judiciously
applied can substantially reduce them. The solution of corresponding optimiza-
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Fig. 12. The stress intensity distribution at some moment after ending the process for
Copper.

tion problem are requested to determine the most viable option. This problem
will be the subject of further research.
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Fig. 13. The stress intensity distribution at some moment after ending the process for
Titanium.
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