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Abstract. In the present work, a model of a microelectromechanical
accelerometer with two movable beam elements located between two sta-
tionary electrodes is proposed. The action of portable inertia forces in
the longitudinal direction leads to a change in the spectral properties of
the system, which is a useful output signal of the sensor. The dynamics of
the system in the presence of a weak electrostatic coupling between the
sensitive elements is characterized by the phenomenon of modal localiza-
tion - a significant change in the amplitude relationships for the forms
of in-phase and antiphase oscillations with small changes in the mea-
sured component of the object’s acceleration vector. The diagrams of
the equilibrium positions and the dependences of the natural frequency
are constructed with varying the potential difference V and ΔV . The
dependences of the frequencies and the ratio of the components of the
eigenvector on the external disturbance are investigated. It is shown that
the sensitivity of a sensor based on modal localization can be orders of
magnitude higher than the sensitivity of known systems based on mea-
suring the shift of natural frequencies.

Keywords: Resonant accelerometer · Weakly coupled system · Modal
localization

1 Introduction

Currently, micro-electromechanical systems (MEMS) are widely used in various
technical applications, as well as for the study of fundamental physical phe-
nomena. In weakly coupled resonators, the phenomenon of modal localization
of oscillations is known. The mode localization phenomenon is defined as the
limitation of the vibration energy of one element of a coupled system when dis-
turbances appear in the system in the form of a change in the rigidity of the
structure. Another phenomenon of coupled systems in which mode localization
is manifested is a change in the eigenvalue curve [7]. Veering occurs when the
frequencies of the two modes approach and deviate from each other when the
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external control parameter changes. The sensitivity of sensors in which mode
localization is implemented can be 1–4 orders of magnitude higher than that of
sensors based on measuring the frequency shift [1,2], that is, it becomes possi-
ble to create ultra-high sensitivity sensors. Also, sensors of this type, to a small
extent with respect to sensors based on the measurement of frequency shift,
are sensitive to environmental factors: temperature, pressure, etc. In work [3],
various approaches are presented for increasing the sensitivity of the resonator
for sensory applications. An analytical and numerical study of a MEMS reso-
nance accelerometer is presented in [4]. The use of weakly coupled systems that
implement the modal localization phenomenon increases the sensitivity of the
sensor by orders of magnitude compared to the sensitivity of a sensor with a
single resonator. A review of the use of such MEMS resonators is given in [5].
The article [6] describes a resonant accelerometer with four degrees of freedom,
which has an electromechanical weak coupling. This makes it possible to achieve
high sensor sensitivity over a wide range of acceleration measurements. In [8],
a theoretical and experimental study was made of the phenomenon of mode
localization for both mechanically and electrically coupled two microbeams. In
addition to studying the problem of eigenvalues and the effect of lateral electrode
displacement on the position of the pivot point, it was found that a decrease in
damping at one of the resonators of a coupled system can lead to an increase in
the quality factor of the system.

In this work, we study the dynamics of a resonant accelerometer, consisting
of two beam elastic elements located between two stationary electrodes (Fig. 1).

Fig. 1. Scheme accelerometer

When acceleration occurs in the system, inertial masses move, which in turn
creates a longitudinal compressive force for one resonator and a tensile force
for the other resonator. The action of portable inertia forces in the longitudinal
direction leads to a change in the spectral properties of the system. As shown
below, in the presence of a weak electrostatic coupling between the sensitive
elements, the dynamics of the system is characterized by the phenomenon of
modal localization - a significant change in the amplitude relationships for the
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forms of in-phase and antiphase oscillations with small changes in the measured
component of the object’s acceleration vector.

2 Derivation of the Equations of Motion

The equations of motion of the first and second inertial mass (IM), respectively:
{−Mÿ1 − cy1 − c(y1 − u1(l)) − MW = 0,

Mÿ2 + cy2 + c(y2 − u2(l)) − MW = 0,
(1)

where y1, y2 - longitudinal movement of the first and second IM, respectively,
M - mass, c - spring stiffness, W - hull acceleration, u1(l), u2(l) - displacement
of the end of the first and second beam element.

Neglecting relative acceleration, we can obtain the law of motion of the first
and second MI, respectively:

{
y1 = 1

2c (cu1(l) − MW ),
y2 = 1

2c (cu2(l) + MW ). (2)

The equation of longitudinal vibrations has the form:

mü−ESu′′ = ES(
1
2
w′2 −u′w′2)′ +EI[w′(w′′′ −u′′′w′ −2u′′w′′ −3u′w′′′)]′, (3)

where u - longitudinal displacements of the beam, w - transverse displace-
ments, m - mass of the beam, E - Young’s modulus, S - cross-sectional area, I
- moment of inertia. The term 1

2w′2 associated with elastic restorative force.
Neglecting the dynamics and small terms, we obtain a simplified equation of

longitudinal vibrations with the corresponding boundary conditions:

ES(u′′ + (
1
2
w′2)) = 0, (4)

u(0) = 0, N(l) = c[u(l) − y], (5)

where N(l) - longitudinal force in the end section. The axial inertial forces of
the beam are not taken into account, therefore, the longitudinal force is constant
along the entire length of the beam.

Expressions for longitudinal forces N1 and N2 will be of the form:
⎧⎪⎪⎨
⎪⎪⎩

N1 = 1
2 [MW − 1

2c
l∫
0

w′2
1 dx],

N2 = 1
2 [−MW − 1

2c
l∫
0

w′2
2 dx].

(6)

Substituting the expressions for N1 and N2 in the equation of bending
vibrations taking into account electrostatic forces in the interelectrode gaps,
we obtain:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

EIw′′′′
1 + cdẇ1 + [12MW − 1

4c
l∫
0

w′2
1 dx]w′′

1 + ρSẅ1 − 1
2

ε0bV 2

(d−w1)2

+ 1
2

ε0bΔV 2

(d+w1−w2)2
= 0,

EIw′′′′
2 + cdẇ2 + [− 1

2MW − 1
4c

l∫
0

w′2
2 dx]w′′

2 + ρSẅ2 + 1
2

ε0bV 2

(d+w2)2

− 1
2

ε0bΔV 2

(d+w1−w2)2
= 0.

(7)

where ε0 - is the dielectric constant of the gap medium, b - beam width, V -
voltage between the stationary electrode and the beam, ΔV - voltage between
two beam elements.

Model Parameters:

Table 1. System parameters

Parameter Value Parameter Value

Beam length (l) 600 µm Air gap (d) 3 µm

Beam width (b) 120 µm Spring stiffness (c) 65.4 N/m

Beam thickness (h) 3 µm Mass of the weight (M) 5.02e–9 kg

Young’s modulus of silicon (E) 109 GPa Silicon Density (ρ) 2328 kg/m3

Dielectric permittivity (ε) 1 Dielectric constant (ε0) 8.85e–12 F/m

Enter dimensionless parameters:

Cnon =
12cdl

4

ETbh3
, Csp =

3cd2l

Ebh3
, Pnon =

6MWl2

Ebh3
, α =

6ε0l
4

Eh3d3
. (8)

w1 = w̃1d, w2 = w̃2d, x = x̃l, t = t̃T, T =

√
ρSl4

ET
. (9)

Omitting the sign ∼, we obtain the system of equations in the dimensionless
form:
⎧⎪⎪⎨
⎪⎪⎩

w′′′′
1 + Cnonẇ1 + ẅ1 + [Pnon − Csp

1∫
0

w′2
1 dx]w′′

1 − αV 2

(1−w1)2
+ αΔV 2

(1+w1−w2)2
= 0,

w′′′′
2 + Cnonẇ2 + ẅ2 + [−Pnon − Csp

1∫
0

w′2
2 dx]w′′

2 + αV 2

(1+w2)2
− αΔV 2

(1+w1−w2)2
= 0.

(10)

3 Finding Static Deflections

We study the dependence of the equilibrium position of the system on the
strength of the electric field. The first Eq. (10) is multiplied by the denom-
inator (1 − w1)2(1 + w1 − w2)2, and the second equation is multiplied by
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(1 + w2)2(1 + w1 − w2)2 and apply the Galerkin method in the expansion in
its own forms of an articulated beam:

w1(x, t) =
n∑

i=1

Ci(t)φi(x), w2(x, t) =
n∑

i=1

Di(t)φi(x). (11)

Nonlinear equations of statics will look like:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1∫
0

φj

n∑
i=1

Ciφ
′′′′
i dx+Pnon

1∫
0

φj

n∑
i=1

Ciφ
′′
i dx−Csp

1∫
0

n∑
i=1

Ciφ
′2
i dx

1∫
0

φj

n∑
i=1

Ciφ
′′
i dx

−
1∫
0

φj
αV 2

(1−
n∑

i=1
Ciφi)2

+
1∫
0

φj
αΔV 2

(1+
n∑

i=1
Ciφi−

n∑

i=1
Diφi)2

= 0,

1∫
0

φj

n∑
i=1

Diφ
′′′′
i dx−Pnon

1∫
0

φj

n∑
i=1

Diφ
′′
i dx−Csp

1∫
0

n∑
i=1

Diφ
′2
i dx

1∫
0

φj

n∑
i=1

Diφ
′′
i dx

+
1∫
0

φj
αV 2

(1+
n∑

i=1
Diφi)2

−
1∫
0

φj
αΔV 2

(1+
n∑

i=1
Ciφi−

n∑

i=1
Diφi)2

= 0.

(12)
Figure 2 shows diagrams of equilibrium positions depending on the potential

differences V and ΔV . The solid line indicates stable equilibrium position, and
the dashed line indicates unstable.

Fig. 2. Deflection in the middle of the upper beam from potential differences V and
ΔV .

For greater clarity of the results, Fig. 3 shows a bifurcation diagram of the
equilibrium positions in 3D with varying parameters.
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Fig. 3. Equilibrium diagram for various values of V and ΔV . Blue shows the deflection
for the upper beam, red - the deflection of the lower beam.

4 Comparison of Equilibrium Diagrams for Two Models

If we initially assume that the field is concentrated in the middle of the beam,
then Eqs. (10) will have the form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w′′′′
1 + Cnonẇ1 + ẅ1 + [Pnon − Csp

1∫

0

w′2
1 dx]w′′

1 − αV 2δ(x− 1
2 )

(1−w1)2
+

αΔV 2δ(x− 1
2 )

(1+w1−w2)2
= 0,

w′′′′
2 + Cnonẇ2 + ẅ2 + [−Pnon − Csp

1∫

0

w′2
2 dx]w′′

2 +
αV 2δ(x− 1

2 )

(1+w2)2
− αΔV 2δ(x− 1

2 )

(1+w1−w2)2
= 0.

(13)
We apply the Galerkin method to Eq. (13), leaving one form in the expansion:

w1(x, t) = q1(t)φ1(x), w2(x, t) = q2(t)φ1(x). (14)

System of equations can be obtained:
{

q̈1 + (97.4 − 9.87Pnon)q1 + 48.7Cspq
3
1 − 2αV 2

(1−q1)2
+ 2αΔV 2

(1+q1−q2)2
= 0,

q̈2 + (97.4 + 9.87Pnon)q2 + 48.7Cspq
3
2 + 2αV 2

(1+q2)2
− 2αΔV 2

(1+q1−q2)2
= 0.

(15)

The bifurcation diagram for the exact and approximate equations has the
form:
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Fig. 4. Comparison of equilibrium diagrams

From Fig. 4 it can be seen that the exact and approximate solutions have a
similar form of the bifurcation curve, but have differences in the value of the
voltage corresponding to the “pull-in” effect. It is also seen that as the number
of terms in the expansion increases, the solution approaches the exact one.

5 Analysis of the Spectral Properties of the System

Let us return to the system of equations in the dimensionless form:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w′′′′
1 + Cnonẇ1 + ẅ1 + [Pnon − Csp

1∫
0

w′2
1 dx]w′′

1 − αV 2

(1−w1)2

+ αΔV 2

(1+w1−w2)2
= 0,

w′′′′
2 + Cnonẇ2 + ẅ2 + [−Pnon − Csp

1∫
0

w′2
2 dx]w′′

2 + αV 2

(1+w2)2

− αΔV 2

(1+w1−w2)2
= 0.

(16)

Next, we decompose the deflections of the beam elements into a static and
dynamic part:

w1(x, t) = w1s(x) + w1d(x, t), w2(x, t) = w2s(x) + w2d(x, t). (17)
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where w1s(x) and w2s(x) are the result of solving the static problem. We
obtain the equations for the dynamic component:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w′′′′
1d + Cnonẇ1d + ẅ1d + [Pnon − Csp

1∫
0

w′2
1ddx]w′′

1d

+ 2αV 2

(1−w1s)3
+ 2αΔV 2

(1+w1s−w2s)3
(w2d − w1d) = 0,

w′′′′
2d + Cnonẇ2d + ẅ2d + [−Pnon − Csp

1∫
0

w′2
2ddx]w′′

2d

− 2αV 2

(1+w2s)3
− 2αΔV 2

(1+w1s−w2s)3
(w2d − w1d) = 0.

(18)

For the analysis of free vibrations, we also apply the Galerkin method, taking
into account only the lower vibration modes of two beams:

w1d(x, t) = u1(t)φ1(x), w2d(x, t) = v1(t)φ1(x). (19)

The equations of motion in matrix form can be written as:

MÜ + CU̇ + KU = 0, (20)

where M =
(

1 0
0 1

)
- mass matrix, C =

(
Cnon 0

0 Cnon

)
- dissipation matrix

(further consider C = 0), U = [u1 v1]′ - displacement vector, stiffness matrix:

K =

(
−K2Csp + K3V

2 − K4ΔV 2 + K1Pnon K4ΔV 2

K4ΔV 2 −K5Csp − K6V
2 − K4ΔV 2 − K1Pnon

)

The coefficients of the stiffness matrix has the form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K1 =
1∫
0

φ1φ
′′
1dx, K2 =

1∫
0

w′2
1sdx

1∫
0

φ1φ
′′
1dx + 2

1∫
0

w′
1sφ

′
1dx

1∫
0

φ1w
′′
1sdx,

K3 =
1∫
0

2α
(w1s−1)3 φ1φ1dx, K4 =

1∫
0

2α
(1+w1s−w2s)3

φ1φ1dx,

K5 =
1∫
0

w′2
2sdx

1∫
0

φ1φ
′′
1dx + 2

1∫
0

w′
2sφ

′
1dx

1∫
0

φ1w
′′
2sdx, K6 =

1∫
0

2α
(w2s+1)3 φ1φ1dx.

(21)
The eigenfrequencies ω1,2 and the eigenvectors U1,2 of the system of Eqs. (21)

depend on the dimensionless transport inertia Pnon. An analysis of the nature of
these dependencies allows us to evaluate the sensitivity of the proposed sensor
model.

Figure 5 shows the dependence of the natural frequency of the in-phase and
antiphase modes with increasing potential differences ΔV and V .
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Fig. 5. The dependence of the natural frequency with increasing potential differences
ΔV and V .

Let us compare two measurement methods: with a frequency output and with
an amplitude output. Figure 6 shows the dependence of the oscillation frequency
on the external disturbance.

Fig. 6. Dependence of the oscillation frequency on the external disturbance Pnon. The
number “1” indicates the in-phase mode, and the number “2” indicates the antiphase
mode. With parameter V = 0.05V .

Figure 6 shows the dependence of the frequency on the external disturbance at
various ΔV values. It can be seen that with an increase in the weak coupling ΔV ,
the difference in the frequencies of the in-phase and antiphase modes significantly
increases. The region near the value Pnon = 0 is called the veering zone, because,
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as can be seen from the figure in this zone, the frequencies of the first and second
modes repel each other, but do not intersect in the presence of a small coupling
ΔV .

Figure 7 shows the dependence of the oscillation amplitude on the external
disturbance.

Fig. 7. Dependence of the amplitude of oscillations on the external disturbance Pnon.
The number “1” indicates the in-phase mode, and the number “2” indicates the
antiphase mode. With parameter V = 0.05V .

Figure 7 shows the dependence of the ratio of the components of the eigen-
vectors of free vibrations on the external disturbance for various values of ΔV .
As can be seen from the figure, with a decrease in the weak coupling ΔV , the
dependence of the amplitude indices on external acceleration becomes stronger.
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The sensitivity of sensors based on the frequency and based on the amplitude
ratio can be calculated by the formulas:

Sω = |ωi − ω0
i

ω0
i

|, Sα = |ui − u0
i

u0
i

|, (22)

where ω0
i and u0

i are the eigenfrequency and amplitude ratio of the compo-
nents of the eigenvector in the absence of weak coupling, that is, ΔV = 0, i = 1, 2
denotes the first mode (in-phase) and the second mode (antiphase), respectively.

Figure 8 and Fig. 9 show the dependences of the parameters Sω and Sα on
the dimensionless axial component of the acceleration Pnon.

Fig. 8. The sensitivity of the sensor based on the frequency from the external distur-
bance Pnon. With V = 1V .
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Fig. 9. Sensitivity of a sensor based on modal localization from the external disturbance
Pnon. The number “1” indicates the in-phase mode and the number “2” indicates the
antiphase mode. With parameter V = 1V .

As can be seen from the figures, the sensitivity of the accelerometer using
the principle of localization of oscillations is several orders of magnitude higher
than in a sensor with a frequency output.

6 Conclusions

In the present work, a model of a microelectromechanical accelerometer with two
movable beam elements located between two stationary electrodes is proposed.
The diagrams of the equilibrium positions and the dependences of the natural
frequency are constructed with varying the potential difference V and ΔV . The
dependences of the frequencies and the ratio of the components of the eigenvector
on the external disturbance are investigated. It is shown that the sensitivity of a
sensor based on the phenomenon of localization of oscillations in weakly coupled
systems can be orders of magnitude higher than the sensitivity of the system
in the mode of measuring the shift in natural frequencies. The symmetry of the
proposed sensor architecture also ensures its high resistance to environmental
changes (temperature disturbances, pressure changes).

The work was supported by the RFBR grant 20-01-00537.
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