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Preface

This volume contains the papers presented at SBMF2021: the 24thBrazilian Symposium
on Formal Methods. The conference was held online during December 6–10, 2021.

The Brazilian Symposium on Formal Methods (SBMF) is an event devoted to
the development, dissemination, and use of formal methods for the construction of
high-quality computational systems, aiming to promote opportunities for researchers
and practitioners with an interest in formal methods to discuss the recent advances in
this area. SBMF is a consolidated scientific-technical event in the software area. Its first
edition took place in 1998, reaching the 24th edition in 2021. The proceedings of the last
editions have been published mostly in Springer’s Lecture Notes in Computer Science
series as volumes 5902 (2009), 6527 (2010), 7021 (2011), 7498 (2012), 8195 (2013),
8941 (2014), 9526 (2015), 10090 (2016), 10623 (2017), 11254 (2018), and 12475 (2020).

The conference included four invited talks, given by Jeannette Wing (Columbia
University, USA), Orna Grumberg (Technion, Israel), Fritz Vaandrager (Radboud
University, The Netherlands), and Vander Alves (Universidade de Brasília, Brazil). A
total of eight papers were presented at the conference and are included in this volume.
They were selected from 15 submissions that came from authors in seven different
countries: Argentina, Brazil, India, Norway, South Africa, the UK, and the USA.

The Program Committee was comprised of 31 members from the national and
international community of formal methods. Each submission was reviewed by three
Program Committee members. Submissions, reviews, deliberations, and decisions were
handled via EasyChair, which provided good support throughout this process.

We are grateful to the Program Committee and to the additional reviewers for their
hardwork in evaluating submissions and suggesting improvements.We are very thankful
to the general chair of SBMF 2021, Tiago Massoni (Universidade Federal de Campina
Grande, Brazil), who made everything possible for the conference to run smoothly.
SBMF 2021 was organized by the (Universidade Federal de Campina Grande, Brazil),
and promoted by theBrazilianComputer Society (SBC).Wewould like to thankSpringer
for agreeing to publish the proceedings as a volume of Lecture Notes in Computer
Science.

October 2021 Sérgio Campos
Marius Minea
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A Two-Level Approach Based on Model
Checking to Support Architecture

Conformance Checking

Bruno Menezes1(B), Ana Teresa Martins1 , and Thiago Alves Rocha2

1 Universidade Federal do Ceará, Fortaleza, Brazil
brunomenezesr@alu.ufc.br, ana@dc.ufc.br

2 Instituto Federal de Educação, Ciência e Tecnologia do Ceará IFCE,
Maracanaú, Brazil

thiago.alves@ifce.edu.br

Abstract. We propose a Model Checking based method to aid Architec-
ture Conformance Checking, which is a fundamental analysis to ensure
software quality, dependability and maintainability. In this work, a new
logic, which combines temporal logic, hybrid logic and a new logical
operator in order to formalize software specifications, is proposed. The
method described in this paper uses two structures, namely call graphs
and software version graphs. The first one is used to check specifications
related to classes and methods and we apply it intending to analyze
a specific software version. The latter one gives us an overview of the
software development process and we employ it to check global software
requirements. These two graphs allow us to design a two-level checking
method. The first level deals with specifications of a single software ver-
sion that must be inspected in the call graph. The second level handles
the global requirements throughout all software versions. Using our new
operator and a function, we are able to use the same logic in both levels,
allowing them to communicate with each other and handle the verifi-
cation process in a neat and uniform manner. Our two-level approach
is the great differential of this work, since the current approaches avail-
able in the literature focus on an unique software version at a time. We
also present the general idea of an algorithm, which has polynomial time
complexity, to perform Model Checking for our proposed temporal logic.

Keywords: Formal verification · Model Checking · Architecture
Conformance Checking · Temporal logic · Hybrid logic

1 Introduction

The current paper is inserted in the context of Architecture Conformance
Checking. In order to understand it, one needs to be aware of what software

This research was supported by the Brazilian National Council for Scientific and Tech-
nological Development (CNPq) under the grant number 424188/2016-3.
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2 B. Menezes et al.

architecture is. We present a definition by synthesizing a few definitions found
in [21,25,26].

Definition 1. Software architecture consists in:

1. Software components and their requirements;
2. The relationships between these components;
3. The communication interfaces between the components and external software

systems;
4. The documentation regarding the definitions and the design of the points

above.

When developing a software, its architecture is defined by the software archi-
tects. The developers must implement this exact architecture. However, through-
out the implementation phase, disagreements between the documented architec-
ture and the coded architecture arise. These disagreements prejudice the software
quality. Hence, they should be avoided. This problem is known as Architecture
Erosion [20,21,25]. Some issues induced by Architecture Erosion include loss of
planned scalability, reduced maintainability (which makes it difficult to update
and fix the software), loss of dependability and reusability.

Architecture Conformance Checking [20,21,25] aims to avoid disagreements
induced by Architecture Erosion. This analysis measures the accordance level
between the design architecture and the coded architecture. The architecture
conformance is achieved when there is no disagreements between the real archi-
tecture, implemented in the source code, and the architecture which has been
designed and documented by the architects. We give a high-level abstraction
definition below:

Definition 2. Architecture Conformance Checking is the process of verifying if
the decisions, the definitions and the specifications made during design archi-
tecture phase are indeed being implemented when the software is coded. This
verification should be constantly done while the software is implemented by the
developers.

Conformance checking is a complex process, since it involves analysing design
decisions and software artifacts in some levels:

1. Higher abstract level:
– Modules;
– Software connectors;
– Communication interfaces.

2. Deeper implementation level:
– Methods;
– Classes;
– Class packages;
– Control flow structures.
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We develop a formal verification method aiming to aid Architecture Confor-
mance Checking. As we explain in Sect. 2, we focus on requirements related to
classes and methods. This analysis is applied to a specific software version. We
extend this analysis to a global point of view, gathering all software versions.
Summarizing the problem we are dealing with:

Given a software model and a set of specifications related to its methods
relationships, we aim to check if the model satisfies such specifications along its
several versions.

The goal of this work is:
To propose a Formal Verification Method able to solve the problem above while

allowing the analysis of the specifications throughout the software development
process, i.e., along its various versions, aiming to be applied in Architecture
Conformance Checking.

We list below the key ideas of the method we propose:

1. A Formal Verification method to be used by Architecture Conformance
Checking in order to verify specifications related to classes and methods of a
software;

2. The analysis of the behavior of these specifications along the software devel-
opment process;

3. A logic with a new operator to represent specifications;
4. The application of Model Checking to verify if the specifications are satisfied

by the system. Call graphs and version graphs are used to model the system,
allowing that we can use the formal method pointed out.

Taking into account the global level, i.e., considering several software versions
and not only one in the analysis, is the great differential of this work. The
works found in the literature, such as [1–4,11,14,16–19,24], focus on a particular
software version at a time. We aim to allow the user to assesses specifications
across all software versions.

Section 2 gives the background to support and contextualize this work.
Section 3 presents our method, explains the structures we use, the semantics of
our logic and gives some examples. We also give an overview of the Model Check-
ing algorithm. Section 4 is the conclusion, followed by suggestions for future
works.

2 Theoretical Background

2.1 Model Checking

In this work, we use Model Checking, a Formal Verification method. Model
Checking [5,23] is a method which allows us to analyse if a system satisfies
desired specifications by modeling it and inspecting the states of the model. It is
an efficient technique to find flaws in systems design. The desired specifications
are written in some formal language, e.g., a logic. Thus, the problem consists of
checking if the model satisfies a set of formulas from an initial state.
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Definition 3. Model Checking is the following problem: given a model M and a
specification properly formalized α, we ask if M satisfies α from an initial state
s. We denote this as M, s |= α.

A pretty common structure used to model systems is the so called Kripke
structure [5,23]. We adopt it here and present their definition:

Definition 4. A Kripke structure is a tuple M = (V, →, L, PROP, v0), where:

1. V is a set of states;
2. → ⊆ (V × V) is a transition relation;
3. L: V → 2PROP is a label function;
4. PROP is a set of propositional atoms;
5. v0 is an initial state.

The notion of path in a Kripke structure is used to define the semantics of
our proposed logic. Thus, we present its definition below:

Definition 5. A path in a Kripke structure M = (V,→, L, PROP ) is an infinite
sequence of states v1, v2, v3, ... ∈ V such that for each i ≥ 1, we have vi → vi+1.

2.2 Temporal Logic and Hybrid Logic

Temporal logic is a kind of modal logic such that the modality is time [5,12,23].
These logics have proved to be really useful when it comes to writing system
requirements [5,12]. Since systems change their states through time, we need a
logic capable to represent temporal concepts.

As the system runs, properties are satisfied and then are not. This dynamic
aspect is captured by temporal logic, while first order logic and propositional
logic are not able to capture it, since they are static. There are temporal logics
to fulfill several purposes. These logics are classified according to how they treat
time. Time can be linear, treat as a set of paths, with each path being a succession
of instants in time. LTL is an instance of temporal logic which treats time as
linear [23]. Time can also be treat as a tree. In this case, the root represents the
present instant and branches are the possible futures. CTL treats time this way
[23]. Time can also be discrete or continuous, finite or infinite.

Our proposed logic follows CTL. Thus, we deal with infinite, discrete, branch-
ing time. With discrete time, we have a set of instants, represented by states.
Infinite time means that each state has at least one successor. Thus, time never
stops. We can have a finite number of states, but since each one of them has a
successor, the paths are infinite, hence, the time is infinite.

CTL allows to explicitly quantify on paths by means of the quantifiers A (all
paths) and E (there is a path) that works with temporal operators. For example,
EFq means “there is a path such that at some moment satisfies the atom q”
and stands for the property “There is a reachable state which satisfies q”.

Hybrid logic [7] have a special type of propositional atoms, the nominals,
used to identify states of a model. The idea is that each nominal is true only in
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a unique state. Thus, using them allow us to refer to a certain state in an easy
manner.

We combine connectives from a temporal logic known as CTL [5,6,23] and
from a simple hybrid logic which can be found in [7] to create a new logic. Besides
theses connectives, we propose a new one, namely IN , as a means to permit the
communication between our two levels of verification. The details are explained
in Sect. 3.

2.3 Software Versioning

Software systems are incrementally developed. We gradually add new modules,
resources, bug fixes until we get a version meeting all requirements. In this
process, it is fundamental to organize the versions to facilitate management and
understand how the software evolves. Even after a final version is delivered to
the client, a neat development history is necessary as a means to maintain and
update the system. To do so, software versioning is used.

Software versioning is the process of organizing each development state in a
version and giving unique identifiers to them. Hence, software engineers, project
managers and stakeholders are able to keep track of where and when changes
were made. Users can easily find the newest versions to keep their systems
updated.

A common way to identify the versions is the semantic versioning [22]. We
are not going to get into details here, but basically we have a hierarchy following
the pattern x.y.z, with x, y, z ∈ N. We begin at version 1.0.0 and the values are
incremented according to the versions evolution and the depth of the changes.
The meaning of x, y and z suggested in [22] is:

1. x stands for the major version. It should be incremented when the changes
made are incompatible with the API (Application Programming Interface) of
the software;

2. y stands for the minor version. It should be incremented when a new func-
tionality is added;

3. z stands for the patch version. It should be incremented when bug fixes are
added.

We use software version graphs [15], or just version graphs for the sake of
brevity, as a means to maintain the history of versions. These structures synthe-
size the different development branches and how they evolve through time. This
history can be stored and managed by Version Control Systems (VCS), such as
Git [8].

Definition 6. A version graph is a directed cycle free graph which the vertex set
represents the versions of a software and the edges set is the succession relation
between the versions.

Version graphs are cycle free graphs, since it is not possible that a version
released in a day x be followed by a version released in a day before x. Thus,
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we can travel only forward, it is not possible to go back to a vertex which has
already been visited. There is only one initial version and one final version,
which is possible to be extended when the software goes through maintenance
or evolution. We assume that we can reach any version from the initial one,
since they are derived from it. Each path in this graph stands for a development
branch.

3 The Proposed Method

This section presents our method. We show the structures that we use to model
the system and in which we apply Model Checking. We define our logic, used to
formalize software specifications, and give some examples to demonstrate how
our method works and better explain its behavior. We also briefly speak about
the Model Checking algorithm for our logic.

Tools to aid Architecture Conformance Checking are fundamental: they
reduce the verification time, additional spending and are more reliable than
totally human analysis, which is unviable to large systems. In this work, we
focus on the analysis of requirements related to methods, classes and class pack-
ages in order to propose one of these tools. To fulfill the goal presented in Sect. 1,
we create two levels of verification:

Level 1: we deal with a specific software version. With the purpose of doing so,
we use call graphs. Each version has its own call graph, which is used to build
the model for Model Checking. We refer to this level using the subscript in.

Level 2: we deal with the global development process utilizing the version graph.
This graph gives us an overview of all version of a system. As in level 1, the
version graph is used to build the model for Model Checking. We refer to this
level using the subscript out.

The connection between these two levels is made by linking the call graph
corresponding to a version to the vertex of this version by means of a function. In
the logic we create, we put a connective that allows the communication between
the two levels. Hence, we are able to deal with these levels in a homogeneous
manner. This makes our method a neat solution for the proposed problem.

Summarizing the steps of our proposed method, it follows:

1. Formalize the software specifications using our proposed logic. These specifi-
cations should be found in the documentation of the architecture.

2. Model the system according to the structures we explain in the following two
sections.

3. Then we have a model of the system and a set of formulas. Thus, we can
apply a model checking algorithm to decide if the model satisfies or not the
specifications.

Checking if the set of specifications is satisfied or not by the model allows us
to verify if the code is indeed implementing the desired architecture. The spec-
ifications may change during the development, since the requirements can be
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changed by the stakeholders, the technology evolves and the software needs to
keep updated, among other reasons. Of course, the software interfaces, the meth-
ods, the relationships between the components can change in order to comply
with the new requirements. Assessing the specifications through all versions gives
us a global vision of the development process that facilitate the understanding
of the changes, their scope, where and when their happened. This may help new
developments, new manages and software engineers in general to understand a
software project. It can also help debugging, since one can analyze when a new
requirement has been implemented and the impacts that it cause to the software.
These are the main advantages of our proposed method that we highlight.

3.1 Call Graphs as Kripke Structures

As mentioned before, we use call graphs as one of the structures to model the
system. We define them in this subsection and explain how we represent them
as Kripke structures. Call graphs [13] are structures that code the relationships
between the methods of a program:

Definition 7. A call graph is a directed graph which the vertex set represents
programming methods and edges mean the call from one method to another.
Thus, if a method A invokes a method B, there is a directed edge from the vertex
A to the vertex B.

We convert these graphs in Kripke structures using the following definition:

Definition 8. Let Min = (Vin,→in, Lin, PROPin, v0in) be a Kripke structure
with:

1. Vin is the set of states: it represents the methods present in the software, i.e.,
the vertex set of a call graph.

2. →in is the set of transitions: there is an edge from state A to state B if the
method represented by A calls the method represented by B. It is the edge set
of a call graph.

3. Lin is the label function: Lin : Vin → 2PROPin . We label a state with the
method that this state stands for and with the class that has this method.

4. PROPin is the set of propositional atoms. We have a propositional atom for
each method and for each class being assessed.

5. v0in is the initial state: when we apply Model Checking, we take this state as
the initial one.

Note that the call graph is an arbitrary graph. We do not have any special
property about it. Thus, the Kripke structure that represents it is also arbitrary.
However, in order to fit in the semantics of the proposed logic, we need to add a
dead state which receives an edge from states that do not have a successor. By
doing so, we guarantee the concept of infinite time. We identify this dead state
using a propositional atom.
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In case of polymorphism [10], we may use propositional atoms to differentiate
the polymorphic methods. Also, we can use a notation alike class::prop atom and
method::prop atom to enlighten what is each atom in the labels. Please, note
that this is not mandatory, you can use whatever notation you want, as long as
it is clear what the methods and the classes refer to.

The choice of the initial state is up to the software engineers based on what
requirements are under analysis. For instance, suppose we want to check a set
of specifications related to a execution flow to print a spreadsheet saved in some
storage device. The initial state is the one which stands for the method that
triggers the execution flow.

Obtaining the call graphs involves inspecting the source code. We have to go
through it, find the methods called by the methods in the execution flow that
is under analysis and assemble the call graph. Algorithms to perform this task
can be found in [13].

3.2 Version Graphs as Kripke Structures

We use the following enhancement of Kripke structures to codify the version
graphs:

Definition 9. Let Mout = (Vout,→out, Lout, PROPout, v0out, I, GC,N,C) be a
Kripke structure with I,GC,N,C as additional elements with:

1. Vout is the set of states of version graph: each vertex represents a software
version.

2. →out is the set of edges of version graph: it says which versions are successors
of a particular version.

3. Lout is the label function: Lout : Vout → 2PROPout . Propositional atoms can
be used to code extra information about a version graph.

4. PROPout is the set of propositional atoms.
5. v0out is the initial state, it represents the first version.
6. I is the set of nominals used to identify each version.
7. GC is the set of call graphs under analysis.
8. N is a function that links nominals to its corresponding vertex: N : I → Vout.
9. C is a function that links a version graph vertex to the call graph corresponding

to the version represented by the vertex: C : Vout → GC.

The same properties that we mentioned earlier right after version graph Def-
inition 6 are valid to this Kripke structure. However, with the aim of respecting
the semantics of our proposed logic, we add a loop in the vertex corresponding
to the final version. If the software is updated, this loop will be removed and
an edge to the next version will be added. We apply this same procedure to
intermediate versions that are discarded during development process. We show
an example (Fig. 1):
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Fig. 1. A version graph. Each path is a development branch. Note the discarded version.

3.3 The Proposed Logic: A Two-Level Temporal Logic
for Specifications Checking

We propose a variant of the temporal logic CTL [5,6,23] adding hybrid logic
operators. The formulas of this logic are composed of two-levels: the first one is
intended to verify specifications based on call graphs. The second one aims to
evaluate requirements related to version graphs. As we said before, we use the
subscripts in and out to refer to each of these levels.

Definition 10. We use the well-known adequate set {¬,∨} for boolean operators
and the adequate set {AF,EU,EX} for temporal operators [23]. We present the
syntax of our proposed logic in Backus-Naur form:

1. For formulas evaluated based on call graphs, in the first verification level:
αin := pin‖¬αin‖αin∨αin‖EXαin‖AFαin‖EU(αin, αin)‖AP (αin)‖EP (αin)

2. For formulas evaluated based on version graphs, in the second verification
level:
αout := pout‖i‖¬αout‖αout∨αout‖EXαout‖AFαout‖EU(αout, αout)‖@iαout‖INαin

From now on, we refer to call graph meaning the structure defined in Defini-
tion 8 and to version graph meaning the Definition 9. We evaluated our formu-
las based on this last structure: Mout |= αout if and only if Mout, v0out

|= αout,
according to the semantics definition given after the next two paragraphs.

The clauses 7 and 8 define the nominal and @i semantics. We use this to
identify and access a specific software version. Thus, we do not need them for
call graphs. The clauses 11 and 12 define temporal operators that talk about
the past. We use them only for call graphs, because we have found specifications
which need to evaluate method calls that take place in the past of the execution
flow. We do not need these operators for version graphs. If one finds specifications
that need to talk about the past on version graphs, it is easy to extend the logic
with them on the second level.

The IN operator, explained in the clause 9, is responsible for allowing the
communication between the two verification levels. This operator transfers the
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verification process from version graphs to call graphs. Note that the semantics
defines that the scope of IN must be evaluated in the call graph associated to
the state being visited in the version graph when we walk through the graph.
The call graph is obtained by means of the C function. When the evaluation of
the formula on the call graph finishes, the control goes back to version graph, to
the same state as before, since IN does not interfere with it. Hence, we are able
to deal with the two-levels in an uniform manner.

Definition 11. Let Mout = (Vout,→out, Lout, PROPout, v0out
, I, GC,N,C) a

version graph represented as a Kripke structure, vout a state of this structure,
αin and αout formulas of our proposed logic. The semantics of this logic is:

1. Mout, vout |= pout iff pout ∈ Lout(vout).
2. Mout, vout |= ¬αout iff Mout, vout �|= αout.
3. Mout, vout |= αout1 ∨ αout2 iff Mout, vout |= αout1 or Mout, vout |= αout2.
4. Mout, vout |= EXαout iff there is vout2 such that vout →out vout2 and

Mout, vout2 |= αout.
5. Mout, vout |= AFαout iff for all path vout = vout1 →out vout2 →out vout3 →out

... if there is vouti for i ≥ 1 along the path such that Mout, vouti |= αout.
6. Mout, vout |= EU(αout1 , αout2) iff there is a path vout = vout1 →out

vout2 →out vout3 →out ... such that there is i ≥ 1 with Mout, vouti |= αout2

and for all j such that 1 ≤ j ≤ i - 1, we have Mout, voutj |= αout1 .
7. Mout, vout |= i iff N(i) = vout.
8. Mout, vout |= @iαout iff Mout, v |= αout, with N(i) = v.
9. Mout, vout |= INαin iff Min, v0in |= αin, with C(vout) = Min.

10. The semantics of pin, {¬in,∨in}, and {EXαin, AFαin, EU(αin, αin)} is
analogous to the semantics of the second level.

11. Min, vin |= AP (αin) iff for all path v0in = vin1 →in vin2 →in vin3 →in

... →in vin there is vini
with i ≥ 1 along the path such that Min, vini

|= αin.
12. Min, vin |= EP (αin) iff there is a path v0in = vin1 →in vin2 →in vin3 →in

... →in vin there is vini
with i ≥ 1 along the path such that Min, vini

|= αin.

3.4 Examples

We assume the verification on version graph always starts from the initial state,
which represents the first version of the software. However, we can skip to specific
versions using @i. For call graphs, the verification always starts from the initial
state, according to the semantics of our proposed logic. For the examples present
in this subsection, let Mout be a Kripke structure that represents a version graph,
according to Definition 9. We verify if Mout |= αout, i.e., Mout, v0out

|= αout. Note
that this is computed applying Model Checking.

We use all temporal and boolean operators, not only the adequate sets, in
the way that they are usually found in the literature [23]:

α ∧ β := ¬(¬α ∨ ¬β), α → β := (¬α ∨ β), AXα := ¬EX¬α, EFα :=
EU(�, α), AU(α, β) := ¬EU(¬α, (¬α∧¬β))∧AFβ, AGα := ¬EF¬α, EGα :=
¬AF¬α, with � being a propositional atom that stands for true.
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General Examples of Specifications: we present a few software specifica-
tions adapted from [9]. We present a formula, which codifies the desired specifi-
cation, dividing it into two parts: αin is the formula that must be evaluated on
the first level and αout must be evaluated on the second level.

Specification 1: the convertToIntervalXml method of the ConversionFilter
class is executed by the software in all versions, but version 5.

– αin := EF (ConversionFilter ∧ convertToInternalXml): this formula is
true if we find a state that satisfies ConversionFilter ∧ convertToInter-
nalXml, according to EF semantics. This means that occurs a call to
convertToIntervalXml, so the method is executed by the software.

– αout := AG((i5 → ¬IN(αin))∧(¬i5 → IN(αin))): we verify for all version
graph states if (i5 → ¬IN(αin)) ∧ (¬i5 → IN(αin)) is true in the state.
We use implication to check if we are in version 5, using the nominal i5. If
it is the case, then the call graph of this version must not satisfy αin. To
do so, we use IN . If we are not in version 5, the call graph must satisfies
αin. Thus, we verify if the version graph state satisfies IN(αin).

Specification 2: from version 5, if a call to placeOrder method of the Cus-
tomerPortalServiceCLientProxy class occurs, then eventually must happen a
call to the forwardRequest method of the ApacheCamelBroker class.

– αin := AG((CustomerPortalServiceClientProxy ∧ placeOrder) →
AF(ApacheCamelBroker ∧ forwardRequest)): the property must be com-
plied by all call graph states. Thus, we use the AG operator. Since the
specifications has a if-then structure, we use the implication. Then, if
we have a call to placeOrder, which happens if we find a state that satis-
fies CustomerPortalServiceClientProxy ∧ placeOrder, we must eventually
find a call to forwardRequest. Thus, we use the AF operator.

– αout := @i5AG(INαin): since the property must be satisfied from the
version 5, we ignore the versions before and execute the verification from
version 5. In order to achieve this, we use the @i operator. This formula
works because a version graph has only edges to the next version, it does
not have edges that allow to go back to a version assessed before. The
formulas we present in this subsection take into account this property.
Considering the fact that αin must be satisfied by all states from the
version 5, we use the AG operator. To say that αin must be checked
based on call graphs, we apply IN .

Specification 3: for all version must be valid that every call to the generatePDF
method of the DocumentGenerationFilter class is preceded for a call to the
addAdditionalInformation method of the EnrichmentFilter class.

– αin := AG((DocumentGenerationFilter ∧ generatePDF) →
AP (EnrichementFilter ∧ addAdditionalInformation)): this specifications
has the same structure of Specification 2, but, instead of searching for an
occurrence of a call in the future, we search in the past by means of the
AP operator.
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– αout := AG(αin): since the property coded by αin must be true in all
version, we use the AG operator. Remember that, according we said in
the begin of this subsection, we check this formulas from the initial state.

IN Scope: the aim of this example is to spotlight the behavior of the IN
operator and how it gives power for the proposed logic. Consider:

1. φ1 := IN(αin) ∧ αout: analysing what happens when Mout, vout |= φ1 is eval-
uated, because of the conjunction semantics, vout |= IN(αin), which means
that the call graph associated to the state vout satisfies αin. For the same
reason, vout |= αout, which means that the state vout satisfies αout. To sum-
marize, αin must be satisfied by the call graph, and αout must be satisfied by
a version graph state.

2. φ2 := IN(αin1 ∧ αin2): the IN operator tells us to verify if the call graph
linked to vout satisfies the formulas αin1 and αin2 . To φ2, we do not verify if
vout satisfies αin1 or αin2 , like we do to αout of φ1. Due to the scope of the
IN operator, we check αin1 and αin2 in the call graph linked to vout by the
C function.

This example aims to emphasize the scope of the IN operator: it allows us
to define exactly what must be checked in the call graph and what must be
checked in the version graph. The operator can be used to walk through the
version graph getting into the call graphs when it is necessary and then coming
back to the version graph to proceed to the next state.

Properties Related to Layered Architecture: the layered architecture pat-
tern [26] is a pretty common pattern used to build software architecture. We
present some specifications related to this pattern and that can be used when we
verify a software which follows layered architecture. We use propositional atoms
with the same name of the classes and methods they represent. For instance,
the atom A refers to the A class. The size of a sequence of method calls is the
number of states, which represents the methods, in the sequence.

1. The A class calls the B class directly: this is true if we find a method
of A that calls a method of B in the call graph. The following formula does
the trick:

EF(A ∧ EX(B)): at some point during program execution, some method of A
class appears in the call graph and has as successor a method of the B class.
Thus, there is a direct call between these classes.

2. The A class calls the B class indirectly: this happens if we have a method
of the A class followed by a call of a method that is not of the B class and
then a series of zero or more calls of methods of another classes until a call
to a method of the B class. We get the formula:
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EF(A ∧ EX(¬B ∧ EF(B))): there is a call to some method of the A class and
at least one successor of this method is not a method of the B class. However,
there is a sequence of method calls that eventually reaches a method of the
B class.

3. There is a sequence of calls starting from a m method that reaches
a n method: this situation is just like the indirect call between two classes,
but here we have methods instead and there is no problem if the m method
calls the n method directly, that is, we can have zero size sequences. The
following formula captures our intention:

EF(m ∧ EX EF(n)): this formula copes with the case of zero size sequences
and arbitrary size sequences. If we mean to avoid zero size sequences, we have
the formula EF(m ∧ EX EX EF(n)), forcing the existence of at least one call
between m and n.

4. The A class is in a call loop: this means that we have a method of A that
is followed by a sequence of method calls and, along this sequence, we are
able to find an infinite number of methods of the A class. Note that the call
graph is finite, but we can have infinite paths on it. The formula to code this
specification is a little bit tricky:

EF (A ∧ EX(EGEF (A))): at some point, a method of the A class is called.
For at least one successor of this method, we have a path in which is always
possible to find a method of the A class. It can be the same method. If this
occurs, we say that the A class is in a call loop. In order words, a method of
the A class is called. After this call, some method of A is always called while
the program is executed.

A Model Checking algorithm for our logic consists in apply a CTL algorithm
to verify all subformulas in IN operators scope. These subformulas are evaluated
in call graphs using a simple algorithm for CTL which can be found in [23]. After
this, we have the truth values of the subformulas in IN scope and can deal with
them as if they were propositional atoms. Then, we apply the CTL algorithm
again for temporal and boolean operators in the version graph. Nominals can
be treated as propositional atoms, case handled by the CTL algorithm. The
satisfiability of @i can be verified by means of a graph search algorithm and IN
makes us visit a call graph through a function. These operations take polynomial
time in the size of the model. Hence, the algorithm has polynomial complexity.
Unfortunately, we do not have space to explain this algorithm in details and
describe how we calculate its complexity. However, we present it below:

1. Let nout be the number of states and mout, the number of edges in the version
graph, tout be the number of logical and temporal operators.

2. The cost of the checking disregarding the IN operator is v1 = tout × nout ×
(nout + mout).

3. Let nmaxin
be the greatest number of states in a call graph, and mmaxin

, the
greatest number of edges in a call graph in the set of call graphs and tmaxin

,
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the greatest number of logical and temporal operators in a call graph in the
set of call graphs (GC). It does not need to be the same call graph, our goal
is to get a upper bound.

4. Let z be the number of IN operators in the formula under analysis. The costs
of propositional atoms, nominals and @i operators are surpassed by the other
costs.

5. The cost of the checking regarding the IN operator is v2 = nout ×z × (tmaxin

× nmaxin
× (nmaxin

+ mmaxin
)).

6. The complexity of the Model Checking algorithm of our proposed logic is
O(v1 + v2).

4 Conclusion and Future Works

The methodology we proposed here formalizes the requirements using a kind of
logic that is familiar to software engineers, what makes it easier to apply in real
world scenarios than other methodologies found in the literature, like [14]. As
we could see in the examples, the size of the formulas are small and they can
be easily read by humans. Our two-level approach is an innovation that gives
to engineers a manner to analyse the global behavior of the requirements being
assessed. This gives a point of view that the current methods cannot give. Thus,
we can perform assessments that would not be possible or would require a lot
of workaround in other methods, without lost the intuition about the meaning
of the requirements. Also, we do not need to develop an algorithm from scratch.
By using algorithms that already exists, we save time and still get a polynomial
time algorithm. This is fundamental if one intends to apply our methodology in
real world. Considering the features we have just spotlighted, we believe that
our methodology can be really useful to Architecture Conformance Checking,
contributing to the development of reliable and quality systems.

We spotlight our contributions below:

1. We propose a method that deals with two levels of verification in a homoge-
neous manner. By adding a global level, we are able to check how specifica-
tions behave along the history of the development of a system. The current
methods deals with only one version at a time.

2. The method we define in this paper utilizes the history versions, kept by VCS.
Thus we can take advantage of the management made by VCS.

3. We present a model of the system that links the two structures used in each
verification level and a logic that possesses a connective which allows the
communication between the two verification levels.

4. Once we have a model of the system and the specifications formalized in the
proposed logic, we apply Model Checking. We adapt the algorithms for the
two logic that we adopt to create our own. This algorithm has polynomial
time complexity.

5. The solution we propose is generic: we use call graph and evaluate spec-
ifications related to them. We can switch them to other structures that
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code another features of a system and then apply the same methodology we
describe here, as long as the structures involved can be converted to Kripke
structures. Hence, our solution works like a framework.

As future works, we suggest analysing other structures, such as control flow
graphs, in order to enumerate the specifications that can be evaluated based
on them. It would be necessary investigate if the proposed logic is suitable to
formalize the specifications. If not, we must adjust, whether creating new oper-
ators or adopting other logic. We can also try to improve the complexity of the
algorithm that performs Model Checking on our proposed logic.
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Abstract. Statistical Model Checking (SMC) is a popular technique in
formal methods for analyzing large stochastic systems. As opposed to the
expensive but exact model checking algorithms, this technique allows for
a trade-off between accuracy and running time. SMC is based on Monte
Carlo sampling of the runs of the stochastic system, and lends itself to
stochastic discrete event simulators as well.

In this paper, we use SMC to analyze traffic models like car-following
and lane-changing models. We achieve this through an integration of the
SMC tool MultiVeStA with the discrete event simulation software for
urban mobility, SUMO.

As illustration of the approach and the tool chain, we compare the car-
following and lane-changing models against various performance param-
eters like throughput, emissions and waiting times. Importantly, the use
of formal methods allows for formulating and evaluating complex queries
that can be asked of the model. The results show the utility of such a
tool chain in performing complex quantitative what-if analyses of various
traffic models and policies.

Keywords: Statistical Model Checking · Traffic modeling and
simulation · Car following and lane changing models

1 Introduction

Modeling and simulation is used extensively by traffic engineers for understand-
ing and designing protocols and policies for maximizing traffic flow and min-
imizing jams and emissions. Microscopic traffic flow modeling and simulation,
that operate at the granularity of individual vehicles have attracted attention
in the recent past. The impact of how vehicles follow each other and respond to
the changing dynamics of nearby vehicles, and the way vehicles change lanes in
a moving traffic flow has been accepted to be significant. So much so that two
important examples of microscopic traffic modeling and simulation, the class of
car-following models and lane-changing models, have been studied extensively
in the past. Several mathematical models have been proposed, and several simu-
lation tools have been developed on which these models have been implemented.
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The simulations are studied to draw inferences or validate various predictions
of the models. SUMO (Simulation of Urban MObility) is a popular tool that
provides the facility to carry out such studies [12].

Given their importance, several studies have been conducted in the past to
compare the relative merits of various car-following and lane-changing mod-
els [5,10,15,16]. In this work, we study these models from the stand-point of
(statistical) model checking. In particular, we pick the following car-following
models–Wiedemann [22], Krauss [11] and Intelligent Driver[21], and the follow-
ing lane-changing models–LC2013 [13] (LC) and SL2015 [9] (SL).

Model checking is a branch of formal methods that is used for analysis of
systems against desirable properties. In order to perform this analysis automati-
cally, both the system under analysis and the properties need to be specified in a
mathematically precise manner [7]. This technique can be applied for analyzing
stochastic systems as well. Generically called probabilistic model checking, there
are two important ways to accomplish this–exact model checking and statistical
model checking [23]. Statistical model checking (SMC) has emerged as an attrac-
tive approach to quantitative analysis of large stochastic systems [3,14,18,24].
While approaches like exact model checking that rely on expensive state space
exploration are accurate, SMC offers a trade-off between accuracy and run-
time [23]. An additional advantage that we leverage in this paper is that this
technique lends itself to black box systems and Stochastic Discrete Event Simu-
lators. MultiVeStA [1] is an example SMC tool that allows for easy integration
with (stochastic) discrete event simulators. MultiVeStA supports both tempo-
ral logic queries (like PCTL and CSL), as well as (Multi)Quatex (quantitative
temporal expression) queries. In this work, we use statistical model checking to
study traffic models. Our contributions are twofold:

1. We integrate the statistical model checker MultiVeStA with SUMO.
2. We analyze various car-following and lane changing models for performance

parameters using this tool chain.

From the analysis that we report through four illustrative queries in this
paper, different combinations of car-following and lane-changing models seem to
perform better in different circumstances. For example, for short distance rides,
the combination of Krauss car following model and SL (2015) lane changing
model seems to perform better than Wiedemann-SL. On the other hand, traffic
build-up (as per a specific query) seems to happen slower for Weidemann (for
both lane-changing models) when compared to Krauss (for both lane-changing
models).

While we focus our attention in this paper on car-following and lane-changing
models, we believe that the integrated tool will be useful in in-depth analyses of
other models and questions in traffic management and policy design.

We present the prerequisite background and the tools in the next section.
Section 3 briefly discusses the tool integration details. In Sect. 4, we discuss
queries that illustrate the utility of the tool chain, along with results and dis-
cussions. We conclude the paper with a discussion on future directions.
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2 Background

2.1 SMC and MultiVeStA

The “quantitative” variant of statistical model checking seeks to estimate the
probability that a system (say, a stochastic discrete event simulator) satisfies
a property stated formally (say, as a formula in a temporal logic). The SMC
algorithm answers this through a Monte Carlo sampling based evaluation. Con-
sequently, the running time depends on the desired level of confidence. Variants
that answer qualitative queries – does the system satisfy the specification for-
mula with probability at least θ have also been studied. For such applications,
typically statistical techniques like hypothesis testing are employed.

MultiVeStA is a statistical model checking tool from the VeSta family. The
first in the series, VeSta, is a tool that allows a variety of model specification for-
malisms like (discrete and continuous) Markov chains, and the executable spec-
ification language PMaude for probabilistic read-write theories [4,19]. Property
specification languages like the PCTL and CTL are supported, but importantly,
Vesta supports the QUAntitative Temporal EXpressions language (QuaTEx).
PVesTa improves the performance by distributing the simulations on difference
processing units [6]. The tools in the VeSTa family work as long as discrete event
simulations can be performed on the models and the probability measures are
well defined on the paths of the model.

MultiVeStA builds on these tools and facilitates direct integration with dis-
crete event simulators [17]. Additionally, it offers more sophisticated analysis
capabilities like counter-factual analysis, and an enhanced interface [17]. The
integrated tool chain has been made available for the interested reader at https://
github.com/ThamilselvamB/Multivesta-With-SUMO.git.

In the interest of space, we will not discuss details like the syntax and seman-
tics of Quatex and Multiquatex. Instead, we will explain the semantics of the
queries that we will use in the paper.

2.2 SUMO - Simulation of Urban MObility

Simulation of Urban MObility (SUMO) is an open source tool for microscopic
road traffic simulation. SUMO supports various traffic demand modeling and
measurement of road network parameters like vehicle types, emission etc. We
use the TRAffic Control Interface (Traci) to control the SUMO simulator. Traci
is a Python package which interacts in an online manner and retrieves all objects
involved in SUMO. SUMO also supports measurement and monitoring of a large
number of traffic parameters including pollutant emissions of vehicles, and details
of each vehicle’s journey. Additionally, it allows simulation of various detectors
and detector outputs–the lane area detector and loop detectors. SUMO supports
several car-following models and lane changing models.

https://github.com/ThamilselvamB/Multivesta-With-SUMO.git
https://github.com/ThamilselvamB/Multivesta-With-SUMO.git
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2.3 Car-Following and Lane Changing Models

Two of the most important dynamics of a vehicle on a road are movement
along the longitudinal direction and lateral movement. Car-following models
attempt to capture how a given vehicle follows the vehicle immediately ahead of it
[5,10,16]. Similarly, lateral movement between lanes and sub-lanes are modelled
by Lane-changing models [8,9]. We briefly discuss the models that are used in
this work. These models are also supported by SUMO.

Car Following Models. In modeling the car-following logic, various motion
parameters like the accelerations, velocities and relative positions of the leading
and the following car are relevant. Indeed, many models employ these heavily.

1. The Krauss [11] model calculates a vehicle’s speed in relation to the vehicle
in front of it. The primary objective in this model is to calculate a safe speed
Vsafe for a vehicle in relation to the vehicle ahead:

Vsafe = Vl(t) +
g(t) − Vl(t)tr

Vl(t)+Vf (t)
2b + tr

,

where Vl(t) is speed of the leading vehicle at time t, g(t) is gap to the vehicle
ahead, tr is driver’s reaction time and b is maximum deceleration of the
vehicle. By adhering to this speed, the vehicle remains “safe”, and provides
one car-following model.

2. The Wiedemann [22] model is a very popular psycho-physical car-following
model. Based on the instantaneous values of the motion parameters, a car
is in one of several regimes–for example, following, cruising, approaching or
emergency. The driver is believed to behave differently in these regimes and
the behavior, in terms of acceleration, deceleration or steady speed, is modeled
accordingly.

3. The Intelligent Driver Model (IDM) [21] is a simple model that calculates
the speed of the following vehicle based on the basic motion parameters:

dv

dt
= a

[
1 −

(
v

v0

)δ

−
(

s∗(v,Δv)
s

)2
]

where
s∗(v,Δv) = s0 + vT +

vΔv

2
√

ab
.

Here, v is the current speed of the vehicle, v0 is the desired speed,
dv

dt
is the

proposed acceleration, a and b are the maximum acceleration and deceleration
respectively, Δv difference in the speed of the current vehicle with the vehicle
ahead, s0 is the required minimum net distance desired between the vehi-
cles, T a headway considered safe in terms of time and δ, is an acceleration
exponent.
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Lane Changing Models. Lateral movement of vehicles between lanes are
captured by the so-called lane-changing models. Modeling a vehicle’s behaviour
in its current lane is somewhat simpler because the only factors that matter
are the preceding vehicle’s speed and location. Lane changing, on the other
hand, is more difficult because the decision to change lanes is based on several
conflicting objectives. There are no analytic correlations that cover the complete
lane switching procedure. Instead, it is usually depicted as a series of decision-
making phases such as: (i) Wishing to switch lanes (ii) Choosing the target lane
(iii) Ensuring that lane change is feasible and (iv) Finally, the execution of lane
change based on availability of gaps in the destination lane. We discuss two
important lane-changing models that are supported by SUMO.

1. LC2013: This model [13] considers three main reasons for a lane change: (i)
Strategic: in order to avoid dead-ends, (ii) Cooperative: to allow a nearby
vehicle to perform a lane change, and (iii) Tactical: to gain speed.

2. SL2015: This model [9] supports sub-lanes when more than one vehicle could
be present in the same lane side-by-side (provided their dimensions permit).
This model builds on LC2013 and includes parameters like lateral alignment,
which determines the preference of staying in the middle of lane or any one
of its side.

3 Integration of MultiVeStA and SUMO Simulator

As mentioned earlier, we use the MultiVesStA model checker. Therefore, we
directly integrate the model checker with the traffic simulator SUMO instead of
modeling using formalisms like Markov Chains or (probabilistic) rewrite theories.
We now describe briefly the process of integration.

3.1 Initial Step

In order to integrate MultiVeStA with SUMO, one needs to extend the New-
State class in MultiVeStA and create instances of SUMO simulator in the same
class. Had SUMO been developed in Java, then extending the NewState class
in MultiVeStA would have been easier since MultiVeStA is developed in Java.
Since SUMO is developed in C++, one needs to create a wrapping method to
have an interface between SUMO and MultiVeStA. This interface is provided by
Traci (TRAffic Control Interface) which provides the necessary package for cross
platform and cross language integration. The two ways to accomplish the inte-
gration are socket communication using Traci or Traci API which is provided
as a C++ library. The Traci socket communication results in communication
overhead because of the protocol and server communication. We use the Traci
API which can be linked with the client code, in our case MultiVeStA.

The SUMO source code is available from the SUMO website [2]. SUMO
needs to be built with SWIG (Simplified Wrapper and Interface Generator).
The Traci API Library will be available as the libsumo-version-SNAPSHOT.jar
file in the bin folder. As mentioned before, we use this library as an interface
between SUMO and MultiVeStA. After installing MultiVeStA, we have to load
the SUMO library file and MultiVeStA NewState in the same class.
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3.2 Integration

The class sumoState extends the NewState of MultiVeStA and is used to act
as an interface between MultiVeStA and SUMO. In the constructor part, we
pass the parameters to NewState of MultiVeStA (multivesta.jar) and load the
SUMO library (libsumo-version-SNAPSHOT.jar) using JNI (Java Native Inter-
face). After completing the initial steps, we override some of the methods in
NewState class. The overrides are described below.

setSimulatorForNewSimulation(randomSeed): Since SUMO does not sup-
port reset simulation directly, we create generateRouteRandom(seed) function
to fulfill the requirement of MultiVeStA. A python generated uniform random
seed is used to generate the route files. In each run, one of the route files is
picked uniformly at random. This is equivalent to resetting the simulation with
the initial state.

performOneStepOfSimulation(): We call the function Simulation.step() to
advance the simulation one step further.

performWholeSimulation(): To run the simulation until it reaches the state
in which there is no vehicle in the simulation.

rval(int): This function is used to link observable quantities of SUMO to Multi-
VeStA. For example, the speed of the vehicle, number of vehicles loaded into the
simulation, number of vehicles reached the destination etc. The rval() functions
that are used in this work are listed here. The value returned by the function is
given against the corresponding rval() entry.

rval (0) - the current time

rval (3) - the number of cars waiting

rval (4) - the time loss of vehicle

rval (6) - number of vehicles that reach their

destination

rval (7) - the CO2 emission

rval (10) - traffic volume at Intersection -1

rval (11) - traffic volume at Intersection -2

rval (12) - time at which emergency vehicle

reaches its destination

rval (15) - current traffic load

rval (17) - time at which "normal" vehicle reaches the

destination. In the experiment , this vehicle

is started at same time and same location to

emergency vehicle

rval (21) - returns traffic load at the previous step

of the simulation

Listing 1.1. rval() Method.
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4 Simulation Experiments and Results

In all our experiments, we consider a topology of three intersections in a line
(Fig. 1) and compare combinations of car-following and lane-changing models.

Fig. 1. Road network with hospital and emergency vehicle

For the SUMO simulations, we use a heterogenic vehicles with different
physical properties [20]. For emergency vehicles, which are central to Query
1 in Sect. 4.2, we set the speedFactor as “1.9”, jmDriveAfterRedTime as “300”
and jmDriveAfterRedSpeed as “5.56”. These configurations are available at the
github repository for the tool. We mention here that the vehicles are introduced
into the road network based on the Poisson distribution with different rates.

Listing 1.2 shows some of the important parameter values that we set for all
our experiments.

-m data / cross.sumocfg
-l serversLists / oneLocalServer
-f quatex / exper1 . quatex
-bs 30 -a 0.1 -d1 x
//x = 2 for queries in sections 4.1 and 4.4. All other
// queries involve a probabilistic operator. Hence
//x = 0.1 for these queries
-vp TRUE
-osws ONESTEP -sots 0 -sd sumoState

Listing 1.2. Parameters of MultiVeStA Client

Of particular note are the parameters ‘a’ and ‘d1’, representing the α and
δ values for confidence interval computation: The actual value in question lies
within the interval ±δ/2 of the estimate with probability at least 1 − α. While
we use α = 0.1 for all the experiments, we use different values of δ for queries
that involve probabilistic operators. The parameter ‘bs’ stands for block size,
and determines number of simulations after which inclusion in the confidence
interval is checked.
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4.1 Simple Queries

We begin by running some simple but useful Multiquatex queries that esti-
mate vehicular CO2 emissions and throughput (the number of vehicles that have
reached their destination in the simulation). The queries are given respectively
in Listing 1.3 and Listing 1.4.

Fig. 2. Expected CO2 emissions.

expCo2Emission (x) = if ( s.rval (0) >= x )
then (s.rval (7))

else #expCo2Emission ((x)) fi ;
eval parametric(E[ expCo2Emission ((k)) ],
k,1.0 ,1.0 ,100.0) ;

Listing 1.3. Expected CO2 emissions within simulation time.

expThroughput(x) = if ( s.rval (0) >= x )
then (s.rval (6))

else #expThroughput ((x)) fi ;
eval parametric(E[ expThroughput ((k)) ],
k,1.0 ,1.0 ,160.0) ;

Listing 1.4. Expected throughput within simulation time.

The results of queries are shown in Fig. 2 and Fig. 3. As one would expect, the
CO2 increases steadily among all the car-following/lane-changing combinations
at first, before plateauing. The throughput also increases with time, but the
IDM-LC combination performs better.
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Fig. 3. Expected throughput

Next we look at some queries which illustrate the usefulness of statistical
model checking for analysing traffic models. The queries that we use are moti-
vated by interesting real-life questions.

We work with changing traffic loads. To do so, we incorporate different
regimes of traffic injection rates. For the first three queries, we use two regimes
of Poisson arrivals of the vehicles onto the road network. The first regime (at
the rate of 20 vehicles per hour) is valid for the first 50 s, and the second one
(200 vehicles per hour) is valid subsequently. For the last query (Query 4), we
use four regimes (50, 20, 200, 50 vehicles per hour for 0–50, 50–150, 150–200 and
200–400 s respectively), to simulate fluctuating traffic conditions.

4.2 Query 1: Behaviour on Emergency Vehicles

The first query that we ask is a natural question that arises in emergency situ-
ations.

Suppose an “emergency vehicle” (say, an ambulance) and a “normal” vehicle
of similar type, start at the same time from the same point. An emergency
vehicle differs from “normal” vehicles in their movement dynamics–such vehicles
are not obligated to strictly adhere to normal traffic rules. Which lane changing
and car following model combination results in the emergency vehicle reaching
the destination faster?

More precisely, what is the probability that the difference in the arrival times
of the emergency vehicle and the normal vehicle is more that 20? Listing 1.5
provides the MultiQuatex formulation that we use.
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EVR(x) = if ( s.rval (0) >= x )

then ( if (s.rval (13) == 1 && s.rval (16) == 1

&& (s.rval (17) - s.rval (12)) < 20 )

then (1) else (0) fi)

else #EVR((x)) fi ;

eval parametric( E[ EVR(k) ], k, 0.0, 1.0, 200.0) ;

Listing 1.5. Query for probability of emergency vehicle reached its destination faster
than a “normal vehicle”

Figures 4 and 5 show the results of the query. The source-destination distance
fixed for each of the plots. The X-axis shows the time. A higher time for the same
distance travelled implies the presence of higher traffic.

Fig. 4. Probability that emergency vehicle (ambulance) will reach its destination faster
than others - shorter distance

As one would expect, when the distance between the source and destination
is small, the probability that the emergency vehicle reaches significantly ahead
of the normal vehicle is small. However, for scenarios of heavy traffic, (for higher
time instances in Fig. 4), the probability that the emergency vehicle reaches much
ahead is higher, given the relaxation in driving rules for such vehicles. Indeed,
regardless of the car-following and lane-changing model, after a certain threshold
traffic, the emergency vehicle reaches the destination earlier almost certainly. It
is interesting to note that the Wiedemann car following model, for both lane
changing models, reaches this stage somewhat later. The effect of regime change
in the traffic injection rate that happens after 50 time units, is visible after a
lag.
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Fig. 5. Probability that emergency vehicle (ambulance) will reach its destination faster
than others - longer distance

This probability increases with an increase in the distance from source to
destination. This is observed in all the lane changing and car-following models.
In fact, for longer distances, the probability that the emergency vehicle reaches
much ahead of the normal vehicle approaches one for lighter traffic scenarios, see
Fig. 5. In this case, the jump in probability occurs even before the higher traffic
injection regime kicks in. The consequence of the regime change at 50 time units
is apparent earlier than the previous short distance experiment.

4.3 Query 2: Traffic Load Comparison

Through this query, we demonstrate the use of the Until operator of temporal
logic systems like PCTL and CSL, for analyzing traffic problems. The query
that we show is merely illustrative, several other queries that enable insightful
what-if analysis are possible.

Consider two intersections I1 and I2. Define “instantaneous traffic volume”
at an intersection to be the instantaneous number of vehicles within 500 m of the
intersection in all four directions put together. Suppose we wish to ascertain that
the traffic volume at intersection I1 is less (denote it by the propositional formula
φ1), until the point the traffic volume is high at the intersection I2 (denote it by
the propositional formula φ2). The temporal logic formula, involving the Until
fragment, would be φ1U

≤τφ2, for different values of τ . The motivation behind
such a query would be to ensure that both intersections are not heavily loaded
at the same time. Following is the MultiQuatex formulation of the query:
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t1Ut2(k,x,y) = if( s.rval (0) <= k)
then if ( s.rval (11) > x )

then (1)
else if ( s.rval (10) <= y )

then #t1Ut2 ((k),(x),(y))
else (0) fi fi else (0) fi ;

eval parametric(E[ t1Ut2 ((k) ,(20) ,(15)) ],
k, 1.0, 1.0, 200.0);

Listing 1.6. Parametric query using the Until Operator

Figure 6 shows the result of this query. The x−axis marks various values of τ .
The probability is zero for lower values of τ because the traffic volume does not go
beyond 15 within these time-steps. However, after a threshold, the traffic builds
up at I2 and we see different probabilities for the Multiquatex formula being
true. Among the car following models, Wiedemann seems to perform better. In
general, for the same car-following model, the SL lane-changing model seems to
perform better.

For higher values of τ , the probability for the Krauss car-following model
remains low for both lane-changing models. As the simulation proceeds, the
traffic at intersection I2 does increase beyond 20. However, the traffic load at I1
also increases beyond 15, thus evaluating the formula to false.

Interestingly, when the traffic stabilizes after the change of the traffic injection
rate regime, the probability-estimate stabilizes for all car-following and lane-
changing models.

4.4 Query 3: Load Conditions for Traffic Jams

Car-following and lane-changing models can differ in their ability of handling
traffic loads without causing traffic jams.

Our next query analyzes this ability: What is the minimum traffic load that
causes the number vehicles waiting at an intersection go above a threshold?

minJam(x,th) = if( s.rval (0) >= x)
then if ( s.rval (3) > th )

then (s.rval (15))
else (0) fi

else #minJam ((x),(th)) fi;
wVeh(x) = if(s.rval (0)>= x)

then (s.rval (3))
else #wVeh((x)) fi;

eval parametric(E[ minJam ((k,5))],
E[wVeh(k)], k, 1.0, 1.0, 200.0);

Listing 1.7. Minimum traffic load to jam traffic flow
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Fig. 6. Probability that the “traffic volume” at I1 is less than 15 Until the traffic
volume at I2 is greater than 20.

Figure 7 shows the results of this query. As before, the x−axis marks time,
but we have two sets of curves for each car-following/lane-changing combination.
The dashed curves indicate the number of vehicles waiting at the intersections,
while the solid curves indicate the total number of vehicles on the road network.
For this query, IDM-LC2013 and IDM-SL2015 perform better–the number of
vehicles on the road network is higher for the same approximately the same
number of vehicles waiting at the intersections. We see dips in the number of
vehicles occasionally as vehicles reach their destinations. Since these dips occur
earlier, it also indicates that the IDM-SL2015 combination has higher throughput
under the regimes in consideration.

4.5 Query 4: Impending Drop in Traffic

The neXt operator of various temporal logics allows to query about the state of
the system in the “next” step.

In the context of traffic modeling and prediction, a natural question would
be about the state of the traffic at the next step. We therefore ask the following
query in Multiquatex: what is the probability that the traffic volume falls to
95% of the current volume in the next step? Such a drop is possible if the rate of
vehicle injection into the traffic is low. If there is an increasing (or even constant,
but high) traffic load, then probability of the volume dropping significantly would
be expected to be low.

Listing 1.8 details the formal query.
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Fig. 7. Minimum traffic load to cause traffic jams

TL_DropTo(x,p) = if ( s.rval (0) >= x )
then (if(( s.rval (21) - s.rval (15))/

s.rval (21) >= p)
then (1)

else (0) fi)
else #TL_DropTo ((x),(p)) fi ;

eval parametric( E[ TL_DropTo ((x) ,(0.05)) ],
x, 0.0, 10.0, 400.0);

Listing 1.8. Query for probability that the traffic volume drops to 95 percentage in
the “next step”

For illustration, we fluctuate the traffic in SUMO to the effect. The results are
shown in Fig. 8. Recall that for this experiment, we use four regimes of Poisson
arrival of vehicles into the road network. Initially, since the rate of arrival of
the vehicles is very small (50 vehicles per hour), and several of the vehicles
reach their destinations, the traffic load dips with a high probability for all car-
following/lane-changing combinations. Subsequently, a steadily increasing traffic
volume results in a reduction in the probability that the volume drops to 95%.
However, when the rate of injection of traffic drops down to 20 vehicles per hour
in the next regime, this probability rises. It turns out that this drop in traffic
injection rate is not sufficient to sustain the higher probability and it dips again.
Since the subsequent regimes are of higher traffic injection rate, it continues to
stay at 0.
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Fig. 8. Probability that the traffic volume drops to 95% in the “next step”

4.6 Running Times

We ran all our experiments on a system with the following configuration: RAM
16 GB, Intel Core i5-8250U processor at 1.60 GHz × 8, and 64-bit Ubuntu 20.04
operating system.

With this configuration, the running times are shown in Table 1. These run-
ning times include the simulation overhead as well as the query evaluation time.
As one would expect, for a narrow confidence interval ±δ, the required number
of simulations is higher. Consequently, the running time is also higher.

Table 1. Running times in minutes

Parameters Query 1 (Mins) Query 2 (Mins) Query 4 (Mins)

Shorter Longer

a = 0.1, d1 = 0.1 4.31 6.68 5.83 3.81

a = 0.1, d1 = 0.5 0.47 0.48 0.29 0.42

5 Conclusion and Future Work

In this paper, we introduce the technique of statistical model checking to traffic
modeling and simulation. We demonstrate its potential by comparing combina-
tions of various car-following and lane-changing models that are supported by
SUMO. We believe that the tool chain described in the paper will help traffic
engineers in analyzing micro-simulation models and performing what-if analyses.
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Future work would be utilize this tool chain for a comprehensive analysis
(in terms of queries) of various traffic models on realistic time-lines. A second
important goal would be to validate the analysis on simulations of road-networks
of cities in the real-world. Finally, an in-depth causal analysis of the results of
such queries would yield insights into traffic problems and solutions.
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Abstract. RoboChart is a diagrammatic notation based on UML
designed for modelling robotic software that has well-defined semantics
in the notation of CSP process algebra, enabling the automatic proof of
process refinements using the FDR tool. Although RoboChart allows the
specification of the robot software, the definition of application-specific
properties of RoboChart models must be specified using the CSP nota-
tion. Thus, the designer must be familiar with CSP to define and verify
properties. This work proposes an approach for the automatic verifi-
cation of properties using a diagrammatic notation that expresses the
behaviour of RoboChart models. The approach proposes a diagrammatic
notation based on UML activity diagrams that support the specification
of behaviour mixing standard elements of the activity diagram with ele-
ments of RoboChart as events and operations. The diagram behaviour is
formalised as a CSP process used to verify the properties of a RoboChart
component. A plug-in for the Astah modelling tool has been developed to
translate the diagram to CSP and call the FDR refinement checker, which
verifies whether the RoboChart model refines the property specified with
the proposed notation. Our proposed approach allows the designer to
specify and verify properties of RoboChart models using diagrammatic
notations with no knowledge of the underlying formal semantics.

Keywords: RoboChart properties · Activity diagram · Astah · CSP ·
FDR

1 Introduction

In the context of critical systems, where failures can result in serious problems,
such as the loss of human lives or financial loss, it is crucial to ensure that robot
software satisfies the expected properties.

Due to the high complexity of robots controller software, several DSL (Spe-
cific Domain Languages) for modelling and simulation [1,4,14] for robots have
been proposed to support the validation and verification of robotic controllers.
Test and simulation are often used to verify robots. However, they can not ensure
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that the system has the properties expected. Thus, formal verification techniques
become fundamental to ensure the properties.

RoboChart [11] is a DSL that uses a diagrammatic notation based on state
machines notation from UML (Unified Modelling Language) to describe robot
behaviour. The properties of RoboChart models are verified through formal veri-
fication; this contrasts with DSLs for robotics designed for simulation. RoboTool1

provides a graphic editor for RoboChart and automatically generates the CSP
(Communicating Sequential Processes) [15] specification for RoboChart models.
This tool is integrated with the FDR refinement checker [5] that proves classical
properties (for instance, deadlock freedom), as well as application-specific prop-
erties that are stated as process refinement assertions. A property is defined as
a set of behaviours that the behaviour of the RoboChart model must refine.

A current limitation of RoboTool is that the specification of application prop-
erties is defined in the notation of CSP; properties are defined as CSP processes
whose alphabet follows the encoding for RoboChart. The property designer
must be familiar with CSP operators and the CSP alphabet representing the
RoboChart elements relevant to the property. As reported in [12], unfamiliarity
with formal notations can result in challenges for RoboTool users during the
verification process. Since RoboChart is a diagrammatic notation, it would be
more convenient to express properties using some diagrammatic notation that
hides details of the CSP semantics and is similar to some well-accepted modelling
language.

Activity diagrams have been used for a variety of purposes. Business and
system analysts use them to specify business processes, use cases and document
the implementation of system processes. Moreover, they can be used to model
algorithms given the expressivity of their constructors that allows the modelling
of condition, loop and concurrent behaviours. These features make such notation
suitable for specifying system properties that must be refined by valid models,
which is the goal of the current work.

This work defines a language based on the notation of activity diagrams
of UML that allows the specification of application-specific properties for
RoboChart. The language abstracts the internal structure of the components
and aims at expressing the expected order for inputs, outputs and operations
calls of RoboChart components. The proposed notation mix nodes of an activity
diagram with nodes that are specialised for expressing RoboChart events and
operations. In addition, the language introduces stereotypes that express two
common patterns of behaviour that ease the specification of properties. The lan-
guage has well-defined semantics in the notation of CSP that has the same encod-
ing of RoboChart semantics; this enables the automatic verification of properties
using FDR. Properties can be authored using the Astah UML tool2. Moreover, a
plug-in for Astah has been developed to translate the property diagram to CSP
and call FDR to verify the property in the target RoboChart element. A prelim-
inary validation consisted of expressing CSP properties for RoboChart models

1 https://robostar.cs.york.ac.uk/robotool/.
2 https://astah.net/products/astah-uml/.

https://robostar.cs.york.ac.uk/robotool/
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with the proposed notation and checking whether the semantics of the original
property matches the semantics of the property in the proposed language.

The next section overviews the background for this work. Section 3 presents
syntax and semantics for the language for specifying properties. Section 4 details
the tool support developed to automatise the translation of the property to CSP
and its verification. Section 5 discusses related work. Finally, Sect. 6 concludes
and presents future works.

2 Background

In this section, we present the RoboChart language. We also discuss UML activ-
ity diagrams and the CSP notation.

2.1 RoboChart

RoboChart models specify the behaviour of a software that controls and interacts
with a robotic platform (hardware). A module is the RoboChart component that
specifies the flow of events between software controllers and a robotic platform.
Controller behaviour is specified by state machines. Input and outputs events,
as well as operation calls, are possible observations for a module, controller and
state machine. Naturally, properties for a RoboChart consider the expected order
of such observations. Due to space restrictions, we focus on the notation for a
state machine that is used to illustrate the property language proposed by this
work. Further details on the notation of RoboChart refer to [11].

Figure 1 presents the state machine model for a simple mobile robot that
changes directions when an obstacle is detected. This state machine defines the
behaviour of a controller that interacts with the robotic platform. It is an adap-
tation of the model that can be found in the RoboCalc website3.

A robotic platform abstracts the hardware that is controlled by software.
Hardware is abstracted through variables, constants, operations and events. In
our example, the platform specifies an operation move that receives two parame-
ters: lv and av. They represent linear and angular movements of the robot. Such
an operation is part of the interface MovementI provided by the platform. Events
represent atomic communications. In our example, the event obstacle is an input
event coming from the platform; it represents the robot encounters a obstacle
and needs to dodge, thus avoiding a collision. This event is part of the interface
ObstacleI that is defined by the platform.

The state machine SMovement requires the interface MovimentI and uses the
interface ObstacleI. Moreover, it defines the constants lv and av. The value for the
constants is defined at the time the CSP specification is generated by RoboTool.

Each state machine is composed of states, junctions and transitions. States
can have actions: entry, during and exit. In the SMovement state machine, the
initial node leads to the state Moving, which has an entry action that calls

3 https://www.cs.york.ac.uk/circus/RoboCalc/other examples/SimFW/index.html.

https://www.cs.york.ac.uk/circus/RoboCalc/other_examples/SimFW/index.html
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the operation move(lv,0) that makes the robot to perform a linear movement
(av equals zero). When an obstacle is detected, the event obstacle triggers a
transition that leads to the Turning state. The Turning state has an entry action
that executes an angular movement move(0,av), causing the robot to rotate,
dodging the obstacle. In sequence, a transition to the Moving state is triggered.

Fig. 1. SimFW robot state machine

2.2 UML Activity Diagram

A UML activity diagram is a graph of activity nodes interconnected by activ-
ity edges [13]. An activity node can be either an action node, an object node
or a control node. Activity edges are directed connections between two activ-
ity nodes. They can be either a control flow used to sequence the execution of
activity nodes explicitly or an object flow, which can communicate data between
two nodes. Action nodes execute the desired behaviour when ready, including
sending or receiving signals or invoking another activity. Object nodes explicitly
hold objects that arrive in their incoming edges and offers them to the outgoing
edges. Control nodes organise the order flows are traversed. They act as “traffic
switches” across the activity edges. Nodes and edges can be grouped in swim-
lanes (or partitions), used to organise parts of flows. They can be vertical or
horizontal, and their primary purpose is to delimit boundaries of responsibility
for each group of behaviour. Figure 2 shows all types of control nodes, some of
the main types of action nodes and object nodes grouped by their swimlanes.
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The descriptive semantics for each constructor can be seen in the UML specifi-
cation [13].

Fig. 2. Activity diagram nodes.

Besides the semantics of each node, the execution semantics of an activity
diagram is described in terms of tokens flowing through the edges and nodes.
Activity edges are directed with tokens flowing from the source activity node
to the target activity node. However, the token must only flow if the target is
ready to accept it. Some nodes may generate tokens. For instance, an initial node
creates tokens on its outgoing edges when the activity starts. Other nodes only
consume tokens, like flow final and activity final nodes. An action node can only
be executed once all incoming edges are offering tokens, and when it terminates,
it must offer tokens in its outgoing edges.

Finally, an activity diagram can only terminate in two scenarios: if no active
tokens are flowing through the activity after it has been started, or if an activity
final node has consumed a token. In the latter case, all current flows are halted.

2.3 CSP Notation, Templates and Tools Used in the Work

The CSP process algebra is very expressive to specify systems composed of inter-
acting components. In CSP, a process is the basic unit for describing behaviour.
It is defined in terms of events and other processes. The function α(P) yields
the alphabet of a process P , that is, the events that the process P may com-
municate. The primitive process SKIP represents successful termination. The
process a → P offers the event a to the environment and then behaves as the
process P . CSP channels abstract a set of events with a common prefix. The
syntax c?x represents the channel c inputs a value x , such that x ∈ A, which is
the type for the channel c. The value for x is chosen by the environment. The
syntax c.e (c!e) represents an expression e ∈ A is communicated through the
channel c. The sequential composition P1; P2 behaves like the process P1 and,
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provided it terminates successfully, P2 takes over. The CSP notation has no
explicit operator for recursion, but it allows one to use the name of the process
in its definition. For instance, the process P = a → P communicates the event
a and then behaves as P .

The external choice P1 � P2 initially offers events of both processes P1 and
P2. The communication of the first event resolves the choice in favour of the
process that performs it. The parallel composition P1 |[ cs ]|P2 synchronise P1
and P2 on the events in the set cs; events not in cs occur independently. Processes
composed in interleaving P1 ||| P2 progress in parallel without synchronisation.
The event hiding operator P\cs internalises the events that belong to the set cs,
which become no longer visible to the environment. The interruption operator
(�) allows a process to be interrupted by another. The process P � Q behaves
as P until Q communicates an event. When this happens, we say that P has
been interrupted by Q .

The traces of a process P , say traces(P), is the set of possible sequences of
events performed by P . We can compare the traces of two processes using a
refinement assertion denoted by P �τ Q . Such an assertion holds if, and only if,
traces(Q) ⊆ traces(P). The FDR tool [5] verifies process refinement as well as
classical properties like deadlock and nondeterminism.

3 Diagrammatic Language for Properties

The visual language to specify properties of RoboChart models allows the defini-
tion of the expected order for inputs, outputs and operation calls of RoboChart
components. Properties defined with this language are used to define the possi-
ble behaviours a component can perform. A property is valid if the behaviour
of the component is a subset of the behaviour of the property. Consider P Prop
is the CSP process that represents the semantics of a visual property Prop. The
property Prop holds in a RoboChart component named CName if, and only if,
the traces for a component is a subset of the traces of the property. Formally.

P Prop �τ P CName

The remaining of this section presents the syntax and the semantics of the
language.

3.1 Language Syntax

The language for properties is based on the notation of UML activity diagrams.
Standard activity diagram nodes (Fig. 2) can mixed with specialised nodes and
stereotypes to specify the expected flow of observations for a RoboChart com-
ponent. Table 1 shows the notation of the proposed language.

First row in Table 1 shows the diagram that represents a RoboChart prop-
erty has a unique swimlane with the same of the RoboChart component (state
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Table 1. Property notation

machine, controller or module). Inside the swimlane are the nodes that specify
the property. A call to a RoboChart operation op with parameters p1, ..., pn
is represented as an action in the property language (Row 2). Furthermore, a
RoboChart input (output) event i (o) that does not communicate values is rep-
resented in the property language as an accept event (send signal)—Rows 3 and
4. If the input (output) communicates a value v, such a value is put between
parenthesis—Rows 5 and 6. The property language allows the specification of the
range of input (output) values using an output (input) pin. Consider S is a set
of values that is a subset of the values for the input (output) event i (o) defined
in the RoboChart model. Rows 7 and 8 of Table 1 show how to specify a range
of values for input (and outputs). The stereotype �UNTIL� labels edges that
target a send signal, an accept event or an operation—Row 9. This stereotype
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specifies that the diagram performs any possible observation in the RoboChart
component, between the source node and the target node (except the target
node event/operation). If the diagram executes the target node event/opera-
tion, the diagram follows the outgoing edge of the target node. The stereotype
�ANY� labels call behaviours—Row 10. When the diagram executes a call
behaviour with this stereotype, any sequence of observation in the context of
the component can be performed by the diagram.

There is an important difference in the meaning of a signal sending and
receipt in the property language and the original meaning in the activity dia-
gram. The original meaning is that a send signal synchronises with an accept
event. In the proposed property language nodes do not synchronise. This will
more explicit in the next section that presents the semantics for the language.

Considering the combination of the standard nodes for activity diagram and
the introduced abstraction patterns, it is possible to define a range of proper-
ties using the proposed notation. We illustrate the usage of the notation with
examples.

Figure 3 illustrates a property, say Angular, for the SMovement state machine.
This property specifies that whenever the robot receives an obstacle event, it
turns to avoid a collision with a constant angular speed. We explain how this
property is expressed using the proposed notation. The diagram starts with a
merge node with a control edge with the stereotype �UNTIL�. This edge tar-
gets a signal receipt node that represents the reception of the obstacle event.
As explained, this stereotype specifies that any observation can happen in the
RoboChart model before the obstacle event. After the obstacle, the move opera-
tion must happen with the parameters 0 and 2, and the pattern repeats. If the
designer wants to specify that the move operation eventually happens, then the
edge between the obstacle event and the move operation should have the UNTIL
stereotype.

Fig. 3. Property for SimFW.

To validate the proposed language, we modelled properties for RoboChart
models found in the literature. For instance, we could specify some of the proper-
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ties verified in [3] for the Solar Panel Vacuum Cleaner (SPVC) RoboChart model.
Figure 4 is a sample property (ReturnToCharge) for the State Machine PathPlan-
ningSM of the SPVC RoboChart model. This model and its properties encoded
in CSP, including the one we modelled in Fig. 4, are available on the RoboTool
website4. Due to space restrictions, we do not present the complete diagram for
ReturnToCharge; the omitted part has been replaced by a call behaviour with the
�ANY� stereotype. Such a property specifies the robot returns to the docking
station and begins charging if the battery level is low. The initial behaviour of
the diagram is to communicate all possible inputs, outputs and operations in
PathPlanningSM, except the input battery level. Whenever the value b associ-
ated with the battery level is less or equal to zero, the robot will turn left two
times, move forward and disable the clean mode (set as false). At this point, the
property enters a loop that repeats while the value u from the input ultrasonic
is less than one. The loop exits if the value is greater than or equal to one.
The behaviour after the loop is to get the left direction, move forward, charge
the battery and repeat the behaviour after the first merge node. If the battery
level is greater than zero, the robot turns left. From this point on, the robot can
perform any possible input, output or operation.

Fig. 4. Property for PathPlanningSM

4 https://robostar.cs.york.ac.uk/case studies/RoboVacuum/index.html.

https://robostar.cs.york.ac.uk/case_studies/RoboVacuum/index.html
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3.2 Language Semantics

We adapt the compositional semantics in [6] for activities to represent proper-
ties. Let ACTIVITY be the a process that represents an activity, and αC the
set of control events of this process. The process PROP formalises the seman-
tics for a property; it is defined as the parallel composition of the processes
ACTIVITY , and the interleaving of auxiliary processes used in the semantics
of stereotypes �UNTIL� and �ANY�. This interleaving is interrupted by the
process endDiagram → SKIP . This last event is communicated by the process
ACTIVITY to indicate the conclusion of the diagram. The composition syn-
chronises on control events that belong to the channels begin, end , chaos and
endDiagram. The first three channels are used to specify the behaviour of the
stereotypes, the last channel belongs to αC . The channels begin and end are in
the synchronisation set if the stereotype �UNTIL� is used in the definition of
the property. The channel chaos is in the synchronisation set if the stereotype
�ANY� is used.

PROP = ( ACTIVITY
[| | begin, end , chaos, endDiagram | |]

(||| P : AUXILIARY • P � endDiagram → SKIP)
) \ αC ∪ {| begin, end , chaos |}

The process ACTIVITY represents the behaviour of an activity adapted to
represent RoboChart observations as inputs, outputs and operation calls.

ACTIVITY = (startActivity → SKIP ; Nodes; endDiagram → SKIP)
|[ | update, clear , endDiagram | ]|
TokenManager

The behaviour of ACTIVITY is the parallel composition of the nodes and
the TokenManager process. An activity starts when the startActivity event is
communicated, then it behaves as the process Nodes. The startActivity event
may receive input data required by the activity parameter nodes. As soon as
an activity terminates, it communicates the endActivity event with the data
available in its output parameter nodes. The underlying semantics of activity
diagrams is described by the flow of tokens from a node to another. The process
TokenManager tracks the number of active tokens (flows) of the diagram and
controls termination of the activity. We omit the definition of such a process
since it has the same specification presented in [6].

According to UML semantics, an activity is described in terms of nodes and
edges between the nodes. In our CSP semantics, these elements are represented
by processes and events, respectively. The process Nodes is the parallel compo-
sition of the processes that represent each node. Node processes synchronise on
the events that represent edges. The outgoing edge of a node is the incoming
edge of another node. Control edges are represented by events in the form ce.id
and object edges by events in the form oe.id , such that id is the edge identifier.
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For instance, if there is a control edge ce.1 between two nodes N 1 and N 2, the
event ce.1 is part of the synchronisation alphabet of both processes. Events in
the form ce.id and oe.id belong to αC , and are not visible because events in αC

are hidden in the process PROP .
We present the semantics for the nodes whose semantics are particular to

property language in what follows. Nodes that are not presented here keep the
semantics presented in [6].

We start showing the semantics for a node named Node that represents an
operation call, a input or an output (Rows 2–6 in Table 1). The process P Node
represents the formal semantics for such nodes. Let {m..n} be the range of
indices for the incoming edges of the node, and {u..t} the range of indices for the
outgoing edges. The semantics of these nodes is to wait for the communication of
the incoming edges, then to communicate an event in the form CName :: event .
After communicating the event, the behaviour is to wait for the communication
of the outgoing edges and to behave as P Node. The wait for the incoming
(outgoing) edges is specified as the interleaving of the communication of the
events for the edges followed by a successful termination. In CSP, the parallel
composition only terminates if all the processes in the composition do terminate.

P Node = (ce.m → SKIP ||| . . . ||| ce.n → SKIP);
CName :: event → SKIP ;
(ce.u → SKIP ||| . . . ||| ce.t → SKIP);
P Node

The value for event has a particular format for each kind of node. The string
for event equals op.p1...pn if Node represents an operation op with parameters
p1,...,pn. It equals i .in.v (o.out .v) if the node represents an input (output) named
i (o) with value v. And, equals i .in (o.out) if the node represents a simple input
(output) named i (o). For instance, obstacle.in is the event for the signal receipt
node and move.0.2 is the event for the action node in Fig. 3.

Nodes that specify a range of input (output) have a similar semantics. The
difference to P Node is that the CSP event i .in.v (o.out .v) is replaced by i .in?v
(o.out?v). Moreover, the outgoing control edges ce.i , such that u ≤ i ≤ t , are
replaced by object edges oe.i !v .

Next, we discuss the semantics for nodes reached by an edge with the stereo-
type �UNTIL� and for a call behaviour node with the stereotype �ANY�.
These two kinds of nodes synchronise with the process AUXILIARY (recall the
definition of PROP) in the events of the channels begin, end and chaos. Nodes
reached by an edge with the stereotype �UNTIL� communicate events begin.id
and end .id , and call behaviour nodes with the stereotype �ANY� communi-
cate chaos.id events. The value for id is unique for each usage of �UNTIL�
and �ANY�. Let A PROCESSES be the set of auxiliary processes. Moreover,
let the expression |||P : S • P be equivalent to the process P1 ||| . . . ||| Pn ,
for S = {P1, . . . ,Pn}. The semantics for AUXILIARY is the interleaving of the
processes in A PROCESSES interrupted by the event endDiagram.
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AUXILIARY = (|||A : A PROCESSES • A) � endDiagram → SKIP

The definition for an auxiliary process depends on the stereotype. We show the
semantics for auxiliary processes in what follows.

The process CallBehaviour formalises the semantics for a call behaviour node
with the �ANY� stereotype (Row 10 in Table 1). Such a process waits for the
communication of the incoming edges, then communicates chaos.id and behave
as CallBehaviour .

CallBehaviour = (ce.m → SKIP ||| . . . ||| ce.n → SKIP);
chaos.id → SKIP ;
CallBehaviour

Consider � ev : S • ev → P is equivalent to the choice ev1 → P �

. . . � evk → P , for S = {ev1, . . . , evk}. The process RUN (S ) = � ev : S •
ev → RUN (S ) is the CSP process that produces the traces in S∗. More-
over, let P CName be the CSP process that formalises the untimed seman-
tics of RoboChart component CName. The process AUX 1 = chaos.1 →
RUN (α(P CName)) represents the auxiliary process for a node with the
�ANY� stereotype. This process synchronises with the process CallBehaviour
in the chaos.id event and behaves as the process RUN (α(P CName)).

The semantics for a node that is reached by an edge with the �UNTIL�
stereotype (Row 9 in Table 1) is formalised by the process Until Node5. Only
three kinds of nodes can be reached by an edge with �UNTIL�: send signal
(output), an accept event (input) or an action (operation). The semantics for
such a node is to wait for the communication of the event for the incoming edge,
to communicate begin.id and end .id events, wait for the communication of the
outgoing edges, and to behave as Until Node.

Until Node = (ce.m → SKIP);
begin.id → end .id → SKIP ;
(ce.u → SKIP ||| . . . ||| ce.t → SKIP); Until Node

The process WAIT is used in the definition of the auxiliary process for
Until Node. Consider the CSP process Recurse(S ,P) = � evt : S • evt → P
that offers a choice of all events in the set S ; after the process communicates
the event in the choice it behaves as P . The process WAIT is parametrised by
the event ev . The behaviour of this process is to communicate the events of the

5 The semantics for the �UNTIL� stereotype is not equivalent to the until operator
used in temporal logics. The expressiveness of CSP refinement and its relation to
temporal logics is reported in [7,16].
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alphabet of P CName except ev , and to behave as WAIT (ev). If the event ev
is communicated, the process terminates.

WAIT (ev) = Recurse(α(P CName)\{ev}),WAIT (ev))
�

ev → SKIP

The process AUX 2 formalises the auxiliary process for Until Node. The
events of this process synchronise with the same events in the Until Node. In
between these events, it behaves as WAIT (CName :: event).

AUX 2 = begin.id → WAIT (CName :: event); end .id → AUX 1

The semantics for a node of any kind has an implicit interruption with the
endDiagram. The effect of this interruption is that the behaviour of all nodes
are interrupted by such an event, whenever the TokenManager process com-
municates this event. This is kept implicit to simplify the presentation of the
semantics.

Consider the function compose that follows. This function is used to spec-
ify the composition of a sequence of nodes. The first function parameter is a
sequence of process identifiers, and the second is the set of events that have
already been used in the synchronisation of the parallel composition. Let αid be
the alphabet of control events of a node identified by id . Such a function uses
generalised parallel composition to compose the nodes of a property. Synchroni-
sation set of the parallel composition contains the control alphabet of the node
to be composed, and the endDiagram event that allows the nodes to terminate
together. The synchronisation set excludes the events already used in the com-
position of previous nodes of the network of processes formed by the already
composed nodes.

compose(〈id〉, ) = Nodeid
compose(〈id〉 � tail , past) = Nodeid

|[ (αid\past) ∪ {endDiagram}) ]|
compose(tail , αid ∪ past)

The formal definition for the process Nodes is

Nodes = compose(seq(Nodes IDs), {})

In such a definition Nodes IDs represents the set of identifiers for processes that
formalise nodes and seq is a function that converts a set into a sequence.

The order of nodes returned by the function seq is arbitrary; however, the
order does not change the semantics of the composition. This holds since the
generalised parallel composition operator is associative with different synchro-
nisation alphabets if the synchronisation set between the processes contain the



Visual Specification of Properties for Robotic Designs 47

intersection of the alphabets of the processes (refer to [15] for the laws of parallel
composition operators).

To illustrate our semantics, we show the process P Angular that captures the
semantics of the property Angular in Fig. 3. For conciseness, instead of presenting
the syntax of the process obtained by the compositional semantics, we present an
equivalent process that has a shorter representation. Let P SMovement be the
CSP process that formalises the behaviour of the SMovement state machine.
The behaviour of P Angular is to recurse if an event different from obsta-
cle is communicated. When an obstacle event happens, then it communicates
SMovement ::moveCall .0.2. In the sequence it behaves as P Angular .

P Angular = Recurse(α(P SMovement) − {SMovement :: obstacle.in},
P Angular)

�

SMovement :: obstacle.in → SMovement :: moveCall .0.2 →
P Angular

The property Angular in SMovement holds iff. the following refinement holds.

P Angular �τ P SMovement

As explained in Sect. 2.1, the state Turning of the machine SMovement performs
the call move(0,av). The value for the constants lv and av are defined when the
CSP model for the machine SMovement is generated by RoboTool. If we consider
the values for these constants are 1 and 1, and check the following refinement
using the FDR tool, we have that the refinement does not hold and FDR yields
the counterexample trace.

〈SMovement :: move(1, 0),SMovement :: obstacle.in,SMovement :: move(0, 1)〉

However, if the value for the constants is 1 and 2 the refinement does hold,
since the CSP untimed semantics for the state machine calls move(0,2) whenever
an obstacle is detected.

We used FDR to verify whether the semantics of properties using the pro-
posed language equals the semantics of the original property specified as CSP
processes. For instance, we could verify the visual specification for the Return-
ToCharge property presented in Sect. 3 is equivalent to the original property
written in CSP.

4 Tool Support

Our framework has been implemented as a plug-in for the Astah UML modelling
environment, which can be extended by the integration of plug-ins to add new
features. Our tool has been built based on another plug-in that verifies properties
on activity diagrams [6]. We use the Astah Java API to programmatically read
activity diagrams as properties, translate them to CSP and verify properties on
RoboChart models using the integration built with FDR.
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The developed plug-in is divided into modules, which are: UI, Controller,
Parser, FDR Bridge and Traceability. The UI module is responsible for mak-
ing the connection between the user and the controller through the plug-in
menu. The Controller module is responsible for receiving information (commands
and diagrams) from the UI module, managing the entire plug-in operation, and
returning a response (messages and/or diagrams) to the UI module.

The Parser module is responsible for receiving a diagram from the Controller
module, translating it according to the semantics described in Sect. 3.2, and
returning a CSP file to the Controller module. In order to analyse this CSP,
the user must provide the path to the RoboChart file whose property is being
verified.

The FDR Bridge module is responsible for communicating with FDR, using
the Java Reflection technique, which allows us to load the FDR API dynami-
cally. It invokes the assertions specified in the CSP file generated by the parser.
When the assertion does not hold, it is also responsible for collecting the coun-
terexample returned by FDR (list of events) and returning it to the Controller.
In order to make this integration possible, the user has to inform the path to
the FDR installation folder. This can be performed by accessing the plug-in UI
menu Tools -> Properties Plug-in Configuration -> FDR Location.

After modelling the activity diagram as a property and providing the path
to the RoboChart file, the user can start the verification process in the menu we

Fig. 5. Checking a RoboChart property in Astah.
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have created in Astah as can be seen in Fig. 5. This action triggers the following
tasks: the tool generates the corresponding CSP specification (Parser module),
loads it in FDR and invokes the assertion that checks if the property is valid
in the RoboChart model (FDR Bridge module). If the property does not hold,
FDR returns a counterexample trace displaying the sequence of events that led
to the violation.

The Traceability module is responsible for receiving an event list (trace) of
the Controller module and providing a diagrammatic view of it. It is currently
under development and we plan to create a sequence diagram that shows the
path traversed by the trace.

5 Related Work

This work focuses on the verification of properties for RoboChart that are
expressed in the form of process refinements. This is the first language for the
specification of diagrammatic properties for RoboChart models.

Miyazawa et al. [10] propose a tool that checks both classical and application-
specific properties for RoboChart models that use time constraints. The proposed
tool deals with properties with time constraints that are specified as CSP process
refinement expressions.

The authors in [3] use RoboChart to model the behaviour of a robotic system
and CSP processes to express application-specific properties. Informal require-
ments are formalised as CSP process refinements expressions that are verified
using FDR. Processes that abstract behavioural patterns have been proposed to
help the specification of properties. One of these patterns have directly influenced
the �UNTIL� stereotype proposed by our work.

The work [8] surveys notations and verification techniques based on formal
methods in the context of autonomous robotic systems. Most of the works pro-
pose verification methods that input the specification as a logic formula (for
instance, temporal logic [2]). As the semantic domain of RoboChart is CSP,
we do not use temporal logic to specify properties but behaviours in terms of
processes that the model must refine.

Visual notations have been used previously for the specification of proper-
ties [9,12]. Activity diagrams have been used in [9] to specify requirements for
logic controllers. Requirements are manually mapped into temporal logic formu-
las that are used for model checking the system model. The work [12] uses block
diagrams to formalise logical properties that are automatically verified using
Simulink Design Verifier.

6 Conclusion

We have presented a diagrammatic language based on activity diagrams for rea-
soning on application-specific properties of RoboChart models. Several diagram
elements like swimlanes, actions, pins have been adapted to specify RoboChart
observations as events and calls to operations. Furthermore, we have extended
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activity diagrams with the �UNTIL� and �ANY� stereotypes to increase
the expressiveness of the notation. The presented language has compositional
semantics in terms of CSP processes, which uses the same encoding for CSP
events used in the underlying semantics of RoboChart models. This allows us to
verify the specified properties against RoboChart models using FDR. Finally, we
have implemented a plug-in for the Astah UML tool to specify these properties
using extended activity diagrams and verify them against the specifications of
RoboChart models in an automated manner.

The mechanisation of the approach is relevant because the users of RoboTool
must specify application-specific properties directly in CSP and check them using
FDR. The current work enables RoboChart designers to specify both the sys-
tem and the properties at the same level of abstraction, given that models and
properties use diagrammatic notations. We hope that hiding the formal notation
of CSP can facilitate and increase the adoption of RoboChart by the robotics
community.

The proposed notation is based on activity diagrams that are very popular
and have a repertoire of constructs that allow the specification of a wide range
of behaviours. Nonetheless, it is not expressive as the CSP notation that has a
richer language. Comparing the expressiveness of the proposed language with
the expressiveness of CSP is left as future work.

Application-specific properties over RoboChart models are formulated as pro-
cess refinement assertions. Different CSP models can be used to verify safety
(traces model) and liveness properties (failures-divergence and refusal traces).
The properties specified by the proposed language can be verified using any of
the existing CSP models; however, this work considered only safety properties.
A future plan is to consider other kinds of properties.

Although the properties can be specified using diagrammatic models and
analysed in our plug-in, the counterexample is not given at the diagrammatic
level when a property does not hold. However, we are implementing a mechanism
to provide the counterexample returned by FDR is presented as a sequence
diagram. In this approach, instead of reading a sequence of CSP events that may
be difficult to map back to the RoboChart model, the user can analyse the trace
according to the order of RoboChart events exchanged between the controller
being verified and its environment. Moreover, this notation will be similar to the
one used to specify the RoboChart model. Another point of improvement is to
allow the specification of visual properties in the RoboTool platform instead of
using a different tool to model and verify the properties.

Although the CSP specifications generated from our diagrammatic properties
are usually larger than those specified directly in CSP, we verified that they
have equivalent semantics whenever the corresponding property is available in
CSP. Using FDR compression functions, the complexity of CSP specifications
is significantly reduced, and this allowed us to perform the analysis at similar
times compared to properties specified in CSP. Nevertheless, we plan to perform
a more concrete study on scalability in the future.
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Our tool supports a considerable number of activity diagram constructors,
which allows the designing of potentially elaborated properties. However, we
plan to increase this number to augment expressiveness. For instance, we do not
cover timing aspects of the properties in the current version of our semantics.
At last, we plan to develop more case studies to explore the proposed language
and the reasoning strategy.
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Abstract. We present a technique for verifying strategic abilities of
multi-agent systems via SAT-based bounded model checking. In our app-
roach we focus on systems of agents that pursue goals with regard to the
allocation of shared resources. The problem to be solved is to deter-
mine whether a coalition of agents has a joint strategy that guarantees
the achievement of all resource goals, irrespective of how the opposing
agents in the system act. Our approach does not only decide whether
such a strategy exists, but also synthesises the strategy. The technique is
based on a propositional logic encoding of the model checking problem.
The encoding is satisfiable if and only if some specified coalition of agents
has a strategy to reach a resource allocation goal. Each satisfying truth
assignment of the encoding characterises a successful strategy.

1 Introduction

Multi-agent systems for resource allocation (MRAs) have been introduced in [8]
as a concept for modelling competitive resource allocation problems in dis-
tributed computing. An MRA is composed of a set of agents and a set of
resources. Agents have access to a subset of the overall set of resources. More-
over, each agent has a goal in terms of the amount of resources to accumulate.
Particular resources can be allocated by means of request actions. Further types
of actions are release and idle. MRAs run in discrete rounds. In each round each
agent selects an action, and the tuple of selected actions gets executed in a simul-
taneous manner. Once an agent has achieved its goal, it releases all accumulated
resources and starts to allocate them again. Hence, agents pursue to achieve
their goals repetitively. Since resources are generally shared, the achievement of
goals is a competition between agents. Several practically relevant scenarios of
resource allocation can be modelled as an MRA.

For MRAs (or more specifically, for the scenarios that they model) it is typi-
cally of importance that they are designed in a way such that for certain group of
agents the achievement of goals can be guaranteed, no matter how the remaining
agents in the system may counter-act. We call such a group of agents a coali-
tion and the remaining agents the opposition. Goal-achievability properties of a
coalition A against an opposition B can be formalised in alternating-time logics
c© Springer Nature Switzerland AG 2021
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such as ATL or ATL∗ [1], which extend classical temporal logics by strategic
operators. An alternating-time formula 〈〈A〉〉ϕ expresses that the coalition A
has a strategy to achieve ϕ, irrespective of how the opposition acts, where ϕ
is a classical temporal logic formula. In this context, a strategy is a mapping
between states of the underlying MRA and actions to be taken by the agents
in A in these states. The corresponding strategic model checking problem is to
determine whether such a succeeding strategy exists or not. Established tools for
deciding the PTIME-complete ATL model checking problem of general multi-
agent systems are based on binary decision diagrams (BDDs) and only offer
limited support for synthesising a succeeding strategy [2,13]. Algorithms for the
2EXPTIME-complete ATL∗ model checking have been theoretically defined, but
due to the high complexity no practically relevant implementation exists.

In this paper we present a SAT-based bounded model checking technique for
verifying goal-achievability properties of multi-agent systems for resource allo-
cation. Our technique does not only decide the model checking problem, it also
synthesises a corresponding strategy if existent. The properties that we consider
in our approach are not expressible in ATL but in ATL∗. Our approach encodes
the bounded model checking problem in propositional logic. Thus, model check-
ing can be performed via SAT solving. From a satisfying truth assignment of
the encoded problem a succeeding strategy can be immediately derived. For our
bounded model checking problems linear completeness thresholds exist, which
also makes unbounded model checking feasible.

A distinct feature of our technique is our iterative strategy synthesis algo-
rithm. Instead of directly checking whether the coalition A has a strategy for
achieving the goals against all possible strategies of the opposition B , the algo-
rithm approaches the problem as follows: 1. It initialises a set Σ containing a
small number of strategies of the opposition. 2. It checks whether A has a strat-
egy α for achieving the goals against the opposition’s strategies in Σ. If not,
then no succeeding strategy for A exists. 3. It checks whether B has a strategy
β for preventing A from reaching the goals against the strategy α, generated in
Step 2. If not, then α is a universally succeeding strategy for A. Otherwise, the
algorithm adds the strategy β to Σ and repeats the Steps 2 and 3 until a defi-
nite result is obtained. The dual principle of the algorithm allows to avoid the
exhaustive consideration of all possible strategies for many practical instances.

We have implemented our model checking and strategy synthesis technique
on top of the solver PicoSAT [4]. First experiments show promising perfor-
mance results. To the best of our knowledge our approach is the first SAT-based
bounded model checking technique for verifying alternating-time properties and
the first SAT-based strategy synthesis technique.

2 Multi-agent Systems for Resource Allocation

In our approach we focus on model checking multi-agent systems for resource
allocation (MRAs), originally introduced in [8].
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Definition 1 (Multi-agent System for Resource Allocation). A multi-
agent system for resource allocation is a tuple M = (Agt ,Res, d ,Acc) where

– Agt = {a1, . . . , an} is a finite set of agents,
– Res = {r1, . . . , rm} is a finite set of resources,
– d : Agt → N is a demand function that defines the number of resources that

each agent needs to allocate in order to achieve its individual goal,
– Acc : Agt → 2Res is an accessibility function that defines the subset of

resources that each agent can access.

a3

a2

a1

r4

r3

r2

r1Example. The graph describes the agents a1, a2, a3, the
resources r1, r2, r3, r4, and the accessibility function of the
MRA. The MRA is fully specified once the demand function
is defined, e.g. d(a1) = 2, d(a2) = 2, d(a3) = 1.

Each agent has the goal to gradually allocate a number
of resources such that its demand is finally satisfied. The
actions that can be performed for this are:

Definition 2 (Actions). Given an MRA M, the set of actions Act is the union
of the following types of actions:

– request actions: {reqa
r | a ∈ Agt , r ∈ Acc(a)}

– release actions: {relar | a ∈ Agt , r ∈ Acc(a)}
– release-all actions: {relaall | a ∈ Agt}
– idle actions: {idlea | a ∈ Agt}

Hence, an agent can request a particular resource, release a particular
resource that it currently holds, release all resources that it currently holds,
or just idle. An MRA runs in discrete rounds where in each round each agent
chooses its next action. In a round the tuple of chosen actions, one per agent,
gets executed simultaneously. The execution of actions leads to an evolution of
the system between different states over time.

Definition 3 (States). A state of an MRA M is a function s : Res → Agt+

where Agt+ = Agt ∪ {a0} and a0 is a dummy agent. If s(r) = a0 then resource
r is unallocated in state s. If s(r) = ai and i > 0 then r is allocated by agent ai
in s. We denote by s0 the initial state of M , where s(r) = a0 for each r ∈ Res,
i.e. initially all resources are unallocated. We denote by S the set of all possible
states of M . If we want to express that resource r is currently allocated by agent
ai but the current state is not further specified, then we simply write r = ai .

Hence, states describe the current allocation of resources by agents. An agent
may not be able to observe the entire state of the MRA. We assume that agents
can only observe the (state of the) resources they have access to.

Definition 4 (State Observations). Let M be an MRA, let ai ∈ Agt and let
s ∈ S. Then the observation of agent ai in state s is a function sai

: Acc(ai) →
Agt+ such that sai

(r) = s(r) for all r ∈ Acc(ai). We denote by Sai
the set of all

possible state observations of ai .
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In our example, agent a1 cannot access resource r4. Hence, the state observa-
tion of this agent in a state where all resources are available and in a state where
r4 is the only allocated resource would be the same. In each state only a subset of
actions may be available for execution by an agent, which we call the protocol:

Definition 5 (Action Availability Protocol). The action availability proto-
col is a function P : S × Agt → 2Act defined for each s ∈ S and a ∈ Agt:

1. if |s−1(a)| = d(a) then P(s, a) = {relaall};
2. otherwise:

(a) relaall �∈ P(s, a);
(b) reqa

r ∈ P(s, a) iff s(r) = a0;
(c) relar ∈ P(s, a) iff s(r) = a;
(d) idlea ∈ P(s, a) iff ∀ r ∈ Acc(a) : s(r) �= a0.

Thus, if an agent has reached its goal, it has to release all of its allocated
resources. Otherwise, an agent can request an accessible resource that is cur-
rently unallocated, an agent can release a resource that it currently holds, and
an agent can idle only if none of its accessible resources are currently available.

Definition 6 (Action Profiles). An action profile in an MRA M is a mapping
ap : Agt → Act. AP denotes the set of all action profiles. We say that a profile
ap is executable in a state s ∈ S if for each a ∈ Agt we have that ap(a) ∈ P(s, a).

Based on action profiles we can formally define the evolution of an MRA.

Definition 7 (Evolution). The evolution of an MRA is a relation δ ⊆ S ×
AP × S where (s, ap, s ′) ∈ δ iff ap is executable in s and for each r ∈ Res:

1. if s(r) = a0 then:
(a) if ∃ a : ap(a) = reqa

r ∧ ∀ a ′ �= a : ap(a ′) �= reqa′
r then s ′(r) = a;

(b) otherwise s ′(r) = a0;
2. if s(r) = a for some a ∈ Agt then:

(a) if ap(a) = relar ∨ relaall then s ′(r) = a0;
(b) otherwise s ′(r) = a.

If an action profile is executed in a state of an MRA M , this leads to a tran-
sition of M into a corresponding successor state, i.e. a change in the allocation
of resources according to the actions chosen by the agents. According to the
evolution, the request of a resource r by an agent a will be only successful if a
is the only agent that requests r in the current round. If multiple agents request
the same resource at the same time, then none of the agents will obtain it.

We are interested in solving strategic model checking problems with regard
to MRAs: Given a coalition of agents A ⊆ Agt , does this coalition has a uniform
strategy that guarantees that all agents in A will eventually achieve their goal,
irrespective of how the opposition of agents Agt\A acts?
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Definition 8 (Uniform Strategy). A uniform strategy of an agent a ∈ Agt in
an MRA is an injective function αa : Sa → Act. A strategy can be also denoted
by a relation αa ⊆ Sa × Act where αa(sa , acta) = true iff αa(sa) = acta .
Given A = {a1, . . . , ar} ⊆ Agt, a joint strategy for A is a tuple of strategies
αA(αa1 , . . . , αar

), one for each a ∈ A.

A strategy determines which action an agent will choose under which obser-
vation. A strategy is uniform if the following holds: Each time when an agent
makes the same observation, it will perform the same action according to the
strategy. If a coalition of agents follows a joint strategy, this can have multiple
possible execution paths as outcomes because the remaining agents outside the
coalition may act in an arbitrary way. In our approach, we assume that the
remaining agents may follow an arbitrary strategy from a set Σ. The outcome of
a strategy αA in a state s for a set of opposition’s strategies Σ is a set of paths.

Definition 9 (Outcome of a Strategy). Let M be an MRA, s a state of M ,
A ⊆ Agt and B = Agt\A. Moreover, let αA be a joint strategy for A and Σ a
set of joint strategies for B. Then the outcome of αA in state s, assuming that
the agents in B follow an arbitrary strategy from Σ, is a set of paths

Π(s, αA, Σ) = { π = s0s1 . . . | s0 = s ∧
∀ βB ∈ Σ : ∀ t ∈ N : ∃(acta1

t , . . . , actan
t )∀ a ∈ Agt :

(actat ∈ P(st , a) ∧ (a ∈ A → αa((st)a) = actat ) ∧
(a ∈ B → βa((st)a) = actat ) ∧
(st , (acta1

t , . . . , .actan
t ), st+1) ∈ δ)}

where (st)a denotes the observation of agent a in state st .

The logic that we introduce for specifying strategic goal-achievability proper-
ties of agents in MRAs we call 1-ATL∗. 1-ATL∗ is based on a subset of the
alternating-time temporal logic ATL∗ [1].

Definition 10 (1-ATL∗ Syntax). Let M be an MRA, A ⊆ Agt, B = Agt\A
and Σ a set of joint strategies for B. Then formulas 〈〈A, Σ〉〉ϕ ∈ 1-ATL∗ over
M are defined as follows:

ϕ := a.goal | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Fϕ

where a ∈ Agt and a.goal is an atomic proposition that expresses that agent a
has reached its goal, i.e. s(a.goal) = true iff |s−1(a)| = d(a) for s ∈ S.

Here F refers to ‘finally’. 1-ATL∗ formulas are restricted to a single strategic
operator 〈〈A, Σ〉〉 at the beginning of a formula. Since we follow a SAT-based
bounded model checking approach [5] we define bounded semantics for 1-ATL∗.
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Definition 11 (Bounded 1-ATL∗ Semantics). Let M be an MRA, let s ∈ S
be a state of M , let k ∈ N. Moreover, let A ⊆ Agt, a ∈ Agt, B = Agt\A and Σ a
set of joint strategies for B. Then the k-bounded evaluation of a 1-ATL∗ formula
〈〈A, Σ〉〉ϕ on the state s, written [M , s |=k 〈〈A, Σ〉〉ϕ], is inductively defined as:

[M , s |=k 〈〈A, Σ〉〉ϕ] ≡ ∃αA ∀π ∈ Π(s, αA, Σ) : [M , π |=k ϕ]
[M , π |=k a.goal ] ≡ |π(0)−1(a)| = d(a)
[M , π |=k Fϕ] ≡ ∃ 0 ≤ t ≤ k : [M , π(t) |=k ϕ]

where π(t) denotes the t-th state of the path π. Moreover, Boolean operators
¬,∨,∧ are interpreted with the usual semantics.

While ATL∗ uses strategic operators of the form 〈〈A〉〉 , we use extended strate-
gic operators 〈〈A, Σ〉〉 . The semantic difference is as follows: A formula 〈〈A〉〉ϕ
expresses that the coalition A has a universal strategy to achieve ϕ, irrespective
of how the opposition Agt\A acts, whereas 〈〈A, Σ〉〉ϕ expresses that the coalition
A has a strategy to achieve ϕ against all the opposition’s strategies in the set
Σ. If we include all possible strategies of the opposition in Σ, then 〈〈A〉〉ϕ and
〈〈A, Σ〉〉ϕ are semantically identical. In our SAT-based approach we focus on
solving strategic bounded model checking problems of the following form:

[M , s0 |=k 〈〈A, Σ〉〉 (∧
a∈A (Fa.goal))]

Thus, we check whether the coalition A has a uniform strategy guarantee-
ing that each agent in A will finally reach its resource goal within at most
k time steps, assuming that the opposition follows an arbitrary strategy in
Σ. Our technique does not only yield the model checking result but also
returns a succeeding strategy for A if such a strategy exists. We will also show
how our approach can be used for solving the corresponding universal prob-
lem [M , s0 |=k 〈〈A〉〉 (∧

a∈A (Fa.goal))] efficiently. Moreover, we discuss how
unbounded model checking can be established.

3 Propositional Logic Encoding

We now present our propositional logic encoding of strategic bounded model
checking problems [M , s |=k 〈〈A, Σ〉〉ϕ]. We construct a propositional formula
[M , 〈〈A, Σ〉〉ϕ, k ] over a set of Boolean variables Vars that is satisfiable if and
only if the encoded model checking problem holds. If the formula is satisfiable
for a truth assignment α : Vars → {0,1}, then α describes a uniform strategy
αA for the coalition A that guarantees that the goal ϕ will be reached against
all the opposition’s strategies in Σ. Since we have the correspondence between
truth assignments and strategies we denote both of them by α resp. αA. In a
top-down manner now we break down the overall encoding into sub encodings:

[M , 〈〈A, Σ〉〉ϕ, k ] = [〈〈A〉〉 , k ] ∧ ∧
β∈Σ ([β, k ] ∧ [M , k ]β ∧ [ϕ, k ]β)
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The sub formula [〈〈A〉〉 , k ] encodes the condition that the agents in A must follow
a uniform strategy and adhere to the protocol at each time step up to k . [β, k ]
encodes that the agents in B = Agt\A exactly follow the strategy β. [M , k ]β

encodes all k -bounded paths of M starting in the initial state, and [ϕ, k ]β is a
constraint that restricts the paths of M to those that satisfy ϕ. Since for each
strategy β ∈ Σ different paths may be taken and sub formulas of ϕ may be
satisfied in different states, we have for each β a distinct copy of the encoding
of M and ϕ, indicated by the superscript. This means, for some β �= β′ the
encodings [M , k ]β and [M , k ]β

′
are structurally identical, but they are defined

over distinct sets of variables. Henceforth, we typically omit the superscript,
unless we want to emphasise that the encoding refers to a particular strategy β.

3.1 Overall Encoding

Subsequently, we present the details of the overall encoding. The encoding makes
use of a number of basic encodings: [r = a]t denoting that resource r is allocated
by agent a in the state at time step t , [acta ]t denoting that agent a chooses action
act in the state at time step t , and [a.goal ]t denoting that a has reached its goal
in the state at step t . If the SAT solver generates a satisfying truth assignment
α of the overall encoding and α([r = a]t) = 1 holds, then α characterises a path
where at the t-th state resource r is allocated by agent a. Similar properties hold
for the remaining basic encodings. For now we will remain with these informal
definitions of these basic encodings. The formal definitions will follow in the
next sub section. We start with the encoding of paths and the temporal logic
formula before we consider the strategic parts [〈〈A〉〉 , k ] and [β, k ]. The encoding
of k -bounded paths [M , k ] is composed of the following sub encodings

[M , k ] = [Init ]0 ∧ ∧k−1
t=0 [Evolution]t,t+1

where [Init ]0 encodes the initial state at time step 0 and [Evolution]t,t+1 encodes
the evolution (Definition 7) of M from time step t to step t + 1.

Definition 12 (Encoding of the Initial State). The encoding of the initial
state of an MRA M at time step 0 where all resources are unallocated is

[Init ]0 =
∧

r∈Res [r = a0]0

where [r = a0]0 is defined according to the encoding of resource states (Sect. 3.2).

The initial state at time step 0 is the only state that is fixed in our encoding.
States that will be reached at time steps 1 ≤ t ≤ k follow from the truth assign-
ment generated by the solver. The subsequent encoding ensures that generated
sequences of states are conform with the evolution:
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Definition 13 (Encoding of the Evolution). The evolution of an MRA M
from time step t to t+1 is encoded as [Evolution]t,t+1 =

∧
r∈R [r .evolution]t,t+1

where [r .evolution]t,t+1 =
∨

a∈Acc−1(r) ( ([r = a]t+1 ∧ [reqa
r ]t ∧ ∧

a′ �=a ¬[reqa′
r ]t)

∨ ([r = a]t+1 ∧ [r = a]t ∧ ¬[relar ]t ∧ ¬[relaall ]t)
∨ ([r = a0]t+1 ∧ [relar ]t)
∨ ([r = a0]t+1 ∧ [r = a]t ∧ [relaall ]t)

)
∨ ([r = a0]t+1 ∧ [r = a0]t ∧ ∧

a∈Acc−1(r) ¬[reqa
r ]t)

∨ ([r = a0]t+1 ∧ [r = a0]t ∧ ∨
a,a′∈Acc−1(r),a �=a′([reqa

r ]t ∧ [reqa′
r ]t)

and the sub encodings are defined according to the encoding of resource states
and actions (Sect. 3.2).

The encoding of the evolution has a sub formula for each resource r in M .
It describes how the allocation state of r changes based on agent actions at
particular time steps. The first line of the encoding expresses that in the state
at the next time step t + 1 the resource r will be allocated by agent a if at the
current time step t agent a requests r and no other agent requests r .

We are interested in goal-reachability properties: Do the agents in A have a
strategy to achieve the goal ϕ within k steps? The strategic part of the property
gets encoded separately. The temporal logic part gets encoded as follows:

Definition 14 (Encoding of Goal-Reachability Formulas). Let M be an
MRA, A ⊆ Agt and k ∈ N. Then the k-bounded goal-reachability property ϕ =∧

a∈A F(a.goal) is encoded in propositional logic as

[ϕ, k ] =
∧

a∈A (
∨k

t=0 [a.goal ]t)

where [a.goal ]t is defined according to the encoding of goals (Sect. 3.2).

If we conjunct the encoding [M , k ] with [ϕ, k ], this restricts the k -bounded
paths of M to those where each agent in A reaches its goal at least once. What
we have encoded so far corresponds to a classical linear temporal logic bounded
model checking problem for MRAs. We now extend the encoding with the strate-
gic aspects of 1-ATL∗. The strategic encodings uses two additional basic encod-
ings: [uniform.acta ]t denoting that agent a chooses action act in the state at
time step t and also at all other time steps where the same state observation is
present, and [sa ]t denoting that the observation of agent a at time step t is sa .

Definition 15 (Encoding of the Protocol). Let M be an MRA, let A ⊆ Agt
and let k ∈ N. Then the protocol of A for all time steps up to k is encoded in
propositional logic as [〈〈A〉〉 , k ] =

∧k
t=0

∧
a∈A[a.protocol ]t where [a.protocol]t =

∨
r∈Acc(a) ( ([uniform.reqa

r ]t ∧ ¬[a.goal ]t ∧ [r = a0]t)
∨ ([uniform.relar ]t ∧ ¬[a.goal ]t ∧ [r = a]t)

)
∨ ([uniform.relaall ]t ∧ [a.goal ]t)
∨ ([uniform.idlea ]t ∧ ¬[a.goal ]t ∧ ∧

r∈Acc(a) ¬[r = a0]t)
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and the sub encodings are defined according to the encoding of actions with uni-
formity constraints, goals, and resource states (Sect. 3.2).

The constraint [〈〈A〉〉 , k ] forces the agents in A to follow the protocol at all
time steps up to k . This means only actions that are available in the current
state can be chosen. Moreover, the constraint enforces the uniformity of choices
with regard to the state observation. The first line of the protocol encoding
ensures that some agent a can only request some resource r if the agent has
not reached its goal yet and r is unallocated in the state at the current time
step. Furthermore, the sub constraint [uniform.reqa

r ]t ensures that if the agent
chooses the reqa

r action in the state at time step t , then it has to choose the same
action at all time steps where the agent’s state observation is the same as at t .
The final part of the encoding concerns strategies. In our approach, we use this
part to fix the strategy that the opposition of agents B = Agt\A is following.

Definition 16 (Encoding of Strategies). Let A = {a1, . . . , ar} ⊆ Agt, let
αA(αa1 , . . . , αar

) be a joint strategy for A and let k ∈ N. Then the prescription
of the strategy αA to A at all time steps up to k is encoded as

[αA, k ] =
∧k

t=0

∧
a∈A

∧
(sa ,acta)∈αa

([sa ]t → [acta ]t)

where [sa ]t is defined according to the encoding of state observations and [acta ]t
is defined according to the encoding of actions (Sect. 3.2).

Each clause ([sa ]t → [acta ]t) in this encoding ensures that if at some time step
t the state observation sa holds, then the agent a has to choose action acta

according to the strategy αa . This completes the definition of the overall encod-
ing [M , 〈〈A, Σ〉〉ϕ, k ] = [〈〈A〉〉 , k ] ∧ ∧

β∈Σ ([β, k ] ∧ [M , k ]β ∧ [ϕ, k ]β). We continue
with the definition of the basic encodings used within the overall encoding.

3.2 Basic Encodings

An essential basic encoding in our approach is that a particular resource is
allocated by a particular agent in the state at time step t . In the encoding we
make use of the fact that the agents in an MRA are indexed from 0 to n where the
0-index indicates the dummy agent a0 holding unallocated resources. Each index
can be represented by an m-digit binary number, and each binary number can
be logically represented by a conjunction of m negated or non-negated Boolean
variables. We introduce m Boolean variables for each resource rj ∈ Res and
encode that rj is allocated by some agent ai ∈ Agt by building a conjunction
that corresponds to the binary representation of the agent’s index i :

Definition 17 (Encoding of Resource States). Let M be an MRA, let rj ∈
Res, let ai ∈ Agt+ and let t ∈ N. Let m = �log2 |Agt+|� and let bm−1 . . . b0 be the
m-digit binary representation of the agent’s index number i. Then the allocation
of resource rj by agent ai in the state at time step t is encoded as

[rj = ai ]t :=
∧0

l=m−1 ((bl ∧ [rj ]lt) ∨ (¬bl ∧ ¬[rj ]lt))

where [rj ]lt with 0 ≤ l < m are the Boolean variables introduced for the encoding.
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Note that in this encoding each bl is a Boolean value (0 or 1), which means
that either the left-hand side or the right-hand side of the disjunction evaluates
to 0. Thus, the encoding can be immediately simplified to a pure conjunction.
Since we get a pure conjunction, it is excluded that at some step t a resource is
falsely allocated by multiple agents: For some r and a �= a ′ there exists no truth
assignment α such that α([r = a]t) = 1 and α([r = a ′]t) = 1. The conjunction
over digits is built from the left-most position m − 1 to the right-most position
0. By following the definition above, we can encode a state where some resource
r1 is unallocated, r2 is allocated by some agent a1, and r3 is allocated by a2:

(¬[r1]1t ∧ ¬[r1]0t ) ∧ (¬[r2]1t ∧ [r2]0t ) ∧ ([r3]1t ∧ ¬[r3]0t )

Since Agt+ = {a0, a1, a2}, we introduce two Boolean variables per resource to be
able to encode the binary representations 00, 01, 10. Based on the encoding of
resource states, we can now also encode state observations and goals of agents.

Definition 18 (Encoding of State Observations). Let M be an MRA, a ∈
Agt, sa ∈ Sa and t ∈ N. Then the observation sa by a at step t is encoded as

[sa ]t :=
∧

rj ∈Acc(a)[rj = sa(rj )]t

where [rj = sa(rj )]t is defined according to the encoding of resource states.

Hence, the encoding of the state observation sa by agent a at time step t is a
conjunction over the states of accessible resources which are conform with sa .

Definition 19 (Encoding of Goals). Let M be an MRA, let a ∈ Agt and let
t ∈ N. Then the achievement of a’s goal in the state at time step t is encoded as

[a.goal ]t =
∨

R⊆Acc(a)
|R|=d(a)

(
∧

r∈R

[r = a]t)

where [r = a]t is defined according to the encoding of resource states.

An agent a has achieved its goal at time step t if the number of resources
allocated by a in the current state is equal to the demand d(a) of this agent.
Since the number of accessible resources may be higher than the demand, all
possibilities for satisfying the demand need to be considered. In the example
below, we assume that a has access to the resources r1, r2, r3 and its demand is
2. As a corresponding goal encoding for time step t we get:

[a.goal ]t = ([r1 = a]t ∧ [r2 = a]t) ∨ ([r1 = a]t ∧ [r3 = a]t) ∨ ([r2 = a]t ∧ [r3 = a]t)

If the solver generates an assignment α with α([a.goal ]t) = 1, then on the path
corresponding to α agent a has reach its goal in the state at time step t .

In the encoding of actions by agents we follow a similar concept as in the
encoding of resource states. We assign a unique binary number to each possible
action of an agent ai and we represent each action by a logical conjunction over
negated or non-negated Boolean variables associated with this agent.
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Definition 20 (Encoding of Actions). Let ai ∈ Agt, actai ∈ Act(ai), t ∈ N,
m = �log2 |Act(ai)|� and fai

: Act(ai) → {0, . . . ,m −1} a bijection that assigns a
unique number to each possible action of ai . Let bm−1 . . . b0 be the m-digit binary
representation of fai

(act). Then the action actai of ai at step t is encoded as

[actai ]t :=
∧m−1

l=0 (bl ∧ [aci ]lt) ∨ (¬bl ∧ ¬[aci ]lt)

where [aci ]lt with 0 ≤ l < m are the Boolean variables introduced for the encoding.

Assuming that some agent a1 can perform 6 different actions, we need 3 Boolean
variables for their encoding. Moreover, assuming that the number 0 is assigned
to the action idlea1 , the corresponding encoding is:

[idlea1 ]t = ¬[ac1]2t ∧ ¬[ac1]1t ∧ ¬[ac1]0t

In the remainder of this sub section, we show how we enforce uniform
behaviour of the agents in A and how we include a logical mechanism that allows
us to synthesise uniform strategies for reaching the goal. Since a strategy links a
state observation sa with an action acta , we define strategic decision encodings
[sa .acta ]. We include these decision encodings in our overall encoding such that
a truth assignment α satisfies [sa .acta ] if and only if the strategy characterised
by α links sa with acta . Since strategic decisions are universal and not restricted
to a particular time step, this encoding does not include t as a parameter.

Definition 21 (Encoding of Strategic Decisions). Let M be an MRA, let
ai ∈ Agt, let actai ∈ Act(ai) and let sai

∈ Sai
. Moreover, let m = �log2 |Act(ai)|�

and let fai
: Act(ai) → {0, . . . ,m − 1} be a bijection that assigns a unique

number to each possible action of agent ai . Let bm−1 . . . b0 be the m-digit binary
representation of fai

(actai ). Then the strategic decision of agent ai to perform
action actai in state observation sai

is encoded as

[sai
.actai ] :=

∧m−1
l=0 (bl ∧ [saci ]l) ∨ (¬bl ∧ ¬[saci ]l)

where [saci ]l with 0 ≤ l < m are the Boolean variables for the encoding.

Similarly to the encoding of actions, we assign a unique binary number to each
possible action of an agent ai and we represent each strategic decision by a
logical conjunction over negated or non-negated Boolean variables associated
with this agent. This ensures that for different actions actai �= act

′ai no truth
assignment can satisfy [sai

.actai ] and [sai
.act

′ai ] at the same time. This results
in a guaranteed uniformity of strategies synthesised from the decision encodings.

The final part of the basic encoding concerns the uniform choice of actions:

Definition 22 (Encoding of Actions with Uniformity Constraints). Let
ai ∈ Agt, let actai ∈ Act(ai) and let t ∈ N. Then the uniformity constraint with
regard to action actai by agent ai at time step t is encoded as

[uniform.actai ]t := [actai ]t ∧ (
∨

sai ∈Sai
,actai ∈P(sai )

([sai
]t ∧ [sai

.actai ]))

where [sai
]t and [sai

.actai ] are defined according to the encoding of state obser-
vations and strategic decisions.
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Here the uniform choice of actions by agents is enforced as follows: At each step
t when an agent a makes a choice to perform action acta , we connect this choice
with the strategic decision encoding [sa .acta ] corresponding to the current state
observation sa and to acta . This ensures that the action can only be chosen if
there has been no time step with the same observation where a different action
has been chosen, or synonymously, the same action is also chosen at all steps
where the observation is the same as at t . This completes our encoding of strate-
gic bounded model checking problems [M , s |=k 〈〈A, Σ〉〉ϕ] into a propositional
formula [M , 〈〈A, Σ〉〉ϕ, k ]. Next, we summarise the properties of the encoding.

3.3 Properties of the Encoding

The major property of our encoding is that it allows to perform sound model
checking of the encoded problem via satisfiability solving.

Theorem 1 (Model Checking). Let [M , s |=k 〈〈A, Σ〉〉ϕ] be a strategic
bounded model checking problem and let [M , 〈〈A, Σ〉〉ϕ, k ] be its encoding over
Vars. Then:

[M , s |=k 〈〈A, Σ〉〉ϕ] ≡ sat([M , 〈〈A, Σ〉〉ϕ, k ])

Hence, the coalition A has a uniform strategy to achieve the goal ϕ within k
time steps against all opposition’s strategies in Σ if and only if the propositional
logic encoding is satisfiable. Moreover, our approach also allows us to synthesise
such a uniform strategy that guarantees the achievement of the goal ϕ:

Theorem 2 (Strategy Synthesis). Let [M , s |=k 〈〈A, Σ〉〉ϕ] be a strategic
bounded model checking problem, let [M , 〈〈A, Σ〉〉ϕ, k ] be its encoding over Vars
and let α : Vars → {0,1} with α([M , 〈〈A, Σ〉〉ϕ, k ]) = 1. Then for the strategy

αA = ({(sa , acta) | sa ∈ Sa ∧ acta ∈ Act ∧ α([sa .acta ]) = 1}a∈A)

the following holds: ∀π ∈ Π(s, αA, Σ) : [M , π |=k ϕ].

Thus, from a truth assignment α that satisfies the encoding we can directly
derive a corresponding uniform strategy αA that guarantees ϕ. The cor-
rectness of Theorem 1 and Theorem 2 is closely linked. Subsequently, we
present a sketch of the proof of correctness. Proof details can be found at
github.com/TuksModelChecking/Satmas/blob/main/Proofs.pdf.

Proof Sketch
It can be shown that every satisfying truth assignment of [M , k ] characterises a
k -bounded path in the state space of M that is conform with the evolution. Yet,
such a path may not be conform with the protocol. [M , k ] ∧ [ϕ, k ] is satisfied
for assignments that characterise paths of M for which the property ϕ holds.
The conjunction of this encoding with [M , 〈〈A〉〉 , k ] adds the constraint that the
agents in A must follow a uniform strategy that is conform with the protocol.
Assuming that β is a protocol-conform strategy for the opposition B = Agt\A

https://github.com/TuksModelChecking/Satmas/blob/main/Proofs.pdf
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and by adding [β, k ] to the encoding we restrict the paths to those where the
opposition adheres to β. This can be generalised to having a set Σ of possible
strategies for B . We finally get that the overall propositional formula is satisfiable
if and only if the encoded model checking problem holds. Moreover, the strategic
decision encodings [sa .acta ] that evaluate to true for a satisfying assignment α
are exactly those that characterise the winning strategy for the coalition A. �

4 Algorithm

Our SAT-based approach allows to solve model checking problems of the form
[M , s |=k 〈〈A, Σ〉〉ϕ] where the coalition A attempts to reach its goal against
the opposition’s strategies in Σ. However, it is typically of interest to synthesise
a strategy that universally succeeds, i.e. against all possible strategies of the
opposition. The common notation for this is: [M , s |=k 〈〈A〉〉ϕ]. Universal goal-
achievability can be naively checked by including all possible strategies in Σ.
But this would involve an exorbitant increase of the size of the encoding. We
approach this problem by defining the iterative Algorithm 1 on the subsequent
page that successively extends the strategy set Σ. In each iteration, two strategic
model checking problems are solved: We first check whether [M , s |=k 〈〈A, Σ〉〉ϕ]
holds, i.e. whether A has a strategy α that succeeds against all strategies in Σ. If
not, then we can immediately terminate with the result that the model checking
problem does not hold. Otherwise, our algorithm will synthesise a strategy α that
succeeds against Σ. Secondly, we consider the so-called complementary model
checking problem [M , s |=k 〈〈B , {α}〉〉¬ϕ], i.e. we check whether the opposition
B has a strategy β that succeeds against α in preventing the coalition A from
reaching the goal ϕ. If the opposition does not have such a strategy β, then we
can conclude that α is a universally succeeding strategy for ϕ and the algorithm
terminates with this result. Otherwise, we synthesise β, add it to Σ and run the
next iteration. In our algorithm, we initialise Σ with a simple greedy strategy for
B : As long as its goal is not reached and accessible resources are available, each
agent in B requests the accessible and available resource rj with the smallest
index j .

In the worst case, the number of iterations is equal to the number of possible
strategies for B . However, the concept of checking the original problem and the
complementary problem in each iteration allows for early termination in many
cases: If the complementary problem does not hold, then we already know that
the current α is a universally succeeding strategy – even if we have not considered
all possible strategies for B yet. Since our approach is based on bounded model
checking it is incomplete, i.e. only bounded goal-reachability can be checked.
However, if we can synthesise a succeeding strategy for some bound k , then we
can conclude that this strategy will also guarantee success for all larger bounds
and therefore also in the unbounded case. Conversely, having no succeeding
strategy for some k does not allow us to conclude that such a strategy does not
exist in the unbounded case. General completeness of bounded model checking
can be established by determining the completeness threshold of the problem
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Algorithm 1: Strategy-Synthesis(M , 〈〈A〉〉ϕ, k)

1 B := Agt\A, Σ := {βgreedy}
2 loop forever do

3 if sat([M , 〈〈A, Σ〉〉ϕ, k ]) for some assignment α then

4 skip /*α succeeds against all strategies in Σ*/

5 else
6 return ‘[M , s0 �|=k 〈〈A〉〉ϕ’

7 if sat([M , 〈〈B , {α}〉〉¬ϕ, k ]) for some assignment β then

8 Σ := Σ ∪ {β} /*β succeeds against α*/

9 else
10 return ‘[M , s0 |=k 〈〈A〉〉ϕ] and α is a universally succeeding strategy’

instance and by setting k to this threshold. For the reachability properties that
we consider, completeness thresholds are linear in the size of the state space [11].

5 Implementation and Experiments

We developed the tool SATMAS (available at github.com/TuksModel
Checking/SATMAS) that implements our approach in Python. SATMAS takes
a specification of an MRA M (set of agents, set of resources, accessibility rela-
tion, demand function) and a coalition A within M as an input. The strategic
property to be checked is 〈〈A〉〉 (∧

a∈A (Fa.goal)). The tool iterates over the
possible values of the bound. In each iteration the encodings of the correspond-
ing model checking problem and of its complement are built, and the algorithm
Strategy-Synthesis is executed. The encoding process includes optimisations such
as logical simplifications and the Tseitin transformation into conjunctive normal
form. SATMAS employs PicoSAT [4] for checking the satisfiability of the encod-
ings and for determining satisfying truth assignments from which strategies can
be derived. In experiments we verified goal-reachability properties of MRAs with
up to eight agents and eight resources. We were able to either synthesise uni-
versally succeeding strategies, or to show that such strategies do not exist. A
selection of the results where a succeeding strategy for A could be synthesised is
shown in Table 1. The Scenario column indicates the sizes of the coalition A, the
opposition B and the overall number of resources. Moreover, D is the interval
from which the demand of each agent was randomly selected, and ACC is the
interval from which number of accessible resources of each agent was randomly
selected.

https://github.com/TuksModelChecking/SATMAS
https://github.com/TuksModelChecking/SATMAS
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Table 1. Experimental results.

Scenario Bound Time

|A| = 3, |B | = 3, |Res| = 6, D = [2, 3], ACC = [4, 5] 36 7.1 s
|A| = 3, |B | = 3, |Res| = 6, D = [4, 5], ACC = [5, 6] 36 19.1 s
|A| = 4, |B | = 4, |Res| = 8, D = [3, 4], ACC = [5, 6] 64 162 s
|A| = 4, |B | = 4, |Res| = 8, D = [5, 6], ACC = [6, 7] 64 755 s

6 Related Work

Model checking has been originally introduced as a technique for verifying tem-
poral logic properties of hardware and software designs [3]. Classical symbolic
model checking approaches include BDD-based CTL model checking [6] and
SAT-based bounded LTL model checking [5]. CTL model checking has been
also extended to multi-agent systems [16]. While CTL and LTL do not con-
sider strategic aspects, [1] introduced the alternating-time logics ATL and ATL∗,
which are logics for reasoning about strategies in multi-agent systems. The gen-
eral ATL model checking problem is PTIME-complete whereas the ATL∗ model
checking problem is 2EXPTIME-complete. Thus, while for ATL model check-
ing efficient BDD tools like MCMAS [13] and MOCHA [2] exist, ATL∗ has
been rather considered on a theoretical level [17]. SAT-based bounded model
checking of multi-agent systems has been proposed in [12,14]. Similar to our
technique, [12,14] unfold the transition relation k times by means of a propo-
sitional formula. However, their approaches are limited to the verification of
epistemic properties and do not support strategic operators. These approaches
have been only theoretically defined but not implemented. [10] presents a SAT-
based unbounded ATL model checking technique. Although based on a reduction
to SAT, this technique is very different from ours. In [10] a BDD-encoded model
checking problem gets translated into a corresponding set of quantified Boolean
formulas and fix-point equations, which can be further translated into a plain
propositional encoding. [10] does not support strategy synthesis. An existing tool
for synthesising ATL strategies is SMC [15]. SMC operates on a BDD model of
the multi-agent system to be verified. It iteratively guesses a strategy, fixes the
strategy in the model and checks whether it is a succeeding strategy, which
reduces ATL model checking to CTL model checking in each iteration. To the
best of our knowledge our approach is the first SAT-based bounded model check-
ing technique for verifying alternating-time properties and the first SAT-based
strategy synthesis technique.

7 Conclusion and Outlook

We presented a SAT-based technique for model checking strategic abilities of
coalitions in MRAs. Our technique does not only allow to verify whether a coali-
tion of agents has the strategic ability to achieve a resource allocation goal, it
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also synthesises a corresponding uniform strategy if existent. In contrast to exist-
ing synthesis techniques that explore BDDs, our approach is based on a logical
encoding of the model checking problem. Hence, we can exploit the power of
modern SAT solvers in our approach. SAT-based model checking is limited to
the exploration of bounded paths. However, for our goal-reachability properties
completeness thresholds linear in the size of the state space exist, which also
makes unbounded model checking feasible. A distinct feature of our technique is
the iterative strategy synthesis algorithm. In each iteration it checks whether the
coalition A has a strategy α for achieving its goal against all opposition’s strate-
gies from a set Σ, and additionally, whether the opposition B has a strategy β
for preventing A from achieving its goal when A follows α. This dual principle of
the algorithm allows to avoid an exhaustive exploration of all possible strategies
for many practical instances. We have implemented our technique on top of the
solver PicoSAT. First experiments show promising performance results.

In future work, we want to extend our technique such that properties like
repetitive goal-reachability of the form GFϕ can be verified. We plan to develop
variants of the algorithm where strategies from different iterations get heuristi-
cally merged, rather than extending the strategy set. The protocol of MRAs can
be adjusted such that alternative scenarios of resource allocation problems can
be modelled. Further plans are the integration of partial order reduction [9] and
symmetry reduction [7] in order to reduce the model checking complexity.
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Abstract. We present an approach for automatic translation of tock-CSP
into Timed Automata (TA) to facilitate using Uppaal in reasoning about
temporal specifications of tock-CSPmodels. The process algebra tock-CSP
provides textual notations for modelling discrete-time behaviours, with
the support of tools for automatic verification. Automatic verification of
TA with a graphical notation is supported byUppaal. The two approaches
provide diverse facilities for automatic verification. For instance, liveness
requirements are difficult to specify with the constructs of tock-CSP, but
they are easy to specify and verify in Uppaal. We have developed a trans-
lation technique based on rules and a tool for translating tock-CSP into
a network of small TAs for capturing the compositional structure of tock-
CSP. For validating the rules, we begin with an experimental approach
based on finite approximations of trace sets. Then, we consider using struc-
tural induction to establish the correctness.

Keywords: Translation · tock-CSP · Timed-Automata

1 Introduction

Communicating Sequential Processes (CSP) is an established process algebra
that provides a formal notation for both modelling and verifying concurrent
systems [17,31,33]. The use of CSP for verification has been supported by several
tools including powerful model-checkers [13,31,35].

Interest in using existing tools of CSP motivated [31] the introduction of
support for modelling discrete timed systems: tock-CSP provides an additional
event tock to record the progress of time. As a result, tock-CSP has been used to
verify real-time systems, such as security protocols [11] and railway systems [19].
Also, recently tock-CSP has been used to capture the semantics of RoboChart,
a domain-specific language for modelling robotics applications [25].

In this work, we present a technique for automatic translation of tock-CSP
into Timed Automata (TA) to enable using Uppaal[5] and temporal logic to
verify tock-CSP models. Uppaal is a tool suite for modelling and verification of
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hybrid systems using a network of TAs. We describe the translation rules and
their implementation into a tool.

Both temporal logic and refinement are powerful approaches for model check-
ing [23]. The refinement approach models both the system and its specifications
with the same notation [31,33]. Temporal logic enables asking whether a sys-
tem captures logical formulæ of the requirements specification in the form of
system |= formula [8].

Lowe has investigated the relationship between the refinement approach (in
CSP) and the temporal logic approach [23]. The result shows that, in expressing
temporal logic checks using refinement, it is necessary to use the infinite refusal
testing model of CSP. The work highlights that capturing the expressive power
of temporal logic to specify the availability of an event (liveness specification)
is not possible in the trace refinement model. Also, due to the difficulty of cap-
turing refusal testing, automatic support becomes problematic, and FDR stops
supporting refusal testing in its recent version [13].

Additionally, Lowe’s work [23] proves that simple trace refinement checks
cannot match the expressive power of temporal logic, especially of the three
operators: eventually (�p: p will hold in a subsequent state), until (pUq: p holds
in every state until q holds) and their negations: (¬(�p)) and (¬(pUq)). These
three operators express behaviour captured by infinite traces. Our contribution
presented here facilitates an alternative way of checking such specifications.

Example 1. Consider an Automatic Door System (ADS) that opens a door, and
after at least one-time unit, closes the door in synchronisation with a lighting
controller, which turns off the light. In tock-CSP, this is expressed as:

1 ADS = Controller [|{close}|] Lighting
2 Controller = open -> tock -> close -> Controller
3 Lighting = close -> offLight -> Lighting

The process ADS has two components—Controller and Lighting—that
synchronise on the event close1, which enables Lighting to turn off the light
after closing the door. In tock-CSP, there is no direct way of checking if the
system eventually turns off the light. However, temporal logic provides a direct
construct for specifying liveness requirements, supported in Uppaal, as follows.

– A<> offLight - - The system eventually turns off the light

Uppaal uses a subset of Timed Computation Tree Logic (TCTL) based on the
notions of path and state [5]. A path formula quantifies over paths (traces),
whereas a state formula describes locations. There are different forms of path
formulæ. Liveness is either A<>q (q is eventually satisfied) or p --> q (a state
satisfying p leads to a state satisfying q). A reachability formula in the form of

1 Here, the event close is asynchronisation event using the CSP operator ([|Event|])
for synchronising multiple concurrent processes, such that all the processes have to
synchronise on the all the elements of the set Event before they can proceed.
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E<>q (a state satisfying q is reachable from the initial state). Safety is expressed
as either A[]q (q holds in all reachable states) or E[]q (q holds in all states on
at least one path).

To verify the correctness of the translation technique, first, we use the devel-
oped translation technique and its tool to translate the formulated processes
into TA for Uppaal. Next, we use another tool we have developed to generate
and compare finite traces of the input tock-CSP models and the traces of the
translated TA models.

We use Haskell [18], a functional programming language, to express, imple-
ment and evaluate the translation technique. The expressive power of Haskell
helps us provide formal descriptions of the translation technique as a list of
translation rules, which is also suitable for developing a mathematical proof.

The structure of this paper is as follows. Section 2 provides background mate-
rial. Section 3 summarises the translation technique. We discuss an evaluation
of the translation technique in Sect. 4. In Sect. 5, we highlight related works and
present a brief comparison with this work. Finally, we highlight future exten-
sions of this work and conclude. Additional details of this work including proofs,
implementation and additional examples are available in [1,2].

2 Background

As an extension of CSP, tock-CSP provides notations for modelling processes
and their interactions, such as the basic processes: SKIP and STOP, for success-
ful termination and deadlock, respectively. Operators include prefix (->)
for describing availability of an event. For example, the process move->SKIP
represents a mechanism that moves once and then terminates.

There are binary operators such as sequential composition (;), which com-
bines two processes serially. For instance, the process P3 = P1;P2 behaves as
process P1, and after successful termination of P1, P2 takes over and P3 behaves
as P2. There are other binary operators for concurrency, choice and interrup-
tion. Also, CSP has a special event tau (τ) for representing invisible actions that
are internal to a system. The collection of these operators provides a rich set of
constructs for modelling untimed systems [31,33].

For modelling time, tock-CSP has a special event tock [31], which specifies
that the process waits for one time unit before it engages with its environment.
For example, the following process Pt specifies behaviour that moves and then
after at least two time units, turns and terminates.

Pt = move->tock->tock->turn->SKIP

Timed Automata for Uppaal model hybrid systems as a network of TA.
Mathematically, a TA is a tuple (L, l0, C,A,E, I), where L is a set of locations
such that l0 is the initial location, C is a set of clocks, A is a set of actions, E is
a set of edges that connects the locations L, and I is an invariant associated to
a location l ∈ L in the form of I : L −→ B(C). So, edges E ⊆ (L × A × B(C) ×
2C × L) from a location l ∈ L triggered by an action a ∈ A, guarded with a
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guard g ∈ B(C) where B(C) is the set of guards, and associated clock c ∈ C
that is reset on following the edge to a location l ∈ L [5,7].

A system is modelled as a network of TAs that communicate via either syn-
chronous channel communication or shared variables. A sending channel is dec-
orated with an exclamation mark (c!) while the corresponding receiving channel
is decorated with a question mark c?. A TA performs an action c! to communi-
cate with another TA that performs the corresponding co-action c?. There are
also broadcast channels for communication among multiple TAs, in the form of
one-to-many communications (one sender with multiple receivers).

For expressing urgency, there are urgent channels and urgent locations that
do not allow delay. There are also committed locations; urgent locations that
must participate in the next transition, which is useful for expressing atomicity;
a compound action spanning multiple transitions that must be executed as a
unit. Invariants specify precise delay and enforce progress [5]. In Uppaal, net-
works of TAs model system’s components and an explicit operating environment.
Additional details with examples are available in [5,6,22].

3 An Overview of the Translation Technique

In this section, we describe the translation of the main constructs of tock-CSP
via examples. The formal rules are omitted due to space restrictions, but are
available in [1,2]. Our translation technique takes an input tock-CSP model and
produces a list of TAs. The occurrence of each tock-CSP event is captured in a
small TA with an Uppaal action, which records an occurrence of the translated
event. The small TAs are composed into a network of TAs that capture the
behaviour of the input tock-CSP model. The network of small TAs give us enough
flexibility to capture the compositional structure of tock-CSP.

Example 2. A translation of the process ADS, from Example 1, produces a
network of small TAs in Fig. 1. TA00 captures concurrency by starting the
two automata for the processes Controller and Lighting in two possible
orders—either Controller then Lighting or vice versa—depending on the
operating environment. Here, we use the committed locations (s2, s3 and s4) to
show that starting the concurrent automata is a compound action. Then TA00
waits on state s5 for the termination actions in the two possible orders, either
finishID1? then finishID2? or vice versa. However, for the termination, we
do not use committed locations because the processes can terminate at different
times. TA00 synchronises the processes before terminating the system with the
action finishID0!.

TA01, TA02 and TA03 capture the behaviour of the process Controller.
TA01 captures the occurrence of the event open. TA02 captures the occurrence
of tock to synchronise with the environment TA in recording the progress of
time. TA03 captures the event close to synchronise with the controller TA04.

TA05 and TA06 capture the behaviour of the process Lighting. TA05 cap-
tures close, which also synchronises with TA04. Then, TA06 captures the event
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(a) TA00

(b) TA01 (c) TA02

(d) TA03 (e) TA04

(f) TA05 (g) TA06

Fig. 1. A list of networked TAs for the translation of the process ADS.
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Fig. 2. An environment TA for the translated behaviour of the process ADS.

offLight. Finally, Fig. 2 shows the environment TA that has co-actions for all
the translated events. The environment TA serves the purpose of ‘closing’ the
overall system as required for the model checker. In the environment TA, we use
the variable start to construct a guard start==0 that blocks the environment
from restarting the system.

The main reason for using a list of small TAs is to capture the compositional
structure of tock-CSP, which is not available in TA [9]. For instance, it can be
argued that a linear process constructed with a series of prefix operators can
be translated into a linear TA2. However, the compositional structure of tock-
CSP is not suitable for this straightforward translation. For instance, consider
a case where the linear process is composed with an interrupting process3: the
behaviour is no longer linear because the process can be interrupted at any sta-
ble state, as illustrated in Example 4. This problem can be seen in translating
a process P = (e1->SKIP)[]((e2->SKIP)|||(e3->SKIP)), which con-
tains both external choice and concurrency. However, a network of small TAs
provides enough flexibility for composing TA in various ways to capture the
behaviour of the original tock-CSP process.

In constructing the networked TAs, we use additional coordinating actions
to link the list of small TAs to establish the flow of the input tock-CSP
model. For example, the channel startIDADS links the environment TA (Fig. 2)
with TA00 (Fig. 1), on performing the action startIDADS! and its co-action
startIDADS?. A precise definition of the coordinating action is as follows.

Definition 1. A Coordinating Action is an Uppaal action that does not
correspond to a tock-CSP event. There are six types of coordinating actions:

2 A TA with linear transitions only, no branches.
3 Also, tock-CSP inherits the operator interrupt (/\) from CSP, which allows a process

to shut down another and takes over the control. For instance, initially the process
(P/\Q) behaves as P but at any time before its termination if the process Q performs
a visible action, the process P hands over the control to the process Q. Therefore,
the process P terminates and the whole process (P/\Q) behaves as Q.
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Flow actions coordinate a link between two TAs for capturing the flow of their
behaviour; Terminating actions record termination information, in addition
to coordinating a link between two TAs; Synchronisation actions coordinate
a link between a TA that participates in a synchronisation action and a TA
for controlling the synchronisation; External choice actions coordinate an
external choice, such that choosing one of the TA that is part of the external
choice thus blocks the other choices TAs; Interrupting actions initiate an
interrupting transition that enables a TA to interrupt another; and Exception
actions coordinate a link between a TA that raises an action for exception and
a control TA that handles the action.

The names of each coordinating action are unique to ensure the correct flow of
the translated TAs4. In our tool, the names of the flow actions are generated
in the form startIDx, where x is either a natural number or the name of the
input tock-CSP process. For instance in Fig. 1, startID00_1 is the flow action
that connects TA00 and TA01.

Likewise, the names of the remaining coordinating actions follow similar pat-
tern: keywordIDx, where keyword is a designated word for each of the coor-
dinating actions; finish for a terminating action, ext for an external choice
action, intrp for an interrupting action, and excp for an exception action.
Similarly, we provide a special name for a synchronising action in the form
eventName___sync: an event name appended with the keyword ___sync
to differentiate a synchronising action from other actions. This is particularly
important for analysis and are in the reserved keywords for the supporting tool.

For each translated tock-CSP specification, we provide an environment TA,
like the TA in Fig. 2, which has corresponding co-actions for all the translated
events of the input tock-CSP model, plus three coordinating actions that link
the environment TA with the networked TAs. The first flow action links the
environment with the first TA in the list of the translated TA (as illustrated in
Fig. 2, the action startIDADS links the environment TA with TA00 in Fig. 1).
This first flow action activates the behaviour of the translated TA. Second, a
terminating action links back the terminating TA to the environment TA to
capture a successful termination of a process (as shown in Fig. 2 with the action
FinishID0). Third, a flow action tock records the progress of time. A precise
definition of the structure of the environment TA is as follows.

Definition 2. An environment TA models operating environments for
Uppaal. The environment TA has one state and transitions for each co-action
of all the events in the input tock-CSP process, in addition to three transitions:
the first starting flow action, the final terminating co-action and the action tock
for recording the progress of time.

In translating multi-synchronisation, we adopt a centralised approach devel-
oped in [28] and implemented using Java in [12], which uses a separate cen-
4 We use terminating actions where a TA needs to communicate a successful termina-

tion for another TA to proceed. For instance, in translating sequential composition
P1;P2, the process P2 begins only after successful termination of the process P1.
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tralised controller for handling synchronisation. Here, we use a separate TA
with an Uppaal broadcast channel to communicate synchronising information.
In Fig. 1, we illustrate the translation of synchronisation in translating the event
close, which synchronises TA03 and TA05 using the broadcasting channel
close___sync.

Each synchronising TA has a guard to ensure synchronisation with the cor-
rect number of TAs. The guard requires that the sum of special synchronisation
variables from all the TAs that synchronise on the synchronisation action equals
the number of such actions. Each TA updates its synchronisation variable from
0 to 1 to show its readiness for the synchronisation and waits for the synchroni-
sation action. For instance, in Fig. 1, the synchronising TA (TA04) has a guard
expression (g_close00_3 + g_close01_2)==2, which becomes true only
when TA03 and TA05 update their synchronisation variables: g_close00_3
and g_close01_2, from 0 to 1. Then, TA04 notifies the occurrence of the

action close and broadcasts the synchronising action close___sync!. After
the synchronisation, each TA resets its variable to zero and performs its remain-
ing behaviour. A precise definition of the synchronisation TA is as follows.

Definition 3. A synchronisation TA coordinates synchronisation actions.
The synchronisation TA has an initial state, and a committed state for each
synchronisation action, such that each committed state is connected to the ini-
tial state with two transitions. The first transition from the initial state has a
guard and an action. The guard is enabled only when all the processes are ready
for synchronisation, which also enables the synchronising TA to perform the
associated action that notifies the environment of its occurrence. In the second
transition, the TA broadcasts the synchronisation action to all the processes that
synchronise, which enables them to synchronise and proceed.

In translating external choice, we provide additional transitions to capture
the behaviour of the chosen process in blocking the behaviour of the other pro-
cesses. Initially, in the translated TA, all the initials5 of the translated processes
are available such that choosing one process blocks all the other choices.

Example 3. A translation of external choice is illustrated in Fig. 3 for the pro-
cess Pe = (left->STOP)[](right->STOP), which composes two processes
left->STOP and right->STOP using the external choice operator ([]).

In Fig. 3, TA00 captures the operator external choice. TA01 and TA03 cap-
ture the LHS process (left->STOP). TA02 and TA04 capture the RHS pro-
cess (right->STOP). TA00 has three transitions labelled with the actions:
startIDpExtChoice?, startID00_1! and startId01_2!. TA00 begins
with the first flow action startIDpExtChoice? and then starts both TA01
and TA02, using the actions startID00_1! and startId01_2!, available for
choice.

Initially, TA01 synchronises on startID00_1 and moves to location s2
that has three transitions labelled: left_exch?, right_exch! and tock?.
5 The term initials describe the first visible events of a process.
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(a) TA00 (b) TA01

TA02 TA03

TA04

Fig. 3. A list of TAs for the translated behaviour of the process Pe

With the co-action tock?, the TA records the progress of time and remains on
the same location s2. With the co-action right_exch?, the TA performs an
external choice co-action for blocking the LHS process when the environment
chooses the RHS process, and TA01 returns to initial location s1.

Alternatively, TA01 performs the action left_exch! when the environment
chooses the LHS process, and TA01 proceeds to location s3 to perform the
chosen action left! that leads to location s5 and performs the flow action
startID00_2!, which activates TA03 for the subsequent process STOP. For
the RHS process, TA02 captures the similar translation of the event right.
The omitted environment TA is similar to that in Fig. 2.

In tock-CSP, a process can be interrupted by another process when composed
using an operator interrupt (/\). Thus, we provide additional transitions to
capture the interrupting behaviour.

Example 4. An example of translating interrupt is in Fig. 4, for the translation
of the process Pi = (open->STOP)/(fire->close->STOP).

In Pi, the RHS process fire->close->STOP can interrupt the LHS process
open->STOP at any stable state. So, in the translated behaviour of the LHS
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(a) TA00 (b) TA01

(c) TA02 (d) TA03

(e) TA04 (f) TA05

Fig. 4. A list of TAs for the translated behaviour of the process Pi.

process, we provide interrupting actions (like fire_intrpt) that enable the
translated behaviour of the RHS process to interrupt that of the LHS process.
The corresponding co-action of the interrupting actions are provided only for
the initials of the RHS process (fire) because it can only interrupt with its
initials.

In Fig. 4, TA00 is a translation of the operator interrupt. TA01 and TA02
capture the translation of the LHS process open->STOP, while TA03, TA04
and TA05 capture the translation of the RHS process fire->close->STOP.
The environment TA is again similar to the TA in Fig. 2.

First, TA00 performs the actions startID00_1! and startID01_2! to
activate TA01 and TA03. TA01 synchronises on startID00_1 and moves
to location s2 where there are three possible transitions for the actions:
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tock?, open! and fire_intrpt?. With the co-action fire_intrpt?, the
TA is interrupted by the RHS, and returns to its initial location s1. With
tock?, the TA records the progress of time and remains on the same loca-
tion s2. With open, the TA proceeds to location s5 to perform the flow action
startID00_2! to activate TA02 for the subsequent process STOP. TA02 syn-
chronises on startID00_2? and moves to location s2, where it either performs
tock? to record the progress of time or is interrupted through the co-action
fire_intrpt?, and returns to its initial location s1.

For the RHS, TA03 captures the translation of the event fire. TA03 begins
with synchronising on startID01_2?, which progresses by interrupting the
LHS process using the interruptive flow action fire_intrpt!, then fire
!, and performs startID01_3! for activating TA04 which synchronises on
the flow action and moves to location s2, where it either performs the action
tock? for the progress of time and remains in the same location or performs
the action close! and proceeds to location s5, then performs the flow action
startID01_4! for starting TA05 for the translation of STOP (deadlock).

We translate the event tock into a corresponding action tock using a broad-
cast channel for the environment TA to broadcast the progress of time for all the
TAs to synchronise. For instance, in Fig. 1, the environment TA has a transition
labelled tock guarded with the clock expression ck ≥ 1, so that tock happens
every 1 time unit, and resets the clock ck = 0 to zero on following the transition.

Also, we translate non-deterministic choice into silent transitions, such that
the translated TA follows one of the silent transitions non-deterministically. This
completes an overview of the strategy we follow in developing the translation
technique. A precise description of all the translation rules in Haskell is in [1,2].

4 Evaluation

A sound translation ensures that the properties of the source model are preserved
in the translated model. This is determined by comparing their behaviours [4,
20,24,26]. We compare the behaviour of the input tock-CSP and the output TA
in two phases: experimental evaluation and mathematical proof.

4.1 Experimental Evaluation

We use trace semantics to evaluate the equivalence of the traces. In carrying out
the experiment, we have developed an evaluation tool, which uses our translation
tool and both FDR and Uppaal as black boxes for generating finite traces, as
shown in Fig. 5, which shows the structure of the evaluation tool, available at
[1].

In generating traces, like most model checkers, FDR produces only one trace
(counterexample) at a time. So, based on the testing technique in [27], we have
developed a trace-generation technique that repeatedly invokes FDR until we
get all the required trace sets of the input process. Similarly, based on another
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Fig. 5. Structure of the trace analysis system

testing technique with temporal logic [22], we have developed a trace-generation
technique that uses Uppaal to generate traces of the translated TA models.

These two trace-generation techniques form components of our evaluation
tool (Fig. 5), which has two stages. In the first stage, we generate traces of
the input tock-CSP and its corresponding translated TA, using both FDR and
Uppaal. Then, we compare the generated traces; if they do not match, it may
be because FDR distinguishes different permutations of events (traces). In con-
trast, Uppaal uses a logical formula to generate traces [5,22] which do not
distinguishes traces with different permutations. So, we move to a second stage,
where we use FDR to complement Uppaal in generating traces.

Essentially, Uppaal checks if a system satisfies its requirement specifica-
tions (logical formula), irrespective of the behaviour of the system. For example,
Uppaal does not distinguish between the two traces 〈e1, e2, e3〉 and 〈e1, e3〉,
if both traces satisfy the requirement specification formula, such as a system
performs the event e3, either through e2 or before e2. However, FDR is capable
of generating both traces. Thus, in the second stage, we use Uppaal to check if
all the traces of FDR are acceptable traces of the translated TA.

For evaluation, we have used a list of systematically formulated tock-CSP
processes that pair the constructs of tock-CSP. The list contains 111 processes.
Archives of the processes and their traces are available in a repository [1].

In addition, we test the translation technique with larger examples from the
literature, such as an automated barrier to a car park [33], a thermostat machine
for monitoring ambient temperature [33], an Automated Teller Machine (ATM)
[32], a bookshop payment system [33], and a railway crossing system [31]. An
overview of these case studies is in Table 1, while the details, including the traces,
are also available in the repository of this work [1].

Considering that the experimental approach with trace analysis is an approx-
imation for establishing correctness with a finite set of traces, covering infinite
sets of traces in proving correctness has to use mathematical proof.
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Table 1. An overview of the case studies

No. System States Transitions Events

1 Thermostat machine 7 16 5

2 Bookshop payment system 7 32 9

3 Simple ATM 15 33 15

4 AutoBarrier system 35 84 10

5 Rail crossing system 80 361 12

4.2 Mathematical Proof

Here, we illustrate part of the proof using one of the base cases of the structural
induction. A more detailed account of our proof can be found in [1,2]. A TA is
defined as the tuple6 (Sect. 2). Consider TA1 as the translation of the process
STOP (TA05 from Fig. 4), then mathematically TA1 is expressed as follows.

TA1 = ({s1, s2}, s1, {ck}, {startID01 4, tock},

{(s1, startID01 4, ∅, ∅, s2), (s2, tock, ck ≤ 1, ck, s2)}, {}) (1)

In the language of TA, a path [3,7] is a sequence of consecutive transitions that
begins from the initial state. A trace [3,7] (or word): is a sequence of actions
in each path. In TA1, there is only one infinite path, the first transition from
location s1 to location s2 and the second transition from location s2 back to
location s2, repeated infinitely. The traces on the path are as follows.

traces‘TA(TA1) = {〈〉} ∪ {〈startID01 4〉�〈tock〉n | n ∈ N} (2)

The function trace‘TA(TA) computes the traces of the translated TAs generated
by our translation technique. It takes a list of networked TAs and returns a set
of traces. For instance, in Eq. 2, the first empty trace is for the initial state of
the TA, before the first transition; the action startID01 4 happens on the first
transition; the action tock happens on the second transition, which is repeated
infinitely for the infinite traces 〈tock〉n.

Another function traceTA(TA) is similar to traces‘TA(TA) but removes all
the coordinating actions (Definition 1) from the traces.

tracesTA(TA) = {t \ CoordinatingActions | t ∈ traces‘TA(TA)} (3)

Therefore, without coordinating actions, the traces of TA1 become:

tracesTA(TA1) = {〈tock〉n | n ∈ N} (4)

6 TA = (L, l0, C, A, E, I) where L is a set of locations, l0 is the initial location, C is a
set of clocks, A is a set of actions, E is a set of edges and I is an invariant.
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Our goal is to establish that the traces of tock-CSP models are the same as those
of the translated TA models. Here, transTA is the translation function we have
formalised for translating tock-CSP models into TA models. Thus, for each valid
tock-CSP process P, within the scope of this work, we need to establish the
following theorem.

Theorem 1.

tracestock−CSP (P ) = tracesTA(transTA(P )) (5)

Proof. For each translation rule, we have to prove that the translated TAs cap-
ture the behaviour of the corresponding input tock-CSP model P .

Starting with the basic process STOP, Eq. 5 becomes

tracestock−CSP (STOP ) = tracesTA(transTA(STOP )) (6)

Using structural induction in Haskell, we show that:

1 (traces_tockCSP n STOP = traces_TA n (transTA STOP))
2 => (traces_tockCSP (n+1) STOP = traces_TA (n+1) (transTA

STOP))

Each step is evaluated automatically. The detailed steps of the proof are available
in the extended reports [1,2].

5 Related Work and Conclusions

Timed-CSP [33] is another popular extension of CSP for capturing temporal
specifications. Unlike tock-CSP, Timed-CSP records the progress of time with
a series of positive real numbers. However, the approach of Timed-CSP can-
not specify deadline nor urgency. Also, traces of Timed-CSP are infinite, which
is problematic for automatic analysis and verification [31]. Thus, there is no
proper tool support for verifying Timed-CSP models. Therefore, researchers
have explored various approaches, such as model transformations in translating
Timed-CSP into tock-CSP for using FDR in automatic verification [29]; transla-
tion of Timed-CSP into Uppaal, initially reported in [9] and then subsequently
improved in [14]; and translation of Timed-CSP into Constraint Logic Program-
ming (CLP) for reasoning with the constraint solver CLP(R) [10]. Additionally,
using PAT for verifying Stateful Timed CSP (a variation of Timed-CSP) [34]
and using FDR for verfiying a variation of Timed-CSP [30].

However, there is less focus on applying the same transformation techniques
for tock-CSP. Although, an attempt to transform TA into tock-CSP was proposed
in [21], in this work, we consider the opposite direction.

Apart from CSP and TA, model transformations have been used for improv-
ing various formal modelling notations. For instance, Circus has been translated
into CSP||B for using the tool ProB for automatic verification [36]. Additionally,
the language B has been translated into TLA+ for automatic validation with
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TLC [16]. Also, translating TLA+ to B has been investigated for automated val-
idation of TLA+ with ProB [15], such that both B and TLA+ benefit from the
resources of each other, and their supporting tools ProB and TLC, respectively.

In conclusion, we have presented a technique for translating tock-CSP into
TA for Uppaal to facilitate using temporal logic and facilities of Uppaal in
verifying tock-CSP models. This work contributes an alternative way of using
TCTL to specify liveness requirements and other related requirements that are
difficult to verify in tock-CSP with refinement. Also, our work sheds light into
the complex relationship between tock-CSP and TA (temporal logic model).

Currently, we have used trace analysis to justify the correctness of the trans-
lation work. Also, we translate the event tock into an action that is controlled
by a timed clock in Uppaal. A next step is to relate the notion of tock to the
notion of time in TA and get rid of tock as an action. This additional exten-
sion will help us to explore additional interesting facilities of Uppaal to verify
temporal specifications. Also, in future work, a better understanding of relating
tock-CSP to TA will help us to explore using a single TA instead of network TAs
for more efficient verification.

Acknowledgements. Abba gratefully acknowledges the financial support of
Petroleum Technology Development Fund (PTDF). Cavalcanti is funded by the
Royal Academy of Engineering grant CiET1718/45 and the UK EPSRC grants
EP/M025756/1 and EP/R025479/1.

References

1. A repository of this work. https://github.com/ahagmj/TemporalReasoning.git
2. Abba, A.: Temporal reasoning about robotics applications: refinement and tempo-

ral logic. Ph.D. thesis, The University of York (2021)
3. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput, Sci. 126, 183–235

(1994)
4. Back, R.: On correct refinement of programs. J. Comput. Syst. Sci. 23(1), 49–68

(1981)
5. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Petterson, P., Wang, Y.,

Hendriks, M.: UPPAAL 4.0. Third Int. Conf. Quant. Eval. Syst. QEST 2006 pp.
125–126 (2006). https://doi.org/10.1109/QEST.2006.59

6. Bouyer, P.: Model-checking timed temporal logics. Electr. Notes Theor. Comput.
Sci. 231, 323–341 (2009)

7. Bouyer, P.: An introduction to timed automata. In: Seatzu, C., Silva M., van
Schuppen J. (eds) Control of Discrete-Event Systems. Lecture Notes in Control
and Information Sciences, vol. 433, pp. 79–94. Springer, London (2011). https://
doi.org/10.1007/978-1-4471-4276-8 9

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

9. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed automata patterns. IEEE
Trans. Softw. Eng. 34(6), 844–859 (2008)

https://github.com/ahagmj/TemporalReasoning.git
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-1-4471-4276-8_9
https://doi.org/10.1007/978-1-4471-4276-8_9


Temporal Reasoning Through Automatic Translation 85

10. Dong, J.S., Hao, P., Sun, J., Zhang, X.: A Reasoning method for timed CSP based
on constraint solving. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
342–359. Springer, Heidelberg (2006). https://doi.org/10.1007/11901433 19

11. Evans, N., Schneider, S.: Analysing time dependent security properties in CSP
using PVS. In: European Symposium on Research in Computer Security. pp. 222–
237. Springer (2000)

12. de Freitas, A.F.: From Circus to Java: Implementation and verification of a trans-
lation strategy. Master’s thesis, University of York (2005)

13. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: a par-
allel refinement checker for CSP. Int. J. Softw. Tools Technol, Transf. 18, 149–167
(2016)
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Abstract. Software, whether desktop, mobile or web, is becoming more
and more connected. Software development is also becoming more con-
nected with ecosystems comprised of networks of millions of packages.
Engineering software today is writing code that weaves together libraries,
services and applications. Such fabrics are under constant changes due
to both internal requests, e.g. new features, or external demands, e.g.
dependency updates. Avoiding integration bugs in this scenario can be
a big challenge regardless of common strategies such as testing and ver-
sioning. We propose an approach, called Module Integration using Graph
Grammars (MIGRATE), to describe/analyze integration points among
software modules. We define module nets, a formalism to capture the
essential information regarding module integration, whose semantics is
defined in terms of graph transformations. This allows us to use the rich
theory of graph transformation, specially critical pair analysis, to analyze
the coupling among different modules and create warnings in case of pos-
sible integration problems. The approach is organized in three phases: (i)
transformation of code into module nets (model extraction), (ii) transla-
tion of module nets into graph grammars (semantics of integration) and
(iii) verification of module integration. We have built a prototype that
implements the MIGRATE approach.

Keywords: Graph grammar · Software integration · Verification tool

1 Introduction

Software is typically built on top of other software. Integration of components,
that can be classes, libraries or services, leads to dependencies that may com-
promise system behavior in case of careless updates.

There is a multitude of software ecosystems with all kinds of package man-
agers. For example, Node Package Manager (NPM) for JavaScript/NodeJS has
over one million packages, and Maven for Java has more than six million indexed
artifacts. Studies about such ecosystems show that there are fundamental pack-
ages, which form a base to an entire ecosystem, and breaking changes to such
fundamental packages can have catastrophic effects [6]. A common example in
the NPM ecosystem is the left-pad incident in 2016, a trivial package that was
removed from the ecosystem causing thousands of others to break [6].
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A study with Java libraries released prior to 2011 has shown that roughly
35% of minor releases and 23% of patch releases contained breaking changes [21].
This is in contrast to semantic versioning principles, which restrict patch and
minor updates to non-breaking changes. A more recent study in Java ecosystem
has shown that roughly a quarter of changes were considered breaking, and the
larger a library gets, the more breaking changes it introduces [25].

Integration issues are not restricted to libraries, services also suffer a great
deal of compatibility problems. Aué et al. have studied millions of faults logged
by a large scale web service in the payments business and came up with eleven
categories for those faults [1]. While some errors can be attributed to end users,
such as providing a maxed out credit card, others are due to the program-
ming that integrates clients, service and third-parties. Even microservices, a
relatively new architectural pattern known for achieving loosely coupled mod-
ules, are affected by compatibility problems, and API versioning and contracts
are mentioned in 13 of 51 grey literature papers [23].

A common strategy adopted by users to avoid breaking compatibility is to
keep dependencies to a minimum and select dependencies they trust [2]. For ser-
vices, common advice is to relax the assumptions on data received, ignoring any
extra information sent, which is a pattern known as the Tolerant Reader [10,17].
Versioning schemes signal to users the degree of changes and enable users to spec-
ify rules for automatic updates of their dependencies. Perhaps the most popular
scheme in practice is Semantic Versioning (SemVer) [20]. Versioning is also used
in services, where it can be found in addresses, HTTP headers or body [17].

Tests are yet another approach to ensure compatibility for both users and
developers. There are all kinds of tests in the literature, but specifically integra-
tion tests address the problem of compatibility. In his blog, Fowler says that inte-
gration tests are meant to show whether software modules work as expected when
brought together [11] and splits integration tests into two categories: “narrow
integration tests” and “broad integration tests” [11]. While the former requires
some kind of mock to replace the actual module integrated and thus isolate tested
code to just a single module, the latter tests all modules working together.

We propose a new approach to describe/analyze integration points among
software modules. We define module nets, a formalism to capture the essential
information regarding module integration, whose semantics is defined in terms
of graph transformations. This allows us to use the rich theory of graph transfor-
mation, specially critical pair analysis, to analyze the coupling among different
modules and create warnings in case of possible integration problems. The app-
roach is organized in three phases: (i) transformation of code into module nets
(model extraction), (ii) translation of module nets into graph grammars (seman-
tics of integration) and (iii) verification of module integration.

This article is organized as follows. Section 2 reviews the main concepts
of graph grammars. Section 3 presents an overview of the proposed approach.
Section 4 formalizes the concept of module nets, which is used in Sect. 5, where
the MIGRATE approach is discussed. Finally, we present related work in Sect. 6
and final considerations in Sect. 7.
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2 Graph Grammars

Graph-based formal description techniques are a friendly means of explaining
complex situations in a compact and understandable way. Graph Grammars (or
Graph Transformations) [8] are a generalization of Chomsky grammars from
strings to graphs suitable for the specification of different kinds of systems. The
basic notions of this formalism are: states are represented by graphs and possible
state changes are modeled by rules, where the left- and right-hand sides are
graphs. Graph rules are used to capture the dynamical aspects of the systems.
That is, from the initial state of the system (the initial graph), the application
of rules successively changes the system state.

In this section we review informally the main concepts of Graph Grammars.
We follow the algebraic approach to graph grammars, for formal definitions,
see e.g. [8]. Examples of graphs, rules and their analysis are presented in the
following sections.

Graphs are structures that consist of a set of nodes and a set of edges. Each
edge connects two nodes of the graph, one representing a source and another
representing a target. A total homomorphism between graphs is a mapping of
nodes and edges that is compatible with sources and targets of edges. Intuitively,
a total homomorphism from a graph G1 to a graph G2 means that all items
(nodes and edges) of G1 can be found in G2 (but distinct nodes/edges of G1
are not necessarily distinct in G2 ).

To be useful in practical applications, graphs may be extended by the notion
of attributes [8], which are basically data values associated to vertices and/or
edges of graphs. In the algebraic approach (followed here), data values are ele-
ments of algebras. The resulting notion of an attributed graph has thus two
components: a structural (or graphical) part (a graph) and a data part (an
algebra).

The use of algebras as data values allows putting variables and terms as
attributes, which, in turn, makes constructing very general graph rules repre-
senting behavior possible.

When modeling a state as a graph, it is very convenient to distinguish dif-
ferent types of nodes and edges in a graph. This can be achieved by the notion
of typed graph [8]. Let TG be a graph that represents all possible (graphical)
types that are needed to describe a system. A homomorphism h from any graph
G to TG associates a (graphical) type to each item of G. The triple 〈G, h, TG〉
is called typed graph, where TG is the type graph (nodes of TG denote all pos-
sible types of nodes of a system and edges of TG denote possible relationships
between these types).

A Graph Rule describes how a system may change. It consists of: a left-
hand side (LHS), which describes items that must be present for this rule to be
applied (required subgraph); a right-hand side (RHS), describing items that will
be present after the application of the rule; and a mapping from LHS to RHS,
which describes items that will be preserved by the application of the rule. This
mapping must be compatible with the structure of the graphs (i.e., a morphism
between typed graphs) and may be partial. Items that are in the LHS and are
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not mapped to the RHS are deleted, whereas items that are in the RHS and are
not in the image of the mapping from the LHS are created. We also assume that
rules do not merge items, that is, they are injective.

Furthermore, it is usually very convenient to be able to define also a for-
bidden context that prevents rule application. This is done by equipping rules
with a negative application condition (NAC). A NAC is actually a col-
lection of conditions representing situations that prevent the rule from being
applied (NACs are described by mappings from LHS to the graph representing
the forbidden context, these mapping must be homomorphisms).

A Graph Grammar, short GG, consists of a type graph, specifying the
(graphical) types of the system, a (typed) graph representing the initial state
of the system, and a set of rules over this type graph that define the system
behavior. The application of a rule r to a graph G is possible if an image of the
LHS of r is found in G (that is, there is a total typed-graph morphism from the
LHS of r to G). The result of a rule application deletes from G all items that
are not mapped in r and adds the ones created by r.

There are different techniques to perform analysis of graph grammars. In
this paper we use critical pairs in the verification process, and the property of
confluence in the translation grammar (to prove that translating a module net
to a verification grammar is a deterministic process).

Conflicts and dependencies among rules can be detected by the use of critical
pairs, that are pairs of rules such that the application of one may have an impact
on the application of the other. For example, if a rule r1 deletes an item of type
X and a rule r2 needs this item to be applied, it may be that applying r1
hinders the application of r2. Notice that this is a potential conflict: if there
are in the state graph many items of type X, these two rules may be applied
independently. There are essentially three kinds of conflicts that may arise in
graph transformation systems containing rules with NACs [16]:

– Preserve-delete (pd): one of the rules preserves an element that is deleted
by the other;

– Delete-delete (dd): both rules try to delete the same element;
– Produce-forbid (pf): one of the rules produces an element that triggers

some NAC of the other rule.

The union of delete-delete and preserve-delete conflicts is referred as use-
delete. A conflict of type delete-delete represents a mutual exclusion situation.

Analogously, dependency critical pairs can be defined, representing the pos-
sible dependencies between rules.

Conflict critical pairs denote points of choice in a system. As in term rewriting
systems, proofs of termination of graph grammars can be done based on critical
pairs (however, in the graph grammar setting these proofs are a bit more involved
and require additional conditions, since graphs are more complex than strings
[8]). Termination criteria for graph transformation systems are defined in [8]
using the concept of production (or rule) layers. Intuitively, we classify the
rules of a grammar in layers, such that elements of some type are only created



Module Integration Using Graph Grammars (MIGRATE) 91

by rules of the same layer, and may be deleted only by rules of subsequent
layers. This ensures that if an element of a type is created by a transformation,
some other transformation will delete it using rules of the same or subsequent
layers only, when creation is no longer possible. To guarantee termination we
additionally have to prove that each layer terminates before the grammar moves
to the next layer of rules.

A graph transformation system is confluent if it is locally confluent and
terminates. Confluence is relevant when we expect a system to exhibit a deter-
ministc behavior, i.e. to produce unique final graph (up to isomorphism) for a
given initial graph. Here we use graph grammars in two different ways: (i) veri-
fication grammar: to express the semantics of a module net, and (ii) translation
grammar: to associate a semantics to a module net. A verification grammar is a
grammar that describes the integration behavior of the underlying module net,
whereas a translation grammar basically defines a model transformation, gen-
erating the verification grammar that corresponds to a module net. Verification
grammars may be non-deterministic (since they express behavior of possibly
non-deterministic systems), but the translation grammar must be confluent to
associate a unique meaning (verification grammar) to each module net.

3 Illustration of the Proposed Approach

We illustrate our approach with Fig. 1. Our goal with this approach is to pro-
vide developers with useful information (warnings) concerning the integration
of modules that compose their software. To produce such warnings, we start
with software artifacts, such as source code like we have in Fig. 1(a), from which
we extract a single module net (see next section for its definition), such as the
one in Fig. 1(b). We use a confluent graph grammar, which we call the transla-
tion grammar, to translate this module net into another graph grammar, which
we call verification grammar. The translation procedure is comprised of succes-
sive applications of rules to a host graph, generating new graphs. Figure 1(c)
depicts this graph at the beginning of a translation, midway through, and after
translation is completed. The verification grammar obtained after translation is
depicted in Fig. 1(d), where we have omitted a few rules to save space. When
verifying the verification grammar, we first generate critical pairs of rules, such
as those in Fig. 1(e), and then analyse these pairs to produce warnings, Fig. 1(f),
which are reported to users. We will explain each step in more detail in next
sections.

Many integration bugs are related to how information is passed from a module
to another. For example, if a service asks for more data than it uses, then we
can suggest that excess attributes should be deprecated. On the other hand,
if a client fails to provide information required by a service, then we can tell
developers we have likely found a bug. In order to uncover such bugs, we have
to analyse how information is used by each module and what are the actual
dependencies that emerge from data.

Our verification procedure consists of interpreting the critical pairs of rules
generated for a verification grammar. This verification grammar does not mirror
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ReadSearch() { FindArticle(doi) { FindDocument(id) {

DOI := read(); id := find(doi); location := "res/" + id;

FindArticle(DOI); FindDocument(id); retrieve(location);

}}}

(a) Software artifacts are taken as input

(b) Extraction: Module net is extracted from software artifacts

(c) Translation: Module net is translated into verification grammar using AGG

(d) Verification grammar resulting from translation

(e) Verification: Critical pairs of verification grammar generated using Verigraph
Website.Search.DOI can become outdated (generated and FindArticle)

The return of operation FindArticle is not used

The return of operation FindDocument is not used

(f) Warnings are generated based on critical pairs

Fig. 1. Overview of the proposed approach
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the exact behavior of the software that originated it, but it rather reflects how
information flows in this software (that is, the verification grammar describes a
kind of software integration semantics).

4 Module Nets

MIGRATE aims to automatically produce warnings by interpreting the critical
pairs generated for a graph grammar.

To enable this automation, MIGRATE requires that the graph grammar
representing the integration aspects of the system to be created in a very spe-
cific way. Moreover, developers may want to make changes to extracted models
either to experiment with changes of the system or to improve accuracy of model
extraction. The notion of module nets serves as a more abstract level than graph
grammars, so that developers can work on module nets and MIGRATE will auto-
matically generate the graph grammar that will be analyzed. In the following,
we present the definition of module nets.

A directed graph, is a tuple G = (N,E, s, t) where N and E are sets of
nodes and edges, respectively, and s, t : E → N are total functions assigning a
source/target node to each edge. A subgraph of a graph G is a graph which
contains subsets of the sets of nodes and edges of G, while preserving source and
target functions. Quadripartite graphs are graphs in which the set of nodes is
partitioned in two, and the set of edges in four. In this work, we will partition
the set of nodes N in two sets, denoted Nl and Nr, representing the nodes in
the left-hand side and right-hand side of a graph. This induces a partition of
the set of edges E in sets Ell (representing edges between nodes of Nl), Elr

(representing edges from Nl to Nr), Erl (representing edges from Nr to Nl) and
Err (representing edges between nodes of Nr). Considering these different kinds
of edge partitions, we can build four different subgraphs of a graph.

Definition 1 (Quadripartite Directed Graph). A quadripartite graph is
a graph Q = (N,E, s, t) such that

– N = Nl ∪ Nr and Nl ∩ Nr = ∅
– E =

⋃
i∈{ll,lr,rl,rr} Ei and (Ei ∩Ej)i,j∈{ll,lr,rl,rr},i �=j = ∅ are pairwise disjoint

– s =
⋃

i∈{ll,lr,rl,rr} si with (sij : Eij → Ni)i,j∈{l,r}
– t =

⋃
i∈{ll,lr,rl,rr} ti with (tij : Eij → Nj)i,j∈{l,r}

The graphs (Qij = (Ni ∪ Nj , Eij , sij , tij))i,j∈{l,r} are subgraphs of Q.

A resource is a unit of information, any kind of data a system may share
between its modules, either structured data or not. Resources can be database
entities, API models, HTTP tickets, instances of classes, files, any information
at all. To further specify what kind of data a resource contains, we provide
attributes, which are pieces of information that comprise a resource.

Definition 2 (Resource). A resource is a pair composed by a resource name
and a (finite) set of attributes (i.e., a set of names). Given a resource r =
(name, attr) we denote its name by namer and its attribute set by attrr.
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Modules are the units of a system. Modules represent any kind of subsys-
tem: a service, a library, a class, anything. Modules contain resources, which
are the types of information a module of this kind may share with its peers.
Modules contain functions req (for required) and ger (for generated) defined
over its resources and their attributes. Required resources/attributes are nec-
essary to perform some kind of unspecified but essential operation. These can
be for example side effects such as data that is written to the screen, or data
that is shared with a third-party module to which we have no access. Gener-
ated resources/attributes are generated by some unspecified operation within
a module, such as data that is input by a person or data received from a
third-party module to which we do not have access. Required and generated
resources/attributes can also be used to omit modules obtaining smaller module
networks, if we so wish.

Definition 3 (Module). A module is a tuple M = (name,RM, reqM, gerM)
where

– name is its name
– RM is a finite set of resources with unique names,
– reqM, gerM : RM � AM → {T, F} are total functions, assigning

to each attribute/resource a boolean value indicating whether they are
required/generated in this module, where AM =

⊎
r∈RM attrr.

We denote by ResourcesM the set of resource names of a module M.

Operations are the bindings between modules. Modules are containers of
information, generating and requiring information, and operations define how
information flows from a module to another. Even though it is not stated directly
in the definition, operations range over two modules, a source or caller and a
target or callee, just like an edge of a graph. Operations are quadripartite graphs
augmented with an attribute relation. The nodes of an operation graph are
resources of its caller and callee. The operation graph shows how the information
flows from a resource of a module to a resource of another module. We will often
refer to the subset of the edges from resources of caller as the request or call,
and to the other subset with resource of callee as source, as the response or
return.

Each edge of an operation graph (from a resource to another) is augmented
with a relation from the attributes of the first resource to the attributes of the
second. Edges of operation graphs represent the transfer of a value from attribute
to attribute.

Definition 4 (Operation). Given a set of resources R, an operation
op defines how the operation acts on resources/attributes, where op =
(R, Eop, sop, top, relop) is a quadripartite graph and relop : Eop → REL is a total
function that maps each edge e ∈ Eop to a relation REL ⊆ attrsop(e)×attrtop(e).
We write R = Rρ ∪Rε the node partitioning of op and Eop = Eop

ρε ∪Eop
ερ its edge

partitioning, note that Eop
ρρ = Eop

εε = ∅.
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A module network, or short module net, is a graph whose nodes are
modules and edges are operations. Additionally, modules of a module network
do not share resources, i.e., resources are unique, and the set of all resources
in a module network is the union of the resources in its modules. Essentially,
operations of a module network carry information between modules.

To be well defined, a module network has to satisfy two properties. First,
no two modules of a module network share resources, that is, the only way for
modules to share data is through an operation. Second, operations have a caller
(sM(op)) and a callee module (tM(op)) and that the resources of an opera-
tion (Rop) are subsets of the resources of caller (RsM(op)) and callee modules
(RtM(op)) in the module net.

Definition 5 (Module network). A module network is a tuple MN =
(M, Op, sM, tM) where

– M is a finite set of modules;
– Op is a finite set of operations over the resources R =

⊎
m∈M Rm;

– resources are unique:

∀m1,m2 ∈ M.Resourcesm1 ∩ Resourcesm2 = ∅ (1)

– MN is a graph such that each operation edge is compatible with the modules
of the module network:

∀op ∈ Op.Rop = Rop
ρ ∪ Rop

ε → Rop
ρ ⊆ RsM(op) and Rop

ε ⊆ RtM(op) (2)

As an example, we will consider the module net in Fig. 1(b). In this figure
we have following modules:

– W = (Website, {S}, {S �→ F,DOI �→ F}, {S �→ T,DOI �→ T}), where
S = (Search, {DOI})

– R = (ResearchNet, {A}, {A �→ F, ID �→ F}, {A �→ T, ID �→ F}), where
A = (Article, {ID})

– I = (InventoryService, {D}, {D �→ F,Location �→ T}, {D �→ T,
Location �→ F}), where D = (Document, {Location})

In addition to modules, resources and attributes above, Fig. 1(b) also shows
two operations:

– FA = ({S,A}, {call}, {call �→ S}, {call �→ A}, {call �→ {(DOI, ID)}})
– FD = ({A,D}, {call}, {call �→ A}, {call �→ D}, {call �→ {(ID,Location)}})

With all of the above we can finally define the module net as:
({W,R, I}, {FA,FD}, {FA �→ W,FD �→ R}, {FD �→ R,FD �→ I}).
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5 MIGRATE Approach

Module Integration using Graph Grammars (MIGRATE) is an approach
that aims to help developers in the process of integrating software modules.
MIGRATE takes as input software artifacts, such as source code, and automati-
cally produces a set of warnings informing developers what needs their attention.
We refer to it as a approach, because it is not usable out of the box. In order to
use this approach, each of its abstract procedures has to be instantiated with a
concrete procedure. MIGRATE approach is comprised of following procedures:

– Extraction: receives software artifacts and produces a module net
– Translation: receives a module net and produces a graph grammar
– Verification: receives a graph grammar and produces a set of warnings

The approach is given as input a set of software artifacts. In theory, we
believe these artifacts can be anything that is machine readable and provides
insight into how information flows in a system. For services, these can be Ope-
nAPI documents. For libraries and classes, the actual code and interfaces. Models
(such as UML) can also be used as software artifacts for all kinds of modules.
Further kinds of artifacts can be used such as dynamic data of real payload
exchanges and logs for services, and execution traces and automated tests for
libraries and classes.

The extraction procedure takes software artifacts and produces a module
net. Extraction strategy can vary depending on what we choose as software
artifacts.

Currently, this procedure is performed manually, but we intend to implement
different extraction procedures in the future.

Module nets semantics is defined via a translation procedure that assigns
a graph grammar, called verification grammar to each module net. Finally, the
verification procedure builds upon existing graph grammar verification tech-
niques to produce different kinds of warnings concerning the system under
analysis. We now present in more details how these procedures were defined and
implemented.

5.1 Translation

The translation takes a model in the source language (module net) and pro-
duces a model in the target language (graph grammar). We refer to the source
model as just module net and to the target model as verification grammar.
This translation was defined by a graph grammar called translation gram-
mar. The translation grammar has an initial graph, which is a module net
encoded as graph, and after the rule application process is carried out until ter-
mination we obtain a final graph, which is an encoded verification grammar.
To summarize, the translation procedure is comprised of three steps:

– Injection: takes a module net and encodes it, producing an initial graph
– Derivation: applies translation grammar rules until termination
– Extraction: extracts a verification grammar from a final graph
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The type graph used in the translation has three kinds of nodes, “MN”
nodes are used to describe module net components, “TOKEN” nodes denote
auxiliary items used in the translation process and “RAGRA” nodes describe
components of the resulting verification. Before starting a translation, the initial
graph is expected to have only nodes of “MN” types. During translation, nodes
of “TOKEN” type will be created and deleted. At the end of the procedure,
the final graph will contain only nodes of type “GRAGRA”. The translation
grammar has 35 rules and for that reason we omit these rules here. A few exam-
ple rules are depicted in Fig. 2, with an example of a rule that creates tokens
(TK1) in Fig. 2(a), a rule that consumes tokens (TR17) in Fig. 2(b), a rule that
removes translated module net elements (CL29) in Fig. 2(c) and a rule that fixes
duplicated edges created by the translation (AD34) in Fig. 2(d).

As stated before, this translation gives a semantics to module nets in terms
of graph grammars. Thus, we have to guarantee that the translation procedure
generates a well-defined graph grammar (well-definedness) and always termi-
nates with an unique resulting grammar (confluence).

Generation of well-defined grammars and confluence are properties of the
translation grammar. In the following we sketch how we have shown these
properties.

(a) Translation rule TK1 (b) Translation rule TR17

(c) Translation rule CL29 (d) Translation rule AD34

Fig. 2. Examples of translation rules

In order to show that the translation procedure produces well-defined gram-
mars, we have argumented that each rule preserves a set of requirements that
specify what is required for a grammar to be well-defined. In addition to that
argumentation, we have also written atomic constraints and applied them to one
example translation of a specific module net. Our constraints were basically of
two kinds: graph grammar constraints check that edges have sources and targets
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and whether or not rules have left- and right-hand sides, and module net con-
straints that ensure no translated module net concept takes more than one role
(for example, a graph grammar node that is the translation of a module can-
not be at the same time the translation of other structures, such as resources,
attributes, etc.). We have used the AGG tool [22] to check these constraints
are satisfied by the final graph after translation. Details of this argumentation
and the example translation verified by atomic constraints can be found in the
dissertation [5].

Confluence is a combination of two properties, namely termination and local
confluence. We used the tool AGG to show that both these properties are sat-
isfied for the translation grammar. We start by showing local confluence. We
must compute conflict critical pairs and show that, whenever there are different
choices of rules to be made that are in conflict (i.e., are mutually exclusive)
either choice will lead to the same final result.

Running this analysis in AGG for the translation grammar, generated no
critical pairs of conflicts and therefore the translation grammar is locally conflu-
ent. To ensure that the translation grammar terminates, we first assign layers to
rules. Roughly speaking, layers represent the phases of the translation process:
if we can partition the set of rules in layers that satisfy some requirements, it is
possible to prove termination.

With a suitable definition of layers, AGG was able to prove termination of the
translation grammar. Thus our translation graph grammar is confluent, which
means it has functional (deterministic) behavior.

5.2 Verification

Verification is based on critical pairs analysis of the verification grammar. We
generate the critical pairs using the Verigraph tool [4] and then process these
critical pairs to create hints. Hints are pieces of information about the verified
module net that point in a given direction and can be used to create other hints
or warnings. We have following kinds of hints:

– Critical pairs hint: is the standard critical pairs generation procedure as imple-
mented by Verigraph;

– Rule decoration hint: extracts metadata about rules based on rule names,
such as whether the rule is a mock, whether it maps to a real operation,
whether it is required by default, as well as all sets of modules, resources and
attributes contained in the graphs of this rule;

– Informational flow hint: analyses produce-use critical pairs of dependencies
and finds subgraphs of overlapping graphs where we can tell that the infor-
mation flows from a given attribute to another;

– Optional path hint: analyses the graph of produce-use critical pairs of depen-
dencies, and finds rules which are not in a path to a rule considered required
by default (by the rule decoration hint), modules, resources and attributes
which are not found in any rules belonging to a path to a required rule are
considered optional as well;



Module Integration Using Graph Grammars (MIGRATE) 99

– Required path hint: analyses the graph of information flow produced by infor-
mation flow hint and reports attributes and resources which are in a path to
a required attribute or resource;

– Reachable rule hint: analyses produce-use (PU) critical pairs of dependencies
and produce-forbid (PF) critical pairs of conflicts, and looks for dependencies
such as M →PU R, where M is a mock (according to rule decoration hint),
and then it tries to close a triangle with M →PF P →PU R, if it cannot find
such a triangle for all such M , then R is considered unreachable;

– Critical pairs explanation hint: the critical objects of critical pairs of produce-
use dependencies between rules of types operation, or between rules of types
operation and generators, are considered outdated attributes.

With all hints provided so far, we can generate many different warnings:

– Optional attribute, resource, module or rule warning: is derived from optional
path hints, creating optional attribute, resource, module or rule warnings;

– Strictly optional attributes warning: points out attributes which are in the
path of required attributes, but do not contribute directly to the information
flow, and are derived from required path hints;

– Unreachable operation warning: provides useful information for developers to
detect issues in the information flow, which can be due to typos in resource
or attribute names or even other kinds of failures in the specification, and
this kind of warning is derived from reachable rule hints;

– Outdated attribute warning: highlights attributes copied from module X to
module Y and then changed in module X, leaving the Y copy of that attribute
with an outdated value, and are derived from critical pair explanation hints.

6 Related Work

Integration of Libraries: NOREGRETS+ [18] creates models of data flow
between a library and its consumers. The models can then be used to check
that each call to an updated library function still returns the same type and
that the updated library still uses the same subset of arguments it used before
the update. Veracode keeps track of inserted, deleted or changed methods [9],
and APIDIFF [3] tracks types, methods and fields, to detect a series of breaking
and non-breaking changes, such as adding final modifier to a type or removing
a method or field. CLEVER [19] works by applying symbolic execution to both
pairs of (client, previous lib version) and (client, new lib version) and determin-
ing whether code activated by client has been changed in the new lib version
considering input constraints provided by the symbolic execution.

Approaches based on diffs determine whether or not a change was made to
the implementation. Whereas diff checks cannot handle the behavior of func-
tions, testing approaches are able to verify that the behavior is the same, but
only for those cases covered by tests. In contrast, symbolic execution can cover
every possible path by computing constraints on inputs imposed by client code.
In comparison, our approach does not require automated tests and we suggest



100 D. R. Cravo and L. Ribeiro

extracting module nets from source code directly. Unlike other approaches, we
do not reason about the behavior of functions such as control flow, but rather
we concentrate on data flow to find issues such as whether or not a module finds
the data it needs in order to call an operation of another module.

Integration of Services: Perhaps the most similar work to ours is [14], which
enables specification of requirements as graph grammar rules and match of such
requirements to service specifications to check if a service does what clients
want [14]. This work has many similarities to ours the main differences are:
their work requires knowledge of graph grammars, while we want to provide
tools to automate the verification process; they concentrate on services, while
we created the notion of module nets, enabling verification of not only services
but also libraries and anything else that can be considered a module; and their
goals are to match specifications, whereas we focus on generating warnings.

“Differential Regression Testing” for REST services [12] compares the out-
puts of two tests with the same inputs looking for regressions. The authors
suggest interacting with services through automatically generated clients and
thus they test the (client, service) integration. Furthermore, they describe two
kinds of tests, one which keeps the client version and varies the service version
and one where client version varies.

Graph Grammar Applications: Our work can be divided into three phases: (i)
model extraction, (ii) model transformation and (iii) verification using graph
grammars. (i) is concerned with the extraction of models from source code,
where the output models may be graph grammars. Extraction of graph gram-
mars from a Java using traces has been studied in [7]. (ii) is concerned with the
transformation of models from one language to another using graph grammars
as the transformation engine. A desirable property for model transformation is
functional behavior. Graph grammars can exhibit functional behavior as long as
they are terminating and confluent, which is illustrated in [15] with the trans-
formation from statecharts to Communicating Sequential Processes (CSP). The
main disadvantage is the fact that matching a rule to a graph is a NP-complete
problem [24]. (iii) is concerned with the verification of systems specified using
graph grammars. We leverage existing methods to create our own verification
algorithms. AGG 2.0 is a full graph grammar engine and graphical user interface
one of the few supporting critical pair analysis [22] along with Verigraph [4].

7 Conclusion

In this work we addressed the problem of module integration using graph gram-
mars. We have created a verification approach that allows us to generate warn-
ings telling developers which integrations need their attention. We have provided
implementations for the translation and verification procedures of MIGRATE
approach.

MIGRATE approach imposes certain requirements on graph grammars it
analyses, such as having specific rule names and rule patterns, as well as
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nodes and edges that can be interpreted back to operations, modules, resources,
attributes and values. We needed a way to ensure graph grammars we analyse
meet such requirements, while at the same time providing developers with the
ability to make changes to models directly. For those reasons, we have created
module nets, which are a formalism to express how modules integrate to each
other. The semantics of module nets is given by a translation procedure that
assigns a (verification) graph grammar to each module net. This enabled us to
leverage existing critical pairs analysis theory, and also will enable us to leverage
all different analysis techniques that have been developed for graph grammars
in future work.

There are three major areas that will need our attention when building a
verifier tool using the concepts of this paper: automatization of the extraction
procedure, support of larger module nets, and interpretation of warnings. We are
working already on automatization of the extraction procedure and have first
prototypes that are under evaluation.

Larger module nets are specially difficult to handle during the derivation
procedure applied in translation and the critical pairs computation. Since our
translation grammar is confluent, we could improve by avoiding match random-
ization and always applying the first match we find. Critical pairs generatin
could be improved if we restricted it to the generation of essential [16] or even
initial [13] critical pairs, thus greatly reducing the amount of pairs generated
(without loss of information).

In order to improve the warnings we support, we will have to improve each
of the procedures we have presented, extending module nets to support more
operation types and other procedures accordingly. Also we have concentrated
in finding issues due to information flow, such as a attribute which is not nec-
essary because it does not carry information to required attributes. However,
we disregard completely control flow issues, which can lead to all sorts of bugs
when changed, even if the flow of information is unchanged. Expanding types of
warnings we support is left for future work.
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Abstract. Workflow planning usually requires domain-specific knowl-
edge from the planners, making it a relatively manual process. In addi-
tion, workflows are largely cross-organisational. As a result, minor mod-
ifications in the workflow of a collaborative partner may be propagated
to other concurrently running workflows, which may result in signifi-
cant adverse impacts. This paper presents a resource-sensitive formal
modelling language, Rpl. The language has explicit notions for task
dependencies, resource allocation and time advancement. The language
allows the planners to estimate the effect of changes in collaborative
workflows with respect to cost in terms of execution time. This paper
proposes a static analysis for computing the worst execution time of a
cross-organisational workflow modelled in Rpl by defining a composi-
tional function that translates an Rpl program to a set cost equations.

Keywords: Cross-organisational workflows · Resource planning ·
Formal modelling · Static analysis

1 Introduction

Workflow management can be seen as an effective method of monitoring, man-
aging, and improving business processes using IT assistance [1]. Workflow man-
agement systems (WMS) allow planners to create, manage, and execute work-
flows, as well as play a key role in collaborative business domains such as supply
chain management and customer relationship management. As a result, WMS is
regarded as among the most effective systems for facilitating cooperative business
operations [12]. With the fast growth of e-commerce and virtual companies, cor-
porations frequently work beyond organisational borders, engaging with others
to meet competitive challenges. Moreover, the rapid growth of the Internet and
digital technology encourages collaboration across widely distant businesses [26].

The adoption of cross-organisational workflow allows restructuring business
processes beyond the limits of an organisation [2]. Cross-organisational workflows
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often comprise multiple concurrent workflows running in various departments
within the same organisation or in different organisations. For example, the
workflow of a retail company may involve a workflow of a supplier providing
products and a workflow of a courier company delivering products to customers.

Furthermore, workflow planning often requires domain-specific knowledge to
accomplish efficient resource allocation and task management, which makes plan-
ning cross-organisational workflow especially challenging. Additionally, modify-
ing workflows is error-prone: one modification in a workflow may result in sig-
nificant changes in other concurrently running workflows, and a minor mistake
might have significant negative consequences.

Workflow planning has been significantly digitalised and automated, and
tools such as Process-Aware Information Systems (PAIS) [13] and Enterprise
Resource Planning (ERP) systems have been developed to facilitate workflow
planning. However, cross-organisational workflow planning remains a rather
manual process as the current techniques and tools often lack domain-specific
knowledge to support automation in workflow planning and updates. Moreover,
the planners may only have limited domain knowledge and do not have a com-
mon understanding of all the collaborative workflows, which can be catastrophic,
especially in the healthcare domain. Therefore, there is a need for an analysis
that over-approximates the cost before any changes in the workflows are imple-
mented. With the cost analysis, the planners can first simulates the changes in
the design of workflows, including the task dependencies and resource allocation,
and see the effect of the changes in terms of execution time before the changes
are implemented in the workflow in practice.

In this paper, we first present a formal modelling language Rpl. The language
has explicit notions for task dependencies, resource usage and time consump-
tion, which allows the cross-organisational planners to couple various workflows
through resources and task dependencies. A preliminary idea of the language is
presented in [8]. In addition, we present a technique based on the work in [21] to
statically over-approximate the worst execution time of the workflows modelled
as an Rpl program, by translating the program into a set of cost equations
that can be fed to an off-the-shelf constraint solver (e.g., [5,14]). This enables
planners to estimate the effects of the workflows (and its possible changes) in
terms of execution time before the actual implementation. The language and
the cost analysis can help facilitate planning cross-organisational workflows and
may ultimately contribute to automated planning.

The rest of the paper is organised as follows: Sect. 2 introduces the syntax and
semantics of the language. Section 3 shows a static analysis to over-approximate
the execution time of an Rpl program. Section 4 shows the correctness of analy-
sis. Section 5 briefly discusses the related work. Finally, we summarise the paper
and discuss possible future work in Sect. 6.
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P ::= R Cl {T x; s}
Cl ::= class C {T x; M}
M ::= Sg {T x; s}
Sg ::= B m(T y)
B ::= Int | Bool | Unit
T ::= C | B | Fut B

e ::= x | g | this
g ::= b | f? | g ∧ g
s ::= x = rhs | skip | if e {s} | wait(f) | return e

| hold(r, e) | release(r, e) | cost(e) | s ; s
rhs ::= e | new C | f.get

| m(x, e) after f? | !m(x, e) after f?

Fig. 1. Syntax of Rpl

2 Formal Workflow Modelling Language RPL

In this section, we present a formal modelling language Rpl. The language is
inspired by an active object language, ABS [19], and has a Java-like syntax
and actor-based concurrency model. In an actor-based concurrency model [4],
actors are primitives of concurrent computation. They can send a finite number
of messages to other actors, spawn a finite number of new actors or modify their
private state. A primary feature of the actor-based model is that one message is
being processed per actor, preserving the invariants of an actor without locks.

Rpl uses explicit notions to express time advancement and to indicate
resources required for each task (expressed as a method) and dependencies
between tasks. Using cooperative scheduling of method activations, Rpl controls
the internal interleaving of processes inside an object with explicit scheduling
points.

2.1 The Syntax of RPL

The syntax of the language is given in Fig. 1. An overlined element represents a
(possibly empty) finite sequence of such elements separated by commas, e.g., T
implies a sequence T1, T2, . . . , Tn.

An Rpl program P comprises resources R, a sequence of class declarations
Cl and a main method body {T x; s}, where T x; is the declaration of local
variables and s is a statement. Types T in Rpl are basic types B, including
integer, boolean and unit type, a class C and future types Fut〈B〉, which types
asynchronous method invocations (see below).

Resources R : r �→ v maps resource identifiers r to integer values v, indicating
the number of resources r is available. A class declaration class C {T x; M} has a
class name C and a class body {T x; M} comprising state variables and methods
of the class. Methods in Rpl have a method signature Sg followed by a method
body {T x; s}. A method signature Sg consists of a return type B, method
name m and a sequence of formal parameters y. We assume each method name
is unique. We further assume that the formal parameters T y is a non-empty
set and has a fixed pattern C o,C ′ o′, T ′ x where o is always the callee object
identifier of the method of class C, o′ are object identifiers of class C ′ and x are
the remaining parameters. This assumption is the syntactic sugar that we use
to realise the cost analysis introduced in Sect. 3. Expressions e include guards g,
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variables x and self-identifier this. A guard g allows a process to release control
of an object. It can be boolean conditions b, return tests f? checking if the future
variable f is resolved, or a conjunction of guards.

Statements include sequential composition, assignment, if, skip, and return
are standard. Iterative loops are not included in the language, but can be imple-
mented with recursion. Rpl uses hold(r, e) and release(r, e) to acquire and
return e number of resources r. Statement wait(f) suspends the current pro-
cess until future f is resolved, while other processes in the same object can be
scheduled for execution. Statement cost(e), the only term in Rpl that consumes
time, represents e units of time advancement.

The right-hand side rhs of an assignment includes expressions e, object
creation new C, method invocations and synchronisation. Communication in
Rpl is based on method calls, which can be either synchronous, written as
m(x, e) after f?, or asynchronous, written as !m(x, e) after f?, where x is the
callee object and f? is a sequence of futures that must be resolved prior to invok-
ing method m. A synchronous method invocation blocks the caller object until
the invoked method returns. Asynchronous method invocations, on the contrary,
do not block the caller, allowing the caller and callee to run in parallel. An asyn-
chronous method invocation is associated to a future variable of type Fut〈B〉,
where B is the return type of the invoked method. Moreover, the expression
f.get blocks all execution in the object until future f is resolved.

One can see a future as a mailbox that is created by the time a method is
asynchronously invoked, and the caller object continues its own execution after
the invocation. When the invoked method has completed the execution, the
return value will be placed into the mailbox, i.e., the future. The caller object
will only be blocked if it uses a get statement to retrieve the value of a future
that is not yet resolved.

1 [Driver 5, Vehicle 3]
2 class Retail {
3 Unit sale(Retail o, Int ord) {
4 Fut<Bool> f1;
5 Supplier sp = new Supplier;
6 Courier cr = new Courier;
7 f1 = !supply(sp,ord) after;
8 Unit x = deliver(cr,ord,10) after f1?;
9 }

10 }
11 class Courier {
12 Unit deliver(Courier o, Int ord, Int t) {
13 hold(Driver,1)(Vehicle,1);
14 cost(t);
15 release(Driver,1)(Vehicle,1);
16 }}

Fig. 2. A simple example.

Figure 2 shows a simple program in
Rpl. The code snippet captures a simple
collaboration between the workflows of a
retail, a supplier and a courier company.
Line 1 models the available resources.
Lines 2–10 define a retail sale work-
flow. First, a request to the supplier for
product supply is made asynchronously
with associated future f1 on Line 7.
While waiting for the product (until f1 is
resolved), the retailer can continue with
other tasks. After getting the product
from the supplier (f1 is resolved), it is
sent to the customer by utilising the ser-
vices of a courier company (Line 8). Lines 11–16 define the deliver workflow
of the courier company. A driver and a vehicle (resources) are first acquired to
deliver the product (Line 13). Line 14 depicts the time taken for delivery. After-
wards, the acquired resources are released (Line 15). For simplicity, we do not
show the implementation of the supply workflow.
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2.2 The Semantics of RPL

To understand how time advances in Rpl and the cost analysis later, we briefly
discuss the semantics of the language in this section. The semantics of Rpl is
a transition system whose states are configurations cn with the runtime syntax
defined in Fig. 3.

cn ::= ε | res | obj (o, a, p, q) | fut(f, val)
| invoc(o, f, m, v) | cn cn

p ::= idle | {l | s}
q ::= ∅ | {l | s} | q q

s ::= cont(f) | . . .

act ::= ε | o

val ::= v | ⊥
res ::= [ r v ]

a ::= [. . . , x v , . . . ]
v ::= o | f | b | k

Fig. 3. Runtime syntax of Rpl

A configuration cn includes futures, objects, message invocations, and
resources. An empty configuration is ε, and whitespace denotes the associative
and commutative union operator on configurations. A future fut(f, val) holds a
future identifier f and a return value val, where ⊥ indicates that future has not
been resolved.

An object is a term obj (o, a, p, q) where o is the object identifier, a a sub-
stitution describing the object’s attributes, p an active process, and q a pool of
suspended processes. A process, written as {l | s}, has local variable bindings l
and a statement s. A message invocation is a term invoc(o, f,m, v), where o is
a callee object, m a method name, f a future to which method m returns, and
v the set of actual parameter values for m. Resources res is a mapping from
resource identifier r to the number of resources. The statement cont(f) controls
the scheduling when a synchronous call completes its execution, returning con-
trol to the caller. Values v include object, future identifier, and Boolean, Integer
or constant values.

We discuss a selection of the semantics rules of Rpl (see Figs. 4 and 5)
that are relevant to the analysis later. The rest of the semantics is standard,
and can be found in the accompanying technical report [7]. In the semantics,
we use the auxiliary functions dom(l) and dom(a) to return the domain of l
and a, respectively. The evaluation function [[e]](a◦l) returns the value of e by
computing the expressions and retrieving the value of identifiers stored either
in a or l. Moreover, the function atts(C , o) is used to create an object of a
class C, which binds this to o, and the function bind(o, f,m, v, C) returns a
process that is going to execute method m with declaration B m(T y) {T ′ x; s},
which is defined as:

bind(o, f,m, v, C) = {[destiny �→ f, y �→ v, x �→ ⊥] | s[o/this]}
The semantics in Figs. 4 and 5 includes object creation, communication, task
dependencies, resource management and time advancement. For clarity, we use F
to represent all the futures in the configuration in the semantics.
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(New-Object)
o = fresh()

a = atts(C ,o )

obj (o, a, {l | x = new C; s}, q)
→ obj (o, a, {l | x = o ; s}, q)

obj (o , a , idle, ∅)

(Async-Call)
∀ f ∈ f.fut(f, v) ∈ F ∧ v = ⊥

v = [[e ]](a◦l) o = [[e]](a◦l) f = fresh()

obj (o, a, {l | x = !m(e, e ) after f?; s}, q) F
→ obj (o, a, {l | x = f ; s}, q)
invoc(o , f , m, v) fut(f , ⊥) F

(Get)
v = ⊥

obj (o, a, {l | x = f.get; s}, q) fut(f, v)
→ obj (o, a, {l | x = v; s}, q) fut(f, v)

(Invoc)
{l|s} = bind(o, f, m, v, class(o))

obj (o, a, p, q) invoc(o, f, m, v)
→ obj (o, a, p, q ∪ {l | s})

(Wait-True)
v = ⊥

obj (o, a, {l | wait(f); s}, q) fut(f, v)
→ obj (o, a, {l | s}, q) fut(f, v)

(Wait-False)
v = ⊥

obj (o, a, {l | wait(f); s}, q) fut(f, v)
→ obj (o, a, idle, q ∪ {l | wait(f); s}) fut(f, v)

(Sync-Call)
∀f ∈ f.fut(f, v) ∈ F ∧ v = ⊥ o = [[e]](a◦l) o = o f = fresh()

obj (o, a, {l | x = m(e, e ) after f?; s}, q) obj (o , a , p, q ) F
→ obj (o, a, {l | f = !m(e, e ) after f?;x = f .get; s}, q) obj (o , a , p, q ) F

(Self-Sync-Call)
∀f ∈ f .fut(f, v) ∈ F ∧ v = ⊥ o = [[e]](a◦l) v = [[e ]](a◦l) f = l(destiny)

f = fresh() {l | s } = bind(o, f , m, v, class(o))

obj (o, a, {l | x = m(e, e ) after f?; s}, q) F
→ obj (o, a, {l | s ; cont(f )}, q ∪ {l | x = f .get; s}) fut(f , ⊥) F

(Wait-Async-Call)
∃f ∈ f.fut(f, v) ∈ F ∧ v = ⊥

obj (o, a, {l | x = !m(e, e ) after f?; s}, q) F
→ obj (o, a, idle, q ∪ {l | x = !m(e, e ) after f?; s}) F

(Sync-Return-Sched)
f = l(destiny)

obj (o, a, {l | cont(f ), q ∪ {l|s})
→ obj (o, a, {l | s}, q)

(Wait-Sync-Call)
∃f ∈ f.fut(f, v) ∈ F ∧ v = ⊥

obj (o, a, {l | x = m(e, e ) after f?; s}, q) F
→ obj (o, a, idle, q ∪ {l | x = m(e, e ) after f?; s}) F

(Cost)
[[e]](a◦l) = 0

obj (o, a, {l | cost(e); s}, q)
→ obj (o, a, {l | s}, q)

(Hold)
∀(r, e) ∈ (r, e).r ∈ dom(res) ∧ v ≥ 0

where v = res(r) − [[e]](a◦l)

obj (o, a, {l | hold(r, e); s}, q) res
→ obj (o, a, {l | s}, q) res [r v]

(Release)
∀(r, e) ∈ (r, e).r ∈ dom(res)

∧ v = res(r) + [[e]](a◦l)

obj (o, a, {l | release(r, e); s}, q) res
→ obj (o, a, {l | s}, q) res [r v]

Fig. 4. A selection of semantics – Part 1
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(Tick)
strongstablet(cn)

cn → Φ(cn, t)

where , Φ(cn, t) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

obj (o, a, { l | cost(k); s}, q) Φ(cn , t) if cn = obj (o, a, {l | cost(e); s}, q) cn

and k = [[e]](a◦l) − t

obj (o, a, {l | hold(r, e); s}, q) Φ(cn , t) if cn = obj (o, a, {l | hold(r, e); s}, q) cn

obj (o, a, {l | x = e.get; s}, q) Φ(cn , t) if cn = obj (o, a, {l | x = e.get; s}, q) cn

obj (o, a, idle, q) Φ(cn , t) if cn = obj (o, a, idle, q) cn

cn otherwise.

Fig. 5. A selection of semantics – Part 2

Rule Wait-False suspends the active process, leaving the object idle if f
is not resolved, otherwise Wait-True consumes wait(f). Rule New-Object
creates a new object. Rule Get retrieves the value of future f if it is resolved;
the reduction on this object is blocked otherwise.

Rules Async-Call and Sync-Call handle the communication between
objects through method invocations. To ensure the task dependencies between
method calls, the rules first check if all the futures on which the method call
depends exists, i.e., if f can be found in F and check if they are resolved.
Rule Async-Call creates an invocation message to o′ with a fresh unresolved
future f ′, method name m, and actual parameters v. Rule Self-Sync-Call
directly transfers control of the object from the caller to the callee. After the
execution of invoked method is completed, rule Sync-Return-Sched reacti-
vates the caller. Rule Sync-Call specifies a synchronous call to another object,
which is replaced by an asynchronous call followed by a get statement. In case
one of the futures that a synchronous (or asynchronous) method invocations
depends on is not yet resolved, the process will be suspended (see Rules (Wait-
Async-Call) and (Wait-Sync-Call)). Rules Hold and Release control the
resource acquisition and return. Note that it is required to have all the acquired
resources to be available in order to consume the hold statement; otherwise, the
process will be blocked.

In Rpl, the unique statement that consumes time is cost(e). Rule Cost
specifies a trivial case when e evaluates to 0. When the configuration cn reaches
a stable state, no other transition is possible except those evaluating the cost(e)
statement where e evaluates to some t ≤ 0, then time advances by the smallest
value required to let at least one process execute. To formalize this semantics,
we first define stability in Definition 1.

Definition 1. A configuration is t-stable for some t > 0, denoted as
stablet(cn), if every object in cn is in one of the following forms:
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1. obj (o, a, {l | x = e.get; s}, q) where [[e]](a◦l) = f and fut(f,⊥) ∈ cn,
2. obj (o, a, {l | cost(e); s}, q) where [[e]](a◦l) ≥ t,
3. obj (o, a, {l | hold(r, e); s}, q) with res ∈ cn,

where ∃(r , e) ∈ (r, e) s.t. r ∈ dom(res) and res(r) − [[e]](a◦l) ≤ 0,
4. obj (o, a, idle, q) and if

(a) q = ∅, or,
(b) ∀p ∈ q and if

i. p = {l | wait(f); s} and fut(f,⊥) ∈ cn, or,
ii. p = {l | x = m(e, e′) after f?; s}, or p = {l | x =

!m(e, e′) after f?; s}, where ∃f ∈ f s.t. fut(f,⊥) ∈ cn.

A configuration cn is strongly t-stable, written as strongstablet(cn), if it is
t-stable and there is an object obj (o, a, {l | cost(e); s}, q) with [[e]](a◦l) = t. Note
that both t-stable and strongly t-stable configurations cannot proceed anymore
because every object is stuck either on a cost(e), on unresolved futures, or wait-
ing for some resources. Rule Tick in Fig. 5 handles time advancement when cn
is strongly t-stable by advancing time in cn for t units using Φ(cn, t).

The initial configuration of an Rpl program with main method {T x; s} is

obj (omain , ε, {[destiny �→ finitial, x �→ ⊥}, q)
where omain is object name, and finitial is a fresh future name. Normally, →∗ is
the reflexive and transitive closure of → and t=⇒ is →∗ t−→→∗. A computation is
cn t1=⇒ . . .

tn=⇒ cn ′; that is, cn ′ is a configuration reachable from cn with either
transitions → or t=⇒. When the time labels of transitions are not necessary, we
also write cn ⇒∗ cn ′.

Definition 2. The computational time of cn t1=⇒ . . .
tn=⇒ cn ′ is t1 + · · · + tn.

The computational time of a configuration cn, written as time(cn), is the max-
imum computational time of computations starting at cn. The computational
time of an Rpl program is the computational time of its initial configuration.

3 Analysis of RPL Program

In this section, we describe the cost analysis for an Rpl program, which trans-
lates an Rpl program into a set of cost equations that can be fed to a constraint
solver. The solution to the resulting constraint set is an over-approximation of
the execution time of the Rpl program. We use the example in Fig. 6 to illustrate
the idea of the analysis. Our analysis assumes all Rpl programs terminate and all
invoked methods are synchronised. It extends the analysis presented in [21] and
to handle a more expressive language with explicit notion of task dependencies
and resource allocations.

A cost equation results in a cost expression exp that has the following syntax:

exp ::= k | cm | max (exp, exp) | exp + exp
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1 [r1 2, r2 3, r3 2]
2 class A {
3 Unit m1(A x, B y, Int k) {
4 Fut<Unit> g1;
5 g1= !m3(y, k) after;
6 wait(g1);
7 g1.get;}
8 Unit m2(A x, B y, Int k) {
9 Fut<Unit> h1; Unit z;

10 h1 = !m3(y, k) after;
11 z = m1(this, y) after h1?;} }

12 class B {
13 Unit m3(B x, Int k) {
14 hold(r1, 2);
15 cost(k);
16 release(r1, 2);} }
17 {
18 Int k1; Int k2; Int k3;
19 Fut<Unit> f1; Fut<Unit> f2;
20 A a1 = new A; B b1 = new B;
21 cost(k1);
22 f1 = !m2(a1, b1, k3) after;
23 cost(k2);
24 f2 = !m3(b1, k3) after;
25 f1.get;
26 f2.get;}

Fig. 6. A running example of an Rpl program.

A cost expression may have natural numbers k, the cost cm of executing a
method m, the maximum and the sum of two cost expressions.

Given an Rpl program P, the analysis iterates over every method definition
B m(T y){T x; s} in each class in P, and translates it into a cost equation of the
form eqm=exp, where exp corresponds to an upper bound of the computational
time of m. The analysis performs this translation by considering the process pool
of every object associated with the execution of method m, computing an upper
bound for the finishing time of all of its processes, which gives rise to an upper
bound to the computational time of the method itself.

In the following, we describe the two significant structures, namely, syn-
chronisation schema and accumulated costs, used in the analysis to handle the
complexity of considering process pools.

3.1 Synchronisation Schema

We will first describe synchronisation sets, an element of synchronisation schema,
and proceed with the function that is used to manipulate the schema. A syn-
chronisation set [21], ranged over O,O′, . . . , is a set of object identifiers whose
processes have implicit dependencies; that is, the processes of these objects may
reciprocally influence the process pools of the other objects in the same set
through method invocations and synchronisations.

A synchronisation schema, ranged over S, S′, . . . , is a set of pairwise disjoint
synchronisation sets. Let B m(C o,C ′ o′, T x) {T ′ x′; s} be an Rpl method
declaration. The synchronisation schema of m, denoted as Sm, can be seen as a
distribution of the objects used in that method into synchronisation sets, where
Sm = sschem({{o, o′}}, s, o), which is defined in Definition 3.

Definition 3 (Synchronisation Schema Function). Let S be a synchroni-
sation schema, s a statement and o a carrier object which is executing s.
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sschem(S, s, o) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S ⊕ {o′, o′′} if s is x = m(o′, o′′, e) after f?

or, x = !m(o′, o′′, e) after f ′?

sschem(S, s1, o) if s is if e {s1}
sschem(sschem(S, s′, o), s′′, o) if s is s′; s′′

S otherwise.

where

S ⊕ O =

⎧
⎪⎨

⎪⎩

O if S = ∅
(S′ ⊕ O) ∪ O′ if S = S′ ∪ O′ and O′ ∩ O = ∅
S′ ⊕ (O′ ∪ O) if S = S′ ∪ O′ and O′ ∩ O �= ∅

The term S(o) represents the synchronisation set containing o in the synchro-
nisation schema S. The function S⊕O merges a schema S with a synchronisation
set O. If none of the objects in O belongs to a set in S, the function reduces to
a simple set union. For example, let S = {{o1, o2}, {o3, o4}}. Then S ⊕ {o2, o5}
is equal to ({{o1, o2}} ⊕ {o2, o5}) ∪ {{o3, o4}}, resulting {{o1, o2, o5}, {o3, o4}}.
To perform cost analysis later, a synchronisation schema will be constructed for
each method m. The synchronisation schemas of methods defined in Fig. 6 are
Sm1 = {{x, y}}, Sm2 = {{x, y}}, Sm3 = {{x}}, Smain = {{omain}, {a1, b1}}.

3.2 Accumulated Costs

The syntax of exp is extended to express (an over-approximation of) the time
progressions of processes in the same synchronisation set. We call this extension
accumulated cost [21], denoted as E , which is defined as follows:

E ::= exp | E · 〈cm, exp〉 | E ‖ exp .

Let o be a carrier object and o′ an object that does not belong to the same
synchronisation set of o, i.e., o′ /∈ S(o). The term exp represents the starting time
of a process running on o′. The term E · 〈cm, exp〉 describes the starting time of
a method invoked asynchronously on object o′. For example, when o invokes a
method m on o′ using f = !m(o′, o′′, e) after f?, the accumulated cost of the
synchronisation set of o′ is E · 〈cm, 0〉, where E is the cost accumulated up to
that point and cm is the cost of executing method m. Statement cost(e) in the
process of the carrier o not only advances time in o, but also updates the starting
time of succeeding method invocations on object o′ to E · 〈cm, e〉, indicating that
the starting time of the subsequent method invocation on the synchronisation
set of o′ is after the time expressed by E plus the maximum between cm and e.
The term E ‖ exp expresses the time advancement in the carrier object o when a
method running on an object o′ in another synchronisation set is synchronised.
In this situation, the time advances by the maximum between the current time
exp in o and E the time in o′. The evaluation function for the accumulated
cost, denoted as [[E ]], computes the starting time of the next process in the
synchronisation set whose cost is E as follows:

[[exp]] = exp , [[E · 〈cm, exp〉]] = [[E]] +max(cm , exp) , [[E ‖ exp]] = max([[E]], exp) .
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TSm(I, Ψ, o, ta, t, s) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. TSm(I , Ψ , o, ta, t , s ) if s is s ; s , and
(I , Ψ , ta, t ) = TSm(I, Ψ, o, ta, t, s )

2. (I, Ψ + e, ta, t + e) if s is cost(e)
3. (I , Ψ , ta, t + cm ) if s is o = m (o , e) after f?, and

(I , Ψ , ta, t ) = transSm(I, Ψ, o, ta, t, f)
4. (I [f Sm(o)], Ψ , ta + cm , t ) if s is f =!m (o , e) after f ?, o ∈ Sm(o), and

(I , Ψ , ta, t ) = transSm(I, Ψ, o, ta, t, f )

5. (I [f Sm(o )], Ψ [Sm(o ) cm , 0 ], ta, t )
if s is f = m (o , e) after f ?, o /∈ Sm(o), and
(I , Ψ , ta, t ) = transSm(I, Ψ, o, ta, t, f ),where

E =
Ψ (Sm(o )) if Sm(o ) ∈ dom(Ψ )
t otherwise.

6. (I , Ψ , ta, t ) if s is f.get or wait(f), and
(I , Ψ , ta, t ) = transSm(I, Ψ, o, ta, t, {f})

7. (I , Ψ ,max(ta , ta1 ),max(t , t1 )) if s is if e {s1}, and
(I1, Ψ1, ta1 , t1) = TSm(I, Ψ, o, ta, t, s1)
I = I ∪ I1, and
Ψ = upd(Ψ, Ψ1, I , dom(I ))

8. (I, Ψ, ta, t) otherwise.

Fig. 7. The translation function

The table below shows the accumulated costs of some of the statements declared
in Fig. 6. The accumulated cost of Line 24 evaluates to k1 +max (cm2

, k2 )+ cm3 ,
which is the cost expression of the main method (cmain).

Method Line Accumulated Cost

m1 5 0 · 〈cm3 , 0〉
m2 10 0 · 〈cm3 , 0〉
m3 15 k

Method Line Accumulated Cost

main 22 k1 · 〈cm2 , 0〉
main 23 k1 · 〈cm2 , k2〉
main 24 k1 · 〈cm2 , k2〉 · 〈cm3 , 0〉

3.3 Translation Function

This section defines the translation function that computes the cost of a method
by analysing all possible synchronisation sets and synchronisations made on it.
Given an Rpl method m and a synchronisation schema Sm computed based
on Sect. 3.1, the translate function analyses the body of the method m by pars-
ing each of its statements sequentially and recording the accumulated costs of
synchronisation sets in a translation environment.

Definition 4 (Translation Environment). Translation environments,
ranged over Ψ, Ψ ′, . . . , is a mapping from synchronisation sets to their corre-
sponding accumulated costs (Sm(o) �→ E).
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transSm(I, Ψ, o, ta, t, F ) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) (I, Ψ, ta, t) if F = ∅
(b) transSm(I \ F , Ψ + ta, o, 0, t + ta, F ) if F = F ∪ f and o ∈ I(f) and

F = {f | I(f ) = Sm(o)}
(c) transSm(I \ F , (Ψ t ) \ I(f), o, 0, t , F )

if F = F ∪ f and o /∈ I(f) where
F = {f | I(f )=Sm(o) ∨ I(f )=I(f)}
and t = max(t + ta , [[Ψ(I (f ))]])

(d) transSm(I \ F , Ψ + ta, o, 0, t + ta, F ) if F = F ∪ f and f /∈ dom(I) where
F = {f | I(f ) = Sm(o)}

Fig. 8. The auxiliary translation function

Given a synchronisation schema of a method m, Sm, the translation function
TSm

(I, Ψ, o, ta, t, s) defined in Fig. 7 takes six parameters: I is a map from future
names to synchronisation sets, Ψ a translation environment, o is the carrier
object, ta a cost expression that computes the cost of the methods invoked
on objects belonging to the same synchronisation set of carrier o and but not
yet synchronised, t a cost expression that computes the computational time
accumulated from the start of the method execution, and a statement s.

The function returns a tuple of four elements: an updated map I ′, an updated
translation environment Ψ ′, the updated cost of asynchronously running objects
t′a, and the updated current cost t′. Each case of the function is explained below.

Case 1: Each statement in a sequential composition is translated recursively.

Case 2: When s is a cost(e) statement, the function updates the current cost t
and the accumulated cost Ψ by adding the cost e to them.

Case 3: If s is a synchronous method invocation m′(o′, e) after f?, since the
method can only be invoked after the futures f1 have been resolved, we need to
first compute the cost of all methods associating to f? with the auxiliary function
transSm

(I, Ψ, o, ta, t, f) in Fig. 8 (see below for explanation). After computing the
cost of executing the methods associating to f , the cost of method m′, cm′ , is
added to the accumulated cost t′.

Case 4 and 5: The next two cases corresponds to s as an asynchronous method
invocation !m′(o′, e) after f?. Similar to Case 3, we first compute the cost of all
methods associating to f?. Case 4 handles the situation if carrier o and callee o′

are in the same synchronisation set. We add the cost of method m to t′a and
update I ′ with the binding f �→ Sm(x). If o′ is not in the same synchronisation
set of carrier o, as in Case 5, we add the binding f �→ Sm(y) to I ′ and update
the Ψ ′ by adding the cost of method m′ to the accumulated cost of Sm(y).

Case 6: When s is either f.get or wait(f) statement, we compute the cost by
utilising function transSm

(I, Ψ, x, ta, t, {f}).
1 We refer f to a (possibly empty) set of futures by overloading the overline notation.
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upd(Ψ1, Ψ2, I, F ) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1 if F = ∅ ∨ Ψ2 = ∅
Ψ2 if Ψ1 = ∅
upd(Ψ1[I(f) max(Ψ1 (I (f )), Ψ2 (I (f )))], Ψ2, I, F )

if F =F ∪ f ∧ I(f)∈dom(Ψ1) ∧ I(f)∈dom(Ψ2)
upd(Ψ1, Ψ2, I, F ) if F =F ∪ f ∧ I(f)∈dom(Ψ1) ∧ I(f) /∈dom(Ψ2)
upd(Ψ1[I(f) Ψ2(I(f))], Ψ2, I, F ) if F =F ∪ f ∧ I(f) /∈dom(Ψ1) ∧ I(f)∈dom(Ψ2)

Fig. 9. The auxiliary update function

Case 7: To handle conditional statements, we first calculate the cost of executing
the statements in the conditional branch. Since the conditional branch may
be executed at runtime, to over-approximate the cost, we update ta with the
maximum of ta and ta1 , and the current cost t with the maximum of t and t1.
The resulting I ′ is the union of I and I1. We further update the translation
environment with the auxiliary update function defined in Fig. 9.

The trans Function. The auxilary function trans in Fig. 8 also takes six argu-
ments. While the first five are the same as those of T , the last one is a set of
futures F . This function recursively calculates the cost of each method associated
to the futures in F as follows:
(a): It is trivial if F is an empty set, where I, Ψ , ta, and t remain unchanged.
(b): This corresponds to the case where F contains a future f associated to a
method call whose callee belongs to same synchronisation set of the carrier x.
Since it is non-deterministic when this method will be scheduled for execution,
to over-approximate the cost, we sum the cost of the methods invoked on the
objects that are in Sm(o), which is stored in ta, and add it to the cost t accu-
mulated so far. We then reset ta to 0 and remove all the corresponding futures
from I since the related costs have been already considered.
(c): When F contains a future associated to a method call whose callee (say o′)
does not belong to Sm(o). Since objects o and o′ reside in separate synchronisa-
tion sets, the method running on o′ runs in parallel with o. Therefore, the cost
is the maximum between the total cost of all methods invoked on the objects in
Sm(o) and that in Sm(o′). Since we over-approximating the cost, the cost of all
methods invoked on the objects in Sm(o) and Sm(o′) have already been com-
puted. Therefore, we remove Sm(o′) from Ψ , as well as all the futures associated
with Sm(o) and Sm(o′) from I.
(d): When F contains a future f that does not belong to I, it indicates that the
cost of the method corresponding to f has been already calculated. Since it can
happen that other methods may be invoked after this computation, the actual
termination of the method invocation corresponding to f may happen after the
completion of these invocations. To take this into account, we add the cost of
all methods whose callee belongs to Sm(o), which has been stored in ta, to the
cost accumulated so far.
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Example 1. We show how the translation function can be applied on the methods
defined in Fig. 6. Let S = {{o}, {a1, b1}}, S1 = {{x, y}}, S2 = {{x, y}} and
S3 = {{x}} (as computed in Sect. 3.2). We use si to indicate the sequence of
statements of a method body starting from line i.

Translation of method m1 : TS1(∅, ∅, x, 0, 0, g1 = !m3(y, k) after; s6)
= TS1({g1 �→ {x, y}}, ∅, x, cm3 , 0,wait(g1); s7)
= TS1(∅, ∅, x, 0, cm3 , g1.get)
= (∅, ∅, 0, cm3 )

Translation of method m2 : TS2(∅, ∅, x, 0, 0, h1 = !m3(y, k) after; s11)
= TS2({h1 �→ {x, y}}, ∅, x, cm3 , 0, z = m1(this, y) after h1?)
= (∅, ∅, 0, cm3 + cm1 )

Translation of method m3 : TS3(∅, ∅, x, 0, 0, hold(r1, 2); s15)
= TS3(∅, ∅, x, 0, 0, cost(k); s16)
= TS3(∅, ∅, x, 0, k, release(r1, 2))
= (∅, ∅, 0, k )

Translation of method main :

TS(∅, ∅, o, 0, 0, A a1 = new A; B b1 = new B; s21)

= TS(∅, ∅, o, 0, 0, cost(k1); s22)
= TS(∅, ∅, o, 0, k1, f1 = !m2(a1, b1, k3) after; s23)
= TS({f1 �→ {a1, b1}}, {{a1, b1} �→ k1 · 〈cm2 , 0〉}, o, 0, k1, cost(k2); s24)
= TS({f1 �→ {a1, b1}}, {{a1, b1} �→ k1 · 〈cm2 , k2〉}, o, 0,

k1 + k2, f2 = !m3(b1, k3) after; s25)
= TS({f1 �→ {a1, b1}, f2 �→ {a1, b1}}, {{a1, b1} �→ k1 · 〈cm2 , k2〉 · 〈cm3 , 0〉}, o, 0,

k1 + k2, f1.get; s26)
= TS(∅, ∅, o, 0,max(k1 + k2, k1 · 〈cm2 , k2〉 · 〈cm3 , 0〉), f2.get)
= (∅, ∅, 0, max(k1 + k2 , k1 · 〈cm2 , k2 〉 · 〈cm3 , 0 〉) )

We notice that for each method the resulting translation environment Ψ is always
empty, and ta is always equal to 0 because every asynchronous method invocation
is always synchronised within the caller method body.

4 Properties

The correctness of our analysis relies on the property that the execution time
never rises throughout transitions. Therefore, the cost of the program in the
initial configuration over-approximates the cost of each computation.
Cost Program. The cost of a program is calculated by solving a set of equations.
Let a cost program be an equation system of the form:

eqmi
= expi

eqmain = expmain

where mi are the method names and 1 ≤ i ≤ n, expi and expmain are cost
expressions. The solution of the above cost program is the closed-form upper
bound for the equation eqmain , which is a main method of the program.
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Definition 5 (Cost of Program). Let P =(R C {T x; s}) be an Rpl program,
where C = class C1 {T x; B m1(T y){T ′ x; s1} . . .}...

class Cj {T x; B mk(T y){T ′ x; s1} . . . B mn(T y){T ′ x; sn}}
Then for every 1 ≤ i ≤ n and 1 ≤ j ≤ m, let

1. Si = sschem({{oi, o′}}, si, oi)
2. eqmi

= ti, where TSi
(∅, ∅, oi, 0, 0, si) = (Ii, Ψi, ta, ti)

3. Smain = sschem({{omain}}, s, omain) and
TSmain

(∅, ∅, omain , 0, 0, s) = (I, Ψ, ta, tmain)

Let eq(P) be the cost program (eqm1
= t1, . . . , eqmn

= tn, eqmain = tmain).
A cost solution of P, named U(P), is the closed-form solution of the equation
eqmain in eq(P).

For all methods, we produce cost equations that associates the method’s cost
to the cost of its last statement, eqmi

= ti. Similarly, we produce one additional
equation for the cost of the main method eqmain and its closed-form solution
over-approximates the computational time of Rpl program.

Example 2. The cost program of Fig. 6 is shown as follows, where each cost
expression is computed in Example 1.

eqm1
= cm3 , eqm2

= cm3 + cm1 , eqm3
= k ,

eqmain = max (k1 + k2 , k1 · 〈cm2
, k2 〉 · 〈cm3

, 0 〉) .

Correctness Property. The correctness of our analysis follows the theorem below.

Theorem 1 (Correctness of Analysis). Let P be an Rpl program, whose ini-
tial configuration is cn, and U(P) be the closed-form solution of P. If cn ⇒∗ cn ′,
then time(cn ′) ≤ U(P).

Proof (Sketch). The proof is similar to the one proven in [21]. The main idea is
to first extend function T for runtime configurations, and to define the cost of
a computation cn ⇒∗ cn ′, written as time(cn ⇒∗ cn ′), to be the sum of the
labels of the transitions, and to show that U(P) is a solution of T (cn), then
U(P) − time(cn ⇒∗ cn ′) is a solution of T (cn ′).

5 Related Work

Comprehensive research has been performed on modelling business process work-
flows: BPEL [22] is an executable language for simulating process behaviour,
whereas BPMN [24] uses a graphical notation to represent business pro-
cess descriptions. Petri-nets [1] has been used to formalize both BPEL and
BPMN [9,17]. Different formal approches based on e.g., pi-calculus [3], timed
automata [16], CSP [25] have been developed to analyse and reason about mod-
els of business process workflows. Compared to our proposed approach, the main
focus of these techniques is on intra-organisational workflows and have limited
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support for coordinating tasks and resources in workflows that are across organ-
isational.

Approaches have been proposed to merge business process models, e.g., [15]
presents an approach to merge two business processes based on Event-driven Pro-
cess Chains [23], which has been implemented in the process mining framework
ProM [11], and [20] describes a technique that generates a configurable business
process with a pair of business processes as input. To the best of our knowledge,
these techniques do not consider connecting workflows across organisations.

Numerous techniques have been introduced for static cost analysis. For exam-
ple, [6] presents the first approach to the automatic cost analysis of object-
oriented bytecode programs, [18] proposes the first automatic analysis for deriv-
ing bounds on the worst-case evaluation cost of parallel first-order functional
programs. In [21], authors define a concurrent actor language with time. Also,
they define a translation function that uses synchronisation sets to compute a
cost equation function for each method definition. Compared to this techniques,
this paper handles a more expressive language that is sensitive to task depen-
dencies and resource consumption.

6 Conclusion

We have presented in this paper a formal language Rpl that can be used to model
cross-organisational workflows consisting of concurrently running workflows. We
use an example to show how the language can be employed to couple these
concurrent workflows by means of resources and task dependencies. We also
proposed a static analysis to over-approximate the computational time of an Rpl
program. We also presented a proof sketch of the correctness of the proposed
analysis.

As for the immediate next steps, we plan to enrich the language such that
the resource features, e.g., the experience and specialities, can be explicitly spec-
ified, and to extend the analysis to handle non-terminating programs. We also
plan to develop an approach to associate workflow resources to ontology models.
Furthermore, we intend to develop verification techniques to ensure the correct-
ness of workflow models in Rpl for cross-organisational workflows. A reasonable
starting point is to investigate how to extend KeY-ABS [10], a deductive verifi-
cation tool for ABS, to support Rpl.

The presented language is intended to be the first step towards the automa-
tion of cross-organisational workflow planning. To achieve this long-term goal,
we plan to implement a workflow modelling framework with the support of cost
analysis. In this framework, planners can design and update workflows modelled
in Rpl, and simulate the execution of the workflows. By connecting the cost
analysis to a constraint solver, the planner can estimate the overall execution
time of collaborative workflows and see the effect of any changes in the resource
allocation and task dependency. We foresee that such framework can eventually
contribute to automating planning for cross-organisational workflows.
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Abstract. We present a new optimization algorithm for timed scenarios
that achieves the minimal number of clocks when timed scenarios are
viewed as timed automata.

1 Introduction

Using scenarios for specification and implementation of complex systems (includ-
ing real time systems), and synthesizing formal models of systems from scenarios
have been active areas of research for several decades [2,5,7–11,15,16].

In our earlier work [12] we developed, from first principles, a formal, yet sim-
ple notation for timed scenarios. We want to use such scenarios to automatically
synthesize formal models in the form of timed automata.

For a timed automaton with |K| clocks, the number of clock regions is at most
R = |K|!4|K|Πx∈K(μx +1), where μx is the maximum constant with which clock
x is compared [4]. Verification of a timed automaton can be computationally
expensive, and the cost depends on the number of regions of the automaton.

So, we want the value of R in our synthesized automaton to be as low as
possible. Before tackling that problem it behooves us to study it in the more
limited setting of a single scenario: this is the topic of the current paper.

As part of our earlier work [12] we obtained a canonical representation
(a “stable distance table”) for the entire class of scenarios that are equivalent to
a given one. We used stable tables as a linchpin of a very simple algorithm for
“optimizing” scenarios (“optimization” was used in the sense of “improvement”,
but did not necessarily lead to a result that was optimal in some sense).

The goal of that algorithm was to decrease the number of constraints as well
as the maximum constants appearing in constraints.

In our later work [13] we studied optimization of scenarios in more depth
and developed a general algorithm that would optimize scenarios according to
some given strategy. Our main goal was to minimise the maximum constants
associated with the clocks that would be needed after converting a scenario to a
timed automaton, while decreasing the number of clocks. Similarly to our earlier
algorithm, this new algorithm relied on some particular ordering of constraints.
While we had more control over—and insight into—how the algorithm worked,
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we did not obtain an entirely satisfactory result: we did not achieve minimality
in the number of clocks.

The current paper summarizes our final approach to optimizing scenarios.
Given a scenario, our new optimization algorithm replaces the time constraints
of the scenario, represented by a stable distance table, with an equivalent set
that would require the smallest number of clocks in the entire class of equivalent
scenarios, when the scenarios are viewed as timed automata.

2 Preliminaries

2.1 Timed Automata

A timed automaton [3] is a tuple A = 〈Σ,Q, q0, Qf , C, T 〉, where Σ is a finite
alphabet, Q is the (finite) set of locations, q0 ∈ Q is the initial location, Qf ⊆ Q
is the set of final locations, C is a finite set of clock variables (clocks for short),
and T ⊆ Q × Q × Σ × 2C × 2Φ(C) is the set of transitions. In each transition
(q, q′, e, λ, φ), λ is the set of clocks to be reset with the transition and φ ⊂ Φ(C)
is a set of clock constraints over C of the form c ∼ a (where ∼ ∈ {≤, <,≥, >,=},
c ∈ C and a is a constant in the set of rational numbers, Q).

A clock valuation ν for C is a mapping from C to R
≥0. ν satisfies a set of

clock constraints φ over C iff every clock constraint in φ evaluates to true after
each clock c is replaced with ν(c). For τ ∈ R, ν + τ denotes the clock valuation
which maps every clock c to the value ν(c) + τ . For Y ⊆ C, [Y 
→ τ ]ν is the
valuation which assigns τ to each c ∈ Y and agrees with ν over the rest of the
clocks.

A timed word over an alphabet Σ is a pair (σ, τ) where σ = σ1σ2... is a finite
[1,6] or infinite [3] word over Σ and τ = τ1τ2... is a finite or infinite sequence of
(time) values such that (i) τi ∈ R

≥0, (ii) τi ≤ τi+1 for all i ≥ 1, and (iii) if the
word is infinite, then for every t ∈ R

≥0 there is some i ≥ 1 such that τi > t.
A run ρ of A over a timed word (σ, τ) is a sequence of the form 〈q0, ν0〉 σ1−→

τ1

〈q1, ν1〉 σ2−→
τ2

〈q2, ν2〉 σ3−→
τ3

. . . , where for all i ≥ 0, qi ∈ Q and νi is a clock valuation

such that (i) ν0(c) = 0 for all clocks c ∈ C and (ii) for every i > 1 there is a
transition in T of the form (qi−1, qi, σi, λi, φi), such that (νi−1+τi−τi−1) satisfies
φi, and νi equals [λi 
→ 0](νi−1 + τi − τi−1). The set inf (ρ) consists of q ∈ Q
such that q = qi for infinitely many i ≥ 0 in the run ρ.

A run over a finite timed word is accepting if it ends in a final location [6].
A run ρ over an infinite timed word is accepting iff inf (ρ) ∩ Qf = ∅ [3]. The
language of A, L(A), is the set {(σ, τ) | A has an accepting run over (σ, τ)}.

2.2 Timed Scenarios

(This subsection briefly recounts our earlier work [12,13]).
Let Σ be a finite set of symbols called events. A behaviour1 over Σ is a

sequence (e0, t0)(e1, t1)(e2, t2) . . . , such that ei ∈ Σ, ti ∈ R
≥0 and ti−1 ≤ ti for

1 The notion of “behaviour” is equivalent to that of Alur’s “timed word” [3].
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L0 : a;
L1 : b;
L2 : c {L0 ≤ 9, L0 ≥ 9, L1 ≤ 3};

d {L2 ≤ 2}.

ξ

L0 : a;
b {L0 ≥ 6};

L2 : c {L0 ≤ 9, L0 ≥ 9};
d {L2 ≤ 2}.

η

1 2 3
0 (6, 9) (9, 9) (9, 11)
1 (0, 3) (0, 5)
2 (0, 2)

Fig. 1. Two equivalent scenarios with their stable table

i ∈ {1, 2 . . . }. For a finite behaviour B = (e0, t0)(e1, t1) . . . (en−1, tn−1) of length
n, and for any 0 ≤ i < j < n, we use tBij to denote the distance, in time units, of
event j from event i in B. That is, tBij = tj − ti.

Given a natural number n, we use Φ(n) to denote the set of constraints of
the form b ∼ a, where b is the symbol τi,j (for some integers 0 ≤ i < j < n),
∼∈ {≤,≥}2 and a is a constant in the set of rational numbers, Q. A timed
scenario (scenario for short) of length n ∈ N over Σ is a pair (E , C), where
E = eoe1...en−1 is a sequence of events, and C ⊂ Φ(n) is a finite set of constraints.

A scenario will be written as a sequence of events, separated by semicolons
and terminated by a period. If the scenario contains a constraint such as τi,j ≤ a,
then event i in the sequence will be labelled by a unique symbol Li, and event
j will be annotated with a set of constraints that contains Li ≤ a. We refer
to this as the external representation of the scenario. η in Fig. 1 is the external
representation of scenario (abcd, {τ0,1 ≥ 6, τ0,2 ≤ 9, τ0,2 ≥ 9, τ2,3 ≤ 2}).

A behaviour B = (e0, t0)(e1, t1) . . . (en−1, tn−1) over Σ is allowed by scenario
ξ = (E , C) iff E = e0 . . . en−1 and every τi,j ∼ a in C evaluates to true after τi,j

is replaced by tBij .
The constraints τi,j ≥ 0 and τi,j ≤ ∞, which always evaluate to true after

we replace them with some tBij , will be called default constraints.
The semantics of scenario ξ, denoted by [[ξ]], is the set of behaviours that are

allowed by ξ. For scenario η in Fig. 1 [[η]] = {(a, t0)(b, t1)(c, t2)(d, t3) | t3 ≥ t2 ≥
t1 ≥ t0 ∧ t1 − t0 ≥ 6 ∧ t2 − t0 ≤ 9 ∧ t2 − t0 ≥ 9 ∧ t3 − t2 ≤ 2}.

A scenario ξ is consistent iff [[ξ]] = ∅. It is inconsistent iff [[ξ]] = ∅.
If ξ = (E , C) is a scenario of length n, and C contains a constraint τi,j ∼ a for

some 0 ≤ i < j < n, then the index i is an anchor. We sometimes say constraint
τi,j ∼ a “begins” at anchor i. For an anchor i, if 0 < j < n is the largest number
such that τi,j ∼ a is a constraint in C, then [i, j) is the range of anchor i. If i1
and i2 are two anchors with ranges [i1, j1) and [i2, j2) in ξ, then the two ranges
overlap iff i1 < i2 < j1 or i2 < i1 < j2.

An anchor i in ξ corresponds to a referenced label in the external representa-
tion of ξ. For example, in scenario η of Fig. 1, i.e., (abcd, {τ0,1 ≥ 6, τ0,2 ≤ 9, τ0,2 ≥
9, τ2,3 ≤ 2}), the anchors 0 and 2 correspond to labels L0 and L2, respectively.
The range of 0 is [0, 2) and the range of 2 is [2, 3): these are non-overlapping.

By Anchξ we denote the set of anchors of ξ. We assume the existence of a set
X of clock variables. A clock allocation for ξ is a relation allocξ ⊂ Anchξ × X.

2 To keep the presentation compact, equality is expressed in terms of ≤ and ≥ [12].
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l0 l1 l2 l3 l4
a

x := 0

b

y := 0

c

x = 9
y ≤ 3
x := 0

d

x ≤ 2

Aξ

l0 l1 l2 l3 l4

Aη

a

x := 0

b

x ≥ 6

c

x = 9
x := 0

d

x ≤ 2

Fig. 2. Two equivalent timed automata corresponding to the scenarios of Fig. 1

allocξ is complete iff for every anchor i ∈ Anchξ there is a clock x ∈ X such
that (i, x) ∈ allocξ. allocξ is incorrect iff there exist two different anchors i and
j in Anchξ whose ranges overlap, such that (i, x) ∈ allocξ and (j, x) ∈ allocξ

for some x ∈ X. allocξ is correct iff it is not incorrect. A correct and complete
clock allocation is optimal if there is no other correct and complete allocation
that uses fewer clocks.

{(0, x), (2, x)} is an optimal clock allocation for scenario η of Fig. 1.
For a scenario ξ = (e0e1 . . . en−1, C) and an optimal clock allocation allocξ,

its corresponding timed automaton, Aξ, is defined as follows: {l0, l1, . . . ln} is
the set of locations of Aξ; l0 is the initial location and ln is the final location;
there is a transition ri from li to li+1 labeled with ei, for each 0 ≤ i < n;
K = {x | ∃i∈Anchξ

(i, x) ∈ allocξ} is the set of clocks of Aξ; if (i, x) ∈ allocξ, then
there is a clock reset x := 0 on transition ri; if τi,j ∼ a is a constraint in C and
(i, x) ∈ allocξ, then there is a clock constraint x ∼ a on transition rj .

The two automata of Fig. 2 correspond to scenarios of Fig. 1.
For a consistent scenario ξ of length n, and for 0 ≤ i < j < n, we define

mξ
ij = min{tBij | B ∈ [[ξ]]} and M ξ

ij = max{tBij | B ∈ [[ξ]]}. If there is no upper
bound for i and j we will use M ξ

ij = ∞. We will often write just mij and Mij when
ξ is understood. Obviously, for any behaviour in [[ξ]], 0 ≤ mij ≤ tij ≤ Mij ≤ ∞.

For a consistent scenario ξ of length n, and for any 0 ≤ i < j < k < n the
following inequations hold:

mij + mjk ≤ mik ≤
{

mij + Mjk

Mij + mjk

}
≤ Mik ≤ Mij + Mjk (1)

Let ξ = (E , C) be a scenario of length n, such that, for any 0 ≤ i < j < n, C
contains at most one constraint of the form τi,j ≥ c and at most one of the form
τi,j ≤ c. A distance table for ξ is a representation of C in the form of a triangular
matrix Dξ. For 0 ≤ i < j < n, Dξ

ij = (lij , hij), where lij and hij are rational
numbers. If τi,j ≥ c ∈ C then lij = c, otherwise lij = 0; if τi,j ≤ c ∈ C then
hij = c, otherwise hij = ∞. (See the example in Fig. 3).

A distance table of size n is valid iff lij ≤ hij , for all 0 ≤ i < j < n. A table
that is not valid is invalid. If Dξ is invalid, then ξ is obviously inconsistent.

A distance table of size n is stable iff, for all 0 ≤ i < j < k < n, the
inequations in (1) hold when mij , mjk, mik are replaced by lij , ljk, lik and Mij ,
Mjk, Mik are replaced by hij , hjk, hik. If Dξ is stable then ξ is consistent.
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L0 : e;
L1 : f ;
L2 : g {L0 ≤ 10, L0 ≥ 10};

h {L1 ≤ 8, L1 ≥ 8,
L2 ≤ 2}.

1 2 3
0 (0, ∞) (10, 10) (0, ∞)
1 (0, ∞) (8, 8)
2 (0, 2)

1 2 3
0 (2, 4) (10, 10) (10, 12)
1 (6, 8) (8, 8)
2 (0, 2)

Fig. 3. A scenario, its initial distance table and its stable distance table

To stabilise Dξ we repeatedly apply the following six rules until the table
becomes either invalid or stable.

lij + ljk > lik −→ lik := lij + ljk lik > lij + hjk −→ lij := lik − hjk

lik > hij + ljk −→ ljk := lik − hij lij + hjk > hik −→ hjk := hik − lij

hij + ljk > hik −→ hij := hik − ljk hik > hij + hjk −→ hik := hij + hjk

At least one of these rules is applicable if and only if some inequation in (1)
does not hold. The purpose of each rule is to tighten a constraint just enough to
establish a particular inequation.

A stabilised distance table has two properties. First, all the constraints rep-
resented by the table are as tight as possible, i.e., lij = mij and hij = Mij for
every 0 ≤ i < j < n. Second, as a result of applying the rules above, the table
includes all the constraints that are “implied” by the initial set of constraints.

The right hand side of Fig. 1 shows the stable distance table obtained from
the constraints of either of the two scenarios in the figure (which shows that they
are equivalent). The right-hand side of Fig. 3 shows the result of stabilising the
original distance table (shown in the middle).

Given a scenario ξ with its stable distance table Dξ
s , we use C(Dξ

s) to denote
the set of constraints represented by Dξ

s .

Definition 1. Let ξ be a scenario of length n, Dξ
s be its stable table, c ∈ C(Dξ

s)
be a non-default constraint, S ⊂ C(Dξ

s), and 0 ≤ i < j < k < n. We say that
c is directly supported by S, denoted by S � c, iff c and S satisfy one of the
following six conditions:

1. c = τi,k ≥ u, S = {τi,j ≥ v, τj,k ≥ w}, and u = v + w.
2. c = τi,j ≥ u, S = {τi,k ≥ v, τj,k ≤ w}, and u = v − w.
3. c = τj,k ≥ u, S = {τi,k ≥ v, τi,j ≤ w}, and u = v − w.
4. c = τj,k ≤ u, S = {τi,k ≤ v, τi,j ≥ w}, and u = v − w.
5. c = τi,j ≤ u, S = {τi,k ≤ v, τj,k ≥ w}, and u = v − w.
6. c = τi,k ≤ u, S = {τi,j ≤ v, τj,k ≤ w}, and u = v + w.

Each of the cases in the definition corresponds to one of the six rules above. For
example, if l13 = 3, l36 = 4 and l16 = 0 (i.e., the corresponding constraint is
missing), then the first rule will force l16 to be 7. In other words, the constraint
l16 = 7 is directly supported (i.e., “implied”) by the other two constraints.
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Definition 2. (quasi-transitivity) Let Dξ
s be a stable table. �+⊂ 2C(Dξ

s)×C(Dξ
s)

is the smallest relation that satisfies the following two conditions:

1. If S � c then S �+ c;
2. If S �+ c and there is a constraint d ∈ S such that, for some S′, S′ �+ d

and c /∈ S′, then (S \ {d}) ∪ S′ �+ c.

When S �+ c, we say that c is supported by S. S is then called a support of c.

We sometimes say that c has a support, when there is no need to specify S.
Intuitively, if a constraint d has a supporting set, then d can be removed

from the scenario, because stabilisation of the distance table will restore it: d is
implied by its support. The removed d can be a member of the supports of other
constraints, e.g., d can appear in a set S that supports c. As long as d has a
support S′ that does not include c, S can be updated by replacing d with S′. The
relation �+ captures all the possible supports for the constraints in C(Dξ

s). As
constraints are removed, the set of constraints will decrease and �+ (as well as
other relation derived from it) should be understood as restricted to the current
set of constraints: we will not be pedantic about capturing it in the notation.

Observation 1. If S �+ c, then c /∈ S.

3 A New Optimization Algorithm

Given a collection of scenarios, our ultimate goal is to synthesize a timed automa-
ton [3] whose language would be the set of behaviours allowed by appropriate
combinations of the scenarios [14]. The first step towards that goal is optimiza-
tion of single scenarios.

A timed scenario ξ can be trivially converted to a simple timed automaton
Aξ (Sect. 2.1). An equivalent scenario η would yield a timed automaton Aη.
Aξ and Aη will be language-equivalent, but each of them might have a different
number of clocks. As an example consider the two equivalent scenarios of Fig. 1
along with their corresponding equivalent automata shown in Fig. 2. Notice that
Aη has only one clock, while Aξ requires two clocks.

Our task is as follows: given a timed scenario ξ, find an equivalent scenario
ξ′ such that the number of clocks in Aξ′ is minimal in the class of automata that
are obtained from all scenarios equivalent to ξ.

We do so by starting from a scenario that contains C(Dξ
s) (i.e., all the con-

straints that are implied by the constraints of the original scenario ξ), and then
successively removing constraints that are implied by other constraints. From a
bird’s eye perspective, the process can be described as follows (see Sect. 3.5 for
details):

– Let C = C(Dξ
s);

– While there is a c ∈ C such that ∃S⊂C(S �+ c):
• remove c from C ;

– C is the solution, i.e., the final set of constraints.
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This involves making choices, and the solution may depend on how these choices
are made. For example, removing constraint a may prevent us from removing
constraint b, and vice versa.

In the remainder of this section we carefully analyze the situations that may
arise during this process, and formulate a set of rules that, when applied, guar-
antee reaching a solution that is optimal in terms of the number of clocks.

We begin by examining cyclic dependencies, because it turns out they are
the only source of those choices that actually affect the outcome.

3.1 Cyclic Dependencies

Definition 3. Let Dξ
s be a stable table and let a and b be constraints in C(Dξ

s).
A support of b with respect to a, denoted by S�b

a , is any set S ⊂ C(Dξ
s) such that

a ∈ S and S �+ b.

Given a and b, S�a
b need not be unique. Notice that a /∈ S�a

b (Observation 1).

Definition 4. If there is some S�b
a , then we say that b depends on a, and write

a → b.

Observation 2. Let a, b and c be three different constraints in C(Dξ
s), such that

a → b and b → c. If there is some S�b
a that does not contain c, then a → c.

Proof. The above follows directly from Definitions 2, 3 and 4. ��
Definition 5. We say that a and b are in a cyclic dependency, denoted by
a ↔ b, if a → b and b → a.

As an example consider scenario ξ of Fig. 1 along with its distance table. Let
a = τ0,1 ≥ 6, b = τ1,2 ≤ 3 and c = τ1,3 ≤ 5. {τ0,2 ≤ 9, τ0,1 ≥ 6} � τ1,2 ≤ 3, so
we have a S�b

a , hence a → b. Moreover, {τ1,2 ≤ 3, τ2,3 ≤ 2} � τ1,3 ≤ 5, so we
have a S�c

b , hence b → c. Since we have a S�b
a that does not contain c, we can

conclude that a → c.
Also, a ↔ b: let S�b

a be {τ0,2 ≤ 9, τ0,1 ≥ 6} and let S�a
b be {τ0,2 ≥ 9, τ1,2 ≤ 3}.

Observation 3. Let a, b and c be three different constraints in C(Dξ
s), such that

a → b and b → c. If, additionally, for every pair of constraints x and y, x ↔ y,
then a → c.

Proof. Assume the condition of Observation 2 is not satisfied, i.e., c is present
in every S�b

a . There is at least one S�b
a , but if it includes c then it is also S�b

c .
Therefore b ↔ c: a contradiction. ��
Observation 4. Let Dξ

s be a stable distance table. Let a, b and c be three dif-
ferent constraints in C(Dξ

s) such that a ↔ b and b ↔ c. Then a ↔ c if there is
some S�b

a that does not contain c and some S�b
c that does not contain a.

Proof. This follows directly from Observation 2 and Definition 5. ��
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In the scenario of Fig. 3 let a = τ0,1 ≤ 4, b = τ1,2 ≥ 6, and c = τ2,3 ≤ 2.
{τ0,2 ≤ 10, τ1,2 ≥ 6} � τ0,1 ≤ 4, and {τ0,2 ≥ 10, τ0,1 ≤ 4} � τ1,2 ≥ 6. So we

have a S�a
b and a S�b

a . That is, a ↔ b. On the other hand, we also have a S�b
c

and a S�c
b : {τ1,3 ≥ 8, τ2,3 ≤ 2} � τ1,2 ≥ 6 and {τ1,3 ≤ 8, τ1,2 ≥ 6} � τ2,3 ≤ 2. So

b ↔ c. Notice that the S�b
a does not include c, while the S�b

c does not include a.
By Observation 4, a ↔ c. Indeed, S�a

c and S�c
a exist: {τ0,2 ≤ 10, τ1,3 ≥ 8, τ2,3 ≤

2} �+ τ0,1 ≤ 4 and {τ1,3 ≤ 8, τ0,2 ≥ 10, τ0,1 ≤ 4} �+ τ2,3 ≤ 2.

Observation 5. Let Dξ
s be a stable distance table. Let a, b and c be three dif-

ferent constraints in C(Dξ
s) such that a ↔ b and a ↔ c. If a → c, then, after a

is removed, c is still supported.

Proof. a ↔ b, so there is some S�a
b : call it S1. Clearly, c /∈ S1, otherwise we

would have c → a, and therefore a ↔ c.
a → c, so there is a set S ⊂ C(Dξ

s) such that a ∈ S and S �+ c. c /∈ S (by
Observation 1). So, by Definition 2, (S \ {a}) ∪ S1 �+ c. ��
In other words: if two constraints a and b are in a cyclic dependency and during
the course of optimization one of them, say a, is removed, then all the constraints
that were previously supported by a continue to be supported. The only excep-
tion is b: if b has only one support which is its support with respect to a, then b
can no longer be removed after the removal of a.

Obviously, if two constraints are in a cyclic dependency, either one of them
can be removed. However, both of them cannot be removed unless at least one of
them has a support other than its supports with respect to the other constraint.

Observation 6. Let Dξ
s be a stable distance table. Let a and b be two constraints

in C(Dξ
s) such that a ↔ b. If there is some S ⊂ C(Dξ

s) such that S � a and b /∈ S,
then both a and b can be removed.

Proof. a ↔ b, so there is a S�b
a : call it S1.

We consider two cases:
(1) If a is removed first, then, by Definition 2, (S1 \ {a}) ∪ S �+ b. Since b

has a support, it can be removed.
(2) If b is removed first, then a is supported by S and can be removed. ��

In the example of Fig. 1 τ0,1 ≥ 6 and τ1,2 ≤ 3 do not have any supports other
than their supports with respect to each other, so one of them must be retained.
Scenario η of Fig. 1 shows an equivalent scenario where τ0,1 ≥ 6 is retained.
Observe that after removal of τ1,2 ≤ 3 label L1 is no longer needed.

Theorem 1. Let Dξ
s be a stable distance table. Let a, b and c be three constraints

in C(Dξ
s) such that a → b, b → c, a ↔ b, and b ↔ c. Then c → a, and therefore

a ↔ c.

Proof. Assume that c → a. Then there must exist some S�a
c . It cannot contain

b, otherwise we would have b → a, and therefore a ↔ b. But if so, then by
Observation 4 we would have c → b, and therefore b ↔ c: a contradiction. ��
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Intuitively, Theorem 1 states that there is no cycle of length three consisting
of members of C(Dξ

s) between which there is no cyclic dependency. Moreover,
because of the quasi-transitivity of �+ (Definition 2), it follows that there are
then also no cycles of length greater than three.

3.2 Cyclic Dependencies and Equality Constraints

Henceforth, we will refer to the pair of constraints, τi,j ≤ a and τi,j ≥ a, for
some a, as an equality constraint τi,j = a.

It turns out that if there is a cyclic dependency among the constraints in
C(Dξ

s), then there must be at least one equality constraint in C(Dξ
s).

Observation 7. Let ξ be a scenario of length n and C(Dξ
s) be the set of con-

straints in its stable distance table. If ∀0≤i<j<n(τi,j ≥ u ∈ C(Dξ
s) ∧ τi,j ≤ v ∈

C(Dξ
s) =⇒ u = v), then there is no cyclic dependency between the members of

C(Dξ
s).

Proof. First, we show that there is no “cyclic dependency of length one”, i.e., for
any two constraints a and b in C(Dξ

s), there are no S�b
a and S�a

b such that S�b
a � b

and S�a
b � a (note that � is the direct support relation: see Definition 1). The

general observation then follows from Theorem 1.
Assume that there are two constraints a and b such that a ↔ b and that

there is a S�b
a and a S�a

b such that S�b
a � b and S�a

b � a.
We show the proof for the case when constraint a is of type minimum. Then

there are three cases to consider:

1. Assume a is of the form τi,k ≥ u, and S�a
b = {τi,j ≥ v, τj,k ≥ w}, where

i < j < k and u = v + w (pt. 1. of Definition 1). One of the two constraints
in S�a

b must be b.
(a) Assume b = τi,j ≥ v. Since a ∈ S�b

a , S�b
a = {τi,k ≥ u, τj,k ≤ w′} for

some w′ such that v = u − w′ (pt. 2. of Definition 1). But then v + w =
v + w′, which implies w = w′. Therefore both τj,k ≥ w and τj,k ≤ w
are constraints (in S�a

b and S�b
a , respectively). But this contradicts the

assumptions of Observation 7.
(b) Assume b = τj,k ≥ w. Since a ∈ S�b

a , S�b
a = {τi,k ≥ u, τi,j ≤ w′} for some

w′ such that w = u−w′ (pt. 3. of Definition 1). But then v +w = w+w′,
which implies v = w′. Therefore both τi,j ≥ v and τi,j ≤ v are constraints
(in S�a

b and S�b
a , respectively). But this is a contradiction.

2. Assume a is of the form τi,j ≥ u and S�a
b = {τi,k ≥ v, τj,k ≤ w}, where

i < j < k and u = v − w (pt. 2. of Definition 1).
(a) If b = τi,k ≥ v, then S�b

a = {τi,j ≥ u, τj,k ≥ w′}, where v = u + w′ (pt. 1.
of Definition 1). So u + w = u + w′, hence w = w′ and both τj,k ≤ w and
τj,k ≥ w are constraints: contradiction.

(b) If b = τj,k ≤ w, then S�b
a = {τi,j ≥ u, τi,k ≤ w′}, where w = w′ − u

(pt. 3. of Definition 1). So v−w = w′ −w, hence v = w′ and both τi,k ≥ v
and τi,k ≤ v are constraints: contradiction.



Minimization of the Number of Clocks for Timed Scenarios 131

3. Assume a is of the form τj,k ≥ u and S�a
b = {τi,k ≥ v, τi,j ≤ w}, where

i < j < k and u = v − w (pt. 3. of Definition 1).
(a) If b = τi,k ≥ v, S�b

a = {τj,k ≥ u, τi,j ≥ w′}, where v = u + w′ (pt. 1. of
Definition 1). So v − w = v − w′, hence w = w′, and both τi,j ≤ w and
τi,j ≥ w are constraints: a contradiction.

(b) If b = τi,j ≤ w, S�b
a = {τj,k ≥ u, τi,k ≤ w′}, where w = w′ − u (pt. 2. of

Definition 1). So v − w = w′ − w, hence v = w′ and both τi,k ≥ v and
τi,k ≤ v are constraints: a contradiction.

We omit the very similar proof for the case when a is of the form maximum. ��
Theorem 2. Let ξ be a scenario and let Dξ

s be its stable distance table. If, for
every pair of constraints x and y in C(Dξ

s), x ↔ y, then → defined on C(Dξ
s) is

a strong partial order.

Proof. We must show that → is irreflexive, antisymmetric and transitive.
By Observation 1, → is irreflexive. To see that → is antisymmetric, we

assume it is symmetric. Let a and b be two constraints in C(Dξ
s) such that

a → b. Then b → a, therefore a ↔ b: a contradiction.
For transitivity, let a and b be two constraints in C(Dξ

s) such that a → b and
b → c. There are no cyclic dependencies: a → c follows from Observation 3. ��
Intuitively, in the absence of cyclic dependencies (C(Dξ

s),→) is a partially ordered
set. Since C(Dξ

s) is finite, it has at least one minimal element, i.e., an element
that does not have any support and hence cannot be removed. The set of such
minimal elements is equivalent to the set of constraints represented by C(Dξ

s).
Moreover, this is the smallest set equivalent to C(Dξ

s): any scenario equivalent
to ξ must include this minimal set in its set of constraints.

It should be obvious that when a scenario with just this minimal set of
constraints is converted to a timed automaton, the latter has the smallest number
of clocks in the class of all equivalent timed automata.

Another important consequence of Theorem 2 is that if C(Dξ
s) does not

include cyclic dependencies, then all of its members that do have supports can
be removed in any order.

3.3 C(Dξ
s) with Cyclic Dependencies

C(Dξ
s) can include equality constraints which might give rise to cyclic dependen-

cies (Observation 7). In that case (C(Dξ
s),→) is not a partially ordered set. We

could then have a ↔ b such that we can remove a or b, but not both. As a result
there could be more than one minimal set of constraints equivalent to C(Dξ

s).
To avoid this we will introduce a set of rules that would make the choice for

removal between two constraints that are in a cyclic dependency deterministic.
More importantly, the choice will result in a set of constraints that would require
the smallest number of clocks in the class of all timed automata that are obtained
from scenarios that are equivalent to ξ. These rules are presented below.
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3.4 Resolving Cyclic Dependencies

We consider all the cases that give rise to cyclic dependencies. These cases (which
involve equality constraints) are summarized as observations in the remainder
of this subsection.

Observation 8. Let i < j be some event indices such that (τi,j = a) ∈ C(Dξ
s)

and, for any i < p < j, a1 and a2, (τi,p = a1) /∈ C(Dξ
s) and (τp,j = a2) /∈ C(Dξ

s).
Then the clock allocated to anchor i can always be allocated to anchor j if needed.

Proof. We consider the following three cases (see Fig. 4):

1. If every constraint that begins at i is of the form τi,r ≥ c (or τi,r ≤ c), for
some r < j, c ≤ a, then the ranges of i and j will be non-overlapping, so one
clock can be allocated to both.

2. If there is a constraint of the form τi,k ≥ c, for some k > j, c ≥ a, then
we must have {τi,j ≥ a, τj,k ≥ c − a} � τi,k ≥ c (pt. 1 of Definition 1)
and {τi,k ≥ c, τi,j ≤ a} � τj,k ≥ c − a (pt. 3 of Definition 1). That is,
τi,k ≥ c ↔ τj,k ≥ c−a. In this case, τi,k ≥ c can be removed, while τj,k ≥ c−a
is retained. Then the ranges of i and j are non-overlapping.
Similarly, if there is a constraint of the form τi,k ≤ c, for some k > j, c ≥ a,
then τi,k ≤ c ↔ τj,k ≤ c − a and τi,k ≤ c can be removed.

3. If there is a constraint of the form τi,k = c, for some k > j, c ≥ a, then we
must also have τj,k = c − a. According to Definition 1 the direct supports of
these three equality constraints (six constraints in C(Dξ

s)) are

{τi,j ≤ a, τj,k ≤ c − a} � τi,k ≤ c, {τi,j ≥ a, τj,k ≥ c − a} � τi,k ≥ c,

{τi,k ≤ c, τi,j ≥ a} � τj,k ≤ c − a, {τi,k ≥ c, τi,j ≤ a} � τj,k ≥ c − a,

{τi,k ≤ c, τj,k ≥ c − a} � τi,j ≤ a, and {τi,k ≥ c, τj,k ≤ c − a} � τi,j ≥ a.

Observe that τi,j ≤ a ↔ τj,k ≥ c − a ↔ τi,k ≥ c ↔ τi,j ≥ a ↔ τj,k ≤ c − a ↔
τi,k ≤ c ↔ τi,j ≤ a.
The dependencies can be resolved by removing some of the constraints. We
can remove τi,k ≥ c, then τi,j ≥ a and τj,k ≥ b will both lose their direct
supports. If we follow this by removing τi,k ≤ c, then τi,j ≤ a and τj,k ≤ b
will lose their direct supports. That is, the equality between i and k can
be removed as long as the equalities between i and j, and between j and k
remain. Then the ranges of i and j become non-overlapping. ��

It is worth noticing that resolving the cyclic dependencies as described in case
3 of Observation 8 (see the diagram on the left of Fig. 5) leads to the most
satisfactory result: the other possibility, where the equality between j and k is
retained (shown in the diagram on the right of Fig. 5), would require two clocks
associated with anchors i and j.

Observe also that, for example, τi,j ≤ a ↔ τi,k ≥ c: Observation 4 cannot be
applied, because τj,k ≥ b has only one support, and that includes both τi,j ≤ a
and τi,k ≥ c.
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i r j

τi,r ≥ c (or τi,r ≤ c)

τi,j = a

i j k

τi,j = a

τi,k ≥ c (or τi,k ≤ c)
i j k

τi,j = a

τi,k = c

Fig. 4. Observation 8

i j k

τi,j = a τj,k = c − a

i j k

τj,k = c − a

τi,k = c

Fig. 5. Alternatives of case 3 of Observation 8

i j k

τi,j ≤ a τj,k = b

τi,k ≤ c

Fig. 6. Observation 10

Observation 9. An equality constraint can only be supported by a pair of equal-
ity constraints.

Proof. This is a direct consequence of Definition 1 (see the discussion above). ��
In the first diagram of Fig. 5 (after τi,k = c has been removed) neither τi,j = a,
nor τj,k = c − a can be removed.

Observation 10. Let i < j < k be some event indices such that (τj,k = b) ∈
C(Dξ

s) and, for any j < p < k, b1 and b2, (τj,p = b1) /∈ C(Dξ
s) and (τp,k = b2) /∈

C(Dξ
s). Moreover, either (a) τi,j ≤ a, and τi,k ≤ c, or (b) τi,j ≥ a, and τi,k ≥ c,

such that a + b = c. If there is no unsupported constraint of the form τi,l ∼ d
such that l > j, then one clock can be associated with both anchors i and j.

Proof. In case (a), illustrated in Fig. 6, from Definition 1 (pts. 6. and 5.) we
have {τi,j ≤ a, τj,k ≤ b} � τi,k ≤ c and {τi,k ≤ c, τj,k ≥ b} � τi,j ≤ a.
So τi,k ≤ c ↔ τi,j ≤ a. After removing τi,k ≤ c, if there is no unsupported
constraint of the form τi,l ∼ d, such that l > j, then the ranges for i and j will
be non-overlapping and one clock can be assigned to both i and j. Otherwise
ranges for i and j will overlap and two clocks will be needed.

Case (b) is very similar. ��
Observation 11. Let ξ be a scenario of length n and Dξ

s be its stable table. Let
i < j1 < j2 < · · · < jm−1 < k (where 0 ≤ i, k ≤ n,m > 1) be indices of events
and τi,k = c, τi,j1 = a1, τj1,j2 = a2, . . . , τjm−1,k = am be constraints in C(Dξ

s),
such that a1 + a2 + . . . am = c. Moreover, for any i < p < k, such that p = jl

(1 ≤ l ≤ m − 1), and for any b1, b2, C(Dξ
s) contains no constraints of the form

(τi,p = b1) or (τp,k = b2). Then, after all the supported constraints have been
removed, an allocation to anchors i, j1, j2, . . . , jm−1 will require only one clock.
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i0 i1 i2

...
in−1 inp

τi0,i1 = a1
τi1,i2 = a2 τin−1,in = an

τi0,p ≥ b
(τi0,p ≤ b)

τp,in ≤ cn (τp,in ≥ cn)

Fig. 7. An illustration of Observation 12

Proof. For any three event indices between i, j1, j2, . . . , jm−1, k, there is in C(Dξ
s)

a supported equality constraint between the earliest and the latest event. After
removing every such constraint, all constraints τi,k = c, τi,j1 = a1, τj1,j2 =
a2, . . . , τjm−1,k = am will have lost their supports, hence cannot be removed. So
anchors i, j1, j2, . . . , jm−1 must be allocated clocks. But by Observation 8 the
ranges of all these anchors are non-overlapping, therefore the same clock can be
allocated to all of them. ��
By Observation 11 the only unsupported constraints that begin at anchors
i, j1, j2, . . . , jm−1 are the equality constraints between any two adjacent events.
The next two observations consider the constraints that begin at other anchors.

Observation 12. Let i0 < i1 < i2 < · · · < in−1 < in (where n ≥ 1) be indices
of events and τi0,i1 = a1, τi1,i2 = a2, . . . , τin−1,in

= an be constraints in C(Dξ
s).

Let i0 < p < i1 be an arbitrary event index such that τi0,p ≥ b (or τi0,p ≤ b).
Then, after all the supported constraints have been removed, an allocation to
anchors i0, p, i1, . . . , in−1 will require at most two clocks.

Proof. Let us assume τi0,p ≥ b. (We omit the very similar case of τi0,p ≤ b.)
Then for every im such that 1 ≤ m ≤ n we must have τp,im

≤ cm, where cm

satisfies a1 + a2 + · · · + am = b + cm (see the diagram in Fig. 7).
By Definition 1 pts. 4. and 2. (with i = i0, j = p and k = i1):

{τi0,i1 ≤ a1, τi0,p ≥ b} � τp,i1 ≤ c1

{τi0,i1 ≥ a1, τp,i1 ≤ c1} � τi0,p ≥ b

By Definition 1 pts. 4. and 2. (with i = i0, j = p and k = im) and Definition 2:

{τi0,i1 ≤ a1, τi1,i2 ≤ a2, . . . , τim−1,im
≤ am, τi0,p ≥ b} �+ τp,im

≤ cm

{τi0,i1 ≥ a1, τi1,i2 ≥ a2, . . . , τim−1,im
≥ am, τp,im

≤ cm} �+ τi0,p ≥ b

By Definition 1 pts. 5. and 6. (with i = p, j = i1 and k = im) and Definition 2:

{τp,im
≤ cm, τi1,i2 ≥ a2, . . . , τim−1,im

≥ am} �+ τp,i1 ≤ c1

{τp,i1 ≤ c1, τi1,i2 ≤ a2, . . . , τim−1,im
≤ am} �+ τp,im

≤ cm

That is, τi0,p ≥ b ↔ τp,i1 ≤ c1, τi0,p ≥ b ↔ τp,im
≤ cm, and τp,i1 ≤ c1 ↔ τp,im

≤
cm. By Observation 6, two of the constraints among the three can be removed
(for any 1 ≤ m ≤ n). Observe that τp,i1 ≤ c1 and τp,im

≤ cm begin at anchor p.
We consider three cases:
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i0 i1 i2

...
ik ik+1

...
in−1 inp

τi0,i1 = a1 τi1,i2 = a2 τik,ik+1 = ak+1 τin−1,in = an

τi0,p ≥ b (τi,p ≤ b) τp,in ≤ cn (τp,in ≥ cn)

Fig. 8. An illustration of Observation 13

1. If there are in C(Dξ
s) no other constraints that begin at p, then after removing

τp,i1 ≤ c1 and τp,im
≤ cm, p is no longer an anchor.

2. If there are in C(Dξ
s) some other constraints of the form τp,j ≤ d or τp,j ≥ d

(where j > p, j = im and 1 ≤ m ≤ n) and they are all supported, then,
after removing τp,i1 ≤ c1 and τp,im

≤ cm, they continue to be supported
(Observation 5). So all all the constraints that begin at p can be removed and
p is no longer an anchor.

3. If there is in C(Dξ
s) an unsupported constraint of the form τp,j ≤ d or τp,j ≥ d

(where j > p, j = im, and 1 ≤ m ≤ n), then after removing τp,i1 ≤ c1 and
τp,im

≤ cm p is still an anchor p.

If p is no longer an anchor, then by Observation 11 an allocation to anchors
i0, i1, . . . , in−1 requires exactly one clock. If p remains an anchor, we will need
an extra clock for p. ��

Observation 13. Let i0 < i1 < i2 < · · · < in−1 < in (where n ≥ 1) be indices of
events and τi0,i1 = a1, τi1,i2 = a2, . . . , τin−1,in

= an be constraints in C(Dξ
s). Let

ik < p < ik+1 (where 1 ≤ k < n) be an arbitrary event index such that τi0,p ≥ b
(or τi0,p ≤ b). Then, after all the supported constraints have been removed, an
allocation to anchors i0, i1, . . . , in−1, p will require at most two clocks.

Proof. Let us assume τi0,p ≥ b. Then for every im such that 1 < m ≤ n we must
have τp,im

≤ cm, where cm satisfies a1 +a2 + · · ·+am = b+ cm (see the diagram
in Fig. 8).

The argument is quite similar to that for Observation 12. It can be shown that
τi0,p ≥ b ↔ τp,im

≤ cm, τp,im
≤ cm ↔ τik,p ≥ dk, and τik,p ≥ dk ↔ τi0,p ≥ b,

for k < m, dk < am, and dk < b. By Observation 6, two of the constraints
among the three can be removed (for any 1 ≤ m ≤ n). It is not difficult to see
that retaining τik,p ≥ dk is the best choice and that at most two clocks will be
needed. ��
In all the cases that we have considered so far in this section (Observations
8–13), the cyclic dependencies are between constraints of the form τr1,r2 ∼ c and
τl1,l2 ∼ d (for some c and d) such that either r2 = l1, or r2 = l2, or r1 = l1.
That is, the two constraints “shared” an event index. But other forms of cyclic
dependencies might exist.

As an example consider the scenario in Fig. 3 along with its stable table. As
we mentioned before, a = τ0,1 ≤ 4 ↔ b = τ1,2 ≥ 6 and b ↔ c = τ2,3 ≤ 2:
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{τ0,2 ≥ 10, τ0,1 ≤ 4} � τ1,2 ≥ 6, {τ0,2 ≤ 10, τ1,2 ≥ 6} � τ0,1 ≤ 4,
{τ1,3 ≥ 8, τ2,3 ≤ 2} � τ1,2 ≥ 6, and {τ1,3 ≤ 8, τ1,2 ≥ 6} � τ2,3 ≤ 2.
Observe that constraints a and b share index 1, while b and c share index 2.
But we also have a cyclic dependency between a and c that is not due to

direct support:
{τ0,2 ≤ 10, τ1,3 ≥ 8, τ2,3 ≤ 2} �+ τ0,1 ≤ 4,
{τ1,3 ≤ 8, τ0,2 ≥ 10, τ0,1 ≤ 4} �+ τ2,3 ≤ 2.

So τ0,1 ≤ 4 ↔ τ2,3 ≤ 2. Only one of them can be removed, and the question is:
which one? To answer this question we evaluate the two options by comparing the
number of clocks that would be needed if one converted the resulting scenarios
to their corresponding automata.

In this particular example removing either one of the constraints would result
in the same outcome: two clocks are needed. But this might not always be the
case. In general:

Observation 14. Let i < j < k < l be some event indices.

1. If there is a cyclic dependency between one of τi,j ≥ a/τi,j ≤ a and one of
τk,l ≥ b/τk,l ≤ b (for some a and b), and if τi,k = c for some c, then we
remove τk,l ≥ b (or τk,l ≤ b): i is needed as an anchor for the equality.

2. If there is a cyclic dependency between one of τi,k ≥ a/τi,k ≤ a and one of
τj,l ≥ b/τj,l ≤ b (for some a and b), and if τi,j = c for some c, then by
Observation 6 we remove both, because τi,k ≥ a/τi,k ≤ a will be supported
(Observation 8) and the support does not include τj,l ≥ b/τj,l ≤ b.

3. If there is a cyclic dependency between one of τi,l ≥ a/τi,l ≤ a and one of
τj,k ≥ b/τj,k ≤ b (for some a and b), and if τi,j = c for some c, then we
remove τi,l ≥ a (or τi,l ≤ a): this will shorten the range of anchor i.

After resolving the cyclic dependencies in C(Dξ
s) by removing some of the con-

straints, we have obtained a smaller set Cacyclic ⊂ C(Dξ
s). The dependency rela-

tion →, when restricted to Cacyclic, is a partial order (Observation 2). The set
of the minimal elements of this partial order will be equivalent to C(Dξ

s).
We are now ready to present our new optimization algorithm, which is based

upon our previous algorithm [13].

3.5 The Optimization Algorithm

Given a scenario ξ = (E , C), our goal is to find C′ ⊆ C(Dξ
s) that is equivalent to

C(Dξ
s), such that, if ξ′ = (E , C′), then the number of clocks in Aξ′ is the smallest

in the entire class of language-equivalent timed automata.
We define the direct support relation on C(Dξ

s) by DSupp = {(c, S) | S � c}
and the support relation on C(Dξ

s) by Supp = {(c, S) | S �+ c}.
If (c, S) is a member of Supp, then C(Dξ

s) \ {c} is equivalent to C(Dξ
s).

The optimization algorithm uses three data structures, C , WS , and CD .
C represents the current set of constraints, WS (“working support”) contains
information about whether and how the constraints are supported by subsets of
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C , while CD (“cyclic dependencies”) contains information about constraints in
C that are in cyclic dependencies with other constraints in C .

We initialize C to C(Dξ
s), WS to DSupp, and CD to ↔ restricted to WS .

The optimization process is carried out in two phases. During the first phase
the algorithm takes pairs of constraints from CD , one at a time, and resolves the
cyclic dependency between the elements of the pair (see Sect. 3.4). This involves
removing the appropriate constraint from C , updating WS with the supports of
this constraint (see below) and removing the entry from CD . As WS is updated,
new cyclic dependencies may be uncovered and added to CD .

This phase consists of two steps. First, the algorithm examines dependencies
that are described by Observation 11 and removes every equality constraint that
is supported by a pair of equality constraints on smaller distances. In the second
step it resolves dependencies described by Observations 8, 10 and 12–14.

At the end of this step CD becomes empty: there is no cyclic dependency
between the members of C, hence there is a partial order on C (Theorem 2).

Then the algorithm proceeds to the second phase, where it takes any con-
straint that has a support in WS , removes it from C and updates WS . The order
in which the constraints are considered for removal does not matter. Observe that
CD remains empty during this phase.

The algorithm terminates once WS becomes empty. At this point C includes
the final minimal set of constraints equivalent to C(Dξ

s).
The four important invariants are:

1. C is equivalent to C(Dξ
s);

2. WS is a subset of Supp, the support relation associated with C(Dξ
s);

3. WS contains only those tuples in Supp that do not contain constraints from
outside C (but not necessarily all such tuples);

4. CD contains only tuples with constraints that appear as the first elements of
some tuples in WS .

Clearly, the initialization establishes these invariants.
Thanks to the second and third invariant, a constraint c that has support in

WS can be removed from C without violating the first invariant. The resulting
new version of C will not contain c, therefore WS must be updated to restore
the third invariant, in a way that does not violate the second invariant. CD must
also be updated accordingly.

Every time that a supported constraint c is removed from C:

1. For each (c′, S′) ∈ WS, such that c ∈ S′:
– remove (c′, S′) from WS ;
– for each (c, S) ∈ WS, if c′ /∈ S, add (c′, S′ \ {c} ∪ S) to WS.

2. Remove from WS every tuple whose first element is c.
3. Remove from CD every tuple whose first or second element is c.

Notice that the first step above generates new tuples in WS according to pt. 2
of Definition 2.

It should be clear that this method of updating ensures that WS remains
within Supp (restricted to the current C ) and that we do not lose information
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about indirect supports in C . Moreover, every constraint that appears in some
tuple in CD must also appear as the first element of some tuple in WS .

Termination is assured, because at each step we remove a constraint from a
finite set of constraints. Correctness is ensured by the invariants.

Scenario η of Fig. 1, obtained by our algorithm, is equivalent to ξ.
In summary, every time there is a choice between constraints that are involved
in a cyclic dependency, we retain the one that will reduce the number of anchors,
or—if that is impossible—reduce the number of overlapping ranges of anchors
(Observations 8–14). This process does not remove supports from those con-
straints that are not involved in cyclic dependencies (Observation 5).

Once the cyclic dependencies are resolved, we retain only those of the remain-
ing constraints that have no support, and that must therefore be included in all
the equivalent sets of constraints. It follows that the number of clocks required
for the resulting automaton cannot be decreased by choosing another equivalent
set of constraints.

This can be summarized as follows.

Theorem 3. Let ξ = (E , C) be a scenario and Dξ
s be its stable distance table. Let

Copt be the set of constraints obtained from C(Dξ
s) by our optimization algorithm.

Then Aξ′ , where ξ′ = (E , Copt), has the smallest number of clocks in the entire
class of timed automata that are language equivalent to Aξ.

4 Conclusions

We present a new optimization algorithm that achieves the minimal number of
clocks when timed scenarios are viewed as timed automata.

That is, given a scenario ξ = (E , C), the algorithm finds a set of constraints,
C′, such that ξ′ = (E , C′) is equivalent to ξ, and the automaton derived from ξ′ has
the smallest number of clocks in the entire class of equivalent timed automata.
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11. Saeedloei, N., Kluźniak, F.: From scenarios to timed automata. In: Cavalheiro,
S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol. 10623, pp. 33–51. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70848-5 4
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