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Abstract. In this paper, we present new contributions to property ori-
ented testing (POT) against Symbolic Finite State Machine (SFSM)
models. While several POT approaches are known, none of these are
exhaustive in the sense that every implementation violating the prop-
erty is uncovered by a given test suite under certain hypotheses. On
the other hand, numerous exhaustive theories for testing against models
specified in various formalisms exist, but only for conformance testing.
Since a hybrid approach using both models and properties seems to be
preferred in industry, we present an approach to close this gap. For given
properties that are at the same time represented in a reference model, we
present a test suite derivation procedure and prove its exhaustiveness.

1 Introduction

Background: Property-Oriented Testing and Model-Based Testing. In
the field of testing, two main directions have been investigated for quite a long
time. In property-oriented testing (POT) [4,12], test data is created with the
objective to check whether an implementation fulfils or violates a given property
which may be specified by Boolean expressions (invariants, pre-/post-conditions)
or more complex temporal formulae [12]. In model-based testing (MBT) [19], a
reference model expressing the desired behaviour of an implementation is used
for generating the test data and for checking the implementation behaviour
observed during test executions. In the research community, the objective of
MBT is usually to investigate whether an implementation conformed to the
model according to some pre-defined equivalence or refinement relation.

In industry, however, testing of cyber-physical systems is usually performed
by a hybrid approach, involving both properties and models. Requirements are
specified as properties, and models are used as starting points of system and
software design [13,14]. It is checked by review or by model checking that the
models reflect the given properties in the correct way. Due to the complexity
of large embedded systems like railway and avionic control systems, testing for
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model conformance only happens on sub-system or even module level, while test-
ing on system integration level or system level is property-based, though models
are available. In particular during regression testing, test cases are selected to
check specific requirements, and hardly ever to establish full model conformance.

Problem Statement. The objective of this paper is to establish a sufficient
black-box test condition for an implementation to satisfy an LTL safety prop-
erty.1 Reference models specifying the desired behaviour are represented as sym-
bolic finite state machines (SFSMs) extending finite state machines (FSMs)
in Mealy format by input and output variables, guard conditions, and output
expressions. Recently, SFSMs have become quite popular in model-based testing
(MBT) [16,18], because they can specify more complex data types than FSMs
and can be regarded as a simplified variant of UML/SysML state machines.
Also, they are easier to analyse than the more general Kripke structures which
have been investigated in model checking [3], as well as in the context of MBT,
for example in [7,8]. In contrast to Kripke structures, SFSMs only allow for a
finite state space. This fact can be leveraged in test generation algorithms by
enumerating all states and performing more efficient operations on this set of
states instead of a potentially infinite one.

The existence of a model in addition to the property to be verified is exploited
to guide the test case generation process. Moreover, the model is used as a test
oracle which checks more than just the given property: if another violation of
the expected implementation behaviour is detected while testing whether the
property is fulfilled, this is a “welcome side effect”. This approach deliberately
deviates from the “standard approach” to check only for formula violations using,
for example, the finite LTL encoding presented in [2] or observers based on some
variant of automaton [5].

Main Contributions. The main contributions of this paper are as follows.
(1) We present a test case generation procedure which inputs an LTL safety
property to be checked and a reference model to guide the generation process
and serve as a test oracle. (2) A theorem is presented and explained, stating
that test suites generated by this procedure are exhaustive in the sense that
every implementation violating the given property will fail at least one test case,
provided that the true implementation behaviour is reflected by another SFSM
contained in a well-defined fault-domain.2 This hypothesis is necessary in black-
box testing, because hidden internal states cannot be monitored [17,21].

1 Safety properties are the only formulae to be investigated effectively by testing, since
their violation by a system under test can be detected on a finite sequence of states
or input/output traces, respectively [22].

2 Due to the usual space limitations, the proof of the theorem is not presented here, but
in technical report https://doi.org/10.5281/zenodo.5151777. It is interesting to note
and explained in this report that the proof is a modified nondeterministic variant of
a proof already published in [10, Theorem 2].

https://doi.org/10.5281/zenodo.5151777
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To the best of our knowledge, this mixed property-based and model-based
approach to POT has not been investigated before outside the field of finite
state machines. Only for the latter, strategies for testing simpler properties with
additional FSM models have been treated by the authors in [9,10]. While the
approach presented here is related to the one presented in [10], we will elabo-
rate here how to derive test cases for properties on non-deterministic reference
models. Furthermore, our approach is distinguished from [9,10] by operating on
SFSMs and by using LTL formulae as the specification formalism for properties.
SFSMs are considerably more expressive than FSMs for modelling complex reac-
tive systems. Specifying properties in LTL is more general, intuitive, and elegant
than the FSM-specific restricted specification style used in [9,10].

Overview. In Sect. 2, SFSMs are defined, and existing results about model
simulations, equivalence classes, and abstractions to FSMs are reviewed and
illustrated by examples. These (mostly well-known) facts are needed to prove
the exhaustiveness of the test generation strategy described in Sect. 3. In Sect. 3,
fault domains are introduced and a sufficient condition for exhaustive test suites
for property verification is presented and proven. For implementing test suite
generators, we can refer to algorithms already published elsewhere. Section 4
contains conclusions and sketches future work.

Throughout this paper, we refer to related work where appropriate.

2 Symbolic Finite State Machines, Simulations,
Equivalence Classes, and FSM Abstractions

Definition of Symbolic Finite State Machines. A Symbolic Finite State
Machine (SFSM) is a tuple M = (S, s0, R, VI , VO,D,ΣI , ΣO). Finite set S
denotes the state space, and s0 ∈ S is the initial state. Finite set VI contains
input variable symbols, and finite set VO output variable symbols. The sets VI

and VO must be disjoint. We use V to abbreviate VI ∪ VO. We assume that
the variables are typed, and infinite domains like reals or unlimited integers
are admissible. Set D denotes the union over all variable type domains. The
input alphabet ΣI consists of finitely many guard conditions, each guard being
a quantifier-free first-order expression over input variables. The finite output
alphabet ΣO consists of output expressions; these are quantifier-free first-order
expressions over (optional) input variables and at least one output variable. We
admit constants, function symbols, and arithmetic expressions in these expres-
sions but require that they can be solved based on some decision theory, for
example, by an SMT solver. Set R ⊆ S × ΣI × ΣO × S denotes the transition
relation.

This definition of SFSMs is consistent with the definition of ‘symbolic
input/output finite state machines (SIOFSM)’ introduced in [16], but is slightly
more general: SIOSFMs allow only assignments on output variables, while our
definitions admits general quantifier-free first-order expressions. This is useful for
specifying nondeterministic outputs and – of particular importance in this paper
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– for performing data abstraction, as introduced below. Also, note that [16] only
considers conformance testing, but not property-based testing.

Following [16], faulty behaviour of implementations is captured in a finite
set of mutant SFSMs whose behaviour may deviate from that of the reference
SFSM by (a) faulty or interchanged guard conditions, (b) faulty or interchanged
output expressions, (c) transfer faults consisting of additional, lost, or misdi-
rected transitions, and (d) added or lost states (always involving transfer faults
as well). To handle mutants and reference model in the same context, we require
that (a) the faulty guards are also contained in the input alphabet, and (b) the
faulty output expressions are also contained in the output alphabet, (without
occurring anywhere in the reference model).

A valuation function σ : V −→ D associates each variable symbol v ∈ V
with a type-conforming value σ(v). Given a first-order expression φ over variable
symbols from V , we write σ |= φ and say that σ is a model for φ if, after replacing
every variable symbol v in φ by its value σ(v), the resulting Boolean expression
evaluates to true. Only SFSMs that are well-formed are considered in this paper:
this means that for every pair (φ, ψ) ∈ ΣI × ΣO occurring in some transition
(s, φ, ψ, s′) ∈ R, at least one model σ |= φ∧ψ exists for the conjunction φ∧ψ of
guard and output expression. An SFSM with integer variables x ∈ VI and y ∈ VO

and a transition (s, x < 0, y2 < x, s′), for example, would not be well-formed.

s0 s1

s2

x = max /y = W

x < max /y = O

x
>
ma

x /y
=

A

x
<
ma

x−δ/
y
=

O

x
>
max /y =

A

x ≤ max /y = O x = max /y = W

max−δ ≤ x/y = A

Fig. 1. Simple alarm system M (O = OK, W = warning, A = alarm, O < W < A).

Example 1. The SFSM in Fig. 1 describes a simple alarm indication system
which inputs a sensor value x : R and raises an alarm (y = A) if x exceeds
the threshold value max. After an alarm has been raised, the system remains
in state s2 until x drops below the value max −δ, whereafter a transition to
initial state s0 is performed, accompanied by output y = O (“value is OK”). If
the threshold value max has been reached but not yet overstepped, a warning
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y = W may or may not be issued (nondeterministic decision). If the warning is
given, the system transits to state s1 and stays there until x < max is fulfilled
or an alarm needs to be raised because x exceeds the threshold. Output values
O,W,A are typed by an enumeration.

Note that in this example, outputs could simply be specified by assignments,
so the system could also be modelled as an SIOSFM. Example 4 below shows
where the first-order representation is needed.

A symbolic trace of SFSM M is a finite sequence

τ = (φ1/ψ1) . . . (φn/ψn) ∈ (ΣI × ΣO)∗

satisfying (recall that s0 is the initial state)

∃s1, . . . , sn ∈ S : ∀i ∈ {1, . . . , n} : (si−1, φi, ψi, si) ∈ R.

This means that there exists a state sequence starting from the initial state, such
that each pair (si−1, si) of states is linked by a transition labelled with (φi, ψi).
We use the intuitive notation (φi/ψi) inherited from Mealy machines for these
predicate pairs, since φi specifies inputs and ψi outputs.

A concrete trace (also called computation) of M is a finite sequence of valu-
ation functions

κ = σ1 . . . σn ∈ (V −→ D)∗

such that a symbolic trace τ = (φ1/ψ1) . . . (φn/ψn) of M exists satisfying

(σ1 |= φ1 ∧ ψ1) ∧ · · · ∧ (σn |= φn ∧ ψn).

If this condition is fulfilled, κ is called a witness of τ . This interpretation of SFSM
computations corresponds to the synchronous interpretation of state machine
inputs and outputs, as discussed in [20]: inputs and outputs occur simultaneously,
that is, in the same computation step κ(i).

An SFSM is deterministic if a sequence of input tuples already determines the
sequence of associated outputs in a unique way. More formally, two computations
κ = σ1 . . . σn and κ′ = σ′

1 . . . σ′
n satisfying σi|VI

= σ′
i|VI

for all i = 1, . . . , n
already fulfil κ = κ′.

As usual in the field of modelling formalisms for reactive systems, the
behaviour of an SFSM is defined by the set of its computations. Two SFSMs
are equivalent if and only if they have the same set of computations.

Example 2. The alarm system specified in Example 1 has a symbolic trace

τ = (x ≤ max /y = O).(x ≤ max /y = O).
(x = max /y = W ).(x > max /y = A).(x < max −δ/y = O)

With constants max = 100, δ = 10, the concrete trace

κ = {x 
→ 100, y 
→ O}.{x 
→ 50, y 
→ O}.

{x 
→ 100, y 
→ W}.{x 
→ 110, y 
→ A}.{x 
→ 89, y 
→ O}
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is a witness of τ . The alarm system is nondeterministic, since it also has symbolic
trace

τ ′ = (x = max /y = W ).(x ≤ max /y = O).
(x = max /y = W ).(x > max /y = A).(x < max −δ/y = O)

for which

κ′ = {x 
→ 100, y 
→ W}.{x 
→ 50, y 
→ O}.

{x 
→ 100, y 
→ W}.{x 
→ 110, y 
→ A}.{x 
→ 89, y 
→ O}
is a witness. The input sequences of κ and κ′ are identical, but the computations
differ.

Testability Assumptions. To ensure testability, the following pragmatic
assumptions and restrictions are made. (1) When testing nondeterministic imple-
mentations, it may be necessary to apply the input trace several times to reach
a specific internal state, since the input trace may nondeterministically reach
difference states. As is usual in nondeterministic systems testing, we adopt the
complete testing assumption, that there is some known k ∈ N such that, if an
input sequence is applied k times, then all possible responses are observed [6],
and all states reachable by means of this sequence have been visited.
(2) Any two different states of the reference SFSM are reliably distinguishable [6]:
if a computation κ could nondeterministically reach two different states s1 or s2
of M , then there exists an input sequence that, when applied to the unknown
target state reached by κ, will lead to an output sequence allowing to determine
whether the unknown state had been s1 or s2. Note that the alarm system
modelled in Fig. 1 is reliably distinguishable for trivial reasons: the target state
reached by a computation is already uniquely determined by the sequence of its
input/output pairs.
(3) It is required that the output expressions in ΣO are pairwise distinguishable
by finitely many input values. This enables us to check the correctness of output
expressions with finitely many test cases. Note that this is not a very hard
restriction, since for many function classes with infinite domain and image, its
members are uniquely determined by a finite number of arguments. For example,
linear expressions y = a · x + b can be pairwise distinguished by two different
values of x; and this fact can be generalised to polynomials of a fixed degree in
several variables x1, . . . , xk. Note that this restriction is vacuous for the alarm
system modelled in Fig. 1, since its output expressions do not contain input x.

Property Specifications in LTL. To state behavioural properties of a given
SFSM M , we use linear temporal logic LTL [3] with formulae over variable
symbols from V = VI ∪ VO. The syntax of LTL formulae ϕ used in this paper is
given by grammar

ϕ ::= φ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | Fϕ | Gϕ,
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where φ denotes atomic propositions written as quantifier-free first-order expres-
sions over symbols from V . The semantics of LTL formulae is defined over con-
crete traces κ of M by the following valuation rules.

κi |= φ ≡ κ(i) |= φ for quantifier-free first-

order expressions φ

κi |= ¬ϕ ≡ κi �|= ϕ for arbitrary LTL formulae ϕ

κi |= ϕ ∧ ϕ′ ≡ κi |= ϕ and κi |= ϕ′ for arbitrary LTL formulae ϕ, ϕ′

κi |= Xϕ ≡ i < #κ − 1 and κi+1 |= ϕ for arbitrary LTL formulae ϕ

κi |= ϕUϕ′ ≡ ∃i ≤ j < #κ : κj |= ϕ′

and ∀i ≤ k < j : κk |= ϕ for arbitrary LTL formulae ϕ, ϕ′

κ |= ϕ ≡ κ0 |= ϕ for arbitrary LTL formulae ϕ

Here κi denotes the trace segment κ(i).κ(i+1).κ(i+2) . . . . The semantics of path
operators F and G is defined via equivalences Fϕ ≡ (trueUϕ) and Gϕ ≡ ¬F¬ϕ.

Example 3. Consider the property R1. If the value of x never exceeds threshold
max, then an alarm will never be raised. This is expressed by LTL formula (recall
the ordering O < W < A of output values)

Φ1 ≡ G(x ≤ max) =⇒ G(y < A)

Simulation Construction. Given an SFSM M , any set of atomic first-order
expressions with free variables in V induces a simulation M sim. Here, this well-
known concept is only explained in an intuitive way, for a detailed introduction
readers are referred to [3]. It will be shown below how abstracted SFSMs also
facilitate property-oriented testing.

Any set of atomic first-order expressions over V can be separated into expres-
sions f1, . . . , fk containing free variables from VI only and expressions g1, . . . , g�

each containing at least one free variable from VO.
As a first step, this leads to a refinement M ′ of the model SFSM M by means

of the following steps. (1) A transition (s, φ, ψ, s′) is replaced by transitions
(s, φ ∧ α,ψ ∧ β, s′), such that each α is conjunction of all f1, . . . , fk in positive
or negated form, and expression β is a conjunction of all g1, . . . , g� in positive
or negated form. (2) Only the transitions (s, φ ∧ α,ψ ∧ β, s′) possessing a model
σ : V −→ D for φ ∧ α ∧ ψ ∧ β are added in this replacement.

Then a new SFSM M sim is created as follows. (1) The states and the initial
state of M sim are those of M . (2) The transitions of M sim are all (s, φ∧α, β, s′),
where there exists an output expression ψ such that (s, φ ∧ α,ψ ∧ β, s′) is a
transition of the refined SFSM M ′.

An SFSM M sim constructed according to this recipe is a simulation of M ′

in the following sense: For every computation κ = σ1 . . . σn of M ′, there exists a
symbolic trace τ sim = (φ1/ψ1) . . . (φn/ψn) of M sim, such that (a) κ is witness of
τ sim, and (2) any conjunction of positive and negated f1, . . . , fk and g1, . . . , g�

for which σi is a model is also an implication of (φi ∧ ψi).
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s0 s1

s2

· · · ∧ x ≤ max / · · · ∧ y < A

x < max∧ x ≤ max /y = O ∧ y < A

· · ·
∧ ¬(x

≤ ma
x)/

· · ·
∧ ¬(y

<
A)

· · ·
∧ x

≤ ma
x / · · ·

∧ y
<

A

· · · ∧ ¬(x ≤
max)/ · · · ∧ ¬(y

<
A)

x ≤ max /y = O ∧ y < A

· · · ∧ x ≤ max / · · · ∧ ¬(y < A) · · · ∧ ¬(x ≤ max)/ · · · ∧ ¬(y < A)

· · · ∧ x ≤ max / · · · ∧ y < A

Fig. 2. Refinement M ′ of the simple alarm system from Fig. 1 with respect to atomic
propositions x ≤ max and y < A. Here, the ellipses represent the original guard or
output condition, respectively. The transition from s1 to s0 shows an actual example.

Example 4. From property Φ1 ≡ G(x ≤ max) =⇒ G(y < A) discussed in
Example 3 the atomic propositions f ≡ (x ≤ max) and g ≡ (y < A) are
extracted. The rules for creating a refined machine result in the machine shown
in Fig. 2.

Applying the construction rules for the SFSM abstracted from the alarm
system with respect to f, g,¬f,¬g results in the machine shown in Fig. 3. As an
example of a concrete trace of the alarm system, we take again

κ = {x 
→ 100, y 
→ O}.{x 
→ 50, y 
→ O}.

{x 
→ 100, y 
→ W}.{x 
→ 110, y 
→ A}.{x 
→ 89, y 
→ O}
This is a witness of the symbolic trace (we omit the other conjuncts besides
x ≤ max and its negation)

τ sim = (· · · ∧ x ≤ max /y < A).(· · · ∧ x ≤ max /y < A).(· · · ∧ x ≤ max /y < A).
(· · · ∧ ¬(x ≤ max)/¬(y < A)).(· · · ∧ x ≤ max /y < A)

of the abstracted SFSM.

Input Equivalence Classes and FSM Abstraction. In [7,8] we have pre-
sented a testing theory allowing to abstract a variant of Kripke structures to
FSMs by means of an input equivalence class construction. The SFSMs consid-
ered in this paper can be interpreted as Kripke structures of this variant. The
main result of this theory is that test suites generated for the abstracted FSMs
can be translated back to the concrete Kripke model level while preserving the
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s0 s1

s2

· · · ∧ x ≤ max /y < A

x < max∧ x ≤ max /y < A

· · ·
∧ ¬(x

≤ ma
x)/

¬(y
<

A)

· · ·
∧ x

≤ ma
x /y

<
A

· · · ∧ ¬(x ≤
max)/¬(y

<
A)

x ≤ max /y < A

· · · ∧ x ≤ max /¬(y < A) · · · ∧ ¬(x ≤ max)/¬(y < A)

· · · ∧ x ≤ max /y < A

Fig. 3. Simulation M sim of the simple alarm system from Fig. 1 with respect to atomic
propositions x ≤ max and y < A.

test strength of the original FSM-based suite. While the method proposed in
this paper could also be formulated in this more general framework of Kripke
structures being used as models and abstracted to FSMs, we decided to present
it using SFSMs and abstract these to FSMs. This allows for a simpler description
of the abstraction process and implies restrictions that would have to be men-
tioned explicitly and accounted for in the context of Kripke structures. These
restrictions guarantee the existence of an FSM abstraction of the model.

We apply the test strength-preserving translation technique from FSM test
cases to concrete Kripke test cases in Sect. 3 to prove that the test strategy
introduced there is exhaustive in the sense that it will uncover every property
violation of the SUT, provided that certain hypotheses are fulfilled. Therefore,
the main facts of the testing theory elaborated in [7,8] are summarised in the
following paragraphs.

The theory applies to systems with arbitrary (possibly infinite) input domains
and finite domains for internal state variables and output variables. Since our
SFSMs are allowed to work with infinite output domains, it is first necessary to
create an abstraction with finite output domains.

Step 1. The refined reference model M ′ constructed above with the atomic
propositions of the LTL formula under consideration is further refined by cre-
ating input equivalence classes. The classes are constructed by building all con-
junctions of positive and negated guard conditions contained in the input alpha-
bet. As before, expressions without a model are dropped. Recall that the input
alphabet also contains the possible faulty guards. This further refinement of M ′

is denoted by M ′
c.
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The effect of this construction is as follows. A symbolic input sequence ι =
φ1 . . . φk consisting of quantifier-free first-order input class expressions φi refining
the original guards of M ′ determines finitely many possible symbolic traces in the
reference model M ′

c and in any possible SFSM over the same alphabet, specifying
the true behaviour of a (correct or faulty) implementation. In the deterministic
case, this symbolic trace is already uniquely determined by ι.

Step 2. From each refined input class, sufficiently many inputs are selected
so that the output expressions that are expected when applying an input from
this class in any state can be distinguished from any other output expression
contained in ΣO which would be faulty for inputs from this class.

Note that is some situations, an input class X is so small that the distinc-
tion between all output expressions is no longer possible. In this case, however,
different output expressions would be admissible for the implementation, if their
restrictions to X coincide. For example, if X only contains the input value x = 0,
and ΣO = {y = 3, y = 0, y = 3 · x}, then output expressions y = 0 and y = 3 · x
are indistinguishable on X. If output y = 0 is expected for input x = 0 in
the given state, then both expressions would be acceptable in an implementa-
tion. The concrete input selections are represented again as valuation functions
sx : VI −→ D.

The collected concrete inputs sx selected from the input classes are used to
define the (finite) input alphabet AI of the FSM abstraction constructed by
means of the recipe introduced here.

Step 3. Applying the finite number of inputs from each class to every possible
output expression associated with this class yields a finite number of values
from the possibly infinite output domain. These values are written as valuation
functions sy : VO −→ D and used as the output alphabet AO of the FSM under
construction.

Step 4. The state space and initial state of the FSM is identical to the states
of M ′.

Step 5. The transition relation of the FSM is defined by including (s, sx, sy, s′)
in the relation if and only if there exists a transition (s, φ, ψ, s′) in M ′

c such that
sx ∈ AI ∧ sy ∈ AO ∧ (sx ∪ sy) |= φ ∧ ψ.

The observable, minimised FSM abstraction constructed in these 5 steps is
denoted as F (M ′

c). The construction recipe above is illustrated in the following
example.

Example 5. For the refined alarm system M ′ shown in Fig. 2, let us assume that
the possibly faulty implementations may only mix up guard conditions, but do
not mutate them. Then the input equivalence classes calculated according to the
recipe described above are listed in the following table. Recall that the constants
have been fixed as δ = 10, max = 100.

Since the output expressions do not refer to input variable x, a single repre-
sentative from each input class can be chosen to create the FSM abstraction: the
output expressions of M ′

c can always be distinguished by their concrete values.
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Class Specified by Concrete input sx for AI

c0 x < max −δ {x �→ 50}
c1 max −δ ≤ x < max {x �→ 95}
c2 x = max {x �→ 100}
c3 max < x {x �→ 110}

s0 s1

s2

x = max /y = W ∧ y < A

x < max−δ, max−δ ≤ x < max /y = O ∧ y < A

ma
x <

x/
y
=

A
∧ ¬(y

<
A)

x
<
ma

x−δ/
y
=

O
∧ y

<
A

x
>
max /y =

A ∧ ¬(y
<

A)

x < max−δ, max−δ ≤ x < max, x = max /y = O ∧ y < A

max−δ ≤ x < max, x = max, max < x/y = A ∧ ¬(y < A)

x = max /y = W ∧ y < A

Fig. 4. Alarm system refinement M ′
c resulting from application of input equivalence

classes to M ′ from Fig. 2. For brevity, we have consolidated multiple transitions back
into one for this figure, if the beginning and end states of these were the same as well as
their output condition. This is signified by commas in their input condition, separating
the input conditions of individual transitions.

The SFSM M ′
c further refining M ′ by means of these input classes is shown in

Fig. 4. We use a short-hand notation where one transition arrow can be labelled
by several guards if the output expression is the same in each transition. The
abstraction FSM F (M ′

c) constructed according to the five steps described above
is shown in Fig. 4.

The simulation M sim of the alarm system is also refined by the same input
equivalence classes. This results in the SFSM shown in Fig. 6. For this SFSM’s
abstracting FSM, we define output symbols

Symbol Output expression

e0 y < A

e1 ¬(y < A)

Then we use the same concrete input alphabet as for F (M ′
c). The resulting

FSM is shown in Fig. 7.
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s0 s1

s2

100/W

50, 95/O

11
0/A

50
/O

110/A

50, 95, 100/O

95, 100, 110/A

100/W

Fig. 5. Finite state machine F (M ′
c) abstracting the SFSM M ′

c from Fig. 4. Input val-
uations {x �→ value} are abbreviated by ‘value’, output valuations {y �→ value} by
‘value’.

After having made this FSM observable and minimal, the resulting prime
machine F (M sim

c ) has the structure shown in Fig. 8.

Admissible Simulations. To specify precisely which types of simulations
M sim

c are admissible, we introduce the concept of output abstractions for FSMs.
Let ω : AO −→ A′

O be a function between output alphabets. Then any FSM
F = (S, s0, T, AI , AO) with alphabet (AI , AO), state space S, initial state s0,
and transition relation T ⊆ S × AI × AO × S can be mapped to an FSM ω(F )
which is constructed by creating FSM (S, s0, T

′, AI , A
′
O) over alphabet (AI , A

′
O)

and transition relation

T ′ = {(s, a, ω(b), s′) | (s, a, b, s′) ∈ T},

and constructing the prime machine (i.e. the observable and reduced FSM) of
(S, s0, T

′, AI , A
′
O). The FSM F ′ is called the output abstraction of F with respect

to ω. The mapping ω is called state-preserving for F , if ω(F ) maps traces leading
to the same state in F to traces leading to the same state in ω(F ) as well.

It is easy to see that the prime machine F (M sim
c ) shown in Fig. 8 has been

created from F (M ′
c) in Fig. 5 by means of the output abstraction ω = {O 
→

e0,W 
→ e0, A 
→ e1}. Comparison of F (M ′
c) in Fig. 5 and Fig. 8 shows that this

ω is state-preserving.
For deterministic FSMs, every output abstraction is state-preserving, but this

is not always the case for nondeterministic FSMs. The exhaustive test suite gen-
eration procedure for property checking introduced in the next section requires
that simulations are constructed by means of state-preserving output abstrac-
tions.
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s0 s1

s2

x = max /y < A

x < max−δ, max−δ ≤ x < max /y < A

ma
x <

x/
¬(y

<
A)

x
<
ma

x−δ/
y
<

A

x
>
max /¬(y

<
A)

x < max−δ, max−δ ≤ x < max, x = max /y < A

max−δ ≤ x < max, x = max, max < x/¬(y < A)

x = max /y < A

Fig. 6. Alarm system simulation M sim
c from Fig. 3 – further refined by input equivalence

classes.

3 An Exhaustive Property-Based Testing Strategy

Prerequisites. Throughout this section, M = (S, s0, R, VI , VO,D,ΣI , ΣO)
denotes an SFSM reference model specifying the required behaviour of some
implementation whose true behaviour is represented by some (possibly non-
equivalent) SFSM I, defined over the same alphabet, as explained in Sect. 2. Set
P denotes a finite set of atomic quantifier-free first-order expressions with free
variables in V . The properties to be tested are all contained in the set of LTL
formulae over atomic expressions from P . As introduced in Sect. 2, the SFSM
M ′

c has been created from M by refining the guards and the output expres-
sions according to the atomic expressions in P and the input equivalence classes
induced by ΣI . The FSM associated with M ′

c is denoted by F (M ′
c). It is assumed

that F (M ′
c) is a prime machine; this means that it is an observable and minimal

FSM [15]. We assume that F (M ′
c) has n > 1 states.3 The simulation SFSM M sim

c

has the same input alphabet as M ′
c, but a (usually smaller) output alphabet con-

taining output expressions of P only. The prime machine associated with M sim
c

is denoted by F (M sim
c ). The input alphabet of F (M ′

c) and F (M sim
c ) (i.e. the

concrete valuations selected from each input class) is denoted by AI , the output
alphabet of F (M ′

c) by AO, and that of F (M sim
c ) by Asim

O .

3 If F (M ′
c) had only one state, we would not have to consider SFSMs, since M could

be represented by a stateless function.
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s0 s1

s2

100/e0

50, 95/e0

11
0/

e1

50
/e

0

110/e
1

50, 95, 100/e0

95, 100, 110/e1

100/e0

Fig. 7. Finite state machine abstracting the SFSM M sim
c from Fig. 6.

{s0, s1} s2

110/e1

50/e0

50, 95, 100/e0

95, 100, 110/e1

Fig. 8. Prime machine F (M sim
c ) (observable, minimised FSM constructed from the

FSM in Fig. 7).

Fault Domains. In black-box testing, fault domains4 are introduced to con-
strain the possibilities of faulty behaviours of implementations. Without these
constraints, it is impossible to guarantee exhaustiveness with finite test suites:
the existence of hidden internal states leading to faulty behaviour after a trace
that is longer than the ones considered in a finite test suite cannot be checked in
black-box testing. In the context of this paper, a fault domain is a set of SFSMs,
always containing the reference model (usually in refined form) representing the
intended behaviour. It is assumed that the implementation’s true behaviour is
reflected by one of the SFSM models in the fault domain.

Now the fault domain D(M ′
c,m) contains all SFSMs possessing the same

input alphabet and output alphabet as M ′
c, such that their abstractions to prime

machines constructed in analogy to F (M ′
c) do not have more than m states.

4 The term ‘fault domain’ is slightly misleading, since its members do not all represent
faulty behaviour. The term, however, is well-established [17], so we adopt it here as
well.
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Property-Related Exhaustiveness. Given the set P of quantifier-free atomic
first-order expressions over variables from V , a test suite is P-exhaustive for a
given fault domain D(M ′

c,m), if every SFSM I representing an implementation
behaviour fails at least one test whenever I contains a computation κI that is
not a witness for any symbolic trace of M sim

c .

Example 6. Consider again the alarm system M from Fig. 1 and the property
Φ1 ≡ G(x ≤ max) =⇒ G(y < A). Then, with the guard refinements introduced
for M ′

c and M sim
c , the atomic expressions to consider are

P = {x < max −δ,max −δ ≤ x < max, x = max, y < A}.

Expressed in terms of P -elements, property Φ1 can be equivalently expressed as

Φ1 ≡ G(x < max −δ ∨ max −δ ≤ x < max ∨x = max) =⇒ G(y < A).

Now consider an implementation whose behaviour I differs from that of M
only by the mutated guard in the transition from s0 −→ s2, where we assume
that I’s guard is x ≥ max instead of x > max, as specified in M . With this
guard mutation as the only fault, I is in the fault domain D(M ′

c,m) of the
alarm system M . Then, for example, I has a computation (it is assumed again
that max = 100 and δ = 10)

κI = {x 
→ 50, y 
→ O}.{x 
→ 100, y 
→ A}.

Abstracted to a symbolic trace over P , this results in

τI = (x < max −δ/y < A).(x = max /¬(y < A)).

Obviously, this is not a symbolic trace of M sim
c , as depicted in Fig. 6. Therefore,

any P-exhaustive test suite should fail for I.

Test Suite Generation Procedure. In preparation of the test generation,
SFSMs M ′

c and M sim
c are created for the given set of P of quantifier-free atomic

first-order expressions over variables from V , as explained in Sect. 2. Then their
FSM abstractions are constructed (also according to the recipe explained in
Sect. 2), and their prime machines are constructed, as described in [15], resulting
in FSMs F (M ′

c) and F (M sim
c ), respectively. It is required that F (M sim

c ) has been
created from F (M ′

c) by means of a state-preserving output abstraction.
The rationale behind deriving these FSMs is as follows. FSM F (M ′

c) con-
tains sufficiently detailed information to derive tests suitable for detecting any
violation of observational equivalence. While the proof for this fact is quite tech-
nical, it is fairly intuitive to understand: By construction, F (M ′

c) uses concrete
input values from every input equivalence class of any implementation whose
true behaviour is reflected by an SFSM I in the fault domain D(M ′

c,m). It is
possible to derive a collection of input sequences from F (M ′

c), so that every input
class of I is exercised from every state of I. To ensure this, the assumption that
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I’s FSM abstraction does not have more than m states is essential. Moreover,
the input alphabet of F (M ′

c) has been constructed in such a way that sufficiently
many values of each input class are exercised on the implementation, such that
every output expression error will be revealed.

Next, we realise that testing for observational equivalence is actually more
than we really need. So we wish to relax the test requirements in such a way that
the test focus is to check whether the satisfaction for atomic properties from P
along any computation of I conforms to that of M ′

c. For this purpose, F (M sim
c )

is needed. Typically, F (M sim
c ) has fewer states than F (M ′

c) and I. Therefore,
we cannot completely forget about F (M ′

c), because this machine influences the
length of the traces used to test I. If tests were constructed from F (M sim

c ), we
would either use traces of insufficient length or use too many traces of adequate
length, since F (M sim

c ) does not provide any information about which traces of
maximal length are relevant.

These intuitive considerations lead to the test suite generation procedure
described next.

We create an FSM test suite H fsm
P from F (M ′

c) and F (M sim
c ) as follows. Let

V ⊆ Σ∗
I be a minimal state cover of F (M ′

c) containing the empty trace ε. A
state cover is a set of input traces, such that for each state s of M ′

c, there exists
a trace from V reaching s. Define auxiliary sets (Ai

I denotes the set of FSM
input traces of length i).

A = V × V B = V × (
V.

m−n+1⋃

i=1

Ai
I

)

C = {(ν.γ′, ν.γ) | ν ∈ V ∧ γ ∈ ( m−n+1⋃

i=1

Ai
I

) ∧ γ′ ∈ Pref(γ) − {ε}}

Then define a set D of input trace pairs such that D contains (a) all trace pairs
from A leading to different states in the FSM state space of F (M ′

c), (b) every
trace pair of B and C leading to different states in F (M sim

c ) (note that states
distinguishable in F (M ′

c) may not be distinguishable anymore in F (M sim
c ), but

state pairs distinguishable in F (M sim
c ) are always distinguishable in F (M ′

c)).
Let function Δ : D −→ A∗

I map trace pairs (α, β) leading to distinguishable
states (s1, s2) to input traces γ distinguishing (s1, s2). Now define test FSM test
suite H fsm

P by removing all true prefixes from the test case set

V.Am−n+1
I ∪ {α.Δ(α, β), β.Δ(α, β) | (α, β) ∈ D}.

Since the input traces in H fsm
P are already sequences of concrete values (recall

that the input alphabet of F (M ′
c) consists of concrete values taken from input

equivalence classes), we can use them directly as test cases, to be executed
against the system under test.
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Proving P-Exhaustiveness. The following Lemma shows that M sim
c is crucial

for deciding whether an implementation satisfies an LTL formula over atomic
expressions from P . It follows directly from the construction rules for M sim

c in
Sect. 2.

Lemma 1. Suppose that the true behaviour of an implementation is given by
SFSM I ∈ D(M ′

c,m). Suppose further that every computation of I is also a
witness of a symbolic trace in M sim

c . Then I satisfies every LTL formula over
positive and negated atomic first-order expressions from P which is satisfied by
the reference SFSM M .

The following main theorem states the exhaustiveness of the test suite gen-
eration procedure described above.

Theorem 1. The test suite HP constructed above is P -exhaustive for all imple-
mentations whose true behaviour is specified by one of the SFSMs contained in
the fault domain D(M ′

c,m) specified above.

The proof of the theorem is performed along the following lines.5 In a first
step, the exhaustiveness of the FSM test suite which is created as part of the
generation procedure is proven. This is quite similar to the proof presented in [10,
Theorem 2], but operates here with a different FSM abstraction F (M sim

c ) that
may also be nondeterministic. It is essential for this proof that simulations have
been generated by means of state-preserving output abstractions.

A second step shows that the selection of concrete input values from input
equivalence classes described in the previous section is adequate to uncover every
deviation of the implementation behaviour from the specified behaviour. For the
proof of this theorem, it is essential that all possible guard mutations and output
expression mutations are already contained in the input and output alphabets,
respectively. Moreover, it is exploited that sufficiently many concrete values have
been selected from the input classes to distinguish faulty output expressions from
correct ones.

In practice, it often cannot be decided whether an implementation regarded
as a black-box is represented by an SFSM I inside D(M ′

c,m) or not. For guaran-
teed exhaustiveness, a grey-box approach performing preliminary static analyses
on the implementation code would be required in order to prove that I is inside
the fault domain. If this cannot be achieved, it is reassuring to know that test
suites constructed according to the generation procedure above have significantly
higher test strength than naive random testing, even if I lies outside the fault
domain. This has been evaluated in [11].

4 Conclusion

In this paper, an exhaustive test suite for testing LTL properties has been pre-
sented. It is based on both a symbolic finite state machine model describing the
5 Details are contained in the technical report https://doi.org/10.5281/zenodo.

5151777.

https://doi.org/10.5281/zenodo.5151777
https://doi.org/10.5281/zenodo.5151777
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expected behaviour and the formula. By using simulation and abstraction tech-
niques, a test suite generation procedure has been presented which guarantees
to uncover every property violation, while possibly finding additional violations
of observational equivalence, provided that the implementation’s true behaviour
is captured by an element of the fault domain. The simulations and abstrac-
tions used frequently allow for test suites that are significantly smaller than
those testing for equivalence between model and implementation. For a specific
variant of properties which is less expressive than LTL, this has already been
shown in [10]. We expect similar reductions for the full LTL property check-
ing described here. This will be investigated in the near future, where we will
implement the method proposed here as well as improvements upon it in the
libfsmtest [1] software library.

Acknowledgements. The authors would like to thank Wen-ling Huang for her valu-
able inputs concerning the main theorem of this paper.
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