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Abstract. Non-termination is an unwanted program property (consid-
ered a bug) for some software systems, and a safety property for other
systems. In either case, automated discovery of preconditions for non-
termination is of interest. We introduce NtHorn, a fast lightweight non-
termination analyser, able to deduce non-trivial sufficient conditions for
non-termination. Using Constrained Horn Clauses (CHCs) as a vehicle,
we show how established techniques for CHC program transformation
and abstract interpretation can be exploited for the purpose of non-
termination analysis. NtHorn is comparable in power to the state-of-
the-art non-termination analysis tools, as measured on standard compe-
tition benchmark suites (consisting of integer manipulating programs),
while typically solving problems an order of magnitude faster.

1 Introduction

Inference of preconditions for Non-Termination (NT) is of interest in program
analysis, debugging and verification. For some systems, the possibility of non-
termination is a bug. For other systems, premature termination is unwanted, so
that non-termination becomes a safety property.

Non-termination is an archetypal undecidable problem. Assume P ranges
over the set of programs expressible in some Turing complete language, and S
ranges over (non-empty) sets of inputs to P . Then the problem of whether P
fails to terminate on every s ∈ S is undecidable, and not semi-decidable. This is
true even when S is restricted to being a finite non-empty set. Moreover, a proof
that P terminates on every element of some set S tells us nothing about P ’s
behaviour on (subsets of) S’s complement, and in particular it tells us nothing
about non-termination. Obviously, absence of a proof of termination is no proof
of the absence of termination.

Inferring sufficient conditions for NT is not always possible even for non-
terminating programs. For instance, if the variable i ranges over Z, the program
while(i ≥ 0) i = nondet() can be shown non-terminating by choosing always

a non-negative value for i (demonic non-determinism), but no condition on the
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Fig. 1. Original program (left) and CHC encoding of its reachable states (right)

input i (apart from the trivial false) is sufficient to ensure non-termination.
Namely, the loop iteration does not depend on the initial value of i, only on
non-deterministic assignments within the loop.

A central tool for proving non-termination is the notion of recurrence set [24],
a set of runtime states from which flow of control cannot escape. The non-
termination problem is complementary to proving termination; but while a safety
violation can be witnessed by a finite trace, a failure to terminate has no such
witness. Instead, a witness to non-termination is a path from an initial state to
a recurrence set. So we are interested in finding some conditions on the initial
state that ensure that such a path occurs.

Although finding preconditions for non-termination is a fundamental prob-
lem, it has received far less attention than other termination and non-termination
problems (the work of Le et al. [32] is a notable exception). Our approach to
the problem is inspired by Chen et al. [10] who reduce the problem to prov-
ing safety using a sequence of reachability queries. Let bad states be those that
exit the program (or loop) under consideration, and good states those that get
stuck in it. Then the problem is to infer preconditions that ensure all executions
stay within good states. We achieve this in two steps: (i) compute a necessary
precondition from the bad states, whose complement is a potential candidate
for non-termination and (ii) refine the candidate with a sufficient precondition
from the states that enter the program (loop). Our method is potentially appli-
cable to large code bases, as it rests on relatively cheap program analysis and
transformation. To our knowledge, the combination of necessary and sufficient
precondition reasoning has not previously been applied to the task.

Before we present the approach formally, let us consider the example in Fig. 1
(left), a modified version of a program studied by Le et al. [32]. Assume the
variables range over the full set Z of integers. Then the program fails to ter-
minate if the input satisfies (b > 100 ∧ a ≥ 1) ∨ (b < 100 ∧ a ≥ 1) (equivalently
b �= 100 ∧ a ≥ 1). This is because a and b are always positive when entering
the loop, and the loop condition a ≥ 1 is always maintained, as a increases at
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a higher rate than b decreases. Automatic derivation of these preconditions is
challenging for at least three reasons:

(i) The desired result is a disjunction of linear constraints—so we need the
ability to express disjunctive information.

(ii) Abstract interpretation working forward or backward from the goal such
as (a ≤ 0) derives top as invariant for the loop. That is, without a more
sophisticated approach, we lose critical information about a and b.

(iii) We use over- and under-approximations to obtain sound and precise results,
since the precondition must ensure that all traces enter the loop but
none exit. While the first part (all traces enter the loop) requires under-
approximation, the second part (none exit) can be achieved by negating an
over-approximation that exits the loop.

We address Challenge (i) via partial evaluation or control flow refinement, cre-
ating a finite number of versions of each predicate—this is essential for deriving
disjunctive invariants.

Challenge (ii) is addressed via forward and backward abstract interpretation,
together with constraint specialisation. Challenge (iii) is addressed by refining
over-approximations with under-approximations (Sect. 4).

While our approach is inspired by the ideas behind HipTNT+ [32], it rests
entirely on simpler methods from transformation-based program analysis of Con-
strained Horn Clauses: control flow refinement via partial evaluation [17], con-
straint specialisation [27], and clause splitting [19]. We make these contributions:

– We reduce the problem of precondition inference for non-termination to pre-
condition inference for safety using a sequence of reachability queries inspired
by the work of Chen et al. [10], which reduces proving non-termination to
proving safety.

– We present an enhanced modular algorithm that combines under- and over-
approximation techniques based on abstract interpretation and program
transformation to derive sound and precise preconditions. It includes a novel
mechanism of deriving a more general precondition through iterative refine-
ment, which comes with refined termination criteria (Sect. 4).

– Our method uniformly handles non-linear clauses (arising from modelling
function calls, recursion, and nested loops) over linear integer arithmetic.

– A proof of concept is implemented in the tool NtHorn, and we present
experiments which show that our prototype implementation is competitive
with state-of-the-art tools for automated proof of non-termination (Sect. 5).

2 CHCs, Recurrence Sets and Preconditions

We represent a program as a set of Constrained Horn clauses (CHCs). This is
convenient for representing imperative programs and properties such as reach-
ability queries in a uniform way. Analysis of the program and its properties is
then done by analysing the corresponding CHCs. The translation of imperative
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programs to CHCs is standard [16,23,25,36] so we omit the details. From here
on, by ‘program’ we mean a program’s CHC encoding, unless otherwise stated.

Constrained Horn Clauses (CHCs). An atom is a formula p(x) with p a
predicate symbol and x a tuple of arguments. A CHC is a first-order formula
written p0(x0) ← ϕ, p1(x1), . . . , pk(xk), with ϕ a finite conjunction of quantifier-
free constraints on variables xi wrt. some constraint theory T, and pi(xi) are
atoms. A clause p0(x0) ← ϕ1 ∨ ϕ2, β with a disjunctive constraint is rewritten
as p0(x0) ← ϕ1, β and p0(x0) ← ϕ2, β. A constrained fact is a clause of the
form p0(x0) ← ϕ, where ϕ is a constraint. A clause is linear if k ≤ 1, otherwise
non-linear. A program is linear if all of its clauses are linear.

Given a clause set P , we assign a unique identifier to each clause in P .
Further, we assume the theory T is equipped with a decision procedure and
a projection operator, and that it is closed under negation. The notation ϕ|V
represents the constraint formula ϕ projected onto variable set V . ϕ |=T ψ (or
equivalently |=T ϕ ⇒ ψ) says that ϕ entails ψ over T. We write P 
T A when
an atom A is derivable from program P wrt. an axiomatisation of T. We omit
the subscript T when it is clear from the context.

CHC Encoding. Figure 1 (right) shows the CHC representation of the exam-
ple, encoding the reachable states. The clause c1 specifies the initial states of the
program via the predicate init which is always reachable. Similarly, c2 and c3
encode the reachability of the second if condition via the predicate if. Clauses c4
and c5 encode the reachability of the while loop via the predicate wh. Clause c4
states that the loop is reachable if if is reachable, while c5 states that the loop is
(re-)reachable from the end of its own body (recursive case). Clauses c6 and c7
encode the return from the program. Clause c6 states that the program termi-
nates if a < 0 upon loop exit, while clause c7 states that the program terminates
when b = 0 and the control does not satisfy the condition of the second if. The
coloured clauses are not part of the program, but are added to aid the analysis.
We employ two special predicates en and ex which respectively encode the states
entering the loop and exiting the loop or the program. Note that multiple clauses
for these predicates are possible given multiple loop entries/exits.

Definition 1 (Initial clauses and nodes). Let P be a program with a dis-
tinguished predicate pI which we call the initial predicate. The constrained facts
of the form pI(x) ← θ are the initial clauses of P . We extend the term “initial
predicate” and use the symbol pI to refer also to renamed versions of the initial
predicate that arise during clause transformations.

For the program in Fig. 1, init is the initial predicate and init(a, b) ← true
is the initial clause. We shall assume integer programs, that is, all variables take
integer values. Let val : V → Z map variables to their values. We overload val
to also map a tuple of variables to the tuple of their values.

A set of CHCs defines a transition system, defined as follows (in the following
we shall freely interchange these concepts):

Definition 2 (Transition system). A transition system of a linear program
P is a tuple T = (S,R, I), where
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– S = Pd × 2Z
|V |

is the set of states where Pd is the set of predicates of P
(including false) and V is a finite set of program variables.

– R ⊆ S × S is a transition relation. There is a transition from (p, val(x)) to
(p′, val(x′)) labelled by c if there is a clause p′(x′) ← ϕ ∧ p(x) ∈ P with
identifier c and if val(x) |= ϕ then val(x′) |= ϕ.

– I ⊆ S is a set of initial states.

Non-termination and Recurrence Set. A transition system T = (S,R, I)
is non-terminating iff there is an infinite sequence s0, s1, s2 . . . , of states, with
s0 ∈ I and (si, si+1) ∈ R. Non-termination of a relation R is witnessed by the
existence of an (open) recurrence set [24]: a non-empty set G of states such that
(i) G contains an initial state and (ii) each s ∈ G has a successor in G. A program
is non-terminating iff its transition system contains a recurrence set [24].

Chen et al. [10] extend the notion to closed recurrence set which facilitates
automation using established techniques like abstract interpretation or model
checking. A closed recurrence set is an open recurrence set G with the additional
property that, for each s ∈ G, all of its successors are in G. Our method relies
on closed recurrence sets to automate the reasoning.

Preconditions. Given a transition system T = (S,R, I), we define functions
pre : 2S → 2S , post : 2S → 2S and p̃re : 2S → 2S as follows.

– post(S′) = {s′ ∈ S | ∃s ∈ S′ : (s, s′) ∈ R} returns the set of states having at
least one of their predecessors in the set S′ ⊆ S;

– pre(S′) = {s ∈ S | ∃s′ ∈ S′ : (s, s′) ∈ R} returns the set of states having at
least one of their successors in the set S′ ⊆ S;

– p̃re(S′) = {s ∈ S | ∀s′ ∈ S : (s, s′) ∈ R ⇒ s′ ∈ S′} returns the set of states
having all of their successors in the set S′ ⊆ S.

With these functions, we can now state precondition inference problems.

Invariants. Given a transition system T = (S,R, I) and a set of initial states
S′ ⊆ S, the invariant inference problem consists of inferring the set of reachable
states from S′ as inv(T , S′) = lfp λX. S′ ∪ post(X).

Necessary Preconditions. Given a transition system T = (S,R, I) and a goal
set S′ ⊆ S of states, the necessary precondition inference problem consists of
inferring the set of initial states as nec_pre(T , S′) = lfp λX. S′ ∪ pre(X), which
guarantees that some of its executions will stay in S′.

Sufficient Preconditions. Given a transition system T = (S,R, I) and a goal
set S′ ⊆ S of states, the sufficient precondition inference problem consists of
inferring the set of initial states as suf_pre(T , S′) = gfp λX. S′ ∩ p̃re(X), which
guarantees that all of its executions will stay in S′.

Note that the functions inv, nec_pre and suf_pre are not computable in gen-
eral. Therefore, approximations of these functions are computed instead, which
provide “one-sided” guarantees. The state-of-the-art techniques for computing
nec_pre use over-approximations based on abstract interpretation [12] and are
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given in [2,3,13,30,37], while that for computing suf_pre use backward under-
approximation or negation of some necessary preconditions [28,34,35,37]. In
addition, these techniques can profitably be combined with CHC transforma-
tions such as [15,17,21,27] to enhance the precision of these analyses.

Example 1. Our approach derives preconditions as follows. First λen = b �=
100 and λex = (b ≥ 101 ∧ a ≤ 0) ∨ (b ≤ 99 ∧ a ≤ 0) ≡ a ≤ 0 ∧ b �= 100
are found as necessary preconditions for the reachability of en and ex, resp.
Now λ = λen ∧ ¬λex ≡ a ≥ 1 ∧ b �= 100 represents the initial states that
might reach the loop entry but not the loop exit. We consider λ a candi-
date for sufficient precondition, using that to strengthen the initial clause to
init(a, b) ← a ≥ 1 ∧ b �= 100. Then using backward under-approximation [34]
from the goal en, we derive a ≥ 1 ∧ b �= 100 as a sufficient precondition for
the reachability of en—which happens to be the optimal precondition for
non-termination in this case. If we just used under-approximations without
strengthening the initial clauses, we would obtained only a ≥ 1 ∧ b > 100 or
a ≥ 1 ∧ b < 100, and not both. ��

3 CHC Transformations and Their Roles
in Non-termination Analysis

We now summarise common CHC transformations that we use, such as partial
evaluation, constraint specialisation and clauses splitting. We highlight their role
in non-termination analysis. They are goal preserving transformations (or spe-
cialisations): given a program P and a goal A, the transformation of P wrt. to
the goal A yields another program P ′ such that P 
T A iff P ′ 
T A. In our
setting, the goals are en and ex. Informally, we produce a specialised version of
P that preserves the derivations of en and ex, but not necessarily other goals.

1. Partial Evaluation (PE). PE of a set P of CHCs wrt. goal A produces
a specialised version of P preserving only those derivations that are relevant
for deriving A. It produces a polyvariant specialisation, which is essential for
deriving disjunctive information. The partial evaluation algorithm utilised here
is an instantiation of the algorithm given in [20], which is parameterised by an
“unfolding rule” unfoldP and an abstraction operation abstractΨ .

The unfolding rule unfoldP takes a set S of constrained facts and “partially
evaluates” each element of S, using the following unfolding rule. For each (p(x) ←
θ) ∈ S, first construct the set of clauses p(x) ← ψ′, β′ where p(x) ← ψ, β is a
clause in P , and ψ′, β′ is obtained by unfolding ψ ∧ θ, β by selecting atoms so
long as they are deterministic (atoms defined by a single clause) and is not a
call to a recursive predicate, and ψ′ is satisfiable in T. unfoldP returns the set of
constrained facts q(y) ← ψ′|y where q(y) is an atom in β′.

Given an initial set S0, the closure of the unfoldP operation can be obtained
as lfp λS. S0 ∪ unfoldP (S). It is not computable in general; so instead we com-
pute a set cfacts(S0) = lfp λS. S0 ∪abstractΨ (unfoldP (S)), where the abstraction



Lightweight Nontermination Inference with CHCs 389

Fig. 2. PE of Fig. 1 wrt. ex (left) and its CS version (right) with inferred constraints
underlined. The last clause on LHS is eliminated since its body is strengthened to false.

operation abstractΨ performs property-based abstraction [23] wrt. a finite set
of properties Ψ . A set of clauses is then generated by applying unfoldP to each
cfacts(S0) and renaming the predicates in the resulting clauses according to the
different versions produced by abstractΨ . We refer to [21] for more details.

2. Constraint Specialisation (CS). A CS of P wrt. goal A and set Ψ of
properties [27] is a transformation in which each clause (p(x) ← ϕ, β) ∈ P is
replaced by p(x) ← ϕ,ψ, β (the difference from the original underlined), where
(p(x) ← ψ) ∈ Ψ , such that the resulting set of clauses preserves the derivation
of A. As a result, all paths that are irrelevant for deriving A can be eliminated.

Example 2 (Continued from Example 1). The program in Fig. 2 (left) is obtained
by PE of Fig. 1 wrt. ex. Observe that the recursive clause wh is effectively elimi-
nated, as it cannot contribute to a derivation of ex. The constraint in the initial
clauses b ≥ 101 ∨ b ≤ 99 ≡ b �= 100 is a necessary precondition for the reacha-
bility of ex. This is further strengthened to (a ≤ 0 ∧ b ≥ 101) ∨ (a ≤ 0 ∧ b ≤ 99)
≡ a ≤ 0 ∧ b �= 100 with constraint specialisation wrt. ex to Fig. 2 (left), which
propagates a ≤ 0 from the goal ex and b ≥ 101 ∨ b ≤ 99 from the constrained
facts to other clauses, resulting in the program on the right. Similarly, we obtain
b �= 100 as a necessary precondition for the reachability of en. ��

3. Clause Splitting. Given a clause (p(x) ← ϕ, β) ∈ P and a set Ψ of proper-
ties, clause splitting replaces the clause by p(x) ← ϕ,ψ, β and p(x) ← ϕ,¬ψ, β,
producing P ′ (new constraints are underlined), where (p(x) ← ψ) ∈ Ψ . This
embodies case splits, allowing case-based reasoning. Fioravanti et al. [19] use a
related technique for splitting clauses to achieve deterministic programs. Unlike
the previous transformations, it is goal independent, that is, for all atoms A of
P , P 
T A iff P ′ 
T A.

Common to these transformations is the set Ψ of properties, which determine
the quality of the resulting clauses. Soundness of CS also depends on the choice
of Ψ . Though the above program transformation techniques are generic for CHCs
and are taken from the literature, application or program specific choices of Ψ
that we describe next make them surprisingly effective in practice. In addition
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Fig. 4. PE of Fig. 3 wrt. ex; respective Ψs are shown in upper part

to this, our contribution is to put these transformation together and apply them
for inferring preconditions for NT, which has not been considered before.

Fig. 3. Synthetic example

We now discuss the specific choices we
make for each of the transformations and
illustrate the differences with other choices
using the synthetic but representative exam-
ple shown in Fig. 3.

For PE. The set Ψ contains the following constrained facts, generated from each
clause p(x) ← ϕ, p1(x1), . . . , pn(xn) ∈ P .

– p(x) ← ϕ|x and for each z ∈ x, p(x) ← ϕ|{z}
– for 1 ≤ i ≤ n, pi(xi) ← ϕ|xi

and for each z ∈ xi, pi(xi) ← ϕ|{z}.

The effect of property-based abstraction using this choice for Ψ is to create a
finite number (at most 2|Ψ |) of versions of a predicate for different call contexts
and answer constraints. This choice of Ψ , obtained syntactically from the program,
has been found to provide a good balance of speed and precision.

Example 3. Figure 4 shows PE programs for the program P in Fig. 3 wrt. ex
with two different choices of the set of properties Ψ . Ψ in Fig. 4 (left) are
computed as described above, while on the right are computed as follows:
Ψ =

⋃

(p(x)←ϕ,B)∈P {p(x) ← ϕ|x}. The purpose here is to show that the choice
of Ψ is important in getting a right specialisation. The program on the left is
an empty program since there is a vacuous base case (p1(a, b) ← false), while
the program on the right is identical to the original (no specialisation was per-
formed). ��

For CS. The properties Ψ have to be invariants for the program to produce
sound transformation. They can be obtained e.g., via forward (from the con-
strained facts) or backward (from the goal) abstract interpretation or their com-
bination [3]. In our case, they are obtained from forward abstract interpretation
of the query-answer transformed program [27]. Ψ thus obtained analysing the
program produces sound transformation, which is also found to be precise.

Example 4. Forward analysis of the program in Fig. 3 yields p(a, b) ← a ≥ b
as invariant for p(a, b). This is because (i) if c2 is not taken then we have
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a = b from c1 and obviously a ≥ b holds, (ii) if c2 is taken then a > 0
is maintained since a is incremented by b in each iteration and we ini-
tially had a = b. Since b is not modified in c2, a ≥ b holds. We now use
Ψ = {p(a, b) ← a ≥ b} to specialise the program in Fig. 3 wrt. ex, obtaining
the clauses c1, p(b+ c, b) ← a > 0, a ≥ b, p(c, b) and ex ← a < b, a ≥ b, p(a, b).
Note that the last clause is trivially satisfied. Instead of applying forward or
backward analysis in isolation, applying forward-backward analysis will imme-
diately detect that p(a, b) ← false, and the subsequent specialisation using the
result yields an empty program. ��
For Clause Splitting. We describe some heuristics specific to (non-)termination
analysis, requiring separation of terminating and non-terminating computations.
The targets are recursive clauses (loops) p(x′) ← ϕ, p(x). (i) Given a loop, a poten-
tial ranking function for the loop is an expression e(x) over variables x which is
non-negative (bounded from below) but not necessarily decreasing from p(x) to
p(x′). In this case, we choose the property {p(x) ← e(x) > e(x′)} (see Exam-
ple 5). (ii) The property {p(x) ← x ≥ 0 | x ∈ x, |=T ϕ ∧ x ≥ 0} is useful when
we have non-deterministic branches or assignments; but care needs to be taken to
control the blow-up of clauses.

Example 5. Taking p(a, b) ← a = b to be the initial clause of the program in
Fig. 3, the program does not terminate; e.g., for input a = 1, b = 1. Below
we apply clause splitting which reveals which clause causes non-termination.
The expression a is a potential ranking function for the loop, as it is non-
negative and not necessarily decreasing. We derive Ψ = {p(a, b) ← a+ b < a}.
Now splitting c2 with Ψ yields c2a: p(a+ b, b) ← a > 0, b < 0, p(a, b) and c2b:
p(a+ b, b) ← a > 0, b ≥ 0, p(a, b) (the new constraints are underlined). Such a
splitting guarantees that every infinite run of the program must use c2b as suffix.
This information can be exploited by (non-)termination analysers. ��

4 An Algorithm for Conditional Non-termination

We now present an algorithm for inferring sufficient preconditions for non-
termination. The main method is Algorithm 1. As a program can only get
stuck in loops or recursive code, and the translation to CHCs replaces loops
with recursion, the analysis focuses on the recursive strongly connected compo-
nents (SCCs) in the CHC dependency graph. As the first step, we compute the
SCCs of the input set P of CHCs. Each component is a set of (non-constraint)
predicates, which is either non-recursive or a set of (possibly mutually) recur-
sive predicates. The algorithm for computing SCCs returns the components
in topologically sorted order S1, . . . , Sn, such that for each Si, no predicate in
Si depends on any predicate in Sj where j > i. Then it annotates the pro-
gram with appropriate reachability queries and computes a sufficient precondi-
tion for each annotated program using Algorithm 2 in a modular way. These
preconditions are combined disjunctively to yield the overall result. The func-
tion annotate_program(P,C) inserts two sets of clauses to P given an SCC C as
follows.
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{en ← ϕ|vars(β)
, β | (H ← ϕ, β) ∈ P, pred(H) ∈ C,∀a (a ∈ pred(β) ⇒ a �∈ C)}

∪ {ex ← ϕ|vars(β)
, β | (H ← ϕ, β) ∈ P, pred(H) �∈ C,∀a (a ∈ pred(β) ⇒ a ∈ C)}

where pred(H) is the predicate symbols of H and pred(β) is the set of predicate
symbols in β. The special clauses for en encode the reachability of C in P while
the clauses for ex encode the exit condition of C in P . We explore all SCCs with
the aim of obtaining a more general precondition but for proving non-termination
it suffices to find a non-trivial precondition for an SCC.

Example 6. For the program in Fig. 1, there is a single SCC, namely the one
containing the predicate {wh}. The clauses c8 and c9 respectively encode the
reachability of the entry and exit of this SCC. ��

Algorithm 2 takes as input and annotated program P (with clauses for en and
ex); it returns a sufficient precondition for non-termination (a linear constraint
over T in DNF). Recall that we derive preconditions in two steps: (i) compute a
necessary precondition from the bad states, encoded by the predicate ex, whose
complement is a potential candidate for non-termination and (ii) refine the can-
didate with a sufficient precondition from the states that enter the loop, encoded
by the predicate en. Let us first focus on step (i), the generation of necessary pre-
conditions, using backward over-approximating analysis. Since these conditions
need to be negated to derive candidates, their precision is important. It is well
known that program specialisations, possibly applied iteratively [28] can enhance
(refine) precision of such analysis. A disadvantage of this is the blind refinement
of states possibly exiting the loop without knowing its frontier with the states
entering it. This misses opportunities to avoid redundant computation as well
as to guide the refinement process at an early stage. We therefore choose to
maintain two over-approximations, namely of the states entering the loop (λen)
and of the states exiting it (λex). We iteratively refine these (See Algorithm 2).
This enables the use of over-approximating analyses which are more developed
than their under-approximating counterparts. Further, step (ii) is only applied
to strengthen the candidate λ = λen ∧ ¬λex to a sufficient condition. This is
achieved by applying under-approximating analysis to replace_init(P, λ) instead
of the original P , so as to retain refined initial condition λ derived from the
analysis of step (i).

Definition 3 (replace_init(P, λ))). Let P be a program and λ a constraint over
T. The function replace_init returns clauses of P by replacing the initial clauses
{(pI(x) ← θi) | 1 ≤ i ≤ k} by {(pI(x) ← λ)}.

Algorithm 2. The variable σnt accumulates the result and is initialised to false.
ϕold keeps track of the initial states that could reach both en and ex; it is
initialised to true (line 3 ). The following operations are carried out within the
while loop. The formulae λen and λex (line 5 and 6 ) represent the set of initial
states that can reach en and ex, resp., and are computed using the method
nec_pre. The algorithm returns when (i) no initial state can reach en (λen ≡
false) (line 8 ), or (ii) the initial states satisfying ϕnew = λen ∧λex that can reach
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Algorithm 1. Inferring sufficient precondition for non-termination of a program
1: Input: A program P
2: Output: Sufficient precondition σnt for non-termination of P .
3: Initialisation: σnt ← false;
4: S1, . . . , Sn ← topologically sorted SCCs of P
5: for i = 1 . . . n do
6: if (recursive Si) then
7: Pan ← annotate_program(P, Si);
8: σnt ← σnt ∨ precond_scc(Pan) � Algorithm 2
9: return σnt

Algorithm 2. precond_scc: Inferring sufficient precondition wrt. a SCC
1: Input: Program P annotated with clauses for en and ex
2: Output: Sufficient precondition σnt for NT.
3: Initialisation: σnt ← false; ϕold ← true;
4: while true do
5: λen ← nec_pre(P, en);
6: λex ← nec_pre(P, ex);
7: if λen ≡ false then � no state reaches en
8: return σnt

9: ϕnew ← λen ∧ λex; � states that may both reach en and ex
10: λ ← λen ∧ ¬λex; � states that may reach en but not ex
11: P1 ← replace_init(P, λ); � Definition 3
12: σen ← suf_pre(P1, en); � strengthen λ to sufficient condition
13: σnt ← σnt ∨ σen;
14: if ϕnew ≡ false or ϕold |=T ϕnew then
15: � λen may not reach ex, or states reaching both en and ex don’t shrink.
16: return σnt

17: ϕold ← ϕnew;
18: P ← constrain_init(P, ϕnew) � refine P , Definition 4

both en and ex amount to false, or the set of initial states does not shrink further
from its previous value ϕold (line 14 ). The set of states captured by ϕnew is an
over-approximation. The algorithm aims to reduce the slack as much as possible,
to be able to separate terminating traces from non-terminating ones. To this end
it (i) constructs a revised program from P focusing only on the shared region
and (ii) shrinks either of the regions (λen, λex) via iterative specialisations. We
construct the revised program as follows.

Definition 4 (constrain_init(P,ϕ)). Let P be a program and ϕ a constraint
over T. constrain_init returns the clauses of P by replacing the initial clause set
{(pI(x) ← θi) | 1 ≤ i ≤ k} by the set {(pI(x) ← ϕ ∧ θi) | 1 ≤ i ≤ k}.

Proposition 1. constrain_init(P,ϕ) is an under-approximation of P .
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Proof (Sketch). P1 = constrain_init(P,ϕ) contains exactly the same clauses as
P , except for the initial clauses, which are possibly constrained. Hence for all
atoms A, if P1 
T A then P 
T A. That is, P1 is an under-approximation of P .

Since non-termination is preserved by under-approximation [10], we need to
ensure that the precondition does as well. This is in fact the case given that these
program only differ in their initial clauses. Thus, any initial state that definitely
reaches en and stays in the loop of P1 also does the same in P . Before formally
stating this property, let us first define (in terms of CHCs) what it means for a
program P to have ϕ as a sufficient precondition for NT.

Definition 5 (Sufficient precondition for CHCs). Let P be a program
annotated with appropriate reachability queries (for en and ex) as described
above and ϕ a constraint over T. Let P1 = replace_init(P,ϕ). Then we say ϕ is
a sufficient precondition for NT of P if ϕ → (P1 
T en ∧ P1 �
T ex).

Proposition 2 (Lifting sufficient conditions). If ϕ is a sufficient precon-
dition for non-termination of constrain_init(P, σ) (for some σ) then it is also a
sufficient precondition of P .

Proof (Sketch). Let P1 = constrain_init(P, σ). Since P1 and P have identical
clauses except for the initial clauses, replace_init(P1, ϕ) and replace_init(P,ϕ)
yield identical clauses. So ϕ is also a sufficient precondition of P
(Definition 5). ��

Note the initial states satisfying the formula (λen ∧ ¬λex) may reach en but
definitely not ex, so they are seen as potential candidates for non-termination.
The candidates are then strengthened to sufficient preconditions (σen) using the
method suf_pre (line 12 ). If σen ≡ false, then either all traces of P1 (line 11 )
are terminating or suf_pre loses precision. Observe that we use replace_init(P, λ)
(computed from P and λ using Definition 3) where λ = λen ∧ ¬λex instead of P
to limit our attention to those initial states that can reach en. If no termination
criterion is satisfied, the algorithm repeats (line 18 ) with constrain_init(P,ϕnew)
(Definition 4) since the states that satisfy ϕnew are the ones whose termination
status is unknown so far. Note that the construction of constrain_init(P,ϕnew)
requires ϕnew to be converted to DNF, which may blow up the number of result-
ing initial clauses, but in our experiments we have not observed that.

Soundness and Termination of the Algorithms. We now study some properties,
including soundness and termination of the Algorithms 1 and 2.

All the components used in Algorithm 2 terminate, but the algorithm itself
may not, owing to the fact that ϕnew can be decreased indefinitely (the algorithm
keeps refining). This is typical of algorithms for undecidable problems such as
non-termination. So we want to ensure a weaker property, that is, of progress.
Progress is made, in the sense that each iteration explores a strictly smaller
set of initial states whose termination status are not yet known. We state this
formally:
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Proposition 3 (Progress and Termination of Algorithm 2). Algorithm 2
either terminates or progresses.

Proof (Sketch). By induction on the number of iteration of the while loop.

Progress. Let ϕold and ϕnew be formulas characterising the set of initial states
yet to be proven non-terminating at each successive iteration respectively. Note
that the algorithm iterates only if ϕnew |= ϕold and ϕold �|= ϕnew, that is, if ϕnew

is strictly smaller than ϕold, in the set view.

Termination. Note that each individual operation in the loop, including
nec_pre, which is computed using abstract interpretation and program transfor-
mations, terminate. The only condition under which the algorithm diverges is
when ϕnew is strictly smaller than ϕold; in this case the algorithm progresses. ��

Observe that each iteration of Algorithm 2 computes a valid precondition for
non-termination of P even when under-approximations are used (Proposition 2).
The disjunctive combination of such preconditions is also a valid precondition
for non-termination of P . Again, we state this as a proposition.

Proposition 4 (Composing Preconditions). Let Φ be a set of formulas
such that each ϕ ∈ Φ is a sufficient precondition for non-termination of P . Then
so is

∨

Φ.

Proof (Sketch).
∨

Φ satisfies the condition of Definition 5. ��

Proposition 5 (Soundness of Algorithm 2). Let P be a program. If Algo-
rithm 2 returns σ for P , then σ is a sufficient precondition for non-termination
of P .

Proof (sketch). This follows from Proposition 2 and 4, with Definition 5: At
each iteration the algorithm computes a formula that satisfies the condition of
Definition 5 (the formula is a sufficient precondition). Proposition 2 allows us to
lift any such formula computed for constrain_init(P,ϕ) (for some ϕ) to P itself,
and Proposition 4 allows us to disjunctively combine such formulas to a valid
precondition for P . ��

foo(int x){
while(x > 0)
x = x+ 1

while(x < 0)
x = x − 1

}

The program shown here does not terminate when x �= 0.
On input x > 0 it gets stuck in the first loop, on x < 0 in the
second. Generally, a program P with n loops may get stuck in
loops l1, . . . , ln, resp., on input satisfying formulas ϕ1, . . . , ϕn.
If each such ϕi is a sufficient precondition for non-termination
of P , then so is

∨n
i=1 ϕi. Taken together, Proposition 4 and

5 ensure the correctness of Algorithm 1:

Theorem 1 (Soundness of Algorithm 1). Let P be a program. If Algo-
rithm 1 returns σ for P , then σ is a sufficient precondition for non-termination
of P .

Corollary 1. If ϕ �≡ false is a precondition for non-termination of a program
P , then P is non-terminating.
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Proof (Sketch). ϕ �≡ false implies there is at least an input (satisfying ϕ) to P
on which it does not terminate. ��

If Algorithm 1 returns false for P , then P ’s non-termination status is
unknown.

5 Implementation and Experiments

Implementation. We implemented Algorithm 1 as a prototype tool, NtHorn,
available from https://github.com/bishoksan/NtHorn.git. It is written in Ciao
Prolog [8] and uses PPL [1] and Yices 2.2 [18] for constraint manipulation. While
refinement of candidate preconditions to the sufficient ones can be done with a
tool such as [34], currently the implementation uses a simpler approach, namely,
the reachability of the respective loop entry from each candidate—using the
safety prover Rahft [29]. This gives a proof of non-termination as well as some
conditions on the initial states and is used in the experiments. NtHorn handles
integer programs only (the classical setting for (non-)termination work [10]), but
our techniques apply beyond integer arithmetic.

We rely on abstract interpretation and CHC transformations for inferring
sound and precise necessary preconditions. In particular, our implementation per-
forms forward and backward constraint propagation using the constraints derived
from polyhedral abstraction [14] obtaining a specialised version of the program
[27]. To enhance the precision of the analysis further, we apply a sequence of
program transformations including control-flow refinement using partial evalu-
ation [21], clause splitting, strengthening of initial clauses, and we iteratively
refine necessary preconditions for entering and exiting a loop.

Experimental Setting. We evaluated the approach on benchmarks from the
C_Integer category of TermComp’20 [38]. The benchmark suite consists of 335
programs with nondeterminism: 111 non-terminating, 223 terminating, and one
(Collatz) for which termination is unknown. Evaluation was done on 111 non-
terminating programs, ignoring the terminating ones, as NtHorn can only
prove non-termination. These are typical loop programs (simple or nested) with
branches. Some of these loops have non-deterministic conditions while others
contain non-deterministic assignments. We used small-step encoding to translate
them to CHCs, obtaining only linear clauses. We run several configurations of
NtHorn, namely NtHorn(X) where X can be partial evaluation pe, constraint
specialisation cs, clause splitting csp, or some combination. Then we compare
against state-of-the-art (non)-termination tools that participated in this cate-
gory: AProVE [22], iRankFinder [5], UltimateAutomizer [26] and Very-
Max [31]. We used TermComp’20 versions of these tools. We add HipTNT+ [32]
(http://loris-7.ddns.comp.nus.edu.sg/~project/hiptnt/plus/), as it shares with
NtHorn’s the ability to infer preconditions. We run several configurations of
NtHorn to study the impact of different CHC transformations. Since we could
not run iRankFinder due to some front-end issues, we took the evaluation
results from StarExec [38].

https://github.com/bishoksan/NtHorn.git
http://loris-7.ddns.comp.nus.edu.sg/~project/hiptnt/plus/
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Table 1. Experimental results on the TermComp’20 (C_Integer) suite.

Tool Proved NT Gave up Avg. time (s)

AProVE 100 11 12.72
iRankFinder 93 18 27.00
UltimateAutomizer 83 28 10.94
VeryMax 102 9 14.48
HipTNT+ 94 17 2.34
NtHorn(cs) 58 53 0.48
NtHorn(cs·pe) 94 17 0.62
NtHorn(cs·pe·csp) 98 13 0.86

Experiments were performed on a MacBook Pro, 2.7GHz Intel Core i5 pro-
cessor, 16 GB memory, running OS X 10.11.6. Timeout was 300 s (the com-
petition standard) per instance. The results are shown in Table 1. The three
last columns show, in order, the number of programs proved non-terminating,
the number given up within 300 s or timeout, and the average time taken by
all instances including the “gave up” instances. Among the tools, NtHorn and
HipTNT+ are the only tools capable of deriving a precondition. It would be
interesting to compare the generality of the preconditions inferred by our tools.
But we could not do so due to the difference in our (non-standard) output for-
mats. So with these experiments, we seek to answer the following questions:

Q1. Will the proposed method allow us to derive non-termination preconditions
(or prove non-termination) in practice?

Q2. How does it compare to state-of-the-art tools for proving non-termination?
Q3. What role do the CHC transformations play?

Results. The results show different profiles wrt. to solved instances and perfor-
mance for the tools. AProVE (resp. VeryMax), the category winner in 2020
(resp. 2019), solves two (resp. four) instances more than NtHorn, while the rest
solve less. This shows a remarkable effectiveness of our particular combination
of mostly off-the-shelf techniques. The configuration NtHorn(cs) solves only
58 instances, while NtHorn(cs·pe) solves 94. The best result is achieved with
NtHorn(cs·pe·csp). We find that each component transformation has a posi-
tive impact. Not only can we solve more problems (at the cost of solving time),
we also generate more general preconditions. The combination cs·pe·csp has
been chosen based on experiments, but its effectiveness aligns with our intuition.
Namely, csp derives new domain specific constraints that pe can take advantage
of during polyvariant specialisation, and cs, which is based on abstract inter-
pretation, greatly benefits from the resulting specialised form.

As for speed, NtHorn(cs·pe·csp) (from here on “NtHorn”) is an order
of magnitude faster than the alternatives, solving each case in less than a sec-
ond, while giving up on 13 cases. The median time was 1 s, while the instance
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such as NO_04 with 5-level of nesting and Lcm resp. took 135 and 58 s and a
few other took slightly more than a second. We believe the speed is due to
abstract interpretation (which in this context is relatively efficient), together
with the lightweight program transformation. Also, unlike other tools, NtHorn
focuses on proving just non-termination. Among the 13 cases, NtHorn fails
to handle LogMult and DoubleNeg because they involve non-linear operations.
They are proved non-terminating only by iRankFinder. The cases Narrowing
and NarrowKonv are shown non-terminating only by NtHorn, VeryMax and
HipTNT+, while ChenFlurMukhopadhyay-SAS2012-Ex2.11 only by NtHorn
and HipTNT+. NtHorn could not generate preconditions for 4 programs.
These programs contain non-deterministic assignments that affect loop condi-
tions; it might be possible that sufficient preconditions do not exist for them,
though they can be shown terminating, as discussed in Sect. 1.

In summary, the results answer Q1–Q3 positively. NtHorn can be used
to derive preconditions for NT and is comparable in power to the leading non-
termination analysis tools, when applied to integer programs. Notably, NtHorn
solves problems several orders of magnitude faster than the state-of-the-art ana-
lyzers and CHC transformations play an important role in this.

A new non-termination prover, RevTerm [9] was published recently and
has not been part of our tool comparison. Like NtHorn, it does not prove
termination. The experimental evaluation [9] suggests that its precision (for non-
termination) is on a par with that of VeryMax, but obtained 2–3 times faster.
Comparison data from the paper [9] are in agreement with what we have found,
for both precision and performance (they use a timeout of 60 s, rather than 300,
so the average running times reported are somewhat shorter.)

6 Related Work

There is a rich body of work on proving non-termination, e.g., [2,7,10,11,24,
31,32,39]. Most of these provers either provide a stem (a sequential part from
entry to loop) and the loop, or some precondition from which there exists a non-
terminating run as a witness to non-termination. But for some applications like
web-servers, a sufficient precondition (under which no trace is finite) is more
useful. To our knowledge, prior to NtHorn, HipTNT+ [32] was the only tool
able to infer sufficient conditions for non-termination. Le et al. [32] propose a
specification logic and Hoare-style reasoning to infer sufficient preconditions for
both termination and non-termination of programs and, unlike ours, can han-
dle programs manipulating pointers. We infer preconditions for non-termination
only, relying on reduction to precondition inference for safety. But our approach
is considerably simpler, as we combine existing techniques, refined iteratively.

Many non-termination provers [22,24,26,39] search exhaustively for candi-
date lassos (simple while loops without branches), and attempt to prove non-
termination by deriving a recurrence set using constraint solving [22,24,39] or
automata based approaches [26]. An orthogonal approach [33] considers lassos
with linear arithmetic and represents infinite runs as geometric series.
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We exploit the notion of closed recurrence set [10] as it is useful not only
for automation using a safety prover, but also for proving non-termination of
non-deterministic programs and programs involving aperiodic non-termination.
The method of Chen et al. [10] inserts appropriate reachability queries and uses
a safety prover to eliminate terminating paths iteratively until it finds a program
under-approximation and a closed recurrence set in it. The method is likely to
diverge as there can be infinitely many terminating paths. Hence we use abstract
interpretation to derive initial conditions that lead to the terminating paths. We
negate the conditions to bar those paths. Similar to our approach, the method
[31] (implemented in VeryMax [6]) searches for witnesses to non-termination
in the form of quasi-invariants (sets of states that do not exit the loop once
entered) whose reachability from initial states is checked using a safety prover.
Where VeryMax infers such invariants using Max-SMT solving, we do it using
abstract interpretation.

Chatterjee et al. [9] rely on syntactic program reversal (applicable only to
while programs; corresponding to linear CHCs) to derive backward polynomial
conjunctive invariants using off-the-shelf tools and prove NT. Our method is
more generally applicable to programs with procedures and can also infer pre-
conditions as disjunction of linear constraints. Unlike our method, theirs pro-
vides relative completeness guarantees, that is, it is guaranteed to find the proof
of NT under certain conditions. Bakhirkin [2], as we do, uses forward and back-
ward abstract interpretation to find potential recurrence sets whose reachability
implies non-termination. The approach can be applied to heap manipulating
programs but is limited to simple while program. Ben-Amram et al. [4] derive a
recurrence set from a failed attempt to prove termination of multi-phase loops,
while our approach is direct and only proves non-termination.

While the above methods target programs with linear arithmetic, Cook
et al. [11] prove non-termination of programs with non-linear arithmetic and
heap-based operations. The key is the notion of live abstraction, an abstraction
heuristic that ensures that any abstract trace corresponding to a terminating
concrete trace is also terminating. In other words, it does not introduce any
non-termination and is a sound abstraction heuristic for non-termination. This
allows over-approximating non-linear assignments and heap-based commands
with non-deterministic linear assignments.

7 Concluding Remarks

We have presented a new approach to preconditions for non-termination. The
problem is reduced to inference of preconditions for safety, via insertion of “reach-
ability queries” in program loops. The reduction enables us to use existing tools
and techniques for safety preconditions. A prototype implementation is compet-
itive with the state-of-the-art tools for automated proof of non-termination.

NtHorn can only infer preconditions for non-termination and is limited to
programs manipulating linear integer arithmetic, whose applicability is deter-
mined by the underlying tool for inferring preconditions for safety. In future, we
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plan to complement it with termination analysis as done in other tools and also
extend to programs that manipulate structured data, a la Cook et al. [11].
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