
Radu Calinescu
Corina S. Păsăreanu (Eds.)

19th International Conference, SEFM 2021
Virtual Event, December 6–10, 2021
Proceedings

Software Engineering
and Formal MethodsLN

CS
 1

30
85

Fo
rm

al
 M

et
ho

ds

Lecture Notes in Computer Science 13085

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7407

https://springerlink.bibliotecabuap.elogim.com/bookseries/7407

Radu Calinescu • Corina S. Păsăreanu (Eds.)

Software Engineering
and Formal Methods
19th International Conference, SEFM 2021
Virtual Event, December 6–10, 2021
Proceedings

123

Editors
Radu Calinescu
University of York
York, UK

Corina S. Păsăreanu
Carnegie Mellon University
Moffett Field, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-92123-1 ISBN 978-3-030-92124-8 (eBook)
https://doi.org/10.1007/978-3-030-92124-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
Chapter “Configuration Space Exploration for Digital Printing Systems” is licensed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For
further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2678-9260
https://doi.org/10.1007/978-3-030-92124-8
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the proceedings of SEFM 2021, the 19th International
Conference on Software Engineering and Formal Methods, which was held as a virtual
event during December 6–10, 2021. The conference brought together leading
researchers and practitioners from academia, industry, and government to advance the
state of the art in formal methods, to facilitate their uptake in the software industry, and
to encourage their integration within practical software engineering methods and tools.

SEFM 2021 received 86 full-paper submissions and six tool-paper submissions, of
which 22 submissions were accepted as full papers (an acceptance rate of 25.58%) and
four submissions were accepted as tool papers. The papers were reviewed for quality,
correctness, originality, and relevance. Each submission was reviewed by three Pro-
gram Committee members, and an online post-reviewing discussion open to the entire
Program Committee was held to make the final decisions. This volume contains the
revised versions of the accepted papers, which cover a wide variety of topics, including
run-time analysis and testing, security and privacy, parallel composition/CSP and
probabilistic reasoning, verification and synthesis, reasoning about machine learning
and cyber-physical systems, and formal methods for emerging areas within software
engineering.

The conference program also featured three keynote talks by Ana Cavalcanti
(University of York, UK), Marsha Chechik (University of Toronto, Canada), and
Sebastian Uchitel (University of Buenos Aires, Argentina, and Imperial College
London, UK). We are grateful to the three invited speakers for accepting our invitations
to give keynote talks at the conference.

We would like to thank the authors who submitted their work to SEFM 2021. We
are grateful to the members of the Program Committee and the additional reviewers for
providing timely and insightful reviews, as well as for their participation in the post-
reviewing discussions. We would also like to thank the SEFM Steeering Committee for
their advice and support, and Antonio Cerone for overseeing the organization of the
SEFM 2021 symposia and workshops as Workshop Chair. We thank the Publicity
Chairs, Mario Gleirscher and Laura Nenzi, the Organizing Committee members
Antonio Cerone and Jennifer Dick, and the webmaster, Ioannis Stefanakos, for all their
help with planning, publicizing, and organizing the conference.

We gratefully acknowledge the convenience of the EasyChair system for handling
the submission and review processes, and for preparing these proceedings. Finally,
we also acknowledge the sponsorship and support from the Assuring Autonomy
International Programme, Carnegie Mellon University (USA), Nazarbayev University
(Kazakhstan), the University of York (UK), and the UKRI Trustworthy Autonomous
Systems Node in Resilience.

October 2021 Radu Calinescu
Corina S. Păsăreanu

Organization

Program Chairs

Radu Calinescu University of York, UK
Corina S. Păsăreanu Carnegie Mellon University, Silicon Valley, USA

Program Committee

Erika Abraham RWTH Aachen University, Germany
Jiri Barnat Masaryk University, Czech Republic
Amel Bennaceur The Open University, UK
Dirk Beyer LMU Munich, Germany
Frank de Boer Centrum Wiskunde & Informatica, The Netherlands
Ana Cavalcanti University of York, UK
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Gabriel Ciobanu Romanian Academy, Institute of Computer Science,

Romania
Corina Cirstea University of Southampton, UK
Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
Louise Dennis University of Manchester, UK
Antonio Filieri Imperial College London, UK
Mario Gleirscher University of Bremen, Germany
Marieke Huisman University of Twente, The Netherlands
Marie-Christine Jakobs Technical University of Darmstadt, Germany
Raluca Lefticaru University of Bradford, UK
Antónia Lopes Universidade de Lisboa, Portugal
Tiziana Margaria Lero, Ireland
Paolo Masci National Institute of Aerospace, USA
Claudio Menghi University of Luxembourg, Luxembourg
Laura Nenzi University of Trieste, Italy
Hans de Nivelle Nazarbayev University, Kazakhstan
Peter Ölveczky University of Oslo, Norway
Gordon Pace University of Malta, Malta
Catuscia Palamidessi Inria, France
Colin Paterson University of York, UK
M. Emilia Cambronero University of Castilla-La Mancha, Spain
Violet Ka I. Pun Western Norway University of Applied Sciences,

Norway
Gwen Salaün University of Grenoble Alpes, France
Augusto Sampaio Federal University of Pernambuco, Brazil
Ina Schaefer Technische Universität Braunschweig, Germany

Gerardo Schneider Chalmers University of Technology and University
of Gothenburg, Sweden

Marjan Sirjani Mälardalen University, Sweden
Graeme Smith University of Queensland, Australia
Youcheng Sun Queen’s University Belfast, UK
Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Elena Troubitsyna KTH Royal Institute of Technology, Sweden
Marina Waldén Abo Akademi University, Finland
Heike Wehrheim University of Paderborn, Germany
Gianluigi Zavattaro University of Bologna, Italy

Steering Committee

Frank de Boer Centrum Wiskunde & Informatica, The Netherlands
Radu Calinescu University of York, UK
Antonio Cerone (Chair) Nazarbayev University, Kazakhstan
Rocco De Nicola IMT School for Advanced Studies Lucca, Italy
Gwen Salaün University of Grenoble Alpes, France
Marjan Sirjani Mälardalen University, Sweden
Gianluigi Zavattaro University of Bologna, Italy

Additional Reviewers

Abbaspour Asadollah, Sara
Alves, Vander
Aman, Bogdan
Attala, Ziggy
Azzopardi, Shaun
Baramashetru, Chinmayi Prabhu
Bargmann, Lara
Bartocci, Ezio
Baxter, James
Birkemeyer, Lukas
Cerna, Ivana
Costa, Gabriele
Damasceno, Carlos Diego
De Gouw, Stijn
Din, Crystal Chang
Edixhoven, Luc
Evans, Neil
Fava, Daniel
Foster, Simon
Galletta, Letterio
Giallorenzo, Saverio
Gorla, Daniele
Haltermann, Jan

Hentze, Marc
Hiep, Hans-Dieter
Hoang, Thai Son
Hughes, William
Inverso, Omar
Irfan, Ahmed
Jongmans, Sung-Shik
Kanav, Sudeep
Knüppel, Alexander
Krishna, Ajay
Kristensen, Lars
König, Jürgen
Lang, Frédéric
Lemberger, Thomas
Lenglet, Sergueï
Leuschel, Michael
Mercanti, Ivan
Moradi, Fereidoun
Pang, Jun
Pauck, Felix
Peters, Kirstin
Rehak, Vojtech
Requeno, Jose Ignacio

viii Organization

Richter, Cedric
Rubbens, Robert
Runge, Tobias
Salimi, Maghsood
Schlatte, Rudolf
Schupp, Stefan
Serwe, Wendelin
Sharifi, Zeinab
Sharma, Arnab
Shokri-Manninen, Fatima
Soderi, Simone

Steffen, Martin
Štill, Vladimír
Tokas, Shukun
Turin, Gianluca
Tyler, Benjamin
van den Bos, Petra
van Glabbeek, Rob
Visconti, Ennio
Weise, Nico
Windsor, Matt

Organization ix

Controller Synthesis for Adaptive Mobile
Robots. Abstractions, All Change!?

(Keynote Abstract)

Sebastian Uchitel

Universidad de Buenos Aires, Argentina and Imperial College London, UK

Abstract. Discrete event controller synthesis promises correct-by-construction
strategies for controlling reactive systems to ensure user specified goals. Run-
time synthesis takes this one step further, enabling correct runtime adaptation
when a reactive system's goals, capabilities, or environment change. The need
for synthesis in mobile robotic systems is particularly telling. Despite the wide
availability of general purpose mobile robots (particularly Unmanned Aerial
Vehicles – UAVs), the ability of end-users (individuals and organisations) to
exploit them to their full potential is limited. Either complex and error prone
programming is required or graphical mission planning interfaces are used to
model simple, non-reactive missions. The use of synthesis and runtime synthesis
for mobile robots has many challenges ahead. In this talk I will discuss how we
addressed some of them by revisiting both (1) the abstractions used to specify
and synthesise discrete event controllers and (2) the architectural abstractions
needed to successfully deploy synthesis technology on both fixed wing and
multi-rotor systems.

Contents

Invited Papers

RoboWorld: Where Can My Robot Work?. 3
Ana Cavalcanti, James Baxter, and Gustavo Carvalho

Validating Safety Arguments with Lean . 23
Logan Murphy, Torin Viger, Alessio Di Sandro, Ramy Shahin,
and Marsha Chechik

Run-time Analysis and Testing

Runtime Enforcement with Reordering, Healing, and Suppression 47
Yliès Falcone and Gwen Salaün

Monitoring First-Order Interval Logic . 66
Klaus Havelund, Moran Omer, and Doron Peled

Exhaustive Property Oriented Model-Based Testing with Symbolic
Finite State Machines . 84

Niklas Krafczyk and Jan Peleska

nfer – A Tool for Event Stream Abstraction . 103
Sean Kauffman

Mining Shape Expressions with ShapeIt. 110
Ezio Bartocci, Jyotirmoy Deshmukh, Cristinel Mateis,
Eleonora Nesterini, Dejan Ničković, and Xin Qin

Security and Privacy

Refining Privacy-Aware Data Flow Diagrams . 121
Hanaa Alshareef, Sandro Stucki, and Gerardo Schneider

Hybrid Information Flow Control for Low-Level Code 141
Eduardo Geraldo, José Fragoso Santos, and João Costa Seco

Upper Bound Computation of Information Leakages for Unbounded
Recursion. 160

Johannes Bechberger and Alexander Weigl

On the Security and Safety of AbU Systems . 178
Michele Pasqua and Marino Miculan

Parallel Composition/CSP and Probabilistic Reasoning

Parallelized Sequential Composition and Hardware Weak
Memory Models . 201

Robert J. Colvin

Checking Opacity and Durable Opacity with FDR 222
Brijesh Dongol and Jay Le-Papin

Translation of CCS into CSP, Correct Up to Strong Bisimulation 243
Gerard Ekembe Ngondi, Vasileios Koutavas, and Andrew Butterfield

Probabilistic BDI Agents: Actions, Plans, and Intentions 262
Blair Archibald, Muffy Calder, Michele Sevegnani, and Mengwei Xu

A Debugger for Probabilistic Programs . 282
Alexander Hoppen and Thomas Noll

Verification and Synthesis

Verification of Programs with Exceptions Through Operator Precedence
Automata . 293

Francesco Pontiggia, Michele Chiari, and Matteo Pradella

Counterexample Classification . 312
Cole Vick, Eunsuk Kang, and Stavros Tripakis

Be Lazy and Don’t Care: Faster CTL Model Checking for Recursive
State Machines . 332

Clemens Dubslaff, Patrick Wienhöft, and Ansgar Fehnker

Fairness, Assumptions, and Guarantees for Extended Bounded Response
LTL+P Synthesis . 351

Alessandro Cimatti, Luca Geatti, Nicola Gigante, Angelo Montanari,
and Stefano Tonetta

TACoS: A Tool for MTL Controller Synthesis . 372
Till Hofmann and Stefan Schupp

Emerging Domains

Lightweight Nontermination Inference with CHCs. 383
Bishoksan Kafle, Graeme Gange, Peter Schachte, Harald Søndergaard,
and Peter J. Stuckey

A Denotational Semantics of Solidity in Isabelle/HOL 403
Diego Marmsoler and Achim D. Brucker

xiv Contents

Configuration Space Exploration for Digital Printing Systems. 423
Jasper Denkers, Marvin Brunner, Louis van Gool, and Eelco Visser

Bit-Precise Verification of Discontinuity Errors Under Fixed-Point
Arithmetic . 443

Stella Simić, Omar Inverso, and Mirco Tribastone

Machine Learning and Cyber-Physical Systems

OSIP: Tightened Bound Propagation for the Verification of ReLU Neural
Networks . 463

Vahid Hashemi, Panagiotis Kouvaros, and Alessio Lomuscio

Active Model Learning of Stochastic Reactive Systems 481
Martin Tappler, Edi Muškardin, Bernhard K. Aichernig, and Ingo Pill

Mixed-Neighborhood, Multi-speed Cellular Automata for Safety-Aware
Pedestrian Prediction . 501

Sebastian vom Dorff, Chih-Hong Cheng, Hasan Esen,
and Martin Fränzle

Author Index . 521

Contents xv

Invited Papers

RoboWorld: Where Can My Robot
Work?

Ana Cavalcanti1(B), James Baxter1, and Gustavo Carvalho2

1 Department of Computer Science, University of York, York, UK
Ana.Cavalcanti@york.ac.uk

2 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil

Abstract. The behaviour of a robot affects and is affected by its envi-
ronment. So, many of the expected and desirable properties of a robotic
system depend on properties of its environment. While a complete model
of that environment is very difficult, if not impossible, to construct,
we can realistically capture assumptions about it. In this paper, we
present RoboWorld, a controlled natural language with a process alge-
braic semantics that can be used to define (a) the operational require-
ments of a robot, and (b) how the robot interacts with its environment.
RoboWorld is part of the RoboStar framework of domain-specific lan-
guages that support proof, simulation, and testing of robotic systems.
RoboWorld plays a central role in all these forms of verification.

1 Introduction

The RoboStar framework1 supports model-based engineering of robotic control
software, covering design, simulation, and deployment. A number of RoboStar
domain-specific languages facilitate the definition of models for which a seman-
tics can be (automatically) provided using a state-rich hybrid version of a process
algebra for refinement [10], which is cast in Hoare and He’s Unifying Theories of
Programming (UTP) [13] and formalised in Isabelle [9]. Here, we give an overall
description of RoboWorld, the language for documenting operational require-
ments of a robotic system for use in simulation, test generation, and proof.

Figure 1 shows the various modelling and derived artefacts used in the
RoboStar framework. Platform-independent design models of control software
are written using a diagrammatic domain-specific language: RoboChart [20]. At
the simulation level, the notation is called RoboSim [5]. RoboChart is event-
based, while RoboSim, as expected of a simulation language, is cycle-based.

RoboWorld can be used to complement a RoboChart model by describing
operational requirements in the form of assumptions about the environment.
The RoboWorld requirements cover aspects of the arena in which the robot is
expected to work and of the robotic platform. RoboWorld is a controlled natural
language with a semantics compatible with that of RoboChart and RoboSim.

1 www.cs.york.ac.uk/robostar/.

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 3–22, 2021.
https://doi.org/10.1007/978-3-030-92124-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_1&domain=pdf
www.cs.york.ac.uk/robostar/
https://doi.org/10.1007/978-3-030-92124-8_1

4 A. Cavalcanti et al.

control
software

REQUIRES

variables
operations
events

physical
model

links
joints
sensors
actuators

platform
mapping

INPUTS

OUTPUTS

OUTPUTS OF
SENSORS

INPUTS OF
ACTUATORS

scenario
model

quantities
and
events of
interest

environment
mapping

INPUTS OF
SENSORS

OUTPUTS OF
ACTUATORS

EFFECT ON
INPUTS OF
SENSORS

EFFECT OF
ACTUATORS

obstacle.left (←)
move(1) (→)

voltage (←)
desired speed (→)

infrared light (←)
torque (→)

colour (←)
force (→)

ho
w vo

lta
ge

map
s t

o

ide
nti

fic
ati

on

of
ob

sta
cle se

ns
or

eq
ua

tio
n position of

objects and
robot

ho
w ob

jec
t

pro
pe

rtie
s

aff
ec

t

inf
rar

ed

lig
ht

RoboSim

RoboWorld
operational requirements

RoboChart

Simulation code

C++ SDFservices
implementation

INPUTS

OUTPUTS

OUTPUTS OF
SENSORS

INPUTS OF
ACTUATORS

SDFservices
implementation

INPUTS OF
SENSORS

OUTPUTS OF
ACTUATORS

EFFECT OF
ACTUATORS

EFFECT ON
INPUTS OF
SENSORS

Deployment

control
code

robot
API

INPUTS

OUTPUTS

d-model s-modelp-model

module

Fig. 1. RoboStar modelling and derived artefacts

As indicated in Fig. 1, RoboSim includes a notation to describe control soft-
ware (d-models) as well as notations (under development) to describe physi-
cal models (p-models) [19] of robotic platforms (their links, joints, sensors, and
actuators) and simulation scenarios (s-models). RoboSim p-models and s-models
describe specific platforms and specific scenarios for use in a simulation. In con-
trast, a RoboWorld document describes assumptions that can be satisfied by any
number of platforms and scenarios. So, RoboWorld documents specify properties
that must be satisfied by RoboSim p-models and s-models.

Ongoing work enables the generation of a RoboSim d-model by transfor-
mation of a RoboChart model. The transformation ensures correctness of the
RoboSim model with respect to the RoboChart model, in the context of assump-
tions that capture the cyclic nature of the simulation paradigm.

In contrast, since a RoboWorld document does not define a model, but
assumptions about the robot and its environment, it cannot be used to generate
p-models and s-models. This is, however, in line with current practice, where
the starting point to identify operational requirements is the development of a
simulation (if not of the actual program). Once the requirements are identified
in a RoboWorld document, we can then verify whether a p-model or an s-model,
or their combination, satisfies the assumptions documented using RoboWorld.

As shown in Fig. 1, to connect a d-model and a p-model, we use a platform
mapping. This model defines how the sensors and actuators of the p-model are
used to realise the services (variables, events, and operations) required by the d-
model. Similarly, a RoboWorld document describes, besides assumptions about
the robot and its arena, a mapping, which identifies how elements of the world
are related to, or used to realise, the services required by a RoboChart model.

RoboWorld: Where Can My Robot Work? 5

Another aspect of the RoboStar framework highlighted in Fig. 1 is that the
modularity afforded by RoboSim d-models, p-models, and s-models, defined sep-
arately and connected by mappings, is carried over to simulation code. From
RoboSim models, code can be obtained that uses C++ for the simulation of
the software, and SDF (an XML-based notation used by robotics simulators2,
similar to URDF) to implement a simulation of the platform and the arena. The
code is structured to match the model components. So, besides the usual ben-
efits of modularity, we have a way to tackle the reality gap, which occurs when
behaviour observed in simulation is not reproduced at deployment.

For example, it is not unusual to assume under simulation that the robot has
perfect information about the position of obstacles in the arena. In RoboSim,
this can be specified by a sensor in the physical model whose input and output
are both the distance to an obstacle in the scenario and whose behaviour is
defined just by the identity function. In this case, the platform mapping just
uses that distance to define whether there is an obstacle in range.

Tackling the reality gap involves identifying assumptions like these that may
have a significant impact on the behaviour of the robot. For that, with no models
or modularity, roboticists are left with the difficult task of changing the simula-
tion or deployed code and embark on a trial and error campaign.

By using the RoboStar framework, we can instead change the models and
evaluate the impact of the changed assumptions in a systematic way at a lower
cost. First, changes to the relevant RoboSim model and mapping are localised,
with effect on other models contained. In our example, to obtain a more realis-
tic simulation, we just need to change the p-model and the platform mapping.
Second, RoboWorld provides an accessible way to check and record any impact
on operational requirements. For example, we can check whether the changed
RoboSim model satisfies existing RoboWorld assumptions and make any adjust-
ments. In the example, we may need to add assumptions about the range or
accuracy of sensors. The RoboWorld mapping avoids propagation of changes to
the RoboChart model. Finally, if needed, we can regenerate code.

Going further, as indicated in Fig. 1, the RoboSim modularity matches the
deployment perfectly. In the real world, the control software, the robotic plat-
form, and the environment are separate entities. So, results of tests involving
the deployed system can also be traced back to RoboChart and RoboWorld
descriptions in the way described above for simulations.

Finally, testing, either using a simulation or the deployed systems, is in itself a
challenging task. RoboChart models can be used to generate automatically tests
that can be used in the setting above to evaluate the design and the impact of
assumptions [3]. These tests define scenarios for exercising the control software.
Without information about the valid scenarios, however, infeasible or useless
tests can be generated. The formal semantics of a RoboWorld document can be
used to eliminate such tests automatically.

2 http://sdformat.org.

http://sdformat.org

6 A. Cavalcanti et al.

To summarise, RoboWorld documents are relevant to several aspects of the
design and verification of a robotic system. First, they can document operational
requirements that are often left as implicit assumptions. Second, they can be
used to document and check the validity of simulation models, and of code
automatically generated from such models. Third, they play a role in improving
the quality of tests suites automatically generated from models.

Tool support for RoboWorld is provided by RoboTool3. It includes also facil-
ities for (graphical) modelling, validation, and automatic generation of mathe-
matical models for RoboChart and RoboSim.

In this paper, we provide an overview of the RoboWorld syntax, seman-
tics, and tool support. Section 2 describes the structure of RoboWorld docu-
ments, and Sect. 3 gives an overview of the semantic models of RoboWorld doc-
uments. RoboTool support for RoboWorld is the object of Sect. 4. Application of
RoboWorld in automatic test generation from RoboChart is discussed in Sect. 5.
We conclude in Sect. 6, where we also discuss related and future work.

2 RoboWorld Syntax

The grammar of RoboWorld is defined using the Grammatical Framework (GF),
a special-purpose functional programming language for developing controlled
natural languages [25]. It provides native support for inflection paradigms (for
example, singular and plural forms), as well as agreement between elements of
a sentence (for instance, the verb must have the same number as the subject).

RoboChart and RoboSim both use state machines to specify software, akin
to notations already in widespread use in the robotics literature [2,8,23,29], but
enriched with facilities to specify timing. They can capture time budgets, time-
outs, and deadlines. Both RoboChart models and RoboSim d-models describe a
robotic platform in terms of the services it is required to provide. These services
are characterised by variables, events, and operations: abstractions of sensors,
actuators, and embedded software. Equally, RoboWorld documents can specify
time assumptions, and RoboWorld mappings define variables, events, and oper-
ations in terms of elements of the environment described in the assumptions.

In this section, we use two examples to provide a description of RoboWorld
documents. As a first example we present a ranger robot, whose RoboChart
model is shown in Fig. 2. A RoboChart model defines a module that describes
a robotic control software: in the example, the module is defined by the block
called Ranger. A module contains a robotic platform, represented by the block
named RangerRP in our example, and one or more controllers. In the example,
we have just a reference to one controller called Movement.

The robotic platform records variables, events, and operations offered by
the robot hardware and firmware for use by the robot control software. In our

3 robostar.cs.york.ac.uk/robotool/.

http://www.robostar.cs.york.ac.uk/robotool/

RoboWorld: Where Can My Robot Work? 7

Fig. 2. Ranger RoboChart model

example, RangerRP declares two interfaces: MovementI, defining that RangerRP
provides an operation move(lv, av) that causes the robot to move with linear
velocity lv and angular velocity av, and ObstacleI, declaring that RangerRP defines
an event obstacle that signals when the robot has detected an obstacle.

The behaviour of a controller can be defined by one or more state machines.
The controller Movement contains a reference to a single state machine, SMove-
ment, that describes the behaviour of the ranger robot. Both Movement and
SMovement require the move() operation from MovementI and define the obsta-
cle event from ObstacleI, which is connected as an input from the platform.

Within SMovement, execution begins in the Moving state, which calls the
move() operation with a constant linear velocity lv and then waits for one time
unit before offering a transition out of the state when an obstacle event occurs.
When that transition is taken, a clock MBC is reset, and the machine enters a
state Turning in which move() is called with a constant angular velocity av. The
machine then waits until at least PI/av time units have passed before returning
to the Moving state. The behaviour of the robot is thus to stop and turn through
π radians before resuming movement whenever an obstacle is detected.

The RoboWorld assumptions corresponding to this model are shown in Fig. 3.
They are divided into sections to distinguish assumptions about the arena,
assumptions about the robot, and assumptions about (other) elements of the
arena, and mappings of robotic platform components onto the world. The first
section, ARENA ASSUMPTIONS, captures assumptions over the arena as a whole.
In particular, in this example, the assumptions state that the arena is two-
dimensional and flat. It also declares elements of the arena that may be present,
such as special regions of the arena or entities that the robot may interact with.
In this case, it declares a type of entity called obstacle.

8 A. Cavalcanti et al.

ARENA ASSUMPTIONS

The arena is two -dimensional.

The gradient of the ground is 0.

There are entities called obstacle.

ROBOT ASSUMPTIONS

The robot is a point mass.

ELEMENT ASSUMPTIONS

One quarter of the arena contains obstacles.

The obstacles are point masses.

MAPPING OF OUTPUT EVENTS

MAPPING OF INPUT EVENTS

The event obstacle occurs when the distance from the robot to an obstacle is less than 0.5 m.

MAPPING OF OPERATIONS

When the operation move(lv , av) is called , the velocity of the robot is set to lv m/s in the direction of
the orientation of the robot and the angular velocity of the robot is set to av rad/s.

MAPPING OF VARIABLES

Fig. 3. Ranger RoboWorld assumptions

The second section, ROBOT ASSUMPTIONS, contains assumptions about the
shape and pose of the robot, and any capabilities it has in relation to other
elements of the environment (carry or pick elements, for example). The ability
to move is assumed to be a feature of every robot. In the case of the ranger, the
shape of the robot is not important as far as the assumptions we make about its
interactions with the world are concerned, so it is treated as a point mass.

The third section, ELEMENT ASSUMPTIONS, contains any assumptions about
elements of the arena declared in the arena assumptions. These can be regions or
entities in the arena. In the ranger model, there is only one element, obstacles,
stated to occupy a quarter of the arena. The precise locations occupied by the
obstacles are not defined, so the robot should handle obstacles in any location.

The final four sections contain mapping definitions (for OUTPUT and INPUT
EVENTS, OPERATIONS, and VARIABLES) describing the relationship between the
robotic platform services with the world. The first of these contains mappings
of output events; it is empty in the case of the ranger, since it does not have
any output events. The second section contains mappings of input events. The
only input event for the ranger is obstacle, which is stated to occur whenever the
robot is within 0.5 m of an obstacle. We can use any of the SI units.

The third mapping section is for operations of the platform, which in our
example is just the move() operation. The move() operation is defined to set the
velocity of the robot, in the direction it is currently pointing, to the provided
parameter lv, and to set the angular velocity of the robot to the provided av.

The final section contains mappings of variables of the robotic platform. It is
empty for the ranger, since there are no robotic platform variables in its model.

As a second example of the use of RoboWorld, we consider a rescue drone,
which is tasked with flying out relief to a particular target, such as a person
or vehicle. A RoboChart module Rescue for this example is shown in Fig. 4. It

RoboWorld: Where Can My Robot Work? 9

contains a single controller Finder, which has a reference to a single state machine
FinderM. We omit the details of the state machine here, to focus on the robotic
platform used in the mapping definitions in RoboWorld. A full presentation of
the RoboChart model for the rescue drone can be found in [3].

Fig. 4. Rescue RoboChart module

The robotic platform for the example in Fig. 4, called Drone, declares three
interfaces. The first, Moving, declares two operations related to the horizon-
tal movement of the robot: move(lv), which causes the robot to move forward
with a velocity of lv, and turnBack(), which causes the robot to turn back to
face its starting location. The second interface, Flying, defines output events
related to the robot’s vertical movement: takeoff, which signals the robot to
move upward, and land, which signals the robot to move downward to land. The
third interface, Camera, defines input events from a camera detecting targets on
the ground: found indicates that the target for the delivery has been identified,
and origin indicates the detection of the robot’s starting location.

RoboWorld assumptions for the rescue drone are shown in Fig. 5. The arena
assumptions begin with an assumption that the arena is three-dimensional,
rather than two-dimensional as with the ranger model. After that, there are
two assumptions defining regions of the arena, one called origin and one called
target, which represent the areas detected by the events origin and found.

The first of the robot assumptions defines the initial location of the robot
to be at the origin. If there are no assumptions about the initial location of the
robot, it may be placed in any location that is not otherwise blocked by some
other object. The initial orientation of the robot is defined to be towards the
target. As with the ranger model, the robot is assumed to be a point mass.

The element assumptions restrict the two regions origin and target. The
origin is assumed to be one metre by one metre, and the ground under the
origin is assumed to have gradient zero. Unlike the ranger model, where the
entire arena is assumed to be flat, the rescue drone is intended to operate in
rough and inaccessible terrain such as mountains, so only the points where the
drone lands need to be flat. The origin is also assumed to be on the ground,

10 A. Cavalcanti et al.

ARENA ASSUMPTIONS

The arena is three -dimensional.

The arena has an origin.

The arena has a target.

ROBOT ASSUMPTIONS

The initial location of the robot is at the origin.

The initial orientation of the robot is towards the target.

The robot is a point mass.

ELEMENT ASSUMPTIONS

The origin has an x-width of 1 m and a y-width of 1 m.

The gradient of the ground under the origin is 0.

The origin is on the ground.

The target has an x-width of 1 m and a y-width of 1 m.

The gradient of the ground under the target is 0.

The target is on the ground.

The distance from the target to the origin is greater than 1 m.

MAPPING OF OUTPUT EVENTS

When the event takeoff occurs , the velocity of the robot is set to 1 m/s upward.

When the event land occurs , the velocity of the robot is set to 1 m/s downward.

MAPPING OF INPUT EVENTS

The event found occurs when the x-position of the robot is equal to the x-position of a location in the
target , and the y-position of the robot is equal to the y-position of a location in the target.

The event origin occurs when the x-position of the robot is equal to the x-position of a location in the
origin , and the y-position of the robot is equal to the y-position of a location in the origin.

MAPPING OF OPERATIONS

When the operation move(lv) is called , the velocity of the robot is set to lv m/s towards the orientation of
the robot.

The operation turnBack () is defined by a diagram where one time unit is 1 s.

MAPPING OF VARIABLES

Fig. 5. Rescue drone RoboWorld assumptions

since it is intended to be a location where the robot lands, and we do not need
the robot to begin in mid-air. The next three element assumptions state similar
constraints on the target region. Finally, it is assumed that the target is at least
one metre from the origin, so that the target and the origin cannot be in the
same place and have some separation between them.

The output events of the RoboChart model are takeoff and land. The mapping
definition for takeoff states that it has the effect of setting the robot’s velocity to
1 m per second upward. Similarly, land sets the robot’s velocity to 1 m per second
downward. Thus, these events, when raised by the control software, begin the
processes of taking off and landing. The two input events in RoboChart are: found
and origin. They are triggered in similar situations: found when the robot is over
the target region, and origin when the robot is over the origin. That is specified
by stating that the event occurs when the x and y position of the robot is within
the relevant region. The z-axis is ignored so that the robot can detect those
regions when it is flying above them.

RoboWorld: Where Can My Robot Work? 11

Fig. 6. Diagram for the turnBack() operation

While typically the RoboChart and RoboSim d-models are at comparable
levels of abstraction, a RoboWorld document is typically a significant abstraction
of a p-model or s-model, where, for example, the robot is regarded as a point.
To allow for model reuse and various levels of abstraction already at the design
level, however, RoboWorld documents can include a p-model or an s-model.

The operations defined for the rescue drone model are move(lv) and turn-
Back(). The move(lv) operation is defined similarly to the move(lv,av) opera-
tion in the ranger model, with the robot’s velocity set to lv metres per second
in the direction of the robot’s orientation. For turnBack(), the assumption in
RoboWorld states that it is defined by a RoboChart diagram, with the size of
the time unit used in the diagram set to one second in this case. This bridges
a gap between a RoboChart model, which defines time in terms of units left
unspecified, and the real world, by defining the value of a time unit.

The diagram itself is shown in Fig. 6. It consists of a simple state machine
with one transition, a constant, PI, which represents the mathematical constant
π, and two events setAngularVelocity and setVelocity, which take a triple of real
numbers as their parameters, and represent facilities in the world to set the
robot’s angular and linear velocities. The action of the transition specifies the
main behaviour of turnBack(). It first zeroes the velocity of the robot, so that it
stops moving, then sets the angular velocity to PI radians per time unit about
the vertical axis. The three components of the angle are yaw, pitch and roll, so
rotation about the vertical axis is specified by the first component of angular
velocity. The action then specifies a wait of one time unit, during which the
robot rotates through π radians, then zeroes the angular velocity, leaving the
robot hovering to wait for further commands from the software.

As in the ranger model, there are no platform variables in the rescue drone
model, so the section for variable mappings is empty.

In summary, RoboWorld is a controlled, but very flexible language. It allows,
for example, the introduction of new vocabulary (elements, for instance), in
the document. It also respects the English grammar, allowing for the variations
required for agreement with the gender and plurality of related words. In spite of
that, it has a clear semantics that allows us to generate mathematical models. For
example, the concepts of arena and entities have a clear semantics. In addition,
the definition of the mappings give suitable semantics to sentences such as “The
event ... occurs when ...”, or “When the operation ... is called, ...”. This includes
binding parameters of operations, for example, for later use in the sentence. In
the next section, we describe the formal semantics of RoboWorld.

12 A. Cavalcanti et al.

Fig. 7. Structure of RoboWorld semantics: the Ranger example

3 RoboWorld Semantics

The semantics of the RoboStar notations use process algebras for refinement
based on CSP [27]. For RoboWorld, due to the continuous nature of the arena
and movement, we need to account for both discrete and continuous behaviour.
So, we use a hybrid process algebra, called CyPhyCircus [21], which is based
on the works presented in [14,16], but deals with variables and has support for
automated proof. It is an extension of Circus [6], a process algebra that combines
CSP with Z [30] for modelling abstract data types and operations.

In CyPhyCircus, Circus, and CSP, systems and components are specified by
processes. They communicate with each other and their environment via chan-
nels; a communication is atomic and instantaneous. Figure 7 gives an overview
of the structure of the CyPhyCircus process that describes the semantics of a
RoboWorld document. The box at the bottom represents a Circus process that
defines the semantics of a RoboChart module: Ranger or Rescue, in our examples.
RoboTool generates automatically a CSP encoding of such a process.

As shown in Fig. 7, the process that defines the semantics of a RoboWorld
document is defined by a parallel composition (� . . . �) of a process that captures
the meaning of the environment assumptions and a process that captures the

RoboWorld: Where Can My Robot Work? 13

mapping definitions. The formal definition is as follows.

processRoboWorldDocument =̂
(EnvironmentAssumptions � MappingInfoChannels � Mapping)

\MappingInfoChannels

These two processes interact via channels that get and set quantities of the
environment to model movement, and potentially additional channels as required
and defined by the mapping definitions. These channels are collected in a set
called MappingInfoChannels and hidden (\) in their composition.

For the Ranger example, the get and set channels deal with movement. We
have get and set channels for the linear and angular velocities and accelerations of
the robot. We also get its position and orientation, but there are no matching set
channels for getPosition and getOrientation, since a model is not able to change
the pose of the robot directly, without changing its velocity or acceleration.

The visible channels are those representing the services of the robotic plat-
form in the RoboChart model. They are inputs and outputs of the RoboChart
control software model. So, they are connected to the process that defines the
RoboWorld document. In our example, we have channels obstacle and moveCall .

InOut ::= in | out

channel obstacle : InOut
channel moveCall : R × R

Of course, obstacle corresponds to the event of the same name of the RangerRP
platform. In the semantics, obstacle events communicate a value in of the enu-
meration type InOut defined above to indicate that they are inputs of the soft-
ware. The channel moveCall represents calls to the operation move of RangerRP,
and communicates the parameters of the call: two real numbers.

For a two-dimensional arena, the semantics defines the following constants to
represent its bounds. Their specific values are left undefined (unless determined
by the assumptions in the RoboWorld document).

arenaNorthBound , arenaSouthBound : R
arenaEastBound , arenaWestBound : R

The arena itself is represented by a set arenaPositions defined below containing
pairs (x , y) of coordinates in the range defined by the bound constants.

arenaPositions : P(R × R)

arenaPositions = {
x : (arenaEastBound . . arenaWestBound);
y : (arenaNorthBound . . arenaSouthBound)

}

14 A. Cavalcanti et al.

Every entity has a position. In our example, the positions of the entities called
obstacle are captured by the constant obstaclePositions: a set of arena coordi-
nates. The assumption regarding the distribution of obstacles is captured in the
predicate that constrains the values of obstaclePositions.

obstaclePositions : P arenaPositions

obstaclePositions = (1/4) ∗ # arenaPositions

All these global constants are in scope for the definition of the processes used to
define RoboWorldDocument , namely, EnvironmentAssumptions and Mapping .

First, we present the EnvironmentAssumptions process. The definition of the
behaviour of a process can be given in terms of that of other processes, like the
definition of RoboWorldDocument . Alternatively, it can be given by defining its
(normally private) state, and actions over that state. An action differs from a
process in that an action does not encapsulate a state. This is the approach we
use to specify EnvironmentAssumptions and Mapping .

processEnvironmentAssumptions =̂ begin

Its state, defined below by a Z schema EnvironmentState, is characterised by
components that record the position pos and orientation ori (pose), and the
velocities and accelerations (linear and angular) of the robot.

EnvironmentState
visible pos : R × R

visible ori : R
visible vel : R × R

visible acc : R × R

visible angVel : R
visible angAcc : R

state EnvironmentState

Since there are no other mobile entities in the document, there are no additional
state components. The robot is assumed to be mobile.

The state components that are visible are, implicitly, functions over time,
and their evolution is observed [21]. In our example, there are no encapsulated
state components (declared without the visible modifier).

Below, we define the CyPhyCircus main action that describes the behaviour
of EnvironmentAssumptions . After the components are all initialised to 0, the
behaviour is that defined by another action EnvironmentLoop.

RoboWorld: Where Can My Robot Work? 15

. . .

• pos, vel , acc := (0, 0), (0, 0), (0, 0) ; ori , angVel , angAcc := 0, 0, 0;
EnvironmentLoop

end

EnvironmentLoop is defined in the body of EnvironmentAssumptions . It is
omitted above, but is presented below. Its structure is as illustrated in Fig. 7.

EnvironmentLoop =̂

RobotMovement �

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎝

CollisionDetection
�
GetSetVariables
�
InputTrigger

⎞

⎟

⎟

⎟

⎟

⎠

; EnvironmentLoop

⎞

⎟

⎟

⎟

⎟

⎠

RobotMovement specifies the continuous evolution of all the state components in
accordance with the law of movement. That evolution can be interrupted (�) by
one of the actions CollisionDetection, GetSetVariables, and InputTrigger , which
are combined in an external choice (�). The channel communications triggered
in these actions either output data from the state components for use in the
Mapping process, or input data to change their values.

The action RobotMovement is defined below using a Z-like schema action to
specify the continuous evolution of the state components. This is indicated by
the symbol Λ in the state declaration ΛEnvironmentState.

RobotMovement
ΛEnvironmentState
dpos
dt = vel

dvel
dt = acc
dori
dt = angVel

dangVel
dt = angAcc

In the predicate of RobotMovement , we have standard equations of movement.
CollisionDetection models the physical restriction that arises when the robot

position pos reaches that of an obstacle obs in the set obstaclePositions or reaches
an arena bound. In all cases, the velocity and acceleration of the robot have
their components set to 0. The several cases are characterised by a choice of
guarded (�) actions, whose behaviour is available only when the guard is true.

16 A. Cavalcanti et al.

The assignments to vel and acc interrupt the evolution of RobotMovement .

CollisionDetection =̂
(∃ obs : obstaclePositions • pos = obs)� vel , acc := (0, 0), (0, 0)
�

(pos.1 ≥ arenaEastBound)� vel , acc := (0, 0), (0, 0)
�

(pos.1 ≤ arenaWestBound)� vel , acc := (0, 0), (0, 0)
�

(pos.2 ≥ arenaNorthBound)� vel , acc := (0, 0), (0, 0)
�

(pos.2 ≤ arenaSouthBound)� vel , acc := (0, 0), (0, 0)

The guards are properties of the variables whose evolution is defined by
the action RobotMovement above. We omit the simple definition of the
GetSetVariables action, which is also a choice, now based on channel communi-
cations. It is these communications that can interrupt RobotMovement .

The definition of InputTrigger is normally a choice of actions that cap-
ture the mapping definitions for the input events. In our example, there is
just one input event obstacle. So, InputTrigger is defined just by the action
Obstacle InEventMapping that captures the RoboWorld definition for obstacle.

InputTrigger =̂ Obstacle InEventMapping
Obstacle InEventMapping =̂

(∃ obs : obstaclePositions • norm2 (pos − obs) < 0.5)�
obstacle.in −→ Skip

As described in RoboWorld, when the distance, defined as norm2 (pos − obs),
between the robot and an obstacle in obstaclePositions is less than 0.5, the event
obstacle.in, used in the process for the RoboChart module, is raised.

The mapping of output events and operations is defined by the process
Mapping . It is normally a choice between processes that capture each of the
RoboWorld mapping definitions. In our example, we have just the operation move,
and so just one mapping captured by the process Move OperationMapping .

process Mapping =̂ Move OperationMapping

Move OperationMapping is a standard Circus process, with no continuous vari-
ables or behaviour. It also has no state, and uses communications via the chan-
nels getOrientation, setVelocity and setAngularVelocity to read and update the
state of EnvironmentAssumptions . The main action of Move OperationMapping
is MoveCall . It responds to an operation call, signalled by a communication on
moveCall triggered by the process for the RoboChart module.

MoveCall =̂
moveCall?ls?as −→ getOrientation?yaw
−→ setVelocity !(ls ∗ (sin yaw), ls ∗ (cos yaw))
−→ setAngularVelocity !as −→ MoveCall

RoboWorld: Where Can My Robot Work? 17

Fig. 8. The RoboWorld editor, with part of the Rescue assumptions open

Using the arguments ls and as of the operation call, passed in via the channel
moveCall , and the yaw obtained using getOrientation, the values of the velocities
are set according to the definition of the mapping in the RoboWorld document.

The processes above can be generated automatically from the RoboWorld
document. The tool is under development and described next.

4 Tool

We have created an Eclipse plugin as part of the RoboTool suite of plugins to
facilitate the writing of RoboWorld specifications. The plugin includes an editor
for RoboWorld documents, which is shown in Fig. 8. It is divided into seven parts,
corresponding to the seven sections of the RoboWorld assumptions and mapping
definitions. Each part has buttons to add and remove sentences (assumptions or
definitions). A sentence can be clicked on to allow it to be edited.

The sentences are parsed individually using GF, with a separate grammar
for the assumptions and definitions in each section. The sentences are checked
when they are first added, and after changes are made to them. A RoboWorld
document is automatically constructed from the sentences in each part. The
sentences are inserted under the correct section of the RoboWorld document as
they are added, with the ordering of the sentences preserved.

The RoboWorld document can be viewed by selecting its tab at the bottom of
the editor. This provides the ability to edit the document in another form and to
add comments. These are lines that begin with “- -” and are ignored by RoboTool
as part of a preprocessing. The RoboWorld document is kept consistent with the
sectioned editor, and comments are preserved.

Having the RoboWorld editor as an Eclipse plugin allows for integration with
the other RoboTool plugins. The editing of any diagrams takes advantage of the
RoboChart editor. Generation of the semantics for a RoboWorld document is

18 A. Cavalcanti et al.

provided as a menu option in the RoboTool menu alongside semantics generation
operations for other notations such as RoboChart. Finally, the CSP semantics
generation for RoboChart can be used for generating the RoboWorld semantics
of operations. Facilities for testing, described next, can also be integrated.

5 Verification: Testing

The CyPhyCircus semantics for RoboWorld documents described in Sect. 3 can
be used for a variety of purposes as already mentioned. Ongoing work is encoding
it in SpaceEx [11] for reachability analysis. The restrictions of model checking
and bugs in SpaceEx when dealing with networks of automata mean that, at
the moment, theorem proving is an appealing alternative. Our plan in the long
run is to use the Isabelle/UTP encoding of CyPhyCircus. In the short term, we
are exploring the possibility of flattening the network of hybrid automata that
can be derived to match the process structure of the CyPhyCircus semantics. The
loss of traceability, however, is likely to be a concern.

We report here preliminary work in which the semantics is discretised and
encoded in FDR [12]. Here, the limitations are very severe, since FDR is not a
tool to deal with hybrid models. We have, managed, however to illustrate the
use of RoboWorld in testing and obtain some early validation of its semantics.

RoboTool has a plugin for automatic generation of tests using RoboChart
models and mutation testing [3]. For the Rescue module (Fig. 4), we can generate
the pairs of traces and forbidden continuations below. That work is based on
the testing theory for Circus [4]; traces and their forbidden continuations is the
information that we need to develop a test for traces refinement.

(〈takeoff .out , tock ,moveCall .1〉, takeoff .out)
(〈takeoff .out , tock ,moveCall .1, found .in, tock , tock〉, takeoff .out)

The test execution for the first pair above is successful if we observe the out-
put takeoff (represented by the event takeoff .out), the passage of one time
unit (represented by the event tock), the call move(1) (represented by the event
moveCall .1), and then takeoff does not occur.

The second pair above specifies a test in a similar way, but has a problem.
The trace specifies that, after move(1), we have an input found immediately.
This is not a feasible behaviour, since, as a result of a take off, the robot moves
upwards, and cannot immediately find the origin, unless the target is at the
origin. Without information about the environment, however, tests such as this
are included in the test suite that is automatically generated by RoboTool.

In our approach, we can use the semantics for the RoboWorld document
in Fig. 5 that captures the assumptions about the Rescue drone to eliminate
such tests. For each test, we combine in parallel a discretised version of the
process that captures the semantics of the RoboWorld document, as described
in Sect. 3, with the simple process that describes the test. We can then use
deadlock checking to determine whether the test is feasible. Below, we show the
test process that we use for the second trace above.

RoboWorld: Where Can My Robot Work? 19

takeoff .out −→ tock −→ moveCall .1−→
found .in −→ tock −→ tock −→ Stop

This process accepts each of the events of the trace, in order, and then behaves
like the process Stop. This is a timed deadlock, which performs no event other
than tock , which marks the passage of time. A deadlock check in FDR does not
identify the timed deadlock Stop as a deadlock.

The parallelism between the test process and the process that captures the
RoboWorld semantics requires synchronisation on all events for the services of
the platform (besides tock). In our example, these are takeoff , moveCall , and
so on. So, the behaviour of the parallel process captures the effect of the test
on the environment. Afterwards, we hide the platform events. This captures the
fact that in a robotic system, we do not observe the behaviour of the software
directly, but just via its effect on the environment.

Our checks eliminate the test above, and others with the same sort of prob-
lem. Deadlock freedom ensures that the test is compatible with the assumptions
on the environment recorded using RoboWorld.

6 Conclusion

RoboWorld is a controlled natural language, part of the RoboStar framework,
for documenting operational requirements of robotic systems. A sentence in
RoboWorld adheres to an underlying grammar, which is defined using the Gram-
matical Framework. This framework provides native support for inflection par-
adigms and agreement between elements of a sentence. Despite the control
imposed by its grammar, RoboWorld is a very flexible language, with an open
vocabulary to define, for example, elements of the environment, with a precise
semantics in CyPhyCircus. The well-behaved structure of sentences enables auto-
matic generation of the semantics for a RoboWorld document.

In this paper, the syntax and semantics of RoboWorld documents are illus-
trated considering two examples: a ranger robot and a rescue drone. Tool support
for RoboWorld, as part of the RoboTool suite of plugins, is under development.

The adoption of RoboWorld is relevant to several aspects of the design and
verification of robotic systems. First, implicit assumptions about the environ-
ment are made explicit. Second, RoboWorld sentences can be used to check the
validity of different models and generated code. Third, this documentation can
be used to prevent the generation of infeasible or useless test cases.

Related Work. Formal modelling of the environment has already been addressed
by other studies. In [15], a timed input/output conformance relation (s rtiocoe t)
is proposed to relate correct implementations s of specification t , under the
environmental constraints expressed by e. The models of s, t , and e are given
as timed automata. In [22], the system behaviour and the test environment are
both modelled as state machines. Similarly to RoboWorld, in [28], environment
restrictions are specified according to a controlled natural language. None of

20 A. Cavalcanti et al.

these works, however, is tailored for robotic systems, like RoboWorld. With the
specialisation, RoboWorld includes domain concepts such as a mobile robotic
platform, including its services and their definitions, and arenas.

When modelling the behaviour of robotic systems, some studies consider
the environment to avoid unrealistic designs. For instance, in [7,24], implicit
assumptions of the environment are to some extent captured by 3D and 2D grid
maps, which describe a specific scenario where the designed robots are assumed
to work. In [1], a UML profile is used for designing human-robot collaborative
systems. This profile has specific stereotypes to model entities from a scenario
that interact with the robot in class and component diagrams. The RoboWorld
notion of arena corresponds to that of a layout in [1], but layouts are discrete
spaces divided in sections that can be obstructed. In a component diagram, each
section is a component, with connections representing adjacency. The compo-
nent diagram is, therefore, a sort of map. Mathematical models for verification
automatically generated use a temporal logic with a notion of discrete time.
Differently, in the RoboStar framework, with the aid of RoboWorld, general
assumptions of the environment are explicitly specified and can be used later to
verify whether a specific scenario satisfies these assumptions.

In [17], the MontiArcAutomaton language [26] is used for modelling the com-
ponents of robotic systems. In this approach, environment assumptions are spec-
ified as LTL properties, using AspectLTL [18], a language whose syntax is similar
to the one considered by the SMV model checker. In RoboWorld, at the user
discretion, properties of the environment are described in a more natural way,
considering a controlled natural language, or referring to diagrams. Therefore,
RoboWorld distinguishes itself by its flexibility on specifying general assump-
tions of the environments where my robot can work.

Future Work. As future work, we envisage pushing the limits of RoboWorld by
considering other and more challenging case studies. Its syntax and semantics
need to evolve to cope with situations and assumptions that have not been
considered so far. Additionally, we also plan to improve the tool support for
creating RoboWorld documents by, for instance, providing on-the-fly writing
guidance. Scalability of verification and test generation is also a challenge to
pursue, due to the need for dealing with both discrete and continuous behaviour.

Acknowledgements. The work reported here is funded by the Royal Academy
of Engineering grant CiET1718/45, UK EPSRC grants EP/M025756/1 and
EP/R025479/1, and UKRI TAS Verifiability Node EP/V026801/1. We are grateful
to RoboStar for various discussions on RoboWorld.

References

1. Askarpour, M., Lestingi, L., Longoni, S., Iannacci, N., Rossi, M., Vicentini, F.:
Formally-based model-driven development of collaborative robotic applications. J.
Intell. Rob. Syst. 102(3), 59 (2021)

RoboWorld: Where Can My Robot Work? 21

2. Brunner, S.G., Steinmetz, F., Belder, R., Domel, A.: RAFCON: a graphical tool
for engineering complex, robotic tasks. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3283–3290 (2016)

3. Cavalcanti, A., Baxter, J., Hierons, R.M., Lefticaru, R.: Testing robots using CSP.
In: Beyer, D., Keller, C. (eds.) TAP 2019. LNCS, vol. 11823, pp. 21–38. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-31157-5 2

4. Cavalcanti, A.L.C., Gaudel, M.-C.: Testing for refinement in Circus. Acta Infor-
matica 48(2), 97–147 (2011)

5. Cavalcanti, A.L.C.: Verified simulation for robotics. Sci. Comput. Program. 174,
1–37 (2019)

6. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A refinement strategy for
Circus. Formal Aspects Comput. 15(2–3), 146–181 (2003)

7. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.: DRONA: a framework for safe
distributed mobile robotics. In: 2017 ACM/IEEE 8th International Conference on
Cyber-Physical Systems (ICCPS), pp. 239–248 (2017)

8. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda, I.,
Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol.
7628, pp. 149–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34327-8 16

9. Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., Woodcock, J.: Automating
verification of state machines with reactive designs and Isabelle/UTP. In: Bae, K.,
Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 137–155. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02146-7 7

10. Foster, S., Cavalcanti, A.L.C., Canham, S., Woodcock, J.C.P., Zeyda, F.: Unifying
theories of reactive design contracts. Theoret. Comput. Sci. 802, 105–140 (2020)

11. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

12. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

13. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
14. He, J.: From CSP to hybrid systems. In: A Classical Mind, pp. 171–189. Prentice-

Hall (1994)
15. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using

Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4 6

16. Liu, J., et al.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS,
vol. 6461, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17164-2 1

17. Maoz, S., Ringert, J.: Synthesizing a lego forklift controller in GR(1): a case study.
In: Cerný, P., Kuncak, V., Madhusudan, P. (eds.) Proceedings Fourth Workshop on
Synthesis, SYNT 2015, San Francisco, CA, USA, 18th July 2015, vol. 202. EPTCS,
pp. 58–72 (2015)

18. Maoz, S., Sa’ar, Y.: AspectLTL: an aspect language for LTL specifications. In:
Proceedings of the Tenth International Conference on Aspect-Oriented Software
Development, AOSD 2011, pp. 19–30. Association for Computing Machinery, New
York (2011)

https://doi.org/10.1007/978-3-030-31157-5_2
https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-030-02146-7_7
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1

22 A. Cavalcanti et al.

19. Miyazawa, A., Cavalcanti, A.L.C., Ahmadi, S., Post, M., Timmis, J.: RoboSim
physical modelling: diagrammatic physical robot models. Technical report,
University of York, Department of Computer Science, York, UK (2020).
robostar.cs.york.ac.uk/notations/

20. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J., Woodcock,
J.C.P.: RoboChart: modelling and verification of the functional behaviour of
robotic applications. Softw. Syst. Model. 18(5), 3097–3149 (2019)

21. Foster, S., Huerta y Munive, J.J., Struth, G.: Differential Hoare logics and refine-
ment calculi for hybrid systems with Isabelle/HOL. In: Fahrenberg, U., Jipsen, P.,
Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 169–186. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-43520-2 11

22. Peleska, J., Vorobev, E., Lapschies, F., Zahlten, C.: Automated model-based test-
ing with RT-tester. Technical report, Universität Bremen (2011)

23. Pembeci, I., Nilsson, H., Hager, G.: Functional reactive robotics: an exercise in
principled integration of domain-specific languages. In: 4th ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declarative Programming, pp.
168–179. ACM (2002)

24. Quottrup, M., Bak, T., Izadi-Zamanabadi, R.: Multi-robot planning: a timed
automata approach. In: IEEE International Conference on Robotics and Automa-
tion, Proceedings, ICRA 2004, vol. 5, pp. 4417–4422 (2004)

25. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications (2011)

26. Ringert, J., Rumpe, B., Wortmann, A.: Architecture and Behavior Modeling of
Cyber-Physical Systems with MontiArcAutomaton. CoRR, abs/1509.04505 (2015)

27. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, London (2011). https://doi.org/10.1007/978-1-84882-258-0

28. Santos, T., Carvalho, G., Sampaio, A.: Formal modelling of environment restric-
tions from natural-language requirements. In: Massoni, T., Mousavi, M.R. (eds.)
SBMF 2018. LNCS, vol. 11254, pp. 252–270. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03044-5 16

29. Wachter, M., Ottenhaus, S., Krohnert, M., Vahrenkamp, N., Asfour, T.: The
ArmarX Statechart concept: graphical programing of robot behavior. Frontiers
Rob. AI 3, 33 (2016)

30. Woodcock, J.C.P., Davies, J.: Using Z - Specification, Refinement, and Proof.
Prentice-Hall (1996)

http://www.robostar.cs.york.ac.uk/notations/
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1007/978-3-030-03044-5_16
https://doi.org/10.1007/978-3-030-03044-5_16

Validating Safety Arguments with Lean

Logan Murphy, Torin Viger, Alessio Di Sandro, Ramy Shahin,
and Marsha Chechik(B)

Department of Computer Science, University of Toronto, Toronto, Canada
{lmurphy,torinviger,adisandro,rshahin,chechik}@cs.toronto.edu

Abstract. Safety Assurance Cases (ACs) are structured arguments
which demonstrate that a system fulfills its safety requirements. However,
the reasoning used in ACs is often presented informally and thus difficult
to rigorously evaluate. To protect against the acceptance of ACs based on
fallacious reasoning, our previous work has proposed a framework for for-
malizing fragments of ACs and verifying their reasoning using the Lean
Theorem Prover. This work expands on the use of Lean to automatically
validate fragments of ACs, identifies challenges faced by AC developers
who wish the leverage theorem proving software, and demonstrates our
approach to mitigating these challenges.

Keywords: Assurance · Safety cases · Strategies · Theorem proving ·
Lean

1 Introduction

Cyber-physical systems have become ubiquitous in our lives, and are relied on
in many domains that are safety-critical (e.g., medical devices, power plants,
aerospace and automotive systems). Ensuring safety of these types of systems
has always been a challenge, especially as they are expected to meet more
requirements, and subsequently become more complex. Different safety proce-
dures and guidelines have been adopted by the safety engineering communities in
an attempt to address this problem. Those guidelines are often centered around
developing a safety argument for the system, usually represented as a Safety
Assurance Case (AC) [21].

An AC is a structured argument intended to show that a system is safe with
respect to a set of hazards that have been identified as a part of a hazard analysis
process. High-level safety claims in an AC are step-wise decomposed into more
refined subclaims using decomposition strategies. Refinement of safety claims is
recursively applied to subclaims until each leaf claim is directly associated with
a piece of evidence. Different standardized graphical notations (e.g., Goal Struc-
tured Notation (GSN) [9], Claims-Argument-Evidence (CAE) [1]) are usually
used to represent these hierarchical safety arguments.

AC notations make it easier to represent and communicate safety arguments.
However, because safety claims and their decompositions are often expressed
informally, the burden of validating the logical soundness of the overall safety
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 23–43, 2021.
https://doi.org/10.1007/978-3-030-92124-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_2

24 L. Murphy et al.

argument typically falls on safety engineers. Manual inspection, especially of
complex ACs, is not always a reliable way to find inconsistencies or omissions in
the safety argument [8].

To illustrate the difficulty of manually validating informal ACs, consider
developing an AC for a simple Floor-Cleaning System (FCS) – an automated sys-
tem designed to vacuum floor tiles containing objects and clean grimy tiles with-
out becoming damaged, modeled by the Labeled Transition System (LTS) [11]
depicted in Fig. 1. A safety engineer may begin with a top-level claim C1 asserting
that the system never reaches a Damaged state, and decompose this claim into
subclaims C2 asserting that the system does not start in a Damaged state, and
C3 asserting that the system never becomes damaged when it is vacuuming, as
done by strategy InvStr (“invalid strategy”) shown in Fig. 2. They may further
justify their belief that this decomposition is valid by appealing (erroneously) to
induction, i.e., that the system cannot become damaged if it never begins in or
transitions into a damaged state.

This argument is flawed because the FCS can perform actions other than
vacuuming (e.g., cleaning, as shown in Fig. 1), and C3 does not assert that these
actions do no lead to a damaged state. Thus an inductive claim needs to be
stronger than C3. As stated, C1 may not hold even if both C2 and C3 are true.
While this example is intentionally chosen to be simple and the error can be
identified by manually checking C3 against the system’s underlying model, such
manual arguments become increasingly challenging and error-prone as the size
of the AC and the complexity of system models increase. Flawed arguments can
result in the deployment of systems with unsafe behaviors, potentially leading to
drastic consequences (e.g., the British Royal Air Force Nimrod aircraft crash in
2006 [10]), emphasizing the need for more rigorous approaches to constructing
and validating ACs.

One method of mitigating such reasoning errors in ACs is to formalize the
AC’s strategies so that they can be validated by a theorem prover [19]. To this
end, our previous work [20] formalized a basic structure for AC claims and cat-
egorized AC strategies into different classes based on how the form of their par-
ent claim relates to their decomposed claims. We identified the conditions under
which each of these strategies is deductive (i.e., logically valid), and generated
provably valid strategy templates to assist safety engineers in creating rigorous
arguments. The first contribution of this paper is a detailed presentation of the
theorem-proving approach behind the work reported in [19].

Yet using theorem provers to validate instances of these strategies introduces
a number of challenges related to the argument’s expressibility and interpretabil-
ity. First, the engineer must be able to formulate these claims as formal logical
statements. Next, they must be able to articulate these logical statements and
encode relevant system models in the appropriate theorem proving language,
and integrate these formal statements into the AC itself. Finally, they must be
able to understand the theorem prover’s output and debug their strategy if nec-
essary. In addition, reviewers must be able to interpret the resultant formalized
AC. Safety engineers are unlikely to have a technical skill set to be able to engage

Validating Safety Arguments with Lean 25

Fig. 1. A simplified FCS. Adapted from [20].

Fig. 2. A GSN AC fragment showing an invalid strategy InvStr for the FCS.

in the above activities. The second contribution of this paper is demonstration
of the framework described in [19] as a method for bridging the gap between
white-box and black-box theorem prover usage in the AC development, enabling
non-expert users to access theorem-prover supported AC validation.

The rest of this paper is organized as follows: we describe the necessary
background on models, properties and assurance case formalization in Sect. 2.
Section 3 describes an automated strategy validation workflow: a method for
using the Lean theorem prover to encode and reason about validity of AC strate-
gies. This section also demonstrates the workflow on the FCS and identifies a
set of challenges that a non-expert user would face when applying this method.
Section 4 describes a tool-supported template-based approach to mitigate the
challenges for non-expert users, and showcases the tooling using the FCS. We
compare our approach with related work in Sect. 5 and conclude in Sect. 6 with
a summary of the work and suggestions for future research directions.

26 L. Murphy et al.

2 Background

In this section, we fix the notation and provide the necessary background on
models, assurance cases and their validation.

2.1 Models

We begin by recalling the definitions of labelled transition systems [11] and their
executions.

Definition 1 (Labelled Transition System (LTS)). An LTS M = (S,A,Δ)
is a set of states S, a set of actions A, and a set of transitions Δ ∈ (S × A × S)
where each (s, a, s′) ∈ Δ denotes a transition between states s and s′ via an
action a.

Figure 1 represents an LTS model of the FCS example. In this figure, states
are represented by circles, actions are represented by arrows, and the set of
transitions is given by all state-action-state tuples (s, a, s′) where action a leads
from s to s′ (e.g., ((Grimy, No object), cleanTile, (Clean, No object))).

Definition 2 (Execution [20]). Given an LTS M = (S,A,Δ), an execution
{s0, (a1, s1), (a2, s2) . . .} is an initial state s0 ∈ S and a sequence of action-state
pairs (ai, si), where each action ai ∈ A, each state si ∈ S, and each state-action-
state transition (si−1, ai, si) ∈ Δ.

We use the notation x[i] denote the ith state of x. An example of an execu-
tion over the FCS is {(Clean, No object), (dirtyTile, (Grimy, No object)),
(cleanTile, (Clean, No object))}, where a clean tile containing no objects
becomes dirty, and is then cleaned. We can make assertions about an execu-
tion behaviour using properties:

Definition 3 (Property). Given a type τ , a property of τ is a predicate P :
τ → {True, False} which can be evaluated for any term x of type τ .

An example property over an execution x = {s0, (a1, s1) . . .} (i.e., a property
where the type τ is executions) is P : (s0 �= (Damaged)), which asserts that the
execution does not begin in a damaged state.

2.2 Assurance Case Strategy Formalization

Assurance cases (ACs) are arguments designed to show that a system is accept-
ably safe. Goal Structured Notation (GSN) [9] is a notation for graphically rep-
resenting ACs using a tree-like structure, consisting of the elements illustrated
in Fig. 2. GSN ACs begin with a top-level root claim representing a high-level
safety goal, which is then decomposed by strategies into more refined subclaims
that can be directly supported by evidence. In Fig. 2, the top-level claim C1 is
decomposed by strategy InvStr into two subclaims C2 and C3. The justification

Validating Safety Arguments with Lean 27

J1 provides the developer’s reasoning for why they believe it is appropriate to
use InvStr in this context, and claims and strategies can also optionally be
supported by contexts or assumptions to give further context to the argument.
The triangular elements beneath C2 and C3 indicate that these sub-claims may
be further decomposed (i.e., that this figure only represents a fragment of the
complete AC). GSN will be used to denote ACs throughout this paper.

Our work in [20] formalizes the GSN notions of claims and strategies. A
generalized version of this formalization is used by our framework for integrating
theorem proving into the AC development process. The subsequent definitions
follow the presentation in [19].

Definition 4 (Claim). Given a type τ , let X denote a set of terms of type τ ,
and let P be a property of τ . The claim C(P,X) is assigned the meaning ∀x ∈ X,
P(x), i.e., “Property P holds for every x ∈ X”.

Let ex(M) denote the set of all possible executions of an LTS M . A property
over the executions of M is defined as a predicate P : ex(M) → {True,False}
(Definition 3). A claim over some subset X ⊆ ex(M) of executions of M is
given by C(P,X). As an example, consider the property of FCS executions P0:
“The execution never reaches the state (Damaged)”. For each execution x0 =
{s0, (a1, s1), (a2, s2), . . .}, P0 is satisfied iff si �= (Damaged) for each state si in
x0. If we let X0 denote all possible executions of the FCS, then C(P0, X0) asserts
that all executions of the system never reach the state (Damaged).

A strategy is any method for decomposing a claim into a set of subclaims
[9]. Following [20], we consider a strategy to be valid when the satisfaction of
all supporting subclaims guarantees the satisfaction of the parent claim. This is
formalized as follows:

Definition 5 (Valid Strategy [20]). Suppose a strategy Str decomposes a
claim C into subclaims C1, . . ., Cn. Str is valid iff (C1 ∧ . . . ∧ Cn) ⇒ C.

In [20], we categorize strategies into classes based on the form of their parent
and child claims, and prove the conditions under which each strategy class valid.
The two main strategy classes we identify are domain decompositions, which
decompose a claim C(P,X) into subclaims asserting that P holds over differ-
ent subsets of X, and property decompositions, which decompose C(P,X) into
subclaims asserting that different properties P1 . . .Pn hold over X. We recall
property decompositions below.

Definition 6 (Property decomposition). Given a set of properties
{P1,..Pn}, a property decomposition strategy decomposes a parent claim
C(P,X) into n subclaims of the form C(P1,X), . . . , C(Pn,X).

Property decompositions can be classified into further subtypes based on the
form of the properties in each subclaim. Examples include decompositions by
contrapositive, by cases, and by induction. The broader class of decompositions
by induction is defined formally as follows:

28 L. Murphy et al.

Definition 7 (Property Decomposition by Induction). Given a set of
executions X of an LTS M = (S,A,Δ), let Pstate be a property that can
be evaluated over individual states (i.e., Pstate: S →{True, False}). For any
x = {s0, (a1, s1) . . .} ∈ X, define the following properties:

Pinit(x) =Pstate(s0)
Pind(x) = ∀i ∈ N,Pstate(si−1) =⇒ Pstate(si)
P(x) = ∀i ∈ N,Pstate(si)

A decomposition by induction decomposes a claim C(P,X) into two subclaims
of the form C(Pinit,X) and C(Pind,X).

For example, the decomposition strategy in Fig. 2 could be correctly formal-
ized using Definition 7 and the above template as follows: let Pstate(s) = s �=
Damaged.

Pinit(x) = x[0] �= Damaged
Pind(x) = ∀i ∈ N, x[i] �= Damaged =⇒ x[i + 1] �= Damaged
P(x) = ∀i ∈ N, x[i] �= Damaged
A property decomposition strategy constructed using this template is always

valid, as proved in [20]. We thus refer to the decomposition strategy by induction
we have just defined as ValStr (“valid strategy”). The remaining strategy
decomposition templates are also formalized, illustrated and proven valid in [20].

3 Lean-Validated Strategies

In this section, we demonstrate how the Lean Theorem Prover can be used to for-
mally validate decomposition strategies. Lean [14] is an open source interactive
theorem prover (ITP) and dependently-typed functional programming language.
Given a term t and a type τ , we use t : τ to denote that t is of type τ . Logical
propositions are defined in Lean as terms of type Prop. Given a term P of type
Prop, a proof of the proposition P is a term whose type is P. Such an object may
be referred to as a proof-term. Lean supports both declarative proofs, where
proof terms are explicitly constructed, as well as tactic proofs, where a series of
instructions (tactics) are used to indicate how Lean can construct a proof-term.

In what follows, we describe an automated strategy validation workflow which
allows users to provide a Lean encoding of a decomposition strategy, and obtain
either a proof of its validity or information about how the strategy could be
altered (Sect. 3.1). We then demonstrate how the inputs to the workflow can be
constructed by a Lean programmer, using the FCS and the strategies ValStr (a
valid strategy defined at the end of Sect. 2.2) and InvStr (an invalid strategy
shown in Fig. 2) as a running example (Sect. 3.2 and Sect. 3.3). We discuss
our use of Lean’s metaprogramming framework for proof automation (Sect. 3.4
and Sect. 3.5) and demonstrate the output of the validation workflow over both
ValStr and InvStr. Finally, we identify some challenges which can be faced
by safety engineers who wish to use this workflow to validate their strategies
(Sect. 3.6).

Validating Safety Arguments with Lean 29

Fig. 3. The Lean workflow for validating an AC strategy. The blue substate indicates
the part of the workflow which is certified by Lean’s kernel.

3.1 A Strategy Validation Workflow

Figure 3 provides a high-level illustration of the automated strategy validation
workflow we have implemented in Lean. First, Lean parses the user’s input,
ensuring that it correctly encodes a strategy specification over a system model,
which must also be defined in Lean. Next, it begins iterating through a set
of proof templates – a collection of proof strategies we have implemented for
this specific context. For example, one proof template corresponds to searching
through a library of lemmas, applying one whose conclusion matches the parent
claim and whose premises match to the subclaims of the decomposition strat-
egy. For each proof template, Lean attempts to construct a proof-term. When
progress is made towards the proof, we log a corresponding tactic, providing a
record of how to re-create each stage of the proof. If the proof term is completed,
the validation process terminates, and a tactic script is stored in a separate file.
If a given proof template cannot be completed, a new strategy is chosen. If all
proof templates are exhausted without a complete proof being constructed, the
program terminates, and any debugging information gathered during the work-
flow will be provided to the user.

3.2 Formalizing Models

We begin with creating a Lean encoding of the particular model over which the
claims in the strategy are articulated. This requires (1) formalizing the type of
system over which the strategy is defined, and (2) encoding a particular system
as an instance of this type.

Listing 3.1 shows how this is achieved for the FCS. Line 1 formalizes Defini-
tion 1, allowing any types S and A to be used as the type of states and actions
of an LTS. The Lean encoding of Definition 2 (executions) is omitted. Lines
3–12 illustrate the definition of the FCS as a specific object of type LTS. In
particular, we define the types FCS State and FCS Action, as well as the set
FCS transitions, by explicitly enumerating them; the enumeration of the tran-
sitions is omitted. Line 12 combines these definitions in the forming of an LTS

30 L. Murphy et al.

1 structure LTS:= (S : Type) (Act : Type) (TR : set (S × Act × S))
2
3 inductive FCS_State
4 | Clean_No_object | Clean_Has_object | Grimy_No_object | Grimy_Has_object | Damaged
5
6 inductive FCS_Action
7 | Add_object_1 | Dirty_tile | Vacuum_object_1 | Clean_tile_1 | Add_object_2
8 | Vacuum_object_2 | Clean_tile_2 | Clean_tile_3
9

10 def FCS_transitions : set (FCS_State × FCS_Action × FCS_State) := { ... }
11
12 def FCS : LTS := LTS.mk FCS_State FCS_Action FCS_transitions
13
14 def Property (τ : Type) : Type := τ → Prop

Listing 3.1. Encoding LTSs and properties in Lean.

1 structure Claim (τ : Type) := make :: (X : set τ) (P : Property τ)
2
3 def meaning (C : Claim τ) : Prop := ∀ x ∈ C.X, C.P x
4 notation �C� := meaning C
5
6 structure Strategy (τ : Type) :=
7 (parent : Claim τ) (decomp : Claim τ → list (Claim τ))
8
9 def valid (S : Strategy τ) : Prop :=

10 let subclaims := (S.decomp) S.parent in
11 (∀ clm ∈ subclaims, �clm�) → �S.parent�

Listing 3.2. Core definitions used for strategy validation in Lean.

called FCS. Finally, line 14 encodes Definition 3: given a type τ , Property τ is
the type of functions from τ to Prop.

3.3 Formalizing Strategies

The core Lean definitions, encoding those in Sect. 2.2, are shown in Listing 3.2.
We sometimes use list instead of set, for simplicity. Corresponding to Defi-
nition 4, line 1 defines the record type Claim as having two fields: a set of τ
and a property P over τ . This definition also introduces the explicit construc-
tor Claim.make. Lean’s syntax is extensible: line 4 defines a function meaning
which takes a claim C to its associated first-order proposition in accordance with
Definition 4, and line 5 introduces the notation �C� to denote this proposition.

Lines 7–12 formalize Definition 5 as follows. First, we define Strategy τ as
a structure consisting of a parent claim and a function mapping any claim to
a list of claims (the subclaims). Given S : Strategy, we define valid S to be a
proposition stating that logical conjunction of the strategy’s subclaims implies
the strategy’s parent claim. Since valid S is of type Prop, a term which is of
type valid S is a Lean proof that this strategy is valid.

For each class of decomposition strategies we implement a data structure,
referred to as strategy specification, encoding the information required to perform
the decomposition. We then define a mapping toStrategy which takes each
strategy specifications to a Strategy (as defined in Listing 3.2). To validate a

Validating Safety Arguments with Lean 31

decomposition strategy, Lean can simply be provided the strategy specification,
and compute the induced Strategy using this mapping.

1 namespace property
2
3 structure strategySpec := (Clm : Claim τ) (Props : list (Property τ))
4
5 def toStrategy (S : strategySpec τ) : Strategy τ :=
6 { parent := S.Clm,
7 decomp := λ C, list.map (Claim.make C.X) S.Props }
8
9 end property

10
11 def ValStr_spec : property.StrategySpec (execution FCS) := {
12 Clm := { X := set.univ
13 P := λ x, ∀ i : N, x[i] �= Damaged, },
14 Props := [λ x, x[0] �= Damaged,
15 λ x, ∀ i : N, x[i] �= Damaged → x[i+1] �= Damaged] }

Listing 3.3. Specification of a property decomposition for the FCS.

For example, a property decomposition is completely specified by its parent
claim and by the set of properties used in the decomposition. We therefore
define in Lean the type property.strategySpec with these fields, as shown in
line 3 of Listing 3.3. We then define a mapping from property.strategySpec
to Strategy, by mapping the Claim constructor to the list of properties in the
specification. As in Definition 6, the set of executions is the same between the
parent claim and the subclaims, so we apply this argument to Claim.make before
performing the mapping.

Lines 11–15 of Listing 3.3 show the Lean specification of the the strategy
ValStr, following the structure of a property decomposition by induction (Defi-
nition 7). Lines 12–13 encode the parent claim. We index the states of execution
by natural numbers, and so the property in line 13 asserts, for some execution
x, that none of the states of x are the Damaged state. The first and second prop-
erties encode Pinit and Pind, respectively; the property on line 14 asserts that x
does not begin in the Damaged state, while the property on line 15 asserts that
x does not transition into the Damaged state.

3.4 Proof Automation

Lean is an interactive proof assistant, and it can require effort on the part of the
user to complete a proof. Metaprograms [7], including proof tactics, can provide
varying degrees of automation, allowing Lean to perform a significant amount of
boilerplate or repetitive tasks. We have implemented metaprograms which can
automatically validate certain classes of strategies defined in this framework, as
well as tactics which help reduce the complexity of the resulting proof scripts.

Our implementation defined a data structure proofData which stores a vari-
ety of information about the proof search which can be relevant to the user, such
as the set of properties successfully used to advance the proof, or a list of tactics
which can be used to re-create the proof. Listing 3.4 contains a metaprogram
contributing to a proof by induction over the set of natural numbers N. In par-
ticular, this program attempts to map one of the decomposition properties (i.e.,
one of the subclaims) to the inductive case of the proof.

32 L. Murphy et al.

1 meta def solve_inductive_case (Γ : proofData τ) :
2 list expr → tactic (proofData τ)
3 | [] := return Γ
4 | (h ::t) := do
5 τ ← infer_type h,
6 match τ with
7 | ‘(∀ i : N, %%body) := do
8 index_expr ← local_context >>= get_index_expr,
9 let e := expr.mk_app h [index_expr],

10 tactic.apply e,
11 subclaim ← stringOfExpr h,
12 Γ ← Γ.try_match_IH subclaim,
13 return Γ
14 < | > solve_inductive_case t
15 | _ := solve_inductive_case t
16 end

Listing 3.4. A metaprogram to resolve inductive step of a proof by induction over N.

Arguments to solve inductive case are a proofData object (Γ) and a list
of Lean expressions (of type expr). This particular list expr forms the local
proof context, including the decomposition properties used in the strategy and
any other local variables or constants that may have been accumulated over
the course of the proof. The metaprogram returns a new proofData within the
tactic monad. Since we are at the inductive step of the proof, the local context
contains an induction variable k : N and an inductive hypothesis of the form
P(k). The goal of the proof is of the form P(k + 1). If the decomposition strategy
supports a valid proof by induction, one of the premises will be a term whose type
is of the form ∀i : N, P (i) =⇒ P (i + 1); the task of solve inductive case is to
find this premise, instantiate the quantified premise with k, use this instantiation
to resolve the goal, and to update Γ to reflect this usage.

The function is defined recursively on the proof context; if it is empty, Γ
is returned. Otherwise, line 5 stores the type of the element h in a variable τ .
We then perform pattern matching on τ : if it is not of the form ∀i : N, P , we
continue to the tail of the list (line 14). If the type is a match, line 8 extracts the
induction variable from the proof context, and line 9 forms a new e : expr by
instantiating h with the induction variable. Line 10 uses the apply tactic with
the newly formed expression, attempting to unify the type of the proof goal with
the conclusion of e, i.e., the instantiated inductive subclaim. If the apply tactic
succeeds, we invoke the metaprogram try match IH which tries to match the
premise(s) of e with the inductive hypothesis (line 12). If this succeeds, we add
the interactive tactic inductive case and the identifier of h to Γ. If the matching
of the premises to the IH fails, we record a Lean-provided error message in Γ.

If there is a failure at any point in the program (for instance, if h was a
universally quantified premise not related to the inductive case), the program
iterates to the next element of the proof context (line 14).

3.5 Application to the FCS

We now apply the strategy validation workflow to reasoning about the FCS,
showing both a valid and an invalid decomposition strategy.

Validating Safety Arguments with Lean 33

1 def ValStr : Strategy (execution FCS) := property.toStrategy ValStr_spec
2
3 theorem example_proof : valid S1 :=
4 by { by_induction_over_nat, base_case P1, inductive_case P2 }

Listing 3.5. Results of a successful validation.

A Successful Validation. Listing 3.5 illustrates the input and output of the
strategy validation workflow on the strategy ValStr. Line 1 defines a property
decomposition strategy over the type execution FCS, specifically by applying
the mapping property.toStrategy to the specification of the property decom-
position. Since Lean is able to prove the validity of this strategy, the workflow
returns a tactic script which can be used to re-create a proof of its validity. In
addition to serving as a witness to the theorem, this tactic script can provide
insight into why the strategy is provably valid.

The tactic script in line 4 contains three tactics created specifically for
property decompositions justified by induction over N. The first, by induc−
tion over nat, translates the strategy specification into a more useful format;
specifically, it takes each of the properties in the list Props as a premise in the
proof context, and assigns each an identifier P1, ...Pn, corresponding to their
ordering in the list. The remaining tactics cover each case in the inductive
proof, and indicate which property was used for the associated case. Recall-
ing the definition of FCS strategySpec from Listing 3.3, line 4 indicates that
the property x[0] �= Damaged can be used to resolve the base case, while
∀ i : N, x[i] �= Damaged → x[i + 1] �= Damaged can be used to resolve the
inductive case.

An Unsuccessful Validation. Listing 3.6 illustrates the results of applying
the workflow to the invalid strategy InvStr. Lines 1–6 show an encoding of
InvStr as a strategy specification. Since the sub-property corresponding to the
base case of the proof is the same, we obtain a partial proof script indicating that
the first element of Props can still be used to resolve this case of the proof. How-
ever, the proof script is incomplete, indicating that Lean was unable to validate
the strategy. Furthermore, the procedure recorded the particular error message
thrown by Lean which resulted in the failure of the inductive case of the proof
(lines 15–18). If we analyze the error message in the context of the metapro-
gram solve inductive case we can infer that the validation failed because
Lean could not unify x[i] �= Damaged with x.action i ∈ vacuum.actions.

3.6 Theorem Proving for AC Validation: Challenges

A Lean programmer can use the strategy validation workflow to specify and vali-
date a decomposition strategy. However, it is unrealistic to expect that all safety
engineers responsible for AC development will have the necessary background in
theorem proving to effectively use such a framework. In this section, we identify

34 L. Murphy et al.

1 def InvStr : Strategy (execution FCS) := property.toStrategy {
2 Clm := { X := set.univ,
3 P := λ x, ∀ i : N, x[i] �= Damaged },
4 Props := [λ x, x[0] �= Damaged,
5 λ x, ∀ i : N, ((x.action i) ∈ vacuum_actions) → (π.state i) �= Damaged]
6 }
7
8 theorem incomplete_proof : valid S1 :=
9 begin

10 by_induction,
11 base_case P1,
12 end
13
14 /−
15 invalid type ascription, term has type
16 x[i] �= Damaged
17 but is expected to have type
18 x.action i ∈ vacuum actions
19 −/

Listing 3.6. Partial proof script and debugging information.

some of the challenges facing safety engineers without formal theorem proving
experience who wish to validate their decomposition strategies using the Lean
framework. In particular, we discuss formalization challenges (abbrev. FC), and
interpretation challenges (abbrev. IC).

FC1: Formalizing Models. As shown in Sect. 3.2, the strategy validation
workflow requires a Lean encoding of both the type of system model over which
the claims are articulated, as well as a particular system as an instance of that
type. Manually producing these encodings can only be done by safety engineers
who are proficient in Lean.

FC2: Formalization of Decomposition Strategies. We also require the
decomposition strategy itself be encoded in Lean. Whereas the semantics of a
system model (e.g., LTS) may be unambiguous, a strategy expressed in natural
language will generally require a very careful analysis to determine its precise
meaning. Even if the semantics is fully understood, manually encoding a property
decomposition in Lean can be complex, and safety engineers may erroneously
define formal properties that do not accurately encode the original strategy.

IC1: Understanding a Successful Validation. When Lean is able to suc-
cessfully validate a decomposition strategy, the results need to be incorporated
into the AC. Furthermore, the AC in its entirety needs to be communicated
to, and understood by, a wide variety of stakeholders, the majority of whom
will likely be unfamiliar with theorem proving. A significant amount of effort
is required to ensure that the results of validation can be leveraged in the AC
without compromising its comprehensibility.

Validating Safety Arguments with Lean 35

IC2: Debugging a Failed Validation. In the event Lean is unable to prove
validity of a strategy, its feedback can take a variety of forms: a list of unresolved
goals in the proof environment, a list of premises/subclaims which were not
able to be used in the proof, etc. In particular, this data can consist mostly
of Lean expressions, possibly containing “holes” or meta-variables. Interpreting
the information returned by the workflow and determining how the input to the
workflow should be altered can be a challenge even for a Lean expert, and hence
it is very challenging for a user unfamiliar with Lean.

Fig. 4. A fragment of the Java API for the formal validation of GSN strategies.

4 Towards a Black-Box Usage of Lean in AC Validation

In this section, we describe how to address the challenges (see Sect. 3.6) that a
safety engineer would face trying to using Lean to reason about validity of GSN
strategy decompositions by showing how to integrate Lean into the MMINT-A
model management framework. MMINT-A1 [4] is an Eclipse-based tool written
in Java that provides an interactive workbench for managing the lifecycle of
safety models – starting from the creation of GSN ACs and providing a number of
features to support their evolution, such as querying and change impact analysis.
We finally illustrate our approach using the FCS and the strategies ValStr (a
valid strategy defined at the end of Sect. 2.2) and InvStr (an invalid strategy
shown in Fig. 2).

4.1 Integrating Lean with MMINT-A

We extend MMINT-A by adding a generic programming interface to support the
formal validation of GSN decomposition strategies (see Fig. 4), with the goals of
extensibility and modularity. This way we decouple the use of a specific theorem
prover from the GSN validation workflow, treating it as a black box. We then
create a default Lean implementation, following the formalization described in
Sect. 3. We wrap the Lean workflow from Fig. 3, provide the appropriate inputs,

1 Available at http://github.com/adisandro/MMINT.

http://github.com/adisandro/MMINT

36 L. Murphy et al.

and process the outputs in the context of a safety AC within MMINT-A. In
Fig. 5, we show how a safety engineer interacts with MMINT-A to validate a
GSN property decomposition without requiring formal knowledge of Lean.

Model Encoder and Property Templates. As mentioned in Sect. 3.6,
encoding the inputs to the Lean validation workflow presents a significant chal-
lenge for a safety engineer. To bridge this gap, we developed a model encoder to
translate LTS models into their Lean representation, and a library of property
templates to help translate natural language claims into formal Lean proper-
ties. Encoder and templates are pluggable modules that are provided by Lean
experts. They are tied to a specific type of model, e.g. LTS, but are reusable
across multiple model instances, e.g. the FCS. The engineer starts the decom-
position workflow by selecting a claim in the GSN graphical editor. In Step 2,
MMINT-A retrieves the related system model by following existing traceability
links, together with its Lean encoder and property templates. The encoder is
used in Step 3 to convert the system model into a Lean textual representation of
it, addressing challenge FC1. For example, Listing 3.1 shows the resulting Lean
encoding for the FCS. The API getTemplateProperties from Fig. 4 is invoked
at the same time to retrieve a categorized list of property templates, given the
related model as input.

Fig. 5. The MMINT-A workflow for validating an AC strategy [19].

A property template is a logical property expressed both in natural language
and in Lean, e.g., the pair “Damaged is not reached” and “λx,∀ i : N, x[i] �=
Damaged”. Templates contain variables that the user instantiates by providing
elements from the system models over which the pra variable X can be replaced
by the state Damaged. A safety expert can thus choose their decomposition

Validating Safety Arguments with Lean 37

properties using natural language from a set of predefined templates, which
are replaced behind the scenes by their corresponding encoding in Lean. This
(partly) addresses challenge FC2. In particular, we defined a set of property
templates corresponding to LTL formulae, and described their semantics with
respect to the executions of LTSs. We chose the majority of our templates from
[6], with a few custom templates specifically designed for proofs by induction; for
more information on our use of property templates, refer to [19]. As an example,
Listing 4.1 shows an encoding of the strategy ValStr using LTL property tem-
plates instead of doing so manually. For example, “absent.globally Damaged”
gets translated into to “λx,∀ i : N, x[i] �= Damaged”.

The safety engineer selects the decomposition properties in natural language
from the set of templates in Step 4. They also choose the appropriate system
model elements they want to use to replace the template variables. The resulting
Lean-encoded properties are sent to the Lean prover (Step 5) using the API
validatePropertyDecomposition from Fig. 4. Together with the encoder data
from Step 3, this corresponds to the inputs of Fig. 3 (Lean Encoding of Strategy
and Lean Encoding of System Model), saving the user from manually formalizing
them and addressing challenges FC1 and FC2.

1 def FCS_strategySpec)template : property.StrategySpec (execution FCS) := {
2 Clm := { X := set.univ
3 P := λ x, x � absent.globally Damaged},
4 Props := [λ x, x � not_init Damaged,
5 λ x, x � transitions_safe Damaged] }

Listing 4.1. Property decomposition by induction using property templates.

Feedback Loop and Proof Storage. Lean then returns the results of the
validation and a proof for it, i.e., the Debugging Information and Tactic Script
outputs from Fig. 3. The validation may fail in Step 6a, in which case MMINT-A
parses the debugging information and gives feedback to the engineer about which
of the chosen properties are failing. They can change their decomposition strat-
egy and submit a new validation request to Lean, repeating Step 5. When the
validation returns a positive result, we follow Step 6b and store the resulting
proof as evidence for the AC, populating it with GSN elements that reflect the
formalized strategy decomposition. Steps 6b and 6a address challenges IC1 and
IC2, respectively.

Note that any theorem prover can be easily plugged into MMINT-A, replac-
ing Lean, by adding: (a) the code to programmatically invoke the theorem prover;
(b) appropriate encoders to convert models into the language used by the theo-
rem prover; (c) property templates to bridge the gap between natural language
and theorem prover syntax; (d) a parser for the theorem prover output.

4.2 FCS Strategy Decomposition Example

We again illustrate the validation of the strategy ValStr over the FCS. This
time, we demonstrate how our tool allows users to do formal reasoning without
having any Lean experience. The goal of the safety engineer is to enforce a safety

38 L. Murphy et al.

Fig. 6. The FCS AC property decomposition in MMINT-A [19].

claim stating (in natural language) that the FCS does not reach the Damaged
state, i.e. the claim C1 in Fig. 6. They reason that this can be achieved by not
starting from the Damaged state, and by not transitioning into the Damaged state.
To validate their reasoning, they aim to a) create the top-level formal claim C2;
b) decompose it into two sub-claims, C5 and C6; and c) check the correctness of
the decomposition with justification J1.

The decomposition workflow starts in MMINT-A by right-clicking on the
claim C1 and selecting Property Decomposition, i.e., Step 1 of Fig. 5. The tool
proceeds by executing Steps 2 and 3: the FCS model is fetched through the trace
link and transformed into its equivalent Lean encoding as shown in Listing 3.1,
addressing challenge FC1. The tool also retrieves the property templates that
are associated with LTS models, i.e., the 29 temporal properties described in [19],
and presents them to the user at Step 4.

Figure 7 shows the dialogue where the user can select a property template
and the model elements for variable replacement. In our example, the user first
selects the template “X is not reached”, and then chooses the Damaged state
to replace the placeholder variable X. The resulting instantiated property tem-
plate is “Damaged is not reached”, which corresponds to the Lean property
“absent.globally Damaged”. The Lean translation is done by the tool transpar-
ently to the user, addressing challenge FC2, and it is stored together with the
natural language representation. After specifying the parent claim, MMINT-A
asks for the number of children claims in the GSN decomposition, and repeats
the previous activity for each of them. The user adds two subclaims: claim C5
using property template “Do not begin from X”, substituting Damaged for vari-
able X, creating the Lean property “not init Damaged”; claim C6 using property

Validating Safety Arguments with Lean 39

Fig. 7. The interface dialogs to select a property template in MMINT-A [19].

template “Never transition into X”, substituting Damaged for variable X, creating
the Lean property “transitions safe Damaged”.

MMINT-A bundles the three properties in Step 5 and sends them to the Lean
validation workflow, together with the FCS encoding from Step 3, asking to check
the validity of the decomposition. Lean replies positively and the proof is stored
in Step 6b. The GSN editor in Fig. 6 is populated with a number of new AC
elements to represent the successful decomposition. Strategy S1, context Ctx1
and claims C2, C3, C4 represent the first layer of the formal decomposition, i.e.
the translation of the top-level claim from natural language to Lean (similarly
to the approach of the tool AdvoCATE [3]). C3 and C4 are the assumptions made
during the conversion of C1 into C2. The real decomposition is represented by the
second layer, with strategy S2, claims C5, C6, and justification J1 pointing to the
Lean correctness proof. Incorporating the results of a successful Lean validation
into the AC addresses challenge IC1.

To help mitigate IC2, we have modified the strategy workflow to lever-
age property templates for debugging strategies. For example, suppose the user
requested that a specification encoding InvStr be sent for validation. As shown
in Listing 3.6, we partially complete a proof by induction, and Lean is able
to infer the form of the subclaim it requires to apply the inductive hypothe-
sis and complete the proof. By matching this information against the property
templates we have designed for property decomposition by induction, we can
effectively determine the inductive property which would allow the strategy to
be validated. Accordingly, when the user sends InvStr for validation, the inter-
face stores a log and asks the user whether they want to replace the inductive
sub-property with the one chosen by Lean. This approach offers a partial miti-
gation of IC2.

This example demonstrates how no Lean knowledge is necessary to formally
prove and decompose an intuitive safety claim (staying away from the Damaged

40 L. Murphy et al.

state). The proof is available to reviewers and regulators to justify the choice of
decomposing the claim into simpler lower-level claims that can be managed inde-
pendently. The FCS showcases examples of formal and informal LTL properties,
but the validation APIs allows for any other kind of logic to be added.

4.3 Discussion

The integration of Lean as a backend engine and MMINT-A involves some design
considerations that we briefly discuss in this subsection.

Traceability Between Lean, Models, and ACs. The purpose of using the
Lean framework is to produce an AC fragment over a particular system model
whose reasoning has been validated. For the AC to be meaningful, and for the
results of the theorem proving to be useful, we need to ensure that 1) the AC
correctly refers to elements of the system model, 2) the encoding of the model
in Lean can be directly traced to the actual system model, and 3) the results
of the theorem proving are correctly incorporated into the AC. Each of these
relations between the AC, the model, and the theorem prover is a potential
point of failure which must be manually inspected. MMINT-A is capable of
managing megamodels [17], where a megamodel is composed of multiple models
of the same system, each covering a different aspect of it. Traceability between
the individual models (including the AC [4]) is managed within MMINT-A.
With Lean integrated into the framework, it is essential to invalidate any AC
elements impacted by any modifications to the system model(s) or the theorems
imported from Lean. MMINT-A already supports change impact assessment of
models connected by traceability links. Adding similar support to the integration
links with Lean proofs is one of our future directions.

Improving Automation and Reasoning Capabilities. As the needs of the
safety engineers change, the capabilities of the theorem proving layer may need
to be extended or altered. For instance, a new set of system models or system
properties would require a new set of definitions and data structures in Lean,
and could require new metaprograms to effectively validate strategies concern-
ing these models and properties. Furthermore, the level of debugging feedback
provided by the theorem prover to safety engineers may be configurable. Effec-
tive round-trip engineering between the theorem proving layer and the modeling
layer would involve allowing flexibility and configurability of the different compo-
nents, and at the same time the ability to use formal proofs as black boxes when
needed. Configurability and extensibility of how Lean proofs are used within
MMINT-A are among of future research directions.

5 Related Work

The use of formal reasoning techniques (e.g., theorem proving, model checking)
to automatically validate assurance cases, as opposed to manual inspection, has

Validating Safety Arguments with Lean 41

been suggested by Rushby [16]. Rushby adds that a prerequisite for AC struc-
tural reasoning is that each decomposition step has to be deductively sound.
Deductively sound decomposition strategy templates were introduced in [20]. In
this paper, we show how interactive theorem provers can be used to validate the
correctness of deductive AC decomposition strategies.

Formal reasoning tools has also been used in safety assurance in several
projects. The Evidential Tool Bus (ETB) [2] constructs an assurance case
bottom-up starting from pieces of evidence generated by external tools. Evidence
and argument composition rules are written by safety engineers in a Datalog
extension. Another rule-based approach is Model-Transformation Based Assur-
ance (MTBA) [5]. MTBA uses user-provided inference rules, verified computa-
tions, and links between pieces of evidence and subgoals to construct assurance
cases via graph transformations. The AdvoCATE [3] suite of tools is used to
validate some semantic correctness properties of assurance cases. Syntactic well-
formedness constraints are provided by the users of AdvoCATE, and the assur-
ance case is checked against those constraints. The Structured Assurance Case
Metamodel (SACM) was formalized using the Isabelle theorem proving frame-
work, and was embedded in Isabelle as an ontology for assurance cases [15].
We do not attempt to verify an end-to-end assurance case, but rather we focus
on proving that claim decomposition strategies are deductively sound. The way
we integrate the theorems and proofs written in Lean on one side, and the
MMINT-A model management framework on the other, allows safety engineers
(at least in some use-cases) to use formalized decomposition strategies without
having to prove the correctness theorems themselves.

The use of interactive theorem provers to reason about software systems and
prove correctness claims has been gaining traction. Examples include the use of
the Coq theorem prover to certify the correctness of the CompCert C-language
compiler [13], and using Isabelle/HOL to prove the correctness of the seL4 micro-
kernel [12]. In the safety domain, Lean was used to prove the correctness of a
change impact assessment algorithm applied to assurance cases of software prod-
uct lines [18]. In this paper, on the other hand, we focus on the validity of the
AC argument, and we assume the AC refers to a single product.

6 Conclusion

In this paper, we described how our formal approach to AC reasoning from [19]
enables users to formally validate AC arguments without requiring theorem prov-
ing expertise, and expanded on the underlying framework for integrating theo-
rem proving with safety assurance. We showed how theorem proving can be used
directly by experts to validate ACs, identified challenges in extending theorem-
proving AC support to non-experts, and showed how our approach addresses
these challenges in transitioning from the white-box to the black-box usage of
the theorem provers. The result is an approach that facilitates the development
of ACs with provably valid strategies and mitigates reasoning errors that can
false assurance of unsafe systems.

42 L. Murphy et al.

As future work, we plan to empirically measure the benefits of our approach
in terms of mitigating formalization and analysis challenges through larger case
studies. We also aim to increase the scope of representable properties, model
types and proof tactics under our framework, and look to extend the debugging
support provided to users when a decomposition cannot be validated. Lastly, we
intend to explore other means of augmenting the AC development process via
theorem proving, such as refactoring ACs into logically equivalent forms with
more desirable quality attributes (e.g., fewer total claims or strategies).

References

1. Boomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible
future - an Adelard perspective. In: Proceedings of of SSS 2010. Springer, London
(2010). https://doi.org/10.1007/978-1-84996-086-1 4

2. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the evidential
tool bus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 275–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 18

3. Denney, E., Pai, G.: Tool support for assurance case development. J. Autom. Softw.
Eng. 25(3), 435–499 (2018)

4. Di Sandro, A., Selim, G.M.K., Salay, R., Viger, T., Chechik, M., Kokaly, S.:
MMINT-A 2.0: tool support for the lifecycle of model-based safety artifacts. In:
Proceedings of MODELS’20 Companion, pp. 15:1–15:5. ACM (2020)

5. Diskin, Z., Maibaum, T., Wassyng, A., Wynn-Williams, S., Lawford, M.: Assurance
via model transformations and their hierarchical refinement. In: Proceedings of of
MODELS 2018, pp. 426–436 (2018)

6. Dwyer, M., Avrunin, G., Corbett, J.: Property specification patterns for finite-
state verification. In: Proceedings of the Second Workshop on Formal Methods in
Software Practice (1998)

7. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification. In: Proceedings of ICFP 2017, pp. 1–29. ACM
(2017)

8. Greenwell, W.S., Knight, J.C., Holloway, C.M., Pease, J.J.: A taxonomy of fallacies
in system safety arguments. In: Proceedings of ISSC 2006 (2006)

9. GSN Working Group: GSN Community Standard Version 2 (2011). http://www.
goalstructuringnotation.info/

10. Haddon-Cave, C.: The Nimrod review: an independent review into the broader
issues surrounding the loss of the RAF Nimrod MR2 Aircraft XV230 (2009)

11. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

12. Klein, G., et al.: seL4: formal verification of an OS Kernel. In: Proceedings of SOSP
2009, pp. 207–220 (2009)

13. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

14. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-642-35873-9_18
http://www.goalstructuringnotation.info/
http://www.goalstructuringnotation.info/
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26

Validating Safety Arguments with Lean 43

15. Nemouchi, Y., Foster, S., Gleirscher, M., Kelly, T.: Isabelle/SACM: computer-
assisted assurance cases with integrated formal methods. In: Ahrendt, W., Tapia
Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 379–398. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34968-4 21

16. Rushby, J.: Mechanized support for assurance case argumentation. In: Nakano, Y.,
Satoh, K., Bekki, D. (eds.) JSAI-isAI 2013. LNCS (LNAI), vol. 8417, pp. 304–318.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10061-6 20

17. Salay, R., Kokaly, S., Di Sandro, A., Fung, N.L.S., Chechik, M.: Heterogeneous
megamodel management using collection operators. Softw. Syst. Model. 19(1),
231–260 (2019). https://doi.org/10.1007/s10270-019-00738-9

18. Shahin, R., Kokaly, S., Chechik, M.: Towards certified analysis of software product
line safety cases. In: Habli, I., Sujan, M., Bitsch, F. (eds.) SAFECOMP 2021.
LNCS, vol. 12852, pp. 130–145. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-83903-1 9

19. Viger, T., Murphy, L., Di Sandro, A., Shahin, R., Chechik, M.: A lean approach
to building valid model-based safety arguments. In: Proceedings of MODELS 2021
(2021)

20. Viger, T., Salay, R., Selim, G., Chechik, M.: Just enough formality in assurance
argument structures. In: Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.)
SAFECOMP 2020. LNCS, vol. 12234, pp. 34–49. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-54549-9 3

21. Wilson, S.P., Kelly, T.P., McDermid, J.A.: Safety case development: current prac-
tice, future prospects. In: Proceedings of SAFECOMP 1997, pp. 135–156. Springer,
London (1997). https://doi.org/10.1007/978-1-4471-0921-1 6

https://doi.org/10.1007/978-3-030-34968-4_21
https://doi.org/10.1007/978-3-319-10061-6_20
https://doi.org/10.1007/s10270-019-00738-9
https://doi.org/10.1007/978-3-030-83903-1_9
https://doi.org/10.1007/978-3-030-83903-1_9
https://doi.org/10.1007/978-3-030-54549-9_3
https://doi.org/10.1007/978-3-030-54549-9_3
https://doi.org/10.1007/978-1-4471-0921-1_6

Run-time Analysis and Testing

Runtime Enforcement with Reordering,
Healing, and Suppression

Yliès Falcone(B) and Gwen Salaün(B)

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
{ylies.falcone,gwen.salaun}@univ-grenoble-alpes.fr

Abstract. Runtime enforcement analyses an execution trace, detects
when this execution deviates from its expected behaviour with respect to
a given property, and corrects the trace to make it satisfy the property. In
this paper, we present new enforcement techniques that reorder actions
when necessary, inject actions to the application to ensure progress of
the property, and discard actions to avoid storing too many unnecessary
actions. At any step of the enforcement, we provide a verdict, called
enforcement trend in this work, which takes its value in a 4-valued truth
domain. Our approach has been implemented in a tool and validated on
several application examples. Experimental results show that our tech-
niques better preserve the application actions, hence ensuring better ser-
vice continuity.

1 Introduction

Runtime verification [1,10,18,22,25] is an alternative to traditional formal ver-
ification techniques, such as model checking, and avoids their complexity by
analysing execution traces. Therefore, runtime verification has the advantage of
scaling up very well without requiring a comprehensive model of the applica-
tion, but at the expense of lower coverage. Runtime verification aims at verify-
ing whether an execution trace satisfies a given correctness property. Runtime
enforcement [13,20,21,24] goes beyond classic runtime verification by correcting
the execution that deviates from its expected behaviour to ensure the satisfaction
of a given property. To do so, a so-called enforcement monitor (or enforcer in
short) accepts as input a sequence of actions and generates as output a sequence
of actions respecting the property.

Existing enforcement techniques suffer from several issues. First, messages or
actions involved in an execution trace may arrive to the enforcer in a different
order, thus violating the property. This can occur in untimed distributed sys-
tems for instance, where it is impossible to guarantee the exact order of issued
actions. Most enforcement techniques do not provide reordering strategy and
discard many input actions in order to preserve the property validity. Second,
the progress of the property might be prevented by the absence in the input exe-
cution trace of some specific action. A solution to ensure the property progress
is to inject some expected actions to the application. Third, there is also a need
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 47–65, 2021.
https://doi.org/10.1007/978-3-030-92124-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_3

48 Y. Falcone and G. Salaün

of some removal strategies in order to decide when some actions need to be
stored because they are useful in the future or deleted to avoid storing too many
(unnecessary) actions.

In this paper, we present new enforcement techniques that combine reorder-
ing, healing, and suppression. Such combination presents several advantages. The
enforcer first avoids any sequence of output actions that invalidates the prop-
erty. It also outputs as many actions received as input as possible, and ensures
progress in the property thanks to healing techniques. Finally, suppression tech-
niques avoid to store unnecessary actions.

More precisely, the enforcement techniques take as input a sequence of actions
and a property in an automata-based or logic-based formalism, and ensure that
the property will not be violated. Reordering is ensured by using a bag to store
the actions that do not arrive in the correct order. Healing techniques allow
the addition of actions and thus ensure progress of the application and of the
property. Suppression mechanisms are used in two different situations: (i) to
systematically remove actions that can cause the violation of the property, and
(ii) to avoid the storage of too many actions in the bag used for reordering
purposes. At any moment, we provide a verdict, called enforcement trend in this
work, taken from a 4-valued truth domain (forever positive, currently positive,
possibly positive, possibly negative). The enforcement trend becomes possibly
negative if we have to make intensive use of reordering and healing techniques
for avoiding property violation. Note that forever false is always avoided by
our enforcement techniques. Our approach has been implemented in a tool and
validated on several examples of applications and properties. Our enforcement
techniques take several parameters as input that govern the triggering of healing
and suppression techniques, which can be used to tune its behaviour.

Let us illustrate on a real-world example. Imagine a dispatcher receives
parcels and can move them to three conveyor belts. The initial behaviour is
random or arbitrary in the sense that the dispatcher moves the parcel to any
belt. However, we want the dispatcher to be fairer by moving a parcel to belts
one after the other in a specific order. Reordering is helpful because it can be
used to store temporarily a parcel when it is not respecting the ordering strategy
of the new scheduler. However, reordering is not enough, because in some cases
one may wait for a parcel aimed to a given belt for too long. In that situation,
healing techniques are interesting to decide to move a parcel to a specific belt
even if it was not originally planned for that one. Last but not least, suppose
that the original dispatcher moves parcels to a specific belt more often than to
the other belts, say the first one for instance. In that case, many actions to move
parcels to that line will be issued by the dispatcher and stored in the buffer. To
avoid filling the buffer with these unnecessary actions we can decide to remove
some of them from the buffer.

The paper is organised as follows. Section 2 defines execution traces and
the formalism used in this work for specifying properties. Section 3 presents
the enforcement techniques including the possible enforcement trends and the
characteristics of the enforcer. Section 4 illustrates the approach on a case study.

Runtime Enforcement with Reordering, Healing, and Suppression 49

Section 5 introduces the tool support and different experiments we carried out
to validate our solution. Section 6 discusses related work. Section 7 concludes.

2 Models

We introduce the required notions of execution traces, properties, and bags.

Execution Traces. We consider a finite set of actions A corresponding to the
operations that can be executed by a program or application. An execution
trace t is a sequence of actions over A. The concatenation of two actions α1 and
α2 is denoted by α1.α2. The empty sequence is denoted by ε. Concatenation is
extended to traces in the usual way. A trace σ is a prefix of a trace σ′, noted
σ � σ′, if there exists a trace σ′′ such that σ′ = σ.σ′′.

Properties. A property denotes a subset of (valid) execution traces in A∗. Con-
sidering a finite execution trace t and a property P , when t ∈ P , we say that t
satisfies P . We model and define properties using finite-state automata.

Definition 1 (Property automaton). A property automaton PA is a tuple
(S, s0, Σ, T, va) where:

– S is a (finite) set of states and s0 ∈ S is the initial state;
– Σ ⊆ A is a finite set of actions called alphabet;
– T : S × Σ → S is the total transition function;
– va : S → {green, violet , red} is the verdict function.

Moreover, the verdict function is defined such that:

– va(s0) �= red,
– ∀(s, α, s′) ∈ T : va(s) = green =⇒ va(s′) = green,
– ∀(s, α, s′) ∈ T : va(s) = red =⇒ va(s′) = red.

A transition (s1, α, s2) ∈ T (also noted s1
α−→T s2) indicates that the automa-

ton can move from state s1 to state s2 by performing action α. States are asso-
ciated with colors that are used to specify the satisfaction of the property: green
states mean acceptance, violet states mean undetermined, and red states mean
violation. We assume that the color of the initial state is not red. Property
automata can be automatically generated from LTL properties according to
existing monitor-synthesis techniques providing a finite-trace semantics to LTL.
For instance, following [4,8], the property automaton is in a green (red, resp.)
state whenever the current trace satisfies (does not satisfy, resp.) the property
and all possible extensions do (do not, resp.) satisfy the property. Colors can
also be assigned by the user. In such a case, we require that the marking of
states is consistent with the 3-valued semantics defined in [4]. In particular,
there is no transition from red states to green nor violet states, nor from green
states to violet nor red states. Moreover, a property automaton is deterministic
and complete. For s ∈ S, Reach(s) is the set of states reachable from s with

50 Y. Falcone and G. Salaün

sequences over Σ, that is, the states related to s through the transitive closure
of T . Moreover, for s ∈ S and σ ∈ Σ∗, Reach(s, σ) is the state reached from s
following the transition function while reading σ. We associate action sequences
with verdicts given by a property automaton: a sequence of actions σ ∈ Σ∗ is
associated with the verdict of the state reached by reading σ on the property
automaton: [|PA|](σ) = va(Reach(s0, σ)).

Bags. The notion of bag is used by the runtime enforcer for storing actions.
A bag is used to store possibly multiple occurrences of actions from a certain
alphabet Σ without any order. We note BΣ the set of bags over Σ. Function
add : Σ × BΣ → BΣ adds an action to a bag. Function remove : Σ × BΣ → BΣ

removes an instance of an action from a bag. Function remove : 2Σ ×BΣ → BΣ

is overloaded to define the removal of a set of actions from a buffer. Function
count : BΣ → N returns the number of actions in a bag. Function actions :
BΣ → 2Σ returns the actions stored in a bag, that is, the domain of the input
bag. Predicate empty indicates whether a bag is empty.

3 Enforcement Techniques

In this section, we present successively the main ideas behind the enforcement
techniques proposed in this paper, the details of how the enforcer works, and
the formal characteristics ensured by the enforcer.

3.1 Overview

An enforcer takes as input an execution trace generated by a program or appli-
cation in the form of a sequence of actions, as well as a temporal property
described as a property automaton. The enforcer produces as output a sequence
of actions that satisfies the property by avoiding red states, as is the case with
standard enforcers as in e.g., [12,23,26]. In addition, the enforcer re-uses (pre-
vious) input actions as much as possible independently from their reception
order. Any input action that is not part of the property alphabet is immediately
returned as output. If the input action is part of the property alphabet: (i) if it
makes the property automaton progress (there is one transition from the current
state holding that action as label), the action is immediately returned as out-
put, (ii) otherwise, the monitor needs to modify the input sequence of actions
by using buffering or healing techniques. To do so, the enforcement techniques
rely on three bags used by the monitor:

– a buffer is used to store temporarily actions that are not immediately required
for making the property automaton progress;

– a healer stores actions that are injected to the output execution trace to
ensure progress of the property automaton;

– a well is used to store and keep track of input actions that can only lead the
property automaton to red states, and thus invalidate the property.

Runtime Enforcement with Reordering, Healing, and Suppression 51

Moreover, the monitor takes three parameters as input. The first one (kheal)
corresponds to the number of actions stored in the buffer from which healing
techniques are triggered. Basically, the underlying idea is to first determine
whether we can make progress in the property automaton by reordering actions
(and thus temporarily storing them in the buffer). However, if the buffer grows
too much, we start healing by adding new actions to the system. Note that this
parameter is not a bound of the buffer size. Indeed, healing ensures progress
of the property automaton, but it does not ensure consumption of the actions
stored in the buffer. Said differently, this parameter can be seen as a way to min-
imise the deviation with respect to the expected trace specified by the property.
If this parameter is small, healing techniques will be triggered earlier, but at the
price of injecting possibly more new actions as output.

The second parameter (kpurge) is optional and triggers the removal of actions
in the buffer. It is a natural number corresponding to the number of action
occurrences in the buffer from which we start suppressing part of them (half by
default). For instance, if this parameter is fixed to 20, and at some point, 20
occurrences of some action are present in the buffer, we remove 10 of them. This
parameter is useful to avoid storing too many actions in the buffer which may
not be consumed.

The third parameter (kverd) is related to the computation of verdicts that
are called in this work enforcement trends since these are not definitive verdicts.
At any moment of the monitoring, a truth value can be returned according to
the current trace generated as output and to the current states of the different
bags. We rely on a 4-valued truth domain in this work: forever positive, currently
positive, possibly positive, and possibly negative. The property is forever true if
a green state has been reached. The property is currently positive if the current
state of the property automaton is violet, and the enforcer has not made use (yet)
of reordering or healing techniques. The enforcement trend is possibly positive if
the current state of the property automaton is violet, and the number of actions
in the buffer and healer is below a threshold, which is the third parameter.
The enforcement trend is possibly negative if the current state of the property
automaton is violet, and the number of actions in the buffer and healer goes
beyond the threshold.

To sum up, these three parameters are used by the enforcement mechanisms
for different purposes:

– kheal (kheal ≥ 0) corresponds to the number of actions stored in the buffer
from which healing techniques are triggered. If kheal = 0, healing techniques
are activated from the beginning;

– kpurge (kpurge ≥ 0) is the number of a certain occurrence of an action appear-
ing in the buffer from which purging techniques are triggered. If kpurge = 0,
purging techniques are not used at all;

– kverd (kverd > 0) is the number of actions stored in both the buffer and healer,
which makes the enforcement trend go from possibly positive to possibly
negative. If kverd = 1, the enforcement trend becomes possibly negative as
soon as we have one action in the buffer or in the healer.

52 Y. Falcone and G. Salaün

In this work, kheal and kverd are computed automatically, by using the size of
the property automaton alphabet or by statically analysing the property automa-
ton. More precisely, we use for kheal the length of the longest sequence or the
length of the longest cycle (one iteration) in the property automaton. If there are
more than kheal actions in the buffer, it means we need to supplement buffering.
As for kverd, we choose a multiple of the size of the alphabet. For instance, if
there are twice the number of elements of the alphabet in the buffer and healer,
we consider we had to change quite significantly the input trace, and the enforce-
ment trend changes from possibly positive to possibly negative. Another solution
is to rely on machine learning techniques for computing these bounds by using
the history of the execution trace and the decisions of the enforcer.

3.2 Enforcement Monitor

We detail how the enforcement techniques proposed in this paper work. The
behaviour of the enforcer is described by a transition system, and requires as
input three parameters kheal, kpurge and kverd as well as a property automa-
ton PA = (S, s0, Σ, T, va). Let us start by defining the configurations of the
enforcement monitor.

Definition 2 (Enforcement monitor configurations). The set of configu-
rations of the enforcement monitor is defined as Conf = S × BΣ × BΣ × BΣ. A
configuration of the enforcement monitor is a tuple (s, b, h, w) where s is a state
of PA, and b (buffer), h (healer), and w (well) are three bags to store elements
of Σ.

The enforcement monitor takes one action from the execution trace as
input, and generates none, one or several actions (at the same time) as output.
More precisely, the monitor can react to an input action in different ways (see
Definition 3 for a formal definition):

– stop if the monitor has reached a green state;
– execute the action as output if the action does not belong to Σ, or if the

action belongs to Σ, the property automaton can execute this action in its
current state, and there is no such action in the healer bag;

– add to buffer if the action belongs to Σ, leads to a red state, but can be used
later in the property automaton (without going to a red state);

– heal by generating as output an action that can be executed from the cur-
rent state in the property automaton. Healing techniques are triggered when
adding a new action to the buffer, which makes kheal to be reached;

– remove from healer bag if the action belongs to Σ, and there is such an action
in the healer bag;

– add to well if the action belongs to Σ, leads to a red state, but cannot be
used elsewhere in the property automaton;

– purge buffer when one specific action makes the buffer reach the kpurge bound.
The monitor removes from the buffer a certain number of these actions (half
by default).

Runtime Enforcement with Reordering, Healing, and Suppression 53

Table 1. Transition rules of the enforcement monitor given an input action α.

α /∈ Σ

(s, b, h, w)
α/α� (s, b, h, w)

(execute1)

α ∈ Σ \ h s
α−→T s′ va(s′) �= red

(s, b, h, w)
α/α� (s′, b, h, w)

(execute2)

α ∈ Σ s
α−→T s′ va(s′) = red

∃s′′, s′′′ ∈ Q : s′′ ∈ Reach(s) ∧ va(s′′′) �= red ∧ s′′ α−→T s′′′

(s, b, h, w)
α/ε� (s, add(α, b), h, w)

(addtobuffer)

α ∈ Σ ∩ h

(s, b, h, w)
α/ε� (s, b, remove(α, h), w)

(removefromhealer)

α ∈ Σ ∀s′ ∈ Reach(s) : s′ α−→T s′′ =⇒ va(s′′) = red

(s, b, h, w)
α/ε� (s, b, h, add(α, w))

(addtowell)

In the following definition, we formally define the different sorts of transitions
of the monitor. Note that for any input action, we apply only one of the following
behaviours: stop, execute, add to buffer and eventually heal, remove from healer
bag, or add to well. Correct termination is not present in this definition, because
it makes the whole monitor stops in a green state. Healing techniques and buffer
purge are presented aside because they do not need any input action to be
executed. Triggering these two rules is possible every time an action is added to
the buffer with the rule (addtobuffer). As far as healing techniques are concerned,
they generate a single action as output, but this is systematically followed by a
check to see whether actions from the buffer can be consumed and thus added
to the output execution trace. If there are several actions that can be taken out
from the buffer, the monitor always maximises this number, by executing the
longest sequence of actions (random if there are several longest ones). Note that
we could decide to apply several times the healing rule for ensuring a progress
of several actions as output. However, we do not want to inject more actions as
output than those executed by the system as input.

Definition 3 (Enforcement monitor). The set of transitions of the enforce-
ment monitor is the smallest subset of Conf ×Σ×Σ∗×Conf abiding to the rules

described in Tables 1 and 2. A transition (s, b, h, w)
α/o� (s′, b′, h′, w′) indicates a

move from configuration (s, b, h, w) to configuration (s′, b′, h′, w′) while inputting
α ∈ Σ and outputting o ∈ Σ∗.

54 Y. Falcone and G. Salaün

Table 2. Transition rules of the enforcement monitor after adding to buffer.

count(b) > kheal

∀i : αi ∈ b β = gen(s,PA)

Reach(s, β.α1 . . . αn) = s′

(s, b, h, w)
ε/β.α1.....αn� (s′, remove({α1, . . . , αn}, b), add(β, h), w)

(heal)

b(α) > kpurge

(s, b, h, w)
ε/ε� (s, b, h, purge(α, w))

(purgebuffer)

Rules in Table 1 apply when a new action is received as input. Rules in Table 2
apply when an action has been added to the buffer.

Function gen, used in the former definition (Table 2), generates an action
that makes the property automaton progress, and thus possibly leads to the
execution of additional actions as output (by taking them from the buffer). The
healer never adds an action leading to a red state because our enforcement
techniques systematically avoid red states. The healer does not add an action
leading to a green state either, because we want the property to become true
thanks to an input action. Therefore, the healer can output an action leading
to a violet state or does not output anything (this is the case when outgoing
transitions can lead to red and green states only).

Definition 4 (Healing). Given a (current) state s of PA, the healer returns
an action or the empty word as follows:

gen(s,PA) =
{

α if s
α−→T s′ and va(s′) = violet ;

ε otherwise.

3.3 Enforcement Trend

An enforcement trend can be associated with the current configuration of the
enforcement monitor. An enforcement trend has four possible values: forever pos-
itive, currently positive, possibly positive, and possibly negative. Recall that the
enforcement monitor avoids that the output sequence makes the input property
automaton reach red states.

Definition 5 (Enforcement trend). The enforcement trend associated with
a configuration (s, b, h, w) of the enforcement monitor is defined as:

– forever positive if va(s) = green;
– currently positive if va(s) = violet, empty(b) and empty(h);
– possibly positive if va(s) = violet and count(b) + count(h) < kverd;
– possibly negative if va(s) = violet and count(b) + count(h) ≥ kverd.

Runtime Enforcement with Reordering, Healing, and Suppression 55

Note that parameter kverd can be fixed in different ways: arbitrarily, using the
size of the alphabet (e.g., twice or thrice the size of the alphabet) or by analysing
statically the structure of the property automaton (e.g., length of the longest
path to green states or length of the longest cycle if there is no green states).

3.4 Characteristics

The enforcement techniques proposed in this paper are online, untimed, and
operational. Online means that the monitor takes as input a trace built from the
running monitored system (as opposed to an offline postmortem trace). Untimed
means that the enforcement monitor does not account from the physical time
that elapses between these actions. Operational means that the provided defini-
tion describes how the enforcement monitor executes and can thus directly be
used as a guide for the implementation.

In the rest of this section, we focus more particularly on the non-functional
properties of enforcement monitors with healing. We revisit the classical charac-
teristics of soundness, monotonicity, and transparency, taking into account the
healer and the well. Moreover, we introduce two properties that stem from the
addition of a healer to enforcement monitors, namely progress and healing as a
last resort.

For this, we see and reason on an enforcement monitor as an enforcement
function EPA : Σ∗ → Σ∗ × BΣ × BΣ × BΣ , dedicated to a property automaton
PA. The enforcement function describes the enforcement monitor as a relation
between the input and the corresponding output, content of the buffer, content
of the healer and content of the well. When EPA(in) = (o, b, h, w), it means that
when the enforcement monitor inputs in (one action after the other), the overall
produced output is o and the contents of the buffer, the healer, and the well are
respectively b, h, and w.

In the following, we shall use the dot notation to refer to the elements in a
configuration of the enforcement monitor and for EPA(in) = (o, b, h, w), we note
EPA(in).out = o, EPA(in).buff = b, EPA(in).heal = h, and EPA(in).well = w.

An enforcement monitor is sound, meaning that for any input sequence, the
property is not violated by the output sequence produced by the enforcement
monitor.

Proposition 1 (Soundness). ∀in ∈ Σ∗ : [|PA|](EPA(in).out) �= red

Proof (Sketch). Soundness holds because the enforcement monitor never pro-
duces an action as output if it leads to a red state starting from the state stored
in its configuration. Moreover, the state stored in its configuration is the state
reached by executing the output in the property automaton.

An enforcement monitor is monotone, meaning that it respects the following
physical constraints: the produced output cannot be undone and the actions
discarded in the well are definitely lost.

Proposition 2 states that the output (sequence) of the enforcer is a growing
function of the input sequence.

56 Y. Falcone and G. Salaün

Proposition 2 (Monotonicity when outputting actions).
∀in, in ′ ∈ Σ∗ : in � in ′ =⇒ EPA(in).out � EPA(in ′).out

Proof (Sketch). Monotonicity of the output is a straightforward consequence
of the fact that the output sequence of the enforcement monitor is formed by
concatenating the output actions produced while reading the input sequence.

Proposition 3 similarly states that the well of the enforcer is a set where one can
only add new elements.

Proposition 3 (Monotonicity when discarding actions).
∀in, in ′ ∈ Σ∗ : in � in ′ =⇒ EPA(in).well ⊆ EPA(in ′).well

Proof (Sketch). Monotonicity when discarding actions is a direct consequence of
the fact that actions are only discarded with rule (addtowell), which accumulates
actions in the well.

An enforcement monitor is transparent, meaning that (i) it intervenes (by making
the output sequence differ from the input) only when the input sequence violates
the property, and (ii) the input actions are found either in output, in the buffer
or in the well, and only the healer can generate additional actions.

Proposition 4 (Transparency).

– ∀in ∈ Σ∗ : [|PA|](in) �= red =⇒ E(in).out = in
– ∀in ∈ Σ∗ :

actions(EPA(in).out) ∪ actions(EPA(in).buff) ∪ actions(EPA(in).well)
\actions(EPA(in).heal) = actions(in).

Proof (Sketch). The first part of transparency holds because if the input
sequence does not violate the property, then it means that it leads to a vio-
let or a green state in the underlying property automaton. Henceforth, only
rules (execute1) and (execute2) have been applied when inputting in.

The second part of transparency holds because input actions either go to
output, to the buffer or to the well. Additional actions are exactly those in the
healer part of the configurations. Actions created by the healer are later removed
whenever they appear as input.

An enforcement monitor ensures progress, meaning that the produced output
sequence keeps growing when the healer can (|E(in).buff| ≥ kheal) and should
([|PA|](E(in).α) = red) intervene.

Proposition 5 (Progress).
∀in ∈ Σ∗,∀α ∈ Σ :

|EPA(in).buff| ≥ kheal ∧ [|PA|] ((EPA(in).out
)
.α) = red

=⇒ |EPA(in.α)| > |EPA(in)|

Runtime Enforcement with Reordering, Healing, and Suppression 57

Proof (Sketch). Progress holds because when the buffer contains more than kheal
actions and [|PA|] ((EPA(in).out

)
.α), only rule (heal) can apply. Function gen

returns some action that lead to a violet state from the state reached in the
property automaton after outputting [|PA|](EPA(in)).out. Such a state is neces-
sarily violet and the action thus necessarily exists because of the constraints on
state colors.

An enforcement monitor heals as a last resort, meaning that whenever the healer
intervenes (which is witnessed by its bag being non-empty), it means that the
new input action cannot be produced as output and that the healing threshold
has been reached for the buffer size.

Proposition 6 (Healing as last resort).
∀in ∈ Σ∗,∀α ∈ Σ :

EPA(in).heal = ε ∧ EPA(in · α).heal �= ε
=⇒ [|PA|](EPA(in).α) = red ∧ |EPA(in).buff| ≥ kheal

Proof (Sketch). Healing as a last resort holds because healing can (only) happen
by applying rule (heal), which requires that the buffer contains more than kheal
actions. Moreover, the input action causing healing to happen must have been
put into the buffer by previously applying rule (addtobuffer) and this led to the
buffer size to exceed kheal.

4 Case Study

We illustrate our approach with the example mentioned in the introduction.
Suppose that a delivery company uses a dispatcher, which receives parcels from
an input conveyor belt and moves them to three output conveyor belts (we could
extend this example to as many belts as required). The initial behaviour of the
dispatcher is to move a parcel to any belt. Assume now we want the dispatcher
to be fairer by moving a parcel to the belts one after the other in a specific
order. To do so, we first need to model this specification using the property
automaton given in Fig. 1, where we define the repetition of a fair repartition
among three conveyor belts. When these actions arrive in a different order, this
corresponds to an incorrect behaviour (red state). The automaton also exhibits a
case of correct termination with the STOP transition going to a green state. The
alphabet of the property is {BELT1, BELT2, BELT3, STOP} and the overall
alphabet also consists of two other actions: PARCEL (arrival of a parcel) and
PAUSE (pause of the input belt for five seconds for instance). We decide to start
healing techniques when there are three actions in the buffer (kheal = 3), which
corresponds to the length of the longest sequence of actions in the automaton
(without passing twice through the same state). We choose kverd = 8, which is
twice the number of elements in the alphabet of the property automaton.

Let us illustrate how our approach works in practice by using an excerpt of
the application of the enforcement techniques on this example (Fig. 2), where we
replace BELT1, BELT2 and BELT3 with B1, B2 and B3, respectively, for the

58 Y. Falcone and G. Salaün

Fig. 1. Parcel dispatcher property automaton

sake of readability. Each row in the result shows an input action, the resulting
output action(s), the states of buffer, healer, well if not empty, and finally the
enforcement trend. At the beginning of this trace, all bags are empty and the
trend is (currently) positive. The last output action was BELT2 (l.85), so we
expect BELT3 to be the next action of the property automaton. However, the
enforcer receives BELT1 (l.88) and BELT2 twice (l.92 and l.95), so it moves
these three actions to the buffer. Then it receives BELT3 (l.99) and it can output
BELT3, BELT1 and BELT2. This illustrates the use of reordering techniques.

We now look at an example of healing. At l.109, the buffer contains three
actions (BELT2, BELT2, BELT3). The last output action was BELT3 (l.104), so
BELT1 is required now. However, this is BELT2 that is received as input (l.110),
which is a fourth action to add to the buffer, thus triggering healing techniques.
The enforcement monitor decides to move a parcel to BELT1. This action is
added to the healer and appears as output. This step forward in the property
automaton also allows the consumption from the buffer of actions BELT2 and
BELT3, explaining why we have three actions appearing as output on l.110.

Last but not least, looking at l.124 for instance, we see that there are two
BELT1 in the healer, and the input action is BELT1 as well. In that situation,
since the enforcer owes somehow two BELT1 actions to the application, it does
not generate anything as output but just removes one BELT1 from the healer.

5 Tool Support and Experiments

In this section, we first present the implementation of the enforcement tech-
niques. Second, we introduce different experiments carried out to evaluate our
approach in terms of configuration size and enforcement trend. Finally, we com-
pare our solution with another approach based only on reordering.

5.1 Tool Support

The enforcement techniques presented in this paper have been implemented in
a prototype tool written in Python. Note that an option of the tool allows the
user to make use of reordering techniques only or reordering and healing tech-
niques together. The tool mainly consists of three modules: one for representing
and manipulating property automata, one implementing several strategies for
generating input actions, and one implementing the enforcement techniques.

Runtime Enforcement with Reordering, Healing, and Suppression 59

85 - B3 → B3 B1 B2 - trend: currently positive
86 - PARCEL → PARCEL - trend: currently positive
87 - PAUSE → PAUSE - trend: currently positive
88 - B1 → - buffer: [’B1’] - trend: possibly positive
89 - PARCEL → PARCEL - buffer: [’B1’] - trend: possibly positive
90 - PAUSE → PAUSE - buffer: [’B1’] - trend: possibly positive
91 - PARCEL → PARCEL - buffer: [’B1’] - trend: possibly positive
92 - B2 → - buffer: [’B1’, ’B2’] - trend: possibly positive
93 - PARCEL → PARCEL - buffer: [’B1’, ’B2’] - trend: possibly positive
94 - PAUSE → PAUSE - buffer: [’B1’, ’B2’] - trend: possibly positive
95 - B2 → - buffer: [’B1’, ’B2’, ’B2’] - trend: possibly positive
96 - PARCEL → PARCEL - buffer: [’B1’, ’B2’, ’B2’] - trend: possibly positive
97 - PARCEL → PARCEL - buffer: [’B1’, ’B2’, ’B2’] - trend: possibly positive
98 - PARCEL → PARCEL - buffer: [’B1’, ’B2’, ’B2’] - trend: possibly positive
99 - B3 → B3 B1 B2 - buffer: [’B2’] - trend: possibly positive
100 - PARCEL → PARCEL - buffer: [’B2’] - trend: possibly positive
101 - B2 → - buffer: [’B2’, ’B2’] - trend: possibly positive
102 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - trend: possibly positive
103 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - trend: possibly positive
104 - B3 → B3 - buffer: [’B2’, ’B2’] - trend: possibly positive
105 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - trend: possibly positive
106 - PAUSE → PAUSE - buffer: [’B2’, ’B2’] - trend: possibly positive
107 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - trend: possibly positive
108 - B3 → - buffer: [’B2’, ’B2’, ’B3’] - trend: possibly positive
109 - PARCEL → PARCEL - buffer: [’B2’, ’B2’, ’B3’] - trend: possibly positive
110 - B2 → B1 B2 B3 - buffer: [’B2’, ’B2’] - healer: [’B1’] - trend: possibly positive
111 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - healer: [’B1’] - trend: possibly positive
112 - B3 → - buffer: [’B2’, ’B2’, ’B3’] - healer: [’B1’] - trend: possibly positive
113 - PAUSE → PAUSE - buffer: [’B2’, ’B2’, ’B3’] - healer: [’B1’] - trend: possibly positive
114 - B2 → B1 B2 B3 - buffer: [’B2’, ’B2’] - healer: [’B1’, ’B1’] - trend: possibly positive
115 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - healer: [’B1’, ’B1’] - trend: possibly positive
116 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - healer: [’B1’, ’B1’] - trend: possibly positive
117 - B3 → - buffer: [’B2’, ’B2’, ’B3’] - healer: [’B1’, ’B1’] - trend: possibly positive
118 - PARCEL → PARCEL - buffer: [’B2’, ’B2’, ’B3’] - healer: [’B1’, ’B1’] - trend: possibly positive
119 - PARCEL → PARCEL - buffer: [’B2’, ’B2’, ’B3’] - healer: [’B1’, ’B1’] - trend: possibly positive
120 - B3 → B1 B2 B3 - buffer: [’B2’, ’B3’] - healer: [’B1’, ’B1’, ’B1’] - trend: possibly positive
121 - PARCEL → PARCEL - buffer: [’B2’, ’B3’] - healer: [’B1’, ’B1’, ’B1’] - trend: possibly positive
122 - PAUSE → PAUSE - buffer: [’B2’, ’B3’] - healer: [’B1’, ’B1’, ’B1’] - trend: possibly positive
123 - PAUSE → PAUSE - buffer: [’B2’, ’B3’] - healer: [’B1’, ’B1’, ’B1’] - trend: possibly positive
124 - B1 → - buffer: [’B2’, ’B3’] - healer: [’B1’, ’B1’] - trend: possibly positive
125 - PARCEL → PARCEL - buffer: [’B2’, ’B3’] - healer: [’B1’, ’B1’] - trend: possibly positive
126 - B1 → - buffer: [’B2’, ’B3’] - healer: [’B1’] - trend: possibly positive
127 - PARCEL → PARCEL - buffer: [’B2’, ’B3’] - healer: [’B1’] - trend: possibly positive
128 - B2 → - buffer: [’B2’, ’B3’, ’B2’] - healer: [’B1’] - trend: possibly positive
129 - PARCEL → PARCEL - buffer: [’B2’, ’B3’, ’B2’] - healer: [’B1’] - trend: possibly positive
130 - PAUSE → PAUSE - buffer: [’B2’, ’B3’, ’B2’] - healer: [’B1’] - trend: possibly positive
131 - B1 → - buffer: [’B2’, ’B3’, ’B2’] - trend: possibly positive
132 - PARCEL → PARCEL - buffer: [’B2’, ’B3’, ’B2’] - trend: possibly positive
133 - PARCEL → PARCEL - buffer: [’B2’, ’B3’, ’B2’] - trend: possibly positive
134 - B2 → B1 B2 B3 - buffer: [’B2’, ’B2’] - healer: [’B1’] - trend: possibly positive
135 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - healer: [’B1’] - trend: possibly positive
136 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - healer: [’B1’] - trend: possibly positive
137 - B1 → - buffer: [’B2’, ’B2’] - trend: possibly positive
138 - PAUSE → PAUSE - buffer: [’B2’, ’B2’] - trend: possibly positive
139 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - trend: possibly positive
140 - PARCEL → PARCEL - buffer: [’B2’, ’B2’] - trend: possibly positive
141 - B3 → - buffer: [’B2’, ’B2’, ’B3’] - trend: possibly positive
142 - PARCEL → PARCEL - buffer: [’B2’, ’B2’, ’B3’] - trend: possibly positive
143 - PARCEL → PARCEL - buffer: [’B2’, ’B2’, ’B3’] - trend: possibly positive
144 - B1 → B1 B2 B3 - buffer: [’B2’] - trend: possibly positive
145 - PARCEL → PARCEL - buffer: [’B2’] - trend: possibly positive
146 - PARCEL → PARCEL - buffer: [’B2’] - trend: possibly positive
147 - B1 → B1 B2 - trend: currently positive
148 - PAUSE → PAUSE - trend: currently positive
149 - PARCEL → PARCEL - trend: currently positive

Fig. 2. Illustration of the enforcement techniques on the parcel dispatcher

5.2 Experiments

In our experiments, we applied our approach to several examples, from short
execution traces (hundreds of actions as input) to very long traces consisting
of hundreds of thousands of actions as input. The goal of these experiments is
to show the configuration size and the final enforcement trend, which is main-
tained as much as possible in the possibly positive value. Table 3 presents the

60 Y. Falcone and G. Salaün

results of some representative experiments. The first five columns describe the
example with a short textual description, the property automaton, the length of
the simulation in terms of input actions, and the kheal and kverd parameters. In
these experiments, kheal is equal to twice the longest sequence in the property
automaton and kverd is equal to three times the size of the property automaton
alphabet. The last four columns present the result by giving the average size of
the three bags (buffer, healer, well) as well as the enforcement trend as a per-
centage. This trend shows for how many actions as input, the enforcement trend
was currently or possibly positive. As an example, if the execution run consists
of 1000 actions, and the enforcement trend is currently or possibly positive for
800 of these actions, the result is 80%. During these experiments, we chose to
not purge the buffer, which corresponds to a value of 0 for kpurge. Each line
of the table was computed by repeating 100 times the simulation. Since input
traces are always different, this repetition allows us to compute more accurate
output values. Note that we do not use property automata with green states,
because green states make our simulation stop, and we prefer to run it for a
specific length here (third column).

First of all, we can see in the table that the enforcement trend is mostly
currently or possibly positive. We will show in the next subsection how our
approach compares in that aspect with similar approaches. The variability of
the enforcement trend in the table (70%, 80% or 90%) is due to the variability
of the actions used as input. Similarly to the enforcement trend, we can see that
the average number of actions in the buffer or generated by the healer remain
rather stable when the length of the trace increases. This shows that, for these
examples, the approach succeeds in maintaining a positive trend without making
intensive use of reordering and healing, even when the size of the execution trace
increases. Note also that the number of actions in the buffer remains on average
below the kheal parameter, even though the buffer contents can go above kheal,
which is not a bound of the buffer. This happens because we never prevent
adding values to the buffer, even when healing is triggered. The final row of the
table (no untimely reboot) shows an example where the well is used to store
reboot actions that can only lead to red states.

5.3 Comparison

In the final part of this section, we compare the results obtained with our enforce-
ment techniques with respect to an existing enforcement approach based on
action reordering and suppression [9]. We chose that work because it provides
solutions similar to those proposed in this paper. More precisely, we compare
three techniques: (i) our approach where reordering is used but not healing,
(ii) our approach where we use both reordering and healing, and (iii) the app-
roach presented in [9]. In a first set of experiments, we chose the two first exam-
ples in Table 3 and we apply the three techniques to these two examples. Table 4
shows the results where we fixed the simulation length at 1,000 actions. The
two last columns of this table show the two main differences between these

Runtime Enforcement with Reordering, Healing, and Suppression 61

Table 3. Experimental results

Example PA |Simul.| kh. kv. |B| |H| |W| Positive?

1,000

4 6

2.07 1.04 0 85.82%
5,000 2.37 1.66 0 78.57%

Alternating 10,000 2.51 2.07 0 74.67%
in/out 50,000 2.48 1.96 0 75.29%

100,000 2.52 1.99 0 75.20%
500,000 2.52 2.08 0 75.09%

1,000

6 9

4.05 0.85 0 90.75%
Belts 5,000 5.34 1.55 0 76.93%

dispatcher 10,000 5.65 1.73 0 73.84%
50,000 5.85 1.78 0 71.88%
100,000 5.82 1.76 0 72.36%

1,000

8 6

1.56 0.03 0 95.06%
No 3 req. 5,000 1.88 0.16 0 91.74%

without store 10,000 1.95 0.13 0 91.67%
50,000 2.01 0.21 0 90.45%
100,000 1.96 0.18 0 91.20%

1,000

4 9

2.12 0.92 25.29 94.28%
No untimely 5,000 2.43 1.94 128.12 87.13%

reboot 10,000 2.40 1.36 257.40 91.51%
50,000 2.55 2.24 1281.91 84.91%
100,000 2.47 1.84 2562.46 87.77%

approaches, namely the number of actions appearing as output and the enforce-
ment trend. In our approach, we do not discard any action as input (we do not
reach 1,000 because there are a few actions remaining in the buffer when we stop
the simulation) and use all of them while trying to maintain a positive verdict
for the property automaton. In contrast, [9] favors the preservation of a correct
verdict by discarding valid input actions, those that do arrive in the right order
and make the verdict become false (about 10% of input actions in Table 4).

In a second set of experiments carried out on the example presented in Sect. 4
(belts dispatcher), we compare our two approaches (reordering only vs. reorder-
ing + healing) using execution runs of different lengths (500, 1,000, and then
every 1,000 up to 10,000). For each length, we repeated the simulation 100
times to have accurate results (one simulation instance means that we use the
same trace as input for both approaches). As a result, we computed for how
many actions as input, the enforcement trend was currently or possibly positive.
Figure 3 shows the resulting curves for these two techniques with percentage of
truth value over execution run (vertical axis) and execution run length (horizon-
tal axis). We can see that reordering combined with healing techniques obtain

62 Y. Falcone and G. Salaün

Table 4. Comparison with [9]

Approach PA |Simul.| kh. kv. |Out. act.| Positive?

Reordering
1,000 4 6

996.1 77.06%
Reordering + healing 998.3 85.82%
Pinisetty et al. [9] 910.4 100%

Reordering
1,000 6 9

994.2 80.12%
Reordering + healing 996.7 90.75%
Pinisetty et al. [9] 902.8 100%

the best results by maintaining a positive enforcement trend for a larger num-
ber of inputs (about 70–90%), whereas results for reordering only provide lower
positive results (about 60–80%).

Fig. 3. Reordering techniques only vs. Reordering + Healing Techniques (percentage
of truth value on the vertical axis and execution run length on the horizontal axis)

6 Related Work

Several enforcement techniques have been proposed in the literature considering
different kinds of inputs, architectures, or models. In this section, we compare our
approach with closest related work. The interested reader can find comprehensive
overviews of the related techniques in [11,15].

Runtime Enforcement with Reordering, Healing, and Suppression 63

The approach in [5] monitors distributed systems with respect to LTL prop-
erties using an alternative to the orchestration and migration approaches. Their
solution relies on a choreography-based architecture where monitors are organ-
ised as a tree across the distributed system. The choreography-based decen-
tralised monitoring is formalised and shows how to synthesise a network from
an LTL formula, resulting in an algorithm working on top of an LTL network.

Regarding runtime enforcement of untimed properties, several models and
frameworks have been proposed. We can mention security automata [26]; which
can stop the underlying system upon property violation, edit-automata [23] and
generic enforcement monitors [12] which can insert or suppress actions. Regard-
ing runtime enforcement of timed properties, [13] provides a recent overview of
related work. As an example, [9] considers runtime enforcement for timed spec-
ifications modelled as timed automata. These enforcement mechanisms work by
delaying actions to match timing constraints, and suppressing actions when no
delaying is appropriate, thus possibly allowing for longer executions. Enforce-
ment mechanisms are formalised at several levels of abstraction (enforcement
function, monitor, and algorithms), which facilitates the design and implemen-
tation of these mechanisms.

The approach in [2] verifies distributed systems at runtime where components
communicate with monitors over unreliable channels, meaning that messages
can be delayed, reordered, or even lost. The authors propose an extension of
the real-time logic MTL, which provides a new three-valued semantics that is
well suited for runtime verification as it accounts for partial knowledge about
a system’s behaviour. They also present online algorithms that reason soundly
and completely about streams where actions can occur out of order.

As proposed in some existing works, e.g. [2], we tackle the reordering problem
by storing and delaying messages when necessary. In addition, we complement
reordering with healing that injects some new actions to ensure progress of the
application while satisfying the property being analysed. Removing actions is
also supported in our solution as it is in some other work, e.g., [9]. The novelty
of our work resides in the combination of these three techniques (reordering,
healing, suppression).

7 Concluding Remarks

We have presented new enforcement techniques, which accept as input a sequence
of actions and a property automaton, and generate as output a sequence of
actions that satisfies the given property. These techniques rely on three mech-
anisms that reorder input actions when necessary, inject new actions to the
application for ensuring property progress (healing), and remove actions if they
are not required or if they risk to congest the buffering system. The enforcement
techniques were implemented and validated on several examples.

A first perspective of this work is to support distributed enforcement. This
entails considering actions from several components and several input execution
traces. For this, we can take inspiration from the distributed and decentralized

64 Y. Falcone and G. Salaün

runtime verification approaches [3,7,15]. Distributed mechanisms would require
to rely on synchronization mechanisms, similar to those used in choreography-
based development [16,17], to take consistent distributed decisions. Another per-
spective is to compute automatically system-specific or domain-specific values
for the parameters kheal and kverd by relying on the trace history and by using
machine learning techniques. Finally, we plan to apply our enforcement approach
to concrete application areas. One idea in that direction is to enforce proper-
ties during the execution of BPMN processes [19], particularly for optimization
purposes [6,14].

Acknowledgements. The authors would like to thank the anonymous reviewers for
their useful comments. This work was supported by the Région Auvergne-Rhône-Alpes
within the “Pack Ambition Recherche” programme, the H2020-ECSEL-2018-IA call
– Grant Agreement number 826276 (CPS4EU), the French ANR project ANR-20-
CE39-0009 (SEVERITAS), and the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01)
funded by the French program Investissement d’avenir.

References

1. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

2. Basin, D.A., Klaedtke, F., Zalinescu, E.: Runtime verification over out-of-order
streams. ACM Trans. Comput. Log. 21(1), 5:1–5:43 (2020)

3. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst. Des.
48(1–2), 46–93 (2016)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

5. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods Syst. Des. 49(1–2), 109–158 (2016)

6. Durán, F., Rocha, C., Salaün, G.: Analysis of the runtime resource provisioning
of BPMN processes using Maude. In: Escobar, S., Mart́ı-Oliet, N. (eds.) WRLA
2020. LNCS, vol. 12328, pp. 38–56. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-63595-4 3

7. El-Hokayem, A., Falcone, Y.: On the monitoring of decentralized specifications:
semantics, properties, analysis, and simulation. ACM Trans. Softw. Eng. Methodol.
29(1), 1:1–1:57 (2020)

8. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at run-
time? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382 (2012)

9. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular
timed properties by suppressing and delaying events. Sci. Comput. Program. 123,
2–41 (2016)

10. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021)

11. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reac-
tion. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75632-5 4

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-030-63595-4_3
https://doi.org/10.1007/978-3-030-63595-4_3
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4

Runtime Enforcement with Reordering, Healing, and Suppression 65

12. Falcone, Y., Mounier, L., Fernandez, J.-C., Richier, J.-L.: Runtime enforcement
monitors: composition, synthesis, and enforcement abilities. Formal Methods Syst.
Des. 38(3), 223–262 (2011)

13. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 48–69. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 4

14. Falcone, Y., Salaün, G., Zuo, A.: Semi-automated modelling of optimized BPMN
processes. In: Proceedings of SCC 2021. IEEE (2021)

15. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised
and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime
Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75632-5 6

16. Güdemann, M., Poizat, P., Salaün, G., Ye, L.: VerChor: a framework for the
design and verification of choreographies. IEEE Trans. Serv. Comput. 9(4), 647–
660 (2016)

17. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, pp. 238–253. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33386-6 20

18. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.)
VSTTE 2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69149-5 40

19. ISO/IEC. International Standard 19510, Information technology - Business Process
Model and Notation (2013)

20. Khoury, R., Hallé, S.: Runtime enforcement with partial control. In: Garcia-Alfaro,
J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 102–116.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30303-1 7

21. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime moni-
tors? A survey. Comput. Sci. Rev. 6(1), 27–45 (2012)

22. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Methods Program. 78(5), 293–303 (2009)

23. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1), 2–16 (2005)

24. Ligatti, J., Reddy, S.: A theory of runtime enforcement, with results. In: Gritzalis,
D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 87–
100. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15497-3 6

25. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des. 54(3), 279–335
(2019)

26. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

https://doi.org/10.1007/978-3-030-32079-9_4
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-642-33386-6_20
https://doi.org/10.1007/978-3-642-33386-6_20
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-319-30303-1_7
https://doi.org/10.1007/978-3-642-15497-3_6

Monitoring First-Order Interval Logic

Klaus Havelund1(B), Moran Omer2, and Doron Peled2

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel

Abstract. Runtime verification is used for monitoring the execution of systems,
e.g. checking sequences of reported events against formal specifications. Typi-
cally the specification refers to the individual monitored events. In this work we
perceive the events as defining intervals, each defined by a begin and a subse-
quent end event. Allen’s logic allows assertions about the relationship between
such named intervals. We suggest a formalism that extends Allen’s logic into
a first-order logic that allows quantification over intervals; in addition, intervals
can carry data. We provide a monitoring algorithm and describe an implementa-
tion and experiments performed with it. We furthermore describe an alternative
method for monitoring properties in this logic, by translating them into first-order
past-time temporal logic, monitored with the tool DejaVu.

1 Introduction

Runtime verification allows monitoring of system executions, represented as execution
traces, against a specification, either online as traces are generated, or offline after their
generation. The monitored trace consists typically of events that can also carry data. The
specification is often given using a temporal logic or as a state machine. The runtime
algorithm checks for compatibility with the execution in an incremental way, where
some summary of the reported execution prefix is updated upon the arrival of each
newly occurring event. This practice is aimed at both providing an early verdict, and
at managing the incremental computational effort between consecutive events. Keeping
pace with the speed of the reported events is a challenge to online monitoring.

While runtime verification, as described above, is concerned with monitoring spec-
ifications that refer to single observed events, we study here monitoring specifications
that refer to observed intervals. We consider an interval as being generated from a pair
of observed begin and end events, with appropriate parameters. The focus on inter-
vals is motivated by our experience [14], that engineers, as a way of comprehending
complexity, tend to perceive large traces as being partitioned into overlapping sections
(intervals), each concerned with a particular task. Temporal logic does not capture this
sectional view well, since the formulas get overly complex.

The research performed by the first author was carried out at Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National Aeronautics and Space Adminis-
tration. The research performed by the second and third authors was partially funded by Israeli
Science Foundation grant 1464/18: “Efficient Runtime Verification for Systems with Lots of Data
and its Applications”.

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 66–83, 2021.
https://doi.org/10.1007/978-3-030-92124-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_4

Monitoring First-Order Interval Logic 67

Allen’s (temporal) logic [1], also referred to as Allen’s interval algebra, is a popular
formalism for reasoning about the relation between intervals that occur on a timeline. It
is often used for planning in AI. Allen’s logic deals with a finite set of named intervals,
referring directly to the interval names, e.g., A < B means that the interval A must end
before the interval B begins. This can be quite restrictive for describing the behavior
of systems, where many intervals with the same characteristics can occur, and where
distinguishing specific intervals directly by name in the specification is inconvenient or
even impossible.

We look at the more general problem of monitoring properties where we can quan-
tify over intervals, as e.g., in the formula ∃A∃B (A < B), stating that there exist (at least)
two intervals A and B such that A ends before B begins. We also consider the problem
where intervals may contain data. Consequently, the logic allows expressing cases that
involve relations between intervals that are embedded in the trace with many, some-
times irrelevant, intervals in between. The runtime verification allows “pattern match-
ing” against these cases in a monitored trace.

We present a matching runtime verification algorithm. The algorithm decides
whether any prefix of the execution (the currently observed trace) satisfies the speci-
fication. The runtime verification is based on updating a summary of the observed pre-
fixes upon the arrival of each new interval begin and end event. The trick we employ is
to maintain several sets of interval identifiers, and tuples of such, corresponding to the
different Allen operators. These variables record those intervals and relations that have
begun and not completed yet, as well as those intervals and relations that have been
completed. For example, a begin event for one interval A followed by a begin event
for another interval B, is stored (in some variable containing a set of such pairs) as a
potential for an A interval, as well as (in a different variable) a potential for an A inter-
val overlapping with a B interval, where A starts, then B starts, then A ends and then B
ends. An occurrence of an end event for A and then an end event for B will complete the
picture to decide that A overlapped with B, as well as, of course, having seen completed
A and B intervals.

Our logic and runtime verification algorithm is implemented in the tool MonAmi1.
The implementation encodes interval identifiers and data as bit vectors, which are then
represented as BDDs. The bit vectors are obtained by a simple enumeration scheme.
Such BDDs are useful for compacting interval identifiers and data when storing them
in sets, and also makes negation (set complement) non-problematic. We provide an
alternative monitoring algorithm by translating the specification into past first-order
temporal logic and using the tool DejaVu. We experiment and compare the two methods.

Related Work. The use of BDDs in runtime verification has been explored in [12] for
the first-order past time temporal logic DejaVu, which is an event logic, in contrast to the
interval logic explored here. However, the enumeration scheme for creating bit vectors
from data and then converting them to BDDs is similar. Numerous event logics have
been developed during the past two decades, including [3–5,9,10,12,15,18,23,29], to
mention just a few.

1 Monitoring Allen logic modal intervals.

68 K. Havelund et al.

Monitoring of Allen logic is explored in [24]. In that logic, however, intervals are
referred to by explicit names, such as A < B. This means that one can only specify
static patterns, one instance of a particular pattern: that there is one A and one B, such
that A < B. This is in contrast to MonAmi, where we can quantify over such intervals.
Specifically this means that we can specify repeated patterns in the trace e.g., that every
interval A with some specific data d is always followed by some other interval B with
some data d′.

The most closely related monitoring system is nfer [14,21,22], also influenced by
Allen’s logic. Its specification formalism consists of Prolog-like interval-generating
rules (see, e.g., Fig. 1). The objective of nfer is to generate intervals from a trace of
events, as an abstraction of the trace, to e.g. support trace comprehension by humans.
Generated intervals can, for example, be visualized. In contrast, the objective of Mon-
Ami is to verify intervals, provided as input. nfer only allows a limited form of negation,
referred to as exclusive rules in [21], making property specification harder, and it is
unknown what the limitations are w.r.t. expressiveness. Our logic allows free negation,
and consequently implication. nfer supports Boolean conditions over data as well as
computations on data, resulting in new data being stored in the generated intervals. In
order to reduce computational complexity, nfer operates in its default mode with a min-
imality principle, where the before-operator (MonAmi’s < operator) only matches the
smallest intervals, whereasMonAmimatches all candidate intervals. Section 6 compares
MonAmi with nfer further.

A different kind of extension to Allen’s logic, where the various relations between
operators are promoted into modalities was suggested by Halpern and Shoham [11].

2 Preliminaries

To motivate the study of interval-based specification, we first present the original Allen
Temporal Logic (ATL).

Syntax. In its basic form, ATL has the following syntax:

ϕ ::= (ϕ∧ϕ) |¬ϕ |A < B |AmB |AoB |AsB |Ad B |A f B |A = B

where A and B are intervals from a finite set of intervals I, m stands for meets, o for
overlaps, s for starts, d for during, and f for finishes. The original definition of the logic
also includes the symmetric versions of these operators, e.g., an operator for AmiB for
BmA, etc., which does not add to the expressive power.

Semantics. A model M = 〈E,≺,�〉 for Allen’s logic, consists of a finite set of events
E = {begin(A) | A ∈ I}∪{end(A) | A ∈ I}, a linear order≺ ⊆ E ×E, and an equivalence
relation � ⊆ E ×E, where = (≺ ∪ �)∗ (the transitive closure of the union of the two
relations), such that:

– For each A ∈ I, begin(A) ≺ end(A).
– � is a partition of the set E into equivalence classes.
– (≺ ∩ �) = /0.
– For every a,b ∈ E, either a b or b a.

Monitoring First-Order Interval Logic 69

Thus, M is a linear order between equivalence classes. We call the relation ≺ before,
and � coincides. The semantics is given as follows.

– M |= (ϕ∧ψ) if M |= ϕ and M |= ψ.
– M |= ¬ϕ if M �|= ϕ.
– M |= A < B if end(A) ≺ begin(B).
– M |= AmB if end(A) � begin(B).
– M |= AoB if begin(A) ≺ begin(B) ≺ end(A) ≺ end(B).
– M |= AsB if begin(A) � begin(B) and end(A) ≺ end(B).
– M |= Ad B if begin(B) ≺ begin(A) and end(A) ≺ end(B).
– M |= A f B if begin(B) ≺ begin(A) and end(A) � end(B).
– M |= A = B if begin(A) � begin(B) and end(A) � end(B)

As usual, we can define additional operators, in particular, (ϕ ∨ ψ) = ¬(¬ϕ ∧¬ψ) and
(ϕ → ψ) = (¬ϕ∨ψ). As an example, consider then the ATL formula:

((B1 d L∧B2 d L)∧B1 < B2) (1)

It asserts about three intervals B1, B2 and L, that B1 appears before B2 and both are
embedded within L. Monitoring Allen’s logic is described in [24].

3 A First-Order Interval Logic

We will explore now the monitoring of a first-order logic variant of Allen’s temporal
logic, which we term FoATL. While the original logic refers to a fixed set of intervals,
our variant allows quantification over the intervals that occur in the trace, which can
optionally carry data. The logic also allows to relate different intervals with respect
to their data values. The formalism supports monitoring of behaviors consisting of a
large, perhaps unbounded, number of intervals, where patterns of behavior that con-
sist of intervals are related in ways expressed using the specification. For example, a
relationship such as in formula (1) can refer to any embedding within a sequence of
intervals, matching this pattern, rather than referring to three particular intervals that
appear in the input.

The Setting.We monitor a sequence of events of the form begin(z) and end(z), where z
is a sequence of parameters. The first parameter is an interval enumeration, also referred
to as interval id, used to identify matching begin and end events; the rest of the param-
eters, which can be of different types, is optional. An additional parameter can be e.g.,
a label representing the kind of interval, where a label Boot represents that it is a boot
interval. For example, consider the sequence of events:

begin(1,Load),begin(2,Boot),end(2),begin(3,Boot),end(3),end(1)

These events form three intervals corresponding to the intervals L, B1, and B2 appearing
in ATL formula (1). Our logic alters Allen’s logic by adding quantification over the
intervals. Hence, instead of fixed intervals, which can be referred to in a formula by their
explicit name as constants, we allow interval variables A, B, . . . that can be instantiated

70 K. Havelund et al.

to any of the intervals that appear in the model (the observed trace). Moreover, the
intervals can carry data, and we write in the logic A(d) to denote that the data of the
interval assigned to the variable A has the constant value d. We can also verify whether
two intervals A and B carry the same value using same(A,B).

We make a few simplifying assumptions in order to concentrate on the main chal-
lenges of runtime verification of a first-order interval logic. However, the presented
approach is extensible and the restrictions can be easily removed:

– We assume a matching unique integer value per interval, an enumeration, though it
does not have to appear in consecutive order, is given for each related pair of events,
e.g., begin(5) and end(5).

– Events can contain additional parameters besides the enumeration. For simplicity,
we assume that there is at most a single data value parameter, e.g., an integer or
a string, and that it appears within the interval starting event, e.g., begin(5,abc).
In a more general setting, different numbers of parameters can appear for different
intervals, and the parameters may appear only at the beginning, at the end or in both
events defining the interval.

– The monitored events appear one at a time. As there is no co-incidence of events,
the relations are restricted to A < B (before), AoB (overlaps) and AiB (for includes,
which is the symmetric operator of Allen’s d during). Hence, there is a total order
between the events. It reflects the implementation where observed events occur one
at a time. It furthermore simplifies the presentation and incurs no real restriction on
the theory involved.

– Quantification is applied to the (completed) intervals that have occurred. Thus, as
in Allen’s logic, the specification does not refer to intervals that were opened with
begin(A) and were not closed yet with end(A). The logic can of course be extended
to deal with unfinished intervals.

– We assume that as part of the monitoring, the restrictions on well formedness of the
enumerations are checked. Multiple begin(A) or end(A) events cannot occur for the
same interval A, and an end(A) event cannot precede a begin(A) event.

– We allow referring to the data elements in intervals, and also compare them.We offer
in the syntax (and our implementation) the predicate same that relates intervals with
the same data value. This can be extended to other relations that compare values.

Syntax of FoATL. The syntax is as follows.

ϕ ::= (ϕ∧ϕ) |¬ϕ |A(d) |(A < B) |(AoB) |(AiB) |∃Aϕ |same(A,B)

where A and B are variables (representing intervals) from a set of interval variables I,
and d is a value from some fixed domain D of data values. Parentheses can be removed
when clear from the context. A specification does not include free variables. Consider
for example the following formula:

∃A∃B∃C (A(Load)∧B(Boot)∧C(Boot)∧AiB∧AiC ∧B <C).

This specification describes the existence of three intervals with the same relations
between them as the intervals L, B1, and B2 appearing in the ATL formula (1).

Monitoring First-Order Interval Logic 71

Semantics of FoATL. Let I be the finite set of interval variables over the enumerations
in the observed execution prefix. We assume the following semantic components:

– σ = e(1)e(2) . . .e(n) is a sequence of events of the form begin(i) or begin(i,d), and
end(i) as described above.

– ρ :I �→U is a mapping from the interval variables I to a domainU, which can be,
e.g., the natural numbers, representing interval enumerations. We denote by ρ[A �→ j]
the mapping that is identical to ρ but returns the value j for the variable A.

– data(j) is the data value associated with the interval whose enumeration is j.
– start(j) is the number (position in the trace) of the event that starts the interval with
enumeration j, i.e., the event begin(j) (with an optional additional data value d).

– finish(j) is the number (position in the trace) of the event that ends the interval with
enumeration j, i.e., the event end(j).

We can now define the semantics of the logic inductively on the structure of the formula.

– (ρ,σ) |= (ϕ∧ψ) if (ρ,σ) |= ϕ and (ρ,σ) |= ψ.
– (ρ,σ) |= ¬ϕ if (ρ,σ) �|= ϕ.
– (ρ,σ) |= A(d) if ρ(A) = j and data(j) = d.
– (ρ,σ) |= (A < B) if ρ(A) = j and ρ(B) = k and finish(j)< start(k).
– (ρ,σ) |= (AoB) if ρ(A) = j and ρ(B) = k and start(j) < start(k) < finish(j) <

finish(k).
– (ρ,σ) |= (AiB) if ρ(A) = j and ρ(B) = k and start(j) < start(k) < finish(k) <

finish(j).
– (ρ,σ) |= ∃Aϕ if there exist events begin(j) (or begin(j,d) for some d) and end(j) in

σ such that ρ′ = ρ[A �→ j] and (ρ′,σ) |= ϕ.
– (ρ,σ) |= same(A,B) if ρ(A) = j and ρ(B) = k and data(j) = data(k).

Example Properties

1. ¬∃A∃B(A < B∧ same(A,B)).
Disjoint intervals cannot have the same data value.

2. ¬∃A∃B∃C ((AiB∧BiC)).
No double nesting of intervals.

3. ∀A∀B((A < B∧ (¬∃C(A <C ∧C < B))) → ¬(A(2)∧B(2))).
No two adjacent intervals (one completely after the other without any interval in
between) can have both the same value 2.

4. ∀A∀B∀C (((AoB)∧ (BoC)) → ¬(AoC)).
At no point there is an overlapping of three intervals.

Interpretation. One can interpret the semantics of a formula over finite or infinite
sequences. As the logic is tailored with an application of runtime verification in mind,
one typical use is to require that for a given trace, all prefixes will satisfy a given
FoATL specification. This is similar to the common use of temporal specifications of the
form �ϕ, where ϕ is restricted to past modalities, i.e., to safety properties [2], typically
seen in runtime verification, see, e.g., [12,13]. Nevertheless, other uses are possible as

72 K. Havelund et al.

well. Generally, our implementation returns a truth value for the inspected property for
each prefix of the monitored trace. Note that satisfaction of a property over an infinite
trace does not entail that it is satisfied by all finite prefixes, e.g., for ϕ = ∀A∃B(A < B),
which asserts that there is no rightmost interval. Conversely, ¬ϕ is satisfied by every
finite trace that includes at least one interval, but will not hold for a trace with infinitely
many linearly ordered intervals.

4 The Monitoring Algorithm

Calculating the Relations Between Intervals. Recall that in our setting, we are
restricted to three possible relations between intervals: <, o, and i. Let X and Y be dif-
ferent intervals, defined by begin and end events, that appeared in the current observed
monitored prefix. We distinguish the following three sets of pairs (X ,Y) of enumera-
tions of intervals.

– X < Y (before). Events appear in the order begin(X),end(X),begin(Y),end(Y).
– X oY (overlaps). Events appear in the order begin(X),begin(Y),end(X),end(Y).
– X iY (includes). Events appear in the order begin(X),begin(Y),end(Y),end(X).

We maintain for each prefix of an execution three sets of pairs of enumerations, XXYY
for X <Y , XY XY for X oY and XYY X for X iY . Further sets of pairs (X ,Y) correspond
to possible prefixes of the four events (begin(X),end(X),begin(Y), and end(Y)) in the
above three cases, namely XY , XYY , XY X and XXY . The names of the sets reflect the
order of appearance of interval events. For example, XXY represents pairs of intervals
where some events of the type begin(X),end(X),begin(Y) have already appeared in this
order, but not yet end(Y). When end(Y) subsequently appears, this pair of intervals is
removed from XXY and is added to XXYY .

We further define the set X of enumerations for events begin(X) where an end(X)
has not yet appeared and XX as the set of enumerations, where both begin(X) and
end(X) have occurred; this latter is the set of completed intervals. Together, this defines
two sets of enumerations, and seven sets of pairs. Note that the names of these variables
reflect patterns and are not to be taken literally. For example, the set denoted by XX
will contain any interval Z where the begin and end events have been observed. It does
not only contain intervals specifically named X .

We define these sets inductively on the length i of the trace: for i = 0, all the sets are
empty; then the update of these sets after the ith event is defined according to Table 1.
The rows correspond to the sets that are updated, and the columns to the ith event.
The entries in the table detail how the set is updated after the ith event based on the
values of the prior values of the sets. For example, for the set X (containing the open
intervals), if the ith event is a begin(Z) (or begin(Z,d)), then Xi = Xi−1∪{Z}, and if the
ith event is an end(Z) (or end(Z,d)), then Xi = Xi−1 \ {Z}. Our algorithm follows the
updates in Table 1 upon arrival of any new event. We denote by U the universal set of
enumerations. The empty set is denoted by /0. We denote by S the complement of S, i.e.,
the set U \ S. We will describe later how to implement these sets and operations using
BDDs. Note that even through U, the set of enumerations, can be infinite, at any point
in time we have observed only a finite number of enumerations. Hence, both the current

Monitoring First-Order Interval Logic 73

set of observed enumerations and its complement can be represented in a finitary way,
as will be described later.

The following rules impose validity checks on the order of the begin(Z,d) (d, the
data value, is optional) and end(Z,d) events, causing the system to halt when vio-
lated. Specifically, for any interval Z, we allow only one begin(Z,d) respectively one
end(Z,d) to occur, and begin(Z,d)must appear before end(Z,d). That is, on observing:

– begin(Z,d): If {Z}∩ (X ∪XX) �= /0 then output “multiple begin”.
– end(Z,d): If {Z}∩XX �= /0 then output “multiple end”.

If {Z}∩X = /0 then output “intervals ends before it begins”.

Table 1. The update table.

Set\Event begin(Z,d) end(Z,d)

X (opened) X ∪{Z} X ∩{Z}
XX (closed) XX ∪{Z}
XY XY ∪ ((X ×{Z})) XY ∩ (U×{Z})∩ ({Z}×U)
XYY (XYY ∩XYY X)∪ (XY ∩ (U×{Z}))
XYY X (X iY , includes) XYY X ∪ (XYY ∩ ({Z}×U))
XY X (XY X ∩XY XY)∪ (XY ∩ ({Z}×U)
XY XY (X oY , overlaps) XY XY ∪ (XY X ∩ (U×{Z}))
XXY XXY ∪ (XX ×{Z}) XXY ∩ (U×{Z})
XXYY (X <Y , before) XXYY ∪ (XXY ∩ (U×{Z}))
XD (X has data d) XD∪{(Z,d)}

The order of updating the sets is important: a set that is a prefix of another set, e.g.,
XY is a prefix set of XY X , hence it is updated after the latter. Thus, upon arrival of a
new event, the value of XY X is updated based on the old value of XY , before updating
XY .

In order to handle intervals with data, we add another set, XD, of pairs of the form
(Z,d), where Z is an interval enumeration and d is a data element. Then, upon the arrival
of an event of the form end(Z,d), we update XD := XD ∪{(Z,d)}. This construction
can be easily extended to capture a different number of parameters n by keeping sets of
n+1 tuples.

Using BDDs to Represent Relations. Our algorithm is based on representing relations
between data elements using Ordered Binary Decision Diagrams (OBDD, although we
write BDD) [6]. A BDD is a compact representation for a Boolean function (arguments
as well as result are Booleans) as a directed acyclic graph (DAG).

A BDD is obtained from a binary tree that represents a Boolean formula with some
Boolean variables x1 . . .xk by gluing together isomorphic subtrees. Each non-leaf node
is labeled with one of the Boolean variables. A non-leaf node xi is the source of two

74 K. Havelund et al.

arrows leading to other nodes. A dotted arrow represents that xi has the Boolean value
false (i.e., 0), while a thick arrow represents that it has the value true (i.e., 1). The vari-
ables (nodes) in the DAG occur in the same order along all paths from the root (hence
the letter ‘O’ in OBDD). Nodes may be absent along some paths, when the result of the
Boolean function does not depend on the value of the corresponding Boolean variable.
Each path leads to a leaf node that is marked by either true or false, corresponding to
the Boolean value returned by the function for the Boolean values on the path.

A Boolean function, and consequently a BDD, can represent a set of integer values
as follows. Each integer value is, in turn, represented using a bit vector: a vector of bits
x1 . . .xk represents the integer value x1 ×1+ x2 ×2+ . . .xk ×2k, where the bit value of
xi is 1 for true and 0 for false and where x1 is the least significant bit, and xk is the
most significant. For example, the integer 6 can be represented as the bit vector 110
(here, the most significant bit appears to the left) using the bits x1 = 0, x2 = 1 and
x3 = 1. To represent a set of integers, the BDD returns true for any combination of bits
that represents and integer in the set. For example, to represent the set {4,6}, we first
convert 4 and 6 into the bit vectors 100 and 110, respectively. The Boolean function over
x1,x2,x3 is (¬x1∧x3), which returns true exactly for these two bit vector combinations.

This representation can be extended to relations, or, equivalently, a set of tuples over
integers. Here the Boolean variables are partitioned into n bitstrings x1 = x11, . . . ,x

1
k1
, . . .,

xn = xn
1, . . . ,x

n
kn
, each representing an integer number, forming the bit string2:

x11, . . . ,x
1
k1 , . . . ,x

n
1, . . . ,x

n
kn
.

Using BDDs Over Enumerations of Values. Representing data values such as strings
and integers, which appear within the observed trace of events, may not lead to a good
compact representation. Instead, based on the limited ability to compare data values
allowed by FoATL, we represent in the BDD enumerations (natural numbers) for these
values, rather than the values themselves. When a value (associated with a variable in
the specification) appears for the first time in an observed event, we assign to it a new
enumeration. Values can be assigned consecutive enumeration values3. We use a hash
table to point from the value to its enumeration so that in subsequent appearances of
this value the same enumeration will be used. For example, if the runtime verifier sees
the input events begin(1,a), begin(2,b), begin(3,c), it may encode the data a, b, and
c as the bit vectors 000, 001, and 010, respectively. The approach results in several
advantages:

1. It allows a shorter representation of very big values in the BDDs; the values are
compacted into a smaller number of bits.

2. It contributes to the compactness of the BDDs because enumerations of values that
are not far apart often share large bit patterns.

3. The monitoring algorithm is simple; the Boolean operators over summary elements:
conjunction, disjunction, and negation, are replaced by the same operators over
BDDs.

2 In the implementation the same number of bits are used for all variables: k1 = k2 = . . .= kn.
3 A refined algorithm can reuse enumerations that were used for values that can no longer affect
the verdict of the RV process, see [12].

Monitoring First-Order Interval Logic 75

4. Given an efficient BDD package, the implementation can be very efficient. One can
also migrate between BDD packages.

5. It allows full use of negation.

For implementing negation, we keep at least one enumeration value that represents
all the enumerations that did not occur yet in begin and end events. For that matter, we
can reserve the bitstring 11 . . .11. When the number of values represented by the BDDs
grows so that the BDD bits are insufficient, we dynamically add one more bit to the
representation, doubling the available number of enumerations.

BDD Operators. We list now the operators on BDDs representing sets of value tuples,
used in evaluating the verdict of the specification on the currently inspected prefix. A
value tuple represents an interval and its data values, each being elements of the tuple.
Recall, however, that we represent data by their enumerations (natural numbers), so
we need to represent sets of tuples of enumerations. Recall furthermore that we can
represent a tuple of data enumerations as a bit vector: x11, . . . ,x

1
k1
, . . . ,xn

1, . . . ,x
n
kn
, being

the concatenation of the bit vectors for the individual enumerations. A set of such is
naturally represented by the BDD that returns true (1) for all the bit-vectors in the set.
Useful operators on such BDDs are:

conj(B ,C) The conjunction (intersection) of the BDDs B and C .
comp(B) The complement of the BDD B .
project(B ,X) Projects out the Boolean variables x1 . . .xn that correspond to the param-

eter X of B , obtaining ∃x1 . . .∃xnB.
restrict(z,B) Restricts a BDD B of the form XD relating intervals with their data i.e.,

with bits x1 . . .xnd1 . . .dm to those sequences of bits where x1 . . .xn encodes the inter-
val and d1 . . .dm encodes the data value z.

rename(B ,X ← X ′,Y ← Y ′, . . .) Replaces the bits x1x2 . . .xn with x′
1 . . .x

′
n, the bits

y1 . . .yn by y′
1 . . .y

′
n, etc. in the BDD B .

Other operators, such as, e.g., disjunction (union, or database co-join), can be
defined in terms of the operators above in the standard way.

Completing the Algorithm. The algorithm for the complete logic starts with setting
all the sets in Table 1 to BDDs representing the empty sets of elements/pairs, according
to their types. Upon the arrival of each new event of the type begin(z), (with or without
an additional data parameter d) or end(z), two steps are executed.

Step 1: The sets of values/pairs are updated according to Table 1.

Step 2: BDDs of the form Bϕ for the subformulas ϕ of the monitored property are
updated recursively as follows:

– B(ϕ∧ψ) = conj(Bϕ,Bψ).
– B¬ϕ = comp(Bϕ).
– BA(d) = project(restrict(d,rename(XD,X ← A)),D).
– BA<B = rename(XXYY,X ← A,Y ← B).

76 K. Havelund et al.

– BAoB = rename(XY XY,X ← A,Y ← B).
– BAiB = rename(XYY X ,X ← A,Y ← B).
– B∃Aϕ = project(Bϕ,A).
– Bsame(A,B) = project(conj(rename(XD,X ← A),rename(XD,X ← B)),D).

5 Alternative Algorithm Translating to Past First-Order LTL

Given a representation of intervals as pairs of events of the form begin(Z,d) and end(Z),
we can perform monitoring by translating the specification into past first-order LTL,
referred to as QTL, as used by the tool DejaVu [12,20].

Syntax. The formulas of the core QTL logic are defined by the following grammar,
where a is a constant representing a value in domain(p). For simplicity of the presenta-
tion, we define here the logic with unary predicates, but this is not due to any principle
limitation, and, in fact, DejaVu supports predicates with multiple arguments, including
zero arguments, which correspond to propositions.

ϕ ::= true | false | p(a) | p(x) | (ϕ∨ϕ) | (ϕ∧ϕ) |¬ϕ | (ϕ S ϕ) | �ϕ | ∃x ϕ | ∀x ϕ

The formulas have the following informal meaning. The formula p(a) is true when the
current (last observed) event is p(a). The formula p(x), for some variable x ∈ V , is true
if x is bound to a constant a such that p(a) appears as the current event. Variables get
bound to constants with the quantifiers ∃ and ∀. The formula (ϕ1 S ϕ2) (reads ϕ1 since
ϕ2) means that ϕ2 occurred in the past (including now) and since then (beyond that
state) ϕ1 has been true. This is the past dual of the common future time until modality.
The property � ϕ means that ϕ is true in the previous step. This is the past dual of the
common future time next modality. The formula ∃x ϕ is true if there exists a constant
a such that ϕ is true with x bound to a. The formula ∀x ϕ is true if for all constants
a, ϕ is true with x bound to a. We can also define the following additional temporal
operators: P ϕ = (trueS ϕ) (“previously”), and Hϕ = ¬P¬ϕ (“always in the past” or
“historically”).

Semantics. Let σ be a sequence of events and i a natural number. Let γ be an assignment
to the variables that appear free in a formula ϕ. Then (γ,σ, i) |=ϕ if ϕ holds for the prefix
s1s2 . . .si of the trace σ with the assignment γ. This is a standard definition, agreeing,
e.g., with [5]. Note that by using past operators, the semantics is not affected by states
s j for j > i. Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ.
We denote by γ|free(ϕ) the restriction (projection) of an assignment γ to the free variables
appearing in ϕ. Let ε be an empty assignment. In any of the following cases, (γ,σ, i) |=ϕ
is defined when γ is an assignment over free(ϕ), and i ≥ 1.

– (ε,σ, i) |= true.
– (ε,σ, i) |= p(a) if p(a) ∈ σ[i].
– ([v �→ a],σ, i) |= p(v) if p(a) ∈ σ[i].
– (γ,σ, i) |= (ϕ∧ψ) if (γ|free(ϕ),σ, i) |= ϕ and (γ|free(ψ),σ, i) |= ψ.
– (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.
– (γ,σ, i) |= (ϕ S ψ) if for some 1 ≤ j ≤ i, (γ|free(ψ),σ, j) |= ψ and for all j < k ≤ i,
(γ|free(ϕ),σ,k) |= ϕ.

Monitoring First-Order Interval Logic 77

– (γ,σ, i) |= �ϕ if i > 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |= ∃x ϕ if there exists a ∈ domain(x) such that (γ [x �→ a],σ, i) |= ϕ.

The translation from FoATL to QTL is as follows:

– T (ϕ∧ψ) = T (ϕ)∧T (ψ).
– T (¬ϕ) = ¬T (ϕ).
– T (A(d)) = P(end(A)∧�(Pbegin(A,d))).
– T (A < B) = P(end(B)∧�P(begin(B,Bd)∧�P(end(A)∧�Pbegin(A,Ad)))).
– T (AoB) = P(end(B)∧�P(end(A)∧�P(begin(B,Bd)∧�Pbegin(A,Ad)))).
– T (AiB) = P(end(A)∧�P(end(B)∧�P(begin(B,Bd)∧�Pbegin(A,Ad)))).
– T (∃Aϕ) = ∃A∃AdT (ϕ).
– T (same(A,B)) = ∃d(P(end(A)∧�Pbegin(A,d))∧P(end(B)∧�Pbegin(B,d))).

It is interesting to note that the translation from FoATL to QTL does not make use of the
operator S , but only uses � and P. The translation has been implemented in MonAmi.
We can now monitor a FoATL formula by translating it to QTL using the above transla-
tion scheme, and monitor the generated QTL property with DejaVu using the algorithm
described in [12]. We later compare the results of monitoring using an optimization of
this translation with monitoring using MonAmi.

6 Implementation

We implemented a prototype monitoring tool [19] for our logic FoATL, called MonAmi.
It is a Python-based tool for monitoring intervals, formed by events, by checking them
against a FoATL property. The tool works with Python 3.6 and above. It uses the ‘dd’
Python package [8] for generating and manipulating BDDs, which itself uses the CUDD
BDD package [7] in C. MonAmi uses several input files that define the configuration of
the initial parameters, the property file, and the trace file when monitoring in offline
mode (log analysis). A trace T is a sequence of events [begin, i,d] or [end, i], where
i is an interval enumeration, and d is the data. The tool can also be used for online
monitoring, using the same algorithm, observing a trace dynamically generated by a
program during its execution.

6.1 Experiments

To evaluate MonAmi, we performed a comparison with the interval-based nfer tool
[14], mentioned in the related work section on page 3. We expressed four properties
using the formalisms of these two tools, all related to receiving data from a plane-
tary rover, and evaluated tool performances (time and memory) on traces of different
sizes. The planetary rover scenario is inspired by realistic properties of the Curiosity
Mars rover [17]. The rover’s behavior is reported to ground via the following simplified
intervals (amongst many): DL IMAGE (downlink an image), DL MOBPRM (downlink
mobility parameter values), DL ARMPRM (downlink robotic arm parameter values),
DL FAIL (downlink fails), INS ON (instrument power turned on), INS FAIL (instru-
ment powering fails), INS RECOVER (instrument recovers), GET CAMDATA (reading
camera data), STARVE (thread starves), and BOOT (re-boot rover, e.g. after a failure).

78 K. Havelund et al.

The four properties expressed in the formalisms of MonAmi and nfer are shown
in Fig. 1. In nfer we state a property as a collection of Prolog-like interval-generating
rules of the form id :− body, where the rule body contains Allen’s operators applied to
events and intervals generated by other rules. The result of a match of the body is a new
interval with the name id, as specified by the rule head. Events and intervals can carry
data, which can be used e.g. in where-conditions. The IVAL rule (used by all the four
properties) generates intervals for all matching (same interval identifier) BEGIN and
END events in the trace, and stores (map) their interval and data values in the generated
IVAL event. The FOUND interval in each nfer property is generated when an error is
detected. As mentioned previously, nfer allows negation, referred to as exclusive rules
in [21]. The body of a rule can e.g. have the form ‘A unless after B’, meaning an A
occurred and a B did not occur before. This form of negation has not been used in these
properties.

Fig. 1. Evaluated properties in MonAmi (left) and nfer (right).

The Properties. Property 1 states that there is no DL IMAGE during two BOOT inter-
vals (after the start of the first and before the end of the second). Property 2 states
that there is no DL FAIL during a DL MOBPRM or DL ARMPRM interval. Property
3 states that there is no INS FAIL in between an INS ON and a subsequent closest
INS RECOVER. Note how in the MonAmi specification we need to express the concept
of closest as an additional constraint (that there is no INS ON or INS RECOVER in
between). In nfer this is the default semantics, also referred to as the minimality prin-
ciple, see discussion below. Property 4 states that there is no STARVE during a period
where both an DL IMAGE interval and a GET CAMDATA interval are active. The nfer
slice operator produces the intersection between two intervals. As mentioned, nfer’s
default execution mode uses a principle of minimality, where nfer’s A before B opera-
tor (analog toMonAmi’s A < B operator) searches the closest right-most B from a given
A. The minimality principle, however, can be switched off; so it behaves like MonAmi.

Monitoring First-Order Interval Logic 79

Properties 1, 2, and 4 are in nfer evaluated with minimality switched off. nfer was origi-
nally designed to run with minimality switched on. However, the C version of nfer offers
the option of switching off minimality, while the Scala version was extended with this
option in order to perform the experiment.

The Traces. We created 5 trace files for each property of different sizes, with 1000,
2000, 4000, 8000, and 16000 events. The traces were generated to evaluate the natural
execution mode of MonAmi (stop on first violation) for these properties, by creating the
traces to be violated only at the last event. These were generated with a trace generator,
guided by one rule for each property. The maximal number of overlapping intervals was
also controlled by a parameter (we chose a limit of 3). To ensure that violation will not
occur in the middle of the trace we set the data to be different from the ones that appear
in the property, except for the violating events. MonAmi is compared to two versions of
nfer, a first prototype version in Scala [22], and a later developed version in C [21].

The Execution Modes. In addition, MonAmi is run in two different modes. Recall from
the section Completing the algorithm on page 10 that the complete algorithm executes
in two steps. In Step 1 the variables in Table 1 are updated. In Step 2, the formula is
evaluated based on the value of these variables. When run in small step mode (S), both
steps are executed for each new event. When run in big step mode (B), only Step 1 is
executed for each new event, whereas Step 2 is only executed at the end of monitoring.
It corresponds to only observing the formula’s value after the final event, the semantics
is unchanged. Small step mode will typically be used for online monitoring, whereas
big step mode will typically be used for offline monitoring, e.g. analysis of log files.
Obviously, only evaluating Step 2 once at the end provides an optimization. In our case,
which is offline log analysis, we shall apply both modes for comparison. nfer evaluates
its rules for each new event.

The Results. Table 2 shows the results of the evaluation. The experiments were carried
out on a Dell Latitude 5401 laptop (Intel Core I7-9850H 9th Gen, 32GB RAM, 512GB
SSD) with Ubuntu 20.04.2 LTS OS. W.r.t. memory, nfer/C overall performs the best
and nfer/Scala the worst. MonAmi/B (big step) and MonAmi/S (small step) both perform
very close to the good performance of nfer. W.r.t. time, again nfer/C has the best perfor-
mance.MonAmi/B, however, performs as well as or close to nfer/C.MonAmi/S generally
performs least well w.r.t. time, except for the second property where nfer/Scala performs
worse for larger traces. The first property requires more time than the second property,
especially for MonAmi/S. This can be contributed to the higher complexity of the first
formula. The better performance of nfer/C in general can potentially be attributed to the
fact that it is implemented in C, whereas MonAmi is implemented in a mix of Python
and C.

80 K. Havelund et al.

Table 2. MonAmi’s S and B modes versus nfer’s Scala and C versions.

Property Tool 1000 2000 4000 8000 16000

1 MonAmi/S 1.89 s
51.86 MB

9.46 s
52.43 MB

22.00 s
54.19 MB

72.93 s
78.02 MB

250.55 s
90.50 MB

MonAmi/B 0.31 s
51.74 MB

0.60 s
52.48 MB

1.25 s
54.56 MB

3.82 s
58.94 MB

6.82 s
86.47 MB

nfer/Scala 0.19 s
140.41 MB

0.35 s
164.09 MB

1.28 s
395.83 MB

4.42 s
365.73 MB

17.32 s
385.23 MB

nfer/C 0.03 s
11.03 MB

0.05 s
11.48 MB

0.15 s
12.70 MB

0.52 s
15.15 MB

1.96 s
19.85 MB

2 MonAmi/S 0.37 s
51.71 MB

0.83 s
52.65 MB

2.88 s
54.35 MB

7.98 s
57.30 MB

10.65 s
63.39 MB

MonAmi/B 0.17 s
51.67 MB

0.30 s
52.27 MB

0.61 s
54.34 MB

1.20 s
57.06 MB

2.47 s 64.27
MB

nfer/Scala 0.25 s
147.85 MB

0.41 s
196.26 MB

1.19 s
352.84 MB

4.32 s
392.45 MB

18.73
s 662.18 MB

nfer/C 0.02 s
11.00 MB

0.04 s
11.48 MB

0.14 s
12.75 MB

0.52 s
15.12 MB

1.98 s
19.89 MB

3 MonAmi/S 1.20 s
51.69 MB

3.89 s
52.62 MB

13.06 s
54.30 MB

61.25 s
59.08 MB

385.18 s
86.24 MB

MonAmi/B 0.19 s
51.82 MB

0.36 s
52.48 MB

0.82 s
54.35 MB

1.69 s
57.09 MB

3.58 s
66.90 MB

nfer/Scala 0.24 s
142.16 MB

0.44 s
191.50 MB

1.29 s
332.99 MB

4.78 s
391.98 MB

19.82 s
562.61 MB

nfer/C 0.02 s
11.05 MB

0.05 s
11.49 MB

0.15 s
12.77 MB

0.54 s
15.18 MB

2.12 s
19.91 MB

4 MonAmi/S 0.51 s
51.85 MB

1.49 s
52.55 MB

4.74 s
53.91 MB

17.31 s
57.21 MB

54.80 s
64.79 MB

MonAmi/B 0.18 s
51.70 MB

0.32 s
52.25 MB

0.72 s
53.88 MB

1.30 s
57.09 MB

2.74 s
65.87 MB

nfer/Scala 0.20 s
150.56 MB

0.39 s
199.01 MB

1.23 s
402.66 MB

4.86 s
361.00 MB

18.29 s
531.94 MB

nfer/C 0.02 s
11.10 MB

0.05 s
11.63 MB

0.15 s
13.01 MB

0.54 s
15.67 MB

2.16 s
21.08 MB

MonAmi and DejaVu. Table 3 shows the results of evaluating MonAmi against DejaVu.
We evaluated the FoATL properties 1–4 on page 6, monitored by MonAmi, against their
translations to QTL, monitored by DejaVu, using a manual translation inspired by the
one presented in Sect. 5. The manual translation optimizes the resulting QTL formu-
las. In spite of this optimization, MonAmi clearly outperforms DejaVu on the translated
formulas, both w.r.t. memory use and time. DejaVu’s evaluation strategy corresponds to
MonAmi’s small step evaluation mode since the entire formula is evaluated in each step.

Monitoring First-Order Interval Logic 81

Table 3. MonAmi’s S and B modes versus DejaVu(∞ means more than 1000 s)

Property Tool 1000 2000 4000 8000 16000

1 MonAmi/S 0.81 s
211.21 MB

2.14 s
216.38 MB

4.72 s
226.11 MB

13.94 s
248.01 MB

25.14 s
268.81 MB

MonAmi/B 0.28 s
214.49 MB

0.52 s
217.48 MB

0.98 s
226.99 MB

2.08 s
245.93 MB

4.27 s
275.67 MB

DejaVu 0.24 s
2.61 GB

0.73 s
2.61 GB

3.94 s
2.63 GB

21.12 s
2.63 GB

136.56 s
4.34 GB

2 MonAmi/S 0.69 s
214.19 MB

1.68 s
217.72 MB

3.52 s
224.88 MB

9.22 s
244.99 MB

26.14 s
272.22 MB

MonAmi/B 0.27 s
216.28 MB

0.49 s
220.33 MB

1.07 s
224.12 MB

2.19 s
239.32 MB

4.42 s
284.65 MB

DejaVu 21.82 s
6.09 GB

454.51 s
6.08 GB

∞
N/A

∞
N/A

∞
N/A

3 MonAmi/S 1.33 s
212.67 MB

4.28 s
219.07 MB

12.71 s
231.48 MB

46.47 s
261.21 MB

82.86 s
304.59 MB

MonAmi/B 0.28 s
217.32 MB

0.57 s
221.24 MB

1.47 s
230.17 MB

2.26 s
236.92 MB

5.13 s
264.54 MB

DejaVu 0.40 s
6.15 GB

1.36 s
6.14 GB

5.59 s
6.14 GB

38.96 s
6.12 GB

∞
N/A

4 MonAmi/S 0.95 s
210.78 MB

2.36 s
216.76 MB

6.61 s
225.45 MB

23.26 s
240.86 MB

79.95 s
287.96 MB

MonAmi/B 0.2918 s
217.39 MB

0.54 s
219.58 MB

1.11 s
226.81 MB

2.13 s
248.91 MB

4.78 s
284.80 MB

DejaVu 2.01 s
6.08 GB

13.67 s
6.08 GB

92.59 s
6.09 GB

∞
N/A

∞
N/A

7 Conclusion

We described an extension to Allen’s temporal logic, termed FoATL, that allows quan-
tification over the intervals that occur in a monitored trace. We presented an efficient
algorithm for runtime verification and implemented a prototype tool in Python. The
implementation is based on representing sets of tuples of enumerations over the inter-
vals and their data values as BDDs using the ‘dd’ package. We also presented a mon-
itoring procedure that translates a FoATL formula into a first-order past-time temporal
logic formula, monitored by the tool DejaVu. Experiments show that the direct imple-
mentation of our algorithm is far more efficient.

The closest tool related to MonAmi is nfer and we comment on the relation between
these two tools and their capabilities. The FoATL logic allows for a very convenient form
of quantification. nfer, in contrast, has the flavor of rule-based programming. FoATL
allows free negation, and consequently implication, which is only allowed in a limited
sense in the C version of nfer, and not at all in the Scala version. The limitation (if
any) w.r.t. the expressiveness of nfer’s notion of negation is unknown. MonAmi can be
extended with time stamps, thereby allowing events to occur at the “same time”, and
therefore allowing the Allen operators meets, starts, finishes, and equals. nfer relies

82 K. Havelund et al.

as default on the minimal interpretation of the before-operator, choosing the closest
rightmost interval.MonAmi can be easily extended to also to allow this mode. Extending
the logic to be first-order also w.r.t. data is considered for future work.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–
843 (1983)

2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126
(1987)

3. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: TIME 2005,
pp. 166–174 (2005)

4. Barringer, H., Havelund, K.: TRACECONTRACT: a scala DSL for trace analysis. In: Butler,
M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21437-0 7

5. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 45 (2015)

6. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv. 24(3), 293–318 (1992)

7. CUDD BDD package [https://davidkebo.com/cudd]
8. The ’dd’ Python package for manipulating Binary decision diagrams (BDDs) and Multi-

valued decision diagrams (MDDs) [https://github.com/tulip-control/dd]
9. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. J. Softw. Tools Technol.

Transfer 18(2), 205–225 (2016)
10. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts with data.

IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)
11. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4),

935–962 (1991)
12. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with BDDs. In:

FMCAD 2017, pp. 116–123 (2017)
13. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P.,

Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46002-0 24

14. Kauffman, S., Havelund, K., Joshi, R., Fischmeister, S.: Inferring event stream abstractions.
Formal Methods Syst. Des. 53(1), 54–82 (2018)

15. Kim, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time assurance tool for Java.
In: Proceedings of the 1st International Workshop on Runtime Verification (RV’01), Elsevier,
ENTCS, vol. 55, no. 2 (2001)

16. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods Syst.
Des. 19(3), 291–314 (2001)

17. Mars Curiosity Rover [https://mars.nasa.gov/msl]
18. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime

verification framework. J. Softw. Tools Technol. Transfer 14, 249–289 (2011). https://doi.
org/10.1007/s10009-011-0198-6

19. MonAmi tool source code [https://github.com/moraneus/MonAmI]
20. DejaVu tool source code [https://github.com/havelund/dejavu]
21. nfer in C [http://nfer.io]
22. nfer in Scala [https://github.com/rv-tools/nfer]

https://doi.org/10.1007/978-3-642-21437-0_7
https://davidkebo.com/cudd
https://github.com/tulip-control/dd
https://doi.org/10.1007/3-540-46002-0_24
https://mars.nasa.gov/msl
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1007/s10009-011-0198-6
https://github.com/moraneus/MonAmI
https://github.com/havelund/dejavu
http://nfer.io
https://github.com/rv-tools/nfer

Monitoring First-Order Interval Logic 83

23. Reger, G., Cruz, H.C., Rydeheard, D.: MARQ: monitoring at runtime with QEA. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 55

24. Rosu, G., Bensalem, S.: Allen Linear (Interval) Temporal Logic - Translation to LTL and
Monitor Synthesis. CAV 2006, pp. 263–277 (2006)

25. Sistla, A.P.: Theoretical Issues in the Design and Analysis of Distributed Systems, Ph.D
Thesis, Harvard University (1983)

26. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with
applications to temporal logic. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 465–
474. Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0015772

27. Stockmeyer, L.J., Meyer, A.R.: Word Problems Requiring Exponential Time: Preliminary
Report, STOC, 1973, pp. 1–9 (1973)

28. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pp. 133–191 (1990)

29. Ulus, D., Maler, O.: Specifying timed patterns using temporal logic. In: 21st International
Conference on Hybrid Systems: Computation and Control, pp. 167–176. ACM (2018)

https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/BFb0015772

Exhaustive Property Oriented
Model-Based Testing with Symbolic

Finite State Machines

Niklas Krafczyk and Jan Peleska(B)

Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

{niklas,peleska}@uni-bremen.de

Abstract. In this paper, we present new contributions to property ori-
ented testing (POT) against Symbolic Finite State Machine (SFSM)
models. While several POT approaches are known, none of these are
exhaustive in the sense that every implementation violating the prop-
erty is uncovered by a given test suite under certain hypotheses. On
the other hand, numerous exhaustive theories for testing against models
specified in various formalisms exist, but only for conformance testing.
Since a hybrid approach using both models and properties seems to be
preferred in industry, we present an approach to close this gap. For given
properties that are at the same time represented in a reference model, we
present a test suite derivation procedure and prove its exhaustiveness.

1 Introduction

Background: Property-Oriented Testing and Model-Based Testing. In
the field of testing, two main directions have been investigated for quite a long
time. In property-oriented testing (POT) [4,12], test data is created with the
objective to check whether an implementation fulfils or violates a given property
which may be specified by Boolean expressions (invariants, pre-/post-conditions)
or more complex temporal formulae [12]. In model-based testing (MBT) [19], a
reference model expressing the desired behaviour of an implementation is used
for generating the test data and for checking the implementation behaviour
observed during test executions. In the research community, the objective of
MBT is usually to investigate whether an implementation conformed to the
model according to some pre-defined equivalence or refinement relation.

In industry, however, testing of cyber-physical systems is usually performed
by a hybrid approach, involving both properties and models. Requirements are
specified as properties, and models are used as starting points of system and
software design [13,14]. It is checked by review or by model checking that the
models reflect the given properties in the correct way. Due to the complexity
of large embedded systems like railway and avionic control systems, testing for

Funded by the Deutsche Forschungsgemeinschaft (DFG) – project number 407708394.

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 84–102, 2021.
https://doi.org/10.1007/978-3-030-92124-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_5&domain=pdf
http://orcid.org/0000-0003-0475-4128
http://orcid.org/0000-0003-3667-9775
https://doi.org/10.1007/978-3-030-92124-8_5

Exhaustive Property Oriented Model-Based Testing 85

model conformance only happens on sub-system or even module level, while test-
ing on system integration level or system level is property-based, though models
are available. In particular during regression testing, test cases are selected to
check specific requirements, and hardly ever to establish full model conformance.

Problem Statement. The objective of this paper is to establish a sufficient
black-box test condition for an implementation to satisfy an LTL safety prop-
erty.1 Reference models specifying the desired behaviour are represented as sym-
bolic finite state machines (SFSMs) extending finite state machines (FSMs)
in Mealy format by input and output variables, guard conditions, and output
expressions. Recently, SFSMs have become quite popular in model-based testing
(MBT) [16,18], because they can specify more complex data types than FSMs
and can be regarded as a simplified variant of UML/SysML state machines.
Also, they are easier to analyse than the more general Kripke structures which
have been investigated in model checking [3], as well as in the context of MBT,
for example in [7,8]. In contrast to Kripke structures, SFSMs only allow for a
finite state space. This fact can be leveraged in test generation algorithms by
enumerating all states and performing more efficient operations on this set of
states instead of a potentially infinite one.

The existence of a model in addition to the property to be verified is exploited
to guide the test case generation process. Moreover, the model is used as a test
oracle which checks more than just the given property: if another violation of
the expected implementation behaviour is detected while testing whether the
property is fulfilled, this is a “welcome side effect”. This approach deliberately
deviates from the “standard approach” to check only for formula violations using,
for example, the finite LTL encoding presented in [2] or observers based on some
variant of automaton [5].

Main Contributions. The main contributions of this paper are as follows.
(1) We present a test case generation procedure which inputs an LTL safety
property to be checked and a reference model to guide the generation process
and serve as a test oracle. (2) A theorem is presented and explained, stating
that test suites generated by this procedure are exhaustive in the sense that
every implementation violating the given property will fail at least one test case,
provided that the true implementation behaviour is reflected by another SFSM
contained in a well-defined fault-domain.2 This hypothesis is necessary in black-
box testing, because hidden internal states cannot be monitored [17,21].

1 Safety properties are the only formulae to be investigated effectively by testing, since
their violation by a system under test can be detected on a finite sequence of states
or input/output traces, respectively [22].

2 Due to the usual space limitations, the proof of the theorem is not presented here, but
in technical report https://doi.org/10.5281/zenodo.5151777. It is interesting to note
and explained in this report that the proof is a modified nondeterministic variant of
a proof already published in [10, Theorem 2].

https://doi.org/10.5281/zenodo.5151777

86 N. Krafczyk and J. Peleska

To the best of our knowledge, this mixed property-based and model-based
approach to POT has not been investigated before outside the field of finite
state machines. Only for the latter, strategies for testing simpler properties with
additional FSM models have been treated by the authors in [9,10]. While the
approach presented here is related to the one presented in [10], we will elabo-
rate here how to derive test cases for properties on non-deterministic reference
models. Furthermore, our approach is distinguished from [9,10] by operating on
SFSMs and by using LTL formulae as the specification formalism for properties.
SFSMs are considerably more expressive than FSMs for modelling complex reac-
tive systems. Specifying properties in LTL is more general, intuitive, and elegant
than the FSM-specific restricted specification style used in [9,10].

Overview. In Sect. 2, SFSMs are defined, and existing results about model
simulations, equivalence classes, and abstractions to FSMs are reviewed and
illustrated by examples. These (mostly well-known) facts are needed to prove
the exhaustiveness of the test generation strategy described in Sect. 3. In Sect. 3,
fault domains are introduced and a sufficient condition for exhaustive test suites
for property verification is presented and proven. For implementing test suite
generators, we can refer to algorithms already published elsewhere. Section 4
contains conclusions and sketches future work.

Throughout this paper, we refer to related work where appropriate.

2 Symbolic Finite State Machines, Simulations,
Equivalence Classes, and FSM Abstractions

Definition of Symbolic Finite State Machines. A Symbolic Finite State
Machine (SFSM) is a tuple M = (S, s0, R, VI , VO,D,ΣI , ΣO). Finite set S
denotes the state space, and s0 ∈ S is the initial state. Finite set VI contains
input variable symbols, and finite set VO output variable symbols. The sets VI

and VO must be disjoint. We use V to abbreviate VI ∪ VO. We assume that
the variables are typed, and infinite domains like reals or unlimited integers
are admissible. Set D denotes the union over all variable type domains. The
input alphabet ΣI consists of finitely many guard conditions, each guard being
a quantifier-free first-order expression over input variables. The finite output
alphabet ΣO consists of output expressions; these are quantifier-free first-order
expressions over (optional) input variables and at least one output variable. We
admit constants, function symbols, and arithmetic expressions in these expres-
sions but require that they can be solved based on some decision theory, for
example, by an SMT solver. Set R ⊆ S × ΣI × ΣO × S denotes the transition
relation.

This definition of SFSMs is consistent with the definition of ‘symbolic
input/output finite state machines (SIOFSM)’ introduced in [16], but is slightly
more general: SIOSFMs allow only assignments on output variables, while our
definitions admits general quantifier-free first-order expressions. This is useful for
specifying nondeterministic outputs and – of particular importance in this paper

Exhaustive Property Oriented Model-Based Testing 87

– for performing data abstraction, as introduced below. Also, note that [16] only
considers conformance testing, but not property-based testing.

Following [16], faulty behaviour of implementations is captured in a finite
set of mutant SFSMs whose behaviour may deviate from that of the reference
SFSM by (a) faulty or interchanged guard conditions, (b) faulty or interchanged
output expressions, (c) transfer faults consisting of additional, lost, or misdi-
rected transitions, and (d) added or lost states (always involving transfer faults
as well). To handle mutants and reference model in the same context, we require
that (a) the faulty guards are also contained in the input alphabet, and (b) the
faulty output expressions are also contained in the output alphabet, (without
occurring anywhere in the reference model).

A valuation function σ : V −→ D associates each variable symbol v ∈ V
with a type-conforming value σ(v). Given a first-order expression φ over variable
symbols from V , we write σ |= φ and say that σ is a model for φ if, after replacing
every variable symbol v in φ by its value σ(v), the resulting Boolean expression
evaluates to true. Only SFSMs that are well-formed are considered in this paper:
this means that for every pair (φ, ψ) ∈ ΣI × ΣO occurring in some transition
(s, φ, ψ, s′) ∈ R, at least one model σ |= φ∧ψ exists for the conjunction φ∧ψ of
guard and output expression. An SFSM with integer variables x ∈ VI and y ∈ VO

and a transition (s, x < 0, y2 < x, s′), for example, would not be well-formed.

s0 s1

s2

x = max /y = W

x < max /y = O

x
>
ma

x /y
=

A

x
<
ma

x−δ/
y
=

O

x
>
max /y =

A

x ≤ max /y = O x = max /y = W

max−δ ≤ x/y = A

Fig. 1. Simple alarm system M (O = OK, W = warning, A = alarm, O < W < A).

Example 1. The SFSM in Fig. 1 describes a simple alarm indication system
which inputs a sensor value x : R and raises an alarm (y = A) if x exceeds
the threshold value max. After an alarm has been raised, the system remains
in state s2 until x drops below the value max −δ, whereafter a transition to
initial state s0 is performed, accompanied by output y = O (“value is OK”). If
the threshold value max has been reached but not yet overstepped, a warning

88 N. Krafczyk and J. Peleska

y = W may or may not be issued (nondeterministic decision). If the warning is
given, the system transits to state s1 and stays there until x < max is fulfilled
or an alarm needs to be raised because x exceeds the threshold. Output values
O,W,A are typed by an enumeration.

Note that in this example, outputs could simply be specified by assignments,
so the system could also be modelled as an SIOSFM. Example 4 below shows
where the first-order representation is needed.

A symbolic trace of SFSM M is a finite sequence

τ = (φ1/ψ1) . . . (φn/ψn) ∈ (ΣI × ΣO)∗

satisfying (recall that s0 is the initial state)

∃s1, . . . , sn ∈ S : ∀i ∈ {1, . . . , n} : (si−1, φi, ψi, si) ∈ R.

This means that there exists a state sequence starting from the initial state, such
that each pair (si−1, si) of states is linked by a transition labelled with (φi, ψi).
We use the intuitive notation (φi/ψi) inherited from Mealy machines for these
predicate pairs, since φi specifies inputs and ψi outputs.

A concrete trace (also called computation) of M is a finite sequence of valu-
ation functions

κ = σ1 . . . σn ∈ (V −→ D)∗

such that a symbolic trace τ = (φ1/ψ1) . . . (φn/ψn) of M exists satisfying

(σ1 |= φ1 ∧ ψ1) ∧ · · · ∧ (σn |= φn ∧ ψn).

If this condition is fulfilled, κ is called a witness of τ . This interpretation of SFSM
computations corresponds to the synchronous interpretation of state machine
inputs and outputs, as discussed in [20]: inputs and outputs occur simultaneously,
that is, in the same computation step κ(i).

An SFSM is deterministic if a sequence of input tuples already determines the
sequence of associated outputs in a unique way. More formally, two computations
κ = σ1 . . . σn and κ′ = σ′

1 . . . σ′
n satisfying σi|VI

= σ′
i|VI

for all i = 1, . . . , n
already fulfil κ = κ′.

As usual in the field of modelling formalisms for reactive systems, the
behaviour of an SFSM is defined by the set of its computations. Two SFSMs
are equivalent if and only if they have the same set of computations.

Example 2. The alarm system specified in Example 1 has a symbolic trace

τ = (x ≤ max /y = O).(x ≤ max /y = O).
(x = max /y = W).(x > max /y = A).(x < max −δ/y = O)

With constants max = 100, δ = 10, the concrete trace

κ = {x
→ 100, y
→ O}.{x
→ 50, y
→ O}.

{x
→ 100, y
→ W}.{x
→ 110, y
→ A}.{x
→ 89, y
→ O}

Exhaustive Property Oriented Model-Based Testing 89

is a witness of τ . The alarm system is nondeterministic, since it also has symbolic
trace

τ ′ = (x = max /y = W).(x ≤ max /y = O).
(x = max /y = W).(x > max /y = A).(x < max −δ/y = O)

for which

κ′ = {x
→ 100, y
→ W}.{x
→ 50, y
→ O}.

{x
→ 100, y
→ W}.{x
→ 110, y
→ A}.{x
→ 89, y
→ O}
is a witness. The input sequences of κ and κ′ are identical, but the computations
differ.

Testability Assumptions. To ensure testability, the following pragmatic
assumptions and restrictions are made. (1) When testing nondeterministic imple-
mentations, it may be necessary to apply the input trace several times to reach
a specific internal state, since the input trace may nondeterministically reach
difference states. As is usual in nondeterministic systems testing, we adopt the
complete testing assumption, that there is some known k ∈ N such that, if an
input sequence is applied k times, then all possible responses are observed [6],
and all states reachable by means of this sequence have been visited.
(2) Any two different states of the reference SFSM are reliably distinguishable [6]:
if a computation κ could nondeterministically reach two different states s1 or s2
of M , then there exists an input sequence that, when applied to the unknown
target state reached by κ, will lead to an output sequence allowing to determine
whether the unknown state had been s1 or s2. Note that the alarm system
modelled in Fig. 1 is reliably distinguishable for trivial reasons: the target state
reached by a computation is already uniquely determined by the sequence of its
input/output pairs.
(3) It is required that the output expressions in ΣO are pairwise distinguishable
by finitely many input values. This enables us to check the correctness of output
expressions with finitely many test cases. Note that this is not a very hard
restriction, since for many function classes with infinite domain and image, its
members are uniquely determined by a finite number of arguments. For example,
linear expressions y = a · x + b can be pairwise distinguished by two different
values of x; and this fact can be generalised to polynomials of a fixed degree in
several variables x1, . . . , xk. Note that this restriction is vacuous for the alarm
system modelled in Fig. 1, since its output expressions do not contain input x.

Property Specifications in LTL. To state behavioural properties of a given
SFSM M , we use linear temporal logic LTL [3] with formulae over variable
symbols from V = VI ∪ VO. The syntax of LTL formulae ϕ used in this paper is
given by grammar

ϕ ::= φ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | Fϕ | Gϕ,

90 N. Krafczyk and J. Peleska

where φ denotes atomic propositions written as quantifier-free first-order expres-
sions over symbols from V . The semantics of LTL formulae is defined over con-
crete traces κ of M by the following valuation rules.

κi |= φ ≡ κ(i) |= φ for quantifier-free first-

order expressions φ

κi |= ¬ϕ ≡ κi �|= ϕ for arbitrary LTL formulae ϕ

κi |= ϕ ∧ ϕ′ ≡ κi |= ϕ and κi |= ϕ′ for arbitrary LTL formulae ϕ, ϕ′

κi |= Xϕ ≡ i < #κ − 1 and κi+1 |= ϕ for arbitrary LTL formulae ϕ

κi |= ϕUϕ′ ≡ ∃i ≤ j < #κ : κj |= ϕ′

and ∀i ≤ k < j : κk |= ϕ for arbitrary LTL formulae ϕ, ϕ′

κ |= ϕ ≡ κ0 |= ϕ for arbitrary LTL formulae ϕ

Here κi denotes the trace segment κ(i).κ(i+1).κ(i+2) The semantics of path
operators F and G is defined via equivalences Fϕ ≡ (trueUϕ) and Gϕ ≡ ¬F¬ϕ.

Example 3. Consider the property R1. If the value of x never exceeds threshold
max, then an alarm will never be raised. This is expressed by LTL formula (recall
the ordering O < W < A of output values)

Φ1 ≡ G(x ≤ max) =⇒ G(y < A)

Simulation Construction. Given an SFSM M , any set of atomic first-order
expressions with free variables in V induces a simulation M sim. Here, this well-
known concept is only explained in an intuitive way, for a detailed introduction
readers are referred to [3]. It will be shown below how abstracted SFSMs also
facilitate property-oriented testing.

Any set of atomic first-order expressions over V can be separated into expres-
sions f1, . . . , fk containing free variables from VI only and expressions g1, . . . , g�

each containing at least one free variable from VO.
As a first step, this leads to a refinement M ′ of the model SFSM M by means

of the following steps. (1) A transition (s, φ, ψ, s′) is replaced by transitions
(s, φ ∧ α,ψ ∧ β, s′), such that each α is conjunction of all f1, . . . , fk in positive
or negated form, and expression β is a conjunction of all g1, . . . , g� in positive
or negated form. (2) Only the transitions (s, φ ∧ α,ψ ∧ β, s′) possessing a model
σ : V −→ D for φ ∧ α ∧ ψ ∧ β are added in this replacement.

Then a new SFSM M sim is created as follows. (1) The states and the initial
state of M sim are those of M . (2) The transitions of M sim are all (s, φ∧α, β, s′),
where there exists an output expression ψ such that (s, φ ∧ α,ψ ∧ β, s′) is a
transition of the refined SFSM M ′.

An SFSM M sim constructed according to this recipe is a simulation of M ′

in the following sense: For every computation κ = σ1 . . . σn of M ′, there exists a
symbolic trace τ sim = (φ1/ψ1) . . . (φn/ψn) of M sim, such that (a) κ is witness of
τ sim, and (2) any conjunction of positive and negated f1, . . . , fk and g1, . . . , g�

for which σi is a model is also an implication of (φi ∧ ψi).

Exhaustive Property Oriented Model-Based Testing 91

s0 s1

s2

· · · ∧ x ≤ max / · · · ∧ y < A

x < max∧ x ≤ max /y = O ∧ y < A

· · ·
∧ ¬(x

≤ ma
x)/

· · ·
∧ ¬(y

<
A)

· · ·
∧ x

≤ ma
x / · · ·

∧ y
<

A

· · · ∧ ¬(x ≤
max)/ · · · ∧ ¬(y

<
A)

x ≤ max /y = O ∧ y < A

· · · ∧ x ≤ max / · · · ∧ ¬(y < A) · · · ∧ ¬(x ≤ max)/ · · · ∧ ¬(y < A)

· · · ∧ x ≤ max / · · · ∧ y < A

Fig. 2. Refinement M ′ of the simple alarm system from Fig. 1 with respect to atomic
propositions x ≤ max and y < A. Here, the ellipses represent the original guard or
output condition, respectively. The transition from s1 to s0 shows an actual example.

Example 4. From property Φ1 ≡ G(x ≤ max) =⇒ G(y < A) discussed in
Example 3 the atomic propositions f ≡ (x ≤ max) and g ≡ (y < A) are
extracted. The rules for creating a refined machine result in the machine shown
in Fig. 2.

Applying the construction rules for the SFSM abstracted from the alarm
system with respect to f, g,¬f,¬g results in the machine shown in Fig. 3. As an
example of a concrete trace of the alarm system, we take again

κ = {x
→ 100, y
→ O}.{x
→ 50, y
→ O}.

{x
→ 100, y
→ W}.{x
→ 110, y
→ A}.{x
→ 89, y
→ O}
This is a witness of the symbolic trace (we omit the other conjuncts besides
x ≤ max and its negation)

τ sim = (· · · ∧ x ≤ max /y < A).(· · · ∧ x ≤ max /y < A).(· · · ∧ x ≤ max /y < A).
(· · · ∧ ¬(x ≤ max)/¬(y < A)).(· · · ∧ x ≤ max /y < A)

of the abstracted SFSM.

Input Equivalence Classes and FSM Abstraction. In [7,8] we have pre-
sented a testing theory allowing to abstract a variant of Kripke structures to
FSMs by means of an input equivalence class construction. The SFSMs consid-
ered in this paper can be interpreted as Kripke structures of this variant. The
main result of this theory is that test suites generated for the abstracted FSMs
can be translated back to the concrete Kripke model level while preserving the

92 N. Krafczyk and J. Peleska

s0 s1

s2

· · · ∧ x ≤ max /y < A

x < max∧ x ≤ max /y < A

· · ·
∧ ¬(x

≤ ma
x)/

¬(y
<

A)

· · ·
∧ x

≤ ma
x /y

<
A

· · · ∧ ¬(x ≤
max)/¬(y

<
A)

x ≤ max /y < A

· · · ∧ x ≤ max /¬(y < A) · · · ∧ ¬(x ≤ max)/¬(y < A)

· · · ∧ x ≤ max /y < A

Fig. 3. Simulation M sim of the simple alarm system from Fig. 1 with respect to atomic
propositions x ≤ max and y < A.

test strength of the original FSM-based suite. While the method proposed in
this paper could also be formulated in this more general framework of Kripke
structures being used as models and abstracted to FSMs, we decided to present
it using SFSMs and abstract these to FSMs. This allows for a simpler description
of the abstraction process and implies restrictions that would have to be men-
tioned explicitly and accounted for in the context of Kripke structures. These
restrictions guarantee the existence of an FSM abstraction of the model.

We apply the test strength-preserving translation technique from FSM test
cases to concrete Kripke test cases in Sect. 3 to prove that the test strategy
introduced there is exhaustive in the sense that it will uncover every property
violation of the SUT, provided that certain hypotheses are fulfilled. Therefore,
the main facts of the testing theory elaborated in [7,8] are summarised in the
following paragraphs.

The theory applies to systems with arbitrary (possibly infinite) input domains
and finite domains for internal state variables and output variables. Since our
SFSMs are allowed to work with infinite output domains, it is first necessary to
create an abstraction with finite output domains.

Step 1. The refined reference model M ′ constructed above with the atomic
propositions of the LTL formula under consideration is further refined by cre-
ating input equivalence classes. The classes are constructed by building all con-
junctions of positive and negated guard conditions contained in the input alpha-
bet. As before, expressions without a model are dropped. Recall that the input
alphabet also contains the possible faulty guards. This further refinement of M ′

is denoted by M ′
c.

Exhaustive Property Oriented Model-Based Testing 93

The effect of this construction is as follows. A symbolic input sequence ι =
φ1 . . . φk consisting of quantifier-free first-order input class expressions φi refining
the original guards of M ′ determines finitely many possible symbolic traces in the
reference model M ′

c and in any possible SFSM over the same alphabet, specifying
the true behaviour of a (correct or faulty) implementation. In the deterministic
case, this symbolic trace is already uniquely determined by ι.

Step 2. From each refined input class, sufficiently many inputs are selected
so that the output expressions that are expected when applying an input from
this class in any state can be distinguished from any other output expression
contained in ΣO which would be faulty for inputs from this class.

Note that is some situations, an input class X is so small that the distinc-
tion between all output expressions is no longer possible. In this case, however,
different output expressions would be admissible for the implementation, if their
restrictions to X coincide. For example, if X only contains the input value x = 0,
and ΣO = {y = 3, y = 0, y = 3 · x}, then output expressions y = 0 and y = 3 · x
are indistinguishable on X. If output y = 0 is expected for input x = 0 in
the given state, then both expressions would be acceptable in an implementa-
tion. The concrete input selections are represented again as valuation functions
sx : VI −→ D.

The collected concrete inputs sx selected from the input classes are used to
define the (finite) input alphabet AI of the FSM abstraction constructed by
means of the recipe introduced here.

Step 3. Applying the finite number of inputs from each class to every possible
output expression associated with this class yields a finite number of values
from the possibly infinite output domain. These values are written as valuation
functions sy : VO −→ D and used as the output alphabet AO of the FSM under
construction.

Step 4. The state space and initial state of the FSM is identical to the states
of M ′.

Step 5. The transition relation of the FSM is defined by including (s, sx, sy, s′)
in the relation if and only if there exists a transition (s, φ, ψ, s′) in M ′

c such that
sx ∈ AI ∧ sy ∈ AO ∧ (sx ∪ sy) |= φ ∧ ψ.

The observable, minimised FSM abstraction constructed in these 5 steps is
denoted as F (M ′

c). The construction recipe above is illustrated in the following
example.

Example 5. For the refined alarm system M ′ shown in Fig. 2, let us assume that
the possibly faulty implementations may only mix up guard conditions, but do
not mutate them. Then the input equivalence classes calculated according to the
recipe described above are listed in the following table. Recall that the constants
have been fixed as δ = 10, max = 100.

Since the output expressions do not refer to input variable x, a single repre-
sentative from each input class can be chosen to create the FSM abstraction: the
output expressions of M ′

c can always be distinguished by their concrete values.

94 N. Krafczyk and J. Peleska

Class Specified by Concrete input sx for AI

c0 x < max −δ {x �→ 50}
c1 max −δ ≤ x < max {x �→ 95}
c2 x = max {x �→ 100}
c3 max < x {x �→ 110}

s0 s1

s2

x = max /y = W ∧ y < A

x < max−δ, max−δ ≤ x < max /y = O ∧ y < A

ma
x <

x/
y
=

A
∧ ¬(y

<
A)

x
<
ma

x−δ/
y
=

O
∧ y

<
A

x
>
max /y =

A ∧ ¬(y
<

A)

x < max−δ, max−δ ≤ x < max, x = max /y = O ∧ y < A

max−δ ≤ x < max, x = max, max < x/y = A ∧ ¬(y < A)

x = max /y = W ∧ y < A

Fig. 4. Alarm system refinement M ′
c resulting from application of input equivalence

classes to M ′ from Fig. 2. For brevity, we have consolidated multiple transitions back
into one for this figure, if the beginning and end states of these were the same as well as
their output condition. This is signified by commas in their input condition, separating
the input conditions of individual transitions.

The SFSM M ′
c further refining M ′ by means of these input classes is shown in

Fig. 4. We use a short-hand notation where one transition arrow can be labelled
by several guards if the output expression is the same in each transition. The
abstraction FSM F (M ′

c) constructed according to the five steps described above
is shown in Fig. 4.

The simulation M sim of the alarm system is also refined by the same input
equivalence classes. This results in the SFSM shown in Fig. 6. For this SFSM’s
abstracting FSM, we define output symbols

Symbol Output expression

e0 y < A

e1 ¬(y < A)

Then we use the same concrete input alphabet as for F (M ′
c). The resulting

FSM is shown in Fig. 7.

Exhaustive Property Oriented Model-Based Testing 95

s0 s1

s2

100/W

50, 95/O

11
0/A

50
/O

110/A

50, 95, 100/O

95, 100, 110/A

100/W

Fig. 5. Finite state machine F (M ′
c) abstracting the SFSM M ′

c from Fig. 4. Input val-
uations {x �→ value} are abbreviated by ‘value’, output valuations {y �→ value} by
‘value’.

After having made this FSM observable and minimal, the resulting prime
machine F (M sim

c) has the structure shown in Fig. 8.

Admissible Simulations. To specify precisely which types of simulations
M sim

c are admissible, we introduce the concept of output abstractions for FSMs.
Let ω : AO −→ A′

O be a function between output alphabets. Then any FSM
F = (S, s0, T, AI , AO) with alphabet (AI , AO), state space S, initial state s0,
and transition relation T ⊆ S × AI × AO × S can be mapped to an FSM ω(F)
which is constructed by creating FSM (S, s0, T

′, AI , A
′
O) over alphabet (AI , A

′
O)

and transition relation

T ′ = {(s, a, ω(b), s′) | (s, a, b, s′) ∈ T},

and constructing the prime machine (i.e. the observable and reduced FSM) of
(S, s0, T

′, AI , A
′
O). The FSM F ′ is called the output abstraction of F with respect

to ω. The mapping ω is called state-preserving for F , if ω(F) maps traces leading
to the same state in F to traces leading to the same state in ω(F) as well.

It is easy to see that the prime machine F (M sim
c) shown in Fig. 8 has been

created from F (M ′
c) in Fig. 5 by means of the output abstraction ω = {O
→

e0,W
→ e0, A
→ e1}. Comparison of F (M ′
c) in Fig. 5 and Fig. 8 shows that this

ω is state-preserving.
For deterministic FSMs, every output abstraction is state-preserving, but this

is not always the case for nondeterministic FSMs. The exhaustive test suite gen-
eration procedure for property checking introduced in the next section requires
that simulations are constructed by means of state-preserving output abstrac-
tions.

96 N. Krafczyk and J. Peleska

s0 s1

s2

x = max /y < A

x < max−δ, max−δ ≤ x < max /y < A

ma
x <

x/
¬(y

<
A)

x
<
ma

x−δ/
y
<

A

x
>
max /¬(y

<
A)

x < max−δ, max−δ ≤ x < max, x = max /y < A

max−δ ≤ x < max, x = max, max < x/¬(y < A)

x = max /y < A

Fig. 6. Alarm system simulation M sim
c from Fig. 3 – further refined by input equivalence

classes.

3 An Exhaustive Property-Based Testing Strategy

Prerequisites. Throughout this section, M = (S, s0, R, VI , VO,D,ΣI , ΣO)
denotes an SFSM reference model specifying the required behaviour of some
implementation whose true behaviour is represented by some (possibly non-
equivalent) SFSM I, defined over the same alphabet, as explained in Sect. 2. Set
P denotes a finite set of atomic quantifier-free first-order expressions with free
variables in V . The properties to be tested are all contained in the set of LTL
formulae over atomic expressions from P . As introduced in Sect. 2, the SFSM
M ′

c has been created from M by refining the guards and the output expres-
sions according to the atomic expressions in P and the input equivalence classes
induced by ΣI . The FSM associated with M ′

c is denoted by F (M ′
c). It is assumed

that F (M ′
c) is a prime machine; this means that it is an observable and minimal

FSM [15]. We assume that F (M ′
c) has n > 1 states.3 The simulation SFSM M sim

c

has the same input alphabet as M ′
c, but a (usually smaller) output alphabet con-

taining output expressions of P only. The prime machine associated with M sim
c

is denoted by F (M sim
c). The input alphabet of F (M ′

c) and F (M sim
c) (i.e. the

concrete valuations selected from each input class) is denoted by AI , the output
alphabet of F (M ′

c) by AO, and that of F (M sim
c) by Asim

O .

3 If F (M ′
c) had only one state, we would not have to consider SFSMs, since M could

be represented by a stateless function.

Exhaustive Property Oriented Model-Based Testing 97

s0 s1

s2

100/e0

50, 95/e0

11
0/

e1

50
/e

0

110/e
1

50, 95, 100/e0

95, 100, 110/e1

100/e0

Fig. 7. Finite state machine abstracting the SFSM M sim
c from Fig. 6.

{s0, s1} s2

110/e1

50/e0

50, 95, 100/e0

95, 100, 110/e1

Fig. 8. Prime machine F (M sim
c) (observable, minimised FSM constructed from the

FSM in Fig. 7).

Fault Domains. In black-box testing, fault domains4 are introduced to con-
strain the possibilities of faulty behaviours of implementations. Without these
constraints, it is impossible to guarantee exhaustiveness with finite test suites:
the existence of hidden internal states leading to faulty behaviour after a trace
that is longer than the ones considered in a finite test suite cannot be checked in
black-box testing. In the context of this paper, a fault domain is a set of SFSMs,
always containing the reference model (usually in refined form) representing the
intended behaviour. It is assumed that the implementation’s true behaviour is
reflected by one of the SFSM models in the fault domain.

Now the fault domain D(M ′
c,m) contains all SFSMs possessing the same

input alphabet and output alphabet as M ′
c, such that their abstractions to prime

machines constructed in analogy to F (M ′
c) do not have more than m states.

4 The term ‘fault domain’ is slightly misleading, since its members do not all represent
faulty behaviour. The term, however, is well-established [17], so we adopt it here as
well.

98 N. Krafczyk and J. Peleska

Property-Related Exhaustiveness. Given the set P of quantifier-free atomic
first-order expressions over variables from V , a test suite is P-exhaustive for a
given fault domain D(M ′

c,m), if every SFSM I representing an implementation
behaviour fails at least one test whenever I contains a computation κI that is
not a witness for any symbolic trace of M sim

c .

Example 6. Consider again the alarm system M from Fig. 1 and the property
Φ1 ≡ G(x ≤ max) =⇒ G(y < A). Then, with the guard refinements introduced
for M ′

c and M sim
c , the atomic expressions to consider are

P = {x < max −δ,max −δ ≤ x < max, x = max, y < A}.

Expressed in terms of P -elements, property Φ1 can be equivalently expressed as

Φ1 ≡ G(x < max −δ ∨ max −δ ≤ x < max ∨x = max) =⇒ G(y < A).

Now consider an implementation whose behaviour I differs from that of M
only by the mutated guard in the transition from s0 −→ s2, where we assume
that I’s guard is x ≥ max instead of x > max, as specified in M . With this
guard mutation as the only fault, I is in the fault domain D(M ′

c,m) of the
alarm system M . Then, for example, I has a computation (it is assumed again
that max = 100 and δ = 10)

κI = {x
→ 50, y
→ O}.{x
→ 100, y
→ A}.

Abstracted to a symbolic trace over P , this results in

τI = (x < max −δ/y < A).(x = max /¬(y < A)).

Obviously, this is not a symbolic trace of M sim
c , as depicted in Fig. 6. Therefore,

any P-exhaustive test suite should fail for I.

Test Suite Generation Procedure. In preparation of the test generation,
SFSMs M ′

c and M sim
c are created for the given set of P of quantifier-free atomic

first-order expressions over variables from V , as explained in Sect. 2. Then their
FSM abstractions are constructed (also according to the recipe explained in
Sect. 2), and their prime machines are constructed, as described in [15], resulting
in FSMs F (M ′

c) and F (M sim
c), respectively. It is required that F (M sim

c) has been
created from F (M ′

c) by means of a state-preserving output abstraction.
The rationale behind deriving these FSMs is as follows. FSM F (M ′

c) con-
tains sufficiently detailed information to derive tests suitable for detecting any
violation of observational equivalence. While the proof for this fact is quite tech-
nical, it is fairly intuitive to understand: By construction, F (M ′

c) uses concrete
input values from every input equivalence class of any implementation whose
true behaviour is reflected by an SFSM I in the fault domain D(M ′

c,m). It is
possible to derive a collection of input sequences from F (M ′

c), so that every input
class of I is exercised from every state of I. To ensure this, the assumption that

Exhaustive Property Oriented Model-Based Testing 99

I’s FSM abstraction does not have more than m states is essential. Moreover,
the input alphabet of F (M ′

c) has been constructed in such a way that sufficiently
many values of each input class are exercised on the implementation, such that
every output expression error will be revealed.

Next, we realise that testing for observational equivalence is actually more
than we really need. So we wish to relax the test requirements in such a way that
the test focus is to check whether the satisfaction for atomic properties from P
along any computation of I conforms to that of M ′

c. For this purpose, F (M sim
c)

is needed. Typically, F (M sim
c) has fewer states than F (M ′

c) and I. Therefore,
we cannot completely forget about F (M ′

c), because this machine influences the
length of the traces used to test I. If tests were constructed from F (M sim

c), we
would either use traces of insufficient length or use too many traces of adequate
length, since F (M sim

c) does not provide any information about which traces of
maximal length are relevant.

These intuitive considerations lead to the test suite generation procedure
described next.

We create an FSM test suite H fsm
P from F (M ′

c) and F (M sim
c) as follows. Let

V ⊆ Σ∗
I be a minimal state cover of F (M ′

c) containing the empty trace ε. A
state cover is a set of input traces, such that for each state s of M ′

c, there exists
a trace from V reaching s. Define auxiliary sets (Ai

I denotes the set of FSM
input traces of length i).

A = V × V B = V × (
V.

m−n+1⋃

i=1

Ai
I

)

C = {(ν.γ′, ν.γ) | ν ∈ V ∧ γ ∈ (m−n+1⋃

i=1

Ai
I

) ∧ γ′ ∈ Pref(γ) − {ε}}

Then define a set D of input trace pairs such that D contains (a) all trace pairs
from A leading to different states in the FSM state space of F (M ′

c), (b) every
trace pair of B and C leading to different states in F (M sim

c) (note that states
distinguishable in F (M ′

c) may not be distinguishable anymore in F (M sim
c), but

state pairs distinguishable in F (M sim
c) are always distinguishable in F (M ′

c)).
Let function Δ : D −→ A∗

I map trace pairs (α, β) leading to distinguishable
states (s1, s2) to input traces γ distinguishing (s1, s2). Now define test FSM test
suite H fsm

P by removing all true prefixes from the test case set

V.Am−n+1
I ∪ {α.Δ(α, β), β.Δ(α, β) | (α, β) ∈ D}.

Since the input traces in H fsm
P are already sequences of concrete values (recall

that the input alphabet of F (M ′
c) consists of concrete values taken from input

equivalence classes), we can use them directly as test cases, to be executed
against the system under test.

100 N. Krafczyk and J. Peleska

Proving P-Exhaustiveness. The following Lemma shows that M sim
c is crucial

for deciding whether an implementation satisfies an LTL formula over atomic
expressions from P . It follows directly from the construction rules for M sim

c in
Sect. 2.

Lemma 1. Suppose that the true behaviour of an implementation is given by
SFSM I ∈ D(M ′

c,m). Suppose further that every computation of I is also a
witness of a symbolic trace in M sim

c . Then I satisfies every LTL formula over
positive and negated atomic first-order expressions from P which is satisfied by
the reference SFSM M .

The following main theorem states the exhaustiveness of the test suite gen-
eration procedure described above.

Theorem 1. The test suite HP constructed above is P -exhaustive for all imple-
mentations whose true behaviour is specified by one of the SFSMs contained in
the fault domain D(M ′

c,m) specified above.

The proof of the theorem is performed along the following lines.5 In a first
step, the exhaustiveness of the FSM test suite which is created as part of the
generation procedure is proven. This is quite similar to the proof presented in [10,
Theorem 2], but operates here with a different FSM abstraction F (M sim

c) that
may also be nondeterministic. It is essential for this proof that simulations have
been generated by means of state-preserving output abstractions.

A second step shows that the selection of concrete input values from input
equivalence classes described in the previous section is adequate to uncover every
deviation of the implementation behaviour from the specified behaviour. For the
proof of this theorem, it is essential that all possible guard mutations and output
expression mutations are already contained in the input and output alphabets,
respectively. Moreover, it is exploited that sufficiently many concrete values have
been selected from the input classes to distinguish faulty output expressions from
correct ones.

In practice, it often cannot be decided whether an implementation regarded
as a black-box is represented by an SFSM I inside D(M ′

c,m) or not. For guaran-
teed exhaustiveness, a grey-box approach performing preliminary static analyses
on the implementation code would be required in order to prove that I is inside
the fault domain. If this cannot be achieved, it is reassuring to know that test
suites constructed according to the generation procedure above have significantly
higher test strength than naive random testing, even if I lies outside the fault
domain. This has been evaluated in [11].

4 Conclusion

In this paper, an exhaustive test suite for testing LTL properties has been pre-
sented. It is based on both a symbolic finite state machine model describing the
5 Details are contained in the technical report https://doi.org/10.5281/zenodo.

5151777.

https://doi.org/10.5281/zenodo.5151777
https://doi.org/10.5281/zenodo.5151777

Exhaustive Property Oriented Model-Based Testing 101

expected behaviour and the formula. By using simulation and abstraction tech-
niques, a test suite generation procedure has been presented which guarantees
to uncover every property violation, while possibly finding additional violations
of observational equivalence, provided that the implementation’s true behaviour
is captured by an element of the fault domain. The simulations and abstrac-
tions used frequently allow for test suites that are significantly smaller than
those testing for equivalence between model and implementation. For a specific
variant of properties which is less expressive than LTL, this has already been
shown in [10]. We expect similar reductions for the full LTL property check-
ing described here. This will be investigated in the near future, where we will
implement the method proposed here as well as improvements upon it in the
libfsmtest [1] software library.

Acknowledgements. The authors would like to thank Wen-ling Huang for her valu-
able inputs concerning the main theorem of this paper.

References

1. Bergenthal, M., Krafczyk, N., Peleska, J., Sachtleben, R.: libfsmtest - An Open
Source Library for FSM-based Testing. In: Cavalli, A., Menéndez, H.D. (eds.) Test-
ing Software and Systems - Proceedings of the IFIP-ICTSS 2021. Lecture Notes in
Computer Science. Springer, Cham (2021, to appear)

2. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear
encodings of bounded LTL model checking. Logical Methods Comput. Sci.
2(5) (2006). https://doi.org/10.2168/LMCS-2(5:5)2006. http://arxiv.org/abs/cs/
0611029. arXiv: cs/0611029

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

4. Fernandez, J.-C., Mounier, L., Pachon, C.: Property oriented test case generation.
In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 147–163.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24617-6 11

5. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: Proceedings 16th Annual International Con-
ference on Automated Software Engineering (ASE 2001), pp. 412–416. IEEE
Computer Society, San Diego (2001). https://doi.org/10.1109/ASE.2001.989841.
http://ieeexplore.ieee.org/document/989841/

6. Hierons, R.M.: Testing from a nondeterministic finite state machine using adaptive
state counting. IEEE Trans. Comput. 53(10), 1330–1342 (2004). https://doi.org/
10.1109/TC.2004.85

7. Huang, W., Peleska, J.: Complete model-based equivalence class testing. Softw.
Tools Technol. Transfer 18(3), 265–283 (2016)

8. Huang, W.L., Peleska, J.: Complete model-based equivalence class testing for
nondeterministic systems. Formal Aspects Comput. 29(2), 335–364 (2017).
https://doi.org/10.1007/s00165-016-0402-2. https://link.springer.com/article/10.
1007/s00165-016-0402-2

9. Huang, W., Peleska, J.: Complete requirements-based testing with finite state
machines. CoRR abs/2105.11786 (2021). https://arxiv.org/abs/2105.11786

https://doi.org/10.2168/LMCS-2(5:5)2006
http://arxiv.org/abs/cs/0611029
http://arxiv.org/abs/cs/0611029
http://arxiv.org/abs/cs/0611029
https://doi.org/10.1007/978-3-540-24617-6_11
https://doi.org/10.1109/ASE.2001.989841
http://ieeexplore.ieee.org/document/989841/
https://doi.org/10.1109/TC.2004.85
https://doi.org/10.1109/TC.2004.85
https://doi.org/10.1007/s00165-016-0402-2
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00165-016-0402-2
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00165-016-0402-2
https://arxiv.org/abs/2105.11786

102 N. Krafczyk and J. Peleska

10. Huang, W.l., Özoguz, S., Peleska, J.: Safety-complete test suites. Softw. Qual. J.
(2018). https://doi.org/10.1007/s11219-018-9421-y

11. Hübner, F., Huang, W.L., Peleska, J.: Experimental evaluation of a novel
equivalence class partition testing strategy. Softw. Syst. Model., 1–21 (2017).
https://doi.org/10.1007/s10270-017-0595-8. https://link.springer.com/article/10.
1007/s10270-017-0595-8

12. Machado, P.D.L., Silva, D.A., Mota, A.C.: Towards property oriented
testing. Electron. Notes Theor. Comput. Sci. 184(Supplement C), 3–
19 (2007). https://doi.org/10.1016/j.entcs.2007.06.001. http://www.sciencedirect.
com/science/article/pii/S157106610700432X

13. Peleska, J.: Model-based avionic systems testing for the airbus family. In: 23rd
IEEE European Test Symposium, ETS 2018, Bremen, Germany, 28 May–1 June
2018, pp. 1–10. IEEE (2018). https://doi.org/10.1109/ETS.2018.8400703

14. Peleska, J., Brauer, J., Huang, W.: Model-based testing for avionic systems proven
benefits and further challenges. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018.
LNCS, vol. 11247, pp. 82–103. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03427-6 11

15. Peleska, J., Huang, W.: Test automation - foundations and applications of model-
based testing. University of Bremen, January 2017. http://www.informatik.uni-
bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf

16. Petrenko, A.: Checking experiments for symbolic input/output finite state
machines. In: 2016 IEEE Ninth International Conference on Software Testing, Ver-
ification and Validation Workshops (ICSTW), pp. 229–237, April 2016. https://
doi.org/10.1109/ICSTW.2016.9

17. Petrenko, A., Yevtushenko, N., Bochmann, G.V.: Fault models for testing in con-
text. In: Gotzhein, R., Bredereke, J. (eds.) Formal Description Techniques IX -
Theory, Application and Tools, pp. 163–177. Chapman&Hall (1996)

18. Petrenko, A.: Toward testing from finite state machines with symbolic inputs and
outputs. Softw. Syst. Model. 18(2), 825–835 (2019)

19. Petrenko, A., Simao, A., Maldonado, J.C.: Model-based testing of software and sys-
tems: recent advances and challenges. Int. J. Softw. Tools Technol. Transf. 14(4),
383–386 (2012)

20. van de Pol, J., Meijer, J.: Synchronous or alternating? In: Margaria, T., Graf, S.,
Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why
Not? LNCS, vol. 11200, pp. 417–430. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22348-9 24

21. Pretschner, A.: Defect-based testing. In: Irlbeck, M., Peled, D.A., Pretschner, A.
(eds.) Dependable Software Systems Engineering, NATO Science for Peace and
Security Series, D: Information and Communication Security, vol. 40, pp. 224–245.
IOS Press (2015). https://doi.org/10.3233/978-1-61499-495-4-224

22. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput.
6(5), 495–511 (1994)

https://doi.org/10.1007/s11219-018-9421-y
https://doi.org/10.1007/s10270-017-0595-8
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10270-017-0595-8
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10270-017-0595-8
https://doi.org/10.1016/j.entcs.2007.06.001
http://www.sciencedirect.com/science/article/pii/S157106610700432X
http://www.sciencedirect.com/science/article/pii/S157106610700432X
https://doi.org/10.1109/ETS.2018.8400703
https://doi.org/10.1007/978-3-030-03427-6_11
https://doi.org/10.1007/978-3-030-03427-6_11
http://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf
http://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf
https://doi.org/10.1109/ICSTW.2016.9
https://doi.org/10.1109/ICSTW.2016.9
https://doi.org/10.1007/978-3-030-22348-9_24
https://doi.org/10.1007/978-3-030-22348-9_24
https://doi.org/10.3233/978-1-61499-495-4-224

nfer – A Tool for Event Stream
Abstraction

Sean Kauffman(B)

Aalborg University, Aalborg, Denmark
seank@cs.aau.dk

Abstract. This work describes nfer, an open-source tool for event-
stream abstraction and processing. Nfer implements the Runtime Ver-
ification logic of the same name, providing programming interfaces in
C, R, and Python. Rules that dictate nfer’s behavior can be written
in an external Domain-Specific Language (DSL), mined from historical
traces, or given using an internal DSL in Python. The tool is designed
for efficient online monitoring of event streams and can also operate as
an offline tool to process completed logs.

1 Introduction

The exponential increase in the size and complexity of embedded software over
time has led to a similar explosion in traces produced by that software [8].
Comprehending and verifying those traces at runtime requires tools with diverse
interfaces that can handle large datasets and integrate with existing code.

Nfer is a formalism for abstracting and monitoring event streams [13–15] with
an open-source implementation well-suited for a variety of tasks. The nfer lan-
guage is based on Allen’s Temporal Logic (ATL) [2] and is designed for expressing
relationships between concurrent executions [12]. The implementation is avail-
able at http://nfer.io under the GPLv3 license and includes a command-line
interpreter, the ability to learn rules from historical traces [11], an embedded
monitor compiler, and language integrations with both R and Python.

Nfer combines elements of Complex Event Processing (CEP) systems [4,16,
17], stream-processing frameworks [5,7], and rule-based logics [3,9]. Like many
of these tools, nfer applies rules to event streams to generate new facts either
online or offline. However, nfer treats time as a first-class citizen and produces
temporal intervals carrying data using a rule syntax designed to describe context.

This paper describes the open-source implementation of nfer. Section 2 con-
tains a programming guide for the nfer language, including a running example.
Section 3 describes the nfer architecture. Section 4 compares nfer to TeSSLa, a
popular stream processing tool. The paper concludes in Sect. 5.

2 Writing Nfer Rules

Nfer’s external domain-specific language (DSL) is a declarative, rule-based logic
for inferring a hierarchy of intervals from an event stream. Rules specify how
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 103–109, 2021.
https://doi.org/10.1007/978-3-030-92124-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_6&domain=pdf
http://nfer.io
https://doi.org/10.1007/978-3-030-92124-8_6

104 S. Kauffman

new intervals are created from old ones as well as from events. This section uses
a running example to illustrate how nfer rules are formulated.

Inputs and outputs in nfer are temporal intervals of the type I × N× N×M,
where I is the finite set of identifiers (or names), N is the natural numbers rep-
resenting begin and end timestamps, and M is the type of maps from strings to
literals. Inputs supplied as events (only one timestamp) are represented inter-
nally as atomic intervals where the begin and end times are equal. Intervals
can have temporal and data relationships, and those relationships define new
intervals.

Below is a sequence of six events representing two systems powering on,
performing a test, and powering off. In the table on the left, each event is shown
as a row in the table with its identifier (name), begin, and end timestamps, as
well as two data items: the id of the system and if the test succeeded. On the
right of the figure, the same trace is shown on a timeline, with system id:1 above
the line and system id:2 below the line. The TEST event with success:false is
distinguished by the small shaded flag, where the successful one has a white flag.

We want to capture periods where system runs had test failures. We also
know that when two tests occur during a run, one may report a benign failure
that should be ignored. We want to flag test failures where no other successful
test occurred during the failed test’s run. We begin with a simple, flawed rule.

OPERATING :– ON before OFF

This rule says that when an ON interval is seen before an OFF interval, create
an interval named OPERATING with a begin time equal to the begin time of
ON and an end time equal to the end time of OFF. The words OPERATING,
ON, and OFF and all arbitrary and could be the names of any intervals, while
the word before is a keyword that specifies a temporal relationship.

Unfortunately, this rule does not produce what we intended because nfer, by
default, only creates minimal intervals. A minimal interval is one where no inter-
val with the same name occurs during that interval. Only the interval [30, 50] will
be reported by this rule, while three intervals will be omitted: [10, 50], [10, 60],
and [30, 60]. Minimality checking can be disabled to obtain all four intervals.

To generate the two intervals we intend, however, we need to apply a man-
ual constraint. The where keyword specifies a manual constraint that must
be satisfied in addition to those of the temporal relation. The constraint is an
expression that must evaluate to a Boolean value and may refer to the times-
tamps and data of the intervals specified in the temporal relation part of the rule.

nfer – A Tool for Event Stream Abstraction 105

Data and timestamps are specified by separating the interval name to reference
and its datum name with a period. This rule will generate the desired intervals
by specifying that the id of the ON and OFF intervals must be equal.

RUNNING :– ON before OFF where ON.id = OFF.id map { id –> ON.id }

Note that the rule also adds the id of the system to the generated RUNNING
intervals. New intervals have empty data maps by default, but data may be
specified using the map keyword. Map expects a list of keys and associated
expressions listed inside curly braces. Map expressions may return any type.

Note that the temporal operator (e.g., before) typically defines the times-
tamps of generated intervals. The begin and end keywords specify expressions
that manually override the begin and end timestamps of intervals created by the
rule. This allows a rule to specify precisely the interval of interest, for example
specifying a period 30 s after an event occurs.

Next, we want to identify the system executions where the test succeeded or
failed. We can do that with the following rules.

TESTING :– t:TEST during r:RUNNING where t.id = r.id map {s –> t.success}
FAILURE :– TESTING where !TESTING.s

The first rule produces a TESTING interval when a TEST occurs during a
RUNNING. The rule uses a different temporal operator (during, not before).
It also uses labels, prepended to interval names with colons, to provide shorter
handles to reference events in expressions. Labels are required when the temporal
operator refers to two intervals with the same name.

The second rule produces a FAILURE interval when a TESTING interval
has its s datum set to false. We mapped the s datum of TESTING to the
success datum of TEST in the previous rule. The FAILURE rule has no temporal
operator and will match all TESTING intervals.

To complete the specification, we need a rule that identifies when a FAILURE
occurs without another TEST succeeding during the same period. Nfer supports
testing for the absence of intervals using the unless keyword.

HAZARD :– FAILURE unless contain TEST where TEST.success

This rule matches a FAILURE interval when no TEST succeeded in the same
period. In our example, the successful test occurred before the FAILURE interval
began, so a HAZARD is produced.

106 S. Kauffman

Nfer also supports mining rules from historical traces [11]. These can be
useful as either the basis of a new specification or to check the accuracy of human-
written rules. Nfer’s mining algorithm works best when traces are generated
by highly periodic systems, such as an embedded system running a real-time
scheduler. The mining algorithm generates only before relations from events
and does not yet support learning a hierarchy of rules.

To mine rules from the example in this section, we must extract the events
from only one of the systems. Passing such a trace to the nfer’s mining algorithm
yields the following learned rules that describe before relations that hold between
the three input event names.

learned 0 :– ON before TEST
learned 1 :– ON before OFF
learned 2 :– TEST before OFF

3 Nfer’s Architecture

Nfer is designed for low-latency operation with minimal memory use. Every
interface to nfer uses the same core components, written in C, with minimal
external dependencies. Each interface then combines the nfer core with capa-
bilities specific to its intended use-cases.

The nfer architecture is shown in Fig. 1. In the figure, each interface is shown
as a separate box, with its sub-components shown as internal labeled boxes.
Every interface shares the nfer core, made up of the optimized data-structures
and algorithms for executing the nfer monitoring algorithm.

Fig. 1. nfer architecture, with labeled components for each interface

nfer – A Tool for Event Stream Abstraction 107

The nfer core consists of several custom data-structures designed to work
together for efficiency. In nfer, all strings are interned and subsequently refer-
enced by a zero-based integer identifier. This permits the map implementation
to store values in an array indexed by string ids, making map lookups a simple
memory offset calculation. Interning means string comparisons become integer
comparisons and memory use for strings is reduced. Expression evaluation for
nfer’s DSL is performed using a reverse-polish algorithm and a custom stack
implementation. The nfer core excludes all recursion to facilitate embedded sys-
tem operation including in expression evaluation, the interval pool’s merge-sort
implementation, and the nfer monitoring algorithm [14].

Nfer’s language bindings in R and Python are implemented as native lan-
guage wrappers around the compiled nfer core. The R library is designed for
data processing and integrates closely with R’s native data structures. In R,
nfer rules may be loaded from file or mined and then applied to a data frame
of events to produce a data frame of intervals. The Python module (available
via PyPi as NferModule) includes instrumentation code for Python programs,
a native Python rule DSL, and Graphical User Interface (GUI) for visualizing
intervals at runtime. By using the compiled nfer core for interval processing,
both tools are much faster than if the language was implemented natively.

An nfer specification may be compiled to a C program using the shell inter-
face. Compiled monitors include the nfer core but use only static memory allo-
cation, with the size of components set via compile-time configuration. Static
memory allocation reduces the time needed to handle complex specifications
but results in higher memory use, since sufficient space must be configured for
any expected workloads. Nfer can suggest memory settings given a specification
and trace. Compiled monitors are designed for embedded use and have been
integrated with Linux and ERIKA Enterprise.

4 Comparison with TeSSLa

TeSSLa is a stream-processing language and tool designed for efficiently checking
logical properties and computing temporal metrics from a trace [5]. Like nfer,
TeSSLa can compute rich abstractions of a trace online using a formal language
specification. Embedded TeSSLa [6], which runs on reconfigurable hardware,
cannot use the dynamic data structures necessary to emulate nfer.

One important difference between nfer and TeSSLa is the simplicity of a
specification to produce temporal intervals. As a general stream-programming
framework, TeSSLa is capable of producing intervals but doing so requires more
complex rules. For example, to implement the four rules from Sect. 2 in TeSSLa
requires a specification of at least 34 lines.

We conducted an experiment using the example rules from Sect. 2. The spec-
ification is simple, but represents a typical use for nfer and is complex enough
to demonstrate nfer’s speed. The TeSSLa specification we used and related
documentation is available in the doc/tessla directory of nfer’s source code
repository [1]. We ran two configurations of nfer, one interpreting the specifica-
tion through the shell interface and one using a compiled monitor. We compared

108 S. Kauffman

these with a compiled TeSSLa 1.2.2 monitor running on Oracle JRE 11.0.12. We
generated system logs with varying numbers of operations where each operation
resulted in three events. We ran each tool on each log ten times, allocating one
core of an AMD EPYC 7642 running at 1.5 GHz.

0

500

1000

1500

2000

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
Number of operations, each with 3 events

E
xe

cu
tio

n
tim

e
(s

) Tool
Interpreted nfer
Compiled nfer
Compiled TeSSLa

Fig. 2. Execution time used in the experiment

Figure 2 shows the result of the comparison, where lower execution times
are better. In the figure, each mean execution time is shown as a point and
the standard deviation is omitted as the error bars are too small to be visible.
Although the interpreted version of nfer takes around twice the time of the
compiled TeSSLa monitor, the compiled nfer monitor is much faster. We do
not report on memory use since TeSSLa uses the Java Virtual Machine (JVM),
making memory utilization difficult to separate from memory allocation.

There are other Runtime Verification (RV) tools that may be interesting to
compare to nfer. In [10], we compared the latency of an nfer integration into
a Python framework with the CEP system, Siddhi [17] and found nfer to be
over 35 times faster. Some stream RV tools, such as RTLola [7], do not support
dynamic data structures and, as such, cannot emulate the full nfer language.

5 Conclusion

The open-source implementation of the nfer logic described in this paper is dis-
tributed via the GPLv3 license. The tool is easy to install and use in the Unix
command-line, R, and Python. It provides efficient online monitoring of event
streams and offline analysis of timed data. Nfer may be used on embedded sys-
tems with no dynamic memory, and it can be used to visualize Python program
execution in real-time.

The nfer project continues to evolve. Future work includes support for new
data formats, MISRA-C compliance for compiled monitors, multi-threading sup-
port, and performance improvements. In-progress work will characterize the com-
plexity of different nfer language subsets. Check http://nfer.io for updates.

http://nfer.io

nfer – A Tool for Event Stream Abstraction 109

References

1. Nfer web site. http://nfer.io/. Accessed 11 Oct 2021
2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM

26(11), 832–843 (1983)
3. Barringer, H., Havelund, K.: TraceContract: a scala DSL for trace analysis. In:

Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 7

4. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: a scalable continuous
query system for internet databases. In: International Conference on Management
of Data (ACM SIGMOD 2000), pp. 379–390. ACM (2000)

5. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5 10

6. Convent, L., Hungerecker, S., Scheffel, T., Schmitz, M., Thoma, D., Weiss, A.:
Hardware-based runtime verification with embedded tracing units and stream pro-
cessing. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 43–63.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 5

7. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring (2019)

8. van Genuchten, M., Hatton, L.: Compound annual growth rate for software. IEEE
Softw. 29(4), 19–21 (2012)

9. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transfer 17(2), 143–170 (2015)

10. Kauffman, S., Dunne, M., Gracioli, G., Khan, W., Benann, N., Fischmeister, S.:
Palisade: a framework for anomaly detection in embedded systems. J. Syst. Archit.
113, 101876 (2021)

11. Kauffman, S., Fischmeister, S.: Mining temporal intervals from real-time system
traces. In: International Workshop on Software Mining (SoftwareMining 2017), pp.
1–8. IEEE (2017)

12. Kauffman, S., Fischmeister, S.: Event stream abstraction using Nfer: demo
abstract. In: International Conference on Cyber-Physical Systems (ICCPS 2019),
pp. 332–333. ACM Press (2019)

13. Kauffman, S., Havelund, K., Joshi, R.: nfer – a notation and system for inferring
event stream abstractions. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol.
10012, pp. 235–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 15

14. Kauffman, S., Havelund, K., Joshi, R., Fischmeister, S.: Inferring event stream
abstractions. Formal Methods Syst. Des. 53(1), 54–82 (2018). https://doi.org/10.
1007/s10703-018-0317-z

15. Kauffman, S., Joshi, R., Havelund, K.: Towards a logic for inferring properties of
event streams. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
394–399. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 31

16. Bassiliades, N., Governatori, G., Paschke, A. (eds.): RuleML 2008. LNCS, vol.
5321. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88808-6

17. Suhothayan, S., Gajasinghe, K., Loku Narangoda, I., Chaturanga, S., Perera, S.,
Nanayakkara, V.: Siddhi: a second look at complex event processing architectures.
In: Workshop on Gateway Computing Environments (GCE 2011), pp. 43–50. ACM
(2011)

http://nfer.io/
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03769-7_5
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/s10703-018-0317-z
https://doi.org/10.1007/s10703-018-0317-z
https://doi.org/10.1007/978-3-319-47169-3_31
https://doi.org/10.1007/978-3-540-88808-6

Mining Shape Expressions with SHAPEIT

Ezio Bartocci1(B), Jyotirmoy Deshmukh2(B), Cristinel Mateis3(B),
Eleonora Nesterini1,3(B), Dejan Ničković3(B), and Xin Qin2(B)

1 TU Wien, Vienna, Austria
{ezio.bartocci,eleonora.nesterini}@tuwien.ac.at
2 University of Southern California, Los Angeles, USA

{jdeshmuk,xinqin}@usc.edu
3 AIT Austrian Institute of Technology, Vienna, Austria

{Cristinel.Mateis,Dejan.Nickovic}@ait.ac.at

Abstract. We present ShapeIt, a tool for mining specifications of
cyber-physical systems (CPS) from their real-valued behaviors. The
learned specifications are in the form of linear shape expressions, a declar-
ative formal specification language suitable to express behavioral proper-
ties over real-valued signals. A linear shape expression is a regular expres-
sion composed of parameterized lines as atomic symbols with symbolic
constraints on the line parameters. We present here the architecture of
our tool along with the different steps of the specification mining algo-
rithm. We also describe the usage of the tool demonstrating its applica-
bility on several case studies from different application domains.

1 Introduction

Specification mining [1–3] is the process of inferring likely system properties
from observing its execution and the behavior of its environment. This is an
emerging research field that supports the engineering of cyber-physical systems
(CPS) where computational units are tightly embedded with physical entities
such as sensors and actuators controlling a physical process. CPS often operate
(autonomously) in sophisticated and unpredictable environments.

In this context, mined properties can be used to complete existing incomplete
or outdated specifications, to understand essential properties of black-box com-
ponents (e.g., machine learning components) and to automate difficult tasks such
as fault-localization [4,5], failure explanation [6] and falsification analysis [7].
The symbolic and declarative nature of formal specification languages provide
an high-level and abstract framework that facilitates generalisation. Further-
more, mined specifications are re-usable, data-efficient, compositional and closer
to human understanding.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 956123 and it is partially funded
by the TU Wien-funded Doctoral College for SecInt: Secure and Intelligent Human-
Centric Digital Technologies, and by the National Science Foundation under grant
CCF-1837131.

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 110–117, 2021.
https://doi.org/10.1007/978-3-030-92124-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_7

Mining Shape Expressions with ShapeIt 111

In this paper, we present ShapeIt, a tool for automatic mining formal spec-
ifications from positive examples of time-series data encoding system behaviors
or a discrete-time trace of the value of a particular system variable. ShapeIt
uses Linear Shape Expressions (LSEs) [8], a recent introduced declarative for-
malism suitable to express expected behaviors over noisy real-valued signals. A
linear shape expression is a regular expression composed of parameterized lines
as atomic symbols with symbolic constraints on the line parameters.

Given a set of time-series and a maximum error threshold, ShapeIt imple-
ments the specification mining procedure [9] consisting of three steps: (1) seg-
mentation of time-series into an optimal piecewise-linear approximation, (2)
abstraction and clustering of linear segments into a finite set of symbols,
where each symbol represent a set of similar lines, and (3) learning of linear
shape expressions from the sequences of symbols generated in the previous step.

In the rest of the paper, we present the specification language and the archi-
tecture of the tool. We also show the usage of our tool, demonstrating the appli-
cability to several different examples of time-series taken from the literature.
The code of our tool is publicly available at: https://www.doi.org/10.5281/zenodo.

5569447.

2 Shape Expressions

Linear shape expressions (LSE) [8] are regular expressions defined over parame-
terized linear atomic shapes, where a linear atomic shape is uniquely determined
by three parameters: slope a, (relative) offset b and duration d. LSEs can have
additional constraints over these parameters. We use the following syntax to
define the fragment of LSEs supported by ShapeIt.

shape := line(a, b, d) | shape1 + shape2 | shape1 . shape2 | (shape)*
cst := x in [c1, c2] | cst1 and cst2
SE := shape : cst

where c1 and c2 are rational constants such that c1 ≤ c2.
A LSE SE consists of two main components, a regular expression shape that

captures the qualitative aspect of the specification, and a constraint cst imposed
on the LSE parameters. Shape expressions are evaluated against finite signals –
sequences of (time, value) pairs. The semantics of LSE is defined in terms of a
noisy match relation. We say that a signal is a ν-noisy match of a linear atomic
shape, if there exists an ideal line segment with some slope a, relative offset b
and duration d such that (1) a, b and d satisfy the constraint cst, and (2) the
mean square error (MSE) between the signal segment and the ideal line segment
is smaller than or equal to ν. This definition is inductively lifted to arbitrary
LSEs. In essence, a signal is a ν-noisy match of an arbitrary LSE if there exists a
sequence of linear atomic shapes with instantiated parameters such that: (1) the
sequence is consistent with the qualitative (regular expression) part of the LSE,
(2) the instantiated parameters satisfy the LSE constraint, and (3) the signal
can be split into the sequence with the same number of segments, such that each

https://www.doi.org/10.5281/zenodo.5569447
https://www.doi.org/10.5281/zenodo.5569447

112 E. Bartocci et al.

signal segment is a ν-noisy match of its corresponding atomic shape. The formal
syntax and semantics of shape expressions are presented in [9].

3 ShapeIt Architecture, Methods and Implementation

The architecture of ShapeIt is depicted in Fig. 1. The tool consists of five com-
ponents: (1) segmentation, (2) abstraction, (3) clustering, (4) automata learning
and (5) translation from automata to regular expressions. ShapeIt is imple-
mented in Python 3 with the use of external Python and Java libraries.

Fig. 1. Overview of ShapeIt workflow.

Segmentation module implements the piecewise-linear approximation algorithm
with quadratic complexity from [9] that given a time series and a mean square
error (MSE) threshold computes the minimal sequence of segments such that
for each segment of data, its linear regression MSE is below the threshold. The
input of this module is a set of time-series and the output is a set of line segment
sequences, where each line segment is characterized by slope, relative offset and
duration parameters.

Abstraction and clustering module takes as input the set of line segments
(computed by the segmentation module) and uses the k-Means clustering imple-
mentation from the scikit-learn library1 to group lines with similar parameters.
The user specifies a threshold on the derivative of the Within-Cluster-Sum-of-
Squares (WCSS) error measure to determine the optimal number of clusters.
The tool defines a finite alphabet in which each letter is associated to a different
cluster. Each letter is also assigned the minimal bounding cube that contains all
the points in its corresponding cluster. Each line segment is mapped to a letter
in the alphabet, resulting in a set of finite words.

Automata learning module applies the Regular Positive and Negative Infer-
ence (RPNI) algorithm for passive learning from positive examples, implemented
in the Java learnlib library2, to infer a deterministic finite automaton (DFA) from
1 https://scikit-learn.org/stable/.
2 https://learnlib.de/.

https://scikit-learn.org/stable/
https://learnlib.de/

Mining Shape Expressions with ShapeIt 113

a set of finite words. The integration of the Java library in our Python imple-
mentation is done using the JPype library.3

DFA to shape expressions module implements the algorithm for translating
DFAs to regular expressions using the state elimination method. The NetworkX
library4 is used to represent and manipulate DFAs during the translation.

4 Evaluation

In the following, we evaluate the applicability of ShapeIt5 to find temporal
patterns over different time-series datasets stored in the UCR Time Series Clas-
sification Archive [10]. Our experiments run on a Notebook Dell Latitude 5320,
Intel Quad-Core i7-1185G7 (3,00 GHz/Turbo 4,80 GHz), RAM 32 GB. ShapeIt
software components run on Python version 3.8.8 and on Java version 16.0.2.
For all the experiments we set to 10 the threshold on the derivative of the WCSS
error discussed in Sect. 3.

Fig. 2. (Left) An example of piece-wise linear approximation of a trace in Wine dataset
with εmax = 0.05 (Right) Generated Linear Shape Expression.

traces |w| ts(s) tc(s) tl(s) ttotal(s)

1 10 2.205 · 10−4 1.100 · 10−6 3.499 · 10−4 5.724 · 10−4

1 100 7.173 · 10−2 4.968 · 10−3 3.727 · 10−4 7.707 · 10−2

1 234 4.227 · 10−1 5.195 · 10−3 4.319 · 10−4 4.283 · 10−1

10 10 1.993 · 10−3 4.932 · 10−3 4.175 · 10−4 7.281 · 10−3

10 100 7.232 · 10−1 5.114 · 10−3 7.976 · 10−4 7.183 · 10−1

10 234 4.353 1.176 · 10−2 1.537 · 10−3 4.366

57 10 1.21 · 10−2 7.594 · 10−3 6.122 · 10−4 2.039 · 10−2

57 100 4.110 2.954 · 10−2 2.188 · 10−2 4.161

57 234 2.934 · 10 2.983 · 10−2 4.201 · 10−3 2.937 · 10

Table 1. Computational cost of ShapeIt.

Wine dataset This
dataset [10] consists
of 111 traces, repre-
senting the food spec-
trograph of two kinds
of wine. We consider
only one class of wine
data, containing 57
traces of length 234
samples (Fig. 2 shows
one example).

By setting the max-
imum error threshold

3 https://jpype.readthedocs.io/en/latest/.
4 https://networkx.org/.
5 commit in the repository used: d92341998d66615cf6a9c4f3bcc419df4cd988b6.

https://jpype.readthedocs.io/en/latest/
https://networkx.org/

114 E. Bartocci et al.

εmax to 0.05 (a little insight into how the learned specification varies depending
on this value can be found in Table 2), ShapeIt obtains an alphabet of four let-
ters, each one describing a set of segments characterized by the values of slope,
relative offset and duration reported in Fig. 2.

The concatenation of letters D and A represents the peaks that appear in
the shape (see Fig. 2), in which D describes the rising part (with positive slope)
and A the decreasing one (with negative slope). Letter C represents the approxi-
mately constant part of the trace that separates the two peaks, while B describes
the two extremes (they are both decreasing segments but less steep than the ones
that come after the peaks’ maxima).

In this particular application the values of slopes would be able to distinguish
the different letters by their own: the intervals of slopes are indeed disjoint. The
same happens for the relative offset but not for the duration.

ShapeIt generates an LSE specification (see Fig. 2) that captures the two
main peaks of the trace, but it is not able to recognize the little one that comes
immediately after the first peak. The maximum error threshold εmax should be
reduced if one is interested in detecting also this little curve.

εmax ϕ & clusters

0.05 B · D · A · C · D · A · B 4

0.1 F · E · G · I · H · F 5

0.5 K · (L + M) 3

Table 2. Sensitivity w.r.t. εmax

In Table 1, we report the time (expressed
in seconds) required by the tool to com-
plete the three different phases: segmen-
tation (ts), clustering (tc) and automata
learning (tl). In the last column, ttotal sum-
marizes the total time needed. Varying the
number of traces and their lengths, we can
observe that almost always the segmentation represents the most expensive part
of the computation, while the clustering and the automata learning can be both
considered negligible in terms of computation time. The only exceptions are the
two cases in which the total number of traces is 1 or 10 with traces long only
10: the values of ts, tc and tl are comparable since the segmentation is very fast
due to the low number of samples to approximate.

In Table 2, we compare the specifications learned varying the maximum error
threshold εmax from 0.05 to 0.5. The number of clusters does not decrease mono-
tonically when increasing the maximum error allowed in the segmentation, while
the specifications become shorter and therefore have less explanatory power.

Fig. 3. (Left) Example of time series generated from the fish contour (see Fig. 20 of [11]
for more details). (Right) Generated Linear Shape Expression.

Mining Shape Expressions with ShapeIt 115

Fish Data Set. This data set [10] is composed by 350 time series representing the
shape of seven different species of fishes (chinook salmon, winter coho, brown
trout, Bonneville cutthroat, Colorado River cutthroat trout, Yellowstone cut-
throat and mountain whitefish). Starting from 50 images for each class, Lee et
al. in [12] generated the data set leveraging a novel technique that transforms
the contour of the fish into a time series (see Fig. 3 on the left) using a turn-angle
function as illustrated in [11]. Setting to 0.05 the maximum threshold error, with
ShapeIt we are able to learn a specification (Fig. 3 on the right) from 26 shapes
of the same species of fish, each one containing 463 samples.

The concatenation of letters B and A represents the predominant shape in
the traces: the triangular repeating behavior where, in particular, A describes
the rising part and B the descending one (see Fig. 3). Letter C is instead used to
symbolize the noisy parts, both with positive and negative slope, that eventually
separates these longer segments. The choice operator (+) represents the possi-
bility to have multiple symbols or expressions in different time series. Finally,
the Kleene star (∗) is used to indicate that a symbol or an expression can appear
zero or more times.

The learned specification provides insights about the relevant shapes in the
time series data, displaying them in an human understandable language and
therefore offering interpretability to the user. In this example, referring to the
fish image in Fig. 3 on the left, we can associate the concatenation of letters B
and A in the specification to the upper contour of the fish silhouette that is
starting from the head and is ending with the tail. Since the same concatenation
is then repeated in the specification, we can infer that the contour of the lower
part of the fish is not significantly different from the upper one. Finally, letter C
can be interpreted as the presence of a big fin that interrupts the predominant
lines described by letters A and B.

5 Conclusion and Future Work

In this paper, we presented ShapeIt, a tool for mining specifications that
describe the behaviors of CPS. The tool requires a set of real-valued signals
generated by the system under study as input and it returns as output the spec-
ification that better summarize the properties of the traces in the form of linear
shape expression. ShapeIt is structured in three phases: segmentation (approx-
imating the traces with segments), abstraction and clustering (grouping lines
with similar parameters) and automata learning (learning a DFA from words).
Two additional values are needed as inputs to regulate the first two processes:
a threshold expressing the maximum error allowed by the approximation and a
threshold for the WCSS error to find an optimal number of clusters. We demon-
strated the applicability of our tool over two different case studies (Wine and
Fish) but other datasets are present in our repository. These data can be used
as well to do experiments and gain confidence with ShapeIt.

As possible future works, we are interested in exploring and learning
more general Shape Expressions (not necessarily linear ones), probably gain-
ing explanatory power at the cost of an increasing computation time. We will

116 E. Bartocci et al.

also study how to automatize the tuning of the two thresholds required by the
tool for the segmentation and the clustering phases. In this paper, the segmenta-
tion tool finds automatically the optimal number of segments to be used for the
approximation, given a maximum error allowed. However it has already been
developed to work in the other way round: receiving the number of required
segments as input and then finding the approximation that provides the mini-
mum error. It will be therefore interesting to exploit this feature to embed some
domain knowledge (in the form of number of segments) in the specification min-
ing process. A step forward will be adding the possibility to set constraints to
the parameters of the lines. Finally, an other direction of work could be trying
to generalize the tool in order to make it able to handle online processes instead
of only offline ones.

References

1. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm
for learning temporal specifications from data. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 323–338. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 20

2. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Proceedings of FORMATS, pp. 23–37 (2014)

3. Wang, F., Cao, Z., Tan, L., Zong, H.: Survey on learning-based formal methods:
taxonomy, applications and possible future directions. IEEE Access 8, 108561–
108578 (2020)

4. Bartocci, E., Ferrère, T., Manjunath, N., Nickovic, D.: Localizing faults in
Simulink/state flow models with STL. In: HSCC, pp. 197–206, ACM (2018)

5. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. IEEE TCAD 34(11), 1704–1717 (2015)

6. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Ničković, D.: Automatic
failure explanation in CPS models. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM
2019. LNCS, vol. 11724, pp. 69–86. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30446-1 4

7. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

8. Ničković, D., Qin, X., Ferrère, T., Mateis, C., Deshmukh, J.: Shape. In: Finkbeiner,
B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 292–309. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32079-9 17

9. Bartocci, E., Deshmukh, J., Gigler, F., Mateis, C., Nickovic, D., Qin, X.: Mining
shape expressions from positive examples. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 39(11), 3809–3820 (2020)

10. Chen, Y., et al.: The UCR time series classification archive. July 2015. www.cs.
ucr.edu/∼eamonn/time series data/

https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-030-30446-1_4
https://doi.org/10.1007/978-3-030-30446-1_4
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-030-32079-9_17
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

Mining Shape Expressions with ShapeIt 117

11. Ueno, K., Xi, X., Keogh, E., Lee, D.-J.: Anytime classification using the nearest
neighbor algorithm with applications to stream mining. In: Sixth International
Conference on Data Mining (ICDM 2006), pp. 623–632 (2006)

12. Lee, D.J., Archibald, J.K., Schoenberger, R.B., Dennis, A.W., Shiozawa, D.K.:
Contour matching for fish species recognition and migration monitoring. In:
Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.) Applications of Compu-
tational Intelligence in Biology. Studies in Computational Intelligence, vol. 122, pp
183-207. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78534-
7 8

https://doi.org/10.1007/978-3-540-78534-7_8
https://doi.org/10.1007/978-3-540-78534-7_8

Security and Privacy

Refining Privacy-Aware Data Flow
Diagrams

Hanaa Alshareef1(B) , Sandro Stucki1 , and Gerardo Schneider2

1 Chalmers University of Technology, Gothenburg, Sweden
{hanaa,sandros}@chalmers.se

2 University of Gothenburg, Gothenburg, Sweden
gersch@chalmers.se

Abstract. Privacy, like security, is a non-functional property, yet most
software design tools are focused on functional aspects, using for instance
Data Flow Diagrams (DFDs). In previous work, a conceptual model
was introduced where DFDs were extended into so-called Privacy-Aware
Data Flow Diagrams (PA-DFDs) with the aim of adding specific pri-
vacy checks to existing DFDs. An implementation to add such automatic
checks has also been developed. In this paper, we define the notion of
refinement for both DFDs and PA-DFDs as a special type of structure-
preserving map (or graph homomorphism). We also provide three algo-
rithms to find, check and transform refinements, and we show that the
standard diagram “transform→refine/refine→transform” commutes. We
have implemented our algorithms in a proof-of-concept tool called DFD
Refinery , and have applied it to realistic scenarios.

Keywords: Privacy by design · DFDs · GDPR · Refinement

1 Introduction

Privacy compliance has become a primary concern for most companies since the
enactment of strong and demanding regulations on personal data protection,
such as the European General Data Protection Regulation (GDPR) introduced
few years ago [16]. Enforcing privacy compliance, however, is not easy. Indeed,
privacy refers to a whole family of properties, including confidentiality, secrecy,
data minimization (DM), privacy impact assessment (PIA), user consent, the
right to be forgotten, purpose limitation, and more. Furthermore, even for spe-
cific properties, privacy compliance is in general undecidable [28,30].

A good practice to handle the “privacy problem” is to follow the Privacy by
Design (PbD) principle [11], where privacy is taken into account from the very
beginning of the software development process. This approach has been shown
to make the problem of privacy compliance more tractable [13].

This research has been partially supported by the Cultural Office of the Saudi Embassy
in Berlin, Germany and by the Swedish Research Council (Vetenskapsr ↪adet) under
Grant 2018-04230 “Perspex”.

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 121–140, 2021.
https://doi.org/10.1007/978-3-030-92124-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_8&domain=pdf
http://orcid.org/0000-0002-0338-2839
http://orcid.org/0000-0001-5608-8273
http://orcid.org/0000-0003-0629-6853
https://doi.org/10.1007/978-3-030-92124-8_8

122 H. Alshareef et al.

One such PbD approach was introduced by Antignac et al. [6,7], who pro-
posed a technique based on model transformation for automatically adding pri-
vacy checks to Data Flow Diagrams (DFDs). They considered an extension
of DFDs called Business-oriented Data Flow Diagrams (B-DFDs) and further
extended them with checks for specific privacy concepts, namely retention time
and purpose limitation. These checks are automatically added for each operation
on sensitive (personal) data (storage, forwarding, and processing of data). The
enhanced diagram is called a Privacy-Aware Data Flow Diagram (PA-DFD). In
that proposal, the software engineer designs a B-DFD, pushes a button to obtain
a PA-DFD, inspects it manually, with the aim to generate a program template
from the PA-DFD to guide the programmer in the concrete implementation of
the privacy checks. Antignac et al. outlined their transformation from B-DFDs
to PA-DFDs through set of high-level graphical “rules”. A full algorithm and
reference implementation were later provided by Alshareef et al. [5].

B-DFDs have been shown to be useful for software engineers when designing
functional properties, and the privacy-enhanced PA-DFDs are a step towards
adding specific non-functional aspects to such designs.

One issue with B-DFDs (and PA-DFDs) is that they may become big when
modeling real-life systems. The traditional solution to pragmatically circumvent
this problem is to either compose smaller processes, following a bottom-up app-
roach, or to start from a high-level design consisting of composite processes that
are later refined into more detailed processes, following a top-down approach.
In both cases, there is a need to relate different levels of abstraction. To do so
we should have a precise definition of refinement, and a rigorous methodology
to check and obtain suitable refinements preserving relevant properties.

In this paper, we are concerned with the formal refinement of both B-DFDs
and PA-DFDs. Concretely, we make the following contributions:
1. We propose a notion of refinement for both B-DFDs and PA-DFDs, for-

malizing the comparison of different levels of abstractions of such diagrams.
Our notion of refinement is declarative and applies both to top-down and
bottom-up refinement; for PA-DFDs, it preserves privacy and types. Fur-
thermore, our notion of refinement has the property that it commutes with
transformation (from B-DFDs to PA-DFDs). Although many informal rules
and conditions for DFD refinement have been proposed and discussed in the
software engineering literature, ours is, to the best of our knowledge, the first
formal definition of DFD refinement. Though we are primarily interested in
its applications to B-DFDs and PA-DFDs, we think that it is flexible enough
to be extended to many other flavors of DFDs. (Sect. 3.)

2. We provide three algorithms:
(a) Refinement Checking. Given abstract and concrete B-DFDs, and a can-

didate mapping, our refinement checking algorithm assesses whether the
mapping is a refinement according to our formal definition. (Sect. 3.2.)

(b) Refinement Search. This algorithm takes partial (incomplete) mappings
and proposes possible extensions to produce a complete refinement. When
starting from an empty mapping, it produces all possible refinements
between the abstract and concrete B-DFDs. (Sect. 3.2.)

Refining Privacy-Aware Data Flow Diagrams 123

Fig. 1. Excerpts from DFDs modeling an e-store ordering system.

(c) Refinement Transformation. It is essential that privacy checks are pre-
served by refinements of PA-DFDs. Our third algorithm takes a (correct)
mapping between abstract and concrete B-DFDs, and transforms it into a
refinement between the corresponding PA-DFDs obtained by transform-
ing the abstract and concrete B-DFDs. The resulting refinement ensures
that all privacy checks between the abstract and concrete PA-DFDs are
preserved. (Sect. 3.3.)

3. We have implemented the above algorithms in Python as part of a proof-
of-concept tool called DFD Refinery (Sect. 4), and have applied it to a case
study on an automated payment system (Sect. 5.)

2 Preliminaries

GDPR. The European General Data Protection Regulation (GDPR) contains
99 articles regulating personal data processing. It is organized around a number
of key concepts, most notably its seven principles relating to personal data pro-
cessing, the rights of data subjects and six lawful grounds for data processing
operations. Relevant to this paper are the principles of purpose limitation (data
may only be used for purposes to which the data subject consented) and account-
ability, as well as the right to be forgotten and the lawful ground of consent. See
[16] and [23] for more details on the GDPR.

Data Flow Diagrams (DFDs). A data flow diagram (DFD) is a graphi-
cal representation of how data flows among software components. As shown in
Fig. 1, DFDs are composed of activators and flows. Activators can be exter-
nal entities (rectangles), processes (ellipses) and data stores (double horizontal
lines). Processes may represent detailed low-level operations or complex high-
level functionality that could be refined into sub-processes (the latter are drawn
as double-lined ellipses). Data flow is represented by arrows.

Antignac et al. [6,7] extended DFDs with a data deletion type of flow and a
data structure to specify personal data: (i) the owner of personal data, (ii) the
purpose for which the data can be used as consented by the data subject, and
(iii) the retention time for the data. This extension is referred to as Business-
oriented DFD (B-DFD). Note that the data structure associated with B-DFDs
is not relevant here.

124 H. Alshareef et al.

Fig. 2. Selection of B-DFD flow types and corresponding transformation rules [5].

Adding Privacy Checks to DFDs. Antignac et al. [6,7] further extended
B-DFDs with privacy checks for purpose limitation and retention time, as well
as privacy mechanisms to ensure accountability and policy management. The
resulting diagrams are called Privacy-Aware Data Flow Diagrams (PA-DFDs).
Building on that work, we defined and implemented an algorithm for transform-
ing B-DFDs into PA-DFDs [5]. The transformation is rule-based, with one rule
for every type of B-DFD flow.

Figure 2 shows a subset of basic B-DFD flow types and the corresponding
transformation rules. (The remaining rules, which cover composite activators,
are given in Appendix A.) The right-hand side of each rule shows the PA-DFD
corresponding to the original B-DFD flow; it extends the original flow with new
activators and flows implementing the necessary privacy mechanisms.

To represent these mechanisms, the set of activator types in PA-DFDs is
augmented with five novel “Process” subtypes: “Limit”, “Reason”, “Request”,
“Log” and “Clean”. “Limit” activators implement the principle of purpose limi-
tation: they inspect whether the consent given by the data subject is compatible
with the action of a downstream process and discard data values for which this
is not the case. The corresponding policy is supplied by a “Request” activator.
“Log” activators store the decisions of “Limit” activators (and the associated
data) in a dedicated data store, ensuring the principle of accountability. The
“Reason” activator is used to get an updated policy “pol” corresponding to
a newly computed data value. Finally, “Clean” ensures that personal data is
eliminated from the data store upon expiry, guaranteeing data retention policy.

To illustrate our transformation, consider the B-DFD shown in Fig. 1a and
(part of) its corresponding PA-DFD in Fig. 1b. The two rules for the flow types
in and comp have been applied to a subset of the B-DFD in Fig. 1a (the part
inside the dashed line). Consider the in flow labeled “Customer Information”,
and the corresponding PA-DFD elements shown in the right half of Fig. 1b. In

Refining Privacy-Aware Data Flow Diagrams 125

addition to the original “Customer Info” data, the external entity “Customer” in
the PA-DFD now also provides an associated privacy policy information “pol”.
The data flows to the “Limit” process which verifies that the data subject has
consented to the use of “Customer Info” for downstream processing. The consent
is specified in the policy “pol”, received via the “Request” process. The data
value, its policy and the verdict (“v”) of the “Limit” process are all logged by the
“Log” process in the “Log” store. If the verdict is positive, the data and policy
are forwarded to the process “Get Customer Information” and its associated
“Reason” process, respectively. The latter computes the updated privacy policy
information associated with the output flow “Create Account”.

For details about PA-DFDs and our transformation, see Alshareef et al. [5].

Hierarchical Modeling (Refinement of DFDs). Refinement is a method
used to relate the abstract model of a software system to another more concrete
model while maintaining the abstract model’s properties [1]. It is applicable to
system artifacts ranging from modeling and design levels to implementation and
programming levels. It is typical to specify invariants that define the properties
of the system being modeled at the most abstract level. These invariants must
be preserved by all the refined versions of the model.

Concerning refinement in DFDs, several works discuss leveling (hierarchical
modeling) and informal consistency rules [14,29,33]. The highest level of DFD
shows all external entities and the primary data flows between the external
entities and a system, represented as one composite process. This level is called
Context Diagram. It is typically decomposed into a lower-level diagram, called
the Level 0 DFD, which can be further decomposed into a Level 1 DFD, and so
on. There are two standard rules for ensuring consistency. First, every process,
data store and external entity on an abstract level is shown on a refined level
(balancing rule). Second, the input and output data flows specified in an abstract
level must hold on its refined version (preservation of connectivity). We formalize
these rules (and others) in the next section.

3 Refining B-DFDs and PA-DFDs

3.1 Refinement of Attributed Multigraphs

Following our previous work on PA-DFDs [5], we formally represent DFDs as
attributed multigraphs with activators as nodes and flows as edges.

Definition 1. An attributed multigraph (or simply graph) G is a tuple G =
(N,F,A,V, s, t, �N , �F) where N, F, A and V are sets of nodes, edges, attributes
and attribute values, respectively; s, t : F → N are the source and target maps;
�N : N → (A ⇀ V) and �F : F → (A ⇀V) are attribute maps that assign values
for the different attributes to nodes and flows, respectively.

Examples of attributed multigraphs are shown in Fig. 3. The graph G1 has nodes
N = {E1,E2,CP1} and edges F = {d.1, . . . ,d.4}. G1 is a multigraph since both
edges d.1 and d.2 connect the same source and target nodes: s(d.1) = s(d.2) = E1

126 H. Alshareef et al.

Fig. 3. Example of B-DFDs levels

and t(d.1) = t(d.2) = CP1. Attributes allow us to specify properties of activators
and flows, such as their type or associated privacy information. For example, the
graph G1 has two kinds of nodes, external entities and composite processes. We
formalize this by defining its attribute and value sets as A = {type} and V =
{ext, cproc}, and its node attribute map as �N(E1)(type) = �N(E2)(type) = ext
and �N(CP1)(type) = cproc. Note that the attribute maps are partial, i.e., nodes
and edges may lack values for certain attributes. If we extend the value set V
with types for processes (proc) and data stores (db), we can encode the graphs
G2 and G3 shown in Fig. 3 similarly.

Henceforth, we use the letters n, m to denote nodes and e, f to denote edges.
We write e : n � m to indicate that e has source s(e) = n and target t(e) = m.
For example, we have d.1 : E1 � CP1 in G1. We use “.” to select attributes,
writing n.a for �N(n)(a) and f.a for �F(f)(a). For example, E1.type = ext in G1.
The set S(G) ⊆ N of source nodes in G is defined as S(G) = {n | ∃e.s(e) = n};
similarly, T (G) denotes the set of target nodes in G.

The characteristic property of a refinement is that it preserves the essential
structure of some abstract object in a more concrete (or refined) object. Since we
model DFDs as graphs, it is therefore natural to represent refinements of DFDs
as structure preserving maps, so-called graph homomorphism, between concrete
and abstract graphs.

Definition 2. Let G and H be attributed multigraphs with the same sets of
attributes AG = AH and values VG = VH . A homomorphism h : G → H from
G to H is a pair of maps hN : NG → NH and hF : FG → FH , such that, for all
nodes n, edges e and attributes a,

hN(sG(e)) = sH(hF(e)) hN(tG(e)) = tH(hF(e)) (1)
n.a = hN(n).a e.a = hF(e).a (2)

Condition (1) says that h preserves the connective structure of G in H; condi-
tion (2) says that h preserves attributes.

Conditions (1) and (2) are a bit too restrictive to represent DFD refinements.
To see this, consider again the graphs G1, G2 and G3 shown in Fig. 3. Intuitively,
G2 refines G1 and G3 refines G2, so we would like to show that there are homo-
morphisms g : G3 → G2 and h : G2 → G1. But this is not the case. There are

Refining Privacy-Aware Data Flow Diagrams 127

Fig. 4. The subtyping preorder �

obvious candidate maps hN and hF , represented using dotted arrows in Fig. 3,
but the map hN violates condition (2) because it does not strictly preserve the
type of P1.1. Concretely, we have CP1.type = cproc �= proc = hN(P1.1.type).
There is a similar problem if we try to map the lower processes and data store in
G3 to the composite process in G2 as shown in the figure. In addition, there is no
way to map the bold flows (d.5 and d.6) in G3 to flows in G2 without violating
condition (1). It may be tempting to define gN(P1.2.1) = gN(P1.2.2) = CP1.2,
as shown via the dotted arrows, but by (1) this would require hF(d.5) : CP1.2 �
CP1.2, which is impossible since the node CP1.2 has no loops, i.e., edges con-
necting CP1.2 to itself. (Indeed loops are forbidden in DFDs).

We address these two issues separately. First, we relax condition (2). We want
to allow refinements to weakly preserve attributes (such as types). Concretely,
we wish to treat processes and databases as subtypes of composite processes. To
this end, we define a preorder � ⊆ V × V on the set of types, according to the
Hasse diagram shown in Fig. 4a, and weaken condition (2) in Definition 2 to

n.a � hN(n).a e.a � hF(e).a (3)

for all nodes n, edges e and attributes a. Note that this condition extends to
attributes other than types, provided the preorder � is extended appropriately. A
homomorphism h : G → H is called lax if it fulfills (3) and strong if it fulfills (2).
Clearly, every (strong) homomorphism is also a lax homomorphism.

To allow “internal” edges like d.5 and d.6 in refinements without adding
explicit loops in DFDs, we further adjust the definition of homomorphisms by
introducing implicit loops.

Definition 3. Let G and H be attributed multigraphs with the same sets of
attributes AG = AH and values VG = VH , and let � ⊆ VG × VG be a preorder
on values. An abstraction α : G → H from G to H consists of a total map
αN : NG → NH and a partial map αF : FG ⇀FH , such that, for all n, e and a,

αN(sG(e)) = sH(αF(e)) and αN(tG(e)) = tH(αF(e)) if e ∈ dom(αF),
αN(sG(e)) = αN(tG(e)) otherwise. (4)

n.a � αN(n).a and e.a � αF(e).a if e ∈ dom(αF). (5)

An abstraction is balanced if αN and αF are surjective.

128 H. Alshareef et al.

Given an abstraction α : G → H, we call G the concrete graph and H the
abstract graph of α, and we say that G refines H or that G is a refinement of H.
Unless otherwise noted, we assume that all abstractions are balanced. If αF is
undefined for an edge e, i.e., e /∈ dom(αF), we say that e is internal. Intuitively,
an internal edge e : n1 � n2 in G is mapped to an abstract edge “inside” the
node m = αN(n1) = αN(n2) in H. For example, in Fig. 3, the internal edge d.5
in G3 is mapped to an abstract edge hidden inside the composite process CP1.2.

It is easy to verify that every graph G refines itself via the identity abstrac-
tion idG = (idNG

, idFG
), and that the composition of the maps underlying two

abstractions α : G → H and β : H → I induces an abstraction (β ◦ α) : G → I.

A Note on Terminology. We deliberately chose the term abstraction rather than
refinement for α : G → H to avoid confusion. Although every abstraction cor-
responds to a refinement, some readers may find it more intuitive to think of a
“refinement from G to H” as a process that takes an abstract G and produces
a concrete refinement H of G with a corresponding abstraction α : H → G. In
other words, abstractions go in the opposite direction of refinements. We con-
tinue to use the term “refinement” informally when there is no risk of confusion
(e.g., to say that G is a refinement of H) but avoid its use in formal statements.

3.2 B-DFD Refinement

A B-DFD is an attributed multigraph with a fixed choice of attributes A =
{type} and values V = Tdn 	 Tdf . The set of data node types Tdn, the set of
data flow types Tdf and the associated subtyping order � are shown in Fig. 4.
Since the type attribute plays an important role in B-DFDs (and PA-DFDs), we
introduce shorthands for typing activators and flows. We write n : t to abbreviate
n.type = t, and f : n �t m to indicate that f : n � m and f.type = t.

We require that B-DFDs be well-formed. First, the type t of a flow f : n �t m
determines the types n.type and m.type of its source and target activators. The
valid combinations of source, target and flow types are shown on the left-hand
side of Figs. 2, 8 and 9. In addition to these flow typing constraints, we adopt
the standard rules from the DFD literature for well-formed B-DFDs: diagrams
should not contain loops (flows with identical source and target activators), acti-
vators cannot be isolated (disconnected from all other activators), and processes
must have at least one incoming and outgoing flow (see e.g., [15,18]).

Definition 4. A well-formed B-DFD is an attributed multigraph G, where AG

= {type} and VG = Tdn 	 Tdf . In addition, for all flows f and activators n, m,

– n.type ∈ Tdn and f.type ∈ Tdf ;
– if f : n �in m then n : ext and m : proc;
– if f : n �out m then n : proc and m : ext;
... (12 more flow typing conditions, as shown in the LHS of Figs. 2, 8 and 9)
– if f : n �comp m or f : n �ccompc m then n �= m;
– if n : cproc or n : proc then n ∈ S(G) and n ∈ T (G)
– if n : ext or n : db then n ∈ S(G) or n ∈ T (G)

Refining Privacy-Aware Data Flow Diagrams 129

An abstraction α : G → H between B-DFDs G and H is just an abstraction
of the underlying attributed multigraphs with the additional condition that the
source (and target) of internal edges need to be composite processes,

αN(s(f)).type = cproc and αN(t(f)).type = cproc if f /∈ dom(αF).

In earlier work, we described a Type-inference algorithm for checking the well-
formedness of B-DFDs [5]. Here we introduce algorithms for checking the validity
of a given abstraction map between abstract and concrete B-DFDs and for find-
ing all possible abstraction maps between a pair of B-DFDs.

Checking Refinements. Assume we are given a pair of well-formed B-DFDs G
and H, and we wish to establish that G refines H. How might we proceed?
We may start by defining a pair αN , αF of maps relating the concrete B-DFD
G to the abstract B-DFD H. To guarantee the preservation of the connective
structure and types, we need to check that the given maps form an abstraction.
This is the purpose of the Refinement Checking algorithm (Algorithm 1).

Our tool detects and reports any violations of the abstraction conditions (4)
and (5). In addition, DFD Refinery can suggest corrections for broken abstrac-
tion maps based on the given abstract and concrete B-DFDs.

Finding Refinements. The Refinement Checking algorithm works when abstrac-
tion maps are already available. However, defining such maps manually is a
tedious and error-prone task, especially for large systems. Hence, rather than
leaving it to software designers, we automate it. In general, there are several
ways to relate an abstract model to a concrete model while maintaining the
abstract model’s properties. An refinement search algorithm should thus report
all possible refinements and allow the designer to select the right one.

Algorithm 1: Refinement Checking

input : B-DFDs G, H and maps αN : NG → NH , αF : FG ⇀ FH .
output : An error message in case of failure.

1 foreach f : m � n ∈ FG do
2 m′ ← αN(m); n′ ← αN(n);
3 if f /∈ dom(αF) then
4 if n′ �= m′ ∨ n′.type �= cproc then
5 Error: “mapping of internal f is not internal”;

6 else
7 f ′ ← αF(f);
8 if sH(f ′) �= m′ ∨ tH(f ′) �= n′ then
9 Error: “mapping f to αF(f) does not preserve connections”;

10 else if f.type �� f ′.type ∨ m.type �� m′.type ∨ n.type �� n′.type then
11 Error: “mapping f to αF(f) does not preserve types”;

130 H. Alshareef et al.

Function ExtendPartial(G, H, αN , αF , U) – extend partial abstractions.
input : B-DFDs G and H, partial maps αN : NG ⇀ NH , αF : FG ⇀ FH , and a

set of unmapped flows U ⊆ FG.
output : A set of abstractions from G to H.

1 if U = ∅ then — have all flows been mapped?
2 return {(αN , αF)}
3 else
4 f : m � n ← an arbitrary flow in U ;
5 U ′ ← U \ {f};
6 L ← ∅; — initialize result set
7 foreach m′ ∈ NH do — find extension where f is internal

— check if the candidate conflicts with existing mappings of m and n
8 if (m ∈ dom(αN) ∧ αN(m) �= m′) ∨ (n ∈ dom(αN) ∧ αN(n) �= m′) then
9 continue;

— check types
10 if m′.type �= cproc ∨ m.type �� cproc ∨ n.type �� cproc then
11 continue;

12 α′
N ← αN ∪ {m �→ m′, n �→ m′}; — compute updated node map

13 L′ ← ExtendPartial(G, H, α′
N , αF , U ′); — extend the new mapping

14 L ← L ∪ L′;

15 foreach f ′ : m′ � n′ ∈ FH do — find candidates in H for mapping f
— check if the candidate conflicts with existing mappings of m and n

16 if (m ∈ dom(αN) ∧ αN(m) �= m′) ∨ (n ∈ dom(αN) ∧ αN(n) �= n′) then
17 continue;

— check types
18 if f.type �� f ′.type ∨ m.type �� m′.type ∨ n.type �� n′.type then
19 continue;

20 α′
N ← αN ∪ {m �→ m′, n �→ n′}; — compute updated maps

21 α′
F ← αF ∪ {f �→ f ′};

22 L′ ← ExtendPartial(G, H, α′
N , α′

F , U ′); — extend the new mapping
23 L ← L ∪ L′;

24 return L;

The Refinement Search algorithm takes a pair of abstract and concrete B-
DFDs and computes the full set of abstractions between them. We first define
a helper function (ExtendPartial) to extend partial abstractions. The function
takes a pair of B-DFDs G, H, a pair of partial abstraction maps αN , αF and a set
U ⊆ FG of unmapped flows, i.e., those flows for which we wish to find candidate
mappings. The function returns the set of all possible abstractions from G to
H that extend (αN , αF). It does so using a naive, depth-first branch-and-bound
strategy: it picks an unmapped flow f ∈ U , finds all candidate mappings for
f , adds them to αN , αF , and recursively extends them. The Refinement Search
algorithm then consists of a single call to ExtendPartial(G,H, ∅, ∅,FG),

Refining Privacy-Aware Data Flow Diagrams 131

Note that the ExtendPartial function does not check whether the resulting
abstractions are balanced (i.e., that all the maps involved are surjective). Hence,
there is no guarantee that all nodes and flows in the abstract B-DFD actually
have a refinement in the concrete B-DFD – the concrete diagram could just be a
refinement of a subset of the abstract diagram. However, a balance check can eas-
ily be added via a post-processing phase that removes non-balanced abstractions
(and we have implemented such a check in DFD Refinery).

3.3 PA-DFD Refinement

The primary difference between B-DFDs and PA-DFDs is that the latter contain
additional activators and flows that implement privacy checks. We distinguish
between three kinds of PA-DFD activators and flows: those that were already
present in B-DFDs, called data flows and nodes (e.g., processes and data stores);
those that handle and carry policy information, called policy flows and nodes
(e.g., limit and reason processes); and those that track and manage system events,
called admin flows and nodes (e.g., log processes and data stores). Some types
of activators play multiple roles, e.g., a limit process is both a data and a policy
node since it handles both data and policy information.

As with B-DFDs, we use attributed graphs to represent PA-DFDs formally.

Definition 5. Define the set Tpn = {limit, request, reason, policy-db} of policy
node types and the set Tan = {log, log-db, clean} of admin node types. A PA-
DFD is an attributed graph G, where A = {type, partner} and V = Tdn 	 Tpn 	
Tan 	 {pf, df} 	 N. In addition, the following must hold:

– n.type ∈ Tdn 	 Tpn 	 Tan and f.type ∈ {pf, df};
– if n.partner is defined, then n.partner ∈ N.

The partner attribute is used by the transformation algorithm and can be
ignored for the purposes of this paper (cf. [5]). In principle, the flows of PA-
DFDs ought to be subject to similar typing conditions as those for well-formed
B-DFDs. Following the principle used for well-formed B-DFDs, we could type
each flow based on the types of its source and target. For example, the flows
connecting request to limit activators could be given type reqlim. This would
result in twenty-two new flow types. To simplify presentation, we instead use
just two flow types for PA-DFDs: plain flows (pf) and deletion flows (df).

All the new node types are special kinds of processes or data stores and, as
such, are considered subtypes of composite processes. To reflect this, we extend
the subtyping relation as follows:

n � n n � cproc for all n ∈ Tpn 	 Tan.

An abstraction α : G → H between PA-DFDs G and H is just an abstraction on
the underlying attributed multigraphs with the extra condition that, if f : m � n
in G is internal, then αN(m) = αN(n) : cproc.

132 H. Alshareef et al.

Transforming Refinements. Having defined algorithms to check and find refine-
ments between B-DFDs in the previous section, we could now do the same for
refinements of PA-DFDs. However, the changes to the algorithms would be min-
imal and largely uninteresting. After all, PA-DFDs are still just a special type of
attributed graph, and the definition of abstractions is robust against changes in
the choice of attributes and values. Furthermore, we neither expect nor intend
software engineers to manipulate PA-DFDs manually: they should be automati-
cally generated from B-DFDs. The same principle should apply to refinements of
PA-DFDs: rather than manually refining an automatically generated PA-DFD,
we expect software engineers to refine an abstract B-DFD H into a concrete B-
DFD G and then automatically transform the latter into a (concrete) PA-DFD
G′. For this process to make sense, we require that the resulting PA-DFD G′ be
a refinement of the PA-DFD H ′ obtained by transforming the original abstract
B-DFD H. Diagrammatically,

(B-DFD) (PA-DFD)

(abstract) H H ′

(concrete) G G′

transform

transform

∀ α ∃ α′

In fact, the process of finding a PA-DFD abstraction α′ : G′ → H ′ corresponding
to a B-DFD abstraction α : G → H is itself a transformation (of abstractions)
that can be automated. We have defined and implemented an algorithm for this
transformation. Space constraints prevent us from reproducing the full algorithm
here, so we give instead a high-level outline and illustrate the main ideas.

To track the relationship between the nodes and flows of the original B-DFDs
G, H and the resulting PA-DFDs G′, H ′, the refinement transformation takes,
as additional inputs, four maps:

oNG
: NG′ → NG, oFG

: NG′ 	 FG′ → FG,

oNH
: NH′ → NH , oFH

: NH′ 	 FH′ → FH .

The maps keep track of which B-DFD nodes and flows resulted in the creation of
a given PA-DFD node or flow. For instance, oNG

maps every proc or reason node
n in the concrete PA-DFD G′ to the corresponding original proc node oNH

(n) in
the concrete B-DFD G. Conversely, the inverse image o−1

NG
(m) of a node m : proc

in G is a set {m1,m2} containing the pair of nodes m1 : proc and m2 : reason
created during the transformation of n. The four maps can easily be generated
as an output of the DFD transformation algorithm.

In much the same way that the transformation algorithm on DFDs first
transforms nodes and then flows, the refinement transformation first transforms
node mappings (n �→ m) ∈ αN and then the flow mappings (e �→ f) ∈ αF .

1. The transformation of the node mappings proceeds by case analysis on the
types n.type and m.type. Only a few combinations are valid. For example, if

Refining Privacy-Aware Data Flow Diagrams 133

n : proc then either m : proc or m : cproc. If m : proc, we must have o−1
NG

(n) =
{n1 : proc, n2 : reason} and o−1

NH
(m) = {m1 : proc,m2 : reason}. This results in

two new PA-DFD node mappings n1 �→ m1 and n2 �→ m2. If m : cproc instead,
then o−1

NH
(m) = {m′ : cproc}, resulting in the two new mappings n1 �→ m′ and

n2 �→ m′. The other cases are similar.
2. In a second step, we transform all the flow mappings. Because the number of

(combinations of) flow types is larger, the process is more tedious but equally
straightforward. We iterate over all e : n1 � n2 ∈ FG and check whether e
is internal. If so, e has no counterpart in the abstract B-DFD H and hence
there is no edge there to transform. Intuitively, the edge is “hidden” inside
a composite process in the abstract B-DFD H, and all the new edges and
privacy checks from the concrete PA-DFD G′ will also be “hidden” inside
a new composite process in the abstract PA-DFD H ′. Concretely, we know
that there is a node m = αN(n1) = αN(n2) with m : cproc in G. Hence,
o−1

NH
(m) = {m′ : cproc} in H, and we add mappings n′ �→ m′ for all nodes

n′ ∈ o−1
FH

(e) while leaving all edges e′ ∈ o−1
FH

(e) unmapped (they are internal).
If e is not internal, the transformation of the associated edge mapping e �→ f
resembles that for a node mapping. By case analysis on the types e.type and
f.type, we determine how the edges e and f were transformed. For example,
if e.type = store then we must have f.type ∈ {store, compc, cstore, ccompc}.
In each sub-case, o−1

FG
(e) is the set of nodes and flows produced by the store

transformation rule, while o−1
FH

(f) is a similar set of nodes and flows associated
with the transformation rule for the type f.type. In each case, there is a
straightforward mapping between the corresponding nodes and flows, based
on their type.

Our tool DFD Refinery implements the above algorithms.1

4 DFD Refinery

We have proposed a refinement framework comprising three algorithms, imple-
mented in our DFD Refinery tool: Refinement Checking, Refinement Search and
Refinement Transformation. DFD Refinery also includes an updated version of
our previous tool for transforming B-DFDs into PA-DFDs [4,5].

DFD Refinery uses draw.io, a user-friendly, easy-to-use, cross-platform and
open source third-party application for drawing DFDs. We use Henriksen’s open
source library [22] to provide additional support for manipulating DFDs. Since it
is easy to import and export diagrams from/to XML format in draw.io, our tool
processes DFD diagrams represented in an XML format and generates PA-DFD
diagrams in the same format.

The abstraction maps for B-DFDs and PA-DFD produce CSV/Text files.
Our tool is implemented in Python and has been tested on a MacBook Pro (See
footnote 1).

1 Source code available at https://github.com/alshareef-hanaa/Refining PA-DFD.

https://github.com/alshareef-hanaa/Refining_PA-DFD

134 H. Alshareef et al.

Fig. 5. Part of an automated payment system DFD: Level 0 (left) and Level 1 (right).

5 Case Study

To validate our algorithms, we have applied DFD Refinery to a realistic appli-
cation: an automated payment system. The DFD (context diagram, Level 0 and
Level 1) for this system is due to Chong and Diamantopoulos [12]; it has been
reviewed by domain experts and models a system for making automatic pay-
ments to subcontractors in a construction project. Here we consider Levels 0
and 1 of the DFD.

We start our evaluation by applying the Type-inference and Transforma-
tion algorithms from our previous work [5] to check that the input B-DFD is
well-formed and to obtain the corresponding PA-DFD. Had the designers of the
Automated Payment System provided CSV files specifying abstractions for the
three B-DFDs, we could have directly applied our Refinement Checking algo-
rithm to verify their correctness. In the absence of such files, we instead apply
our Refinement Search algorithm to the B-DFDs for Levels 0 and 1 (see Fig. 5).

The algorithm returns only one (balanced) abstraction since there is only
one proper way to map the activators and flows of Level 1 to cover those on
Level 0 according to our refinement framework. The resulting abstraction maps
the processes (“Certify Works Onsite via Oracle”, “Certify and Validate ITP”,
“Remove Smart Sensor”) on Level 1 to the composite process “Validate Com-
pleted Works” on Level 1. Then, we apply our Transformation algorithm to each
level of B-DFDs to obtain the corresponding PA-DFDs (see Figs. 6 and 7). Dur-
ing the transformation, we (automatically) create auxiliary maps to track the
relationship between B-DFDs’ activators and flows and the resulting PA-DFDs.
For instance, the process “Auto-assign Status Data” is transformed into a pro-
cess and its partner, “Reason Auto-assign Status Data”. Likewise, the flows in
the B-DFDs have their targets in the corresponding PA-DFDs. For example,
“Tracked progress flow”, which is typed as read, has seven target flows (e.g.,
“Tracked progress ?” and “Tracked progress,pol,v”) and four activators (e.g.,
“Limit2”, “Request2”). These tracking maps and the abstraction between the

Refining Privacy-Aware Data Flow Diagrams 135

Fig. 6. Part of automated payment system PA-DFD level 0

Fig. 7. Part of automated payment system PA-DFD level 1

136 H. Alshareef et al.

B-DFDs are used by the Refinement Transformation algorithm to construct a
valid abstraction between the PA-DFDs at Level 1 and Level 0. For instance,
the B-DFD abstraction shows that the internal flow “Certified ITP” on Level 1
is mapped to (a hidden flow inside) the composite process “Validate Completed
Works”.

6 Related Work

The notion of refining abstract specifications into more concrete models, and
even to executable code, is not new. Refinement has been advocated for the B
method and variants like Event-B [1–3], for the Z method (e.g., [32]) and VDM
(e.g., [25]), as well as for many other formal specification languages. In many
such languages, notably B and Z and the refinement calculus [8], the support for
refinement is considered a very important feature of the language and its design
methodology. Refinement has also been introduced for other “diagrammatic”
modeling languages, including class and use-case diagrams in UML [17].

There have been earlier attempts to formalize DFDs to reduce ambiguity
and detect inconsistency and incompleteness (e.g., [9,19–21,26,27]), and some
works provide formal techniques to support the definition of hierarchical DFDs
(e.g., [10,24,27,31]). Representing DFDs in different levels of abstraction does
not automatically guarantee consistency between the different abstract models.
Lee and Tan [27] model DFDs using Petri Nets, and thus are able to check
consistency of the DFDs by enforcing constraints on their Petri Net model.
Though theoretically interesting, we believe the approach is not of practical
use for software engineers as Petri Nets are more complicated to handle and
understand than DFDs.

The only work we are aware of that defines a notion of refinement for DFDs
is that by Ibrahim et al. [24]. Indeed, they have formalized some of the stan-
dard structured DFD rules to check the consistency of different models but only
between the context and Level 0 DFDs. Our refining framework has a simple
set of rules, including all the standard structured DFD rules, for checking if a
concrete B-DFD is consistent with its abstraction. Ours is a rule-based approach
built on the rigorous mathematical theory of graph homomorphisms, and can be
applied to any two B-DFDs at different levels of abstraction.

To the best of our knowledge, no previous work has provided a formal def-
inition of refinement for DFDs for arbitrary number of levels. Also, the notion
of refinement for PA-DFDs is completely original, preserving not only structural
and functional properties but also the underlying privacy concepts.

Refining Privacy-Aware Data Flow Diagrams 137

7 Conclusions

We have introduced abstractions as a new, formal notion of refinement for both
DFDs and PA-DFDs and showed that the standard diagram relating transfor-
mations and refinements commute. We have provided three different algorithms
for checking, finding and transforming refinements.

The Refinement Checking algorithm evaluates whether a pair of maps
between an abstract and concrete B-DFD form an abstraction. The second algo-
rithm takes a partial (or empty) abstraction between two B-DFDs and pro-
duces all possible extensions that form valid abstractions. Finally, the Refine-
ment Transformation algorithm takes an abstraction witnessing that a concrete
B-DFD refines an abstract one as its input and transforms it into an abstraction
between the corresponding PA-DFDs obtained by transforming the abstract and
concrete B-DFDs. The resulting PA-DFD abstraction witnesses that all privacy
checks between the abstract and concrete PA-DFDs are preserved.

We have implemented the refinement algorithms and evaluated them on a
case study. As future work, we intend to further extend our transformation (and
refinement) so that it also covers accountability and policy management.

A Additional Transformation Rules

Fig. 8. B-DFD flow types and corresponding transformation rules – Part 2.

138 H. Alshareef et al.

Fig. 9. B-DFD flow types and corresponding transformation rules – Part 3.

Refining Privacy-Aware Data Flow Diagrams 139

References

1. Abrial, J.R.: The B tool (Abstract). In: Bloomfield, R.E., Marshall, L.S., Jones,
R.B. (eds.) VDM 1988. LNCS, vol. 328, pp. 86–87. Springer, Heidelberg (1988).
https://doi.org/10.1007/3-540-50214-9 8

2. Abrial, J.R., Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cam-
bridge University Press, Cambridge (2005)

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to event-b. Fundamenta Informaticae 77(1), 1–28 (2007)

4. Alshareef, H., Stucki, S., Schneider, G.: Transforming data flow diagrams for pri-
vacy compliance (long version). CoRR abs/2011.12028 (2020)

5. Alshareef, H., Stucki, S., Schneider, G.: Transforming data flow diagrams for pri-
vacy compliance. In: MODELSWARD 2021, pp. 207–215. SCITEPRESS (2021)

6. Antignac, T., Scandariato, R., Schneider, G.: A privacy-aware conceptual model
for handling personal data. In: ISoLA 2016, pp. 942–957 (2016)

7. Antignac, T., Scandariato, R., Schneider, G.: Privacy compliance via model trans-
formations. In: IWPE 2018, pp. 120–126. IEEE (2018)

8. Back, R.J.R., von Wright, J.: Refinement calculus, part I: sequential nondetermin-
istic programs. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX
1989. LNCS, vol. 430, pp. 42–66. Springer, Heidelberg (1990). https://doi.org/10.
1007/3-540-52559-9 60

9. Bruza, P.D., Van der Weide, T.: The semantics of data flow diagrams. University
of Nijmegen, Department of Informatics (1989)

10. Butler, G., Grogono, P., Shinghal, R., Tjandra, I.: Analyzing the logical structure of
data flow diagrams in software documents. In: Proceedings of the 3rd International
Conference on Document Analysis and Recognition, vol. 2, pp. 575–578. IEEE
(1995)

11. Cavoukian, A.: Privacy by design: origins, meaning, and prospects for assuring
privacy and trust in the information era. In: Privacy Protection Measures and
Technologies in Business Organisations, pp. 170–208. IGI Global (2012)

12. Chong, H.Y., Diamantopoulos, A.: Integrating advanced technologies to uphold
security of payment: data flow diagram. Autom. Construct. 114, 103–158 (2020)

13. Danezis, G., et al.: Privacy and data protection by design. ENISA Report (2015)
14. DeMarco, T.: Structure analysis and system specification. In: Broy, M., Denert,

E. (eds.) Pioneers and Their Contributions to Software Engineering, pp. 255–288.
Springer, Heidelberg (1979). https://doi.org/10.1007/978-3-642-48354-7 9

15. Dennis, A., Wixom, B.H., Roth, R.M.: Systems Analysis and Design. Wiley, New
York (2018)

16. European Commission: General data protection regulation (GDPR). Regulation
2016/679, European Commission (2016)

17. Faitelson, D., Tyszberowicz, S.: UML diagram refinement (focusing on class-and
use case diagrams). In: ICSE 2017, pp. 735–745. IEEE/ACM (2017)

18. Falkenberg, E., Pols, R.V.D., Weide, T.V.D.: Understanding process structure dia-
grams. Inf. Syst. 16(4), 417–428 (1991)

19. France, R.B.: Semantically extended data flow diagrams: a formal specification
tool. IEEE Trans. Softw. Eng. 18(4), 329 (1992)

20. Fraser, M.D., Kumar, K., Vaishnavi, V.K.: Informal and formal requirements spec-
ification languages: bridging the gap. IEEE Trans. Softw. Eng. 17(5), 454–466
(1991)

https://doi.org/10.1007/3-540-50214-9_8
https://doi.org/10.1007/3-540-52559-9_60
https://doi.org/10.1007/3-540-52559-9_60
https://doi.org/10.1007/978-3-642-48354-7_9

140 H. Alshareef et al.

21. Gao, X.L., Miao, H.K., Liu, L.: Functionality semantics of predicate data flow
diagram. J. Shanghai Univ. (English Ed.) 8(3), 309–316 (2004)

22. Henriksen, M.: Draw.io libraries for threat modeling diagrams (2018). https://
github.com/michenriksen/drawio-threatmodeling

23. Hert, P.D., Papakonstantinou, V.: The new general data protection regulation: still
a sound system for the protection of individuals? Comput. Law Secur. Rev. 32(2),
179–194 (2016)

24. Ibrahim, R., et al.: Formalization of the data flow diagram rules for consistency
check. arXiv preprint arXiv:1011.0278 (2010)

25. Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall Inter-
national Series in Computer Science (1990)

26. de Lara, J., Vangheluwe, H.: Using AToM3 as a meta-CASE tool. In: Proceedings of
the 4st International Conference on Enterprise Information Systems (ICEIS 2002),
pp. 642–649 (2002)

27. Lee, P.T., Tan, K.: Modelling of visualised data-flow diagrams using petri net
model. Softw. Eng. J. 7(1), 4–12 (1992)

28. Schneider, G.: Is privacy by construction possible? In: Margaria, T., Steffen, B.
(eds.) ISoLA 2018. LNCS, vol. 11244, pp. 471–485. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03418-4 28

29. Tao, Y., Kung, C.: Formal definition and verification of data flow diagrams. J.
Syst. Softw. 16(1), 29–36 (1991)

30. Tsormpatzoudi, P., Berendt, B., Coudert, F.: Privacy by design: from research and
policy to practice – the challenge of multi-disciplinarity. In: Berendt, B., Engel, T.,
Ikonomou, D., Le Métayer, D., Schiffner, S. (eds.) APF 2015. LNCS, vol. 9484, pp.
199–212. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31456-3 12

31. Wing, J.M., Zaremski, A.M.: Unintrusive ways to integrate formal specifications
in practice. In: Prehn, S., Toetenel, W.J. (eds.) VDM 1991. LNCS, vol. 551, pp.
545–569. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54834-3 32

32. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall, Upper Saddle River (1996)

33. Woodman, M.: Yourdon dataflow diagrams: a tool for disciplined requirements
analysis. Inf. Softw. Technol. 30(9), 515–533 (1988)

https://github.com/michenriksen/drawio-threatmodeling
https://github.com/michenriksen/drawio-threatmodeling
http://arxiv.org/abs/1011.0278
https://doi.org/10.1007/978-3-030-03418-4_28
https://doi.org/10.1007/978-3-030-03418-4_28
https://doi.org/10.1007/978-3-319-31456-3_12
https://doi.org/10.1007/3-540-54834-3_32

Hybrid Information Flow Control
for Low-Level Code

Eduardo Geraldo1(B), José Fragoso Santos2, and João Costa Seco1

1 NOVA LINCS - NOVA University Lisbon, Costa da Caparica, Portugal
e.geraldo@campus.fct.unl.pt

2 Instituto Superior Técnico and INESC-ID, Lisbon, Portugal

Abstract. Failure to ensure data confidentiality can have a signifi-
cant financial and reputational impact on companies. To aggravate the
issue, frequently used methods like testing are insufficient when prov-
ing data confidentiality in software systems. Existing information flow
based approaches require heavy implementation and specification efforts
or lack the expressiveness programmers desire. To tackle the issues, we
propose a novel hybrid system for information flow control in low-level
languages. By combining an information flow monitor with a type sys-
tem that instruments programs with runtime security checks, we support
value-dependent security types in a low-level setting. We formalise our
type system and monitor using a TAL-like calculus and prove that they
guarantee termination-insensitive non-interference. We present the first
hybrid type system for information flow control with support for value-
dependent types. We also introduce the first value-dependent hybrid
mechanism for a low-level intermediate representation.

1 Introduction

The increasing access to internet-based services and the information they store
leads to growing concerns over topics like data confidentiality. Users and regu-
latory entities expect companies to safeguard the data their systems store and
process; failure to do so can have severe financial and reputational consequences
such as fines a the loss of users.

Unfortunately, data protection is no easy task, with systems often exhibiting
logic flaws or programming mistakes resulting in information leaks. To ensure
systems’ correctness, developers usually rely on testing, which requires com-
plex test scenarios and careful I/O monitoring; hence test-based information
leak detection is an intricate, error-prone process. Heavily tested systems like
Github [9], Instagram [39], Facebook [32], and Twitter [1] registered incidents
where they wrote unciphered user passwords to system logs.

Information flow control [11,26,34,38] (IFC) is the best-suited technique for
information leak detection. The key idea behind it is to tag information and
its receptacles (e.g., variables or I/O channels) with security labels arranged in
a security lattice. Then, we track all data-processing operations and compute
the security level of each datum, stopping information of a given security level
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 141–159, 2021.
https://doi.org/10.1007/978-3-030-92124-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_9

142 E. Geraldo et al.

from flowing to receptacles of a lower security level. IFC aims to ensure the non-
interference property [34], stating that secret inputs should not cause visible
changes to public outputs; a sufficient condition to guarantee the absence of
information leaks.

Mechanisms for IFC may enforce flow policies statically or dynamically. Static
mechanisms [7,26,31], type systems for information flow control, detect leaks at
compile-time with no impact on the runtime. However, they may reject correct
programs, e.g. programs with leaks in unreachable code. Contrarily, dynamic
mechanisms [4], based on reference monitors, are less prone to reject correct
programs but introduce overhead at runtime; monitors have to oversee the exe-
cution of every instruction. Plus, they need a high testing coverage to be useful.

Hybrid approaches [38], combine a reference monitor for enacting flow policies
at runtime and a type system for static IFC. The type system does most of the
analysis, while the monitor only performs checks where necessary, i.e., code that
is not possible to statically prove correct nor incorrect. This methodology avoids
false positives while keeping the impact of the monitor to a minimum, meaning
less overhead and fewer tests required to certify dynamically verified code.

In this paper, we present a formal system for hybrid value-dependent informa-
tion flow control in Snitch IR, a small imperative low-level language inspired by
TAL [29]. The language relates to low-level languages like JVM bytecode [25], the
Common Intermediate Language [13], or the LLVM’s intermediate language [23].
Value-dependent security labels [26] allow for more expressive security policies.

We introduce a static semantics that verifies and rewrites programs, embed-
ding them with a flow monitor to overview, when necessary, data transfer oper-
ations. As an approach to hybrid IFC, it eases specification efforts as it supports
incomplete specifications; defers decisions on unknown labels to runtime. We
are working on a prototype tool, SNITCH, to detect leaks through the hybrid
analysis of JVM bytecode (currently capable of fully dynamic IFC).

We start this paper with the related work in Sect. 2 and some key concepts in
Sect. 3. Then, we present a sound dynamic semantics that preserves termination
insensitive non-interference in Sect. 4. Next, in Sect. 5, we introduce type system
for hybrid value-dependent information flow control. Lastly, we end with some
final comments and future directions for this work in Sect. 6.

2 Related Work

There is a vast body of works on the application of information flow research to
real-world programming languages, ranging from type systems for strongly typed
languages such as OCaml [37], and Java [8], to dynamic analysis for scripting lan-
guages, such as JavaScript [21] and Python [19]. For a more thorough overview,
we refer the reader to [34] and [22]. Here, we focus on IFC for low-level languages,
hybrid analysis for IFC, and expressive information flow types.

Hybrid Information Flow Control. Hybrid systems for IFC combine static anal-
yses with different flavours of runtime monitoring. Most hybrid IFC analyses are

Hybrid Information Flow Control for Low-Level Code 143

based on gradual typing [36]. In fact, gradual information-flow type systems exist
for lambda calculus [12,15] and a lightweight Java-like language [16]. These type
systems allow for polymorphic security labels, providing annotations for denot-
ing statically unknown labels. The programmer must add runtime casts in code
points where values of a pre-determined security type are expected. While the
static type system guarantees adherence to the specified policy on the static side
of a cast, the runtime analysis checks the policy on the dynamic side.

Amongst the existing hybrid IFC approaches, the most closely related to ours
is [18], which introduces a hybrid system for IFC in a fragment of JavaScript.
It combines a type system with a no-sensitive-upgrade monitor to instrument
programs so that the monitor only performs the necessary checks. Our work,
however, faces specific challenges related to the low-level nature of Snitch IR;
most notably, the precise tracking of implicit flows in unstructured control flows.

Information Flow Control for Low Level Languages. There is a number of works
on static and dynamic information flow analyses for low-level languages. Barth
et al. [7]. were the first to design a type system for IFC in Java bytecode; later
proved sound using the Coq proof assistant [6]. Their intermediate representation
is similar to ours and make use of the concept of control dependence regions.

Aldous et al. [2] designed a static analysis for proving non-interference in a
Dalvik-like language. They implemented the analysis and proved it sound. The
analysis enriches the control flow graph of target programs with information
computed by an abstract interpreter. The authors show that resulting graphs,
called execution point graphs, can improve the precision of the analysis. They
further showed [3] how to derive a sound IF monitor from their original analysis.
We believe that we could use execution point graphs to improve the precision of
the static component of our system; this is, however, left as future work.

Recently, Balliu et al. [5] showed how to leverage SMT solvers to prove the
non-interference of ARMv7 binaries. They demonstrate the applicability of their
approach by using it to verify a sophisticated kernel system call handler, com-
bining handwritten assembly code with complex compiler-generated code.

Expressive Security Types. Multiple techniques to enhance the expressiveness of
security policies have been proposed. For instance, the more flexible decentralised
label model by Meyers and Liskov [30] replaces the security lattice with an
ownership-based model. An entity can own an information receptacle, and only
the entity or those authorized by the entity via read and write sets can read or
write to the receptacle. The owner can delegate the control over the read and
write sets to other entities through the “acts for” relation, another feature of the
decentralised label model. This model is used with dynamic labels in JIF [31].

Also, value dependent approaches to hybrid systems include the runtime use
of static analysis, invoked by the reference monitor [20], thus achieving a permis-
sive IFC verification. This approach suits a purely dynamic setting as Javascript,
but not low-level languages. We take the traditional approach instead, of having
a static analysis establishing the border between guarded and unguarded code.

144 E. Geraldo et al.

Purely static verification of flexible policies relies on dependent informa-
tion security levels in type based information flow control systems [17,26,27].
The encoding of dependent security types is present in liquid information flow
control [33], which also includes the ability to repair detected errors. Value-
dependent IFC builds on top of the traditional approach by enhancing lattices
with security labels parameterised with runtime values. These labels allow for
dynamic security lattices capable of expressing many real-world situations.

We take inspiration in these approaches and propose a hybrid approach,
applied to low-level languages, thus making the verification more expressive and
applicable in real situations, requiring less annotation work from the developer.

3 Overview

To fend off bug-induced confidentiality breaches that pester information systems,
we present a solution based on value-dependent hybrid IFC to detect and prevent
information leaks. A system following such an approach exhibits the advantages
of static and dynamic information flow control mechanisms while minimising
their disadvantages and supports richer finer-grained information flow policies.

Our approach, as other hybrid approaches, relies on a type system and a refer-
ence monitor. The type system enforces flow policies and injects the monitor into
target programs. Having the type system perform program rewriting bypasses
a standalone instrumentation phase and allows for a seamless integration of the
monitor based on the static analysis of each instruction.

We base our approach on a small low-level imperative language, depicted in
Fig. 1 and inspired by work on typed assembly languages [29] and type-based
program rewriting [35]. Our language easily relates to existing low-level lan-
guages such as the Java bytecode [25], LLVM’s intermediate representation [23],
and the Common Language Infrastructure (.NET) instructions [13]. Low-level
representations have many advantages. For instance, many high-level languages
compile to a single low-level one, e.g., Java, Scala, Groovy, Kotlin, and Clojure,
all compile to JVM’s bytecode; targeting a low-level language allows for tools to
support multiple high-level ones. Furthermore, support for low-level languages
brings support for compiled programs as long as it is possible to write specifica-
tions for them.

Reference monitors require program instrumentation [14] or an execution
environment capable of monitoring executions. The latter results in deep cumber-
some changes to third-party virtual machines; hard to automate and maintain.
Thus, we instrument target programs, depending only on the higher stability of
low-level languages.

Our hybrid approach starts with the static verification of the code, whose
purpose is two-fold. As previously mentioned, the static analysis performs the
static information flow verification, thus rejecting provably wrong programs, and
instruments code that cannot be proved wrong. The combination results from the
fact that the instrumentation is dependent on the results of the static analysis;
statically correct code segments do not require runtime verifications.

Hybrid Information Flow Control for Low-Level Code 145

Fig. 1. Snitch IR syntax.

Considering the hybrid nature of our approach, we foresee two types of secu-
rity levels: concrete levels used at runtime and sets of symbolic levels employed in
the static analysis. The latter, we abstract using security intervals. Considering
SC the set of all security labels and → the partial order relation, we define com-
parisons and the least upper bound between labels as follows: equality (=) and
its negation (�=) have the usual semantics. Comparison between labels depends
exclusively on the flow relation (�=→), ∀a, b. a � b ⇔ a → b. # reflects label
divergence, ∀a ∈ SC. ∀b ∈ SC. a#b ⇔ a �� b ∧ b �� a. 	 yields the least
upper bound of both arguments. The security classes (SC) together with the
partial ordering (→) and the least upper bound () forms the security lattice.
We define a security interval A as [aL, aU], where aL � aU ; a more compact
notation for defining sets, [aL, aU] = {k | ∀k ∈ SC. aL � k � aU}. We define set
divergence, the least upper bound between sets, and set comparison as follows:
A#B = ∀ka ∈ A. ∀kb ∈ B. ka#kb A 	 B = {k | ∀ka ∈ A. ∀kb ∈ B. k = ka 	 kb},
and

A � B =

⎧
⎨

⎩

true ∀ka ∈ A. ∀kb ∈ B. ka � kb
false ∀ka ∈ A. ∀kb ∈ B. kb � ka ∨ A#B
↓ otherwise

Snitch IR foresees guarded and unguarded instructions, each having a
different runtime behaviour. Guarded instructions require extra checks that
unguarded instructions do not. The need for both types of instructions stems
from the hybrid nature of our approach. In a fully dynamic setting, we would
consider only guarded instructions. However, taking into account the results of
the static analysis, it is possible to replace statically correct guarded instruc-
tions with their unguarded counterpart. The instruction set of Snitch IR also
includes a pop instruction, a control instruction required for manipulating scope-
related data structures as we will show when presenting the runtime semantics.

146 E. Geraldo et al.

Fig. 2. Dynamic semantics for assignments.

Value-Dependent Security Labels. Although we use plain security labels
in the syntax depicted in Fig. 1, our work can also be combined with value-
dependent security labels as our semantics and soundness proofs are independent
of the underlying security labels. In order to extend our system with support for
value-dependent labels, we would first need to change the definition of security
labels to account for value-dependencies:

Security Label k ::= S�x� | ⊥ |
Security Classes S ::= S1 | S2 | . . . | Sn

Where S denotes a security class (S ∈ SC). At the static level value-
dependent security classes are parametrized with function parameters, while
at the dynamic level they are parametrized with their corresponding runtime
values. For instance, one could use the label Student(id) to denote the security
level of information that can only be read by the student with the specified iden-
tifier; at runtime, the id would be replaced with the corresponding value for the
student identifier.

It is the role of the runtime semantics to bind the static parameters of value-
dependent security classes to their corresponding values. More precisely, when
interpreting a function call, the function’s parameters may be associated with
security labels that depend on their corresponding values or on the values of the
other parameters. In such cases, the security monitor binds the values of the
parameters to the security labels that dependent on them.

4 Dynamic Semantics

We now define the semantics of the information flow monitor for Snitch IR.
The monitor handles guarded and unguarded instructions. The former entail
runtime checks to avoid information leakage, while the latter only require label
propagation. Our monitor ensures non-interference on the guarded fragment but
has some runtime overhead, and requires significant testing to achieve high relia-
bility. Thus, we present a type system, in Sect. 5, to perform program rewriting,
adding guards only where necessary; the reference monitor does not verify at
runtime statically correct operations.

Hybrid Information Flow Control for Low-Level Code 147

Fig. 3. Dynamic semantics for control instructions.

We define the operational semantics of the monitor by means of a transition
system, with the reduction rules of Fig. 2 and Fig. 3 and using runtime config-
urations of the form (Δ, γ, σ, �c : I). In a configuration, the code heap Δ maps
code labels to instruction sequences, the store for register labels γ maps register
names to pairs of values and their respective security levels. Finally, the stack σ
tracks the current security level of the computation (pc), maintaining the nesting
information needed to implement program scopes, relevant for IFC. We define a
stack σ as a list of pairs of the form (�, k), such that � is the first post-dominant
(function postDom, as used in Fig. 3) of the branching instruction adding the
entry, and k the security level of the new scope. To denote the security level of
the current scope we use pc. Finally, �c : I denotes the current basic block: �c
represents the label of the block, and I the instructions comprising the block.

Assignments. The semantics for assignments, depicted in Fig. 2, emphasizes
the hybrid nature of the information flow monitor, distinguishing guarded (�)
from unguarded (=) instructions. The axiom [[D-SafeAssignment]] defines the
behaviour of unguarded assignments. It updates register r with the value v and
security level k. Rule [[D-UnsafeAssignment]], for guarded assignments, fol-
lows [[D-SafeAssignment]] but includes a runtime check; the context’s security

148 E. Geraldo et al.

Fig. 4. Conditional jump influence on σ based on the control flow graph.

level (pc) must be smaller than or equal to the security level of the assigned reg-
ister (pc � kd). This check is necessary to avoid implicit informations leaks, that
is, leaks arising from the control structure of programs. It must not be possible to
write to registers visible at a level lower than the context’s level, nor should it be
possible to write a value with a label lower than the context’s label; visible regis-
ters remain visible and secret registers remain secret. Snitch IR foresees binary
operations (rd := rs⊕va and rd :� rs⊕vk) not semantically covered here. How-
ever, they follow [[D-SafeAssignment]] and [[D-UnsafeAssignment]], and the
target register’s label depends on the labels of all operands (rs and v), plus the
context’s label (pc).

Control Flow Dependencies. Snitch IR does not address the structure of a
program, namely the scoping of conditions’ security levels. So, we resort to an
auxiliary data structure, a stack, to track such scopes. The security level of a new
scope depends on the levels of outer scopes and the security level of the condition
starting the scope. To overcome the lack of a well defined structure, we rely on

Hybrid Information Flow Control for Low-Level Code 149

post-dominance analyses [24] of the control flow graph (CFG) to determine the
code contained in each scope.

In graph theory, a node a post-dominates a node b if every path from b to
the exit node must go through a. Considering the graph in Fig. 4c, both �5 and
�6 are post-dominators of �1, but �3 and �4 are not, due to the flow divergence
in �1. Moreover, we say that �5 is the first post-dominator of �1, since it is
the post-dominator closest to �1, i.e. the node where the flows that diverges at
�1 merge.

Instructions starting a new scope (conditional jumps) push onto the stack
a new security level and the label where the scope ends, the first node post-
dominating the current instruction. When performing unconditional jumps (and
degenerate conditional jumps), we need to check if the scope has ended and
recover the previous context security level.

The stack invariant defines that the topmost entry always contains the
label where the current context ends, and security levels do not decrease (see
[[BranchT-Push]] and [[BranchF-Push]]). However, if a scope terminates in
the same place as its parent, a new entry is not necessary. Instead, we update
the topmost entry’s security level to consider the new scope’s security level
and maintain the structure of σ. This is explicit in rules [[BranchT-NoPush]]
and [[BranchF-NoPush]]. At runtime, we add pop in all rules for conditional
branches. The runtime instruction pop is never present in the original source
code. The reduction of unconditional jumps ([[D-Jump]]) leaves σ unchanged
but adds a pop to the next block; pop will always be the first instruction to
execute after a jump. Rules [[D-Pop]] and [[D-NoPop]] define the behaviour of
pop as it may or may not change σ. We must check if pop ’s label matches the
label of σ’s topmost entry. If it does, the scope ends and we pop σ ([[D-Pop]]).
Otherwise, σ remains unchanged ([[D-NoPop]]).

The stack represents scope nesting in a program and identifies merging points
where context security levels can decrease, i.e. scopes end. Figure 4 depicts four
possible outcomes of the successive application of reduction rules pushing and
popping entries in σ. Consider the conditional jump in block �1.

In Fig. 4a, [[BranchT-NoPush]] and [[D-NoPop]] apply in sequence. The
branch in �1 merges in the same place as the enclosing scope (�5), and the
branches follow distinct paths (�3 �= �4). The label at the top of σ (�5) stays the
same, the security level accounts for the the condition’s security level (γ(r1)).

In Fig. 4b, rules [[BranchT-NoPush]] and [[D-Pop]] apply in sequence. The
branching �1 merges in the same place as the enclosing scope (�5), and both
branches lead directly to it. Therefore, the scope closes, and the stack pops.

In Fig. 4c, [[BranchT-Push]] and [[D-NoPop]] apply in sequence. The
branching in �1 merges in a location (�5) other than the enclosing scope’s end
(�6), and the branches follow distinct paths (�3 �= �4). We push a new pair to σ,
with the scope’s ending location and the appropriate security level.

Finally, in Fig. 4d, [[BranchT-Push]] and [[D-Pop]] apply in sequence. The
branching in �1 merges immediately after the jump in a location (�5) other than
the end of the enclosing scope (�6); the scope is empty, σ remains unchanged.

150 E. Geraldo et al.

The degenerate cases of Fig. 4b and d can result from a translation of structured
programs and from compilers’ optimizations.

4.1 Monitor Non-interference

Our monitor enforces non-interference for programs containing only guarded
instructions ([[D-UnsafeAssignment]]). In this section, we sketch the non-
interference proof, and later, we show that it also holds for well-formed rewritten
programs with unguarded instructions. The proof consists in showing that two
configurations of the same program are indistinguishable at an observation level
g, if their initial states (σ and γ) are indistinguishable at g.

It is first convenient to define store (γ) and stack (σ) indistinguishability.

Definition 1 (Store Projection). We define the projection of σ with relation
to a security level g, γ �g, as follows:

γ �g� {r1 : vk1
1 , ..., rn : vkn

n }, ∀ri ∈ dom(γ). γ(ri) = vki
i ∧ ki � g

Definition 2 (Store Indistinguishability). We define the indistiguishability
relation on stores γ, γ′, written γ ∼g γ′, as follows:

γ ∼g γ′ � γ �g = γ′ �g
Definition 3 (Stack Projection). We define the projection of a stack σ at
observation level g, written σ �g, as follows:

nil �g � nil

((�, a) ::σ) �g � (�, a) ::σ �g If a � g

((�, a) ::σ) �g � σ �g If a �� g

Definition 4 (Stack Indistinguishability). We define the indistinguishabil-
ity relation between two stacks, σ and σ′, as follows:

σ ∼g σ′ � σ �g = σ′ �g
As an aid for the non-interference proof, resorting to Ω and Ω′ as two con-

figurations, we make a distinction between distinguish between computations
observable at distinct security levels.

Definition 5 (High Transition). A transition is high, written Ω ⇀g Ω′, if
the context security level (pc) is not lower than the observation level (g):

(Δ, γ, (�, pc) ::σ, �c :I) −→ (Δ, γ′ , σ′ , �′
c :I ′) pc �� g

(Δ, γ, (�, pc) ::σ, �c :I) ⇀g (Δ, γ′ , σ′ , �′
c :I ′)

Definition 6 (Low Transition). A transition low, written Ω ⇁g Ω′, if the
context security level (pc) is lower than the observation level (g):

(Δ, γ, (�, pc) ::σ, �c :I) −→ (Δ, γ′ , σ′ , �′
c :I ′) pc � g

(Δ, γ, (�, pc) ::σ, �c :I) ⇁g (Δ, γ′ , σ′ , �′
c :I ′)

Hybrid Information Flow Control for Low-Level Code 151

Definition 7 (Mixed Transitions). We define a mixed sequence of transi-

tions, written Ω
(L,H)−→g Ω′, as a combination of low (L) and high (H) transi-

tions:
(Δ, γ, (�, pc) ::σ, � :I) l

⇁g (Δ, γl , σl , �l :Il)

(Δ, γl , σl , �l :Il)
h

⇀g (Δ, γh , σh , �h :Ih)

(Δ, γh , σh , �h :Ih)
(L−l,H−h)−→g (Δ, γ′ , σ′ , �′ :I ′)

(Δ, γ, (�, pc) ::σ, � :I)
(L,H)−→g (Δ, γ′ , σ′ , �′ :I ′)

If we reach a configuration Ω through a mixed sequence of L low transitions and
H high transitions, then we there is Ω′ such that we reach Ω′ in l low transitions
and h high transitions, and from Ω′ we reach Ω through L − l low transitions
and H −h high transitions. Take note that this also applies to programs starting
in high transitions (l = 0).

The non-interference proof follows from verifying that both high and low
transition sequences, when executed separately, preserve σ and γ indistinguisha-
bility.

We first prove the confinement of high transitions, expressed in the lemma
below. Instructions executed at a security level not lower than g do not visibly
change γ and σ. The proof follows from case analysis of the reduction relation.

Lemma 1 (Confinement)

If (Δ, γ, σ, �c : i; I) ⇀g (Δ, γ′ , σ′ , �′
c :I ′) then γ ∼g γ′ ∧ σ ∼g σ′.

Store indistinguishability (γ ∼g γ′) comes from two key aspects of rule
[[D-UnsafeAssignment]]: (i) guarded assignments do not write to registers
whose security level is lower than the context security level; public informa-
tion remains public; (ii) when writing to a register, the monitor computes the
resulting security level using the computation’s security label; secret informa-
tion remains secret. Finally, control instructions do not modify γ, making them
irrelevant in this proof.

We prove stack indistinguishability focusing on the rules for control instruc-
tions. [[D-Pop]] removes the topmost entry from σ. In a high transition, where
the topmost entry is secret, its removal does not change the visible part of stack
σ. Rule [[BranchT-Push]] (and [[BranchF-Push]]) adds a new (�, k) pair to
σ with a higher security level (PC(σ) � k). Thus, it does not introduce visible
changes in the stack. Rule [[BranchT-NoPush]] updates the topmost entry of
σ to a higher security level, and no changes to the stack are visible.

We now prove one-step non-interference for low transitions.

Lemma 2 (Low One-Step Non-interference)
If (Δ, γ, σ, �c : i; I) ⇁g (Δ, γf , σf , �cf :If) and

(Δ, γ′ , σ′ , �c : i; I) ⇁g (Δ, γ′
f , σ′

f , �c
′
f :I ′

f) with γ ∼g γ′ ∧ σ ∼g σ′

then γ
f

∼g γ′
f
, σ

f
∼g σ′

f
, σf = (�, pc) ::σ, and pc � g =⇒ If = I ′

f .

152 E. Geraldo et al.

This proof follows by inspecting the reduction rules; the same instruction on
both configurations will produce identical effects on γ and σ and evolve equally.
The only exception where If �= I ′

f holds is when entering a sequence of high
transitions. For If �= I ′

f to hold the branch condition must evaluate to different
values, which is only possible if the register in the condition is secret.

Considering programs as sequences of low and high transitions, we can prove
non-interference by induction on the number of transitions.

Theorem 1 (Non-interference)

If (Δ, γ, σ, �c :I)
(x,y)−→g (Δ, γf , σf , �cf :If) and

(Δ, γ′ , σ′ , �c :I)
(x,z)−→g (Δ, γ′

f , σ′
f , �c

′
f :I ′

f) with γ ∼g γ′ and σ ∼g σ′

then γf ∼g γ′
f and σf ∼g σ′

f .

Two indistinguishable executions at the same point, by the transitive closure of
Lemma 2, will remain indistinguishable until they start high transitions:

(Δ, γa, σa, �ca :Ia)
i

⇁g (Δ, γb, σb, �cb :Ib)
(Δ, γx, σx, �cx :Ix) i

⇁g (Δ, γy, σy, �cy :Iy)

where γa ∼g γx, σa ∼g σx, �ca=�cx, Ia = Ix, γb ∼g γy, σb ∼g σy, �cb �= �cy, Ib �= Iy.
For high transitions, we apply the transitive closure of Lemma 1, concluding

(Δ, γb, σb, �cb :Ib)
j

⇀g (Δ, γc, σc, �cc :Ic)
(Δ, γy, σy, �cy :Iy)

k
⇀g (Δ, γz, σz, �cz :Iz)

This ensures that γb ∼g γc, σb ∼g σc, γy ∼g γz, and σy ∼g σz. By transitivity we
have that γc ∼g γz, σc ∼g σz. For the hypothesis to apply, Ic = Iz needs to
hold. This condition is given by the properties of the control flow graph; if two
executions diverge at the same point of the CFG then they will converge at the
same point. With all conditions met, the proof follows by induction.

5 Static Semantics

We now present the procedure for rewriting unguarded Snitch IR programs
to their hybrid counterpart. Our relation approximates IFC, rejecting only pro-
grams proven incorrect, and producing an equivalent program with less (or equal
number of) guarded instructions. We assume that source programs do not con-
tain guarded assignments nor pop instructions. Only the type system introduces
guarded assignments, and only the monitor adds pop instructions at runtime.

We define a rewriting system recursively in the structure of each basic block,
iterating each via the rules in Fig. 5 and Fig. 6. The rewriting relation

Δ, Γ̂ , Σ̂ � � �→ I ⇓ � �→ I ′

takes three environments: the code repository Δ, storing each basic block’s
instructions; the environment Γ̂ , tracking the security levels of all registers on

Hybrid Information Flow Control for Low-Level Code 153

Fig. 5. Static semantics for assignments

entry for each basic block; and the map of stacks Σ̂, capturing the control
flow structure and corresponding nesting of security levels in all blocks. Rule
[[Forall]] defines the rewriting of all blocks in a program (� �→ I) to produce
the final program (� �→ I ′). For each block, the rewriting procedure relies on the
relation

Δ, Γ̂ , Σ̂, γ̂ � �c :I ⇓ I ′

where the fourth environment, γ̂, initialized out of environment Γ̂ , maps reg-
isters of the present basic-block to security levels (intervals). This judgment
relates a valid unguarded set of instructions I, part of basic block �c, to a set
of valid guarded and unguarded instructions I ′. All unguarded instructions are
guaranteed to preserve data confidentiality (non-interference). We present the
soundness results of the checking/rewriting system in Sect. 5.1.

We define the semantics in a syntax-directed way, with non-terminating
instructions depicted in Fig. 5, and block terminating instructions depicted in
Fig. 6. Rule [[S-SafeAssignment]] shows that the instruction is not modi-
fied since the safety conditions statically hold, i.e. the current security level
PC(Σ̂(�c)) is lower than the register’s security level γ̂(r). The changed register’s
security level now accounts for the level of the context, the level of the assigned
value, in the rewriting of the subsequent instructions (γ̂[r :Σ̂(�c) 	 k]).

If we know statically that the context’s security level is lower than the security
level of the register, rule [[S-SafeAssignment]], the assignment is secure and
is not trapped at runtime. If the comparison is undefined, i.e. security intervals
intersect (PC(Σ̂(�c)) � γ̂(r) = ↓), rule [[S-UnsafeAssignment]], we rewrite it
as a guarded assignment, so that the monitor prevents any leaks. Finally, if the
context’s level is higher or unrelated, no rule applies, the program gets rejected.

The rules included in Fig. 6 define the static semantics for jump and con-
ditional jump instructions, comparing and validating the nesting structure of
stacks and the compatibility between registers in the departing and landing
blocks. Notice that these rules only check the structure of the control flow graph,
and they do not introduce or rewrite the existing code as the previous set of rules.

154 E. Geraldo et al.

Fig. 6. Static semantics for control instructions

The security level stack assigned to each block (Σ̂(�c)) stores the nesting
hierarchy ruling the block, containing information about where each scope ends.
The stacks associated with basic blocks work in a similar fashion to the stack
used in the monitor. They store pairs with a security level and the corresponding
target label in an increasing sequence, depicting how deep the block is in the
control flow graph. The security level stored at the top of the stack is the current
scope’s security level, and the label specifies the scope’s closing point in the CFG.

Conditional jump instructions capture branching in the control flow graph
and there are four rules to consider, each matching one of the cases depicted in
Fig. 4. In Fig. 4(a), rule [[S-Branch-NoPush-NoPop]] captures the case where
a new scope ends at the same node as its parent, and the next node is not the
post-dominant node. In this case, the rule checks that the security level in both
target blocks matches the current stack updated with the combination of the
current level with the condition’s security level ((�, p̂c 	 γ̂(r)) ::σ̂ � Σ̂(�i)). We
also check that the registers in the next blocks match (γ̂ � Γ̂ (�)). In Fig. 4(b),

Hybrid Information Flow Control for Low-Level Code 155

rule [[S-Branch-NoPush-Pop]] captures the degenerated case where we start a
new scope terminating in the same node as the parent, and we reach said node
in one step; both branches jump to the same block. In this case, we need to
check that the registers in the following blocks match and that the stack is one
element shorter to close the current (and parent) scope(s) (σ̂ � Σ̂(�i) where σ̂ is
the stack after the pop). In Fig. 4(c), rule [[S-Branch-Push-NoPop]] reflects the
case where we start a scope whose post-dominant differs from the parent scope’s,
and we jump to a node other than the post-dominant node of the current block.
Here, we check that the registers match and that the target blocks expect a stack
with a new entry, ((�′, p̂c	 γ̂(r)) ::Σ̂(�c) � Σ̂(�i)). Rule [[S-Branch-Push-Pop]]
captures the degenerated case where we start and terminate a new scope whose
post-dominant is different from the parent’s scope. We check the compatibility
between the source and target registers (γ̂ � Γ̂ (�)) and stack (Σ̂(�c) � Σ̂(�)).

Unconditional jump instructions, together with the degenerated
cases from conditional jumps above ([[S-Branch-NoPush-Pop]] and
[[S-Branch-Push-Pop]]), represent path convergence in the CFG. We cover two
outcomes of the jump instruction. Rule [[S-Jump-NoPop]] checks if the regis-
ters match and if the stack is compatible with the target block’s stack. Rule
[[S-Jump-Pop]] checks if the registers match and if the stack, except for the top-
most entry, is compatible with the target block’s stack. We pop the topmost entry
from σ̂ since we are jumping to the current scope’s (and, potentially, parent scopes)
end.

In summary, the static semantics checks that all basic blocks match a given
specification for σ̂ and γ̂ and all jumps abide by the same nesting discipline,
matching the security levels specified in the σ̂. Algorithmically, the checking and
rewriting procedure takes as input Δ and the program (� �→ I). It is necessary
to synthesize the environments Γ̂ and Σ̂, and the output program � �→ I ′ from
constraints collected when constructing the proof of rewriting, in the style of
Hindley Milner type systems [10,28]. We next prove the soundness of the static
checking procedure with relation to the dynamic semantics presented in Sect. 4,
showing that no untrapped errors occur in the unguarded part of the program
and that the reference monitor captures all remaining errors.

5.1 Soundness

The soundness result of our approach guarantees that only guarded instructions
raise errors at runtime and are, therefore, rightfully trapped. Thus, we prove
that all omitted verifications are unnecessary, as unguarded instructions will not
cause any illegal flows.

The semantics in Sect. 4 only verifies guarded instructions, as unguarded
instructions just require label propagation. Consider the extended semantics
including the rules present in Fig. 5, Fig. 6, and Fig. 7. The latter contains new
rules for unguarded assignments and error trapping for all instructions. We intro-
duce two kinds of error, one that the monitor traps (�) and other that the mon-
itor does not trap (). We want to prove that for well typed programs the
latter never occurs. To relate the static and the dynamic semantics, we define
an interpretation for static stores and stacks:

156 E. Geraldo et al.

Fig. 7. Error aware dynamic rules

Definition 8 (Static Store Interpretation) We define the interpretation of
γ̂, written, �γ̂�, as follows:

�γ̂� � {γ | ∀r ∈ dom(γ). r ∈ dom(γ̂) ∧ γ(r) = vk ∧ k ∈ γ̂(r)}
Definition 9 (Static Stack Interpretation) We define the interpretation of
σ̂, written, �σ̂�, as follows:

�σ̂� � {σ | (σ̂ = nil ∧ σ = nil)
∨ (σ = (�, k) ::σ′ ∧ σ̂ = (�, k̂) ::σ̂′ ∧ k ∈ k̂ ∧ σ′ ∈ �σ̂′�)}

The soundness lemma for our type system with relation to the operational
semantics is as follows.

Theorem 2 (Static Soundness)
If Δ, Γ̂ , Σ̂, γ̂ � �c :I ⇓ I ′ and (Δ, γ, σ, �c :I ′) n−→ Ω′ with

γ ∈ �γ̂� and σ ∈ �Σ̂(�c)� then Ω = .

The structure of the proof resembles that of a proof of progress and follows
by induction on the number of reduction steps. It follows that all well-formed
rewriting judgments match the premises of the initial semantics (including the
error �), and untrapped errors never occur. For the proof, we consider as base
case, the scenario where we reach the final configuration trough zero transitions,
i.e., we start in the final configuration. For the induction step, we prove that the
monitor only transits to states other than , otherwise we have that all other
cases do not apply by contradiction.

Considering an assignment, according to rule [[D-SafeAssignment]], the
system will not reduce to . Moreover, due to [[S-SafeAssignment]], Defi-
nition 8, and Definition 9, the conditions for the induction hypothesis hold.
When analysing a transition through [[D-SafeAssignment-Bad]], we reach
a contradiction. According to this rule, we have that PC(σ) �� k but by
[[S-SafeAssignment]], Definition 8, and Definition 9, we have PC(σ) � k. Rule
[[D-UnsafeAssignment]] follows rule [[D-SafeAssignment]]. When consider-
ing rule [[D-UnsafeAssignment-Trapped]], the system evolves to � which, by
definition, is different from .

Hybrid Information Flow Control for Low-Level Code 157

Binary operations (not covered in the semantics) are similar regular assign-
ments, and the proof for binary operations follows the proofs for assignments.
The remaining instructions never transit to , hence, it is only necessary to
prove that they preserve the condition required for the induction hypothesis.

6 Conclusions

We presented Snitch IR, a low-level language with a hybrid IFC mechanism
with dependent security levels. The core of our approach is a rewriting procedure
that checks the validity of unstructured programs and injecting guard into pro-
grams. Guarded instructions will check dynamically situations that do not fail
in the permissive check of the type system. We prove that our monitor preserves
termination insensitive non-interference in Snitch IR, and we prove that the
hybrid monitor is sound in that it satisfies the non-interference property while
minimizing the runtime checks needed.

We identify as future research directions the formal support for an inter-
procedural analysis, and the extension of the language with function calls. Also,
we envision the further integration of function parameters in the security lattice
in the formal presentation.

Our current implementation supports fully dynamic analysis of JVM byte-
code, and we aim to support the hybrid IFC analysis, a work in progress. Further-
more, we wish to extend the prototype to support other mainstream low-level
languages. The particular aspects of dynamically allocated memory (records,
arrays, and objects) are also interesting as future work.

Acknowledgements. This work is supported by FCT/MCTES SFRH/BD/149043/
2019, FCT/MCTES Grant NOVA LINCS - UIDB/04516/2020 and GOLEM Lisboa-01-
0247-Feder-045917, INESC-ID multi-annual funding (UIDB/50021/2020) and INFO-
COS (PTDC/CCI-COM/32378/2017).

References

1. Agrawal, P.: Keeping your account secure. https://blog.twitter.com/official/en us/
topics/company/2018/keeping-your-account-secure.html. Accessed 15 Oct 2021

2. Aldous, P., Might, M.: Static analysis of non-interference in expressive low-level
languages. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 1–17.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 1

3. Aldous, P., Might, M.: A posteriori taint-tracking for demonstrating non-
interference in expressive low-level languages. In: IEEE Security and Privacy Work-
shops, pp. 179–184 (2016)

4. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:
ACM SIGPLAN Workshop on Programming Languages and Analysis for Security
(2009)

5. Balliu, M., Dam, M., Guanciale, R.: Automating information flow analysis of low
level code. In: ACM SIGSAC Conference on Computer and Communications Secu-
rity, pp. 1080–1091 (2014)

https://blog.twitter.com/official/en_us/topics/company/2018/keeping-your-account-secure.html
https://blog.twitter.com/official/en_us/topics/company/2018/keeping-your-account-secure.html
https://doi.org/10.1007/978-3-662-48288-9_1

158 E. Geraldo et al.

6. Barthe, G., Pichardie, D., Rezk, T.: certified lightweight non-interference java byte-
code verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–140.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 10

7. Barthe, G., Rezk, T.: Non-interference for a JVM-like language. In: TLDI 2005,
pp. 103–112. (2005)

8. Barthe, G., Rezk, T., Naumann, D.: Deriving an information flow checker and
certifying compiler for java. In: IEEE Symposium on Security and Privacy, pp.
230–242 (2006)

9. Cimpanu, C.: Github accidentally recorded some plaintext passwords in its inter-
nal logs (May 2018), https://www.bleepingcomputer.com/news/security/github-
accidentally-recorded-some-plaintext-passwords-in-its-internal-logs/. Accessed 15
Oct 2021

10. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
207–212 (1982)

11. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 236–243
(1976)

12. Disney, T., Flanagan, C.: Gradual information flow typing. In: STOP 2011 (2011)
13. ECMA International: Standard ECMA-335 - Common Language Infrastructure

(CLI), December 2010
14. Erlingsson, U., Schneider, F.B.: Sasi enforcement of security policies: a retrospec-

tive. In: Workshop on New Security Paradigms, pp. 87–95 (1999)
15. Fennell, L., Thiemann, P.: Gradual security typing with references. In: IEEE Com-

puter Security Foundations Symposium, pp. 224–239 (2013)
16. Fennell, L., Thiemann, P.: LJGS: gradual security types for object-oriented lan-

guages. In: European Conference on Object-Oriented Programming, pp. 9:1–9:26
(2016)

17. Ferreira, P.J.A.D.: M.sc. dissertation. information flow analysis using data-
dependent logical propositions, faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa (2012)

18. Fragoso Santos, J., Jensen, T., Rezk, T., Schmitt, A.: Hybrid typing of secure
information flow in a Javascript-like language. In: Ganty, P., Loreti, M. (eds.)
TGC 2015. LNCS, vol. 9533, pp. 63–78. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-28766-9 5

19. Ghosal, S., Shyamasundar, R.K.: Pifthon: A compile-time information flow ana-
lyzer for an imperative language. CoRR (2021)

20. Hedin, D., Bello, L., Sabelfeld, A.: Value-sensitive hybrid information flow control
for a javascript-like language. In: IEEE Computer Security Foundations Sympo-
sium, p. 351–365 (2015)

21. Hedin, D., Sabelfeld, A.: Information-flow security for a core of Javascript. In: 2012
IEEE 25th Computer Security Foundations Symposium, pp. 3–18 (2012)

22. Hedin, D., Sabelfeld, A.: A perspective on information-flow control. In: Software
Safety and Security - Tools for Analysis and Verification, pp. 319–347 (2012)

23. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis and transformation. In: International Symposium on Code Generation and
Optimization, March 2004

24. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 121–141 (1979)

25. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Spec-
ification, Java SE 8 Edition (2014)

https://doi.org/10.1007/978-3-540-71316-6_10
https://www.bleepingcomputer.com/news/security/github-accidentally-recorded-some-plaintext-passwords-in-its-internal-logs/
https://www.bleepingcomputer.com/news/security/github-accidentally-recorded-some-plaintext-passwords-in-its-internal-logs/
https://doi.org/10.1007/978-3-319-28766-9_5
https://doi.org/10.1007/978-3-319-28766-9_5

Hybrid Information Flow Control for Low-Level Code 159

26. Lourenço, L., Caires, L.: Dependent information flow types. In: SIGPLAN Not,
pp. 317–328, January 2015

27. Lourenço, L., Caires, L.: Information flow analysis for valued-indexed data secu-
rity compartments. In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS,
vol. 8358, pp. 180–198. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05119-2 11

28. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
348–375 (1978)

29. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system f to typed assembly
language. ACM Trans. Program. Lang. Syst. 21, 527–568 (1999)

30. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. 9, 410–442 (2000)

31. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0: Java infor-
mation flow (2006). Accessed 15 Oct 2021

32. O’Flaherty, K.: Facebook exposed up to 600 million passwords - here’s what
to do, March 2019. https://www.forbes.com/sites/kateoflahertyuk/2019/03/
21/facebook-has-exposed-up-to-600-million-passwords-heres-what-to-do/#
6f301fe4bc90. Accessed on 15 Oct 2021

33. Polikarpova, N., Stefan, D., Yang, J., Itzhaky, S., Hance, T., Solar-Lezama, A.:
Liquid information flow control. Lang, Proc. ACM Program (2020)

34. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

35. Schneider, F.B., Morrisett, G., Harper, R.: A language-based approach to secu-
rity. In: Wilhelm, R. (ed.) Informatics. LNCS, vol. 2000, pp. 86–101. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44577-3 6

36. Siek, J., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73589-2 2

37. Simonet, V., Rocquencourt, I.: Flow caml in a nutshell. In: First APPSEM-II
Workshop, April 2003

38. Toro, M., Garcia, R., Tanter, E.: Type-driven gradual security with references.
ACM Trans. Program. Lang. Syst. 40, 1–55 (2018)

39. Winder, D.: Facebook quietly confirms millions of unencrypted Instagram pass-
words exposed - change yours now, April 2019. https://www.forbes.com/sites/
daveywinder/2019/04/19/facebook-quietly-confirms-millions-of-unencrypted-
instagram-passwords-exposed-change-yours-now/#22e5d5844537. Accessed 15
Oct 2021

https://doi.org/10.1007/978-3-319-05119-2_11
https://doi.org/10.1007/978-3-319-05119-2_11
https://www.forbes.com/sites/kateoflahertyuk/2019/03/21/facebook-has-exposed-up-to-600-million-passwords-heres-what-to-do/#6f301fe4bc90
https://www.forbes.com/sites/kateoflahertyuk/2019/03/21/facebook-has-exposed-up-to-600-million-passwords-heres-what-to-do/#6f301fe4bc90
https://www.forbes.com/sites/kateoflahertyuk/2019/03/21/facebook-has-exposed-up-to-600-million-passwords-heres-what-to-do/#6f301fe4bc90
https://doi.org/10.1007/3-540-44577-3_6
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://www.forbes.com/sites/daveywinder/2019/04/19/facebook-quietly-confirms-millions-of-unencrypted-instagram-passwords-exposed-change-yours-now/#22e5d5844537
https://www.forbes.com/sites/daveywinder/2019/04/19/facebook-quietly-confirms-millions-of-unencrypted-instagram-passwords-exposed-change-yours-now/#22e5d5844537
https://www.forbes.com/sites/daveywinder/2019/04/19/facebook-quietly-confirms-millions-of-unencrypted-instagram-passwords-exposed-change-yours-now/#22e5d5844537

Upper Bound Computation
of Information Leakages for Unbounded

Recursion

Johannes Bechberger1(B) and AlexanderWeigl2

1 Institute for Program Structures and Data Organization, Karlsruhe, Germany
2 Institute of Information Security and Dependability (KASTEL),

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. Confidentiality is an important security goal that is ensured
by the absence of information flow between secrets and observable out-
puts. Quantitative information flow (QIF) analyses quantify the amount
of knowledge an attacker can gain on the secrets by observing the out-
puts. This paper presents a novel approach for calculating an upper
bound for the leakage of confidential information in a program regard-
ing min-entropy. The approach uses a data flow analysis that represents
dependencies between program variables as a bit dependency graph. The
bit dependency graph is interpreted as a flow network and used to com-
pute an upper bound for the leakage using a maximum flow computation.
We introduce two novelties to improve the precision and soundness: We
strengthen the precision of the data flow representation by using the path
conditions. We add sound support of unbounded loops and recursion by
using summary graphs, an extension of a common technique from com-
piler engineering. Our approach computes a valid upper bound of the
leakage for all programs regardless of the number of loop iterations and
recursion depth. We evaluate our tool against a state-of-the-art analysis
on 13 example programs.

Keywords: Security analysis · Quantitative information flow · Bit
dependency graphs

1 Introduction

Information Flow. The analysis of secure information flow (IF) tries to find the
information flow of confidential secret information to output variables that can
be observed by unclassified personnel or attackers. It is an important analysis to
ensure the confidentiality of programs. Traditionally, the result of an IF analysis
is a qualitative answer: either there is an influence of confidential information
on attacker-observable outputs (we say the program leaks information) or not.
Qualitative Information Flow is an established area of research that produced
tools that scale to large programs and support a variety of language features.

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 160–177, 2021.
https://doi.org/10.1007/978-3-030-92124-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_10&domain=pdf
http://orcid.org/0000-0002-5690-7686
http://orcid.org/0000-0001-8446-4598
https://doi.org/10.1007/978-3-030-92124-8_10

Upper Bound of Leakages for Unbounded Recursion 161

Fig. 1. Program that leaks only one bit
of information from the secret input h
to the public output o.

The problem is that small leaks may
often be acceptable and sometimes neces-
sary; it is necessary to know the amount
of leaked information. Secure Qualita-
tive Information Flow cannot distinguish
between a program that leaks only a sin-
gle bit, like the program given in Fig. 1,

and a program that leaks the whole secret, as the information flow is not quanti-
fied. The urge to distinguish between such cases leads to the need of quantifying
the leakage.

Quantitative Information Flow (QIF) aims to calculate the leakage, the
amount of secret information which is gained by an attacker, by executing a
program. Applications range from ensuring the security of distributed applica-
tions to formally certifying data storage systems [19]. Typically, an attacker has
access to the program code and can only see low outputs o after program termi-
nation. The quantified leakage of the program from Fig. 1 is clearly lower than
the leakage of the program that leaks the whole secret. In the following, we call
a QIF analysis sound if and only if the analysis computes an upper bound.

Fig. 2. Laundering Attack which
leaks the secret input over all iter-
ations of the loop.

Motivating Example. We consider now the
program in Fig. 2 with signed fixed-width inte-
gers. This program demonstrates the Laun-
dering Attack, and leaks the whole secret into
the public output. This leakage occurs indi-
rectly due to control statements. Each iter-
ation of the loop itself only leaks the infor-
mation whether z = h for a specific z, but
all iterations together leak the whole secret.
Figure 2 is an example of how a small leak
can be extended into a leak of the secret. A

related real-world example is the brute-force attack on passwords, checking all
possible passwords to find the correct one, with each call to the password check
routine leaking only a small amount of information.

Many static QIF analyses based on abstract interpretation, model counting,
or program algebras were proposed in recent years. They have in common that
they only investigate programs up to a prior set upper bound on execution
paths. If the upper bound is too small, the estimated leakage might be too low.
This can be observed in our evaluation in Sect. 7. The usage of a prior set
upper bound means that current analyses can only consider a limited number of
loop iterations. There are multiple static analyses that support both loops and
functions, but in practice, only a limited recursion depth and a limited number of
loop iterations can be soundly analyzed due to resource limitations. As a result,
these analyses cannot give, in practice, an upper bound for the leakage of all
analyzed programs, an example for such a program is the Laundering Attack in
Fig. 2.

162 J. Bechberger and A. Weigl

Contribution. We present Nildumu1, a novel over-approximative static QIF anal-
ysis for a while-language with recursion and fixed-length arrays with copy seman-
tics. It supports both unbounded loops and recursion, contrary to the current
state of the art. The analysis does this by considering a limited number of exe-
cution paths, like previous approaches, over-approximating the effects of the
remaining iterations and recursive calls. The basis of the analysis is a bit depen-
dency graph, which records the dependencies between the values in a program
on the bit-level. During the construction of the graph, path conditions are taken
into account. The bit dependency graph is extended using the novel summary
graphs, which are used to improve the precision of the over-approximation. The
evaluation shows that the analysis is approximately as precise as current analy-
ses based on model counting while being sound for every number of considered
execution paths.

Fig. 3. Structure of our analysis.

Overview. We first describe the related static analyses in Sect. 2 and the theo-
retical foundations in Sect. 3. We then describe our analysis itself. The analysis
is structured into different parts, as seen in Fig. 3: The program is first trans-
formed into an equivalent loop-free program with recursion, lowering arrays to
int variables. This loop-free program is then transformed into a simplified form
so that variables are only assigned once. These transformations are given in Sect.
4. Then the summary graphs are computed for every function, and with them,
the bit dependency graph is created, presented in section Sect. 5. The actual
computation of the leakage is then based on the bit dependency graph, using a
maximum flow computation. We then give an improvement of the precision of
the analysis harnessing the knowledge gathered from path conditions in Sect. 6.
We follow this by an evaluation in Sect. 7 comparing the analysis with a state-
of-the-art model counting analysis and end with the conclusion and future work
in Sect. 8.

2 Related Work

There are multiple static QIF analyses based on abstract interpretation, as pre-
sented by Smith in [27], like jpf-qif developed by Phan et al. [26]. Recent advances
in the field of approximative model counting resulted in the development of anal-
yses that can process code written in C and C++, like ApproxFlow [4]. In con-
trast to the SAT-based model counting, Moped-QLeak [9] uses binary decision

1 Nildumu is Lojban for “is a quantity”.

Upper Bound of Leakages for Unbounded Recursion 163

diagrams (BDD) for computing a summary of a program and using this sum-
mary to compute its leakage. Model-counting and BDD-based analyses rely on
inlining and unwinding and are prone to under-approximations, as mentioned in
the introduction.

Furthermore, there are two static analyses by Mu [23] and Clark et al.
[12] that use a Program Dependence Graph (PDG) to track the dependencies
between variables in a graph representation of the program. This differs from
our approach, which tracks the dependencies between individual bits instead of
variables. These analyses compute the value probability distributions for each
program variable. Both analyses are based on the notions given in [18], describ-
ing an algebra for an imperative language. The analyses using these techniques
can soundly analyze programs of a while-language using a probabilistic denota-
tional semantic. But these analyses do not support recursion and are limited to
small programs. Newer approaches [1] improve on these analyses based on newer
work on the formalization of hyperproperties, but they are not yet implemented
in tools. The advantage of these approaches is that they support multiple leakage
measures.

Finally, although there is no other bit dependency graph based analysis, there
is one dynamic analysis using byte dependency graphs: The dynamic analysis by
McCamant and Ernst [21] uses dynamic tainting instead of statically tracking
the flow of information through the program with a byte level granularity. Other
dynamic analyses exist, but they are usually based on black box approaches
[10,11] that do not consider the program code at all.

As stated previously, none of these tools support the static analysis of pro-
grams with both arbitrary numbers of loop iterations and recursion depth.

3 Foundations

We use the information-theoretical notion of QIF as presented by Smith [28]. The
entropy H(X) describes the amount of information of a random variable X. It
gives the minimal number of bits that are required to encode the information of
X (Shannon Entropy).

In the following, we consider only sequential programs, similar to [28], where
the attacker only observes the output O after the execution of the program fin-
ishes and has no information on the secret input H. In QIF, we are interested
in the information shared between H and O. This information is called mutual
information. It is denoted as H(H; O) and expresses the information gained on H
by observing O. The actual leakage I(H; O) is then defined as the reduction of the
uncertainty by observing O: I(H; O) = H(H) − H(H; O) .

In the following, we use the min-entropy H∞, which is based on the concept
of vulnerability [28] and quantifies the probability that the secret is guessed
by the attacker in one try. Formally, the vulnerability V (H) is defined as
V (H) = maxh∈H P [H = h] with the resulting entropy being H∞(H) = log 1

V (H)

[17]. In particular, V (X) is the worst-case probability that X’s value can be
guessed correctly in one try.

164 J. Bechberger and A. Weigl

Assuming we have a deterministic program with a uniformly distributed
secret, the min-entropy leakage I∞ is calculated by counting the different possi-
ble outputs of a program [28]. Formally, let O be the set of possible outputs of
the program, then the leakage is

I∞(H; O) = log2 |O|.
This leakage is an upper bound of the leakage over all distributions of H.

Soundness. To work with estimations of static QIF analyses that are not exact,
we define soundness as follows: An analysis is sound if and only if the calculated
leakage for all programs p with the secret input H and public output O, Îp(H; O),
is an upper bound of the actual leakage Ip(H; O), i.e., Ip(H; O) ≤ Îp(H; O).

Program Dependency Graph (PDG). A PDG is a data dependence graph with
added control flow edges [15]. Such a graph consists of nodes that represent
variables and operations. There is an edge from a node a to a node b present
in this graph if the value of b directly depends on the value of a (data depen-
dence) or if the value of a directly affects whether or not b is executed (control
dependence). Our analysis uses a PDG as its underlying representation of the
program structure.

Constant Bit Analysis. For our QIF analysis, we exploit a static intra-procedural
constant bit analysis on a PDG. A constant bit analysis aims to find bits that
are statically known. We base our analysis on the analysis described by Budiu
et al. [7] which uses a bit lattice (B). This lattice contains the possible statically
known information on a bit. A bit is a constant (0 or 1), might be both (�B), or
is never evaluated (⊥B).

A constant bit analysis associates each node in the PDG with a tuple of
elements from the bit lattice representing the knowledge that we have of each
bit of the value of each node.

4 Preprocessing

Shape of Programs. In this paper, we consider programs of a while-language
containing the typical imperative statements: assignments, if-statements and
while-loops (cf. Fig. 4). Moreover, the programming language contains functions
that might be directly or mutually recursive. Also, functions can have multiple
return values, an assignment of the form (v1, . . . , vk) := f() allows to assign the
return values of the function call f() to multiple variables v1 to vn. Additionally,
the dot denotes bit-access operator, i.e., e.n denotes the nth bit of the expres-
sion e. To identify the secret and public information, variables declaration can
contain the modifier input (secret) and output (public). All variables without
such a modifier are considered as hidden and non-confidential.

The only supported data types are signed fixed-sized integers and fixed-length
arrays. Integers are represented in two’s complement with an arbitrary but fixed
bit-width called W in the following. Boolean values are represented by the inte-
gers 0 and 1.

Upper Bound of Leakages for Unbounded Recursion 165

Preprocessing. We start the analysis by preprocessing programs into an array-
and loop-free form to simplify the QIF analysis. Arrays have a fixed-length, and
therefore can be split into single variables that represent its entries. This tech-
nique is known as scalar replacement of aggregates [24]. Every access of an array
element with a constant index can directly be mapped onto the corresponding
variable. All other accesses are replaced with if-else-cascades to determine the
correct variable.

Loops are transformed into recursive functions. The transformation rule is
given in Fig. 5 which requires multiple return values. The application of this
rule for the example in Fig. 2 is in Fig. 6. This transformation is followed by
the inlining of all functions on their call-sites with argument passing and return
statements replaced by variable assignments. Recursive functions are only inlined
up to a user-specified bound. This is a common technique that is used in model
checking and program analyses to support functions [3,24]. Note that the func-
tion calls are preserved when the inlining bound is hit. Thus, the resulting pro-
gram is not free of function calls, which are handled later in our QIF analysis
by over-approximating the behavior of the remaining (recursive) function calls.
The inlining increases the precision of the analysis as every inlined function call
is not over-approximated and increases its run-time.

After the inlining, we translate the program into Static Single Assignment
form (SSA). We introduce fresh variables, such that every variable is only
assigned once. Moreover, we ensure that the right-hand side of each assign-
ment is an atomic expression. An atomic expression is either a function call or
a binary operator with variables (v) or constants (n) as operands. The final
result is a program that only consists of if- and function call statements, as well
as assignments v = e and return statements return e where e is an atomic
expression.

5 Bit Dependency Graph

This section covers the novel generation of the bit dependency graph for a pro-
gram with arbitrary recursive functions (Sect. 5.1, Sect. 5.3) but without loops
and arrays. The construction is based on the constant bit analysis and results in

Fig. 4. The grammar of the considered while-language. Placeholder v denotes a variable
name, t a type name, n an integer constant and � a typical binary operator like
addition, multiplication, or exclusive-or on integers.

166 J. Bechberger and A. Weigl

Fig. 5. Translation of a loop into a semantically equivalent function, with w1, . . . , wn

being the variables written in the loop and r1, . . . , rm being other variables that are
accessed in the loop.

Fig. 6. Translation of the loop from Fig. 2 using the schema from Fig. 5.

a graph that expresses the dependencies between single bits. We use this graph
to approximate the leakage of a program (Sect. 5.2).

Definition 1 (Bit Dependency Graph). A bit dependency graph G = (V,E)
is a directed graph of nodes where each node represents a bit that belongs to the
value of a node in the underlying PDG. This graph contains an edge from v1 to
v2 if v2 data or control depends on v1.

Each bit node in the graph represents a single bit of the information on
a variable at a specific program location, due to the SSA form. Thus, a bit
dependency graph represents the dependencies between variables at the bit-level.
A peculiarity in this definition is that an edge between two nodes (bits) expresses
the possibility of a dependency. To achieve a sound analysis, the set of distinct
paths between nodes must always be a superset of the actual bit dependencies
defined by the program.

In the following, we call nodes that are reachable from a node v ∈ V the
transitive successors of v and nodes vi ∈ V for which an edge (v, vi) ∈ E exists
successors of v.

Construction. We construct a bit dependency graph from a PDG during the
constant bit analysis by collecting the dependencies between the individual bits
associated with the PDG nodes.

Let G = (V,E) be the bit dependency graph for a given preprocessed pro-
gram. The preprocessed program only consists of control statements, function
calls, atomic assignments and return statements, as described before. The set
of vertices of the graph is V := {x.i | 1 ≤ i ≤ W, x is a PDG node} that con-
tains a node for each bit of every PDG node and thereby every variable in the

Upper Bound of Leakages for Unbounded Recursion 167

program. The set of edges E is formed by using specific function handlers. A
function handler, defined in Sect. 5.1, models a bit dependency graph from the
arguments to the return value. We treat every operator in the following as an
implicitly defined function, e.g. a + b is treated as f+(a, b). Let us consider the
case of two arguments in function calls (or binary operators), x := f(y, z) (or
x := y � z): We add edges between the bit nodes of y, z and x if there is a data
or control dependency between them. We can trivially extend this to functions
with higher arity.

Due to the preprocessing, we only need to consider assignments with function
calls and single operator expressions. Each specific function or operator requires
a function handler.

Example 1. The bit dependency graph for the program x := y | z with two bit
integers is given in Fig. 7. The nodes yi and zi are connected to xi since each bit
of the result depends on the corresponding bits of the operands.

Fig. 7. Graph for x := y | z

In the remaining, we define the concept of
function handlers (Definition 2) and discuss
different handlers (Sect. 5.1 and Sect. 5.3). We
afterwards state the relationship between the
bit dependency graph and the leakage compu-
tation Sect. 5.2.

5.1 Handling Functions

We formally introduce the concept of a function handler hc, which models the
bit dependencies from the arguments a1, . . . , an to the return value x. A function
handler returns a specific bit dependency graph for a specific function call x :=
f(a1, . . . , an). Therefore, the handler can react to specific arguments, e.g. an
optimization for neutral elements of operators are possible (a + 0 = a).

In the best case, this function handler represents the bit dependencies pre-
cisely. In the worst case, if no such function handler exists, we add an approxi-
mative sub-graph. Such an approximative sub-graph leads to a sound analysis if
it is an over-approximation, i.e., it adds at least as many distinct paths between
every parameter node and every return node as the precise sub-graph.

Definition 2 (Function Handler). A function handler for a specific function
call c, x := f(a1, . . . , an), with the tuple of bit nodes Ac = (a1.1, . . . , a1.W, . . . ,
an.1, . . . , an.W) related to the arguments a1, . . . , an, is formally defined as a
function hc : Ac �→ (Vc, Ec) with Ac ⊆ Vc.

The resulting graph Gc = (Vc, Ec) is an over-approximation of the application
of f and the return value nodes Rc are used as the nodes of x.

We distinguish two kinds of handlers: the built-in and the summary han-
dlers. We describe in the following the built-in handlers and detail the summary
handlers in Sect. 5.3.

168 J. Bechberger and A. Weigl

Built-In Handler. For operators and built-in functions, we define handlers that
model their effect: We interpret non-bitwise operators as their equivalent combi-
nation of bit-wise operators and over-approximate more complex operators like
multiplication. This allows the analysis to only implement the bit-wise operators
directly. The built-in handlers are more precise than the summary handlers but
have to be implemented directly in the core analysis.

5.2 From Bit Dependency Graph to Leakage

We can compute an approximation of the leakage by using network flow algo-
rithms. Commonly, a directed node-weighted flow network NG = (G = (V,E), γ,
vsource ∈ V, vsink ∈ V) consists of a directed graph G, a node capacity
γ : V → {1,∞} and a source and a sink node for the flow. A comparable idea
based on an edge-weighted flow network has first been used by McCamant and
Ernst [21].

Construction of the Flow Network. Given a bit dependency graph G = (V,E)
with the nodes Vinput ⊆ V representing the secret input bits and the nodes
Voutput ⊆ V representing the public output bits, we can construct the corre-
sponding node-weighted flow network NG as follows: We introduce a new source
node vsource which has as successors all input nodes Vinput and a new sink node
vsink which is a successor of all output nodes Voutput:

NG = (G′ = (V ′, E′), γ, vsource, vsink) V ′ = V ∪ {vsource, vsink}
E′ = E ∪ { (vsource, v) | v ∈ Vinput } ∪ { (v, vsink) | v ∈ Voutput }

γ(v) �→
{

∞ : v ∈ {vsource, vsink}
1 : otherwise

Theorem 1 (Leakage Computation using Minimum Cuts). The size of
the minimum node cut of the network NG is an upper bound of the leakage of a
program with the bit dependency graph G.

Proof Sketch. First two observations: A single bit can only be statically unknown
if it is either a secret input bit or it transitively depends on at least one secret
input bit. Consider now the bits b1, . . . , bn that form the bit vector b which are
statically unknown. b can than have at most 2n different values at runtime.

If we can find the bits b′
1, . . . , b

′
m so that all paths from vsource to b1, . . . , bn

contain these bits, then b can have at most 2m values: The vector b′ can have at
most 2m values and every value of b′ leads to one value of b at runtime.

The minimum cut M is the b′ with the minimal combined weight if we con-
sider b to be the vector of public output bits. 2|M | is therefore an upper bound
on the number of different output values at runtime and as a result M is an
upper bound for the min-entropy of the underlying program (see Sect. 3).

Upper Bound of Leakages for Unbounded Recursion 169

Computation. We can compute the minimum node cut by transforming the node-
weighted network into an edge-weighted network [14, Algorithm 9] on which we
compute the minimum edge cut. The minimum edge cut can be computed by
using maximum flow algorithms as a result of the max-flow min-cut theorem [6].
Another possibility is to use a Partial MaxSAT solver as presented in Sect. 6.

5.3 Summary Function Handler

By treating bit dependency graphs as node-weighted network flow graphs, we
can reconsider function handlers and define summary handlers. We first define
the concept of summary graphs, their construction, and at last their application
in form of a function handler.

Definition 3 (Summary Graphs). A summary graph Gs for a bit dependency
graph G of a function f consists of the parameter nodes P , the return nodes R
and the intermediary nodes Γ . The edges of Gs and Γ , satisfy the following
constraint: The information flow between P and R is the same in Gs as in G.

Summary graphs are modeled after the transitive dependence graphs for
functions introduced by Horwitz et al. [16]. These dependence graphs consist
of summary edges and are commonly used in compiler engineering for program
slicing. A summary edge connects a parameter node with a return node if and
only if there is a transitive dependency between them. A summary graph is
a transitive dependence graph on bit-level that includes the nodes from the
minimum-node-cut as intermediary nodes Γ to improve the precision.

Construction. Minimal summary graphs for each function are constructed iter-
atively using a fixed-point iteration over the call-graph. It uses a graph without
any edges as a starting point for every function. The fixed-point iteration com-
putes the summary graph for a given function f in each iteration using the
following steps:

1. Construct the bit dependency graph G for f with parameters as secret inputs
and return values as public outputs, using the current iteration’s summary
graphs whenever a function is called.

2. Reduce the graph G with parameter nodes P and return nodes R: Construct
the flow network NG and compute the minimum node cut Γ . Reduce the
graph to a graph G′ = (V ′, E′) that consists of V ′ = P ∪R∪Γ and transitive
edges between P and R ∪ Γ , and Γ and R.

3. Set G = G′ for the next iteration of the summary graph for f .

Using this construction, the summary graphs for all functions in the program can
be pre-computed. Every iteration of the fixed-point iteration in the construction
adds at least one new distinct path between the parameter and return nodes
of at least one function. The fixed-point iteration terminates, as the number of
distinct paths is bounded. Therefore, the construction itself terminates.

Example 2. We consider the function f given in Fig. 8a with three bit integers.
Figure 8b shows the graph G(f) for the function and the resulting summary
graph in Fig. 8c. This shows how the size of the summary graph is reduced.

170 J. Bechberger and A. Weigl

Fig. 8. Example function with its graphs, omitting constant nodes.

Summary Handler. The summary handler is a function handler which uses a
copy of the precomputed summary graph Gf

s for a function f on its call-site c.

hsummary
c : Ac �→ copy(Gf

s)[P �→ Ac]

Summary function handlers summarize the effect of a function on the leak-
age computation. They are still an over-approximation as they cannot use the
information the constant bit propagation has on the arguments at any given
call-site.

Soundness. We follow with Menger’s Theorem for directed graphs [6] that the
minimum node cut is equivalent to the number of internally node disjoint paths,
as all nodes have weight 1. By the construction of the reduced graph G′, the dis-
jointedness of paths is preserved by the graph reduction, thus the set of disjoint
paths is a superset of the disjoint paths of G. The summary handler is therefore
sound.

6 Increasing the Precision

Fig. 9. Example for path conditions

Knowledge from path conditions is
not used in the construction of the
bit dependency graph as described in
Sect. 5. We extend the previous graph
construction to take this knowledge
into account, which increases the pre-

cision of our analysis. We annotate each bit node b with a function replb : B →
22

Bit

which returns the sets of bits that can be considered equal under the
assumption that b has a given value. We use these functions to compute the
equal bits for every path condition. In particular replcond(1) returns the bits
that are considered equal in the current context under the assumption that cond
evaluates to true.

For example, we know that x & 1 = (y >> 1) & 1 evaluated to true in the
then branch of the if-statement in Fig. 9, therefore we can infer that the first bit

Upper Bound of Leakages for Unbounded Recursion 171

of x is equivalent to the second bit of y, {x.1, y.2} ∈ replx&1=(y>>1)&1(1). The
propagation of knowledge is based on the notion of propagated predicates, first
formalized by Wegbreit [29]. Every path condition leads to new knowledge on
bits.

This knowledge leads us to a set of bit dependency graphs, as we know in each
context-specific bits that can be replaced by other bits, e.g. the bits belonging
to x.1 with the bits belonging to y.2 in the example above. Inserting an edge
from either bit in the specific context leads to a sound over-approximation.
Therefore every of the possible graphs leads to an over-approximated leakage. In
our example, we can replace the edge (vx.1, vz.1) with the edge (vy.2, vz.1) leading
us to a set of graphs. We can either use simple heuristics to choose a specific
graph or use a Partial MaxSAT (PMSAT) solver for leakage computation to
optimize the chosen edges (Sect. 6) to minimize the calculated leakage.

Heuristic-Based Graph Selection. We select the graph, which promises the small-
est leakage, by applying a simple greedy edge selection heuristic: In principle, we
prefer edges that start in constant bits. The idea is that it improves the constant
propagation and the precision of the analysis, as constant bits do not depend on
the secret input. The advantage of this heuristic is its computational simplicity.
Its main disadvantage is that it does depend on one of the possible edges start-
ing in a constant bit, arbitrarily choosing an edge otherwise, not guaranteeing
an optimal result. A preliminary evaluation showed that this did not affect the
precision of the analysis for the programs in the evaluation. This heuristic is
therefore used in the evaluation.

PMSAT-Based Leakage Computation. In general, an instance of PMSAT con-
sists of formulas in conjunctive normal form (CNF) that consist of soft and hard
clauses conjunctively combined with disjunctively connected (negated) propo-
sitional variables. A PMSAT solver, like Open-WBO [20], tries to find a sat-
isfying variable assignment such that the variable assignment meets all given
hard clauses, and the most possible soft clauses [8]. Finding such a solution is
NP-complete but its usage removes the need for heuristics for incorporating the
knowledge on replacement edges.

In the following, we give the encoding of the node-weighted flow network
N = (G′ = (V ′, E′), γ, vsource, vsink) into hard and soft constraints: For each
vertex v, we introduce the propositional variables cv and rv, which represents
the participation of the vertex in the minimum cut: If cv holds, add vertex v to
the minimum cut, or if rv holds, cut the graph after the successors vs of vertex
v (cvs

) or their successor transitively. The hard constraints Γ (v) for every node
v are therefore defined as:

Γ (v) := dv → (cv ∨ rv)

︸ ︷︷ ︸
(1)

∧ rv →
∧

s∈successors(v)

(ds ∨
n∨

i=1

dsi)

︸ ︷︷ ︸
(2)

172 J. Bechberger and A. Weigl

We create the helper variable dv in (1) that states that we cut the graph
either at the vertex or after the vertex. (2) states that if we consider cutting the
graph after v then we have to either cut the graph after every successor s. If
there are any replacements (v, si) for the edge (v, s), we can cut at or after any
of the si instead. If v does not have any successors, Γ (v) degenerates to dv → cv.

We add the hard constraints ¬cvsource
and ¬cvsink

as the source and the
sink cannot, by definition, be part of the minimum cut. We add rvsource

as the
minimum cut consists of transitive successors of vsource and ¬rvsink

as we cannot
cut after the sink. We finally add the soft constraint ¬cv for every node v, leading
us to the final formula:

∧
v∈V ′

Γ (v) ∧ ¬cvsource
∧ ¬cvsink

∧ rvsource
∧ ¬rvsink

︸ ︷︷ ︸
hard

∧
∧

v∈V ′
¬cv

︸ ︷︷ ︸
soft

A PMSAT solver tries to maximize the number of fulfillable ¬cv clauses and
thereby minimize the number of nodes participating in the minimum cut, leading
us to a leakage computation.

7 Evaluation

We compare Nildumu2 with ApproxFlow3. As stated before, we found no other
tool that supports both unbounded loops and unbounded recursion and use
ApproxFlow as a state-of-the-art analysis. ApproxFlow is based on model count-
ing. It works by first creating a SAT formula representing a program using CBMC
[13] and then counting the number of different assignments for the output vari-
ables using an approximate model counter. Although we do compare the run-
times of both tools, the value of the comparison is limited, as both tools are
based on different libraries using different language runtimes.

Tool Configuration. The tools are evaluated with different levels of inlining and
unwinding to show the effect of this parameter on the approximated leakage.
We consider 2, 8, and 32 as both unrolling and inlining levels. A level of 32
is the default for ApproxFlow. ApproxFlow is by default configured so that
its results differ by at most 0.8 bits from the real leakage with a probability
of 80%, as ApproxFlow uses an approximate model counter. We use the same
inlining levels in combination with the summary handler for Nildumu. For the
sake of completeness, we also present the datapoints for Nildumu without path
conditions support (32w).

2 Nildumu is available as open-source with a GUI at https://github.com/
parttimenerd/nildumu with the full evaluation reproducible using the docker image
parttimenerd/nildumu. The evaluation used version 49ebe88948874.

3 We used a modified version of ApproxFlow [4] with an update to ApproxMC4,
publicly available at https://github.com/parttimenerd/approxflow.

https://github.com/parttimenerd/nildumu
https://github.com/parttimenerd/nildumu
https://github.com/parttimenerd/approxflow

Upper Bound of Leakages for Unbounded Recursion 173

Table 1. The computed leakage for all benchmarked programs with different
unrolling levels k. The timeout was 2 h, timeouts are marked with a dash (“-”).
Under-approximations of programs are marked as bold and underlined and over-
approximations larger than one bit are marked as overlined, as a deviation of 0.8
bits is accepted for ApproxFlow with the default configuration. The second column I
gives the actual leakages of the programs with ∼ marking the estimate by ApproxFlow
as explained before and the third column Imax gives the maximum possible leakage,
considering only the number of input and output bits.

Table 2. The mean execution time for all benchmarked programs in seconds. The
timeout was 2 h and the standard deviation was at maximum 10%.

174 J. Bechberger and A. Weigl

Benchmark Process. Both tools are run 5 times for every combination of program
and unrolling level to account for randomness in the underlying system and in
ApproxFlow. The benchmarking took place on an Intel Xeon Gold 6230 CPU
with 512 GiB of RAM, running a Linux 5.4.0 kernel with OpenJDK 1.8.0 and
CBMC 5.21.0. Both tools are restricted to two cores.

Benchmark Programs. We use the Laundering Attack from Fig. 2 and the com-
monly used benchmarks described in [2,9,22,25]. These benchmarks from litera-
ture can be categorized into programs that are focused on the handling of loops
(Binary Search [22] and Electronic Purse [9]), the handling of conditions (Illus-
trative Example [22] and Implicit Flow [22]), the handling of bit operations (Mix
and Duplicate [25] and Population Count [25]), and the handling of arithmetic
or comparison operations (Sanity Check [25] and Sum [2]). We omit programs
that use features not supported by the compared analyses.

We additionally use the Smart Grid and E-Voting examples from [5]. We
use two versions of the E-Voting example as used by [4]: Ranking and single
preference-based voting. There are no exact leakages known for these larger
programs a priori, as the leakage depends on multiple configuration parameters.
To estimate the exact leakage for the Smart Grid and E-Voting examples, we used
ApproxFlow with the unrolling level being the respective loop bound, and set the
allowed deviation to 0.1 bits and a correctness probability of 0.95. Both the lower
allowed deviation and the higher correctness probability increase the run-time
and the precision and result in different values than the default configuration for
the same unrolling levels.

Results. The computed leakages are given in Table 1 and show that Nildumu
over-approximates the leakage for every program and every level of inlining, in
contrast to ApproxFlow which under-approximates the leakage if the unrolling
and inlining level is lower than required by each program. Table 1 also shows that
Nildumu has worse precision for most test cases involving arithmetic and compar-
ison operators. Furthermore, Table 2 gives the execution time for all programs
and shows that Nildumu is slower than ApproxFlow. Additional benchmarks
showed that Nildumu does not produce better results, performance and leakage-
wise, when using the PMSAT based leakage computation with Open-WBO.

Discussion. ApproxFlow is by design more precise for programs where it can
fully unroll all loops and inline all functions, as it models operators directly
as a SAT formula. Nildumu only uses simple dependencies between bits and
not complex, SAT-based dependencies as ApproxFlow and has, therefore, worse
precision, especially for arithmetic operators. Nonetheless, Nildumu analyses the
presented benchmark programs with comparable precision and gives an over-
approximation for every benchmark and unrolling limit. The results also show
that using Nildumu without support for path conditions leads to worse precision
with performance gains for only part of the benchmarks.

The run-time of Nildumu is worse than the run-time of ApproxFlow. This
is partly due to its implementation in Java, compared to ApproxFlow which is

Upper Bound of Leakages for Unbounded Recursion 175

a small Python wrapper combining two tools written in C++, and due to the
additional computation of summary graphs which is especially expensive as this
computation over-approximates the effect of all remaining recursion.

8 Conclusion and Future Work

In this paper, we presented a QIF analysis exploiting bit dependency graphs that
supports a while-language with loops, recursive functions, fixed-width integers,
and fixed-size arrays. To our knowledge, this is the first analysis that supports
recursion (and loops) without a limit on the recursion depth using summary
graphs as an adaptation of the well-known concept of summary edges. This
reduces the set of assumptions on the processed programs. The analysis computes
an upper bound of the information leakage using min-entropy regardless of the
level of inlining.

The evaluation results presented in Sect. 7 show that the analysis produces
comparably good results for typical examples, but also that the arithmetic and
comparison expressions are conservatively approximated, and that the perfor-
mance and precision could be improved. Especially the construction of summary
graphs and the handling of arrays should be improved to reduce the execution
time of the analysis. The analysis could therein profit from parallelization.

Furthermore, the used summary graphs are currently limited as their con-
struction ignores the specific call-sites and their context. This problem should be
addressed in future extensions of this approach, for example by the techniques
already developed for data flow analyses in compilers. There is ongoing work to
support a broader range of language features (like input and output streams)
as well as using CBMC as a front-end to improve the real-world applicability
of Nildumu. The precision could be improved by using interval-based lattices
or incorporating more operator semantics using techniques from the field of
bounded model checking. Furthermore, the analysis could be extended into a
component-based analysis which analyzes program components and the flows
between them.

Acknowledgements. This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre “Invasive Comput-
ing” (SFB/TR 89), and by the German Federal Ministry of Education and Research
within the framework of the project KASTEL SVI in the Competence Center for
Applied Security Technology (KASTEL).

References

1. Assaf, M., Signoles, J., Totel, E., Tronel, F.: The cardinal abstraction for quanti-
tative information flow. In: Workshop on Foundations of Computer Security 2016
(FCS 2016), Lisbon, Portugal (June 2016). https://hal.inria.fr/hal-01334604

2. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: 2009 30th IEEE Symposium on Security and Privacy, SP
2009, pp. 141–153. IEEE, Washington, DC (May 2009). https://doi.org/10.1109/
SP.2009.18

https://hal.inria.fr/hal-01334604
https://doi.org/10.1109/SP.2009.18
https://doi.org/10.1109/SP.2009.18

176 J. Bechberger and A. Weigl

3. Beyer, D., Gulwani, S., Schmidt, D.A.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 16

4. Biondi, F., Enescu, M.A., Heuser, A., Legay, A., Meel, K.S., Quilbeuf, J.: Scalable
approximation of quantitative information flow in programs. In: VMCAI 2018.
LNCS, vol. 10747, pp. 71–93. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73721-8 4

5. Biondi, F., Legay, A., Quilbeuf, J.: Comparative analysis of leakage tools on scal-
able case studies. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol.
9232, pp. 263–281. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23404-5 17

6. Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics,
Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-84628-970-5

7. Budiu, M., Sakr, M., Walker, K., Goldstein, S.C.: BitValue inference: detecting
and exploiting narrow bitwidth computations. In: Bode, A., Ludwig, T., Karl,
W., Wismüller, R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 969–979. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44520-X 137

8. Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S.: Local search algorithms for
partial maxsat. In: Proceedings of the Fourteenth National Conference on Arti-
ficial Intelligence and Ninth Conference on Innovative Applications of Artificial
Intelligence, AAAI 1997/IAAI 1997, pp. 263–268. AAAI Press (1997)

9. Chadha, R., Mathur, U., Schwoon, S.: Computing information flow using symbolic
model-checking. In: Leibniz International Proceedings in Informatics, LIPIcs, vol.
29, pp. 505–516 (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.505

10. Cherubin, G., Chatzikokolakis, K., Palamidessi, C.: F-BLEAU: fast black-box leak-
age estimation. In: Proceedings - IEEE Symposium on Security and Privacy 2019,
pp. 835–852 (May 2019). https://doi.org/10.1109/SP.2019.00073

11. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: estimating information
leakage from java programs. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014,
Part II. LNCS, vol. 8713, pp. 219–236. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11212-1 13

12. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007).
https://doi.org/10.3233/JCS-2007-15302

13. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

14. Esfahanian, A.H.: Connectivity algorithms (2013)
15. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and

its use in optimization. In: Paul, M., Robinet, B. (eds.) Programming 1984. LNCS,
vol. 167, pp. 125–132. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-
12925-1 33

16. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst. (TOPLAS) 12(1), 26–60 (1990). https://doi.
org/10.1145/989393.989419

17. Klebanov, V.: Precise quantitative information flow analysis - a symbolic approach.
Theor. Comput. Sci. 538, 124–139 (2014). https://doi.org/10.1016/j.tcs.2014.04.
022

18. Malacaria, P.: Assessing security threats of looping constructs. In: Conference
Record of the Annual ACM Symposium on Principles of Programming Languages,
pp. 225–235 (2007). https://doi.org/10.1145/1190216.1190251

https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-73721-8_4
https://doi.org/10.1007/978-3-319-73721-8_4
https://doi.org/10.1007/978-3-319-23404-5_17
https://doi.org/10.1007/978-3-319-23404-5_17
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1007/3-540-44520-X_137
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.505
https://doi.org/10.1109/SP.2019.00073
https://doi.org/10.1007/978-3-319-11212-1_13
https://doi.org/10.1007/978-3-319-11212-1_13
https://doi.org/10.3233/JCS-2007-15302
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1145/989393.989419
https://doi.org/10.1145/989393.989419
https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/10.1145/1190216.1190251

Upper Bound of Leakages for Unbounded Recursion 177

19. Mantel, H.: Information flow control and applications—bridging a gap—. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 153–172. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45251-6 9

20. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

21. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capac-
ity. In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), vol. 43 (2008)

22. Meng, Z., Smith, G.: Calculating bounds on information leakage using two-bit
patterns. In: Proceedings of the ACM SIGPLAN 6th Workshop on Programming
Languages and Analysis for Security, PLAS 2011, pp. 1:1–1:12. ACM, New York
(2011). https://doi.org/10.1145/2166956.2166957

23. Mu, C.: Computational program dependence graph and its application to informa-
tion flow security. Newcastle University, Computing Science (2011)

24. Muchnick, S.: Advanced Compiler Design Implementation. Morgan Kaufmann,
Burlington (1997)

25. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish
undue influence. In: Proceedings of the ACM SIGPLAN Fourth Workshop on Pro-
gramming Languages and Analysis for Security, PLAS 2009, pp. 73–85. ACM, New
York (2009). https://doi.org/10.1145/1554339.1554349

26. Phan, Q.S., Malacaria, P., Tkachuk, O., Pǎsǎreanu, C.S.: Symbolic quantitative
information flow. SIGSOFT Softw. Eng. Notes 37(6), 1–5 (2012). https://doi.org/
10.1145/2382756.2382791

27. Smith, G.: Recent developments in quantitative information flow (invited tutorial).
In: 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science, pp.
23–31 (July 2015). https://doi.org/10.1109/LICS.2015.13

28. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) 12th International Conference on Foundations of Software Science and Com-
putational Structures (FOSSACS 2009), vol. 5504, pp. 288–302. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-00596-1

29. Wegbreit, B.: Property extraction in well-founded property sets. IEEE Trans.
Softw. Eng. SE 1(3), 270–285 (1975). https://doi.org/10.1109/TSE.1975.6312852

https://doi.org/10.1007/3-540-45251-6_9
https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.1145/2166956.2166957
https://doi.org/10.1145/1554339.1554349
https://doi.org/10.1145/2382756.2382791
https://doi.org/10.1145/2382756.2382791
https://doi.org/10.1109/LICS.2015.13
https://doi.org/10.1007/978-3-642-00596-1
https://doi.org/10.1109/TSE.1975.6312852

On the Security and Safety of
AbU Systems

Michele Pasqua(B) and Marino Miculan

Department of Mathematics, Computer Science and Physics, University of Udine,
Udine, Italy

{michele.pasqua,marino.miculan}@uniud.it

Abstract. Attribute-based memory updates (AbU in short) is an inter-
action mechanism recently introduced for adapting the Event-Condition-
Action (ECA) programming paradigm to distributed systems, particu-
larly suited for the IoT. It can be seen as a memory-based counterpart
of attribute-based communication, keeping the simplicity of ECA rules.

In this paper, we introduce behavioral equivalences for AbU, with the
aim of formally defining security and safety requirements for AbU sys-
tems. As a consequence, the proposed requirements can help in assuring
the security and safety of IoT devices, which are more and more perva-
sive in our daily life. Finally, we propose (syntactic) sufficient conditions
to statically verify the introduced requirements.

Keywords: ECA rules · Bisimulations · Formal methods · Autonomic
computing · Verification

1 Introduction

In the Event-Condition-Action (ECA) programming paradigm, the behaviour of
a system is defined by a set of rules of the form “onEvent if Condition doAction”
which means: whenEvent occurs, ifCondition is verified then executeAction. Due
to its reactive nature, this paradigm is well-suited for programming “smart” sys-
tems, such as in IoT scenarios [7,14]: ECA systems react to inputs (as events) from
the environment performing internal actions (updating the node local memory)
and external actions, which influence the environment itself. Indeed, all main plat-
forms in the field of Home/Automotive IoT (e.g., IFTTT, Samsung SmartThings,
Microsoft PowerAutomate, etc.) adopt this programming style.

Despite the simplicity of usage, actual ECA platforms suffer from scalability
problems due to the strongly centralized underlying infrastructure: IoT devices
are managed by a central coordinator node (often deployed on the cloud) and
they cannot communicate directly with each other. This also opens up to avail-
ability (what happens when the central node is not reachable?) and privacy
(users’ data are continuously sent to remote, unknown, locations) problems.

To mitigate these issues, the ECA paradigm has been recently extended
with attribute-based memory updates (AbU) [33], a communication mechanism

Work supported by the Italian MIUR project PRIN 2017FTXR7S IT MATTERS
(Methods and Tools for Trustworthy Smart Systems).

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 178–198, 2021.
https://doi.org/10.1007/978-3-030-92124-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_11

On the Security and Safety of AbU Systems 179

designed for reactive and distributed programming. In this model, nodes (e.g.,
IoT devices) can directly communicate (without a central node) and are self-
coordinating, in a truly decentralized setting. In this respect, computation moves
from the cloud to the edge (akin fog computing), since ECA rules are deployed
directly on the nodes. In particular, in AbU an event on a node can cause the
update of the states of (possibly many) remote nodes, selected “on the fly” by
means of the rule condition. For instance, a rule like

login � @(role = ‘logger’) : log ← log · time

means “when the (local) variable login changes, on every node whose role is
‘logger’ append my current (local) time to the (remote) variable log”. Therefore,
AbU allows us to propagate effects to collections of nodes at once, abstracting
from their identities (or even their existence). Attribute-based communication
(that can be encoded in AbU [33]) subsumes several interaction paradigms used
in smart systems, e.g., channels, agents, pub/sub, broadcast/multicast [1,2].
Hence, AbU combines the best of the two worlds: the flexibility of a decentralized
interaction mechanism (AbC) with the simplicity of ECA rules.

The simplicity and expressiveness of the AbU programming model comes to
a price: the combination of rules may yield unexpected interactions, especially
when a new component is added to an existing system. As an example, adding
rules publishing content on social networks from a folder on a file server could
inadvertently disclose sensitive pictures, e.g., taken from a security camera, if
these are saved on the same folder. Therefore, an important problem of AbU
systems is how to prevent these unwanted interactions between rules.

In this paper, we focus on two important security and safety requirements.
The first is a form of noninterference [21]: given a security policy defining the
allowed information flows between resources, we aim at assessing if an AbU
system is secure, i.e., if it does not exhibit forbidden information flows. The
second is a form of non-interaction: we aim at assessing whether different nodes
will not interact by acting on common resources in unexpected ways. This is a
safety requirement, as the unintended nodes interaction will not happen.

To formally model the requirements we introduce suitable behavioral equiva-
lences between AbU systems, following the approach of [7]. These equivalences
are (weak) bisimulations hiding the observations that are not related to the
requirements check (and that would trivially break the equivalence). However,
we need to generalize the definitions of [7] in order to deal with specific aspects
of AbU. Indeed, an AbU rule may update at once resources at different levels of
security; hence, we have to generalize the notion of hiding bisimilarity of [7], in
order to compare observations involving different security levels at once. Leverag-
ing this equivalence, we propose syntactic sufficient conditions and an algorithm
to statically check noninterference and non-interaction of AbU systems.

Another aspect typical of IoT scenarios, concerns the interaction with the
physical environment. This can introduce implicit information flows between
resources which appear unrelated from the programmer’s point of view; e.g., a
flow from the resource controlling a lamp to the resource reading the state of a
light sensor. To deal with this issue, we extend our framework with a notion of
semantic dependency, representing the implicit flows given by the environment.

180 M. Pasqua and M. Miculan

Synopsis. After a summary of related work in Sect. 2, in Sect. 3 we provide a
short introduction to AbU, an ECA-inspired calculus extended with attribute-
based memory updates. Then, in Sect. 4 we define some behavioral equivalences
for AbU systems, to model two requirements which are crucial when designing
secure and safe AbU systems. In Sect. 5 we propose two verification mechanisms
to statically check the previously defined requirements, while in Sect. 6 we deal
with the problem of implicit resources interactions. Finally, in Sect. 7 we have
conclusions and directions for future work. Full proofs of the results can be found
in the companion technical report [36].

2 Related Work

AbU [33] is a recently introduced calculus that aims at adapting the ECA pro-
gramming paradigm to distributed computing. It is inspired by the AbC calcu-
lus [2,3], from which takes the idea of attribute-based communication. AbC is a
core calculus of SCEL [23], a language introduced to model Collective Adaptive
Systems (CAS) [4] and particularly suited for autonomic computing. Attribute-
based communication has been adapted to fit the ECA programming style, in a
way transparent to the user, making AbU very suitable for application scenarios
like the IoT. We refer to [33] for the comparison of AbU with related approaches.

Security and safety of IoT devices is a critical problem; among many works,
we refer to recent surveys [5,18] which overview these risks in the IoT from a
general point of view. Here, we recall the closely related work about security
and safety of platforms based on ECA rules and about information-flow control
for the IoT. For an overview on information-flow control in process algebra, we
refer the reader to Focardi and Gorrieri [27].

Security and Safety of ECAPlatforms.The ECA paradigm is the standard for pro-
gramming IoT devices, adopted by all major IoT platforms (like IFTTT, Samsung
SmartThings, Microsoft PowerAutomate, etc.). In this context, IoT devices are
managed by means of apps that users can downloaded (and customize) from the
platform store. Recent studies point out the security and safety risks regarding
this kind of apps, based of ECA rules. Surbatovich et al. [37] analyzed a dataset
of 20K IFTTT apps, providing an empirical evaluation of potential secrecy and
integrity violations, including violations due to cross-app interactions. Celik et
al. [16,17] proposed some mechanisms to enforce (statically and dynamically)
cross-app interaction vulnerabilities. Chi et al. [19] proposed a systematic cate-
gorization of threats arising from unintentional or malicious interactions of apps
in IoT platforms. To detect cross-app interactions, they use symbolic execution
techniques to analyze the apps code. Ding et al. [24] proposed a framework com-
bining device physical channel analysis and static analysis to generate all potential
interaction chains among IoT apps. They leverage Natural Language Processing to
identify similarities between services, and proposed a risk-based approach to clas-
sify the actual risks of the discovered interaction chains. Nguyen et al. [35] designed
IoTSan, a verification mechanism based on model-checking to reveal cross-app
interaction flows. Similarly, SafeChain by Hsu et al. [28] leveraged model check-
ing techniques to identify cross-app vulnerabilities in IFTTT apps.

On the Security and Safety of AbU Systems 181

Another line of work focuses on enforcement mechanisms for checking security
and safety of a single app, rather than an ensemble of apps. Fernandes et al. [25]
presented FlowFence, an approach for building secure apps via information-flow
tracking and controlled declassification. Celik et al. [15] leveraged static taint
tracking to identify sensitive data leaks in an IoT app. Bastys et al. [9,10] iden-
tified new attack vectors in IFTTT apps and showed that 30% of apps from
their dataset can be subject to such attacks. As a countermeasure, they investi-
gated static and dynamic information-flow tracking via security types. Fernandes
et al. [26] proposed the use of decentralization and fine-grained authentication
tokens to limit privileges and prevent unauthorized actions inside an app.

Even if grounded by the same programming paradigm, i.e., based on ECA
rules, all the above-mentioned work focuses on specific platforms, restricting the
applicability to specific use cases. Instead, the requirements we propose in this
work are built on top of AbU, thus providing a general setting in which security
and safety can be verified interdependently from the application scenario.

Concerning more general ECA programming, [38,39] presented verification
mechanisms to check properties (such as termination, confluence, redundant or
contradicting rules) on IRON [22], a language based on ECA rules for the IoT
domain. Other works proposed approaches to verify ECA programs by using
Petri Nets [30] and BDD [11]. In [13,14], the authors presented a tool-supported
method for verifying and controlling the correct interactions of ECA rules. All
these works, differently from AbU, are not designed for distributed systems.

Information-Flow Control for the IoT. Several works proposed information-flow
control for enforcing confidentiality and integrity policies in the IoT domain.
Newcomb et al. [34] proposed IOTA, a calculus for home automation. Based on
the core formalism of IOTA, the authors developed an analysis for detecting
whenever an event can trigger two conflicting actions, and an analysis for deter-
mining the action(s) that may influence a given event. Bodei et al. [12] proposed
a calculus, IoT-LySa, supporting an information-flow analysis that safely approx-
imates the abstract behavior of IoT systems. The calculus adopts asynchronous
multi-party communication among nodes taking care of node proximity. Again,
all the above-mentioned work focuses on specific platforms, while our approach
based on AbU can be easily adapted to multiple application scenarios.

In their seminal work, Volpano and Smith [40] presented a flow-insensitive
type system for imperative languages. Flow-insensitive type systems result very
often too restrictive, rejecting lots of (practically) secure programs. To gain more
permissiveness, Hunt and Sands [29] proposed a type system for an imperative
language which is flow-sensitive. The latter has been further extended by Balliu
et al. [6,7] in order to fit the IoT setting (in particular, apps based on ECA
rules). The proposed type system verifies a notion of non-interference based on
a suitable hiding bisimulation (a particularly designed weak bisimulation). We
take inspiration from [7] to define the notion of security and safety requirements
of this paper, generalizing the definition of hiding bisimulation.

182 M. Pasqua and M. Miculan

3 Attribute-Based Memory Updates in Short

In this section we recall AbU [33], a calculus for ECA programming with
attribute-based memory updates. The latter is a communication mechanism allow-
ing a node to update at once the memories of many nodes, which are selected
by means of their attributes. These features are introduced without sacrificing
coding simplicity: ECA rules are still used to program the devices. Thus, AbU
merges the simplicity of ECA programming with a powerful distributed com-
munication mechanism; as such, it turns out to be particularly suited for smart
devices, which can now interact and self-coordinating directly without any cen-
tral controlling node. This results particularly useful in IoT scenarios, as we can
see from the example that we sketch at the end of this section.

3.1 AbU Syntax and Semantics

An AbU node R〈Σ,Θ〉 consists of a state Σ ∈ X −→ V, mapping resources to
values, and an execution pool Θ ⊆ ⋃

n∈N
U

n, which is a set of updates, namely
finite lists of pairs (x, v) ∈ U, meaning that the resource x will take the value v
after the execution of the update. Each node is equipped with a finite list R of
ECA rules, generated by the following grammar.

rule ::= evt � act, task cnd ::= ϕ | @ϕ

evt ::= x | evt evt ϕ ::= ⊥ | 	 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ε �� ε

act ::= ε | x ← ε act | x ← ε act ε ::= v | x | x | ε ⊗ ε

task ::= cnd : act x ∈ X v ∈ V

Finally, an AbU system S is either a node or a parallel composition S1 ‖ S2
of systems. An ECA rule evt � act, task has a listening event evt (a finite list
of resources): when one of the resources in evt is modified, the rule is fired,
namely the default action act and task are evaluated. Evaluation does not change
the resources state immediately; instead, it yields update operations which are
added to the execution pools, and applied later on. An action is a finite list
of assignments of value expressions to local x or remote x resources. A task
consists in a condition cnd and an action act. A condition is a boolean expression,
optionally prefixed with the modifier @: when @ is not present, the task is local ;
otherwise (@ is present) the task is remote. In local tasks, the condition is checked
in the local node and, if it holds, the action is evaluated. For remote tasks, on
every node where the condition holds, the action is evaluated. The evaluation of
an action yields an update, which is added to the current node pool in the case
of default actions and local tasks; and added to remote nodes pools in the case
of remote tasks. In the following, in order to simplify the notation, when a rule
has an empty default action we write evt � task in place of evt � ε, task.

The (small-step) semantics of AbU is modeled as a labeled transition system
S1

α−� S2 whose labels are given by α ::= T | upd � T | upd � T . Here, T is a
finite list of tasks and upd is an update. We have slightly modified the labels

On the Security and Safety of AbU Systems 183

(Exec)

upd ∈ Θ upd = (x1, v1) . . . (xk, vk) Σ′ = Σ[v1/x1 . . . vk/xk]
Θ′′ = Θ \ {upd} X = {xi | i ∈ [1..k] ∧ Σ(xi) �= Σ′(x)}

Θ′ = Θ′′ ∪ DefUpds(R, X, Σ) ∪ LocalUpds(R, X, Σ) T = ExtTasks(R, X, Σ)

R〈Σ, Θ〉 upd�T−−−−� R〈Σ′, Θ′〉

(Input)

v1, . . . , vk ∈ V Σ′ = Σ[v1/x1 . . . vk/xk] X = {x1, . . . , xk}
Θ′ = Θ ∪ DefUpds(R, X, Σ) ∪ LocalUpds(R, X, Σ) T = ExtTasks(R, X, Σ)

R〈Σ, Θ〉 (x1,v1)...(xk,vk)�T−−−−−−−−−−−−−� R〈Σ′, Θ′〉

(Disc)
Θ′′ = {�act�Σ | ∃i ∈ [1..n] . taski = @ϕ : act ∧ Σ |= ϕ} Θ′ = Θ ∪ Θ′′

R〈Σ, Θ〉 task1...taskn−−−−−−−� R〈Σ, Θ′〉

(Step)
S1

α−� S′
1 S2

T−� S′
2

S1 ‖ S2
α−� S′

1 ‖ S′
2

α∈{upd�T,upd�T}

Fig. 1. AbU semantics for nodes and systems.

w.r.t. [33] since, in order to define the security and safety requirements, we
need to observe which resources are updated. A transition can modify the state
and the execution pool of the nodes but, at the same time, each node does not
have a global knowledge about the system. The semantic rules are in Fig. 1. Rule
(Exec) executes an update picked from the pool; rule (Input) models an external
modification of some resources. The execution of an update, or the change of
resources, may trigger some rules of the nodes. Hence, after updating a node
state, the node launches a discovery phase, for finding new updates to add to the
local pool (or some pools of remote nodes), given by the activation of some rules.
The discovery phase is composed by two parts, the local and the external one. A
node R〈Σ,Θ〉 performs a local discovery by means of the functions DefUpds and
LocalUpds, that add to the local pool Θ all updates originated by the activation
of some rules in R. Then, by means of the function ExtTasks, the node computes
a list of tasks that may update external nodes and sends it to all nodes in the
system1. This is modeled with the labels upd �T , produced by the rule (Exec),
and upd � T , produced by the rule (Input). On the other side, when a node
receives a list of tasks (executing the rule (Disc) with a label T) it evaluates
them and adds to its pool the actions generated by the tasks whose condition
is satisfied. Finally, rule (Step) completes and synchronizes (on all nodes in the
system) a discovery phase originated by a state change of a node in the system.

3.2 AbU in Action: an IoT Example

Consider a scenario where a swarm of drones is in charge of taking specific mea-
surements, randomly picked in a large uninhabited area. Each drone is equipped
with a battery that periodically needs to be recharged by returning to a docking
1 See [33] for the definition of the functions DefUpds, LocalUpds and ExtTasks.

184 M. Pasqua and M. Miculan

station. It may happen that a drone runs out of energy before returning to the
charging spot. In this case, the low-battery drone asks for help from its neigh-
bors. If a drone has some energy to share and it is close enough to the requester,
it will enter the “rescue mode”. A drone in “rescue mode” will reach the drone
that needs help, sharing with it some energy. This phase is not modeled in the
example for space reasons. We can model this scenario in AbU as follows.

Suppose we have four drones. For each drone we have an AbU node with a
resource battery, indicating the battery level of the drone; a resource position,
indicating where is located the drone; a resource mode, indicating in which opera-
tive state is the drone; and a resource helpPos, indicating the position of a drone
that needs help. Formally, the AbU system modeling the drones-swarm scenario
is R〈Σ1, ∅〉 ‖ R〈Σ2, ∅〉 ‖ R〈Σ3, ∅〉 ‖ R〈Σ4, ∅〉, where R contains, among the
others, the following two AbU rules:

battery � @(battery < 5 ∧ battery > 80) : helpPos ← position (1)

helpPos � (|position − helpPos| < 7.0) : mode ← ‘rescue’ (2)

Now suppose that the execution states of the drones are the following:

Σ1 = [battery �→4 position �→2.0 mode �→ ‘measure’ helpPos �→0.0]
Σ2 = [battery �→81 position �→15.0 mode �→ ‘measure’ helpPos �→0.0]
Σ3 = [battery �→97 position �→6.0 mode �→ ‘measure’ helpPos �→0.0]
Σ4 = [battery �→65 position �→8.0 mode �→ ‘measure’ helpPos �→0.0]

The rule (1) says that when the current drone battery level is low (battery <
5), then the current drone have to send to all (@) neighbors with some energy
to share (battery > 80) its position, performing a remote update (helpPos ←
position). In the example, the first node can fire the rule (1), since its battery
level is low. Then, it pre-evaluates the task condition, yielding 4 < 5∧ battery >
80, which is sent to the other nodes, together with the pre-evaluation of the task
action, i.e., helpPos ← 2.0. Among all receivers, only the second and the third
nodes are interested in the communication, since they are the only with battery
level greater than 80. So they both add to their pool the update (helpPos, 2.0).
This ends the discovery phase originated by the first node.

The rule (2), instead, is fired when a drone receives a help request (i.e.,
when its resource helpPos changes) and basically checks if the current drone
position is close to the requester position (|position − helpPos| < 7.0). If it is
the case, the current drone enters the rescue mode performing a local update
(mode ← ‘rescue’). In the example, when the second and the third nodes execute
the update (helpPos, 2.0), the task of the rule (2) may be executed. For the
second node this does not happen, since |15.0 − 2.0| < 7.0 is not true (the node
is too far from the first node). Instead, |6.0 − 2.0| < 7.0 and the third node can
execute the rule task, adding to its pool the update (mode, ‘rescue’).

On the Security and Safety of AbU Systems 185

4 Behavioral Equivalences for AbU Systems

In this section, we provide a semantic characterization of security and safety
requirements for AbU systems, based on the notion of bisimulation. The security
requirement we aim to assess is a form of noninterference [21], adapted to AbU
systems. In particular, given a security policy defining the allowed information
flow between resources, we aim at assessing whether an AbU system is secure,
namely if it does not exhibit forbidden information flows (for instance, a flow
from a confidential resource to a public one). Concerning the safety requirement,
we consider the following scenario, quite common in the IoT world. We have some
nodes, equipped with some ECA rules, whose behavior is known and safe for the
user, and we have another node, also safe for the user. Is the ensemble of all
such nodes still safe? This is a sort of non-interaction check, namely, we check
whether different nodes interact with each other by acting on common resources
in a way not intended by the user (leading to possibly inconsistent states).

We define these requirements by means of suitable behavioral equivalences
between AbU systems, following (and generalizing) the approach of [7]. Intu-
itively, we aim at defining two bisimulations that capture, semantically, the secu-
rity and safety requirements. To do so, we need a particular (weak) bisimuation
hiding the system labels that are not related to the requirements check, and that
would trivially break the bisimulation.

In particular, a hiding bisimulation, parametric on a function h, makes non-
observable (i.e., hides) all labels α such that h(α) = �, that are dubbed hidden
labels. Differently from [7], where in the hiding bisimulation we can only have
non-observable or fully observable labels, using the function h we can also spec-
ify labels that are partially observable. Here partially means that we can fix an
abstraction on what we can observe about not hidden labels. In other words,
partially observable labels can be mimicked in the bisimulation game by other
labels which are observationally equivalent, fixed a given labels abstraction. For-
mally, let L be the set of all AbU system labels and h ∈ L −→ L ∪ {�} be a
function. We denote with −�h the relation involving any possible hidden label,
i.e., −�h �

⋃{ α−� | h(α) = �}, and with ⇒h its transitive closure, i.e., ⇒h �−�∗
h.

Then, α⇒h �⇒h
α−�⇒h means that we can perform an arbitrary, possibly empty,

sequence of hidden labels, but at least one α label must be present.

Definition 4.1 (Hiding bisimulation). Let h ∈ L −→ L∪{�} be a function. A
symmetric relation R between AbU systems is a hiding bisimulation, parametric
on h, if and only if whenever S1 R S2 and S1

α−� S′
1 we have the following.

– if h(α) = � then S2 ⇒h S′
2, for some S2, with S′

1 R S′
2

– if h(α) �= � then S2
β⇒h S′

2, for some β and S2, with h(α)=h(β) and S′
1 R S′

2

We say that two AbU systems S1 and S2 are hiding bisimilar with respect to h,
written S1 ≈h S2, if S1 R S2 for some hiding bisimulation R, parametric on h.

186 M. Pasqua and M. Miculan

4.1 A Bisimulation for Security

AbU resources (e.g., IoT components) may have different security clearance: a
security camera should definitely not leak any information to a resource that
publicly hosts pictures on Internet. In the following, we assume a security policy
P ∈ X −→ SL, which associates a security level � ∈ SL, taken from a complete
lattice 〈SL,�,�,�,	,⊥〉, with each resource used by an AbU system. The lattice
consists of a set SL of security levels, an ordering relation �, the join � and
meet � operators, as well as a top security level 	 and a bottom security level
⊥. For the sake of simplicity, in the following we consider the standard two-
points security lattice {L,H}, where the bottom is L, representing public data,
and the top is H, representing confidential data. The goal is to achieve classic
noninterference [21] results stating that an AbU system is interference-free if its
L-level resources are not affected by changes occurring at its H-level resources. So,
information can securely flow from a resource x to a resource y if2 P(x) � P(y).

A security policy P induces an equivalence relation between AbU nodes
states. Given two states Σ1 and Σ2, we say that they are L-equivalent if they
agree on the values associated to all resources with security level L.

Definition 4.2 (L-equivalence). Let P ∈ X −→ {L,H} be a security policy. We
say that the AbU nodes states Σ1 and Σ2 are L-equivalent, written Σ1 ≡L Σ2, if
for each resource x ∈ X we have that P(x) = L entails Σ1(x) = Σ2(x).

We can extend this notion to arbitrary sets of states: Σ = {Σ1, . . . , Σn} is
L-equivalent to Σ

′
= {Σ1, . . . , Σm} when ∀Σ ∈ Σ ∀Σ′ ∈ Σ

′
. Σ ≡L Σ′. In other

words, two sets are L-equivalent when their elements are pair-wise L-equivalent.
We abuse notation using symbol ≡L for L-equivalence of states and sets of states.

As discussed at the beginning of the section, the goal is to formalize a
bisimulation-based notion of noninterference. Intuitively, the runtime behavior at
the security level L of an interference-free AbU system does not change when we
vary only resources with security clearance H. Similarly to what has been done in
[7], a notion of hiding bisimilarity can be used to hide (but not to suppress) labels
involving changes affecting H-level resources. In particular, updates involving H-
level resources only must be hidden, updates involving L-level resources only
must be fully observable, and updates with mixed resources must be partially
observable (we need to make observable assignments to L-level resources only).
We use the hiding bisimulation of Definition 4.1, with a specific function h, to
define noninterference for AbU sets of rule lists and, in turn, for AbU systems.

Consider the function hL hiding discovery labels and execution labels involv-
ing H-level resources only, i.e., hL(T) � � and hL((x1, v1) . . . (xk, vk) � T) � �,
given

�

i∈[1..k] P(xi) = H. Furthermore, input labels are fully observable, i.e.,
hL(upd � T) � upd � T . Finally, consider a projection function that given
an update upd returns its projection upd�L on assignments to L-level resources
only. We have that hL((x1, v1) . . . (xk, vk) � T) � (x1, v1) . . . (xk, vk)�L, when
�

i∈[1..k] P(xi) = L. This means that we abstract an execution label into the

2 The ordering � for the two-points lattice is trivially defined as: {(L, L), (L,H), (H,H)}.

On the Security and Safety of AbU Systems 187

projection on L-level resources of its update. Note that, when an update upd
involves L-level resources only, we have that upd�L = upd, hence the label is fully
observable (no abstraction). We call hL the hiding function for noninterference.

In the following definition we make use of some auxiliary notions. Given a
rule list set R = {R1, . . . , Rn}, where each Ri is a list of AbU rules, we define
comp(R) as the set comprising all possible sets of states compatible with R.
Compatibility here means that states are defined for all and only the resources
present in the rules. Formally, Σ = {Σ1, . . . , Σn} is compatible with R when
there exists a bijection f ∈ Σ −→ R such that dom(Σi) = vars(f(Σi)), for all
i ∈ [1..n]. We also need a system initialization function sys(R,Σ) that takes a
set of states and a rule list set and returns an AbU system with all pools empty.
Formally, given R = {R1, . . . , Rn} and Σ = {Σ1, . . . , Σn} ∈ comp(R), we define
sys(R,Σ) = R1〈Σ1, ∅〉 ‖ . . . ‖ Rn〈Σn, ∅〉, where f(Σi) = Ri for each i ∈ [1..n].

Definition 4.3 (AbU noninterference). Let P ∈ X −→ {L,H} be a security
policy. We say that the rule list set R = {R1, . . . , Rn} is interference-free, written
NI(R), whenever: ∀Σ,Σ

′ ∈ comp(R) . Σ ≡L Σ
′
=⇒ sys(R,Σ) ≈hL

sys(R,Σ
′
).

An IoT-Centric Version of Noninterference. The mere initialization of an H-
level resource might activate a rule, thus leaking information about the occur-
rence/presence of an H-level event. The noninteference of Definition 4.3 ignores
such presence leaks, as it is commonly done in language-based security. This design
choice is usually justified by the fact that it increases the permissiveness of the
enforcement mechanisms, but it is not a realistic assumption in the IoT context.

Example 4.1. Consider the AbU rule motion � (00 : 00 < time ∧ time < 06 :
00) : light ← ‘on’, where motion is confidential while time and light public
(i.e., P(motion) = H and P(time) = P(light) = L). Basically, the rule turns
on the lights when, during the night, some movements in a room are detected.
According to Definition 4.3 there is no harmful information flow. Nevertheless,
observing the (public) resource light we can infer that the (confidential) resource
motion has been changed (i.e., a robber may infer that someone is in the room).

Note that Definition 4.3 does not trivially ignores rule triggers, when checking
noninterference. Indeed, it is able to capture harmful flows generated by rules
acting on confidential triggers, as we can see in the following example.

Example 4.2. Consider the following AbU rules:

GPS � (GPS − center > 5.0) : area ← ‘exit’ (3)

area � () : log ← log · ‘border crossed at:’ · time (4)

where area, GPS and center are confidential while log and time public (i.e.,
P(area) = P(GPS) = P(center) = H and P(log) = P(time) = L). Rule (3)
checks when the node exits a specific area, while rule (4) logs when the area bor-
ders are crossed (exiting or entering the area). Here, we have an information flow
from the (confidential) resource GPS to the (public) resource log, which is not
allowed by the security requirement and, indeed, is captured by Definition 4.3.

188 M. Pasqua and M. Miculan

What we want to remark with Example 4.2 is that Definition 4.3 is not able
to capture presence leaks originated by external changes (i.e., inputs), but it is
still able to capture presence leaks due to internal resources modifications (i.e.,
updates execution). In order to capture information flows due to generic resource
presence leaks, we need a stronger (i.e., more restrictive) requirement.

Given an AbU rule list set R = {R1, . . . , Rn}, we define the H-level events
set evset(R) of R as all the H-level resources in the events of all rules in R. Then,
the L-level twin of R is the rule list set RL where all resources in evset(R) are
substituted in R with their primed version. As an example, the L-level twin of
R given by rules (3) and (4) of Example 4.2 is RL = {area′

� () : log ← log ·
‘border crossed at:’·time GPS′

�(GPS′ − center > 5.0) : area′ ← ‘exit’}. Note
that, center is not modified since it does not belong to evset(R) = {area,GPS}.

The L-level twin will be used in the following definition of noninterference.
We have taken inspiration from self-composition verification mechanisms [8],
where a k-hypersafety [20] verification problem for a program is reduced to a
safety verification problem on its k-product program [8]. Indeed, noninterference
is a 2-bounded subset-closed hyperproperty [32], so we can, in principle, verify
it on two copies of the program, where variables are renamed. Consider the
case where we rename the H-level resources that rules are listening on (i.e.,
H-level rules triggers), we take L-equivalent execution states (as for standard
noninterference), and we run the two copies of the AbU system (which differ
syntactically only on H-level triggers). It is easy to see that a change in the
L-level behavior of the two systems can only be due to presence leaks originated
from H-level triggers.

Definition 4.4 (AbU presence-sensitive noninterference). Let P ∈ X −→
{L,H} be a security policy. We say that the rule list set R = {R1, . . . , Rn} is
presence-sensitive interference-free, written PNI(R) whenever:

∀Σ ∈ comp(R)∀Σ
′ ∈ comp(RL) . Σ ≡L Σ

′
=⇒ sys(R,Σ) ≈hL

sys(RL, Σ
′
)

Using the noninterference notion of Definition 4.4, the AbU rules of Exam-
ple 4.1 are now considered not secure. Presence-sensitive noninterference is a
stronger requirement than classic (presence-insensitive) noninterference. Indeed,
Definition 4.3 is a particular case of Definition 4.4: if PNI(R) then we trivially
have that NI(R).

4.2 A Bisimulation for Safety

We provide now a semantic characterization of safe interaction between AbU
systems, where with safety we mean that two systems do not exhibit unintended
behaviors when deployed together. For instance, consider a node equipped with a
rule that opens the window when the room temperature exceeds a given thresh-
old, and another node equipped with a rule that turns on the thermostat at home
when the user leaves his work location. Both nodes can be considered safe, in
isolation, but when deployed together they may interact with each other, causing

On the Security and Safety of AbU Systems 189

an (unexpected) opening of the window when the user is not at home (clearing a
way for burglary). Another unsafe scenario is when two nodes interact by updat-
ing some common resource (of remote nodes) in a inconsistent manner, e.g., a
valve that is opened by a node and closed by the other at the same time.

Following [7], we would like to say that an AbU system S does not interact
with, or is transparent for, another AbU system R if the behavior of R when
running in parallel with S does not differ from its behavior when running in
isolation. In particular, we would like to say that S is transparent for R if S ‖
R ≈h R for some bisimilarity ≈h that hides the updates originated from S.

Let RS and RR be the rule list sets of S and R, respectively. We can use the
hiding bisimulation of Definition 4.1 to formalize a semantic-based notion of rule
list sets transparency (and, in turn, of the corresponding systems). Our intention
is to hide only those updates originated from rules in RS. Consider the function
hS such that: hS(α) � � when α = T or α = upd �T , given source(upd) = RS;
and hS(α) � α when α = upd � T or α = upd � T , given source(upd) �= RS.
Here, we assume to have a function source returning the set of rules that has
generated a given update. A mechanism for retrieving such information can be
easily obtained augmenting AbU nodes with unique identifiers and recording in
the AbU system labels upd � T the node performing the update. For the sake
of readability, we do not modify the syntax and the semantics of the calculus.

Definition 4.5 (AbU transparency). Let RS and RR be two rule list sets. We
say that RS is transparent for RR, written RS RR, if for each Σ ∈ comp(RS ∪
RR) we have that sys(RS ∪ RR, Σ) ≈hS

sys(RR, Σ).
When RS is transparent for RR and RR is transparent for RS, the two rule

list sets are said independent, written RS RR.

In other words, if RS is transparent for RR then a system with RS as rule list
set does not affect in any way the behavior of a system with RR as rule list set.

Example 4.3. Consider an AbU node managing a security camera. It is equipped
with an AbU rule camera�() : cloud.private ← camera that basically uploads
an image to the “private” folder of a given cloud service, when the camera
detects some movements. Then, we can have another node managing the cloud
service: when a new picture in the folder “public” is uploaded, the node will
post it on Instagram. This can be modeled with the rule cloud.public � () :
instagram.post ← cloud.public, which is self-explanatory. Until now, everything
is ok, the two nodes are safe, even if executed together. Indeed, Definition 4.5 is
fulfilled: taking S as the system comprising the camera-node and R as the system
comprising the cloud-node, we have that S and R are independent.

Things change if we consider a buggy version of the camera node camera �

() : cloud.public ← camera. In this case, the node uploads the sensitive image
to the “public” folder, instead to the “private” folder. Now, we have an unin-
tended interaction chain: when the camera collects a sensitive image, the latter is
automatically posted on Instagram. This interaction is capture by Definition 4.5,
indeed the system S is now not transparent for the system R.

190 M. Pasqua and M. Miculan

Algorithm IFRules(rule1 . . . rulen)
1 return

∨
i∈[1..n] IFSingleRule(rulei)

Procedure IFSingleRule(x1 . . . xn � act1, ϕ : act2)
2 evtLevel :=

⊔
i∈[1..n] P(xi)

3 assigLevel := Assign(act1) � Assign(act2)
4 presLeaks := evtLevel � assignLevel �= evtLevel
5 ctx := Const(ϕ)
6 flows := IFAct(act1, κ) ∨ IFAct(act2, ctx)
7 return presLeaks ∨ flows

Procedure IFAct(x1 ← ε1 . . . xn ← εn, ctx)
8 flow := false
9 for i = 1 to n do

10 isConst := Const(εi) = �κ ∨ ctx = �κ
11 if P(xi) = L ∧ isConst then
12 flow := true

end

end
13 return flow

Procedure Assign(x1 ← ε1 . . . xn ← εn)
14 return

�
i∈[1..n] P(xi)

Algorithm 1. Information flows detection algorithm.

On the Compositionality of Requirements Checking. Independence is crucial
when we aim at verifying dynamically a given requirement. In fact, suppose
to have an AbU system R, that we know to satisfy a given requirement (e.g., ter-
mination [33], noninterference, etc.). If we combine (at runtime) R with another
AbU system S satisfying the same requirement, and we known that the added
system is independent from R, then we automatically have that S ‖ R is com-
pliant with the requirement. In other words, with independent systems we can
reason about the satisfaction of a given requirement in a compositional way.

Note that, for some kind of properties (e.g., termination [33]) independence
is not strictly necessary: transparency is a sufficient condition for guaranteeing
compositionality. Indeed, if we have that the systems S and R are loop-free (i.e.,
they satisfy the termination requirement), and S is transparent for R, then we
can conclude that S ‖ R is loop-free as well.

5 Checking Security and Safety of AbU Systems

In this section, we provide verification mechanisms for checking the safety and
security requirements introduced in Sect. 4. They are static, in the sense that
they do not require the execution of the AbU systems under test: the check is
purely based on the inspection of systems rules.

5.1 Verifying Security

In order to provide a syntactic sufficient condition for noninterference we define
a verification method detecting potential harmful information flows, parametric
in the security policy P. The detection process for a list of AbU rules is depicted
in Algorithm 1. The algorithm returns true when harmful information flows are
detected in, at least, one rule (line 1). In this case the whole list of rules does
not satisfy noninterference. The procedure at lines 2..7 of Algorithm 1 looks for
information flows inside single rules, and it works as follows.

First, it checks potential presence leaks. Line 2 computes the security level of
the rule event: if at least one resource in the event is H-level then evtLevel is H

On the Security and Safety of AbU Systems 191

(it is L when all resources are L-level). Line 3 checks if the default and the task
actions contain assignments to L resources, by means of the procedure at line 14.
If at least one assignment in the actions has a L-level resource in the left-hand
side then assignLevel is L. Then, in line 4, we compute if there is a potential
presence leak: evtLevel�assignLevel �= evtLevel means that the event contains
a H-level resource and we have assignments to L-level resources in the actions.

Second, it checks potential harmful information flows in the default and
the task actions. Line 5 computes a constancy analysis on the task con-
dition3, in order to capture implicit information flows. The function Const
returns κ when all L-level resources are constants; �κ otherwise. Here, con-
stancy means that no variety is conveyed from H-level resources (the only
ones that may change in Definition 4.4) to L-level resources (assumed to be
initially constant in Definition 4.4). It is defined inductively on the struc-
ture of ϕ: Const(⊥) = Const() � κ; Const(¬ϕ) � Const(ϕ); Const(ϕ1 ∧
ϕ2) � Const(ϕ1) � Const(ϕ2); Const(ϕ1 ∨ ϕ2) � Const(ϕ1) � Const(ϕ2); and
Const(ε1 �� ε2) � Const(ε1) � Const(ε2). Here, � is the join operator of the
complete lattice {κ, �κ }, with partial order �� {(κ, κ), (κ, �κ), (�κ , �κ)}. The con-
stancy analysis for value expressions is defined inductively on the structure of ε:
Const(v) � κ; Const(x) = Const(x) � κ if P(x) = L; Const(x) = Const(x) � �κ
if P(x) = H; and Const(ε1 ⊗ ε2) � Const(ε1) � Const(ε2). Line 6 computes the
information flows in the default and in the task actions. Implicit information
flows can only happen in the task action, so for the default action we compute
explicit information flows only, calling the IFAct function with κ as context.
Instead, for the task action, IFAct is called with the context computed by the
constancy analysis on the task condition, in order to track implicit flows. At
line 7, the procedure returns true when presence leaks are detected or when
information flows are present in the rules actions.

Finally, the procedure at lines 8..13 computes the potential information flows
of an action4, parametric on a given context. It is a loop inspecting all assign-
ments of the action. The condition at line 11 performs the check. Only two
cases lead to harmful information flows: a L-level resource is assigned with a
not constant expression (explicit flow); a L-level resource is assigned inside a not
constant context (implicit flow). Recall that, not constancy means that variety
is conveyed from H-level resources to L-level resources.

Algorithm 1 detects potentially harmful information flows when considering a
single list of AbU rules, namely a single node. Nevertheless, it is easy to note that
the algorithm does not take into account inter-nodes communication, hence the
verification on a rule list set, i.e., a set of nodes, boils down to the verification
on a single rules list comprising all rules in the set. Intuitively, if we have a
forbidden information flow between two nodes, then that information flow must
be present internally in one of the nodes as well.

3 The modifier @ does not influence the analysis, we omit it in the algorithm.
4 Remote updates x ← ε do not influence the analysis, we omit them in the algorithm.

192 M. Pasqua and M. Miculan

Proposition 5.1. Consider a rule list set {R1, . . . , Rn}. Let R be the list com-
prising all rules of all elements in {R1, . . . , Rn}. Then we have that:

∨
i∈[1..n] IFRules(Ri) = false ⇐⇒ IFRules(R) = false

Theorem 5.1 (Soundness for Security). Let P ∈ X −→ {L,H} be a security
policy and R = {R1, . . . , Rn} be a rule list set. Let R be the list comprising all
rules of all elements in {R1, . . . , Rn}. If IFRules(R) = false then PNI(R).

Recall that presence-sensitive noninterference implies the classic presence-
insensitive version of noninterference. Hence, we can extend the soundness result
as follows: if IFRules(R) = false then NI(R).

Example 5.1. Take the AbU rule of Example 4.1. We have that Algorithm 1
will correctly mark it as not secure, capturing a presence leak. Indeed, the L-
level resource light is assigned, when an H event is present, due to the H-level
resource motion (the same applies for the AbU rules of Example 4.2). Now
consider the AbU rule access � (user.role = ‘guest’) : log ← user.name · time
that logs the access time of users that have role ‘guest’ only. Suppose that the
user role is confidential, while all other resources are public (i.e., P(access) =
P(user.name) = P(time) = P(log) = L and P(user.role) = H). We have an
implicit information flow here, from user.role to log. Indeed, Algorithm 1 will
correctly mark it as not secure: we assign a L-level resource (log) inside an action
with a not constant context, given by Const(user.role = ‘guest’) = �κ .

5.2 Verifying Safety

In order to provide a syntactic sufficient condition for transparency we have to
specify what are the resources that a system may potentially update (sinks) and
what are the resources that may influence a rule behavior (sources). The first are
the left-hand sides of assignments in rules actions, while the latter are the rules
events. In addition to the events, also resources involved in tasks condition and
resources used in the actions should be considered sources. Indeed, take the AbU
rules x � (x < 3) : z ← 4 and x � () : z ← w. The resources y and w should be
considered sources, since their modification by an external node influences the
behavior of the rules (even if they are not rule events).

More formally, let LHS(x1 ← ε1 . . . xn ← εn) � {x1, . . . , xn} and RHS(x1 ←
ε1 . . . xn ← εn) �

⋃
i∈1[..n] Vars(εi) (they are defined analogously when the action

contains remote assignments x ← ε). The sinks and sources of a rule are snk(evt�
act1, cnd : act2) � LHS(act1) ∪ LHS(act2) and src(x1 . . . xn � act1, cnd : act2) �
{x1, . . . , xn} ∪ RHS(act1) ∪ RHS(act2) ∪ Vars(cnd), respectively. Given an AbU
system, with rule list set R = {R1, . . . , Rn}, its sinks snk(R) consists in all sinks
of all rules in each Ri, with i ∈ [1..n]. Similarly, its sources src(R) consists in all
sources of all rules in each Ri, with i ∈ [1..n].

Now, everything is in place to provide a syntactic condition for transparency,
where a system S is said syntactically transparent for (or, it does not interact
with) a system R when the execution of S does not fires any rule of R.

On the Security and Safety of AbU Systems 193

Definition 5.1 (Syntactic Transparency). Let RS and RR be two rule list
sets. We say that RS is syntactically transparent for RR, written RS RR, when
snk(RS) ∩ src(RR) = ∅. When RS and RR are syntactically transparent with
respect to each other, i.e., when snk(RS)∩ src(RR) = ∅ and snk(RR)∩ src(RS) =
∅, we say that RS and RR are syntactically independent, written RS RR.

Thus, Definition 5.1 provides an easy-to-verify syntactic condition to check
our semantic-based notion of safe interaction formalized in Definition 4.5.

Theorem 5.2 (Soundness for Safety). Let RS and RR be two rule list sets.
If RS RR then RS RR.

Example 5.2. Continuing Example 4.3, we have syntactic independence between
(the first version of) the systems, since snk({camera � () : cloud.private ←
camera}) ∩ src({cloud.public�() : instagram.post ← cloud.public}) = ∅ (and
vice versa). Instead, for the buggy version of the rules we have that {camera �

() : cloud.public ← camera} {cloud.public � () : instagram.post ←
cloud.public} does not hold. Indeed, the sets snk({camera�() : cloud.public ←
camera}) and src({cloud.public � () : instagram.post ← cloud.public}) have
{cloud.public} as intersection, capturing the unintended interaction.

5.3 On the Completeness of the Verification Mechanisms

The proposed verification mechanisms are sound, i.e., they do not expose false
negatives, but they are not complete, i.e., they may expose false positives. Indeed,
consider the two AbU rules: l1 � (h1) : l2 ← 3 (5) and l1 � (¬h1) : l2 ← 3 (6),
with P(l1) = P(l2) = L and P(h1) = H. Algorithm 1 will flag as not secure
an AbU system equipped with these rules, even if there is no interference (for
both presence-sensitive and presence-insensitive versions). Another incomplete-
ness witness consists in the following single AbU rule: h1 � (l1 < 3) : l2 ← l2 (7),
which is rejected by our verification mechanism but it is, indeed, secure.

Similarly, also syntactic transparency rules out safe systems. For instance,
consider a system with the rule list set {x � (⊥) : y ← 3}, which is transparent
for a system with rule list set {y�() : z ← 2}, i.e., {x�(⊥) : y ← 3} {y�() :
z ← 2}. We have that snk({x � (⊥) : y ← 3}) ∩ src({y � () : z ← 2}) = {y},
hence {x � (⊥) : y ← 3} {y � () : z ← 2} does not hold.

Every sound verification mechanism necessarily suffers from completeness
issues, but we can always improve precision to mitigate the problem. For
instance, refining the procedure IFAct of Algorithm 1, we can easily allow rule
(7). Instead, for rules (5) and (6), we need an inter-procedural version of the
constancy analysis.

6 Dealing with Implicit Interactions

We now study the challenge posed by implicit interactions that arises when-
ever two (physical) resources, e.g., temperature and thermostat, are semantically
related, though they differ syntactically.

194 M. Pasqua and M. Miculan

(Exec)

upd ∈ Θ upd = (x1, v1) . . . (xk, vk) Σ = Σ[v1/x1 . . . vk/xk]
Θ = Θ \ {upd} X = clo(K, {xi | i ∈ [1..k] ∧ Σ(xi) = Σ (x)})

Θ = Θ ∪ DefUpds(R, X, Σ) ∪ LocalUpds(R,X, Σ) T = ExtTasks(R,X, Σ)

R Σ,Θ
upd T−−−− K R Σ , Θ

(Input)

v1, . . . , vk ∈ V Σ = Σ[v1/x1 . . . vk/xk] X = clo(K, {x1, . . . , xk})
Θ = Θ ∪ DefUpds(R, X, Σ) ∪ LocalUpds(R, X, Σ) T = ExtTasks(R,X, Σ)

R Σ,Θ
(x1,v1)...(xk,vk) T−−−−−−−−−−−−− K R Σ , Θ

Fig. 2. Modified AbU semantics rules.

Example 6.1. Consider the rules button�(button = ‘pressed’) : robotCleaner ←
‘on’ and motion � (motion = 	 ∧ time < 12 : 00) : alarm ← ‘on’, deployed on
different nodes. The first activates a robot cleaner in the house when a button
on the phone is pressed. The second rings an alarm when some movement in
the house is detected, during the morning. Though there are no (syntactic)
interactions between the two rules, we clearly know that when the robot cleaner
starts moving, then the motion sensor is activated and consequently the alarm
will ring. We cannot catch this interaction with the LTS of Fig. 1, namely we
mark the nodes as independent.

We model these kind of semantic dependencies by means of a binary relation
K ⊆ X×X such that (x, y) ∈ K when the resource y may be affected by changes
occurring at the resource x (which is analogous to the dependency policy of [7]).
We write clo(K, x) to denote the reflexive and transitive closure of the semantic
dependencies relation K with respect to the resource x only. More generally, given
a set of resources X ⊆ X we define clo(K,X) �

⋃
x∈X clo(K, x). In Example 6.1

we would have that K � {(robotCleaner,motion)}, allowing us to capture the
semantic dependence between the robot cleaner and the motion sensor.

Note that, if (x, y) ∈ K we may assume that each time the resource x
changes then the resource y can be somehow affected. We represent this abstract
information extending the discovery phase in the AbU semantics to all the
resources affected by x. In other words, when we perform an execution or an
input step in the semantics, we discover the actually modified resources and
all the related resources, given by K. We can easily define a labeled transitions
semantics −�K, parametric on given semantic dependencies. In particular, we
just have to modify the rules (Exec) and (Input) of the original AbU seman-
tics as depicted in Fig. 2. Considering again Example 6.1, when the (Exec)

rule performs the update (robotCleaner, ‘on’) then clo(K, {robotCleaner}) =
{robotCleaner,motion} and, hence, the rule concerning the motion sensor is
selected by the discovery. Indeed, the nodes equipped with the rules in Exam-
ple 6.1 now fail transparency, since in the bisimulation game the system without
the cleaner-rule cannot perform the L-level update firing the alarm.

On the Security and Safety of AbU Systems 195

7 Conclusion

In this paper, we have studied security and safety requirements of AbU sys-
tems, a new model for distributed computation merging the simplicity of ECA
programming with attribute-based communication. AbU is particularly suited
to program IoT devices, in a decentralized setting. Hence, these requirements
can be used to tackle security and safety issues in the IoT. The first is a form
of noninterference: we can assess if an AbU system does not exhibit forbidden
information flows between resources, according to a given security policy. The
second is a form of non-interaction: we can assess whether different nodes will
not interact by acting on shared resources in unexpected ways.

To formally capture these requirements we have introduced two suitable
bisimulations, generalizing the notion of hiding bisimilarity of [7], in order to
deal with specific aspects of AbU systems. Leveraging these definitions, we have
then given two sound verification mechanisms to statically check noninterference
and non-interaction of AbU systems.

Future Work. Semantic dependencies are an out-of-band information that must
be externally provided. Indeed, is not part of the AbU language and comes from
external environmental factors (e.g., temperature can be influenced by walls insu-
lation). Nevertheless, we can leverage Natural Language Processing techniques
or machine learning in order to compute (i.e., infer) this information, starting
from AbU rules. We plan to enhance our verification mechanisms with heuristics
for implicit interactions as a future work.

Another aspect to investigate is the intentional information release. In some
practical scenarios, noninterference is a too restrictive requirement, and a con-
trolled release of confidential information is desirable. To this end, we can add
a declassification mechanism to downgrade the security level of expressions.

As already mentioned at the end of Sect. 5, we plan to improve the precision
of the information flows detection algorithm. In particular, we aim to develop
an inter-procedural constancy analysis, leveraging model-checking techniques.

Static analysis is sometimes too restrictive. So, we can move from static to
dynamic verification (i.e., runtime monitoring), in order to detect violations at
runtime of the security and safety requirements. This would enhance permissive-
ness at the expense of soundness. Then, the system developer would be in charge
of choosing the strategy that best fits the particular application scenario.

Finally, we plan to develop other requirements, not strictly related to security
and safety aspects. Indeed, correctness requirements are important as well, in
general, and in the IoT context, in particular. An example is rules confluence:
in some practical IoT scenarios it is important to ensure that rules execution
order does not impact the overall system behavior. To this end, it can be useful
to model AbU systems as (graph) rewriting systems, as it has been done for
multi-agent systems in, e.g., [31].

196 M. Pasqua and M. Miculan

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 1

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192, 102428 (2020). https://doi.org/10.1016/j.scico.2020.102428

3. Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: 30th Symposium on Applied Computing, pp.
1840–1845. ACM (2015). https://doi.org/10.1145/2695664.2695668

4. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van Steen, M.: Adaptive col-
lective systems: herding black sheep (2013)

5. Balliu, M., Bastys, I., Sabelfeld, A.: Securing IoT apps. IEEE Secur. Priv. 17(5),
22–29 (2019). https://doi.org/10.1109/MSEC.2019.2914190

6. Balliu, M., Merro, M., Pasqua, M.: Securing cross-app interactions in IoT plat-
forms. In: 32nd IEEE Computer Security Foundations Symposium, Hoboken, NJ,
USA, pp. 319–334. IEEE (2019). https://doi.org/10.1109/CSF.2019.00029

7. Balliu, M., Merro, M., Pasqua, M., Shcherbakov, M.: Friendly fire: cross-app
interactions in IoT platforms. ACM Trans. Priv. Secur. 24(3), 16:1-16:40 (2021).
https://doi.org/10.1145/3444963

8. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of CSF, pp. 100–114 (2004)

9. Bastys, I., Piessens, F., Sabelfeld, A.: Tracking information flow via delayed output.
In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 19–37. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03638-6 2

10. Bastys, I., Balliu, M., Sabelfeld, A.: If this then what? Controlling flows in IoT
apps. In: ACM CCS, pp. 1102–1119. ACM (2018)

11. Beyer, D., Stahlbauer, A.: BDD-based software verification. Int. J. Softw. Tools
Technol. Transf. 16(5), 507–518 (2014)

12. Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: Tracing where IoT data are
collected and aggregated. Log. Methods Comput. Sci. 13(3), 1–38 (2017). https://
doi.org/10.23638/LMCS-13(3:5)2017

13. Cano, J., Delaval, G., Rutten, E.: Coordination of ECA rules by verification and
control. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459,
pp. 33–48. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-
8 3

14. Cano, J., Rutten, E., Delaval, G., Benazzouz, Y., Gurgen, L.: ECA rules for IoT
environment: a case study in safe design. In: 8th International Conference on
Self-Adaptive and Self-Organizing Systems Workshops, USA, pp. 116–121. IEEE
(2014). https://doi.org/10.1109/SASOW.2014.32

15. Celik, Z.B., et al.: Sensitive information tracking in commodity IoT. In: USENIX,
pp. 1687–1704. USENIX Association (2018)

16. Celik, Z.B., McDaniel, P.D., Tan, G.: Soteria: automated IoT safety and security
analysis. In: USENIX, Boston, MA, pp. 147–158. USENIX Association (2018).
https://www.usenix.org/conference/atc18/presentation/celik

17. Celik, Z.B., Tan, G., McDaniel, P.D.: IoTGuard: dynamic enforcement of security
and safety policy in commodity IoT. In: NDSS. The Internet Society (2019)

18. Celik, Z.B., Fernandes, E., Pauley, E., Tan, G., McDaniel, P.: Program analysis of
commodity IoT applications for security and privacy: challenges and opportunities.
ACM Comput. Surv. 52(4), 1–30 (2019). https://doi.org/10.1145/3333501

https://doi.org/10.1007/978-3-319-39570-8_1
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1145/2695664.2695668
https://doi.org/10.1109/MSEC.2019.2914190
https://doi.org/10.1109/CSF.2019.00029
https://doi.org/10.1145/3444963
https://doi.org/10.1007/978-3-030-03638-6_2
https://doi.org/10.23638/LMCS-13(3:5)2017
https://doi.org/10.23638/LMCS-13(3:5)2017
https://doi.org/10.1007/978-3-662-43376-8_3
https://doi.org/10.1007/978-3-662-43376-8_3
https://doi.org/10.1109/SASOW.2014.32
https://www.usenix.org/conference/atc18/presentation/celik
https://doi.org/10.1145/3333501

On the Security and Safety of AbU Systems 197

19. Chi, H., Zeng, Q., Du, X., Yu, J.: Cross-app interference threats in smart homes:
categorization, detection and handling. In: 50th International Conference on
Dependable Systems and Networks, pp. 411–423 (2020). https://doi.org/10.1109/
DSN48063.2020.00056

20. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). http://dl.acm.org/citation.cfm?id=1891823.1891830

21. Cohen, E.: Information transmission in computational systems. Oper. Syst. Rev.
11, 133–139 (1977)

22. Corradini, F., Culmone, R., Mostarda, L., Tesei, L., Raimondi, F.: A constrained
ECA language supporting formal verification of WSNs. In: 2015 IEEE 29th Inter-
national Conference on Advanced Information Networking and Applications Work-
shops, pp. 187–192 (2015). https://doi.org/10.1109/WAINA.2015.109

23. De Nicola, R., et al.: The SCEL language: design, implementation, verification.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9 1

24. Ding, W., Hu, H.: On the safety of IoT device physical interaction control. In:
ACM CCS, CCS 2018, pp. 832–846. ACM (2018)

25. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:
FlowFence: practical data protection for emerging IoT application frameworks. In:
USENIX, pp. 531–548. USENIX Association (2016)

26. Fernandes, E., Rahmati, A., Jung, J., Prakash, A.: Decentralized action integrity
for trigger-action IoT platforms. In: NDSS. The Internet Society (2018)

27. Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R., Gor-
rieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45608-2 6

28. Hsu, K., Chiang, Y., Hsiao, H.: SafeChain: securing trigger-action programming
from attack chains. IEEE Trans. Inf. Forensics Secur. 14(10), 2607–2622 (2019)

29. Hunt, S., Sands, D.: On flow-sensitive security types. In: Conference Record of
the 33rd Symposium on Principles of Programming Languages, POPL 2006, pp.
79–90. ACM, New York (2006). https://doi.org/10.1145/1111037.1111045

30. Jin, X., Lembachar, Y., Ciardo, G.: Symbolic verification of ECA rules. In: Moldt,
D. (ed.) Joint Proceedings of PNSE 2013 and ModBE 2013, Milano, Italy, vol. 989,
pp. 41–59. CEUR-WS.org (2013). http://ceur-ws.org/Vol-989/paper17.pdf

31. Mansutti, A., Miculan, M., Peressotti, M.: Multi-agent systems design and pro-
totyping with bigraphical reactive systems. In: Magoutis, K., Pietzuch, P. (eds.)
DAIS 2014. LNCS, vol. 8460, pp. 201–208. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43352-2 16

32. Mastroeni, I., Pasqua, M.: Verifying bounded subset-closed hyperproperties. In:
Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 263–283. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99725-4 17

33. Miculan, M., Pasqua, M.: A calculus for attribute-based memory updates. In:
Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021. LNCS, vol. 12819, pp. 366–385.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85315-0 21

34. Newcomb, J.L., Chandra, S., Jeannin, J.B., Schlesinger, C., Sridharan, M.: IOTA:
a calculus for internet of things automation. In: New Ideas, New Paradigms, and
Reflections on Programming and Software, pp. 119–133. Onward! (2017)

35. Nguyen, D.T., Song, C., Qian, Z., Krishnamurthy, S.V., Colbert, E.J.M., McDaniel,
P.: IoTSan: fortifying the safety of IoT systems. In: CoNEXT 2018, pp. 191–203.
ACM (2018)

https://doi.org/10.1109/DSN48063.2020.00056
https://doi.org/10.1109/DSN48063.2020.00056
http://dl.acm.org/citation.cfm?id=1891823.1891830
https://doi.org/10.1109/WAINA.2015.109
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/3-540-45608-2_6
https://doi.org/10.1145/1111037.1111045
http://ceur-ws.org/Vol-989/paper17.pdf
https://doi.org/10.1007/978-3-662-43352-2_16
https://doi.org/10.1007/978-3-662-43352-2_16
https://doi.org/10.1007/978-3-319-99725-4_17
https://doi.org/10.1007/978-3-030-85315-0_21

198 M. Pasqua and M. Miculan

36. Pasqua, M., Miculan, M.: On the security and safety of AbU systems (supplemen-
tary material) (2021). https://doi.org/10.5281/zenodo.5570332

37. Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., Jia, L.: Some recipes can do
more than spoil your appetite: analyzing the security and privacy risks of IFTTT
recipes. In: WWW 2017, pp. 1501–1510. ACM (2017)

38. Vannucchi, C., et al.: vIRONy: a tool for analysis and verification of ECA rules in
intelligent environments. In: International Conference on Intelligent Environments,
pp. 92–99. IEEE (2017). https://doi.org/10.1109/IE.2017.32

39. Vannucchi, C., et al.: Symbolic verification of event-condition-action rules in intel-
ligent environments. J. Reliab. Intell. Environ. 3(2), 117–130 (2017). https://doi.
org/10.1007/s40860-017-0036-z

40. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–188 (1996)

https://doi.org/10.5281/zenodo.5570332
https://doi.org/10.1109/IE.2017.32
https://doi.org/10.1007/s40860-017-0036-z
https://doi.org/10.1007/s40860-017-0036-z

Parallel Composition/CSP
and Probabilistic Reasoning

Parallelized Sequential Composition
and Hardware Weak Memory Models

Robert J. Colvin1,2(B)

1 Defence Science and Technology Group, Canberra, Australia
2 University of Queensland, Brisbane, Australia

r.colvin@uq.edu.au

Abstract. Since the 1960s processors have, for efficiency, sometimes
executed instructions out of program order, provided that the (sequen-
tial) semantics is preserved. On uniprocessor architectures this behaviour
is not observable, however multicore architectures can expose instruction
reorderings as unexpected, or “weak”, behaviours, which are notoriously
difficult to reason about. In this paper we introduce a novel program
operator, parallelized sequential composition, where ‘c1

m
; c2’ may execute

instructions of c2 before those of c1, depending on m, which controls the
reordering of atomic instructions. When appropriately instantiated the
operator exhibits many of the weak behaviours of TSO, Release Consis-
tency, Arm, and RISC-V, and generalises sequential and parallel compo-
sition. We show how the nondeterminism introduced by reordering can be
reasoned about by reduction to sequential or parallel forms, from where
established techniques (such as rely/guarantee or Owicki-Gries) can be
applied. This gives a more direct, intuitive and compositional framework
for reasoning about weak behaviours that arise from processor reordering
than semantics that are based on complex data structures over proper-
ties of global traces. The semantics and theory is encoded and verified
in Isabelle/HOL, and we use its implementation in the Maude rewriting
engine to empirically show its behaviours agree with hardware.

1 Introduction

The 1960s saw significant improvements in processor efficiency, including allow-
ing out-of-order instruction execution in cases where program semantics would
not be lost [67] and maximising use of multiple computation units [68]. These
advances meant that instructions could be distributed in parallel among sev-
eral computational subunits, and streamlined interactions with main memory.
These features did not visibly intrude on programmers: the conditions under
which parallelization could take place ensured the sequential semantics of any
computation was maintained.

In a concurrent system the effect of out-of-order execution may be exposed,
and this has provided a challenge for developing efficient, correct and secure
concurrent software for modern processors [3]. Order can be restored by injecting
artificial dependencies, but the performance cost is significant. For instance,
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 201–221, 2021.
https://doi.org/10.1007/978-3-030-92124-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_12

202 R. J. Colvin

performance concerns hamper the mitigation of the Spectre class of security
vulnerabilities [40] that arise in-part from out-of-order loads.

Current approaches to defining the semantics of, and reasoning about, weak
memory models, are typically either low-level, in the sense of including processor-
specific details, or involve specifications over global traces and data structures
that maintain a partial order on events across threads. While this has been
effective in elucidating behaviours, the reasoning frameworks induced from such
semantics have tended to need new types of logic and suffer from a lack of
compositionality. Our motivation in this paper is to lift reasoning to the program
level, and to as much as possible admit the application of existing techniques
for sequential programs. As such we introduce the novel parallelized sequential
composition operator as a primitive of an imperative language. The program
‘c1

m
; c2’, for some function on instructions m, may execute c1 and c2 in order,

or it may interleave actions of c2 with those of c1 according to m. We give
the weakest m such that c1

m
; c2 preserves program-order sequential semantics,

and show how modern hardware weak memory models are strengthenings of
this concept. The language, its semantics, and the properties in the paper are
encoded and machine-checked in the Isabelle/HOL theorem prover [54]. We use
the semantics as a basis for a model checker, encoded in Maude [20], which we
use to empirically show conformance of our semantics to established models.

In Sect. 2 we provide a foundation for instruction reordering and give a range
of theoretical memory models. In Sect. 3 we fully define the syntax and semantics
of an imperative language, IMP+pseq, that includes conditionals, loops, and par-
allelized sequential composition, and show how to reason about programs using
standard techniques. In Sect. 4 we define TSO [64], Release Consistency [31],
Arm [58] and RISC-V [62] as instances of parallelized sequential composition.
We discuss related work in Sect. 5.

2 Foundations of Instruction Reordering

In this section we provide a foundation for exploring theoretically significant
memory models that underlie modern processors. We start with a basic imper-
ative language containing just assignments and guards as atomic actions (type
Instr) with parallelized sequential composition as combinator (we give a richer
language in Sect. 3.1).

α ::= x := e | (|e|) c ::= nil | α | c1
m
; c2 (1)

An action α may be an assignment x := e (where e is an expression), the typi-
cal notion of an update encompassing stores and loads, or a guard action (|e|),
representing a test on the state (does e evaluate to True), which can be used
to model conditionals/branches. A command c is either the terminated com-
mand nil (corresponding to a no-op), an action α, or the composition of two
commands according to some memory model m.

The intention is that a simple command α
m
; β is free to execute instruction

β before instruction α (possibly with modifications due to forwarding, described

Parallelized Sequential Composition and Hardware Weak Memory Models 203

later) provided the constraints of m are obeyed. Clearly this potential reordering
of instructions may destroy the programmer’s intention if unconstrained; however
the reordering (or parallelization) of independent instructions can potentially be
more efficient than the (possibly arbitrary) order specified by the programmer.
For example, consider a load followed by an update r := x

m
; y := 1. If x is held

in main memory, retrieving its value may take many processor cycles. Rather
than idle the independent instruction y := 1 can be immediately issued without
compromising the programmer’s intention assuming a single-threaded context.

A memory model m is formed from a reordering relation on instructions
(Sect. 2.1) and a forwarding function (Sect. 2.2).

2.1 Reorderings

First consider the base of a memory model, the “reordering relation”, which is a
binary relation on instructions. We write α

m⇐= β if β may be reordered before
instruction α according to the reordering relation of m, and α /m⇐= β otherwise.
The sequentially consistent memory model forbids any reordering.

Model 1 (sc). For all α, β ∈ Instr , α /sc⇐= β.

We may now explicitly state the notion of a sequential model [45], which is the
minimal property that any practical memory model m should establish. Assume
an ‘effect’ function eff that returns the relation between pre- and post-states for
a given program executed in program order.

Definition 1. m is sequential if eff(c1
m
; c2) ⊆ eff(c1

sc
; c2).

That is, m is sequential if the result of any reordering (on a single thread) is one
that could have been achieved when executed in program order. The weakest
sequential memory model, which we call eff, allows reordering when sequential
semantics is maintained.

Model 2 (eff). α
eff⇐== β iff eff(β

sc
; α) ⊆ eff(α

sc
; β)

Theorem 1. eff is sequential.

Proof. The property α
eff⇐== β lifts to commands. �

eff is impractical since processors cannot make semantic judgements dynam-
ically; however we propose the following memory model as the weakest that is
practical, in the sense it uses a simple syntactic test.1

Model 3 (g0). α
g0⇐= β iff wv(α) �∩ fv(β) and wv(β) �∩ fv(α)

Model g0 allows instructions to be reordered unless a variable that β refer-
ences (fv(β)) is modified by α, or vice versa, using the notation below.

fv(.)/wv(.)/rv(.) Free/written/read vars (2) s1 �∩ s2 =̂ s1 ∩ s2 = ∅ (3)

1 Essentially Hoare’s “disjointness” [32] and separation logic’s “non-interference” [19].

204 R. J. Colvin

Reorderings eliminated by g0 include x := 1 /g0⇐= x := 2, x := 1 /g0⇐= r := x and
r := x /g0⇐= x := 1. If ¬(wv(α) �∩ rv(β)) then there is a data dependency between α
and β, i.e., the value of a variable that β depends on is being computed by α. It
is straightforward that (α g0⇐= β) ⇒ (α eff⇐== β) i.e., g0 is stronger than eff. We
can therefore infer that g0 is sequential by the following theorem.

Theorem 2. If m is stronger than eff then m is sequential.

Proof. A stronger model admits fewer behaviours (see later: (17)). �

The memory model g0 is lacking in the age of multicore processors because
it does not require two consecutive loads of the same shared variable to be
performed in order. For instance, consider the program Ex =̂ (r1 := x

g0; r2 := x) ‖
(x := 1

g0; x := 2). The two loads should read values of x in a globally “coherent”
manner, that is, the value for x loaded into r1 must occur no later than that
loaded by r2. Hence program Ex should not reach the final state r1 = 2 ∧ r2 = 1.
However, although x := 1 /g0⇐= x := 2, we have r1 := x g0⇐= r2 := x in the first
thread.

To handle coherence we divide the set of variables, Var, into mutually exclu-
sive and exhaustive sets Shared and Local, with specialised definitions.

sv(.), rsv(.),wsv(.) As (2), restricted to Shared (4)

To maintain “coherence per location” we extend g0 to g by adding a con-
straint on the loaded shared variables. Additionally, since we are now explicitly
concerned with concurrent behaviour, we add the “fence” instruction type to
restore order. We call this an “artificial” constraint, since it is not based on
“natural” constraints arising from the preservation of sequential semantics.

Model 4 (g). α
g⇐= β iff (α g0⇐= β ∧ rsv(α) �∩ rsv(β)), except: α /g⇐= fence /g⇐= α.

When specifying a memory model we typically give the base relation first, and
then list the “exceptions”, which take precedence; we also let α

m⇐= β
m⇐= γ

abbreviate α
m⇐= β ∧ β

m⇐= γ, and similarly for /m⇐=.
Model g strengthens the condition of g0 to require loads from main memory

to (appear to) be kept in program order per shared variable. In addition fences
block reordering, reinstating program-order execution explicitly (at the cost of
efficiency). We consider g to be the weakest model of practical consideration in a
concurrent system as it is both sequential and maintains coherence-per-location.

Definition 2. Model m is coherent if it is stronger than g.

Most modern processors are coherent. A memory model that is not coherent is
one that allows any instructions to be reordered under any circumstances, i.e.,
the complement of sc. If we disallow forwarding in this model (discussed in the
next section), this weakest memory model corresponds to parallel composition.

Parallelized Sequential Composition and Hardware Weak Memory Models 205

Model 5 (par). α
par⇐== β for all α, β ∈ Instr .

We may define c ‖ d =̂ c
par
; d , lifting instruction-level parallelism to thread-level

parallelism.
The key point about the sc memory model is that reasoning is “straightfor-

ward”, or classical, in that all the accepted techniques work. This is the property
of sequential consistency [45], formalised below. We first introduce notation for
constraining memory models within a program.

Definition 3. Command c〈m〉 is structurally identical to c but every parallelized
sequential composition, except for instances of par, is parameterized by m.

The notation c〈m〉 lets us consider programs executed under some specific model
m (parallel composition is left unchanged as we are typically only interested in
thread-local effects).

Definition 4 (Sequentially consistent). A memory model m is sequentially
consistent if, for any programs c and d, c〈m〉 ‖ d〈m〉 is equivalent to c〈sc〉 ‖ d〈sc〉.

By definition sc is sequentially consistent, however even sequentially consistent
uniprocessors are not as strong as sc, for instance, some speculate loads and
reissue them if a change is detected. Note the difference between sequential and
sequentially consistent : a sequentially consistent memory model is sequential,
but not vice versa. None of TSO, Arm or RISC-V are sequentially consistent in
general, but are for programs where, for example, shared variables are accessed
according to a lock-based programming discipline.

2.2 Forwarding

We now complicate matters significantly by considering forwarding, where the
effect of an earlier operation can be taken into account when deciding if instruc-
tions can be reordered.2 For instance, given a program x := 1

g
; r := x , we have

x := 1 /g⇐= r := x because wv(x := 1) = {x} ⊆ fv(r := x). In practice however it is
possible to forward the new value of x to the later instruction – it is clear that
the value assigned to r will be 1 if x is local, and in any case is a valid possible
assignment to r even if x is shared. We define β«α, representing the effect of
forwarding the (assignment) instruction α to β, where the expression f[x\e] is f
with references to x replaced by e.

Definition 5. β«α = β, except:

(i) (y := f)«x := e = y :=(f[x\e]) and (ii) (|f |)«x := e = (|f[x\e]|)

Essentially, forwarding allows the text of the program to be used to evaluate
an expression in an instruction that is being reordered. The forwarding function
(type Instr → Instr → Instr) and a reordering relation r⇐= (type P(Instr×Instr))

2 We use the term “forwarding” (from Arm) [9], also called “bypassing” in TSO [64].

206 R. J. Colvin

combine to form a memory model (type Instr → P(Instr × Instr)) as shown in
(5) (we write m⇐= to denote the relation r⇐= that underpins m).

m =̂ λα.{(β«α, β) | α
r⇐= β«α} (5) β′ « α

m
« β =̂ (β′, β) ∈ m(α) (6)

Thus a memory model m for a given action α returns a set of pairs (β′, β)
where β reorders with α, after the effect of forwarding α to β (β′) is taken into
account. For convenience we sometimes use the notation β′ « α

m
« β (6), which

notationally conveys the bringing forward of β with respect α. For example,
since (r := x)«x := 1 = (r :=(x[x\1])) = r := 1, the load r := x “reorders” with

x := 1, becoming r := 1, that is, r := 1« x := 1
g0« r := x .

2.3 Strengthening Memory Models

We strengthen a memory model by strengthening the relation for each action.

Definition 6. m1 ⊆ m2 =̂ ∀α • m1(α) ⊆ m2(α)

As we explore in the rest of the paper, the Total Store Order model strengthens
g considerably (or alternatively, weakens sc for the particular case of stores and
loads), while arm strengthens g to prevent stores from coming before branches.
arm, risc-v, and the release consistency models rcpc and rcsc are related as
below, focusing on their common instruction types; since each introduces unique
instruction types a direct comparison is not possible.

Theorem 3. sc ⊆ tso ⊆ arm ⊆ rcsc ⊆ risc-v ⊆ rcpc ⊆ g ⊆ g0 ⊆ eff.

Proof. Straightforward from definitions above and in Sect. 4. �

Well-Behaved Models. A memory model could theoretically allow arbitrary
reorderings and effects of forwarding; however from a reasoning perspective we
limit ourselves to well-behaved memory models.

Definition 7. A memory model m is well-behaved if: i) the result of reordering

is deterministic, that is, for any α, β there is at most one β′ such that β′ «α
m
«β,

and furthermore, either β′ = β«α or β′ = β; and ii) if an action α allows
reordering with any β then it must also allow reordering with internal (“silent”)
steps (defined in Sect. 3.2).

Condition i) ensures determinacy and sequential semantics, while ii) simplifies
reasoning. All models we consider, except par, are well-behaved.

3 An Imperative Language with Instruction Reordering

In this section we give the full syntax and semantics for an imperative program-
ming language, “IMP+pseq”, which uses parallelized sequential composition.

Parallelized Sequential Composition and Hardware Weak Memory Models 207

3.1 Syntax

As given in Fig. 1 an instruction α may be an update x := e, a guard (|e|), or
a barrier/fence barrier(f).3 A barrier instruction is parameterised by some f
specifying the barrier type; we leave it underspecified at this point (since different
models introduce their own barrier types) except that, since typically models
have at least a “full” fence, we define fence =̂ barrier(full).

Fig. 1. Syntax and semantics of IMP+pseq

A command c may be the terminated command nil, a single instruction α,
the parallelized sequential composition of two commands c1

m
; c2 (where m is a

memory model), a nondeterministic choice between two commands c1 � c2, or
an iteration c∗

m (parameterised by m as it implicitly contains sequencing).
In (7) we use parallelized sequential composition to define ‘·’ as the usual

notion of sequential composition (see Model 1), and ‘‖’ as the usual interleaving
notion of parallel composition (see Model 5). In (8) we define finite iteration
of a command, cnm , as the n-fold parallelized sequential composition of c with
reordering according to m. Conditionals are modelled using guards and choice
(9). By allowing instructions in c1 or c2 to be reordered before the guards one
can model speculative execution, i.e., early execution of instructions which occur
after a branch point. We define a while loop using iteration (10).

3.2 Operational Semantics

The meaning of IMP+pseq is formalised using an operational semantics, which
generates a sequence of actions (instructions) allowing syntactic analysis to
decide on allowed reorderings.
3 We give an atomic expression evaluation semantics for assignments and guards, which

is typically reasonable for assembler-level instructions.

208 R. J. Colvin

The operational semantics of an instruction is simply a step labelled by the
instruction itself, after which it is terminated, i.e., becomes nil (11). The seman-
tics of loops is given by unfolding a nondeterministically-chosen finite number of
times (12).4 The special instruction τ =̂ (|True|) is a silent step (defined below),
having no effect on the state, possibly corresponding to some internal actions
of a microprocessor or, as in this case, an abstract step of unrolling a loop that
has no other visible consequence. A nondeterministic choice can choose either
branch (13, 14). A parallelized sequential composition c1

m
; c2 can take a step if

c1 can take a step (15), and continues with c2 when c1 has terminated (16), as in
standard sequential composition. Together these rules give a standard sequential
semantics for imperative programs.

Rule (17), unique to IMP+pseq, states that given a program c1
m
; c2, an instruc-

tion β of c2 can happen before c1, provided that β′ « c1
m
«β, which is the straight-

forward lifting of m from instructions ((5) and (6)) to commands

Visible, Silent and Infeasible Actions. A visible action is any action with
a visible effect, for instance, fences, assignments, and guards with free variables.
Silent actions include any guard which is True in any state and contains no free
variables; for instance, (|0 = 0|) is silent while (|x = x |) is not. A third category
of actions, infeasible α, includes exactly those guards (|b|) where b evaluates to
False in every state, e.g., (|False|) and (|x �= x |).
Trace Semantics. Given a program c the operational semantics generates a
trace, that is, a finite sequence of steps c0

α1−→ c1
α2−→ . . . where the labels in

the trace are actions. We write c t=⇒ c′ to say that c executes the actions in
trace t and evolves to c′. Traces of visible actions are accumulated into the
trace, and silent actions (such as τ) are discarded, i.e., we have a “weak” notion
of equivalence [52]. The meaning of a command c is its set of all terminating
behaviours (with behaviours containing infeasible actions being excluded).

Refinement and Equivalence. We take the usual (reverse) subset inclusion
definition of refinement, i.e., c d if every behaviour of d is a behaviour of c;
our notion of command equivalence is refinement in both direction.

Reduction Rules. From these definitions we can derive expected properties for
the standard operators, which we have machine checked in Isabelle/HOL (details
are in [21]). Below we give some reduction rules which can be used to simplify
programs involving parallelized sequential composition (cf. [69]).

c1
m
; c2 c1 · c2 (18)

c � d c (19)

(c1
m
; c2)

m
; c3 = c1

m
; (c2

m
; c3) (20)

c1
m
; fence

m
; c2 = c1 · fence · c2 (21)

α /m⇐= β«α ⇒ α
m
; β = α · β (22)

β′ « α
m
« β ⇒ α

m
; β β′ · α (23)

β′ « α
m
« β ⇒ α

m
; β = (α · β) � (β′ · α) (24)

β « α
m
« β ⇒ α

m
; β = (α ‖ β) (25)

4 We use finite loops only to avoid the usual complications infinite loops introduce,
which are orthogonal to the effects of instruction reordering.

Parallelized Sequential Composition and Hardware Weak Memory Models 209

Sequential composition is always a refinement of parallelized sequential com-
position (18). A choice may be resolved to its left operand (19) (a symmetric
law holds for the right operand). Parallelized sequential composition is associa-
tive (20), provided both instances are parameterised by the same model m. A
full fence restores order and hence sequential reasoning (21). Now consider two
instructions in sequence, α

m
; β. If β cannot be reordered according to m (after

taking forwarding into account) then the actions must be executed sequentially
(22), however if reordering is allowed then reverse-order is a possible behaviour
(23). These two possibilities can be combined to reduce parallelized sequential
composition to a choice over sequential compositions, eliminating the memory
model (24). If there is no forwarding (β«α = β) and reordering is allowed the
composition reduces to parallel (25).

Monotonicity. Monotonicity (congruence) holds for the standard operators of
IMP+pseq, but monotonicity of parallelized sequential composition contains a sub-
tlety in that the allowed traces of c1

m
;c2 are dependent on the reorderings allowed

by c1 with respect to m (Rule (17)). To handle this we need a stronger notion of

refinement, written c
m c′, where traces are augmented to track the reorderings

allowed (similarly to refusal sets in CSP’s failures/divergences model), allowing
strengthening only; see [21] for details.

c
m c′ ∧ d d ′ ∧ m′ ⊆ m ⇒ c

m
; d c′ m′

; d ′ (26)

State-Based Semantics. The action-trace semantics can be converted into a
typical pairs-of-states semantics straightforwardly, based on an “effect” function
eff (of type Instr → P(Σ×Σ), where Σ is the set of total mappings from variables
to values) that returns a relation on states given an instruction. The relationship
with standard Plotkin style operational semantics [57] is straightforward, i.e.,

if c α−→ c′ and (σ, σ′) ∈ eff(α) then 〈c, σ〉 −→ 〈c′, σ′〉

The advantage of our approach is that syntax of the action α can be used to
reason about allowed reorderings using (17), whereas in general one cannot recon-
struct or deduce an action from a pair of states.

Hoare Logic with IMP+pseq. Given a command c and predicate q , wp(c)(q)
returns the set of (pre) states σ where every post-state related to σ by eff(c)
satisfies q .

Theorem 4. For sequential m, wp(c1
m
; c2) = wp(c1 · c2)

Proof. By Definition 1 and Theorem 1. �

We define Hoare logic judgements in the standard way using weakest precon-
ditions, i.e., {p} c {q} =̂ p ⇒ wp(c)(q).5 Hence we can derive the standard

5 We deal only with partial correctness as we consider only finite traces.

210 R. J. Colvin

rules of weakest preconditions and Hoare logic for commands such as nonde-
terministic choice and sequential composition, but, unsurprisingly, there are no
general compositional rules for parallelized sequential composition. One notable
derivable law is the following.

{p} c1 {r} ∧ {r} c2 {q} ⇒ {p} c1
m
; fence

m
; c2 {q} (27)

For any m with fence a full fence (as in Model 4), inserting a fence restores
sequential reasoning (27), which follows from (21), and shows the advantage of
our approach: fences do not need special treatment in the analysis, they simply
remove nondeterminism introduced by reordering.

For the examples that follow we wish to show reachability of some postcondi-
tion, as opposed to the all-possible-states formulation of standard Hoare triples.
We therefore define 〈〈p〉〉 c 〈〈q〉〉 =̂ ¬{p} c {¬q}, which says that it is possible for
command c to reach a state q starting pre-state p (that is, it is not the case that
¬q is always reached).6 We use properties of Hoare logic to establish (or deny)
properties of programs executing under weak memory models.

c = c′〈sc〉 ⇒ {p} c {q} ⇔ {p} c′〈sc〉 {q} (28)
c c′ ∧ {p} c′ {¬q} ⇒ ¬{p} c {q} (29)
c c′ ∧ {p} c′ {q} ⇒ 〈〈p〉〉 c 〈〈q〉〉 (provided eff((|p|) · c) �= ∅) (30)

(28) is simply monotonicity of a Hoare triple, but we make the reduction of c
to a sequential form c′〈sc〉 explicit (recall Definition 3); Hoare logic is used as
the basis for reasoning about concurrent programs in the Owicki-Gries method
[56], and so (28) enables the application of standard techniques for concurrent
programs once the program in question has been reduced to a sequential form.
(29) states that reducing c to a (sequential) form c′ that establishes ¬q confirms
that c does not satisfy q (starting from p). On the other hand, (30) states
that reducing c to a (sequential) form c′ that establishes q confirms that c can
potentially reach q (starting from p).7 We use these formats to show how the
nondeterminism inherent in weak memory models can change behaviours: some
undesirable postcondition q can be ruled out in the sequential case (using (29))
but becomes possible under some weaker model (using (30)).

We now encode some well-known memory models in our framework and show
how properties and behaviours can be derived from the base we have provided.

6 This definition of reachability follows the conjugation pattern for allowed/reachable
states, e.g., [33,53,72]; it is related to, but different from, O’Hearn’s incorrectness
logic [55] (which is stronger except in the special case when post-state q is False).

7 The proviso on (30) rules out miraculous cases (if (|p|) · c is infeasible then {p} c {q}
trivially holds for all q , but q is not reachable in this case).

Parallelized Sequential Composition and Hardware Weak Memory Models 211

4 Hardware Weak Memory Models

4.1 Total Store Order (TSO)

The “total store order” memory model (used in Intel, AMD and SPARC proces-
sors; for a history see [64]) maintains program order on stores but is relaxed in the
sense that it allows loads to come before stores. Assume x ∈ Shared, r ∈ Local.

Model 6 (tso). α /tso⇐== β except: x := e tso⇐== r := f if x /∈ sv(f) and r /∈ fv(e).

TSO allows loads to come before independent stores, and, due to forwarding,
for dependent loads to “bypass”. That is, even though x := 1 /tso⇐== r := x , due to
forwarding we have r := 1« x := 1

tso
« r := x . Note that tso allows independent

register operations to also be reordered before stores.
We can show the defining behaviours of tso (as opposed to sc) at the lan-

guage level in this framework. For instance, for any values v and w ,

i) (x := v
tso
; y :=w) = (x := v · y :=w) states that stores are kept in program

order by tso (an instance of (22));
ii) (x := v

tso
; r := x) (r := v ·x := v) states that a load of x preceded by a store

to x can use the stored value immediately (an instance of (23)); only later
will the store become visible to the rest of the system – the classic bypassing
behaviour;

iii) (x := v
tso
; r := y) = (x := v ‖ r := y) states that a load of y preceded by a

store of x , for distinct x and y , could be executed in either order.

Perhaps the simplest system which can observe this third behaviour is the
“store buffer” test, SB =̂ x := 1·r1 := y ‖ y := 1·r2 := x . In a sequentially consistent
system at least one register must read the value 1, that is, {x = y = 0} SB {¬(r1 =
r2 = 0)} (see [43]). However under tso both registers may read 0.

Theorem 5. {x = y = 0} SB〈tso〉 {r1 = r2 = 0}
Proof. Recall from Definition 3 that SB〈tso〉 is SB with both instances of
sc
; (written above as ‘·’) replaced by

tso
; . The instructions in each process

may be reordered, i.e., r1 := y tso⇐== x := 1 and r2 := x tso⇐== y := 1. Hence,
SB〈tso〉 = (r1 := y

tso
; x := 1) ‖ (r2 := x

tso
; y := 1) by Definition 3, defn. SB.

= r1 := y ‖ x := 1 ‖ r2 := x ‖ y := 1 by defn. tso, (25)
 r1 := y · r2 := x · x := 1 · y := 1 by interleaving

By Hoare logic, {x = y = 0} r1 := y · r2 := x · x := 1 · y := 1 {r1 = r2 = 0}. The
proof is completed by (30). �

Inserting fences into both branches reinstates sequential behaviour by (21).
Note that reasoning is relatively direct in this framework: we can use prop-

erties of the model and the structure of the program to reduce reasoning to
sequential cases where established techniques can be applied, or a particular
case that violates a desired property can be enumerated. Other reasoning frame-
works typically monitor reorderings with respect to global abstract (graph) data
structures, requiring custom assertion languages, even for simple cases.

212 R. J. Colvin

4.2 Release Consistency

The release consistency memory model [31] has been highly influential, having
guided the development of the C language memory model [16], with the concepts
incorporated into Arm [58] and RISC-V [62]. The key concept revolves around
release writes and acquire loads: a release write is stereotypically used to set a
flag to indicate a block of computation has ended, and an acquire load is corre-
spondingly used to observe a release write. Code before the release should happen
before, and code after the acquire should happen after; conceptually these are
weaker (one-way) fences. Release consistency’s motivation was finding an easy-
to-implement mechanism for interprocess communication that is feasible and
inexpensive computationally, and relatively straightforward for programmers.
We extend the action syntax of IMP+pseq to include ordering constraints (oc)
as annotations to any action, with rl for release and aq for acquire.

oc ::= rl | aq α ::= . . . | αoc (31)

Forwarding for the new annotated actions is defined inductively, i.e., (βoc)«α =
(β«α)

oc and β«(αoc) = β«α, and we define eff(αoc) = eff(α).
Following [31] we give two variants, rcpc (“processor consistency”) and rcsc

(“sequential consistency”), the latter of which is a strengthening of the former. For
simplicity we assume that g (Model 4) controls reordering outside of annotation
considerations, although in the theory of [31] stronger constraints are possible.

Model 7 (rcpc). α
rcpc⇐=== β iff α

g⇐= β except:

(i)α /
rcpc⇐=== βrl rcpc⇐=== γ iff β

rcpc⇐=== γ, and (ii) α
rcpc⇐=== βaq /

rcpc⇐=== γ iff α
rcpc⇐=== β

Model 8 (rcsc). α
rcsc⇐== β iff α

rcpc⇐=== β except: αrl /rcsc⇐== βaq.

rcpc straightforwardly follows the intuition of [31], where a release action βrl

is always blocked from reordering and hence all earlier instructions must be
complete before it can execute, but it does not block later instructions from
happening early (provided β does not on its own block later instructions, calcu-
lated by recursively applying the reordering relation). An acquire action is the
converse. rcsc strengthens rcpc by additionally requiring order between release
and acquire actions in the one thread (the reverse direction is already implied).

Consider the program MP =̂ (x := 1
rcpc
; (y := 1)rl) ‖ ((r1 := y)aq

rcpc
; r2 := x)

which is the classic “message passing” pattern, with release-acquire annotations.

Theorem 6. {x = y = 0} MP {r1 = 1 ⇒ r2 = 1}

Proof. The release annotation on the write to y means that y := 1 cannot come
before x := 1, that is, although x := 1

rcpc⇐=== y := 1, we have x := 1 /
rcpc⇐=== (y := 1)rl.

Similarly the acquire tag in the other process prevents the loads of y and x from
reordering. Hence, MP = x := 1 · (y := 1)rl ‖ (r1 := y)aq · r2 := x = MP〈sc〉 by
(22) and Model 7. Having reduced to a sequential form we may apply (28), that is,

Parallelized Sequential Composition and Hardware Weak Memory Models 213

we can employ standard techniques to complete the proof. This is straightforward
using Owicki-Gries reasoning (checked in Isabelle/HOL [21]), noting that because
the stores are executed in the order x , y , and read in reverse order, if the latter
store is observed then the former must have taken effect. �

Note that without the annotations the instructions in each process can be
reordered, under which conditions it is straightforward to find a behaviour that
contradicts r1 = 1 ⇒ r2 = 1.

4.3 Arm Version 8

In this section we consider the latest version of Arm v8, which is simpler than
earlier versions due to it being “multicopy atomic” [10,58]. Arm’s instruction
set includes a “control fence” isb =̂ barrier(ctrl), a write barrier dsb.st =̂
barrier(ww), and a full fence dsb =̂ fence. To specify the model we use abbre-
viations for defining store (str) and load (ld) instructions, which is based on
their read/write shared variables, i.e., for guard or assignment α, str(α) ⇔
wsv(α) �= ∅ ∧ rsv(α) = ∅, and ld(α) ⇔ wsv(α) = ∅ ∧ rsv(α) �= ∅ (while
str(barrier(f)) = ld(barrier(f)) = False).

Model 9 (arm). α
arm⇐== β if α

rcsc⇐== β except:

(i) α /arm⇐== dsb.st /arm⇐== α if str(α), (ii) (|b|) /arm⇐== isb /arm⇐== α if ld(α), and
(iii) (|b|) /arm⇐== α if str(α)

Store fences maintain order between stores, while control fences are blocked by
branches and correspondingly block loads; when taken in conjunction a con-
trol fence enforces order between loads within and before a branch, preventing
the observable effects of speculative execution. Guards block stores, which is a
practical consideration to do with speculating down branches: one cannot com-
mit stores until it is known that the branch will be taken. Other than these
exceptions, arm behaves as rcsc for release/acquire annotations,8 fundamen-
tally behaving as g (Model 4).

As an example of the weak nature of Arm, i.e., issuing loads before the
branch condition for the load is evaluated, consider the following behaviour of
a variant of the reader process of MP where the second load is guarded. Define
MPw =̂ x := 1 · y := 1 and MPr =̂ r1 := y

arm
; (if r1 = 1 then r2 := x)arm. Note that

in MPw we use strict sequential ordering to keep the stores in order.

Theorem 7. ¬{x = y = 0} MPw ‖ MPr {r1 = 1 ⇒ r2 = 1}
Proof. Consider the following behaviour of MPr .

MPr =̂ r1 := y
arm
; (if r1 = 1 then r2 := x)arm

 r1 := y
arm
; (|r1 = 1|) arm

; r2 := x Definition (9), (19)
 r1 := y

arm
; r2 := x · (|r1 = 1|) by (23) from g (Model 4)

 r2 := x · r1 := y · (|r1 = 1|) by (23) from g (Model 4)
8 Arm’s LDAPR explicitly weakens the ordering between release/acquire instructions,

which can be handled by distinguishing annotations syntactically rather than within
the memory model definition.

214 R. J. Colvin

The load of x (underlined) may be reordered before the branch point, and sub-
sequently before the load of y . Now, even with the stores to x and y being
strictly ordered in MPw , we can straightforwardly find an interleaving satisfying:
{x = y = 0} r2 := x · x := 1 · y := 1 · r1 := y · (|r1 = 1|) {r1 = 1 ∧ r2 = 0}. This
post-state implies ¬(r1 = 1 ⇒ r2 = 1), and we complete the proof by (29). �

Placing an isb instruction inside the branch, before the second load, however,
prevents this (possibly unexpected) behaviour.

Conformance. We validate our model using litmus tests [8,51]. Arm has released
an official axiomatic model using the herd tool [9] available online via the herd-
tools7 application [25] (see [10], Sect. B2.3). Using the diy7 tool and the official
model [4] we generated a set of 99,881 litmus tests covering forbidden behaviours
of up to 4 processes using the instruction types covered in Model 9. In addition
we used a further 5757 litmus tests covering allowed and forbidden behaviours
using the tests for an earlier version of Arm [9] and a set covering more recent
features [50]. We ran these tests using the model checking tool based on the
semantics; in each case (approximately 105,000 tests) Model 9 agreed with the
published model.

4.4 RISC-V

The RISC-V memory model [11,62] is influenced by Arm’s weak ordering on
loads and stores (corresponding to g), but has release consistency annotations
using the weaker rcpc (Model 7) rather than the stronger rcsc (Model 8). It also
defines six different types of artificial barriers (more are technically possible but
their use is not recommended [11]): a full fence given by fence rw, rw =̂ fence;
a store fence given by fence w, w =̂ barrier(ww) (identical to Arm’s dsb.st); a
corresponding load fence fence r, r; two new types fence rw, w and fence r, rw
described below; and a barrier used to mimic TSO’s in-built weakening where
loads can come before stores, which we define as fence.tso =̂ fence r, rw

r-v
;

fence rw, w. Additionally RISC-V has a barrier fence.i which has a technical
specification beyond what is considered here, and so it is defined as a no-op (τ).

Model 10 (risc-v). α
r-v⇐== β if α

rcpc⇐=== β, except:

(i) α /r-v⇐== fence r, r /r-v⇐== α if ld(α), (ii) α /r-v⇐== fence rw, w
r-v⇐== β if ld(β),

(iii) α
r-v⇐== fence r, rw /r-v⇐== β if str(α), and (iv) (|b|) /r-v⇐== α if str(α).

RISC-V’s load fence, fence r, r, restricts ordering with loads, and is the straight-
forward dual of Arm’s store fence (dsb.st, Model 9). RISC-V’s fence rw, w bar-
rier is intended to maintain order between loads and stores and later stores only,
allowing later loads to potentially come earlier; it therefore allows reordering of
loads, but blocks everything else. Similarly the fence r, rw barrier ensures order
between loads and later loads and stores, and hence can ‘jump’ over stores but
is blocked by loads, which therefore are strictly ordered with later loads and
stores. Like Arm, RISC-V prevents stores from taking effect before branches are
resolved (see [62] [Rule 11, A.3.8]).

Parallelized Sequential Composition and Hardware Weak Memory Models 215

Conformance. We tested our model against the litmus tests outlined in the
RISC-V manual [62] and made available online with expected results [29].
Restricting attention to those tests involving instructions we consider in Model 10
(and Model 7) our tests agree with the official model in all 3937 cases, covering
the rcpc behaviours and the six barrier types defined above, with g (Model 4)
controlling interactions between stores and loads.

5 Related Work

There has been significant work in defining the semantics of processor-level
instruction reordering since the 1980s [27,30,37,45,65] and more recently under
the umbrella of weak memory models [14,15,17,18,24,26,35,36,39,42,61]. To the
best of our knowledge we are the first to encode the basis for instruction reorder-
ing as a parameter to the language, rather than as a parameter to the semantics.
The resulting framework has two main advantages over existing frameworks: i)
by focussing on instruction reordering, which is based on the actual operation of
processor pipelines, our specifications of hardware weak memory models are rela-
tively simple (Sect. 4), with common aspects extracted (Sect. 2); and ii) we allow
compositional reasoning, including structural reduction rules that admit existing
techniques for analysing programs. In the literature weak memory model specifi-
cations are often described via properties of the global system, e.g., the axiomatic
style [5,6,9,48,66,71] for which specifications are relatively straightforward for
the cases considered in this paper ([21] includes a detailed comparison), but
that style does not easily admit compositional reasoning/reduction techniques.
Another common approach to formalisation is with a semantics that is closer
to the behaviour of a real microarchitecture, e.g., [28,58,63] (a direct semantic
comparison to the operational model of [64] is contained in [21]), but the spec-
ifications are therefore specific to a processor and implementation, and proving
properties of the system is similarly less abstract (but clearly that style is suitable
for model checking, e.g., [1,2,7,13,41]). The “PipeCheck” framework [47,49,70] is
designed to validate that processors faithfully implement their intended memory
model, using a detailed pipeline semantics based on an axiomatic specification;
potentially our framework could be applicable as it mimics in-pipeline reordering
(see [21]). The Promising semantics [38,46,59] is operational and can be instanti-
ated with different memory models (including software memory models), where
(as with the axiomatic approach) weak behaviours are captured via properties
of global traces recorded in abstract global data structures. A proof system for
that framework introduces custom assertion language for reasoning with those
data structures [43].

This paper supersedes [22], which defines only a simple prefixing command for
actions (a special case of parallelized sequential composition). That paper does
not consider a general theory for memory models (Sect. 2), and does not address
TSO, Release Consistency, or RISC-V (but does consider POWER), and showed
conformance for Arm against an older version without release/acquire atomics,
against a much smaller set of litmus tests (approximately 400 vs over 100,000

216 R. J. Colvin

in this paper). That theory is not machine-checked, contains only a few simple
refinement rules, and does not employ OG reasoning. The paper does, however,
include a simple extension of the language to allow composite atomic actions
(such as compare-and-swap), and gives a global data structure corresponding to
POWER’s cache coherence system to handle the lack of multicopy atomicity in
that model; both extensions are compatible with the framework in this paper.

Our operational approach based on out-of-order instruction execution follows
work such as Arvind et al. [12], and the development of the Release Consistency
and related models [31]. Our parallelized sequential composition is operationally
similar to “weak sequential composition” [60], developed for a different domain.
The algebraic approach we adopt to reducing programs is similar in style to
the Concurrent Kleene Algebra [34], where sequential and parallel composition
contribute to the event ordering.

6 Conclusion

In this paper we have formalised instruction-level parallelism (ILP), a feature of
processors since the 1960s, and a major factor in the weak behaviours associated
with modern memory consistency models. We showed how modern memory mod-
els build on generic properties of instruction reordering (eff,g0,g) that preserve
sequential semantics using simple syntactic tests. We defined a program opera-
tor (parallelized sequential composition) which supports compositional reasoning
about behaviours over the structure of parallel processes, and generalises sequen-
tial (sc) and parallel (par) composition. We empirically validated the models
for large sets of litmus tests for Arm and RISC-V, and showed how stereotypical
results emerge across a range of models, for instance, the “store buffer” pattern of
TSO where loads can come before stores, the “message passing” paradigm from
release consistency using release/acquire flags to control interprocess communi-
cation, and load speculation from Arm. We developed a model checker based on
the semantics in Maude [20] and machine-checked the theory in Isabelle [54].

The semantics of the IMP+pseq language is relatively straightforward, being a
trace-based imperative semantics, extended by a single rule to allow reordering.
This operational concept chimes with how reordering arises in real processors,
i.e., out-of-order execution within the pipeline. Reordering is controlled via a
pair-wise specification on atomic instructions, which is also relatively straight-
forward to specify, being based on concepts from sequential semantics with the
addition of barriers, and some extra rules around branches to control specula-
tive execution. In comparison, many existing formal frameworks for weak mem-
ory models have quite complex operational semantics which use global proper-
ties of traces or architecture-specific features to capture nondeterminism due to
reorderings. This complexity carries over into the associated reasoning frame-
works. Because we let the nondeterminism be represented in the program text
itself, our framework admits the application of existing techniques for reasoning
about programs. This is evident in the examples we give, which involve direct
manipulation of the program to elucidate the absence of presence of reordering.

Parallelized Sequential Composition and Hardware Weak Memory Models 217

Of course reasoning about specific code may still be quite complex, but this
will be due to the properties of code and model in question, not the underlying
semantic framework.

As future work we intend to extend the semantics to cover other features
of modern processors that contribute to their memory models, for instance,
POWER’s cache system that lacks multicopy atomicity, TSO’s global locks, and
Arm’s global monitor for controlling load-linked/store-conditional instructions.
As these features are global they cannot be captured directly as behaviours of
per-processor pipelines [44]. Ongoing work includes extending the framework
with microarchitectural features for reasoning about security vulnerabilities [23]
and investigating the interaction of language-level weak memory models, such
as those of C and Java, with underlying hardware weak memory models. Since
the C11 model builds on the Release Consistency model (Sect. 4.2), has special
barrier types, and atomic actions corresponding to stores and loads, we have
a firm basis for reasoning about the behaviours of compiler translations and
optimisations for specific hardware.

Acknowledgements. We thank Graeme Smith, Kirsten Winter, Nicholas Coughlin
and Ian Hayes for feedback on this work, and anonymous reviewers of earlier versions.
We also thank Luc Maranget, Jade Alglave, and Christopher Pulte for assistance with
litmus test analysis.

References

1. Abd Alrahman, Y., Andric, M., Beggiato, A., Lafuente, A.L.: Can we efficiently
check concurrent programs under relaxed memory models in Maude? In: Escobar,
S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 21–41. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12904-4_2

2. Abdulla, P.A., Arora, J., Atig, M.F., Krishna, S.: Verification of programs under
the release-acquire semantics. In: PLDI 2019, pp. 1117–1132. Association for Com-
puting Machinery (2019)

3. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

4. Alglave, J.: How to generate litmus tests automatically with the diy7 tool,
2020. Accessed June 2020. https://community.arm.com/developer/ip-products/
processors/b/processors-ip-blog/posts/generate-litmus-tests-automatically-diy7-
tool

5. Alglave, J., Cousot, P., Maranget, L.: Syntax and semantics of the weak consistency
model specification language cat. CoRR, abs/1608.07531 (2016)

6. Alglave, J., Deacon, W., Grisenthwaite, R., Hacquard, A., Maranget, L.: Armed
cats: formal concurrency modelling at Arm. ACM Trans. Program. Lang. Syst.
43(2), 1–54 (2021)

7. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37036-6_28

https://doi.org/10.1007/978-3-319-12904-4_2
https://doi.org/10.1007/978-3-319-12904-4_2
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/generate-litmus-tests-automatically-diy7-tool
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/generate-litmus-tests-automatically-diy7-tool
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/generate-litmus-tests-automatically-diy7-tool
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-37036-6_28

218 R. J. Colvin

8. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: running tests against hard-
ware. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp.
41–44. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_5

9. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

10. Arm Ltd.: Arm R© Architecture Reference Manual, for the Armv8-A architecture
profile (2020)

11. Armstrong, A., et al.: ISA semantics for ARMv8-a, RISC-V, and CHERI-MIPS.
Proc. ACM Program. Lang. 3(POPL) (2019)

12. Arvind, A., Maessen, J.-W.: Memory model = instruction reordering + store atom-
icity. In: Proceedings of the 33rd Annual International Symposium on Computer
Architecture, ISCA 2006, USA, pp. 29–40. IEEE Computer Society (2006)

13. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: POPL 2010, pp. 7–18. ACM (2010)

14. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 26–46.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_2

15. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-
lem of programming language concurrency semantics. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 283–307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46669-8_12

16. Boehm, H.-J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: PLDI 2008, pp. 68–78. ACM (2008)

17. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In: POPL
2009, pp. 392–403. Association for Computing Machinery (2009)

18. Boudol, G., Petri, G., Serpette, B.: Relaxed operational semantics of concurrent
programming languages. EPTCS 89, 19–33 (2012)

19. Brookes, S.: A semantics for concurrent separation logic. Theoret. Comput. Sci.
375(1–3), 227–270 (2007)

20. Clavel, M., et al.: Maude: specification and programming in rewriting logic. The-
oret. Comput. Sci. 285(2), 187–243 (2002)

21. Colvin, R.J.: Parallelized sequential composition, pipelines, and hardware weak
memory models. CoRR, abs/2105.02444 (2021)

22. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on
weak memory models. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.)
FM 2018. LNCS, vol. 10951, pp. 240–257. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-95582-7_14

23. Colvin, R.J., Winter, K.: An abstract semantics of speculative execution for reason-
ing about security vulnerabilities. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS,
vol. 12233, pp. 323–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54997-8_21

24. Crary, K., Sullivan, M.J.: A calculus for relaxed memory. In: POPL 2015, pp.
623–636. ACM (2015)

25. Deacon, W., Alglave, J.: The herd ARMv8 model (2016). Accessed June 2020.
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat

26. Doherty, S., Dongol, B., Wehrheim, H., Derrick, J.: Verifying C11 programs oper-
ationally. In: PPoPP 2019, pp. 355–365. ACM (2019)

27. Dubois, M., Scheurich, C., Briggs, F.: Memory access buffering in multiproces-
sors. In: Proceedings of the 13th Annual International Symposium on Computer
Architecture, ISCA 1986, pp. 434–442. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-030-54997-8_21
https://doi.org/10.1007/978-3-030-54997-8_21
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat

Parallelized Sequential Composition and Hardware Weak Memory Models 219

28. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In: POPL 2016, pp. 608–621. ACM, New York (2016)

29. Flur, S., Maranget, L.: RISC-V architecture concurrency model litmus tests (2019).
Accessed June 2020. https://github.com/litmus-tests/litmus-tests-riscv

30. Fox, A.C.J., Harman, N.A.: Algebraic models of correctness for microprocessors.
Formal Aspects Comput. 12(4), 298–312 (2000)

31. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In: ISCA 1990, pp. 15–26. ACM (1990)

32. Hoare, C.A.R.: Towards a theory of parallel programming. In: Operating System
Techniques, pp. 61–71. Academic Press (1972). Proceedings of Seminar at Queen’s
University, Belfast, Northern Ireland, August-September 1971

33. Hoare, C.A.R.: Some properties of predicate transformers. J. ACM 25(3), 461–480
(1978)

34. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–
414. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_27

35. Hou, Z., Sanan, D., Tiu, A., Liu, Y., Hoa, K.C.: An executable formalisation of
the SPARCv8 instruction set architecture: a case study for the LEON3 processor.
In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 388–405. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48989-6_24

36. Jagadeesan, R., Petri, G., Riely, J.: Brookes is relaxed, almost! In: Birkedal, L.
(ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 180–194. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28729-9_12

37. Jones, R.B., SkakkebÆk, J.U., Dill, D.L.: Reducing manual abstraction in formal
verification of out- of- order execution. In: Gopalakrishnan, G., Windley, P. (eds.)
FMCAD 1998. LNCS, vol. 1522, pp. 2–17. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-49519-3_2

38. Kang, J., Hur, C.-K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: POPL 2017, pp. 175–189. ACM (2017)

39. Kavanagh, R., Brookes, S.: A denotational semantics for SPARC TSO. Electron.
Notes Theor. Comput. Sci. 336, 223–239 (2018)

40. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: Security
and Privacy, pp. 1–19. IEEE (2019)

41. Kokologiannakis, M., Vafeiadis, V.: HMC: model checking for hardware memory
models. In: ASPLOS 2020, pp. 1157–1171. ACM (2020)

42. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
POPL 2016, pp. 649–662. Association for Computing Machinery (2016)

43. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6_25

44. Lahav, O., Vafeiadis, V.: Explaining relaxed memory models with program trans-
formations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM
2016. LNCS, vol. 9995, pp. 479–495. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48989-6_29

45. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

46. Lee, S.-H., et al.: Promising 2.0: global optimizations in relaxed memory concur-
rency. In: PLDI 2020, pp. 362–376. Association for Computing Machinery (2020)

https://github.com/litmus-tests/litmus-tests-riscv
https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1007/978-3-319-48989-6_24
https://doi.org/10.1007/978-3-319-48989-6_24
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.1007/3-540-49519-3_2
https://doi.org/10.1007/3-540-49519-3_2
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1007/978-3-319-48989-6_29

220 R. J. Colvin

47. Lustig, D., Pellauer, M., Martonosi, M.: PipeCheck: specifying and verifying
microarchitectural enforcement of memory consistency models. In: 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 635–646 (2014)

48. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_36

49. Manerkar, Y.A., Lustig, D., Martonosi, M., Gupta, A.: PipeProof: automated
memory consistency proofs for microarchitectural specifications. In: 51st Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 788–801 (2018)

50. Maranget, L.: AArch64 model vs. hardware. Accessed Jan 2020. http://moscova.
inria.fr/~maranget/cats7/model-aarch64/

51. Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and
POWER relaxed memory models (2012)

52. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1982).
https://doi.org/10.1007/3-540-10235-3

53. Morgan, C.: Of wp and CSP. In: Feijen, W.H.J., van Gasteren, A.J.M., Gries,
D., Misra, J. (eds.) Beauty Is Our Business: A Birthday Salute to Edsger W.
Dijkstra, pp. 319–326. Springer, New York (1990). https://doi.org/10.1007/978-1-
4612-4476-9_37

54. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

55. O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL) (2019)
56. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta

Inf. 6(4), 319–340 (1976)
57. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.

Program. 60–61, 17–139 (2004)
58. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM

concurrency: multicopy-atomic axiomatic and operational models for ARMv8.
Proc. ACM Program. Lang. 2(POPL) (2017)

59. Pulte, C., Pichon-Pharabod, J., Kang, J., Lee, S.-H., Hur, C.-K.: Promising-
ARM/RISC-V: a simpler and faster operational concurrency model. In: PLDI 2019,
pp. 1–15. ACM (2019)

60. Rensink, A., Wehrheim, H.: Weak sequential composition in process algebras.
In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 226–241.
Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_20

61. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Leavens, G.T., O’Hearn,
P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 55–70. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15057-9_4

62. RISC-V International. The RISC-V Instruction Set Manual. Volume I: User-Level
ISA; Volume II: Privileged Architecture (2017)

63. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. SIGPLAN Not. 46(6), 175–186 (2011)

64. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

65. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988)

66. Steinke, R.C., Nutt, G.J.: A unified theory of shared memory consistency. J. ACM
51(5), 800–849 (2004)

https://doi.org/10.1007/978-3-642-31424-7_36
http://moscova.inria.fr/~maranget/cats7/model-aarch64/
http://moscova.inria.fr/~maranget/cats7/model-aarch64/
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-1-4612-4476-9_37
https://doi.org/10.1007/978-1-4612-4476-9_37
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-48654-1_20
https://doi.org/10.1007/978-3-642-15057-9_4

Parallelized Sequential Composition and Hardware Weak Memory Models 221

67. Thornton, J.E.: Parallel operation in the control data 6600. In: Proceedings of the
October 27–29, 1964, Fall Joint Computer Conference, Part II: Very High Speed
Computer Systems, AFIPS 1964, pp. 33–40. ACM (1964)

68. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM J. Res. Dev. 11(1), 25–33 (1967)

69. Travkin, O., Wehrheim, H.: Verification of concurrent programs on weak memory
models. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 3–24.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_1

70. Trippel, C., Lustig, D., Martonosi, M.: Security verification via automatic
hardware-aware exploit synthesis: the CheckMate approach. IEEE Micro 39(3),
84–93 (2019)

71. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-
paring memory consistency models. SIGPLAN Not. 52(1), 190–204 (2017)

72. Winter, K., Zhang, C., Hayes, I.J., Keynes, N., Cifuentes, C., Li, L.: Path-sensitive
data flow analysis simplified. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS,
vol. 8144, pp. 415–430. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41202-8_27

https://doi.org/10.1007/978-3-319-46750-4_1
https://doi.org/10.1007/978-3-642-41202-8_27
https://doi.org/10.1007/978-3-642-41202-8_27

Checking Opacity and Durable Opacity
with FDR

Brijesh Dongol(B) and Jay Le-Papin

University of Surrey, Guildford, UK
{b.dongol,jay.le-papin}@surrey.ac.uk

Abstract. Software transactional memory (STMs) is a software-enabled
form of transactional memory, typically implemented as a language
library, that provides fine-grained concurrency control on behalf of a
programmer. STM algorithms have been recently adapted to cope with
non-volatile memory (NVM), aka persistent memory, which is a new
paradigm for memory that preserves its contents even after power loss.
This paper presents a model checking approach to validating correctness
of STM algorithms using FDR (a model checker for CSP specifications).
Our proofs are based on operational transactional memory specifications
that allow proofs of (durable) opacity, the main safety property for STMs
under volatile and persistent memory, to be verified by refinement. Since
FDR enables automatic proofs of refinement, we obtain an automatic
technique for checking both opacity and durable opacity of bounded
models of STM algorithms.

1 Introduction

Transactional Memory (TM) [21] provides programmers with an easy-to-use syn-
chronisation mechanism for concurrent access to shared data, whereby blocks of
code may be treated as transactions that execute with an illusion of atomicity.
A transaction may complete by committing (all of its operations appear to take
place atomically) or aborting (none of its operations take effect).

Software Transactional Memory (STM) implements TM in software, allowing
programmers to use TM without relying on dedicated hardware. STMs have been
widely studied and a variety of implementations have been proposed for a variety
of applications and workload scenarios [18,20]. STMs have also been adapted to
a range of memory architectures. A recent iteration is the adaptation of STMs
to non-volatile memory (NVM) (aka persistent memory) architectures [36,37].
Unlike conventional memory, the contents of NVMs are persistent across a sys-
tem crash (e.g., a power failure), allowing the system state to be recovered from
NVM instead of restarting from disk. However, due to differences in speed, NVMs
are updated at a different rate, i.e., less frequently than volatile memory, and

Dongol is supported by VeTSS project “Persistent Safety and Security” and EPSRC
grants EP/R019045/2, EP/R032556/1 and EP/V038915/1.
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 222–242, 2021.
https://doi.org/10.1007/978-3-030-92124-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_13

Checking Opacity and Durable Opacity with FDR 223

hence implementations must carefully manage synchronisation between volatile
and non-volatile memory.

A widely accepted correctness condition for TM is opacity [17,18], which
requires all transactions, including aborting transactions, to agree on a single
sequential global ordering of transactions. Moreover, no transactional read can
return a value that is inconsistent with the global ordering of committed trans-
actions. In the presence of NVM, transactions must additionally ensure consis-
tency across crashes. TM here (aka durable TM) is designed to satisfy a recently
defined correctness condition called durable opacity [6].

Algorithms implementing STMs are sophisticated—for efficiency they imple-
ment fine-grained concurrency control, local read/write sets, etc. Under NVM
architectures, the algorithms additionally require redo/undo logs and explicit
programmer-controlled FLUSH instructions that synchronise contents between
volatile and persistent memory. Because STMs are typically used as a concur-
rency abstraction mechanism within programming language libraries [18,20,37],
proving correctness of the underlying STM algorithms is an important problem.

A number of papers have addressed full verification of several STMs [1,2,9,11,
13,27,28,38] and durable STMs [5,6] by proving refinement between the imple-
mentation and a TM specification called TMS2 [14] (in settings without NVM)
and dTMS2 [6] (in settings with NVM). Both TMS2 and dTMS2 are abstract
operational specifications whose traces are guaranteed to be opaque [29] and
durably opaque [14], respectively. Thus, any refinement of TMS2 and dTMS2
is also guaranteed to be opaque and durably opaque. The aforementioned veri-
fication methods have been shown to apply to a large number of sophisticated
implementations and have been mechanised using a variety of theorem provers
(Isabelle, PVS, KIV). These proofs are parametric, and hence, apply to an arbi-
trary number of transactions, performing an arbitrary number of operations over
a arbitrary data values. Unfortunately, such proofs are also time consuming as
they require a large amount of manual input, including the manual generation
and verification of the necessary invariants and simulation relations.

FDR [16] is a model checker for CSP [23,35] and provides support for auto-
matic refinement checking for bounded models. Recently, Lowe [32] has demon-
strated the use of FDR to automatically check linearizability [22] of concurrent
data structures. We adapt Lowe’s approach and develop methods for proving
(durable) opacity of STMs using FDR. This is done by encoding an abstract spec-
ification of an STM (such as TMS2) and an STM implementation (such as TML)
as bounded models in FDR, then using FDR’s automatic refinement checking
to show that the model implementation is a refinement of the model specifica-
tion. Although the models verified are bounded (w.r.t. number of threads, size
of data structure, etc.), the fully automatic nature of the proofs means that the
checks can be valuable in validating designs prior to performing a full proof of
correctness.

The paper comprises the following contributions: (1) We demonstrate how
the abstract TMS2 [14] and dTMS2 [6] specifications can be encoded in FDR.
Since TMS2 and dTMS2 are abstractions of many different TM implementa-

224 B. Dongol and J. Le-Papin

tions, our encodings can be reused across proofs of other algorithms. (2) We
show that it is feasible to check both opacity and durable opacity using FDR.
Despite the many years of research into correctness of TM, there is surprisingly
little work on actual results on model checking STMs. Ours is the first set of
results on model checking durable opacity thereby extending model checking of
STMs to NVM architectures. (3) We evaluate the effectiveness of FDR as a tool
for refinement checking by providing benchmarks against durable and standard
versions of known algorithms.

Fig. 1. A transactional mutex lock (d)TML. Line numbers for return statements are
omitted. Code in purple must be added to ensure durability. (Color figure online)

2 Example: (Durable) Transactional Mutex Lock

Figure 1 presents TML [7] and dTML [6], which are examples of an opaque
and a durably opaque STM algorithm, respectively. TML is assumed to exe-
cuted in an architecture without crashes, whereas dTML is assumed to execute
under NVM. Thus, dTML extends TML with additional instructions (shown
in purple) designed to cope with crashes as well as a recovery operation.

TML. TML adopts a strict policy for transactional synchronisation: as soon
as one transaction has successfully written to a variable, all other transactions
running concurrently will be aborted when they invoke another read or write
operation. To enforce this policy, TML uses a global counter glb (initially 0)
and local variable loc, which is used to store a copy of glb. Variable glb records

Checking Opacity and Durable Opacity with FDR 225

whether there is a live writing transaction, i.e., a transaction that has started,
has not yet ended nor aborted, and has executed (or is executing) a write oper-
ation. More precisely, glb is odd if there is a live writing transaction, and even
otherwise. Initially, we have no live writing transactions and thus glb is 0 (and
hence even). The algorithm for TML is the algorithm in Fig. 1 with the code in
purple removed.

Operation TMBegin copies the value of glb into its local variable loc and
checks whether glb is even. If so, the transaction is started; otherwise, the pro-
cess attempts to start again by rereading glb. A TMRead operation succeeds
as long as glb equals loc (meaning no writes have occurred since the trans-
action began), otherwise it aborts the current transaction. The first execution
of TMWrite attempts to increment glb using a cas (compare-and-swap), which
atomically compares the first and second parameters, and sets the first param-
eter to the third if the comparison succeeds. If the cas attempt fails, a write
by another transaction must have occured, and hence, the current transaction
aborts. Otherwise loc is incremented (making its value odd) and the write is
performed. Note that because loc becomes odd after the first successful write,
all successive writes that are part of the same transaction will perform the write
directly after testing loc at line W1. Further note that if the cas succeeds, glb
becomes odd, which prevents other transactions from starting, and causes all
concurrent live transactions still wanting to read or write to abort. Thus a writ-
ing transaction that successfully updates glb effectively locks shared memory.
Operation TMCommit checks to see if a write has occurred by testing whether loc
is odd. If the test succeeds, glb is set to loc + 1.

dTML. The algorithm for dTML is the algorithm in Fig. 1 including the code
in purple, which has been introduced to manage synchronisation between volatile
and persistent memory. dTML introduces FLUSH instructions (where FLUSH x
copies the contents of x from volatile to persistent memory) and a persistent log,
log (which we explain below). After a crash we assume that all contents of persis-
tent memory are copied into volatile memory, and that the Recover() operation
is executed immediately afterwards, prior to executing any new transactions.

A distinguishing feature of TML is that it performs writes in an eager man-
ner, i.e., it updates shared memory during the write operation1. This is poten-
tially problematic in an NVM context since writes that have completed may not
be committed if a crash occurs prior to executing the commit operation. That is,
writes of uncommitted transactions should not be seen by any transactions that
start after a crash occurs. dTML makes use of an undo log mapping addresses
to their persistent memory values prior to executing the first write operation for
that address. Logged values are made persistent before the address is overwrit-
ten. Thus, if a crash occurs prior to a transaction committing, the transaction
can be recovered to a safe state by undoing uncommitted transactional writes.

As discussed above, dTML uses a log, which we assume is durably lineariz-
able [10,25]. Each operation of a durably linearizable object is guaranteed to take
1 This is in contrast to lazy implementations that defer transactional writes until the

commit operation is executed (e.g., [8,12]).

226 B. Dongol and J. Le-Papin

effect in persistent memory prior to the operation returning, and thus can be
assumed to be an atomic durable operation from the perspective of a user. There
are many examples of durably linearizable logs, e.g., [39], and we do not con-
sider their implementation in detail in this paper. In Fig. 1, we use pinsert(),
pempty() and pdelete() to stress that these operations are durably linearizable.

3 Opacity and Durable Opacity

The formal definition of opacity has been extensively covered in the litera-
ture [2,3,9,13,29,30], while the formal definition of durable opacity may be found
in [5,6]. In this paper we eschew these formalities in favour of conceptual descrip-
tions, focussing instead on the operational TMS2 and dTMS2 specifications (see
Sect. 4), which approximate (durable) opacity.

Both opacity and durable opacity are defined in terms of histories of exter-
nally visible events, which are external calls (invocations) and returns (responses)
of STM operations. For example, in (d)TML, we have a pair of events for each of
the operations TMBegin, TMRead, TMWrite and TMCommit, noting that an opera-
tion call may return with an abort.

A concurrent history comprises an interleaving of (external) events from the
different operations executed by different transactions. Each history is assumed
to be well formed, i.e., the history, when restricted to a single transaction starts
with a TMBegin, possibly followed by a number of TMRead and TMWrite opera-
tions, possibly followed by a TMCommit operation. A transaction is complete in
a history if it has responded with TMCommit(ok) or an abort event, and once
completed, the transaction must not execute any further operations. However, a
transaction within a history may not be complete, i.e., may be a live transaction.

Opacity is defined over concurrent histories, and builds on the notion of strict
serialisability for database transactions. Like strict serialisability, it requires that
all non-aborted complete transactions be ordered to form a sequential history
that is valid w.r.t. a standard memory semantics. The reordering must respect
real-time order, i.e., if transaction T1 completes before another transaction T2

begins, then the reordering must respect this order. Concurrent (i.e., overlap-
ping) transactions may, however, be serialised in any order. Opacity addition-
ally requires that aborted transactions fit within a serialised order such that the
aborted transaction is valid w.r.t. the memory semantics until the aborted oper-
ation is executed. Finally, opacity requires that a live transaction behaves like an
aborted transaction. That is, (1) a committed transaction must not read from
the writes of a live transaction, and (2) live transactions must also be consistent
with the serialisation order of committed transactions.

A durable concurrent history is a concurrent history interleaved with crash
events. A durable concurrent history is well formed iff the history with crash
events removed is well formed and, moreover, no transaction that started before
the crash continues executing after the crash.

Durable opacity, defined over durable concurrent histories, simply requires
that the given history is opaque after all crash events are removed. Note that

Checking Opacity and Durable Opacity with FDR 227

this means that any live transactions before a crash are aborted, and the writes
of any committed transactions are persisted, i.e., are not lost after crash.

Example 1. An example of a durably opaque history is given below, where we
elide the invocations and response events and the begin/commit operations,
focussing instead on the allowable order of the transactions 1–9. We use Ri x v
to denote a completed read operation by transaction Ti on variable x returning
value v . Similarly Wi x v . We use Ri x to denote a read operation that has been
invoked but not returned. All transactions except for transactions 4 and 5 are
committed. Transaction 4 is a live transaction that is interrupted by a system
crash, and transaction 5 is an aborted complete transaction.

R1 x 0 W1 y 1 R2 y 1

R3 y 1 W3 x 3 W4 y 4

R5 y 0 R5 x

R6 x 3 R6 y 1

W7 x 9

R8 x 9

crash

Our task in showing that the history is durably opaque is to remove the crash
events, and showing that the remaining history is opaque. Here, we must find a
total order among all (including live and aborted) transactions so that the values
returned by the reads are consistent with the memory semantics w.r.t. the com-
mitted transactions. This total order must respect the real-time order of transac-
tions, e.g., T1 and T2 may not be reordered. Assuming all variables are initialised
to 0, an ordering that satisfies these constraints is: T5 T1 T3 T2 T4 T6 T7 T8.
Other orders are possible, however, for example, T1 cannot occur before T5

even though T5 aborts (if it did, R5 y 0 would be inconsistent with the memory
semantics).

4 Proving Opacity and Durable Opacity

We use the operational specification described by TMS2 and dTMS2 to model
opacity and durable opacity, respectively. TMS2 and dTMS2 have already been
shown to be opaque [29] and durably opaque [6], respectively. Thus, any refine-
ment of these specifications is guaranteed to also be (durably) opaque.
Input/Output Automata. We present our operational specifications using
Input/Output Automata (IOA) [33].

Definition 1. An Input/Output Automaton (IOA) is a labeled transition sys-
tem A with a set of states states(A), a set of actions acts(A), a set of start
states start(A) ⊆ states(A), and a transition relation trans(A) ⊆ states(A) ×
acts(A) × states(A) (so that the actions label the transitions).

The set acts(A) is partitioned into input input(A), output output(A) and internal
actions internal(A). The internal actions represent events of the system that are
not visible to the external environment. The input and output actions are exter-
nally visible, representing the automaton’s interactions with its environment.
Thus, we define the set of external actions, external(A) = input(A)∪output(A).

228 B. Dongol and J. Le-Papin

An execution of an IOA A is a sequence σ = s0a0s1a1s2 . . . snansn+1 of
alternating states and actions, such that s0 ∈ start(A) and for all states si ,
(si , ai , si+1) ∈ trans(A). A trace of A is any sequence of (external) actions
obtained by projecting the external actions of any execution of A. The set of
traces of A, denoted traces(A), represents A’s externally visible behaviour. For
automata C and A, we say that C is a refinement of A iff traces(C) ⊆ traces(A).
Later, we will see that this notion of trace refinement coincides with FDR.

Fig. 2. The transition relation of TMS2 and dTMS2, which extends TMS2 with a
crash event. f ⊕ g = λ k . if k ∈ dom(g) then g(k) else f (k) denotes functional
override of function f by function g .

TMS2 and dTMS2. Formally, TMS2 and dTMS2 are specified by an IOA
(partially shown in Fig. 2).2 We assume a set, L, of locations and a set, V , of
values, and a mapping, L → V , representing the memory store. Both TMS2
and dTMS2 keep track of a sequence, mems ∈ seq(L → V), of memory stores,

2 The full model is given in Appendix A.

Checking Opacity and Durable Opacity with FDR 229

one for each committed writing transaction. This makes it simpler to determine
whether reads are consistent with previously committed write operations. Each
committing transaction containing at least one write adds a new memory version
to the end of the memory sequence.

For each transaction t there is a program counter variable pct , which ranges
over a set of program counter values, which are used to ensure that each trans-
action is well-formed, and to ensure that each transactional operation takes
effect between its invocation and response. There is also a begin index variable
beginIdxt ∈ N, that is set to the index of the most recent memory version when
the transaction begins. This variable is used to ensure the real-time ordering
property between transactions. Finally, there is a read set, rdSett ∈ L �→ V , and
a write set, wrSett ∈ L �→ V , which record the values that the transaction has
read and written during its execution, respectively.

The read set is used to determine whether the values that have been read by
the transaction are consistent with the same version of memory (using validIdx).
The write set, on the other hand, is required because writes are modelled using
deferred update semantics: writes are recorded in the transaction’s write set, but
are not published to any shared state until the transaction commits.

dTMS2 extends TMS2 with a crash action, which models both a crash and
a recovery. It sets the program counter of every live transaction to aborted , which
prevents these transactions from performing any further actions after the crash.
Note that since transaction identifiers are not reused, the program counters
of completed transactions need not be set to any special value (e.g., crashed).
After restarting, it must not be possible for any new transaction to interact with
memory states prior to the crash. We therefore reset the memory sequence to be
a singleton sequence containing the last memory state prior to the crash.

In TMS2, we make no distinction between volatile and non-volatile memory.
Interestingly, from the point-of-view of the specification, since durable opacity
ensures that transactions are only externally visible when they have persisted,
the volatile memory state need not be modelled at the level of dTMS2 [6].

The following ensures that TMS2 and dTMS2 can be used as intermediate
specifications for the proofs of opacity and durable opacity.

Theorem 1. (Soundness [6,29]). Each trace of TMS2 is opaque and each
trace of dTMS2 is durably opaque.

Corollary 1. For any IOA A, (1) if A refines TMS2, then A is opaque, and
(2) if A refines dTMS2, then A is durably opaque.

5 CSP and FDR Models

In this section, we review CSP (Sect. 5.1) and provide some details of our FDR
encoding. We discuss the models for opacity in detail, but note that similar
principles apply to persistent memory and durable opacity (see [15]). Section 5.2
provides details of the basic setup and FDR model of the TMS2 shared memory,
and Sect. 5.3 describes part of the encoding of TMS2 itself. Finally, Sect. 5.4
describes our encoding of the implementations.

230 B. Dongol and J. Le-Papin

5.1 Overview of CSP

As discussed above, FDR is a model checker for CSP [23,35]. A challenge in
modelling arises from the fact that STM algorithms are shared-memory algo-
rithms whereas CSP is a process algebra that is designed to model and reason
about communicating systems. As such CSP has no notion of shared state; this
must be modelled by special processes that respond to atomic events over shared
channels.

This section provides a brief overview of the fragment of CSP [35] that we
use, closely following the description by Lowe [32]. The first key component is a
channel, which is declared, possibly over some number of values, using the key-
word channel. For example, assuming types X and Y, the declaration channel
c:X.Y denotes a set of events of the form c.x.y, where x ∈ X and y ∈ Y. Chan-
nels may take an input denoted by ?, and produce an output denoted by !, e.g.,
c?x!y represents an event on channel c with an input x and output y. Inputs
and outputs may be freely combined for each value accepted by the channel.

The second key component is that of a process, which includes primitive
processes such as SKIP (representing successful termination) and STOP (repre-
senting deadlock). Events and processes can be combined using a prefix operator:
for an event c and process P , the notation c → P represents a process that offers
the event c, and if c occurs behaves like P . Processes can also be combined using
operators such as external choice, denoted P � Q , which behaves as either pro-
cess P or process Q with the choice made by the environment, and interleaving
parallel composition P ||| Q . These operators can be indexed, e.g., � x :X •P(x)
represents indexed external choice. Notation b&P denotes the guarded process
if b then P else STOP that behaves like P provided b holds, otherwise it
behaves as STOP.

The behaviours of processes can also be dictated by a set of events. For a set
of events A, P\A represents P with the events from A hidden, and P [|A |]Q
executes P and Q in parallel and synchronises on events in A. Notation ‖x :
X • [A(x)]P(x) denotes replicated alphabetised parallel composition where each
process P(x) is given the alphabet A(x). Finally, the notation [|A |] x :X •P(x)
represents replicated generalised parallel, comprising the parallel composition of
processes P(x) that synchronise on events from A.

FDR is a typed language and supports types such as (|X ⇒ Y |) defining
a map type from type X to Y , and <X > defining a list over X and (X ,Y)
defining a pair over X and Y .

A trace of a process is a sequence of visible events, and we say that P refines
Q iff each trace of P is a possible trace of Q . This treatment coincides with the
IOA definitions, and hence CSP is suited to verifying IOA refinement. Moreover,
since FDR enables automatic checking of refinement, it provides us with ability
to check (durable) opacity automatically. The challenge is to develop efficient
representations of the different models, which we discuss in more detail in the
following sections.

Checking Opacity and Durable Opacity with FDR 231

Fig. 3. Basic setup

5.2 Setup and TMS2 Shared Memory

The basic setup, common across all models is given in Fig. 3. The datatypes
TID, AddrType and ValueType describe the thread identifiers, memory addresses
controlled by the TM, and the allowable data values at each memory address,
respectively. We define channels inv and resp to record traces of the different
models, as well as channels lock and unlock to ensure atomicity of the DoRead
and DoCommitReadOnly and DoCommitWriter operations, which contain several
actions over shared memory (details below).

The processes used to model shared memory accesses in TMS2 and dTMS2
are given in Fig. 4. We keep track of the maximum memory index using the func-
tion MaxIdxHandler, which synchronises on events getMaxIdx!maxIdx (occur-
ring when another process requests the current maximum) and finishNewMem
(occurring when a new memory is installed). For the former event, the current
maximum is unchanged, whereas for the latter, the current maximum is incre-
mented.

Perhaps the most interesting aspect is the model of the sequence of mem-
ories. A naive encoding using a map of type (|Int ⇒ (|Addr ⇒ Value|) |) is
highly inefficient (see Sect. 6). Instead, we start with function MemoryN TMS(n,
a, v), defining a mapping from the memory index n, address a and value
v to a process. This function synchronises with read requests from the do
operations of TMS2 using readMem TMS.n.a!v (see Fig. 5), and read requests
from new memories using readMem TMS’.n.a!v (see finishNewMem branch of
setupMem, described below). The purpose of both channels readMem TMS and
readMem TMS’ is to return the value for the given memory index and address.
We require two different channels because they have different synchronisation
requirements: readMem TMS synchronises with the operations of TMS2, whereas
readMem TMS’ synchronises with other MemoryN TMS processes at other memory
indices.

The branch setupMem.n is used by a committing writer transaction to install
a new memory, where n > 0 is the index of the new memory to be installed. Once

232 B. Dongol and J. Le-Papin

Fig. 4. TMS2 memory setup

setupMem.n occurs, the process waits for either a newMem.a?v or finishNewMem
event to occur. Event newMem.a?v’ is called by a committing writer writing v’
to address a. After all writes have been written back, the committing writer
calls finishNewMem, which synchronises with each MemoryN TMS(n, a, v) pro-
cess as well as MaxIdxHandler as described above. When this occurs, either
MemoryN TMS(n, a, v) was updated by the writer (first branch in setupMem.n),
or it was not (second branch in setupMem.n), in which case it pulls the value v’
for a from the previous index by calling readMem TMS’.(n-1).a?v’. The final
branch of MemoryN TMS is required to allow MemoryN TMS processes at memory
index i memory indices processes to “escape” a setupMem.n call if the index that
is being setup is different from n.

The global memory is constructed by first defining MemHandlerN(n), which
initialises memory index n for each address a with value D0 so that the processes
synchronise over event setupMem.n (for all n) and finishNewMem. Processes
MemHandlerN(n), for each n, are combined in MemHandler TMS, where processes
at different levels (in particular n and n-1) synchronise over readMem TMS’

Checking Opacity and Durable Opacity with FDR 233

Fig. 5. FDR encoding of TMS2 operations (sample)

events. Finally, the global memory is defined by GlobalMem TMS, which combines
MemHandler TMS and MaxIdxHandler(0), synchronising over finishNewMem.

5.3 TMS2 Model

As an example, we describe our model of the TMS2 commit operation in Fig. 5,
demonstrating the use of invocation and response events (in blue) and the
expected interaction between TMS2 operations and the memory from Sect. 5.2.

TMCommit is an operation over a transaction id (type TID), the local begin
index beginIdx (type Int), and the local read and write sets (type (|AddrType
⇒ ValueType|)). The begin index, read set and write set are as described in
Sect. 4. TMCommit invokes inv!t.Commit.MNull.DNull then either aborts or
performs the operation DoCommit TMS, which starts by taking the global lock
ensuring the remainder of the operation is atomic. DoCommit TMS first synchro-
nises with the process MaxIdxHandler (see Fig. 4) to obtain the current value of
maxIdx. Then, if the write set wrSet is empty it attempts to validate against one
of the memories between beginIdx and wrSet and aborts if this fails. If wrSet
is non-empty, it validates against the memory at index maxIdx then inserts a
new memory starting with setupMem!(n+1) (recalling that n == maxIdx).

234 B. Dongol and J. Le-Papin

The function CoValidate (commit validate) is inductive over the first argu-
ment (which is a list of address-value pairs) representing the read set converted
from a map to a list. It is used to validate the read set against the memory index
n. Case “<>” defines the base case, where CoValidate performs a case switch on
the value of sw, either behaving as a read only transaction (case RO), or a writing
transaction (case WR) by additionally performs a write back (details omitted).
In the inductive case “rdList”, assuming (a,v) is the head of rdList, we check
whether the value of the nth memory at address a has value v. If so, it continues
processing, otherwise the process stops.

We omit the details of the other TMS2 operations, but their models are sim-
ilarly derived from the IOA specification (Fig. 2). The full system is defined in
Fig. 6. Process Synchroniser is used to ensure atomicity of the TMS2 “do” oper-
ations, and the transactions of TMS2 are modelled by Transactions TMS, com-
prising an interleaving of transactions starting with TMBegin TMS(t) synchro-
nised by Synchroniser. The combined TM operations and the global memory
is modelled by SyncTransactions TMS, which synchronises Transactions TMS
and GlobalMem TMS (see Fig. 4) on the events in syncSet TMS. The full TMS2
model is given by FinalTMS2, which hides events on all channels except for inv
and resp. Therefore, the traces of FinalTMS2 coincide with histories as required
by opacity (see Sect. 3).

Fig. 6. Integrated TMS2 model

5.4 Encoding STM Implementations

The final components to be encoded are the models of TML and dTML. Here,
we start with functions modelling the shared memory state through dedicated
channels for reading and writing to memory. We also introduce a process for han-
dling modifications to glb, including a CASGlb channel, that performs an atomic
compare and swap on glb [32]. These models are similar to the models of the
shared state in Sect. 5.2 and hence the details deferred to our mechanisation [15].

With the models of the shared memory in place, the encoding of the algo-
rithms is straightforward. As an example, we provide an encoding of the write
operation of TML in Fig. 7. The transactions of all threads are defined using
the interleaving operator to obtain Transactions, which is combined with the
memory model to obtain, SyncTransactions3. Finally, we obtain FinalTML from
SyncTransactions by hiding all channels except inv and resp.
3 Details of SyncTransactions is not shown, since it is composed using synchronisation

in a similar manner to SyncTransactions TMS in TMS2 (see Sect. 5.3).

Checking Opacity and Durable Opacity with FDR 235

Fig. 7. FDR encoding of TML operations (sample)

With these models in place, we check opacity by checking refinement between
TMS2 and TML, which is encoded in FDR as the assertion FinalTMS2 [T=
FinalTML. As already mentioned, FDR is able check such refinements without
any additional input from the user.

6 Evaluation and Experiments

In our abstract model of TMS2 (Sect. 5.2), we access the sequence of shared
memories, mems in Fig. 2, using a channel with dedicated events for each shared
memory index and address. This means that memory accesses take constant time
for any memory index and any address. Hence, a read/commit operations are lin-
ear w.r.t. the size of the read/write sets. This compares favourably to a quasilin-
ear complexity of a naive encoding, i.e., one in which the memory sequence mems
is modelled using a map of type (|Int ⇒ (|Addr ⇒ Value|) |). Here quasilinear
complexity arises since map operations typically have O(log n) complexity [16].

In our experiments, the encoding described in Sect. 5.2 allowed us to reduce
the time taken to check refinement of small models (two transactions, two mem-
ory locations and two data values) from approximately 10 s to less than 1 s by
replacing the naive model of mems with the representation described in Sect. 5.2.
The difference is even more dramatic in the context of larger models, where the
naive representation times out when any of the parameters are increased.

In our experiments, we check correctness of durable and non-durable versions
of two algorithms: TML and dTML (see Sect. 4) as well as NOrec [8] and its
durable version dNOrec [5]. TML and NOrec (and consequently dTML and
dNOrec) differ in their design. TML is an eager algorithm which performs
writes in place (as the TMWrite operation is executed), whereas NOrec is a
lazy algorithm that updates shared memory (non-atomically) as part of a the
commit operation. FDR is able to check both types of algorithms automatically
without any further user input.

236 B. Dongol and J. Le-Papin

Table 1. Timing results (seconds)

T , A, V 2, 2, 2 2, 2, 3 2, 2, 4 2, 2, 5 2, 2, 6 2, 2, 7 2, 3, 2 2, 4, 2 3, 2, 2 2, 3, 3

TML 1 3.2 8.9 21.5 46.6 103.9 44.4 TO 635.1 326.7
DTML 1.1 3.6 10.0 23.9 54.6 121.0 51.0 – 781.1 348.3
NOrec 1.2 4.5 13.5 38.2 94.9 235.9 51.6 – 633.8 515.2
DNOrec 1.5 5.3 14.8 40.8 100.7 264.0 55.2 – 798.2 567.8

As part of our experiments, we also tested faulty versions of the algorithms.
FDR was able to find bugs in all cases in which code modifications led to violation
of (durable) opacity. We also discovered benign changes, which have liveness
implications, but do not impact the safety, i.e., (durable) opacity. For instance,
in TML (see Fig. 1), switching the test at line B2 to odd(loc) is a benign safety
bug since no transaction will be able to start, and indeed, FDR does not report
any (durable) opacity violation. On the other hand, changing the test at line R2
to glb 	= loc is a (durable) opacity bug, and this is also correctly reported by
FDR. For the durable algorithms (dTML and dNOrec), we experimented with
faults such as omission of flush instructions, incorrect log updates, and buggy
recovery code. In all cases, FDR managed to report durable opacity violations.
More interestingly, in all cases, violations were detected even when testing with
bounded models comprising two threads, two addresses and two values.

For the correct versions of the algorithms, we have timed the performance of
checking various size models (Table 1), where we altered the number of threads
(T), addresses (A) and values (V). Each increment of T roughly doubles the time
taken, an increment of A causes an approximately 50-fold increase, with a second
increase timing out (TO). An increment of T causes upto a 700-fold increase in
the time taken. The final column (2, 3, 3) times the impact of increasing both A
and V . Interestingly, the timing differences between the different algorithms are
marginal for small values of T , A, V , across both the durable and non-durable
versions. For larger values, of V , we can see that (d)NOrec take significantly
longer to check than (d)TML. It is also interesting that both durable models
take longer than the non-durable models when increasing the number of threads
(column (3, 2, 2)); this is potentially due to the increase in memory required to
represent both volatile and non-volatile state.

Checking Opacity and Durable Opacity with FDR 237

7 Related Work

Despite the many years of research into transactional memory, including sev-
eral papers dedicated to their verification, there is surprisingly little work on
model checking approaches. The majority of works on verifying opacity of
STMs have focussed on manual proofs of simulation [1,6,9,11,13,38] and spe-
cialised logics [31]. Automated approaches have used the PAT model checker
[2] (which presents a semi-automated approach) and reductions to alternative
criteria [19,26,30], e.g., conflict freedom [19] and markability [30], which in turn
guarantee transactional correctness.

Baek et al. have built a model checker specifically for checking correctness of
STMs [4]. However, they only check serializability (a weaker condition than opac-
ity), and their approach is limited to two transactions executing three operations
each, and two memory locations. On the other hand, their examples include the
sophisticated TL2 algorithm [12], which implements fine-grained per-location
locking. Our work, in contrast, does not bound the number of operations exe-
cuted by each transaction, and our refinement-based approach is more flexible as
it allows the specifications to be altered depending on the properties of interest.

8 Conclusions

We have demonstrated the feasibility of using FDR to validate correctness of
TML and NOrec as well as their durable versions (dTML and dNOrec) by
model checking refinement w.r.t. the abstract specifications TMS2 and dTMS2.
The main challenge is the efficient encoding of the abstract specifications TMS2
and dTMS2. Our encodings are highly efficient as can be seen by the time taken
to check small models (Table 1). Moreover, these encodings can be reused to
check opacity of other algorithms. As seen in Sect. 7, FDR encodings of imple-
mentations are straightforward and translations from particular languages to
FDR models could even be automated (we leave this as future work).

In future work, we intend to extend the approach to cope with (more real-
istic) memory models integrating weak memory and persistency [34]. Here, a
recent attempt at model checking durable concurrent data structures reported
significant difficulties, with even small models timing out [24].

238 B. Dongol and J. Le-Papin

A Full (d)TMS2 Automata

State Variables:
mems : seq(L → V), initially satisfying dom(mems) = {0} and initMem(mems(0))
pct : PCVal , for each t ∈ T , initially pct = notStarted for all t ∈ T
beginIdxt : N for each t ∈ T , unconstrained initially
rdSett : L �→ V , initially empty for all t ∈ T
wrSett : L �→ V , initially empty for all t ∈ T

Transition Relation:
External actions
invt(TMBegin)
Pre: pct = notStarted
Eff: pct := beginPending

beginIdxt := len(mems) − 1

respt(TMBegin)
Pre: pct = beginPending
Eff: pct := ready

invt(TMRd(l))
Pre: pct = ready
Eff: pct := doRead(l)

respt(TMRd(v))
Pre: pct = readResp(v)
Eff: pct := ready

invt(TMWr(l , v))
Pre: pct = ready
Eff: pct := doWrite(l , v)

respt(TMWr)
Pre: pct = writeResp
Eff: pct := ready

invt(TMCommit)
Pre: pct = ready
Eff: pct := doCommit

respt(TMCommit)
Pre: pct = commitResp
Eff: pct := committed

respt(Abort)
Pre: pct �∈ {notStarted, ready,

commitResp, committed, aborted}
Eff: pct := aborted

crash
Pre: true
Eff: pc := λ t : T .

if pct �∈ {notStarted, committed}
then aborted
else pct

mems = 〈last(mems)〉
Internal actions
DoCommitReadOnlyt(n)
Pre: pct = doCommit

dom(wrSett) = ∅

validIdx(t ,n)
Eff: pct := commitResp

DoCommitWritert
Pre: pct = doCommit

rdSett ⊆ last(mems)
Eff: pct := commitResp

mems :=

mems � (last(mems) ⊕ wrSett)
DoReadt(l ,n)
Pre: pct = doRead(l)

l ∈ dom(wrSett) ∨ validIdx(t ,n)
Eff: if l ∈ dom(wrSett) then

pct := readResp(wrSett(l))
else v := mems(n)(l)

pct := readResp(v)
rdSett := rdSett ⊕ {l → v}

DoWritet(l , v)
Pre: pct = doWrite(l , v)
Eff: pct := writeResp

wrSett := wrSett ⊕ {l → v}

where validIdx(t ,n) =̂ beginIdxt ≤ n < len(mems) ∧ rdSett ⊆ mems(n)

Checking Opacity and Durable Opacity with FDR 239

B (d)NOREC

For reference, the code for NOrec [8] and dNOrec [5] is given below, with the
recovery code used by dNOrec highlighted in purple.

Init:
I1 glb := 0

TMBegin:
B1 do loc := glb;
B2 until even(loc)

return ok;

TMRead(addr):
R1 if addr ∈ dom(wrSet) then

return wrSet(addr)
R2 v := *addr
R3 while loc 	= glb
R4 loc := TMValidate
R5 v := *addr
R6 rdSet.insert(addr, v);

return v

TMWrite(addr,val):
W1 wrSet.insert(addr,val)

return ok;

Recovery:
C1 glb := 0
C2 for ∀ (addr,val) ∈ log
C3 *addr := val;
C4 flush(addr);
C5 log.pempty()

TMCommit:
E1 if wrSet.isEmpty()

then return ok;
E2 while !cas(glb, loc, loc + 1)
E3 loc := TMValidate
E4 for ∀ (addr,val) ∈ wrSet
E5 oldv := *addr;
E6 log.pinsert((addr, oldv));
E7 *addr := val;
E8 flush(addr);
E9 log.pempty();
E10 glb := loc + 2;

return ok;

TMValidate:
V1 while true
V2 time := glb
V3 if odd(time) then goto V2
V4 for ∀(addr,val) ∈ rdSet do
V5 if *addr 	= val

then abort
V6 if time = glb

then return time

References

1. Armstrong, A., Dongol, B.: Modularising opacity verification for hybrid transac-
tional memory. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321,
pp. 33–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60225-7_3

2. Armstrong, A., Dongol, B., Doherty, S.: Proving opacity via linearizability: a sound
and complete method. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS,
vol. 10321, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60225-7_4

https://doi.org/10.1007/978-3-319-60225-7_3
https://doi.org/10.1007/978-3-319-60225-7_4
https://doi.org/10.1007/978-3-319-60225-7_4

240 B. Dongol and J. Le-Papin

3. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: A programming language perspec-
tive on transactional memory consistency. In: Fatourou, P., Taubenfeld, G. (eds.)
PODC 2013, pp. 309–318. ACM (2013)

4. Baek, W., Bronson, N.G., Kozyrakis, C., Olukotun, K.: Implementing and evalu-
ating a model checker for transactional memory systems. In: Calinescu, R., Paige,
R.F., Kwiatkowska, M.Z. (eds.) ICECCS, pp. 117–126. IEEE Computer Society
(2010)

5. Bila, E., Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Wehrheim, H.: Mod-
ularising verification of durable opacity. CoRR abs/2011.15013 (2020)

6. Bila, E., Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Defin-
ing and verifying durable opacity: correctness for persistent software transactional
memory. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp.
39–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3_3

7. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex
locks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS,
vol. 6272, pp. 2–13. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15291-7_2

8. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining STM by abolishing
ownership records. In: Govindarajan, R., Padua, D.A., Hall, M.W. (eds.) PPoPP,
pp. 67–78. ACM (2010)

9. Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.:
Mechanized proofs of opacity: a comparison of two techniques. Formal Aspects
Comput. 30(5), 597–625 (2017). https://doi.org/10.1007/s00165-017-0433-3

10. Derrick, J., Doherty, S., Dongol, B., Schellhorn, G., Wehrheim, H.: Verifying cor-
rectness of persistent concurrent data structures. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 179–195. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8_12

11. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verifying opac-
ity of a transactional mutex lock. In: Bjørner, N., de Boer, F. (eds.) FM 2015.
LNCS, vol. 9109, pp. 161–177. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19249-9_11

12. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006). https://doi.org/
10.1007/11864219_14

13. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opacity
of a pessimistic STM. In: Fatourou, P., Jiménez, E., Pedone, F. (eds.) OPODIS.
LIPIcs, vol. 70, pp. 35:1–35:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016)

14. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

15. Dongol, B., Le-Papin, J.: FDR models for “Checking Opacity and Durable Opacity
with FDR”, October 2021. https://doi.org/10.6084/m9.figshare.16752550.v1

16. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8_13

17. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chat-
terjee, S., Scott, M.L. (eds.) PPOPP, pp. 175–184. ACM (2008)

18. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lec-
tures on Distributed Computing Theory. Morgan & Claypool Publishers, San
Rafael (2010)

https://doi.org/10.1007/978-3-030-50086-3_3
https://doi.org/10.1007/978-3-642-15291-7_2
https://doi.org/10.1007/978-3-642-15291-7_2
https://doi.org/10.1007/s00165-017-0433-3
https://doi.org/10.1007/978-3-030-30942-8_12
https://doi.org/10.1007/978-3-319-19249-9_11
https://doi.org/10.1007/978-3-319-19249-9_11
https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/11864219_14
https://doi.org/10.6084/m9.figshare.16752550.v1
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13

Checking Opacity and Durable Opacity with FDR 241

19. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories.
Distrib. Comput. 22(3), 129–145 (2010)

20. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory. Synthesis Lectures
on Computer Architecture, 2nd edn. Morgan & Claypool Publishers, San Rafael
(2010)

21. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Smith, A.J. (ed.) ISCA, pp. 289–300. ACM (1993)

22. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

23. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

24. Iiboshi, H., Ugawa, T.: Towards model checking library for persistent data struc-
tures. In: NVMSA, pp. 119–120. IEEE (2018)

25. Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory
objects under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC 2016. LNCS, vol. 9888, pp. 313–327. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53426-7_23

26. Koskinen, E., Parkinson, M.J.: The push/pull model of transactions. In: Grove,
D., Blackburn, S.M. (eds.) PLDI, pp. 186–195. ACM (2015)

27. Lesani, M.: On the Correctness of Transactional Memory Algorithms. Ph.D. thesis,
UCLA (2014)

28. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software
transactional memory algorithms. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 516–530. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1_36

29. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: Workshop
on the Theory of Transactional Memory (2012)

30. Lesani, M., Palsberg, J.: Decomposing opacity. In: Kuhn, F. (ed.) DISC 2014.
LNCS, vol. 8784, pp. 391–405. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45174-8_27

31. Lesani, M.: Transaction protocol verification with labeled synchronization logic.
In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460, pp. 280–297.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9_19

32. Lowe, G.: Analysing lock-free linearizable datatypes using CSP. In: Gibson-
Robinson, T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles.
LNCS, vol. 10160, pp. 162–184. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-51046-0_9

33. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC, pp. 137–151. ACM, New York, NY, USA (1987)

34. Raad, A., Wickerson, J., Vafeiadis, V.: Weak persistency semantics from the ground
up: formalising the persistency semantics of ARMV8 and transactional models.
PACMPL 3(OOPSLA), 135:1–135:27 (2019)

35. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, London (2010). https://doi.org/10.1007/978-1-84882-258-0

36. Rudoff, A.: Persistent memory programming. Login USENIX Mag. 42(2), 34–40
(2017)

https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-642-32940-1_36
https://doi.org/10.1007/978-3-642-32940-1_36
https://doi.org/10.1007/978-3-662-45174-8_27
https://doi.org/10.1007/978-3-662-45174-8_27
https://doi.org/10.1007/978-3-030-20652-9_19
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.1007/978-1-84882-258-0

242 B. Dongol and J. Le-Papin

37. Scargall, S.: Programming Persistent Memory. Apress, Berkeley (2020). https://
doi.org/10.1007/978-1-4842-4932-1

38. Schellhorn, G., Wedel, M., Travkin, O., König, J., Wehrheim, H.: FastLane Is
Opaque – a case study in mechanized proofs of opacity. In: Johnsen, E.B., Schaefer,
I. (eds.) SEFM 2018. LNCS, vol. 10886, pp. 105–120. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-92970-5_7

39. Zuriel, Y., Friedman, M., Sheffi, G., Cohen, N., Petrank, E.: Efficient lock-free
durable sets. PACMPL 3(OOPSLA), 128:1–128:26 (2019)

https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1007/978-3-319-92970-5_7

Translation of CCS into CSP, Correct
up to Strong Bisimulation

Gerard Ekembe Ngondi1,2(B) , Vasileios Koutavas1,2(B) ,
and Andrew Butterfield1,2(B)

1 Trinity College Dublin, Dublin, Ireland
2 Lero - The Irish Software Research Centre, Limerick, Ireland

{Gerard.Ekembe,Vasileios.Koutavas,Andrew.Butterfield}@tcd.ie

Abstract. We present a translation of CCS into CSP which is correct
with respect to strong bisimulation. To our knowledge this is the first
such translation to enjoy a correctness property. This contributes to the
unification of the CCS and CSP families of concurrent calculi, in the
spirit of Hoare and He’s unification programme through Unifying The-
ories of Programming. To facilitate this translation, we define CCSTau,
the extension of CCS with visible synchronisation actions and the hiding
operator. This separation of concerns between synchronisation and hid-
ing turns out be sufficient to obtain our correct translation. Our transla-
tion, implemented in a Haskell prototype, makes it possible to use CSP-
based verifiers such as FDR to reason about trace and failure (hence
may- and must-testing) preorders for CCS processes.

Keywords: Concurrency theory · Calculus of Communicating
Systems (CCS) · Communicating Sequential Processes (CSP) · Correct
translation

1 Introduction

The CCS/Pi-calculus [1,16,17] and CSP/CSPmob [4,14,22] families of calculi
are established formalisms for analysing concurrent systems. Not long after their
inception there have been efforts to relate the two calculi and bridge their dif-
ferences [15]. This would have clear benefits for theoreticians as it would allow
them a deeper understanding of the nature of concurrency and the ability to
transition from one mathematical formulation to the other in a rigorous man-
ner. It would also benefit practitioners working in Process Algebra as it would
allow them to use verification technology from both worlds to address challenges
in assuring system correctness modelled in either family of calculi. To achieve
this, semantics preserving transformations between CCS and CSP are needed.

In previous work, Van Glabbeek [10] builds a general framework for com-
paring the expressiveness of process calculi, with an application proposing a
translation from CSP to CCS that is correct up to trace equivalence. Hatzel et
al. [12] propose an encoding from CSP into asynchronous CCS with two notable
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 243–261, 2021.
https://doi.org/10.1007/978-3-030-92124-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_14&domain=pdf
http://orcid.org/0000-0002-8579-3366
http://orcid.org/0000-0002-3970-2486
http://orcid.org/0000-0002-2337-2101
https://doi.org/10.1007/978-3-030-92124-8_14

244 G. E. Ngondi et al.

encodings of CSP multiway synchronisation into CCS binary synchronisation.
Brookes [3] encodes CSP models as synchronisation trees showing that CSP
failure equivalence is implied by CCS observational equivalence under certain
restrictions. He and Hoare [13] build a retract between CCS and CSP semantics.

To our knowledge however, no translation from CCS into CSP exists to date.
The present paper aims to fill this gap. In particular, we present a translation
from finite state CCS into CSP that is correct up to strong bisimulation, i.e., the
source and target terms are strongly bisimilar. This correctness criterion allows
us to use a prototype implementation of our translation to leverage FDR [5] for
reasoning about trace and failure refinements of CCS terms. The translation is
efficient as it only polynomially increases the size of the term. In the worst case,
the target term has O(nm) additional communication prefixes, where n and m
are the maximum number of prefixes with the same name and corresponding
co-name, respectively, in the source term. For practical systems with a relatively
small number of synchronising prefixes this translation is thus tractable.

One major challenge in achieving a correct translation from CCS to CSP
has been the reconciliation of the different communication primitives in the two
languages, and how these interact with other primitives in the language. To
bridge the gap between binary CCS and multiway CSP synchronisations, our
translation assigns a unique name aij to every pair of a/a-prefixes that might
synchronise, and carefully annotates the interfaces between parallel processes to
enable these synchronisations, effectively implementing binary synchronisation
in multiway CSP semantics. Moreover, a unique name ai is assigned to every
CCS prefix that may be interleaved. This separation of interleaving and syn-
chronisation is key to obtaining our translation (see Example 8). Finally, the
CCS mixed-choice operator is translated to CSP external choice with a special
tau-event to enable internal choice resolution (see Example 9). We use CSP hid-
ing to turn internal synchronisation events aij and tau events into proper CSP
τ -events.

Our translation from CCS to CSP relies on a novel intermediate language
called CCSTau. This is a CCS-like calculus with observable binary synchronisa-
tion and the CSP hiding operator. Our translation is then obtained by the com-
position of an initial translation from CCS into CCSTau, a number of transfor-
mations within the CCSTau language itself, and a final translation from CCSTau
into CSP including hiding of internal transitions. This sequence of smaller trans-
lation steps simplifies the task at hand and allows us to obtain a correct, up to
strong bisimulation, overall translation. The contributions of this work are sum-
marised as follows.

– We provide the first translation from finite state CCS to CSP which is correct
up to strong bisimulation. The translation is efficient and only polynomially
increases the size of the term.

– We propose CCSTau, which adapts CCS by making synchronisation actions
visible and introducing CSP-like hiding, as a middle-ground between CCS and
CSP. This calculus is instrumental in disentangling complex CCS behaviour

Translation of CCS into CSP 245

Table 1. CCS transition semantics (omitting symmetric rules).

Prefix : α.P
α−→ P SumL :

P
α−→ P ′

P + Q
α−→ P ′

Rec :
P [μ X.P/X]

α−→ P ′

μ X.P
α−→ P ′

ParL :
P

α−→ P ′

P |Q α−→ P ′|Q
Com :

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′
Res :

P
α−→ P ′ α /∈ B ∪ B

P � B
α−→ P ′ � B

such as mixed choice and combined interleaving/synchronisation and encod-
ing it into CSP.

– We provide a prototype implementation of our translation in Haskell [23]
which enables the use of the FDR refinement tool [5] to reason about may-
and must-testing refinement of CCS processes.

In the rest of the paper we briefly overview definitions for CCS and CSP
(Sect. 2), and provide the high-level intuitions of our translation (Sect. 3). We
then define CCSTau, the extension of CCS with visible synchronisation actions
and the hiding operator (Sect. 4), before defining the actual translation (Sect. 5
and Sect. 6) and prove its correctness (Sect. 7). Section 8 discusses an alternative
translation, correct up to failure equivalence. Section 9 evaluates our translation
against Gorla’s criteria [11] for valid translations. Finally, we present conclusions
and discuss future work (Sect. 10).

2 CCS, CSP, Correct Translations: a Brief Overview

CCS (Calculus of Communicating Systems) [1,17] and CSP (Communicating
Sequential Processes) [14,22] are process algebras that allow reasoning about
concurrent systems. Here we overview the main definitions of the two calculi.

2.1 CCS

In CCS [17], we assume a set of countable names N , ranged over by a, b, c,
with a total bijective function · with the property that a = a. This function
identifies co-names, the names that can synchronise. The symbol τ denotes an
unobservable internal move. We let α range over names and τ . The syntax of
CCS processes is given by the grammar

P,Q,R ::= 0 | α.P | P + Q | P | Q | P � B | μ X.P | X

The set of names that a process can use, denoted by A(P) for a given CCS
process P , is defined hereafter.

Definition 1 (Alphabet/Sort of CCS processes [17, Chap. 2, Def. 2]).

A(0) =̂ {}
A(τ.P) =̂ A(P)
A(a.P) =̂ {a} ∪ A(P)

A(P + Q) =̂ A(P) ∪ A(Q)
A(P | Q) =̂ A(P) ∪ A(Q)

A(P � B) =̂ A(P)\(B ∪ B)

246 G. E. Ngondi et al.

The semantics of CCS is traditionally given as a Labelled Transition System
(LTS), shown in Table 1. Term 0 (or NIL) is the process that performs no
action, whereas α.P performs an action α, where α is either a name a or τ , and
then behaves like P (Prefix rule). The choice term P + Q behaves either like P
or Q (SumL rule). The parallel P |Q runs P and Q in parallel; P and Q may
interleave (Par rule) or synchronise on co-actions, resulting in a silent τ action
(Com rule). Restriction P � B cannot engage in actions consisting of names in
B ∪ B, where B = {ā|a ∈ B} (Res rule); however, names in B ∪ B can be used
for internal synchronisation in P . Term μ X.P encodes recursion, where variable
X, appearing as a process in P , denotes a recursive unfolding (Rec rule). We
only consider closed processes where X is under a corresponding μX operator.
Moreover, as we are interested in finite state processes, we apply the sufficient
requirement that no parallel operator appears under recursion.

Equivalence based on bisimulations is the preferred choice for distinguishing
CCS processes (cf. [17,21]).

Definition 2 (Strong Bisimulation [21]). A strong bisimulation is a sym-
metric binary relation R on processes satisfying the following: PRQ and

– P
α−→ P ′ imply that ∃ Q′ : Q

α−→ Q′ ∧ P ′RQ′

– Q
α−→ Q′ imply that ∃P ′ : P

α−→ P ′ ∧ P ′RQ′

P is strong bisimilar to Q, written P ∼ Q, if PRQ for some strong bisimulation
R.

Example 3. In CCS, internal and external choices can be combined thus yield-
ing a mixed choice, e.g., a.P + b.Q + τ.R. According to Table 1, this process
enables external choice between a and b, meaning that the context of the pro-
cess, through synchronisation on a or b, can force this process to become P or Q.
Additionally, the process itself can non-deterministically decide to evolve to R,
resolving the choice independently from external stimuli. As we show in Exam-
ple 9, this mixed choice in CCS needs to be encoded specifically into CSP, where
internal reductions do not resolve an external choice. �	

2.2 CSP

In CSP, we assume again a countable set of names N , called the set of observable
events and ranged over by a, b, c, the special � event denotes termination, and
the τ event denotes an internal move. We let α range all events. The syntax of
CSP processes we consider is given by the grammar:1

P,Q,R ::= SKIP |STOP | a → P |P � Q |P � Q |P ‖
B

Q |

P\B | f(P) | μ X.P |X

The alphabet of CSP processes is defined hereafter.
1 In what follows, whether P, Q, R refer to CCS or CSP will be clear by the context.

Translation of CCS into CSP 247

Table 2. CSP transition semantics (omitting symmetric rules).

Term : SKIP
�−→ STOP Prefix : (a → P)

a−→ P InChL : P � Q
τ−→ P

ExChL1 :
P

a−→ P ′

P � Q
a−→ P ′

ExChL2 :
P

τ−→ P ′

P � Q
τ−→ P ′ � Q

Rec :
P [μ X.P/X]

α−→ P ′

μ X.P
α−→ P ′

Hide1 :
P

a−→ P ′ [a /∈ B]

P\B
a−→ P ′\B

Hide2 :
P

a−→ P ′ [a ∈ B]

P\B
τ−→ P ′\B

Ren :
P

α−→ P ′

f(P)
f(α)−−−−→ f(P ′)

ParL :
P

a−→ P ′ [a /∈ B�]

P ‖
B

Q
a−→ P ′ ‖

B
Q

Sync :
P

a−→ P ′ Q
a−→ Q′ [a ∈ B�]

P ‖
B

P
a−→ P ′ ‖

B
Q′

Definition 4 (Alphabet of CSP processes [14]).

A(STOP) =̂ {}
A(a → P) =̂ {a} ∪ A(P)
A(P � Q) =̂ A(P) ∪ A(Q)
A(P � Q) =̂ A(P) ∪ A(Q)

A(P ‖
B

Q) =̂ A(P) ∪ A(Q)

A(P\B) =̂ A(P)\B

A(f(P)) =̂ {f(a) | a ∈ A(P)}
We present the semantics of CSP as an LTS in Table 2, following Schnei-

der [22]: Term SKIP refuses to engage in any event, terminates immediately
(Term rule), and does not diverge. Term STOP is unable to interact with its
environment. The prefix process α → P first engages in event α then behaves
like P (Prefix rule). Term P � Q behaves like P or Q, with the choice decided
internally (InChL), whereas P � Q behaves like P or Q, with the choice decided
by the environment (ExtChL1,2 rules). Parallel P ‖

B

Q runs processes P and Q

in parallel, which must synchronise on the set of events in B and the � event
(ParL and Sync rules). The renaming term f(P) engages in f(a) whenever P
engages in a (Ren rule). Hiding P\A engages in all events of P except those in A
(Hide1, 2 rules), and μ X.P runs P recursively (Rec rule).

Equivalence based on (enriched versions of) traces is the preferred choice for
distinguishing CSP processes (cf. [14,21,22]).

Definition 5 (Failure equivalence [21]). A failure is a pair (tr, A), where tr
is a finite sequence of actions (or trace) and A a set of actions. The failure
(tr, A) belongs to process P if, for some P ′: P

tr−→ P ′ ∧ ∀ a ∈ A : ¬(P ′ a−→).
P is failure equivalent to Q, written P =F Q, if they have the same sets of

failures.

2.3 Correct Translations

A correct translation of one language into another is a mapping from the valid
expressions in the first language to those in the second, that preserves their
meaning [10]. Below we recap the main two definitions of correctness.

Let L = (TL, � �L) denote a language as a pair of a set TL of valid expressions
in L and a surjective mapping � �L : TL → DL from TL to some set of meanings
DL. Candidate instances of � �L are traces and failures (Definition 5).

248 G. E. Ngondi et al.

Definition 6 (Correct Translation up to Semantic Equivalence [10]). A
translation T : TL → TL′ is correct up to a semantic equivalence ≈ on DL ∪DL′

when �T(E)�L′ ≈ �E�L for all E ∈ TL.

Operational correspondence allows matching the transitions of two pro-
cesses, which can help determine the appropriate relation (semantic equivalence)
between a term and its translation. Let the operational semantics of L be defined
by the labelled transition system (TL, ActL,−→L), where ActL is the set of labels
and E

λ−→L E′ defines transitions with E,E′ ∈ TL and λ ∈ ActL.

Definition 7 (Labelled Operational Correspondence [8,20]). Let T :
TL → TL′ be a mapping from the expressions of a language L to those of a
language L′, and let f : ActL → ActL′ be a mapping from the labels of L to
those of L′. A translation 〈T, f〉 is operationally corresponding w.r.t. a semantic
equivalence ≈ on DL ∪ DL′ if it is:

– Sound: ∀E,E′ : E
λ−→L E′ imply that ∃ F : T(E)

f(λ)−−→L′ F and F ≈ T(E′)

– Complete: ∀ E,F : T(E) λ′
−→L′ F imply that ∃ E′ : E

λ−→L E′ and F ≈ T(E′) ∧
λ′ = f(λ)

3 Intuitions of the Translation

In this section, we illustrate some of the differences between CCS and CSP, and
how we address them in the different stages of our translation shown in Fig. 1.
We start with the challenges in translating CCS binary into CSP’s multiway
synchronisation in a term where both interleaving and synchronisation of prefixes
is possible.

Fig. 1. Translation workflow

Example 8. Consider the CCS process (a.P | a.Q) | a.R composed of three paral-
lel sub-processes a.P , a.Q and a.R. According to CCS semantics, binary synchro-
nisation can occur between a.P and either a.Q or a.R. Both synchronisations
result to τ -transitions in the LTS (Sync in Table 1).

We initially translate this process into CCSTau through the c2ccsτ function
(Definition 11), which gives us ((a.P ′ | a.Q′)\{τ [a|a]} | a.R′)\{τ [a|a]}. As we will
see in the following section, in CCSTau, a.P ′ can perform an observable τ [a|a]
synchronisation with one of the other two parallel processes. This transition is
turned into an internal τ -transition via the hiding operator (−\{τ [a|a]}) bor-
rowed from CSP. After this first translation, the source and target terms have
the same transition system, i.e., they are strongly bisimilar (Theorem 12).

Translation of CCS into CSP 249

We then apply a sequence of three transformations within CCSTau. The
first one, ix (Property 13), assigns a unique index to the names of every prefix,
thus obtaining the process a1.P

′′ | a2.Q
′′ | a3.R

′′. The ix-indexed process cannot
perform any synchronisation and therefore hiding of synchronisation actions is
removed. However, the next transformation, g∗ (Definition 15), adds new pre-
fixes, denoted with double indices, which re-introduces these synchronisations
(though without hiding them):

(a1 + a12 + a13).P ′′′ | ((a2 + a12).Q′′′) | (a3 + a13).R′′′

where (a + b).S is syntactic sugar for a.S + b.S. For simplicity in this example,
we assume that a does not appear in P , Q and R.

At this stage in our translation, every prefix that may lead to an interleaved
action is represented by an ai prefix, while every possible synchronisation has its
own unique name and co-name, aij , aij . In this way, we separate synchronisation
from interleaving, which is crucial for translating into CSP.

Note here that the introduction of the additional aij prefixes also introduces
interleaved aij transitions. These will be removed by hiding at a following stage
of the translation.

Transformation conm (Definition 18) identifies co-names synchronisation
events, and tl (Definition 20) maps CCS operators to corresponding CSP con-
structs while filling in the interface sets in every CSP parallel operator. We thus
obtain:

(

(a1 � a12 � a13) → P ′′′′ ‖
{a12}

(ā2 � a12) → Q′′′′) ‖
{a13}

(ā3 � a13) → R′′′′

To obtain a CSP process with a transition system identical to the original CCS
term, we need to apply the final two stages of the translation. These introduce
a top-level hiding operator for tau events (not relevant in this example) and all
aij synchronisation events, as well as a renaming operation ai2a (Definition 25)
which maps all ai names to a. The final CSP term is thus:
(

(

(a � a12 � a13) → P ′′′′ ‖
{a12}

(ā � a12) → Q′′′′) ‖
{a13}

(ā � a13) → R′′′′
)

\{a12, a13}

The original CCS and final CSP terms have indeed strongly bisimilar LTSs
(Theorem 30). �	
Example 9. Consider again the mixed choice a.P +b.Q+τ.R (Example 3). After
applying the c2ccsτ translation and the ix, g∗ and conm transformations, we
obtain the CCSTau term: a1.P

′ + b2.Q
′ + τ.R′. We assume here that P,Q,R do

not contain a and b prefixes and thus no hiding or additional nij prefixes are
introduced. Translation tl is the most important for this example. It results in
the CSP process a1 → P ′′ � b2 → Q′′ � tau → R′′. Crucially, the last prefix
involves the special name tau, which is different than τ and can indeed resolve
the choice. In order to turn tau into a CSP τ move, the translation then hides
this name and, with the application of the final renaming function ai2a, the CSP
term we obtain is (a → P ′′′ � b → Q′′′ � tau → R′′′) \ {tau} which indeed has
an LTS which is strongly bisimilar to that of the original CCS term. �	

250 G. E. Ngondi et al.

4 From CCS to CCSTau

We define CCSTau to serve as a middle-ground calculus between CCS and CSP
for our translation. CCSTau is obtained from CCS, as described in Sect. 2.1, by
two modifications: making binary synchronisation observable, and introducing
CSP-style hiding.

To make binary synchronisation observable we introduce an additional action
which can appear on the transitions of our LTS: τ [a|a]. We let β range over CCS
actions α and the new synchronisation actions τ [a|a], and define the CCSTau

LTS with rules of the form P
β−→ Q. To make synchronisation observable we use

the following Com rule, instead of that in Table 1.

Com :
P

a−→ P ′ Q
a−→ Q′

P |
T
Q

τ [a|a]−−−→ P ′|
T
Q′

Note that we annotate the parallel operator with a T -subscript to make clear
that it is the CCSTau parallel. Its alphabet contains visible synchronisations.

Definition 10. A(P |
T
Q) =̂ A(P) ∪ A(Q) ∪ {τ [a|a] | a ∈ A(P), ā ∈ A(Q)}

To introduce hiding, we extend CCS syntax with the hiding construct: P :: =
. . . |P\

T
B. The set B contains actions which are names a or τ [a|a], with the

closure condition that “if a ∈ B then a ∈ B and τ [a|a] ∈ B.” We introduce the
following hiding rules in the LTS which are similar to the CSP rules (Table 2)

Hide1 :
P

β−→ P ′ β /∈ B

P\
T
B

β−→ P ′\
T
B

Hide2 :
P

β−→ P ′ β ∈ B

P\
T
B

τ−→ P ′\
T
B

The remaining LTS rules consist of Prefix, SumL (and its symmetric), ParL,
Res and Rec from Table 1, with the only change that we now use β instead of α
for transition annotations. Note that CCSTau restriction cannot restrict τ [a|a]
actions as these are single-name actions only.

Encoding CCS into CCSTau. We describe here a translation of CCS pro-
cesses into CCSTau. This encoding is concerned with hiding the now-observable
synchronisation actions.

Definition 11 (c2ccsτ). Translation function c2ccsτ , when applied to a CCS
process, returns a CCSTau process.

c2ccsτ(0) =̂ 0 c2ccsτ(P � B) =̂ c2ccsτ(P) � B

c2ccsτ(α.P) =̂ α.c2ccsτ(P) c2ccsτ(μ X.P) =̂ μ X.c2ccsτ(P)
c2ccsτ(P + Q) =̂ c2ccsτ(P) + c2ccsτ(Q) c2ccsτ(X) =̂ X

c2ccsτ(P |Q) =̂ (c2ccsτ(P)|
T
c2ccsτ(Q))\

T
{τ [a|a] | a ∈ A(P), ā ∈ A(Q)}

Translation of CCS into CSP 251

In the above definition the only interesting case is parallel which hides the
CCStau synchronisation actions, leaving all other actions unaffected. The fol-
lowing theorem shows that the translated terms are strongly bisimilar to the
original CCS terms, when there is no parallel under recursion.2

Theorem 12. Let P be a CCS process. Then: P ∼ c2ccsτ(P).

Proof. By observing that c2ccsτ is the identity CCS-to-CCSTau translation on
parallel-free processes, and then proving the conditions of bisimulation via rule
induction on the LTS transitions. �	

5 CCSTau Transformations

We provide a translation of CCSTau into CSP in two parts. Here we describe
the first part involving the CCSTau transformations, ix, g∗, conm, mentioned
in Sect. 3.

Indexing (ix). The intention here is that an indexing function assigns unique
indices to every prefix in a CCS process. There are many straightforward schemes
to choose these indices from the set of natural numbers N. Here, instead of
defining a concrete scheme, we specify how it should distribute over CCSTau
operators.

Property 13.

ix(τ.P) = τ.ix(P)
ix(a.P) = ai.ix−i(P)

ix(P + Q) = ix1(P) + ix2(Q)
ix(P |

T
Q) = ix1(P)|

T
ix2(Q)

ix(P � {a}) = ix(P) � {ai|ai ∈ A(ix(P))}
ix(P\

T
{a}) = ix(P)\

T
{ai|ai ∈ A(ix(P))}

ix(P\
T
{τ [a|ā]}) = ix(P)

ix(μ X.P) = μ X.i x(P)

where ix−i is some indexing scheme which does not assign the i-index, and
ix1, ix2 are some indexing schemes that assign disjoint indices.

Since ix generates unique indexed names, ix(P) cannot synchronise, whence
hidden τ [a|ā] synchronisations are dropped out. They will be recovered later on.

In the following, we assume an indexing function ix which satisfies the above
properties. Our Haskell implementation [23] indeed implements such an indexing
function.

Explicit Binary Synchronisation (g∗). Given an indexed process ix(P),
function g∗ generates, by over-approximation, a unique name aij for every pos-
sible synchronisation pair (ai, āj) from ix(P).

Given a set S of names in the context, the next definition shows how g∗

applies to a CCSTau action and set of actions. For technical convenience, the
definition ensures that smaller indices always come first.
2 Although more involved versions of c2ccsτ would lift the restriction on recursion

here, the same restriction would be needed for the end-to-end translation into CSP.

252 G. E. Ngondi et al.

Definition 14 (g∗(S, a), gπ2(S, a)).

g∗(S, τ) =̂ {τ}
g∗(S, ai) =̂ {ai} ∪ gπ2(S, ai)

g∗(S,B) =̂
⋃

ai∈B

g∗(S − {ai}, ai)

gπ2(S, ai) =̂ {aij | āj ∈ S, i < j}
∪ {aji | āj ∈ S, j < i}

We can now define our transformation function g∗ over CCSTau processes.

Definition 15 (g∗(S, P)). Let P,Q be ix-indexed CCSTau processes and S a
set of names such that S ∩ A(P) = S ∩ A(Q) = {}.

g∗(S, 0) =̂ 0 g∗(S, P � B) =̂ g∗(S, P) � g∗(S,B)
g∗(S, α.P) =̂ Σ

b∈g∗(S,α)
b.g∗(S, P) g∗(S, P\

T
B) =̂ g∗(S, P)\

T
g∗(S ∪ B,B)

g∗(S, P + Q) =̂ g∗(S, P) + g∗(S,Q) g∗(S, μ X.P) =̂ μ X.g∗(S, P)

g∗(S, P |
T

Q) =̂ g∗(S ∪ A(Q), P) |
T

g∗(S ∪ A(P), Q)

When P is the top context, we require S = {}. We define: g∗(P) =̂ g∗({}, P).
Condition S ∩ AP = {} allows us to separate P from its context, while the

condition that the processes are ix-indexed excludes processes where indexing
has not been applied consistently such as g∗((a1 + a2) � {a2}).

For restriction, no ai ∈ B should be able to interact with the environment.
Hence, (dummy) synchronisations between B and S, {aij |ai ∈ B, āj ∈ S|i <
j} ∪ {aji|ai ∈ B, āj ∈ S|j < i}, should also be restricted.

Example 16.

1. g∗((a1.0|
T
ā2.0) � {a1, a2}

)

=
(

(a1.0 + a12.0)|
T
(ā2.0 + ā12.0)

)

� {a1, a2}
2. g∗((a1.0|

T
ā2.0) � {a1, a2}|

T
ā3.0

)

=
(

(a1.0 + a12.0 + a13.0)|
T
(ā2.0 + ā12.0)

)

� {a1, a2, a13}
)|

T
ā3.0

Proper synchronisations remain unrestricted as illustrated above with a12. Since
CCS restriction ‘− � {aij}’ will be translated to CSP ‘− ‖

aij

STOP ’ (cf. Defi-

nition 19), restricting proper synchronisation names would lead to deadlock in
CSP. Instead, they will be added into the CSP interface-parallel operator later
on (cf. Definition 20).

For hiding, no ai ∈ B should be visible. Unlike restriction, we must hide both
dummy and proper synchronisations involving hidden ais.

Example 17.

1. g∗((a1.0|
T
ā2.0)\

T
{a1, a2}

)

=
(

(a1.0 + a12.0)|
T
(ā2.0 + ā12.0)

)\
T
{a1, a2, a12}

2. g∗((a1.0|
T
ā2.0)\

T
{a1, a2}|

T
ā3.0

)

=
(

(a1.0 + a12.0 + a13.0)|
T
(ā2.0 + ā12.0)

)\
T
{a1, a2, a12, a13}

)|
T

ā3.0

Translation of CCS into CSP 253

IdentifyingCo-names (conm).Unlike CCSTau, synchronisation occurs in CSP
between pairs of events that have the same name. That is, (a → P) ‖

{a}
ā → Q

would behave like (a → P) ‖
{a}

b → Q, not (a → P) ‖
{a}

a → Q. Before going into

CSP, we need to ensure that a can synchronise with ā, more precisely, we only need
aij to synchronise with āij . This can be achieved through the following renaming
function, conm, which transforms any āij-name into an aij-name.

Definition 18 (conm). Let ai, aij range over g∗-indexed names. Then:

conm =̂ {τ �→ τ, ai �→ ai, āi �→ āi, aij �→ aij , āij �→ aij | i < j}

6 From CCSTau to CSP

Translation into CSP (tl). The translation of CCSTau processes into CSP
requires us to translate CCSTau prefixes. To do this we use a fresh (not previ-
ously used) CSP event tau, which we will later hide, thus creating a true CSP
internal transition. Moreover, we need to translate CCS restriction, which is part
of the CCSTau language, into CSP. We do this by introducing a deadlock for
the restricted names.

Definition 19. Let P be a CSP process. Then: P �csp B =̂ P ‖
B∪B

STOP .

We can now present the translation tl from CCSTau to CSP.

Definition 20. Let P and Q be CCSTau processes; let tau be a fresh, non-
synchronising, CSP event.

tl(0) =̂ STOP

tl(τ.P) =̂ tau → tl(P)
tl(a.P) =̂ a → tl(P)

tl(P + Q) =̂ tl(P) � tl(Q)

tl(P |
T
Q) =̂ tl(P) ‖

{a|a∈A(P)∩A(Q)}
tl(Q)

tl(P � B) =̂ tl(P) �csp B

tl(P\
T
B) =̂ tl(P) \csp B

tl(μ X.P) =̂ μ X.tl(P)

The following example illustrates the rationale for our encoding restriction
into CSP.

Example 21. In CCSTau (as in CCS) restriction obeys the law: (a.P) � {a} ∼ 0.
Definition 19 obeys the same law, viz., (a → t2csp(P)) �csp {a} = STOP .

tl((a.P) � {a}) = tl(a.P) �csp {a} = (a → tl(P)) ‖
{a}

STOP

The last process behaves like STOP which is the tl-translation of 0. �	
Hereafter, it will be convenient to refer to the composition of all CCSTau

transformations and the tl-translation into CSP as a single function, which we
call t2csp.

254 G. E. Ngondi et al.

Definition 22 (t2csp). Let P be a CCSTau process. Then:

t2csp(P) =̂ (tl ◦ conm ◦ g∗ ◦ ix(P))\
csp

{tau}
Example 23. We illustrate the translation of CCSTau parallel operator, to be
contrasted with the translation of CCS parallel operator (cf. Example 26).

t2csp(a.0|
T
ā.0)

= tl
(

conm
(

g∗({}, ix(a.0|
T
ā.0))

))\
csp

{tau} (t2csp-Def. 22)

= tl
(

conm
(

g∗({}, (a1.0|
T
ā2.0))

))\
csp

{tau} (ix-Prop. 13)

= tl
(

conm
(

(a1.0 + a12.0)|
T
(ā2.0 + ā12.0)

))\csp{tau} (gstar-Def. 15)

= tl
(

(a1.0 + a12.0)|
T
(ā2.0 + a12.0)

)\
csp

{tau} (conm-Def. 18)

=
(

(a1 → STOP � a12 → STOP) ‖
{a12}

(ā2 → STOP � a12 → STOP)
)\csp{tau} (tl-Def. 20)

Final CSP Transformations (−\
csp

{aij}, ai2a). The final stages of our trans-
lation consists of hiding every aij synchronisation name (thus effectively turning
them into τ) and renaming of all ai names to a.

Definition 24. Let ai range over g∗-indexed names; ai2a =̂ {ai �→ a, āi �→ ā}.
The following definition gives the end-to-end translation from CCS to CSP,

as described in Sect. 3.

Definition 25. Let P be a CCS process. Then:

ccs2csp(P) =̂ ai2a ◦ (t2csp ◦ c2ccsτ(P))\
csp

{aij |aij ∈ A(

t2csp(c2ccsτ(P))
)}

Example 26. In Sect. 3, we discuss at length the translation of CCS binary syn-
chronisation into CSP. This can be illustrated more succinctly as follows:

ccs2csp(a.0|ā.0)

= ai2a ◦ t2csp
(
c2ccsτ(a.0|ā.0)

)\csp{aij |..} (ccs2csp-Def. 25)

= ai2a ◦ t2csp
(
(a.0|T ā.0)\T{τ [a|ā]})\csp{aij |..} (c2ccsτ -par-Def. 11)

= ai2a ◦ tl ◦ conm ◦ g∗({}, ix
(
(a.0|T ā.0)\T{τ [a|ā]})

)\csp{tau}\csp{aij |..}
(t2csp-Def. 22)

= ai2a ◦ tl ◦ conm ◦ g∗(
(a1.0|T ā2.0)

)\csp{tau}\csp{aij |..} (ix-Prop. 13)

= ai2a ◦ tl ◦ conm
(
(a1.0 + a12.0)|T (ā2.0 + ā12.0)

)\csp{tau}\csp{a12} (gstar-Def. 15)

= ai2a ◦ tl
(
(a1.0 + a12.0)|T (ā2.0 + a12.0)

)\csp{tau, a12} (conm-Def. 18)

= ai2a ◦ (
(a1 � a12 → STOP) ‖

{a12}
(ā2 � a12 → STOP)

)\csp{tau, a12} (tl-Def. 20)

=
(
(a � a12 → STOP) ‖

{a12}
(ā � a12 → STOP)

)\csp{tau, a12} (ai2a-Def. 24)

Translation of CCS into CSP 255

7 Correctness of the Translation

Here we discuss the correctness up to a semantic equivalence (Definition 6) of
functions g∗, t2csp, and ccs2csp defined above. In each case, we use labelled
operational correspondence to relate a source term to its translation. In the
end, the labelled operational correspondence between a CCS term and its CSP
translation is a strong bisimulation, hence, translation ccs2csp is correct up to
strong bisimulation.

First, we consider the correctness of g∗.

Theorem 27 (OperationalCorrespondence betweenP and g∗(S, ix(P))).
Let P be a CCSTau process. Let c4star(S, P) =̂ g∗(S, ix(P)

)

. Then:

1. P
τ−→ P ′ imply that ∀S|S ∩ Aix(P) = {} : c4star(S, P) τ−→ Q and Q ≡

c4star(S, P ′)
2. ∀S|S ∩ Aix(P) = {} : c4star(S, P) τ−→ Q imply that ∃!P ′ : P

τ−→ P ′ and
Q ≡ c4star(S, P ′)

3. P
a−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : c4star(S, P) ai−→ Q and Q ≡

c4star(S, P ′)
4. ∀S|S ∩ Aix(P) = {} : c4star(S, P) ai−→ Q imply that ∃!P ′ : P

a−→ P ′ and
Q ≡ c4star(S, P ′)

5. P
a−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : c4star(S, P)

aij−−→ Q and Q ≡
c4star(S, P ′)

6. ∀S,∃ i, j|i �= j ∧ ai ∈ S ∧ āj ∈ Aix(P) : c4star(S, P)
aij−−→ Q imply that

∃!P ′ : P
a−→ P ′ and Q ≡ c4star(S, P ′)

7. P
τ [a|ā]−−−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : c4star(S, P)

τ [aij |āij]−−−−−−→ Q and
Q ≡ c4star(S, P ′)

8. ∀S|S ∩ Aix(P) = {} : c4star(S, P)
τ [aij |āij]−−−−−−→ Q imply that ∃!P ′ : P

τ [a|ā]−−−→ P ′

and Q ≡ c4star(S, P ′)

Proof. By co-induction on the transitions of P and c4star(S, P) respectively.
E.g., consider every rule yielding a τ transition, e.g., Prefix, Sum. Induction
over each rule yields structural induction over P . Apply the definition of c4star,
then c4star(S, P) has a τ transition by successive application of the Sum rule
then the Prefix rule. Conversely, given c4star(S, P), induction over each rule
yields structural induction over c4star(S, P).

Since aij-names denote synchronisation, τ [aij |āij]-actions only should be vis-
ible/allowed, viz., aij-names must be restricted. Hence, g∗(S, ix(P)) is not cor-
rect. We obtain a correct translation by restricting all aij names.

Corollary 28 (Correctness up to Strong Bisimulation of g∗(S, ix(P))).
Let P be a CCSTau process. Then, g∗(S, ix(P)) � {gπ2(S, ai)|ai ∈ Aix(P)} is
correct up to strong bisimulation.

256 G. E. Ngondi et al.

Proof. Apply the restriction operator, � {gπ2(S, ai)|ai ∈ Aix(P)}, to every
clause in Theorem27. This eliminates clauses 5 and 6 since aij can no longer
occur.

Theorem 29 (Operational Correspondence of t2csp). Let P be a CCSTau
process. Then:

1. P
τ−→ P ′ imply that ∀S|S ∩ Aix(P) = {} : t2csp(S, P) τ−→ t2csp(S, P ′)

2. ∀S|S ∩ Aix(P) = {} : t2csp(S, P) τ−→ Q imply that ∃!P ′ : P
τ−→ P ′ and

Q = t2csp(S, P ′)
3. P

a−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : t2csp(S, P) ai−→ t2csp(S, P ′)
4. ∀S|S ∩ Aix(P) = {} : t2csp(S, P) ai−→ Q imply that ∃!P ′ : P

a−→ P ′ and
Q = t2csp(S, P ′)

5. P
τ [a|ā]−−−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : t2csp(S, P)

aij−−→ t2csp(S, P ′)

6. ∀S|S ∩ Aix(P) = {} : t2csp(S, P)
aij−−→ Q imply that ∃!P ′ : P

τ [a|ā]−−−→ P ′ and
Q = t2csp(S, P ′)

Proof. By co-induction on the transitions of P and t2csp(P) respectively.

Theorem 30 (Correctness of ccs2csp). Let P be a CCS process. Then:

1. P
τ−→ P ′ imply that ∀S|S ∩ Aix(P) = {} : ccs2csp(S, P) τ−→ ccs2csp(S, P ′)

2. ∀S|S ∩ Aix(P) = {} : ccs2csp(S, P) τ−→ Q imply that ∃!P ′ : P
τ−→ P ′ and

Q = ccs2csp(S, P ′)
3. P

a−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : ccs2csp(S, P) a−→ ccs2csp(S, P ′)
4. ∀S|S ∩ Aix(P) = {} : ccs2csp(S, P) a−→ Q imply that ∃!P ′ : P

a−→ P ′ and
Q = ccs2csp(S, P ′)

We say that ccs2csp is correct up to strong bisimulation.

Proof. Apply c2ccsτ (Definition 11), this turns CCS process P into CCSTau
process ccs2τ(P). Apply −\

csp
{aij}, this hides every aij from t2csp(c2ccsτ(P)).

As a consequence, this eliminates clauses 5 and 6 from Theorem29. Then apply
ai2a, this renames every ai into an a. Thus, every ai from Theorem29 becomes
an a.

The above theorems culminate to the following correctness result of our end-
to-end translation.

Corollary 31 (Correctness of the Translation up to Strong Bisimula-
tion). Let P be a CCS process. Then: ccs2csp(P) ∼ P .

A trivial consequence of this corollary is that P ∼ Q ⇔ ccs2csp(P) ∼
ccs2csp(Q). Since strong bisimulation is included in failure equivalence, we have
P ∼ Q ⇔ ccs2csp(P) =F ccs2csp(Q). We illustrate this subsequently.

Translation of CCS into CSP 257

Example 32. In CCS, we have: (a.0|ā.0) � {a} + b.0 ∼ τ.0 + b.0. We check that:
ccs2csp

(

(a.0|ā.0) � {a} + b.0
)

=F ccs2csp(τ.0 + b.0).
We have:

ccs2csp
(
(a.0|ā.0) � {a} + b.0

)

= ai2a ◦ t2csp ◦ c2ccsτ
(
(a.0|ā.0) � {a} + b.0

)
(ccs2csp-Def. 25)

= ai2a ◦ t2csp
(
(a.0|T ā.0)\T{τ [a|ā]} � {a} + b.0

)
(c2ccsτ -par-Def. 11)

= ai2a ◦ [
(
(a1 � a12 → STOP) ‖

{a12}
(a2 � a12 → STOP)

)
�csp{a1, a2} �

(b → STOP)]\csp{tau, a12} (Ex. 23, t2csp-Def. 22)

= [
(
(a � a12 → STOP) ‖

{a12}
(a � a12 → STOP)

)
�csp{a} �

b → STOP]\csp{tau, a12} (ai2a-Def. 24)

= [
(
(a � a12 → STOP) ‖

{a12}
(a � a12 → STOP) ‖

{a}
STOP

)
�

(b → STOP)]\csp{tau, a12} (res-Def. 19)

= (a12 → STOP � b → STOP)\csp{a12} (CSP)

= (STOP � b → STOP) � STOP (CSP[17, §3.5.1, L10])

We also have:

ccs2csp(τ.0 + b.0)

= ai2a ◦ t2csp ◦ c2ccsτ(τ.0 + b.0) (ccs2csp-Def. 25)
= ai2a ◦ t2csp ◦ (τ.0 + b.0) (ccs2csp-Def. 11)
= ai2a ◦ (tau → STOP � b → STOP)\csp{tau} (t2csp-Def. 22)
= (tau → STOP � b → STOP)\csp{tau} (ai2a-Def. 24)
= (STOP � b → STOP) � STOP (CSP[17, §3.5.1, L10])

8 Alternative Translation, Correct up to Failure
Equivalence

De Nicola and Hennessy [18] define a version of CCS, called TCCS, which
removes from CCS the summation operator and τ action, and adds external
(�) and internal (�) choice operators. They further provide a translation from
CCS to TCCS that is correct up to must equivalence ([18, Thm. 4.4]). Reusing

258 G. E. Ngondi et al.

their translation ([18, Def. 4.1]), we arrive at the following CCS-to-CSP trans-
lation:

ccs2csp2(P) =̂ ai2a ◦ (tl2 ◦ conm ◦ g∗ ◦ ix(P))\csp{aij} (ccs2csp2-def)

tl2(α.P) =̂

{
tl2(P) if α = τ

α → tl2(P)
(tl2-prefix)

tl2(P + Q) =̂

⎧
⎨

⎩

tl2(P) � tl2(Q) if ∀ P ′ : ¬(P
τ−→ P ′ ∨ Q

τ−→ P ′)(
tl2(P) � tl2(Q)

)
� �{tl2(P

′)|P τ−→ P ′ ∨ Q
τ−→ P ′}

(tl2-choice)
tl2(P) =̂ tl(P) if P is not prefix or choice

Example 33. In particular, from the definition of ccs2csp2, we derive:

ccs2csp2(a.P + b.Q) = a → ccs2csp2(P) � b → ccs2csp2(Q)

ccs2csp2(τ.P + b.Q) = (ccs2csp2(P) � b → ccs2csp2(Q)) � ccs2csp2(P)

ccs2csp2(τ.P + τ.Q) = (ccs2csp2(P) � ccs2csp2(Q)) � ccs2csp2(P) � ccs2csp2(Q)

(tl2-prefix) implies that τ prefixes are absent from the LTS of the CSP trans-
lation. As a consequence, P and ccs2csp2(P) are not strong bisimilar ; however,
they are failure equivalent: P =F ccs2csp2(P). Note that ccs2csp (Definition 25)
is failure equivalent to ccs2csp2: ccs2csp2(P) =F ccs2csp(P).3

9 Structural Properties of the Translation

In the literature of evaluating the relative expressiveness of different calculi,
different evaluation criteria for encodings have been proposed (e.g., [6,8,10,11,
19,20]). Gorla [11] notably proposes five requirements for a translation to be
valid : on the structural end, it must enjoy the compositionality and name invari-
ance properties; on the behavioural end, operational correspondence, divergence
reflection, and success sensitiveness.

The translation from CCS to CSP we provide here (ccs2csp, Definition 25) is
correct up to strong bisimulation (Corollary 31). This is a stronger result than
operational correspondence, and by definition, implies both divergence reflection
(viz., if a CSP translation diverges then its source CCS term does) and success
sensitiveness (viz., a CCS term converges if, and only if, its CSP translation
converges, and both converge to the same success final term). Correctness up to
strong bisimulation also implies name invariance. E.g., let P be a CCS process,
f a given renaming function; then ccs2csp(f(P)) ∼ f(ccs2csp(P)).

3 E.g., let P = Q = 0 in Example 33 then, compare the mixed choice case with
Example 32.

Translation of CCS into CSP 259

Our translation is not compositional in the sense of Gorla [11], whereby
a compositional translation T : L1 → L2 is such that T(op(S1, ..., Sk)) =
CN

op(T(S1), ...,T(Sk)), where op is any operator of L1, CN
op a context that coor-

dinates translated subterms, and N = fn(S1, ..., Sk). However, Gorla acknowl-
edges the existence of correct translations that are not compositional and further
acknowledges that his proposal is not adequate to deal with encodings defined
as a family of translations TΣ, where Σ denotes auxiliary parameters of the
translation (including sets of names) [11, Conclusion]. Our encoding from CCS
to CSP, ccs2csp (Definition 25), falls into the latter category.

10 Conclusion and Future Work

In this paper we have studied the relationship between CCS and CSP as part
of a greater work that aims to link also Pi-calculus [16] with CSPmob [4]. Many
extensions were necessary in order to define the links from CCS to CSP. We have
not explored here links in the opposite direction, from CSP to CCS. We leave
this to future work. For reference, van Glabbeek [10] proposes a link from CSP
to CCS that is correct up to trace equivalence.

We have defined CCSTau, which extends CCS with visible synchronisations
and the hiding operator. This allowed us to separate synchronisation from hid-
ing in a CCS context. We notably show that CCS is a subset of CCSTau. We
then defined the translation from CCSTau to CSP. In order to achieve this, we
extended CSP with the restriction operator.

The most difficult feature to translate was the CCS synchronisation mecha-
nism. In CCS, a single name is capable of both interleaving and synchronisation;
and synchronisation (automatically) implies hiding. This is unlike CSP where
all these issues are handled in separate operators. The constraint then was to
preserve CCS binary synchronisation from capture by CSP multiway synchro-
nisation. To resolve this, we have proposed the g∗ renaming approach: if two
CCS processes can synchronise on an action b, then a name unique to these two
processes, say bij , is generated to substitute b. Hence, only two processes will
ever be able to synchronise on bij after application of g∗. This guarantees that
in CSP, there will never be more than two processes capable of synchronising
on bij , thus avoiding capture by multiway synchronisation. We show that the
g∗-based translation is correct. Another solution is possible: extend CSP with
binary synchronisation, then translate CCS binary synchronisation into CSP
binary synchronisation. We leave the presentation of this alternative to a future
publication.

We have proposed here the translation from CCS to CSP only. The main
reason for this is our interest in using CSP tools such as FDR for reasoning
about CCS processes. With regard to this concern, the g∗-renaming approach is
more readily implementable than the second approach. The latter would require
extending FDR with semantics (viz. rules) for m-among-n synchronisation.

A natural extension of this paper is to translate Pi-calculus [16] into CSPmob
[4]. Assuming that CCS is a subset of Pi-calculus and given that CSP is a subset

260 G. E. Ngondi et al.

of CSPmob, we will focus our attention on mobility constructs hence. Our final
goal is to formalise our results in Unifying Theories of Programming (UTP) [13].
One advantage of the latter would be the extension of both CCS and CSP with a
richer notion of state. For illustration, Garavel [9] deplores the limitations of the
prefix operator in both CCS and CSP and shows that a richer form of sequential
composition can be achieved based on a richer notion of state. Moving to UTP
will also allow us to mechanise our results using ongoing mechanisation of UTP
theories in Isabelle [7], and link up with Isabelle mechanisation of Psi-calculi [2]
(a variant of Pi-calculus).

Acknowledgments. The authors are grateful to the anonymous reviewers for their
suggestions on how to improve this paper. This work was funded in part by the Sci-
ence Foundation Ireland grant 13/RC/2094 (LERO), and co-funded by the European
Union’s Horizon 2020 research and innovation programme under the Marie Sk�lodowska-
Curie grant agreement No 754489. For the purpose of Open Access, the authors have
applied a CC BY public copyright licence to any Author Accepted Manuscript version
arising from this submission.

References

1. Aceto, L., Larsen, K.A., Ingolfsdottir, A.: An Introduction to Milner’s CCS (2005).
http://twiki.di.uniroma1.it/pub/MFS/WebHome/intro2ccs.pdf. Accessed 30 July
2021

2. Bengtson, J., Parrow, J., Weber, T.: Psi-calculi in Isabelle. J. Autom. Reason.
56(1), 1–47 (2015). https://doi.org/10.1007/s10817-015-9336-2

3. Brookes, S.D.: On the relationship of CCS and CSP. In: Diaz, J. (ed.) ICALP 1983.
LNCS, vol. 154, pp. 83–96. Springer, Heidelberg (1983). https://doi.org/10.1007/
BFb0036899

4. Ngondi, G.E.: Denotational semantics of channel mobility in UTP-CSP. For-
mal Aspects Comput. 33(1), 803–826 (2021). https://doi.org/10.1007/s00165-021-
00546-3

5. FDR Documentation. https://cocotec.io/fdr/manual/. Accessed 30 July 2021
6. Felleisen, M.: On the expressive power of programming languages. Sci. Comput.

Program. 17, 35–75 (1991). https://doi.org/10.1016/0167-6423(91)90036-W
7. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering

framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14806-9 2

8. Fu, Y., Lu, H.: On the expressiveness of interaction. TCS 411, 1387–1451 (2010).
https://doi.org/10.1016/j.tcs.2009.11.011

9. Garavel, H.: Revisiting sequential composition in process calculi. J. Log. Algebraic
Methods Program 84, 742–762 (2015). https://doi.org/10.1016/j.jlamp.2015.08.
001

10. van Glabbeek, R.: Musings on encodings and expressiveness. In: EPTCS, vol. 89,
pp. 81–98 (2012). https://doi.org/10.4204/EPTCS.89.7

11. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 492–507. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85361-9 38

http://twiki.di.uniroma1.it/pub/MFS/WebHome/intro2ccs.pdf
https://doi.org/10.1007/s10817-015-9336-2
https://doi.org/10.1007/BFb0036899
https://doi.org/10.1007/BFb0036899
https://doi.org/10.1007/s00165-021-00546-3
https://doi.org/10.1007/s00165-021-00546-3
https://cocotec.io/fdr/manual/
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1016/j.tcs.2009.11.011
https://doi.org/10.1016/j.jlamp.2015.08.001
https://doi.org/10.1016/j.jlamp.2015.08.001
https://doi.org/10.4204/EPTCS.89.7
https://doi.org/10.1007/978-3-540-85361-9_38
https://doi.org/10.1007/978-3-540-85361-9_38

Translation of CCS into CSP 261

12. Hatzel, M., Wagner, C., Peters, K., Nestmann, U.: Encoding CSP into CCS. In:
EXPRESS/SOS Workshop. EPTCS, vol. 190, pp. 61–75 (2015). https://doi.org/
10.4204/EPTCS.190.5

13. He, J., Hoare, C.A.R.: CSP is a retract of CCS. TCS 411, 1311–1337 (2010).
https://doi.org/10.1016/j.tcs.2009.12.012

14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken
(1985)

15. Hoare, C.A.R.: Why ever CSP. ENTCS 162, 209–215 (2006). https://doi.org/10.
1016/j.entcs.2006.01.031

16. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

17. Milner, R.: Communication and Concurrency. Prentice-Hall, Hoboken (1989)
18. De Nicola, R., Hennessy, M.: CCS without τ ’s. In: Ehrig, H., Kowalski, R., Levi,

G., Montanari, U. (eds.) CAAP 1987. LNCS, vol. 249, pp. 138–152. Springer,
Heidelberg (1987). https://doi.org/10.1007/3-540-17660-8 53

19. Parrow, J.: Expressiveness of process algebras. ENTCS 209, 173–186 (2008).
https://doi.org/10.1016/j.entcs.2008.04.011

20. Peters, K.: Comparing process calculi using encodings. In: EXPRESS/SOS Work-
shop. EPTCS, vol. 300, pp. 19–38 (2019). https://doi.org/10.4204/EPTCS.300.
2

21. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, Cambridge (2012)

22. Schneider, S.: Concurrent and Real-Time Systems - The CSP Approach. Wiley,
Hoboken (2000)

23. Haskell Prototype Automation of CCS-to-CSP Translation: GitHub Repository.
https://github.com/andrewbutterfield/ccs2csp. Accessed 30 July 2021

https://doi.org/10.4204/EPTCS.190.5
https://doi.org/10.4204/EPTCS.190.5
https://doi.org/10.1016/j.tcs.2009.12.012
https://doi.org/10.1016/j.entcs.2006.01.031
https://doi.org/10.1016/j.entcs.2006.01.031
https://doi.org/10.1007/3-540-17660-8_53
https://doi.org/10.1016/j.entcs.2008.04.011
https://doi.org/10.4204/EPTCS.300.2
https://doi.org/10.4204/EPTCS.300.2
https://github.com/andrewbutterfield/ccs2csp

Probabilistic BDI Agents: Actions, Plans,
and Intentions

Blair Archibald, Muffy Calder, Michele Sevegnani, and Mengwei Xu(B)

University of Glasgow, Glasgow, UK
{blair.archibald,muffy.calder,michele.sevegnani,mengwei.xu}@glasgow.ac.uk

Abstract. The Belief-Desire-Intention (BDI) architecture is a popular
framework for rational agents, yet most verification approaches are lim-
ited to analysing qualitative properties, for example whether an intention
completes. BDI-based systems, however, operate in uncertain environ-
ments with dynamic behaviours: we may need quantitative analysis to
establish properties such as the probability of eventually completing an
intention. We define a probabilistic extension to the Conceptual Agent
Notation (CAN) for BDI agents that supports probabilistic action out-
comes, and probabilistic plan and intention selection. The semantics is
executable via an encoding in Milner’s bigraphs and the BigraphER tool.
Quantitative analysis is conducted using PRISM. While the new seman-
tics can be applied to any CAN program, we demonstrate the extension
by comparing with standard plan and intention selection strategies (e.g.
ordered or fixed schedules) and evaluating probabilistic action executions
in a smart manufacturing scenario. The results show we can improve sig-
nificantly the probability of intention completion, with appropriate prob-
abilistic distribution. We also show the impact of probabilistic action
outcomes can be marginal, even when the failure probabilities are large,
due to the agent making smarter intention selection choices.

Keywords: BDI agents · Quantitative analysis · Bigraphs

1 Introduction

A well-studied and popular architecture for developing rational agents is the
Belief-Desire-Intention (BDI) paradigm. BDI paradigm builds upon a sound
theoretical foundation to model an agent where (B)eliefs represent what the
agent knows, (D)esires what the agent wants to bring about, and (I)ntentions
the desires the agent is currently acting upon. BDI agents have inspired many
agent-oriented programming languages including AgentSpeak [1], Can [2], and
CanPlan [3], 3APL [4], and 2APL [5] along with a collection of mature soft-
ware toolkits and platforms including JACK [6], Jason [7], and Jadex [8]. BDI
agents have been recognised for their efficiency and scalability in areas such as
business [9], healthcare [10], and engineering [11].

In BDI languages, desires and intentions are often represented using a plan
library. Each plan describes a course of actions which an agent can perform
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 262–281, 2021.
https://doi.org/10.1007/978-3-030-92124-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_15

Probabilistic BDI Agents: Actions, Plans, and Intentions 263

to address an event given some beliefs hold, while the set of intentions are
the plans currently being executed. Typically BDI languages: (1) assume that
action outcomes (i.e. the effects on external environment) are deterministic, (2)
remain agnostic internally to the choice of an applicable plan to bring about
its desires, (3) remain agnostic internally to the order that intentions are pro-
gressed. These assumptions facilitate the verification of agent behaviour through
a non-deterministic underlying transition system (e.g. [12,13]), where plan and
intention selection denotes branching choices and actions have a single outcome.
Unfortunately, this often does not adequately represent behaviour in uncertain
environments such as cyber-physical robotics systems (e.g. surveyed in [14]) with
uncertain sensors, and actuators.

For example, the outcome of an action may be probabilistic due to sensor
noise and imprecise actuation, and plans and intentions are not created equally
and are likely to have different characteristics such as preference and urgency.
As a result, there is a growing need for formal techniques that can handle quan-
titative properties of agent-based systems under uncertainty.

We employ the following robot packaging task for smart manufacturing as
an example, giving detailed quantitative analysis in Sect. 4. The robot insulates
products with suitable wrapping bags, to prevent temperature rise and conse-
quent spoilage, and then transfers the wrapped products to a storage location.
There are two types of wrapping bags: premium and standard. The standard
wrapping is preferred as the cheaper option, however it may not be effective if
the product temperature is already too high, and/or the packaging occasion-
ally breaks, which results in damaged product (i.e. a negative action outcome).
Before wrapping the products, the robot also has to decide which product to
handle first (as there may be multiple products waiting), meaning handling a
product before it spoils requires a notion of urgency. While it is important to
prioritise the more urgent products, it is also sensible to progress less urgent
ones from time-to-time, before they also become urgent. So we need to model
and quantify agent behaviour when there is a range of choices, inherent uncer-
tainty, and characteristics of preference and urgency. For example, we may wish
to know the probability the robot can complete packaging under different sched-
ules, negative outcomes, and decisions.

In the BDI community, probabilistic action outcomes are usually implicit—
requiring the agent to sense failures and revise the beliefs (i.e. to enable new
plans)—and are often disregarded when modelling. Although most agent lan-
guage semantics specify non-deterministic plan selection, e.g. in [2], it is typical
in practice for plans to be ordered—either statically [7] or at run-time [15]—to
enforce deterministic branching. While desirable to exploit the highest ordered
plan, it may be worthwhile exploring other non-highest order plans every now
and then to avoid being stuck in a local maximum. Similarly, intention selection
is also not implemented in a fully non-deterministic fashion either, but in a fixed
schedule, e.g. round robin (executing a step of each intention in turn).

We argue that the highest ordering (i.e. local maximum) and fixed schedules
(e.g. round robin) are not always the best approach to plan/intention selection and

264 B. Archibald et al.

suggest agents should support probabilistic plan/intention selection along with the
need to evaluate the undesired outcomes of actions. Therefore, we present a formal
approach to specify, model, and quantitatively analyse BDI agents with probabilis-
tic action outcomes and plan/intention selections drawn from a probability distri-
bution. Quantitative verification, e.g. asking the probability some intention com-
pletes, aids the design of agents by enabling plan and intention selection functions
to be explored, and mitigates the risk of operating in the uncertain environments
by providing quantitative assurance.

We have extended the operational semantics of Can language in [2] to a
probabilistic setting. Can is chosen as it features a high-level agent program-
ming language that captures the essence of BDI concepts without describing
implementation details such as data structures. As a superset of AgentSpeak [1],
Can includes advanced BDI agent behaviours such as reasoning with declarative
goals, concurrency, and failure recovery, which are necessary for our smart man-
ufacturing example modelled in Sect. 4. Importantly, although we focus on Can,
the language features are similar to those of other mainstream BDI languages
and the same modelling techniques would apply to other BDI programming lan-
guages. We build on our previous work on an executable semantics of Can [16],
based on Milner’s Bigraphs [17] and provide the resulting probabilistic executable
semantics.

We use probabilistic bigraphs [18] that allow a (relative) weight to be assigned
to bigraph reaction rules and we extend the rules in Can specifying plan selec-
tion, intention selection, and probabilistic action outcomes (specified by the
user). For automated verification, we export a Discrete Time Markov Chain
(DTMC) from the bigraph model for analysis in probabilistic model check-
ers, e.g. PRISM [19]. We believe this is the first rigorous quantitative analy-
sis through formal modelling applied to plan selection, intention selection, and
action execution within mainstream BDI agents.

We make the following research contributions:

– a probabilistic extension of the semantics of Can language;
– an executable semantics of Can based on probabilistic bigraphs;
– an evaluation, in a smart manufacturing case, of probabilistic plan and inten-

tion selection under probabilistic action outcomes, against standard counter-
parts, e.g. ordered plan selection and round robin intention selection.

The paper is organised as follows. In Sect. 2 we provide a brief overview of
BDI agents and Bigraphs. In Sect. 3 we propose the probabilistic extension of
Can semantics. In Sect. 4 we evaluate our approach on a smart manufacturing
example. We discuss related work in Sect. 5 and conclude in Sect. 6.

2 Background

2.1 BDI Agents

A BDI agent has an explicit representation of beliefs, desires, and intentions.
The beliefs correspond to what the agent believes about the environment, while

Probabilistic BDI Agents: Actions, Plans, and Intentions 265

the desires are a set of external events that the agent can respond to. To respond
to those events, the agent selects a plan (given its beliefs) from the pre-defined
plan library and commits to the selected plan by turning it into a new intention.

The Can language formalises a classical BDI agent consisting of a belief
base B and a plan library Π. The belief base B is a set of formulas encoding the
current beliefs and has belief operators for entailment (i.e. B |= ϕ), and belief
atom addition (resp. deletion) B ∪ {b} (resp. B \ {b})1. A plan library Π is a
collection of plans of the form e : ϕ ← P with e the triggering event, ϕ the
context condition, and P the plan-body. The triggering event e specifies why the
plan is triggered, while the context condition ϕ determines when the plan-body
P is able to handle the event. Events can be either be external (i.e. from the
environment in which the agent is operating) or internal (i.e. sub-goals that the
agent itself tries to accomplish). The language used in the plan-body is defined
by the following grammar:

P = nil | + b | − b | act | ?ϕ | e | P1;P2 | P1 � P2 | P1 ‖ P2 |
e : (|ϕ1 : P1, · · · , ϕn : Pn|) | goal(ϕs,P , ϕf)

where nil is an empty program, +b and −b belief addition and deletion, act a
primitive action, ?ϕ a test for ϕ in the belief base, and e is a sub-event (i.e.
internal event). Actions act take the form act = ϕ ← 〈φ+, φ−〉, where ϕ is the
pre-condition, and φ+ and φ− are the addition and deletion sets (resp.) of belief
atoms, i.e. a belief base B is revised to be (B\φ−)∪φ+ when the action executes.
To execute a sub-event, a plan (corresponding to that event) is selected and the
plan-body added in place of the event. In this way we allow plans to be nested
(similar to sub-routine calls in other languages). In addition, there are composite
programs P1;P2 for sequence, P1 �P2 that executes P2 in the case that P1 fails,
and P1 ‖ P2 for interleaved concurrency. A set of relevant plans (those that
respond to the same event) is denoted by e : (|ψ1 : P1, · · · , ψn : Pn|). Finally, a
declarative goal program goal(ϕs,P , ϕf) expresses that the declarative goal ϕs

should be achieved through program P , failing if ϕf becomes true, and retrying
as long as neither ϕs nor ϕf is true (see in [3] for details).

The operational semantics for Can are defined over configurations C and
transitions C → C′. A transition C → C′ denotes a single execution step between
configuration C and C′. We write C → (resp. C �) to state that there is (resp. is
not) a C′ such that C → C′. A derivation rule consists of a (possibly empty) set
of premises pi (i = 1, . . . , n) on C, and a conclusion, denoted by

p1 p2 · · · pn

C → C′ l

where l is a rule name. We write C l−→ C′ to denote C evolves to C′ through the
application of derivation rule l.

A basic configuration 〈B, P 〉, where P is the plan-body program being exe-
cuted (i.e. the current intention), is used in rules that define the execution of
1 Any logic is allowed providing entailment is supported. A propositional logic with

natural number comparisons is used in our examples.

266 B. Archibald et al.

a single intention. The agent configuration is defined as 〈Ee,B, Γ 〉 where Ee

stands for the a set of pending external events and Γ the current set of inten-
tions (partially executed plan-body programs). The semantics of Can language
is specified by two types of transitions. The first transition type, denoted as →,
specifies intention-level evolution in terms of basic configuration 〈B, P 〉 and the
second type, denoted as ⇒, specifies agent-level evolution over the agent config-
uration 〈Ee,B, Γ 〉. For example, in the intention-level evolution, the transition
for belief addition and a belief test can be given as follows:

〈B,+b〉 → 〈B ∪ {b}, nil〉 + b
B |= ϕ

〈B, ?ϕ〉 → 〈B, nil〉 ?

We refer the reader to [2,20] for a full overview of the semantics of Can.

2.2 Bigraphs

Bigraphs are a graph-based universal modelling formalism, introduced by Mil-
ner [17], and extended to probabilistic systems [18]. As a graph-based rewriting
formalism, over rules called reaction rules, bigraphs not only provide an intuitive
diagrammatic representation, which is ideal for visualising the execution process
of the systems, but also offer compositional reasoning via explicit abstractions
(sites/regions/names), customised rewriting rules, and multiple ways to relate
entities (placement and linking). They have been used both for modelling ubiq-
uitous systems [21–23] and as a unifying theory of existing process calculi [24,25]
and their semantics.

The evolution of bigraphs is described through over a rewriting system spec-
ified via reaction rule l � r that replace a bigraph matching l with a bigraph
matching r in some larger bigraph2. Given an initial bigraph and set of reac-
tion rules we can derive a non-deterministic transition system capturing the
behaviour of the system. We have used this to encode the existing Can lan-
guage semantics in order to symbolically analyse BDI agent behaviour [16]. The
encoding defines a bigraph equivalent for any Can agent, and defines reaction
rules that faithfully model the operational semantics (essentially a tree explo-
ration).

Probabilistic bigraphs [18] allow reaction rules to be weighted, e.g. t1 =
l1

2 � r1 and t2 = l2
1 � r2, such that if both (and only) t1 and t2 are appli-

cable then t1 is twice as likely to apply as t2. In this case the transition system
generated is a DTMC that can be analysed by probabilistic model checker, e.g.
PRISM [19].

To execute (probabilistic) bigraphical reactive systems, we employ Bigra-
phER [26], an open-source language and toolkit for bigraphs. It also allows
exporting transitions systems, e.g. DTMCs, for analysis in specialised model
checking tools. To aid writing logical formulas over the transition systems, states
may be labelled using bigraph patterns that assign a state predicate label if it
contains (a match of) given bigraph patterns.
2 Similar to term rewriting lifted to graph structures.

Probabilistic BDI Agents: Actions, Plans, and Intentions 267

3 Probabilistic Extension of CAN Semantics

In this section we detail how action outcomes, plan selection, and intention
selection from Can can be extended to support probabilistic reasoning.

3.1 Probabilistic Action Outcomes

Agents execute actions that both interact with an external environment (e.g.
pick up an object), and in-turn revise the internal belief base (e.g. the agent
believes it holds the object). Action execution is specified in Can as:

act : ϕ ← 〈φ−, φ+〉 B � ϕ

〈B, act〉 → 〈(B \ φ− ∪ φ+), nil〉 act

This states that an action applies only if the precondition ϕ holds, and the
outcome is to update the belief base by adding and removing the atoms specified
by φ+ and φ−, respectively. Other than beliefs, the agent has no notion of the
environment and these are assumed to be side-effects.

In practice, we know the outcomes of an action are uncertain (e.g. due to
actuator malfunctions). For example, an agent may execute an action to pick up
an object but fail to do so because a robotic arm fails. In this case, updating the
beliefs that an object is held leads to misalignment between the true environment
and the agent’s representation of it. This form of uncertainty has been considered
extensively in the planning literature and has led to, e.g. probabilistic planning
domain definition languages (PPDDL) [27], that consider multiple outcomes with
associated probabilities (e.g. estimated from the historic data).

We follow a similar approach and sample action outcomes from a probability
distribution μ = [(φ−

1 , φ+
1) 	→ p1, . . . , (φ−

n , φ+
n) 	→ pn] with

∑n
i=1 pi = 1. That

is, we use actions in the form a : ϕ ← μ where the original action form is the
special case of μ being a delta distribution (single outcome with probability 1).
Defined using probabilistic transitions C →p C′ (i.e. move from C to C′ with
probability p) [28], we introduce a probabilistic action execution as follows:

act : ϕ ← μ μ(φ−, φ+) = p B � ϕ

〈B, act〉 →p 〈(B \ φ− ∪ φ+), nil〉 actp

Importantly we do not expect programming language implementations based
on these semantics to draw action outcomes probabilistically. Instead it is used
solely for modelling, allowing us to capture environmental effects in a semantics
where they are usually ignored.

3.2 Plan Selection and Its Probabilistic Extension

BDI agents employ a user-provided plan library to respond to events. Each plan
has i) a triggering event defining what event the plan can respond to, ii) a
precondition defining what beliefs must hold for the plan to apply, and iii) a
plan-body defining what steps should be taken to execute the plan. To address

268 B. Archibald et al.

a pending event (e.g. from the external environment), the agent retrieves a set
of relevant plans: those with a matching triggering event, captured as follows:

Δ = {ϕ : P | (e′ = ϕ ← P) ∈ Π ∧ e′ = e}
〈B, e〉 → 〈B, e : (| Δ |)〉 event

Given a set of relevant plans, the agent then selects an applicable plan (one where
the precondition is true) as specified by rule select:

ϕ : P ∈ Δ B |= ϕ

〈B, e : (| Δ |)〉 → 〈B, P � e : (| Δ \ {ϕ : P} |)〉 select

If there are no applicable plans a separate rule (unshown) propagates the failure.

Plan Selection Strategies
Notice that the preceding select rule does not specify which plan should be
selected in case of multiple applicable plans, i.e. it is non-deterministic.

However, in practice, we often want more control over which plan is chosen,
and different plans are likely to be more/less preferred based on domain-specific
characteristics, e.g. costs. Therefore, in many implementations the choice is often
made deterministically by a plan selection function of the following form:

δ : 2B × 2Π → Π ∪ {⊥}
where B is the belief base and Π the plan library. Given a belief base and a set
of (relevant) plans it returns an applicable plan or ⊥, i.e. no applicable plan.

While a common heuristic is to select the plan with the highest order based
on some characteristics (e.g. preference), it may not lead to globally optimal
behaviours due to action side-effects. We argue that it should be possible to
prioritise plan choice based on plan characteristics, but not assume a totally
fixed ordering in order to allow exploration of non-highest order plans that might
have better properties. This is akin to discrepancy search techniques [29] to go
against the heuristic, and is particularly useful for declarative goals to avoid
repeating the same plan obsessively.

To allow non-strict orderings we sample plans based on a probability distri-
bution, i.e. with the following plan selection function:

δp : 2B × 2Π → Dist(Π) ∪ {⊥}
where Dist(Π) is the set of discrete probability distribution over the plan library
and ⊥ stands for no applicable plan available. Using δp we can define a proba-
bilistic select rule as follows:

ϕ : P ∈ Δ δp(B,Δ) = μ μ = ⊥ μ(ϕ : P) = p

〈B, e : (| Δ |)〉 →p 〈B, P � e : (| Δ \ {ϕ : P} |)〉 selectp

where μ is the probability distribution returned from δp such that any non-
relevant and non-applicable plans are being assigned the probability 0.

Trialling different distributions is possible by changing δp which could, for
example, be extracted from historic data through machine learning. With our
approach, it allows quantifying exact probabilistic effects of different δp choices.

Probabilistic BDI Agents: Actions, Plans, and Intentions 269

3.3 Intention Selection and Its Probabilistic Extension

BDI agents may pursue multiple intentions in parallel, allowing them to respond
quickly to new events whilst continuing to handle existing events. As parallelism
is interleaved (rather than simultaneous), at each step the agent must decide
which intention to progress. Similarly to plan selection, the default Can seman-
tics specifies a non-deterministic choice for intention selection in following two
cases:

P ∈ Γ 〈B, P 〉 → 〈B′, P ′〉
〈Ee,B, Γ 〉 ⇒ 〈Ee,B′, (Γ \ {P}) ∪ {P ′}〉 Astep

P ∈ Γ 〈B, P 〉 �

〈Ee,B, Γ 〉 ⇒ 〈Ee,B, Γ \ {P}〉Aupdate

That is, we can either select to progress any progressable intention (i.e. 〈B, P 〉 →
〈B′, P ′〉) or drop any unprogressable intention (i.e. 〈B, P 〉 �).

As expected, we also want more control over the order of intention execution
in practice. This is critical as the wrong choice can cause failure to one or more
events, for example, if deadlines are involved (real-time systems, e.g. in [30]).

Intention Selection Strategies
Many implementations provide a simple first-in-first-out strategy or round-robin
scheduling (which ensures a notion of fairness between the intentions). Alterna-
tively we may force a strict ordering on intentions based on the current situation,
e.g. deadlines. Similar to plan selection we can express (deterministic) intention
choice as a function which chooses the next intention to progress:

η = 2B × 2Γ → Γ ∪ {⊥}
where ⊥ stands for no active intentions available for selection.

Again we argue that forcing a deterministic choice is not always appropriate
and that you may require flexibility to choose from a distribution. We provide
the following function to allow intention selection based on a distribution:

ηp = 2B × 2Γ → Dist(Γ) ∪ {⊥}
where Dist(Γ) is the set of discrete probability distributions over Γ .

While the plan selection decides how to evolve a single intention (in terms
of intention-level configuration 〈B, P 〉), the intention selection determines what
it means to evolve an agent (in terms of agent-level configuration 〈Ee,B, Γ 〉).
As such, agent-level transitions depend on the intention-level transitions and we
need to account for this in the transition probabilities. To have a probabilistic
agent step, we assume, for a chosen progressable intention P ∈ Γ , 〈B, P 〉 →p′

〈B′, P ′〉 holds, for example, if a plan selection for the given intention P is required
based on selectP . For unprogressable intentions we have 〈B, P 〉 �1. We present
the following probabilistic intention selection rules:

P ∈ Γ ηp(B, Γ) = μ μ = ⊥ μ(P) = p 〈B, P 〉 →p′ 〈B′, P ′〉
〈Ee,B, Γ 〉 ⇒p·p′ 〈Ee,B′, (Γ \ {P}) ∪ {P ′}〉 Ap

step

270 B. Archibald et al.

P ∈ Γ ηp(B, Γ) = μ μ = ⊥ μ(P) = p′′ 〈B, P 〉 �1

〈Ee,B, Γ 〉 ⇒p′′ 〈Ee,B, Γ \ {P}〉 Ap
update

where
∑

p′′ p′′ +
∑

p,p′ p · p′ = 1 and p, p′, p′′ ∈ [0, 1]. Finally, other than the four
new probabilistic rules (actp, selectp, Ap

step, and Ap
update), the other Can rules

(unshown) all transition with uniform probability to future states.

3.4 Situation-Aware Distributions for Plan and Intention Selection

The plan and intention selection function δp and ηp are abstract and do not spec-
ify how to construct the resulting probability distributions in practice. In this
section we give a declarative mechanism for calculating situation-aware distri-
butions at run-time. In contrast, action outcomes are typically statically defined
based on estimates of environmental effects at design time.

Our approach is to specify a situation value function for plans and intentions
that assigns them a real-valued weight such that if wi < wj then we should
prefer the plan/intention with the weight wj . Specific probabilities are then
determined through normalisation. As intentions ultimately address external
events, we measure the situation value of an intention by considering the char-
acteristics of its related external event. As such, we adopt the notation of [15]
and extend it to external events by annotating both plans and external events,
namely e : ϕ ← P [θ] and e′[θ] where e is an event, ϕ the context condition, P
the plan-body, e′ ∈ Ee an external event, and θ a situation value description.
Importantly, each plan and external event can have a different situation value
description. Same as in [15], we define θ to be 〈d0, {(ϕ1, d1), · · · , (ϕn, dn)}, f〉
where d0 is the default value and values di are aggregated using function f (e.g.
to perform a sum) whenever B |= ϕi holds, di ∈ R≥0 (1 ≤ i ≤ n), and 0 ≤ n.
Details of the value description such as its expressivity and supported functions
can be found in [15].

4 Evaluation

We demonstrate, using a smart manufacturing example and existing probabilistic
model checking tools, how to quantitatively model BDI agent programs. Specif-
ically, we evaluate our probabilistic, situation-aware, plan/intention selection
against common strategies such as always selecting the most preferred plan. The
results are promising, with the intention completion probability using situation-
aware distributions being 97% higher than some strictly ordered plan and inten-
tion selection strategies. The models are freely available in BigraphER format
online3. For quantitative analysis we use PRISM by importing the DTMC pro-
duced by BigraphER. While we only give details of a single case study, users of
the executable semantics can employ BigraphER to “run” models with different
settings, e.g. external events, plan libraries, custom situation value descriptions.

3 https://bitbucket.org/uog-bigraph/prob bdi models sefm21/src/master/.

https://bitbucket.org/uog-bigraph/prob_bdi_models_sefm21/src/master/

Probabilistic BDI Agents: Actions, Plans, and Intentions 271

4.1 Smart Manufacturing Example

We consider a robotic packaging scenario, extended from [30], where a robot
packs products and moves them to a storage area. Products have specific tem-
peratures and must be packed in a suitable wrapping bag to prevent decay. If the
product stays on the production line too long, the temperature increases and it is
spoiled and lost. Given multiple waiting products the robot must choose which
to handle first (intention selection). Once chosen, the robot must then decide
which wrapping to use: either premium or standard (plan selection). Premium
wrapping is expensive but always stops product decay and never breaks. On the
other hand, standard wrapping is cheap, only works if the product temperature
remains low, and has a risk of breaking (a negative action outcome).

Complexity arises from the following factors: (1) losses avoided depend on
when a product is packed, (2) when a product is packed determines which wrap-
pings are applicable – earlier packing means cheaper bags, (3) cheaper wrappings
introduce uncertainty as they may break. A formal model of the agent system
allows us to quantitatively reason about the robot’s behaviours under this uncer-
tainty and use these results as evidence, e.g. for regulatory certification, or to
help improve the design of the robot, e.g. using a standard wrapping as often
possible but within tolerable failure threshold.

4.2 Agent Design

We consider a simplified scenario with two products that are initially present
on the production line, i.e. there are no dynamic events. Agent design is given
in Fig. 1 and we assume propositional logic with numerical comparisons.

Fig. 1. Agent design employing the syntax of Sect. 2.1 combined with the situation
value descriptions given in Sect. 3.4.

272 B. Archibald et al.

Products awaiting processing are captured by external events shown in lines
9 and 10, e.g. e product1 with its situation value description θ13 (explained
below). The agent responds to the events using a declarative goal on line 2 that
states it wants to achieve the state success1 (i.e. wrapped and moved) through
addressing the (internal) event e process product1; failing if failure1 (i.e.
dropped or decayed) ever becomes true. Two plans (in lines 3 and 4), which
represent the different wrappings, can handle the event e process product1
each with different situation value descriptions. Event e product2 is handled in
a similar way (in line 5–7).

There is a probabilistic outcome for the move product standard1 action,
such that it has a 10% chance of causing failure1 by dropping the prod-
uct accidentally, else it succeeds (adding success1 to the beliefs), whereas
move product premium1 action always succeeds. In Sect. 4.5 we will investigate
the effect with varying probability. To allow situational awareness, we encode
(discrete) temporal information, for progress and deadline, as agent belief atoms.
Progress determines how far (in terms of agent steps) an agent is through an
intention, while deadline determines how many steps we can make before the
product spoils. Mirroring implementations, we update beliefs based on timings in
the background, without executing an explicit action. In this case, the progress
increases whenever a specific intention is stepped, whereas deadline decreases
after a step of any intention.

Table 1 gives the specifications for quantitative reasoning. A short commen-
tary is as follows. deadline1 = 8 and deadline2 = 12 are the initial deadlines
of two external events, namly e product1 and e product2. The precondition
ϕ11 = deadline1 ≥ 3 indicates that deadline1 is greater than or equal to 3. The
situation value description θ11 = 〈1, {ϕ11, 1}, sum〉 indicates that if ϕ11 holds,
then θ11(ϕ11) = 1 + 1 = 2. The situation value description θ13 for the external
event e product1 is defined as a function (deadline1+progress1)−3. Intuitively,
if deadline1 + progress1 is smaller relative to other products, then it has been
progressed less and the deadline is approaching, so it is more urgent. Importantly,
the choice of situation value descriptions are made by the agent designer, i.e.
(deadline1 + progress1)−3 was their choice. Our approach enables the analysis
of alternative functions quantitatively, before deploying the agent.

Table 1. Quantitative specifications with x ∈ {1, 2}.

Initial deadlines Preconditions Situation value descriptions

deadline1 = 8 ϕx1 = deadlinex ≥ 3 θx1 = {1, {ϕx1, 1}, sum}
deadline2 = 12 ϕx2 = deadlinex ≥ 0 θx2 = {1, {ϕx3, 1}, sum}

ϕx3 = 3 ≥ deadlinex ≥ 0 θx3 = (deadlinex + progressx)−3

Probabilistic BDI Agents: Actions, Plans, and Intentions 273

Table 2. Plan and intention selection strategies.

Plan selection strategies Intention selection strategies

SMP: Select Most Preferred SMU: Select Most Urgent

PSD: Preference Situational Distribution FIFO: First-In-First-Out

RR: Round Robin

PUSD: Pure Urgency Situational Distribution

LUSD: Layered Urgency Situational Distribution

OLUSD: Optimised Layered Urgency Situational Distribution

4.3 Plan and Intention Selection Strategies

Table 2 lists the plan/intention selection strategies we analyse. We do not eval-
uate uniform random plans or intention selection strategies, as these do not
capture any domain specific information (e.g. regarding preferences). Whereas
SMP plan selection always selects the highest weighted plan, PSD selects a
plan by sampling distribution based on preference. For intention selection, SMU
always selects the intention closest to the deadline similar to SMP. FIFO and
RR are fixed orders where the former always selects the intention which arrives
first and the latter selects each intention in turn. PUSD selects an intention
by sampling from distribution where situation value description is given by
(deadline+progress)−3. Unlike PUSD, LUSD only deems an intention urgent
if the product is not packed or spoiled. As such, it will not select an intention in
which the product is packed when there is another intention whose product is not
packed. Finally, OLUSD selects an intention similarily to LUSD but the situa-
tion value description is revised to be |deadline+ progress− steps required|−3,
which accounts for the steps remaining to pack a product (to avoid spoilage).

4.4 Plan and Intention Selection Analysis

To perform quantitative analysis, we use BigraphER to generate a DTMC—
the underlying transition system of probabilistic bigraphs [18]—with bigraphs
as states and probabilities as transitions. Each state is labelled by bigraph pat-
terns [22]: if the pattern matches the current state then the predicate is true. In
our example, we reason about the dynamic properties using Probabilistic Com-
putation Tree Logic (PCTL) [31]. For example, the property P=?F[φ] expresses
the expected probability of φ holding eventually (in some state). We use S1, F1
(resp. S2, F2) to denote product 1 (resp. 2) successfully, or unsuccessfully being
processed by the robot. For model analysis we use these as state-labels4 in the
transition system for all states where a particular product succeeds/fails. Table 3
gives the probability of processing the products either successfully or with a fail-
ure, under the plan/intention selection strategies listed in Table 2. For example,
P=?F[S1 ∧ S2] is the probability both products being processed successfully.

4 Implemented using bigraph patterns, where a specific match is constructed that only
holds when that specific product was processed/failed.

274 B. Archibald et al.

Table 3 shows the necessity for good plan/intention selection, with the first
3 combinations never successfully processing both products, i.e. (S1, S2), and
PUSD having very limited success (p = 0.03). In particular, the intention strat-
egy of RR (which selects each intention in turn) is the worst, failing both prod-
ucts in all cases. Using PUSD has an almost 50% chance of succeeding with
product 1 or failing both. This indicates the weighting function is skewed toward
product 1 at the detriment of product 2, leading to the improved LUSD strat-
egy. This is a key advantage of our approach: discovering potential pitfalls and
trialling new strategies without changing the underlying agent programs and
semantics. Similar reasoning, that now product 2 was succeeding more often, led
to another strategy OLUSD being trialled with extremely good success rates,
i.e. p = 0.98. We should never expect the probability of (S1, S2) = 1 due to the
action outcome uncertainty (e.g. the wrapping bag breaks).

Table 3. Probability of product 1, product 2 for the properties, e.g. (S1, S2) with
different plan and intention selection strategies listed in Table 2.

Intention

SMU FIFO RR

P

l

a

n

S

M

P

(S1,S2)

0

(S1,F2)

0.9

(S1,S2)

0

(S1,F2)

0

(S1,S2)

0

(S1,F2)

0

(F1,S2)

0

(F1, F2)

0.1

(F1,S2)

0.9

(F1,F2)

0.1

(F1,S2)

0

(F1,F2)

1

P

S

D

(S1,S2)

0

(S1,F2)

0.93

(S1,S2)

0

(S1,F2)

0

(S1,S2)

0

(S1,F2)

0

(F1,S2)

0

(F1,F2)

0.07

(F1,S2)

0.93

(F1,F2)

0.07

(F1,S2)

0

(F1,F2)

1

PUSD LUSD OLUSD

P

l

a

n

S

M

P

(S1,S2)

0.03

(S1,F2)

0.48

(S1,S2)

0.510

(S1,F2)

0

(S1,S2)

0.97

(S1,F2)

0

(F1,S2)

0.08

(F1,F2)

0.41

(F1,S2)

0.482

(F1,F2)

0.008

(F1,S2)

0.037

(F1,F2)

0

P

S

D

(S1,S2)

0.03

(S1,F2)

0.49

(S1,S2)

0.513

(S1,F2)

0

(S1,S2)

0.98

(S1,F2)

0

(F1,S2)

0.08

(F1,F2)

0.4

(F1,S2)

0.481

(F1,F2)

0.05

(F1,S2)

0.02

(F1,F2)

0

In this example, we find that plan selection has limited effect compared
to intention selection, which is key to this application. This itself is a valu-
able insight. In general, probabilistic sampling that improves success rates, even
marginally, should be used as it can result in great savings—particularly in large
scale processes, e.g. an expected two-product successful behaviour tending to

Probabilistic BDI Agents: Actions, Plans, and Intentions 275

occur 98% of the time instead of 97%. Given the complexity of agent behaviours,
determining this expected probability precise, without such a model, would be
difficult.

Table 4. DTMC generation: final size and timing.

Strategies States Transitions Build time (s) Rule applications

(SMP, SMU) 31 30 66.57 217

(SMP, FIFO) 31 30 65.85 211

(SMP, RR) 19 18 52.13 143

(PSD, SMU) 36 36 92.26 273

(PSD, FIFO) 36 36 92.25 268

(PSD, RR) 19 18 51.72 143

(SMP, PUSD) 572 845 2447.37 5300

(SMP, LUSD) 323 478 1518.36 3116

(SMP, OLUSD) 323 478 1481.07 3116

(PSD, PUSD) 697 1039 17435.90 6836

(PSD, LUSD) 417 614 2106.64 4157

(PSD, OLUSD) 417 614 2098.51 4157

Table 4 details the DTMC that was used in the evaluation of each property:
the number of states and transitions, build time, and rule applications. The last
is the number of applications of reaction rules, including instantaneous reaction
rules—an advanced feature of BigraphER—that allows agents to progress an
intention without showing all sub-steps. For example, this includes belief revi-
sion, where we see only final output of a step of executing an action. As the
internal steps still have to be generated, much of the build time is spent doing
that—accounting for the low number of states, but large build time. We also have
to check all required rules and, as bigraphs do not natively support numerical
types, this includes many generated rules for different parameter values.

The build times for non-interleaved intention selection strategies, e.g. (SMP,
SMU) and (PSD, RR) is in the order of minutes whereas the build times for
interleaved selection strategies, e.g. (SMP, PUSD) and (PSD, PUSD), is sig-
nificantly higher (up to 5 h). This is expected due to the combinatorial nature
of interleavings and the large number of rules that need to be checked for appli-
cability in each state. Since our executable semantics is intended to be used at
design time we do not believe this to be an issue in practice. Model optimisations
may be possible, or statistical model checking used, for particularly large agent
designs, and ultimately there may be a numerical plug-in for BigraphER.

276 B. Archibald et al.

4.5 Action Outcome Analysis

The effects of different action outcomes are shown in Fig. 2 where the probability
of standard wrapping failing is increased from 10% to 90% for two strategy pairs:
(PSD, SMU) and (PSD, OLUSD).

We can see that negative action outcomes have a much larger effect on strictly
ordered intention selection (SMU), e.g. the probability of (S1,F2) decreases from
over 90% to below 40%. Meanwhile, (PSD, OLUSD) is more robust to action
outcome changes. For example, the probability of (S1, S2) in (PSD, OLUSD)
has a minor decrease of no more than 20%. This is due to increased interleaving of
these two intentions, rendering the standard wrapping inapplicable more often.

Fig. 2. Probability of reaching the end state (product 1, product 2) with increasing
failure probability in (PSD, SMU) and (PSD, OLUSD).

When the cases become less complex, e.g. there is only one product with
plenty time to process and all actions always succeed, the plan/intention choice of
a BDI agent becomes trivial. In another words, our approach is particularly useful
when situations are not straightforward and have complex domain information.
Future work, however, is required to account for the cost, in terms of wrapping
bags, of achieving different success rates and robustness to action outcomes while
keeping the overall cost low, i.e. multi-objective optimisation.

5 Related Work

We are not the first to consider probabilistic verification of BDI agents. The
work [32] uses a two-stage verification methods that first generates a model

Probabilistic BDI Agents: Actions, Plans, and Intentions 277

through program model checking (of a system implementation), and then con-
verts this model to PRISM input format for analysis. However, unlike our focus
on probabilistic extensions of the BDI semantics itself, the BDI agent used
in [32] does not contain any probabilistic aspects. Instead, the environment
where the agent executes enables the probabilistic reasoning. Similarly, the work
of [33] facilitates probabilistic verification of BDI agents by encoding them in
PRISM. In this case, instead of generating the model based on an implemen-
tation, they implement a significantly simplified version of AgentSpeak directly
in PRISM. The simplifications deviate from realistic BDI agents, e.g. enabling
truly-concurrent intentions (and no intention selection) and treating plan selec-
tion as non-deterministic. Our approach captures an extension of the full Can
semantics while still providing PRISM verification capabilities.

Works studying plan and intention selection strategies have also been con-
ducted within the BDI community. For example, the work of [30] compiles agent
programs to TÆMS (Task Analysis, Environment Modelling, and Simulation)
framework to represent the coordination aspects of problems such as “enables”
and “hinders” relations between tasks. A Design-To-Criteria scheduler is then
used for intention selection to determine the full set of decisions that the agent
needs to perform. An increasingly popular topic in the BDI community is inten-
tion progression [34], e.g. the contest5. The intention problem includes the means
(i.e. plan) to achieve a given event and which of the currently adopted plans (i.e.
intentions) to progress at the current moment, when handling multiple intentions
in parallel. Unlike our focus on automated quantitative analysis of BDI agents,
their goal (same as [30]) is to help the agent to make better decisions, by mod-
ifying or replacing the original BDI reasoning entirely, through other advanced
decision-making techniques such as automated planning techniques [35]. For
example, the work [36] showed that many of the intention progress issues can be
modelled in planning domain definition language (PDDL) [37] (the de-facto stan-
dard planning language) and resolved through suitable planners. such as modern
highly efficient (online) planner [38]. Finally, it is not a new idea to integrate
advanced decision-making techniques into BDI agents to improve performance.
There is a large amount of work (surveyed in [39]) to employ planning to dynam-
ically synthesise new plans to achieve an event even when no pre-defined plan
worked or exists. One work [40], for example, shows in detail how the integration
of planning and BDI can be done at the semantic level.

Besides BDI agents, quantitative verification techniques have also applied to
other types of agent systems. For example, the work of [41] considers uncertain
communication channels between systems of interacting agents. For verification
the multi-agent system is transformed to finite state Markov chains for estab-
lishing quantitative temporal properties of the system. Similar to our evaluation
of plan/intention selection strategies, the work of [42] provides a quantitative
assessment for a decentralised control policies in multi-vehicle scenarios. Specif-
ically they study conflict resolution policies to ensure that a policy never causes

5 https://sites.google.com/site/intentionprogression/home.

https://sites.google.com/site/intentionprogression/home

278 B. Archibald et al.

collisions under some mild assumptions on the initial conditions. For an overview
of general agent-based verification we refer to [43] for the interested readers.

6 Conclusions

A quantitative evaluation and comparison framework can aid design-time speci-
fication, allowing us to reason about rational agents operating under uncertainty,
for example due to uncertain environments or failure prone actuators, and inher-
ently quantifiable agent characteristics such as plan preference.

We have extended the Can language (which formalises the behaviour of a
classical BDI agent) to a probabilistic setting, which allows both probabilistic
action outcomes and probabilistic plan and intention selection. The extended
semantics employs probabilistic bigraphs, which enable quantitative analysis
with BigraphER and probabilistic model checking in PRISM. Importantly, our
executable framework allows (non-expert) users to experiment with their own
agent models without worrying about the underlying bigraph theory.

Through a smart manufacturing example we have shown that it is possible to
reason about several plan and intention selection strategies, and that probabilis-
tic plan and intention selection strategies can reduce the impact of undesirable
outcomes, compared with ordered or fixed strategies. In this example, we found
that plan selection has limited effect compared to intention selection, which is a
valuable insight. In particular, due to the agent making smarter intention selec-
tion choices, the impact of action outcomes can be marginal—even when the
failure probabilities are large.

Acknowledgements. This work is supported by the Engineering and Physical Sci-
ences Research Council, under PETRAS SRF grant MAGIC (EP/S035362/1) and S4:
Science of Sensor Systems Software. (EP/N007565/1).

References

1. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

2. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and proce-
dural goals in intelligent agent systems. In: the 8th International Conference on
Principles of Knowledge Representation and Reasoning. Morgan Kaufman (2002)

3. Sardina, S., Padgham, L.: A BDI agent programming language with failure han-
dling, declarative goals, and planning. Auton. Agents Multi-agent Syst. 23, 18–70
(2011). https://doi.org/10.1007/s10458-010-9130-9

4. Hindriks, K.V., Boer, F.S.D., Hoek, W.V.D., Meyer, J.J.C.: Agent programming
in 3APL. Auton. Agents Multi-agent Syst. 2(4), 357–401 (1999)

5. Dastani, M.: 2APL: a practical agent programming language. Auton. Agents Multi-
agent Syst. 16(3), 214–248 (2008). https://doi.org/10.1007/s10458-008-9036-y

https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/s10458-010-9130-9
https://doi.org/10.1007/s10458-008-9036-y

Probabilistic BDI Agents: Actions, Plans, and Intentions 279

6. Winikoff, M.: Jack intelligent agents: an industrial strength platform. In: Bordini,
R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Program-
ming. MSASSO, vol. 15, pp. 175–193. Springer, Boston (2005). https://doi.org/10.
1007/0-387-26350-0 7

7. Bordini, R.H., HüJomi, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason, vol. 8. Wiley, Hoboken (2007)

8. Pokahr, A., Braubach, L., Jander, K.: The Jadex project: programming model.
In: Ganzha, M., Jain, L. (eds.) Multiagent Systems and Applications. Intelligent
Systems Reference Library, vol. 45, pp. 21–53. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-33323-1 2

9. Benfield, S.S., Hendrickson, J., Galanti, D.: Making a strong business case for
multiagent technology. In: the 5th International Joint Conference on Autonomous
Agents and Multiagent systems, pp. 10–15 ACM (2006)

10. Braubach, L., Pokahr, A.: Negotiation-based patient scheduling in hospitals. In:
Iantovics, B., Kountchev, R. (eds.) Advanced Intelligent Computational Technolo-
gies and Decision Support Systems. Studies in Computational Intelligence, vol. 486,
pp. 107–121. Springer, Cham. (2014). https://doi.org/10.1007/978-3-319-00467-
9 10

11. McArthur, S., et al.: Multi-agent systems for power engineering applications - part
I: concepts, approaches, and technical challenges. IEEE Trans. Power Syst. 22(4),
1743–1752 (2007)

12. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Auton. Agents Multiagent Syst. 12(2), 239–256 (2006).
https://doi.org/10.1007/s10458-006-5955-7

13. Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Practical verifica-
tion of decision-making in agent-based autonomous systems. Autom. Softw. Eng.
23(3), 305–359 (2014). https://doi.org/10.1007/s10515-014-0168-9

14. Chen, H.: Applications of cyber-physical system: a literature review. J. Ind. Integr.
Manage. 2(03), 1750012 (2017)

15. Padgham, L., Singh, D.: Situational preferences for BDI plans. In: the 2013 Interna-
tional Conference on Autonomous Agents and Multi-agent Systems, pp. 1013–1020
(2013)

16. Archibald, B., Calder, M., Sevegnani, M., Xu, M.: Modelling and verifying BDI
agents with bigraphs. arXiv preprint arXiv:2105.02578 (2021)

17. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

18. Archibald, B., Calder, M., Sevegnani, M.: Probablistic bigraphs. arXiv preprint
arXiv:2105.02559 (2021)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

20. Sardina, S., Padgham, L.: Goals in the context of BDI plan failure and planning.
In: the 6th International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 16–23 (2007)

21. Sevegnani, M., Kabác, M., Calder, M., McCann, J.A.: Modelling and verification
of large-scale sensor network infrastructures. In: 23rd International Conference on
Engineering of Complex Computer Systems, ICECCS, pp. 71–81 (2018)

22. Benford, S., Calder, M., Rodden, T., Sevegnani, M.: On lions, impala, and bigraphs:
modelling interactions in physical/virtual spaces. ACM Trans. Comput.-Hum.
Interact. (TOCHI) 23(2), 1–56 (2016)

https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/978-3-642-33323-1_2
https://doi.org/10.1007/978-3-642-33323-1_2
https://doi.org/10.1007/978-3-319-00467-9_10
https://doi.org/10.1007/978-3-319-00467-9_10
https://doi.org/10.1007/s10458-006-5955-7
https://doi.org/10.1007/s10515-014-0168-9
http://arxiv.org/abs/2105.02578
http://arxiv.org/abs/2105.02559
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

280 B. Archibald et al.

23. Tsigkanos, C., Li, N., Jin, Z., Hu, Z., Ghezzi, C.: Scalable multiple-view analysis
of reactive systems via bidirectional model transformations. In: 35th IEEE/ACM
International Conference on Automated Software Engineering, pp. 993–1003 (2020)

24. Bundgaard, M., Sassone, V.: Typed polyadic pi-calculus in bigraphs. In: ACM
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming, pp. 1–12 (2006)

25. Sevegnani, M., Pereira, E.: Towards a bigraphical encoding of actors. In: Interna-
tional Workshop on Meta Models for Process Languages (2014)

26. Sevegnani, M., Calder, M.: BigraphER: rewriting and analysis engine for bigraphs.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part II. LNCS, vol. 9780, pp.
494–501. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 27

27. Younes, H.L., Littman, M.L.: PPDDL1.0: An extension to PDDL for expressing
planning domains with probabilistic effects. Technical report CMU-CS-04-162 2,
99 (2004)

28. Di Pierro, A., Wiklicky, H.: An operational semantics for probabilistic concurrent
constraint programming. In: the 1998 International Conference on Computer Lan-
guages, pp. 174–183. IEEE (1998)

29. Prosser, P., Unsworth, C.: Limited discrepancy search revisited. J. Exp. Algorith-
mics (JEA) 16, 1–6 (2011)

30. Bordini, R.H., Bazzan, A.L.C., Jannone, R.D.O., Basso, D.M., Vicari, R.M.,
Lesser, V.R.: AgentSpeak (XL) efficient intention selection in BDI agents via
decision-theoretic task scheduling. In: the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 3, pp. 1294–1302 (2002)

31. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

32. Dennis, L.A., Fisher, M., Webster, M.: Two-stage agent program verification. J.
Logic Comput. 28(3), 499–523 (2018)

33. Izzo, P., Qu, H., Veres, S.M.: A stochastically verifiable autonomous control archi-
tecture with reasoning. In: IEEE Conference on Decision and Control, pp. 4985–
4991 (2016)

34. Logan, B., Thangarajah, J., Yorke-Smith, N.: Progressing intention progression: a
call for a goal-plan tree contest. In: AAMAS, pp. 768–772 (2017)

35. Geffner, H., Bonet, B.: A concise introduction to models and methods for auto-
mated planning. Synth. Lect. Artiif. Intell. Mach. Learn. 8(1), 1–141 (2013)

36. Xu, M., McAreavey, K., Bauters, K., Liu, W.: Intention interleaving via classical
replanning. In: 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 85–92 IEEE (2019)

37. McDermott, D., et al.: PDDL-the planning domain definition language. Technical
report (1998)

38. Keller, T., Eyerich, P.: Prost: probabilistic planning based on UCT. In: Twenty-
Second International Conference on Automated Planning and Scheduling (2012)

39. Meneguzzi, F., Silva, L.: Planning in BDI agents: a survey of the integration of
planning algorithms and agent reasoning. Knowl. Eng. Rev. 30, 1–44 (2015)

40. Xu, M., Bauters, K., McAreavey, K., Liu, W.: A formal approach to embedding
first-principles planning in BDI agent systems. In: Ciucci, D., Pasi, G., Vantaggi, B.
(eds.) SUM 2018. LNCS (LNAI), vol. 11142, pp. 333–347. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00461-3 23

41. Dekhtyar, M.I., Dikovsky, A.J., Valiev, M.K.: Temporal verification of probabilistic
multi-agent systems. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars
of Computer Science. LNCS, vol. 4800, pp. 256–265. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78127-1 14

https://doi.org/10.1007/978-3-319-41540-6_27
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/978-3-030-00461-3_23
https://doi.org/10.1007/978-3-540-78127-1_14

Probabilistic BDI Agents: Actions, Plans, and Intentions 281

42. Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Probabilistic verification of a
decentralized policy for conflict resolution in multi-agent systems. In: IEEE Inter-
national Conference on Robotics and Automation, pp. 2448–2453 (2006)

43. Bakar, N.A., Selamat, A.: Agent systems verification: systematic literature review
and mapping. Appl. Intell. 48(5), 1251–1274 (2018). https://doi.org/10.1007/
s10489-017-1112-z

https://doi.org/10.1007/s10489-017-1112-z
https://doi.org/10.1007/s10489-017-1112-z

A Debugger for Probabilistic Programs

Alexander Hoppen and Thomas Noll(B)

Software Modelling and Verification Group, RWTH Aachen University, 52056
Aachen, Germany

alexander.hoppen@rwth-aachen.de, noll@cs.rwth-aachen.de

Abstract. We provide a prototype implementation of a recording-based
debugger for imperative probabilistic programs supporting randomised
choice, conditioning, and loops. In order to handle different branches
of execution, we take a semantics-based approach that employs weakest
preexpectations and that introduces iteration limits for approximating
the behaviour of potentially non-terminating loops, while giving hard
bounds on the corresponding value without loop iteration limits.

Keywords: Probabilistic programs · Debugging · Semantics-based
methods · Weakest preexpectations

1 Introduction

Interactive debugging, which allows software to be inspected at the source code
level by stepping through statements, setting breakpoints, and examining and
changing variable values whenever execution is paused, plays an integral role
in modern software development workflows [11]. Many programming languages
and software development environments offer tool support to aid in this activity,
known as debuggers [1]. While traditional debuggers only allow forward execution
of a program, recording-based debuggers like Mozilla’s rr debugger [2] also enable
the user to jump to previous execution states.

This is especially useful in situations where the program’s semantics are
non-obvious at first glance, such as probabilistic programs, which implement a
programming paradigm in which probabilistic models are specified using a prob-
abilistic programming language and inference for these models is performed auto-
matically. It attempts to unify probabilistic modelling and traditional general-
purpose programming in order to make the former easier and more widely appli-
cable [4].

We note that debuggers for probabilistic programming languages, both tradi-
tional and recording-based, are currently scarce. The only approach we are aware
of is the Depp tool [9], which employs a programming model that supports con-
structs for invoking inference in the language and that represents such inference

The work presented in this tool paper is based on the Master’s thesis by Alexander
Hoppen [5].
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 282–289, 2021.
https://doi.org/10.1007/978-3-030-92124-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_16&domain=pdf
http://orcid.org/0000-0002-1865-1798
https://doi.org/10.1007/978-3-030-92124-8_16

A Debugger for Probabilistic Programs 283

operations using an extended form of Bayesian networks. This allows to auto-
matically identify programming errors such as the assumption of independence
between variables that are actually correlated, or premature inference opera-
tions. However, in contrast to our approach, analysing the detailed behaviour of
probabilistic program by interactive, step-wise execution is not supported.

2 Probabilistic Programs

To start, let us introduce the probabilistic programming language supported by
our tool. Our language has a C-like syntax and supports the standard constructs
of variable declaration, variable assignment, if and while.

Fig. 1. A structured probabilistic to compute the probability at which day Bob caught
the virus, given that he caught the virus.

To highlight the additional probabilistic capabilities of our language, consider
Fig. 1, which models a hypothetical transmission of the SARS-CoV2 virus in an
intuitive, algorithmic way. Suppose there are two people, Alice and Bob, who
meet every day, modelled by the while-loop. Alice is initially infected with the
virus. While she is infectious, every time they meet there is a 10% chance that
she infects Bob. This probabilistic transmission of the virus is modelled by a
prob-statement. prob-statements behave similar to if-statements, but execute
the if- and else-branch with a given probability. For example after the first
loop iteration, bobInfected will be true with a probability of 10%. This also
highlights the main characteristic of probabilistic programs. bobInfected is not
either true or false (as it is the case in traditional programs), but carries
a variable distribution over the possible values true and false. The next day
Alice continues to be infectious with a likelihood of 40%, again modelled by a
prob-statement. The probability that Bob also catches the virus is now described
by the likelihood that bobInfected is true at the end of the while-loop, which
can be computed to be 15.62% as shown in the following sections.

For further analysis of the virus’s spread, we want to compute the probability
that Bob catches the virus on day 1, 2, etc., given that he did catch the virus. As
can be seen in Fig. 1 computing the day that he catches the virus can be done
by a simple infectDay counter. The fact that we only want to consider such

284 A. Hoppen and T. Noll

runs in which Bob catches the virus can be modelled by an observe-statement,
which intuitively filters out all runs in which bobInfected is false.

3 Weakest Preexpectations

Our semantic interpretation of probabilistic programs is based on weakest pre-
expectations, which constitute a quantitative generalisation of the classical con-
cept of weakest preconditions as introduced by Dijkstra [3]. He employs so-called
predicate transformers, which push a postcondition G backward through a pro-
gram P and yield the weakest precondition F describing the largest set of states
such that whenever P is started in a state satisfying F , P terminates in a state
satisfying G.

Weakest preexpectations generalise this approach by employing expectation
transformers which act on real-valued functions called expectations, mapping
program states to non-negative reals. These transformers push a postexpectation
g backward through a probabilistic program P and yield a preexpectation f ,
such that f represents the expected value of g after executing P . Here, the term
expectation coined by [8] may appear somewhat misleading at first. One should
think of an expectation as a random variable rather than an expected value.

Definition 1. Given a set V of (declared) program variables, the set of variable
assignments is defined by A =

(V ⇀ (B ∪ R)
)
.

An expectation is a function that maps variable assignments to probabilities.
We define P = { p ∈ R | 0 ≤ p ≤ 1 } as the set of all probabilities and the set of
all expectations as E = (A → P). E is ordered point-wise by ≤.

In the following, we restrict ourselves to such expectations that can be
expressed as finite arithmetic expressions over V. An expectation refers to both
the function and the arithmetic expression that describes it. It will become clear
from the context which representation is meant.

Definition 2 (wp). For a program P and an expectation f ∈ E, the weakest
preexpectation wp(P, f) ∈ E of f is defined according to Fig. 2. In the figure,
f [var := expr] denotes the expectation that results from replacing all occurrences
of var ∈ V in the definition of f by the arithmetic expression expr over V, and
�expr� the expectation that returns 1 or 0 depending on the validity of the Boolean
argument expr. Moreover, the lfp operator yields the least fixpoint of a continuous
function on the complete partial order of expectations.

Definition 3 (wlp). Similar to the weakest preexpectation, the weakest liberal
preexpectation wlp(P, f) ∈ E is defined like wp with the only difference that it
uses the greatest fixed point operator gfp instead of lfp for loops.

Definition 4 (woip). Finally, we define the weakest observe-ignoring preex-
pectation woip(P, f) ∈ E just like wp but ignore all observe-statements. That
is, we have wp(observe expr, f) = f .

A Debugger for Probabilistic Programs 285

Fig. 2. Transformation functions of the wp operator.

As an intuitive application of weakest preexpectations, we want to note that
for an expectation f ∈ E, wp(P,f)

wlp(P,1) computes the expected value of f after program
execution, given that all observe-statements are satisfied. We refer to [7] for an
in-depth explanation of this fact.

4 Loop Iteration Limits

While the definition of weakest preexpectations offers a well-founded basis for
determining a probabilistic program’s semantics, it does not directly provide
algorithmic access because the least (resp. greatest) fixed point of a loop is not
computable in general. To solve this problem, we introduce loop iteration limits.
Intuitively, an iteration limit for a loop in a program P is a non-negative integer
b ∈ N. Whenever the execution of P would traverse the loop more than b times,
we declare that execution branch as having diverged and stop its execution. We
are able to do so because we do not need to compute values that are correct to
the last decimal digit. For applications like debugging, it is usually sufficient to
compute approximate values for variables together with an approximation error.

Observation 1. We can view the loop iteration limits as a syntactic transfor-
mation of the program. When imposing an iteration limit b on a loop, we are
unrolling the loop to a series of b if-statements as follows:

1 if expr { Pbody } // r e p e a t i f −s t a t emen t b t imes
2 if expr { while true {} }

Definition 5 (wpβ, wlpβ, woipβ). wpβ, wlpβ and woipβ are analogous to wp,
wlp and woip resp. but take a set of loop iteration bounds β into account.

Theorem 1. When applying the above definition of loop unrolling, the value of
interest wp(P,f)

wlp(P,1) is restricted as follows. For the proof we refer to [6].

wpβ(P, f)
wlpβ(P, 1)

≤ wp(P, f)
wlp(P, 1)

≤ wpβ(P, f) +
(
1 − woipβ(P, 1)

)

wlpβ(P, 1) − wlpβ(P, 0)

The above theorem yields hard bounds on the approximation error. Should
the computed range not yield the desired accuracy, larger iteration limits can be
chosen to improve accuracy.

286 A. Hoppen and T. Noll

5 Weakest Preexpectations at Intermediate Execution
States

With the definition of computable weakest preexpectation operators at hand,
let us turn towards the development of a debugger for probabilistic programs.
For every execution state, deterministic programs have a unique successor state
that is reached by executing the current statement. Deterministic debuggers
allow software developers to reach that next execution state through step-wise
execution, e.g. by a Step Over command.

In probabilistic programs, however, this is no longer the case. While non-
branching statements like assignments still have a unique successor, the branch-
ing statements if, prob and while do not. For if expr { Pif } else { Pelse }
where expr is true with 60% and false with 40%, both branches are viable –
it is up to the user to decide which branch he or she wants to jump into.1 This
gives us the following three debugger commands for probabilistic programs:

– Step Over: Execute the current statement and jump to the next statement.2
– Step Into True: If execution is currently at a branching statement, only

focus on runs that satisfy the condition and jump to the first statement of
the true-branch. For if- and prob-statements, this means jumping into the
if-branch. For while-statements, this means jumping into the loop’s body.
If the current statement is not branching, the semantics is equivalent to Step
Over.

– Step Into False: Analogous to Step Into True. For if- and prob-statements
jump into the else-branch, for while-statements terminate the loop, for non-
branching statements equivalent to Step Over.

So far we have talked vaguely about focussing on certain runs. Fortu-
nately, there already exists a construct that performs exactly the operation we
require, namely observe-statements. We can thus view a Step Into True com-
mand as executing a virtual observe (expr == true) statement right before
the branching statement (which afterwards has a unique successor). The Step
Into False command analogously executes a virtual observe (expr == false)
statement.

5.1 Execution History of a Program

To compute variable values at the intermediate execution states, we describe an
execution state by the debugger commands that were executed to reach it.

Definition 6 (Augmented execution history). An augmented execution
history hP =

(
(h0, P0), . . . , (hn, Pn)

)
with hi ∈ { Ŋo, Ŋit, Ŋif } is the list of debugger

1 The same logic also applies to prob- and while-statements. For loops, the user can
jump into the loop’s body or exit the loop.

2 Here, if-, prob and while-statements are viewed as single statements that include
their bodies.

A Debugger for Probabilistic Programs 287

commands that have been executed since the start of the program together with
the statements Pi they have been executed on. Ŋo stands for Step Over, Ŋit for
Step Into True and Ŋif for Step Into False.

With execution histories being defined, we can also define WP-inference on
them.

Definition 7 (wph). The wph operator performs WP-inference of an aug-
mented execution history hP and a postexpectation f ∈ E.

wph(hP , f) =

⎧
⎪⎨

⎪⎩

f if hP = ()
see table below if hP =

(
(h0, P0)

)

wph
(
(hP

0 , . . . hP
n−1),wph(h

P
n , f)

)
if hP = (hP

0 , . . . , hP
n), n ≥ 1

P0 h0 = Ŋo h0 = Ŋif h0 = Ŋit
(int | bool | ε) var = expr wp(P0, f)
observe expr wp(P0, f)
if expr { Pif } else { Pelse } wp(P0, f) �expr� · f �¬expr� · f
prob expr { Pif } else { Pelse } wp(P0, f) expr · f (1 − expr) · f
while expr { Pbody } wp(P0, f) �expr� · f �¬expr� · f

Definition 8 (wlph, woiph). The wlph operator for execution histories is anal-
ogous to wph with the only difference that it delegates to wlp where wph delegates
to wp. Similarly the woiph operator delegates to woip instead of wp.

Definition 9 (wphβ ,wlphβ ,woiphβ). The wphβ, wlphβ and woiphβ operators
compute the weakest preexpectation of an execution history while taking loop
iteration limits β into account. They are defined analogously to wph, wlph and
woiph but delegate to wpβ, wlpβ and woipβ instead of wp, wlp and woip.

Note that we need to define the wphβ family of operators with loop iteration
limits in mind because a developer might jump over a loop using a Step Over
command and is thereby not limiting the number of loop iterations through
explicit debugger commands.

Just like we computed the expected value of f ∈ E after program execution
using wp(P,f)

wlp(P,1) to, we use wph(hP ,f)
wlp(hP ,1)

to compute the expected value of f after
execution of the augmented execution history hP .

Theorem 2. Like in Theorem 1, we can bound the incomputable value of
wph(hP ,f)
wlp(hP ,1)

by computable values that take loop iteration limits into account.

wphβ(hP , f)
wlphβ(hP , 1)

≤ wph(hP , f)
wlph(hP , 1)

≤ wphβ(hP , f) +
(
1 − woiphβ(hP , 1)

)

wlphβ(hP , 1) − wlphβ(hP , 0)

288 A. Hoppen and T. Noll

6 Implementation

Based on the ideas of the algorithms described in this paper, a recording-based
debugger for probabilistic programs has been implemented. The debugger is
available both as a graphical user interface, which runs on macOS, as well as a
command line tool that runs on both macOS and Linux. The source code can
be found at [10].

Fig. 3. Screenshot of the debugger’s graphical user interface.

Figure 3 shows a screenshot of the debugger’s graphical user interface. Its
left-hand side displays a structured outline of the program’s execution, that is
being generated during a sample-based execution of the program. For each exe-
cuted statement, a corresponding entry is being added to the execution outline.
Clicking on one of the entries in the execution outline jumps to the correspond-
ing execution state. The statement that will be executed next is highlighted in
the source code on the top right and the current variable values, together with
their approximation error if necessary, are displayed on the bottom right. The
user can step through the program manually using the three debugger buttons
Step Over, Step Into True and Step Into False on top of the variables view.

References

1. Aggarwal, S.K., Kumar, M.S.: Debuggers for programming languages. In: The
Compiler Design Handbook, pp. 297–329. CRC Press (2002)

2. Corporation, M.: Mozilla RR debugger (2020). https://rr-project.org
3. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Hoboken (1976)
4. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-

gramming. In: Future of Software Engineering, pp. 167–181. ACM (2014)

https://rr-project.org

A Debugger for Probabilistic Programs 289

5. Hoppen, A.: Design and implementation of an interactive exploration tool for prob-
abilistic programs. Master’s thesis, RWTH Aachen University, Germany (2020).
https://publications.rwth-aachen.de/record/802809

6. Hoppen, A., Noll, T.: A debugger for probabilistic programs. Technical report,
RWTH Aachen University (2020). https://moves.rwth-aachen.de/wp-content/
uploads/probabilistic-debugger-report.pdf

7. Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding
probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct
System Design. LNCS, vol. 9360, pp. 15–32. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23506-6_4

8. McIver, A., Morgan, C., Morgan, C.C.: Abstraction, Refinement and Proof
for Probabilistic Systems. Springer, New York (2005). https://doi.org/10.1007/
b138392

9. Nandi, C., Grossman, D., Sampson, A., Mytkowicz, T., McKinley, K.S.: Debugging
probabilistic programs. In: MAPL 2017, pp. 18–26. ACM (2017)

10. Noll, T.: A debugger for probabilistic programs, October 2021. https://git.rwth-
aachen.de/moves/probabilistic-debugger

11. Telles, M., Hsieh, Y.: The Science of Debugging. Coriolis (2001)

https://publications.rwth-aachen.de/record/802809
https://moves.rwth-aachen.de/wp-content/uploads/probabilistic-debugger-report.pdf
https://moves.rwth-aachen.de/wp-content/uploads/probabilistic-debugger-report.pdf
https://doi.org/10.1007/978-3-319-23506-6_4
https://doi.org/10.1007/978-3-319-23506-6_4
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://git.rwth-aachen.de/moves/probabilistic-debugger
https://git.rwth-aachen.de/moves/probabilistic-debugger

Verification and Synthesis

Verification of Programs with Exceptions
Through Operator Precedence Automata

Francesco Pontiggia1(B), Michele Chiari1(B) , and Matteo Pradella1,2(B)

1 DEIB, Politecnico di Milano, Milan, Italy
francesco.pontiggia@mail.polimi.it,

{michele.chiari,matteo.pradella}@polimi.it
2 IEIIT, Consiglio Nazionale delle Ricerche, Milan, Italy

Abstract. Operator Precedence Languages are one of the most expres-
sive classes of context-free languages that enable Model Checking.
Recently, the First-Order complete Precedence Oriented Temporal Logic
(POTL) has been introduced for expressing properties on models defined
through Operator Precedence Automata (OPA), a variant of Pushdown
Automata for OPLs; moreover, an efficient tool called Precedence Ori-
ented Model Checker (POMC) was devised for POTL. We propose here
the core algorithms of POMC for on-the-fly depth-first exploration of
the search space: for OPA, a reachability algorithm; for their ω-word
variant, a fair-cycle detection algorithm. We have refined the tool with
a user-friendly DSL called MiniProc for expressing procedural code with
exceptions. We show how the expressiveness of POMC can be used to
verify programs which make use of exceptions, thus overcoming the lim-
its of LTL-based Model Checking. We demonstrate the effectiveness of
POMC through a case study.

Keywords: Linear Temporal Logic · Operator Precedence
Languages · Model Checking · Software verification · Exceptions

1 Introduction

In Model Checking, some of the most critical aspects are how to specify the
model and the properties to be verified. Different formalisms have been pro-
posed in the literature, and some have been successfully exploited due to their
ease of development and nice performances when implemented in practice. Well-
established tools (such as SPIN [19]) usually support the verification of proper-
ties expressed in Linear Temporal Logic (LTL) on models provided as Transition
Systems or Finite State Automata (generally Büchi automata). Unfortunately,
LTL can express only the First-Order definable fragment of regular languages.
Transition Systems, although they can have an infinite set of states, thus being
non-regular, are more suitable for hardware verification, since they do not have
the concept of stack. Conversely, many relevant program behaviors regard execu-
tion traces composed of matching and nested (possibly even recursive) function
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 293–311, 2021.
https://doi.org/10.1007/978-3-030-92124-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_17&domain=pdf
http://orcid.org/0000-0001-7742-9233
http://orcid.org/0000-0003-3039-1084
https://doi.org/10.1007/978-3-030-92124-8_17

294 F. Pontiggia et al.

calls and returns, hence they involve the manipulation of the stack. They are
context-free, and cannot be modeled by regular formalisms; likewise, many useful
properties cannot be specified on them with LTL. To mention one, the evolution
of the call stack of active subroutines (to verify stack inspection properties at a
certain point of the execution [13,20]).

To fill this gap, attempts have been made by introducing logics based on
languages which are context-free, but enjoy many nice properties of regular lan-
guages, and are regarded as being in the middle between context-free and regular
languages. They are informally defined as Structured Context Free Languages
[23], because the structure of the syntax tree of a sentence is built in the sen-
tence itself, and in many cases immediately visible. Remarkable results have been
obtained with Visibly Pushdown Languages (VPL) [7], and the derived logics
CaRet [6] and Nested Word Temporal Logic (NWTL) (which is First-Order com-
plete) [2]. In VPLs, sentences embed matches between characters: these matches
are used to model function calls and returns. Consequently, with NWTL it is pos-
sible to define specifications on generic procedural programs [4]. Unfortunately,
the matching relation is necessarily one-to-one. This property makes VPLs and
NWTL not suitable to deal with behaviors in which a single event must be put
in relation with multiple ones: for example, exception handling (e.g., to ver-
ify exception safety properties [1]), and context-switching policies in real time
operating systems.

Regarding the modelling formalisms, Extended Recursive State Machines
(ERSMs) and Pushdown Systems are equivalent abstractions [3] which have been
proposed to model generic imperative programming languages. On the practical
side, the former is supported by the tool VERA [5], which adopts an on-the-fly
approach to perform reachability and fair-cycle detection analysis. Conversely,
the latter is supported by the MOPED model checker [12,14,21], a BDD-based
LTL model checker. However, none of them accepts CaRet or NWTL specifi-
cations. Both tools are able to deal with the family of Boolean Programs [8],
which have a closer syntax to that of a program with assignments. They present
procedures with call-by-value parameter passing and recursion, and a restricted
form of recursion. With respect to ERSMs and Pushdown Systems, they do
not allow array or bounded-integer variables. All the three formalisms do not
present exceptions. Boolean programs are used in the SLAM verification toolkit
[9]. SLAM provides a regression test suite made of 64 C programs, that are auto-
matically abstracted and translated into Boolean Programs, and then verified
through the ad-hoc BEBOP [8] model checker.

Operator Precedence Languages (OPLs) are a class of Context Free Lan-
guages introduced for efficient parsing [15]. Recently, their investigation has been
resumed and applied to verification. OPLs allow to specify a many-to-one or one-
to-many relation between sentence characters, and thus strictly include the class
of VPLs [23]. Therefore, this class is a good fit for the verification of the men-
tioned exception handling behaviors or context-switching policies. A new logic
based on OPLs, named Precedence Oriented Temporal Logic (POTL) [11], has

Verification of Programs with Exceptions Through OPA 295

been introduced, overcoming the previous, less expressive Operator Precedence
Temporal Logic (OPTL) [10].

Alongside, a formal definition of the class of automata corresponding to
OPLs has been given, with Operator Precedence Automata (OPA), and Opera-
tor Precedence Büchi Automata (OPBA) [22] which are OPA accepting infinite
(or ω-) Operator Precedence words. The languages accepted by OPBA are called
Operator Precedence ω-Languages (ω-OPLs). A first step towards the practical
application of OP languages to the verification of real world programs has been
taken in [11], which deals with some simple case studies regarding only hand-
made OPA—hence, finite-word—models. In this paper we go a step further, and
present the latest version of POMC,1 the Precedence Oriented Model Checker.
POMC has been completed with an implementation of the model checking algo-
rithm for ω-languages, therefore the tool now fully supports OPBA models.

To this regard, we outline the implemented reachability (for OPA) and fair-
cycle detection (for OPBA) algorithms. The models can be provided either
as plain automata or through a domain-specific language (DSL) called Mini-
Proc, internally converted into automata by POMC. Although not Turing com-
plete, MiniProc resembles mainstream programming languages. Thanks to these
advancements, we present a larger case study on the Quicksort algorithm. We
study three different implementations of the recursive Quicksort algorithm by
modeling them with MiniProc. In particular, the third one is equipped with
exception handling constructs: we verify on it various relevant properties, rang-
ing from exception safety to stack inspection.

The paper is organized as follows: Sects. 2 and 3 provide theoretical back-
ground and definitions; Sect. 4 describes the model-checking algorithms imple-
mented in POMC; Sect. 5 describes the MiniProc DSL; Sect. 6 reports the Quick-
Sort case study; Sect. 7 concludes with future work directions.

2 Background: Operator Precedence Languages

We assume some familiarity with classical formal language theory concepts
such as context-free grammar, parsing, shift-reduce algorithm, syntax tree (ST)
[17,18]. Operator Precedence Languages (OPLs) are usually defined through
their generating grammars [15]; in this paper, however, we characterize them
through their accepting automata [22] which are the natural way for stating
equivalence properties with logic characterization, and for model checking. Read-
ers not familiar with OPLs may refer to [23] for more explanations on the fol-
lowing basic concepts.

Let Σ be a finite alphabet, and ε the empty string. We use a special symbol
�∈ Σ to mark the beginning and the end of any string. An operator precedence
matrix (OPM) M over Σ is a partial function (Σ ∪ {#})2 → {�,

.=, �}, that,
for each ordered pair (a, b), defines the precedence relation (PR) M(a, b) holding
between a and b. If the function is total we say that M is complete. We call the

1 https://github.com/michiari/POMC.

https://github.com/michiari/POMC

296 F. Pontiggia et al.

pair (Σ,M) an operator precedence alphabet. Relations �,
.=, �, are respectively

named yields precedence, equal in precedence, and takes precedence. By conven-
tion, the initial # yields precedence, and other symbols take precedence on the
ending #. If M(a, b) = π, where π ∈ {�,

.=, �}, we write a π b. For u, v ∈ Σ+ we
write u π v if u = xa and v = by with a π b. The role of PRs is to give structure
to words: they can be seen as special and more concise parentheses, where e.g.
one “closing” � can match more than one “opening” �. Despite their graphical
appearance, PRs are not ordering relations.

Definition 1. An operator precedence automaton (OPA) is a tuple A =
(Σ,M,Q, I, F, δ) where: (Σ,M) is an operator precedence alphabet, Q is a finite
set of states (disjoint from Σ), I ⊆ Q is the set of initial states, F ⊆ Q is the
set of final states, δ ⊆ Q × (Σ ∪ Q) × Q is the transition relation, which is the
union of the three disjoint relations δshift ⊆ Q×Σ ×Q, δpush ⊆ Q×Σ ×Q, and
δpop ⊆ Q × Q × Q. An OPA is deterministic iff I is a singleton, and all three
components of δ are—possibly partial—functions.

To define the semantics of OPA, we need some new notations. Letters
p, q, pi, qi, . . . denote states in Q. We use q0

a−→ q1 for (q0, a, q1) ∈ δpush,
q0

a��� q1 for (q0, a, q1) ∈ δshift, q0
q2=⇒ q1 for (q0, q2, q1) ∈ δpop, and q0

w� q1,
if the automaton can read w ∈ Σ∗ going from q0 to q1. Let Γ = Σ × Q and
Γ ′ = Γ ∪ {⊥} be the stack alphabet ; we denote symbols in Γ ′ as [a, q] or ⊥.
We set smb([a, q]) = a, smb(⊥) = #, and st([a, q]) = q. For a stack con-
tent γ = γn . . . γ1⊥, with γi ∈ Γ , n ≥ 0, we set smb(γ) = smb(γn) if n ≥ 1,
smb(γ) = # if n = 0.

A configuration of an OPA is a triple c = 〈w, q, γ〉, where w ∈ Σ∗#, q ∈ Q,
and γ ∈ Γ ∗⊥. A computation or run is a finite sequence c0 � c1 � . . . � cn of
moves or transitions ci � ci+1. There are three kinds of moves, depending on
the PR between the symbol on top of the stack and the next input symbol:
push move: if smb(γ)� a then 〈ax, p, γ〉 � 〈x, q, [a, p]γ〉, with (p, a, q) ∈ δpush;
shift move: if a

.= b then 〈bx, q, [a, p]γ〉 � 〈x, r, [b, p]γ〉, with (q, b, r) ∈ δshift;
pop move: if a � b then 〈bx, q, [a, p]γ〉 � 〈bx, r, γ〉, with (q, p, r) ∈ δpop.

Shift and pop moves are not performed when the stack contains only ⊥. Push
moves put a new element on top of the stack consisting of the input symbol
together with the current state of the OPA. Shift moves update the top element
of the stack by changing its input symbol only. Pop moves remove the element
on top of the stack, and update the state of the OPA according to δpop on the
basis of the current state of the OPA and the state of the removed stack symbol.
They do not consume the input symbol, which is used only to establish the �

relation, remaining available for the next move. The OPA accepts the language
L(A) = {x ∈ Σ∗ | 〈x#, qI , ⊥〉 �∗ 〈#, qF , ⊥〉, qI ∈ I, qF ∈ F} .

We now introduce the concept of chain, which makes the connection between
PRs and context-free structure explicit, through brackets.

Definition 2. A simple chain c0 [c1c2 . . . c�]c�+1 is a string c0c1c2 . . . c�c�+1, such
that: c0, c�+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . 	 (≥ 1), and c0 � c1

.=

Verification of Programs with Exceptions Through OPA 297

c2 . . . c�−1
.= c��c�+1. A composed chain is a string c0s0c1s1c2 . . . c�s�c�+1, where

c0 [c1c2 . . . c�]c�+1 is a simple chain, and si ∈ Σ∗ is the empty string or is such
that ci [si]ci+1 is a chain (simple or composed), for every i = 0, 1, . . . , 	 (≥ 1).
Such a composed chain will be written as c0 [s0c1s1c2 . . . c�s�]c�+1 . c0 (resp. c�+1)
is called its left (resp. right) context; all symbols between them form its body.

Fig. 1. OPM Mcall (left) and the ST corresponding to word w′
ex (right). Dots are

internal nodes.

A finite word w over Σ is compatible with an OPM M iff for each pair of
letters c, d, consecutive in w, M(c, d) is defined and, for each substring x of #w#
that is a chain of the form a[y]b, M(a, b) is defined.

As an example, consider word wex = call han call call exc call ret ret on
alphabet Σcall = {call, ret, exc,han, stm}, which is compatible with Mcall of
Fig. 1. wex models the execution trace of a program: first, a function is called; it
installs an exception handler han, and then two more function calls occur. The
last one throws an exception exc, which is caught by the handler. Before return-
ing, the first function calls another one, which returns immediately. wex has a
clear structure: calls should match rets or excs that terminate them, and hans
to excs they catch. Label stm represents a generic statement (e.g. an assign-
ment), but we do not use it for now. Such structure is encoded by chains, which
can be identified through the traditional operator precedence parsing algorithm.
We apply it to wex (for a more complete treatment, cf. [17,23]).

First, write all precedence relations between consecutive characters, accord-
ing to Mcall. Then, recognize all innermost patterns of the form a�c

.= . . .
.= c�b

as simple chains, and remove their bodies. Then, write the precedence relations
between the left and right contexts of the removed body, a and b, and iterate

298 F. Pontiggia et al.

this process until only ## remains. This procedure is applied to wex as follows:

1 # � call � han � call � call � exc � call .= ret � ret � #
2 # � call � han � call � exc � call .= ret � ret � #
3 # � call � han .= exc � call .= ret � ret � #
4 # � call � call .= ret � ret � #
5 # � call .= ret � #
6 # .= #

The chain body removed in each step is underlined. In step 1, call[call]exc is
a simple chain, so its body call is removed. Then, in step 2 we recognize the
simple chain han[call]exc, which means han[call[call]]exc, where [call] is the
chain body removed in step 1, is a composed chain. This way, we recognize,
e.g., han[call]exc, call[hanexc]call as simple chains, and han[call[call]]exc and
call[han[call[call]]exc]call as composed chains (with inner chain bodies enclosed
in brackets). Below we show the structure of w′

ex a longer version of wex, which
is an isomorphic representation of its ST as depicted in Fig. 1.

#[call[[[han[call[call[call]]]exc]call ret]call ret]ret]#

Each chain corresponds to an internal node, and the fringe of the subtree rooted
at it is the chain’s body.

Let A be an OPA. We call a support for the simple chain c0 [c1c2 . . . c�]c�+1

any path in A of the form q0
c1−→ q1 ��� . . . ��� q�−1

c���� q�
q0=⇒ q�+1. The label

of the last (and only) pop is exactly q0, i.e. the first state of the path; this pop is
executed because of relation c� � c�+1. We call a support for the composed chain
c0 [s0c1s1c2 . . . c�s�]c�+1 any path in A of the form q0

s0� q′
0

c1−→ q1
s1� q′

1

c2���
. . .

c���� q�
s�� q′

�

q′
0=⇒ q�+1 where, for every i = 0, 1, . . . , 	: if si �= ε, then qi

si� q′
i

is a support for the chain ci [si]ci+1 , else q′
i = qi.

Chains fully determine the parsing structure of any OPA over (Σ,M). If
the OPA performs the computation 〈sb, qi, [a, qj]γ〉 �∗ 〈b, qk, γ〉, then a[s]b is
necessarily a chain over (Σ,M), and there exists a support like the one above
with s = s0c1 . . . c�s� and q�+1 = qk.

The OP Max-Automaton over Σ,M is A(Σ,M) = (Σ,M,
{q}, {q}, {q}, δmax) where δmax(q, q) = q, and δmax(q, c) = q, ∀c ∈ Σ. Each
chain has a support in A(Σ,M). Since there is a chain #[s]# for any string s
compatible with M , a string is accepted by A(Σ,M) iff it is compatible with
M . If M is complete, each string is accepted by A(Σ,M), which defines the uni-
versal language Σ∗ by assigning to any string the unique structure compatible
with M .

In conclusion, given an OP alphabet, the OPM M assigns a unique structure
to any compatible string in Σ∗; unlike VPLs, such a structure is not visible
in the string, and must be built by means of a non-trivial parsing algorithm.
An OPA defined on the OP alphabet selects an appropriate subset within the
“universe” of strings compatible with M . For a more complete description of the
OPL family and of its relations with other CFL we refer the reader to [23].

Verification of Programs with Exceptions Through OPA 299

Operator Precedence ω-Languages. All definitions regarding OPLs are extended
to infinite words in the usual way. Given an alphabet (Σ,M), an ω-word w ∈ Σω

is compatible with M if every prefix of w is compatible with M . OP ω-words
are not terminated by #. An ω-word may contain never-ending chains of the
form c0 � c1

.= c2
.= · · · , where the � relation between c0 and c1 is never closed

by a �. Such chains are called open chains and may be simple or composed. A
composed open chain may contain both open and closed chains.

We define the class of automata accepting the whole class of ω-OPLs by
augmenting Definition 1 with Büchi acceptance condition [22]. Hence, the name
Operator Precedence Büchi Automata (OPBA). The semantics of configura-
tions, moves and infinite runs are defined as for finite OPA. For the accep-
tance condition, let ρ be a run on an ω-word w. Define Inf(ρ) = {q ∈ Q |
there exist infinitely many positions i s.t. 〈βi, q, xi〉 ∈ ρ} as the set of states
that occur infinitely often in ρ. ρ is successful iff there exists a state qf ∈ F such
that qf ∈ Inf(ρ). An OPBA A accepts w ∈ Σω iff there is a successful run of
A on w. The ω-language recognized by A is L(A) = {w ∈ Σω | A accepts w}.
Unlike OPA, OPBA do not require the stack to be empty for word acceptance:
when reading an open chain, the stack symbol pushed when the first character
of the body of its underlying simple chain is read remains into the stack forever;
it is at most updated by shift moves.

The most important closure properties of OPLs are preserved by ωOPLs.

Fig. 2. w′
ex as an OP word, with edges showing the χ relation. Normal atomic propo-

sitions are below those in Mcall: pl means a call or a ret is related to procedure pl.

3 Background: Precedence Oriented Temporal Logic

Here we only describe a fragment of POTL, as not all of its operators are needed
for our case study. For the full syntax, see [11]. Given a finite set of atomic
propositions AP , a ∈ AP , and t ∈ {d, u}, the syntax of POTL follows:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | �tϕ | �tϕ | χt
F ϕ | χt

P ϕ | ϕ U t
χ ϕ | ϕ St

χ ϕ.

The semantics of POTL is based on the word structure—also called OP word
for short—(U,MAP , P), where U = {0, 1, . . . , n, n+1} is a set of word positions;
P : U → P(AP) is a function associating each position with the set of atomic
propositions holding in it, with P (0) = P (n+1) = {#}. MAP is only defined on

300 F. Pontiggia et al.

a subset of AP , and exactly one of such labels may hold in each position. Given
i, j ∈ U and a PR π, we write i π j to say that a ∈ P (i), b ∈ P (j) and a π b.

We define the chain relation χ ⊆ U × U so that χ(i, j) holds between two
positions i, j iff i < j − 1, and i and j are resp. the left and right contexts of the
same chain. For composed chains, χ may not be one-to-one, but also one-to-many
or many-to-one.

The truth of POTL formulas is defined w.r.t. a single word position. Let
w be an OP word, and a ∈ AP . Then, for any position i ∈ U of w, we have
(w, i) |= a if a ∈ P (i). Operators such as ∨ and ¬ have the usual semantics from
propositional logic.

The downward next and back operators �d and �d are true only if the next
(resp. current) position is at a lower or equal ST level than the current (resp.
preceding) one; replace ‘lower’ with ‘higher’ for the upward versions �u and �u.
Formally, (w, i) |= �dϕ iff (w, i + 1) |= ϕ and i � (i + 1) or i

.= (i + 1), and
(w, i) |= �dϕ iff (w, i − 1) |= ϕ, and (i − 1) � i or (i − 1) .= i. Substitute � for
� to obtain the semantics for �u and �u. E.g., we can write �dcall to say that
the next position is an inner call (holds in pos. 2, 3, 4 of Fig. 2), �dcall to say
that the previous position is a call, and the current is the first of the body of a
function (pos. 2, 4, 5), or the ret of an empty one (pos. 8, 10).

The chain next and back operators χt
F and χt

P , t ∈ {d, u}, evaluate their
argument resp. on future and past positions in the chain relation with the current
one. The downward (resp. upward) variant only considers chains whose right
context goes down (resp. up) in the ST. Formally, (w, i) |= χd

F ϕ iff there exists
j > i such that χ(i, j), i � j or i

.= j, and (w, j) |= ϕ. (w, i) |= χd
P ϕ iff there

exists j < i such that χ(j, i), j � i or j
.= i, and (w, j) |= ϕ. Replace � with � for

the upward versions. In Fig. 2, χu
Fexc is true in call positions whose procedure

is terminated by an exception thrown by an inner procedure (e.g. pos. 3 and 4).
χu

P call is true in exc statements that terminate at least one procedure other
than the one raising it, such as the one in pos. 6. Note that these examples are
not meant to be exhaustive: e.g., χu

P call holds also in position 11, and so on.
The summary until ψ U t

χ θ (resp. since ψ St
χ θ) operator is obtained by induc-

tively applying the �t and χt
F (resp. �t and χt

P) operators. It holds in a position
in which either θ holds, or ψ holds together with �t(ψ U t

χ θ) (resp. �t(ψ St
χ θ))

or χt
F (ψ U t

χ θ) (resp. χt
P (ψ St

χ θ)). It is an until operator on paths that can move
not only between consecutive positions, but also between contexts of a chain,
skipping its body. With Mcall, this means skipping function bodies. The down-
ward variants can move between positions at the same level in the ST (i.e., in
the same simple chain body), or down in the nested chain structure. The upward
ones remain at the same level, or move to higher levels of the ST.

E.g., � Uu
χ exc is true in positions contained in the frame of a function

terminated by an exception. It is true in pos. 3 of Fig. 2 because of path 3-6, and
false in pos. 1, because no path can enter the chain whose contexts are pos. 1
and 11. Formula �Ud

χ exc is true in call positions whose function frame contains
excs, such as the one in pos. 1 (with path 1-2-6). call Ud

χ (ret ∧ pErr) holds in

Verification of Programs with Exceptions Through OPA 301

pos. 1 because of path 1-7-8 and 1-9-10, (call ∨ exc) Su
χ pB in pos. 7 because of

path 3-6-7, and (call ∨ exc) Uu
χ ret in 3 because of path 3-6-7-8.

We additionally employ �, ∧, =⇒ and ⇐⇒ with the usual semantics form
propositional logic. We also use the operators � and � from LTL. They can be
expressed in POTL as �ψ := ¬(� Uu

χ (� Ud
χ ¬ψ)) and �ψ := ¬�¬ψ.

4 Model Checking OPA

We model-check POTL through the automata-theoretic procedure introduced
in [11]. For any formula ϕ, we build an OPA (or OPBA) Aϕ that only accepts
models of ϕ. Then, given an OPA A to be checked, we check the product automa-
ton Aϕ ⊗ A for emptiness. The product automaton can be computed on-the-fly
in a way similar to finite-state automata [22].

To cope with the state-space explosion problem, we propose an on-the-fly
depth-first explicit-state exploration of the search space. We generate OPA states
just before they are visited, and avoid wasting memory and time by generating
unreachable states. Other tools [5,19] showed the benefits of this approach, espe-
cially when combined with the early-termination property, i.e. returning imme-
diately when a counterexample is found. This has no benefits if no accepting
state is ever reached, and the entire search space needs to be visited. On the
other hand, it speeds up considerably cases when there is a counterexample.

Reachability. OPA are equipped with a stack, which must be considered
when exploring the search space. Given an OP alphabet (Σ,M), let A =
(Σ,M,Q, I, F, δ) be an OPA, and Γ = Σ ×Q×{⊥} be the set of stack symbols.

Definition 3. A semi-configuration of A is an element of C = Q × Γ .

Definition 4. The reachability relation is defined as Rreach ⊆ C × C × Σ so
that, for any p, q ∈ Q, look-ahead a ∈ Σ, and g0, g1 ∈ Γ , we have

Rreach(p, g0, q, g1, a) iff 〈xay, p, g0〉 �∗ 〈ay, q, g1γ〉,

for some x, y ∈ Σ∗, γ ∈ Γ ∗.

To determine the (non) emptiness of L(A), we must establish whether there
exist some qi ∈ I, qf ∈ F such that (qi,⊥, qf ,⊥,#) ∈ Rreach.

Algorithm 1 solves the reachability problem for OPA by adapting a DFS
to the use of summaries, similarly to [5]. It consists of an on-the-fly, early-
terminating exploration to check if a given set QR × ΓR of target semicon-
figurations is reachable in an OPA A. Function Reach receives as its argu-
ments a state q ∈ Q, a stack symbol g ∈ Γ , a character c ∈ Σ, and a look-
ahead 	 ∈ Σ ∪ {∗}. If 	 = ∗, then the look-ahead may be any character in Σ.
The algorithm searches the transition graph and stops when it reaches a semi-
configuration (q, g) ∈ QR×ΓR. To solve the emptiness problem for OPA, we pose

302 F. Pontiggia et al.

QR = F and ΓR = {⊥}, and call Reach(q,⊥,#, ∗) for each q ∈ I. Each call to
Reach has worst-case time complexity O(|δ||δpush|2|Σ|) and space complexity
O(|δ||δpush||Σ|). Note that the above bounds are reached only if the whole OPA
is visited, i.e. when L(A) is empty. Also, if Σ contains sets of atomic proposi-
tions, we consider only those on which the OPM is defined. E.g., with Mcall we
use only elements of Σcall as look-aheads, and |Σcall| is a small constant.

Summary Transitions. Suppose we are in a semiconfiguration (ql, g) which can
be followed by a push transition (ql, b, r). This transition is the beginning of a
chain support (let it be σ) that starts with symbol b. If we apply the reachability
algorithm recursively, we may meet the push transition (ql, b, r) again, which
would lead us to the beginning of σ. To avoid a never-ending computation,
we cannot follow it. At the same time, a semiconfiguration sp = (qp, gp) may be
reachable such that qp has a pop transition (qp, ql, qr) which completes σ. sp may
not have been visited yet, due to the depth-first nature of the search, although
it would allow us to continue the visit without getting stuck. We need to find a
way to “suspend” the search and resume it later.

As a solution, we use a global variable (called SupportStarts) where we
store semiconfigurations corresponding to the beginning of a chain support σ.
While visiting σ, the algorithm matches all saved semiconfigurations for σ trying
to perform a pop transition, thus completing σ and resuming the suspended
explorations.

To establish if a saved semiconfiguration (qcand
l , gcand) is valid for σ, it must

make sure that smb(gcand) yields precedence to the first symbol read by σ (b in
our example). This symbol is carried by parameter c in the Reach algorithm.
Likewise, parameter l is used to restrict the set of possible characters to read
after a pop transition only to those with which the input part of the stack symbol
before popping is in a � relation.

This solution allows us to suspend the search safely when we encounter the
beginning of a support in an already-visited semiconfiguration: if a way to go
beyond exists, it will be explored. Therefore, we introduce summary transitions,
which connect the first state of a chain support (ql in our example) to the
corresponding last state (qr).

The algorithm also stores in SupportEnds a semiconfiguration whenever it
exits a chain support. Thus, when it finds in a semiconfiguration the beginning
of a support that has already been visited, it uses this pre-computed information
to jump to the corresponding pop move directly.

Fair-Cycle Detection. We propose an adaptation of the reachability
algorithm to the fair-cycle detection problem. Given an OPBA Aω

ϕ =
〈P(AP),MAP , Qω, I, F, δ〉, algorithm Fair-cycle-detect models the search
space as a graph where vertices are semiconfigurations and edges are OPBA
transitions, and looks for fair cycles, i.e. loops containing a state qω ∈ F . To
preserve the early-termination and on-the-fly properties, we follow an online app-
roach: we represent and update Strongly Connected Components (SCCs) using

Verification of Programs with Exceptions Through OPA 303

Algorithm 1. OPA semi-configuration reachability
1: (Σ, MΣ , Q, I, F, (δpush , δshift , δpop)) := A
2: V := SupportStarts := SupportEnds := ∅
3: function Reach(q, g, c, �)
4: if (q, g, �) ∈ V ∨ (q, g, ∗) ∈ V then return false

5: V := V ∪ (q, g, �)
6: if q ∈ QR ∧ g ∈ ΓR then return true

7: a := smb(g)
8: for all (q, b, p) ∈ δpush s.t. a � b ∧ (b = � ∨ � = ∗) do
9: SupportStarts := SupportStarts ∪ {(q, g, c)}

10: if Reach(p, [b, q], b, ∗) then return true

11: for all (s, q, c′, �′) ∈ SupportEnds s.t. a � c′ do
12: if Reach(s, g, c, �′) then return true

13: if g �= ⊥ then
14: [a, r] := g
15: for all (q, b, p) ∈ δshift s.t. a

.
= b ∧ (b = � ∨ � = ∗) do

16: if Reach(p, [b, r], c, ∗) then return true

17: for all (q, r, p) ∈ δpop , b ∈ Σ ∪ {#} s.t. a � b ∧ (b = � ∨ � = ∗) do
18: SupportEnds := SupportEnds ∪ {(p, r, c, b)}
19: for all (r, g′, c′) ∈ SupportStarts s.t. smb(g′) � c do
20: if Reach(p, g′, c′, b) then return true

21: return false

an incremental algorithm while the Reach procedure discovers new portions of
the graph. The algorithm we chose is a path-based depth-first search due to H.
Gabow [16]. This algorithm finds SCCs and updates them dynamically in time
linear on the number of graph nodes. It allows us to stop the search as soon as a
non-trivial fair SCC is found. Otherwise, at the end it outputs the SCCs graph.
It represents SCCs with simple auxiliary data structures such as stacks and
arrays (hence the name list-based used in [16]) without contracting nodes in the
actual graph. For performance reasons, we slightly modify our implementation
to perform contractions.

Combining the Reach and Gabow routines into Fair-cycle-detect is a
crucial issue. A summary edge (corresponding to a summary transition) is added
to the graph when we encounter a pop transition at the end of a chain support.
Thus, the edge may be in a completely different part of the graph with respect to
the current node. If followed, it breaks the depth-first property, which is required
by the Gabow algorithm. Instead of restarting it for every pop transition, our
solution is to save all the summary edges and process them later. Fair-cycle-
detect is then divided into two phases:

– a search phase when we discover new edges, following OPBA transitions,
starting from the current initial semiconfigurations. If we find a summary
edge, we do not feed it to the Gabow routine, but store it in the set Summ.

– a collapse phase when we add to the graph the summary edges in Summ,
and run only the dynamic Gabow routine on it.

304 F. Pontiggia et al.

At the end of the collapse phase, we resume the exploration from semiconfigura-
tions corresponding to the discovered summary transitions in Summ. If the set
Summ is empty at the end of a search phase, there is no reachable fair cycle,
and the algorithm terminates.

5 Modeling Procedural Programs

We use a simple procedural programming language with exceptions called Mini-
Proc, which only admits Boolean variables. Its syntax is shown in Fig. 3.

Fig. 3. MiniProc syntax (left) and a MiniProc program (right). Non-terminals are
uppercase, and keywords lowercase. Parts in square brackets are optional, and ellipses
mean that the enclosing group can be repeated zero or more times. An IDENTIFIER is
any sequence of letters, numbers, or characters ‘.’, ‘:’ and ‘ ’, starting with a letter or
an underscore.

A program starts with a variable declaration, which must include all variables
used in the program. Then, a sequence of functions are defined, the first one being
the entry-point to the program. Function bodies consist of semicolon-separated
statements. Assignments, while loops and ifs have the usual semantics. The try-
catch statement executes the catch block whenever an exception is thrown by any
statement in the try block (or any function it calls). Exceptions are thrown by
the throw statement, and they are not typed (i.e., there is no way to distinguish
different kinds of exceptions). Functions can be called by prepending their name
to the () token (they do not admit arguments, as all variables are global). Since
all variables are Boolean, expressions can be composed with the logical and (&&),
or (||) and negation (!) operators.

OPA and OPBA semantically equivalent to a MiniProc program can be gen-
erated automatically, both based on OPM Mcall. We illustrate their construc-
tion through examples. First, an extended OPA is generated, in which every
state corresponds to some program state, and transitions can be labeled with
Boolean expression guards that must be true for them to be performed, or vari-
able assignments. Figure 4 shows the extended OPA from the code in Fig. 3. The
stack semantics of the two models coincide: a symbol is pushed for every func-
tion call, and popped after the corresponding return (or exception). Handlers are

Verification of Programs with Exceptions Through OPA 305

Fig. 4. Extended OPA (top) and OPA (bottom) generated from the code of Fig. 3.

paired to the exception they catch by a shift move updating the same symbol;
a dummy exception is placed after the try body to uninstall the handler. The
model-checking procedures of Sect. 4 do not take guards into account, so the
extended OPA must be transformed into a normal one. This is done by enumer-
ating all possible Boolean variable assignments for each state, leaving only those
that are actually reachable. The resulting OPA for our example is in Fig. 4.

The last part of the OPA generation leads to a worst-case model size expo-
nential in the number of variables. However, it performs well in most practical
cases, since only feasible states are generated.

6 Experiments

We show how to use POMC to verify programs with exceptions with some exper-
iments on real code for a well-known recursive algorithm, Quicksort. The prop-
erties we want to verify on an implementation of this algorithm are:

termination: the program always terminates for any input array.
correctness: any input array is correctly sorted at the end of the program.

We begin with two C programs packaged with the first version of the MOPED
model checker [12,14,21]. Then, we move to a refinement which is targeted specif-
ically to POMC. We call it semi-safe Java Quicksort, because of how it han-
dles possible NullPointerExceptions. This experiment cannot be conducted
on MOPED or tools such as VERA [5] or BEBOP [8], since their models require
a matching single return statement for every function call. On the other hand,
exceptions pop an indefinite amount of function frames on the stack until they
meet a handler. With such formalisms, the automaton would be forced to read
as many input symbols as the amount of popped function frames, thus consum-
ing a portion of code from the catch block. In the following, the comparison of

306 F. Pontiggia et al.

the three examples will allow the reader to grasp the greater expressive power
of POMC. The experimental results and their execution times are reported in
Table 1.

Buggy C QuickSort. The first one, called Buggy Quicksort, and contained in file
quicksort error.pds, has been proven to run into a infinite loop for certain
values of the input array, violating the termination property. When modeling
it with MiniProc, we consider an array of 2 values for performance reasons:
a[left] and a[right]. We abstract away from the actual content of the array
and replace all comparisons with non-deterministic choices, to get a smaller and
better performing model. We use Boolean variables to represent the inequalities
(<,=, >) between local integer variables in the program. Then, we use the fair-
cycle detection module of POMC to detect the mentioned never-ending loop.
The problem can be expressed in terms of checking whether the main procedure
always reaches the ret statement (χu

F (ret ∧ main), experiment B.2). With this
formula, we force the first position (the one reading call main) to be in the χ
relation with the one reading the corresponding ret main. Anyway, call is in the
.= or � (since we are imposing the upward variant) precedence relation only with
ret and exc (see Fig. 1), and no exception is thrown in this model, so exc cannot
be encountered. Therefore, we could simply use the formula χu

F �. However, the
latter would be less clear. Moreover, the same reasoning does not hold for the
third experiment: it contains exceptions. Therefore, we opt for the former. As
expected, POMC returns False. Note that we can verify the termination property
also with a simple LTL formula (B.1). Since termination is not guaranteed, it’s
meaningless to investigate the correctness for this implementation.

Correct C Quicksort. The implementation of file quicksort correct.pds is
known to satisfy both the termination and correctness properties. When model-
ing it with MiniProc, again by considering an array of 2 values, we introduce two
boolean variables to indicate the relation between a[left] and a[right] explic-
itly. They are aleftGTaright and aleftEQaright, which respectively mean
a[left] > a[right] and a[left] = a[right]. a[left] < a[right] is indi-
cated by the expression !aleftGTaright && !aleftEQright.

First, we check for termination with the same formulas as in Buggy Quicksort
(experiments C.1 and C.2). Coherently with the early-termination property, the
execution time is much greater in this case because the formulas hold. Then, we
prove the correctness of the implementation. The algorithm is supposed to sort
the array in ascending order, so we verify that !aleftGTaright holds at the
end of the execution. There are two ways to state this. With LTL, we impose
that sooner or later !aleftGTaright will hold forever (C.3). With POTL, we
impose that the first position (the one which reads call main) is in the χ relation
with a position where !aleftGTaright holds, using the upward variant of the
operator. As introduced in the previous example, this position is necessarily the
one reading the return statement. Therefore, experiments C.4 and C.6 equally
verify the correctness of this implementation and both imply also the termination

Verification of Programs with Exceptions Through OPA 307

property. Inserting ret main is superfluous. Finally, C.5 is meant to verify both
correctness and termination together, but with a simple LTL formula.

Fig. 5. A portion of the semi-safe Java Quicksort model in MiniProc.

Semi-safe Java Quicksort. We consider the case of a Java implementation where
the elements of the Array are of a non-primitive type. Since Java does not
enforce void- (or null-) safety [24], accessing array elements may lead to a
NullPointerException at runtime. A semi-safe solution is to:

– First, call the Quicksort procedure inside a try-catch construct, to handle
potential exceptions.

– When the first null element is encountered and an exception is raised, parse
the array in the catch body to remove all null elements.

– Last, call again the Quicksort procedure inside the catch body. This is poten-
tially unsafe because the call is not contained in a try-catch construct. Thus,
if accessing an element raised an exception, there would be no matching catch
to handle it, and the main function would terminate abnormally. However,
we know that it should not happen because of the previous processing of
the array, hence the name semi-safe. Overall termination and correctness are
not guaranteed a priori. They depend on the correctness of the parsing func-
tion which ensures void safety, thus preventing the throwing of non handled
exceptions.

We model the entire procedure as a MiniProc program, by still considering a
two-elements array. A sketch is reported in Fig. 5. We hide the Quicksort imple-
mentation with dots to highlight the exception-handling constructs. Note how
the program strictly resembles real Java code. We treat the parsing function
as a black box: we only use the Boolean variable hasParsed to indicate that
the array has been processed to remove null elements. We introduce function
accessValues to represent data access.

Firstly, we note that checking general termination (S.1 and S.2) and correct-
ness (S.3 and S.4) returns False in all cases. As a remark, since exceptions are
involved, here ret main is required in the formula of experiment S.2. Likewise,
χu

F (¬aleftGTaright) (S.4) does not imply the termination of the main procedure
anymore. With the use of the upward variant it imposes that at the end of
program, no matter how it terminates, the array is correctly sorted.

308 F. Pontiggia et al.

Secondly, we examine the program-handling of the potential null-pointer
exceptions. POTL can easily express properties related to exception handling
[23]. E.g., the shortcut

CallThr(ψ) := �u(exc ∧ ψ) ∨ χu
F (exc ∧ ψ),

evaluated in a call, states that the procedure currently started is terminated by
an exc in which ψ holds. So, �(call ∧ ρ ∧ CallThr(�) =⇒ CallThr(θ)) means
that if precondition ρ holds when a procedure is called, postcondition θ must
hold if that procedure is terminated by an exception. In object-oriented program-
ming languages, if ρ ≡ θ is a class invariant asserting that a class instance’s state
is valid, this formula expresses weak (or basic) exception safety [1], and strong
exception safety if ρ and θ express particular states of the class instance. Alterna-
tively, postconditions may regard the type of exception which has occurred. The
no-throw guarantee can be stated with �(call ∧ pA =⇒ ¬CallThr(�)), mean-
ing procedure pA is never interrupted by an exception. To begin with, we verify
whether procedures main and qs satisfy the no-throw guarantee with experiments
S.5 and S.6: the result is False. Therefore, we inquire the conditions that lead to
the potentially raised exceptions. The formula �(call∧ main ∧ CallThr(�) =⇒
CallThr(hasParsed)) specifies an exception-safety property meaning that, when-
ever a call to the function main is terminated by an exception, the array list has
been parsed to ensure void safety. The property can be slightly modified into
experiment S.7, which is verified. A second exception-safety property (S.8) ver-
ifies whether, in the case the main procedure is interrupted by an exception,
correctness holds after the interruption. Unfortunately, the result is False.

However, the stack inspection property of experiment S.9 holds. It means
that every time the program accesses array values, either: i) there is a handler
on the stack to handle a potential exception, or ii) we have already processed
the array to remove null elements, thus guaranteeing void safety.

Lastly, we prove the conditional termination of this implementation (S.10
and S.11), meaning that either the program terminates or an exception is raised
after the parsing function has been called, indicating a bug in the parsing func-
tion itself. Likewise, we prove the conditional correctness (S.12 and S.13), i.e.
that either the array is correctly sorted at the end of the execution or an excep-
tion is raised after the parsing function has been called. Formula S.14 verifies
both conditional termination and correctness together.

6.1 Discussion

A limitation of the Case Study at hand is represented by the fact that all exper-
iments deal with Quicksort implementations on arrays of only 2 cells. Indeed,
it would be interesting to analyze how the tool’s performances scale to bigger
models. This is hindered by our tool’s current lack of automatic abstraction
and modeling techniques for real-world programs. For the time being, the only
feasible approach is to model by hand all the possible execution traces, which
becomes intractable for large arrays. We leave this task to future work. However,

Verification of Programs with Exceptions Through OPA 309

the preliminary works on arrays of 3 cells confirms our theoretical results that
the latency is dominated by the formula (and especially formula size), and not
by the model under verification.

Table 1. Results of verification of the Buggy Quicksort model (2259 OPBA states)
(formulas B.1 and B.2), the Correct Quicksort model (83980 OPBA states) (experi-
ments from C.1 to C.6), and the Semi Safe Correct Quicksort model (188456 OPBA
states) (formulas from S.1 to S.14). The experiments have been run on a server with
a 2.0 GHz AMD CPU and 500 GB of RAM.

Formula Time (s) Result

B.1 �(ret ∧ main) 0.067 False

B.2 χu
F (ret ∧ main) 1.011 False

C.1 �(ret ∧ main) 36.3 True

C.2 χu
F (ret ∧ main) 101.8 True

C.3 �(�¬aleftGTaright) 66.3 True

C.4 χu
F (¬aleftGTaright) 123.2 True

C.5 �(ret ∧ main ∧ ¬aleftGTaright) 49.0 True

C.6 χu
F (ret ∧ main ∧ ¬aleftGTaright) 222.8 True

S.1 �(ret ∧ main) 284.4 False

S.2 χu
F (ret ∧ main) 289.0 False

S.3 �(�¬aleftGTaright) 279.5 False

S.4 χu
F (¬aleftGTaright) 276.5 False

S.5 �((call ∧ main) =⇒ ¬(�uexc ∨ χu
F exc)) 245.9 False

S.6 �((call ∧ qs) =⇒ ¬(�uexc ∨ χu
F exc)) 246.9 False

S.7 (�uexc ∨ χu
F exc) =⇒ (�uexc ∧ hasParsed) ∨ (χu

F exc ∧ hasParsed) 19617.0 True

S.8 (�uexc ∨ χu
F exc) =⇒ (�uexc ∧ ¬aleftGTaright) ∨ (χu

F exc ∧ ¬aleftGTaright) 387.2 False

S.9 �((call ∧ accessValues) =⇒ hasParsed ∨ (� Sd
χ han)) 446.2 True

S.10 (�(ret ∧ main)) ∨ (χu
F (exc ∧ hasParsed)) 1124.0 True

S.11 (χu
F (ret ∧ main)) ∨ (χu

F (exc ∧ hasParsed)) 12809.0 True

S.12 (�(�¬aleftGTaright)) ∨ (χu
F (exc ∧ hasParsed)) 1615.0 True

S.13 (χu
F (¬aleftGTaright)) ∨ (χu

F (exc ∧ hasParsed)) 12736.0 True

S.14 (�(ret ∧ main ∧ ¬aleftGTaright)) ∨ χu
F (exc ∧ hasParsed) 2247.0 True

7 Conclusions

We presented efficient algorithms for reachability and fair-cycle detection for
OPA and OPBA. We implemented them in the POMC tool, together with a user-
friendly DSL (MiniProc) which allows to model procedural code with exceptions.
We reported on a case study on the Quicksort algorithm to show the suitability
of POMC for the verification of programs with exceptions. As future work, we
plan to investigate the possibility of using POMC to verify properties on real-
world programming languages through suitable automated abstractions, such as
iterative abstraction refinement techniques. As discussed in Sect. 6.1, these tech-
niques could address the quest for investigating the tool’s performance scaling.

310 F. Pontiggia et al.

References

1. Abrahams, D.: Exception-safety in generic components. In: Jazayeri, M., Loos,
R.G.K., Musser, D.R. (eds.) Generic Programming. LNCS, vol. 1766, pp. 69–79.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-39953-4 6

2. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. LMCS, vol. 4, no. 4 (2008). https://
doi.org/10.2168/LMCS-4(4:11)2008

3. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4),
786–818 (2005). https://doi.org/10.1145/1075382.1075387

4. Alur, R., Bouajjani, A., Esparza, J.: Model checking procedural programs. In:
Handbook of Model Checking, pp. 541–572. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-10575-8 17

5. Alur, R., Chaudhuri, S., Etessami, K., Madhusudan, P.: On-the-fly reachability and
cycle detection for recursive state machines. In: Halbwachs, N., Zuck, L.D. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 61–76. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31980-1 5

6. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-
2 35

7. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM STOC (2004)
8. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for Boolean programs.

In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468 7

9. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44585-4 25

10. Chiari, M., Mandrioli, D., Pradella, M.: Operator precedence temporal logic and
model checking. Theor. Comput. Sci. 848, 47–81 (2020). https://doi.org/10.1016/
j.tcs.2020.08.034

11. Chiari, M., Mandrioli, D., Pradella, M.: Model-checking structured context-free
languages. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp.
387–410. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 18

12. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 20

13. Esparza, J., Kučera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Inf. Comput. 186(2), 355–376 (2003). https://doi.org/10.
1016/S0890-5401(03)00139-1

14. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 30

15. Floyd, R.W.: Syntactic analysis and operator precedence. JACM 10(3), 316–333
(1963). https://doi.org/10.1145/321172.321179

16. Gabow, H.N.: Path-based depth-first search for strong and biconnected compo-
nents. Inf. Process. Lett. 74(3), 107–114 (2000). https://doi.org/10.1016/S0020-
0190(00)00051-X

https://doi.org/10.1007/3-540-39953-4_6
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-540-31980-1_5
https://doi.org/10.1007/978-3-540-31980-1_5
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1007/978-3-030-81688-9_18
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/10722167_20
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1007/3-540-44585-4_30
https://doi.org/10.1145/321172.321179
https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1016/S0020-0190(00)00051-X

Verification of Programs with Exceptions Through OPA 311

17. Grune, D., Jacobs, C.J.H.: Parsing Techniques: Monographs in Computer Science.
Springer, New York (2008). https://doi.org/10.1007/978-0-387-68954-8

18. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley, Boston
(1978)

19. Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

20. Jensen, T., Le Metayer, D., Thorn, T.: Verification of control flow based security
properties. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy,
pp. 89–103 (1999). https://doi.org/10.1109/SECPRI.1999.766902

21. Kiefer, S., Schwoon, S., Suwimonteerabuth, D.: Moped. http://www2.informatik.
uni-stuttgart.de/fmi/szs/tools/moped/

22. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence lan-
guages: their automata-theoretic and logic characterization. SIAM J. Comput.
44(4), 1026–1088 (2015). https://doi.org/10.1137/140978818

23. Mandrioli, D., Pradella, M.: Generalizing input-driven languages: theoretical and
practical benefits. Comput. Sci. Rev. 27, 61–87 (2018). https://doi.org/10.1016/j.
cosrev.2017.12.001

24. Meyer, B.: Attached types and their application to three open problems of object-
oriented programming. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp.
1–32. Springer, Heidelberg (2005). https://doi.org/10.1007/11531142 1

https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/SECPRI.1999.766902
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://doi.org/10.1137/140978818
https://doi.org/10.1016/j.cosrev.2017.12.001
https://doi.org/10.1016/j.cosrev.2017.12.001
https://doi.org/10.1007/11531142_1

Counterexample Classification

Cole Vick1, Eunsuk Kang2(B), and Stavros Tripakis1(B)

1 Northeastern University, Boston, USA
{vick.c,stavros}@northeastern.edu

2 Carnegie Mellon University, Pittsburgh, USA
eskang@cmu.edu

Abstract. In model checking, when a given model fails to satisfy the
desired specification, a typical model checker provides a counterexample
that illustrates how the violation occurs. In general, there exist many
diverse counterexamples that exhibit distinct violating behaviors, which
the user may wish to examine before deciding how to repair the model.
Unfortunately, obtaining this information is challenging in existing model
checkers since (1) the number of counterexamples may be too large to
enumerate one by one, and (2) many of these counterexamples are redun-
dant, in that they describe the same type of violating behavior. In this
paper, we propose a technique called counterexample classification. The
goal of classification is to partition the space of all counterexamples into
a finite set of counterexample classes, each of which describes a dis-
tinct type of violating behavior for the given specification. These classes
are then presented as a summary of possible violating behaviors in the
system, freeing the user from manually having to inspect or analyze
numerous counterexamples to extract the same information. We have
implemented a prototype of our technique on top of an existing formal
modeling and verification tool, the Alloy Analyzer, and evaluated the
effectiveness of the technique on case studies involving the well-known
Needham-Schroeder protocol with promising results.

1 Introduction

In formal verification, counterexamples are an invaluable aid for debugging a
system model for possible defects. Typically, a counterexample is constructed by
a verification tool as a trace (i.e., a sequence of states or events) that demon-
strates how the system violates a desired property. The user of the tool would
then inspect the counterexample for the underlying cause behind the violation
and fix the model accordingly.

In practice, there are a number of challenges that the user may encounter
while using counterexamples to debug and repair a model. First, a counterex-
ample may contain details that are irrelevant to the root cause of a violation,
requiring considerable effort by the user to manually analyze and extract the
violating behavior. Second, the user may wish to investigate multiple different

This work has been supported by the National Science Foundation under NSF SaTC
award CNS-1801546.

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 312–331, 2021.
https://doi.org/10.1007/978-3-030-92124-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_18

Counterexample Classification 313

types of counterexamples before deciding how to repair the model; this is, how-
ever, a challenging task because (1) the number of counterexamples may be too
large to enumerate one by one, and (2) many of these counterexamples may be
redundant in that they describe the same type of violating behavior.

This paper proposes a technique called counterexample classification as an
approach to overcome these challenges. The key intuition behind this approach
is that although a typical model contains a very large (or possibly infinite) set
of counterexamples, (1) many of these can be considered “similar”, in that they
share a common, violating behavior and (2) this similarity can be captured as
a specific relationship between states that is shared by these traces. Based on
this insight, our technique automatically partitions the set of counterexamples
into a finite number of classes, each of which is associated with a constraint
that characterizes one particular type of violation. These constraints are then
presented to the user, along with representative counterexamples, as distinct
descriptions of possible defects in the system, freeing them from manually sorting
through numerous counterexamples to extract the same information.

We have built a prototype implementation of our classification technique on
top of an existing formal modeling and verification tool, the Alloy Analyzer [8].
Our tool accepts a formal model, a specification (that the model currently vio-
lates), and a set of predicates that describe relationships between states in the
model. From these, the tool produces (if one exists) a set of classes that accounts
for all of the violating behavior in the model. As a case study, we have successfully
applied our technique to two variants of the Needham-Schroeder protocol [12],
and were able to classify hundreds of thousands of counterexamples into only a
handful of classes that represent known attacks to the protocol.

Our main contributions may be summarized as follows: a formal defi-
nition of the Counterexample Classification Problem (Sect. 3), a solution to
the Counterexample Classification Problem (Sect. 4), and a case study on a
well-established distributed protocol, Needham-Schroeder (Sect. 5), that demon-
strates the efficacy of our solution.

1.1 Running Example

To motivate our technique, we introduce the following example. Alice and Bob
are sending Messages to each other. Eve is able to view these messages as they are
being sent. The content of a message can be either Plaintext or Encrypted.
Eve is always able to read Plaintext messages, but needs KeyAB, Alice and
Bob’s shared key, to read Encrypted messages. Eve acquires KeyAB by seeing an
Encrypted message, modelling Eve “breaking” the encryption of what should be
a one-time key. A Message may be flagged as Secret, meaning that its content
should not be read by Eve.

We model this example as a transition system, shown in Fig. 1. The transi-
tion system has four states, represented by two state variables, EveKey of type
Key = {∅, KeyAB}, and EveSeenSecret of type Boolean (� for true and ⊥ for
false). The initial state is (∅,⊥) meaning that Eve does not know the key and
has not read any secret.

314 C. Vick et al.

Fig. 1. Transition system of the running example.

Transitions between states are labeled by Messages. A Message is a tuple of
the form (type, sender, secret), where type ∈ {Encrypted, Plaintext} denotes
whether the message is encrypted or not (if encrypted, a message is encrypted
by KeyAB), sender ∈ {Alice, Bob} denotes the sender of the message, and secret
is a Boolean denoting whether the message is secret or not. For example, the

transition (∅,⊥)
(Plaintext,Alice,�)−→ (∅,�) means that Alice sends a Plaintext

(unencrypted) Secret message.1 * indicates that the corresponding field can
take any value within its type, i.e., there are multiple such transitions, one for
each possible value.

We would like this system to satisfy the property that Eve never reads a
Message that is flagged as Secret. This can be expressed as the temporal logic
(LTL) formula

Φ = G(EveSeenSecret = ⊥)

which states that EveSeenSecret = ⊥ holds at every reachable state of the
system, i.e., it is an invariant. As we can see, this is not the case for the model
in Fig. 1. The top two double bordered states are the good states.

Note that this system has infinitely many counterexample traces, as self-loop
transitions can be taken arbitrarily many times.

Take for instance the counterexample traces listed below:

ρ11 = (∅,⊥)
(Plaintext,Alice,�)−→ (∅,�)

ρ21 = (∅,⊥)
(Plaintext,Alice,⊥)−→ (∅,⊥)

(Plaintext,Alice,�)−→ (∅,�)

ρ31 = (∅,⊥)
(Plaintext,Bob,⊥)−→ (∅,⊥)

(Plaintext,Bob,�)−→ (∅,�)

ρ41 = (∅,⊥)
(Plaintext,Alice,⊥)−→ (∅,⊥)

(Plaintext,Bob,�)−→ (∅,�)
1 The traces in this section have labels, i.e. Messages, on their transitions. We do this

to make it clear how messages are sent and how different messages affect the state.
Our formal definition will not include labels as they may be encoded directly into
the state.

Counterexample Classification 315

In ρ11, Alice sends a Plaintext Secret message. Eve is be able to read it, as
it is unencrypted, which leads to a violation of the property. In ρ21, Alice first
sends a Plaintext but non-secret message and then sends a Plaintext Secret
message. In ρ31, Bob first sends a Plaintext but non-secret message and then
he sends a Plaintext Secret message. In ρ41, Alice sends a Plaintext but
non-secret message and then Bob sends a Plaintext Secret message.

These violating traces share important behavior: the fact that either Alice
or Bob sends a Plaintext Secret message. Noticing this, we would like to group
these traces together in the same counterexample class.

Now consider the counterexample traces listed below:

ρ12 = (∅, ⊥)
(Encrypted,Alice,⊥)−→ (KeyAB, ⊥)

(Encrypted,Bob,�)−→ (KeyAB, �)

ρ22 = (∅, ⊥)
(Encrypted,Bob,⊥)−→ (KeyAB, ⊥)

(Encrypted,Alice,�)−→ (KeyAB, �)

ρ32 = (∅, ⊥)
(Encrypted,Alice,�)−→ (KeyAB, ⊥)

(Encrypted,Alice,�)−→ (KeyAB, �)

ρ42 = (∅, ⊥)
(Encrypted,Bob,�)−→ (KeyAB, ⊥)

(Encrypted,Alice,�)−→ (KeyAB, �)

These traces exhibit a different way in which the property can be violated
than the traces shown previously. Now, the violation happens when Alice or
Bob send an Encrypted Secret message after an Encrypted message has already
been sent, i.e. after Eve has broken the encryption. A description of this new class
would be: Eve receives an Encrypted message before receiving an Encrypted
Secret message.

The method and tool presented in this paper generate such counterexample
classes automatically. Our tool does not output class descriptions in English
but represents classes syntactically as trace constraints. A trace constraint is
evaluated over a given trace ρ. If ρ satisfies the trace constraint then we say that
ρ falls into the class that the trace constraint represents. The trace constraints
that represent the two classes discussed above are:

TCPlaintext[ρ] ≡ ∃i ∈ [0..len(ρ)] : ρ.type@i = Plaintext ∧ ρ.secret@i = �
TCEncrypted[ρ] ≡ ∃i, j ∈ [0..len(ρ)] : i < j ∧ ρ.EveKey@i = KeyAB ∧

ρ.type@j = Encrypted ∧ ρ.secret@j = �
where len(ρ) denotes the length of trace ρ and the variables i and j represent
indices to particular positions of states and transitions in ρ. The initial state is
indexed at position s0 and the first transition is indexed at position l0 and leads
to state s1 thus following the general pattern: s0

l0−→ s1
l1−→ s2 · · · .

2 Background

Definition 1 (Symbolic transition system). A symbolic transition system
is a tuple (X, I, T) where:

– X is a finite set of typed state variables. Each variable x ∈ X has a type,
denoted type(x). A type is a set of values.

316 C. Vick et al.

– The initial state predicate I is a predicate (i.e., Boolean expression) over X.
– The transition relation predicate T is a predicate over X ∪ X ′, where X ′

denotes the set of primed (next state) variables obtained from X. For example,
if X = {x, y, z} then X ′ = {x′, y′, z′}. Implicitly, every primed variable has
the same type as the original variable: ∀x ∈ X : type(x′) = type(x).

We let U denote the universe of all values. A state s over a set of state
variables X is an assignment of a value (of the appropriate type) to each variable
in X, i.e., s is a (total) function s : X → U , such that ∀x ∈ X : s(x) ∈ type(x).
A state s satisfies a predicate I over X, denoted s |= I, if when we replace all
variables in I by their values as defined by s, I evaluates to true. For example,
suppose X = {x, y, z} where x and y are integer variables, and z is a Boolean
variable. Let I be the predicate x < y ∧ z. Consider two states, s1 = (x = 3, y =
4, z = �) and s2 = (x = 3, y = 1, z = �). Then, s1 |= I but s2 �|= I.

Similarly, a pair of states (s, s′) satisfies a predicate T over X ∪ X ′ if when
we replace all variables from X in T by their values as defined by s, and all
variables from X ′ in T by their values as defined by s′, T evaluates to true. For
example, suppose X = {x} where x is an integer variable. Let T be the predicate
x′ = x + 1. Consider three states, s0 = (x = 0), s1 = (x = 1), and s2 = (x = 2).
Then (s0, s1) |= T and (s1, s2) |= T , but (s0, s2) �|= T .

Definition 2 (Transition system defined from a symbolic transition
system). A symbolic transition system (X, I, T) defines a transition system
(S, S0, R), where:

– The set of states S is the set of all assignments over X.
– The set of initial states S0 is the set: S0 = {s ∈ S | s |= I}.
– The transition relation R is the set: R = {(s, s′) ∈ S × S | (s, s′) |= T}.

That is, the set of initial states is the set of all states satisfying I, and the
transition relation R is the set of all pairs of states satisfying T . A pair (s, s′) ∈ R
is also called a transition, and is sometimes denoted s → s′.

Definition 3 (Trace). A trace ρ over a set of state variables X is a finite
sequence of states over X: ρ = s0, ..., sk. The length of ρ is k, and is denoted
by len(ρ); note that k may equal 0, in which case the trace is empty. The set of
states of ρ is {s0, ..., sk} and is denoted States(ρ).

Definition 4 (Property). A property Φ over a set of state variables X is a
set of traces over X.

Definition 5 (Traces for an STS). Let STS = (X, I, T) be a symbolic transi-
tion system and let (S, S0, R) be the transition system of STS. The set of traces
generated by STS, denoted Traces(STS), is the set of all traces ρ = s0, s1, ..., sk
over X such that:

– s0 ∈ S0. That is, ρ starts at an initial state of STS.
– ∀i ∈ {0, ..., k − 1} : (si, si+1) ∈ R. That is, every pair of successive states in

ρ is linked by a transition in STS.

Counterexample Classification 317

Definition 6 (Property satisfaction and counterexamples). Let STS =
(X, I, T) be a symbolic transition system and let Φ be a property over X. We say
that STS satisfies Φ, written STS |= Φ, iff Traces(STS) ⊆ Φ. If STS �|= Φ, then
a counterexample is any trace ρ ∈ Traces(STS) \Φ, i.e., any trace of STS which
violates (does not belong in) Φ.

3 Counterexample Classification

3.1 Classes and Classifications

Consider a set of traces P . A class of P is any non-empty subset of P . A
classification of P is a partition of P into (not necessarily disjoint) classes.

Definition 7 (Classification). Consider a set of traces P . A classification of
P is a finite set C of classes of P such that

⋃
c∈C c = P .

Given a set of counterexample traces P , and a classification C of P , a canon-
ical counterexample is a counterexample trace that belongs in exactly one class
of C. A canonical counterexample thus represents the violating behavior of a
particular class as it only appears in that particular class.

Definition 8 (Canonical Counterexample). Given a set of counterexam-
ples traces P and a classification C of P , a canonical counterexample ρ is any
counterexample in P such that: ∀c1, c2 ∈ C : (ρ ∈ c1 ∧ ρ ∈ c2) → c1 = c2. We
denote by c(ρ) the unique class in C that ρ belongs to.

A classification is redundant if it contains classes that have no canonical
counterexample:

Definition 9 (Redundant Classification). A classification C of a set of
counterexamples P is redundant if there exists a class c ∈ C such that c does
not contain a canonical counterexample.

Example 1. Suppose P = {ρ1, ρ2, ρ3, ρ4, ρ5} and C = {c1, c2, c3} with c1 =
{ρ1, ρ2, ρ3}, c2 = {ρ3, ρ4, ρ5}, c3 = {ρ1, ρ4}. Note that C is a valid classification
of P as c1 ∪ c2 ∪ c3 = P . C is a redundant classification, because although c1 has
a canonical counterexample ρ2, and c2 has canonical counterexample ρ4, c3 has
no canonical counterexample.

Often, we would like for a classification to guarantee that each class has a
canonical counterexample, i.e., to be non-redundant. In general, we can transform
every redundant classification into a non-redundant classification. First, we state
the following two lemmas2:

Lemma 1. A classification C of a set of counterexamples P is redundant iff
there exist distinct classes c, c1, ..., cn ∈ C such that c ⊆ ⋃

i=1,...,n ci.

2 Proofs for the following Lemmas and Theorems have been removed due to page
restrictions. The full paper, with proofs, is available here https://arxiv.org/abs/
2108.00885.

https://arxiv.org/abs/2108.00885
https://arxiv.org/abs/2108.00885

318 C. Vick et al.

Lemma 2. Let C = {c1, ..., cn} be a classification of a set of counterexamples
P . C is redundant iff there exists i ∈ {1, ..., n} such that ci ⊆ ⋃

j �=i cj.

Based on Lemma 2, we can construct an algorithm to transform any classi-
fication into a non-redundant classification.

3.2 The Counterexample Classification Problem

In Sect. 3.1, we defined the concepts of classes and classifications semantically.
But in order to define the counterexample classification problem that we solve
in this paper, we need a syntactic representation of classes. We define such a
representation in this section, by means of trace constraints. A trace constraint
is a special kind of predicate that evaluates over traces. A trace constraint is
similar to predicates such as the I (initial state) predicate of a symbolic transition
system, with two key differences: (1) a trace constraint is only conjunctive, and
(2) a trace constraint can refer to state variables at certain positions in the trace
and impose logical conditions over those positions. For example, if X = {x, y}
is the set of state variables, then here are some examples of trace constraints:

– TC1[ρ] ≡ ∃i ∈ [0..len(ρ)] : x@i = y@i: this trace constraint says that there is
a position i in the trace such that the value of x at that position is the same
as the value of y.

– TC2[ρ] ≡ ∃i, j ∈ [0..len(ρ)] : i < j ∧ x@i > x@j: this says that there are two
positions i and j in the trace such that i is earlier than j and the value of x
decreases from i to j.

We call formulas such as x@i = y@i or x@i > x@j, which operate on indexed
state variables, atomic facts. We call formulas such as i < j, which operate on
position variables, atomic position facts. Then, a trace constraint is a conjunction
of atomic facts and atomic position facts, together with an existential quantifi-
cation of all position variables within the range of the length of the trace.

Atomic facts and atomic position facts are defined over a set of user-defined
predicates. Some predicates will be standard, such as equality (=) for integers
and less-than (<) for positions, while other predicates may be domain-specific.
In addition to variables, we allow predicates to refer to constants. For example,
i ≤ 10 says that the position i must be at most 10, and x@2 = 13 says that the
value of x at position 2 must be 13.

For example, recall the Message type from the running example. The user
might want to define a predicate that checks whether two messages have the
same sender. Then, the user can define the predicate SendersEqual which is
parameterized over two variables of type Message and defined as:

SendersEqual[m1,m2] ≡ m1.sender = m2.sender

This predicate may be then instantiated as:

SendersEqual[message@1,message@5]

This checks whether the Message at position 1 has the same sender as the
Message at position 5.

Counterexample Classification 319

Definition 10 (Trace Constraint). A trace constraint over a set of state
variables X and a set V of user-defined predicates is a formula of the form

TC[ρ] ≡ ∃i1, ..., ik ∈ [0..len(ρ)] : ξ0 ∧ ξ1 ∧ · · · ∧ ξn

where:

– i1, ..., ik are non-negative integer variables denoting positions in the trace t.
We allow k to be 0, in which case the trace constraint has no position vari-
ables.

– Each ξj, for j = 0, ..., n, is either an atomic fact over state variables X and
position variables i1, ..., ik or an atomic position fact over position variables
i1, ..., ik using predicates in V .

Given a trace constraint w, and a trace ρ, we can evaluate w on ρ in the
expected way. For example, the trace (x = 0) −→ (x = 0) over state variable x,
satisfies the trace constraint TC1[ρ] ≡ ∃i0, i1 ∈ [0..len(ρ)] : i0 < i1 ∧ x@0 = x@1
but does not satisfy the trace constraint TC2[ρ] ≡ ∃i0, i1 ∈ [0..len(ρ)] : i0 <
i1 ∧ x@0 > x@1. We write ρ |= w if trace ρ satisfies trace constraint w. We also
say that w characterizes ρ when ρ |= w. We denote by c(w) the set of all traces
satisfying constraint w.

Let W be a set of trace constraints. Then, let C(W) = {c(w) | w ∈ W};
i.e., C(W) is the set of all sets of traces that are characterized by some trace
constraint in W .

Consider a symbolic transition system STS and a property Φ that is violated
by STS, i.e., STS �|= Φ. The problem that we are concerned with in this paper
is to find a classification of all traces of STS that violate Φ, such that this
classification is represented by a set of trace constraints defined over V . We call
this problem the counterexample classification problem (CCP):

Definition 11 (Counterexample Classification Problem). Given sym-
bolic transition system STS = (X, I, T), property Φ such that STS �|= Φ, and
user-defined predicates V , find, if there exists, a set of trace constraints W such
that: (1) each w ∈ W is a trace constraint over X and V ; and (2) C(W) is a
classification of P , where P is the set of all traces of STS that violate Φ.

Lemma 3. Let W be a solution to the CCP. Then, every trace constraint w ∈ W
is a sufficient condition for a violation, i.e., ∀w ∈ W : c(w) ∩ Φ = ∅.

3.3 Solvability

The CCP is formulated as to find a set of trace constraints W if one exists (Def-
inition 11). Indeed, while a semantic classification always exists (e.g., a trivial
one is the one containing just one class, the set of all counterexamples P), a
syntactic classification in the form of W might not always exist. Whether or not
one exists depends on the set of user-defined predicates V .

Lemma 4. If the set of counterexample traces P is finite, and V includes equal-
ity =, then CCP always has a solution.

320 C. Vick et al.

Lemma 4 shows that in the presence of equality =, and provided that the set
of counterexamples is finite, CCP always has a solution. But in the absence of
=, CCP may not have a solution.

For example, consider an STS with X = {a} where a is an integer variable
that can be non-deterministically incremented by 1, decremented by 1, or held
constant at each step. Let the initial state be a = 1. Let the property Φ be
G(a = 1), i.e., we require that a is always 1, which is clearly violated by this
system.

Suppose that V only contains the predicate lessThanOne[x], which returns
true if and only if the given integer x is strictly less than 1. Then, we claim that
CCP has no solution. Indeed, note that the set of counterexample traces includes
all traces where at some point either a < 1 or a > 1. But the given V is unable
to generate an atomic fact where a is greater than 1 (notice that negation is not
allowed in trace constraints). Therefore we cannot classify all counterexample
traces, and in particular not those where a > 1.

Now suppose that we change V to {lessThanOne, greaterThanOne}, with
the obvious meanings. Then the following two trace constraints constitute a
solution to CCP:

TC1[ρ] ≡ ∃i ∈ [0..len(ρ)] : lessThanOne[x@i]
TC2[ρ] ≡ ∃i ∈ [0..len(ρ)] : greaterThanOne[x@i]

3.4 Uniqueness of Solutions

The discussion in Sect. 3.3 shows that CCP may or may not have a solution,
depending on the set V of predicates allowed in the trace constraints. In this
section we show that even for a fixed V , CCP does not necessarily have a unique
solution.

Consider the example given just above, in Subsect. 3.3. If we set V to
{lessThanOne, greaterThanOne, �=}, where �= is the not-equals predicate, the
problem now admits at least two solutions. W1 is still a solution, while the sec-
ond solution W2 = {TC3} uses only the �= predicate to characterize the violating
behavior. The trace constraint TC3 is defined as:

TC3[ρ] ≡ ∃i ∈ [0..len(ρ)] : x@i �= 1

4 Classification Method

In this section, we present a method for solving the CCP introduced in Sect. 3.2.
We present an overview of our proposed classification algorithm (Sect. 4.1),
describe optimizations to ensure the generation of a non-redundant classification
with minimal classes (Sect. 4.2), and finally present a solution to the Running
example (Sect. 4.3).

Counterexample Classification 321

Input : An STS, a specification Φ, and a set of predicates V
Output: A set of trace constraints W

1 Func classify(STS, Φ, V):
2 W = ∅
3 while verify(STS ∧ block(W), Φ) == Violated do
4 ρ = counterexample(STS ∧ block(W), Φ)
5 Γ = facts(ρ, V)
6 if Γ = ∅ then
7 return “V cannot sufficiently characterize the violation in ρ”
8 w = traceConstraint(Γ, ρ)
9 if verify(STS ∧ w, ¬Φ) == Violated then

10 return “V cannot sufficiently characterize the violation in ρ”
11 w = minimizeTC(STS, w, Φ)
12 W = W ∪ w

13 W = removeRedundant(STS, W, Φ)
14 return W

Algorithm 1: The counterexample classification algorithm.

4.1 Algorithm Overview

Given an STS, a property Φ, and a set of user-defined predicates V , the goal is
to find a set of trace constraints W such that C(W) is a solution to the CCP
(Definition 11 in Sect. 3.2). We assume, without loss of generality, that V is non-
empty. Indeed, an empty V implies that the only possible trace constraint is the
empty trace constraint, which characterizes the set of all traces. This situation
can be modelled by adding to V a trivial predicate that always returns � (true),
thus having a non-empty V . To guarantee termination, we assume that the set
of counterexamples P = Traces(STS) \ Φ is finite. To avoid the trivial solution
where all traces are violating, we also assume that Traces(STS) ∩ Φ �= ∅.

The pseudocode for the classification algorithm is shown in Algorithm 1.
Procedure classify relies on the existence of a verifier that is capable of checking
STS against Φ and generating a counterexample trace, if it exists. In particular,
classify uses the following verifier functions:

– verify(STS ∧ ϕ,Φ): Returns OK if STS satisfies Φ under the additional con-
straint ϕ, i.e., if Traces(STS∧ϕ) ⊆ Φ; else, returns Violated. The constraint ϕ
is typically a trace constraint. We provide examples of ϕ later in this section.

– counterexample(STS∧ϕ,Φ): If verify(STS∧ϕ,Φ) == Violated, returns a trace
ρ of STS such that ρ |= ϕ and ρ �|= Φ; else, returns an empty output.

The algorithm begins by checking whether STS violates Φ (line 3) and if so,
returning a counterexample that demonstrates how a violation can occur (line 4).
The additional argument to the verifier, block(W), is used to prevent the verifier
from re-generating a counterexample that belongs to any previously generated
classes; we will describe this in more detail later in this section.

Next, given a particular counterexample ρ, the helper function facts generates
the set Γ of all atomic facts and atomic position facts that hold over ρ, by
instantiating the predicates V over the states in ρ (line 5). Then, based on Γ ,

322 C. Vick et al.

traceConstraint builds a trace constraint that characterizes ρ. In particular, this
procedure transforms Γ into a syntactically valid trace constraint w, by (1)
introducing a sequence of existential quantifiers over all positional variables in
ρ and (2) taking the conjunction of all facts in Γ (line 8).

In the next step, the verifier is used once again to ensure that the trace
constraint w sufficiently captures the violating behavior in ρ (line 9). This is
done by checking that every trace of STS that satisfies w (i.e., it shares the same
characteristics of ρ as described by Γ) results in a violation of Φ. If not, it implies
that w is not strong enough to guarantee a violation; i.e., V does not contain
enough predicates to fully characterize ρ. In this case, a solution to the CCP
cannot be produced and the algorithm terminates with an error (line 10).

If w guarantees a violation, it is added to the set of classes that will eventually
form a solution classification to the CCP (line 12). The process from lines 4 to
12 is then repeated until it exhausts the set of all counterexample classes for
STS and Φ.

To prevent the verifier from returning the same type of counterexample as ρ,
classify passes block(W) as an additional constraint to verify, where:

block(W) ≡ ¬(
|W |∨

i=1

wi)

In other words, by including block(W) as an additional constraint, the verifier
ensures that it only explores traces that do not belong to any of the classes in W .
Note that if W is empty (as in the first iteration of the loop), block(W) returns
true (i.e., �).

Once the verifier is no longer able to find any counterexample, the algorithm
terminates by returning W as the solution classification (line 14).

Provided there is a finite number of counterexamples and a non-empty set of
accepting traces, Algorithm 1 terminates because at least one counterexample
is classified at each iteration of the while loop. The following theorems establish
the correctness of the algorithm.

Theorem 1. Any W returned by classify is a valid solution to the CCP.

Theorem 2. If classify returns no solution (lines 7 or 10 of Algorithm 1), then
CCP has no solution for the given V .

Example 2. Recall the example from Sect. 3.3. To make P finite, we assume
that the length of counterexample traces is exactly 2. Then, P = {(a = 1) −−−→
(a = 0), (a = 1) ++−→ (a = 2)}. Let the set of user-defined predicates be V =
{lessThanOne, greaterThanOne}.

Suppose that the verifier returns ρ = (a = 1) −−−→ (a = 0) as the first
counterexample (line 4). Next, facts evaluates the predicates in V over the state
variable a at position 0 and 1 (line 5), producing Γ that contains one fact:
{lessThanOne[a@1]}. Then, the trace constraint w constructed based on Γ is:

TC1[ρ] ≡ ∃i1 ∈ [0..len(ρ)] : lessThanOne[a@i1]

Counterexample Classification 323

It can be shown that any trace of STS that satisfies TC1 is a violation of Φ; thus,
this newly created constraint w ≡ TC1 is added to the set W.

In our example, there is one more counterexample; namely, ρ = (a = 1) ++−→
(a = 2), which can be used to construct the following additional trace constraint:

TC2[ρ] = ∃i1 ∈ [0..len(ρ)] : greaterThanOne[a@i1]

Once TC2 is added to W , there are no more remaining counterexamples, and
the algorithm terminates by returning W = {TC1, TC2}.

4.2 Optimizations

Minimizing Trace Constraints. A trace constraint w generated on line 6 in
Algorithm 1 may be a sufficient characterization of ρ, but it may also contain
facts that are irrelevant to the violation. To be more precise, we consider a fact
f ∈ Γ to be irrelevant if trace constraint w that is constructed from Γ ′ ≡ Γ − f
is still sufficient to imply a violation.

Let us revisit Example 2. Suppose that we add to the set V of user-defined
predicates an additional predicate < over position variables. Then, for the coun-
terexample ρ = (a = 1) −−−→ (a = 0), facts returns Γ = {lessThanOne[a@1], 1 <
2} where 1 and 2 are positions in ρ. Then, the trace constraint generated by
traceConstraint will be:

TC3[ρ] = ∃i1, i2 ∈ [0..len(ρ)] : lessThanOne[a@i2] ∧ i1 < i2

Although TC3 is sufficient to imply a violation, it is less general than the previ-
ously generated TC1 in the absence of predicate < (see Example 2). Indeed, the
constraint i1 < i2 in TC3 forces the condition a < 1 to occur only at positions
i2 > 0, whereas in TC1 the same condition can also occur at position i1 = 0.
Furthermore, this additional constraint can be safely removed from TC3 while
still guaranteeing a violation. Thus, constraint i1 < i2 is an irrelevant fact.

Our algorithm performs an additional minimization step to remove all such
irrelevant facts from w. This additional procedure provides two benefits: (1) it
reduces the amount of information that the user needs to examine to understand
the classes and (2) each minimized class is a generalization of the original class
and covers an equal or larger set of traces that share the common characteristics,
thus also reducing the number of classes in the final classification.

As shown in Algorithm 2, minimizeTC relies on the ability of certain verifiers
(such as the ones based on SAT [8] or SMT solvers [4]) to produce a minimal
core for the unsatisfiability of a formula [15]. In particular, minCore(STS, w,¬Φ)
computes a minimal subset of conjuncts in the symbolic representation of STS
and w that are sufficient to ensure that ¬Φ holds (line 6). The facts (γ) that are
common to this core and Γ represent the minimal subset of facts about ρ that
are sufficient to imply a violation; a new trace constraint is then constructed
based on this subset and returned as the output of minimizeTC (line 7).

Note that if verify on line 4 returns Violated (i.e., ¬Φ does not always hold
under constraint w), this implies that the set of facts in Γ is not sufficient

324 C. Vick et al.

Input : An STS, a trace constraint w, and a specification Φ
Output: A minimized trace constraint

1 Func minimizeTC(STS, w, Φ):
2 if verify(STS ∧ w), ¬Φ) == OK then
3 γ = Γ ∩ minCore(STS, w, ¬Φ)
4 return traceConstraint(γ, ρ)

5 else
6 return “Γ does not sufficiently characterize the violation in ρ”
Algorithm 2: minimizeTC, which removes from trace constraint w all facts
that are irrelevant to the violation depicted by ρ.

to imply a violation of Φ. However, if minimizeTC is invoked from line 9 in
Algorithm 1, this side of the conditional branch should never be reachable.

Non-Redundancy. Although non-redundancy of classification W is not nec-
essary for a valid solution to the CCP, it is a desirable property as it reduces
the number of classes that the user needs to inspect. Thus, the main algorithm
classify also performs a redundancy check at its end (line 11, Algorithm 1) to
ensure the non-redundancy of any solution that it produces.

Input : an STS, a set of trace constraints W , and a specification Φ
Output: a set of trace constraints W ′

1 func removeRedundant(STS,W,Φ):
2 W ′ = ∅
3 for w ∈ W do
4 if verify(STS ∧ block(W \ {w}), Φ) == Violated then
5 W ′ = W ′ ∪ w

6 return W ′

Algorithm 3: removeRedundant checks whether any w ∈ W is redundant and
if it is, removes it.

Function removeRedundant, shown in Algorithm 3, ensures that no trace con-
straint w ∈ W is covered by any other trace constraints in W . Note that when
the while loop in Algorithm 1 is exited, verify(STS ∧ block(W), Φ) returns OK
since W classifies all counterexamples in P . This means that all traces of STS
which do not belong in any of the classes in W satisfy Φ. To find redundant trace
constraints, we iterate over each w ∈ W and check whether STS still satisfies
Φ with w removed from W (line 4, Algorithm 3). If this is the case, then w
is redundant, since W \ {w} already covers P . Otherwise, w must characterize
some ρ ∈ P that the other trace constraints do not, and thus w is added to the
non-redundant set W ′, which is returned at the end.

For example, recall the predicates V = {�=, lessThanOne, greaterThanOne}
from Sect. 3.4. Suppose that classify finds two trace constraints in this order3:

TC1[ρ] ≡ ∃i ∈ [0..len(ρ)] : lessThanOne[a@i]
TC2[ρ] ≡ ∃i ∈ [0..len(ρ)] : a@i �= 1

3 Note that a newly created trace constraint is never redundant.

Counterexample Classification 325

Notice that TC2 classifies all counterexamples that TC1 classifies. Thus, TC1 is
redundant and is not added to the final solution W ′ = {TC2}.

4.3 Solution to the Running Example

Consider the running example presented in Sect. 1.1. For this example, Algo-
rithm 1 outputs the trace constraints TCEncrypted and TCPlaintext in Sect. 1.1
given the set of predicates V = {=, <}. Equality = operates over Messages and
Booleans while < operates on position variables.

Atomic position facts are generated just like atomic facts. Recall the following
counterexample trace that is characterized by TCEncrypted:

ρ = (∅, ⊥)
(Encrypted,Alice,⊥)−→ (KeyAB, ⊥)

(Encrypted,Alice,�)−→ (KeyAB, �)

In the facts procedure, the < predicate would generate two facts, {i1 <
i2, i2 < i3}. These facts impose an ordering on any satisfying counterexample
and capture the timing of the violation.

5 Implementation and Case Studies

5.1 Implementation

We have built a prototype implementation of the classify algorithm (Algorithm 1)
on top of the Alloy Analyzer [8], a formal modeling and verification tool. In
particular, Alloy uses an off-the-shelf SAT solver to perform bounded model
checking (BMC), which is used for the verify procedure in the algorithm. As we
demonstrate in this section, our prototype is capable of characterizing a large set
of counterexamples (hundreds of thousands) with only a handful of generated
classes. These generated classes are provided to the user in the form of trace
constraints, along with representative counterexamples from each class.

Even though our current implementation uses Alloy and BMC, our technique
does not depend on the use of BMC or any particular verification engine and
could be implemented using other tools, provided they are capable of generating
counterexample traces. Our current implementation does rely on the SAT solver
being able to compute minimal unsatisfiable cores (which are used for minimizing
the trace constraints).

5.2 Case Studies: Needham-Schroeder

As a case study, we applied our prototype to the well-known Needham-Schroeder
protocol (NSP) [12], which has been known to be vulnerable to certain types of
attacks [11]. We show how our classification methods can be used to classify the
large number of counterexamples in a formal model of NSP into a small number
of classes that correspond to these types of attacks.

The purpose of NSP is to allow two parties to communicate privately over
an insecure network. NSP has two variants that look to accomplish this goal in

326 C. Vick et al.

different ways. The first variant is the Needham-Schroeder Symmetric protocol,
from now on referred to as Symmetric, and the second variant is the Needham-
Schroeder Public-Key protocol, from now on referred to as Public-Key. The
two variants exhibit different violating behaviors, which allowed us to test our
classification technique on the two separate variants, while not having to write
two drastically different models.

Formal Modeling. We constructed Alloy models of both the Symmetric and
Public-Key variants. Together, both variants total approximately 700 lines of
Alloy code. These models serve as the input to our tool along with a specification
Φ and a set of predicates V 4.

In both variants there are 4 Processes: Alice, Bob, Eve, and a central
Server. The attacker, Eve, can read all of the Messages exchanged between the
Processes. The setup is similar to the running example that has been discussed
throughout the paper. Both variants must satisfy the following specification.

Specification (Φ). We consider only one property across both variants of NSP:
the secret Key KAB shared between Alice and Bob is not leaked to Eve. We
express this property as the following LTL formula:

Φ = G(KAB �∈ Eve.knows)

where p.knows denotes the state variable of a protocol participant representing
the set of Keys that the participant p has access to.

Symmetric. In the Symmetric variant, Alice notifies the Server that she would
like to communicate with Bob. The Server then generates a communication key,
KeyAB, for Alice and Bob and sends it to Alice. This message is encrypted with
Bob’s secret key. Alice forwards this message to Bob so that he will be able to
decrypt the message with his secret key and learn the shared key. Bob then sends a
random nonce to Alice that is encrypted with their shared key. Alice verifies that
she knows the shared key by sending back Bob’s nonce decremented by 1 (Fig. 2).

Public-Key. In the Public-Key variant, Alice notifies the Server that she
would like to communicate with Bob. The Server sends Alice a signed message
with Bob’s public key. Alice sends Bob a message including a nonce that is
encrypted with Bob’s public key. Bob receives this message and asks the Server
for Alice’s public key. The Server sends Bob Alice’s public key. Bob now sends
Alice’s nonce back to Alice along with a new nonce encrypted with Alice’s
public key. Alice confirms that she has her private key by responding to Bob
with his nonce encrypted with his public key.

Predicates. In the experiments described below, we used the following sets of
predicates (V): Generic = {=, <}, consisting of only equality and one ordering
predicate; V1 = Generic ∪ {replay}; and V2 = Generic ∪ {manInTheMiddle}. V1

4 The Alloy models and code for our tool can be found at https://github.com/cvick32/
CounterexampleClassificiation.

https://github.com/cvick32/CounterexampleClassificiation
https://github.com/cvick32/CounterexampleClassificiation

Counterexample Classification 327

Fig. 2. A communication diagram of the Needham-Schroeder Symmetric protocol. A
and B are identifiers for Alice and Bob respectively. There are three keys: KAB , the
shared key between Alice and Bob, KAS and KBS which are each Alice and Bob′s
server key. Alice and Bob also make use of a nonce, NA and NB respectively. Each arrow
reprepresents a Message. {...}K denotes a Message encrypted by key K, and therefore
requiring K to be read successfully. The snaking red lines represent Eve having access
to all Messages that are sent over the network. (Color figure online)

and V2 include all generic predicates plus some specialized predicates that char-
acterize particular behavior in a model. The replay predicate, shown in Fig. 3,
captures counterexamples where Eve sends the same message that was sent ear-
lier by another process. The manInTheMiddle predicate captures counterexam-
ples where Eve passes Alice and Bob’s messages between them with no direct
communication between Alice and Bob.

Predicates like replay and manInTheMiddle could be part of a library of pred-
icates that any user could search and use. For example, replay can be used to
check other communication protocols for replay attacks, provided that they fol-
low a similar message-passing structure. Note that no information concerning
the particularities of the Needham-Schroeder protocol is used in the definition
of replay, meaning that this predicate can be used in a generic way. The same
holds for manInTheMiddle.

Results. Our tool was able to produce classifications for both the Symmetric
and Public-Key variants of NSP, as explained below. We were able to count
up to 270, 000 counterexamples (using the counterexample enumeration feature
in Alloy) for both NSP variants until our program ran out of memory. The results
are shown in Table 1.

Alloy employs bounded model checking for its verification engine; the bound
column in Table 1 shows the upper bound used for the number of steps in traces
explored by BMC. The V column shows the predicate set used in each experiment.

328 C. Vick et al.

Fig. 3. The replay predicate returns � if there are two positions t1 and t2 in ρ such
that t1 occurs before t2 and the Message at t1 is the exact same as the Message at t2
except that Eve is now the sender.

The next column shows the number of classes generated and the last two columns
show the execution time in seconds5. The execution time is split into the time our
tool spent calling Alloy to find counterexamples and all other computations on the
right. We found it instructive to show that the program was spending much of its
time generating counterexamples in Alloy, while all other computations remained
relatively constant for each respective experiment. Note that executions using V2

take much longer than other executions. Most of this time is spent in generating
the facts for manInTheMiddle as that particular predicate ranges over a number of
time steps and all time steps in a counterexample must be checked. We also note
that when using the Generic predicate set no redundant classes were found.

Table 1. Results on the Symmetric (left) and Public-Key (right) NSP variants. All
times are recorded in seconds. All experiments were evaluated on a 2.5 GHz Quad-Core
Intel i7 CPU with 16GB of RAM.

bound V # classes Alloy time Total time

10
Generic 2 1.92 7.56

V1 3 4.29 10.23

25
Generic 2 9.37 16.24

V1 3 37.26 43.55

50
Generic 2 61.48 70.41

V1 3 220.49 226.37

75
Generic 2 254.38 267.96

V1 3 897.19 903.44

100
Generic 2 653.62 674.66

V1 3 1949.65 1955.133

bound V # classes Alloy time Total time

10
Generic 2 2.96 12.46

V2 3 6.01 100.61

25
Generic 2 12.96 24.04

V2 3 30.64 125.70

50
Generic 2 91.67 97.78

V2 3 157.62 251.89

75
Generic 2 321.95 349.21

V2 3 525.53 615.85

100
Generic 2 850.52 893.71

V2 3 1301.83 1396.92

Symmetric. This NSP variant is vulnerable to a replay attack. This attack has
been addressed in implementations like Kerberos, although the attack was not
found until 3 years after the initial publication of the protocol [5].

Using the Generic predicate set, our tool generated 2 non-redundant
classes. These classes characterize counterexamples where either Alice or Bob

5 Times were measured using the Java built-in System.nanoTime().

Counterexample Classification 329

unknowingly establishes communication with Eve, who then manages to extract
the secret key from this interaction. For example, the trace constraint TCGeneric

shown below represents one of these two classes and characterizes counterexam-
ples where Alice sends a message and at a later state, Eve manages to learn the
secret key:

TCGeneric[ρ] ≡ ∃i1, i2 ∈ [0..len(ρ)] : ρ.msg.sender@i1 = Alice ∧
ρ.Eve.knows@i2 = {KeyAB} ∧ i1 < i2

Although this constraint is a valid characterization of counterexamples (in that
it is sufficient to guarantee a violation of Φ), it is rather an abstract one, in
that it does not describe the intermediate steps that Eve carries out in order to
extract the secret key.

To generate more specialized classes, the user can provide additional predi-
cates beside the generic ones. Using V1 as the predicate set, our tool generated
3 classes: the two classes previously found with Generic, plus a third class repre-
sented by the trace constraint TCReplay shown below:

TCReplay[ρ] ≡ ∃i1, i2 ∈ [0..len(ρ)] : replay[ρ, i1, i2] ∧ i1 < i2 ∧
ρ.msg.encryption@i2 = ρ.msg.encryption@i1 ∧
ρ.msg.key@i2 = ρ.msg.key@i1

Our tool guarantees that we begin our classification with counterexamples that
satisfy whichever predicate we choose, in this case replay. This is helpful as it
constrains our classification to only those counterexamples which satisfy replay,
allowing us to classify a subset of the total set of counterexamples. The constraint
TCReplay describes the type of violation where Eve carries out a replay attack,
where she re-sends the message that was previously sent at step i1 again at step i2
with the identical message content. Note that although TCReplay is a redundant
class with respect to the other two classes generated using the generic predicates,
it serves additional utility in that it provides more specific information about
what Eve does in order to cause a security violation. The user of our tool (e.g., a
protocol designer) could then use the information in these constraints to improve
the protocol and prevent these types of violations.

Public-Key. This NSP variant is vulnerable to a man-in-the-middle attack
[11]. Eve is able to forward messages between Alice and Bob and trick them
into thinking they are communicating directly.

Similarly to the Symmetric variant, we were able to classify counterexam-
ples that demonstrated the man-in-the-middle attack. The classes found in the
Public-Key experiment reflected what we found in the Symmetric variant, i.e.
2 classes that show a general violating pattern with Generic and then 3 classes
where 1 class demonstrates the known violation, using predicate set V2. Our tool
showed that the Public-Key variant is not vulnerable to replay attacks.

In summary, our classification method (1) significantly reduces the amount
of information that the user needs to inspect to understand the different types

330 C. Vick et al.

of violations, by collapsing the large number of counterexamples (≥ 270,000 for
the case study) into a small number of classes and (2) enables the user to inspect
these different violating behaviors in a high-level representation (i.e., trace con-
straints) that can encode domain-specific information (e.g., replay attacks).

6 Related Work

It is well known that predicates can be used to abstract needless detail in certain
problem domains [3,9]. This is the first time, to our knowledge, that predicates
have been used for counterexample classification.

Our work can be considered a kind of automated debugging technique [16]
in the context of model checking. There have been a number of prior works
into locating the relevant parts of counterexample that explain or even cause
a violation [1,2,7]. While our work does not deal with an explicit notion of
causality, the generated trace constraints are sufficient to imply a violation of the
property. The major difference between these works and ours is that they focus
on explaining one or more given counterexamples, while our objective to classify
the set of all counterexamples into distinct classes. Our work is also related and
complementary to [10], which focuses on generating short counterexamples. We
take a different approach by focusing on generating minimal trace constraints,
each of which characterize a set of counterexamples.

The approach in [6] has the similar goal of generating a diverse set of coun-
terexamples. This work relies on a notion of diversity that depends on general
properties about the structure of the given state machine (e.g., counterexamples
that have different initial distinct and final states). In comparison, our notion
of diversity is domain-specific, in that it is capable of classifying traces based on
domain-specific predicates that can be provided by the user. In this sense, these
are two complementary approaches and could potentially be combined into a
single model debugging tool.

7 Conclusion and Future Work

In this paper, we have proposed counterexample classification as a novel approach
for debugging counterexamples generated by a model checker. The key idea
behind our approach is to classify the set of all counterexamples to a given model
and a property into trace constraints, each of which describes a particular type
of violation. Our work leverages the notion of predicates to distinguish between
different types of violations; we have also demonstrated how these predicates can
capture violations that are common within a domain (e.g., attacks on security
protocols) and can facilitate the reuse of domain knowledge for debugging.

For future work, we plan to explore methods based on machine learning (such
as clustering (e.g., [14]) to automatically extract predicates from a given set of
counterexample traces. Another interesting direction is to explore how our clas-
sification method could be used to improve counterexample-guided approaches
to program synthesis (such as CEGIS [13]), by reducing the number of coun-
terexamples that need to be explored by the synthesis engine.

Counterexample Classification 331

References

1. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors
in counterexample traces. In: Proceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2003, pp. 97–105.
Association for Computing Machinery, New York, January 2003

2. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterex-
amples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 94–108. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4 11

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. Association for Computing Machinery, New
York, January 1977

4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

5. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun.
ACM 24(8), 533–536 (1981)

6. Dominguez, A., Day, A.: Generating multiple diverse counterexamples for an EFSM
(2013)

7. Groce, A., Visser, W.: What Went Wrong: Explaining Counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 8

8. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 11(2), 256–290. ACM, New York (2002)

9. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program ver-
ification. In: Handbook of Model Checking, pp. 447–491. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 15

10. Kashyap, S., Garg, V.K.: Producing short counterexamples using “Crucial Events”.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 491–503. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 47

11. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

12. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

13. Solar-Lezama, A., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.: Combinatorial
sketching for finite programs, p. 12 (2006)

14. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp.
109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-
8 11

15. Torlak, E., Chang, F.S.-H., Jackson, D.: Finding minimal unsatisfiable cores of
declarative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 326–341. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68237-0 23

16. Zeller, A.: The Debugging Book. CISPA Helmholtz Center for Information Security,
2021. Accessed 12 Mar 2021

https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-540-70545-1_47
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-540-68237-0_23
https://doi.org/10.1007/978-3-540-68237-0_23

Be Lazy and Don’t Care: Faster CTL
Model Checking for Recursive State

Machines

Clemens Dubslaff1(B) , Patrick Wienhöft1(B), and Ansgar Fehnker2

1 Technische Universität Dresden, Dresden, Germany
{clemens.dubslaff,patrick.wienhoeft}@tu-dresden.de

2 University of Twente, Enschede, The Netherlands
ansgar.fehnker@utwente.nl

Abstract. Recursive state machines (RSMs) are state-based models for
procedural programs with wide-ranging applications in program verifica-
tion and interprocedural analysis. Model-checking algorithms for RSMs
and related formalisms and various temporal logic specifications have
been intensively studied in the literature.

In this paper, we devise a new model-checking algorithm for RSMs
and requirements in computation tree logic (CTL) that exploits the com-
positional structure of RSMs by ternary model checking in combination
with a lazy evaluation scheme. Specifically, a procedural component is
only analyzed in those cases in which it might influence the satisfaction of
the CTL requirement. We evaluate our prototypical implementation on
randomized scalability benchmarks and on an interprocedural data-flow
analysis of Java programs, showing both practical applicability and sig-
nificant speedups in comparison to state-of-the-art model-checking tools
for procedural programs.

1 Introduction

Model checking [4,12] is a well-established technique for verifying that a sys-
tem model meets a given requirement. System models are most commonly given
as Kripke structures, i.e., directed graphs over states whose edges model the
operational behavior of the system with labels over a set of atomic proposi-
tions specifying properties of states. Over these labels, requirements are usually
formalized in a temporal logic such as computation tree logic (CTL, [11]).

In this paper, we revisit the model-checking problem for recursive state
machines (RSMs) models and CTL requirements [1]. RSMs provide a standard
model for the operational behavior of programs with recursive procedure calls.
They closely follow the compositional structure of the procedural program by
modeling procedures by separate Kripke structures (called components) that are

The authors are supported by the DFG through the Cluster of Excellence EXC 2050/1
(CeTI, project ID 390696704, as part of Germany’s Excellence Strategy) and the TRR
248 (see https://perspicuous-computing.science, project ID 389792660).

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 332–350, 2021.
https://doi.org/10.1007/978-3-030-92124-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_19&domain=pdf
http://orcid.org/0000-0001-5718-8276
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-92124-8_19

Faster CTL Model Checking for Recursive State Machines 333

connected through call and return nodes. Due to the infinite-state semantics
of RSMs, the standard CTL model-checking algorithm for finite Kripke struc-
tures [4,11] is not directly applicable [1]. Fortunately, the satisfaction of a given
CTL formula in a component of an RSM solely depends on the satisfaction of
subformulas in return nodes of the component, so-called contexts [9, 3]. Intu-
itively, contexts model the environmental influence on the component, i.e., how
the satisfaction of the formula depends on the calling component. Exhaustively
generating all contexts that could arise during program execution and apply-
ing the standard CTL model-checking algorithm for finite Kripke structures on
components directly leads to an algorithm to model check RSMs against CTL
formulas [1]. This algorithm runs in exponential time in the size of the RSM
due to possibly exponentially many contexts that have to be considered for each
component. Since the model-checking problem for RSMs and CTL formulas is
ExpTime-complete [5], this algorithm cannot be improved in the worst case.
Nevertheless, there is plenty of room for heuristic optimizations that might show
runtime improvements in practice.

This paper devises a new method to reduce the number of subformulas and
contexts evaluated during the model-checking decision procedure, following a
lazy rather than an exhaustive deduction scheme. The main idea behind our
lazy approach is to use ternary model checking and successively refine the global
satisfaction relation by step-wise evaluating new contexts that could contribute
to deciding the overall model-checking problem [14]. While our lazy approach
might also have to consider all subformulas and contexts in the worst case, this
is usually not the case in practice, as we show in this paper.

We implemented a ternary variant of the exhaustive approach by Alur et
al. [1] and our new lazy approach in a tool called RSMCheck1. To the best
of our knowledge, RSMCheck is the first model checker specifically dedicated
to RSMs, while existing state-of-the-art model checkers for procedural programs
such as PDSolver [15] and PuMoC [20] rely on pushdown systems. RSMs and
pushdown systems can be linearly transformed to each other while preserving
their Kripke structure semantics (see, e.g., [6]). However, RSMs have the advan-
tage of directly reflecting the compositional structure of a procedural program
and providing an intuitive visual representation. To this end, choosing RSMs
as model for procedural programs can ease the interpretation of counterexam-
ples and witnesses generated by model checking and hence facilitate debugging
during program development steps.

We conduct three experimental studies for RSMCheck, addressing scalabil-
ity, comparison to existing model-checking tools, and application to real-world
examples in terms of an interprocedural data-flow analysis on Java programs.
In these studies we show that our lazy approach is effective, evaluates less con-
texts than in the exhaustive case, and leads to significant speedups up to one
order of magnitude compared to the exhaustive approach. Applied on their own
benchmark suites, PDSolver and PuMoC show timeouts or exceed memory

1 The tool along with data to reproduce our experimental studies can be downloaded
at https://github.com/PattuX/RSMCheck.

https://github.com/PattuX/RSMCheck

334 C. Dubslaff et al.

constraints on several instances [20]. We demonstrate that our lazy approach
manages to verify all instances and outperforms PDSolver and PuMoC by
being up to two orders of magnitude faster.

Outline. After settling notations and basic definitions required to formally state
the CTL model-checking problem for RSMs in Sect. 2, we first extend the exhaus-
tive model-checking approach by Alur et al. [1] to the ternary setting in Sect. 3.
The lazy approach is detailed in Sect. 4 and evaluated in Sect. 5. We close the
paper with further related work and future work in Sect. 6.

2 Preliminaries

For a set X we denote by ℘(X) the power set of X and by X∗, X+, and Xω

the sets of finite, finite non-empty, and infinite sequences of elements in X,
respectively. Given a sequence π = x1, x2, . . ., we denote by π[i] = xi the ith
element of π. A (ternary) interpretation over X is a function ∂ : X → {tt, ff, ??}
where tt stands for “true”, ff for “false”, and ?? for “unknown”. We denote
by Δ(X) the set of all interpretations over X. An interpretation ∂ ∈ Δ(X) is a
refinement of ∂′ ∈ Δ(X) if for all x ∈ X we have ∂′(x) = tt implies ∂(x) = tt,
and ∂′(x) = ff implies ∂(x) = ff.

A Kripke structure (see, e.g., [4]) is a tuple K = (S,−→,AP , L) where S is
a set of states, −→ ⊆ S × S is a transition relation, AP is a finite set of atomic
propositions, and L : S → ℘(AP) is a labeling function that labels states with
atomic propositions. To ease notations, we write s−→s′ for (s, s′) ∈ −→. A path
in K is a sequence s1, s2, . . . ∈ Sω where for each i ∈ N we have si −→ si+1. The
set of all paths starting in a state s ∈ S is denoted by Π(s).

2.1 Computation Tree Logic

To reason about Kripke structures we specify system requirements in computa-
tion tree logic (CTL, [11]). A CTL formula over AP is defined by the grammar

Φ = tt | a | ¬Φ | Φ ∨ Φ | ∃XΦ | ∃GΦ | ∃ΦUΦ

where a ranges over AP . Further standard operators, e.g., ∧, F, and ∀, can
be derived through standard transformations such as DeMorgan’s rule [4]. We
denote by Subf (Φ) and Subf∃(Φ) the set of subformulas and existential quantified
subformulas of Φ, respectively. Given a Kripke structure K = (S,−→,AP , L) we
define the satisfaction relation |= for CTL formulas over AP recursively by

s |= tt
s |= a iff a ∈ L(s)
s |= ¬Φ iff s 	|= Φ

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∃XΦ iff ∃π ∈ Π(s).π[2] |= Φ
s |= ∃GΦ iff ∃π ∈ Π(s).∀i ∈ N.π[i] |= Φ

s |= ∃Φ1 UΦ2 iff ∃π ∈ Π(s), j ∈ N.∀i < j.π[i] |= Φ1 ∧ π[j] |= Φ2

An interpretation ∂ over S × Subf (Φ) is consistent with K if for all s ∈ S and
φ ∈ Subf (Φ) we have ∂(s, φ) = tt implies s |= φ and ∂(s, φ) = ff implies s 	|= φ.

Faster CTL Model Checking for Recursive State Machines 335

2.2 Recursive State Machines

A labeled recursive state machine (RSM, [1]) over a set of atomic propositions
AP is a tuple A = (A1, . . . ,Ak) comprising components

Ai = (Ni, Bi, Yi,Eni,Ex i,−→i, Ii,AP , Li)

for i = 1, . . . , k where

– Ni is a set of nodes for which Ni ∩ Nj = ∅ for all j = 1, . . . , k, i 	= j,
– Bi is a set of boxes for which Bi ∩ Bj = ∅ for all j = 1, . . . , k, i 	= j,
– Yi : Bi → {1, . . . , k} is a mapping assigning a component index to every box,
– Eni,Ex i ⊆ Ni with Eni ∩Ex i=∅, are sets of entry and exit nodes, respec-

tively,
– −→i ⊆ (Ni\Ex i)∪Returni × (Ni\Eni)∪Call i is a transition relation, and
– Li : Ni ∪ Call i ∪ Returni → ℘(AP) is a node labeling function for which

Li((b, n)) = LY (b)(n) for all (b, n) ∈ Call i ∪ Returni.

Here, Call i =
⋃

b∈Bi
Callb where Callb = {(b, en) | en ∈ EnY (b)} denotes the

set of call nodes of a box b and Returni =
⋃

b∈Bi
Returnb where Returnb =

{(b, ex) | ex ∈ ExY (b)} denotes the set of return nodes of a box b. We assume
that all nodes except exit nodes are not final, i.e., for all i ∈ {1, . . . , k} and
n ∈ (Ni\Ex i) ∪ Returni there is n′ ∈ (Ni \ Eni) ∪ Call i such that n −→i n′.
Note that we allow for direct transitions from return to call nodes. By omitting
component indices, we denote the union of all corresponding entities in the RSM,
e.g., we write N for

⋃k
i=1 Ni, B for

⋃k
i=1 Bi, and −→ for

⋃k
i=1 −→i.

The semantics of a component Ai is defined as Kripke structure �Ai� = (Ni ∪
Call i ∪ Returni,−→i,AP , Li). The semantics of A is a Kripke structure

�A� = (B∗×(N ∪ Call ∪ Return),=⇒,AP , L)

where L labels each state as the corresponding node, i.e., L((σ, n)) = Li(n) for
all σ ∈ B∗ and n ∈ Ni ∪ Call i ∪ Returni, and =⇒ is the smallest transition
relation that obeys the following rules:

(loc)
σ ∈ B∗ n −→ n′

(σ, n) =⇒ (σ, n′)
(call)

σb ∈ B+ (b, en) ∈ Callb en −→ n
(
σ, (b, en)

)
=⇒ (σb, n)

(loop)
ex ∈ Ex

(ε, ex) =⇒ (ε, ex)
(return)

σb ∈ B+ (b, ex) ∈ Returnb (b, ex) −→ n

(σb, ex) =⇒ (σ, n)

Intuitively, a state (σ, n) of the Kripke structure �A� comprises a call stack
σ and a local node n of some component of A. Rule (loc) represents an internal
transition of a component, (loop) implements that the execution stays in the exit
nodes when leaving the outermost component, and (call) and (return) formalize
entering and leaving a box, respectively. For a CTL formula Φ, we write A |= Φ
if for all n ∈ En1 we have (ε, n) |= Φ in �A� [9,10]. The model-checking problem
we consider here in this paper asks whether A |= Φ for a given RSM A and CTL
formula Φ, both over AP .

336 C. Dubslaff et al.

Fig. 1. Java Dataflow example from [15] and its generated control-flow RSM.

Example. Figure 1 depicts a Java program (left) and an automatically generated
RSM model (right). Nodes in the RSM stand for control-flow locations with
names encoding references back to the abstract syntax tree of the source code.
Furthermore, nodes are labeled with usei and defi, which indicate whether the
variable i is read or written, respectively. Model checking on RSMs with such
use-def annotations can be used for an interprocedural data-flow analysis. For
instance, the requirement that whenever the variable i is defined, it is eventually
used, can be expressed by the CTL formula ∀G(

defi → ∃F(usei)
)
. Our Dataflow

example does not meet this requirement: after squaring i in Line 10, the new
value of i is not used in later program execution steps. In the RSM of Fig. 1,
this is witnessed by the only existing execution that starts in the initial node
main 11 0, reaches the defi-labeled node b 23 6 after calling b(), and finally
continues with b 24 7 and main 14 3 that are both not labeled with usei.

3 Ternary RSM Model Checking

This section provides the foundations for our exhaustive and lazy model-checking
algorithms. For this, we closely follow the approach of [1] and adapt their algo-
rithm for model checking single-exit RSMs against CTL∗ requirements towards
a ternary model-checking algorithm of multi-exit RSMs against CTL. Multi-exit
RSMs, i.e., RSMs where components might have more than one exit node, are
especially relevant for modeling real-world procedural programs. In fact, except
the Dataflow example from Fig. 1, all examples we consider in our experimental
studies of Sect. 5 require multi-exit RSMs for their analysis. Meanwhile, CTL as
a subclass of CTL∗ is still expressive enough to specify lots of relevant properties,
e.g., use-def properties for interprocedural static analysis.

The support of ternary CTL model checking follows the ideas by [7] and
replaces the role of refinement operations on satisfaction sets as employed in [1].
To ensure compositional RSM model checking, we discuss two kinds of deduc-
tions: first, how ternary interpretations are refined locally on each component,
and second, how ternary refinements are globally propagated.

Faster CTL Model Checking for Recursive State Machines 337

Algorithm 1: Contextualize(A, Φ, ∂, b)
input : an RSM A = (A1, . . . , Ak), a CTL formula Φ, a vector ∂ = (∂1, . . . , ∂k)

of ternary interpretations ∂j for Aj , and a box b ∈ Bi

output: a modified RSM A′ with a Φ-contextualized interpretation ∂′

1 γb :=
{
(ex, φ, η) | φ ∈ Subf (Φ), (b, ex) ∈ Returnb, ∂i((b, ex), φ) = η

}

2 if there is j where γb ⊆ ∂j then
3 A′ := A
4 Y ′

i (b) := j

5 else
6 Ak+1 := AYi(b)

7 A′ := (A1, . . . , Ak, Ak+1)
8 ∂k+1 := ∂Yi(b)

9 forall (s, φ, η) ∈ γb do ∂k+1(s, φ) := γb(s, φ)
10 ∂′ := (∂1, . . . , ∂k, ∂k+1)
11 Y ′

i (b) := k + 1

12 return A′, ∂′

3.1 Local Deduction

To locally refine ternary interpretations on RSM components, we use a
function LocalDeduce(K, Φ, ∂) that maps a finite Kripke structure K =
(S,−→,AP , L), a CTL formula Φ over AP , and an interpretation ∂ : S ×
Subf (Φ) → {tt, ff, ??} that is consistent with K to an interpretation ∂′ : S ×
Subf (Φ) → {tt, ff, ??} refining ∂. In essence, LocalDeduce implements one
step of the CTL model-checking algorithm by [7] where interpretations on sub-
formulas are refined in a bottom-up fashion as in classical CTL model checking
[11] but on ternary interpretations instead of binary ones. To achieve ternary
deduction, an optimistic and a pessimistic run of the classical CTL deduction
step is performed on binary interpretations of subformulas. In the optimistic run
all subformulas that are “unknown” are assumed to hold, while in the pessimistic
run they are assumed to not hold. Then, all subformulas that do not hold after
the optimistic run do surely not hold in the ternary setting and likewise, all
subformulas that do hold after the pessimistic run surely hold.

3.2 Contextualization of Components

A slight difference of our LocalDeduce method compared to a single deduction
step by [7] is that we explicitly give an arbitrary consistent partial interpretation
∂ as input parameter, while the algorithm by [7] assumes a maximally refined
consistent partial interpretation over all subformulas. To this end, we can include
assumptions on the satisfaction of subformulas in the deduction process such as
knowledge on the environment the system is executed in. In the setting of RSMs,
the environment of a component is constituted by their calling components.
Specifically, following the notion of contexts [3,9], the environmental influence on
a component can be fully captured by a given satisfaction relation on existential

338 C. Dubslaff et al.

Algorithm 2: GlobalDeduce(A, Φ, ∂)
input : an RSM A = (A1, . . . , Ak), a CTL formula Φ, and a vector

∂ = (∂1, . . . , ∂k) of ternary interpretations ∂j for Aj

output: refined interpretations ∂′ of ∂

1 ∂′ := ∂
2 repeat

3 ∂̂ := ∂′

4 forall i ∈ {1, . . . , k} do
5 forall (b, en) ∈ Call i do
6 ∂′

i((b, en), Φ) := ∂′
Yi(b)

(en, Φ)

7 ∂′
i := LocalDeduce(�Ai�, Φ, ∂′

i)

8 until ∂̂ = ∂′

9 return ∂′

formulas in exit nodes of the components.2 For an RSM A and a CTL formula Φ
both over a set of atomic propositions AP as formalized in Sect. 2, a Φ-context of
a component Ai in A is formalized as an interpretation γi ∈ Δ

(
Ex i × Subf∃(Φ)

)

over the component’s exit nodes and existential subformulas of Φ.
To reason about components in a modular way, we have to keep track

of the contexts and deduction results under these contexts for their reuse.
This is achieved by the function Contextualize, described in Algorithm 1,
which maps A, a tuple ∂ = (∂1, . . . , ∂k) of local interpretations for components
A1, . . . ,Ak of A, and a target box b ∈ Bi to a possibly modified RSM A′ with
a Φ-contextualized interpretation ∂′. Our algorithm for Contextualize checks
whether we already considered the component assigned to b w.r.t. the context
induced from b’s return nodes. If this is the case, we (re)assign b to the found
contextualized component. Otherwise a copy3 Ak+1 of the component AYi(b)

with the new context is generated (i.e., the number of components of the RSM
increases from k to k + 1) and the box b is reassigned to the fresh component
Ak+1 by updating function Yi (see Sect. 2.2).

3.3 Global Deduction

To propagate information from inside a component to a calling component, we
use a function GlobalDeduce, described in Algorithm 2, that maps an RSM
A, a target CTL formula Φ, and a tuple ∂ = (∂1, . . . , ∂k) of local interpretations
to refined interpretations ∂′ = (∂′

1, . . . , ∂
′
k). Our algorithm for GlobalDeduce

starts with ∂′ = ∂ and performs the following two steps until a fixed point is
reached for the local interpretations, i.e., ∂′ does not change anymore: First, a
2 Since the standard CTL model-checking deduction follows a backward-search app-

roach, the contextual information contained in the exit nodes of the component
propagates towards the entry nodes of the component during a local deduction step.

3 This is done due to better understandability of the approach. For practical imple-
mentations, one might only copy and modify interpretations on the components.

Faster CTL Model Checking for Recursive State Machines 339

Algorithm 3: ExhaustiveCheck(B, Φ)
input : an RSM B = (B1, . . . , B�) and a CTL formula Φ, both over AP
output: tt if B |= Φ and ff if B �|= Φ

1 A, ∂ := Initialize(B, Φ)
2 F := ∅

3 while F �= Subf (Φ) do
4 Pick φ ∈ Subf (Φ) with Subf (φ) \ F = {φ}
5 F := F ∪ {φ}
6 repeat
7 forall b ∈ B do A, ∂ := Contextualize(A, φ, ∂, b)
8 ∂ := GlobalDeduce(A, φ, ∂)

9 until ∂ did not change
10 forall i ∈ {1, . . . , k}, n ∈ Ni with ∂i(n, φ) = ?? do
11 if φ = ∃Gψ then ∂i(n, φ) := tt
12 if φ = ∃ψ1 Uψ2 then ∂i(n, φ) := ff

13 if there is en ∈ En1 with ∂1(en, Φ) = ff then return ff
14 else return tt

local deduction step LocalDeduce(Ai, Φ, ∂i) is performed for each component
Ai and their current interpretations ∂i. Second, we copy the refined interpreta-
tions on the entry nodes of each component Ai to their corresponding call nodes
in the calling component. This refinement in the call nodes may cause new possi-
ble local deductions in the calling components, leading to further refinements in
their entry nodes. As such, we alternate between these two steps until we reach
a fixed point.

3.4 Exhaustive Approach to RSM Model Checking

Piecing together the algorithms sketched so far, we define a compositional algo-
rithm for model checking RSMs against CTL formulas. That is, the algorithm
runs locally on the components of the RSM and propagates their satisfaction
relations towards a global satisfaction relation. The procedure follows ideas from
[1] where satisfaction of CTL subformulas is evaluated in a bottom-up fashion,
determining the truth value of minimal subformulas in all nodes before proceed-
ing to larger subformulas. During the evaluation, contextualized components are
created whenever there is not enough information present to fully determine
the truth values for subformulas in all nodes of calling components. Algorithm 3
shows the decision procedure ExhaustiveCheck(A, Φ) that decides for an RSM
A and a CTL formula Φ whether A |= Φ or not. The algorithm starts with an ini-
tialization of the local ternary interpretations of the components of A (function
Initialize, see in Line 1). Specifically, Initialize sets all local interpretations
to evaluate to ?? and then performs a local deduction for A1 to determine basic
truth assignments in the exit nodes of A1 following rule (loop) in the definition
of RSM semantics. After initialization, ExhaustiveCheck iterates over all sub-
formulas of Φ in a bottom-up fashion as within classical CTL model checking. For

340 C. Dubslaff et al.

each formula we alternate between contextualizing components assigned to boxes
by Contextualize and a global deduction by GlobalDeduce, refining local
interpretations of components and determining new contexts towards a propaga-
tion from calling components to called ones. This is done until we reach a fixed
point, i.e., local interpretations are not refined any further by GlobalDeduce.

Fig. 2. Example RSM

Global Dependency Cycle Resolution.
The reached fixed point does not solely ensure
that all truth values for the considered sub-
formula are determined in all nodes, i.e.,
some local interpretations may still map to
??. This can happen when the context of a
box depends on the evaluation of the boxes’
entry nodes. To illustrate this situation, let
us consider an example RSM A = (A1,A2)
over AP = , , depicted in Fig. 2: The
truth value of Φ = X G in n1 depends on
the truth value of φ = G in the return
node (b, n7), providing the context of A2 in
its exit node n7. However, we cannot deduce
this truth value locally in A1 as it depends on whether φ holds in the call node
(b, n6) or not. Intuitively, we thus have a cycle of dependencies connected through
several components that hinders further refinement via Contextualize and
GlobalDeduce. We resolve such situations by the following reasoning: Since
there is a dependency cycle that hindered refinement, all nodes on this cycle
have to satisfy . Thus, this cycle can serve as a witness of φ to hold and we
refine all local interpretations for φ and nodes on the cycle towards tt. A similar
argumentation can be applied when φ is an until formula but with refining all
??-nodes towards ff. For instance, is not reachable from (b, n6), such that
φ = U cannot hold on the dependency cycle illustrated above. Note that
our efficient resolution of global dependency cycles relies on ternary deduction,
since cycles of ??-nodes directly provide information about undeducibility of
truth values. While our algorithm is based on [1], their algorithm uses binary
refinements and thus cannot exploit such a resolution. However, their algorithm
also includes mechanisms to reason about satisfaction of formulas expressed in
linear temporal logic (LTL), which is used to cover the cycle resolution step.

Exhaustive RSM Model Checking. Taking global dependency cycle resolu-
tion into account and with proof techniques from [7, 1], we obtain correctness of
our exhaustive model-checking algorithm ExhaustiveCheck:

Theorem 1. ExhaustiveCheck(A, Φ) terminates for any RSM A and CTL
formula Φ over a common set of atomic propositions and returns tt iff A |= Φ.

Proof sketch. We show termination and soundness of each of the subroutines
Initialize,LocalDeduce,GlobalDeduce and Contextualize, and then
lift the results to the full algorithm for ExhaustiveCheck. First, observe that

Faster CTL Model Checking for Recursive State Machines 341

Initialize can be seen of a special case of a Contextualize where the context
is given by the rule (loop) in the definition of �A�.

The termination of LocalDeduce directly follows from [7]. Termination
of Contextualize is straight forward (see Algorithm 1). For GlobalDeduce
the important observation is that it strictly refines an interpretation until a fixed
point is reached, which is done in finitely many steps as the set of nodes N and
subformulas Subf (Φ) are finite. Since the number of contextualizations of each
box is bounded by 3|Ex |·|Subf∃(Φ)|, the calls of Contextualize in Line 7 can only
add finitely many contextualized components to A. Further, GlobalDeduce
is idempotent and ∂ does not change if A did not change. Thus, each iteration
of the main loop from Line 3 to Line 12 is guaranteed to terminate. Lastly, it is
clear that the main loop is executed exactly once for each φ ∈ Subf (Φ) and thus
the algorithm terminates.

For soundness, we show that at each execution point of the algorithm the
computed partial interpretation ∂ is sound, i.e.,

∂(s, φ) = tt =⇒ ∀σ ∈ B∗ : (σ, s) |= φ

and
∂(s, φ) = ff =⇒ ∀σ ∈ B∗ : (σ, s) 	|= φ.

Soundness of LocalDeduce follows immediately from [7]. For GlobalDeduce
and Contextualize the statement follows from using the definition of the
underlying Kripke structure �A� of A and the soundness of LocalDeduce.
The main effort in the proof is to show that the assertions following Line 10 are
correct. The arguments here follow the same ideas as outlined in the last section
about global dependency cycle resolution. �

4 Lazy RSM Model Checking

The model-checking algorithm presented in Sect. 3 mainly combined existing tech-
niques for model-checking RSMs and CTL formulas [11, 9, 7, 3]. In this section, we
devise a new algorithm that uses elements of the former but aims towards reduc-
ing the number of deduction steps involved. This is achieved by exploiting the
structure of the target CTL formula and the compositional structure of the RSM
towards lazy evaluation of subformulas and components, respectively.

4.1 Lazy Contextualization

Exhaustive RSM model checking determines satisfaction of subformulas φ ∈
Subf (Φ) in all nodes of the RSM A by evaluating the satisfaction relation within
components w.r.t. all possible contexts. The possibly exponentially many con-
texts that have to be considered with this approach is the main reason for CTL
model checking over RSMs to be EXPTIME-complete [5]. Reducing the number
of contexts considered during the deduction process thus provides a potential to
speed up the model checking of RSMs.

342 C. Dubslaff et al.

Ternary Formula Evaluation. The main idea towards reducing the number of
contexts to be evaluated is to leave satisfaction of subformulas φ of Φ unspecified
in case they do not have any influence on the satisfaction of Φ. For instance, let
us consider the RSM of Fig. 2 and Φ = X X(U). Then, satisfaction of Φ
can be determined by solely regarding φ = X in n1 and not reasoning about
either disjunct in other nodes, which would be necessarily done in the bottom-
up approach. Further, evaluating φ in n1 does not require any contextualization
of box b since n3 is labeled by and thus, in component A1 we can already
locally deduce φ to hold in n1 and thus n1 |= Φ, directly leading to A |= Φ. In
this example, we reduced the number of contexts to be evaluated as we did not
evaluate any context for component A2.

Lazy Expansion. To determine those contexts that have to be evaluated to
solve the model-checking problem, we combine the ternary formula evaluation
with a heuristic that determines those contexts that might be the reason for
underspecified satisfaction of subformulas and impact satisfaction of Φ in the
RSM. We provide such a heuristic by the function GetNextExpansion, spec-
ified by Algorithm 4. Depending on a node n where it is unknown whether the
target formula Φ holds or not, this function selects a box for which a contex-
tualization step in combination with a global deduction (see Sect. 3.3) could
determine the truth value of Φ in n. GetNextExpansion is defined in a recur-
sive manner, traversing Φ in a top-down fashion to reason on why Φ is unknown
in n and to find a box b where adding a subformula to its context might refine
the interpretation of Φ in n. By lazily contextualizing heuristically selected boxes
rather than contextualizing all boxes as in the case of the exhaustive approach,
we can potentially save contextualization steps.

Algorithm 4 considers several cases during recursion, from which we exem-
plify the most significant ones. First, those properties that could be locally
resolved are considered. For instance, Line 2 deals with Φ being a disjunction
where it is known that at least one disjunct must be unknown since otherwise Φ
would be determined in n. Then, a disjunct φi is chosen nondeterministically and
GetNextExpansion is recursively called, determining which contextualization
could resolve whether φi holds in n. The cases of entering and leaving a box b are
considered in Line 5 and Line 6, respectively. Notably, if n is an exit node, we
consider the satisfaction of Φ in the calling component, i.e., in its return node.
If Φ is already known, we found a box where contextualizing yields additional
information and thus return that box as our base case in Line 8. Otherwise, we
continue our search. For existential path properties, let us exemplify the case
where Φ = ∃φUψ (see Line 10). Here, we determine the next recursive call argu-
ments following the well-known CTL expansion law Φ = ψ ∨ (

φ ∧ ∃X(φUψ)
)
.

First, we consider the local cases where ψ or φ are unknown in n, asking for a
box to contextualize by invoking GetNextExpansion on ψ and φ, respectively.
Otherwise, the reason for Φ being unknown in n cannot be locally given and we
continue in a successor node of n where Φ is still unknown.

Faster CTL Model Checking for Recursive State Machines 343

Algorithm 4: GetNextExpansion(A, n, Φ, ∂, σ)
input : RSM A = (A1, . . . , Ak), node n ∈ Ni, formula Φ, a vector

∂ = (∂1, . . . , ∂k) of interpretations ∂j for Aj , and a call stack σ ∈ B+

output: a box b to contextualize

1 // ... other local case Φ = ¬φ ...
2 if Φ = φ1 ∨ . . . ∨ φ� then
3 choose j ∈ {1, . . . , 	} with ∂i(n, φj) = ??
4 return GetNextExpansion(A, n, φj , ∂, σ)

5 if n = (b, en) ∈ Call i then return GetNextExpansion(A, en, Φ, ∂, σb)
6 if n ∈ Ex i and there are ρ ∈ B∗ and b ∈ B with ρb = σ then
7 if ∂Yi(b)((b, n), Φ) = ?? then return

GetNextExpansion(A, (b, n), Φ, ∂, ρ)
8 return b // base case

9 // ... other existential cases Φ = ∃Gφ and Φ = ∃Xφ ...
10 if Φ = ∃φUψ then
11 if ∂i(n, ψ) = ?? then return GetNextExpansion(A, n, ψ, ∂, σ)
12 if ∂i(n, φ) = ?? then return GetNextExpansion(A, n, φ, ∂, σ)
13 choose n′ with n −→i n′ and ∂i(n

′, Φ) = ??
14 return GetNextExpansion(A, n′, Φ, ∂, σ)

Global Dependency Cycle Resolution. Similar as in the case of exhaus-
tive RSM model checking (see Sect. 3.4), global dependency cycles are an issue
also within GetNextExpansion. When implementing GetNextExpansion
exactly as described in Algorithm 4, the algorithm is not ensured to ter-
minate: If an exit node’s context depends on itself, we recursively call
GetNextExpansion infinitely often, not reaching the base case in Line 8.
An example where this happens is in the RSM Fig. 2 when checking against
the formula Φ = X U where GetNextExpansion would be called with
(b, n6) and φ = U . In the following steps, GetNextExpansion would
be invoked with φ on n6, n7, (b, n7), n2, and finally (b, n6) again. To
resolve such cycles, we first keep track of the node-formula pairs for which
GetNextExpansion has been already invoked. If a cycle is detected by trying
to invoke GetNextExpansion with the same parameters, we backtrack until
we can make a different choice in a disjunction- or exists-case, possibly leading
to a box to be contextualized. This backtracking procedure is only successful if
there is such a box not involved in any dependency cycle. For instance, in the
example above such a box does not exist. However, in such a case, similar rea-
soning as done for global dependency cycle resolution in Sect. 3.4 can be applied
to refine interpretations in nodes of a global dependency cycle.

4.2 Lazy Approach to RSM Model Checking

The idea of lazy contextualization of boxes in an RSM can be incorporated into
the exhaustive RSM model-checking approach ExhaustiveCheck presented in
Algorithm 3. This leads to a method LazyCheck presented in Algorithm 5.

344 C. Dubslaff et al.

Algorithm 5: LazyCheck(B, Φ)
input : RSM B = (B1, . . . , Bk) and CTL formula Φ, both over AP
output: tt if A |= Φ and ff if A �|= Φ

1 A, ∂ := Initialize(B, Φ)
2 F := ∅

3 while F �= Subf (Φ) do
4 Pick φ ∈ Subf (Φ) with Subf (φ) \ F = {φ}
5 F := F ∪ {φ}
6 ∂ := GlobalDeduce(A, φ, ∂)

7 if there is en ∈ En1 with ∂1(en, Φ) = ff then return ff
8 while there is en ∈ En1 with ∂1(en, Φ) = ?? do
9 b = GetNextExpansion(A, en, Φ, ∂, ε)

10 Contextualize(A, Φ, ∂, b)
11 while F �= Subf (Φ) do
12 Pick φ ∈ Subf (Φ) with Subf (φ) \ F = {φ}
13 ∂ := GlobalDeduce(A, φ, ∂)

14 if there is en ∈ En1 with ∂1(en, Φ) = ff then return ff

15 return tt

While ExhaustiveCheck surely contextualizes all boxes with contexts
encountered during global deduction GlobalDeduce, Algorithm 5 uses
GetNextExpansion to contextualize only those boxes that might contribute
to deciding whether the target formula Φ holds in the outermost component
of the RSM. In essence, Algorithm 5 follows the same reasoning principles as
ExhaustiveCheck given in Algorithm 3 by employing functions Initialize,
GlobalDeduce, and Contextualize. The main difference is that due to the
lazy evaluation of subformulas, the satisfaction of subformulas is not a pri-
ori known before invoking a global deduction GlobalDeduce (see Line 13).
However, due to our ternary reasoning implemented in LocalDeduce and the
progress in contextualizing boxes through GetNextExpansion in combination
with the global dependency cycle resolution described in Sect. 4.1, we obtain
correctness and soundness of our new model-checking algorithm for RSMs.

Theorem 2. LazyCheck(A, Φ) terminates for any RSM A and CTL formula
Φ over a common set of atomic propositions and returns tt iff A |= Φ.

Proof sketch. The termination and soundness arguments are analogous to the
arguments in the proof of Theorem 1 but require an additional step to prove
that GetNextExpansion terminates and is sound. This is achieved by care-
ful analysis of the implementation of the cycle resolution described in the last
section about global dependency cycle resolution. Termination of the full algo-
rithm LazyCheck then follows from the strict refinements also within adding
new contexts, for which there are only finitely many. Soundness follows by the
soundness of all subroutines as LazyCheck does not directly modify ∂. �

Faster CTL Model Checking for Recursive State Machines 345

Note that in the worst case, all boxes have to be contextualized to determine
whether the RSM A satisfies a CTL formula Φ. In this case, our algorithm is also
an exhaustive algorithm with a slight polynomial-time overhead of the reason-
ing steps involved in GetNextExpansion. However, the termination condition
might be satisfied after fewer contextualizations as we have seen in our example
of Fig. 2, resulting in strictly less computation steps than ExhaustiveCheck
and illustrating the potential of our lazy model-checking approach.

5 Implementation and Evaluation

We implemented both the exhaustive and the lazy approach presented in this
paper in a prototypical tool RSMCheck. Written in Python3, it is supported
by almost all common operating systems. RSMs are specified by a dedicated
JSON format, to which our tool also provides a translation from pushdown
systems for model checkers PDSolver [15] or PuMoC [20] that follows the
standard translation method (see, e.g., [6]).

Research Questions. To demonstrate applicability of our tool and investi-
gate properties of the algorithms presented in this paper, we conducted several
experimental studies driven by the following research questions:

(RQ1) Is our lazy approach effective, i.e., generates significantly less contexts
and is faster compared to the exhaustive approach?

(RQ2) How do analysis times of our approaches implemented in RSMCheck
compare to state-of-the-art procedural model checkers?

(RQ3) Can real-world procedural programs be verified with our approaches?

Experimental Setup. All our experiments were carried out using PyPy 7.3.3
on an Intel i9-10900K machine running Ubuntu 21.04, with a timeout threshold
of 30 min and a memory limit of 4 GB of RAM.

Fig. 3. Analysis times for the scalability experiment in seconds (logarithmic scale, lazy
on the left, exhaustive on the right, • marks stand for memouts)

346 C. Dubslaff et al.

5.1 Scalability Experiment

First, we conducted a scalability experiment to compare the exhaustive and lazy
approach. We randomly generated 2 500 RSM/CTL-formula pairs (Ai, Φj) of
increasing sizes and formula lengths: For i, j ∈ {1, . . . , 50} the RSM Ai contains
i components, each having �i/3� boxes and 3i nodes with connectivity of 20%,
while the formula Φj has a quantifier depth of �j/9�. Figure 3 shows the analysis
times in seconds for our lazy (left) and exhaustive (right) approach. We observe
that the more compositional structure and the bigger the requirement formulas,
the more the lazy approach pays off compared to the exhaustive approach, both
in memory consumption and analysis speed. In 5% of the cases, the exhaus-
tive approach ran into memouts and in all other cases the lazy approach is on
average eight times faster than the exhaustive one. For (RQ1) we conclude that
lazy contextualization is an effective method that allows for faster RSM model
checking.

Fig. 4. Analysis times for 500 PuMoC examples in seconds (logarithmic scale)

5.2 PUMOC Benchmark Set

Our second experimental study compares RSMCheck to the procedural CTL
model checker PuMoC on its benchmark set [20]. The benchmark set of PuMoC
comprises 500 randomly generated pushdown systems Pi and CTL formulas Φi,
numbered as in [20] with i ∈ {10, . . . , 509}. Here, the sizes of the pushdown
systems increase with increasing i. To enable RSM model checking, we trans-
lated each Pi to an RSM Ai in the input format of RSMCheck. The resulting
RSMs have only one component and thus, our lazy approach is expected to
not fully use its potential. However, while PuMoC runs into time- or memo-
uts in 28 examples, the lazy approach successfully completes each experiment
in less than 40 s. Most of the analysis times are in the same range (see Fig. 4
on the left) even though PuMoC is implemented in C, while RSMCheck is
implemented in Python, known for broad applicability but comparably weak
performance. Regarding (RQ2), we can conclude that RSMCheck is competi-
tive with the state-of-the-art model checker PuMoC even on single-component

Faster CTL Model Checking for Recursive State Machines 347

RSMs. Figure 4 on the right shows a comparison of the lazy approach to the
exhaustive one, applied on the 500 PuMoC examples. The exhaustive approach
is always slower than the lazy approach and runs into memouts in 69% of the
cases. This also supports our positive answer to (RQ1) drawn in the last section.

5.3 Interprocedural Static Analysis for JAVA Programs

Our last experimental study considers an interprocedural analysis for real-world
systems, borrowed from the benchmark set of [15]. These benchmarks comprise
pushdown systems modeling the control-flow of Java programs with use-def
annotations for all variables of the program, allowing for a data-flow analysis
of the program. We first used our implementation to translate programs and
the annotated requirement from the input formalism of PDSolver to the input
formalisms of PuMoC and RSMCheck. The requirement formalizes that when-
ever the selected variable is defined, it is eventually used (see the Dataflow exam-
ple in the preliminaries). Table 1 shows characteristics of our analysis. First, the
lazy and even the exhaustive approach are significantly faster than PDSolver
and PuMoC. Thus, contributing to (RQ2) and (RQ3), RSMCheck can be
faster than state-of-the-art procedural model checkers also on real-world mod-
els. This can be explained by the compositional structure of RSMs and their
generation of contexts: Even the exhaustive approach generates only those con-
texts that arise during deduction steps in exit nodes. These studies also support
that our lazy approach is effective (cf. (RQ1)): Column k of Table 1 indicates the
number of components of the RSM for the Java program, while #ctx indicates
the number of generated contexts during analysis. We can observe that the lazy
approach effectively avoids context generation, having a direct impact on the
analyzed state spaces and timings. Further, we observe speedups of up to two
orders of magnitude compared to the exhaustive approach.

Table 1. Analysis statistics for Java interprocedural analysis (time in seconds)

Java program Result PDSolver PuMoC k Exhaustive Lazy

time time #ctx time #ctx time

Dataflow (Fig. 1) ff <0.01 0.02 3 6 <0.01 1 <0.01

avroraCFG tt >1 800 >1 800 3 169 4 372 133.41 2 7.46

avroraDisassemble tt 806.66 >1 800 2 085 4 628 233.18 1 3.19

avroraELF tt 26.68 71.28 248 614 4.79 1 0.29

avroraMedTest tt 12.48 37.09 238 264 1.28 4 0.43

avroraReg tt 8.73 16.12 173 477 1.69 2 0.32

dom2pdf tt 80.46 1 345.56 615 2 002 17.88 1 0.76

fop2pdf tt 61.68 >1 800 607 2 029 27.65 6 1.19

348 C. Dubslaff et al.

6 Conclusion and Discussion

We presented a novel technique to model check RSMs against CTL requirements,
combining ternary reasoning with lazy contextualization of components. While of
heuristic nature, our experimental studies showed significant speedups compared
to existing methods in both scalability benchmarks and in an interprocedural
data-flow analysis on real-world systems. Our tool RSMCheck is, to the best of
our knowledge, the first tool that implements the RSM model-checking approach
by Alur et al. [1] for verifying CTL formulas.

Counterexamples and Witnesses. One major advantage of model-checking
approaches is the generation of counterexamples or witnesses for refuting or
fulfilling the analyzed requirement, respectively. Also in RSMCheck we imple-
mented a witness-generation method that traverses the nodes of the RSM accord-
ing to computed interpretations similarly as GetNextExpansion does to find
a path responsible for requirement satisfaction. The main difference to the stan-
dard witness-generation methods in Kripke structures is that not only nodes
are tracked but also call stacks and contexts. Counterexamples for universally
quantified requirements are obtained by our witness-generation method applied
on the complement existential requirement.

Expansion Heuristics. Central in our lazy approach is the nondeterminis-
tic algorithm GetNextExpansion, which determines the next context to be
considered. This algorithm leaves some freedom in how the nondeterminism is
resolved, for which plenty of heuristics are reasonable. We implemented two
methods, a random selection of subformulas and a deterministic selection that
chooses the left-most unknown subformula for further recursive calls, e.g., in the
disjunctive case in Line 2 of Algorithm 4. The latter is set as default to enable
developers to control the verification process by including domain knowledge,
e.g., by placing most influential subformulas upfront to further exploit lazy con-
text evaluation. In our experimental studies, choosing either heuristic did not
significantly change runtimes, which is explainable since the CTL requirements
were either randomly generated or a comparably simple use-def formula.

Related Work. The most commonly used state-based formalisms for proce-
dural programs are pushdown systems (PDSs) and RSMs, for which there are
linear-time transformations that lead to bisimilar Kripke structure semantics [2].
While PDSs take a more theoretical perspective, essentially encoding push-
down automata, RSMs directly reflect the programs procedural structure. Model
checkers for procedural programs have been first-and-foremost implemented for
PDSs, ranging from PuMoC [20] for CTL requirements and PDSolver [15]
for requirements specified in the CTL-subsuming μ-calculus, to the LTL model
checker Moped [19] also integrated into PuMoC. The latter relies on a symbolic
engine that uses binary decision diagrams (BDDs) [8], shown to be beneficial for
LTL model checking on large-scale procedural programs [19]. On-demand or lazy
approaches for interprocedural analysis have been considered, e.g., to determine
evaluation points for a priori narrowed scopes [16], or to analyze the interplay

Faster CTL Model Checking for Recursive State Machines 349

between classes and objects in JavaScript programs [17]. Contrary, our app-
roach focuses on lazy verification on state-based models.

Further Work. In next development steps, we plan to also include the support
for CTL∗ requirements, using well-known automata-theoretic constructions for
LTL model checking (see, e.g., [1,4)]. Further, we plan to extend RSMCheck
with a BDD-based model-checking engine to investigate the impact of our lazy
algorithms also in the symbolic setting. Remind that our experiments showed
that explicit lazy model checking is already efficient on large real-world systems
where state-of-the-art (symbolic) procedural model checkers were not able to
complete the verification process. Many extensions for PDSs have been presented
in the literature, which could also serve as bases for extending our work on lazy
RSM model checking. For instance, weighted RSMs (see, e.g., [18]) equip RSMs
with labels from a semi-ring, similarly as probabilistic RSMs equip transitions
with probabilities (see, e.g., [6,13]).

References

1. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4),
786–818 (2005)

2. Alur, R., Bouajjani, A., Esparza, J.: Model checking procedural programs. In:
Handbook of Model Checking, pp. 541–572. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-10575-8 17

3. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
Trans. Program. Lang. Syst. 23(3), 273–303 (2001)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

5. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

6. Brázdil, T.: Verification of Probabilistic Recursive Sequential Programs. Ph.D.
thesis, Masaryk University Brno (2007)

7. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 25

8. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Comput. 35, 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

9. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg
(1992). https://doi.org/10.1007/BFb0084787

10. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite
sequential processes. Theor. Comput. Sci. 221(1–2), 251–270 (1999)

11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774

350 C. Dubslaff et al.

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

13. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. J. ACM 56(1), 1–66 (2009)

14. Fehnker, A., Dubslaff, C.: Inter-procedural analysis of computer programs. US
Patent 8,296,735 (2012)

15. Hague, M., Ong, C.H.: A saturation method for the modal μ-calculus over push-
down systems. Inf. Comput. 209(5), 799–821 (2011)

16. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:
Proceedings of SIGSOFT 1995, pp. 104–115. ACM (1995)

17. Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural analysis with lazy propa-
gation. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 320–339.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1 20

18. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program.
58(1–2), 206–263 (2005)

19. Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Technical University
Munich, Germany (2002)

20. Song, F., Touili, T.: PuMoC: a CTL model-checker for sequential programs. In:
Proceedings of ASE 2012, pp. 346–349. ACM (2012)

https://doi.org/10.1007/978-3-642-15769-1_20

Fairness, Assumptions, and Guarantees
for Extended Bounded Response LTL+P

Synthesis

Alessandro Cimatti1, Luca Geatti1,2(B), Nicola Gigante3, Angelo Montanari2,
and Stefano Tonetta1

1 Fondazione Bruno Kessler, Trento, Italy
{cimatti,lgeatti,tonettas}@fbk.eu

2 University of Udine, Udine, Italy
{luca.geatti,angelo.montanari}@uniud.it

3 Free University of Bozen-Bolzano, Bolzano, Italy
nicola.gigante@unibz.it

Abstract. Realizability and reactive synthesis from temporal logics are
fundamental problems in the formal verification field. The complexity
of the Linear-time Temporal Logic with Past (LTL+P) case led to the
definition of fragments with lower complexities and simpler algorithms.
Recently, the logic of Extended Bounded Response LTL+P (LTLEBR+P)
has been introduced. It allows one to express any safety language defin-
able in LTL and it is provided with an efficient, fully-symbolic algorithm
for reactive synthesis.

In this paper, we extend LTLEBR+P with fairness conditions, assump-
tions, and guarantees. The resulting logic, called GR-EBR, preserves the
main strength of LTLEBR+P, that is, efficient realizability, and makes
it possible to specify properties beyond safety. We study the problem of
reactive synthesis for GR-EBR and devise a fully-symbolic algorithm that
reduces it to a number of safety subproblems. To ensure soundness and
completeness, we propose a general framework for safety reductions in
the context of realizability of (fragments of) LTL+P. The experimental
evaluation shows the feasibility of the approach.

1 Introduction

One of the most important problems in formal methods and requirement anal-
ysis is establishing whether a specification over a set of controllable and uncon-
trollable actions is implementable (or realizable), that is, whether there exists
a controller that chooses the value of the controllable actions and satisfies the

N. Gigante acknowledges the Free University of Bozen-Bolzano, Faculty of Computer
Science RTD project TOTA (Temporal Ontologies and Tableaux Algorithms). The
work was partially supported by the Italian GNCS project CATHARSIS (L. Geatti,
N. Gigante and A. Montanari).

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 351–371, 2021.
https://doi.org/10.1007/978-3-030-92124-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_20

352 A. Cimatti et al.

specification, no matter what the values of uncontrollable actions are. This prob-
lem has been formalized in the literature under the name of realizability [3]. The
very close problem of reactive synthesis aims at synthesizing such a controller,
whenever the specification is realizable. Usually, these problems are modelled as
two-player games between Environment, who tries to violate the specification,
and Controller, who tries to fulfill it. Realizability is known to have a very high
worst-case complexity. In particular, it has a non-elementary lower bound for S1S
specifications [2], and it is 2EXPTIME-complete for LTL specifications [22,23].

In order to apply realizability and reactive synthesis in real-world scenarios,
research has focused on the identification of fragments of logics like S1S and LTL,
with a limited expressive power, for which realizability can be solved efficiently.

A well-known example is Generalized Reactivity(1) logic (GR(1), for short) [1].
In this fragment, a specification is syntactically partitioned into assumptions
about the environment and guarantees for the controller. Both of them are either
Boolean formulas (α) or safety formulas (Gα) or conjunctions of recurrence for-
mulas (

∧n
i=1 GFαi). The dichotomy between assumptions and guarantees reflects

the way a system engineer usually formalizes system’s requirements, which is
summarized by the following sentence: “the controller has to behave in confor-
mance to the guarantees, under the given assumptions on the environment”.

On a different direction, other approaches focused on safety fragments of LTL
[4,25]. In particular, Extended Bounded Response LTL (LTLEBR+P, for short) is
a safety fragment of LTL+P that allows for a fully symbolic compilation of
formulas into deterministic automata. Such a feature contributes to a great
improvement in solving time for the synthesis problem. Moreover, LTLEBR+P
has a well-established expressiveness: LTLEBR+P can define exactly the set of
safety languages definable in LTL.

Contributions. The main contributions of this paper are the following ones.
First, we introduce GR-EBR, an extension of LTLEBR+P that admits: (i) fairness
conditions, in particular, conjunctions of recurrence formulas, that is,

∧
i GFαi,

forcing each formula αi to be true infinitely often; (ii) assumptions/guarantees in
the form of an LTLEBR+P formula augmented with fairness conditions. In addi-
tion to be able to express any LTLEBR+P formula, and, consequently, any safety
property definable in LTL, GR-EBR allows also for the definition of properties
beyond the safety fragment, like, for instance, G(p) → G(q).

Second, we devise a novel framework for deriving complete safety reductions
in the context of realizability of (fragments of) LTL. A notable feature of the
framework is that it provides a link to safety reductions for the model checking
problem and proves that if a reduction is complete for model checking, then it is
also complete for realizability. On one hand, this allows one to reason on Kripke
structures instead of on strategies, which is simpler; on the other hand, it enables
the use of some reductions already exploited in model checking for realizability,
provided that they conform to the framework.

Third, the proposed framework is used to derive a complete safety reduction
for the realizability problem of GR-EBR. A crucial property of the algorithm is

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 353

that the realizability check of each safety sub-problem is performed in a fully
symbolic way, thus retaining the distinctive feature of LTLEBR+P.

Last but not least, we provide an implementation of the algorithm as a proto-
type tool called grace (GR-ebr reAlizability ChEcker). The experimental eval-
uation shows good performance against tools for full LTL+P synthesis.

Related Work. GR(1) has been introduced in [1,21]. It is known that GR(1) is
a good candidate for writing specifications of real-world scenarios, with a rel-
atively low complexity: the realizability problem can be solved with at most a
quadratic number of symbolic steps in the size of the specification [1]. On the
other hand, GR(1) presents some restrictions that limit its use as a specification
language: (i) safety assumptions/guarantees are either Boolean formulas or for-
mulas of the form Gα, where the only temporal operator admitted in α is the
next operator X; (ii) assumptions are syntactically constrained to be formulas
controlled by Environment, in the sense that the variables inside the next oper-
ators of the safety part of the assumptions must be uncontrollable. In GR-EBR
we relax that syntactical restrictions of GR(1): for example, the safety assump-
tions and guarantees can be any arbitrary LTLEBR+P formula, like, for instance,
G(r → F[0,10]g). For this reason, GR-EBR can be considered an extension not
only of LTLEBR+P, but also of GR(1). On the semantic side, the comparison is
more problematic. On the one hand, all (standard) realizability problems for
GR(1) specifications are definable in LTL+P [1] and also in GR-EBR. On the
other hand, we do not known whether GR-EBR is able to express more proper-
ties than GR(1). Our conjecture is that this is the case. Take for instance the
bounded-response property G(r → F[0,k]g): it is easily expressible in GR-EBR,
but we see no way it could be definable in GR(1) without introducing additional
variables (that would maintain realizability but not language equivalence).

Bounded synthesis [9,13] belongs to the class of Safraless techniques [17],
and it consists in bounding the number of times Controller is forced to visit a
rejecting state of a Universal co-Büchi automaton (UCW, for short) for the initial
formula. This corresponds to a safety automaton, which can be either (i) made
deterministic by a suitable generalization of the classical subset construction
[7,11], or (ii) encoded into a constraint system [9,13] (e.g., SAT- or SMT-based)
which bounds also the size of a candidate controller (this also allows one to
tackle undecidable problems, for instance in the case of distributed or paramet-
ric synthesis). Both choices work for the whole class of UCW, and thus for full
LTL. A significant drawback of such an approach is that the UCW, which can
be exponentially larger than the initial specification, is explicitly represented.
Moreover, in the first case, the algorithm for the determinization turns out to
be quite complex, since each state of the resulting automaton is actually a func-
tion. This can also result into a very large state space, that can be tackled by
exploiting either antichains [11] or BDDs [7]. In contrast, as we will see, we
define a reduction tailored to GR-EBR formulas that allows us to exploit the
LTLEBR+P transformations introduced in [4] for a fully symbolic mapping of the

354 A. Cimatti et al.

initial formula directly into a sequence of symbolic safety automata. In partic-
ular, we never build any explicit-state automaton and we avoid the subsequent
use of determinization algorithms.

Organization. The rest of the paper is organized as follows. In Sect. 2, we intro-
duce the notation and provide the basic definitions. In Sect. 3, we define the
logic GR-EBR and give an example of GR-EBR specification. The framework for
deriving complete reductions is presented in Sect. 4. In Sect. 5 we describe the
algorithm for the realizability of GR-EBR specifications. The outcomes of the
experimental evaluation are reported in Sect. 6. Finally, in Sect. 7, we point out
some interesting future research directions.

2 Preliminaries

2.1 Temporal Logics

Linear Temporal Logic with Past (LTL+P) is a modal logic interpreted over
infinite state sequences. Let Σ be a set of propositions. LTL+P formulas are
inductively defined as follows:

φ := p | ¬φ | φ1 ∨ φ2 | Xφ | φ1 U φ2 | Yφ | φ1 S φ2

where p ∈ Σ. Temporal operators can be subdivided into the future operators,
next (X) and until (U), and past operators, yesterday (Y) and since (S). We
define the following common abbreviations (where � stands for any tautology
such as p ∨ ¬p): (i) release: φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2); (ii) eventually : Fφ1 ≡
� U φ1; (iii) globally : Gφ1 ≡ ¬F¬φ1; (iv) once: Oφ1 ≡ � S φ1; (v) historically :
Hφ1 ≡ ¬O¬φ1. LTL+P formulas are interpreted over infinite state sequences (or
ω-words) π ∈ (2Σ)ω. We call language a set of ω-words. We write π |= φ to
denote the fact that the state sequence π is a model (or satisfies) the formula φ.
We refer to [4] for the semantics of the LTL+P operators. With |φ|, we refer to
the size of the formula φ, defined as the number of symbols in it. We define the
language of φ, written L(φ), as the set of all and only the models of φ.

An important class of languages is the class of safety properties, that express
the fact that “something bad never happens”. Formally, we define a safety prop-
erty (or safety language) as a language for which it holds that, for any ω-word
that does not belong to language, there exists a finite prefix of it such that all
its continuations do not belong to the language as well. A formula φ is called a
safety formula if L(φ) is a safety language. Recently, Cimatti et al. [4] introduced
a subset of LTL+P, called Extended Bounded Response LTL+P, which expresses
exactly the safety properties that can be defined in LTL+P [5], and gave a sym-
bolic procedure to turn formulas of this fragment into symbolic automata.

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 355

Definition 1 (The logic LTLEBR+P[4]). Let a, b ∈ N. An LTLEBR+P formula
χ is inductively defined as follows:

η := p | ¬η | η1 ∨ η2 | Yη | η1 S η2 Pure Past Layer

ψ := η | ¬ψ | ψ1 ∨ ψ2 | Xψ | ψ1 U[a,b]ψ2 Bounded Future Layer
φ := ψ | φ1 ∧ φ2 | Xφ | Gφ | ψ R φ Future Layer
χ := φ | χ1 ∨ χ2 | χ1 ∧ χ2 Boolean Layer

We define the bounded until operator ψ1 U[a,b]ψ2 as a shortcut of the formula∨b
i=a(Xiψ2 ∧ ∧i−1

j=0 X
jψ1), where Xiφ := X(1) . . . X(i)φ. We define LTLP (the pure

past fragment of LTL+P) as the set of all the formulas belonging to the Pure
Past Layer of Definition 1, respectively. With some abuse of notation, we will
denote with the symbol of the logic (e.g., LTL+P or LTLEBR+P) also the set of
all the formulas of the respective logic.

2.2 Automata

Temporal logic has a strong relation with automata on infinite words [24]. Since
in the following we will work only with symbolic representations, we give here
the definition of symbolic automata. It is well-known that the symbolic repre-
sentation can be exponentially more succinct than the explicit-state one.

Definition 2 (Symbolic Automaton on Infinite Words). A symbolic
automaton on infinite words over the alphabet Σ is a tuple A = (V, I, T, α),
such that (i) V = X ∪ Σ, where X is a set of state variables and Σ is a set of
input variables, (ii) I(X) and T (X,Σ,X ′), with X ′ = {x′ | x ∈ X}, are Boolean
formulas which define the set of initial states and the transition relation, respec-
tively, and (iii) α(X) is an LTL+P formula over the variables in X which defines
the accepting condition.

Definition 3 (Languages of Symbolic Automata). An ω-word (or simply
a word) σ = 〈σ0, σ1, . . . 〉 is an infinite sequence of letters in Σ. A run τ =
〈τ0, τ1, . . . 〉 is an infinite sequence of states (i.e.,evaluations of the variables in
X) that are in relation with respect to T (i.e.,such that any two consecutive
evaluations satisfy the formula T). A run τ is induced by the word σ iff τ0 |= I
and (τi, σi, τi+1) |= T , for all i ≥ 0. We say that A is deterministic iff there
exists exactly one trace induced by σ, for each σ ∈ Σω. A word σ is accepted
by A iff there exists an accepting run induced by σ in A. The language of A,
denoted with L(A), is the set of all and only the words accepted by A.

We will refer to three important classes of accepting conditions: (i) safety :
α(X) := Gβ; (ii) Reactivity(1): α(X) := GFβ → GFβ′; (iii) Generalized Reactiv-
ity(1): α(X) :=

∧m
i=1 GFβi → ∧n

j=1 GFβ′
j ; where each β, β′, βi, β

′
j ∈ LTLP.

356 A. Cimatti et al.

2.3 Model Checking, Realizability, and Synthesis

A Kripke structure is a tuple M = (Σ,Q, I, T, L) where: (i) Σ is the input
alphabet, (ii) Q is the (finite) set of states, (iii) I ⊆ Q is the set of initial states,
(iv) T ⊆ Q × Q is a complete transition relation, and (v) L : Q → 2Σ is the
labeling function that assigns to each state the set of atoms in Σ that are true in
that state. We denote with |M | the number of states in M , i.e., |Q|. Given a path
π := 〈q0, q1, . . . 〉 in M , we denote with L(π) the sequence 〈L(q0), L(q1), . . . 〉. The
path π is called initialized iff q0 ∈ I. The model checking problem takes as input
a Kripke structure and a temporal formula, and asks to find whether all the
initialized traces of the former satisfy the latter.

Definition 4 (The model checking problem). Given a Kripke structure M
and a linear temporal formula φ, the model checking problem is the problem of
finding whether all the initialized traces π of M are such that L(π) |= φ, written
M |= Aφ (where A is the “for all paths” operator of CTL).

Realizability and reactive synthesis are in some sense more ambitious prob-
lems than model checking, since they aim to find whether a given temporal
formula φ over two sets U and C of uncontrollable and controllable variables,
respectively, is implementable and, if this is the case, to synthesize a possible
implementation. Usually, realizability is modeled as a two-player game between
Environment, who tries to violate the specification and Controller, who tries to
fulfill it. In this setting, an implementation of the specification is represented by
a strategy.

Definition 5 (Strategies and Languages of Strategies). Let U and C
be two disjoint sets of input (or uncontrollable) and output (or controllable)
variables, respectively. A strategy g is a function g : (2U)+ → 2C. We define
the language of the strategy g, denoted as L(g), as the set of all and only the
sequences 〈(U0 ∪C0), (U1 ∪C1), . . . 〉 such that Ui ∈ 2U and Ci = g(〈U0, . . . ,Ui〉),
for all i ≥ 0.

Definition 6 (Realizability and Synthesis for LTL). Let φ be a temporal
formula over the alphabet Σ = U ∪C, where U is the set of input variables, C the
set of output variables, and U ∩C = ∅. We say that φ is realizable if and only if
there exists a strategy g : (2U)+ → 2C such that L(g) ⊆ L(φ). If φ is realizable,
the synthesis problem is the problem of computing such a strategy.

The strategies which we are mainly interested in are the ones that can be
represented finitely. In the literature, there are two main (and equivalent) rep-
resentations for finite strategies, that is, Mealy machines and Moore machines.
In this paper, we are mainly interested in the first ones.

Definition 7 (Mealy Machine). A Mealy machine is a tuple M =
(ΣU , ΣC , Q, q0, δ) such that: (i) ΣU and ΣC are the input and output alphabets,
respectively; (ii) Q is the (finite) set of states and q0 is the initial state; (iii)
δ : Q × ΣU → ΣC × Q is the total transition function. We say that an infinite

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 357

word σ = 〈σ0, σ1, . . . 〉 ∈ (ΣU ∪ ΣC)ω is accepted by M iff there exists a trace
〈(q0, σ0), (q1, σ1), . . .〉(Q× (ΣU ∪ΣC))ω such that δ(qi, σi ∩ΣU) = (σi ∩ΣC , qi+1),
for all i ≥ 0. We define the language of M , written as L(M), as the set of all
the infinite words accepted by M .

A fundamental feature is the small model property for realizability of LTL+P
[11,17,22], which ensures that each realizable LTL+P formula has at least a
finitely representable strategy.

Proposition 1 (Small model property of LTL+P [22]). Let φ be an
LTL+P formula and n = |φ|. If φ is realizable by a strategy g, then there exists a
Mealy machine Mg such that (i) Mg has at most 22

c·n
states, for some constant

c ∈ N, and (ii) L(Mg) ⊆ L(φ).

3 LTLEBR+P with Fairness, Assumptions, and Guarantees

In this section, we extend LTLEBR+P (see Definition 1) with fairness condi-
tions (i.e., of type GFα), assumptions and guarantees (that correspond to the
antecedent and the consequent of a logical implication). The syntax of the result-
ing logic, called GR-EBR, is the following.

Definition 8 (The logic GR-EBR). The GR-EBR logic comprises all and only
those formulas that can be written in the following form:

(ψ1
ebr ∧

m∧

i=1

GFαi) → (ψ2
ebr ∧

n∧

j=1

GFβj)

where m,n ∈ N, ψ1
ebr, ψ

2
ebr ∈ LTLEBR+P and αi, βj ∈ LTLp, for each i, j ∈ N.

3.1 Expressiveness of GR-EBR

Each LTLEBR+P formula φ is a GR-EBR formula as well. In fact,
φ ≡ (� ∧ �) → (φ ∧ �) ∈ GR-EBR. It follows that any safety language definable
in LTL+P is definable in GR-EBR as well. In addition, GR-EBR is strictly more
expressive than LTLEBR+P, since the former can express also non-safety proper-
ties, like G(p) → G(q).

Consider the temporal hierarchy defined by Manna and Pnueli in [19]. The
Reactivity class is defined as the set of all and only those languages definable
by formulas of type

∧
i(GFαi → GFβi) where each αi and each βi are pure-

past LTL+P formulas. It is known that LTL+P is expressively equivalent to the
Reactivity class. Moreover, if we fix the number of conjuncts of the formula
above to be N, that the resulting class (called Reactivity(N)) strictly contains
Reactivity(N-1) and is strictly contained in Reactivity(N+1). Compared to this
classification, we have that GR-EBR is at least as expressive as the Reactivity(1)
class, since each formula of type GF(α) → GF(β) belongs to GR-EBR. However,
the exact expressiveness of GR-EBR is still unknown.

On a more practical side, we found that some benchmarks of SYNTCOMP
[15], like simple arbiter N (for each N ∈ {2, 4, 6, 8, 10, 12}) and also escala-
tor bidirectional, can be translated in GR-EBR with minor rewritings.

358 A. Cimatti et al.

3.2 An Example

We take the example proposed in [4] and we extend it with fairness, assump-
tions and guarantees. Suppose that we want to synthesize an arbiter that, given
a request from client i (for some i ∈ {1, . . . , n}) in the environment, assigns
the grant to the corresponding client, in such a way to guarantee the following
properties: (1) bounded response: the grant is assigned at most k time units, for
some k > n, after the request is issued; (2) mutual exclusion: the arbiter can
assign a grant at most to one client at a time. The conjunction of the previous
two requirements form the guarantees for the controller. The assumptions for
the environment are the following: (1) initially, there are no requests; (2) if a
request is issued at time i, then it cannot be issued until time i + k; (3) there
are infinitely many requests from each client.

In order to write a specification of the arbiter, we can model the requests for
the n clients with the (uncontrollable) variables r1, . . . , rn. Similarly, the grant
corresponding to the request ri can be modeled with the (controllable) variable
gi, for each i ∈ {1, . . . , n}. The assumption for the environment corresponds to
the LTLEBR+P formula φe defined as follows:

n∧

i=1

¬ri ∧
n∧

i=1

G(ri → G[1,k]¬ri) ∧
n∧

i=1

GFri

The guarantees for the controller correspond to the LTLEBR+P formula φc defined
as follows:

n∧

i=1

G(ri → F [0,k]gi) ∧ G(
∧

1≤i<j≤n

¬(gi ∧ gj))

The overall specification is φe → φc and syntactically belongs to GR-EBR.
Our goal is to solve the realizability problem for GR-EBR specifications by

reducing it to realizability subproblems for safety specifications. The reduction
to safety, which we will give in Sect. 5, generates a safety formula for each integer
k, in such a way to guarantee the following important properties: (i) soundness,
ensuring that the realizability of the kth subproblem implies the realizability
of the starting formula, and (ii) completeness, establishing the existence of an
upper bound μ such that the unrealizability of all the kth subproblems with
k ≤ μ implies the unrealizability of the starting formula. In the next section
we will give a general framework for (sound and) complete reductions. From it,
in Sect. 5, we will derive one for GR-EBR specifications, showing also how the
realizability of each safety subproblems can be solved symbolically.

4 A Framework of Safety Reductions for LTL+P
Realizability

The central question of this section is: how can we obtain a complete safety
reduction for the realizability problem of specifications written in (fragments of)
LTL? In the following, we propose a framework to answer it.

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 359

The core and the main novelty of our framework is a link with safety reduc-
tions for model checking: in order to design a complete reduction for the realiz-
ability problem, one can prove that it is complete for the model checking problem
and then use our framework to derive completeness for realizability. On one hand,
this allows to prove completeness at the level of model checking, which is simpler
than proving completeness for realizability. On the other hand, this opens the
possibility of using existing safety reductions already devised for model checking
for realizability as well. We start by defining what is a safety reduction in the
context of our framework.

Definition 9 (Safety reduction). Let S ⊆ LTL be a fragment of LTL. A
safety reduction for S is a function [[·]] such that, for each formula φ ∈ S over
the alphabet Σ, it holds that [[φ]] = {φk}k∈N

, where φk is a safety formula over
the alphabet Σ such that φk → φ, for any k ∈ N. With [[φ]]k, we will denote the
formula φk of the set above.

Link Between Realizability and Model Checking. The rationale behind the link
between realizability and model checking is the following one: since we can easily
view Mealy machines as (a particular type of) Kripke structures and viceversa,
and since by Proposition 1 we can restrict realizability to the search of finite
strategies representable by Mealy machines, the realizability problem of the
LTL+P formula φ can be reduced to checking if there exists a Mealy machine Mg

such that M ′
g |= Aφ, where M ′

g is the Kripke structure corresponding to Mg.
The Kripke structure M ′

g corresponding to the Mealy machine Mg =
(2U , 2C , Q, q0, δ) is defined as M ′

g = (2U∪C , Q′, I ′, T ′, L′) where:

1. Q′ = Q × {qU | U ∈ 2U} × {qC | C ∈ 2C};
2. I ′ = {(q0, qU , qC) ∈ Q′ | δ(q0, U) = (C, q′) for any U ∈ 2U , C ∈ 2C and q′ ∈

Q},
3. T ′ = {((q, qU , qC), (q′, qU ′ , qC′)) | δ(q, U) = (C, q′) for any U,U ′ ∈

2U , C, C ′ ∈ 2C , and q, q′ ∈ Q′} and
4. L′((q, qU , qC)) = U ∪ C.

The Kripke structure M ′
g is such that each trace of M ′

g corresponds to a word
of Mg, and viceversa.

In proving the completeness theorem, we will abstract from the concrete
safety reduction and give the conditions for a general safety reduction [[·]] (as
defined in Definition 9) to be complete. These conditions are formalized in
Definition 10.

Definition 10 (Sound and Complete safety reduction). Let S ⊆ LTL be
a fragment of LTL, φ a formula in S, and [[·]] a safety reduction for S. We say
that [[·]] is μ-complete, for a given function μ : N → N if and only if, for all
φ ∈ S and for all Kripke structures M :

M |= Aφ ⇔ ∃k ≤ μ(|M |) . M |= A[[φ]]k

360 A. Cimatti et al.

We can finally state the main theorem of our framework, which uses Def-
inition 10 and Proposition 1 in order to establish that if a safety reduction is
complete for the model checking problem, then it is complete for the realizability
problem as well.

Theorem 1 (Soundness and Completeness for LTL+P Realizability).
Let S ⊆ LTL be a fragment of LTL, φ ∈ S a formula over the input alphabet U
and output alphabet C (with n = |φ|) and [[·]] a μ-complete safety reduction for
S, for a given function μ. It holds that:

φ is realizable ⇔ ∃k ≤ μ(2|U| · 2|C| · 22
c·n

).[[φ]]k is realizable

Proof. We first prove the soundness, which corresponds to the right-to-left direc-
tion. Suppose there exist a k ≤ μ(2|U| · 2|C| · 22

c·n
) such that [[φ]]k is realizable.

Then, there exists a strategy g : (2U)+ → 2C such that L(g) ⊆ L([[φ]]k). By
Proposition 1, there exists a Mealy machine Mg = (2U , 2C , Q, q0, δ) with input
alphabet 2U and output alphabet 2C such that L(Mg) ⊆ L([[φ]]k). Starting from
Mg, let M ′

g = (2U∪C , Q′, I ′, T ′, L′) be the corresponding Kripke structure. The
Kripke structure M ′

g is such that each trace of M ′
g corresponds to a word of

Mg, and viceversa. Therefore all the traces π of M ′
g are such that L′(π) |= [[φ]]k,

that is M ′
g |= A[[φ]]k. Since by hypothesis [[·]] is a μ-complete safety reduction,

by Definition 10, it holds that M ′
g |= Aφ. This means that also L(Mg) ⊆ L(φ).

Since Mg is a Mealy machine, this implies that φ is realizable.
We now prove completeness, which corresponds to the left-to-right direction.

Suppose that φ is realizable. Since φ ∈ S and since S ⊆ LTL, φ is an LTL
formula as well. Therefore, by Proposition 1, there exists a Mealy machine Mg

with input alphabet 2U and output alphabet 2C such that L(Mg) ⊆ L(φ) with
at most 22

c·n
states, for some constant c ∈ N. From Mg, we build an equivalent

Kripke structure M ′
g with input alphabet Σ′ = 2U∪C , as described above for

the soundness proof. It holds that M ′
g |= Aφ. Since by hypothesis [[·]] is a μ-

complete safety reduction for S, and since |Q′| = 2|U| · 2|C| · |Q| (where Q and
Q′ are the set of states of Mg and M ′

g, respectively), by Definition 10, there
exists a k ≤ μ(2|U| · 2|C| · 22

c·n
) such that M ′

g |= A[[φ]]k. This means that also
L(Mg) ⊆ L([[φ]]k). Since Mg is a Mealy machine, this means that there exists a
k ≤ μ(2|U| · 2|C| · 22

c·n
) such that [[φ]]k is realizable. ��

Novelty and Usage. As already mentioned before, a distinguished and important
feature of our framework is that it provides a link with safety reductions for the
model checking problem. This opens the possibility to use model checking safety
reductions for the realizability problem as well, provided that the reduction
fulfills the requirements in Definition 10. In the next sections, we will define a
concrete safety reduction for GR-EBR specifications that is complete with respect
to Definition 10, and we will use it for introducing a novel algorithm for GR-EBR
realizability. Using Theorem 1, we will derive a corollary for the completeness of
our algorithm.

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 361

In Practice. The upper bound for the value of μ(·) (after which we can answer
unrealizable) is doubly exponential in the size of the initial formula and therefore,
in practice, it is prohibitively large. It follows that usually the completeness
of a safety reduction can be exploited in practice only for making sure that,
starting from a realizable specification, we will eventually find a k ∈ N such that
the kth subproblem is realizable. Therefore, like K-Liveness for model checking
[6], we can use our algorithm in parallel with another one that checks for the
unrealizability of the specification. The first that terminates stops the other and,
thus, the entire procedure. We remark that we cannot check the unrealizability
of φ by solving the dualized game (i.e.,looking for a Moore-type strategy of
Environment) for ¬φ, because GR-EBR and LTLEBR+P are not closed under
complementation.

Fig. 1. Low-level view of the procedure for the realizability of GR-EBR formulas.

362 A. Cimatti et al.

5 A Safety Reduction for GR-EBR

In this section, we describe the algorithm for solving realizability of GR-EBR
specifications. It consists in three steps. Firstly, we build the product between
the two symbolic and safety automata for the safety parts of both assumptions
and guarantees. This product automaton has a GR(1) accepting condition. The
second step consists in a so-called degeneralization, that, by using determinis-
tic monitors, turns the GR(1) accepting condition into a Reactivity(1) (R(1),
for short) condition. The third and last step, that is the core of the procedure,
reduces the realizability problem over the above automaton to a sequence of
safety synthesis problems, that is, realizability problems over safety (and sym-
bolic) automata Ak

safe , one for each index k ∈ N. By introducing a concrete safety
reduction [[·]]ebr for GR-EBR, and by proving that it is complete with respect to
Definition 10, we prove the completeness of the entire procedure. The structure
of the full procedure is depicted in Fig. 1.

Finally, note that, as for now, there is no incrementality between an iteration
and the next one, because of the lack of incremental safety synthesizers. The only
point that we save between one iteration and the next one is the construction
of the two symbolic safety automata, which is performed only once during the
procedure.

5.1 Construction of the Automaton with a GR(1) Condition

In this part, we describe the first step of the algorithm. Starting from a GR-EBR
formula φ := (φ1

ebr ∧∧m
i=1 GFαi) → (φ2

ebr ∧∧n
j=1 GFβj), the objective is to obtain

an automaton A such that: (i) it has a GR(1) accepting condition, and (ii) it
recognizes the same language of φ, i.e.,L(φ) = L(A). In order to do that, we
first build the two symbolic safety automata for the safety parts of both the
assumptions and the guarantees, that is for φ1

ebr and φ2
ebr. Since by definition

both are LTLEBR+P formulas, we use the transformation described in [4], to
which the reader is referred for more details.

From now on, let A(φ1
ebr) and A(φ2

ebr) be the automata for φ1
ebr and φ2

ebr,
respectively. Let Aφebr be the product automaton A(φ1

ebr) × A(φ2
ebr). The ques-

tion is how to set the acceptance condition of Aφebr such that the conditions
(i) and (ii) of above are fulfilled. We answer this question by examining how
the automata A(φ1

ebr) and A(φ2
ebr) are made internally. Take for example the

formula Gp (for some atomic proposition p ∈ Σ). The safety automaton cor-
responding to this formula comprises an error bit as one of its state variables,
let us call it error, which is initially set to be false. The transition function
for error is deterministic and updates error to true if ¬p holds in the current
state, or keeps its value otherwise. The set of safe states comprises all and only
those states in which error is false. In a symbolic setting, this is expressed
by the formula G¬error. In this way, p is forced to hold constantly in all (and
only) the words accepted by the automaton.

A crucial property of each error bit is monotonicity : once error is set to true,
it can never be set to false again. Formally, given a trace τ of the automaton, it

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 363

holds that, if there exists i ≥ 0 such that τ(i) |= error, then τ(j) |= error, for all
j ≥ i. Monotonicity of the error bits allows us to express an accepting condition
of type G¬error in terms of GF¬error, by maintaining the equivalence.

Lemma 1 (Monotonicity of Error Bits). Each error bit is monotone.

Proof. Consider a trace τ of an automaton with an accepting condition of the
type G¬error. If τ |= G¬error then of course τ |= GF¬error. Suppose now
that τ |= GF¬error. If by contradiction we suppose that τ �|= G¬error, we have
that there exists an i ≥ 0 such that τ(i) |= error. By the monotonicity property,
this would mean that also τ(j) |= error, for all j ≥ i, that is τ |= FGerror, but
this a contradiction with out hypothesis. Therefore, we proved that changing the
acceptance condition of an automaton from a G¬error to GF¬error maintains
the equivalence. ��

Let error1 and error2 be the error bits of A(φ1
ebr) and A(φ2

ebr), respectively.
Let A∧→∧

ebr be the automaton obtained from Aφebr by replacing its acceptance
condition with the following GR(1) condition:

(GF¬error1 ∧
m∧

i=1

GFαi) → (GF¬error2 ∧
n∧

j=1

GFβj) (1)

The intuition is that error1 and error2 keep track of the safety parts of φ, that
is φ1

ebr and φ2
ebr. The following lemma proves the equivalence between φ and

A∧→∧
ebr .

Lemma 2. Let φ be an GR-EBR formula. It holds that L(φ) = L(A∧→∧
ebr).

Proof. Let φ ∈ GR-EBR. φ is of the following form:

(φ1
ebr →

m∧

i=1

GFαi) → (φ2
ebr →

n∧

j=1

GFβj)

By the theorems proved in [4], it holds that L(φ1
ebr) = L(A(φ1

ebr)) and L(φ2
ebr) =

L(A(φ2
ebr)).

Consider first the left-to-right direction. Let σ ∈ L(φ). We prove that σ ∈
L(A∧→∧

ebr). Each σ ∈ L(φ) is such that: a. either σ |= ¬φ1
ebr ∨ ¬(

∧m
i=1 GFαi), b.

or σ |= φ2
ebr ∧ ∧n

j=1 GFβj Recall that A∧→∧
ebr is defines as the product automaton

A(φ1
ebr) × A(φ2

ebr) with the acceptance condition α defined as (GF¬error1 ∧∧m
i=1 GFαi) → (GF¬error1 ∧ ∧n

j=1 GFβj).
Consider case a. If σ |= ¬φ1

ebr ∨ ¬(
∧m

i=1 GFαi), then the trace induced by σ
in A∧→∧

ebr is such that at least one of the following two cases hold:

a.1. either ∃i ≥ 0 such that τ(i) |= error1, that is τ |= F(error1). In this case,
we exploit monotonicity of error1. Since τ |= F(error1), it also holds that
τ |= FG(error1), that is τ �|= GF(¬error1). As a consequence, τ |= α, where
α is the acceptance condition of A∧→∧

ebr , and thus σ ∈ L(A∧→∧
ebr).

364 A. Cimatti et al.

a.2. or τ |= ¬∧m
i=1 GFαi. In this case, of course, τ |= α (that is, τ satisfies the

acceptance condition of A∧→∧
ebr), and thus σ ∈ L(A∧→∧

ebr).

Consider now the case b. If σ |= φ2
ebr ∧ ∧n

j=1 GFβj , then σ |= φ2
ebr and

σ |= ∧n
j=1 GFβj . Therefore, the trace induced by σ in A∧→∧

ebr is such that
τ |= G(¬error2)∧∧n

j=1 GFβj , that implies that τ |= GF(¬error2)∧∧n
j=1 GFβj .

Therefore, τ |= α, and thus σ ∈ L(A∧→∧
ebr). The opposite direction can be proved

similarly. ��

5.2 Degeneralization

The objective of this part is to transform the GR(1) accepting condition of the
automaton A∧→∧

ebr , that is of the form
∧m

i=1 GFαi → ∧n
j=1 GFβj, into a condition

of the form GFα → GFβ (also called Reactivity(1) objective, R(1), for short).
In this context, we will use the term monitor as a synonym of deterministic
automaton. In order to accomplish the task, for each αi (resp. for each βi), we
define a monitor Mαi

(resp. Mβi
) that is set to true when αi (resp. βi) has been

read and is reset to false when all the αi (resp. βi) have been read. For this last
condition, we define the monitors M tot

α and M tot
β .

Let Mαi
and M tot

α be the symbolic safety automata such that their input
alphabet is 2Σ (where Σ is the alphabet of the starting GR-EBR formula), their
set of state variables are {mαi

} and {mtot
α }, respectively, all their reachable

states are safe states, and their transition relations are the following:

i n i t (mαi
) := 0

next (mαi
) := case

αi : 1
mtot

α : 0
d e f au l t : mαi

esac

i n i t (mtot
α) := 0

next (mtot
α) := case

mα1 ∧ · · · ∧ mαm : 1
d e f au l t : 0

esac
dumbline

We define Mβi
and M tot

β as Mαi
and M tot

α , respectively, but with αi sub-
stituted with βi and α substituted with β. Let Adegen be the product between
all the Mαi

, Mβi
, M tot

α and M tot
β . Let AGF→GF

degen be the automaton obtained from
Adegen by replacing its accepting condition with the Reactivity(1) condition
GFmtot

α → GFmtot
β . We can prove the following lemma, which states that this

step of the algorithm maintains the equivalence.

Lemma 3. L(A∧→∧
ebr) = L(Aφebr × AGF→GF

degen).

Proof. We prove separately the two directions. Consider first the right-to-left
direction. Let σ be an infinite word of L(Aφebr × AGF→GF

degen). Then σ is a word
in L(Aφebr). Moreover, σ is a word in L(AGF→GF

degen) and thus there exists a run τ

induced by σ such that τ |= GFmtot
α → GFmtot

β , that is, τ |= FG¬mtot
α ∨ GFmtot

β .
We divide in cases:

– if τ |= FG¬mtot
α , then by the semantics of the temporal operators F and G,

there exists an i ≥ 0 such that for all j ≥ i, τj |= ¬mtot
α . By construction of

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 365

the monitors mtot
α , this means that there exists an i ≥ 0 such that for all j ≥ i,

τj |= ∨m
k=1 ¬mαk

. This implies that, there exists a k ∈ [1,m] and an i ≥ 0
such that for all j ≥ i, such that τj |= ¬mαk

. Indeed, suppose by contradiction
that it is not so: then for all k ∈ [1,m], there exists infinitely many positions
i ≥ 0 such that τi |= mαk

. This would mean that the monitor M tot
α is set to

true infinitely many times, that is GFmtot
α , but this is a contradiction with

our hypothesis. Therefore, it holds that τ |= ∨m
k=1 FG¬mαk

, and thus also
that τ |= ∧m

i=1 GFαi → ∧n
j=1 GFβj . Overall, since τ is induced by σ, we have

that σ is a word of L(Aφebr) that induces a run τ such that τ |= ∧m
i=1 GFαi →∧n

j=1 GFβj , that is σ ∈ L(A∧→∧
ebr).

– If otherwise τ |= GFmtot
β , then there exists infinitely many positions i ≥ 0

such that τi |= mtot
β . Moreover, it holds that for all i1 ≥ 0 and for all i2 ≥ i1,

if τi1 |= mtot
β and τi2 |= mtot

β , then, for all 1 ≤ k ≤ n, there exists a i1 ≤ j ≤ i2
such that τj |= mbk

. Putting together these two points, we have that for all
1 ≤ k ≤ n, there exists infinitely many i ≥ 0 such that τi |= mbk

. That is,
τ |= ∧n

k=1 GFmbk
. By definition of the monitors Mβi

and since τ is induced
by σ, we have that σ is a word in L(Aφebr) that induces a run τ such that
τ |= ∧m

i=1 GFαi → ∧n
j=1 GFβj . That is, σ ∈ L(A∧→∧

ebr).

The proof the left-to-right direction is specular, and therefore is omitted from
the presentation. ��

5.3 Reduction to Safety for Reactivity(1) Objectives

In this part, we describe a complete safety reduction (see Definition 10) tailored
for Reactivity(1) objectives. We will apply this reduction on the automaton
AGF→GF

degen obtained from the previous step. The intuition is to use a counter to
count and limit the number of positions, after a position in which mtot

β holds, in
which mtot

α ∧ ¬mtot
β holds. We define the counter as follows.

Definition 11 (Counter for the Reactivity(1) objective). Let Ak
#→

α,β
be

the symbolic and deterministic safety automaton whose set of safe states is rep-
resented by the formula G(#→

α,β < k) and whose transition relation is the follow-
ing:

i n i t (#→
α,β) := 0

nex t (#→
α,β) := case

mtot
β : 0

mtot
α : #→

α,β + 1
d e f a u l t : #→

α,β

esac

We define Ak
safe := Aφebr×Adegen×Ak

#→
α,β

, and we set the accepting condition

of Ak
safe to be the one of Ak

#→
α,β

, i.e.,G(#→
α,β ≤ #→

α,β < k). The automaton Ak
safe

is a symbolic and deterministic safety automaton, and therefore it can be used
as an arena for a safety game. In practice, we check the realizability of Ak

safe

by means of a tool for safety synthesis. We start with k = 0, and we check the

366 A. Cimatti et al.

realizabilty of Ak
safe : if Controller has a strategy, than we stop, otherwise we

increment k and we repeat the cycle.
In order to prove that this step is sound and complete, we use the framework

described in Sect. 4. We call [[·]]ebr the safety reduction described in this part.
Since the framework works with formulas rather than with automata, for all
φ ∈ GR-EBR, we define [[φ]]kebr to be any safety formula such that L([[φ]]kebr) =
L(Ak

safe). From now, with id : N → N we denote the identity function.

Theorem 2. [[·]]ebr is a id-complete safety reduction for GR-EBR.

Proof. We have to prove that, for all φ ∈ GR-EBR, for all Kripke structures M
and for all k ∈ N, it holds that:

M |= A φ ⇔ ∃k ≤ id(|M |).M |= A[[φ]]kebr

We prove separately the two directions. Consider first the soundness which cor-
responds to the right-to-left direction. Suppose that M |= A[[φ]]kebr . It holds that,
for each initialized trace π of M , L(π) |= [[φ]]kebr , where L(·) is the labeling
function of M . Let π be an initialized trace of M . By definition of [[·]]ebr , it
holds that, there exists a run τ induced by L(π) such that: (i) τ is accepting in
Aφebr ×Adegen, and (ii) τ is accepting in Ak

#→
α,β

. From the second point, we have
that:

– either, #→
α,β make infinitely many resets. This means that there exists

infinitely many positions in τ in which mtot
α holds and, after at most k occur-

rences of mtot
α , there is a mtot

β . Therefore, in particular, there exists infinitely
many positions in which mtot

β holds, that is τ |= GFmtot
β .

– or the counter #→
α,β stops to increment because, because it does not read

any mtot
α . This means that there exists finitely many positions in which mtot

α

holds, that is τ |= FG¬mtot
α .

Therefore, it holds that τ |= FG¬mtot
α ∨ GFmtot

β , that is τ |= GFmtot
α → GFmtot

β .
Finally, we have that τ is an accepting run of Aφebr × Adegen such that τ |=
GFmtot

α → GFmtot
β . Since by hypothesis L(π) is induced by τ , by definition of

AGF→GF
degen , we have that L(π) ∈ L(Aφebr × AGF→GF

degen). By concatenating Lemma 2
and Lemma 3, we have that L(π) ∈ L(φ), and therefore π |= φ. It follows that
M |= A φ.

We now prove completeness, which corresponds to the left-to-right direction.
Suppose that M |= Aφ, where φ ∈ GR-EBR. We prove this case by contradiction.
Suppose therefore that for all k ≤ id(|M |), M �|= A[[φ]]kebr . This means that there
exists an initialized trace π in M such that L(π) �∈ L([[φ]]kebr), for all k ≤ id(|M |).
By definition of [[·]]ebr , for k = id(|M |), we have that for all runs τ induced by
L(π) in Aφebr × Adegen × Ak

#→
α,β

, it holds that τ �|= G(#→
α,β ≤ k). Let τ be one

of these runs. There exists a position i in τ such that τi |= (#→
α,β = v), for some

v > k. By definition of the counter #→
α,β , the run τ is such that:

∃0 < h1 < h2 < · · · < hv . (τh1 |= mtot
α ∧ τh2 |= mtot

α ∧ . . . τhv
|= mtot

α ∧
∀h1 ≤ h ≤ hv.(τj |= ¬mtot

β))

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 367

Recall that τ is a run induced by L(π). Since v > k, k = id(|M |) and M is a
finite-state Kripke structure, the positions h1 . . . hv in π (attention: not in τ)
cannot be all different. That is, there exists at least two indexes s, e ∈ N such
that: (i) 1 ≤ s < e ≤ v, (ii) πhs

= πhe
, and (iii) πhs

|= mtot
α . Starting from π,

we can build a looping trace π′ that agrees with π in the prefix π[0,he] and then
loops on the interval π[hs,he]. It holds that π′ is an initialized trace of M and
it induces a run τ ′ such that τ ′ |= GFmtot

α ∧ FG¬mtot
β , that is τ ′ �|= GFmtot

α →
GFmtot

β . Nevertheless, since M |= A φ, by Lemma 2 and Lemma 3, we have that
L(π′) ∈ L(Aφebr × AGF→GF

degen), and therefore this is a contradiction. This means
that it has to hold that L(π) ∈ L([[φ]]kebr), that is π |= [[φ]]kebr for all the initialized
traces π of M , and thus there exists a k ≤ id(|M |) such that M |= A[[φ]]kebr . ��

With Theorem 1, we derive the following corollary that proves the complete-
ness of our procedure.

Corollary 1. For any formula φ ∈ GR-EBR, it holds that: φ is realizable iff
∃k ≤ id(2|U| · 2|C| · 22

c·n
) such that [[φ]]kebr is realizable.

6 Experimental Evaluation

We implemented the algorithm described in Sect. 5 and summarized in Fig. 1 in a
prototype tool called grace (which stands for GR-ebr reAlizability ChEcker)1.
We chose safetysynth [14] as a BDD-based backend for solving each safety
game.

As competitor tools, we chose BoSy [9,10,12] and Strix [18,20]. BoSy
implements the Bounded Synthesis approach (see the paragraph on the related
works in Sect. 1), while Strix is based on parity games and is the winner of
SYNTCOMP 2018, 2019 and 2020. We set a timeout of 180 s. The experiments
have been run on a 16-cores machine with a 2696.6 MHz AMD core with 62 GB
of RAM.

We remark that a comparison with GR(1) synthesis tools is nontrivial. The
majority of the tools for GR(1) only support the realizability of the strict impli-
cation (see for example [8]), not the standard one (which is our case). Therefore,
although the latter can be reduced to the former [1], a non-trivial practical effort
is required to write an algorithm for this translation.

We considered benchmarks of two types: (i) artificial, and (ii) derived from
the SYNTCOMP [14] benchmarks’set. Regarding the artifical benchmarks, we
partitioned them in four categories, each containing 30 benchmarks scalable in
their dimension N , for a total of 120 formulas. The categories are the following
ones:

1. G(u0 → X(u1 → X(u2 → · · · → X(uN) . . .))) → G(
∧N

i=1(ui ↔ Xci))
2. (G(u0 → X(u1 → X(u2 → · · · → X(uN) . . .))) ∧ XNGuN ∧ GFuN) →

(
∧N

i=1(ui ↔ XNci) ∧ GFcN)

1 https://es-static.fbk.eu/tools/grace/.

https://es-static.fbk.eu/tools/grace/

368 A. Cimatti et al.

3. (G(u0)∧XG(u1)∧· · ·∧XNG(uN)∧∧N
i=1 GFui) → (

∧N
i=1 G(ui ↔ ci)∧

∧N
i=1 GFci)

4. (¬u0 ∧ G[0,N]¬u0 ∧ XN+1Gu0) → (
∧N

i=1 G(u0 ↔ Xci) ∧ ∧N
i=1 GF(ci ∧ u0))

The variables starting with u are uncontrollable, while those starting with c are
controllables. All the benchmarks are realizable, and were specifically crafted
to elicit potential criticalities of grace. In particular, the benchmarks in the
fourth category have been specifically designed in order to force the minimum k
of the termination of grace to increase with their dimension.

Fig. 2. grace compared to BoSy (on the left) and to Strix (on the right)

Fig. 3. On the left, the size of the benchmarks compared to solving time. On the right,
grace vs BoSy on number of safety sub-problems.

Regarding the benchmarks derived from the SYNTCOMP benchmarks’set,
we included (i) simple arbiter N (for each N ∈ {2, 4, 6, 8, 10, 12}), escalator
bidirectional, which belong to the SYNTCOMP benchmarks’ set, and (ii) our
example for an arbiter (Sect. 3.2), with N ∈ {1, . . . , 15}.

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 369

Figure 2 show the comparison between the tools on all the benchmarks of
both types. All times are in seconds. From Fig. 2 (left), it is clear the exponen-
tial blowup in solving time in which BoSy occurs. The blowup involves formulas
of both types, and of all four categories (of artificial benchmarks). For exam-
ple, (i) on category 4, the solving times of BoSy on N = 13, 14 are 19.4 and
136.3 s, respectively, and the corresponding automata have 27 and 31 states,
respectively. (ii) on simple arbiter N, BoSy takes 45.714 s for N = 8, and
reaches the timeout for N = 10. Figure 3 (left), which compares the dimension
of the benchmarks (X axis) with the solving time of grace, BoSy and Strix (Y
axis), clearly shows this trend. A more precise study of the complexity of BoSy
shows that the majority of the time spent by it is due to the construction of the
UCWcorresponding to the input formula, which is the task of the tools ltl3ba
and spot. On the contrary, it is clear from Fig. 2 (left) that grace avoids this
bad behavior, most likely due to the fact that the explicit state UCWis never
built. Similar considerations can be made for the tool Strix (see Fig. 2, right),
except for the category example-arbiter, in which the solving times of Strix
are consistently better than the ones of grace. A careful study revealed that
all these benchmarks are transformed to the equi-realizable formula true by the
preprocessor of Owl [16] (a tool for ω-automata manipulation), which Strix is
based on.

The plot in Fig. 3 (right) shows, for each index k ranging from 1 to 31 (these
correspond to the columns), on how many benchmarks (of both types) grace
or BoSy terminate with index k (this corresponds to the height of a column).
The benchmarks in category 4 and the ones of simple arbiter N force grace
to terminate with increasing values of k. The plot in Fig. 3 points out that
BoSy does not incur in this growth, except for one benchmark. Nevertheless,
the solving times of grace are still better than the ones of BoSy. This witnesses
the fact that each safety sub-problem generated by grace is very simple to solve.

7 Conclusions

In this paper, we introduced the logic of GR-EBR, an extension of LTLEBR+P
[4] adding fairness conditions and assumes-guarantees formulas, and studied its
realizability problem. We aim at extending the work done in three directions:
(i) as far as we know, there are no safety synthesizer (like safetysynth) that
are able to exploit incrementality ; since in our context, the only part of the
automaton that changes between one iteration and the next one is the counter,
some work may be saved; (ii) since GR(1) is a very efficient fragment, it is
important to investigate whether there is a compilation from GR-EBR to GR(1);
(iii) last but not least, we aim at giving a semantic characterization of GR-EBR,
and at exploiting the proposed framework for more expressive logics, such as full
LTL.

370 A. Cimatti et al.

References

1. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reactive
(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

2. Buchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. In: Mac Lane, S., Siefkes, D. (eds.) The Collected Works of J. Richard
Büchi, pp. 525–541. Springer, New York (1990). https://doi.org/10.1007/978-1-
4613-8928-6 29

3. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International
Congress of Mathematicians, vol. 1962, pp. 23–35 (1962)

4. Cimatti, A., Geatti, L., Gigante, N., Montanari, A., Tonetta, S.: Reactive synthesis
from extended bounded response LTL specifications. In: 2020 Formal Methods in
Computer Aided Design (FMCAD), pp. 83–92. IEEE (2020)

5. Cimatti, A., Geatti, L., Gigante, N., Montanari, A., Tonetta, S.: Expressiveness of
extended bounded response LTL. arXiv preprint arXiv:2109.08319 (2021)

6. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: 2012
Formal Methods in Computer-Aided Design (FMCAD), pp. 52–59. IEEE (2012)

7. Ehlers, R.: Symbolic bounded synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14295-6 33

8. Ehlers, R., Raman, V.: Slugs: extensible GR(1) synthesis. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 333–339. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 18

9. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
354–370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-
5 20

10. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 17

11. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 22

12. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesizing reac-
tive systems from hyperproperties. In: Chockler, H., Weissenbacher, G. (eds.) CAV
2018. LNCS, vol. 10981, pp. 289–306. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96145-3 16

13. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Trans-
fer 15(5–6), 519–539 (2013)

14. Jacobs, S., Bloem, R.: The 5th reactive synthesis competition (SYNTCOMP 2018)
15. Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T., Könighofer, R., Pérez,

G.A., Raskin, J.F., Ryzhyk, L., Sankur, O., et al.: The first reactive synthesis
competition (SYNTCOMP 2014). Int. J. Softw. Tools Technol. Transfer 19(3),
367–390 (2017)

16. Křet́ınský, J., Meggendorfer, T., Sickert, S.: Owl: a library for ω-words, automata,
and LTL. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
543–550. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 34

17. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: 46th Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 531–540. IEEE (2005)

https://doi.org/10.1007/978-1-4613-8928-6_29
https://doi.org/10.1007/978-1-4613-8928-6_29
http://arxiv.org/abs/2109.08319
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-319-41540-6_18
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-642-02658-4_22
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-030-01090-4_34

Fairness, Assumptions and Guarantees for LTL-EBR+P Synthesis 371

18. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica 57(1), 3–36 (2020)

19. Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper, 1989).
In: Proceedings of the 9th Annual ACM Symposium on Principles of Distributed
Computing, pp. 377–410 (1990)

20. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 31

21. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

22. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035790

23. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Insti-
tute of Science (1992)

24. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

25. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to
safety ltl synthesis. In: HVC 2017. LNCS, vol. 10629, pp. 147–162. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70389-3 10

https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/11609773_24
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/978-3-319-70389-3_10

TACoS: A Tool for MTL Controller
Synthesis

Till Hofmann1(B) and Stefan Schupp2

1 Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany
hofmann@kbsg.rwth-aachen.de

2 Cyber-Physical Systems Group, TU Wien, Vienna, Austria
stefan.schupp@tuwien.ac.at

Abstract. We introduce TACoS, a tool for synthesizing controllers sat-
isfying MTL specifications of undesired behavior with timing constraints.
Our contribution extends an existing theoretical approach towards prac-
tical applications. The most notable features include: Online labeling to
terminate early if a solution has been found, heuristic search to expand
the most promising nodes first, search graph pruning to reduce the prob-
lem size by pruning irrelevant parts of the search graph, and reusing pre-
viously explored search nodes to further reduce the search graph. Finally,
multi-threading support allows to make use of modern CPUs with many
parallel threads. TACoS comes with a C++ library with minimal exter-
nal dependencies and simple-to-use API. We evaluate our approach on
a number of scenarios and investigate how each of the enhancements
improves the performance.

The tool is publicly available at https://github.com/morxa/tacos.

Keywords: Controller synthesis · Metric temporal logic

1 Introduction

Controller synthesis is the problem of determining a controller for a given system
to ensure the behavior of the composed system follows a certain specification.
The problem has been researched extensively for different kinds of systems and
different kinds of specifications (e.g., [4,7,9]). It has also seen interest in the AI
community (e.g., [8]) and in robotics (e.g., [12,13,15]). One particular synthesis
problem is controller synthesis for MTL specifications [7], where the system is
modeled as timed automaton (TA) and the specification of undesired behavior
is given as a metric temporal logic (MTL) formula. The problem has shown to
be decidable for finite words and fixed resources [7]. While several applications
are based on metric temporal constraints (e.g., [17,20,22]), to the best of our
knowledge, no general implementation of such a synthesis approach exists.

Supported by DFG RTG 2236 UnRAVeL and DFG grant GL-747/23-1 ConTrAkt.

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 372–379, 2021.
https://doi.org/10.1007/978-3-030-92124-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_21&domain=pdf
http://orcid.org/0000-0002-8621-5939
http://orcid.org/0000-0002-2055-7581
https://github.com/morxa/tacos
https://doi.org/10.1007/978-3-030-92124-8_21

TACoS: A Tool for MTL Controller Synthesis 373

Related Work Controller synthesis for timed systems has been researched exten-
sively, in different settings. Tools such as Acacia+ [6] and Unbeast [10] syn-
thesize controllers for LTL specifications, which does not allow time constraints.
SynthKro and FlySynth [1] synthesize controllers that remain in or reach a
given set of states of a timed automaton. Uppaal-Tiga [5] and Synthia [19]
control timed automata against a TCTL specification to accomplish reachability
or safety. Uppaal-Tiga has also been extended to models with partial observ-
ability [11], using pre-defined controller templates. Casaal [16] synthesizes a
controller for MTL0,∞ specifications. MTL0,∞ is a subset of MTL, where every
bounded until operator may only use an upper or a lower time-bound (not both).

In this work, we present TACoS, a TA Controller Synthesis tool for MTL
specifications, based on theoretical decidability results from [7]. In Sect. 2, we
summarize the MTL synthesis problem, before we describe our tool in more
detail in Sect. 3. In Sect. 4, we evaluate TACoS on benchmarks from several
scenarios, before we conclude in Sect. 5.

2 The MTL Synthesis Problem

Timed automata (TA) [2] are a widely used model for representing real-timed and
hybrid systems. Their properties are often described with MTL [14], a temporal
logic that extends linear temporal logic (LTL) with metric time on the Until
modality. One commonly used semantics for MTL is a pointwise semantics, in
which formulas are interpreted over timed words. A timed word ρ over a finite set
of atomic propositions AP is a finite or infinite sequence ρ = (σ0, τ0) (σ1, τ1) . . .
where σi ∈ AP and τi ∈ R+ such that the sequence (τi) is monotonically non-
decreasing and non-Zeno. We use |ρ| to denote the number of elements in ρ.
For a set AP of atomic propositions, the formulas of MTL are built from φ ::=
a | ¬φ | φ ∧ φ | φUI φ (where a ∈ AP). We use the short-hand notations
φ ˜UI ψ := ¬ (¬φUI ¬ψ) (dual until), FIφ := (�UI φ) (finally) and GIφ :=
¬FI¬φ (globally). Given a timed word ρ = (σ0, τ0) (σ1, τ1) . . . over alphabet AP
and an MTL formula φ, ρ, i |= φ is defined as usual for the boolean operators,
and with the following rule for UI : ρ, i |= φ1 UI φ2 iff there exists j such that
(1) i < j < |ρ|, (2) ρ, j |= φ2, (3) τj − τi ∈ I, (4) and ρ, k |= φ1 for all k with
i < k < j. We also write ρ |= φ for ρ, 0 |= φ and we define the language of φ as
L(φ) = {ρ | ρ |= φ}.

MTL Control Problem. The goal is to synthesize a controller C that controls a
plant P against a specification of undesired behaviors Φ such that all resulting
traces in the composition of P and C satisfy the specification Φ without blocking
the plant P. In this context, control means that C has control over some actions,
while the environment controls the remaining actions. The synthesis problem on
finite words and finite resources (i.e., fixed number of clocks and fixed constants)
is decidable [7]. We refer to [7] for the formal definition.

374 T. Hofmann and S. Schupp

3 Approach

Based on [7], our tool works as follows: First, it translates the specification into
an alternating timed automaton (ATA) [18]. Next, it recursively constructs a
tree over regionalized configurations of the synchronous product of the plant
TA A and the specification ATA B. Intuitively, each node n in the search tree
contains a single regionalized configuration nA of A and a set nB of possible
configurations of B, which represents parts of the specification that have not
been satisfied yet. Each newly discovered node in the search tree is expanded
by computing all (regionalized) time and jump successors n′

A of nA and the
respective N ′

B for all symbols. Nodes in which the A configuration is in a final
location and Φ has fully been satisfied (B is accepting) are labeled as bad, as they
represent cases in which the plant is in a final state and the specification has
been violated. After building the search tree, the tree is traversed and labeled
bottom-up (good, bad) based on the labels of the leaf nodes. A controller exists
if the root node is labeled good.

TACoS aims to provide a practicable tool to synthesize TA controllers
against an MTL specification, with a focus on performance and usability. We
summarize the most notable features in the following.

Parallelization. To make use of multi-threading, the node expansion is par-
allelized. Pending nodes are stored in a globally accessible queue and worker
threads take nodes from the queue, expand those and push resulting successors
into the queue for further processing.

Incremental Labeling. Instead of first constructing a complete search tree and
then labeling the tree bottom-up, it is also possible to partially label the tree
during expansion. Nodes are labelled recursively until either the root node has
been labeled or not enough information is available to label a node. This app-
roach allows to label the root node without constructing the complete search
tree.

Pruning. With incremental labeling, a node’s label may be determined during
search. With pruning, whenever a node’s label is determined, all of its unlabeled
successors are marked as canceled, which prevents them from being expanded
later on. The combination of incremental labeling and pruning allows to effec-
tively skip large parts of the search graph during construction.

Node Reusing. When constructing the search tree as described, many nodes are
created multiple times. This may occur whenever certain states of the system
are reachable via different execution paths of the plant. Duplicate nodes conse-
quently agree on their subtrees, i.e., the work of exploring these subtrees will
be done several times. To overcome this, we identify duplicate nodes during the
search. Instead of re-creating the sub-tree, we reuse the existing node instead
and add the corresponding edges. This changes the underlying data structure
from a search tree to a search graph, affecting all other improvements as well.

TACoS: A Tool for MTL Controller Synthesis 375

Search Heuristics. Incremental labeling and search-graph pruning heavily
depend on the order in which nodes are expanded. We provide several heuris-
tics which determine the order of nodes in the queue: breadth-first-search (bfs)
and depth-first-search (dfs) work as expected. A heuristics based on timing
(time) prioritizes the node with the shortest accumulated time (global time).
The heuristic cw prefers nodes with configurations where more parts of the spec-
ification (of undesired behavior) are not yet satisfied. The heuristic env prefers
environment actions over controller actions, based on the intuition that the con-
troller should only act if necessary (and let the plant run otherwise). The com-
posite heuristic comp is a weighted sum of other heuristics. In the following, we
have used comp = 16 · cw + 4 · env + 1 · time. Finally, the tool also provides a
random heuristic, which is mainly helpful for comparison and testing.

Action- and Location-Based Specification. The approach in [7] suggests a method
designed for action-based specifications in which labels on transitions (the
actions) are used. However, location-based specifications, which specify the
desired or undesired behavior in terms of properties on locations, sometimes
allow a more intuitive specification. Our tool supports both types of specifica-
tions.

Utility. To ease debugging, we provide several utility functions such as plotting
of the input automata, the resulting controller, or the search graph. TACoS
reads text input and is shipped with a C++ library with simple API to create
input programmatically. The synthesis result can be stored in a human-readable
or binary format. TACoS can also be run in an interactive mode after search,
which allows to debug the controller synthesis step-by-step with visual support.

4 Evaluation

We evaluated our system on several scenarios and ran each scenario in each
configuration five times. All experiments were conducted on an AMD Ryzen 7
3700X with 16 parallel threads and 32 GB memory. We measured the number
of locations in the input problem, the number of nodes in the search graph, the
number of explored nodes in the search graph, and the number of locations in
the resulting controller. We used three scenarios:

Example 1 (Railroad). This is a variant of the train-gate controller [3]. A train
approaches a crossing, the controller needs to open and close the gate such that
the train can pass. The problem is modeled as product of two TAs. The train
performs the uncontrollable actions get near, enter, leave, travel in sequence,
i.e., approaches and passes through the gate section. The gate may perform the
controllable actions start close,start open, finish close, finish open to change its
state. The composed system is safe if the gate is closed when the train enters
and opens after the train leaves the crossing. Thus, the bad behavior is defined
by

enter ˜U ¬finish close ∨ start open ˜U ¬leave ∨ travel ˜U ¬finish open

376 T. Hofmann and S. Schupp

We have parameterized the problem by the number of crossings and the distances
before each crossing, where Railroad(4,8) is the problem with two crossings
and a distance of 4 and 8 time units before the first and second crossing.

Table 1. A comparison of the heuristics implemented in TACoS for an instance of
the railroad example. We compare the used heuristics (heu), the resulting running
time (wall) and CPU time (CPU) in seconds, the size of the search tree (nodes) and
the number of explored nodes (expl) in thousands of nodes as well as the number of
locations in the resulting controller (ctrl). Standard deviations are given in brackets,
e.g., 1.1(2) means 1.1 ± 0.2.

Scenario size heu wall (s) CPU (s) nodes (k) expl (k) ctrl

Railroad(2,2) 144 bfs 5.39(9) 5.38(9) 1.832(2) 0.78(2) 53(7)

dfs 1.1(4) 1.1(4) 1.2(2) 0.8(1) 79(29)

cw 0.8(3) 0.8(3) 1.0(2) 0.60(9) 71(8)

env 1.1(3) 1.1(3) 1.1(2) 0.33(8) 46(3)

time 6.56(9) 6.55(9) 1.799(8) 0.309(7) 52(10)

rand 1.3(5) 1.3(5) 1.3(2) 0.27(6) 71(20)

comp 0.4(3) 0.4(3) 0.6(3) 0.4(2) 32(10)

Example 2 (Robot). A robot transports goods between stations (based on [22]).
It has a camera that needs to be enabled 1 s before the robot performs a pick or a
put action. As the camera may overheat, it must not run continuously for longer
than 4 s. The camera is controllable with the actions on and off, the robot’s
actions pick, put, and move are not controllable. The robot takes exactly 3 s to
move between the stations. The specification of undesired behavior is given as:

¬on U pick ∨ F(off ∧ (¬on U pick)) ∨ F(on U[0,1] pick)
∨ ¬on U put ∨ F(off ∧ (¬on U put)) ∨ F(on U[0,1] put)

Example 3 (Conveyor Belt). A conveyor belt moves luggage in an airport (based
on [21]). If a piece of luggage gets stuck, the belt must stop, which allows the
luggage to be removed. The conveyor must not immediately continue but instead
wait for at least 2 s. Also, the conveyor should not stop without reason. The
controllable actions are move and stop, while the uncontrollable actions are
release, resume, and stuck. The undesired behavior is specified as follows:

F(release ∧ F[0,2]move) ∨ (¬stuck)U stop ∨ F(stop ∧ (¬stuck)U stop)

Results We first compare the different heuristics in Table 1. We can see that
using heuristics is generally helpful and improves both the running time and the
resulting search size and controller size when compared to bfs. Interestingly,
the heuristic time does not perform well and is actually worse than bfs, dfs,
and even random. Also, dfs performs surprisingly well compared to the other

TACoS: A Tool for MTL Controller Synthesis 377

Table 2. A comparison of single- and multi-threading (with 16 threads). We compare
the used heuristics (heu), whether multi-threading is used (multi), the resulting running
time (wall) and CPU time (CPU) in seconds, the size of the search tree (nodes) and
the number of explored nodes (expl) in thousands of nodes as well as the number of
locations in the resulting controller (ctrl). Standard deviations are given in brackets,
e.g., 24(3) means 24 ± 3.

Scenario heu multi wall (s) CPU (s) nodes (k) expl (k) ctrl

Railroad(2,2) comp n 0.4(3) 0.4(3) 0.6(3) 0.4(2) 32(10)

comp y 0.12(4) 1.0(4) 0.9(2) 0.6(2) 60(27)

Robot comp n 0.0289(2) 0.0289(2) 0.0182(1) 0.0067(9) 30(7)

comp y 0.0134(3) 0.066(1) 0.040(4) 0.0065(8) 34.4(5)

Conveyor comp n 0.044(7) 0.044(7) 0.045(2) 0.035(5) 150(33)

comp y 0.037(2) 0.057(2) 0.046(1) 0.037(2) 166(5)

Table 3. The railroad problem scaled to different travel times and number of crossings,
using the comp heuristic and multi-threading. We provide the size of the timed automa-
ton (size), the resulting running time (wall) and CPU time (CPU) in seconds, the size
of the search tree (nodes) and the number of explored nodes (expl) in thousands of
nodes as well as the number of locations in the resulting controller (ctrl). Standard
deviations are given in brackets, e.g., 0.14(5) means 0.14 ± 0.05.

Scenario size wall (s) CPU (s) nodes (k) expl (k) ctrl

Railroad(2,2) 144 0.12(1) 1.0(1) 0.93(7) 0.58(5) 43(5)

Railroad(2,4) 144 0.42(4) 4.1(8) 2.26(7) 1.4(2) 49(9)

Railroad(2,8) 144 2.0(7) 21(10) 5.8(7) 3.1(8) 47(10)

Railroad(4,4) 144 1.14(7) 15(1) 3.24(1) 2.238(8) 48(2)

Railroad(4,8) 144 6(1) 91(19) 8.3(6) 5.1(5) 64(19)

Railroad(8,8) 144 28(9) 431(151) 11.1(3) 7.5(1) 45(10)

Railroad(1,1,1) 832 4(1) 38(14) 13(4) 6(1) 74(82)

Railroad(2,1,1) 832 1877(287) 29 858(4582) 45(3) 33(2) 101(31)

Railroad(2,2,2) 832 3654(1243) 58 228(19820) 49(13) 37(7) 103(45)

heuristics, at least in this scenario. With some margin, the composite heuristic
comp performs best. Second, we evaluate multi-threaded search, running times
are shown in Table 2. We can see that multi-threading reduces the running time,
but increases CPU time and often has a negative impact on search size and
controller size, most likely as additional nodes with a worse heuristic value are
expanded as well when computing with multiple threads. Finally, Table 3 shows
the performance on the scaled railroad problem. We can see that TACoS is able
to find a controller even for large input problems, although the running time
increases significantly. Further results are available on the tool webpage1.

1 https://github.com/morxa/tacos.

https://github.com/morxa/tacos

378 T. Hofmann and S. Schupp

5 Conclusion

We have presented TACoS, to our knowledge the first tool for TA controller
synthesis against MTL specifications. TACoS comes with a number of features
aiming to provide both good performance and usability. We have evaluated the
tool in three settings, which showed that it is capable of synthesizing controllers
with reasonable performance. To further improve its performance, investigating
more sophisticated heuristics would be a promising next step. Also, in future
work, we want to investigate the applicability of the presented approach for
control program synthesis and its performance on real robotic systems.

References

1. Altisen, K., Tripakis, S.: Tools for controller synthesis of timed systems. In: RT-
TOOLS (2002)

2. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2) (1994). https://doi.
org/10.1016/0304-3975(94)90010-8

3. Alur, R., Henzinger, T., Vardi, M.: Parametric real-time reasoning. In: STOC
(1993)

4. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata. IFAC 31(18) (1998). https://doi.org/10.1016/S1474-6670(17)42032-5

5. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3 14

6. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 45

7. Bouyer, P., Bozzelli, L., Chevalier, F.: Controller synthesis for MTL specifications.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 450–464.
Springer, Heidelberg (2006). https://doi.org/10.1007/11817949 30

8. De Giacomo, G., Vardi, M.: Synthesis for LTL and LDL on finite traces. In: IJCAI
(2015)

9. D’souza, D., Madhusudan, P.: Timed control synthesis for external specifications.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45841-7 47

10. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 25

11. Finkbeiner, B., Peter, H.-J.: Template-based controller synthesis for timed systems.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 392–406.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 27

12. He, K., Lahijanian, M., Kavraki, L., Vardi, M.: Reactive synthesis for finite tasks
under resource constraints. In: IROS (2017). https://doi.org/10.1109/IROS.2017.
8206426

13. Hofmann, T., Lakemeyer, G.: Controller synthesis for Golog programs over finite
domains with metric temporal constraints. arXiv:2102.09837 (2021)

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/11817949_30
https://doi.org/10.1007/3-540-45841-7_47
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-642-28756-5_27
https://doi.org/10.1109/IROS.2017.8206426
https://doi.org/10.1109/IROS.2017.8206426
http://arxiv.org/abs/2102.09837

TACoS: A Tool for MTL Controller Synthesis 379

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

15. Kress-Gazit, H., Fainekos, G., Pappas, G.: Temporal-logic-based reactive mission
and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009). https://doi.
org/10.1109/TRO.2009.2030225

16. Li, G., Jensen, P.G., Larsen, K.G., Legay, A., Poulsen, D.B.: Practical controller
synthesis for MTL0,∞. In: SPIN (2017). https://doi.org/10.1145/3092282.3092303

17. Nikou, A., Tumova, J., Dimarogonas, D.: Cooperative task planning of multi-agent
systems under timed temporal specifications. In: ACC (2016). https://doi.org/10.
1109/ACC.2016.7526793

18. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS
(2005). https://doi.org/10.1109/LICS.2005.33

19. Peter, H.-J., Ehlers, R., Mattmüller, R.: Synthia: verification and synthesis for
timed automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 649–655. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 52

20. Saha, S., Julius, A.: An MILP approach for real-time optimal controller synthesis
with metric temporal logic specifications. In: ACC (2016). https://doi.org/10.1109/
ACC.2016.7525063

21. van Hulst, A.C., Reniers, M.A., Fokkink, W.J.: Maximally permissive controlled
system synthesis for non-determinism and modal logic. Discrete Event Dyn. Syst.
27(1), 109–142 (2016). https://doi.org/10.1007/s10626-016-0231-8

22. Viehmann, T., Hofmann, T., Lakemeyer, G.: Transforming robotic plans with
timed automata to solve temporal platform constraints. In: IJCAI (2021). https://
doi.org/10.24963/ijcai.2021/287

https://doi.org/10.1007/BF01995674
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1145/3092282.3092303
https://doi.org/10.1109/ACC.2016.7526793
https://doi.org/10.1109/ACC.2016.7526793
https://doi.org/10.1109/LICS.2005.33
https://doi.org/10.1007/978-3-642-22110-1_52
https://doi.org/10.1007/978-3-642-22110-1_52
https://doi.org/10.1109/ACC.2016.7525063
https://doi.org/10.1109/ACC.2016.7525063
https://doi.org/10.1007/s10626-016-0231-8
https://doi.org/10.24963/ijcai.2021/287
https://doi.org/10.24963/ijcai.2021/287

Emerging Domains

Lightweight Nontermination Inference
with CHCs

Bishoksan Kafle1(B) , Graeme Gange2 , Peter Schachte3 ,
Harald Søndergaard3 , and Peter J. Stuckey2

1 IMDEA Software Institute, Madrid, Spain
2 Faculty of IT, Monash University, Melbourne, Australia

3 Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

Abstract. Non-termination is an unwanted program property (consid-
ered a bug) for some software systems, and a safety property for other
systems. In either case, automated discovery of preconditions for non-
termination is of interest. We introduce NtHorn, a fast lightweight non-
termination analyser, able to deduce non-trivial sufficient conditions for
non-termination. Using Constrained Horn Clauses (CHCs) as a vehicle,
we show how established techniques for CHC program transformation
and abstract interpretation can be exploited for the purpose of non-
termination analysis. NtHorn is comparable in power to the state-of-
the-art non-termination analysis tools, as measured on standard compe-
tition benchmark suites (consisting of integer manipulating programs),
while typically solving problems an order of magnitude faster.

1 Introduction

Inference of preconditions for Non-Termination (NT) is of interest in program
analysis, debugging and verification. For some systems, the possibility of non-
termination is a bug. For other systems, premature termination is unwanted, so
that non-termination becomes a safety property.

Non-termination is an archetypal undecidable problem. Assume P ranges
over the set of programs expressible in some Turing complete language, and S
ranges over (non-empty) sets of inputs to P . Then the problem of whether P
fails to terminate on every s ∈ S is undecidable, and not semi-decidable. This is
true even when S is restricted to being a finite non-empty set. Moreover, a proof
that P terminates on every element of some set S tells us nothing about P ’s
behaviour on (subsets of) S’s complement, and in particular it tells us nothing
about non-termination. Obviously, absence of a proof of termination is no proof
of the absence of termination.

Inferring sufficient conditions for NT is not always possible even for non-
terminating programs. For instance, if the variable i ranges over Z, the program
while(i ≥ 0) i = nondet() can be shown non-terminating by choosing always

a non-negative value for i (demonic non-determinism), but no condition on the
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 383–402, 2021.
https://doi.org/10.1007/978-3-030-92124-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_22&domain=pdf
http://orcid.org/0000-0001-5191-1216
http://orcid.org/0000-0002-1354-431X
http://orcid.org/0000-0001-5959-3769
http://orcid.org/0000-0002-2352-1883
http://orcid.org/0000-0003-2186-0459
https://doi.org/10.1007/978-3-030-92124-8_22

384 B. Kafle et al.

Fig. 1. Original program (left) and CHC encoding of its reachable states (right)

input i (apart from the trivial false) is sufficient to ensure non-termination.
Namely, the loop iteration does not depend on the initial value of i, only on
non-deterministic assignments within the loop.

A central tool for proving non-termination is the notion of recurrence set [24],
a set of runtime states from which flow of control cannot escape. The non-
termination problem is complementary to proving termination; but while a safety
violation can be witnessed by a finite trace, a failure to terminate has no such
witness. Instead, a witness to non-termination is a path from an initial state to
a recurrence set. So we are interested in finding some conditions on the initial
state that ensure that such a path occurs.

Although finding preconditions for non-termination is a fundamental prob-
lem, it has received far less attention than other termination and non-termination
problems (the work of Le et al. [32] is a notable exception). Our approach to
the problem is inspired by Chen et al. [10] who reduce the problem to prov-
ing safety using a sequence of reachability queries. Let bad states be those that
exit the program (or loop) under consideration, and good states those that get
stuck in it. Then the problem is to infer preconditions that ensure all executions
stay within good states. We achieve this in two steps: (i) compute a necessary
precondition from the bad states, whose complement is a potential candidate
for non-termination and (ii) refine the candidate with a sufficient precondition
from the states that enter the program (loop). Our method is potentially appli-
cable to large code bases, as it rests on relatively cheap program analysis and
transformation. To our knowledge, the combination of necessary and sufficient
precondition reasoning has not previously been applied to the task.

Before we present the approach formally, let us consider the example in Fig. 1
(left), a modified version of a program studied by Le et al. [32]. Assume the
variables range over the full set Z of integers. Then the program fails to ter-
minate if the input satisfies (b > 100 ∧ a ≥ 1) ∨ (b < 100 ∧ a ≥ 1) (equivalently
b �= 100 ∧ a ≥ 1). This is because a and b are always positive when entering
the loop, and the loop condition a ≥ 1 is always maintained, as a increases at

Lightweight Nontermination Inference with CHCs 385

a higher rate than b decreases. Automatic derivation of these preconditions is
challenging for at least three reasons:

(i) The desired result is a disjunction of linear constraints—so we need the
ability to express disjunctive information.

(ii) Abstract interpretation working forward or backward from the goal such
as (a ≤ 0) derives top as invariant for the loop. That is, without a more
sophisticated approach, we lose critical information about a and b.

(iii) We use over- and under-approximations to obtain sound and precise results,
since the precondition must ensure that all traces enter the loop but
none exit. While the first part (all traces enter the loop) requires under-
approximation, the second part (none exit) can be achieved by negating an
over-approximation that exits the loop.

We address Challenge (i) via partial evaluation or control flow refinement, cre-
ating a finite number of versions of each predicate—this is essential for deriving
disjunctive invariants.

Challenge (ii) is addressed via forward and backward abstract interpretation,
together with constraint specialisation. Challenge (iii) is addressed by refining
over-approximations with under-approximations (Sect. 4).

While our approach is inspired by the ideas behind HipTNT+ [32], it rests
entirely on simpler methods from transformation-based program analysis of Con-
strained Horn Clauses: control flow refinement via partial evaluation [17], con-
straint specialisation [27], and clause splitting [19]. We make these contributions:

– We reduce the problem of precondition inference for non-termination to pre-
condition inference for safety using a sequence of reachability queries inspired
by the work of Chen et al. [10], which reduces proving non-termination to
proving safety.

– We present an enhanced modular algorithm that combines under- and over-
approximation techniques based on abstract interpretation and program
transformation to derive sound and precise preconditions. It includes a novel
mechanism of deriving a more general precondition through iterative refine-
ment, which comes with refined termination criteria (Sect. 4).

– Our method uniformly handles non-linear clauses (arising from modelling
function calls, recursion, and nested loops) over linear integer arithmetic.

– A proof of concept is implemented in the tool NtHorn, and we present
experiments which show that our prototype implementation is competitive
with state-of-the-art tools for automated proof of non-termination (Sect. 5).

2 CHCs, Recurrence Sets and Preconditions

We represent a program as a set of Constrained Horn clauses (CHCs). This is
convenient for representing imperative programs and properties such as reach-
ability queries in a uniform way. Analysis of the program and its properties is
then done by analysing the corresponding CHCs. The translation of imperative

386 B. Kafle et al.

programs to CHCs is standard [16,23,25,36] so we omit the details. From here
on, by ‘program’ we mean a program’s CHC encoding, unless otherwise stated.

Constrained Horn Clauses (CHCs). An atom is a formula p(x) with p a
predicate symbol and x a tuple of arguments. A CHC is a first-order formula
written p0(x0) ← ϕ, p1(x1), . . . , pk(xk), with ϕ a finite conjunction of quantifier-
free constraints on variables xi wrt. some constraint theory T, and pi(xi) are
atoms. A clause p0(x0) ← ϕ1 ∨ ϕ2, β with a disjunctive constraint is rewritten
as p0(x0) ← ϕ1, β and p0(x0) ← ϕ2, β. A constrained fact is a clause of the
form p0(x0) ← ϕ, where ϕ is a constraint. A clause is linear if k ≤ 1, otherwise
non-linear. A program is linear if all of its clauses are linear.

Given a clause set P , we assign a unique identifier to each clause in P .
Further, we assume the theory T is equipped with a decision procedure and
a projection operator, and that it is closed under negation. The notation ϕ|V
represents the constraint formula ϕ projected onto variable set V . ϕ |=T ψ (or
equivalently |=T ϕ ⇒ ψ) says that ϕ entails ψ over T. We write P
T A when
an atom A is derivable from program P wrt. an axiomatisation of T. We omit
the subscript T when it is clear from the context.

CHC Encoding. Figure 1 (right) shows the CHC representation of the exam-
ple, encoding the reachable states. The clause c1 specifies the initial states of the
program via the predicate init which is always reachable. Similarly, c2 and c3
encode the reachability of the second if condition via the predicate if. Clauses c4
and c5 encode the reachability of the while loop via the predicate wh. Clause c4
states that the loop is reachable if if is reachable, while c5 states that the loop is
(re-)reachable from the end of its own body (recursive case). Clauses c6 and c7
encode the return from the program. Clause c6 states that the program termi-
nates if a < 0 upon loop exit, while clause c7 states that the program terminates
when b = 0 and the control does not satisfy the condition of the second if. The
coloured clauses are not part of the program, but are added to aid the analysis.
We employ two special predicates en and ex which respectively encode the states
entering the loop and exiting the loop or the program. Note that multiple clauses
for these predicates are possible given multiple loop entries/exits.

Definition 1 (Initial clauses and nodes). Let P be a program with a dis-
tinguished predicate pI which we call the initial predicate. The constrained facts
of the form pI(x) ← θ are the initial clauses of P . We extend the term “initial
predicate” and use the symbol pI to refer also to renamed versions of the initial
predicate that arise during clause transformations.

For the program in Fig. 1, init is the initial predicate and init(a, b) ← true
is the initial clause. We shall assume integer programs, that is, all variables take
integer values. Let val : V → Z map variables to their values. We overload val
to also map a tuple of variables to the tuple of their values.

A set of CHCs defines a transition system, defined as follows (in the following
we shall freely interchange these concepts):

Definition 2 (Transition system). A transition system of a linear program
P is a tuple T = (S,R, I), where

Lightweight Nontermination Inference with CHCs 387

– S = Pd × 2Z
|V |

is the set of states where Pd is the set of predicates of P
(including false) and V is a finite set of program variables.

– R ⊆ S × S is a transition relation. There is a transition from (p, val(x)) to
(p′, val(x′)) labelled by c if there is a clause p′(x′) ← ϕ ∧ p(x) ∈ P with
identifier c and if val(x) |= ϕ then val(x′) |= ϕ.

– I ⊆ S is a set of initial states.

Non-termination and Recurrence Set. A transition system T = (S,R, I)
is non-terminating iff there is an infinite sequence s0, s1, s2 . . . , of states, with
s0 ∈ I and (si, si+1) ∈ R. Non-termination of a relation R is witnessed by the
existence of an (open) recurrence set [24]: a non-empty set G of states such that
(i) G contains an initial state and (ii) each s ∈ G has a successor in G. A program
is non-terminating iff its transition system contains a recurrence set [24].

Chen et al. [10] extend the notion to closed recurrence set which facilitates
automation using established techniques like abstract interpretation or model
checking. A closed recurrence set is an open recurrence set G with the additional
property that, for each s ∈ G, all of its successors are in G. Our method relies
on closed recurrence sets to automate the reasoning.

Preconditions. Given a transition system T = (S,R, I), we define functions
pre : 2S → 2S , post : 2S → 2S and p̃re : 2S → 2S as follows.

– post(S′) = {s′ ∈ S | ∃s ∈ S′ : (s, s′) ∈ R} returns the set of states having at
least one of their predecessors in the set S′ ⊆ S;

– pre(S′) = {s ∈ S | ∃s′ ∈ S′ : (s, s′) ∈ R} returns the set of states having at
least one of their successors in the set S′ ⊆ S;

– p̃re(S′) = {s ∈ S | ∀s′ ∈ S : (s, s′) ∈ R ⇒ s′ ∈ S′} returns the set of states
having all of their successors in the set S′ ⊆ S.

With these functions, we can now state precondition inference problems.

Invariants. Given a transition system T = (S,R, I) and a set of initial states
S′ ⊆ S, the invariant inference problem consists of inferring the set of reachable
states from S′ as inv(T , S′) = lfp λX. S′ ∪ post(X).

Necessary Preconditions. Given a transition system T = (S,R, I) and a goal
set S′ ⊆ S of states, the necessary precondition inference problem consists of
inferring the set of initial states as nec_pre(T , S′) = lfp λX. S′ ∪ pre(X), which
guarantees that some of its executions will stay in S′.

Sufficient Preconditions. Given a transition system T = (S,R, I) and a goal
set S′ ⊆ S of states, the sufficient precondition inference problem consists of
inferring the set of initial states as suf_pre(T , S′) = gfp λX. S′ ∩ p̃re(X), which
guarantees that all of its executions will stay in S′.

Note that the functions inv, nec_pre and suf_pre are not computable in gen-
eral. Therefore, approximations of these functions are computed instead, which
provide “one-sided” guarantees. The state-of-the-art techniques for computing
nec_pre use over-approximations based on abstract interpretation [12] and are

388 B. Kafle et al.

given in [2,3,13,30,37], while that for computing suf_pre use backward under-
approximation or negation of some necessary preconditions [28,34,35,37]. In
addition, these techniques can profitably be combined with CHC transforma-
tions such as [15,17,21,27] to enhance the precision of these analyses.

Example 1. Our approach derives preconditions as follows. First λen = b �=
100 and λex = (b ≥ 101 ∧ a ≤ 0) ∨ (b ≤ 99 ∧ a ≤ 0) ≡ a ≤ 0 ∧ b �= 100
are found as necessary preconditions for the reachability of en and ex, resp.
Now λ = λen ∧ ¬λex ≡ a ≥ 1 ∧ b �= 100 represents the initial states that
might reach the loop entry but not the loop exit. We consider λ a candi-
date for sufficient precondition, using that to strengthen the initial clause to
init(a, b) ← a ≥ 1 ∧ b �= 100. Then using backward under-approximation [34]
from the goal en, we derive a ≥ 1 ∧ b �= 100 as a sufficient precondition for
the reachability of en—which happens to be the optimal precondition for
non-termination in this case. If we just used under-approximations without
strengthening the initial clauses, we would obtained only a ≥ 1 ∧ b > 100 or
a ≥ 1 ∧ b < 100, and not both. ��

3 CHC Transformations and Their Roles
in Non-termination Analysis

We now summarise common CHC transformations that we use, such as partial
evaluation, constraint specialisation and clauses splitting. We highlight their role
in non-termination analysis. They are goal preserving transformations (or spe-
cialisations): given a program P and a goal A, the transformation of P wrt. to
the goal A yields another program P ′ such that P
T A iff P ′
T A. In our
setting, the goals are en and ex. Informally, we produce a specialised version of
P that preserves the derivations of en and ex, but not necessarily other goals.

1. Partial Evaluation (PE). PE of a set P of CHCs wrt. goal A produces
a specialised version of P preserving only those derivations that are relevant
for deriving A. It produces a polyvariant specialisation, which is essential for
deriving disjunctive information. The partial evaluation algorithm utilised here
is an instantiation of the algorithm given in [20], which is parameterised by an
“unfolding rule” unfoldP and an abstraction operation abstractΨ .

The unfolding rule unfoldP takes a set S of constrained facts and “partially
evaluates” each element of S, using the following unfolding rule. For each (p(x) ←
θ) ∈ S, first construct the set of clauses p(x) ← ψ′, β′ where p(x) ← ψ, β is a
clause in P , and ψ′, β′ is obtained by unfolding ψ ∧ θ, β by selecting atoms so
long as they are deterministic (atoms defined by a single clause) and is not a
call to a recursive predicate, and ψ′ is satisfiable in T. unfoldP returns the set of
constrained facts q(y) ← ψ′|y where q(y) is an atom in β′.

Given an initial set S0, the closure of the unfoldP operation can be obtained
as lfp λS. S0 ∪ unfoldP (S). It is not computable in general; so instead we com-
pute a set cfacts(S0) = lfp λS. S0 ∪abstractΨ (unfoldP (S)), where the abstraction

Lightweight Nontermination Inference with CHCs 389

Fig. 2. PE of Fig. 1 wrt. ex (left) and its CS version (right) with inferred constraints
underlined. The last clause on LHS is eliminated since its body is strengthened to false.

operation abstractΨ performs property-based abstraction [23] wrt. a finite set
of properties Ψ . A set of clauses is then generated by applying unfoldP to each
cfacts(S0) and renaming the predicates in the resulting clauses according to the
different versions produced by abstractΨ . We refer to [21] for more details.

2. Constraint Specialisation (CS). A CS of P wrt. goal A and set Ψ of
properties [27] is a transformation in which each clause (p(x) ← ϕ, β) ∈ P is
replaced by p(x) ← ϕ,ψ, β (the difference from the original underlined), where
(p(x) ← ψ) ∈ Ψ , such that the resulting set of clauses preserves the derivation
of A. As a result, all paths that are irrelevant for deriving A can be eliminated.

Example 2 (Continued from Example 1). The program in Fig. 2 (left) is obtained
by PE of Fig. 1 wrt. ex. Observe that the recursive clause wh is effectively elimi-
nated, as it cannot contribute to a derivation of ex. The constraint in the initial
clauses b ≥ 101 ∨ b ≤ 99 ≡ b �= 100 is a necessary precondition for the reacha-
bility of ex. This is further strengthened to (a ≤ 0 ∧ b ≥ 101) ∨ (a ≤ 0 ∧ b ≤ 99)
≡ a ≤ 0 ∧ b �= 100 with constraint specialisation wrt. ex to Fig. 2 (left), which
propagates a ≤ 0 from the goal ex and b ≥ 101 ∨ b ≤ 99 from the constrained
facts to other clauses, resulting in the program on the right. Similarly, we obtain
b �= 100 as a necessary precondition for the reachability of en. ��

3. Clause Splitting. Given a clause (p(x) ← ϕ, β) ∈ P and a set Ψ of proper-
ties, clause splitting replaces the clause by p(x) ← ϕ,ψ, β and p(x) ← ϕ,¬ψ, β,
producing P ′ (new constraints are underlined), where (p(x) ← ψ) ∈ Ψ . This
embodies case splits, allowing case-based reasoning. Fioravanti et al. [19] use a
related technique for splitting clauses to achieve deterministic programs. Unlike
the previous transformations, it is goal independent, that is, for all atoms A of
P , P
T A iff P ′
T A.

Common to these transformations is the set Ψ of properties, which determine
the quality of the resulting clauses. Soundness of CS also depends on the choice
of Ψ . Though the above program transformation techniques are generic for CHCs
and are taken from the literature, application or program specific choices of Ψ
that we describe next make them surprisingly effective in practice. In addition

390 B. Kafle et al.

Fig. 4. PE of Fig. 3 wrt. ex; respective Ψs are shown in upper part

to this, our contribution is to put these transformation together and apply them
for inferring preconditions for NT, which has not been considered before.

Fig. 3. Synthetic example

We now discuss the specific choices we
make for each of the transformations and
illustrate the differences with other choices
using the synthetic but representative exam-
ple shown in Fig. 3.

For PE. The set Ψ contains the following constrained facts, generated from each
clause p(x) ← ϕ, p1(x1), . . . , pn(xn) ∈ P .

– p(x) ← ϕ|x and for each z ∈ x, p(x) ← ϕ|{z}
– for 1 ≤ i ≤ n, pi(xi) ← ϕ|xi

and for each z ∈ xi, pi(xi) ← ϕ|{z}.

The effect of property-based abstraction using this choice for Ψ is to create a
finite number (at most 2|Ψ |) of versions of a predicate for different call contexts
and answer constraints. This choice of Ψ , obtained syntactically from the program,
has been found to provide a good balance of speed and precision.

Example 3. Figure 4 shows PE programs for the program P in Fig. 3 wrt. ex
with two different choices of the set of properties Ψ . Ψ in Fig. 4 (left) are
computed as described above, while on the right are computed as follows:
Ψ =

⋃

(p(x)←ϕ,B)∈P {p(x) ← ϕ|x}. The purpose here is to show that the choice
of Ψ is important in getting a right specialisation. The program on the left is
an empty program since there is a vacuous base case (p1(a, b) ← false), while
the program on the right is identical to the original (no specialisation was per-
formed). ��

For CS. The properties Ψ have to be invariants for the program to produce
sound transformation. They can be obtained e.g., via forward (from the con-
strained facts) or backward (from the goal) abstract interpretation or their com-
bination [3]. In our case, they are obtained from forward abstract interpretation
of the query-answer transformed program [27]. Ψ thus obtained analysing the
program produces sound transformation, which is also found to be precise.

Example 4. Forward analysis of the program in Fig. 3 yields p(a, b) ← a ≥ b
as invariant for p(a, b). This is because (i) if c2 is not taken then we have

Lightweight Nontermination Inference with CHCs 391

a = b from c1 and obviously a ≥ b holds, (ii) if c2 is taken then a > 0
is maintained since a is incremented by b in each iteration and we ini-
tially had a = b. Since b is not modified in c2, a ≥ b holds. We now use
Ψ = {p(a, b) ← a ≥ b} to specialise the program in Fig. 3 wrt. ex, obtaining
the clauses c1, p(b+ c, b) ← a > 0, a ≥ b, p(c, b) and ex ← a < b, a ≥ b, p(a, b).
Note that the last clause is trivially satisfied. Instead of applying forward or
backward analysis in isolation, applying forward-backward analysis will imme-
diately detect that p(a, b) ← false, and the subsequent specialisation using the
result yields an empty program. ��
For Clause Splitting. We describe some heuristics specific to (non-)termination
analysis, requiring separation of terminating and non-terminating computations.
The targets are recursive clauses (loops) p(x′) ← ϕ, p(x). (i) Given a loop, a poten-
tial ranking function for the loop is an expression e(x) over variables x which is
non-negative (bounded from below) but not necessarily decreasing from p(x) to
p(x′). In this case, we choose the property {p(x) ← e(x) > e(x′)} (see Exam-
ple 5). (ii) The property {p(x) ← x ≥ 0 | x ∈ x, |=T ϕ ∧ x ≥ 0} is useful when
we have non-deterministic branches or assignments; but care needs to be taken to
control the blow-up of clauses.

Example 5. Taking p(a, b) ← a = b to be the initial clause of the program in
Fig. 3, the program does not terminate; e.g., for input a = 1, b = 1. Below
we apply clause splitting which reveals which clause causes non-termination.
The expression a is a potential ranking function for the loop, as it is non-
negative and not necessarily decreasing. We derive Ψ = {p(a, b) ← a+ b < a}.
Now splitting c2 with Ψ yields c2a: p(a+ b, b) ← a > 0, b < 0, p(a, b) and c2b:
p(a+ b, b) ← a > 0, b ≥ 0, p(a, b) (the new constraints are underlined). Such a
splitting guarantees that every infinite run of the program must use c2b as suffix.
This information can be exploited by (non-)termination analysers. ��

4 An Algorithm for Conditional Non-termination

We now present an algorithm for inferring sufficient preconditions for non-
termination. The main method is Algorithm 1. As a program can only get
stuck in loops or recursive code, and the translation to CHCs replaces loops
with recursion, the analysis focuses on the recursive strongly connected compo-
nents (SCCs) in the CHC dependency graph. As the first step, we compute the
SCCs of the input set P of CHCs. Each component is a set of (non-constraint)
predicates, which is either non-recursive or a set of (possibly mutually) recur-
sive predicates. The algorithm for computing SCCs returns the components
in topologically sorted order S1, . . . , Sn, such that for each Si, no predicate in
Si depends on any predicate in Sj where j > i. Then it annotates the pro-
gram with appropriate reachability queries and computes a sufficient precondi-
tion for each annotated program using Algorithm 2 in a modular way. These
preconditions are combined disjunctively to yield the overall result. The func-
tion annotate_program(P,C) inserts two sets of clauses to P given an SCC C as
follows.

392 B. Kafle et al.

{en ← ϕ|vars(β)
, β | (H ← ϕ, β) ∈ P, pred(H) ∈ C,∀a (a ∈ pred(β) ⇒ a �∈ C)}

∪ {ex ← ϕ|vars(β)
, β | (H ← ϕ, β) ∈ P, pred(H) �∈ C,∀a (a ∈ pred(β) ⇒ a ∈ C)}

where pred(H) is the predicate symbols of H and pred(β) is the set of predicate
symbols in β. The special clauses for en encode the reachability of C in P while
the clauses for ex encode the exit condition of C in P . We explore all SCCs with
the aim of obtaining a more general precondition but for proving non-termination
it suffices to find a non-trivial precondition for an SCC.

Example 6. For the program in Fig. 1, there is a single SCC, namely the one
containing the predicate {wh}. The clauses c8 and c9 respectively encode the
reachability of the entry and exit of this SCC. ��

Algorithm 2 takes as input and annotated program P (with clauses for en and
ex); it returns a sufficient precondition for non-termination (a linear constraint
over T in DNF). Recall that we derive preconditions in two steps: (i) compute a
necessary precondition from the bad states, encoded by the predicate ex, whose
complement is a potential candidate for non-termination and (ii) refine the can-
didate with a sufficient precondition from the states that enter the loop, encoded
by the predicate en. Let us first focus on step (i), the generation of necessary pre-
conditions, using backward over-approximating analysis. Since these conditions
need to be negated to derive candidates, their precision is important. It is well
known that program specialisations, possibly applied iteratively [28] can enhance
(refine) precision of such analysis. A disadvantage of this is the blind refinement
of states possibly exiting the loop without knowing its frontier with the states
entering it. This misses opportunities to avoid redundant computation as well
as to guide the refinement process at an early stage. We therefore choose to
maintain two over-approximations, namely of the states entering the loop (λen)
and of the states exiting it (λex). We iteratively refine these (See Algorithm 2).
This enables the use of over-approximating analyses which are more developed
than their under-approximating counterparts. Further, step (ii) is only applied
to strengthen the candidate λ = λen ∧ ¬λex to a sufficient condition. This is
achieved by applying under-approximating analysis to replace_init(P, λ) instead
of the original P , so as to retain refined initial condition λ derived from the
analysis of step (i).

Definition 3 (replace_init(P, λ))). Let P be a program and λ a constraint over
T. The function replace_init returns clauses of P by replacing the initial clauses
{(pI(x) ← θi) | 1 ≤ i ≤ k} by {(pI(x) ← λ)}.

Algorithm 2. The variable σnt accumulates the result and is initialised to false.
ϕold keeps track of the initial states that could reach both en and ex; it is
initialised to true (line 3). The following operations are carried out within the
while loop. The formulae λen and λex (line 5 and 6) represent the set of initial
states that can reach en and ex, resp., and are computed using the method
nec_pre. The algorithm returns when (i) no initial state can reach en (λen ≡
false) (line 8), or (ii) the initial states satisfying ϕnew = λen ∧λex that can reach

Lightweight Nontermination Inference with CHCs 393

Algorithm 1. Inferring sufficient precondition for non-termination of a program
1: Input: A program P
2: Output: Sufficient precondition σnt for non-termination of P .
3: Initialisation: σnt ← false;
4: S1, . . . , Sn ← topologically sorted SCCs of P
5: for i = 1 . . . n do
6: if (recursive Si) then
7: Pan ← annotate_program(P, Si);
8: σnt ← σnt ∨ precond_scc(Pan) � Algorithm 2
9: return σnt

Algorithm 2. precond_scc: Inferring sufficient precondition wrt. a SCC
1: Input: Program P annotated with clauses for en and ex
2: Output: Sufficient precondition σnt for NT.
3: Initialisation: σnt ← false; ϕold ← true;
4: while true do
5: λen ← nec_pre(P, en);
6: λex ← nec_pre(P, ex);
7: if λen ≡ false then � no state reaches en
8: return σnt

9: ϕnew ← λen ∧ λex; � states that may both reach en and ex
10: λ ← λen ∧ ¬λex; � states that may reach en but not ex
11: P1 ← replace_init(P, λ); � Definition 3
12: σen ← suf_pre(P1, en); � strengthen λ to sufficient condition
13: σnt ← σnt ∨ σen;
14: if ϕnew ≡ false or ϕold |=T ϕnew then
15: � λen may not reach ex, or states reaching both en and ex don’t shrink.
16: return σnt

17: ϕold ← ϕnew;
18: P ← constrain_init(P, ϕnew) � refine P , Definition 4

both en and ex amount to false, or the set of initial states does not shrink further
from its previous value ϕold (line 14). The set of states captured by ϕnew is an
over-approximation. The algorithm aims to reduce the slack as much as possible,
to be able to separate terminating traces from non-terminating ones. To this end
it (i) constructs a revised program from P focusing only on the shared region
and (ii) shrinks either of the regions (λen, λex) via iterative specialisations. We
construct the revised program as follows.

Definition 4 (constrain_init(P,ϕ)). Let P be a program and ϕ a constraint
over T. constrain_init returns the clauses of P by replacing the initial clause set
{(pI(x) ← θi) | 1 ≤ i ≤ k} by the set {(pI(x) ← ϕ ∧ θi) | 1 ≤ i ≤ k}.

Proposition 1. constrain_init(P,ϕ) is an under-approximation of P .

394 B. Kafle et al.

Proof (Sketch). P1 = constrain_init(P,ϕ) contains exactly the same clauses as
P , except for the initial clauses, which are possibly constrained. Hence for all
atoms A, if P1
T A then P
T A. That is, P1 is an under-approximation of P .

Since non-termination is preserved by under-approximation [10], we need to
ensure that the precondition does as well. This is in fact the case given that these
program only differ in their initial clauses. Thus, any initial state that definitely
reaches en and stays in the loop of P1 also does the same in P . Before formally
stating this property, let us first define (in terms of CHCs) what it means for a
program P to have ϕ as a sufficient precondition for NT.

Definition 5 (Sufficient precondition for CHCs). Let P be a program
annotated with appropriate reachability queries (for en and ex) as described
above and ϕ a constraint over T. Let P1 = replace_init(P,ϕ). Then we say ϕ is
a sufficient precondition for NT of P if ϕ → (P1
T en ∧ P1 �
T ex).

Proposition 2 (Lifting sufficient conditions). If ϕ is a sufficient precon-
dition for non-termination of constrain_init(P, σ) (for some σ) then it is also a
sufficient precondition of P .

Proof (Sketch). Let P1 = constrain_init(P, σ). Since P1 and P have identical
clauses except for the initial clauses, replace_init(P1, ϕ) and replace_init(P,ϕ)
yield identical clauses. So ϕ is also a sufficient precondition of P
(Definition 5). ��

Note the initial states satisfying the formula (λen ∧ ¬λex) may reach en but
definitely not ex, so they are seen as potential candidates for non-termination.
The candidates are then strengthened to sufficient preconditions (σen) using the
method suf_pre (line 12). If σen ≡ false, then either all traces of P1 (line 11)
are terminating or suf_pre loses precision. Observe that we use replace_init(P, λ)
(computed from P and λ using Definition 3) where λ = λen ∧ ¬λex instead of P
to limit our attention to those initial states that can reach en. If no termination
criterion is satisfied, the algorithm repeats (line 18) with constrain_init(P,ϕnew)
(Definition 4) since the states that satisfy ϕnew are the ones whose termination
status is unknown so far. Note that the construction of constrain_init(P,ϕnew)
requires ϕnew to be converted to DNF, which may blow up the number of result-
ing initial clauses, but in our experiments we have not observed that.

Soundness and Termination of the Algorithms. We now study some properties,
including soundness and termination of the Algorithms 1 and 2.

All the components used in Algorithm 2 terminate, but the algorithm itself
may not, owing to the fact that ϕnew can be decreased indefinitely (the algorithm
keeps refining). This is typical of algorithms for undecidable problems such as
non-termination. So we want to ensure a weaker property, that is, of progress.
Progress is made, in the sense that each iteration explores a strictly smaller
set of initial states whose termination status are not yet known. We state this
formally:

Lightweight Nontermination Inference with CHCs 395

Proposition 3 (Progress and Termination of Algorithm 2). Algorithm 2
either terminates or progresses.

Proof (Sketch). By induction on the number of iteration of the while loop.

Progress. Let ϕold and ϕnew be formulas characterising the set of initial states
yet to be proven non-terminating at each successive iteration respectively. Note
that the algorithm iterates only if ϕnew |= ϕold and ϕold �|= ϕnew, that is, if ϕnew

is strictly smaller than ϕold, in the set view.

Termination. Note that each individual operation in the loop, including
nec_pre, which is computed using abstract interpretation and program transfor-
mations, terminate. The only condition under which the algorithm diverges is
when ϕnew is strictly smaller than ϕold; in this case the algorithm progresses. ��

Observe that each iteration of Algorithm 2 computes a valid precondition for
non-termination of P even when under-approximations are used (Proposition 2).
The disjunctive combination of such preconditions is also a valid precondition
for non-termination of P . Again, we state this as a proposition.

Proposition 4 (Composing Preconditions). Let Φ be a set of formulas
such that each ϕ ∈ Φ is a sufficient precondition for non-termination of P . Then
so is

∨

Φ.

Proof (Sketch).
∨

Φ satisfies the condition of Definition 5. ��

Proposition 5 (Soundness of Algorithm 2). Let P be a program. If Algo-
rithm 2 returns σ for P , then σ is a sufficient precondition for non-termination
of P .

Proof (sketch). This follows from Proposition 2 and 4, with Definition 5: At
each iteration the algorithm computes a formula that satisfies the condition of
Definition 5 (the formula is a sufficient precondition). Proposition 2 allows us to
lift any such formula computed for constrain_init(P,ϕ) (for some ϕ) to P itself,
and Proposition 4 allows us to disjunctively combine such formulas to a valid
precondition for P . ��

foo(int x){
while(x > 0)
x = x+ 1

while(x < 0)
x = x − 1

}

The program shown here does not terminate when x �= 0.
On input x > 0 it gets stuck in the first loop, on x < 0 in the
second. Generally, a program P with n loops may get stuck in
loops l1, . . . , ln, resp., on input satisfying formulas ϕ1, . . . , ϕn.
If each such ϕi is a sufficient precondition for non-termination
of P , then so is

∨n
i=1 ϕi. Taken together, Proposition 4 and

5 ensure the correctness of Algorithm 1:

Theorem 1 (Soundness of Algorithm 1). Let P be a program. If Algo-
rithm 1 returns σ for P , then σ is a sufficient precondition for non-termination
of P .

Corollary 1. If ϕ �≡ false is a precondition for non-termination of a program
P , then P is non-terminating.

396 B. Kafle et al.

Proof (Sketch). ϕ �≡ false implies there is at least an input (satisfying ϕ) to P
on which it does not terminate. ��

If Algorithm 1 returns false for P , then P ’s non-termination status is
unknown.

5 Implementation and Experiments

Implementation. We implemented Algorithm 1 as a prototype tool, NtHorn,
available from https://github.com/bishoksan/NtHorn.git. It is written in Ciao
Prolog [8] and uses PPL [1] and Yices 2.2 [18] for constraint manipulation. While
refinement of candidate preconditions to the sufficient ones can be done with a
tool such as [34], currently the implementation uses a simpler approach, namely,
the reachability of the respective loop entry from each candidate—using the
safety prover Rahft [29]. This gives a proof of non-termination as well as some
conditions on the initial states and is used in the experiments. NtHorn handles
integer programs only (the classical setting for (non-)termination work [10]), but
our techniques apply beyond integer arithmetic.

We rely on abstract interpretation and CHC transformations for inferring
sound and precise necessary preconditions. In particular, our implementation per-
forms forward and backward constraint propagation using the constraints derived
from polyhedral abstraction [14] obtaining a specialised version of the program
[27]. To enhance the precision of the analysis further, we apply a sequence of
program transformations including control-flow refinement using partial evalu-
ation [21], clause splitting, strengthening of initial clauses, and we iteratively
refine necessary preconditions for entering and exiting a loop.

Experimental Setting. We evaluated the approach on benchmarks from the
C_Integer category of TermComp’20 [38]. The benchmark suite consists of 335
programs with nondeterminism: 111 non-terminating, 223 terminating, and one
(Collatz) for which termination is unknown. Evaluation was done on 111 non-
terminating programs, ignoring the terminating ones, as NtHorn can only
prove non-termination. These are typical loop programs (simple or nested) with
branches. Some of these loops have non-deterministic conditions while others
contain non-deterministic assignments. We used small-step encoding to translate
them to CHCs, obtaining only linear clauses. We run several configurations of
NtHorn, namely NtHorn(X) where X can be partial evaluation pe, constraint
specialisation cs, clause splitting csp, or some combination. Then we compare
against state-of-the-art (non)-termination tools that participated in this cate-
gory: AProVE [22], iRankFinder [5], UltimateAutomizer [26] and Very-
Max [31]. We used TermComp’20 versions of these tools. We add HipTNT+ [32]
(http://loris-7.ddns.comp.nus.edu.sg/~project/hiptnt/plus/), as it shares with
NtHorn’s the ability to infer preconditions. We run several configurations of
NtHorn to study the impact of different CHC transformations. Since we could
not run iRankFinder due to some front-end issues, we took the evaluation
results from StarExec [38].

https://github.com/bishoksan/NtHorn.git
http://loris-7.ddns.comp.nus.edu.sg/~project/hiptnt/plus/

Lightweight Nontermination Inference with CHCs 397

Table 1. Experimental results on the TermComp’20 (C_Integer) suite.

Tool Proved NT Gave up Avg. time (s)

AProVE 100 11 12.72
iRankFinder 93 18 27.00
UltimateAutomizer 83 28 10.94
VeryMax 102 9 14.48
HipTNT+ 94 17 2.34
NtHorn(cs) 58 53 0.48
NtHorn(cs·pe) 94 17 0.62
NtHorn(cs·pe·csp) 98 13 0.86

Experiments were performed on a MacBook Pro, 2.7GHz Intel Core i5 pro-
cessor, 16 GB memory, running OS X 10.11.6. Timeout was 300 s (the com-
petition standard) per instance. The results are shown in Table 1. The three
last columns show, in order, the number of programs proved non-terminating,
the number given up within 300 s or timeout, and the average time taken by
all instances including the “gave up” instances. Among the tools, NtHorn and
HipTNT+ are the only tools capable of deriving a precondition. It would be
interesting to compare the generality of the preconditions inferred by our tools.
But we could not do so due to the difference in our (non-standard) output for-
mats. So with these experiments, we seek to answer the following questions:

Q1. Will the proposed method allow us to derive non-termination preconditions
(or prove non-termination) in practice?

Q2. How does it compare to state-of-the-art tools for proving non-termination?
Q3. What role do the CHC transformations play?

Results. The results show different profiles wrt. to solved instances and perfor-
mance for the tools. AProVE (resp. VeryMax), the category winner in 2020
(resp. 2019), solves two (resp. four) instances more than NtHorn, while the rest
solve less. This shows a remarkable effectiveness of our particular combination
of mostly off-the-shelf techniques. The configuration NtHorn(cs) solves only
58 instances, while NtHorn(cs·pe) solves 94. The best result is achieved with
NtHorn(cs·pe·csp). We find that each component transformation has a posi-
tive impact. Not only can we solve more problems (at the cost of solving time),
we also generate more general preconditions. The combination cs·pe·csp has
been chosen based on experiments, but its effectiveness aligns with our intuition.
Namely, csp derives new domain specific constraints that pe can take advantage
of during polyvariant specialisation, and cs, which is based on abstract inter-
pretation, greatly benefits from the resulting specialised form.

As for speed, NtHorn(cs·pe·csp) (from here on “NtHorn”) is an order
of magnitude faster than the alternatives, solving each case in less than a sec-
ond, while giving up on 13 cases. The median time was 1 s, while the instance

398 B. Kafle et al.

such as NO_04 with 5-level of nesting and Lcm resp. took 135 and 58 s and a
few other took slightly more than a second. We believe the speed is due to
abstract interpretation (which in this context is relatively efficient), together
with the lightweight program transformation. Also, unlike other tools, NtHorn
focuses on proving just non-termination. Among the 13 cases, NtHorn fails
to handle LogMult and DoubleNeg because they involve non-linear operations.
They are proved non-terminating only by iRankFinder. The cases Narrowing
and NarrowKonv are shown non-terminating only by NtHorn, VeryMax and
HipTNT+, while ChenFlurMukhopadhyay-SAS2012-Ex2.11 only by NtHorn
and HipTNT+. NtHorn could not generate preconditions for 4 programs.
These programs contain non-deterministic assignments that affect loop condi-
tions; it might be possible that sufficient preconditions do not exist for them,
though they can be shown terminating, as discussed in Sect. 1.

In summary, the results answer Q1–Q3 positively. NtHorn can be used
to derive preconditions for NT and is comparable in power to the leading non-
termination analysis tools, when applied to integer programs. Notably, NtHorn
solves problems several orders of magnitude faster than the state-of-the-art ana-
lyzers and CHC transformations play an important role in this.

A new non-termination prover, RevTerm [9] was published recently and
has not been part of our tool comparison. Like NtHorn, it does not prove
termination. The experimental evaluation [9] suggests that its precision (for non-
termination) is on a par with that of VeryMax, but obtained 2–3 times faster.
Comparison data from the paper [9] are in agreement with what we have found,
for both precision and performance (they use a timeout of 60 s, rather than 300,
so the average running times reported are somewhat shorter.)

6 Related Work

There is a rich body of work on proving non-termination, e.g., [2,7,10,11,24,
31,32,39]. Most of these provers either provide a stem (a sequential part from
entry to loop) and the loop, or some precondition from which there exists a non-
terminating run as a witness to non-termination. But for some applications like
web-servers, a sufficient precondition (under which no trace is finite) is more
useful. To our knowledge, prior to NtHorn, HipTNT+ [32] was the only tool
able to infer sufficient conditions for non-termination. Le et al. [32] propose a
specification logic and Hoare-style reasoning to infer sufficient preconditions for
both termination and non-termination of programs and, unlike ours, can han-
dle programs manipulating pointers. We infer preconditions for non-termination
only, relying on reduction to precondition inference for safety. But our approach
is considerably simpler, as we combine existing techniques, refined iteratively.

Many non-termination provers [22,24,26,39] search exhaustively for candi-
date lassos (simple while loops without branches), and attempt to prove non-
termination by deriving a recurrence set using constraint solving [22,24,39] or
automata based approaches [26]. An orthogonal approach [33] considers lassos
with linear arithmetic and represents infinite runs as geometric series.

Lightweight Nontermination Inference with CHCs 399

We exploit the notion of closed recurrence set [10] as it is useful not only
for automation using a safety prover, but also for proving non-termination of
non-deterministic programs and programs involving aperiodic non-termination.
The method of Chen et al. [10] inserts appropriate reachability queries and uses
a safety prover to eliminate terminating paths iteratively until it finds a program
under-approximation and a closed recurrence set in it. The method is likely to
diverge as there can be infinitely many terminating paths. Hence we use abstract
interpretation to derive initial conditions that lead to the terminating paths. We
negate the conditions to bar those paths. Similar to our approach, the method
[31] (implemented in VeryMax [6]) searches for witnesses to non-termination
in the form of quasi-invariants (sets of states that do not exit the loop once
entered) whose reachability from initial states is checked using a safety prover.
Where VeryMax infers such invariants using Max-SMT solving, we do it using
abstract interpretation.

Chatterjee et al. [9] rely on syntactic program reversal (applicable only to
while programs; corresponding to linear CHCs) to derive backward polynomial
conjunctive invariants using off-the-shelf tools and prove NT. Our method is
more generally applicable to programs with procedures and can also infer pre-
conditions as disjunction of linear constraints. Unlike our method, theirs pro-
vides relative completeness guarantees, that is, it is guaranteed to find the proof
of NT under certain conditions. Bakhirkin [2], as we do, uses forward and back-
ward abstract interpretation to find potential recurrence sets whose reachability
implies non-termination. The approach can be applied to heap manipulating
programs but is limited to simple while program. Ben-Amram et al. [4] derive a
recurrence set from a failed attempt to prove termination of multi-phase loops,
while our approach is direct and only proves non-termination.

While the above methods target programs with linear arithmetic, Cook
et al. [11] prove non-termination of programs with non-linear arithmetic and
heap-based operations. The key is the notion of live abstraction, an abstraction
heuristic that ensures that any abstract trace corresponding to a terminating
concrete trace is also terminating. In other words, it does not introduce any
non-termination and is a sound abstraction heuristic for non-termination. This
allows over-approximating non-linear assignments and heap-based commands
with non-deterministic linear assignments.

7 Concluding Remarks

We have presented a new approach to preconditions for non-termination. The
problem is reduced to inference of preconditions for safety, via insertion of “reach-
ability queries” in program loops. The reduction enables us to use existing tools
and techniques for safety preconditions. A prototype implementation is compet-
itive with the state-of-the-art tools for automated proof of non-termination.

NtHorn can only infer preconditions for non-termination and is limited to
programs manipulating linear integer arithmetic, whose applicability is deter-
mined by the underlying tool for inferring preconditions for safety. In future, we

400 B. Kafle et al.

plan to complement it with termination analysis as done in other tools and also
extend to programs that manipulate structured data, a la Cook et al. [11].

Acknowledgements. We thank the three anonymous reviewers for their careful read-
ing of an earlier version of the paper, and their constructive suggestions for how to
improve it. Bishoksan Kafle has been partially funded by the Spanish Ministry of
Research, Science and Innovation, grant MICINN PID2019-108528RB-C21 ProCode
and Madrid P2018/TCS-4339 BLOQUES-CM.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library. Sci. Comput.
Program. 72(1–2), 3–21 (2008). https://doi.org/10.1016/j.scico.2007.08.001

2. Bakhirkin, A.: Recurrent sets for non-termination and safety of programs. Ph.D.
thesis, University of Leicester (2016)

3. Bakhirkin, A., Monniaux, D.: Combining forward and backward abstract inter-
pretation of Horn clauses. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp.
23–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66706-5_2

4. Ben-Amram, A.M., Doménech, J.J., Genaim, S.: Multiphase-linear ranking func-
tions and their relation to recurrent sets. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS,
vol. 11822, pp. 459–480. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32304-2_22

5. Ben-Amram, A.M., Genaim, S.: Ranking functions for linear-constraint loops. J.
ACM 61(4), 26:1–26:55 (2014). https://doi.org/10.1145/2629488

6. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodríguez-Carbonell,
E., Rubio, A.: Proving termination through conditional termination. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99–117. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_6

7. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for Java Bytecode. In: Beckert, B., Dami-
ani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31762-0_9

8. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-García, P., Puebla, G.:
The Ciao Prolog system: reference manual. Technical Report CLIP 3/97.1, UPM
(1997). http://www.clip.dia.fi.upm.es/

9. Chatterjee, K., Goharshady, E.K., Novotný, P., Žikelić, -D.: Proving non-
termination by program reversal. In: Proceedings of PLDI 2021, pp. 1033–1048.
ACM (2021)

10. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination
via safety. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
156–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8_11

11. Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.W.: Disproving termination with over-
approximation. In: Proceedings of FMCAD 2014, pp. 67–74. IEEE (2014). https://
doi.org/10.1109/FMCAD.2014.6987597

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of POPL 1977, pp. 238–252. ACM (1977). https://doi.org/10.1007/978-3-642-
35873-9_10

https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/978-3-319-66706-5_2
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1145/2629488
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/978-3-642-31762-0_9
http://www.clip.dia.fi.upm.es/
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1109/FMCAD.2014.6987597
https://doi.org/10.1109/FMCAD.2014.6987597
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-35873-9_10

Lightweight Nontermination Inference with CHCs 401

13. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35873-9_10

14. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL 1978, pp 84–96. ACM (1978). https://doi.
org/10.1145/512760.512770

15. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Program verification
via iterated specialization. Sci. Comput. Program. 95, 149–175 (2014). https://
doi.org/10.1016/j.scico.2014.05.017

16. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Semantics-based gener-
ation of verification conditions via program specialization. Sci. Comput. Program.
147, 78–108 (2017). https://doi.org/10.1016/j.scico.2016.11.002

17. Doménech, J.J., Gallagher, J.P., Genaim, S.: Control-flow refinement by partial
evaluation, and its application to termination and cost analysis. Theory Pract. Log.
Program. 19(5–6), 990–1005 (2019). https://doi.org/10.1017/S1471068419000310

18. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer-Aided Verifica-
tion, volume 8559 of LNCS, pp. 737–744. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-41528-4

19. Fioravanti, F., Pettorossi, A., Proietti, M.: Specialization with clause splitting for
deriving deterministic constraint logic programs. In: Proceedings of IEEE Confer-
ence Systems, Man and Cybernetics. IEEE Press (2002). https://doi.org/10.1109/
ICSMC.2002.1167971

20. Gallagher, J.P.: Tutorial on specialisation of logic programs. In: PEPM’93: Pro-
ceedings of 1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pp. 88–98. ACM (1993). https://doi.org/10.1145/
154630.154640

21. Gallagher, J.P.: Polyvariant program specialisation with property-based abstrac-
tion. In: Lisitsa, A., Nemytykh, A.P. (eds.) Proceedings of Seventh International
Workshop on Verification and Program Transformation, volume 299 of EPTCS,
pp. 34–48 (2019). https://doi.org/10.4204/EPTCS.299.6

22. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562,
pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-
6_13

23. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) Proceedings of
PLDI 2012, pp. 405–416. ACM (2012). https://doi.org/10.1145/2254064.2254112

24. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.: Proving non-
termination. In: Proceedings of 35th ACM Symposium on Principles of Program-
ming Languages, pp. 147–158. ACM (2008). https://doi.org/10.1145/1328438.
1328459

25. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4_20

26. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-
nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797–813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_53

https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1016/j.scico.2014.05.017
https://doi.org/10.1016/j.scico.2014.05.017
https://doi.org/10.1016/j.scico.2016.11.002
https://doi.org/10.1017/S1471068419000310
https://doi.org/10.1007/978-3-319-41528-4
https://doi.org/10.1007/978-3-319-41528-4
https://doi.org/10.1109/ICSMC.2002.1167971
https://doi.org/10.1109/ICSMC.2002.1167971
https://doi.org/10.1145/154630.154640
https://doi.org/10.1145/154630.154640
https://doi.org/10.4204/EPTCS.299.6
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-08867-9_53

402 B. Kafle et al.

27. Kafle, B., Gallagher, J.P.: Constraint specialisation in Horn clause verification. Sci.
Comput. Program. 137, 125–140 (2017). https://doi.org/10.1016/j.scico.2017.01.
002

28. Kafle, B., Gallagher, J.P., Gange, G., Schachte, P., Søndergaard, H., Stuckey,
P.J.: An iterative approach to precondition inference using constrained Horn
clauses. Theory Pract. Log. Program. 18, 553–570 (2018). https://doi.org/10.1017/
S1471068418000091

29. Kafle, B., Gallagher, J.P., Morales, J.F.: Rahft: a tool for verifying Horn clauses
using abstract interpretation and finite tree automata. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 261–268. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4_14

30. Kafle, B., Gange, G., Schachte, P., Søndergaard, H., Stuckey, P.J.: Transformation-
enabled precondition inference. Theory Pract. Log. Program. 21(6) (2021)

31. Larraz, D., Nimkar, K., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: Proving
non-termination using max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 779–796. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9_52

32. Le, T.C., Qin, S., Chin, W.-N.: Termination and non-termination specification
inference. In: Grove, D., Blackburn, S.M. (eds.) Proceedings of PLDI 2015, pp.
489–498. ACM (2015). https://doi.org/10.1145/2737924.2737993

33. Leike, J., Heizmann, M.: Geometric nontermination arguments. In: Beyer, D., Huis-
man, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 266–283. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3_16

34. Miné, A.: Inferring sufficient conditions with backward polyhedral under-
approximations. Electron. Notes Theor. Comp. Sci. 287, 89–100 (2012). https://
doi.org/10.1016/j.entcs.2012.09.009

35. Moy, Y.: Sufficient preconditions for modular assertion checking. In: Logozzo,
F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 188–202.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78163-9_18

36. Peralta, J.C., Gallagher, J.P., Sağlam, H.: Analysis of imperative programs through
analysis of constraint logic programs. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503,
pp. 246–261. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49727-
7_15

37. Seghir, M.N., Schrammel, P.: Necessary and sufficient preconditions via eager
abstraction. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 236–254.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1_13

38. Termination competition 2020: C Integer. https://termcomp.github.io/Y2020/
job_41519.html. Accessed 1 June 2021

39. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In:
Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9_11

https://doi.org/10.1016/j.scico.2017.01.002
https://doi.org/10.1016/j.scico.2017.01.002
https://doi.org/10.1017/S1471068418000091
https://doi.org/10.1017/S1471068418000091
https://doi.org/10.1007/978-3-319-41528-4_14
https://doi.org/10.1007/978-3-319-41528-4_14
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1007/978-3-319-89963-3_16
https://doi.org/10.1016/j.entcs.2012.09.009
https://doi.org/10.1016/j.entcs.2012.09.009
https://doi.org/10.1007/978-3-540-78163-9_18
https://doi.org/10.1007/3-540-49727-7_15
https://doi.org/10.1007/3-540-49727-7_15
https://doi.org/10.1007/978-3-319-12736-1_13
https://termcomp.github.io/Y2020/job_41519.html
https://termcomp.github.io/Y2020/job_41519.html
https://doi.org/10.1007/978-3-540-79124-9_11

A Denotational Semantics of Solidity
in Isabelle/HOL

Diego Marmsoler and Achim D. Brucker(B)

University of Exeter, Exeter, UK
{d.marmsoler,a.brucker}@exeter.ac.uk

Abstract. Smart contracts are programs, usually automating legal
agreements such as financial transactions. Thus, bugs in smart contracts
can lead to large financial losses. For example, an incorrectly initialized
contract was the root cause of the Parity Wallet bug that made USD
280mil worth of Ether inaccessible. Ether is the cryptocurrency of the
Ethereum blockchain that uses Solidity for expressing smart contracts.

In this paper, we address this problem by presenting an executable
denotational semantics for Solidity in the interactive theorem prover
Isabelle/HOL. This formal semantics builds the foundation of an interac-
tive program verification environment for Solidity programs and allows
for inspecting Solidity programs by (symbolic) execution. We com-
bine the latter with grammar-based fuzzing to ensure that our formal
semantics complies to the Solidity implementation on the Ethereum
Blockchain. Finally, we demonstrate the formal verification of Solidity
programs by two examples: constant folding and memory optimization.

Keywords: Solidity · Denotational semantics · Isabelle/HOL · Gas
optimization

1 Introduction

An increasing number of businesses are adopting blockchain-based solutions.
Notably, the market value of Bitcoin, most likely the first and most well-known
blockchain-based cryptocurrency, passed USD 1 trillion in February 2021 [1].
While Bitcoin might be the most well-known application of a blockchain, it lacks
features that applications outside of cryptocurrencies require and that make
blockchain solutions attractive to businesses.

The Ethereum blockchain [40] is a feature-rich distributed computing plat-
form that provides not only a cryptocurrency, called Ether : Ethereum also pro-
vides an immutable distributed data structure (the blockchain) on which dis-
tributed programs, called smart contracts, can be executed. Essentially, smart
contracts are programs, usually automating legal agreements, e.g., financial
transactions. To support such applications, Ethereum provides a dedicated
account data structure on its blockchain that smart contracts can modify,
i.e., transferring Ether between accounts. Thus, bugs in smart contracts can
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 403–422, 2021.
https://doi.org/10.1007/978-3-030-92124-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_23&domain=pdf
http://orcid.org/0000-0003-2859-7673
http://orcid.org/0000-0002-6355-1200
https://doi.org/10.1007/978-3-030-92124-8_23

404 D. Marmsoler and A. D. Brucker

lead to large financial losses. For example, an incorrectly initialized contract
was the root cause of the Parity Wallet bug that froze USD 280mil worth of
Ether [32]. This risk of bugs being costly is already a big motivation for using
formal verification techniques. The fact that smart contracts are deployed on the
blockchain immutably, i.e., they cannot be updated or removed easily, makes it
even more important to “get smart contracts right”, before they are deployed
on a blockchain for the very first time.

For implementing smart contracts, Ethereum provides Solidity [30], a Turing-
complete, statically typed programming language that has been designed to look
familiar to people knowing Java, C, or JavaScript. The following shows a simple
(artificial) function of a smart contract in Solidity for withdrawing Ether:

1 function wd(uint256 n, address payable r) public returns(bool) {

2 if (n < address(this).balance) {

3 r.transfer(n);

4 return true;

5 }

6 return false;

7 }

The type system provides, e.g., numerous integer types of different sizes (e.g.,
uint256) and the Solidity programs can make use of different types of stores
for data (e.g., storage and memory). While Solidity is designed to be a Turing-
complete language, the gas model ensures termination. The reason for this is that
executing Solidity operations costs gas, a tradeable commodity on the Ethereum
blockchain. Gas does cost Ether and hence, programmers of smart contracts have
an incentive to write highly optimized contracts whose execution consumes as
little gas as possible. For example, the size of the integer types used can impact
the amount of gas required for executing a contract. Similarly, different type
of stores induce different gas costs. Thus, the authors of Solidity contracts try
to optimize the costs of executing a contract. This desire for highly optimized
contracts can conflict with the desire to write correct and secure contracts.

We address the problem of developing smart contracts in Solidity that are
correct: we present an executable denotational semantics for Solidity in the inter-
active theorem prover Isabelle/HOL [28]. Our contributions are four-fold:

1. A formal semantics of (a subset of) Solidity as conservative embedding into
Isabelle/HOL. We follow the LCF-approach [15] and do not use any axiomatic
definitions and, hence, our semantics is consistent “by construction”.

2. A grammar-based fuzzing framework that can automatically validate our for-
mal semantics against the Ethereum blockchain. Thus, we can provide strong
evidence that our formal semantics complies to the official implementation.

3. We use our formal semantics for building an integrated verification and sym-
bolic execution environment for Solidity programs on top of Isabelle/HOL.
For this, we developed domain-specific automated proof methods.

4. We showcase our verification approach by formally analyzing two optimization
strategies from which we derive rules that can be used to optimize the gas
consumption of Solidity programs while preserving their semantics.

A Denotational Semantics of Solidity in Isabelle/HOL 405

Our approach combines an expressive logic, i.e., higher-order logic (HOL) within
an interactive theorem prover with a testing framework allowing us to validate
the formalization against the actual implementation. This combination enables
us to quickly analyze the impact of changes to the semantics while ensuring
formal consistency and compliance to the implementation. The ability to quickly
assess changes in Solidity is important, as Solidity is a fast evolving language.
The Solidity manual [30], e.g., states: “When deploying contracts, you should
use the latest released version of Solidity. This is because breaking changes as
well as new features and bug fixes are introduced regularly.”

2 Semantics

In the following, we describe our denotational semantics for a subset of Solidity
v0.5.16 [30].1 The complete semantics is formalized in Isabelle/HOL [28]. The
formalization consists of 1500 lines of Isabelle code.

Our subset supports the following features of Solidity:

– Fixed-size integer types of various lengths and corresponding arithmetic with
support for overflows.

– Domain-specific primitives, such as money transfer or balance queries.
– Different types of stores, such as storage, memory, and stack.
– Complex data types, such as hash-maps and arrays.
– Assignments with different semantics, depending on the location of the

involved data types.
– An extendable gas model.

Our formalization is based on higher-order logic using inductive datatypes [7].
To this end, we use bold font for types and italics for type constructors.

2.1 Value Types

Solidity supports four different basic data types, called value types:

Types ::= TBool | TAddr | TSInt Nat | TUInt Nat

TBool denotes boolean values and TAddr denotes addresses. Solidity also sup-
ports signed and unsigned integers from 8 to 256 bits in steps of 8. Thus, TSInt b
and TUInt b denote signed and unsigned integers of 2b bit size.

In Solidity, raw data is encoded in hexadecimal format, however, to simplify
the computation of locations for reference types (as discussed in more detail in
Sect. 2.2), we use strings to model raw data in our model. Thus, type Valuetype
is actually just a synonym for type string and it is used to represent the data of
value types in the store. In addition, we shall write �v� and �v� to convert the
value v of a basic data type to and from a string representation, respectively.

Converting an integer to a corresponding bit representation can result in an
overflow which needs to be considered. Thus, we define two functions createSInt
1 This is the currently supported default version of the Truffle test framework.

406 D. Marmsoler and A. D. Brucker

and createUInt to convert an arbitrary number to a corresponding signed or
unsigned integer representation of a certain size:

createSInt : Nat × Int → Valuetype

createSInt(b, v) =

{⌊(
(v + 2b−1) mod 2b

) − 2b−1
⌋

if v ≥ 0⌊
2b−1 − (

(2b−1 − v − 1) mod 2b
) − 1

⌋
if v < 0

where x mod y denotes the non-negative remainder when dividing x by y. The
definition of createUInt is similar.

Essentially, the functions can be used to create a representation of a given
number which fits into a certain bit size. For example, createSInt(8, 200) = “−56”
whereas createUInt(8, 200) = “200”.

We can then define functions to lift basic arithmetic and boolean operations
to corresponding operations over signed and unsigned integers of various sizes.
The operation add , for example, can be defined by the following equations using
usual pattern-matching notation:

add : Types × Types × Valuetype × Valuetype → (Valuetype × Types)⊥
add (TUInt(bl),TUInt(br), vl, vr) = createU (max (bl, br), �vl� + �vr�)
add (TSInt(bl),TSInt(br), vl, vr) = createS (max (bl, br), �vl� + �vr�)

add (TUInt(bl),TSInt(br), vl, vr) =

{
createS (br, �vl� + �vr�) if bl < br

⊥ if bl ≥ br

add (TSInt(bl),TUInt(br), vl, vr) =

{
createS (bl, �vl� + �vr�) if br < bl

⊥ if br ≥ bl

where createU (b, v) = (createUInt(b, v),TUInt(b)) , and
createS (b, v) = (createSInt(b, v),TSInt(b)) .

According to the current specification of Solidity, adding two integers of the
same type is always possible but results in a new integer of the size of the larger
one. Adding integers of different type is only possible if the size of the signed
integer is strictly greater than the one of the unsigned one, in which case the
result is always a signed integer with the size of the signed one. Moreover, the
result of adding two numbers might not fit into the corresponding result type in
which case an overflow occurs.

Consider, e.g., the following two additions of an unsigned with a signed inte-
ger:

add(TUInt(8),TSInt(16), “200”, “32600”) = (“ − 32736”,TSInt(16))
add(TUInt(16),TSInt(16), “100”, “32700”) = ⊥

In the first case, 32600 + 200 does not fit into the resulting 16-bit signed integer
(which can only store numbers up to 32767) and thus we get an overflow. In
the second case, we try to add two incompatible types which results in an error.
Similar definitions can be provided for the remaining arithmetic and logical
operators.

A Denotational Semantics of Solidity in Isabelle/HOL 407

2.2 Stores and Reference Types

In Solidity, storage cells are addressed by hexadecimal numbers. Again, however,
we use strings to model them to simplify computation of locations for reference
types. Thus, type Loc denotes the type of strings and is used to represent storage
locations. We can then model a general store for values of type v as a parametric
data type:

Store v ::= (Loc → v) × Nat

It consists of a mapping to assign values to locations and in addition it holds
a pointer to the next free location. We can then define function access(l, s) to
access the value at location l in store s and function updateStore(l, v, s) to store
value v at location l of store s. The definition of these functions is standard
and thus not discussed further. However, the way Solidity computes storage
locations for reference types is a bit special and thus worth a closer look. To this
end, assume that a storage cell loc contains a reference type, such as a mapping.
Then, the storage cell which contains the value of the entry for key k is computed
by keccak256 (“k” + loc), where keccak256 denotes the Keccak hash function [8]
and + denotes string concatenation.

The main objective of this approach is to obtain a unique storage cell for
every element. The purpose of using the hash value is to deal with a limited
amount of storage cells which are available in practice. In theory, collisions are
possible when using a hash function, however, in practice, such collisions are
very unlikely to happen and thus they may be neglected. Thus, in our model,
the location of the storage cell which holds the value of an element ix of a
reference type which is stored at location loc is obtained by concatenating ix
with loc separated by a dot:

h(loc, ix) = ix + “.” + loc

Types of Storage. Solidity has three different stores: stack, memory, and stor-
age. The stack stores the values for variables which can either be concrete values
(for value type variables) or pointers to either memory or storage (for reference
type variables). Thus, a stack can be modelled as a store which can keep three
different types of values:

Stackvalue ::= Value Valuetype | Memptr Loc | Stoptr Loc

Stack ::= Store Stackvalue

Solidity supports two additional stores memory and storage for storing the
value of reference types. While memory supports only arrays, storage also sup-
ports mappings:

MTypes ::=MTValue Types | MTArray NatMTypes

STypes ::=STValue Types | STArray Nat STypes | STMap Types STypes

The internal organization of the two stores differs fundamentally: While memory
uses pointer structures to organize the values of reference types, storage values

408 D. Marmsoler and A. D. Brucker

are accessed directly by computing the corresponding location. Thus we model
memory as a store which can keep two different types of values:

Memoryvalue ::= Value Valuetype | Pointer Loc

Memory ::= Store Memoryvalue

Storage, on the other hand is modeled as a simple store of value types:

Storage ::= Store Valuetype

Storage access is non-strict, which means that access to an undefined storage cell
returns a default value. To this end, we first define a function ival : Types →
Valuetype which returns a default value for each value type. Now, we can define
a corresponding access function for storage:

accessStorage : Types × Loc × Storage → Valuetype

accessStorage(t, loc, sto) =

{
v, if v 	= ⊥
ival(t), if v = ⊥ where v = access(loc, sto)

Copying of Reference Types. Often, we need to copy values from one type
of store to another, i.e., we need different types of copy functions. To specify
them, we use a higher-order function

iter : (Int → a → a) → a → Int → a

such that iter(f, x, v) executes function f on value v and the passes the outcome
on to another execution of f until f was executed x times.

In the following we use iter to define the function to copy from storage to
memory:

cps
m : Loc × Loc × Int × STypes × Storage × Memory → Memory⊥

cps
m(ls, lm, i, t, s,m) = iter(λi′,m′. cprecsm(h(ls, �i′�), h(lm, �i′�), t, s,m′),m, i)

where

cprecsm(ls , lm ,STArray(i, t), s,m)
= iter (λi′,m′. cprecsm(h(ls, �i′�), h(lm, �i′�), t, s,m′),m′′, i)
where m′′ = updateStore(lm,Pointer(lm),m) (1)

cprecsm(ls , lm ,STValue(t), s,m) = updateStore(lm,Value(v),m)
where v = accessStorage(t, ls, s) (2)

cprecsm(ls , lm ,STMap(t, t′), s,m) = ⊥ (3)

In Solidity, value types are just copied between stores which is reflected by
Eq. (2). For reference types, however, the situation is different. Mappings can
only be kept in storage and not in memory which is why a mapping is never
copied from storage to memory, and we just return ⊥ for this case (Eq. (3)).

A Denotational Semantics of Solidity in Isabelle/HOL 409

Arrays, on the other hand, can be kept in both: storage and memory. As men-
tioned above, however, the way of storing them differs depending on the type
of store: in storage, we just calculate the location of the elements of an array
whereas in memory arrays are stored using a pointer structure. Thus, when copy-
ing arrays from storage to memory we need to create the corresponding pointer
structure as shown by Eq. 1.

Our model contains similar functions to copy from memory to storage or
storage to storage. Copying from memory to memory is not required since mem-
ory operations do not copy the data structure but rather just the pointer as
discussed in more detail in Sect. 2.4). It also contains similar functions to copy
from memory to storage or storage to storage. Copying from memory to mem-
ory is not required since memory operations do not copy the data structure but
rather just the pointer (see Sect. 2.4).

State. Accounts are associated with an address in hexadecimal format. We
model Address as strings and accounts as mappings from addresses to their
balance:

Accounts ::= Address → Valuetype

A state of a Solidity program consists of the balances of the accounts as well as
the state of the different stores:

State ::= Accounts × Stack × Memory × Storage

In the following we shall use sck(s), mem(s), sto(s), acc(s) to access the
stack, memory, storage, and account of a state s. Moreover, we use upSck(k, s),
upMem(m, s), upSto(t, s), and upAcc(a, s) to change stack, memory, storage, or
account, of a state s to k, m, t, or a, respectively.

2.3 Expressions

Our subset of Solidity supports basic arithmetic and boolean expressions over
signed and unsigned integers of various bit sizes:

B ::= 8 | 16 | . . . | 256
L ::= Id S | Ref S [E]
E ::= Address S | Balance S | L L | SInt B Int | UInt B Int | True | False

| E == E | E + E | E − E | E < E | ¬E | E ∧ E | E ∨ E

where S denotes the type of strings, Int the type of integer symbols, and [a] a
list of elements of type a.

Environment. Expressions are always interpreted w.r.t. an environment which
assigns types and values to variables. To this end, we introduce a new type
Identifier (a synonym of type string) for variable names. Variables in Solidity
can either be storage references or stack references which can again be pointers to

410 D. Marmsoler and A. D. Brucker

either storage or memory. In addition, the environment also contains the address
of the currently executing contract:

Type ::= Value Types | Memory MTypes | Storage STypes

Denvalue ::= Stackloc Loc | Storeloc Loc

Environment ::= Address × (Identifier → Type × Denvalue)

Lookup Functions. To access the value of a reference type we define a function
which looks up the corresponding value in memory:

M : [E] → MTypes → Loc → Environment → State → Loc × MTypes⊥

M�x�t l e s =

{
(h(l, v), t′) if lookup(x, t, e, s, t′, v)
⊥ otherwise

M�x#xs�t l e s =

⎧⎪⎨
⎪⎩

M�xs�t′ l′ e s if lookup(x, t, e, s, t′, v)
∧ access(h(l, v),mem(s)) = Pointer(l′)

⊥ otherwise

where lookup(x, t, e, s, t′, v) ⇐⇒ ∃lg , t′′ : t = MTArray(lg , t′)
∧ E�x�e s = (Value(v),Value(t′′))
∧ less(t′′,TUInt(256), v, �lg�) = (“True”,TBool)

Since memory uses pointer structures, we need to access the memory in every
iteration to look up the next location.

Let us assume that t = MTArray(5,MTArray(6,MTValue(TBool))), and the
memory of state s is [“3.2” �→ Pointer(“5”), “4.5” �→ Value(“True”)]. Then,

M�[UInt(8, 3)]�t “2” e s = (“3.2”,MTArray(6,MTValue(TBool))) (4)
M�[UInt(8, 3),SInt(8, 4)]�t “2” e s = (“4.5”,MTValue(TBool)) (5)
M�[UInt(8, 5)]�t “2” e s = ⊥ (6)
M�[UInt(8, 2)]�t “2” e s = ⊥ (7)

A similar function to M is defined to look up storage values with two notable
differences:
– Since storage does not support pointer structures, we do not access the store

while iterating through the list of selectors. Thus, the function always returns
a storage location as long as we access indices within the range of the array
(Eq. (7), for example would return a valid storage location).

– Since storage also supports mappings, the function can be used to look up
also the value for mapping variables.

Using these functions we can then define two additional functions to look up
the value or location of a variable:

R : L → Environment → State → Stackvalue × Type⊥
L : L → Environment → State → LType × Type⊥

with LType ::= Stackloc Loc | Memloc Loc | Storeloc Loc

A Denotational Semantics of Solidity in Isabelle/HOL 411

The definition of these functions is straightforward using the lookup functions
discussed before and not discussed further here.

Semantics of Expressions. Finally we can define the semantic function for
expressions.

E : E → Environment → State → Stackvalue × Type⊥

The definition of the function mainly follows traditional denotational semantics
definitions [34,35] with the exception that we use the operators introduced in
Sect. 2.1 to manipulate integers:

E�SInt(b, n)�e s = (Value(createSInt(b, n)),Value(TSInt(b)))

E�x1 + x2�e s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Value(v),Value(t)) if E�x1�e s = (Value(v1),Value(t1))
∧ E�x2�e s = (Value(v2),Value(t2))
∧ add(t1, t2, v1, v2) = (v, t)

⊥ otherwise

2.4 Statements

So far, our subset of Solidity supports variable declarations with optional ini-
tialisation and basic programming language statements:

D ::= S × Type × E⊥
C ::= Skip | L = E | C ; C | Ite E C C | While E C | Transfer S E |

Block D C

We can then define a semantic function for statements:

C : C → Environment → State → Nat → (State × Nat)⊥

The definition of it is mostly standard denotational semantics with some excep-
tions discussed in the following.

Gas. One interesting aspect of Solidity is that execution of statements is subject
to fees, i.e., the execution consumes gas: if all gas is consumed, the execution
terminates with an exception. Consequently, Solidity programs always terminate.
The actual gas fees are computed on the level of the Ethereum byte code [39]
and, moreover, are frequently updated. Thus, our Solidity formalization does not
provide a built-in gas model trying to faithfully represent the actual gas model
on the level of Ethereum bytecode: we only assume the existence of a generic
cost function costs : C × Environment × State → N which provides the gas
costs for executing a given statement. A separate gas function for expressions
can be defined and used with the cost function for statements. Moreover, in our

412 D. Marmsoler and A. D. Brucker

subset of Solidity, the while statement is the only program statement that does
not terminate in all states. Therefore, we require:

0 < costs(While(ex, s), e, s′) (8)

This requirement is not a limitation, as the actual costs for any execution of
a while loop will be positive [39, Appendix G]. While our cost model can, in
principle, be used for proving upper or lower bounds for the gas consumption of
a given contract, the usefulness of such a statement depends on how faithful the
user-provided cost functions model the actual costs which may also depend on
compiler optimizations.

We can now verify a general statement about the semantics, namely that it
always terminates. Note that we model error states (e.g., failing transfers) using
an explicit error type. This is a standard construction to model partial functions
in HOL, which requires that all functions are total from a “logical perspective.”

Theorem 1. C�c� e s g is always defined.

Proof. The proof is a simple inductive argument over c using Eq. (8). ��
Indeed, Isabelle automatically proves it for us and provides us with corresponding
proof methods to support reasoning over C.

Semantics of Assignments. Another particularity of Solidity is that the
semantics of an assignment depends on the type of store to which the involved
variables refer. Let us consider, for example, the case in which the right-hand
side of an assignment evaluates to a value stored in memory:

C�v=x�e s g

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1a) if ex (g,x,e,s,p,i,t) ∧ L�v�e s=(Stackloc(l),Memory(t′))
(2a) if ex (g,x,e,s,p,i,t) ∧ L�v�e s=(Stackloc(l),Storage(t′))
∧ access(l,sck(s))=Stoptr(p′) ∧ cpm

s (p,p′,i,t,mem(s),sto(s))=o

(3a) if ex (g,x,e,s,p,i,t) ∧ L�v�e s=(Storeloc(l),t′)
∧ cpm

s (p,l,i,t,mem(s),sto(s))=o

(4a) if ex (g,x,e,s,p,i,t) ∧ L�v�e s=(Memloc(l),t′)
...

where ex (g,x,e,s,p,i,t)⇐⇒costs(v=x,e,s)<g

∧ E�x�e s=(Memptr(p),Memory(MTArray(i,t)))

(1a)=(upSck(updateStore(l,Memptr(p),sck(s)),s),costs(v=x,e,s))
(2a,3a)=(upSto(o,s),costs(v=x,e,s))

(4a)=(upMem(updateStore(l,Pointer(p),mem(s)),s),costs(v=x,e,s))

In this case, the semantics of the assignment changes, depending on the L-value
of the left-hand side: If it is a pointer to memory (cases (1) and (4)), we just
assign the pointer but if it is a reference to storage (cases (2) and (3)), we copy
the whole structure to memory using the copy functions discussed in Sect. 2.2.

A Denotational Semantics of Solidity in Isabelle/HOL 413

Transferring Money. Another aspect which sets Solidity apart from tradi-
tional programming languages is its support for features to transfer funds from
one account to another. To this end, every contract is associated with an account
and Solidity supports a command which can be used to transfer funds from it
to another account:

C�Transfer a x�e s g =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1b) if costs(Transfer(a, x), e, s) < g

∧ E�x�e s = (Value(v),Value(t))
∧ transfer(address(e), a, t, v, acc(s)) = ac

. . .

where (1b) = (upAcc(ac, s), costs(Transfer(a, x), e, s))

transfer(s, d, t, v, ac) =

{
addB(d, t, v, ac′) if subB(s, t, v, ac) = ac′

⊥ otherwise

Here, address(e) denotes the address of the contract’s account, and
addB(a, t, v, ac) and subB(a, t, v, ac) are functions to increase and decrease the
balance of an address a of accounts ac by a certain amount v. Note that both
functions use the corresponding add and sub functions for signed and unsigned
integers discussed in Sect. 2.1. Moreover, subB may also fail if an account has
not enough funds in which case it evaluates to ⊥.

3 Compliance to the Official Solidity Implementation

For ensuring that our formal semantics is a faithful representation of the official
Solidity implementation, we provide a test framework that supports compar-
ing the result of evaluating a Solidity program in our formal semantics to its
execution on the Ethereum blockchain.

We use Isabelle’s code generator to automatically generate a Solidity evalua-
tor from our formal semantics. In our current implementation, we use Haskell as
target platform for the code generator. Moreover, we need to provide a concrete
cost function for computing the gas consumption (recall Sect. 2.4). In Isabelle,
we can achieve this by instantiating a so-called locale [5] with a trivial imple-
mentation satisfying Eq. (8).

We then generate Solidity programs using a grammar-based fuzzer and com-
pare the results of executing those programs on both the reference implemen-
tation of Solidity and our evaluator. The test framework is fully automated.
Figure 1 shows the main steps of our test framework that we discuss in the
following in more detail.

– Generate Random Solidity Code. The test framework generates a ran-
dom Solidity program from a given grammar, using the grammar-based fuzzer
Grammarinator [21]. To avoid the generation of programs which do not com-
pile, the grammar needs to be strict to only accept programs which are type-
correct. The grammar is given in the format used by ANTLR4 [31].

414 D. Marmsoler and A. D. Brucker

Fig. 1. Fuzzy testing Solidity smart contracts.

– Generate Random State. For each generated Solidity program, our testing
framework generates a set of random input states. To this end, the script
analyses the generated program and extracts the variables which occur in it.
Based on the type of the variable, the script then generates random values
for each variable.

– Execute Semantics. Before we can compute the output state with our
semantics, we first need to transform the generated Solidity program to the
abstract syntax which is accepted by the semantics. Finally, the abstract
syntax of the program and the generated input state can be passed to the
executable semantics, i.e., the evaluator automatically generated by Isabelle,
to compute a corresponding output state.

– Create Test Contract. The generated Solidity program, together with the
generated input state and the computed output state, is used to create a
test contract for the Truffle testing framework [11]. Listing 1.1 shows parts
of a generated contract, consisting of a single function which contains the
generated Solidity program. The extracted storage variables are declared as
contract variables whereas the extracted memory/stack variables are declared
locally. Then, the variables are initialized according to the generated input
state whereas the computed output state is used to create corresponding
assertions for the Truffle framework.

– Deploy and Execute Contracts. Finally, the script deploys the test con-
tract to a local instance of the Ganache blockchain [10] and executes the test
using Truffle [11]. It then parses the output of the test, reports in a log file
and starts a new iteration.

3.1 Results

To test our semantics, we run the framework for several days which resulted in
more than 10000 successful tests. To cross-validate the effectiveness of the testing
framework we also collected coverage information for the semantics using the Hpc
tool [14]. The results are summarized in Fig. 2: Out of 123 definitions, 121 were
executed during the tests. In addition, 186 alternatives (out of 524) and 1592
expressions (out of 2394) were executed. Hpc also generates detailed coverage
reports for every module. When inspecting these reports it turns out that the low
number of covered alternatives is mainly because of missing executions of error

A Denotational Semantics of Solidity in Isabelle/HOL 415

cases (e.g. ill-typed programs). This is because the test framework only generates
well-formed Solidity programs and thus the error cases are not executed.

1 contract TestContract0 {

2 uint8 v_u8_s8;

3 mapping(uint16 => uint8) v_m_u16_u8_9;

4 bool[1][2] a_b_12_s5;

5 ...

6 function test() public {

7 uint104 v_u104_m2;

8 uint104[1][1] memory a_u104_11_m2;

9 ...

10 v_u104_m2=14622709355569675963178665339646;

11 v_m_u16_u8_9[59381]=79;

12 ...

13 int8 counter1=int8(0);

14 while((v_m_u224_s240_1[uint224(444)]==

15 (v_u216_s1-v_u104_m2)) && counter1<int8(10)){

16 0xf7218C33533a3F22e3296F8b1DC0074B399355Eb

17 .transfer(v_m_u16_u8_9[uint16(0)]);

18 counter1=counter1+int8(1);

19 }

20 ...

21 Assert.equal(v_m_u16_u8_9[59381]==79, true);

22 Assert.equal(a_u104_11_m2[0][0]==

23 8130097819054169632795960896007, true);

24 Assert.equal(

25 0xf7218C33533a3F22e3296F8b1DC0074B399355Eb

26 .balance==100000000000000000000, true);

27 ...

28 }

29 }

Extracted

storage variables

Extracted

memory/stack variables

Generated

input state

Generated

program

Computed

result state

Listing 1.1. Example test contract generated by our testing framework.

Fig. 2. Overall test coverage of semantics.

416 D. Marmsoler and A. D. Brucker

4 Verified Constant Folding

Constant folding is a common type of program optimization technique in which
constant sub-expressions are replaced by their value. For example, the expression
SInt(16, 250) + UInt(8, 500) can be replaced with the expression SInt(16, 494)
in every program without affecting its outcome.

When it comes to smart contracts, constant folding is a good candidate for
gas optimization. For example, according to the Remix IDE [29], computing the
original expression costs 20 gas whereas computing the optimized version costs
only 8 gas which leads to a saving of 12 gas just for this simple expression.

We can define a function for constant folding of Solidity expressions as follows:

update : E→E

update(SInt(b,v))=

{
SInt

(
b,

(
(v+2b−1) mod 2b

)−2b−1
)

if v≥0
SInt

(
b,2b−1−(

(2b−1−v−1) mod 2b
)−1

)
if v<0

update(x1+x2)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1c) if ∃b1,v1,b2,v2. sint(x1,b1,v1,x2,b2,v2) ∧ v1+v2≥0
(2c) if ∃b1,v1,b2,v2. sint(x1,b1,v1,x2,b2,v2) ∧ v1+v2<0
(3c) if ∃b2<b1,v1,v2. uint(x1,b1,v1,x2,b2,v2) ∧ v1+v2≥0
(4c) if ∃b2<b1,v1,v2. uint(x1,b1,v1,x2,b2,v2) ∧ v1+v2<0
...

with

sint(x1,b1,v1,x2,b2,v2)⇐⇒update(x1)=SInt(b1,v1) ∧ update(x2)=SInt(b2,v2)
uint(x1,b1,v1,x2,b2,v2)⇐⇒update(x1)=SInt(b1,v1) ∧ update(x2)=UInt(b2,v2)

(1c)=SInt
(
max (b1,b2),

(
(2max(b1,b2)−1+v) mod 2max(b1,b2)

)
−2max(b1,b2)−1

)
(2c)

=SInt
(
max (b1,b2),2max(b1,b2)−1−

(
(2max(b1,b2)−1−v−1) mod 2max(b1,b2)

)
−1

)
(3c)=SInt

(
b1,

(
(v+2b1−1) mod 2b1

)−2b1−1
)

(4c)=SInt
(
b1,2b1−1−(

(2b1−1−v−1) mod 2b1
)−1

)
where for every case (1c)–(4c), variables b1,v1,b2,v2 denote the unique elements
satisfying the condition required for this case and v=v1+v2. The cases for
unsigned integers and the remaining arithmetic and boolean expressions are
similar.

The function update can be applied to a Solidity program to replace constant
expressions with their corresponding value reducing the gas cost of executing
the program. For example, update applied to the expression SInt(16, 250) +
UInt(8, 500) returns the expression SInt(16, 494).

Having a formal semantics of Solidity expressions in Isabelle allows us to
mechanically verify the correctness of our update function, i.e., we proved in
Isabelle/Isar [38] that it does not modify the semantics of an expression:

Theorem 2. E�x�e s = E�update(x)�e s

A Denotational Semantics of Solidity in Isabelle/HOL 417

5 Memory Optimization

In the following, we describe a failed verification attempt to demonstrate the
type of problems which can be detected with our approach.

In Solidity, access to storage variables is far more expensive than access to
memory variables. Thus, instead of directly working on a storage variable, a
common pattern is to first copy its content to memory, manipulate the corre-
sponding memory variable, and finally copy the results back to storage. We can
capture this pattern in another optimizer program which automatically replaces
storage variables with corresponding memory variables. To this end, we first
create three functions to update identifiers in L-values, expressions, and state-
ments, respectively. The corresponding function for L-values, for example, looks
as follows:

lupdate : S × S × L → L

lupdate(j, j′, Id(i)) =

{
Id(j′) if i = j

Id(i) if i 	= j

lupdate(j, j′,Ref (i, xs)) =

{
Ref (j′,map(eupdate(j, j′), xs)) if i = j

Ref (i,map(eupdate(j, j′), xs)) if i 	= j

where map is a higher-order function which executes another function over a
sequence of values. The functions for expressions and statements are straight-
forward and thus not discussed further.

We can now define a function which implements the pattern discussed above:

optimize : S × S × MTypes × C → C

optimize(vs, vm,MTValue(t), s)=Block ((vm,Value(t),L(Id(vs))), up(vs, vm, s))
optimize(vs, vm,MTArray(i, t), s) =

Block ((vm,Memory(MTArray(i, t)),L(Id(vs))), up(vs, vm, s))
where up(vs, vm, s) = supdate(vs, vm, s) ; Id(vs) = L(Id(vm))

As an example, consider the following contract:

Applying function optimize on it would replace the lines 6 and 7 with the
program shown in the connected box. Again, it is important to ensure that

418 D. Marmsoler and A. D. Brucker

optimize does not modify the semantics of programs and again we can formulate
a corresponding correctness criterion in Isabelle.

To formulate the correctness statement, we first need to add two additional
functions:

– Function fresh(i, c) checks if an identifier i is not present in a statement c so
far.

– Function convert(t) converts a memory type to a corresponding storage type.

We can now define correctness of the optimizer program as follows:

fresh(vm, c) ∧ vm 	= vs ∧ accessEnv(vs, e) = (Storage(convert(tm)), v)
=⇒ C�c�e s = C�optimize(vm, vs, tm, c)�e s

where accessEnv(v, e) is used to obtain the type and value of a variable v in an
environment e.

This time, when trying to verify the statement in Isabelle, it turns out that
the statement does not hold in general. In particular, the substitution of refer-
ence type variables is critical. Consider, for example, again contract MyContract
above. In the original program, line 6 copies the complete content of memory
array ma to storage array sa. In line 7, the program then updates the value of
the storage array without modifying ma. Indeed, given a definition of a corre-
sponding environment env and state st , we can easily verify the following lemma
in Isabelle:

Lemma 1. C�P�e s = s′ ∧ access(“0.1”,mem(s′)) = MValue(“False”)

where P is the program consisting of lines 6 and 7 of contract MyContract and
“0.1” is the location of the first element of array ma in memory.

On the other hand, the modified version of the program behaves as follows:
First, it copies the complete content of storage array sa to the newly created
memory array x . Now, however, since x is also a memory array, the semantics of
the assignment x = ma is different from the one in line 6 of the original program.
Instead of copying again the content of the array, this time, the assignment
just copies a pointer to the content of array ma to x. Therefore, the next line
x[0] = true does not only change the value of x[0], but in addition it also
changes the value of ma[0]. Thus, while the value of array sa after execution
is the same for both programs, the optimized program has the additional side
effect of changing also the content of array ma. Indeed, we can easily show the
following lemma in Isabelle:

Lemma 2. C�optimize(sa, x ,MTArray(1,MTValue(TBool)),P)�e s = s′

∧ access(“0.1”,mem(s′)) = (MValue(“True”))

6 Related Work

Early work on formalizing Ethereum smart contracts has focused on the
Ethereum Virtual Machine (EVM) [40]. One of the first examples in this area is

A Denotational Semantics of Solidity in Isabelle/HOL 419

the work of Hirai [20], which provides a formalization of the EVM in Lem [27].
Later on, Hildebrandt et al. provide an alternative formalization using the K-
framework [33] called KEVM [19]. Around the same time, Grischenko et al. [16]
provide a formalization of the EVM in F* [36] and Amani et al. one for the
interactive theorem prover Isabelle/HOL [4]. All the work in this area describes
the formalization of the Ethereum Virtual Machine to support the verification
of contracts at the byte-code level. With our work we focus on the higher level
language Solidity which allows more abstract reasoning.

More recently, also work on formalizing and analyzing smart contracts in
Solidity emerged: Bhargavan et al. [9], for example, describe an approach to map
a Solidity contract to F* where it can then be verified. In addition, Mavridou
et al. [26], provide an approach based on FSolidM [25], in which a Solidity
smart contract is modeled as a state machine to support model checking of
common security properties. TinySol [6] and Featherweight Solidity[12], on the
other hand, are two calculi formalizing some core features of Solidity. Crosara
et al. [13] describe an operational semantics for a subset of Solidity. Moreover,
Ahrendt and Bubel describe SolidiKeY [3], a formalization of a subset of Solidity
in the KeY tool [2] to verify data integrity for smart contracts. In addition,
Zakrzewski [42] describes a big-step semantics of a small subset of Solidity and
Yang and Lei [41] describe a formalization of a subset of Solidity in Coq [37].

While all these works provide important insights into the formal foundation
of Solidity, most of them are not executable and therefore difficult to evaluate. On
the other hand, we considered it important to have an executable semantics that
can be evaluated against the reference implementation. We share this desire with
Hajdu and Jovanovic [17,18], which provide a formalization of Solidity in terms
of a simple SMT-based intermediate language which they evaluate on a set of
manually developed tests. In addition, Jiao et al. [22,23], provide a formalization
of Solidity in K with a rigorous evaluation using the Solidity compiler test set.
Our work differs from the above works mainly in two main aspects:

1. We provide the first implementation of a semantics for Solidity for the inter-
active theorem prover Isabelle/HOL.

2. Our approach comes with an integrated fuzzy-testing framework which allows
to automatically test the semantics against the reference implementation
every time the semantics is updated.

7 Conclusion

We presented a formal semantics of Solidity, as a conservative extension of
Isabelle/HOL. Our work includes a test framework for automatically validating
that our semantics describes the behavior of the actual Solidity implementation
faithfully. As a first step of showing the usefulness of our semantics, we demon-
strated the formal analysis of two different optimizations of Solidity programs
that potentially help to make smart contracts more “gas efficient”.

In our current work, we focused on the core of the Solidity language and
the more exotic features such as its memory model and the numerous types

420 D. Marmsoler and A. D. Brucker

of integers. We plan to extend the formalization with support for missing lan-
guage features such as function calls. And we also plan to improve and extend
the verification framework, e.g., by providing support for the keywords require
and assert, and a verified verification condition generator. Moreover, we started
already to increase the level of proof automation by developing domain specific
tactics.

Availability. Our formalisation, the test framework, and the evaluation results
are available under BSD license (SPDX-License-Identifier: BSD-2-Clause) [24].

Acknowledgement. We would like to thank Tobias Nikpkow for useful discussions
about the compliance testing. Moreover, we would like to thank Silvio Degenhardt and
Nick Papavasileiou for their support with implementing the semantics.

References

1. The Bitcon market capitalisation. https://coinmarketcap.com/currencies/bitcoin/.
Accessed 4 May 2021

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification-The KeY Book, vol. 10001. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49812-6

3. Ahrendt, W., Bubel, R.: Functional verification of smart contracts via strong data
integrity. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp.
9–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6 2

4. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: CPP, CPP 2018, pp. 66–77. ACM (2018).
https://doi.org/10.1145/3167084

5. Ballarin, C.: Interpretation of locales in Isabelle: theories and proof contexts. In:
Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp.
31–43. Springer, Heidelberg (2006). https://doi.org/10.1007/11812289 4

6. Bartoletti, M., Galletta, L., Murgia, M.: A minimal core calculus for Solidity con-
tracts. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 233–243. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31500-9 15

7. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL — lessons learned in formal-
logic engineering. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin,
C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48256-3 3

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

9. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
gramming Languages and Analysis for Security, pp. 91–96. PLAS, ACM (2016).
https://doi.org/10.1145/2993600.2993611

10. ConsenSys Software Inc.: Ganache. https://www.trufflesuite.com/docs/ganache/.
Accessed 1 May 2021

11. ConsenSys Software Inc.: Truffle. https://www.trufflesuite.com/truffle. Accessed 1
May 2021

https://coinmarketcap.com/currencies/bitcoin/
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-61467-6_2
https://doi.org/10.1145/3167084
https://doi.org/10.1007/11812289_4
https://doi.org/10.1007/978-3-030-31500-9_15
https://doi.org/10.1007/3-540-48256-3_3
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1145/2993600.2993611
https://www.trufflesuite.com/docs/ganache/
https://www.trufflesuite.com/truffle

A Denotational Semantics of Solidity in Isabelle/HOL 421

12. Crafa, S., Di Pirro, M., Zucca, E.: Is Solidity solid enough? In: Bracciali, A., Clark,
J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 138–
153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1 11

13. Crosara, M., Centurino, G., Arceri, V.: Towards an operational semantics for Solid-
ity. In: van Rooyen, J., Buro, S., Campion, M., Pasqua, M. (eds.) VALID, pp. 1–6.
IARIA, November 2019

14. Gill, A., Runciman, C.: Haskell program coverage. In: Haskell Workshop, Haskell
2007, pp. 1–12. ACM (2007). https://doi.org/10.1145/1291201.1291203

15. Gordon, M.: From LCF to HOL: a short history. In: Plotkin, G., Stirling, C., Tofte,
M. (eds.) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp.
169–185 (2000)

16. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

17. Hajdu, Á., Jovanović, D.: solc-verify: a modular verifier for Solidity smart con-
tracts. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp.
161–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3 11

18. Hajdu, Á., Jovanović, D.: SMT-friendly formalization of the Solidity memory
model. In: ESOP 2020. LNCS, vol. 12075, pp. 224–250. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-44914-8 9

19. Hildenbrandt, E.: KEVM: a complete formal semantics of the Ethereum virtual
machine. In: CSF, pp. 204–217 (2018). https://doi.org/10.1109/CSF.2018.00022

20. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

21. Hodován, R., Kiss, A., Gyimóthy, T.: Grammarinator: a grammar-based open
source Fuzzer. In: Automating TEST Case Design, A-TEST 2018, pp. 45–48. ACM
(2018). https://doi.org/10.1145/3278186.3278193

22. Jiao, J., Kan, S., Lin, S.W., Sanan, D., Liu, Y., Sun, J.: Semantic understanding
of smart contracts: executable operational semantics of Solidity. In: SP, pp. 1695–
1712. IEEE (2020)

23. Jiao, J., Lin, S.-W., Sun, J.: A generalized formal semantic framework for smart
contracts. In: FASE 2020. LNCS, vol. 12076, pp. 75–96. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45234-6 4

24. Marmsoler, D., Brucker, A.D.: A denotational semantics of Solidity in
Isabelle/HOL: Implementation and test data (2021). https://doi.org/10.5281/
zenodo.5573225

25. Mavridou, A., Laszka, A.: Tool demonstration: FSolidM for designing secure
Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS,
vol. 10804, pp. 270–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89722-6 11

26. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: VeriSolid: correct-by-design
smart contracts for Ethereum. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 446–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32101-7 27

27. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-
neering of real-world semantics. SIGPLAN Not. 49(9), 175–188 (2014). https://
doi.org/10.1145/2692915.2628143

https://doi.org/10.1007/978-3-030-43725-1_11
https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-44914-8_9
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1007/978-3-030-45234-6_4
https://doi.org/10.5281/zenodo.5573225
https://doi.org/10.5281/zenodo.5573225
https://doi.org/10.1007/978-3-319-89722-6_11
https://doi.org/10.1007/978-3-319-89722-6_11
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1145/2692915.2628143
https://doi.org/10.1145/2692915.2628143

422 D. Marmsoler and A. D. Brucker

28. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

29. Online: Remix - Solidity IDE. https://remix-ide.readthedocs.io/en/latest.
Accessed 1 May 2021

30. Online: Solidity documentation. https://docs.soliditylang.org/en/v0.5.16/.
Accessed 1 May 2021

31. Parr, T.: ANTLR (another tool for language recognition). https://www.antlr.org/
index.html. Accessed 1 May 2021

32. Perez, D., Livshits, B.: Smart contract vulnerabilities: vulnerable does not imply
exploited. In: USENIX Security. USENIX Association, August 2021

33. Roşu, G., Şerbănută, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.jlap.2010.03.
012

34. Scott, D.: Outline of a mathematical theory of computation. Oxford University
Computing Laboratory, Programming Research Group Oxford (1970)

35. Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages,
vol. 1. Oxford University Computing Laboratory, Programming Research Group
Oxford (1971)

36. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: Symposium
on Principles of Programming Languages, POPL 2016, pp. 256–270. ACM (2016).
https://doi.org/10.1145/2837614.2837655

37. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project, version 8.0 (2004)

38. Wenzel, M.: Isabelle/Isar - a generic framework for human-readable proof docu-
ments. From Insight to Proof - Festschrift in Honour of Andrzej Trybulec 10(23),
277–298 (2007)

39. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (version
2021-04-21). Technical report (2014)

40. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

41. Yang, Z., Lei, H.: Lolisa: formal syntax and semantics for a subset of the Solid-
ity programming language in mathematical tool Coq. Math. Probl. Eng. 2020,
6191537 (2020)

42. Zakrzewski, J.: Towards verification of Ethereum smart contracts: a formalization
of core of Solidity. In: Piskac, R., Rümmer, P. (eds.) VSTTE 2018. LNCS, vol.
11294, pp. 229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03592-1 13

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://remix-ide.readthedocs.io/en/latest
https://docs.soliditylang.org/en/v0.5.16/
https://www.antlr.org/index.html
https://www.antlr.org/index.html
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1007/978-3-030-03592-1_13
https://doi.org/10.1007/978-3-030-03592-1_13

Configuration Space Exploration
for Digital Printing Systems

Jasper Denkers1(B) , Marvin Brunner2, Louis van Gool2, and Eelco Visser1

1 Delft University of Technology, Delft, The Netherlands
{j.denkers,e.visser}@tudelft.nl

2 Canon Production Printing B.V., Venlo, The Netherlands
{marvin.brunner,louis.vangool}@cpp.canon

Abstract. Within the printing industry, much of the variety in printed
applications comes from the variety in finishing. Finishing comprises the
processing of sheets of paper after being printed, e.g. to form books.
The configuration space of finishers, i.e. all possible configurations given
the available features and hardware capabilities, are large. Current con-
trol software minimally assists operators in finding useful configurations.
Using a classical modelling and integration approach to support a vari-
ety of configuration spaces is suboptimal with respect to operatability,
development time, and maintenance burden.

In this paper, we explore the use of a modeling language for finishers
to realize optimizing decision making over configuration parameters in
a systematic way and to reduce development time by generating control
software from models.

We present CSX, a domain-specific language for high-level declarative
specification of finishers that supports specification of the configuration
parameters and the automated exploration of the configuration space of
finishers. The language serves as an interface to constraint solving, i.e.,
we use low-level SMT constraint solving to find configurations for high-
level specifications. We present a denotational semantics that expresses
a translation of CSX specifications to SMT constraints. We describe the
implementation of the CSX compiler and the CSX programming envi-
ronment (IDE), which supports well-formedness checking, inhabitance
checking, and interactive configuration space exploration. We evaluate
CSX by modelling two realistic finishers. Benchmarks show that CSX
has practical performance (<1s) for several scenarios of configuration
space exploration.

1 Introduction

Digital printing systems are flexible manufacturing systems, i.e. manufactur-
ing systems that are capable of adjusting their abilities to manufacture differ-
ent types and quantities of products, without expensive hardware changes. The
variety in printing applications stems from both printing (printing on sheets
of paper) and finishing (processing collections of printed sheets, e.g. to form a

c© The Author(s) 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 423–442, 2021.
https://doi.org/10.1007/978-3-030-92124-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_24&domain=pdf
http://orcid.org/0000-0003-3014-8324
http://orcid.org/0000-0002-7384-3370
https://doi.org/10.1007/978-3-030-92124-8_24

424 J. Denkers et al.

book). The configuration space for a digital printing system consists of all pos-
sible configurations given the system’s features and hardware constraints. For
producing a booklet of a particular size, a printed stack of sheets can be stitched,
it can be folded, and it can be trimmed. Optionally, the sheets can be rotated in
an intermediate production step such that a single trimming component can be
used for trimming in multiple dimensions. The decisions made for these manufac-
turing parameters influence important factors such as productivity (production
time increases when sheets are rotated) or efficiency (paper is wasted when input
sheets are trimmed).

Ideally, control software assists operators in exploring the configuration space.
For example, given some available paper and the intent to produce a booklet, the
software should automatically derive a viable manufacturing configuration. Such
a configuration e.g. comprises the orientation of the input sheets, the number
of stitches, and the amount of side and face trimming needed to get the desired
end result. In addition, an optimization objective can be relevant while finding a
configuration, e.g. minimizing paper waste. The control software and user inter-
faces of state of the art digital printing systems do not support such automated
configuration space exploration. Instead, operators have to provide configura-
tions for finishers manually. A configuration can be simulated; by “executing”
the finishing process in software, finishing viability can be checked without wast-
ing resources. Still, it remains a cognitively intensive task for operators to find
a valid or optimal configuration.

Finishers are produced by many vendors and integrating them with printers
is non-trivial. Such integration involves connecting the control software of the
printer and finishers and driving embedded software components. Using a clas-
sical modeling and integration approach to support the variety of finishing is
suboptimal with respect to development time and maintenance burden. Issues
with such a classical approach are the long code-build-test cycle and the large
amount of finisher vendors and models that must be supported for many years.
The translation of the mechanical specifications into control software code gives
rise to additional complexity.

Our objective is to obtain an effective, efficient, and scalable method for
modeling finishers and obtaining control software for finishers that support auto-
mated configuration space exploration. In this work, we investigate how linguis-
tic abstraction can help to model the configuration space of digital printing
systems, and how we can automatically derive environments for configuration
space exploration from such specifications.

The global characteristics of finishers make the use of constraint (SMT) solv-
ing a natural fit for realizing environments for configuration space exploration.
For example, trimming the paper along a certain dimension might impose a spe-
cific orientation or transformation in an earlier production step. A constraint-
based approach considers its specifications as global and will take into account
interdependent system-level constraints when finding solutions, i.e., configura-
tions. A constraint-based model of a finisher contains a representation of the
input materials at intermediate locations in the system. However, for modelling

Configuration Space Exploration for Digital Printing Systems 425

domain objects such as sheets and stacks, abstraction mechanisms such as classes
are not naturally available in SMT modelling. An SMT model of a finisher
requires low-level encoding of the properties of the materials at all locations.
Therefore, expressing finishers in SMT by hand is tedious, error prone, and is
not in terms of domain concepts. Additionally, an SMT model of a finisher is
complex to understand and difficult to maintain.

In this paper, we present CSX, a domain-specific language for the high-
level declarative specification of finishers. The language supports specification of
input materials, configuration parameters, output products, and finishing con-
straints in terms of domain concepts. The CSX IDE supports the development
and checking of specifications and the automated derivation of an environment
for configuration space exploration by operators of the finishers.

CSX provides a domain-specific interface to SMT solving by abstracting and
structuring over low-level properties. We translate specifications to the SMT
domain and use existing solvers to find solutions at the level of properties and
finishing parameters. A solution in the SMT domain corresponds to a valid
configuration. Unsatisfiability at the SMT level indicates an empty configura-
tion space, i.e., no finishing possibilities. By mapping SMT solutions back to
the specification level, we can interpret CSX specifications in multiple modes:
checking whether a configuration is valid, finding an (optimal) configuration,
and validating specifications. By caching invocations of the solver in the IDE,
response times are improved which leads to an interactive editing experience.

The approach of specifying a finisher with CSX and deriving control soft-
ware has similarities with the approach of simulation in control software. Both
approaches take representations of the products being produced at intermedi-
ate locations in the devices. However, while simulation involves an operational
and sequential application of transformations on objects, a constraint-based app-
roach considers the devices globally. CSX improves over simulation in the sense
that it derives environments that can search for (optimal) configurations in an
automated way, taking system-global interdependencies into account.

We evaluated the design and implementation of CSX by modelling two fin-
ishers: a perfect binder and a booklet maker. In the process of modelling these
devices, we have experimented with various encodings. For both cases, we bench-
mark the configuration space exploration performance for several scenarios.

Contributions. To summarize, the contributions of this paper are the following:

– We have developed CSX, a declarative language for the specification of fin-
ishers at the conceptual level of the domain. We interpret CSX specifications
for several modes of configuration space exploration: checking whether con-
figurations are valid, finding optimal configurations under objectives, and
interactively validating specifications.

– We define a denotational semantics of CSX in terms of SMT constraints that
serves as an interface to solvers that can be used to find models in order to
check inhabitance of a specification and to explore the configuration space of
the specified finisher.

426 J. Denkers et al.

– We realize a programming environment for CSX that integrates an SMT
solver as back-end and that presents solutions in terms of the specification.

– We evaluate CSX by specifying two types of finishers: a perfect binder and a
booklet maker. For these cases, we benchmark the performance for a config-
uration space exploration scenario with and without optimization.

2 Finishers in the Digital Printing Domain

In this section, we discuss the domain of digital printing systems with finish-
ers. Complete printing systems for e.g. producing books include, in addition
to printing itself, finishing capabilities. Finishing comprises the processing of
printed sheets of paper into end products. For example, a stack of printed sheets
could be stapled, folded, and trimmed to result into a booklet; stapling, folding,
and trimming are finishing operations. Finishing devices need to be integrated
with the printing system for realizing an integrated end-to-end experience for
the print system end-users (i.e. operators in print shops).

The turnaround time of integrating finishers with printers is high because of
multiple challenging aspects. First, finishers are often produced by external ven-
dors and communication is mostly documentation based and thus requires inter-
pretation, reviews, implementation, and testing. Second, obtaining good system
behavior requires mechanical, electrical and software interfaces to be matched
well between the printer and finisher. Third, total aspects such as reliability
are the result of all the mentioned interfaces to be well designed. Considerable
testing time is needed to confirm reliability.

Creating control software that is user-friendly for operators is difficult and
requires a lot of manual programming. This is because of the high variability and
many configuration parameters in print and finishing systems. A typical print
and finishing system has more than 200 accessible parameters for the operator,
that are also interdependent. Because the whole production process is a sequence
of production steps, choices that you have to make in the beginning influence
the steps later on. From the product line perspective, the control software sup-
ports tens of different finisher types, that each of them can have more than 100
commercial variations. For all variations, the parameters that are accessible for
operators can vary.

Ideally, operators can use the combination of a printer with finishers as an
end-to-end solution instead of having to configure each device separately. Addi-
tionally, optimization capabilities are also useful when considering the system
as a whole. For example, an operator would like to produce booklets with the
available resources and while minimizing paper waste or while optimizing pro-
ductivity. If the different configuration possibilities impose a tradeoff between
e.g. resource consumption and productivity, an operator should be able to make
a motivated choice with ease, i.e., without thinking about and manually trying
out many combinations of configuration parameters.

Configuration Space Exploration for Digital Printing Systems 427

Fig. 1. Schematic view of the perfect
binding book producing process. Only
milling, creasing, and covering are con-
figurable and therefore impact the con-
figuration space. Jogging and glueing
are automatically configured by the
device itself.

Fig. 2. A perfectly bound book viewed
from the top. Spine creases result into
a sharper fold, reduce wrinkles, and
improve the fit of the cover around the
bookblock. Courtesy creases ease open-
ing the front and back part of the cover.
Glue in the spine holds the bookblock
sheets and cover together.

2.1 Perfect Binding

As an example, we discuss a perfect binder : a finisher that produces books by
binding a stack of sheets with glue and by covering the bookblock in a cover
sheet. A perfect binder typically has two inputs: one for the stack of sheets that
form the book block and one for the cover sheets. Figure 1 shows the perfect
binding process. Figure 2 depicts the components of a perfectly bound book,
viewed from above.

After collecting a stack of sheets, jogging makes sure the stack of sheets
becomes aligned in a corner of the spine. Then, a clamp grasps the bookblock
under pressure. Next, a few millimeters of paper are milled along the spine edge
to prepare the spine for application of glue. Milling makes the paper along the
spine rough, improving adherence of the glue. Then, the spine travels through a
bath of heated glue.

Separately, cover sheets are prepared before being bound around the book-
block. The preparation consists of creasing, i.e., applying pressure on the paper
to ease folding of the paper later. Two creases are applied at the location of
the cover that end up along the edges of the spine of the book. These creases
improve the fit of the cover along the spine of the book block, supporting a
tight fold around the spine. Additionally, two courtesy creases are applied on
the cover. Courtesy creases are applied on the front and back of the resulting
book to support the folding of the cover sheet. Note that courtesy creases are
applied at the opposite side as the spine creases, as they are used for folds in
opposite directions.

428 J. Denkers et al.

Fig. 3. Components of a perfectly bound book (cover and bookblock) and the dimen-
sions as how we use them in the CSX specification.

After preparing the bookblock and cover, the covering occurs. The bookblock
with glue is positioned in the center of the cover sheet. The cover sheet is folded
around the bookblock and fixed with a clamp. After a delay for the glue to
solidify, the book is released. In practice, the resulting book could be processed
further in a cutting machine to trim along the edges of the book and cover to
result into a nice book.

Perfect binders are flexible in the books they can produce, e.g. in terms of
sheet size or book thickness. Not all flexible manufacturing steps have impact on
the configuration space. For example, jogging and glueing occur automatically
and are configured by the device itself based on measurements. Other settings
such as the milling depth and positioning of the bookblock on the cover are of
interest to the operator and therefore do impact the configuration space; e.g.
more milling might increase the overall production time.

3 CSX

The key idea of CSX is that we model objects such as sheets and stacks and that
we specify symbolic values, i.e. instances, for these objects at several intermediate
steps in the finishing process. By adding constraints and indicating configuration
parameters, a specification defines the configuration space of a device. In CSX
we also describe jobs, i.e., (partial) descriptions of the production process in
terms of the production objects and parameters. We achieve configuration space
exploration by synthesizing configurations from a configuration space for a given
job.

CSX is declarative: a specification in the language describes behavior and con-
figuration spaces of finishers. A CSX specification does not describe algorithms
to compute configurations. Specifications include relations between objects at
locations in the systems. We use the language to model devices as sequences
of components that perform actions. Components instantiate generic, reusable
actions. Actions establish a relationship between snapshots of objects in the fin-
ishers and thus, transitively, devices define a relation between all snapshots of
the products being produced. Parameters in actions represent a dimension of

Configuration Space Exploration for Digital Printing Systems 429

Fig. 4. The specification of types for the example perfect binder in CSX. Dimensions
are in 0.1mm.

Fig. 5. The specification of actions for the example perfect binder in CSX. See Fig. 3
for the dimensions used in this specification.

430 J. Denkers et al.

Fig. 6. The specification of the example perfect binder device in CSX.

configuration that is of interest to operators of the devices. Constraints restrict
instances of types and restrict the behavior of actions and devices, reducing
the configuration space. We will now introduce the language concepts in more
detail based on a specification for an example perfect binder such as described
in Sect. 2.

Defined types are records of properties that model objects at locations in a
device. In Fig. 4, we define several types for the example perfect binder. Dimen-
sions (widths, heights, lengths, distances) are modelled with integers with a
precision of 0.1mm, such that an integer value of 10 stands for a length of 1mm.
Types contain defining properties that are of a primitive type (boolean or inte-
ger) or of a defined type such that types can be nested. The nesting of types
may not contain a cycle. Types optionally contain constraints and derived prop-
erties. Constraints restrict the inhabitants of a type. In Fig. 4, the constraints
(between square brackets) e.g. restrict sheets to have positive non-zero width
and height. Derived properties are shorthands for expressions over other prop-
erties. Defining properties are required to instantiate a type. Derived properties
are not required to instantiate a type and their values can be derived from other
properties. A derived property expression may refer to the type’s properties and
to other derived properties, but derived properties may not contain cyclic refer-
ences. In Fig. 4, Stack has a derived property volume which is defined in terms
of defining properties.

Actions define a relation between locations. In Fig. 5, we define several actions
for the example perfect binder. The body of an action definition contains param-
eters and constraints that indicate the relations between its parameters.

Devices are sequences of components connected through locations. Compo-
nents instantiate actions and can restrict or specify behavior further by adding
constraints. Thus, action behavior is defined separately from specific instanti-
ations in components. Therefore, actions are generic and potentially reusable
between different device specifications. Limitations of a particular instance of

Configuration Space Exploration for Digital Printing Systems 431

an action in a device can be specified by adding constraints to the component.
In Fig. 6 we define a perfect binder device by instantiating several actions in
components and by connecting them through the locations.

3.1 Configurations and Jobs

A configuration for a device is a value assignment to all locations and parameters.
A valid configuration is a configuration that conforms to the constraints of the
types of the locations, the actions, the components, and the device itself. In
practice, an operator is only interested in the values for the input and output
locations, and not in the intermediate locations.

A job is an expression of intent for which a configuration needs to be found.
Whereas configurations are a complete specification of locations and parameters,
we could see jobs as a partial configuration. For example, a job could define the
input and the output of the finisher. The remaining parts of the configuration,
i.e. the finishing parameters, need to be derived in order to instruct the finisher
to realize the intent of the job. Different usage scenarios of a device lead to
different jobs and approaches to configuration.

3.2 Exploration and Validation

The CSX language supports configuration space exploration, which includes
leveraging exploration at the specification level for validation. Given the specifi-
cation of a device, the language supports describing scenarios for testing devices
by asserting expectations on configuration spaces.

The following test scenario validates that the correct cover dimensions are
chosen for a particular input bookblock and desired output perfectly bound
book:

scenario device ExamplePerfectBinder
config bookIn = Stack(2125,2970,50)
config out = PerfectBoundBook(Stack(2100,2970,50), Sheet(2100,2970), Sheet(2100,2970)) {
[coverIn.width == 2100 + 2100 + 50]
[coverIn.height == 2970]
[toMill.millingDepth == 25]

}

The body of the scenario contains expectations (between square brackets) on
its configuration space. In particular, it validates the cover dimensions that must
be chosen. Since the configuration space could contain multiple configurations,
expectations should only validate common properties of the configuration space
and not on individual configurations.

Scenarios can optionally specify an objective. Objectives indicate a dimension
for optimization of a property of the system, typically expressed using derived
properties. Potentially relevant objectives are e.g. maximizing throughput, min-
imizing energy consumption, or minimizing resource waste. Alternatively, sce-
narios with optimization can characterize the device. For example, based on the

432 J. Denkers et al.

following scenario a scenario can be found for the largest book that the perfect
binder can produce:

scenario device ExamplePerfectBinder
maximize out.book.volume

4 Denotational Semantics

Because of the declarative characteristic of CSX, a translation to SMT con-
straints is natural. In this section, we define the denotational semantics of CSX
that expresses a translation of CSX specifications to SMT constraints. Figure 7
contains the denotational semantics of CSX with the denotation expressed in
MiniZinc [9,13] definitions. Because we use MiniZinc in the implementation of
CSX (Sect. 5), we also use it as syntax for the denotation. The MiniZinc grammar
can be found online1.

The intuition behind the translation is that the properties of locations and
the parameters of components are mapped to constraint variables. Additionally,
all CSX-defined constraints translate to corresponding constraints in MiniZinc.
The translation is from the perspective of a device, making use of type and
actions definitions of the CSX specification of which the device is part.

The translation starts with the Device rule, generating MiniZinc definitions
for members of the device: locations, components, and device-level constraints.
The translation is defined under the context of a namespace N , starting with the
empty namespace. The naming scheme for constraint variables follow their cor-
responding hierarchical position in the CSX specification. Since the translation
is for a single device, we do not have to prefix the namespace with the device
name.

A location translates into variables for its properties and into constraints to
restrict its inhabitants (Location). Locations are always of a user-defined type.
Each property of the type translates to variables. If the property is of primitive
type, the translation is a variable of this primitive type (DefProp-PrimType)).
If the property is of a user-defined type, the translation is the translation of its
nested properties in the namespace of the property (DefProp-DefType).

The Comp rule defines the translation for a component, i.e. an action instan-
tiation. The action’s parameters translate into variables in the namespace of
the component (Param). Both the action and the component can define con-
straints (EA

i and EC
i , respectively). These constraints are mapped to corre-

sponding MiniZinc constraints. Since the action’s constraints are defined on the
action’s location parameters, and the action gets instantiated with specific loca-
tion arguments, renaming is required. The translation defines R: a mapping from
the location’s parameter names to the component’s location argument names.
We only use the renaming for translating references to locations from constraints
defined in the action definition.
1 https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#spec-

grammar.

https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#spec-grammar
https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#spec-grammar

Configuration Space Exploration for Digital Printing Systems 433

Fig. 7. Denotational semantics of CSX, expressed in MiniZinc. We have omitted the
rules for literals and arithmetic for brevity; they map one-to-one. ++ is namespace
concatenation. + is identifier concatenation.

434 J. Denkers et al.

The expressions that are used to define constraints, except references and
projection, map mostly one-to-one to their MiniZinc counterparts. For references
and projection, we consider several cases. A reference to property or parameter
(DefProp-Ref/Param-Ref) translates to a name for x in the context. For
example, a reference of x in namespace [a, b] will result in the denotation into
a reference to name a b x. For projection (Proj), we recursively translate the
base expressions into a name and concatenate the projected name.

For a location reference, we consider two cases. Location references from
outside actions translate similarly as regular references (Location-Ref). Loca-
tion references within actions refer to location parameters, while the actions are
instantiated with location arguments from a device. Therefore, for such location
references, we replace the location parameter name by the argument name for
which it is instantiated (ActionLocation-Ref).

Types, actions, and devices can have derived properties. These only translate
into constraints if they are referenced, i.e. by replacing the reference with the
body of the derived property and by propagating the namespace and location
renaming (DerProp-Ref). For the definition of derived properties, no transla-
tion takes place. The definition of derived properties are ignored by . . . in the
specification.

Solutions found for the MiniZinc denotations are related to valid configura-
tions for CSX specifications, and we can translate such solutions back to CSX
Specifications.The correspondence between location properties and component
parameters in CSX and MiniZinc is defined by the naming scheme used in the
denotation, and mapping them back is thus straightforward.

5 Implementation

In this section we describe how we obtain a usable integrated development envi-
ronment (IDE) for CSX by integrating an implementation of the language with
configuration space exploration and interactive validation. The IDE contains
components for parsing, syntax highlighting, code completion, name binding
and type checking, and interactive reporting of static semantics violations. The
CSX validation constructs are interpreted interactively and invalid assertions are
marked on the specification.

We have implemented the CSX language using Spoofax [7], a language work-
bench [5] that provides infrastructure for designing, implementing, and deploying
DSLs by means of declarative specification of language aspects using meta-DSLs.
We define the syntax of CSX in SDF3 [11], a meta-language for multi-purpose
syntax definition. From the CSX syntax definition, SDF3 automatically derives
a parser, pretty printer, syntax highlighting, and syntactic code completion. The
parser yields abstract syntax trees (ASTs) on which we first apply desugaring.
Desugaring e.g. involves propagating the properties of a scenario to the tests
within that scenario. The desugared ASTs are input to the static analysis and
further transformations. We specify desugaring and other transformations using
the Stratego [2] meta-language. Based on the language specification, Spoofax
automatically generates an IDE for the language.

Configuration Space Exploration for Digital Printing Systems 435

We define the CSX static semantics in NaBL2 [1,10]. NaBL2 is a meta-
language for specifying static semantics for languages from which name bind-
ing and type checking is automatically derived. Static semantic violations are
reported interactively in the IDE. For CSX, this could be invalid composition
of components in a device or incorrect type checking of constraint expressions.
Interactive reporting of errors assists users of the language during specification
writing.

In addition to the automated derivation of name binding and type checking,
we implement analysis for other well-formedness conditions. If well-formedness
checking succeeds, the result is a desugared AST that is annotated with name
binding and typing information. The name binding information is used to check
non-cyclic references of defining properties and derived properties, i.e., by fol-
lowing references of properties and checking whether those do not contain cycles.

To realize configuration space exploration, we implement a translation of
CSX specifications to SMT constraints for which we can use existing solving
techniques. In particular, we translate CSX to the MiniZinc constraint modelling
language [9,13]. MiniZinc is solver-independent, which enables us to use multiple
solvers as a backend for CSX. In particular, we use solvers with the theories of
linear arithmetic and optimization modulo theories.

We implement the translation from CSX to MiniZinc as an AST-to-AST
transformation using Stratego. In addition to the syntax definition of CSX, we
have also defined the syntax of MiniZinc in Spoofax with SDF32. The syntax
definitions of both languages generate an AST schema on which we define the
Stratego transformation. After transforming a parsed CSX AST to a MiniZinc
AST, the MiniZinc pretty printer generates concrete MiniZinc syntax from the
AST.

The translation uses information from name binding and type analysis. This
is necessary for references and projection expressions. By using name binding and
typing information, the distinction between references to properties, parameters,
locations, and action locations can be made to generate the correct reference on
the MiniZinc level.

We integrate solving of constraint models by calling MiniZinc from Stratego
through integration with Java. Stratego provides an API for integrating trans-
formations with custom Java code. We implement such a custom transformation
and use a Java program to call the MiniZinc command-line interface. The Java
program is called with as input the generated MiniZinc model. The Java program
parses the textual solving result that is returned by MiniZinc and returns it as
a list of variable binding. In the Stratego code, for the interpretation of config-
urations, we evaluate expressions and lookup values for references by following
the same naming schema as in the translation semantics. After replacing the
referenced properties and parameters by their values on the constraint level, the
evaluation of expressions remains regular expression evaluation. As a result, we
have a configuration space exploration pipeline from interpreting specifications

2 https://github.com/metaborgcube/metaborg-minizinc.

https://github.com/metaborgcube/metaborg-minizinc

436 J. Denkers et al.

using constraint solving with the solution mapped back to the specification level
as a configuration.

The configuration space exploration pipeline serves two purposes in the IDE:
test evaluation and inhabitance checking. For test evaluation, the configuration
space of the device that is selected in the scenario is translated to MiniZinc and
passed as an input to the pipeline. Additional constraints are added to reduce
the configuration space, e.g. to configure the input or output location values, or
parameters as specified in the scenario. If the scenario contains an objective, the
objective is also mapped to MiniZinc and provided as input to the pipeline. The
configuration that is returned by the pipeline is used to evaluate test expecta-
tions. This evaluation is done by a basic interpreter that evaluates expressions
which should result into true. The expressions can contain references to param-
eters and location properties, and based on the name binding information the
references are mapped to the corresponding value from the configuration. For
failed test expectations we report an error which is marked with red underlining
on the original specification using origin tracking [4].

The evaluation of tests and reporting of results is triggered in the IDE on file
changes, resulting into an interactive experience. Additionally, the experience is
improved by providing information while hovering over references to locations,
properties, and parameters in test expectations. The same interpretation app-
roach as for test expectations is used to evaluate the expression being hovered
over and the value is presented in a popup, giving the user insight in the config-
uration that is found.

Similar to the treatment of scenarios, inhabitance checks are triggered on
file changes. The pipeline is triggered for each type, action, and device using the
translations semantics. For inhabitance checking of a type, we translate a random
instance of that type to SMT. For an action, we instantiate it with instances for
all its parameters. Instead of finding a configuration for it, for inhabitance check-
ing we only check satisfiability on the constraint level. If the pipeline concludes
in satisfiability, we report an error on the corresponding construct to indicate
that the construct is not inhabited.

To prevent unnecessary checking of inhabitance and evaluation of tests, we
use simple caching of analysis results with ASTs of the subjects as the caching
key. If a type definition AST has not changed, it does not have to be checked
again for inhabitance. If a scenario has not changed, it does not have to be
evaluated again.

While we have described the realization of a programming environment for
CSX specifications, the eventual goal of CSX is to deploy control software to
finishers. Figure 8 gives an overview of how configuration space exploration with
CSX would with fit in a realistic setting. The configuration space exploration
component would be integrated with a software component, implemented using a
general-purpose language, that provides a UI and that instructs low-level embed-
ded software components.

Configuration Space Exploration for Digital Printing Systems 437

Fig. 8. An architecture for applying CSX in control software. GPL stands for general
purpose programming language, such as C# or Java.

6 Evaluation

We evaluate CSX by modelling two realistic cases, a perfect binder and a booklet
maker, and by benchmarking the configuration space exploration for a scenario
with and without optimization. The perfect binder case corresponds to the exam-
ple of Sect. 3. In the scenario without optimization, CSX derives the required
input cover given an input bookblock and a desired output. In the scenario with
optimization, CSX finds a configuration for the smallest size book the finisher
can produce. The bookletmaker case concerns a finisher that performs rotat-
ing, stitching, folding, and trimming in order to produce a booklet from a stack
of sheets. In the scenario without optimization, CSX finds the action parame-
ters given an input and output. In the scenario with optimization, CSX finds a
configuration that minimizes paper waste given only the desired output. Both
specifications are based on realistic cases present at Canon Production Print-
ing B.V.

By writing scenarios in the language, we can interactively validate the speci-
fication within the IDE. Initially loading a specification can take a few seconds:
a specification typically consists of multiple type definitions, action definitions,
a device definition, and several scenarios. For the type, action, and device defi-
nitions, inhabitance checking is triggered, which for each check leads to an invo-
cation of the SMT solver. Additionally, for each scenario the solver is invoked.
The caching of invocations of the solver decreases response times after a change,
making the IDE usable in an interactive way. For example, inhabitance for a
type will not be re-checked if only a test scenario changes.

We set up a benchmark which makes use of Spoofax core, i.e. the core of
Spoofax which enables integration of language components with Java, such that
we can only execute the relevant part of the pipeline in the benchmark. For
benchmarking, we use the JMH framework3. We executed the benchmarks on
a server with two 32-core processors with a base frequency of 2.3 GHz and 256

3 https://openjdk.java.net/projects/code-tools/jmh/.

https://openjdk.java.net/projects/code-tools/jmh/

438 J. Denkers et al.

Fig. 9. The benchmarking results on a perfect binder and a booklet maker for a scenario
of finding a configuration and for finding an optimal configuration.

GB RAM, running Ubuntu 20.04, using OpenJDK version 1.8.0 275-b01. From
experimentation it appeared that the ORTools solver4 had best performance,
and therefore we use this solver in the benchmarks. We use MiniZinc version
2.5.5 and ORTools version 9.0. We measure 10 iterations and average the result.
In the benchmarks, we separately measure the translation time and solving time.
We leave out parsing, name binding and type checking time, as they are minimal
compared to translation and solving time.

Figure 9 shows the benchmarking results. For each scenario, solving time is
in the order of 100’s ms. We consider sub-second performance as practical and
therefore conclude that CSX’s performance for the two cases we consider has
practical performance for finding (optimal) configurations.

For specifying these devices in CSX, we have chosen a model of objects
(sheets, stacks) with a certain level of detail. The bookletmaker and perfect
binding cases translated in the SMT level into 32 and 29 variables and 56 and 58
constraints, respectively. Although we achieve useful configuration space explo-
ration for these scenarios, it could be that in practice more detail has to be added
to the model, which could also influence solving performance. By deploying CSX
at Canon Production Printing B.V., we aim to further evaluate whether CSX is
adequate in modeling and integrating the full product line of finishers available
and evaluate its usability for domain experts.

7 Related Work

We discuss related work that uses constraint solving in the backend of high-level
specification or domain-specific languages for realizing static analyses, validation,
verification, consistency checking or synthesis.

Keshishzadeh et al. use SMT solving for validation of domain-specific prop-
erties to achieve fault detection early in the software development cycle. In
particular, they develop a DSL with industrial application in a case on colli-
sion prevention for medical imaging equipment [8]. The approach includes delta
4 https://developers.google.com/optimization.

https://developers.google.com/optimization

Configuration Space Exploration for Digital Printing Systems 439

debugging, i.e., an approach to trace causes of property violations and report
them back to the specification in a systematic way. The work is related to CSX
because it also uses SMT solving in the backend of a domain-specific language.

Voelter et al. use SMT solving with the Z3 solver for advanced error checking
and verification in the KernelF language [16], a reusable functional language for
the development of DSLs. Voelter et al. apply SMT solving successfully in a
DSL on a case study for the domain of payroll calculations [17], i.e. for statically
checking completeness and overlap of domain-specific switch-like expressions.
Similarly to CSX, in this work SMT solving is used in the backed of a domain-
specific language for realizing static analyses. While the application of SMT was
successful in the domain-specific case, the authors report difficulties in applying
SMT solving generically in KernelF. The authors plan to develop a successor to
KernelF that is realized with SMT solving completely.

Constraint solving in feature models solves a different problem than CSX.
Feature models describe systems as compatible compositions of features or soft-
ware components; finding/checking feature compositions occurs “statically” from
which a software artifact can be derived. CSX specifications express physical
properties of finishers; finding configurations occurs “dynamically” (at run time)
to find instances of the manufacturing process. This goes all the way down to the
“semantic” level, e.g. by using sheet dimensions and the location of fold edges
instead of only an abstract feature that enumerates the kinds of folds a device
can do. Feature modelling is useful in the finishing context e.g. to derive which
devices are necessary for a production route for booklets. In CSX, we assume
the production route is known.

Relational model finders are related to CSX in the sense that they map
high-level specifications to constraints and map solutions back to the specifica-
tion level. Alloy [6] is a specification language that applies finite model finding
to check formal specifications of software. Alloy is backed by KodKod [15], a
relational model finder for problems expressed using first order logic, relational
algebra, and transitive closures. In contrast to CSX, KodKod does not offer sup-
port for reasoning over data nor for optimization objectives. In CSX, the nature
of specifications is not relational: manufacturing paths are fixed and we consider
snapshots of the product being manufactured at different steps in the process.

AlleAlle [12] adds support for first-class data attributes and optimization to
relational model finding. Similar to KodKod, Stoel et al. consider AlleAlle as
an intermediate language. AlleAlle and CSX are related in the sense that both
approaches take the data of problems into account and use SMT solving for
model finding. While AlleAlle is an intermediate language generally targeting
relational problems, CSX is a more domain-specific language in which relations
are not a first class concept. Similar to CSX, for AlleAlle it is unclear yet how
to map reasons for unsatisfiability that are found in the constraint level back to
the specification level.

Rosette [14] is a solver-aided programming language that supports verifica-
tion, debugging, and synthesis. Rosette extends the Racket language with sup-
port for symbolic values that stand for e.g. an arbitrary integer value. Such values

440 J. Denkers et al.

translate to a constraint variable in the runtime. Rosette realizes verification and
synthesis in the runtime by integrating its symbolic virtual machine with SMT
solvers. Whereas in Rosette selected variables are replaced by symbolic values, in
CSX all variables in the specification translate to constraint variables. Rosette is
a general language tailored to program verification and synthesis whereas CSX
is focused on a particular domain, i.e. manufacturing systems, although we have
only experimented with CSX in the digital printing domain.

Muli [3] is a constraint-logic object oriented language that integrates con-
straint solving with object oriented programming in the Java programming lan-
guage. Muli extends Java’s syntax with the free keyword for indicating symbolic
values that translate to constraint variables in the runtime. Fragments of pro-
grams that are considered as search regions are executed non-deterministically,
searching for concrete values for the constraint variables. The Muli runtime is
based on a symbolic Java virtual machine that integrates constraint solvers.
Muli only supports primitive types as constraint variables. Support for arrays
and objects as constraint variables is listed as future work. CSX does support
search on non-primitive types such as user-defined record types. Similar to how
support for arrays is desired for Muli, support for lists is desired for CSX, but
that is future work. Muli differs from CSX in the sense that Muli preserves the
Java syntax and, by doing so, serves as a general purpose programming language,
whereas CSX introduces a new domain-specific language. In contrast to Muli,
CSX supports optimization.

8 Conclusions

We have presented CSX, a language and method for high-level declarative spec-
ification of finishers and their configuration spaces. We have developed a trans-
lation of CSX to SMT constraints which enables us to use constraint solving to
find (optimal) configurations for finishers. We have presented an implementation
of the CSX programming environment, including support for well-formedness
checking, inhabitance checking, and interactive configuration space exploration.
Our benchmarks show that, on two realistic cases, CSX has practical sub-
second performance in finding configurations for scenarios with and without
optimization.

Future work. Our focus has been on finding a domain abstraction for configura-
tion space exploration applied in the digital printing domain for finishers. While
we have designed the language in collaboration with control software engineers,
we plan to further evaluate CSX by deploying it at Canon Production Print-
ing B.V. By doing so, we can further evaluate the adequacy of CSX in covering
the full product line of finishers. Additionally, we plan to evaluate the language
in terms of usability for control software engineers and in terms of validatability
by mechanical engineers.

To improve the usability of the environments for configuration space explo-
ration for operators, it would be useful to characterize the reduced configuration
spaces for given jobs. In particular, when multi-objective optimization is relevant

Configuration Space Exploration for Digital Printing Systems 441

for objectives such as maximizing throughput and minimizing waste, it would
be useful if CSX could indicate the tradeoff between these objectives.

Acknowledgment. We thank the reviewers for their feedback. This research was
partially supported by a grant from the Top Consortia for Knowledge and Innovation
(TKIs) of the Dutch Ministry of Economic Affairs and by Canon Production Printing.
We thank Bas Hermus for providing a 3D drawing of perfect binding. This work is
related to the European patent application EP3855304 A1 which is published on 28
July 2021.

References

1. van Antwerpen, H., Néron, P., Tolmach, A.P., Visser, E., Wachsmuth, G.: A con-
straint language for static semantic analysis based on scope graphs. In: Erwig, M.,
Rompf, T. (eds.) Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
20–22 January 2016, pp. 49–60. ACM (2016). https://doi.org/10.1145/2847538.
2847543

2. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 01.7. A
language and toolset for program transformation. Sci. Comput. Program. 72(1–2),
52–70 (2008). https://doi.org/10.1016/j.scico.2007.11.003

3. Dageförde, J.C., Kuchen, H.: A compiler and virtual machine for constraint-
logic object-oriented programming with muli. J. Comput. Lang. 53, 63–78 (2019).
https://doi.org/10.1016/j.cola.2019.05.001

4. van Deursen, A., Klint, P., Tip, F.: Origin tracking. J. Symb. Comput. 15(5/6),
523–545 (1993)

5. Erdweg, S., et al.: Evaluating and comparing language workbenches: existing
results and benchmarks for the future. Comput. Lang. Syst. Struct. 44, 24–47
(2015). https://doi.org/10.1016/j.cl.2015.08.007

6. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002). https://doi.org/10.1145/505145.505149

7. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.)
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010, pp. 444–463.
ACM, Reno/Tahoe (2010). https://doi.org/10.1145/1869459.1869497

8. Keshishzadeh, S., Mooij, A.J., Mousavi, M.R.: Early fault detection in DSLs using
SMT solving and automated debugging. In: Hierons, R.M., Merayo, M.G., Bravetti,
M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 182–196. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40561-7 13

9. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

10. Neron, P., Tolmach, A., Visser, E., Wachsmuth, G.: A theory of name resolution.
In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 205–231. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8 9

11. de Souza Amorim, L.E., Visser, E.: Multi-purpose syntax definition with SDF3. In:
de Boer, F., Cerone, A. (eds.) SEFM 2020. LNCS, vol. 12310, pp. 1–23. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58768-0 1

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.cola.2019.05.001
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1007/978-3-642-40561-7_13
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-030-58768-0_1

442 J. Denkers et al.

12. Stoel, J., van der Storm, T., Vinju, J.J.: AlleAlle: bounded relational model finding
with unbounded data. In: Masuhara, H., 0001, T.P. (eds.) Proceedings of the 2019
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2019, Athens, Greece, 23–24
October 2019, pp. 46–61. ACM (2019). https://doi.org/10.1145/3359591.3359726

13. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge
2008–2013. AI Mag. 35(2), 55–60 (2014)

14. Torlak, E., Bod́ık, R.: Growing solver-aided languages with rosette. In: Hosking,
A.L., Eugster, P.T., Hirschfeld, R. (eds.) ACM Symposium on New Ideas in Pro-
gramming and Reflections on Software, Onward! 2013, part of SPLASH 2013, Indi-
anapolis, IN, USA, 26–31 October 2013, pp. 135–152. ACM (2013). https://doi.
org/10.1145/2509578.2509586

15. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

16. Voelter, M.: The design, evolution, and use of KernelF. In: Rensink, A., Sánchez
Cuadrado, J. (eds.) ICMT 2018. LNCS, vol. 10888, pp. 3–55. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93317-7 1

17. Voelter, M., Koščejev, S., Riedel, M., Deitsch, A., Hinkelmann, A.: A domain-
specific language for payroll calculations: an experience report from DATEV.
In: Domain-Specific Languages in Practice, pp. 93–130. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-73758-0 4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3359591.3359726
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-319-93317-7_1
https://doi.org/10.1007/978-3-030-73758-0_4
http://creativecommons.org/licenses/by/4.0/

Bit-Precise Verification of Discontinuity
Errors Under Fixed-Point Arithmetic

Stella Simić1(B) , Omar Inverso2 , and Mirco Tribastone1

1 IMT School for Advanced Studies, Lucca, Italy
stella.simic@imtlucca.it

2 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. Non-integer arithmetic is prone to numerical errors due to
the finite representation of numbers. These errors propagate, possibly
non-linearly, throughout the variables of a program and can affect its
control flow, altering reachability, and thus safety. We consider the prob-
lem of rigorous bit-precise numerical accuracy certification of programs
in the presence of control structures and operations under fixed-point
arithmetic over (non-deterministic) variables of arbitrary, mixed preci-
sion. By applying program transformation, we reduce the problem of
assessing whether a given error bound can be exceeded in the initial
program to a reachability problem in a bit-vector program. We imple-
ment our technique as a pre-processing module that integrates seamlessly
with an existing mature BMC-based verification workflow. We present
an experimental evaluation of our error certification technique on a set
of arithmetic routines commonly used in the industry.

Keywords: Fixed-point arithmetic · Control-flow · Numerical error ·
Program transformation · Discontinuity error · Bounded model
checking

1 Introduction

Safety checking can be particularly troublesome for various software components
of common use nowadays in a variety of applications. Numerically-intensive rou-
tines, for instance, are typically characterised by nondeterminism (stemming
from physical sensor readings or values computed by large external modules)
and complex data dependencies (as in control loops) which complicate the state
space and can lead to subtle unexpected behaviour.

Non-integer arithmetic represents an additional element of complexity for
automated analysis, as one has to take into account the numerical inaccuracy
arising from the finite representation of numbers. Such inaccuracy not only prop-
agates among the variables of a routine, but can affect the control flow, altering

Partially supported by MIUR projects PRIN 2017TWRCNB SEDUCE (Designing Spa-
tially Distributed Cyber-Physical Systems under Uncertainty) and PRIN 2017FTXR7S
IT-MATTERS (Methods and Tools for Trustworthy Smart Systems).
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 443–460, 2021.
https://doi.org/10.1007/978-3-030-92124-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_25&domain=pdf
http://orcid.org/0000-0002-5811-1091
http://orcid.org/0000-0002-9348-1979
http://orcid.org/0000-0002-6018-5989
https://doi.org/10.1007/978-3-030-92124-8_25

444 S. Simić et al.

reachability, and therefore safety. In such circumstances, the program is said to
be affected by a discontinuity error [11].

Fixed-point arithmetic [2,36] allows to run a variety of algorithms on inex-
pensive hardware as it maps relatively straightforwardly to integer arithmetics.
As such, it is an appropriate choice for many embedded applications. In some
real-time systems, in order to meet strict requirements on energy consumption
and latency, numerical routines such as neural networks are often quantised into
fixed-point implementations on top of bit-wise integer arithmetic [16].

Clearly, fixed-point programs are particularly exposed to numerical inaccu-
racy and discontinuity errors, because the programmer can allocate more or
less bits to represent the fractional or integer part of a variable. Automati-
cally analysing discontinuity errors can be particularly desirable to assess the
numerical robustness of existing arithmetic routines, but also to work out an
appropriate tradeoff between speed and accuracy when synthesising fixed-point
code from pseudocode algorithms developed under more idealised arithmetics.

The ISO/IEC has been proposing language extensions for the C program-
ming language to support the fixed-point data-type [2], which have already been
implemented in the GNU compiler collection. However, there is very little work
concerning the estimation of numerical errors under fixed-point arithmetic and
it is either limited to straight-line code [17,24,30], or it cannot guarantee tight
bounds on the errors [11]. Indeed, the majority of existing formal verification
methods for non-integer arithmetics concerns floating-point arithmetics and is
based on over-approximation [11,18,34].

In this paper, we propose a bit-precise verification flow to certify exact error
bounds for programs over mixed-precision fixed-point arithmetic in the presence
of discontinuity errors. We apply program transformation to reduce the problem
of assessing whether a given error bound can be exceeded in the initial program
to a reachability problem in a bit-vector program. In particular, we transform
the initial fixed-point program into a modified one which preserves all its feasible
behaviours and at the same time keeps track (via auxiliary variables and state-
ments injected appropriately) of the errors arising from control-flow diversions.
Under this transformation, for all branching points defined by a condition con-
taining a fixed-point variable, whose value may be prone to errors, we compare
the finite-precision control flow with the ideal mathematical one that would have
been executed in absence of numerical errors.

As this requires the computation of the mathematical values of program vari-
ables, we build on top of our existing control flow-insensitive technique [30] that
encodes a fixed-point program as a bit-vector program, such that the problem
of finding a numerical error bound for the former reduces to simple reachability
queries on the latter. Our approach is novel in that no other existing approach
is able to issue exact certificates of numerical discontinuity errors.

We implement our approach as a pre-processing module that integrates seam-
lessly with a mature bounded model checking-based verification flow. We exper-
iment with our prototype analyser on a set of fixed-point implementations of
numerical routines commonly used in the industry, including a neural network,

Bit-Precise Verification of Discontinuity Errors Under Fixed-Point Arithmetic 445

different interpolation methods [15], and a jet-engine controller [11]. The exper-
iments show that our error certification technique can be successfully used to
identify divergence between the ideal and finite-precision control flow and to
precisely compute the overall numerical errors on output variables.

The rest of the paper is organized as follows. In Sect. 2 we briefly introduce
fixed-point arithmetic and numerical errors. In Sect. 3 we derive the expressions
for numerical error propagation arising from diverging control flows. Section 4
illustrates the details of the proposed program transformation. In Sect. 5 we
report our experimental evaluation. We overview related work and discuss con-
clusions and further developments in Sects. 6 and 7.

2 Preliminaries

2.1 Fixed-Point Arithmetic

Fixed-point arithmetic [36] is a finite-precision approximation for computations
over the rational numbers. It is based on standard integer arithmetic in that
it relies on integer representation and computing architecture, while implicitly
applying a scaling factor to interpret the values stored in variables. We indicate
with x(p.q) = 〈xp−1, . . . , x0.x−1, . . . , x−q〉 a fixed-point variable whose integral
and fractional parts are represented using p and q binary digits, respectively,
and indicate with (p.q) the fixed-point format of x. Since the position of the
radix point is not part of the representation, the storage size for a fixed-point
variable is p + q, plus a sign bit xp in case of signed arithmetic.

Assuming the customary two’s complement representation is used, the value
of a signed fixed-point variable x(p.q) is interpreted as

x(p.q) = (−xp · 2p+q +
p−1∑

i=−q

xi · 2i+q) · 2−q (1)

Notice that the expression in brackets represents the integer underlying x,
i.e. the integer encoded by the bit-sequence of x, to which the scaling factor 2−q

is applied. It follows that the range of values that are representable in the format
(p.q) is [−2p, 2p−2−q] ∩ 2−q ·Z, i.e. all rational values in the range [−2p, 2p−2−q]
with a step of 2−q, called the resolution of the format.

Operations on fixed-point variables are carried out by relying on integer oper-
ations and applying appropriate scaling factors to the results. For example, the
sum/difference of two variables in the same format, x(p.q) and y(p.q), is obtained
by adding/subtracting the underlying integers and applying a scaling factor of
2−q. Since the extremal result of this operation may be as negative as −2p+1 or
as positive as 2p+1 − 2−q+1, the necessary format to correctly store the result
needs p+2 integral bits, i.e. z(p+1.q) = x(p.q)±y(p.q). The product of two variables
x(p.q) and y(p′.q′) is obtained by multiplying the underlying integers and apply-
ing a scaling factor of 2−(q+q′) to the result. It follows from the representation
ranges of the operands that the format to correctly represent all possible values

446 S. Simić et al.

of the product requires an integral part of p + p′ + 2 bits, while the fractional
part may be as small as 2−(q+q′), i.e. z(p+p′+1.q+q′) = x(p.q) × y(p′.q′).

The format for the result of a fixed-point division, when such result is rep-
resentable (i.e. not periodic), may be deduced similarly. Other arithmetic oper-
ations on fixed-point variables are right and left arithmetic bit-shifts, which do
not currently follow any specific semantics. They are performed as in integer
arithmetic, by shifting the entire bit-sequence of the operand, but the formats
for their results may be user-defined. Indeed, based on the purpose of the bit-
shift, the scaling factor for the result may vary. Bit-shifts may be used either for
a re-scaling of the operand or to get rid of redundant bits. Possible semantics
for fixed-point bit-shifts, as well as for divisions are given in [23,30,36].

2.2 Numerical Errors

Numerical inaccuracies arise when the format of a variable is not sufficient to
correctly store the desired value. For instance, overflow may occur when trying
to use a variable to store a value that is outside of its representation range. In
these cases the stored value can be very different than the intended one. It may
be either the maximum representable value, if saturation arithmetic is used, or
the wrapped value, in case of modular arithmetic.

An insufficient fractional precision may be another source of error. An exam-
ple is shown in Listing 1, in which the value of y(3.2) is non-deterministic, i.e. it
symbolises any possible value taken by y, provided it can be stored in the given
precision. If we consider a run of this program in which y(3.2) is assigned to the
value 0.2510 (in decimal notation), the correct result of multiplying x(3.2) and
y(3.2), namely 0.12510, would require 3 fractional bits of precision, such as (3.3).
Hence, having to store the result in z(3.2) forces the least significant bit to be
dropped and the obtained result is 0.010. This constitutes a quantization error
equal to 0.125(10), i.e. the difference between the intended mathematical value
and the computed one.

The exact mathematical error z̄ incurred by an imprecise operation on a pro-
gram variable z may be expressed as z̄ = z̃ − z, where z̃ indicates the correct
mathematical value z should ideally hold. This last value would be obtained if
all the operations leading to the computation of z were carried out in infinite
precision. Notice that, if z̃ is periodic (for example a periodic quotient) and thus
not representable in any fixed-point format, consequently z̄ is not representable
either. In [30], we presented an error estimation technique that leverages the
error expression introduced above and explicitly derives the expressions for z̄ or
a sound over-approximation thereof, in case of periodic quotients, for each arith-
metic statement of the input program. To track the error propagation throughout
the entire program, each original program statement is transformed by a re-write
function �·� into a set of statements that compute the error incurred by the single
operation, in terms of the operands and of the errors of the operands. To make
sure that no additional errors are introduced by this computation, the formats
for all newly introduced variables are guaranteed to be sufficiently large and
the operands are correctly aligned when necessary. The quantization mode for

Bit-Precise Verification of Discontinuity Errors Under Fixed-Point Arithmetic 447

1 fixedpoint x(3.2), y(3.2), z(3.2), w(3.2);
2 x(3.2) = 0.5; // +000.10, 000010
3 y(3.2) = * ; // assume +0.25, +000.01, 000001
4 z(3.2) = x(3.2) ∗ y(3.2); //+0.0, +000.00, 000000
5 if z(3.2) <= 0 then { // will have an error of 0.001 on z
6 w(3.2) = z(3.2) // entering this branch due to error on z
7 } else {
8 w(3.2) = z(3.2) * 4 // should have entered this branch instead
9 }

Listing 1. A fixed-point program with numerical errors.

�·� is truncation, which corresponds to rounding towards −∞ when using two’s
complement representation.

Consider again the error on z in line 4 of Listing 1. This numerical inaccu-
racy will now propagate to the rest of the computation, affecting other opera-
tions where z may appear as an operand. With particularly complex dependency
relationships between variables, keeping the overall numerical inaccuracy under
control would not be easy, more so in the presence of non-determinism or uncer-
tainty on the variables. In this paper, we consider a more subtle case, i.e., when
the numerical inaccuracy alters the control flow.

The additional trouble here is that, due to the numerical error on z, the pro-
gram enters the first branch erroneously. w is assigned to the current, incorrect,
value of z and one might be tempted to conclude that the error on z should prop-
agate to w unchanged. However, the value that should be stored in w at the end of
the program, had all the computations been carried out correctly, is 0.12510 ·410 =
0.510. The total error on w is therefore not simply due to the incorrect operand in
the assignment in line 6, but is incurred by a wrong assignment altogether. In this
case, we say that w is affected by a discontinuity error [11].

2.3 Fixed-Point Programs

In the rest of the paper we consider the C-like syntax for programs shown
in Fig. 1, extended with an extra datatype fixedpoint for fixed-point vari-
ables. Here, var is a fixed-point variable x(p.q) of arbitrary precision, k is an
integer constant, � ∈ {+,−,×} are the arithmetic operations and ◦ ∈ { , }
are arithmetic bit-shifts, whose semantics is defined in [30]. The program can
also contain standard C-like elements such as scalars or arrays. We include
verification-oriented primitives for symbolic initialisation (var = ∗), assumptions
(assume(condition)) and assertion checking (assert(condition)) to express
safety properties of interest, in form of predicates over the variables.

Note that, in safety-critical software, loops are required to have a statically
determinable upper bound on the number of iterations and recursion is not
permitted (see coding standards and guidelines, for example MISRA-C [1], ISO-
26262 [4], DO-178C [3] and NASA/JPL [22]). We therefore assume that the

448 S. Simić et al.

program has already been fully unfolded, hence we avoid explicitly including a
construct for loops in our syntax. In programs which do contain loops our error
analysis technique can be used for bounded reachability checks. As our goal is
exact error certification, we do not consider division here, as this operation may
produce non-representable errors (see Sect. 2.2). It is also worth to notice that
the fixed-point arithmetic considered here generalises the ISO/IEC fixed-point
standard proposal [2] in that it allows arbitrary, mixed precisions for variables.

Fig. 1. Syntax of fixed-point input programs.

3 Propagation of Discontinuity Errors

3.1 Motivating Example

A concrete example of a discontinuity error can be seen in Listing 2, which
shows an implementation of a simple feedforward neural network (NN) with a
positive linear activation function. Constants I, H, and O denote the number of
input, hidden, and output neurons, respectively. The input vector represents
the network inputs, iw and lw are the weights between the input and hidden
layer and the hidden and output layer, respectively. b1, b2, are the biases of
the hidden and output layers, hout are the outputs of the hidden layer and
output are the outputs of the network. We consider the case of an NN that
is previously trained on expensive hardware and deployed as a component of a
cheap embedded application using fixed-point arithmetic. In this case, the input
is non-deterministic, while iw, lw, b1 and b2 are fixed.

Although this simple routine might look just fine at a first glance, it is prone
to discontinuity errors. Specifically, the activation function controlled by the
guarded statement within the first loop may behave differently depending on
the numerical error introduced on hout. Accordingly, the output of the network
may be more or less altered, which in the NN context may lead to a misclassi-
fication error. The verification of finite-precision implementations of NNs and,
in particular, their robustness to adversarial attacks, is gaining increasing atten-
tion [16,26,37]. We use the routine above as a motivating example and consider
an instantiation of it as a case study to evaluate our discontinuity error identi-
fication technique in Sect. 5.

Bit-Precise Verification of Discontinuity Errors Under Fixed-Point Arithmetic 449

input[I] = *; output[O];
w[H][I] = ..; lw[O][H] = ..; b1[H] = ..; b2[O] = ..; hout[H];

for (h=0; h<H; h++) {
hout[h] = b1[h];

for (i=0; i<I; i++)
hout[h] = hout[h] + iw[h][i] * input[i];

if (hout[h] < 0) hout[h] = 0;
}

for (o=0; o<O; o++) {
output[o] = b2[o];

for (h=0; h<H; h++)
output[o] = output[o] + lw[o][h] * hout[h];

}

Listing 2. Implementation of a simple feedforward neural network.

3.2 Computing the Discontinuity Error

Let x be a variable in the condition (guard) of an if-then-else statement:

s := if (x ≤ 0) stmt′ else stmt′′. (2)

For simplicity we only consider guards of the form var ≤ 0 as the other cases
may be reduced to this. Based on the value of x, the program may enter either
the “then” or the “else” branch, executing either stmt′ or stmt′′. Besides errors
due to the arithmetic operations appearing in the body of the two branches, an
additional error may be entailed by choosing the wrong branch altogether, due
to an inaccuracy on the value of x. In such cases the total error on a program
variable will be due not only to the finite nature of operations leading to its
computation, but also due to the incorrect sequence of operations. Here we
derive the mathematical expressions for such discontinuity errors.

Let v be a program variable affected by either stmt′ or stmt′′, i.e. a variable
whose value is updated in at least one of the branches of s. As introduced in
Sect. 2, the error in computing v can be expressed, in general, as the difference
between its ideal mathematical value and its computed value. The mathematical
value would be the result if all operations leading to the computation of v were
computed correctly, in infinite precision, on error-free operands. In particular,
correctly computing v implies computing the correct sequence of operations.

Given an “if-then-else” statement, we first need to define the set of program
variables that may be affected by such a wrong branching choice. Given a fixed-
point program in the syntax of Fig. 1, let V be the set of program variables and

450 S. Simić et al.

let S be the set of program statements. Consider the function W : S → V defined
recursively as follows:

W (fixedpoint v) = ∅
W (v = v′) = {v}

W (v = v′ � v′′) = {v}
W (v = v′ ◦ k) = {v}

W (if (x ≤ 0) stmt′ else stmt′′) = W (stmt′) ∪ W (stmt′′)
W (stmt′; stmt′′) = W (stmt′) ∪ W (stmt′′)

(3)

W (stmt) computes the set of variables whose values are affected by the
execution of stmt. Let S′ ⊂ S denote the subset of “if-then-else” statements.
Given s ∈ S′, i.e. s as in Eq. 2, we define the three functions T,E, I : S′ → V as
follows, using the previously defined function W :

T (s) = W (s) \ W (stmt′′)
E(s) = W (s) \ W (stmt′)
I(s) = W (stmt′) ∩ W (stmt′′)

(4)

In particular, T (s) computes the set of variables modified only by the “then”
branch of the ITE statement, i.e. by stmt′. Similarly, E(s) computes the set of
variables modified only by the “else” branch, namely by stmt′′. I(s) computes
the set of variables modified by both branches.

Consider a program variable v ∈ W (s), where s is again the control structure
from Eq. 2 and consider the case in which the chosen branch may differ from the
correct one due to a numerical error in the variable of the guard. Let v indicate
the value of the variable prior to entering the s statement and let us indicate with
vf the updated value of v computed in the branch chosen by the finite-precision
computation. We want to compute the error on v entailed by this computation
by using the identity vf = ṽc − vf, where ṽc is the correct mathematical value v
should hold at the end of s.

Let vc now indicate the value that would be computed in finite precision in
the correct branch. ṽc corresponds to the mathematical value that v would hold
if the correct branch were computed mathematically, in infinite precision. Then
vc = ṽc − vc is the error in computing vc. We can express the total error on v
entailed by the s statement as follows:

vf = ṽc − vf = (ṽc − vc) + (vc − vf) = vc + (vc − vf). (5)

This last expression shows that the error of v can be viewed as the sum of
two components. The first term represents the numerical error incurred by the
finite-precision computation of v in the correct branch, i.e. the difference between
the infinite-precision and finite-precision computations of the correct sequence
of operations. The second term is the difference between the value that would be
computed in finite-precision in the correct branch and the value that is actually
computed in finite-precision in the incorrect branch.

Notice that we limited the use of the typewriter font for the original program
variable v, for its updated value vf and for the newly introduced variable vc that

Bit-Precise Verification of Discontinuity Errors Under Fixed-Point Arithmetic 451

represents a value that is computable by the program. We used the italic font for
the variable that represents the mathematical value of a program variable and
for its error. This is to distinguish between values that are certainly representable
in a fixed-point format and those whose values may not be representable.

However, we argue that even these latter two variables, ṽc and vc are rep-
resentable in an adequately chosen fixed-point format for programs in the con-
sidered syntax. This claim can be easily proved by structural induction on the
set of program statements. In particular, it is based on the observation that no
arithmetic operation or program statement in the syntax of Fig. 1 produces peri-
odic, non-representable results, as there are no divisions. Hence, both the ideal
results and their errors are representable in finite precision. We do not include
the proof here due to lack of space. From now on we use the typewriter font for
all the above variables.

Let x ≤ 0 be the guard of the statement from Eq. 2. Let x̃ be the mathematical
value of x. To compute the incurred error for a variable affected by s, we need to
compute the expression in Eq. 5. To this end we need to double the two original
branches by considering four possible cases:

1. x ≤ 0 ∧ x̃ ≤ 0. The two control-flows agree, entering the “then” branch, and
the error incurred by s is due only to the errors produced by the arithmetic
operations in the body of the “then” branch and only concerns variables v ∈
W (stmt′); Indeed, in this case vf = vc = vthen and thus the expression in
Eq. 5 becomes vf = vthen.

2. x > 0∧x̃ > 0. Both the inexact and the mathematical control-flows choose the
“else” branch, and the error incurred by s is due only to the errors produced
by the operations in the body of the “else” branch, concerning only variables
v ∈ W (stmt′′). We have that vf = vc = velse and the expression for the error
is now vf = velse.

3. x ≤ 0 ∧ x̃ > 0. The “then” branch is executed instead of the “else” branch,
producing a discontinuity error, affecting variables in both branches, i.e. v ∈
W (stmt). In particular:
a) If v ∈ I(s), then it is modified in the incorrectly chosen “then” branch,

but should have been modified in the “else” branch, possibly by a different
sequence of operations. In this case vc = velse while vf = vthen and the
error expression is vf = ṽelse − vthen.

b) If v ∈ T (s), then it is modified in the incorrectly chosen “then” branch,
but wouldn’t have been modified at all in the correct “else” branch. In
this case vc = v and vf = vthen and the error expression is vf = ṽ− vthen.

c) If v ∈ E(s), then it is not modified in the incorrectly chosen “then” branch,
but would have been modified in the correct “else” branch. In this case
vc = velse and vf = v and the error expression is vf = ṽelse − v.

4. x > 0 ∧ x̃ ≤ 0. The “else” branch is executed instead of the “then” branch,
producing a discontinuity error, affecting all variables v ∈ W (stmt):
a) If v ∈ I(s), then vf = velse, vc = vthen and vf = ṽthen − velse.
b) If v ∈ E(s), then vc = v, vf = velse and vf = ṽ − velse
c) If v ∈ T (s), then vc = vthen, vf = v and vf = ṽthen − v.

452 S. Simić et al.

Fig. 2. Analysis flow for programs over fixed-point arithmetic.

4 Program Analysis

4.1 Verification Workflow

Given a fixed-point program PFP with non-deterministic inputs and control
structures, and given an error bound 2−h, we wish to know whether any execution
of PFP can lead to errors that exceed 2−h for any variable of interest and in
any location of the program. We encode this as an assertion-based verification
problem, whose complete workflow is shown in Fig. 2. For simplicity, we assume
overflow has already been checked (for overflow checking see [30]).

The first module, implemented in CSeq [13], transforms the input program
PFP into a modified one P ′

FP , by rewriting the control structures to compute
the discontinuity errors and introduces assertions to test them against the error
bound. The program transformation is based on the error expressions derived
in Sect. 3.2 and the encoding is shown in Sect. 4.2. This module functions as
a pre-processing phase to the rest of the toolchain, based on [30]. P ′

FP can
now be transformed into an equivalent bit-vector program P ′′

BV , by introduc-
ing additional statements to compute and propagate the numerical errors in
a discontinuity-insensitive manner, generating a propositional formula ϕ using
CBMC [9]. The formula, solved by MiniSAT [12], produces a counterexample in
case of satisfiability, i.e. reachable assertion failure in P ′′

BV , or it certifies that
the errors never exceed the established bound if it is not satisfiable.

The input parameters of our workflow are: ei, ef , and eb. The first two are
the integer and fractional precision used for the newly introduced variables that
compute the errors, i.e. x̄(ei.ef). In our prototype tool these values are guessed to
be large enough not to store their designated values. eb is such that eb = ef −h,
where 2−h is the error bound. Notice that checking whether x̄(ei.ef) does not
exceed 2−h is equivalent to checking whether all but its last eb bits are zero.
We check this using a right shift by eb positions on x̄(ei.ef). By construction,
P ′′

BV will contain a reachable assertion failure if and only if (i) PFP can exceed
the given error bound on a variable of interest, or (ii) (ei, ef) is not a sufficient
precision for an accurate error analysis. In this case, we adjust (ei.ef) (and,
consequently, eb) and re-encode.

4.2 Program Transformation

Here we describe the encoding of an if-then-else statement into a modified one.
We will denote with x′ a temporary variable that does not belong to the initial

Bit-Precise Verification of Discontinuity Errors Under Fixed-Point Arithmetic 453

program, but is introduced during the encoding. The purpose of such variables is
to store the result of an operation without overflow or numerical error, thus they
will always be given sufficient precision. A variable x̄ will be used to represent
the error that arises from the computation of x. All other variables introduced
by the encoding will be denoted by letters of the alphabet not appearing in PFP .

The error variables introduced by the encoding are themselves fixed-point
variables, but their manipulation is more involved. If we were to treat error
variables as we do program variables, by keeping track of the errors arising from
their computation, we would incur a recursive definition and have to compute
errors of higher degree. Hence, we denote with ± two functions that compute
sums/differences of error components and internally check that the result is not
subject to additional errors.

Fig. 3. Transformation of the conditional statement.

454 S. Simić et al.

Figure 3 defines the effect of our transformation function �·� applied to an
“if-then-else” statement s as in Eq. 2. Notice that we require the precision for
error variables (ef .ei) to be at least equal to the precision of any variable
v ∈ W (s) ∪ {x}, otherwise the values of ei and ef have to be incremented.
The transformation generates 5 blocks of statements. In the first block we com-
pute the mathematical value of x, i.e. ~x. We then use ~x in the next 4 blocks of
statements to compare its sign to that of x. The following four blocks correspond
to the four cases described in Sect. 3.2.

Case 1: Block 2 checks if both x and ~x are ≤ 0, i.e. if both the inexact and
the exact computation would enter the “then” branch in the original if-then-else
statement. If so, the error is computed simply as the error due to the body of
the “then” branch, applying the �·� function to the body of the “then” branch.

Case 2: Block 3 is analogous; if the signs of both test variables are positive the
error will be due only to the computation of the “else” block itself.

Case 3: Block 4 considers the situation in which x ≤ 0 but ~x > 0. In particular,
it translates the effect of the program choosing the “then” branch when the ideal
computation would choose the “else” branch.

First, for all the variables that are affected by the “then” branch, i.e. ∀v ∈
W (stmt′), we introduce a set of four statements whose effect is to store the
values computed by the “then” branch in new variables vthen′, without altering
the current values of v, since we will need the latter to simulate what an ideal
computation would do if it chose the “else” branch.

Now, for all the variables that would be affected by the “else” block, i.e.
∀v ∈ W (stmt′′), we introduce a set of six statements whose effect is to simulate
the computation of the “else” block, coupled with the error propagation it would
entail, without actually updating the values for the variables that would have
been affected. To this end we use the �·� function applied to the statements of
the “else” branch. The mathematical values that would be obtained for v in the
infinite-precision computation of stmt′′ is now stored in ~velse.

The next two statements have the effect of storing the value of v in a variable
of greater format, v′, ∀v ∈ W (s) \ {x}. Then, the next two statements compute
∀v ∈ T (s)\{x} the mathematical value that v should have held prior to entering
s. This value is now stored in ~v. These last four statements are not needed for
x, since we have already computed x′ and ~x in the first block.

Now we have all the ingredients to compute the errors due to the diverging
control-flow. ∀v ∈ T (s) we compute v̄ as the difference of ~v and vthen′, corre-
sponding to case 3.b). ∀v ∈ I(s), we compute v̄ as the difference of ~velse and
vthen′, corresponding to case 3.a). ∀v ∈ E(s) v̄ is computed as the difference
of ~velse and v′, corresponding to case 3.c). In the following set of three state-
ments, we check whether the absolute value of the error for the affected variables
exceeds the given error bound. Finally, for all variables affected by the “then”
branch, we assign their updated values, currently stored in vthen, to v.

Bit-Precise Verification of Discontinuity Errors Under Fixed-Point Arithmetic 455

Case 4: Symmetric to case 3 and considers x > 0 and ~x ≤ 0.

5 Experimental Evaluation

We evaluated our approach on a set of routines of common use in the
industry: cav10 [15], loosely based on non-linear interpolation methods,
cosine [15], a third order polynomial interpolation of the cosine function,
jet−engine [11], a piece-wise polynomial approximation of a jet-engine con-
troller, and neural−net, a fixed-point implementation of the NN of Listing 2
with H = 13, I = 1, O = 1. For each routine, we considered 5 different configura-
tions, i.e. 5 different custom precisions for the program variables. We considered
the input variables to be non-deterministic in a given input range and to be
subject to initial errors to reflect the fact that they may vary at run time, rep-
resenting sensor readings or output values of other numerical routines, making
their values prone to errors. We set the formats for non-deterministic variables
to a unique custom precision for each routine, according to their allowed range
of values.

We evaluated the numerical precision of the four routines in their various
configurations by computing the errors on output variables in function of the
initial errors on input variables. Figure 4 shows the experimental results for the
four considered benchmarks. We include the absolute errors certified with our
control-flow sensitive approach (colored bars) and compare them to the errors
obtained by using only the control flow-insensitive part of the verification flow
(striped bars). The latter are always less or equal to the former, as is expected.

For cav10, we considered formats (7.8), (7.12), (7.16), (7.20), (7.24) for pro-
gram variables and (7.8) for non-deterministic variables. The routine consists
of three arithmetic operations followed by an if-then-else statement, with one
operation per branch, for a total of 5 arithmetic statements. Figure 4.a) shows
how the upper bounds on the absolute error for the output variable are equal
for all five program configurations, regardless of the initial error. However, not
taking into account the discontinuity error yields strictly lower output errors
and a clear pattern emerges showing that incrementing the initial error while
lowering the precision for program variables produces greater output errors.

For cosine we set the formats to (23.24), (23.28), (23.32), (23.36), (23.40)
and (11.8) for the non-deterministic inputs. To simplify the implementation of
our error estimation technique we flattened the original code consisting in a
nested if-then-else statement into four separate statements, each containing 2
to 8 operations, for a total of 18 operations. jet−engine contains 27 opera-
tions: a subtraction followed by an if-then-else statement with 13 operations per
branch. We set the formats to (7.8), (7.12), (7.16), (7.20), (7.24) and (7.4) for
the input variables. Both benchmarks present the same pattern for numerical
errors (Fig. 4.b) and c)): by incrementing the initial error and decreasing the
precision of variables, the output error grows. An exception can be observed for
cosine, in which the output error oscillates; for the format (23.36), the output
error for an initial error of 2−8 is smaller than the output error for an initial error

456 S. Simić et al.

Fig. 4. Benchmarks: maximum absolute errors for output variables in function
of initial errors on the inputs.

of 2−12. For both case studies, the control-flow sensitive error bounds coincide
with the control-flow insensitive ones. This may be interpreted as an indicator
of continuity of the two piece-wise polynomial interpolations.

For the neural−net routine we set the formats to (11.12), (11.16), (11.20),
(11.24), (11.28) and (3.12) for the input variables. The case study contains
28 operations and a conditional statement with an assignment in one branch.
Figure 4.d) shows how both the discontinuity-sensitive and insensitive errors
grow as the variable precision decreases and the initial errors increase, and the
former is always strictly greater than the latter, indicating that this numerical
routine presents a clear discontinuity.

We performed the analyses on a standard consumer laptop, generally taking
a couple of seconds and up to a minute for satisfiable instances, both for the
control flow-sensitive and insensitive approach. Unsatisfiable instances generally
took under a minute and up to a maximum of 28 min. for the discontinuity-
sensitive approach in the cosine case, which constitutes the largest case study
in terms of state-space (220 possible assignments).

Bit-Precise Verification of Discontinuity Errors Under Fixed-Point Arithmetic 457

6 Related Work

Bit-precise analyses of safety properties in finite-precision arithmetic have been
proposed in [7,14] for floating-point arithmetic and [6,19] for fixed-point arith-
metic, but do not compute numerical error bounds. [30] extends [19] and gives
tight error bounds for fixed-point implementations of numerical routines, but is
limited to straight-line code. We have implemented our method on top of [30] to
account for exact, bit-precise discontinuity error propagation.

Other work tackling sound discontinuity error estimation in finite-precision
arithmetic relies on abstraction-based techniques [32], which produce sound but
often pessimistic error bounds. In particular, fixed-point arithmetic is supported
in [10,11], which combine exact SMT solving over reals with approximate and
sound affine and interval arithmetic. Floating-point error is estimated in [18,34]
in an abstract interpretation framework. For straight-line code in fixed-point
arithmetic a technique based on interval analysis is proposed in [24].

A number of automated tools exist for soundly estimating numerical errors
for finite precision arithmetic in the presence of control structures. Rosa [11]
supports both fixed and floating-point arithmetic, while the floating-point spe-
cific tool PRECiSA [34,35] uses program transformation to detect unstable tests.
Fluctuat [17,18] supports floating-point error estimation in the presence of con-
trol structures, while for fixed-point implementations it issues a warning in the
presence of unstable tests. FPTaylor [31] uses global optimization to emit error
certificates of floating-point errors, but does not handle conditionals directly.

Generation of robust model predictive control implementations in which
numerical errors do not exceed a given error bound is proposed in [29]. Sta-
bility and safety analysis in the context of control system implementations in
also studied in [5,25]. All the above approaches support fixed-point arithmetic.
Robustness, i.e. the property of producing small variations on outputs for small
variations on inputs, while not explicitly concerned with computing numerical
errors, is addressed in [8,21] and in [28,33] for control software.

7 Conclusion and Future Directions

We have presented a bit-precise verification flow to certify the magnitude of
numerical errors in programs with conditionals and fixed-point arithmetic in
mixed-precision and possibly non-deterministic values. The key element of our
approach is a technique that transforms a conditional of a given program into
a modified one which preserves the control flow, but also collects information
on the propagation of errors due to a wrong branching choice. The program
transformation is implemented as a pre-processing technique and seamlessly inte-
grated into an existing discontinuity-insensitive verification workflow, allowing
to exactly certify the overall error on a given program variable. The modularity
allows overflow and general safety checks to be performed as well.

Our approach is novel, in that it is currently the only one to exactly cer-
tify discontinuity errors in fixed-point implementations of numerical routines. In

458 S. Simić et al.

particular, all error expressions are exact and introduce no over-approximations.
To the best of our knowledge, all existing approaches for error estimation in
finite-precision computations rely on over-approximations of variable values.

As a result of the introduction of additional variables and statements, our
program transformation clearly generates overhead in terms of program size. We
plan on testing the current workflow on instances of larger size to assess scala-
bility in terms of running times and memory usage. SAT-based verification tech-
niques are indeed known to be resource intensive. However, the recent advances
in solvers and their potential for parallelization [20] make them a powerful tool
for complex software verification problems.

The bit-vector program generated by our encoding on its own provides a bit-
precise representation of the propagated numerical error, but the program itself
can be analysed by any verification tool that supports bit-vectors of mixed, arbi-
trary sizes. In particular, we plan on testing different bounded model checkers,
coupled with different SAT solvers, as well as SMT-solvers for the theory of bit-
vectors for a word-level approach. While the bit-precise BMC approach is well
suited for analysing the sources of numerical errors, abstraction-based tools can
provide guarantees on larger error bounds by using over-approximation. To test
abstraction-based approaches, we are considering developing (via Crab [27]) an
abstract interpreter for bit-vector programs that would allow over-approximated
error bound analysis with different abstract domains.

References

1. MISRA-C:2004 — Guidelines for the use of the C language in critical systems.
Technical report, MIRA Ltd. (2004)

2. Programming languages — C — Extensions to support embedded processors.
ISO/IEC Technical Report 18037:2008. EEE, New York (2008)

3. DO-178C/ED-12C, Software considerations in airborne systems and equipment
certification. Technical report, RTCA/EUROCAE (2011)

4. ISO 26262 Road Vehicles - Functional Safety. Technical report. ISO, Geneva,
Switzerland (2011)

5. Abate, A., et al.: Automated formal synthesis of digital controllers for state-space
physical plants. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426,
pp. 462–482. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-
9_23

6. Bessa, I., Abreu, R.B., Filho, J.E.C., Cordeiro, L.C.: SMT-based bounded model
checking of fixed-point digital controllers. In: IECON, pp. 295–301. IEEE (2014)

7. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: FMCAD, pp. 69–76. IEEE (2009)

8. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM 55(8), 107–115 (2012)

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

10. Darulova, E., Kuncak, V.: Sound compilation of reals. In: POPL, pp. 235–248.
ACM (2014)

https://doi.org/10.1007/978-3-319-63387-9_23
https://doi.org/10.1007/978-3-319-63387-9_23
https://doi.org/10.1007/978-3-540-24730-2_15

Bit-Precise Verification of Discontinuity Errors Under Fixed-Point Arithmetic 459

11. Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM Trans. Program.
Lang. Syst. 39(2), 8:1–8:28 (2017)

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

13. Fischer, B., Inverso, O., Parlato, G.: CSeq: a concurrency pre-processor for sequen-
tial C verification tools. In: ASE, pp. 710–713. IEEE (2013)

14. Gadelha, M.R., Cordeiro, L.C., Nicole, D.A.: An efficient floating-point bit-blasting
API for verifying C programs. In: Christakis, M., Polikarpova, N., Duggirala, P.S.,
Schrammel, P. (eds.) NSV/VSTTE -2020. LNCS, vol. 12549, pp. 178–195. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-63618-0_11

15. Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope inter-
section. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
212–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6_22

16. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quan-
tize your neural network? In: TACAS 2020. LNCS, vol. 12079, pp. 79–97. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_5

17. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_17

18. Goubault, E., Putot, S.: Robustness analysis of finite precision implementations. In:
Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 50–57. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03542-0_4

19. Inverso, O., Bemporad, A., Tribastone, M.: Sat-based synthesis of spoofing attacks
in cyber-physical control systems. In: ICCPS, pp. 1–9. IEEE/ACM (2018)

20. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of
multi-threaded programs. In: PPoPP, pp. 202–216. ACM (2020)

21. Ivancic, F., Ganai, M.K., Sankaranarayanan, S., Gupta, A.: Numerical stability
analysis of floating-point computations using software model checking. In: MEM-
OCODE, pp. 49–58. IEEE (2010)

22. Jet Propulsion Laboratory, C.I.o.T.: JPL Institutional Coding Standard for the C
Programming Language. Standard (2009)

23. Martel, M., Najahi, A., Revy, G.: Toward the synthesis of fixed-point code for
matrix inversion based on Cholesky decomposition. In: DASIP, pp. 1–8. IEEE
(2014)

24. Martel, M., Najahi, A., Revy, G.: Trade-offs of certified fixed-point code synthesis
for linear algebra basic blocks. J. Syst. Archit. 76, 133–148 (2017)

25. Martinez, A.A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of
control system implementations. In: EMSOFT, pp. 9–18. ACM (2010)

26. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: AAAI, pp. 6615–6624. AAAI Press
(2018)

27. Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Signedness-agnostic pro-
gram analysis: precise integer bounds for low-level code. In: Jhala, R., Igarashi, A.
(eds.) APLAS 2012. LNCS, vol. 7705, pp. 115–130. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35182-2_9

28. Park, J., Pajic, M., Sokolsky, O., Lee, I.: Automatic verification of finite precision
implementations of linear controllers. In: Legay, A., Margaria, T. (eds.) TACAS
2017. LNCS, vol. 10205, pp. 153–169. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54577-5_9

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-030-63618-0_11
https://doi.org/10.1007/978-3-642-14295-6_22
https://doi.org/10.1007/978-3-642-14295-6_22
https://doi.org/10.1007/978-3-030-45237-7_5
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-319-03542-0_4
https://doi.org/10.1007/978-3-642-35182-2_9
https://doi.org/10.1007/978-3-662-54577-5_9
https://doi.org/10.1007/978-3-662-54577-5_9

460 S. Simić et al.

29. Salamati, M., Salvia, R., Darulova, E., Soudjani, S., Majumdar, R.: Memory-
efficient mixed-precision implementations for robust explicit model predictive con-
trol. ACM Trans. Embed. Comput. Syst. 18(5s), 100:1–100:19 (2019)

30. Simić, S., Bemporad, A., Inverso, O., Tribastone, M.: Tight error analysis in fixed-
point arithmetic. In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS, vol.
12546, pp. 318–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
63461-2_17

31. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamarić, Z., Gopalakr-
ishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic
Taylor expansions. ACM Trans. Program. Lang. Syst. 41(1), 2:1–2:39 (2019)

32. Stol, J., De Figueiredo, L.H.: Self-validated numerical methods and applications.
In: Monograph for 21st Brazilian Mathematics Colloquium, IMPA. Citeseer (1997)

33. Tabuada, P., Balkan, A., Caliskan, S.Y., Shoukry, Y., Majumdar, R.: Input-output
robustness for discrete systems. In: EMSOFT, pp. 217–226. ACM (2012)

34. Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. In: VMCAI
2018. LNCS, vol. 10747, pp. 516–537. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-73721-8_24

35. Titolo, L., Moscato, M., Feliu, M.A., Muñoz, C.A.: Automatic generation of guard-
stable floating-point code. In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS,
vol. 12546, pp. 141–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-63461-2_8

36. Yates, R.: Fixed-point arithmetic: an introduction. Digital Signal Labs (2009)
37. Zhao, Y., Shumailov, I., Mullins, R.D., Anderson, R.: To compress or not to com-

press: understanding the interactions between adversarial attacks and neural net-
work compression. In: MLSys. mlsys.org (2019)

https://doi.org/10.1007/978-3-030-63461-2_17
https://doi.org/10.1007/978-3-030-63461-2_17
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-030-63461-2_8
https://doi.org/10.1007/978-3-030-63461-2_8

Machine Learning and Cyber-Physical
Systems

OSIP: Tightened Bound Propagation
for the Verification of ReLU Neural

Networks

Vahid Hashemi1, Panagiotis Kouvaros2(B), and Alessio Lomuscio2

1 Audi AG, Ingolstadt, Germany
2 Imperial College London, London, UK

p.kouvaros@imperial.ac.uk

Abstract. Abstraction-based methods for the verification of ReLU-
based neural networks suffer from rapid degradation in their effectiveness
as the neural network’s depth increases. We propose OSIP, an abstraction
method based on symbolic interval propagation in which the choice of
the ReLU relaxation at each node is determined via optimisation. We
present an implementation of OSIP on top of Venus, a publicly available
toolkit for complete verification of neural networks. In the experiments
reported, OSIP calculated bounds that were tighter than the state-of-
the-art on ReLU networks from the first competition for neural network
verification. As a case study we apply the method for the verification
of VGG16, a deep, high-dimensional, 300,000 node-strong model used
for object classification in autonomous vehicles against local robustness
properties. We demonstrate that OSIP could verify the correctness of the
model against perturbations that are larger than what can be analysed
with the present state-of-the-art.

1 Introduction

Methods based on machine-learning (ML) are increasingly being deployed in AI-
based, safety-critical applications, including autonomous vehicles. Rather than
being directly programmed by software engineers, these modules often take the
form of neural networks (NN) synthesised directly from data. A notable example
of these are the class of ML-based object detectors and classifiers presently used
in autonomous vehicles. These are typically deep (i.e., multi-layered) networks
often comprising hundreds of thousands of neurons that can automatically detect
and classify objects of interest in an image, whether these are vehicles, humans,
fixed and moving obstacles, etc. While the performance of neural classifiers is
high, their error rates are often in the region of 1–2%, hence still too high to be
deployed safely on their own. It is also known that neural models are particularly
fragile against out of sample data, i.e., while the nominal performance may be
high on data with the same statistical distribution of the training set, this may
not be the case with out-of-distribution inputs. To mitigate these problems the
area of verification of neural networks has grown to propose methods to verify
the correctness of classifiers.
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 463–480, 2021.
https://doi.org/10.1007/978-3-030-92124-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_26

464 V. Hashemi et al.

Due to their importance in applications, particular emphasis to date has
been devoted to methods addressing the verification of feed-forward (i.e., non-
recurrent) neural networks based on Rectified-Linear Units (ReLU). A key spec-
ification that is analysed in this context is local robustness. Simply stated, local
robustness refers to whether or not the network alters its output in the presence
of small changes to the input. This can be useful to analyse the network’s stabil-
ity in the presence of input noise, or its susceptibility to adversarial attacks [12].

Related work. Methods in formal verification of ReLU-based neural networks
can be partitioned into complete, or exact, and incomplete, or approximate. Com-
plete methods [2,4,6,9,11,13,17–19,21,21,22,29,31,32] can theoretically solve a
verification query, such as local robustness, both with a positive and a negative
answer. However, they also suffer from scalability issues and may not be able to
resolve queries when the network or the perturbation range is large.

In contrast with this, incomplete methods [3,7,8,10,23,24,26,28,33,34,36,
37,37] rely on various abstraction methods to overapproximate the computation
of a neural network. Because of this overapproximation, incomplete methods
can only certify that a network is compliant against a specification, but not
that it is not. While leading incomplete approaches can solve some verification
problems that cannot be established via complete approaches, they still fall short
of being capable of addressing large models of industrial sizes. This is because
the abstraction methods are often too coarse thereby inhibiting the evaluation
of significant perturbations on the input. This is particularly evident in symbolic
interval propagation (SIP)-based methods [26,28,33–35,37] whereby the ReLU
function is linearly approximated and the bounds for the nodes are computed via
backward passes of variable substitutions through the network. Whilst this often
achieves state-of-the-art scalability, it trades off precision by inducing coarser
overapproximations as compared to other methods.

Contribution. In this paper we aim to make a contribution in this direction.
We propose an incomplete, SIP-based method that improves the precision. Dif-
ferently from related methods, where the relaxation for a ReLU node is heuristi-
cally chosen to induce the minimum local, i.e., at neuron-level, overapproxima-
tion area [26,37] or the minimum local maximum error [32], our method jointly
determines via optimisation the relaxations to be conducted for all the nodes
in a layer, thereby accounting for intra-layer dependencies to improve precision.
Additionally, it provides a simple, yet effective treatment for max-pooling lay-
ers towards further improving precision. This enables solving verification queries
that could not previously be determined by the state-of-the-art. We experimen-
tally evaluate the method proposed by benchmarking on the ReLU networks
from the first competition for neural network verification. Additionally we report
the results obtained when analysing VGG16, an image classifier consisting of over
300,000 nodes. The results show that our method produces tighter bounds and
is able to solve verification queries that cannot be solved by present methods.

The rest of the paper is organised as follows. In Sect. 2 we fix the nota-
tion and present key concepts used throughout the paper. Section 3 reports
OSIP, the SIP method here developed. Section 4 reports details of the resulting

OSIP: A Tight Abstraction Method for NN Verification 465

implementation and reports experimental results against ReLU networks from
the first competition for neural network verification and VGG16. We conclude
in Sect. 5.

2 Preliminaries

Feed-Forward Neural Networks. A feed-forward neural network (FFNN) is
a vector-valued function f : Rs0 → R

sL that composes a sequence of L ≥ 1 layers
f1 : Rs0 → R

s1 , . . . , fL : RsL−1 → R
sL . Each layer f i, i ∈ {1, . . . , L − 1}, is said

to be a hidden layer; the last layer fL of the network is said to be the output
layer. Each element of each layer f i is said to be a neuron, or a node. We use
ni,q to refer to the q-th node of layer i. Each layer f i, i ∈ {1, . . . , L}, implements
one of the following functions for input xi−1:

1. an affine transformation fi(xi−1) = W (i)xi−1+bi, for a weight matrix W (i) ∈
R

ni×ni−1 and a bias vector b ∈ R
ni .

2. a ReLU activation function fi(xi−1) = max(xi−1, 0), where the maximum
function is applied element-wise.

3. a max-pool function which collapses rectangular neighbourhoods of its input
into the maximal value within each neighbourhood.

Note that for ease of presentation we separate affine transformations from the
ReLU activation function, where we consider each as a different layer, as opposed
to their standard treatment whereby their composition defines a layer. Also, we
hereafter assume that the bias vector for all the layers is the zero vector. There
is no technical difficulty to extend the discussion to non-zero bias vectors.

Verification Problem. Given a FFNN, the verification problem is to answer
positively or negatively as to whether the output of the network for every input
within a linearly definable set of inputs1 is contained within a linearly definable
set of outputs. Formally, we have:

Definition 1. Verification problem. Given a FFNN f , a linearly definable set of
inputs X ⊂ R

s0 and a linearly definable set of outputs Y ⊂ R
sL , the verification

problem is to establish whether

∀x ∈ X : f(x) ∈ Y.

One of the most well-studied instantiations of the verification problem is the
local adversarial robustness problem. The problem concerns answering whether
all images within a norm-ball of a given input image are classified equivalently
by the network f [1,2,8,15,17,31]. Formally, the local adversarial robustness
problem is derived from the verification problem by setting

X = {x′ | x − ε ≤ x′ ≤ x + ε}
Y = {y | ∀i �= c : f(x′)i < f(x′)c} ,

1 A linearly definable set is a set that can be expressed as a finite set of affine con-
straints over real-valued variables.

466 V. Hashemi et al.

Algorithm 1. Verification via over-approximation.
1: procedure Verify(f ,X ,Y)
2: Input: network f , set of inputs X , set of outputs Y
3: Output: yes/unknown
4: compute R̂ such that R̂ ⊇ {f (x) | x ∈ X}
5: if R̂ ⊆ Y then
6: return yes

7: else
8: return unknown

for a given image x with class label c and perturbation radius ε ≥ 0. In this
paper, we focus on verification problems whereby the set of inputs X is defined
by a lower and an upper bound for each element of the input x0 to the network,
i.e., X = {x0 | li ≤ x0,i ≤ ui}, where li, ui ∈ R.

3 OSIP: Tightened Bound Propagation

In this section we present OSIP (optimised SIP), a novel tight symbolic interval
propagation method for the verification of feed-forward neural networks.

Given a network and lower and upper bounds of its inputs, OSIP estimates
lower and upper bounds of the network’s output nodes. OSIP can then potentially
use these bounds to determine the satisfaction of the verification property in
question. OSIP is incomplete in that the bounds may be overestimated to such
a degree that solving the verification problem is not possible.

The key novel element of OSIP consists in a novel treatment of the ReLU
function whereby the linear approximation of the function is selected via opti-
misation. As it will be clear in the next section, this results in a method that
in experiments calculates the tightest overestimation when compared to lead-
ing methods. The size of the approximation is essential in incomplete methods.
Intuitively, the smaller the uncertainty, the more likely it is that a verification
query can be solved.

Overview. OSIP is an instance of verification algorithms operating by overap-
proximating the network computation (see Algorithm 1 for a high level descrip-
tion of this class of algorithms). The method computes an overapproximation R̂
of the reachable output set R = {f(x) | x ∈ X} for a given network f and
set of inputs X concerning a verification problem ∀x ∈ X : f(x) ∈ Y. This
over-approximation is obtained from a layer-by-layer application of the layers’
functions to the input set X , where the ReLU function is linearly relaxed.

Depending of the tightness of the overapproximation, Algorithm 1 may or
may not be able to solve the verification problem. In particular, if R̂ ⊆ Y,
then the algorithm outputs yes, i.e., the verification property is satisfied. For

OSIP: A Tight Abstraction Method for NN Verification 467

Fig. 1. Over-approximation of a network’s bounds. The network has a two-dimensional
input and two layers: an affine transformation layer and a ReLU layer. The veri-
fication problem ∀x ∈ X : f (x) ∈ Y ′ is satisfied whereas the verification problem
∀x ∈ X : f (x) ∈ Y cannot be solved.

instance, if analysing a local adversarial problem and R̂ ⊆ Y, then all images
whose network output is within R̂ are classified equally to the image given
as input to the problem. Since these images form a superset of the set X of
images within the norm-ball of the image in question, the verification problem
is satisfied.

Otherwise, if R̂ �⊆ Y, then Algorithm1 outputs unknown, i.e., the verification
problem cannot be solved. For instance, if analysing a local adversarial problem
and R̂ �⊆ Y, then any image whose network output is within R̂\Y, i.e., any image
that potentially falsifies the verification problem, may or may not lie within the
norm-ball of the image in question; consequently, it cannot be used to falsify the
verification problem. Figure 1 gives a graphical illustration of these two possible
outcomes of Algorithm 1.

Detailed Description. In line with previous symbolic interval propagation
methods [26,31,32,37], OSIP analyses a given network in a layer-by-layer fashion,
where for each node ni,j , it constructs the following:

– a (symbolic) linear constraint β≥
i,j of its lower bound, built from variables

expressing the inputs to the node,
– a similarly defined linear constraint β≤

i,j of its upper bound;
– a concrete (i.e., numeric) lower bound li,j ,
– a concrete upper bound ui,j .

This results in the derivation of concrete lower and upper bounds for the output
nodes of the network, which can potentially be used to determine the satisfaction
of the verification problem as per Algorithm 1.

468 V. Hashemi et al.

Fig. 2. A feed-forward neural network. The inputs are depicted in green colour. Con-
crete ranges next to a node indicate the concrete lower and upper bounds of the node
as obtained via OSIP. Symbolic ranges next to a node indicate the lower and upper
bound constraints of the node as obtained via OSIP.

Following the presentation from [26] we now describe the computation of the
constraints and bounds for each of the types of layers constituting the networks
considered in this paper. The novel elements of OSIP consist in the treatment
of the ReLU and max-pool layers. In the following we use symbolic variables
vi,j for the value of each node ni,j ; we use these variables to build the bound
constraints. To exemplify each computation we use the network from Fig. 2. We
begin with the constraints and bounds of the input to the network. We then
propagate these through the network to derive the constraints and bounds of
the output of the network.

Input. The constraints and bounds for the input to the network are instantiated
from the bounds of the input prescribed by the verification problem:

β≥
0,j = lj ; β≤

0,j = uj ; l0,j = lj ; u0,j = uj .

Affine Transformation Layer. Given the vector vi =
[
vi,1,vi,2, . . . ,vi,si

]T of
layer i’s variables, the lower and upper bound constraints of an affine transfor-
mation layer f i+1 are defined by:

β≥
i+1,j = β≤

i+1,j = W
(i+1)
j,: vi.

In other words, the lower and upper bound constraints for affine transforma-
tion layers are identical and instantiated to the network function for the node in
question.

Example 1. Consider the network from Fig. 2. Given the vector of input variables[
v0,1 v0,2

]T , the lower and upper bound constraints of node n1 ,1 are

β≥
1,1 = β≤

1,1 = W
(1)
1,:

[
v0,1 v0,2

]T =
[−2 1

] [
v0,1 v0,2

]T = −2v0,1 + v0,2.

OSIP: A Tight Abstraction Method for NN Verification 469

The concrete bounds of the layer are obtained by replacing the variables in
the nodes’ constraints with their associated lower or upper bound constraints,
depending on the signs of the variables. In particular, to compute the lower
bound (upper bound, respectively) of a node, we replace the variables within its
lower bound constraint (upper bound constraint, respectively) with the lower
bound constraints (upper bound constraints, respectively) of the nodes of the
previous layer if the sign of the variables is positive; otherwise, if it is negative,
then we use the upper bound constraints (lower bound constraints, respectively)
of said nodes. We continue by replacing the newly introduced variables with
their corresponding constraints, and so on, until the constraints depend only on
the input variables whereby we can compute the concrete bounds.

Formally, the derivation of the concrete bounds is defined as follows. We
begin by replacing the vi,j variables in β≥

i+1 and β≤
i+1 with their corresponding

bound constraints:

β≥
i+1,j =

(
W

(i+1)−
j,: β≤

i + W
(i+1)+
j,: β≥

i

)
vi−1,

β≤
i+1,j =

(
W

(i+1)−
j,: β≥

i + W
(i+1)+
j,: β≤

i

)
vi−1,

where:

– W (i+1)− and W (i+1)+ are obtained from min(W (i+1), 0) and max(W (i+1), 0)
with the element-wise application of the min and max functions;

– W
(i+1)x
j,: βy

i , x ∈ {−,+}, y ∈ {≤,≥}, denotes (with slight abuse of notation)

the multiplication of W
(i+1)x
j,: with the matrix of the coefficients of the con-

straints βy
i over vi−1.

We then repeat this back-substitution step until all layers have been pro-
cessed and the upper and lower bounds for the node in question are instantiated
by numerical values.

Example 2. Consider the network from Fig. 2. We execute the computation of
the concrete lower and upper bounds of node n3 ,1 whose lower and upper bound
constraints are

β≥
3,1 = 0.5 · v2,1 + 2 · v2,2 ≤ v3,1 ≤ 0.5 · v2,1 + 2 · v2,2 = β≤

3,1.

We begin by replacing the variables v2,1, v2,2 in β≥
3,1 with the lower bound

constraints of nodes n2 ,1 , n2 ,2 and by replacing said variables in β≤
3,1 with the

upper bound constraints of said nodes:

0 ≤ v3,1 ≤ 0.37 · v1,1 + 0.28 · v1,2 + 1.41.

Next, we perform similar replacements to the newly introduces variables:

0 ≤v3,1 ≤ −1.02 · v0,1 + 0.09 · v0,2 + 1.41

470 V. Hashemi et al.

Fig. 3. Convex approximations of the ReLU function ReLU(x) = max(x, 0).

From above, the concrete lower bound of v3,1 equals 0. To obtain its concrete
upper bound, we replace v0,1 with the lower bound of its associated input and
v0,2 with the upper bound of its associated input. This gives 0 ≤ v3,1 ≤ 2.61.

Remark 1. Observe that the concrete bounds for a node can alternatively be
directly computed by replacing the variables in the bound constraints of the
node with the concrete bounds of the nodes associated with the variables. While
this is more efficient than the back-substituting the variables, it is known to lead
to looser bounds [24].

ReLU layer. The derivation of the bound constraints for a ReLU node requires
a convex approximation of the ReLU function ReLU(x) = max(x, 0). The opti-
mal convex approximation of the function is the triangle approximation [9]. The
approximation bounds the function from above with ReLU(x) ≤ u

u−l (x − l),
where l and u are the lower and upper bounds of x, and from below with
ReLU(x) ≥ 0, ReLU(x) ≥ x (Fig. 3a). Though optimal, the approximation is
problematic in that it uses two lower bound constraints, thereby leading to an
exponential blow-up of the number of constraints required for the overall anal-
ysis [26]. To circumvent this, the ReLU function is instead typically bounded
from below with ReLU(x) ≥ λx, λ ∈ [0, 1]. Commonly used approximations are
the parallel approximation with λ = u

u−l (Fig. 3c) [31,33], the zero approxima-
tion with λ = 0 (Fig. 3b) [26,37] and the identity approximation with λ = 1

OSIP: A Tight Abstraction Method for NN Verification 471

(Fig. 3d) [26,37]. State-of-the-art methods select a node’s approximation either
on the basis of the minimum maximum distance from the ReLU function [32]
(i.e., always select the parallel approximation) or in terms of the smallest over-
approximation area induced [26,37] (i.e., the select the identity approximation
if |l| < u, otherwise the zero approximation). However, as we experimentally
show in the next section, since these heuristic rules operate at a local, neuron
level and do not account for intra-layer neuron dependencies, their comparative
performance (in terms of the tightness of the derived output bounds) varies with
different verification problems.

Differently from these works, we now propose a method that efficiently deter-
mines the ReLU approximation for each node via optimisation. The key idea is
to jointly optimise the approximation slopes of a layer to bring about the tightest
bounds in the subsequent layer. By jointly optimising the slopes we account for
the nodes’ intra-layer dependencies and the influence thereof in the bounds of
the subsequent layer. As we experimentally show in the next section, this results
in a method that consistently outperforms the leading methods.

We focus on optimising the slopes to maximise the concrete lower bounds of
layer i+1; the case of minimising the upper bounds is analogous. We begin with
setting

β≥
i+1,j = λ≥

i+1,jvi,j , β≤
i+1,j =

ui,j

ui,j − li,j
(vi,j − li,j),

where λ≥
i+1,j is an optimisation variable for the slope of node ni+1 ,j and vi,j

is the variable representing the input to said node. Now, recall that the bound
constraints β≥

i+2, β≤
i+2 of the subsequent layer are constraints over the variables

associated with the nodes at layer i+1. By performing a single back-substitution
step we obtain the constraints W (i+2)−β≤

i+1 + W (i+2)+β≥
i+1 which are over the

variables associated with the nodes at layer i. These constraints can be used to
compute the concrete lower bounds of layer i + 2 by concretising their variables
as follows: li+2 = K+li + K−ui, where K = W (i+2)−β≤

i+1 + W (i+2)+β≥
i+1. Our

aim is to derive the approximations which maximise the sum of these bounds.
Formally, our aim is to solve the following optimisation problem:

max
λ

≥
i+1

∑

j

K+
j,:li,j + K−

j,:ui,j

subject to K = W (i+2)−β≤
i+1 + W (i+2)+β≥

i+1,

β≥
i+1,j = λ≥

i+1,jvi,j , β≤
i+1,j =

ui,j

ui,j − li,j
(vi,j − li,j),

λ≥
i+1,j ∈ [0, 1].

(1)

The solution to this optimisation problem determines the slopes to be used
in the lower bound constraints β≥

i+1 = λ≥
i vi when computing the concrete lower

bound of a node in a subsequent layer using back-substitution. The analogous
optimisation problem (which minimises the bounds in the subsequent layer)
determines the slopes λ≤

i to be used when computing the upper bound of a
node in a subsequent layer.

472 V. Hashemi et al.

This concludes the derivation of the bound constrains for a ReLU node. The
concrete bounds of each ReLU node ni,j are

li+1,j = min(λ≥
i+1,j · li,j ,λ

≤
i+1,j · li,j), ui+1,j = ui,j .

Remark 2. Note that the optimisation problem 1 is non-convex and therefore
hard to solve for large layers. Still, as we experimentally show in the next section,
instead of jointly optimising the slopes of layer i+1 to tighten all concrete bounds
in layer i + 2, it is sufficient to consider the bounds of only a small number of
nodes to efficiently and consistently (i.e., for all the networks and radii considered
in our experiments) outperform the state-of-the-art. We hereafter refer to this
number of nodes as the number of optimised nodes parameter. The selection
of the nodes to be considered in the optimisation problem is carried out on
the basis of the looseness of the nodes’ bounds: the nodes having the looser
bounds are the ones to be selected. The bounds are computed by concretising
the nodes’ bound constraints with the concrete bounds from layer i + 1, i.e.,
W (i+2)−ui+1+W (i+2)+li+1 for the lower bounds and W (i+2)+ui+1+W (i+2)−li+1

for the upper bounds (note that as the bounds li+1 depend on the approximation
slopes of layer i+1, which have not been determined yet, we here use the slopes
from the smallest overapproximation area heuristic).

Example 3. Consider the network from Fig. 2. We execute the computation of
the upper and lower bound constraints of node n2 ,1 . The concrete lower and
upper bounds of the input v1,1 to the node are −1.5 and 4, respectively. We
therefore have that the upper bound constraint equals

β≤
2,1 =

4
4 − (−1.5)

(v1,1 − (−1.5)) = 0.73v1,1 + 1.09.

We compute two lower bound constraints for the node: one constraint to be used
in the back-substitution process for the computation of a concrete lower bound
of a node in a subsequent layer; the other to be used for the computation of a
concrete upper bound. Consider the former constraint. The constraint has the
form β≥

2,1 = λ≥
2,1 · v1,1. To determine λ≥

2,1, we maximise the sum of the lower
concrete bounds of nodes n3 ,1 and n3 ,2 :

max
λ

≥
2,1,λ

≥
2,2

l3,1 + l3,2

= max
λ

≥
2,1,λ

≥
2,2

0.5 · v2,1 + 2 · v2,2 − v2,1 + 3 · v2,2

= max
λ

≥
2,1,λ

≥
2,2

0.5 · λ≥
2,1 · v1,1 + 2 · λ≥

2,2 · v1,2 − 0.73 · v1,1 − 1.09 + 3 · λ≥
2,2 · v1,2

= max
λ

≥
2,1,λ

≥
2,2

−0.75λ≥
2,1 − 15λ≥

2,2 − 4.01.

Since 0 ≤ λ≥
2,1 ≤ 1, 0 ≤ λ≥

2,2 ≤ 1, it follows that λ≥
2,1 = 0. Analogously we

can determine the slope λ≤
2,1 of the constraint β≥

2,1 = λ≤
2,1 · v1,1 associated with

OSIP: A Tight Abstraction Method for NN Verification 473

the computation of concrete upper bounds by minimising the sum of the upper
concrete bounds of nodes n3 ,1 and n3 ,2 : λ≤

2,1 = 0.

Max-pool Layers. We provide a novel treatment of max-pool layers (in the con-
text of SIP) as follows. To derive the bound constraints of a max-pool node, we
express the max-pool function as a sequence of affine transformations and ReLU
layers, whose constraints can be computed as above. We begin with expressing
the multivariate maximum function as a composition of maximum functions of
two variables:

max(v1, v2, . . . , vn−1, vn) = max(. . . max(max(max(v1, v2), v3), v4) . . . , vn)

Then we use that max(v1, v2) = max(v1 − v2, 0) + v2 to obtain

max(v1, v2, . . . , vn−1, vn)

= max(. . .max(max(max(v1 − v2, 0) + v2 − v3, 0) + v3 − v4, 0) + v4

. . . − vn, 0) + vn

= ReLU(. . .ReLU(ReLU(ReLU(v1 − v2) + v2 − v3) + v3 − v4) + v4 . . . − vn) + vn,

which is a sequence of affine and ReLU transformations.
Note that this symbolic treatment of max-pools differs from [26], where the

upper bound constraints are concretised to equal the concrete upper bounds,
thereby potentially leading to bigger overapproximations. Also note that our
symbolic treatment comes at the cost of computing bound constraints for the
affine transformation and ReLU layers that compose the max-pool one.

Summary. Having concluded the description of the various approximations,
Algorithm 2 summarises the overall algorithm that computes R̂ from Algo-
rithm 1. Algorithm 2 and Algorithm 1 can therefore be combined to solve a
verification query.

4 Implementation and Evaluation

In this section we evaluate OSIP, the verification procedure introduced in the
previous section, and present comparisons with different approximations of the
ReLU function and with Eran [26], a state-of-the-art SIP-based tool. OSIP is
implemented in Python 3.7 on top of Venus, a MILP-based, complete tool with
several optimisations including dependency analysis [4,19]. The experiments
were carried out on an Intel Core i9-10920X (12 cores) equipped with 128GB
RAM, running Linux kernel 5.4.

Comparison with Different ReLU Aapproximations. We compare OSIP
with the zero [26,37], identity [26,37] and parallel [31,33] approximations. We
also compare OSIP with the Min Area [26,37] heuristic which selects the approx-
imation with the smallest over-approximation area for each ReLU node. The
comparisons are drawn with respect to the tightness of the bounds of the out-
put nodes, which is a key aspect to (i) determine the ability of a method to

474 V. Hashemi et al.

Algorithm 2. OSIP
1: procedure Approximation of Output Bounds(f , l,u)
2: Input: network f , vectors of input lower and upper bounds l and u
3: Output: vectors of output lower and upper bounds
4: f ′ ← replace each max-pool in f as a composition of affine and ReLU trans-

formations
5: β≥,l

0 ,β≥,u
0 ← l, l0 ← l

6: β≤
0 ← u, u0 ← u

7: for each layer f ′
i in f ′ do

8: if f ′
i is an affine transformation layer then

9: β≥,l
i ,β≥,u

i ← W (i)vi−1, β≤
i ← W (i)vi−1

10: li ← W (i), ui ← W (i)

11: for j ← i to 1 do
12: li ← l−

i β≤
i−1 + l+i β≥,l

i−1, ui ← u−
i β≥,u

i−1 + u+
i β≤

i−1

13: else if f ′
i is a ReLU layer then

14: for each neuron j in the layer do
15: β≤

i,j ← u i,j

u i,j−li,j
(vi,j − li,j)

16: λ≥
i,j ← solution to optimisation problem 1

17: λ≤
i,j ← solution to the analogous minimisation problem of 1

18: β≥,l
i,j ← λ≥

i,j · vi,j β≥,u
i,j ← λ≤

i,j · vi,j

19: ui,j ← ui−1,j

20: li,j ← min(λ≥
i,j · li−1,j ,λ

≤
i,j · li−1,j)

return lL,uL

resolve a verification query (as discussed in Sect. 3) and (ii) formulate strong
mixed integer linear programming encodings towards improved scalability in
complete verification [29]. We consider the following benchmarks for fully con-
nected ReLU FFNNs from the first competition for neural network verification
(VNN-COMP) [30]:

– ACASXU [16] is a collection of 45 ReLU FFNNs which were developed as
part of an airborne collision avoidance system to advise horizontal steering
decisions for unmanned aircraft. Each network has 5 inputs, 300 ReLU nodes
arranged in 6 layers with 50 neurons each, and 5 outputs. We verify the net-
works against the safety specifications from [17]. These include four properties
that are checked on all of the 45 networks and 6 properties that are checked
on a single network. Overall this results in a total of 186 verification problems.

– MNIST [20] is a dataset comprising images of hand-written digits 0–9, each
formatted as a 28 × 28 × 1-pixel grayscale image.
We use three fully connected ReLU FFNNs trained on the dataset: FC2,
FC4 and FC6. The networks comprise 2, 4 and 6 layers, respectively. Each
layer of each of the networks has 256 ReLU nodes. We verify the networks
against the local adversarial robustness property w.r.t 25 correctly classified
images and perturbation radii of 0.02 and 0.05. This results in a total of 150
verification problems.

OSIP: A Tight Abstraction Method for NN Verification 475

We additionally use two convolutional networks: Conv1 and Conv3. The
architecture of the networks includes two layers. The first layer has 32 filters
of size 5×5, a padding of 2 and strides of 2. The second layer has 64 filters of
size of 4×4, a padding of 2 and strides of 1. Conv3 has the same architecture
with Conv1 but for 128 filters in the second layer. We verify the networks
against the local adversarial robustness property w.r.t 100 correctly classified
images. We use a perturbation radius of 0.1 for Conv1 and 0.3 for Conv3.

OSIP was run with the number of optimised nodes parameter set to 4 for all
fully connected networks and to 200 for all convolutional networks.

Table 1 reports the experimental results obtained. We observe that the
zero and Min Area approximations always outperform the identity and par-
allel approximations. However, the comparative performance of the zero and
Min Area approximations varies with the networks and perturbation radii. For
instance, the zero approximation outperforms the Min Area one on FC2 for
the 0.05 radius, whereas the Min Area approximation outperforms the zero one
on the same network for the 0.02 radius. In contrast, OSIP consistently outper-
forms all of the approximations on all of the networks and radii, often exhibiting
less than half of the bound interval of either the zero or the Min Area approxi-
mation.

We additionally observe that OSIP is more effective for fully connected net-
works than it is for convolutional ones. We conjecture that this is because the
nodes in a convolutional layer are only connected to a small subset of nodes in
the previous layer thereby exhibiting less sensitivity to intra-layer dependencies
between the nodes.

Lastly we note that OSIP needs only small values for the number of optimised
nodes parameter to outperform all of the approximations. Indeed, as we can
observe from Fig. 4, which shows the average bound interval of the output nodes
computed by OSIP on FC6 as a function of the parameter, said interval initially
decreases rapidly before having a more gradual decrement with larger values of
the parameter.

Comparison on VGG16. We now proceed to evaluate OSIP on a variant of
the VGG16 model [25] that forms a key component of the Multi-View 3D Detec-
tor (MV3D) [5], a high-accuracy 3D object detection network for autonomous
driving. The model we produced was trained on the GTSRB dataset [27].

The model comprises the sequence of layers c(32, 3, 3), c(32, 3, 3), p(2, 2),
c(64, 3, 3), c(64, 3, 3), p(2, 2), c(128, 3, 3), c(128, 3, 3), c(128, 3, 3), p(2, 2),
c(128, 3, 3), c(128, 3, 3), c(128, 3, 3), 43, where c(α, β, γ) denotes a convolutional
layer with output channel α, kernel width β and kernel height γ (padding and
strides equal 1 for all convolutional layers), p(α, β) denotes a pooling layer with
pooling width α and pooling height β, and 43 denotes a fully connected layer
of 43 nodes. In total the network has 290304 ReLUs. We chose to run this exper-
iment to evaluate the performance of OSIP on large perception systems that are
closer in size to industrial applications.

476 V. Hashemi et al.

Table 1. Experimental results comparing the ReLU approximations from Sect. 3. The
ver columns report the number of images that were verified, the time column reports
the average times, and the range column reports the average range of the bounds of the
output nodes. Highlighted cells denote the approximation that generated the tightest
bounds. The zero, identity, parallel and Min Area approximations have equal average
times.

Model Radius OSIP Zero Identity Parallel Min Area

ver time range ver time range ver range ver range ver range

FC2
0.02 15 12.24 0.21 13 0.06 0.44 1 15.18 13 0.58 14 0.29

0.05 0 15.89 2.98 0 0.05 3.33 0 52.30 0 12.53 0 6.61

FC4
0.02 21 10.4 0.32 17 0.10 0.81 3 1.15K 17 4.31 21 0.99

0.05 0 24.76 182.3 0 0.10 310.6 0 20K 0 16.6K 0 251.87

FC6
0.02 17 14.89 159.71 8 0.15 243.53 0 245K 15 1.5K 18 161.21

0.05 0 29.96 13.2K 0 0.15 13.2K 0 4.29e6 0 19.3K 0 14.7K

Conv1 0.1 88 11.76 10.83 72 5.27 16.05 16 32.60 81 13.80 89 11.62

Conv3 0.3 5 16.65 13.66 0 7.43 28.12 0 62.10 0 40.89 4 14.15

ACASXU - 3 0.69 899.73 3 0.00 1.02K 0 38K 2 4.6K 10 1.9K

We verified the local robustness of the VGG16 for perturbation radiuses
of 0.001, 0.0015, and 0.002 against 10 correctly classified images from the
GTSRB dataset. We compare OSIP with Eran [26], a tool for the verification
of feed-forward neural networks whose DeepPoly domain (which is SIP with the
Min Area approximation) presents the state-of-the art in bound propagation-
based methods. We refer to [30] for more tools and details.

OSIP was run with the number of optimised nodes parameter set to 200.
Eran was run using the DeepPoly domain. Each verification problem was run
with a timeout of two days. Table 2 reports the experimental results obtained.
We observe that OSIP provides tighter bounds than Eran, ranging from three
times tighter bounds for the smallest perturbation radius to progressively tighter
bounds for the larger perturbation radiuses. As previously discussed, this directly
impacts the number of verification queries that each tool is able to solve. Both
tools were able to resolve some of the queries for the smallest perturbation radius
(with OSIP resolving 9 of them and Eran 5 of them). In our experiments only
OSIP was able to resolve some of the queries (5 of them) for the intermediate
radius; none of the tools was able to resolve any query for the largest pertur-
bation radius. As far as we are aware these are the first documented successful
verification results for large and complex perception systems such as VGG16
and for perturbation radiuses of 10−3. We note that additional experiments on
the refinepoly domain of Eran, which is DeepPoly enhanced with optimisation-
based bound tightening methods, were not concluded after the timeout of two
days. Also, experiments with NNV [14], a set-based verification tool for neural
networks, were not concluded because of memory errors.

OSIP: A Tight Abstraction Method for NN Verification 477

Fig. 4. Average bound interval of the output nodes and average runtime of OSIP as a
function of the number of optimised nodes for the FC6 network and the 0.02 pertur-
bation radius.

Table 2. Experimental results obtained on VGG16. The ver columns report the number
of images that were verified, the time column reports the average times, and the range
column reports the average range of the bounds of the output nodes.

Radius OSIP Eran (Deeppoly)

ver (#) time (s) range ver (#) time (s) range

0.0010 9 66811 0.0179 5 9605 0.0460

0.0015 7 66889 0.0623 0 9718 0.4921

0.0020 0 66642 0.2915 0 10040 18.5823

The bound tightness exhibited by OSIP comes at the cost of the tool being
slower (approximately 6.5 times) than Eran. This is mainly to be attributed to
the handling of the max-pooling layers where additional layers are introduced
to the analysis chain of OSIP.

5 Conclusions

In this paper we analysed the problem of obtaining tight bounds for the verifi-
cation of feed-forward neural networks. As we observed, present state-of-the-art
incomplete tools may often be unable to determine the result of a verification
query for large and deep models, such as those in object classifiers, due to the
compounding errors in the bound estimations.

We presented OSIP, a novel verification method based on symbolic interval
propagation. OSIP provides tighter approximations than the present SoA approx-
imations of a single univariate ReLU function in most commonly accepted bench-
marks. This is obtained by determining the choice of the ReLU approximation
at each node via optimisation.

We additionally benchmarked OSIP against Eran, a state-of-the-art symbolic
interval propagation tool. To assess their performance in a setting close to indus-
trial applications we carried out experiments on a variant VGG16, the largest

478 V. Hashemi et al.

component of the MV3D object detector and classifier for autonomous vehicles.
This is a convolutional neural network consisting of approximately 300,000 ReLU
nodes. In our benchmarks OSIP obtained bounds that were at times two orders
of magnitude smaller than Eran.

Tighter bounds are directly linked to an increased ability to reduce the num-
ber of unknowns in the verification queries. This was confirmed in our experi-
ments in which we documented cases in which OSIP was the only method capable
of solving the verification query. In summary, to the best of our knowledge, at
present OSIP constitutes the most performing tool for the verification of VGG16.

Acknowledgements. The authors acknowledge support from the Audi Verifiable AI
project and by BMWi under the KARLI project (grant 19A21031C).

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Progr.
183(1), 3–39 (2020). https://doi.org/10.1007/s10107-020-01474-5

2. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Proceedings of the 30th
International Conference on Neural Information Processing Systems (NIPS16), pp.
2613–2621 (2016)

3. Battern, B., Kouvaros, P., Lomuscio, A., Zheng, Y.: Efficient neural network ver-
ification via layer-based semidefinite relaxations and linear cuts. In: International
Joint Conference on Artificial Intelligence (IJCAI21), pp. 2184–2190. ijcai.org
(2021)

4. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of neural networks via dependency analysis. In: Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI20). AAAI Press (2020)

5. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network
for autonomous driving. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1907–1915 (2017)

6. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

7. Dathathri, S., et al.: Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming. In: NeurIPS20 (2020)

8. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to
scalable verification of deep networks. In: UAI. vol. 1, p. 2 (2018)

9. Ehlers, R.: In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 19

10. Fazlyab, M., Morari, M., Pappas, G.J.: Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming (2019).
arXiv preprint arXiv:1903.01287

11. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018). https://doi.org/10.1007/s10601-018-9285-6

https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
http://arxiv.org/abs/1903.01287
https://doi.org/10.1007/s10601-018-9285-6

OSIP: A Tight Abstraction Method for NN Verification 479

12. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples (2014). arXiv preprint arXiv:1412.6572

13. Henriksen, P., Lomuscio, A.: DEEPSPLIT: an efficient splitting method for neu-
ral network verification via indirect effect analysis. In: Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI21), pp. 2549–2555.
ijcai.org (2021)

14. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 1

15. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

16. Julian, K., Lopez, J., Brush, J., Owen, M., Kochenderfer, M.: Policy compression
for aircraft collision avoidance systems. In: DASC16, pp. 1–10 (2016)

17. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

18. Katz, G., et al.: The marabou framework for verification and analysis of deep neural
networks. In: Proceedings of the 31st International Conference on Computer Aided
Verification (CAV19), pp. 443–452 (2019)

19. Kouvaros, P., Lomuscio, A.: Towards scalable complete verification of relu neural
networks via dependency-based branching. In: International Joint Conference on
Artificial Intelligence (IJCAI21), pp. 2643–2650. ijcai.org (2021)

20. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits
(1998)

21. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks. CoRR abs/1706.07351 (2017)

22. Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive
refinement and adversarial search. In: ECAI20 (2020)

23. Raghunathan, A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: Advances in Neural Information Processing
Systems 31, pp. 10877–10887. Curran Associates, Inc. (2018)

24. Salman, H., Yang, G., Zhang, H., Hsieh, C., Zhang, P.: A convex relaxation bar-
rier to tight robustness verification of neural networks. In: Advances in Neural
Information Processing Systems 32, pp. 9835–9846. Curran Associates, Inc. (2019)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014). arXiv preprint arXiv:1409.1556

26. Singh, G., Gehr, T., Püschel, M., Vechev, P.: An abstract domain for certifying neu-
ral networks. In: Proceedings of the ACM on Programming Languages 3(POPL),
41 (2019)

27. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The german traffic sign recogni-
tion benchmark: a multi-class classification competition. In: The 2011 International
Joint Conference on Neural Networks, pp. 1453–1460. IEEE (2011)

28. Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W., Patel, K., Vielma, J.:
The convex relaxation barrier, revisited: tightened single-neuron relaxations for
neural network verification. In: NeurIPS20 (2020)

29. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: Proceedings of the 7th International Conference
on Learning Representations (ICLR19) (2019)

http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1409.1556

480 V. Hashemi et al.

30. VNN-COMP: Vefication of neural networks competition (2020). https://sites.
google.com/view/vnn20/vnncomp

31. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety anal-
ysis of neural networks. In: Proceedings of the 31st Annual Conference on Neural
Information Processing Systems 2018 (NeurIPS18), pp. 6369–6379 (2018)

32. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX
Security Symposium, (USENIX18), pp. 1599–1614 (2018)

33. Weng, T., et al.: Towards fast computation of certified robustness for relu networks
(2018). arXiv preprint arXiv:1804.09699

34. Wong, E., Kolter, J.: Provable defenses against adversarial examples via the convex
outer adversarial polytope (2017). arXiv preprint arXiv:1711.00851

35. Wong, E., Schmidt, F., Metzen, J., Kolter, J.: Scaling provable adversarial defenses.
In: Proceedings of the 32nd Conference on Neural Information Processing Systems
(NeurIPS18) (2018)

36. Xiang, W., Tran, H., Johnson, T.: Output reachable set estimation and verification
for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(11),
5777–5783 (2018)

37. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Proceedings
of the 31st Annual Conference on Neural Information Processing Systems 2018
(NeurIPS2018), pp. 4944–4953. Curran Associates, Inc. (2018)

https://sites.google.com/view/vnn20/vnncomp
https://sites.google.com/view/vnn20/vnncomp
http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/1711.00851

Active Model Learning of Stochastic
Reactive Systems

Martin Tappler1,2 , Edi Muškardin1,2(B) , Bernhard K. Aichernig2 ,
and Ingo Pill1

1 Silicon Austria Labs, TU Graz - SAL DES Lab, Graz, Austria
edi.muskardin@silicon-austria.com

2 Institute of Software Technology, Graz University of Technology, Graz, Austria

Abstract. Black-box systems are inherently hard to verify. Many verifi-
cation techniques, like model checking, require formal models as a basis.
However, such models often do not exist, or they might be outdated.
Active automata learning helps to address this issue by offering to auto-
matically infer formal models from system interactions. Hence, automata
learning has been receiving much attention in the verification community
in recent years. This led to various efficiency improvements, paving the
way towards industrial applications. Most research, however, has been
focusing on deterministic systems. Here, we present an approach to effi-
ciently learn models of stochastic reactive systems. Our approach adapts
L∗-based learning for Markov decision processes, which we improve and
extend to stochastic Mealy machines. Our evaluation demonstrates that
we can reduce learning costs by a factor of up to 8.7 in comparison to
previous work.

Keywords: Active automata learning · Model mining · Probabilistic
verification · Stochastic mealy machines · Markov decision processes

1 Introduction

Via active automata learning, where we learn a formal automaton for a black-
box reactive system, we can enable the exploitation of formal techniques and
tools like model checkers for systems where this would otherwise be impossi-
ble. Consequently, this has been a very active research area since the incep-
tion of the field with Angluin’s L∗ algorithm [4] for learning deterministic finite
automata (DFAs). Corresponding extensions that have paved the way to apply-
ing the concept in an industrial context range from general algorithmic improve-
ments [16,24] over domain-specific optimizations [15] to learning other automata
variants, like Mealy machines [20,25] or timed automata [1].

Learning automata in settings with uncertainty has received less attention,
though. So, we presented in previous work [26,27] a first L∗-based learning algo-
rithm that allows to learn Markov decision processes (MDPs) of stochastic sys-
tems. In this paper, we evolve over our previous work via the following con-
tributions: We (1) present L∗

SMM, an L∗-based approach for learning stochastic
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 481–500, 2021.
https://doi.org/10.1007/978-3-030-92124-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_27&domain=pdf
http://orcid.org/0000-0002-4193-5609
http://orcid.org/0000-0001-8089-5024
http://orcid.org/0000-0002-3484-5584
http://orcid.org/0000-0002-8420-6377
https://doi.org/10.1007/978-3-030-92124-8_27

482 M. Tappler et al.

Mealy machines (SMMs) along with algorithmic improvements that also apply
to learning MDPs, and (2) report on a thorough experimental evaluation with
implementations in our open-source library AALpy [21]. As we will show, learn-
ing SMMs optimizes the learning process (i.e., the required number of inter-
actions with a system under learning (SUL)). An automatic translation from
SMMs to MDPs enables the use of probabilistic model-checkers like Prism[17]
or Storm[9]. Thus, L∗

SMM can be used for learning-based verification of black-box
systems.

Structure. In Sect. 2, we recapitulate preliminaries like L∗-based automata learn-
ing. We present our approach to active learning of SMMs in detail in Sect. 3,
followed by a corresponding evaluation and comparison to learning MDPs in
Sect. 4. After a discussion of related work in Sect. 5, we will conclude with a
summary of our findings and an outlook on future work in Sect. 6.

2 Preliminaries

In this section, we will introduce our notation as well as background knowledge.
A discrete probability distribution μ over a countable set X is a function

μ : X → [0, 1] such that
∑

x∈X μ(x) = 1, where we refer with Dist(X) to the
set of all probability distributions over X. To ease probability estimations from
sampled data, we focus on rational probabilities only, i.e., μ(x) takes only rational
values. Furthermore, we support partial functions μ by assuming μ(x) = 0 if μ
is undefined for some x. The set supp(μ) = {x ∈ X | μ(x) > 0} is referred to
as the support of μ. We use A(e) ∈ N0 to denote the multiplicity of e in some
multiset A.

For a finite set X, let u, v, w ∈ X∗ be finite sequences over X: u = v · w is
the concatenation of v and w, where v is a prefix of u, and w is a suffix. The
length of u is denoted |u|, ε denotes the empty sequence, and we lift x ∈ X to be
a sequence of length one. For A,B ⊆ X∗, A · B is the set of all concatenations
of sequence pairs in A and B. A ⊆ X∗ is prefix/suffix-closed if A contains all
prefixes/suffixes of all s ∈ A.

We consider reactive systems M that produce exactly one output o ∈ O at a
time in response to an input i ∈ I for in- and output alphabets I and O. Thus an
interaction with M , coined a trace, is a finite sequence t ∈ (I · O)∗, and a single
interaction step consists of an input-output pair in I · O. For convenience, we
adopt the notions of prefix, suffix, and length for traces, referring to input-output
pairs as atomic elements then. That is, |t| gives the number of input-output pairs
in t and the trace set {ε, a · b, a · b · c · d} for a, c ∈ I and b, d ∈ O is prefix-closed.

In addition to traces t ∈ T R = (I · O)∗, we consider test sequences from
T S = (I ·O)∗ ·I, which test a system’s response to an input i following a trace t.
We also consider continuation sequences CS = I · (O ·I)∗, which extend traces to
test sequences T R · CS = T S. Analogously to traces, we extend the notions of
prefix and suffix by considering input-output pairs and trailing/leading inputs in
these types of sequences. For example, C = {i2 · o2 · i1, i1} ⊆ CS is suffix-closed.

Active Model Learning of Stochastic Reactive Systems 483

Fig. 1. An MDP model (left) and an SMM model (right) of a faulty coffee machine

We learn SMMs and transform them into labeled MDPs. This has the advan-
tage that learning SMMs is more efficient as we will show in our experiments,
while the transformation enables model-based analyses with probabilistic model-
checkers [9,17] that use MDPs as input format. Analogously to Mealy and Moore
machines, SMMs and MDPs differ in the way outputs are produced. An SMM
produces an output considering its current state and an input, whereas the out-
put of an MDP depends only on the current state. Like in a non-stochastic
setting, SMMs are potentially smaller as illustrated in Fig. 1 for a brief example.

On the left of Fig. 1, we show an MDP modeling a faulty coffee machine,
and a corresponding SMM on the right (see Definitions 1, 2). Both models are
observationally equivalent, except for the initial output produced by the MDP.
For both we have inputs and probabilities as edge labels, s.t. the probabilities
follow after a colon. In the MDP, the outputs are defined by the labels on the
states, whereas for the SMM they are part of the edge label—separated from
the input via a slash. The described coffee machine works such that it sounds
a beep with probability one upon receiving a coin. When a button is pressed, a
coffee is issued with a probability of 0.9, or we have init with the complementary
probability of 0.1.

Definition 1 (Markov Decision Processes). A labeled MDP is a tuple M =
〈Q, I,O, q0,Δ, L〉 where Q is a finite set of states, q0 ∈ Q is the initial state, I
and O are finite sets of input and output symbols, Δ : Q × I → Dist(Q) is the
probabilistic transition function, and L : Q → O is the labeling function.

Definition 2 (Stochastic Mealy Machines). An SMM is a tuple M =
〈Q, I,O, q0, δ〉 where Q, q0, I, and O are defined as for MDPs and δ : Q × I →
Dist(Q × O) is the probabilistic transition function.

We use q
i·o−→ q′ to denote δ(q, i)(q′, o) > 0 and extend this notation to traces t

in (I · O)∗ by q
ε−→ q and q

i·o·t−−→ q′ if ∃q′′ : q
i·o−→ q′′ ∧ q′′ t−→ q′. As is common

in automata learning and testing, we consider input-enabled systems, such that
δ and Δ are total and are thus defined for all q ∈ Q and i ∈ I. Furthermore,
we consider deterministic MDPs and SMMs, such that for every trace t, there is
exactly one path producing t. More formally, we require for all q ∈ Q, i ∈ I that

– ∀q′, q′′ ∈ supp(Δ(q, i)) : if L(q′) = L(q′′) then q′ = q′′ (MDPs) and
– ∀(q′, o′), (q′′, o′′) ∈ supp(δ(q, i)) : if o′ = o′′ then q′ = q′′ (SMMs).

484 M. Tappler et al.

Fig. 2. An IFOPT for the faulty coffee machine

Consequently, while an input may cause different outputs, an input-output pair
cannot lead to different states. Non-determinism results only from the environ-
ment’s choice of inputs. Under these conditions, we can define an SMM output
function λ by λ(q, i) ∈ Dist(O) and λ(q, i) = {o
→ p | (q′, o)
→ p ∈ δ(q, i)}.

These requirements enable a transformation from SMMs to MDPs similar
to the one from deterministic Mealy to Moore machines. That is, we basically
have to create an MDP state for every pair of (1) an SMM state s and (2) an
output of one of s’s incoming transitions. After creating another state with a
new special label as initial state, we transfer the transitions from the SMM.

We use input-output prefix trees (IOPTs) as compact representations of a set
of traces. An IOPT is a tree with edges labeled by inputs and nodes labeled by
outputs. Similar trees are, for instance, used in passive automata learning [5,13].
Figure 2 shows an IFOPT for the faulty coffee machine. The figure shows that
we actually use IOPTs with input frequencies (IFOPTs) where each edge is
labeled with an input symbol and a frequency value in the natural numbers. For
example, the frequency of button in node n2 is 7 (combined frequency from the
edges labeled button), denoted by freqLabel(n2, button) = 7. We use frequencies
to define how often an input should occur in relation to other inputs. We discuss
this in more detail in Sect. 3.4.

Angluin presented her L∗ algorithm and introduced the minimally adequate
teacher (MAT) framework in her seminal paper on active automata learning [4].
With L∗ we can learn DFAs accepting regular languages and L∗ has been serving
as the basis for several adaptations and variations to learn further automata
types, such as Mealy machines [25], timed automata [12], and MDPs [26].

L∗-based algorithms in the MAT framework learn automata capturing some
(regular) language L by querying a teacher for information. Generally, learners
use two types of queries: (1) membership queries for asking whether a word
u ∈ X∗ is in L and (2) equivalence queries to check whether a hypothesized
automaton accepts exactly L. Most L∗-based algorithms share furthermore a
similar structure and concept of how to derive hypotheses from queried data.
In principle, L∗ operates in rounds, such that it issues multiple membership
queries in a round to gain information about L. Once the learner has sufficient

Active Model Learning of Stochastic Reactive Systems 485

information to create a hypothesis automaton (for the original L∗ this is a DFA),
it finishes the round by issuing an equivalence query. The teacher may now
respond with yes for signaling that the automaton a.k.a. hypothesis accepts L,
so that the learning process concludes. However, the teacher may respond also
with a counterexample, i.e., a word c in the symmetric difference between L
and the automaton’s language. Thus, when receiving a counterexample c, the
learner integrates c into its knowledge and continues via starting the next round.
L∗ stores information in observation tables and creates hypotheses from these
tables. In the next section, we adapt this concept to stochastic Mealy machines.

3 Queries-Based Learning of SMMs via Sampling

In this section, we present L∗
SMM, an algorithm for learning SMMs. For this pur-

pose, we extend, adapt, and improve our L∗-based algorithm for MDPs [26,27].
First, we define the setting and basics for learning SMMs, such as semantics.
Next, we introduce the queries that are used in the interaction between learner
and teacher. After that, we discuss learning itself and present implementation
details on selected aspects, such as queries and stopping. We conclude the section
with a complexity analysis and a discussion of convergence.

3.1 Basics

Let us assume that M = 〈Q, I,O, q0, δ〉 is an SMM underlying the black-box
SUL, representing the knowledge we would like to learn. A learner initially only
knows the available inputs and outputs, but we use the SUL behavior to formal-
ize learning. Thus, let us define input-output semantics [[M]] that maps traces
followed by an input to the output distribution produced by the input. Formally,
[[M]] : (I · O)∗ · I → Dist(O) ∪ {⊥} with [[M]](t · i) = λ(q, i) if there is a q ∈ Q

such that q0
t−→ q and [[M]](t · i) = ⊥ otherwise. We will query a teacher that

samples SUL traces to gain information about [[M]]. For sampling, the teacher
performs inputs on the SUL and observes outputs produced by the SUL, which
are distributed according to [[M]]. In this way, the teacher collects multisets of
SUL traces. In the following, we define trace equivalence, as an adaptation of
the Nerode relation for regular languages [22], and equivalence of SMMs.

Definition 3 (Trace Equivalence). Two traces t, t′ ∈ (I · O)∗ are equivalent
if for all continuation sequences cs ∈ I · (O · I)∗:

[[M]](t · cs) = [[M]](t′ · cs).

Definition 4 (SMM Equivalence). Let M1 and M2 be two SMMs over the
same input and output alphabets. M1 and M2 are equivalent iff for all test
sequences

ts ∈ (I · O)∗ · I : [[M1]](ts) = [[M2]](ts).

486 M. Tappler et al.

Two traces are equivalent if they produce the same output distributions in
response to the last input of every continuation sequence. Likewise, two SMMs are
equivalent if they produce the same output distributions for all test sequences.

Since we sample traces with outputs distributed according to SUL semantics
[[M]], we cannot determine exact equivalence of output distributions as required
by Definition 3. We instead perform statistical tests for difference between sam-
pled output frequencies. More concretely, we check difference based on Hoeffding
bounds [14], like other stochastic automata learning algorithms [5,26].

To formalize the problem of approximating equivalence checking between
sampled frequencies, let tc1 and tc2 be two sequences in (I · O)∗ · I and let
T be a multiset of traces collected from the SUL M. We define the frequency
function as freqT (tc) = o
→ T (tc · o) for o ∈ O, extend the notion of support
supp() to frequencies, and introduce Freq(O) for O → N0, the set of all output
frequency functions. Our goal is to approximate [[M]](tc1) = [[M]](tc2) by testing
whether f1 = freqT (tc1) and f2 = freqT (tc2) have been sampled from different
distributions. We say that the frequencies f1 and f2 are compatible, denoted
f1 ≈ f2, if they are not different. Let ni =

∑
o∈O fi(o). In the special case that

n1 = 0 or n2 = 0, we define f1 ≈ f2 to hold, since then we do not have sufficient
information to detect a difference. For n1 > 0 and n2 > 0, the Hoeffding check
w.r.t. α defining the significance level is: Frequencies f1 and f2 are different if

∃o ∈ O :
∣
∣
∣
∣
f1(o)
n1

− f2(o)
n2

∣
∣
∣
∣ >

√
1
2

ln
2
α

(
1√
n1

+
1√
n2

)

. (1)

(correct with probability ≥ (1 − α)2 [5])

3.2 Queries

The learner and teacher interact with each other via two types of queries: (1)
tree queries and (2) equivalence queries. The teacher samples traces for both
query types, but with different goals. Tree queries attempt to gain more accurate
information about the SUL, whereas equivalence queries attempt to falsify a
hypothesis SMM – as proving equivalence is not possible in a black-box setting,
we target falsification.
Tree query (tq): Let FT be an IFOPT, a tree query tq(FT) returns a multiset

of traces from (I · O)∗, where inputs are chosen according to FT and outputs
are sampled according to the SUL semantics [[M]].

Equivalence query (eq): Let H be a hypothesis SMM, an equivalence query
eq(H) returns a pair (r, Tcex) where r is the query result in {yes}∪ (I ·O)∗ · I
and Tcex is a multiset of traces sampled for the query.

For a tree query tq, the learner creates an IFOPT FT and asks the teacher to
sample paths from FT, while selecting inputs i with a probability proportional
to the frequency value of i in FT. The result of a tq is a multiset of sampled
SUL traces. For an equivalence query, the learner forms a hypothesis SMM H
and asks if H is equivalent to the SUL M. The teacher responds either with yes
or with a counterexample to equivalence in (I · O)∗ · I. Additionally, the teacher
returns a multiset of traces that have been sampled to perform the query.

Active Model Learning of Stochastic Reactive Systems 487

3.3 Learner

Data Structures. The learner uses two main data structures, a multiset T of
sampled traces and an observation table, a triple 〈S,E, T 〉. Based on freqT (tc),
the output frequencies observed so far, S, E, and T are defined by:

– S ⊆ (I · O)∗ is a prefix-closed set of traces,
– E ⊆ I · (O · I)∗ with I ⊆ E is a suffix-closed set of continuations, and
– T : (S ∪ Lt(S)) · E → Freq(O) with Lt(S) = {s · i · o | s ∈ S, i ∈ I, o ∈

O : freqT (s · i)(o) > 0} and T (s · e) = freqT (s · e) stores output frequencies.

An observation table can be represented as a two-dimensional table with
rows labeled by short traces in S and by long traces in Lt(S), columns labeled
by continuation sequences in E, and with cell content given by T . Table 1 shows
an observation table from a learning run of L∗

SMM on the coffee machine shown
in Fig. 1. As is commonly done in L∗-based learning, we create hypotheses as
follows. We partition S based on the row content given by functions row(s) :
E → Freq(O) with row(s)(e) = T (s · e) and create a state for every block in
the partition. We further create transitions for input-output pairs i · o between
blocks b and b′ by determining the block b containing an s ∈ S and the block
b′ containing its input-output extension s · i · o, if it exists. The long traces
Lt(S) ensure that traces can be created for all observed input-output pairs. To
partition S, we extend the notion of frequency compatibility to rows. We say
that two rows labeled by traces s and s′ are compatible if all their cells are
compatible, i.e., ∀e ∈ E : row(s)(e) ≈ row(s′)(e). We also say that the traces
s and s′ are compatible. In Table 1, the first, third, fourth, and fifth row are
compatible. Hence, they would be in the same block of a partition of S and
correspond to the same state in the hypothesis derived from Table 1.

In partitioning, we face the difficulty that compatibility is not an equivalence
relation, as transitivity does not hold in general. A row may be compatible to
multiple other rows that are not necessarily pairwise compatible. To tackle this
challenge, we create compatibility classes cg(r) that partition S, like in our pre-
vious work [26]. Each compatibility class cg(r) ⊆ S has a unique representative
r in the set of representatives R ⊆ S and every trace t in cg(r) is compatible to
r. The function rep(t) = r returns the unique representative r for short and long
traces t. We create compatibility classes by iteratively selecting a new representa-
tive r from the unpartitioned part of S and greedily adding other unpartitioned
traces to cg(r). The selection of a new representative r is based on how often r
was observed during sampling, which ensures that ε ∈ R can be used as initial
hypothesis state. For further details, we refer to [26].

Hypothesis Generation. To create a hypothesis from an observation table
〈S,E, T 〉, the table must be closed and consistent. Adapting the standard notion
of closedness and consistency [4,26], we say that an observation table is closed if
for all l ∈ Lt(S) there is an r ∈ R such that r and l are compatible. Closedness
ensures that we can create transitions for all inputs in all states.

488 M. Tappler et al.

Table 1. Observation table for the faulty coffee machine shown in Fig. 1.

button coin

S ε {init : 247} {beep : 414}
coin · beep {coffee : 147, init : 16} {beep : 134}

Lt(S) button · init {init : 69} {beep : 82}
coin · beep · button · coffee {init : 64} {beep : 53}
coin · beep · button · init {init : 9} {beep : 6}
coin · beep · coin · beep {coffee : 65, init : 7} {beep : 61}

An observation table is consistent if for all pairs of compatible short traces
s, s′ ∈ S and all input-output pairs i · o ∈ I · O: either (1) s · i · o and s′ · i · o are
compatible or (2) T (s · i)(o) = 0 or T (s′ · i)(o) = 0. Consistency requires that the
extensions of compatible traces are also compatible. Put differently, if s leads to
the same hypothesis state as s′, then its extension s · i ·o should lead to the same
state as s′ · i · o. This corresponds to the determinism requirement of SMMs.

When an observation table is not closed, there is an l ∈ Lt(S) such that there
is no compatible r ∈ R. We can make an observation table closed by adding
such an l violating closedness to the set of short traces S and recalculating
the set R. When an observation table is not consistent, there exists a pair of
compatible traces s, s′, an input-output pair i · o, and a column sequence e
such that s · i · o · e ≈ s′ · i · o · e. In such a case, we add i · o · e to E. The
iterated application of these updates – adding traces to S and sequences to E –
eventually establishes closedness and consistency. We refer to this operation as
MakeClosedAndConsistent. In contrast to deterministic learning, this does not
require resampling as compatibility is defined for any amount of samples.

Given a closed and consistent observation table 〈S,E, T 〉 with representatives
R, we derive a hypothesis SMM hyp(S,E, T) = 〈Qh, I, O ∪ {undef}, q0h, δh〉 via:

– Qh = R ∪ {qundef} and q0h = ε
– For q ∈ R and i ∈ I, if

∑
o∈O T (q · i)(o) = 0:

δh(q, i)((qundef, undef)) = 1
Otherwise:

δh(q, i) = μ where for o ∈ O if T (q · i)(o) > 0:
q′ = rep(q · i · o) and μ((q′, o)) = T (q·i)(o)∑

o′∈O T (q·i)(o′)
– If qundef is reachable, then for i ∈ I:

δh(qundef, i)((qundef, undef)) = 1

We create a state for every representative with ε ∈ R being the initial state.
Transitions from q ∈ R lead to the representatives of the input-output exten-
sions q · i · o, where transition probabilities are estimated from T . If we have no
observations for an input, we create transitions to a sink state qundef.

Learning Algorithm. Algorithm 1 implements the stochastic L∗ algorithm
for SMMs, adapting L∗ for MDPs [26]. In Line 1, we initialize the learning
data structures. The main loop starts with a tree query in lines 5 and 6. After

Active Model Learning of Stochastic Reactive Systems 489

Algorithm 1. The main algorithm implementing L∗
SMM

Input: input alphabet I, teacher capable of answering tq and eq
Output: final learned model H
1: S ← {ε}, E ← I, T ← {}, T ← {ε} � initialize observation table and samples T
2: round ← 0
3: repeat
4: round ← round + 1
5: FTree ← createIFOPT(〈S, E, T 〉)
6: T ← T � tq(FTree)
7: for all s ∈ S ∪ Lt(S), e ∈ E do
8: T (s · e) ← freqT (s · e) � update observation table

9: while 〈S, E, T 〉 not closed or not consistent do
10: 〈S, E, T 〉 ← MakeClosedAndConsistent(〈S, E, T 〉)
11: H ← hyp(S, E, T) � create hypothesis
12: 〈S, E, T 〉 ← trim(〈S, E, T 〉, H) � remove cells not needed
13: (r, Tcex) ← eq(H) � Check hypothesis H against SUL M
14: T ← T � Tcex

15: if r �= yes then � we found a counterexample
16: 〈S, E, T 〉 ← processCex(r, 〈S, E, T 〉)
17: until stop(〈S, E, T 〉, H, round)
18: return H � output final hypothesis

updating the learner’s data structures, we make the observation table closed and
consistent (Line 10) and form a hypothesis H (Line 11). Given H, we remove
table rows and columns that are not needed for hypothesis generation. Line 12
basically removes rows that carry the same information as other rows and cells
that do not distinguish rows. For more details, we refer to our previous work [26].

In Line 13, we perform an equivalence query. If it returns a counterexample r,
we process it by updating the observation table with information derived from r.
L∗-based learning [4,25] commonly stops once an equivalence query returns yes,
but we continue learning until the stopping criterion in Line 17 is fulfilled. The
reason is that in stochastic learning, we may not be able to find a counterexample
given an inaccurate hypothesis that could be improved by additional tree queries.
Therefore, we employ a stopping criterion that takes hypothesis generation into
account. Once we stop, we return the final hypothesis.

3.4 Implementation

We implemented Algorithm 1 in AALpy, an open-source automata-learning
library.1 AALpy supports learning of both MDPs and SMMs, which we com-
pare empirically in Sect. 4. In the following, we discuss selected aspects of the
implementation with a focus on improvements over the original algorithm for
MDPs [26], for example, stopping and resampling by the tree query.

1 An interactive example illustrating learning is available at https://github.com/DES-
Lab/AALpy/blob/master/notebooks/MDP and SMM Example.ipynb.

https://github.com/DES-Lab/AALpy/blob/master/notebooks/MDP_and_SMM_Example.ipynb
https://github.com/DES-Lab/AALpy/blob/master/notebooks/MDP_and_SMM_Example.ipynb

490 M. Tappler et al.

SUL Interface. The teacher assumes an application-specific SUL interface com-
prising two operations step and reset. They facilitate sampling, where at each
point, the SUL is in a current state qc. The reset operation resets qc to q0.
The step operation takes an input i as parameter, executes it on the SUL, and
returns the SUL output. More concretely, it samples a state-output pair (q, o)
according to the distribution δ(q, i) of the SUL, sets qc = q, and returns o.

Equivalence Queries and Counterexample Processing. The teacher per-
forms two steps in equivalence queries. The first step is checking compatibility
between already sampled traces (multiset T in Algorithm 1) and the hypothe-
sis. The second, optional step samples new traces to reveal a counterexample
to equivalence between hypothesis and SUL. Sampling happens only when the
compatibility check does not reveal a counterexample. This ensures that we use
existing samples as efficiently as possible and when there is no counterexample
in T we try to find new counterexamples via sampling. The implementation of
these steps follows our previous work [26]. We check compatibility between T
and the hypothesis using Eq. 1 and we apply random testing for sampling. To
ensure that every counterexample can be detected, every input and every trace
length has a non-zero probability to be selected during testing.

A counterexample c returned from an equivalence query indicates that the
observation table shall be extended in a way to ensure that upcoming hypotheses
are correct w.r.t. c. Since hypotheses in active automata learning [4,26] are
generally the smallest models consistent with the queried information, the goal
of counterexample processing is to reveal new states. There are various ways to
process counterexamples in L∗-based learning. Our implementation provides two
counterexample processing strategies that are commonly applied in deterministic
learning.

– Angluin-style: Angluin adds all prefixes of a counterexample to S [4].
– Longest-prefix: The longest-prefix strategy by Shahbaz and Groz [25] splits c

into a prefix p and a suffix e, where p is the longest prefix that is already in
S. It then adds e to E. We generally use longest-prefix in Sect. 4.

Alternative strategies based on the extraction of so-called distinguishing suffixes
are very efficient in deterministic learning [3,16], but we found them to be inef-
ficient in stochastic learning. This is due to the usually low amount of statistical
information on counterexample suffixes. Such strategies would require repeated
sampling of representative traces from R concatenated with counterexample suf-
fixes until a distinguishing suffix can be found via Eq. 1. In contrast, the other
two techniques rely on sampling performed in subsequent learning rounds.

Tree Queries. Membership queries in L∗ provide information about newly
added sequences in the observation table. Tree queries have an analogous pur-
pose. They gather more information on sequences that are in the observation
table. While deterministic learning requires a single query (sample) for every

Active Model Learning of Stochastic Reactive Systems 491

Algorithm 2. Tree query
Input: IFOPT FTree, SUL with reset and step
Output: a sampled trace t
1: node ← root(FTree), t ← ε � initialize
2: reset() � reset SUL
3: loop
4: freqSum ←

∑
i∈I freqLabel(node, i) � sum frequencies in IFOPT

5: inputDist ←
{

i 	→ p | i ∈ I, p = freqLabel(node,i)
freqSum

}

6: in ← choose(I, inputDist) � choose input
7: out ← step(in) � execute SUL and observe output
8: t ← t · in · out � extend traces

9: if �n ∈ nodes(FTree) : node
in/out−−−−→ n then � did we leave the tree?

10: return trace

11: node ← n with node
in/out−−−−→ n � walk down one tree level

sequence, uncertainties affect stochastic learning. We address this issue by sam-
pling traces with the goal of reducing uncertainties.

Uncertainties in stochastic L∗ mainly arise from the difference tests and the
derived compatibility relation. As discussed in the context of hypothesis gen-
eration, this relation is not necessarily an equivalence relation for finite sample
sizes. The resulting uncertainties directly affect hypothesis generation, as a trace
in S ∪ Lt(S) may be compatible to multiple other traces that are not pairwise
compatible. Hence, the target state of a transition may be ambiguous. In partic-
ular, a trace may be compatible to multiple compatibility class representatives.
We devise a sampling strategy with the goal of reducing this form of ambiguity,
in order to learn the correct model structure. We start from the viewpoint of the
learner and then present the teacher’s tree query implementation.

Learner. Given an observation table 〈S,E, T 〉 and se ∈ (S∪Lt(S))·E, we assign
an uncertainty value uncert(se) to se as follows. Let s be the longest prefix trace
of se s.t. s ∈ S ∪ Lt(S) and let the number of compatible representatives be

cr(s) = |{r ∈ R | r ≈ s}| in uncert(se) = max(2 · (cr(s) − 1), 1).

The rationale behind uncert(se) is that every trace should be compatible
to at most one representative. Since we are only interested in compatibility of
rows, we consider the longest trace that labels a row and is a prefix of se. The
uncertainty grows with the number of compatible representatives cr, where the
multiplication by two puts more weight on this number. We further subtract one,
as every trace is compatible to at least one representative in a closed observation
table. Finally, we ensure uncert(se) is at least one for two reasons. We may
spuriously conclude that cr = 1. Furthermore, we account for the estimation
of transition probabilities as another source of uncertainty affecting hypothesis
generation in general. Thus, every trace should have a non-zero probability to
be sampled.

492 M. Tappler et al.

Now, we can define the function createIFOPT in Line 5 of Algorithm1.

1. Trace creation. Extend the sequences in (S ∪ Lt(S)) · E to traces by adding
a special output leaf /∈ O at the end of every sequence, let Tr = {s · e · leaf |
s ∈ S ∪ Lt(S), e ∈ E}.

2. IOPT creation. Create an IOPT Tree from the traces in Tr.
3. IFOPT initialization. Create an IFOPT FTree from Tree by initializing every

input frequency with zero.
4. Adding frequencies. For each se ∈ (S ∪ Lt(S)) · E: add uncert(se) to the

frequency of every input on the path from the root node to the last edge
reached by se.

The frequency label for a given edge ed in FTree is the sum of uncertainty
values uncert(se), for sequences se traversing ed when starting from the root.
Aside from the IFOPT FTree, the implementation of tree queries takes another
parameter ntree that defines the number of traces to be sampled by the teacher.
We determine ntree proportional to the uncertainty and observation table size
via

ntree =

⌊∑
se∈(S∪Lt(S))·E uncert(se)

2

⌋

. (2)

Roughly speaking, we take one sample for every unambiguous cell in the table
and additional samples for ambiguity.

Teacher. The teacher performs tree queries by sampling ntree traces corre-
sponding to directed random walks on the IFOPT FTree created by the learner.
Algorithm 2 implements this form of sampling. It starts with an initialization
in lines 1 and 2. The sample loop starts with the selection of an input in in
lines 4 to 6, where the selection probability of in is proportional to the frequency
assigned to in. Here, we use choose(I, d) to sample an input in I according to a
probability distribution d. Next, we execute in on the SUL and extend the sam-
pled trace t with in and the SUL output. When there is no path in the IFOPT
corresponding to t, we return t. This is guaranteed to happen when reaching a
leaf, as leaves are labeled with a symbol not in the output alphabet.

Stopping. Similarly to tree queries, stopping takes ambiguity into account. We
stop, when ambiguity decreases. For stopping, we quantify ambiguity or rather
the absence thereof as the number of row traces that have a single compatible
representative. This number unambiguity is given by:

unambiguity =
|{s ∈ S ∪ Lt(S) | cr(s) = 1}|

|S ∪ Lt(S)|

We also used this value to decide stopping to learn MDPs [26]. Previously, we
stopped learning once unambiguity was greater than a fixed threshold. However,
we concluded from experiments that a fixed threshold is not an ideal choice for

Active Model Learning of Stochastic Reactive Systems 493

Fig. 3. Relation between number of unambiguous rows and hypothesis accuracy.

SMM learning concerning efficiency. In these experiments, we measured hypothe-
sis accuracy in relation to the value of unambiguity during the course of learning.
For this purpose, we quantified accuracy as the average error made in model-
checking computations, as compared to model checking performed on the true
model of the SUL. We observed a general trend that the hypothesis accuracy
converges at the same time when unambiguity converges to a plateau.

Figure 3 shows plots of the unambiguity value, the maximum error in vari-
ous model-checking computations, and the corresponding average error on two
examples that we discuss in more detail in Sect. 4. The x-axis displays the num-
ber of learning rounds. We can see that upon reaching an unambiguity value of
approximately 0.8, the maximum and average error are close to zero and stay
close to zero. At this point, further learning and sampling costs resources, but
does not contribute to model’s accuracy. For this reason, we stop learning when
we detect that unambiguity reaches a plateau, i.e., the difference between several
consecutive unambiguity values is below a small positive ε.

In common with previous work [26], we do not stop when qundef is reachable in
the hypothesis. This state is reachable, when there is a state-action pair for which
there is no information at all. Additionally, it is possible to specify a minimum
number of rounds and a maximum of rounds. The early stopping criterion can
also be disabled in favor of a fixed threshold.

3.5 Analysis of L∗
SMM

Complexity. In the following, we will analyze the complexity of individual
operations performed by L∗

SMM, such as queries. For this purpose, let m be the
length of the longest sampled trace, let n be the number of sampled steps, and let
k be the number of different sampled traces. In the worst case, k grows linearly
in n. For simplicity, we consider the set of sampled traces to be prefix-closed,
because whenever we observe a trace, we basically observe all its prefixes as well.

494 M. Tappler et al.

Since we add only traces to S that have been sampled at least once, we can
bound length of sequences in S by m and the cardinality of S by k. We can
analogously bound the length of sequences in E and the cardinality of E, as
E contains suffixes of sampled traces. Making an observation table closed and
consistent requires time in O(k3 · |O|). Checking consistency requires iterating
over all pairs of rows and checking compatibility for each cell. There are at most
k2 row pairs and at most k columns (cells in each rows) and each compatibility
check requires |O| computations (see Eq. 1). Additionally checking the extensions
of compatible rows only adds a constant factor. Hence, the runtime is in O(k3 ·
|O|). Fixing a consistency violation, simply amounts to adding a new element
to a set. Checking closedness requires compatibility checks between every pair
consisting of a long and a short row. Thus, closedness checks are in O(k3 · |O|)
as well. Creating a hypothesis from an observation table is in O(k · |I| · |O|). We
need to potentially create a transition for every input-output pair from every
state. There are |I| · |O| such pairs and there are at most k states.

The IFOPT creation for tree queries takes time in O(k · m), as every unique
trace of length at most m is added at most once. The value ntree of traces sampled
during a tree query (see Eq. 2) is at most k2, but generally much lower. Hence,
a tree query performs at most k2 · m sampling steps.

Equivalence queries consist of two steps, checking compatibility and sam-
pling traces to actively check for equivalence between hypothesis and SUL. The
amount of sampling can be adjusted freely according to sampling budget and
accuracy requirement. The compatibility check between sampled information
and hypothesis requires runtime in O(k · m · |O|). For every sampled trace t we
determine a hypothesis state and its representative trace r, which has a length
of at most m. For t and r, we perform a compatibility check, which takes time
linear in the number of outputs. This analysis matches our experience in that
making observation tables closed and consistent takes the most time. While the
analysis of sampling steps performed by tree queries provides a conservative
upper bound, we observe that tree queries perform thorough sampling leading
to accurate models.

We use a heuristic to decide stopping, which prevents stating a complexity
bound on entire runs of L∗

SMM.

Convergence. Under mild, common assumptions on equivalence queries (every
trace must have a non-zero probability to be sampled), the learned model con-
verges in the limit, i.e., with stopping disabled, to a minimal SMM equivalent to
the SUL. A proof of convergence is not possible due to space limitations, but can
be adapted from [26]. In the next section, we empirically analyze the accuracy
of models learned from finitely many traces.

4 Evaluation

To evaluate our method, we performed a benchmarking study. The study con-
sidered five different stochastic systems also used in previous work [2,26]. More

Active Model Learning of Stochastic Reactive Systems 495

Table 2. Comparison of MDP and SMM learning.

Learning time (s) # Traces

MDP SMM Improvement MDP SMM Improvement

First grid 8.61 5.67 51.85% 68736 44954 52.9%

Second grid 40.92 29.85 37.09% 199789 113690 75.73%

Slot machine 60.65 306.4 −80.21% 456243 622285 −26.86%

MQTT 8.59 6.97 23.24% 68964 39904 72.82%

TCP 21.94 13.4 63.73% 98333 54514 80.38%

concretely, we simulated known models of stochastic reactive systems through a
reset and a step operation, thus treating them as black boxes. After learning
models from the simulations, we measured the accuracy of the learned models.
As a measure of accuracy, we use the absolute difference between probabilities
computed by model checking properties on a learned model and the correspond-
ing known true model. In the following, we report this form of error averaged
over several properties for each system.

Systems used as a basis for learning are: a 35-state and a 72-state Grid-
world [26], the slot-machine previously also used in [18,19], parts of the MQTT
protocol encoded as a 61-state MDP, and parts of the TCP protocol encoded as
a 151-state MDP. For the first three systems, we used model-checking properties
also used in previous work [26] to enable a direct comparison. We derived the
MQTT model and the TCP model from learned deterministic models [11,28] by
injecting stochastic faults (see also [2]). The properties corresponding to them
check for bounded reachability of the faults with varying bounds. Throughout
the remainder of this section, we will reason about the benchmark model’s under-
lying structure and how it affects learning performance.

All experiments have been performed with our implementation in the open-
source library AALpy v1.0.0 running on a Dell Lattitude 5410 with an Intel
Core i7-10610U processor, 8 GB of RAM running Windows 10 and using Python
3.9. We configure the Hoeffding-bound-based difference check with a constant
α = 0.05 and we limit the number of traces sampled during equivalence queries
by ncextraces = 150. In comparison to previous work [26], we reduced the num-
ber of configurable parameters, while achieving robust learning performance.
Due to the stochastic nature of the experiments, we repeated every experiment,
consisting of learning and model checking, 20 times and report average results.

Comparing MDP and SMM Learning. To compare the performance of
MDP and SMM learning, we measured the learning time and the number of
traces sampled by the teacher. While total learning time can be used to evaluate
the feasibility of our approach in simulated environments, it is important to
note that in real-world non-simulated environments, sampling of traces, i.e., the
interaction with the SUL, is the most time-consuming aspect of active automata

496 M. Tappler et al.

Table 3. Results for learning models of the 72-state Gridworld.

True MDP SMM Error MDP Error SMM Improvement

Traces – 199789 113690 – – 75.73%

Steps – 1363233 762338 – – 78.82%

Pmax(F≤14(goal)) 0.9348 0.931 0.94 0.0038 0.0052 −26.92%

Pmax(F≤12(goal)) 0.6712 0.6943 0.681 0.0231 0.0098 135.71%

Pmax(¬M U≤18(goal)) 0.9743 0.9721 0.973 0.0022 0.0013 69.23%

Pmax(¬S U≤20(goal)) 0.1424 0.2138 0.1482 0.0714 0.0058 1131.03%

Fig. 4. Learning time in seconds (left) and number of traces (right) needed to reach
at most 2% error for all properties.

learning. Table 2 summarizes the results of our benchmarking study. We see that
for all examples but slot machine SMMs are the preferred formalism.

Table 3 shows detailed results of learning MDPs and SMMs of the 72-state
Gridworld. In this example, learning SMMs reduces the state space by about
75%, as the SUL can be modeled by a 42-state SMM. This size difference accounts
for the better and faster learning of SMMs compared to MDPs. Note that on
average both learned the underlying model accurately, with the maximum aver-
age error for MDP learning being 7.1% and 0.9% for SMM learning.

Convergence. To evaluate learning speed, we disabled stopping and checked
how long it takes for the learned hypothesis to reach a certain accuracy. For
this purpose, we learned until creating a hypothesis with a model-checking error
of at most 2% for all properties defined for the respective example. Figure 4
summarizes the results of these experiments. Notice in Fig. 3 that the error stays
close to zero after a certain number of rounds. Hence, these experiments serve
to estimate how long it takes to converge to an accurate model.

All examples but slot-machine show noticeable improvements in both learn-
ing time and more importantly required traces when comparing MDP and SMM
learning. The largest improvements between MDP and SMM learning are notice-
able for MQTT and TCP. In those examples, models can be more compactly

Active Model Learning of Stochastic Reactive Systems 497

encoded as SMMs than as MDPs. On the other hand, the structure of the slot-
machine favors MDP learning. Learning a slot-machine MDP, required 25%
fewer traces than learning an SMM. The exact results are not shown in the
figure, since they are substantially larger, thus they would distort the graph.
The good performance of MDP learning results from the fact that the minimal
slot-machine MDP is only slightly larger than the minimal SMM and that many
MDP states can be distinguished solely based on their output label without
statistical tests. In general, when the output alphabet size is large, then MDP
learning may be more efficient. In the extreme case, where every state is labeled
with a unique output, the model structure is already given and learning amounts
to estimating transition probabilities.

Comparison with Related Work. To put the improvements presented in
this paper in context, we will compare results found in Table 2 to results found
in [26]. For this purpose, we show the improvements that the new approach
brings compared to the original version of L∗

MDP [26] and IoAlergia [18,19].
L∗

MDP required 391, 530 traces to accurately learn the 35-state Gridworld, whereas
IoAlergia failed to learn the accurate representation of the model from 387, 746
traces. Our approach needs only 44, 954 (8.7 times less than L∗

MDP) traces to
learn the SMM representation of the 35-state Gridworld accurately. For the 72-
state Gridworld, SMM learning managed to learn a more accurate model than
L∗

MDP, while requiring only 113, 690 traces, about 4.5 less than the 515, 950 traces
sampled by L∗

MDP. Suppose that sampling of a trace takes 20 ms; our approach
would need 37.9 min compared to the 172 min needed by L∗

MDP. As previously
discussed, MDP learning is faster for the slot machine example but produces
less accurate results. SMMs learning approach with our new implementation
required on average 622, 285, whereas L∗

MDP required 2.5 times more (1, 567, 487)
traces to learn a comparably accurate model.

5 Related Work

In the following, we discuss approaches to learn stochastic and non-deterministic
models, focusing on models controllable by inputs.

Two early, notable approaches for identifying stochastic regular languages
are Alergia [5] and rlips [6]. They implement passive learning, meaning that
they learn from a given sample of traces. Alergia has been extended to MDPs
by Mao et al. [18,19] and dubbed IoAlergia. Like IoAlergia, we compute
transition probabilities based on observed output frequencies. Active extensions
of IoAlergia can be found in [8] and [2], where the latter targets learning-
based verification w.r.t reachability objectives. Casacuberta and Vidal proposed
the GIATI algorithm [7], a passive approach for inferring stochastic transducers
from a training corpus of source-target pairs of sentences.

Our work builds upon [26], an active approach to learning of MDPs. As
discussed in the previous sections, we substantially improve the approach for

498 M. Tappler et al.

learning MDPs itself and adapt it to learning SMMs. Our approach shares simi-
larities with active learning of observable non-deterministic finite state machines
(ONFSMs) [10]. While [10] requires all possible outputs to be observed after exe-
cuting a query to build observation tables, we do not make this assumption by
relying on statistical tests. Another L∗-based learning approach for ONFSMs
has been proposed by Pferscher and Aichernig [23], which is specifically well-
suited to learning non-deterministic behavior resulting from abstraction. The
state qundef that indicates the need for further sampling was inspired by active
learning of non-deterministic labeled transition systems [29].

6 Conclusion

We presented L∗
SMM, an L∗-based algorithm for active learning of models of

stochastic reactive systems. By improving previous work [26] and adapting it
from learning MDPs to SMMs, we learn models more efficiently while achieving
accurate results. The experimental evaluation of our implementation available
in AALpy [21] shows a significant reduction in the number of required system
interactions. Since interactions with the system are typically the time-consuming
aspect of applications of automata learning, this number is the most important
efficiency metric. In particular, we reduced the required number of system traces,
i.e., sequences of interactions, by up to 8.7 times, as compared to MDP learn-
ing. Through these improvements, we hope to enable industrial applications of
stochastic active automata learning. As future work, we plan to combine the
stochastic L∗ algorithm with learning-based verification techniques, such as [2],
and apply it in case studies with stochastic reactive systems, such as commu-
nication protocols over a lossy channel. Another promising direction for future
research is the combination with other machine-learning techniques, such as
reinforcement learning.

Acknowledgments. This work has been supported by the “University SAL Labs”
initiative of Silicon Austria Labs (SAL) and its Austrian partner universities for applied
fundamental research for electronic based systems.

References

1. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed
automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6 1

2. Aichernig, B.K., Tappler, M.: Probabilistic black-box reachability checking
(extended version). Formal Methods Syst. Des. 54(3), 416–448 (2019). https://
doi.org/10.1007/s10703-019-00333-0

3. Aichernig, B.K., Tappler, M., Wallner, F.: Benchmarking combinations of learning
and testing algorithms for active automata learning. In: Ahrendt, W., Wehrheim,
H. (eds.) TAP 2020. LNCS, vol. 12165, pp. 3–22. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-50995-8 1

https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/s10703-019-00333-0
https://doi.org/10.1007/s10703-019-00333-0
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-50995-8_1

Active Model Learning of Stochastic Reactive Systems 499

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

5. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

6. Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from stochas-
tic samples in polynomial time. RAIRO: Theor. Inform. Appl. (RAIRO: ITA)
33(1), 1–20 (1999)

7. Casacuberta, F., Vidal, E.: Machine translation with inferred stochastic finite-state
transducers. Comput. Linguist. 30(2), 205–225 (2004)

8. Chen, Y., Nielsen, T.D.: Active learning of Markov decision processes for system
verification. In: 11th International Conference on Machine Learning and Applica-
tions, ICMLA, Boca Raton, FL, USA, 12–15 December 2012, vol. 2, pp. 289–294.
IEEE (2012)

9. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

10. El-Fakih, K., Groz, R., Irfan, M.N., Shahbaz, M.: Learning finite state models
of observable nondeterministic systems in a testing context. In: ICTSS 2010, pp.
97–102 (2010)

11. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

12. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theor. Comput. Sci. 411(47), 4029–4054 (2010)

13. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York (2010)

14. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

15. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 31

16. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

18. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
Markov decision processes for model checking. In: Proceedings of the Quantities
in Formal Methods, QFM 2012. EPTCS, Paris, France, 28 August 2012, vol. 103,
pp. 49–63 (2012)

19. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016). https://doi.org/10.1007/s10994-016-5565-9

https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10994-016-5565-9

500 M. Tappler et al.

20. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model gener-
ation for legacy reactive systems. In: 2004 Ninth IEEE International High-Level
Design Validation and Test Workshop, Sonoma Valley, CA, USA, 10–12 November
2004, pp. 95–100. IEEE Computer Society (2004)

21. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 67–73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88885-5 5 https://github.com/DES-Lab/AALpy

22. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–
544 (1958)

23. Pferscher, A., Aichernig, B.K.: Learning abstracted non-deterministic finite state
machines. In: Casola, V., De Benedictis, A., Rak, M. (eds.) ICTSS 2020. LNCS,
vol. 12543, pp. 52–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64881-7 4

24. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

25. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

26. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L∗-based
learning of Markov decision processes (extended version). Formal Aspects Comput.
33(4), 575–615 (2021). https://doi.org/10.1007/s00165-021-00536-5

27. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L∗-based
learning of Markov decision processes. In: ter Beek, M.H., McIver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 651–669. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8 38

28. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017,
pp. 276–287. IEEE Computer Society (2017)

29. Volpato, M., Tretmans, J.: Approximate active learning of nondeterministic input
output transition systems. ECEASST 72 (2015)

https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
https://github.com/DES-Lab/AALpy
https://doi.org/10.1007/978-3-030-64881-7_4
https://doi.org/10.1007/978-3-030-64881-7_4
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/s00165-021-00536-5
https://doi.org/10.1007/978-3-030-30942-8_38
https://doi.org/10.1007/978-3-030-30942-8_38

Mixed-Neighborhood, Multi-speed
Cellular Automata for Safety-Aware

Pedestrian Prediction

Sebastian vom Dorff1,2(B), Chih-Hong Cheng1, Hasan Esen1,
and Martin Fränzle2

1 Corporate R&D Department of DENSO Automotive Deutschland GmbH,
Freisinger Street 21–23, 85386 Eching, Germany
{s.vomdorff,c.cheng,h.esen}@eu.denso.com

2 Department of Computing Science, Carl von Ossietzky University,
26111 Oldenburg, Germany

fraenzle@informatik.uni-oldenburg.de

Abstract. Predicting pedestrian movement in unregulated traffic areas,
such as parking grounds, marks a complex challenge in safety for auto-
mated vehicles. Without the ability to make certifiable predictions and
judgments about safe interactions with other traffic agents in a real-time
capable and economical fashion, the goal of self-driving vehicles cannot
be reached. We propose a computationally efficient model for pedestrian
behavior prediction on a short finite time horizon to ensure safety in
automated driving. The model is based on a cellular automaton, working
on an occupancy grid map and assumes a physical pedestrian capability
constraint. It is enriched by a variable update rate with a mixed neighbor-
hood, overcoming the limitations of vanilla cellular automata and coming
closer to the results of state-of-the-art algorithms, while keeping the ben-
efits of its straightforward parallelizability. The approach is evaluated on
synthetic benchmarks outlining the general performance parameters as
well as in an implementation on potential real-world situations.

1 Introduction

It is indisputable that safety is a crucial factor in the successful realization of
automated driving. In practice, reflecting the safety mindset inside engineering
requires that components designed towards performance (e.g., neural networks)
carefully interact with components whose design is driven by safety.

For prediction of pedestrians, although their motion speed is relatively slow,
safety issues arise since these agents can change their speed and direction quickly
or may suddenly appear from occluded areas. In that safety-aware design con-
text we require the created algorithm to simultaneously exhibit the following
characteristics:

– (Safe, but not overly conservative) the algorithm should demonstrate
reasonably conservative safe behavior such as handling potentially hidden
agents,

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 501–520, 2021.
https://doi.org/10.1007/978-3-030-92124-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_28

502 S. vom Dorff et al.

– (Certifiable) implementing the algorithm in software should be compatible
with existing automotive safety norms such as ISO-26262, and finally,

– (Economical) the computational efficiency of the algorithm shall make the
overall approach economically feasible to be deployed in multiple hardware
platforms.

In this paper, we propose an improved algorithm to predict pedestrian behav-
ior by revisiting the idea of cellular automata (CA) [8]. CA are discrete compu-
tational models for mimicking the evolution of cells. Yet by seizing on the above-
mentioned practical safety-aware design criteria, despite the algorithm being eas-
ily certifiable due to its automata-theoretic nature, we find that a vanilla CA algo-
rithm fails to deliver the promises of precision and versatility. This is due to (a)
existing results using CA lead to an overly-conservative extrapolation behavior
due to the static update rate and the coarse ”neighborhood” definition [33], while
(b) the algorithm is incapable of simulating directionally guided movements.

The innovation of this paper is thus based on a novel algorithmic improve-
ment on CA models:

1. We improve the precision of prediction by relaxing the standard definition
where each agent moves with the same speed.

2. We introduce variable propagation shapes, thereby improving the precision
and have the capability to represent guided behavior of pedestrians.

For evaluation, we have implemented the algorithm and tested it on synthetic
and realistic scenarios. We show the impact on computation time of different
parameters and compare it to a simple, straightforward cell-infection algorithm.
While maintaining better precision, the performance is significantly faster. The
complexity analysis demonstrates that the algorithm can achieve an execution
time reduction when executed on a multi-processor platform, paving the way for
an economic realization of accurate prediction.

2 Related Work

Several works regarding pedestrian prediction emerged especially during the last
years in the verge of automated driving. These works model pedestrians on dif-
ferent levels, starting from physical models, over maneuver-based prediction,
until interaction-aware approaches [6,23]. Earlier works focused on mathematical
models, describing kinetic behavior as seen in [16] are still an object of research
today [27]. Furthermore, a probability-based factor to predict the pedestrians’
movement has been introduced e.g. in [7,19]. In more recent works, set-based
approaches have been investigated [21] yet fall short in areas where no given
traffic rules or clear paths, such as sidewalks, exist. The same problem applies
to context-based methodologies, as typical guidance patterns do hardly exist in
parking areas [26]. Other approaches focus on the posture of single pedestrians,
assuming their most likely trajectory [15,19,20]. Besides partially relying on
the before-mentioned contextual information, these models tend to create heavy

Mixed-Neighborhood, Multi-speed Cellular Automata 503

computation loads when significant numbers of pedestrians must be predicted
at a time. Especially in recent research, the utilization of machine learning is
used to create estimations of pedestrians’ actions, such as in [1,31,32,38]. Nev-
ertheless, the assumption of constant speed behavior of pedestrians outperforms
several neural network based approaches as elaborated in [35]. Furthermore, neu-
ral network based approaches are difficult to validate and verify on their safety.
Provably safe methodologies have been introduced earlier [24] yet struggle with
providing reasonable predictions around occluded areas and their computation
time grows with the number of pedestrians in the vicinity. Motivated by the
challenge of limitations of perception in general [9,29], as well as by dealing
with occlusions in particular [17,22], the question of ensuring safety under such
circumstances has been tackled from various fields, for example by probabilistic
methods [5]. Performance limitations of prediction models have been addressed
in [2], giving an estimation of state-of-the-art capabilities.

Cellular automata have been used and discussed for decades regarding their
specific attributes, characterization, and efficient implementation [10,13,14].
Traffic-specific works have focused on crowd simulation [3,18] or lane-bound high-
way [25] and walkway scenarios [4]. In [34] the interaction between pedestrians and
transportation robots in factories has been focused. All these approaches have in
common to take advantage of simulating large amounts of space-interdependent
agents with simple rule sets as pointed out in [36] but relying on coarse definitions
of the movement patterns. In contrast, [33] proposes a fine-grid solution signif-
icantly improving the accuracy at the cost of simulation speed. Dynamic parti-
tioning of the grid to model complex processes have been suggested in [37] yet
tend to become unintuitive when considering the heterogeneous behavior of the
cells. Recent works on path planning utilizing CA, as in [28,30], nourish the idea
of establishing the principles of this methodology in monitoring systems.

3 Preliminaries

In this section, we first give a brief formulation of cellular automata, and subse-
quently, concretize the formulation to be used for pedestrian prediction.

3.1 Cellular Automaton (CA)

A (finite) cellular automaton C is a tuple (L, d,S, c0,N , f), where L = {0, . . . , κ}
is a finite set of positive integers ranging from 0 to κ and d ∈ N is the dimension.
We call �n ∈ Ld a cell. S = S1 × S2 × . . . × Sn is called state set vector with
each set Si (i ∈ 1, . . . , n) being finite. We call each s = (s1, . . . , sn), where ∀i ∈
{1, . . . , n} : si ∈ Si, a state. c0 is the initial configuration. N : Ld → (Ld ∪ {⊥})m

is a function which maps a cell �n to a list of cells called neighborhood. The token ⊥
is used when the neighbor is undefined; this happens in the case of a cell being in
the boundary e.g., �n = (0, 0) in the 2-dimensional case. Lastly, f : Sm → S is a
function updating a state (of a cell) based on the states of its m neighboring cells.

504 S. vom Dorff et al.

A configuration of a CA is c = (s(0,...,0), . . . , s(κ,...,κ)), where every cell �n is
assigned with state s�n in the state set vector. The semantics of a CA is based on
synchronous update where states of all cells are updated simultaneously using a
function f . Starting from the initial configuration c0, perform transition as follows:

1. Apply the neighborhood function on each cell �n to derive its neighboring m
cells (�n0, . . . , �nm).

2. For the neighboring cell �ni where i ∈ {0, . . . , m}, let s(�ni) be the correspond-
ing state.

3. For cell �n in step 1, based on f(s1, . . . , sm) of the neighboring m cells, apply
f to update the state. All cells perform synchronous update.

3.2 Cellular Automaton for Pedestrian Prediction

To use CA for pedestrian prediction, we consider the following CA, where d = 2,
and S for each cell equals (Saccess, Svel), where Saccess = {0, 1}, defining if
a cell can be potentially accessed by pedestrians or is blocked, and Svel =
(SN , SNW , SW , SSE , SS , SSE , SE , SNE) where each Si = {0, 0.1, 0.2, . . . , vc −
0.1, vc}, i ∈ {N,NW, . . . , E,NE}, corresponding to the assumed speed of a
pedestrian in a cell. vc is the so-called speed of light (SoL) [13], the maximum
attainable propagation speed in the CA. We index the states of the state vec-
tor Svel as (s0, s1, s2, . . . , s7). We use the same notation structure to index cells
around the currently observed cell, i.e. �n0 refers to the cell north of the cur-
rently focused cell. Thus, the speed into a certain direction of a neighboring cell
is queried as si(�nk with i, k ∈ {0, 1, ..., 7}. For example, s0(�n2 refers to the speed
towards the north (0) of the cell that is located west (2) of the currently focused
cell. In case we assume the cells to feature the same speed in all directions, the
index i is omitted, e.g. s(�n4 delivers the universal speed in all directions of the
cell south from the currently focused cell. Note that in the definition of CA, time
is abstracted as discrete transitions. To map the logical time to physical time,
we made the following requirements:

– Each transition c �→ c′ occurs at discrete time steps t + Δt.
– The physical time is considered in a frame 0 ≤ t ≤ T , with T being the

time horizon. The steps of the cellular automaton map to physical time with
tα ∈ [t0 = 0, t1, t2, . . . , tn = T] and tα = α · Δt.

– We further note that c(tα) = c(tα + ε), with 0 ≤ ε < Δt and ε ∈ R. c′(tα)
is the successor configuration of c(tα) according to the transition function.
I.e. the cellular automaton only changes its configuration instantaneously at
discrete time points.

We match each cell to a square with an edge length of lcell = 0.5 m and adjust
κ accordingly to the size of the geographic region it represents. For the neigh-
borhood, we use two different definitions in our work: First the von Neumann
neighborhood, which is defined via the Manhattan distance

V2
r = {(xi, yi) : |xi − x| + |yi − y| ≤ rN},

Mixed-Neighborhood, Multi-speed Cellular Automata 505

where (x, y) are the coordinates of �n, (xi, yi) are coordinates of the neighboring
cell �ni, and rN is the range used to limit the distance. Second, we use a modified
Moore neighborhood, which is regularly defined by the Chebyshev distance but
excludes the cells from the von Neumann neighborhood in our case, defined as

M2
r = {(xi, yi) : |xi − x| ≤ rN , |yi − y| ≤ rN} \ V2

r .

The used range rN is set to 1 in this work. Following the above requirements,
the SoL is calculated as

vc =
rN · lcell

Δt
.

3.3 Initialization of c0

The initial configuration c0 shall be attainted as follows:

– We use a map of our static surroundings, e.g. a parking garage. From there
we generate an occupancy grid map (OGM), which is mapped to the size of
Ld. Cells that are not accessible, e.g. blocked by walls, shall be initialized
with saccess = 0, all others with 1. As stated, these are static objects that
are not supposed to change their state over the run-time of the algorithm.
Other objects such as a shopping cart that is left alone in the parking space
would also be considered as statics. The authors are aware that these corner
cases have to be addressed in the future but choose to neglect them for the
moment for the sake of simplicity. In the course of the paper it becomes clear
that such special cases could also be addressed by the approach.

– With a proprietary tool we generate a 360-degree field-of-view (FOV) from our
ego position in the map. Cells that are not blocked by the static environment
but outside the FOV are initialized with s7i=0 = vmax, with vmax, the highest
speed considered for a pedestrian. This measure makes sure that pedestrians
outside the perceived areas cannot become an unconsidered hazard. The credo
here is “everything is unsafe as long as it is not judged to be safe”. The
paper will show that the implication of large numbers of potentially hidden
pedestrians interfering with the vehicle’s trajectory does not jeopardize the
real-time capabilities of the approach.

– Lastly, pedestrians detected in the area are initialized with their speed and
expected movement direction. The vectorial layout of Svel is used as a repre-
sentation of the cardinal points as shown in Fig. 1. For example, a pedestrian
detected moving with 2 m/s to the south-east is initialized with s4,5,6 = 2.0.
This of course relies on a perfect perception. While the algorithm can safely
handle areas which are known to be unknown, it cannot mitigate risks when
the perception inputs faulty data.

4 Transition Rule

The novelty in our approach lies within the transition rule f . In a vanilla CA,
the transition occurs at a static rate. Therefore, all pedestrians are set to the

506 S. vom Dorff et al.

Fig. 1. From left to right: The von Neumann neighborhood, the regular Moore neigh-
borhood, and our translation of the cardinal directions to the neighboring cell indices
�ni and the directions in in the tuple of Svel. For the right graphic, light grey cells depict
the von Neumann neighborhood V2

1 , white cells are members of the modified Moore
neighborhood M2

1, the black cell is the current cell �n.

same speed. For example, the top row of Fig. 2 shows the propagation of a
single cell with a Moore neighborhood with the f : s′ ← max

0≤i≤7
s(�ni), assuming

(rN = 1, lcell = 1 m, Δt = 0.125 s) and therefore (vc = 8 m/s).

– At (t = 0 s) only the blue cell is occupied.
– Seen from the three adjacent cells, the blue cell lies within the neighborhood

and therefore the adjacent cells get marked red. The red cells are changing
their state according to f at (t = 0.125 s) and now behave like the original
blue cell.

– The same template is applied iteratively at each single time-step. At (t =
0.500 s). All but the outer lines of cells are now occupied.

We introduce a methodology to realize a variable update rate, while keeping
the time-steps constant in order to be capable of monitoring a given system with
hard real-time requirements.

4.1 Variable Update-Rate

In order to simulate different pedestrian speeds in the presented use case, we
add criteria to the transition rule. A cell is only updated iff the ratio of the SoL
and the maximum cell-speed in the neighborhood is a multiple of the elapsed
time divided by the minimum time-step:

f ⇐⇒ tα
Δt

mod
vc

s(�ni)
= 0. (1)

For example, a cell with half or quarter the SoL will only be updated in every
second or fourth time-step. Figure 2 shows this behavior in the bottom row with
two occupied cells with the speeds (2 m/s) and (4 m/s):

– The first iteration is analogous to the unconstrained CA.
– At (t = 0.125 s), none of the cells fulfills Eq. 1. Therefore, no propagation is

observed.

Mixed-Neighborhood, Multi-speed Cellular Automata 507

– At (t = 0.250 s) the cells with the speed of (4 m/s) fulfill Eq. 1 and are
therefore considered in f . Thus, their neighboring cells are marked red for
changing the state.

– The iteration at (t = 0.375 s) is analogous to (t = 0.125 s) and thus not
further depicted.

– At (t = 0.500 s) both speeds, (2 m/s) and (4 m/s) fulfill Eq. 1. Accordingly,
all blue cells are considered by f and the neighboring cells shift their state,
again indicated in red.

The ratio of the cell speed to the SoL is asymptotically reached since all cells
propagate at t = 0, disregarding their speed. This makes sure not to under-
approximate the movement of the pedestrian if it is not initially located at the
center of a grid cell.

Fig. 2. Example showing the comparison between static update rate in the top and
variable update rate in the bottom row, with Δt = 0.125 s.

Theorem 1. An omnidirectionally moving pedestrian slower or equally fast as
the SoL will always be covered by the propagation area of the CA with a Moore
neighborhood.

Proof. Let APed be the set of coordinates (xi, yi) ∈ R
2 with i ∈ {1, 2} fulfilling

the constraint

√
(x2 − x1)2 + (y2 − y1)2 ≤ r =

rN · lcell

Δt
· t. (2)

508 S. vom Dorff et al.

Let the point (0, 0) be the center of the first cell,

(x1, y1) : − lcell

2
≤ x1 ≤ lcell

2
∧ − lcell

2
≤ y1 ≤ lcell

2
(3)

defines all possible starting positions within the grid cell. Considering the sym-
metry of the problem, only the right part of the equation is used. Resolving Eq. 2
to x1, y1 and inserting Eq. 3 delivers

x2 ≤ rN · lcell

Δt
· t +

lcell

2
∧ y2 ≤ rN · lcell

Δt
· t +

lcell

2
. (4)

We call all pairs of (x2, y2) which fulfill Eq. 4 ABox. Therefore APed ⊆ ABox.
For the growth of the propagated area, we can simply add the cell lengths

multiplied by rN as

| x, y |≤ lcell

2
+ lcell · rN + � t

Δt
� · lcell · rN , (5)

which we will note as requirement for all (x, y) ∈ AProp, the set defining all
points covered by the propagating CA function. Replacing x and y with the
inequation from Eq. 4 leads to

| rN · lcell

Δt
· t +

lcell

2
|≤ lcell

2
+ lcell · rN + � t

Δt
� · lcell · rN ,

representing the requirements for ABox ⊆ AProp to hold. Considering
{lcell, t,Δt, rN} ≥ 0, we can omit the absolutes and simplify to

t

Δt
≤ � t

Δt
� + 1.

This is trivially true and therefore shows the condition APed ⊆ ABox ⊆ AProp

to hold.

Since the ratio of vc

s(�ni)
might be an odd value, a flooring function is put over it.

The resulting discretization error E has an upper bound

|E| <
s(�ni)
vc

= 5.4%,

assuming a pedestrian moves at (2.7 m/s) and the SoL is valued at (50 m/s).

4.2 Multiple Neighborhood Usage

A second mechanism to improve the precision of resembling our assumed pedes-
trian model is to use two different neighborhoods. Since M2

1 is an over- and V2
1

an under-approximation of an omnidirectional movement both neighborhoods
shall be combined.

Mixed-Neighborhood, Multi-speed Cellular Automata 509

V2
1 shall be used as described above and apply the maximum value of s(�ni),

therefore

fv : s′ ← max s(�n), �n ∈ V2
1 ⇐⇒ tα

Δt
mod � vc

s(�ni)
� = 0, i ∈ {0, 2, 4, 6}.

In order to eliminate the under-approximation error, M2
1 will be used as

shown in Fig. 1. The SoL will be multiplied by a factor β before checking the ful-
fillment of Eq. 1 to achieve a longer update interval, taking the diagonal position
of the neighboring cells into account, thus

fM : s′ ← max s(�n), �n ∈ M2
1 ⇐⇒ tα

Δt
mod �vc · β

s(�ni)
� = 0, i ∈ {1, 3, 5, 7}.

The resulting pattern shows an octagonal shape, being much closer to a
circular shape than using just one single neighborhood. To achieve the shape
of a regular octagon as in Fig. 3a, the ratio of fv and fM has to be tuned. We
therefore observe the following mechanisms,

D′ ← D + 2 · lcell ≡ r′
in ← rin + lcell,

when applying fv and
a′ ← a + 2 · lcell,

when applying fM respectively. Given that for a regular octagon rin = 1+
√
2

2 · a
has to hold, we can solve towards a and transfer the requirement to

rin + lcell = a +
1 +

√
2

2
· lcell,

which leads to the ratio
fM

fv
� 2

1+
√
2

2

≈ 1.657.

Concluding, fM has to be applied with a factor of 1.657 on the execution time-
points of T v of fv, which resembles β. This implies that fM has to be sequentially
executed after fv. It might otherwise occur that fM is virtually skipped when
sharing the same execution time point as a multiple of Tv.

Theorem 2. The resulting octagonal shape from combining fv and fM propa-
gates at least as fast as a continuously, omnidirectionally moving pedestrian, as
defined in Eq. 2.

Proof. First, we notice that the inner radius of the regular octagon calculates as

rin = (
1 +

√
2

2
) · a, with a =

D

1 +
√

2
,

with a being the side length of the regular octagon and D being the diagonal
length of the regular octagon as seen in Fig. 3a and D calculated as

D = 2 · (
lcell

2
+ lcell + � t

Δt
� · lcell).

510 S. vom Dorff et al.

Resolving these equations leads to

rin = (
1 +

√
2

2
)·a = (

1 +
√

2
2

)· D

1 +
√

2
= (

1 +
√

2
2

)·2 · (lcell

2 + lcell + � t
Δt� · lcell)

1 +
√

2
,

which resembles the right part of Eq. 5. From there, Theorem 1 can be applied
consecutively.

Fig. 3. The desired and achieved variable propagation patterns.

As a result, a notable refinement of the estimated movement pattern is
achieved. While the von Neumann neighborhood bears the risk of underesti-
mating the capabilities of a pedestrian and is therefore not safely applicable, the
Moore neighborhood adds a considerable overhead to the approximated areas.
The mixing of both neighborhoods leads to a reduction of

AC − AM

AM
=

D2 − 2 · (
√

2 − 1) · D2

D2
= −17.2%,

where AM is the area resulting of applying a Moore neighborhood and AC the
resulting area of the combined neighborhood approach respectively.

4.3 Cardinal Directions Vectorization

Just as when combining the two neighborhoods, each single cell of M2
1 can be

seen as a unique item which can be considered or ignored during the cell update.
To achieve this behavior, each cell encodes the desired propagation direction in
its vector svel. When updating a cell, it has to be considered that the direction
of the propagation reverses from the current point of view. E.g. if the current
cell considers taking over the state of the cell south, it has to be checked that

Mixed-Neighborhood, Multi-speed Cellular Automata 511

this cell inhabits a propagation direction to the north. Therefore, the transition
rule is applied as

f : s′(�n) ← max
0≤i≤7

sq(�ni), sq(�n),

with i being one of the cardinal directions and q being its opposing direction,
i.e. q = i + 4 mod 8.

4.4 Over-Propagation

A phenomenon of this approach that must be controlled is implicit over-
propagation of M2

1. For example, we assume fv is applied in each and fM in
every third time-step. Figure 4a shows the propagation from t = 1 → t = 2,
showing the typical von Neumann pattern. In the transition t = 2 → t = 3 not
only the blue cells switch their state as desired, but also the red cells as fM does
not consider that the black cells have just transited in the last time step. To
avoid this behavior, cells in M2

1 are only considered if they have two orthogonal
neighbors which have the same state as the destined transit state, i.e.

P : s(�ni) = s(�ni−1) = s(�ni+1).

Fig. 4. The two phenomena of over-propagation.

This phenomenon also occurs when the propagation is not omnidirectional.
Anyhow, the requirement of having two orthogonal neighbors cannot be met if
one of the neighboring cells has a non-propagating neighbor itself. For example,
if a cell is only supposed to propagate into the directions 6 and 7. There will
be only one orthogonal neighbor. The missing information of the second orthog-
onal cell needs to be reconstructed by knowledge of the direction vector and
which cell is empty as shown in Fig. 4b, where the green box is intended to be
propagated while the red one is not. Therefore, it must be determined which is
the last orthogonal propagation direction before the outer diagonal propagation
direction, in our example i = 6, neighboring the outer diagonal direction i = 7.
To make this a little easier to follow, consider the example from Fig. 4b.

512 S. vom Dorff et al.

– In the beginning, only cell a is populated.
– In a second step, the cells bv and bM are populated. The problem already

occurs here already but we will skip it at this point as another difficulty
occurs in the following step.

– The propagation via the von Neumann neighborhood populates the blue
cells cv.

– The propagation via the Moore neighborhood is supposed to populate the
green cell cM . Unfortunately, the red cell also fulfills the requirement and
becomes marked as cM .

– There are now two differences to observe: The cell south of the two cells cM are
once populated and once empty. Considering the propagation direction 7 and
the corresponding q = 3, the cell to the south equals the direction 4 or q + 1.
This alone is not enough to determine which of cells is desired to be populated
as the problem could occur in a symmetrical fashion with reversed signs.

– Additionally, we can observe that the cell at q − 1 = 2 is once populated
and once empty. These two properties can be used to solve the problem of
symmetry.

Consequently, the cell opposing the direction of the orthogonal neighbor from
the currently focused cell cM must be unequal to s(�ni) of the diagonal cell, in
this case i = 2, which is expressed by

Q : s(�ni) �= s(�ni+p), p =

{
1, sq−1(�ni) = 0
−1, sq+1(�ni) = 0,

completing our condition
fM ⇒ P ∨ Q.

The combination of those rules leads eventually to the ability of simulating
pedestrians at different speeds and with variable movement corridors as seen in
Fig. 3b. This approach avoids the necessity of complex neighborhood functions
and relies on a range of rN = 1, mitigating the need to check whether a cell in
the neighborhood is blocked by an inaccessible area to avoid transiting through
walls. In contrast, a range of rN > 1 would consider cells that might be physi-
cally departed from the populated cell. For example, a pedestrian standing right
behind a thin wall, that could be a fire door, is not capable of moving directly
into the cell on the other side the wall. When the neighborhood is chosen larger
than rN = 1 this cell would nevertheless be considered for propagation and
requires an additional check to prevent a ghostly move through the wall.

5 Implementation

To demonstrate the functionality, we implemented the algorithm in Python with
Numba and created two experiments. The first one is of synthetic nature and
varies the simulation parameters to show the impact on the computation time.
The second one features an infection algorithm to show the competitiveness of
the CA against simpler algorithms.

Mixed-Neighborhood, Multi-speed Cellular Automata 513

Algorithm 1: The cellular automaton algorithm.
1 foreach tα ∈ [0, T] do

// Iterate over discrete time-steps

2 foreach �n ∈ Ld do
// Iterate over all cells

3 if saccess(�n) �= 0 then
// Check if cell is accessible

4 foreach �ni ∈ V2
1 do

// Iterate over all cells in von Neumann neighborhood

5 q = (i + 4) mod 8;
// Determine opposing direction of current neighborhood

cell

6 if tα
Δt

�mod SoL
sq(�ni)

� = 0 then

// Check if neighboring cell fulfills propagation

requirement

7 s′7
i=0(�n) ← max

0≤k≤7
sk(�ni), sk(�n);

// Select highest speed from current cell and

neighboring cells and set as cell’s speed for

future configuration

8 c ← c′ ;
// Update configuration with new cell speeds

9 foreach �n ∈ Ld do
// Same process as in the loop before

10 if saccess(�n) �= 0 then
11 foreach �ni ∈ M2

1 do
12 if tα

Δt
�modSoL∗1.657

sq(�ni)
� = 0 then

13 if P ∨ Q then
// For the Moore neighborhood check if

requirements P or Q are met before proceeding

to avoid over-propagation

14 s′7
i=0(�n) ← max

0≤k≤7
sk(�ni), sk(�n);

15 c ← c′;

Algorithm 1 shows the CA from 4 in pseudo-code. All experiments have been
conducted on the same set-up, featuring Intel Core i7-6700k @ 8x 4.00 GHz, 32
GB RAM, Ubuntu 18.04 64-Bit, Python 3.6.9 64-Bit, Numpy 1.19.1, Numba
0.50.1. To keep the results comparable, only single-core performance has been
tested.

5.1 Performance Implications of Environment Density

In the first experiment we created an empty map with κ = 99 and placed different
amounts of pedestrians with random starting positions and speeds in the range of
0.1 . . . 2.7 m/s in the map. Furthermore, we varied whether the pedestrians move

514 S. vom Dorff et al.

omnidirectionally or follow a random amount of the eight cardinal directions.
The time horizon has been fixed at T = 2 s with a time-step width Δt = 0.01 s.

Table 1. Computation time in relation to the number of pedestrians simulated with
different movement patterns. Average values of N = 1000 test runs.

Number of pedestrians Computation time

Omnidirectional Random directions

1 0.397 s 0.396 s

10 0.396 s 0.402 s

100 0.408 s 0.401 s

Table 1 shows how the CA does neither depend on the number of pedestrians
nor their movement directions. Only small, negligible variations around the mean
value of 0.4 s occur.

As a variation we simulated a single pedestrian with omnidirectional move-
ment at a constant speed of 1 m/s and varied the time horizon and the time-step
width as shown in Table 2. Since this directly influences the outer for-loop, it
impacts the computation time of the CA. It grows linearly with the time-horizon
and reciprocal to the time-step width, which trivially derives from the number
of loop iterations calculated as T/Δt.

Table 2. Comparison of computation times of the cellular automaton depending on
time-step width and time horizon. Average values of N = 1000 test runs.

Time horizon Time-step width Computation time

2 s 0.01 s 0.396 s

2 s 0.1 s 0.042 s

10 s 0.01 s 2.028 s

10 s 0.1 s 0.201 s

5.2 Performance Compared to Simple Cell-Growth Algorithm

In the second experiment we compared the CA to a simple infection algorithm on
the same test platform. This algorithm draws a circle with the potential move-
ment range within the current time step of the pedestrian at each occupied cell.
All cells that are touched by this circle will get “infected”. The implementation
can be seen in Algorithm 2. Additionally, a list of all potential pedestrian posi-
tions at t = 0 is created to prevent scanning the whole grid at each time-step.
For a reasonable testing set-up, the map of a real garage has been used as shown

Mixed-Neighborhood, Multi-speed Cellular Automata 515

Algorithm 2: The circular infection algorithm.
1 for t ∈ {0, Δt, ..., T − Δt, T} do

// Iterate over discrete time-steps until T

2 for i, k ∈ Ld do
// Access each cell in grid

3 if si,k
vel �= 0 then
// Check if cell is populated

4 r ← si,k
vel ∗ t;

// Calculate movement radius based on speed and elapsed

time

5 rgrid ← 	r/lcell
;
// Discretize movement radius into grid cells

6 for x ∈ [−rgrid, rgrid] do
// Select all x-values within in movement radius

7 ymax ← 	
√

r2grid − x2
;
// Calculate maximum y value for each x

8 rx ← i + x;
9 ry ← k + ymax;

10 for y ∈ [−ry, ry] do
// Access all x,y pairs within movement radius

11 if sx,y
access �= 0 then
// If cell is accessible, "infect" it in copy of

current grid with pedestrian speed

12 s′x,y
vel ← si,k

vel;

in Fig. 5, simulated with κ = 199 and Δt = 0.01 s. Within this garage, a random
position is selected and c0 is initialized as described in 3.3.

In Fig. 5, an exemplary outcome is shown on the right side for the CA sim-
ulation with T = 2 s. Table 3 shows that the CA outperforms the infection

Fig. 5. The blue print of the parking garage. Accessible areas are marked in yellow,
walls in green. The prediction of assumed pedestrians considering limited visibility.
Only purple areas can be entered safely at T = 2 s. (Color figure online)

516 S. vom Dorff et al.

Table 3. Comparison of computation times between a cellular automaton and a basline
cell-infection algorithm. Average values of N = 1000 test runs.

Time horizon Cellular automaton,
computation time

Infection algorithm,
computation time

1 s 0.126 s 0.306 s

2 s 0.217 s 0.936 s

3 s 0.291 s 2.458 s

algorithm. Its computation time grows linearly (O(n)), while the infection algo-
rithm’s computation time grows with O(n2). Even though the OGM size quadru-
pled, the calculation times stay below the values from the first experiment. This
can be explained with three mechanisms. First, the map is only partially accessi-
ble due to limited driving areas, reducing the amount of considered cells. Second,
parts of the map become saturated, meaning that already occupied cells can be
omitted in further iterations. Third, the computation time is also influenced by
swapping the memory for each read and copy process. Even though the map
size increases, it can be batch-copied, therefore does not linearly add up to the
computation time.

6 Discussion

We have exhibited the properties of our novel approach. To begin with, it can
be pointed out that the CA is ideal to comply with real-time requirement
since its computation time does not vary with the amount of simulated enti-
ties in the area. This is crucial for the utilization as a safety critical monitor in
automated vehicles. Furthermore, the CA supports creating assumptions about
occluded areas, without implications on performance. Comparing state of the art
approaches with similar aims, such as [2], the CA is about factor ten slower than
the presented linear quadratic regulator (LQR) approach but also about factor
ten faster than the compared reinforcement learning (RL) approach when using
the same simulation parameters for the grid size, Δt, and T . The CA shows
a linear dependency between computation time and precision. It can neglect
precision to match the faster LQR or increase precision at the cost of slowing
down. This enables a viable trade-off based on the application field, e.g. making
coarse estimates about objects with noisy data in a very short time frame as a
conservative, yet reliable risk assessment, also for occluded areas. This observa-
tion matches with the outcomes from [33], showing increased accuracy by using
fine-grid OGM representations. However, our variable update rate CA manages
to similarly refine the quantization of pedestrian speeds without comprising the
performance by increasing the grid size. Algorithm 1 shows the dependence of
the for-loops in lines 2 and 9 on the grid size. Since the approach is dealing
with two-dimensional models, a quadratic growth of the computation time goes
along with the increase of the grid resolution. Since both approaches rely on

Mixed-Neighborhood, Multi-speed Cellular Automata 517

CA a combination of both approaches is imaginable, with the strengths of both
methodologies complementing each other. A very recent approach relying on
neural networks focusing unordered pedestrians can be found in [31]. It shows a
reliable accuracy for the motion prediction with about 0.46 m displacement for
certain scenarios. Considering the results from [35] and the underlying cell size
of 0.5 m for the CA, a comparable accuracy can be cautiously assumed. Unfor-
tunately, also the performance can only be compared roughly since the scale
of the considered map can only be matched by a rule of thumb. Nevertheless,
when assuming a predicted area of about 20 m times 20 m - derived from the
test scenario documentation - the computation time of 60 ms would be matched
by the CA when considering the quadratic impact of the grid size.

The second experiment has shown that the approach of a CA can be superior
over a simple algorithm when assuming realistic conditions. Even though its
architecture is way more complex, the CA manages to keep the computational
effort low, while featuring better estimates by avoiding ghosting through walls.
This feature can be crucial in compressed traffic areas as it cancels out impossible
paths in its prediction, maintaining safety without being overly conservative.

Considering alternative approaches to realize more complex movement pat-
terns, the Margolus neighborhood [37] is a prominent candidate that comes
to mind. Since every reversible CA using the Margolus neighborhood can be
expressed by a classical CA with a bigger set of cell states, there is no immanent
need to use this approach. In contrast, it would make the allocation of pedestrian
speed to the cell’s state less intuitive while risking to introduce ghosting effects
by introducing larger neighborhoods.

While relying on single-core executions for the experiments, CA can heavily
benefit from a multi-core implementation since all operations on the grid map
can be parallelized when executing the rules for one neighborhood per time-step.
Recall [11,14] stating achievable speed-ups of one or two orders of magnitude if
implemented properly. This shows the potential superiority of our approach to
solve the described problems when exploiting its specific properties with parallel-
computing hardware as it is commonly available.

Another benefit of the cellular automaton is the simplicity of the basic algo-
rithm as seen in Algorithm 1. The overall complexity arises from the highly
parallel execution of the same process. Hence, a checking of the basic code for
correctness becomes easier to handle as there are only comparable few lines to
validate. Furthermore, the principles of implementing a cellular automaton are
well understood, thus minimizes the the likelihood of errors.

Meanwhile, a feasible realization of the presented algorithm has been shown
in [12] for realistic scenarios. This includes the combination of the capabilities
of the shown cellular automaton with a path planning algorithm in a parking
garage scenario based on a real environment. The results have shown general
practicality of the presented approach, especially for the case of occluded areas
in garages.

518 S. vom Dorff et al.

7 Conclusion

We presented a novel approach for a mixed neighborhood, multi-speed pedestrian
prediction based on CA, avoiding the restrictions of traditional CA. We pointed
out the benefits of CA approaches in terms of safety, certifiability and econom-
ical feasible implementation. We have proven complete coverage of pedestrian
movement within the boundaries implied by the pedestrian’s assumed physical
capabilities. We have shown different benchmarks, underlining the capabilities of
our approach and the computational competitiveness compared to other method-
ologies. Our novel approach offers inherent parallelizability while maintaining a
safe over-approximation. At the same time, we reduce the over-approximation to
an acceptable, not overly conservative level. As an outlook, an implementation
on suitable multi-core hardware can be aimed for. This should enable achieving
low computation times and open the door to use it as an environment filter for
critical cases. Furthermore, a classic model checking based on the CA can be
performed, exploiting its deterministic behavior to ensure certifiable safety.

References

1. Bansal, M., Krizhevsky, A., Ogale, A.: ChauffeurNet: Learning to Drive by Imitat-
ing the Best and Synthesizing the Worst. arXiv preprint arXiv:1812.03079 (2018)

2. Batkovic, I., Zanon, M., Lubbe, N., Falcone, P.: A computationally efficient model
for pedestrian motion prediction, pp. 374–379 (2018)

3. Blue, V.J., Embrechts, M.J., Adler, J.L.: Cellular automata modeling of pedestrian
movements. In: ICSMC, vol. 3, pp. 2320–2323. IEEE (1997)

4. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-
directional pedestrian walkways. Transp. Res. Part B Methodol. 35(3), 293–312
(2001)

5. Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic decision-making under uncer-
tainty for autonomous driving using continuous POMDPs. In: ITSC, pp. 392–399.
IEEE (2014)

6. Camara, F., et al.: Pedestrian models for autonomous driving part II: high-level
models of human behavior. IEEE Trans. Intell. Transp. Syst. 22(9), 5453–5472
(2021)

7. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic
anchor trajectory hypotheses for behavior prediction. In: CoRL, pp. 86–99 (2020)

8. Chopard, B., Droz, M.: Cellular automata modeling of physical systems (1999)
9. Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty

for safe automated driving. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 439–445. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99229-7 37

10. Das, A.K., Ganguly, A., Dasgupta, A., Bhawmik, S., Chaudhuri, P.P.: Efficient
characterisation of cellular automata. IEE Proc. E - Comput. Digit. Tech. 137(1),
81–87 (1990)

11. Dascalu, M.: Cellular Automata Hardware Implementations - an Overview. Rom.
J. Inf. Sci. Technol. 19(4), 360–368 (2016)

12. Dorff, S.V., Kneissl, M., Fränzle, M.: Safe, deterministic trajectory planning for
unstructured and partially occluded environments. In: ITSC. IEEE (to appear
September 2021)

http://arxiv.org/abs/1812.03079
https://doi.org/10.1007/978-3-319-99229-7_37

Mixed-Neighborhood, Multi-speed Cellular Automata 519

13. Gardner, M.: Mathematical games. Sci. Am. 223(4), 120–123 (1970)
14. Gibson, M.J., Keedwell, E.C., Savić, D.A.: An investigation of the efficient imple-

mentation of cellular automata on multi-core CPU and GPU hardware. J. Parallel
Distrib. Comput. 77, 11–25 (2015)

15. Goldhammer, M., Gerhard, M., Zernetsch, S., Doll, K., Brunsmann, U.: Early
prediction of a pedestrian’s trajectory at intersections. In: ITSC, pp. 237–242.
IEEE (2013)

16. Helbing, D.: A mathematical model for the behavior of pedestrians. Behav.l Sci.
36(4), 298–310 (1991)

17. Hoermann, S., Kunz, F., Nuss, D., Renter, S., Dietmayer, K.: Entering crossroads
with blind corners. A safe strategy for autonomous vehicles. In: IV. IEEE, June
2017

18. Klüpfel, H.L.: A cellular automaton model for crowd movement and egress simu-
lation. PhD Thesis (2012)

19. Kooij, J.F., Schneider, N., Gavrila, D.M.: Analysis of pedestrian dynamics from a
vehicle perspective. In: IV, pp. 1445–1450. IEEE (2014)

20. Kooij, J.F.P., Flohr, F., Pool, E.A.I., Gavrila, D.M., Schneider, N.: Context-based
path prediction for targets with switching dynamics. Int. J. Comput. Vis. 127,
239–262 (2018)

21. Koschi, M., Pek, C., Beikirch, M., Althoff, M.: Set-based prediction of pedestrians
in urban environments considering formalized traffic rules. In: ITSC, pp. 2704–
2711. IEEE (2018)

22. Lee, M., Jo, K., Sunwoo, M.: Collision risk assessment for possible collision vehicle
in occluded area based on precise map. In: ITSC, pp. 1–6. IEEE (2017)

23. Lefèvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk
assessment for intelligent vehicles. ROBOMECH J. 1(1), 1–14 (2014). https://doi.
org/10.1186/s40648-014-0001-z

24. Liu, S.B., Roehm, H., Heinzemann, C., Lütkebohle, I., Oehlerking, J., Althoff,
M.: Provably safe motion of mobile robots in human environments. In: IROS, pp.
1351–1357. IEEE (2017)

25. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J.
de Physique I 2(12), 2221–2229 (1992)

26. Neogi, S., Hoy, M., Chaoqun, W., Dauwels, J.: Context based pedestrian intention
prediction using factored latent dynamic conditional random fields. In: SSCI, pp.
1–8. IEEE

27. Nikolić, M.: Data-driven fundamental models for pedestrian movements. Technical
report EPFL (2017)

28. Oliveira, G.M.B., et al.: A cellular automata-based path-planning for a cooperative
and decentralized team of robots. In: CEC, pp. 739–746 (2019)

29. Orzechowski, P.F., Meyer, A., Lauer, M.: Tackling occlusions and limited sensor
range with set-based safety verification. In: ITSC, pp. 1729–1736. IEEE (2018)

30. Pei, H., Lou, Y., Ye, F.: Robot path planning based on cellular automata with
mixed neighborhoods. In: ISCID, pp. 114–117. IEEE (2018)

31. Radwan, N., Burgard, W., Valada, A.: Multimodal interaction-aware motion pre-
diction for autonomous street crossing. Int. J. Robot. Res. 39(13), 1567–1598
(2020)

32. Rehder, E., Wirth, F., Lauer, M., Stiller, C.: Pedestrian prediction by planning
using deep neural networks. In: ICRA, pp. 5903–5908. IEEE (2018)

33. Sarmady, S., Haron, F., Talib, A.Z.: Simulation of pedestrian movements using fine
grid cellular automata model. arXiv preprint arXiv:1406.3567 (2014)

https://doi.org/10.1186/s40648-014-0001-z
https://doi.org/10.1186/s40648-014-0001-z
http://arxiv.org/abs/1406.3567

520 S. vom Dorff et al.

34. Schaefer, L., Mackulak, G., Cochran, J., Cherilla, J.: Application of a general
particle system model to movement of pedestrians and vehicles. In: WSC, vol. 2,
pp. 1155–1160. IEEE (1998)

35. Schöller, C., Aravantinos, V., Lay, F., Knoll, A.: What the constant velocity model
can teach us about pedestrian motion prediction. IEEE Robot. Autom. Lett. 5(2),
1696–1703 (2020)

36. Seitz, M.J.: Simulating pedestrian dynamics. Dissertation, Technische Universität
München, München (2016)

37. Toffoli, T., Margolus, N.: Cellular Automata Machines: a New Environment for
Modeling. MIT Press, Cambridge (1987)

38. Yi, S., Li, H., Wang, X.: Pedestrian behavior understanding and prediction with
deep neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016, Part I. LNCS, vol. 9905, pp. 263–279. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46448-0 16

https://doi.org/10.1007/978-3-319-46448-0_16
https://doi.org/10.1007/978-3-319-46448-0_16

Author Index

Aichernig, Bernhard K. 481
Alshareef, Hanaa 121
Archibald, Blair 262

Bartocci, Ezio 110
Baxter, James 3
Bechberger, Johannes 160
Brucker, Achim D. 403
Brunner, Marvin 423
Butterfield, Andrew 243

Calder, Muffy 262
Carvalho, Gustavo 3
Cavalcanti, Ana 3
Chechik, Marsha 23
Cheng, Chih-Hong 501
Chiari, Michele 293
Cimatti, Alessandro 351
Colvin, Robert J. 201

Denkers, Jasper 423
Deshmukh, Jyotirmoy 110
Dongol, Brijesh 222
Dorff, Sebastian vom 501
Dubslaff, Clemens 332

Esen, Hasan 501

Falcone, Yliès 47
Fehnker, Ansgar 332
Fränzle, Martin 501

Gange, Graeme 383
Geatti, Luca 351
Geraldo, Eduardo 141
Gigante, Nicola 351

Hashemi, Vahid 463
Havelund, Klaus 66
Hofmann, Till 372
Hoppen, Alexander 282

Inverso, Omar 443

Kafle, Bishoksan 383
Kang, Eunsuk 312
Kauffman, Sean 103
Koutavas, Vasileios 243
Kouvaros, Panagiotis 463
Krafczyk, Niklas 84

Le-Papin, Jay 222
Lomuscio, Alessio 463

Marmsoler, Diego 403
Mateis, Cristinel 110
Miculan, Marino 178
Montanari, Angelo 351
Murphy, Logan 23
Muškardin, Edi 481

Nesterini, Eleonora 110
Ngondi, Gerard Ekembe 243
Ničković, Dejan 110
Noll, Thomas 282

Omer, Moran 66

Pasqua, Michele 178
Peled, Doron 66
Peleska, Jan 84
Pill, Ingo 481
Pontiggia, Francesco 293
Pradella, Matteo 293

Qin, Xin 110

Salaün, Gwen 47
Sandro, Alessio Di 23
Santos, José Fragoso 141
Schachte, Peter 383
Schneider, Gerardo 121
Schupp, Stefan 372
Seco, João Costa 141
Sevegnani, Michele 262
Shahin, Ramy 23
Simić, Stella 443

522 Author Index

Søndergaard, Harald 383
Stuckey, Peter J. 383
Stucki, Sandro 121

Tappler, Martin 481
Tonetta, Stefano 351
Tribastone, Mirco 443
Tripakis, Stavros 312

van Gool, Louis 423
Vick, Cole 312
Viger, Torin 23
Visser, Eelco 423

Weigl, Alexander 160
Wienhöft, Patrick 332

Xu, Mengwei 262

	Preface
	Organization
	Controller Synthesis for Adaptive Mobile Robots. Abstractions, All Change!? (Keynote Abstract)
	Contents
	Invited Papers
	RoboWorld: Where Can My Robot Work?
	1 Introduction
	2 RoboWorld Syntax
	3 RoboWorld Semantics
	4 Tool
	5 Verification: Testing
	6 Conclusion
	References

	Validating Safety Arguments with Lean
	1 Introduction
	2 Background
	2.1 Models
	2.2 Assurance Case Strategy Formalization

	3 Lean-Validated Strategies
	3.1 A Strategy Validation Workflow
	3.2 Formalizing Models
	3.3 Formalizing Strategies
	3.4 Proof Automation
	3.5 Application to the FCS
	3.6 Theorem Proving for AC Validation: Challenges

	4 Towards a Black-Box Usage of Lean in AC Validation
	4.1 Integrating Lean with MMINT-A
	4.2 FCS Strategy Decomposition Example
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Run-time Analysis and Testing
	Runtime Enforcement with Reordering, Healing, and Suppression
	1 Introduction
	2 Models
	3 Enforcement Techniques
	3.1 Overview
	3.2 Enforcement Monitor
	3.3 Enforcement Trend
	3.4 Characteristics

	4 Case Study
	5 Tool Support and Experiments
	5.1 Tool Support
	5.2 Experiments
	5.3 Comparison

	6 Related Work
	7 Concluding Remarks
	References

	Monitoring First-Order Interval Logic
	1 Introduction
	2 Preliminaries
	3 A First-Order Interval Logic
	4 The Monitoring Algorithm
	5 Alternative Algorithm Translating to Past First-Order LTL
	6 Implementation
	6.1 Experiments

	7 Conclusion
	References

	Exhaustive Property Oriented Model-Based Testing with Symbolic Finite State Machines
	1 Introduction
	2 Symbolic Finite State Machines, Simulations, Equivalence Classes, and FSM Abstractions
	3 An Exhaustive Property-Based Testing Strategy
	4 Conclusion
	References

	nfer – A Tool for Event Stream Abstraction
	1 Introduction
	2 Writing Nfer Rules
	3 Nfer's Architecture
	4 Comparison with TeSSLa
	5 Conclusion
	References

	Mining Shape Expressions with ShapeIt
	1 Introduction
	2 Shape Expressions
	3 ShapeIt Architecture, Methods and Implementation
	4 Evaluation
	5 Conclusion and Future Work
	References

	Security and Privacy
	Refining Privacy-Aware Data Flow Diagrams
	1 Introduction
	2 Preliminaries
	3 Refining B-DFDs and PA-DFDs
	3.1 Refinement of Attributed Multigraphs
	3.2 B-DFD Refinement
	3.3 PA-DFD Refinement

	4 DFD Refinery
	5 Case Study
	6 Related Work
	7 Conclusions
	A Additional Transformation Rules
	References

	Hybrid Information Flow Control for Low-Level Code
	1 Introduction
	2 Related Work
	3 Overview
	4 Dynamic Semantics
	4.1 Monitor Non-interference

	5 Static Semantics
	5.1 Soundness

	6 Conclusions
	References

	Upper Bound Computation of Information Leakages for Unbounded Recursion
	1 Introduction
	2 Related Work
	3 Foundations
	4 Preprocessing
	5 Bit Dependency Graph
	5.1 Handling Functions
	5.2 From Bit Dependency Graph to Leakage
	5.3 Summary Function Handler

	6 Increasing the Precision
	7 Evaluation
	8 Conclusion and Future Work
	References

	On the Security and Safety of AbU Systems
	1 Introduction
	2 Related Work
	3 Attribute-Based Memory Updates in Short
	3.1 AbU Syntax and Semantics
	3.2 AbU in Action: an IoT Example

	4 Behavioral Equivalences for AbU Systems
	4.1 A Bisimulation for Security
	4.2 A Bisimulation for Safety

	5 Checking Security and Safety of AbU Systems
	5.1 Verifying Security
	5.2 Verifying Safety
	5.3 On the Completeness of the Verification Mechanisms

	6 Dealing with Implicit Interactions
	7 Conclusion
	References

	Parallel Composition/CSP and Probabilistic Reasoning
	Parallelized Sequential Composition and Hardware Weak Memory Models
	1 Introduction
	2 Foundations of Instruction Reordering
	2.1 Reorderings
	2.2 Forwarding
	2.3 Strengthening Memory Models

	3 An Imperative Language with Instruction Reordering
	3.1 Syntax
	3.2 Operational Semantics

	4 Hardware Weak Memory Models
	4.1 Total Store Order (TSO)
	4.2 Release Consistency
	4.3 Arm Version 8
	4.4 RISC-V

	5 Related Work
	6 Conclusion
	References

	Checking Opacity and Durable Opacity with FDR
	1 Introduction
	2 Example: (Durable) Transactional Mutex Lock
	3 Opacity and Durable Opacity
	4 Proving Opacity and Durable Opacity
	5 CSP and FDR Models
	5.1 Overview of CSP
	5.2 Setup and TMS2 Shared Memory
	5.3 TMS2 Model
	5.4 Encoding STM Implementations

	6 Evaluation and Experiments
	7 Related Work
	8 Conclusions
	A Full (d)TMS2 Automata
	B (d)NOrec
	References

	Translation of CCS into CSP, Correct up to Strong Bisimulation
	1 Introduction
	2 CCS, CSP, Correct Translations: a Brief Overview
	2.1 CCS
	2.2 CSP
	2.3 Correct Translations

	3 Intuitions of the Translation
	4 From CCS to CCSTau
	5 CCSTau Transformations
	6 From CCSTau to CSP
	7 Correctness of the Translation
	8 Alternative Translation, Correct up to Failure Equivalence
	9 Structural Properties of the Translation
	10 Conclusion and Future Work
	References

	Probabilistic BDI Agents: Actions, Plans, and Intentions
	1 Introduction
	2 Background
	2.1 BDI Agents
	2.2 Bigraphs

	3 Probabilistic Extension of CAN Semantics
	3.1 Probabilistic Action Outcomes
	3.2 Plan Selection and Its Probabilistic Extension
	3.3 Intention Selection and Its Probabilistic Extension
	3.4 Situation-Aware Distributions for Plan and Intention Selection

	4 Evaluation
	4.1 Smart Manufacturing Example
	4.2 Agent Design
	4.3 Plan and Intention Selection Strategies
	4.4 Plan and Intention Selection Analysis
	4.5 Action Outcome Analysis

	5 Related Work
	6 Conclusions
	References

	A Debugger for Probabilistic Programs
	1 Introduction
	2 Probabilistic Programs
	3 Weakest Preexpectations
	4 Loop Iteration Limits
	5 Weakest Preexpectations at Intermediate Execution States
	5.1 Execution History of a Program

	6 Implementation
	References

	Verification and Synthesis
	Verification of Programs with Exceptions Through Operator Precedence Automata
	1 Introduction
	2 Background: Operator Precedence Languages
	3 Background: Precedence Oriented Temporal Logic
	4 Model Checking OPA
	5 Modeling Procedural Programs
	6 Experiments
	6.1 Discussion

	7 Conclusions
	References

	Counterexample Classification
	1 Introduction
	1.1 Running Example

	2 Background
	3 Counterexample Classification
	3.1 Classes and Classifications
	3.2 The Counterexample Classification Problem
	3.3 Solvability
	3.4 Uniqueness of Solutions

	4 Classification Method
	4.1 Algorithm Overview
	4.2 Optimizations
	4.3 Solution to the Running Example

	5 Implementation and Case Studies
	5.1 Implementation
	5.2 Case Studies: Needham-Schroeder

	6 Related Work
	7 Conclusion and Future Work
	References

	Be Lazy and Don't Care: Faster CTL Model Checking for Recursive State Machines
	1 Introduction
	2 Preliminaries
	2.1 Computation Tree Logic
	2.2 Recursive State Machines

	3 Ternary RSM Model Checking
	3.1 Local Deduction
	3.2 Contextualization of Components
	3.3 Global Deduction
	3.4 Exhaustive Approach to RSM Model Checking

	4 Lazy RSM Model Checking
	4.1 Lazy Contextualization
	4.2 Lazy Approach to RSM Model Checking

	5 Implementation and Evaluation
	5.1 Scalability Experiment
	5.2 PuMoC Benchmark Set
	5.3 Interprocedural Static Analysis for Java Programs

	6 Conclusion and Discussion
	References

	Fairness, Assumptions, and Guarantees for Extended Bounded Response LTL+P Synthesis
	1 Introduction
	2 Preliminaries
	2.1 Temporal Logics
	2.2 Automata
	2.3 Model Checking, Realizability, and Synthesis

	3 LTLEBR+P with Fairness, Assumptions, and Guarantees
	3.1 Expressiveness of GR-EBR
	3.2 An Example

	4 A Framework of Safety Reductions for LTL+P Realizability
	5 A Safety Reduction for GR-EBR
	5.1 Construction of the Automaton with a GR(1) Condition
	5.2 Degeneralization
	5.3 Reduction to Safety for Reactivity(1) Objectives

	6 Experimental Evaluation
	7 Conclusions
	References

	TACoS: A Tool for MTL Controller Synthesis
	1 Introduction
	2 The MTL Synthesis Problem
	3 Approach
	4 Evaluation
	5 Conclusion
	References

	Emerging Domains
	Lightweight Nontermination Inference with CHCs
	1 Introduction
	2 CHCs, Recurrence Sets and Preconditions
	3 CHC Transformations and Their Roles in Non-termination Analysis
	4 An Algorithm for Conditional Non-termination
	5 Implementation and Experiments
	6 Related Work
	7 Concluding Remarks
	References

	A Denotational Semantics of Solidity in Isabelle/HOL
	1 Introduction
	2 Semantics
	2.1 Value Types
	2.2 Stores and Reference Types
	2.3 Expressions
	2.4 Statements

	3 Compliance to the Official Solidity Implementation
	3.1 Results

	4 Verified Constant Folding
	5 Memory Optimization
	6 Related Work
	7 Conclusion
	References

	Configuration Space Exploration for Digital Printing Systems
	1 Introduction
	2 Finishers in the Digital Printing Domain
	2.1 Perfect Binding

	3 CSX
	3.1 Configurations and Jobs
	3.2 Exploration and Validation

	4 Denotational Semantics
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusions
	References

	Bit-Precise Verification of Discontinuity Errors Under Fixed-Point Arithmetic
	1 Introduction
	2 Preliminaries
	2.1 Fixed-Point Arithmetic
	2.2 Numerical Errors
	2.3 Fixed-Point Programs

	3 Propagation of Discontinuity Errors
	3.1 Motivating Example
	3.2 Computing the Discontinuity Error

	4 Program Analysis
	4.1 Verification Workflow
	4.2 Program Transformation

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion and Future Directions
	References

	Machine Learning and Cyber-Physical Systems
	OSIP: Tightened Bound Propagation for the Verification of ReLU Neural Networks
	1 Introduction
	2 Preliminaries
	3 OSIP: Tightened Bound Propagation
	4 Implementation and Evaluation
	5 Conclusions
	References

	Active Model Learning of Stochastic Reactive Systems
	1 Introduction
	2 Preliminaries
	3 Queries-Based Learning of SMMs via Sampling
	3.1 Basics
	3.2 Queries
	3.3 Learner
	3.4 Implementation
	3.5 Analysis of L*SMM

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Mixed-Neighborhood, Multi-speed Cellular Automata for Safety-Aware Pedestrian Prediction
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Cellular Automaton (CA)
	3.2 Cellular Automaton for Pedestrian Prediction
	3.3 Initialization of c0

	4 Transition Rule
	4.1 Variable Update-Rate
	4.2 Multiple Neighborhood Usage
	4.3 Cardinal Directions Vectorization
	4.4 Over-Propagation

	5 Implementation
	5.1 Performance Implications of Environment Density
	5.2 Performance Compared to Simple Cell-Growth Algorithm

	6 Discussion
	7 Conclusion
	References

	Author Index

