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Abstract. Graph embedding techniques are becoming increasingly
common in many fields ranging from scientific computing to biomedical
applications and finance. These techniques aim to automatically learn
low-dimensional representations for a variety of network analysis tasks.
In literature, several methods (e.g., random walk-based, factorization-
based, and neural network-based) show very promising results in terms
of their usability and potential. Despite their spreading diffusion, little is
known about their reliability and robustness, particularly when applied
to the real world of data, where adversaries or malfunctioning/noisy data
sources may supply deceptive data. The vulnerability emerges mainly by
inserting limited perturbations in the input data when these lead to a
dramatic deterioration in performance. In this work, we propose an anal-
ysis of different adversarial attacks in the context of whole-graph embed-
ding. The attack strategies involve a limited number of nodes based on
the role they play in the graph. The study aims to measure the robust-
ness of different whole-graph embedding approaches to those types of
attacks, when the network analysis task consists in the supervised classi-
fication of whole-graphs. Extensive experiments carried out on synthetic
and real data provide empirical insights on the vulnerability of whole-
graph embedding models to node-level attacks in supervised classification
tasks.

Keywords: Whole-graph embedding · Adversarial attacks · Graph
classification

1 Introduction

Graph structure plays an important role in many real-world applications. Repre-
sentation learning on structured data with machine and deep learning methods
has shown promising results in various applications, including drug screening
[46], protein analysis [41], and knowledge graph completion [27].
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Many graph embedding methods have been developed aiming at mapping
graph data into a vector space [5]. The result is a low-dimensional feature repre-
sentation for each node in the graph where the distance between the nodes in the
destination space is preserved as much as possible. Actually, working on embed-
ded data turns out to be easier and faster than on the original data. Furthermore,
the resulting vectors in the transformed space can be adopted for downstream
analysis, either by analyzing the target space or by applying machine learning
(ML) techniques to the vector space. Indeed, by maintaining the topological
information of the graph, low-dimensional representations can be adopted as
features for different tasks such as graphs/nodes classification or clustering.

Despite the remarkable success, the lack of interpretability and robustness
of these models makes them highly risky in fields like biomedicine, finance, and
security, to name a few. Typically, sensitive information concerns the user-user
relationship within the graph. A user who connects with many users with sen-
sitive information may have sensitive information as well. As heuristics learned
from graph-based methods often produce good predictions, they could also jeop-
ardize the model. For example, an ill-intentioned person could disguise himself
by connecting to other people on a social network. Such an “attack” on the
model is simple enough but could lead to severe consequences [11]. Due to a
large number of daily interactions, even if only a few of them are fraudulent, the
ill-intentioned could gain enormous benefits.

The concept of graph robustness was first introduced in the 1970s [10] and
is certainly interdisciplinary. This aspect has generated a variety of points of
view, opening up to challenging and implicit problems with the aim of providing
fundamental knowledge.

Robustness in networked systems is commonly defined as a measure of their
ability to continue operating when one or more of their parts are naturally dam-
aged or targeted by an attack [4]. The study of network robustness concerns the
understanding of interconnected complex systems. For example, consider a net-
work that is prone to natural failures or targeted attacks. A natural failure occurs
when a single element fails due to natural causes such as obsolescence. The con-
sequence is an additional load of the whole remaining network, causing a series of
cascading faults. Not all failures come from natural causes; some may be induced
by targeted attacks, penetrating the network and sabotaging an important part of
it. The antonym of network robustness is vulnerability [42], defined as a measure
of a network’s susceptibility to the spread of perturbations across the network.
The concepts of robustness and vulnerability can be extended to different types of
networks, such as biological ones. Also in this case, they are two important indi-
cators to verify the possible fault of a part of the network or any criticalities that
can compromise the general functions with irreversible impact.

Robustness and vulnerability analysis is a crucial problem for today’s research
focusing on machine learning, deep learning, and AI algorithms operating on net-
worked data in several domains, from cybersecurity to online financial trading,
from social media to big-data analytics. In these contexts, while the networked
systems (i.e., the graph-structured data) are the target of the attacks or pertur-
bations, the real goal is to cause either the malfunctioning (intentionally or not)
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or an induced fraudulent behavior of the algorithms which operate on the
modified data.

According to this interpretation, adversarial machine learning [23] is the
area of research in which ML models vulnerability is studied under adversar-
ial manipulation of their input intended to cause incorrect classification [12].
Neural networks and many other machine learning models are highly vulnerable
to adversarial perturbations of the input to the model either at train or at test
time, or both.

Several works on adversarial machine learning in the literature focus on the
computer vision domain [2,34] with application to image recognition. Specifi-
cally, they address the problem of studying and improving the robustness of
classification methods when adversarial images are present in the training and/or
testing stages. More recently, adversarial ML has been increasingly utilized in
other domains, such as natural language processing (NLP) [16] and cybersecu-
rity [36]. Examples of applications in computer vision and NLP domains include
handling autonomous cars’ systems vulnerability, fake news, and financial fraud
detection algorithms. In the cybersecurity domain, adversaries can be terrorists
and fraudulent attackers. Examples of AI cyber systems that can be vulnerable
to adversarial attacks are detection algorithms of malware stealing user infor-
mation and/or collecting money and network worms causing network damages
and malicious functionality.

In this work, we focus on adversarial ML techniques and approaches in the
domain of machine learning models applied to the classification of biological net-
works. In this domain, we do not think of a scenario in which a “real adversary”
intentionally introduces malicious perturbations in the input of learning mod-
els. In our interpretation of “adversarial attacks” within the realm of biological
networks, we mean any type of perturbation to the graph structure, either due
to noise introduced by the experimental environment from where the biologi-
cal data is extracted or to the lack of information due to corrupted sources or
incomplete pre-processing of raw data.

We propose a broad experimentation phase to address the various aspects
mentioned above, using several methods and datasets. To the best of our knowl-
edge, a performance analysis of whole-graph embedding methods under condi-
tions of adversarial attacks has never been carried out.

The paper is structured as follows. Section 2 provides an overview of the state-
of-art about adversarial attacks on whole-graph embedding models. Section 3
gives details about the problem statement. Section 4 provides a comprehensive
experimental phase, while Sect. 5 concludes the paper.

2 Related Work

The literature concerning adversarial attacks for graph data is very recent and
often aimed at node-level or link-level applications [8,39]. Here, we focus on
graph-level applications, and specifically on adversarial attacks on whole-graph
embedding methods, for which few recent papers (mainly preprints) are available.
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In [40], Tang et al. design a surrogate model that consists of convolutional
and pooling operators to generate adversarial samples to fool the hierarchical
Graph Neural Networks (GNN)-based graph classification models. Nodes pre-
served by the pooling operator are set as attack targets. Then the attack targets
are perturbed slightly to trick the pooling operator in hierarchical GNNs into
selecting the wrong nodes to preserve. Furthermore, a robust training on the tar-
get models is performed to demonstrate that the retrained graph classification
models can better defend against the attack from the adversarial samples.

Chen et al. [7] propose a graph attack framework named GraphAttacker
that works to adjust the structures and to provide the attack strategies accord-
ing to the graph analysis tasks. It generates adversarial samples based on the
Generative Adversarial Network (GAN) through alternate training on three key
components: the Multi-strategy Attack Generator, the Similarity Discriminator,
and the Attack Discriminator. Furthermore, to achieve attacks within pertur-
bation budget, a novel Similarity Modification Rate to quantify the similarity
between nodes and thus to constrain the attack budget is introduced.

Another graph attack framework, named Graph Backdoor, is presented by
Xi et al. [48]. It can be applied readily without knowing data models or tun-
ing strategies to optimize both attack effectiveness and evasiveness. It works
in different ways: i) graph-oriented – it defines triggers as specific subgraphs,
including topological structures and descriptive features, entailing a large design
spectrum for the adversary; ii) input-tailored – it dynamically adapts triggers
to individual graphs; and iii) attack-extensible – it can be instantiated for both
transductive and inductive tasks.

The vulnerability of Graph Convolutional Networks (GCNs) to adversarial
attacks has been debated in the literature. In [24], Jin et al. introduce a robust-
ness certificate for graph classification using GCNs under structural attacks. The
method is based on Lagrange dualization and convex envelope, which result in
tight approximation bounds computable by dynamic programming. Applied in
conjunction with robust training, it allows an increased number of graphs to be
certified as robust.

Faber et al. [14] discuss the particularities of explaining GNN predictions.
In graphs, the structure is fundamental, and a slight modification can lead to
little knowledge of the data. Therefore, the explanation is reflected in adversar-
ial attacks. The authors argue that the explanation methods should stay with
the training data distribution and produce Distribution Compliant Explanation
(DCE). To this end, they propose a novel explanation method, Contrastive GNN
Explanation, for graph classification that adheres to DCE.

You et al. [49] propose a graph contrastive learning (GraphCL) framework
for learning unsupervised representations of graph data. The impact of various
combinations of graph augmentations in different tasks (semi-supervised, unsu-
pervised, transfer learning, and adversarial attacks) is explored. The proposed
framework can produce graph representations of similar or better generalizabil-
ity, transferability, and robustness than state-of-the-art methods.
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In [9], Chung et al. present a framework named Graph Augmentations with Bi-
level Optimization (GABO). It is built to provide a graph augmentation approach
based on bi-level optimization to investigate the effects on graph classification per-
formance. The augmentation procedure can be applied without a priori domain
knowledge about the task. Indeed, the framework combines a Graph Isomorphism
Network (GIN) layer augmentation generator with a bias transformation.

All the above described approaches propose different types of adversarial
attacks. However, none of them shares our aim, i.e., to compare the robustness
to adversarial attacks of different whole-graph embedding methods.

3 Background

In this section, we introduce the formalization of a graph adversarial attack for
the graph classification task. We will first give some preliminary notions about
graphs and the whole-graph embedding problem. Then, we introduce the graph
adversarial attack and related strategies for graph classification.

3.1 Whole-Graph Embedding

A graph G = (V,E) is represented by a pair of sets: V = {vi}Ni=1 is the set of
nodes, and E ⊆ V ×V is the set of edges, each one represented by a pair of nodes
(vi, vj), where vi is the source node and vj the target node. This definition holds
for unweighted graphs, which means graphs whose vertices relation is simply rep-
resented by a connection between them. Let W be a set of real numbers, called
weights, such that for each (vi, vj) ∈ E there exists a weight wi,j ∈ W asso-
ciated to the edge; then G(V,E,W ) is called a weighted graph. An alternative
representation of a weighted graph is through its adjacency matrix A = {Ai,j},
whose elements are:

Ai,j =

{
wi,j if (vi, vj) ∈ E

0 otherwise

For unweighted graphs, a unitary weight is considered for each edge to obtain the
adjacency matrix. In general, the adjacency matrix A is not symmetric, since the
occurrence of an edge from node v to node u does not imply the existence of the
edge (u, v). This is only the case of undirected graphs, in which the connection
between two nodes u and v has no direction, thus both (u, v) ∈ E and (v, u) ∈ E
and A is symmetric. In the following, we will refer to generic graphs G = (V,E),
specifying their weights or their directionality only if needed.

In a very general definition, graph embedding learns a mapping from a graph
to a vector space with the purpose of preserving main graph properties.

Definition 1. Given a graph G = (V,E), a graph embedding (or node-level
graph embedding) is a mapping φ: vi ∈V → yi ∈ R

d, i = 1, . . . , N, d ∈ N, such
that the function φ preserves some proximity measure defined on graph G.
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Specifically, it is a space reduction that maps the nodes of a graph into a d-
dimensional feature vector space, also known as latent space, trying to maintain
structural information in terms of connections between vertices. The goal of keep-
ing as much information as possible about the graph space in the transformation
is linked to the choice of node/edge properties for the initial representation of
the graph. The criticality concerns the final latent space that expresses valuable
information, for applications such as classification or grouping, despite being in
a lower-dimensional search space.

The concept of graph embedding refers to node-level since it maps each node
in a graph into a vector, preserving node-node proximity (similarity/distance).

Definition 2. Given a set of graphs G = {Gi}Mi=1 with the same set of vertices
V, a whole-graph embedding is a mapping ψ : Gi → yi ∈ R

d, i = 1, . . . , M,
d ∈ N, such that the function ψ preserves some proximity measure defined on G.

In this context, the fundamental condition is that the nodes of the graphs rep-
resent the same information. This requires an alignment procedure that verifies
this property to provide compliant embedding.

Unlike graph embedding, which is adopted in applications such as link pre-
diction and node label predictions, whole-graph embedding is more suited to
graph classification, graph similarity ranking, and graph visualization.

3.2 Graph Adversarial Attacks

Generally, a network can become damaged through two primary ways: natural
failure and targeted attack. Natural failures typically occur when a part fails
due to natural causes. This results in the malfunction or elimination of a node
or edge in the graph. Despite random network failures are much more common,
they are less harmful than targeted attacks. This phenomenon has been verified
across a range of graph structures [4]. Otherwise, targeted attacks carefully and
through precise rules select the nodes and edges of the network for removal to
maximally disrupt network functionality.

Our attention is focused on the modifications to the discrete structures and
different attack strategies. Generally, the attacker tries to add or delete edges
from G to create the new graph. These kinds of actions are varied since adding
or deleting nodes can be performed by a series of modifications to the edges.
Editing edges requires more effort than editing nodes. Indeed choosing a node
only requires O(|V |) complexity, while choosing an edge requires O(|V |2). In our
experiments, we consider two attack strategies

– Degree-based Attack (DA): a percentage p of graph nodes having the highest
degree is removed. The degree (or connectivity) δvi

of node vi is the number
of edges connected to it and can be computed using the graph adjacency
matrix A = {Ai,j} as

δvi
=

∑
j �=i

Ai,j .
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The effect of a DA is to reduce the total number of edges in the network as
fast as possible [22]. It only takes into account the neighbors of the target
node v when making a decision and can be considered a local attack. It is
performed with a low computational overhead.

– Betweenness-based Attack (BA): a percentage p of graph nodes having the
highest betweenness centrality is removed. The betweenness centrality for a
node vi is defined as

bvi
=

∑
j,k �=i

σj,k(vi)
σj,k

,

where σj,k is the total number of shortest paths from node vj to node vk and
σj,k(vi) is the number of those paths that pass through the target node vi.
The effect of a BA is to destroy as many paths as possible [22]. It is considered
a global attack strategy due to the path information is aggregated from the
whole network. Clearly, global information carries significant computational
overhead compared to local attacks.

The robustness of the whole-graph embedding methods to adversarial attacks
will be evaluated in terms of their performance for the task of graph classification
on the attacked data.

4 Experiments

In our experiments, we analyze and compare the behavior of some whole-graph
embedding methods under attack conditions for the task of graph classification.
There are different challenges in this topic [40]

– Selection of the target nodes and edges for the attack. Suppose one or a few
nodes or edges are perturbed at random. In that case, the graph classification
results may not change because such a perturbation may not affect or destroy
the intrinsic characteristics of graphs discriminating for the classification.
In this regard, node selection strategies have been chosen as illustrated in
Sect. 3.2.

– Parameters setting to generate effective results. The choice is undoubtedly
difficult as the starting graphs are perturbed. A consequence could also fall on
the computational costs during classification. As is well known, optimizing the
parameters is a crucial aspect for obtaining the best performance. Concerning
this point, we explored the parameter space to choose those that lead to the
best results.

– Robustness is always an essential factor in evaluating the performance of the
models. In the scenario of adversarial attacks, how to improve the robustness
of the classification models? This is one of the two crucial points on which
the paper was founded. In fact, as it is possible to observe through provided
results, it is not certain that, by weakening the structure of the graphs, the
transformation into a vector space, through the embedding phase, necessarily
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produces an unrepresentative features vector, affecting the classification. We
will see how some methods adapt even when the graph structures are less
dense and informative.

– Vulnerability, in the same way, is always an essential factor in evaluating the
performance of the models. In the scenario of adversarial attacks, how to
identify the vulnerability of the classification models? It is the second crucial
node on which the paper was founded. As it is possible to observe through the
provided results, also in this case, by weakening the structure of the graphs,
the transformation into a vector space, through the embedding phase, could
produce an unrepresentative feature vector, affecting the classification. We
will see how some methods do not fit when the graph structures are less
dense and informative.

– Data-driven selection. The choice of data is driven by the characteristics of
the graphs. In this way, models can show robustness or highlight critical
issues when a variation of the data occurs. We decided to stress the various
methods chosen for the evaluation based on different characteristics related
to data. As we can see from Table 1, for example, three of the five datasets are
unweighted. This detail is fundamental for calculating the centrality measures
and, therefore, for selecting the nodes to be attacked.

4.1 Datasets

Table 1 illustrates the main properties of the datasets adopted in the experiments
and includes synthetic and real network datasets, concerning some case studies
of our current research on graph classification and clustering [17,29,30].

LFR is a synthetic dataset introduced in [21] based on the Lancichinetti–
Fortunato–Radicchi (LFR) method [25]. As described in [29], we generated two
classes of graphs containing 81 nodes, constructed using two different values of
the parameter μ (expected proportion of edges having a vertex in one community
and the other vertex in another community): 600 graphs with 0.1 µ and 1000
with 0.5 µ. Therefore, this dataset includes many small and unweighted graphs,
subdivided into classes differing by well-defined community properties.

The MREG model [47] is adopted to generate the synthetic Multiple Random
Eigen Graphs (MREG) dataset. Settings for MREG parameters, chosen based
on the authors suggestions and our previous choices [29], are: d = 2 (model
dimension), n = 100 (number of nodes), h1, h2 ∈ R

n, where h1(i) = 0.1,∀i,
h2(i) = −0.1, i = 1, . . . , 50, h2(i) = 0.1, i = 51, . . . , 100. The total number of
unweighted graphs is 300, each composed of 100 nodes each, equally subdivided
into 3 classes using λ = [24.5, 4.75] for class c1, λ = [20.75, 2.25] for class c2, and
λ = [24.5, 2.25] for class c3. In [47], further parameters’ details are given.

The Brain fMRI dataset contains real networks built in [3] from functional
magnetic resonance imaging (fMRI) time-series data [1] from the Center for
Biomedical Research Excellence (COBRE) dataset. It is composed of 54 graphs
from Schizophrenia subjects and 70 graphs from healthy controls. Each graph
includes 263 nodes corresponding to different brain regions. The edges weights
represent the Fisher-transformed correlation between the fMRI time-series of the
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nodes after ranking [3], and we only kept the weights of the positively correlated
edges. The dataset ends up including dense weighted graphs with a high average
degree but a small diameter.

The Kidney dataset describes real metabolic networks created for validating
related research [18,20,30]. It contains networks derived from data of 299 patients
divided into three classes: 159 clear cell Renal Cell Carcinoma (KIRC), 90 Papil-
lary Renal Cell Carcinoma (KIRP), and 50 Solid Tissue Normal samples (STN).
We obtained the networks by mapping gene expression data coming from the
Genomic Data Commons (GDC, https://portal.gdc.cancer.gov) portal (Projects
TCGA-KIRC and TCGA-KIRP) on the biochemical reactions extracted from
the kidney tissue metabolic model [44] (https://metabolicatlas.org). Specifically,
given the stoichiometric matrix of the metabolic model, the graph nodes rep-
resent the metabolites, and the edges connect reagent and product metabolites
in the same reaction, weighted by the average of the expression values of the
genes/enzymes catalyzing that reaction [20]. Different reactions represented by
multiple edges connecting two metabolites were fused in a single edge, where the
weight includes the sum of the weights of the fused edges. Disconnected nodes,
due to reactions not catalyzed by an enzyme, and recurrent metabolites, were
not included [20]. The simplification procedure described in [18] is applied to
reduce the complexity of the network, leading to reduce the number of nodes
from 4022 to 1034. Overall, the dataset includes sparse weighted graphs with a
small average degree but wide diameter.

MUTAG [13] is a popular benchmark dataset and is composed of networks
of 188 mutagenic aromatic and heteroaromatic nitro compounds. The nodes
represent atoms, while the edges represent chemical bonds between them. The
graphs contain both vertex and edge labels. The two classes indicate whether or
not the compound has mutagenic effects on a bacterium. Contrary to the other
datasets, the nodes are not perfectly aligned. Indeed, the MUTAG networks have
an average of eighteen vertices, but the labels are only seven.

4.2 Compared Methods

In the experiments, we compared the classification results obtained using the
network embeddings produced by seven whole-graph embedding methods, briefly
described in the following

– GL2vec [6]. It is an extended version of Graph2vec. The method is named
Graph and Line graph to vector (GL2vec) because it concatenates the embed-
ding of an original graph to that of the corresponding line graph. The line
graph is an edge-to-vertex dual graph of the original graph. Specifically,
GL2vec integrates either the edge label information or the structural infor-
mation, which Graph2vec misses with the embeddings of the line graph.

https://portal.gdc.cancer.gov
https://metabolicatlas.org
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Table 1. Main properties of the adopted datasets

LFR MREG Kidney Brain fMRI MUTAG

Graphs 1600 300 299 124 188

Classes 2 3 3 2 2

Samples per class 600/1000 100/100/100 159/90/50 70/54 125/63

Vertices 82 100 1034 263 17.93

Average edges 844.45 1151.71 3226.00 19748.88 39.59

Average edge density 0.13 0.23 0.01 0.57 0.138454

Distinct vertex labels 82 100 1034 263 7

Edge weights ✗ ✗ � � ✗

Minimum diameter 3 2 126 0.03 5

Maximum diameter 7 3 455.36 0.07 15

Average degree 20.60 23.03 6.24 150.18 2.19

– Graph2vec [33]. It provides a Skip-Gram neural network model, typically
adopted in the NLP domain. It learns data-driven distributed representa-
tions of arbitrarily sized graphs. The resulting embeddings are learned in an
unsupervised manner and are task-unaware.

– IGE [15]. It extracts handcrafted invariant features based on graph spectral
decomposition. These features are easy to compute, permutation-invariant,
and include sufficient information on the graph’s structure.

– NetLSD [43]. It computes a compact graph signature derived from the solu-
tion of the heat equation involving the normalized Laplacian matrix. It is
permutation and size-invariant, scale-adaptive, and computationally efficient.

– FGSD [45]. It provides a graph representation based on a family of graph
spectral distances with uniqueness, stability, sparsity, and computational effi-
ciency properties.

– FeatherGraph [38]. It adopts characteristic functions defined on graph vertices
to describe the distribution of node features at multiple scales. The probability
weights of the characteristic function are defined as the transition probabilities
of random walks. The node-level features are combined by mean pooling to
create graph-level statistics.

– Netpro2vec [31]. It is a neural-network method that produces embedding of
whole-graphs which are independent from the task and nature of the data.
It first represents graphs as textual documents whose words are formed by
processing probability distributions of graph node paths/distances (e.g., the
Transition Matrix, TM, or the Node Distance Distribution, NDD). Then, it
embeds graph documents by using the doc2vec method [26].

4.3 Implementation Details

For the first six whole-graph embedding methods (GL2vec, Graph2vec, IGE,
NetLSD, FGSD, and FeatherGraph), we used their implementation provided
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in the Karate Club software [37]. Our Netpro2vec framework, implemented
in Python, is publicly available (https://github.com/cds-group/Netpro2vec). It
also includes the code for extracting the NDD and TM distribution matri-
ces, based on the GraphDistances R package [19], and the doc2vec embed-
ding is performed using the gensim Natural Language Processing (NLP) library
[35]. Even though the method can exploit different distribution distances as
well their combinations, in the experimental results, we only report the two
obtained using NDD (Netpro2vecndd) and the combination of NDD with TM1
(Netpro2vecndd+tm1), which lead to the best performance results.

The dimension d of the latent feature space for GL2Vec, Graph2Vec, FGSD,
and Netpro2vec was set to 512; this value has been experimentally chosen so as
to maximize accuracy. Instead, for IGE, FeatherGraph, and NetLSD, the output
dimension cannot be specified as an input parameter.

For classification, we adopted an SVM model with a linear kernel
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html). To
avoid hiding the effect of adversarial attacks, we did not apply any feature selec-
tion, even though it could certainly provide higher performance results for any
of the considered methods. We validated the developed models through ten-fold
stratified cross-validation iterated ten times, measuring the mean and standard
deviation of classification accuracy and Matthews correlation coefficient (MCC)
[32].

All the experiments were run on Google Colab Machine, which provides by
default a virtual machine based on a bi-processor with two CPUs @ 2.30 GHz
Intel(R) Xeon(R), 13 GB RAM and 33 GB HDD.

4.4 Performance Evaluation

Performance results obtained using the seven whole-graph embedding methods
described in Sect. 4.2 on the five datasets detailed in Sect. 4.1 are reported in the
bar plots of Fig. 1. Detailed numerical results are given in Tables 2 and 3. Here,
we consider the results achieved using the original network data (Unattacked),
as well as those using data that underwent the removal of the 30% and 50% of
the nodes having the highest betweenness centrality (BA) or the highest degree
(DA), respectively. The choice of these percentages p of nodes to be removed aims
at investigating the effects of both moderate (30%) and strong (50%) adversarial
attacks. The performance is evaluated in terms of the Accuracy and MCC values,
defined as

Accuracy =
TP + TN

TP + FN + FP + TN
,

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

respectively. Here, TP, TN, FP, and FN indicate the number of true positives,
true negatives, false positives, and false negatives. While the Accuracy provides
the percentage of correctly classified samples, MCC gives the correlation coeffi-
cient between observed and predicted binary classifications.

https://github.com/cds-group/Netpro2vec
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Table 2. Accuracy (%) and MCC (mean and std over ten iterations) of adversarial
attacks on whole-graph embedding models (30% of attacked nodes). In boldface the
best results for each dataset and each attack.

Dataset Method Accuracy MCC

Unattacked BA DA Unattacked BA DA

LFR GL2Vec 94.59± 1.75 84.66± 2.45 87.66± 2.12 0.88± 0.03 0.66± 0.05 0.74± 0.04

Graph2vec 91.94± 2.04 84.41± 2.74 89.44± 2.13 0.82± 0.04 0.66± 0.05 0.77± 0.04

IGE 100.00± 0.00 97.06± 1.34 97.17± 1.17 1.00± 0.00 0.93± 0.02 0.93± 0.02

NetLSD 100.00± 0.00 99.09± 0.73 99.04± 0.71 1.00± 0.00 0.98± 0.01 0.97± 0.01

FGSD 100.00± 0.00 97.97± 0.99 99.15± 0.68 1.00± 0.00 0.95± 0.02 0.98± 0.01

FeatherGraph 100.00± 0.00 98.99± 0.69 99.00± 0.74 1.00± 0.00 0.97± 0.01 0.97± 0.01

Netpro2vecndd 100.00± 0.00 98.41± 0.96 97.40± 1.16 1.00± 0.00 0.96± 0.01 0.94± 0.02

Netpro2vecndd+tm1 100.00± 0.00 95.26± 1.16 72.13± 2.99 1.00± 0.00 0.89± 0.03 0.38± 0.07

MREG GL2Vec 66.83± 7.14 65.23± 7.63 64.23± 8.09 0.44± 0.10 0.48± 0.11 0.47± 0.12

Graph2vec 38.70± 8.46 40.60± 9.46 46.27± 9.30 0.08± 0.13 0.11± 0.14 0.19± 0.14

IGE 65.80± 8.60 62.67± 7.53 65.70± 7.55 0.49± 0.12 0.44± 0.11 0.49± 0.11

NetLSD 71.57± 7.05 58.03± 8.38 58.30± 8.29 0.58± 0.10 0.37± 0.12 0.38± 0.12

FGSD 59.60± 6.08 59.73± 7.71 65.93± 7.97 0.40± 0.09 0.40± 0.11 0.49± 0.12

FeatherGraph 59.60± 6.08 62.80± 7.77 66.10± 6.77 0.40± 0.09 0.44± 0.11 0.49± 0.10

Netpro2vecndd 63.07± 7.60 42.70± 8.73 55.33± 9.44 0.45± 0.11 0.14± 0.13 0.33± 0.14

Netpro2vecndd+tm1 36.80± 8.48 34.77± 7.95 30.87± 8.47 0.05± 0.12 0.02± 0.12 0.03± 0.13

Brain fMRI COBRE GL2Vec No conv No conv No conv No conv No conv No conv

Graph2vec 43.85± 11.27 46.29± 13.43 42.58± 12.38 −0.18± 0.24 −0.09± 0.27 −0.18± 0.25

IGE 44.88± 14.70 48.99± 13.33 53.69± 14.64 −0.11± 0.30 −0.03± 0.28 0.05± 0.30

NetLSD 56.12± 6.59 55.98± 12.10 56.01± 8.70 0.01± 0.18 0.09± 0.26 0.03± 0.21

FGSD 56.54± 2.20 54.68± 12.75 48.31± 13.90 0.00± 0.00 0.07± 0.26 −0.06± 0.29

FeatherGraph 53.77± 5.89 52.65± 7.77 53.77± 12.30 −0.06± 0.16 −0.08± 0.17 0.01± 0.28

Netpro2vecndd 56.58± 12.74 58.58± 10.20 52.97± 11.36 0.11± 0.27 0.14± 0.23 −0.00± 0.27

Netpro2vecndd+tm1 56.58± 12.74 59.18± 13.32 53.30± 12.70 0.11± 0.27 0.17± 0.28 0.05± 0.27

Kidney RNASeq GL2Vec 90.09± 4.74 82.58± 6.73 59.83± 6.05 0.83± 0.08 0.71± 0.11 0.25± 0.16

Graph2vec 90.79± 5.11 79.87± 7.05 58.08± 5.94 0.83± 0.08 0.66± 0.12 0.21± 0.17

IGE No conv No conv No conv No conv No conv No conv

NetLSD 53.46± 7.02 59.07± 7.14 62.23± 8.68 0.11± 0.16 0.25± 0.15 0.36± 0.15

FGSD No conv No conv No conv No conv No conv No conv

FeatherGraph 81.51± 7.96 81.67± 6.44 84.36± 6.64 0.68± 0.13 0.69± 0.10 0.74± 0.11

Netpro2vecndd 83.53± 6.42 87.22± 6.17 85.83± 6.19 0.71± 0.11 0.79± 0.10 0.76± 0.10

Netpro2vecndd+tm1 91.27± 4.45 87.33± 5.86 90.91± 5.60 0.86± 0.07 0.79± 0.09 0.85± 0.09

MUTAG GL2Vec 76.11± 8.48 59.09± 10.57 67.82± 9.44 0.31± 0.24 0.05± 0.24 0.27± 0.21

Graph2vec 66.32± 9.72 64.07± 9.79 63.63± 10.02 0.39± 0.24 0.15± 0.24 0.15± 0.24

IGE 83.72± 7.92 83.22± 8.13 84.93± 7.45 0.61± 0.16 0.63± 0.17 0.67± 0.16

NetLSD 86.23± 7.68 83.71± 8.03 83.38± 7.54 0.69± 0.16 0.63± 0.18 0.62± 0.17

FGSD 86.01± 7.77 78.68± 9.57 81.21± 8.79 0.70± 0.16 0.55± 0.19 0.60± 0.18

FeatherGraph 82.40± 8.24 69.72± 7.22 68.23± 7.20 0.60± 0.17 0.23± 0.22 0.17± 0.23

Netpro2vecndd 71.42± 9.19 61.75± 8.78 62.34± 0.06 0.35± 0.21 0.00± 0.22 0.12± 0.23

Netpro2vecndd+tm1 72.06± 9.64 73.95± 8.60 76.51± 9.27 0.34± 0.19 0.41± 0.20 0.47± 0.21

For the LFR dataset, the performance on unattacked graphs is high for all
methods. Indeed, as already shown in [31], most of the considered methods suc-
ceed in producing whole-graph embeddings that lead to an almost perfect linear
separation between the two LFR classes. In the case of moderate attacks, NetLSD
and FGSD (but also FeatherGraph and Netpro2vec with NDD) respond better
to both the types of adversarial attack, showing a lower reduction in Accuracy
and MCC values as compared to the other methods. For stronger attacks, Feath-
erGraph reveals the most robust method, experiencing only a slight performance
decrease.



Performance Evaluation of Adversarial Attacks 231

Fig. 1. Bar plots of the accuracy (%) and MCC of adversarial attacks on whole-graph
embedding models

In the case of the MREG dataset, discordant results can be observed. Indeed,
the best-performing method using unattacked data (NetLSD) experiences a dra-
matic performance decrease when handling both types of attacks. In contrast, the
second-best method (GL2vec) is subject to a much lower performance decrease
under attack, and this behavior holds whichever the strength of the attack. On
the other side, the attacks can even be beneficial for classification performance,
as for FeatherGraph that improves its performance under the moderate BA and
the stronger DA.

For both the fMRI and Kidney datasets, Netpro2vec, mainly when based
on NDD+TM1, appears to be the method that best exploits the network
edges’ weights. At the same time, it proves to be quite robust to adversar-
ial attacks, experiencing slightly decreased performance for both moderate and
strong attacks. Instead, NetLSD improves its performance when handling mod-
erate DAs, showing the best performance among all the compared methods, and



232 M. Manzo et al.

Table 3. Accuracy (%) and MCC (mean and std over ten iterations) of adversarial
attacks on whole-graph embedding models (50% of attacked nodes). In boldface the
best results for each dataset and each attack.

Dataset Method Accuracy MCC

Unattacked BA DA Unattacked BA DA

LFR GL2Vec 94.59± 1.75 85.36± 2.65 83.04± 2.56 0.88± 0.03 0.68± 0.05 0.63± 0.05

Graph2vec 91.94± 2.04 88.74± 2.36 85.51± 2.69 0.82± 0.04 0.75± 0.05 0.70± 0.05

IGE 100.00± 0.00 91.46± 2.10 94.17± 1.85 1.00± 0.00 0.81± 0.04 0.87± 0.03

NetLSD 100.00± 0.00 93.60± 1.93 92.97± 1.99 1.00± 0.00 0.86± 0.04 0.85± 0.04

FGSD 100.00± 0.00 77.96± 2.54 82.58± 2.97 1.00± 0.00 0.52± 0.05 0.62± 0.06

FeatherGraph 100.00± 0.00 97.17± 1.19 94.62± 1.79 1.00± 0.00 0.93± 0.02 0.88± 0.03

Netpro2vecndd 100.00± 0.00 82.99± 2.55 86.67± 2.40 1.00± 0.00 0.63± 0.05 0.71± 0.05

Netpro2vecndd+tm1 100.00± 0.00 82.99± 2.55 62.99± 3.73 1.00± 0.00 0.63± 0.05 0.18± 0.08

MREG GL2Vec 66.83± 7.14 58.07± 8.46 59.57± 8.28 0.44± 0.10 0.37± 0.12 0.39± 0.12

Graph2vec 38.70± 8.46 58.07± 8.46 40.77± 8.18 0.08± 0.13 0.37± 0.12 0.11± 0.12

IGE 65.80± 8.60 54.13± 6.73 55.53± 7.47 0.49± 0.12 0.31± 0.10 0.33± 0.11

NetLSD 71.57± 7.05 49.37± 7.78 50.20± 7.48 0.58± 0.10 0.24± 0.11 0.26± 0.11

FGSD 59.60± 6.08 54.60± 7.98 56.63± 8.13 0.40± 0.09 0.32± 0.12 0.35± 0.12

FeatherGraph 59.60± 6.08 61.37± 8.02 57.73± 8.18 0.40± 0.09 0.42± 0.12 0.37± 0.12

Netpro2vecndd 63.07± 7.60 41.83± 9.18 42.93± 7.92 0.45± 0.11 0.12± 0.14 0.14± 0.12

Netpro2vecndd+tm1 36.80± 8.48 33.87± 8.71 34.70± 7.93 0.05± 0.12 0.00± 0.13 0.02± 0.12

Brain fMRI COBRE GL2Vec No conv No conv No conv No conv No conv No conv

Graph2vec 43.85± 11.27 51.13± 11.93 46.27± 13.14 −0.18± 0.24 −0.00± 0.25 −0.10± 0.27

IGE 44.88± 14.70 48.96± 13.21 56.83± 13.16 −0.11± 0.30 −0.02± 0.27 0.12± 0.27

NetLSD 56.12± 6.59 50.68± 10.30 54.41± 6.25 0.01± 0.18 −0.08± 0.20 −0.02± 0.13

FGSD 56.54± 2.20 48.49± 13.51 45.22± 11.42 0.00± 0.00 −0.05± 0.28 −0.12± 0.23

FeatherGraph 53.77± 5.89 52.63± 12.04 60.65± 13.51 −0.06± 0.16 0.02± 0.26 0.20± 0.28

Netpro2vecndd 56.58± 12.74 52.46± 13.24 53.83± 11.31 0.11± 0.27 0.02± 0.28 0.01± 0.26

Netpro2vecndd+tm1 56.58± 12.74 56.35± 12.46 53.83± 11.31 0.11± 0.27 0.11± 0.25 0.01± 0.26

Kidney RNASeq GL2Vec 90.09± 4.74 73.39± 7.56 68.49± 7.34 0.83± 0.08 0.55± 0.12 0.44± 0.14

Graph2vec 90.79± 5.11 73.02± 7.30 67.42± 7.44 0.83± 0.08 0.54± 0.12 0.42± 0.14

IGE No conv No conv No conv No conv No conv No conv

NetLSD 53.46± 7.02 61.13± 8.00 63.27± 7.76 0.11± 0.16 0.34± 0.14 0.38± 0.13

FGSD No conv No conv No conv No conv No conv No conv

FeatherGraph 81.51± 7.96 81.37± 6.83 89.00± 4.79 0.68± 0.13 0.69± 0.11 0.82± 0.07

Netpro2vecndd 83.53± 6.42 87.52± 5.66 87.35± 5.30 0.71± 0.11 0.80± 0.10 0.79± 0.08

Netpro2vecndd+tm1 91.27± 4.45 89.20± 5.36 88.87± 5.68 0.86± 0.07 0.82± 0.09 0.81± 0.09

MUTAG GL2Vec 76.11± 8.48 63.37± 9.25 67.39± 10.10 0.31± 0.24 0.00± 0.22 0.24± 0.24

Graph2vec 66.32± 9.72 59.86± 9.32 63.10± 8.28 0.39± 0.24 0.02± 0.24 0.09± 0.21

IGE 83.72± 7.92 83.93± 7.85 83.56± 7.47 0.61± 0.16 0.65± 0.17 0.63± 0.17

NetLSD 86.23± 7.68 84.25± 7.61 83.48± 7.77 0.69± 0.16 0.64± 0.16 0.62± 0.17

FGSD 86.01± 7.77 79.27± 8.80 79.54± 9.17 0.70± 0.16 0.57± 0.17 0.55± 0.20

FeatherGraph 82.40± 8.24 66.44± 2.30 67.82± 4.63 0.60± 0.17 0.00± 0.00 0.10± 0.18

Netpro2vecndd 71.42± 9.19 71.22± 8.09 65.55± 8.54 0.35± 0.21 0.30± 0.22 0.13± 0.23

Netpro2vecndd+tm1 72.06± 9.64 71.60± 11.32 78.52± 8.30 0.34± 0.19 0.37± 0.20 0.53± 0.18

the same can be said for FeatherGraph under strong attack. Other methods,
such as GL2vec on fMRI or IGE and FGSD on Kidney, fail to reach convergence
in all the unattacked and attacked cases, yielding no classification model.

On the MUTAG dataset, the best-performing method (NetLSD) experiences
a tiny performance decrease in handling moderate and strong adversarial attacks.
The same can also be said for IGE and Netpro2vec, which maintain similar
performance, if not better, regardless of the attacks.

Overall, we can conclude that FeatherGraph, NetLSD, Netpro2vec, and IGE
appear to be more robust than the other methods under both moderate and
strong adversarial attacks. We also observed unexpected behaviors in some cases,



Performance Evaluation of Adversarial Attacks 233

where an improvement in performance rather than a degradation occurs. Indeed,
removing central (important) nodes does not always weaken the significance of
the graph description. Therefore, these nodes can be considered important but
not fundamental for the transformation from a graph to a vector space. This
point deserves further attention in future experiments.

We wish to emphasize that the above analysis is primarily intended to inves-
tigate the robustness to adversarial attacks of the considered methods rather
than their performance for the classification task. Indeed, further optimization
steps, such as feature selection or class balancing, have been purposely omitted
for all the methods, which would certainly help in achieving better classification
performance.

5 Conclusions and Future Work

We have analyzed and compared different whole-graph embedding methods to
understand their behavior under adversarial attacks better. We have performed
attacks on graphs supposing the subsequent data analysis task is supervised
classification. During the attacks, we have analyzed the unique features of each
embedding method to highlight strengths and weaknesses, varying the type of
attack and dataset. In this regard, the robustness of the graph analysis task
model is an important issue. Future works concern many directions. First,
extending the analysis on different types of datasets and attacks to propose
defense mechanisms that can partially or entirely erase the highlighted limits of
existing solutions. Besides, it would be interesting to analyze the embedding fea-
tures that the methods create for the classification task. Methods like SHapley
Additive exPlanations (SHAP) [28] could be applied to learn feature importance
and explain the model output.
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