
Dimitris E. Simos
Panos M. Pardalos
Ilias S. Kotsireas (Eds.)

LN
CS

 1
29

31

Learning and
Intelligent Optimization
15th International Conference, LION 15
Athens, Greece, June 20–25, 2021
Revised Selected Papers

Lecture Notes in Computer Science 12931

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7407

https://springerlink.bibliotecabuap.elogim.com/bookseries/7407

Dimitris E. Simos · Panos M. Pardalos ·
Ilias S. Kotsireas (Eds.)

Learning and
Intelligent Optimization
15th International Conference, LION 15
Athens, Greece, June 20–25, 2021
Revised Selected Papers

Editors
Dimitris E. Simos
SBA Research
Vienna, Austria

Ilias S. Kotsireas
Wilfrid Laurier University
Waterloo, ON, Canada

Panos M. Pardalos
University of Florida
Gainesville, FL, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-92120-0 ISBN 978-3-030-92121-7 (eBook)
https://doi.org/10.1007/978-3-030-92121-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8588-1924
https://orcid.org/0000-0003-2126-8383
https://orcid.org/0000-0001-9623-8053
https://doi.org/10.1007/978-3-030-92121-7

Guest Editorial

The fifteenth installment of the conference series “Learning and Intelligent Optimiza-
tion” (LION 15) was scheduled to be held in Athens, Greece, during June 20–25, 2021,
but regrettably it was canceled, due to travel restrictions imposed world-wide by the
COVID-19 pandemic. However, we were fully prepared to convert the event into an
all-digital conference experience. Moreover, we felt it was important to publish the
proceedings of the conference, in order to minimize the disruption to the participant’s
careers and especially the potentially devastating negative effects in the careers of PhD
students, post-doctoral fellows, and young scholars. An additional reason for us to under-
take the publication of theseLNCSproceedings,was to ensure the continuity of theLION
conference series.

LION 15 featured five invited speakers:

– “Bk − VPG Graphs – the String Graphs of Paths on a Grid”, plenary talk given by
Martin Charles Golumbic (University of Haifa, Israel)

– “Communication andMobility inOptimization for Infrastructure Resilience”, plenary
talk given by Evangelos Kranakis (Carleton University, Canada)

– “Temporal Networks and the Impact of Availability Patterns”, plenary talk given by
Paul Spirakis (University of Liverpool, UK, and University of Patras, Greece)

– “Combinatorial Difference Methods in AI”, tutorial talk given by Rick Kuhn (NIST,
USA)

– “On the Use of Ontologies for Automated Test Suite Generation”, tutorial talk given
by Franz Wotawa (Graz University of Technology, Austria)

We would like to thank the authors for contributing their work and the reviewers
whose tireless efforts resulted in keeping the quality of the contributions at the highest
standards. The volume contains 30 refereed papers carefully selected out of 48 total
submissions, thus LION 15 bears an overall acceptance rate of 62%.

The editors express their gratitude to the organizers and sponsors of the LION 15
international conference:

– MATRIS Research Group, SBA Research, Austria
– Laboratory of Algorithms and Technologies for Networks Analysis (LATNA), Higher
School of Economics (HSE), Niznhy Novgorod, Russia

– CARGO Lab, Wilfrid Laurier University, Canada,
– APM Institute for the Advancement of Physics and Mathematics.

A special thank you goes to the Strategic Innovation and Communication Team at
SBA Research (Nicolas Petri and Yvonne Poul) for sponsoring the virtual infrastructure
of the conference, as well as the LION 15 volunteers (junior and senior researchers of
theMATRIS Research Group at SBAResearch) whomade sure that the virtual technical
sessions could be carried out flawlessly.

vi Guest Editorial

Even though organization of all physical conferences is still on hiatus, we are very
pleased to be able to deliver this LNCS proceedings volume for LION 15, in keeping
with the tradition of the most recent LION conferences [1, 2] and [3]. We sincerely hope
we will be able to reconnect with the members of the vibrant LION community next
year.

October 2021 Dimitris E. Simos
Panos M. Pardalos
Ilias S. Kotsireas

References
1. Roberto Battiti, Mauro Brunato, Ilias S. Kotsireas, Panos M. Pardalos: Learning and Intelligent
Optimization - 12th International Conference, LION 12, Kalamata, Greece, June 10–15, 2018,
Revised Selected Papers, Lecture Notes in Computer Science, LNCS 11353, Springer, (2019).

2. Nikolaos F. Matsatsinis, Yannis Marinakis, Panos M. Pardalos: Learning and Intelligent Opti-
mization - 13th International Conference, LION 13, Chania, Crete, Greece, May 27–31, 2019,
Revised Selected Papers, Lecture Notes in Computer Science, LNCS 11968, Springer, (2020).

3. Ilias S. Kotsireas, PanosM. Pardalos: Learning and Intelligent Optimization - 14th International
Conference, LION 14, Athens, Greece, May 24–28, 2020, Revised Selected Papers, Lecture
Notes in Computer Science, LNCS 12096, Springer, (2020).

Organization

General Chair

Panos M. Pardalos Higher School of Economics, Niznhy Novgorod,
Russia/University of Florida, USA

Technical Program Committee Chair

Dimitris E. Simos SBA Research and Graz University of Technology,
Austria/NIST, USA

Local Organizing Committee Chair

Ilias S. Kotsireas Wilfrid Laurier University, Canada

Program Committee

Francesco Archetti Consorzio Milano Ricerche, Italy
Annabella Astorino ICAR-CNR, Italy
Amir Atiya Cairo University, Egypt
Rodolfo Baggio Bocconi University, Italy
Roberto Battiti University of Trento, Italy
Christian Blum Spanish National Research Council (CSIC), Spain
Juergen Branke University of Warwick, UK
Mauro Brunato University of Trento, Italy
Dimitrios Buhalis Bournemouth University, UK
Sonia Cafieri Ecole Nationale de l’Aviation Civile, France
Antonio Candelieri University of Milano-Bicocca, Italy
Andre de Carvalho University of São Paulo, Brazil
John Chinneck Carleton University, Canada
Kostas Chrisagis City University London, UK
Andre Augusto Cire University of Toronto, Canada
Patrick De Causmaecker Katholieke Universiteit Leuven, Belgium
Renato De Leone University of Camerino, Italy
Luca Di Gaspero University of Udine, Italy
Clarisse Dhaenens Université de Lille, France
Ciprian Dobre University Politehnica of Bucharest, Romania
Adil Erzin Sobolev Institute of Mathematics, Russia
Giovanni Fasano University Ca’Foscari of Venice, Italy
Paola Festa University of Napoli Federico II, Italy

viii Organization

Antonio Fuduli Università della Calabria, Italy
Martin Golumbic University of Haifa, Israel
Vladimir Grishagin Nizhni Novgorod State University, Russia
Mario Guarracino ICAR-CNR, Italy
Youssef Hamadi Uber AI, France
Cindy Heo Ecole hôtelière de Lausanne, Switzerland
Laetitia Jourdan Université de Lille, France
Valeriy Kalyagin Higher School of Economics, Russia
Alexander Kelmanov Sobolev Institute of Mathematics, Russia
Marie-Eleonore Kessaci Université de Lille, France
Michael Khachay Krasovsky Institute of Mathematics and Mechanics,

Russia
Oleg Khamisov Melentiev Institute of Energy Systems, Russia
Zeynep Kiziltan University of Bologna, Italy
Yury Kochetov Sobolev Institute of Mathematics, Russia
Ilias Kotsireas Wilfrid Laurier University, Canada
Dmitri Kvasov University of Calabria, Italy
Dario Landa-Silva University of Nottingham, UK
Hoai An Le Thi Université de Lorraine, France
Daniela Lera University of Cagliari, Italy
Vittorio Maniezzo University of Bologna, Italy
Silvano Martello University of Bologna, Italy
Francesco Masulli University of Genova, Italy
Nikolaos Matsatsinis Technical University of Crete, Greece
Kaisa Miettinen University of Jyväskylä, Finland
Laurent Moalic University of Haute-Alsace, France
Hossein Moosaei Charles University, Czech Republic
Serafeim Moustakidis AiDEAS OU, Greece
Evgeni Nurminski FEFU, Russia
Panos M. Pardalos Higher School of Economics, Niznhy Novgorod,

Russia/University of Florida, USA
Konstantinos Parsopoulos University of Ioannina, Greece
Marcello Pelillo University of Venice, Italy
Ioannis Pitas Aristotle University of Thessaloniki, Greece
Vincenzo Piuri Università degli Studi di Milano, Italy
Mikhail Posypkin Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Oleg Prokopyev University of Pittsburgh, USA
Helena Ramalhinho Universitat Pompeu Fabra, Spain
Mauricio Resende Amazon, USA
Andrea Roli University of Bologna, Italy
Massimo Roma Sapienza Università di Roma, Italy
Valeria Ruggiero University of Ferrara, Italy
Frédéric Saubion University of Angers, France
Andrea Schaerf University of Udine, Italy
Marc Schoenauer Inria, France
Meinolf Sellmann GE Research, USA

Organization ix

Saptarshi Sengupta Murray State University, USA
Yaroslav Sergeyev University of Calabria, Italy
Marc Sevaux Université Bretagne Sud, France
Dimitris Simos SBA Research and Graz University of Technology,

Austria/NIST, USA
Thomas Stützle Université Libre de Bruxelles, Belgium
Tatiana Tchemisova University of Aveiro, Portugal
Gerardo Toraldo University of Naples Federico II, Italy
Michael Trick Carnegie Mellon University, USA
Toby Walsh University of New South Wales, Australia
David Woodruff University of California, Davis, USA
Dachuan Xu Beijing University of Technology, China
Luca Zanni University of Modena and Reggio Emilia, Italy
Qingfu Zhang City University of Hong Kong, Hong Kong
Anatoly Zhigljavsky Cardiff University, UK
Antanas Zilinskas Vilnius University, Lithuania
Julius Zilinskas Vilnius University, Lithuania

Contents

An Optimization for Convolutional Network Layers Using the Viola-Jones
Framework and Ternary Weight Networks . 1

Rhys Agombar, Christian Bauckhage, Max Luebbering, and Rafet Sifa

Learning to Optimize Black-Box Functions with Extreme Limits
on the Number of Function Evaluations . 7

Carlos Ansótegui, Meinolf Sellmann, Tapan Shah, and Kevin Tierney

Graph Diffusion & PCA Framework for Semi-supervised Learning 25
Konstantin Avrachenkov, Aurélie Boisbunon, and Mikhail Kamalov

Exact Counting and Sampling of Optima for the Knapsack Problem 40
Jakob Bossek, Aneta Neumann, and Frank Neumann

Modeling of Crisis Periods in Stock Markets . 55
Apostolos Chalkis, Emmanouil Christoforou, Theodore Dalamagas,
and Ioannis Z. Emiris

Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm 66
Konstantinos I. Chatzilygeroudis, Aristidis G. Vrahatis,
Sotiris K. Tasoulis, and Michael N. Vrahatis

Towards Complex Scenario Instances for the Urban Transit Routing
Problem . 80

Roberto Díaz Urra, Carlos Castro, and Nicolás Gálvez Ramírez

Spirometry-Based Airways Disease Simulation and Recognition Using
Machine Learning Approaches . 98

Riccardo Di Dio, André Galligo, Angelos Mantzaflaris,
and Benjamin Mauroy

Long-Term Hypertension Risk Prediction with ML Techniques in ELSA
Database . 113

Elias Dritsas, Nikos Fazakis, Otilia Kocsis, Nikos Fakotakis,
and Konstantinos Moustakas

An Efficient Heuristic for Passenger Bus VRP with Preferences
and Tradeoffs . 121

Suhendry Effendy, Bao Chau Ngo, and Roland H. C. Yap

xii Contents

Algorithm for Predicting theQuality of the Product Based on Technological
Pyramids in Graphs . 128

Damir N. Gainanov, Dmitriy A. Berenov, and Varvara A. Rasskazova

Set Team Orienteering Problem with Time Windows . 142
Aldy Gunawan, Vincent F. Yu, Andro Nicus Sutanto, and Panca Jodiawan

Reparameterization of Computational Chemistry Force Fields Using
GloMPO (Globally Managed Parallel Optimization) . 150

Michael Freitas Gustavo and Toon Verstraelen

Towards Structural Hyperparameter Search in Kernel Minimum Enclosing
Balls . 157

Hanna Kondratiuk and Rafet Sifa

Using Past Experience for Configuration of Gaussian Processes
in Black-Box Optimization . 167

Jan Koza, Jiří Tumpach, Zbyněk Pitra, and Martin Holeňa

Travel Demand Estimation in a Multi-subnet Urban Road Network 183
Alexander Krylatov and Anastasiya Raevskaya

The Shortest Simple Path Problem with a Fixed Number of Must-Pass
Nodes: A Problem-Specific Branch-and-Bound Algorithm 198

Andrei Kudriavtsev, Daniel Khachay, Yuri Ogorodnikov, Jie Ren,
Sheng Cheng Shao, Dong Zhang, and Michael Khachay

Medical Staff Scheduling Problem in Chinese Mobile Cabin Hospitals
During Covid-19 Outbreak . 211

Shaowen Lan, Wenjuan Fan, Kaining Shao, Shanlin Yang,
and Panos M. Pardalos

Performance Evaluation of Adversarial Attacks on Whole-Graph
Embedding Models . 219

Mario Manzo, Maurizio Giordano, Lucia Maddalena,
and Mario R. Guarracino

Algorithm Selection on Adaptive Operator Selection: A Case Study
on Genetic Algorithms . 237

Mustafa Mısır

Inverse Free Universum Twin Support Vector Machine . 252
Hossein Moosaei and Milan Hladík

Contents xiii

Hybridising Self-Organising Maps with Genetic Algorithms 265
Abtin Nourmohammadzadeh and Stefan Voß

How to Trust Generative Probabilistic Models for Time-Series Data? 283
Nico Piatkowski, Peter N. Posch, and Miguel Krause

Multi-channel Conflict-Free Square Grid Aggregation . 299
Roman Plotnikov and Adil Erzin

Optimal Sensor Placement by Distribution Based Multiobjective
Evolutionary Optimization . 315

Andrea Ponti, Antonio Candelieri, and Francesco Archetti

Multi-objective Parameter Tuning with Dynamic Compositional Surrogate
Models . 333

Dmytro Pukhkaiev, Oleksandr Husak, Sebastian Götz, and Uwe Aßmann

Corrected Formulations for the Traveling Car Renter Problem 351
Brenner Humberto Ojeda Rios, Junior Cupe Casquina,
Hossmell Hernan Velasco Añasco, and Alfredo Paz-Valderrama

Hybrid Meta-heuristics for the Traveling Car Renter Salesman Problem 364
Brenner Humberto Ojeda Rios, Junior Cupe Casquina,
Hossmell Hernan Velasco Añasco, and Alfredo Paz-Valderrama

HybridTuner: Tuning with Hybrid Derivative-Free Optimization
Initialization Strategies . 379

Benjamin Sauk and Nikolaos V. Sahinidis

Sensitivity Analysis on Constraints of Combinatorial Optimization
Problems . 394

Julian Schulte and Volker Nissen

Author Index . 409

An Optimization for Convolutional
Network Layers Using the Viola-Jones

Framework and Ternary Weight Networks

Rhys Agombar(B), Christian Bauckhage, Max Luebbering, and Rafet Sifa

Fraunhofer Institute for Intelligent Analysis and Information Systems, Schloss
Birlinghoven, 53757 Sankt Augustin, Germany

Abstract. Neural networks have the potential to be extremely powerful
for computer vision related tasks, but can be computationally expensive.
Classical methods, by comparison, tend to be relatively light weight,
albeit not as powerful. In this paper, we propose a method of combining
parts from a classical system, called the Viola-Jones Object Detection
Framework, with a modern ternary neural network to improve the effi-
ciency of a convolutional neural net by replacing convolutional filters
with a set of custom ones inspired by the framework. This reduces the
number of operations needed for computing feature values with negligible
effects on overall accuracy, allowing for a more optimized network.

Keywords: Ternary Weight Networks · Viola-Jones Object Detection
Framework · Neural net optimization · Haar-like features

1 Introduction

With the advent of convolutional neural networks, the field of computer vision
was revolutionized. Suddenly we had access to a system that produced incredibly
powerful and generalizable classifiers. While modern neural networks perform
extremely well, they do have the downside of requiring large amounts of memory
and processing power. As applications like self-driving cars or augmented reality
have emerged, real-time execution has become an increasingly desirable property
for a system to have - something that complex neural networks struggle with,
due to their computational complexity.

Our paper is an attempt to solve this problem. One of our key insights is
that, while neural networks are powerful but slow, classical methods of computer
vision tend to be relatively fast and light weight. This indicates that there may
be speed-ups to be gained if we found a way to integrate some useful properties or
components from these classical methods into a modern neural network architec-
ture. Of particular interest to us is the Viola-Jones Object Detection Framework

Supported by the Competence Center for Machine Learning Rhine Ruhr (ML2R) which
is funded by the Federal Ministry of Education and Research of Germany (grant no.
01—S18038B). The OrcidIDs for R. Agombar and Max Lueberring are resp. 0000-0001-
5574-9754 and 0000-0001-6291-9459.

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 1–6, 2021.
https://doi.org/10.1007/978-3-030-92121-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_1

2 R. Agombar et al.

[7] from 2001, which is capable of detecting objects like faces extremely quickly,
even on weak hardware. While this framework is quick at detecting faces in an
image, however, it does run into the same problems that classical methods tend
to have, namely, a difficulty generalizing or handling things like noise. Some
of its components have the potential to be easily transferred to convolutional
networks, though, which could increase performance, giving us an ideal starting
point for our work.

Our contribution in this paper is a combination of components from the
Viola-Jones Object Detection Framework with a modern, convolutional neural
net. By training a ternary convolutional network, and then modifying the first
layer’s weights to match the structure of the features used by Viola-Jones, we
are able to accelerate the first layer of a network with little to no cost to the
network’s overall accuracy.

2 Background

The Viola-Jones Object Detection Framework was originally proposed in the
paper ‘Rapid object detection using a boosted cascade of simple features’ [7]. It
was designed to detect faces or other objects by sliding a small detection window
across a larger image, classifying areas as containing a face (or object) or not
as it goes. These classifications were made using Haar-like features within the
sliding window, which were inspired by Haar basis functions.

Haar-like features are made of a single large rectangle that itself is composed
of multiple, smaller, sub-rectangles representing positive or negative regions.
These features can be positioned anywhere in an image or detection window,
and they compute their feature values by summing the pixel values in the pos-
itive regions and subtracting the sums of the negative regions from them. The
main benefit of these features is that, when using an integral image as an input,
because of their rectangular shape, the value of any sub-rectangle can be com-
puted using only 3 math operations and 4 array lookup operations, regardless
of size. In the paper [7], the number of sub-rectangles was limited to two, three,
or four, depending on the type of feature, meaning that, when using an integral
image, they would require at most, 14, 21, or 28 total operations to compute
their values, allowing for extremely fast execution.

The integral images used for this are data structures that are optimized
towards the specific task of summing array values within a rectangular area.
They are created such that the value at every (x, y) coordinate in them is equal
to the sum of all the original image intensities above, to the left of, and on the
coordinates of the given point.

Moving to the neural network part of the background, as previously men-
tioned, modern networks, while powerful, tend to require a lot of memory to
run and can be slow to process. Ternary Weight Networks [4] were designed as
a solution to this. The main idea is that the weights of a network’s neurons can
be approximated with ternary values. By restricting the values to −1, +1, or 0,
instead of requiring 32-bit floating point representations in memory, the weight

Convolutional Layers Using the VJ Framework and TW Networks 3

values require only two bits to be stored, thus producing a 16× reduction in mem-
ory use. Additionally, network operations on ternary weights can be estimated
using only addition and subtraction, without computationally expensive multi-
plication operations. This means that an approximately 2× increase in speed can
be achieved while maintaining similar accuracy to a standard network [4].

Now, the problem of selecting which ternary value to use for a given weight
in a network is non-trivial, as is the question of how to use gradient descent
on a network made of discrete values. The paper ‘Ternary Weight Networks’ [4]
details methods to solve both of these using things like threshold-based discrete
value optimizations, and alterations to the training process, but these are out of
the scope of this paper, so we will not discuss them in depth.

3 Methodology

Fig. 1. Ternaryweights from our LeNet-5 MNIST experiment. The top row is the unmod-
ified ternary weights, the bottom row is filled with our corresponding custom ternary
weights (grey represents 0 values, white represents −1, and black represents 1).

We’ve mentioned before that Haar-like features are composed of positive and
negative rectangles, and that they can be arranged in any position in a given
image, possibly ignoring large parts of it. These positive, negative, and uncovered
regions can be represented by the values of +1, −1, and 0, respectively, which
correspond to the same values present in a ternary weight network. This means
that we can represent Haar-like features, or other similar ones, directly in a
ternary convolutional network’s convolutional filters (Fig. 1).

Now, limiting our Haar-like features to the arrangements defined in [7] is
restrictive, and would hamper a network’s ability to learn. Thankfully, so long as
they are composed of rectangles, any arbitrary arrangement should still produce
a speed-up by reducing the number of operations. For example, a 5 convolutional
filter requires 5× 5− 1 = 24 math operations and 5× 5 = 25 lookup operations,
equaling a total of 49 operations. For contrast, when using integral images and
these custom Haar-like convolutional filters, a custom filter would require only
4 lookup operations and 3 math operations, per rectangle. If we assume our
filters will always require four rectangles (the same as the most complex Haar-
like features in [7]), then regardless of the filter’s size, its value can always be

4 R. Agombar et al.

computed with a total of 4(4+3) = 28 operations, which is a significant reduction
for larger filter sizes.

The way we put all of this together is by first training a ternary network using
the processes detailed in [4], then visualizing the weights for transformation.
To transform the network’s weights into Haar-like ones, we modify the ternary
weights of the first layer by hand, such that the new ones are composed of up to
four rectangles. We do this by trying to best match the set of rectangles to the
patterns observed in the visualized weights, minimizing the number of missed or
wrong patches, while maximizing the expressive abilities of the modified filters.
Once these custom filters have been defined, we have to retrain the network,
but first, we remove the top convolutional layer and replace it with a function
that can leverage the rectangular filter structures and integral image inputs to
get the speedup we want. Without this, the convolutional filters would behave
exactly like ordinary ones, with no efficiency gains.

Table 1. A comparison of number of computations required for a single filter to process
a 28 × 28 greyscale image.

3 × 3 5 × 5 7 × 7

Integral image operations 3025 3025 3025

Custom filter operations 21952 21952 21952

Total operations 24977 24977 24977

Ternary filter operations 13328 38416 76048

(Total custom/ternary) 1.84 0.65 0.33

Table 1 shows the theoretical performance for this method, compared to using
standard convolutional kernels. Note that while our method performs worse on
3×3 filters, as the size of the filters increases, so to does our method’s efficiency.
This means that it still has potential for use with networks that use large filters.

4 Experiments

While our calculations show improved computational efficiency, this is only use-
ful if the network’s accuracy remains at an acceptable level. To determine if
our solution meets this requirement, we conducted a set of experiments on the
MNIST [3] and CIFAR-10 [1] datasets, using modified LeNet-5 [2] and VGG7
[4] architectures, respectively.

For LeNet-5, we used the implementation given in the Ternary Weight Net-
works paper [4], which is summarized as “32-C5+MP2+64-C5+MP2+512-FC+
SVM”. The one modification that we made was that we replaced the SVM with
a Softmax classification layer. For parameters, the network used the Adam algo-
rithm for optimization with a weight decay of 1e−5, and a learning rate of

Convolutional Layers Using the VJ Framework and TW Networks 5

0.001. For inputs, the network’s batch size was set to 100, with the data being
normalized.

VGG7 is a modified version of VGG16 [6]. It was also published in the afore-
mentioned paper [4], and can be summarized as “2 × (128-C3) + MP2 + 2 ×
(256-C3) + MP2 + 2 × (512-C3) + MP2 + 1024-FC + Softmax”. Again, we used
a similar implementation, though, since our method only gives useful efficiency
gains when using larger feature sizes, we replaced the first two 3× 3 convolutional
layers with a pair of 5× 5 ones. This network used Stochastic Gradient Descent
(SGD) as its optimization algorithm, with a learning rate of 0.1, a momentum
value of 0.9, and a weight decay of 1e−4. For inputs, it used a batch size of 100,
as well as normalized batch data augmented by random crops and horizontal
flips. The last parameter, the learning rate decay, was set to divide the given
rate by 10 after 80 and 120 epochs, in order to fine-tune the network.

For each of these architectures, five different networks are trained: a full
precision network, a full ternary network, an N1T network, a custom full ternary
network, and a custom N1T network. The ‘full’ and ‘custom’ networks are self
explanatory, being entirely implemented in their chosen style or using our custom
filters for the first layer, respectively. The N1T and custom N1T networks are
full precision networks, except for the first layer, which has been replaced by a
ternary convolutional layer. N1T uses a set of learned ternary weights for this,
while the custom N1T network uses our custom filters.

5 Results

The results of our experiments can be seen in Table 2. In these, the ternary net-
works routinely make less accurate classifications than full precision networks, as
expected, but the networks using our custom filters did not deviate significantly
from the levels given by standard ternary layers. Even when the networks were
very shallow (such as with LeNet-5), where our custom filters would represent
a greater proportion of the network, they did not hamper performance. Indeed,
in many instances, the networks actually performed slightly better than their
ternary counterparts. This indicates that our method is capable of speeding up
the first layer of a network with negligible losses in accuracy.

Table 2. Validation accuracies (%) from the different networks and datasets.

LeNet-5 on MNIST VGG7 on CIFAR-10

Full precision 99.36 92.41

Full ternary 95.11 91.59

N1T 99.31 91.87

Custom full ternary 95.49 91.30

Custom N1T 99.48 91.90

6 R. Agombar et al.

6 Discussion and Future Work

Our method works well for what it set out to do, but it does have a significant
drawback. The modifications needed for this method are done by hand, which
is time consuming and limits our optimization to the first layer of the network
(deeper layers require too many custom filters to be practical). While admittedly
this is not ideal, in many architectures, the first layer contains the largest filters,
making it one of the more expensive parts of the network. The original YOLO
[5] network is an example of this. Its first convolutional layer uses 7 × 7 filters,
which our method could improve the speed of.

This problem is something we would like to solve in future work by creating
an algorithm that can automatically construct optimal custom filters given a
ternary weight filter. With this, we could extend our method to work with more
complex networks, and more importantly, extend our optimizations to the deeper
layers of the network, allowing us to bring significant performance gains to larger
architectures. Unfortunately, devising such an algorithm is a complex task, and
is beyond the scope of this paper.

7 Conclusion

In conclusion, we have demonstrated a method for combining the Haar-like fea-
tures and integral images from the Viola-Jones Framework [7] with a modern
convolutional neural network to create optimized, custom filters. This optimiza-
tion reduces the number of operations needed to compute the first layer’s filter
values, with negligible effects on the network’s overall accuracy, theoretically
improving performance. Unfortunately, the custom filters we use have to be
crafted by hand, which is impractical for larger networks. A task for future work
will be to create an algorithm to construct the filters automatically, instead of
relying on hand-crafted ones.

References

1. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

2. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

3. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs
[Online] 2 (2010). http://yann.lecun.com/exdb/mnist

4. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711
(2016)

5. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection (2015)

6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

7. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple fea-
tures. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I (2001)

http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1409.1556

Learning to Optimize Black-Box Functions
with Extreme Limits on the Number

of Function Evaluations

Carlos Ansótegui1, Meinolf Sellmann4, Tapan Shah2, and Kevin Tierney3(B)

1 DIEI, Universitat de Lleida, Lleida, Spain
carlos@diei.udl.ca

2 General Electric Global Research Center, Niskayuna, USA
tapan.shah@ge.com

3 Bielefeld University, Bielefeld, Germany
kevin.tierney@uni-bielefeld.de

4 Shopify, Ottowa, Canada
meinolf@ge.com

Abstract. We consider black-box optimization in which only an
extremely limited number of function evaluations, on the order of around
100, are affordable and the function evaluations must be performed in
even fewer batches of a limited number of parallel trials. This is a typ-
ical scenario when optimizing variable settings that are very costly to
evaluate, for example in the context of simulation-based optimization or
machine learning hyperparameterization. We propose an original method
that uses established approaches to propose a set of points for each batch
and then down-selects from these candidate points to the number of tri-
als that can be run in parallel. The key novelty of our approach lies in
the introduction of a hyperparameterized method for down-selecting the
number of candidates to the allowed batch-size, which is optimized offline
using automated algorithm configuration. We tune this method for black
box optimization and then evaluate on classical black box optimization
benchmarks. Our results show that it is possible to learn how to com-
bine evaluation points suggested by highly diverse black box optimization
methods conditioned on the progress of the optimization. Compared with
the state of the art in black box minimization and various other methods
specifically geared towards few-shot minimization, we achieve an aver-
age reduction of 50% of normalized cost, which is a highly significant
improvement in performance.

1 Introduction

We consider the situation where we need to optimize the input variables for
unconstrained objective functions that are very expensive to evaluate. Further-
more, the objective functions we consider are black boxes, meaning we can use no
knowledge from the computation of the objective function (such as a derivative)
during search. Such objective functions arise when optimizing over simulations,
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 7–24, 2021.
https://doi.org/10.1007/978-3-030-92121-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_2

8 C. Ansótegui et al.

engineering prototypes, and when conducting hyperparameter optimization for
machine learning algorithms and optimization solvers.

Consider the situation where we wish to optimize the geometry of a turbine
blade whose effectiveness will be evaluated by running a number of computa-
tional fluid dynamics (CFD) simulations over various different scenarios simu-
lating different environmental conditions. Each evaluation of a geometry design
requires running the CFD simulations for all scenarios and may take hours or
even days to complete. In such a setting, we may evaluate multiple scenarios
and geometries at the same time to reduce the elapsed time until a high quality
design is found. We could, for example, evaluate 5 designs in parallel and run
20 such batches sequentially. In this case, whenever we set up the new trials for
the next batch, we carefully choose 5 new geometries based on the designs and
results that were obtained in earlier batches. In total, we would evaluate 100
designs, and the total elapsed time to obtain the optimized geometries would
take 20 times the time it takes to evaluate one design for one scenario (provided
we are able to run all environmental conditions for all 5 candidate designs in
parallel).

From an optimization perspective, this setup is extremely challenging. We
are to optimize a black box function in which there is only time enough to try a
mere 100 input settings, and, on top of that, we have to try 5 inputs in parallel,
which implies we cannot learn from the results obtained from the inputs being
evaluated in parallel before choosing these inputs. We refer to this optimization
setup as parallel few-shot optimization, as an analogy to the idea of parallel
few-shot learning.

The objective of the work presented in this paper is to develop a hyper-
parameterized heuristic that can be tuned offline to perform highly effective
parallel few-shot optimization. Our approach involves a Monte-Carlo simulation
in which we try out different combinations of candidate points from a larger
pool of options. The hyperparameters of our approach control a scoring function
that guides the creation of batches of candidates, and we select our final batch of
candidates based on which candidates appear most often in the sampled batches.
It turns out that setting the hyperparameters of our heuristic is itself a type of
black-box optimization (BBO) problem that we solve using the algorithm con-
figurator GGA [3] as in [6,8]. In this way, our heuristic can be customized to
a specific domain, although, in this work, we try to make it work generally for
BBO functions. A further key advancement of our approach is that our heuristic
adjusts the scoring of new candidates to be added to a sampled batch based
on the candidates already in the batch, ensuring a balanced exploration and
exploitation of the search space.

In the following, we review the literature on BBO and few-shot optimization,
introduce our new method, and, finally, provide numerical results on standard
BBO benchmarks.

2 Related Work

We split our discussion of the related work into two groups of approaches: can-
didate generators and candidate selectors. Given a BBO problem, candidate

Learning to Optimize Black-Box Functions with Extreme Limits 9

generators propose points that hopefully offer good performance. This group of
approaches can be further divided into evolutionary algorithms, grid sampling,
and model-based approaches. Candidate selectors choose from a set of candidate
points provided by candidate generators, or select which candidate generators
should be used to suggest points, following the idea of the no free lunch theo-
rem [2] that no single approach (in this case a candidate generator) dominates
all others. These approaches include multi-armed bandit algorithms and various
forms of ensembles.

2.1 Candidate Generators

Generating candidates has been the focus of the research community for a long
time, especially in the field of engineering, where grid sampling approaches and
fractional factorial design [21] have long been used to suggest designs (points)
to be realized in experiments. Fractional factorial design suggests a subset of
the cross-product of discrete design choices that has desirably statistical prop-
erties. Latin hypercube sampling [29] extends this notion to create candidate
suggestions from continuous variables. These techniques are widely used when
no information is available about the space, i.e., it is not yet possible inference
where good points may be located.

Evolutionary algorithms (EAs) offer simple, non-model-based mechanisms
for optimizing black-box functions and have long been used for BBO [11]. EAs
initialize a population of multiple solutions (candidate points) and evolve the
population over multiple generations, meaning iterations, by recombining and
resampling solutions in population i to form population i + 1. The search con-
tinues until a termination criterion is reached, for example, the total number of
evaluations or when the average quality of the population stops improving.

Standard algorithms in the area of EAs include the 1 + 1 EA [16,33] and dif-
ferential evolution (DE) [35]. These approaches have seen great research advance-
ments over the past years, such as including self-adaptive parameters [31,37]
(SADE, L-SHADE), using memory mechanisms [13] (iL-SHADE), specialized
mutation strategies [14] (jSO), and covariance matrix learning [10] (L-SHADE-
cnEpSin). The covariance matrix can also be used outside of a DE framework.
The covariance matrix adaptation evolutionary strategy (CMA-ES) [24] is one of
the most successful EAs, and offers a way of sampling solutions from the search
space according to a multivariate normal distribution that is iteratively updated
according to a maximum likelihood principle.

EAs have also been used for BBO in the area of algorithm configuration
(AC). In the AC setting the black-box is a parameterized solver or algorithm
whose performance must be optimized over a dataset of representative problem
instances, e.g., when solving a delivery problem each instance could represent
the set of deliveries each day. The GGA method [5] is a “gender-based” genetic
algorithm that partitions its population in two. One half is evaluated with a
racing mechanism and is the winners are recombined with members from the
other half.

10 C. Ansótegui et al.

Model-based approaches are techniques that build an internal predictive
model based on the performance of the candidates that were chosen in the
past. These methods can offer advantages over EA and grid-sampling approaches
in their ability to find high quality solutions after a learning phase. However,
this comes at the expense of higher computation time. In the area of AC, the
GGA++ [3] technique combines EAs with a random forest surrogate that eval-
uates the quality of multiple candidate recombinations, returning the one that
ought to perform the best.

Bayesian optimization (BO) has become a widespread model-based method
for selecting hyperparameters in black-box settings (see, e.g., [19]) and for the
AutoML setting [18,34]. BO models a surrogate function, typically by using
a Gaussian process model, which estimates the quality of a given parameter
selection as well as the uncertainty of that selection. A key ingredient for BO
is the choice of an acquisition function, which determines how the optimizer
selects the next point to explore. There are numerous BO variants, thus we
only point out the ones most relevant to this work. For few-shot learning, [38]
proposes a deep kernel learning approach to allow for transfer learning. In [9], a
BO approach for few-shot multi-task learning is proposed. Recently, the NeurIPS
2020 conference hosted a challenge for tuning the hyperparameters of machine
learning algorithms [1], with the HEBO approach [15], emerging as the victor.
HEBO is based on BO and selects points from a multi-objective Pareto frontier,
as opposed to most BO methods which only consider a single criterion.

2.2 Candidate Selectors

The line between candidate generator and candidate selector is not clear cut,
indeed even the fractional factorial design method not only suggests candidates
(the cross product of all options), but also provides a mechanism for down-
selecting. Thus, by candidate selector, we mean methods that can be applied
generally, i.e., the candidates input to the method can come from any variety
of candidate generators, or the selector could accept/choose candidate genera-
tion algorithms, such as in the setting of algorithm selection [12]. In [27], which
also competed in the challenge described above, an ensemble generation app-
roach for BBO is presented using GPUs. The resulting ensemble uses the Turbo
optimizer [17] (itself a candidate selector using a bandit algorithm) and scikit-
optimize [25]. In [39], an ensemble of three approaches is created and a hierarchy
is formed to decide which to use to select points.

Multi-armed bandit approaches are a well-known class of candidate selectors.
As we consider the case where multiple candidates in each iteration should be
selected, combinatorial bandits with semi-bandit feedback (e.g., [26]) are most
relevant. These approaches generally assume the order of observations (between
batches) is irrelevant, however we note that, in our case, this is not true. For
example, some approaches may work better at selecting points in the first few
rounds, while others may excel later on or once particular structures are discov-
ered. Contextual bandits [28] allow for the integration of extra information, such
as the current iteration, to be included in arm selection. The CPPL approach

Learning to Optimize Black-Box Functions with Extreme Limits 11

of [30] uses a Placket-Luce model to choose the top-k arms in a contextual set-
ting, but is meant for situations with a richer context vector, such as algorithm
selection, rather than BBO candidate selection.

3 Hyperparameterized Parallel Few-Shot Optimization
(HPFSO)

Having reviewed the dominant methodologies for BBO, we now introduce our
new hyperparameterized approach for parallel few-shot optimization (HPFSO).
The idea for our approach is simple: When determining the next batch of inputs
to be evaluated in parallel, we employ multiple different existing methodologies
to first produce a larger set of candidate inputs. The core function we introduce
strategically selects inputs from the superset of candidates until the batch-size
is reached. The mechanism for performing this reduction is a hyper-configurable
heuristic that is learned using an AC algorithm offline. The selected candidates
are evaluated in parallel and the results of all of these trials are communicated to
all the candidate-generating methods. That is to say, every point generator is also
informed about the true function values of candidates it itself did not propose
for evaluation. This process is repeated until the total number of iterations is
exhausted. In the end, we return the input that resulted in the best overall
evaluation.

3.1 Candidate Generators

We first require several methods for generating a superset of candidate inputs
from which we will select the final batch that will be evaluated in parallel. To
generate candidates, we use:

– Latin Hypercube Sampling (LHS): For a requested number of points k, par-
tition the domain of each variable into k equal (or, if needed, almost equal)
sized intervals. For each variable, permute the k partitions randomly and
independently of the other variables. Create the i-th point by picking a ran-
dom value from partition i (in the respective permuted ordering) for each
variable.

– Bayesian Optimization: Bayesian optimization updates a surrogate model
with new point(s) xn and their evaluated values. Using the surrogate model
as response surface, an acquisition function α(x) is minimized to derive the
next query point(s)

xn+1 = argminxα(x)

We run the above minimization k times to generate k points, each time with
a different seed.

• Gradient Boosting Tree – Lower Confidence Bound (GBM-LCB): We
use a GBM as a surrogate model followed by the LCB acquisition function

α(x) = μ(x) − κσ(x),

12 C. Ansótegui et al.

where μ(x) is the posterior mean, σ(x) is the posterior standard deviation
and κ > 0 is the exploration constant. The parameter κ adjusts the bias
regarding exploration vs. exploitation. In our experiments, we set κ to 2.

• Modified Random Forest (GGA++): We use the surrogate proposed
in [3], which directly identifies areas of interest instead of forecasting
black-box function values. We use local search to generate local minima
over this surrogate without using any form of uncertainty estimates to
generate points.

– Covariance Matrix Adaptation: This is an evolutionary approach that sam-
ples k points from a Gaussian distribution that is evolved from epoch to
epoch. The covariance matrix is adjusted based on the black box evaluations
conducted so far [24]. We use the covariance matrix in two ways to generate
points:

• For sampling using the current best point as mean of the distribution
(CMA).

• For sampling using the mean of the best point suggested by the GGA++
surrogate (CMA-N).

– Turbo (TUR): This method employs surrogate models for local optimization
followed by an implicit multi-armed bandit strategy to allocate the samples
among the different local optimization problems [17].

– Recombinations of the best evaluated points and points that were suggested
but not selected in earlier epochs: We create a diversity store of all the points
recommended in the previous iterations by BO, covariance matrix adaptation
and Turbo, but not evaluated after the down-selection. We create recombi-
nations of these points using two methods:

• REP: We select a random point in the diversity store and use path relink-
ing [20] to connect it with the best point found so far. We choose the
recombination on the path with the minimum value as priced by the
GGA++-surrogate.

• RER: In a variant of the above method, we use random crossover 1000
times for randomly chosen points from the diversity store. We perform
pricing again using the GGA++ surrogate, and suggest the best k points
to be evaluated.

Summarizing, we use 8 candidate point selectors: LHS, GBM-LCB, GGA++,
CMA, CMA-N, TUR, REP and RER. We will use these acronyms going forward.

3.2 Sub-selection of Candidates

Having generated a set of candidate points, we next require a method to down-
select the number of points to the desired batch size of function evaluations
that can be conducted in parallel. This function represents the core of our new
methodology and is the primary target for our automated parameter tuning, our
goal in this process.

The selection of candidates is shown in Algorithm 1 and works as follows. In
each iteration of the main while loop (line 4), we select a candidate for our final

Learning to Optimize Black-Box Functions with Extreme Limits 13

Algorithm 1. Candidate sub-selection
1: Input: F : set of feature vectors for C candidates; w: feature weights; B: # of final candidates,

N : # simulations
2: Output: S: Indices of selected candidates
3: Initialize S ← {}, R ← {1, 2, . . . , C}
4: while |S| < B do
5: Q ← vector of length C of zeros
6: for j in 1, 2, . . . , N do
7: Sb ← S
8: while |Sb| < B do
9: Update and normalize diversity features in F w.r.t. Sb

10: for c ∈ R \ Sb do
11: fc ← F (c); sw(fc) ← 1

1+ew
T fc

12: end for
13: sc ← sw(fc)/

∑C
c=1 sw(fc) ∀c ∈ R \ Sb

14: Sample k from R \ Sb with distribution {sc}.
15: Sb ← Sb ∪ {k}.
16: Q[k] ← Q[k] + 1
17: end while
18: end for
19: S ← S ∪ {argmax{Q}} � Choose only one value; break ties uniformly at random.
20: end while

selection S. We next simulate N completions of S. For each candidate that we
could add to the batch, we compute its features apply a logistic regression using
a weight vector w that is tuned offline (line 11), providing us with a score as to
how good (or bad) candidate c is with respect to the current batch. Note that this
is a key part of our contribution; we do not simply take the best B candidates,
rather, we ensure that the candidates complement one another according to
“diversity” features. For example, solutions that are too similar to the solutions
in Sb can be penalized through the diversity features to encourage exploration,
and will receive a lower score than other candidates, even if they otherwise
look promising. Alternatively, the hyperparameter tuner can also decide to favor
points that are close to each other to enhance intensification in a region. In any
case, given the scores for each candidate, we form a probability distribution from
the scores and sample a new candidate for Sb (line 14).

Figure 1 shows the selection of the next candidate for Sb graphically. The blue
squares represent the candidates in S, which are fixed in the current simulation.
The subsequent two orange cells were selected in the previous two iterations
of the current simulation. Now, given three categories of features, which are
explained in more detail later, we compute the scores for each of the remaining
candidates and choose one at random according to the probability distribution
determined by the scores.

Once a candidate has been chosen, we increment a counter for the chosen
candidate (line 15). Having simulated batches of candidates of the desired size,
we then use the frequencies with which the respective candidates appear in the
sample batches. The candidate that appears most often gets added to the batch
S that we will send to the black box for parallel evaluation, with ties broken
uniformly at random.

Figure 2 provides a graphical view of the frequency selection of a candidate
for S. In Fig. 2(a), we depict again in blue the candidates that are already

14 C. Ansótegui et al.

Fig. 1. Probability-based selection simu-
lation.

Fig. 2. Frequency-based determination of
next candidate. (a) Three simulated selec-
tions of batches. (b) Frequencies of candi-
dates in simulations. (c) Augmented set
of candidates. (Color figure online)

determined to be part of the final batch of eight. The orange cells show comple-
tions of the batch from three simulations. In Fig. 2(b), we calculate the frequencies
(given as Q in the algorithm) with which the different candidates appear in the
three sample batches. In green, we show candidate 7, which was selected most
often. Finally, in Fig. 2(c), we provide the augmented, partially completed batch
with candidate 7. The algorithm will then zero out its frequency table and begin
a new round of simulations to fill in the remaining cells with candidate points.

3.3 Hyperparameterized Scoring Function

The final piece missing from our approach is the scoring function of candidates
that is called during the randomized construction of sample batches. The score
for each candidate depends on two pieces of information, the definition of candi-
date features and the determination of the feature weights w. We start by listing
the features used to characterize each remaining candidate. The features fall into
three different categories:

1. Diversity features, which rate the candidate in relation to candidates already
selected to be part of the sample batch under construction,

2. Dynamic features, which characterize the point with respect to its expected
performance, and

3. Static features, which capture the current state of the BBO as a whole.

Diversity Features: The first set of features considers how different the candi-
date is with respect to three different sets of other candidates. These three sets
are 1. the set of points that were already evaluated by the black box function in
earlier epochs, 2. the set of points already included in the sample batch under
construction (denoted with the blue and orange colors above), and 3. the subset
of candidates that are already part of the current sample batch and that were

Learning to Optimize Black-Box Functions with Extreme Limits 15

generated by the same point generator as the point whose features we are com-
puting. For each of these three sets, we compute the vector of distances of the
candidate to each point in the respective set. To turn this vector into a fixed
number of features, we then compute some summary statistics over these three
vectors: the mean, the minimum, the maximum, and the variance.

Dynamic Features: The second set of features characterizes each candidate
in terms of its origin and its expected performance. In particular, we assess the
following. What percentage of points evaluated so far were generated by the
same point generator as the candidate (if there are none we set the all following
values to 0)? Then, based on the vector of function values of these points that
were generated by the same generator earlier, what was their average objective
value? What was the minimum value? What was the standard deviation? Then,
also for these related points evaluated earlier, what was the average deviation of
the anticipated objective value from the true objective value? Next, based on the
GBM used as a surrogate by some of the point generators, what is the expected
objective value of the candidate? What is the probability that this candidate
will improve over the current minimum? And, finally, what is the uncertainty of
that probability?

Static Features: The last set of features considers the general state of the
optimization in relation to the respective candidate. We track the following.
What method was used to generate the candidate? Note that the method is one-
hot encoded, so there are as many of these features as point generator methods.
And, finally, what is the ratio of epochs remaining in the optimization?

After computing all features above for all remaining candidates in each step
of building a sample batch, before applying the logistic scoring function, we
normalize the diversity and the dynamic features such that the range of each
feature is 0 to 1 over the set of all candidates. That is to say, after normalization,
for each distance and each dynamic feature, there exists a candidate for which
the feature is 0 and another candidate for which the feature is 1 (unless all
feature values are identical, in which case they are all set to 0), and all feature
values are in [0, 1].

Hyperparameters: Finally, we need to determine the feature weights w ∈
R

n to fully define the scoring function. We use an algorithm configurator to
determine the hyperparameters, as was previously proposed in [6,8], in which AC
is used for determining weights of linear regressions in a reactive search. We tune
on a set of 43 black box optimization problems from the 2160 problems in [22].
As is the practice in machine learning, the functions we tune the method for are
different from the functions we evaluate the performance of the resulting method
on in the following section. Our test set consists of 157 additional problems
sampled at random from the same benchmark.

16 C. Ansótegui et al.

4 Numerical Results

We study the performance and scaling behavior of the approach developed in
the prior sections by applying it to the established standard benchmarks from
the black-box optimization community.

4.1 Experimental Setup

Benchmark: We use the Python API provided by the Comparing Continu-
ous Optimizers (COCO) platform [22] to generate BBO training and evaluation
instances. The framework provides both single objective and multi-objective
BBO functions. We use the noiseless BBO functions in our experiments. The
suite has 2160 optimization problems (using the standard dimensions from
COCO), each specified by a fixed value of identifier, dimension and instance
number. We randomly select 2% (43) problems for training the hyperparameters
and 7.5% (157) problems for testing.

As each test instance works on its own scale, we normalize the solution values
obtained by applying a linear transformation such that the best algorithm’s
solution value is zero and the worst is one. The algorithms considered for this
normalization are all individual point generators as well as the state-of-the-
art black box optimizers, but not sub-optimal HFPSO parameterizations, or
solutions obtained when conducting different numbers of epochs. Note that, for
the latter, values lower than zero or greater than one are therefore possible.

Configuration of HPFSO’s Hyperparameters: We tune HPFSO using
Pydgga [4], which is an enhanced version of the GGA++ [3] algorithm config-
urator [7] written in the Python language. We tune for 50 wall-clock hours on
80 cores.

Contenders: To assess how the novel approach compares to the state of the art
we compare with the following approaches: CMA-ES, HEBO [15], and multiple
differential evolutionary methods, in particular DE [35], SADE [31], SHADE [36],
L-SHADE [37] iL-SHADE [13], jSO [14] and L-SHADE-cnEpSin [10]. We use
open source Python implementations for CMA [23], HEBO [15] and the DE
methods [32].

Compute Environment: All the algorithms were run on a cluster of 80 Intel
(R) Xeon CPU E5-2698, 2.20GHz servers with 2 threads per core, an x86_64
architecture and the Ubuntu 4.4.0-142 operating system. All the solvers are
executed in Python 3.7.

Learning to Optimize Black-Box Functions with Extreme Limits 17

Table 1. Comparison of randomly chosen hyperparameters with the tuned hyperpa-
rameters after different generation of tuning by Pydgga

Random At generation
A B 5 10 20 40

Mean 0.198 0.191 0.108 0.088 0.085 0.067
Std 0.287 0.199 0.188 0.176 0.146 0.115
Mean/Gen 40 2.955 2.851 1.612 1.313 1.269 1.000
Std/Gen 40 2.496 1.730 1.635 1.530 1.270 1.000

4.2 Effectiveness of Hyperparameter Tuning

We begin our study by conducting experiments designed to assess the effec-
tiveness of the hyperparameter tuning. In Table 1, we show the normalized (see
Benchmarks) quality of solutions on the test set.

We provide the aggregate performance as measured by the arithmetic mean
over the normalized values over all test instances. We compare versions of our
novel approach that only differ in the hyperparameters used. The first two
versions apply two different random parameterizations (Random A and B).
Pydgga is based on a genetic algorithm, thus, after each generation, it provides
the best performing parameters for HPFSO in that generation. We provide the
test performance of the parameterizations found in generation 5, 10, 20 and 40,
respectively. Note that the parameters at generation 40 are the last parameters
output by Pydgga.

We observe that tuning is indeed effective for this method. A priori it was
not certain that stochastically tying the static, dynamic, and diversity features
to the decision as to which points are selected would have a significant effect on
performance at all. Moreover, nor was it certain that we would be able to learn
effectively how to skew these stochastic decisions so as to improve algorithm
performance. As we can see, however, both of these were possible and this leads
to an improvement of about a factor of three in normalized performance over
random parameters. At the same time, we also observe a significant drop in
variability. As the method gets better at optimizing the functions, the standard
deviation also drops, which tells us that the tuning did not lead to outstanding
performance on just some instances at the cost of doing a very poor job on
others.

4.3 Importance of the Selection Procedure

Next, we quantify the impact of the main contribution of our approach, namely
the sub-selection procedure. To this end, we compare with each of the 8 point
generators included in HPFSO, in isolation, as well as the performance of an
approach that employs all point generators and then randomly selects points
from the pool that was generated (RAND), and another approach that also uses

18 C. Ansótegui et al.

Fig. 3. Average number of points per epoch for each candidate method over test
instances.

all 8 point generators and compiles a set of 8 candidate points to be evaluated
by selecting the best point (as evaluated by the GBM surrogate) from each point
generator (best per method - BPM).

In Table 2, we show the aggregate performances, again as measured by the
means of the normalized solution qualities. We observe that the best individual
point generator is CMA-ES, followed by BO based on a GBM as surrogate using
LCB as acquisition function. Given that CMA-ES is the best point generator in
isolation, it may not be surprising that the method also beats a random sub-
selection of points over all points generated (RAND). What may be less expected
is that the best point generator (CMA) in isolation also performs about two times
better than choosing the batch consisting of the best points provided by each
point generator in each epoch (BPM). And, in fact, this shows the difficulty
of the challenge our new method must overcome, as combining the respective
strengths of the different point generators appears all but straight forward.

However, when comparing HPFSO with BPM, we nevertheless see that the
new method introduced in this paper does manage to orchestrate the individual
point generators effectively. On average, HPFSO leads to solutions that incur
less than half the normalized cost than any of the point-generation methods
employed internally. Moreover, we also observe that the down-selection method
works with much greater robustness. The standard deviation is a factor 1.8 lower
than that of any competing method.

In Fig. 3, we show the average number of points selected from each point
generator as a function over epochs. We observe that points generated by

Table 2. Comparison of HPFSO with individual point generators, the best point per
method (BPM), and randomly sub-selected points (RAND)

LHS CMA-N RER REP TUR GGA++ GBM-LCB CMA RAND BPM HPFSO

Mean 0.606 0.612 0.549 0.543 0.534 0.521 0.341 0.142 0.266 0.269 0.067

Std 0.304 0.357 0.336 0.311 0.304 0.307 0.317 0.207 0.228 0.252 0.115

Mean/HPFSO 9.182 9.273 8.318 8.227 8.091 7.894 5.167 2.152 4.030 4.076 1.000

Std/HPFSO 2.667 3.132 2.947 2.728 2.667 2.693 2.781 1.816 2.000 2.211 1.000

Learning to Optimize Black-Box Functions with Extreme Limits 19

Fig. 4. Distribution of normalized function values for HPFSO and nearest competitors

CMA-ES (CMA) are generally favored by our method, which fills between 40%
and 60% of the batches with points generated by that method, where the ratio
starts at around 60% and drops gradually down to 40% in later epochs. Curi-
ously, we also see that CMA-ES is favored in the very first epoch when clearly
no learning of the covariant influence of the input variables could have taken
place yet. Note that our method would have had the option to employ latin
hypercube sampling instead, but did not. What this tells us is that it appears to
be better, even in the very beginning, to gain deeper information in one region
of the search space rather than distributing the initial points. We suspect that
the superiority of this strategy is the result of the very limited number of black
box function evaluations that can be afforded.

Most of the remaining points selected are generated by BO using the GGA++
surrogate, which ramps up quickly to 20% after two epochs and then steadily
grows to about 35%. This behavior makes intuitive sense, as the GGA++ surro-
gate is designed to identify favored regions quickly, but does require at least some
training data to become effective. The points generated by the Turbo method,
which also employs BO internally, show a similar dynamic. After two epochs,
about one in eight points is selected from this method, and this ratio stays very
steady from then on.

Less intuitive is the strategy to choose a point generated by recombination via
path relinking (REP) in the first epoch. We assume that the tuner “learned” to
add a random point to the batch so as to gauge whether CMA-ES is not searching
in a completely hopeless region. However, after two epochs, the influence of REP
dwindles down to the same level of influence that all other point generators are

Table 3. Comparison of HPFSO with state-of-art methods

HPFSO HEBO CMA iL-SHADE SADE SHADE L-SHADE jSO LSHADEcnEpSin DE

Mean 0.067 0.135 0.142 0.303 0.343 0.365 0.379 0.384 0.410 0.410

Std 0.115 0.199 0.207 0.259 0.274 0.302 0.325 0.321 0.313 0.326

Mean/HPFSO 1.000 2.045 2.152 4.591 5.197 5.530 5.742 5.818 6.212 6.212

Std/HPFSO 1.000 1.746 1.816 2.272 2.404 2.649 2.851 2.816 2.746 2.860

20 C. Ansótegui et al.

afforded by the method. In all epochs, at most 0.3 points from all other point
generators are selected on average.

4.4 Comparison with the State of the Art

Finally, we provide a comparison with some of the best performing black-box
optimization algorithms to date as well as the recent winner from the 2020
NeurIPS Black Box Challenge, HEBO. Note that the established black-box opti-
mizers (such as CMA-ES) have been tuned for the very benchmark we consider,
but were not specifically designed to work well for such an extreme limit on
the number of function evaluations. HEBO, on the other hand, was developed
for the BBO challenge where the objective was to optimize hyperparameters of
machine learning algorithms by testing sets of hyperparameters in 16 epochs of
8 samples per epochs.

In Table 3, we show the aggregate normalized performance of comparing
HPFSO with other competitors. In Fig. 4, we also show the histogram of the
normalized function values evaluated by HPFSO and its nearest competitors.

We observe that CMA-ES and HEBO are the closest contenders, but nonethe-
less produce solutions that have normalized costs over two times the quality pro-
duced by HPFSO. We use a Wilcoxon signed rank test against our data and find
that the p-value for the hypothesis that HEBO outperforms HPFSO is less than
0.55%, which allows us to refute this hypothesis with statistical significance.

In Fig. 4, we see that, on 80% of our test instances, HPFSO yields a solution
that is close to the best performing method for that instance: the normalized
function value is between 0 and 0.2. CMA-ES and HEBO also perform relatively
well, but still notably worse than HPFSO. We also see that on none of the test
instances, HPFSO fails completely. Only on less than 3% of the test instances,
the normalized function value exceeds 0.4, and it is never over 0.6. This again
shows the robustness of HPFSO. As we see in Table 3, HEBO is the closest
contender in terms of variability, but even it exhibits a standard deviation that
is over 1.7 times larger than that of HPFSO.

We also investigate how different setups regarding the number of epochs
would affect these results. In Table 4, we vary the number of epochs between 4
and 24. We use the same batch size of 8 points per parallel trial as before, with
the exception of the DE methods which do not allow us to specify parallel trials,
so we give these methods a competitive advantage by allowing them to conduct
8 times the number of epochs with one trial per epoch.

Note that HPFSO is trained exclusively using runs with 16 epochs. Neverthe-
less, the method produces the best results across the board, from optimizing the
black box when only 32 function evaluations are allowed in 4 epochs of 8, to an
optimization where 192 function evaluations can be afforded in 24 epochs with
8 parallel trials each. This shows that, while the training is targeting a specific
number of function evaluations overall, the parameters learned do generalize to
a range of other setting as well.

Learning to Optimize Black-Box Functions with Extreme Limits 21

Table 4. Mean and standard deviation of normalized performances of different methods
when different numbers of epochs are affordable. The batch size is held constant at 8,
except for DE methods whose implementations do not allow for parallel trials. For
these methods we allow 8 times the number of epochs, with one trial per epoch.

Epochs 4 8 12 16 24

Mean Std Mean Std Mean Std Mean Std Mean Std

HPFSO 0.419 0.350 0.217 0.245 0.137 0.201 0.067 0.115 −0.068 1.123

CMA 0.477 0.408 0.265 0.219 0.177 0.189 0.142 0.207 −0.031 1.080

HEBO 0.825 2.434 0.345 0.570 0.200 0.252 0.135 0.199 0.073 0.183

ILSHADE 1.844 11.54 0.512 0.328 0.349 0.262 0.303 0.259 0.230 0.212

GBM-LCB 0.670 0.481 0.450 0.351 0.365 0.320 0.341 0.317 0.251 0.255

LSHADE 30.32 366.5 1.555 12.19 0.532 1.120 0.379 0.325 0.299 0.278

SADE 0.811 1.385 0.672 2.061 0.478 0.478 0.343 0.274 0.303 0.288

jSO 19.08 222.9 9.327 108.6 9.683 115.9 0.384 0.321 0.322 0.323

LSAHDECNEP* 39.80 487.3 1.530 12.197 0.521 0.893 0.410 0.313 0.325 0.280

SHADE 23.30 281.6 0.635 1.560 0.460 0.414 0.365 0.302 0.334 0.288

DE 2.227 16.92 5.708 61.93 1.173 8.582 0.410 0.326 0.370 0.300

REP 1.246 1.709 0.818 0.807 0.691 0.748 0.543 0.311 0.483 0.311

RER 8.014 85.32 0.710 0.543 0.600 0.389 0.549 0.336 0.494 0.322

GGA++ 1.177 1.776 0.761 0.503 0.648 0.425 0.521 0.307 0.510 0.322

TUR 1.119 1.506 0.753 0.545 0.633 0.354 0.534 0.304 0.518 0.331

LHS 1.272 3.378 0.783 0.598 0.661 0.417 0.606 0.304 0.520 0.312

5 Conclusion

We considered the problem of optimizing a black box function when only a
very limited number of function evaluations is permitted, and these have to be
conducted in a given number of epochs with a specified number of parallel eval-
uations in each epoch. For this setting, we introduced the idea of using a port-
folio of candidate point generators and employed a hyperparameterized method
to effectively down-select the set of suggested points to the desired batch size.
Our experiments showed that our method can be configured effectively by the
Pydgga algorithm configurator, and that the primary strength of the method is
derived from the parameterized, dynamically self-adapting down-selection pro-
cedure. Furthermore, we saw that the resulting method significantly outperforms
established black box optimization approaches, as well as a recently introduced
method particularly designed for black box optimization with extreme limits on
the number of function evaluations.

References

1. Blackbox BBO Challenge. https://bbochallenge.com/. Accessed 12 Mar 2020
2. Adam, S.P., Alexandropoulos, S.-A.N., Pardalos, P.M., Vrahatis, M.N.: No free

lunch theorem: a review. In: Demetriou, I.C., Pardalos, P.M. (eds.) Approximation
and Optimization. SOIA, vol. 145, pp. 57–82. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-12767-1_5

https://bbochallenge.com/
https://doi.org/10.1007/978-3-030-12767-1_5
https://doi.org/10.1007/978-3-030-12767-1_5

22 C. Ansótegui et al.

3. Ansotegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-
based genetic algorithms for algorithm configuration. In: IJCAI, pp. 733–739 (2015)

4. Ansotegui, C., Pon, J.: PyDGGA. https://ulog.udl.cat/
5. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for

the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04244-7_14

6. Ansótegui, C., Heymann, B., Pon, J., Sellmann, M., Tierney, K.: Hyper-reactive
tabu search for MaxSAT. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos,
P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 309–325. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-05348-2_27

7. Ansótegui, C., Pon, J., Sellmann,M.: Boosting evolutionary algorithm configuration.
Ann. Math. Artif. Intell. (2021). https://doi.org/10.1007/s10472-020-09726-y

8. Ansótegui, C., Pon, J., Sellmann, M., Tierney, K.: Reactive dialectic search portfo-
lios for MaxSAT. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31 (2017)

9. Atkinson, S., Ghosh, S., Chennimalai Kumar, N., Khan, G., Wang, L.: Bayesian
task embedding for few-shot Bayesian optimization. In: AIAA Scitech 2020 Forum,
p. 1145 (2020)

10. Awad, N.H., Ali, M.Z., Suganthan, P.N.: Ensemble sinusoidal differential covariance
matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark
problems. In: 2017 IEEE Congress on Evolutionary Computation, pp. 372–379,
June 2017

11. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter
optimization. Evol. Comput. 1(1), 1–23 (1993)

12. Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell.
237, 41–58 (2016)

13. Brest, J., Maučec, M.S., Bošković, B.: iL-SHADE: improved L-SHADE algorithm
for single objective real-parameter optimization. In: 2016 IEEE Congress on Evo-
lutionary Computation (CEC), pp. 1188–1195, July 2016

14. Brest, J., Maučec, M.S., Bošković, B.: Single objective real-parameter optimization:
algorithm jSO. In: 2017 IEEE Congress on Evolutionary Computation, pp. 1311–
1318 (2017)

15. Cowen-Rivers, A.I., et al.: HEBO: heteroscedastic evolutionary Bayesian optimi-
sation. arXiv preprint arXiv:2012.03826 (2020)

16. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002). https://doi.org/10.1016/
S0304-3975(01)00182-7

17. Eriksson, D., Pearce, M., Gardner, J., Turner, R.D., Poloczek, M.: Scalable global
optimization via local Bayesian optimization. In: Advances in Neural Information
Processing Systems, pp. 5496–5507 (2019)

18. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L.,
Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_1

19. Frazier, P.I.: A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811
(2018)

https://ulog.udl.cat/
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-030-05348-2_27
https://doi.org/10.1007/s10472-020-09726-y
http://arxiv.org/abs/2012.03826
https://doi.org/10.1016/S0304-3975(01)00182-7
https://doi.org/10.1016/S0304-3975(01)00182-7
https://doi.org/10.1007/978-3-030-05318-5_1
http://arxiv.org/abs/1807.02811

Learning to Optimize Black-Box Functions with Extreme Limits 23

20. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton,
E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp.
1–51. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026589

21. Gunst, R.F., Mason, R.L.: Fractional factorial design. Wiley Interdisc. Rev. Com-
put. Stat. 1(2), 234–244 (2009)

22. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO:
a platform for comparing continuous optimizers in a black-box setting. Optim.
Methods Softw. 36(1), 114–144 (2020)

23. Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on Github, February 2019.
https://doi.org/10.5281/zenodo.2559634

24. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comput. 11(1), 1–18 (2003)

25. Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., Shcherbatyi, I.:
scikit-optimize/scikit-optimize, September 2020. https://doi.org/10.5281/zenodo.
4014775

26. Lattimore, T., Kveton, B., Li, S., Szepesvari, C.: TopRank: a practical algorithm
for online stochastic ranking. arXiv preprint arXiv:1806.02248 (2018)

27. Liu, J., Tunguz, B., Titericz, G.: GPU accelerated exhaustive search for optimal
ensemble of black-box optimization algorithms. arXiv preprint arXiv:2012.04201
(2020)

28. Lu, T., Pál, D., Pál, M.: Contextual multi-armed bandits. In: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, pp.
485–492 (2010)

29. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 42(1), 55–61 (2000)

30. Mesaoudi-Paul, A.E., Bengs, V., Hüllermeier, E.: Online preselection with context
information under the plackett-luce model (2020)

31. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for
numerical optimization. In: 2005 IEEE Congress on Evolutionary Computation,
vol. 2, pp. 1785–1791, September 2005

32. Ramón, D.C.: xKuZz/pyade, March 2021. https://github.com/xKuZz/pyade.
Accessed 05 Oct 2017

33. Rechenberg, I.: Evolutionsstrategien. In: Schneider, B., Ranft, U. (eds.) Simulation-
smethoden in der Medizin und Biologie. MEDINFO, vol. 8, pp. 83–114. Springer,
Heidelberg (1978). https://doi.org/10.1007/978-3-642-81283-5_8

34. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, pp.
2960–2968 (2012)

35. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

36. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differ-
ential evolution. In: 2013 IEEE Congress on Evolutionary Computation, Cancun,
Mexico, pp. 71–78. IEEE, June 2013

37. Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using
linear population size reduction. In: 2014 IEEE Congress on Evolutionary Compu-
tation (CEC), Beijing, China, pp. 1658–1665. IEEE, July 2014

https://doi.org/10.1007/BFb0026589
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.4014775
https://doi.org/10.5281/zenodo.4014775
http://arxiv.org/abs/1806.02248
http://arxiv.org/abs/2012.04201
https://github.com/xKuZz/pyade
https://doi.org/10.1007/978-3-642-81283-5_8
https://doi.org/10.1023/A:1008202821328

24 C. Ansótegui et al.

38. Wistuba, M., Grabocka, J.: Few-shot Bayesian optimization with deep kernel sur-
rogates. In: International Conference on Learning Representations (2021). https://
openreview.net/forum?id=bJxgv5C3sYc

39. Ye, P., Pan, G., Dong, Z.: Ensemble of surrogate based global optimization methods
using hierarchical design space reduction. Struct. Multidiscip. Optim. 58(2), 537–
554 (2018). https://doi.org/10.1007/s00158-018-1906-6

https://openreview.net/forum?id=bJxgv5C3sYc
https://openreview.net/forum?id=bJxgv5C3sYc
https://doi.org/10.1007/s00158-018-1906-6

Graph Diffusion & PCA Framework
for Semi-supervised Learning

Konstantin Avrachenkov1, Aurélie Boisbunon2, and Mikhail Kamalov1(B)

1 INRIA, Sophia Antipolis, Valbonne, France
{konstantin.avratchenkov,mikhail.kamalov}@inria.fr

2 MyDataModels, Sophia Antipolis, Valbonne, France
abb@mydatamodels.com

Abstract. A novel framework called Graph diffusion & PCA (GDPCA)
is proposed in the context of semi-supervised learning on graph struc-
tured data. It combines a modified Principal Component Analysis with
the classical supervised loss and Laplacian regularization, thus handling
the case where the adjacency matrix is Sparse and avoiding the Curse of
dimensionality. Our framework can be applied to non-graph datasets as
well, such as images by constructing similarity graph. GDPCA improves
node classification by enriching the local graph structure by node covari-
ance. We demonstrate the performance of GDPCA in experiments on
citation networks and images, and we show that GDPCA compares
favourably with the best state-of-the-art algorithms and has significantly
lower computational complexity.

Keywords: Semi-supervised learning · Principal Component
Analysis · Citation networks

1 Introduction

The area of graph-based semi-supervised learning (GB-SSL) focuses on the clas-
sification of nodes in a graph where there is an extremely low number of labeled
nodes. It is useful in applications such as paper classification to help researchers
find articles in a topic, where the data is represented through a citation network,
and it is especially beneficial for the classification of medical studies, where col-
lecting labeled nodes is an expensive procedure. In particular, we prepared a
real dataset for our experiments which consists of paper abstracts with clinical
trials1 regarding the coronavirus (COVID) topic. Also, GB-SSL is applicable for
post labelling in social networks and for detecting protein functions in different
biological protein-protein interactions [7].

In GB-SSL, the data consists of the feature matrix X = [Xi]ni=1, where
Xi = (Xi,j)d

j=1 lies in a d-dimensional feature space (e.g. from bag-of-words

1 https://clinicaltrials.gov.

Supported by MyDataModels company.

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 25–39, 2021.
https://doi.org/10.1007/978-3-030-92121-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_3&domain=pdf
https://clinicaltrials.gov
https://doi.org/10.1007/978-3-030-92121-7_3

26 K. Avrachenkov et al.

[15]), and of the label matrix Y = [Yi,j]
n,k
i,j=1 such that Yi,j = 1 if Xi ∈ Cj

and Yi,j = 0 otherwise, {C1, . . . , Ck} being a set of k classes. The aim of semi-
supervised learning is to estimate Y by a classification result Z = [Zi,j]

n,k
i,j=1

when there is a low number of labels available, while X contains information for
both labeled and unlabeled observations. We also assume that the dataset (X,Y)
can be represented through the undirected graph G = (V, E), with n = |V| the
number of nodes with features (e.g. papers) and e = |E| is the number of edges
(e.g. citations). Let A = [Ai,j]

n,n
i,j=1 denote the adjacency matrix associated with

the G, and D = diag(Di,i) be a diagonal matrix with Di,i =
∑n

j=1 Ai,j .
Many works in GB-SSL [1,31,32] consider the following minimization

problem:

min
Z∈Rn×k

{ n∑

i=1

n∑

j=1

Ai,j ||Zi − Zj ||22 + μ

n∑

i=1

||Zi − Yi||22
}

, (1)

where μ is a Lagrangian multiplier, n is the number of nodes, A = [Ai,j]
n,n
i,j=1 is

an adjacency matrix, Z = [Zi]ni=1 is a classification result and Y = [Yi]ni=1 is a
matrix that represents labels. The first part of the objective in (1) is a Laplacian
regularization, which penalizes nodes connected from different classes, while the
second part is a supervised loss. For the specific problem of paper classification
in citation graphs, Problem (1) has the following particular issues:

1. Sparse A: the Laplacian regularization cannot estimate classification results
Z for graphs with an extremely small number of edges [18] (e.g. citations).
Moreover, binary weights (Ai,j = 0 or Ai,j = 1) are a poor reflection of node
similarity which can lead to a weak estimation of the Laplacian regularization;

2. Curse of dimensionality : it arises when A is replaced by a similarity matrix
W = [h(Xi,Xj)]ni,j=1 ∈ R

n×n with a positive definite kernel h(·) and d → ∞
where X = [Xi]ni=1 is a matrix of node features and d is the node features
space. This replacement is made to avoid the sparsity of A. This issue is
especially noticeable in the case of paper classification, for example, based
on the Heaps law [2], the d-space of features (bag-of-words [15]) is increasing
with respect to the number and length of papers.

The first issue is resolved by Graph Convolution Network (GCN) [19] and Plane-
toid [32] by prediction of edges, however these solutions are limited in their ability
to generalize predicted edge structure. The second issue is treated in GCN as
well as in Semi-supervised embedding (SemiEmb) [31], and Least-squares kernel
PCA (LS-KPCA) [30], but they require high computation complexity.

In this work, we propose to add a reorganized principal component analysis
(PCA) loss to Problem (1) and denote our framework as Graph diffusion & PCA
(GDPCA). Not only does it address the aforementioned issues, but we also prove
that there exists an explicit solution to the corresponding problem. We apply
it to real datasets, and show that GDPCA is the best among GB-SSL state-of-
the-art linear algorithms, and that it has comparable performance with GB-SSL
neural network algorithms with significantly lower computational complexity.

Graph Diffusion & PCA Framework for Semi-supervised Learning 27

Finally, we show that GDPCA can also be applied to datasets with no explicit
graph structure such as images, and that it outperforms both linear and neural
network algorithms for GB-SSL on this type of datasets.

2 Graph-Based Semi-supervised Learning

The recent advances in GB-SSL can be classified into the following rapidly grow-
ing directions: (1) classical linear graph diffusion algorithms which apply
the graph structure for spreading the information of labelled nodes through it,
such as Label Propagation (LP) [33], PageRank SSL (PRSSL) [1], or manifold
regularization (ManiReg) [4]; and (2) graph-convolution based neural net-
work algorithms. The latter category can be further seperated into (i) nonlinear
graph diffusion algorithms, which apply convolution on the graph’s adjacency
matrix A with node features, such as Graph Convolution Network (GCN) [19],
approximated Personalized graph neural network (APPNP) [20], Planetoid [32],
or DeepWalk [23]; and (ii) graph convolution deep generative models, focusing
on the application of nonlinear graph convolution algorithms with respect to the
latent representation of nodes/edges: GenPR [18], Graphite [13].

Linear graph diffusion models are interesting because of their simplicity, but
they suffer greatly from the curse of dimensionality. On the other contrary, graph-
convolution based neural networks outperform classical linear graph diffusion
algorithms and solve the Curse of dimensionality issue [19,32]. However, they
are oriented only on computations on small, sparse graphs, leading to the Sparse
A issue. Furthermore, they do not provide a transparent solution of the classifi-
cation result Z.

In this work, we present the novel Graph diffusion & PCA (GDPCA)
framework aiming at solving both the Curse of dimensionality and Sparse A
issues while maintaining a low computational complexity. Moreover, our frame-
work provides an explicit solution of the combination of (1) with a reorganized
PCA loss. Also we show that GDPCA outperforms the main state-of-the-art GB-
SSL classical linear algorithms on various datasets. Our framework also has com-
parable performance with state-of-the-art GB-SSL neural network algorithms
and significantly lower computational complexity.

3 Graph Diffusion with Reorganized PCA Loss

This work is motivated by the idea that principal component analysis (PCA) can
solve at least the Curse of dimensionality issue. Different works [3,17,25,27,30]
consider a transformation of X by principal components XUT = Z to the clas-
sification results, where U ∈ R

d×k is a matrix of principal component vectors
from PCA. Instead, we consider principal components which are straightfor-
wardly related to the classification result (U ∈ R

k×n, UT = Z), as explained in
the sequel.

28 K. Avrachenkov et al.

One of the main ideas of this work is that the nodes from different classes have
high covariance. This idea lies under the hood of Linear Discriminant Analysis
(LDA) [10], which was developed for supervised learning. We extend this idea so
that it can also be applied in both unsupervised (PCA-BC) and semi-supervised
learning (GDPCA).

3.1 PCA for Binary Clustering (PCA-BC)

In this section, we restrict the setting to the case where no labels are available,
and where the nodes come from two clusters. Let us assume that the feature
matrix X is sampled from the Gaussian distribution:

X1, . . . , Xn
2

∼ N (μ1, C) and Xn
2 +1, . . . , Xn ∼ N (μ2, C), (2)

where C is the covariance matrix and μ1, μ2 are the expectations of classes C1

and C2 respectively. Furthermore, let ||C||2 = O(1), ||μ1 − μ2||2 = O(1), and the
ratio c0 = n/d be bounded away from zero for large d.

Remark 1. The assumptions ||C||2 = O(1) and ||μ1 − μ2||2 = O(1) are needed
to save the essential variations in d linearly independent directions and define a
non-trivial classification case for extremely large d. In particular, this assumption
allows us to work with bag-of-words [15] where the d-space is increasing with
respect to the number and the length of papers, which leads to the Curse of
dimensionality issue.

Based on the proof of Theorem 2.2 in [9] and the above restrictions on X,
there exists a connection between the binary clustering problem and the PCA
maximization objective given by:

max
U∈Rk×n

||X̄UT ||22, s. t. UT U = 1 (3)

where X̄ = [X̄T
i]di=1 ∈ R

d×n with X̄T
i = XT

i − 1
d

∑d
j=1 XT

j ; U = [Ui]ki=1 ∈ R
k×n

is a matrix of principal component vectors. Moreover, Ui=1 = U1 = (U1,j)n
j=1

is the direction of maximum variance, and it can be considered as clustering
results in the following way: if U1,j � median(U1) then Xj ∈ C1 otherwise
Xj ∈ C2. Figure 1 illustrates the idea that the covariance between nodes from
different classes is high. We further demonstrate the applicability of PCA on the
binary clustering task with a small numerical experiment. We generated several
synthetic datasets (2) with various ratios c0 and fixed values for expectation
(μ1 = (0.5, . . . , 0); μ2 = (0.1, . . . , 0);) and covariance matrix (C = diag(0.1))
with n

2 the number of nodes in each class: n = 100, d = 1000, c0 = 0.1; n = 1000,
d = 100, c0 = 10. The code of these experiments is publicly available through
a GitHub repository2. Figure 2 shows examples of how U1 discriminates the two
classes, even for large d-spaces.

2 https://github.com/KamalovMikhail/GDPCA.

https://github.com/KamalovMikhail/GDPCA

Graph Diffusion & PCA Framework for Semi-supervised Learning 29

Fig. 1. The intuition behind PCA-BC: 1) Transpose X and visualise the nodes with
the maximum and minimum covariance (cov(·)) in between; 2) Normalize transposed
X and find the direction of maximum covariance by PCA.

3.2 Generalization of PCA-BC for GB-SSL

We propose to modify Problem (1) by adding the reorganized PCA loss (the
minus sign being necessary to account for the maximization of the covariance
between classes). The optimization problem thus consists in:

min
Z∈Rn×k

⎧
⎨

⎩

n∑

i=1

n∑

j=1

Ai,j ||Dσ−1
ii Zi − Dσ−1

jj Zj ||22

+μ

n∑

i=1

D2σ−1
ii ||Zi − Yi||22 − 2δ||X̄Z||22

} (4)

where δ is a penalty multiplier and σ is the parameter controlling the contri-
bution of node degree. We control the contribution of a node degree through
the diagonal matrix D to the power in Problem (4) based on the work in [1].
It should be noticed that in Problem (4) we do not require the orthogonality
condition ZT Z = 1 as in (3). An interesting feature of Problem (4) is that there
exists an explicit solution given by the following proposition.

Proposition 1. When Problem (4) is convex, the explicit solution is given by:

Z =
(
I − α

(
Dσ−1AD−σ + δSD−2σ+1

))−1
(1 − α)Y, (5)

where α = 2/(2 + μ), I ∈ R
n×n is the identity matrix and S = X̄T X̄

(d−1) ∈ R
n×n is

the sample covariance matrix.

Proof. See Appendix A.

Remark 2. Proposition 1 provides the global minimum of Problem (4) in
cases where it is convex, which occurs when the matrix

30 K. Avrachenkov et al.

Fig. 2. Mean value of U1 (the direction of maximum variance in the PCA) on 100 sets
of random synthetic data.

I − α(Dσ−1AD−σ + δSD−2σ+1) has positive eigenvalues (Theorem 1 in [12]).
This condition can be achieved by values of δ such that the sum in brackets will
not be upper then 1 and α always less than 1.

Direct matrix inversion in Eq. (5) can be avoided thanks to efficient iterative
methods such as the PowerIteration (PI) or the Generalized minimal residual
(GMRES) [28] methods. PI consists in iterative matrix multiplications3 and can
be applied when the spectral radius verifies ρ(α(Dσ−1AD−σ + δSD−2σ+1)) < 1.
GMRES consists in approximating the vectors’ solution in Krylov subspace
instead of explicit matrix inversion. In practice, PI is more convenient for the
computation of Eq. (5) as it converges faster to the best classification accuracy
and it can be computed in a distributed regime over nodes [6, p. 135]. The accu-
racy is computed by comparing maximum values per row between label matrix
Y and classification results Z. Furthermore, instead of explicitly computing the
spectral radius mentioned above, we can use the following proposition.

Proposition 2. Suppose that SD−2σ+1 has only real eigenvalues λ1, λ2, . . . , λn.
Then the inequality ρ

(
α

(
Dσ−1AD−σ + δSD−2σ+1

))
< 1 can be transformed

into a simpler one:
1 + δγ < 1/α (6)

where γ is the maximum singular value of SD−2σ+1 and δ is the penalty multi-
plier in Eq. (5).

Proof. See Appendix B.

Remark 3. In order to speed up the computation of singular values, we can use
the randomized Singular Value Decomposition (SVD) [14]. Inequality (6) can

3 Z = α
(
Dσ−1AD−σ + δSD−2σ+1

)
Z + (1 − α)Y .

Graph Diffusion & PCA Framework for Semi-supervised Learning 31

then be rewritten as 1+δ(γ+ε) < 1/α, where ε is the tolerance of the randomized
SVD. The computational complexity of the randomized SVD is C +O(n), where
C is the cost of matrix-vector multiplications.

Algorithm 1 gives the outline of our novel Graph diffusion & PCA (GDPCA)
framework derived from Propositions 1 and 2. GDPCA uses the following setup:
I is the number of iterations, τ is the tolerance in GMRES, δ is a Lagrangian
multiplier, σ is the parameter controlling the contribution of node degree and ε
is the tolerance in randomized SVD.

Algorithm 1: GDPCA (Graph diffusion & PCA)
INPUT: X, A, Y , σ, α, δ, I, τ , ε;
INITIALIZE:
X̄T

i = XT
i − 1

d

∑d
j XT

j ∀i ∈ (1, . . . , n); S = X̄T X̄
d−1

γ = randomizedSV D(SD−2σ+1)
IF: 1 + δ(γ − ε) < 1/α:

Z = PI(α(Dσ−1AD−σ + δSD−2σ+1), (1 − α)Y, I)
ELSE:

Z = GMRES((I − α(Dσ−1AD−σ + δSD−2σ+1)), (1 − α)Y, τ, I)

Note also that Proposition 1 simplifies to the known results of PRSSL [1]
for the value δ = 0. GDPCA can thus be seen as a generalization of PRSSL
enriching the default random walk matrix Dσ−1AD−σ thanks to the sample
covariance matrix S. Notice that S is retrieved from PCA loss in Problem (4)
(see Appendix A). This enrichment of the binary weights (Ai,j = 0 or Ai,j = 1)
by node covariance allows bypassing the Sparse A issue. Similarly, we assume
that our framework solves the Curse of dimensionality issue thanks to the use
of PCA loss.

4 Experiments

4.1 Datasets Description

In the experimental part of this work, we consider two types of datasets: datasets
with an underlying graph structure, and datasets that are non-graph based. The
latter allow us to test the flexibility of our framework.

Graph-Based Datasets. We consider the citation networks datasets of Cora,
Citeseer, and Pubmed [29]. These datasets have bag-of-words [15] representation
for each node (paper) features and a citation network between papers. The cita-
tion links are considered as edges in the adjacency matrix A. Each paper has a
class label (Xi ∈ Cj).

Non-graph Based Datasets. Images. We consider the standard MNIST image
dataset [21] composed of square 28 × 28 pixel grayscale images of handwritten

32 K. Avrachenkov et al.

digits from 0 to 9. Besides, we flattened square pixels in 784 d-space features for
this dataset. Text data. Covid clinical trials (CCT) crawled dataset. We consider
a second non-graph based dataset which we prepared and processed from the
ClinicalTrials resource4 from summaries of evidence-based [22] clinical trials on
COVID. This dataset is particularly important given the current need from
medical experts on this topic. We analyzed 1001 xml files as follows:

1. the feature matrix X was generated from a bag-of-words model based on
the descriptive fields “official title”, “brief summary”, “detailed description”,
“eligibility”;

2. the label matrix Y was generated from the field “masking”, which takes values
in (Open, Blind)5, as it is one of the essential parameters of evidence-based
medicine EBM [8]. The type of masking corresponds to the way of conducting
clinical trials: the Open way is a less expensive and complicated procedure
than the Blind one.

Note that the CCT dataset could be useful to other researchers who wish to
improve even further the labeling of COVID clinical trials. The registration
procedure of clinical trial is useful when authors forget to create masking tag for
their work. Particularly after analyzing 1001 xml files, we found that from 3557
clinical trials 1518 of them do not have a masking tag.

As the non-graph based datasets do not have a predefined graph structure, we
apply the K-nearest neighbours (KNN) [11] algorithm to generate the adjacency
matrix. In Appendix C, we show on validation sets of MNIST and CCT datasets
how the choice of distances and number of neighbours for the generation of
the adjacency matrix by KNN influence GDPCA. We followed the strategy for
train/validation/test splitting as in [32] for Pubmed, Citeseer, Cora and CCT,
and as in [24] for MNIST.

The above datasets and code with GDPCA are available through a GitHub
repository6. Table 1 provides a description of these datasets, where LR = nl/n
is the learning rate with nl the number of labeled nodes.

Table 1. Dataset statistic.

Citeseer Cora Pubmed CCT MNIST

n 3327 2708 19717 2039 50000

e 4732 5492 44338 – –

k 6 7 3 2 10

d 3703 1433 500 7408 784

LR 0.036 0.052 0.003 0.019 0.002

c0 0.898 1.889 39.43 0.275 63.77

4 https://clinicaltrials.gov/ct2/resources/download#DownloadMultipleRecords.
5 In order to simplify the labeling process, we replaced the long description of masking

by a shorter version (e.g. Single Blind (Participant, Investigator) by Blind).
6 https://github.com/KamalovMikhail/GDPCA.

https://clinicaltrials.gov/ct2/resources/download#DownloadMultipleRecords
https://github.com/KamalovMikhail/GDPCA

Graph Diffusion & PCA Framework for Semi-supervised Learning 33

4.2 State-of-the-Art (SOTA) Algorithms

As some of the SOTA algorithms cannot be applied to all types of datasets, we
consider specific SOTA algorithms depending on the datasets. For the graph-
structured Citeseer, Cora and Pubmed datasets, we compare GDPCA to the
LP [34] andManiReg [4] linear graphdiffusion algorithms and to the SemiEmb [31],
Planetoid [32], GCN [19] and DeepWalk [23] graph convolution-based neural net-
works. For MNIST, we compared it to the transductive SVM (TSVM) [16] and
KNN [11] linear algorithms, and to the GCN neural network. Finally, for CCT, we
compared it to the linear LP [34], KNN [11], and PRSSL [1], and to GCN.

Accuracy for Non-reproduced Benchmarks. Since for training and estima-
tion of the GDPCA framework, we use the train/validation/test split strategy for
Citeseer, Pubmed, Cora and CCT datasets as in [32] we can use the accuracy of
SOTA algorithms from work [32]. In particular, we can take the accuracy of LP
[34], ManiReg [4], TSVM [16], SemiEmb [31], Planetoid [32] algorithms from work
[32], and the GCN [19], DeepWalk [23] algorithm’s accuracy from work [19]. Since
for MNIST dataset we use the train/validation/test split strategy as in [24] we can
use the value of accuracy of KNN [11] and TSVM[16] algorithms from work [24].

Algorithm Parameters for Reproduced Benchmarks. We trained LP,
PRSSL, KNN and GCN on CCT and MNIST datasets with the best hyper-
parameters defined in the articles describing these algorithms: LP [34] RBF (·)
kernel function; GCN [19] 0.5 dropout rate, 5 ·10−4 L2 regularization, 16 hidden
units and 200 epochs; KNN parameters selected by Randomized Search [5] for
Cora, Citeseer, Pubmed and CCT datasets.

For a fair model comparison between GDPCA, PRSSL and GCN, we replaced
A by A+I as was done in [19,32]. Also, for GDPCA and PRSSL we fixed α = 0.9
and σ = 1 on all datasets as it was shown in [1] that these parameters provide the
best accuracy result for PRSSL. We trained GDPCA on Cora, Citeseer and CCT
with δ = 1, I = 10, τ = 10−3, ε = 10−3, and the same for MNIST and Pubmed
but changing the value of δ to 10−3. We selected these specific I, ε, τ parameters
by Random Search algorithm [5] as a trade-off between fast computation with
GMRES and PowerIteration and accuracy on the validation set. Moreover, for
MNIST and CCT we generated a synthetic adjacency matrix A by KNN with
respect to the results from Appendix C. In particular, we generated synthetic
adjacency matrices based on the following parameters of KNN for datasets: for
CCT - Dice distance and 7 nearest neighbours; for MNIST - Cosine distance
and 7 nearest neighbours. We used these synthetic adjacency matrices for the
training of GDPCA, PRSSL and GCN algorithms.

4.3 Results

Accuracy Results. The aforementioned comparisons in terms of accuracy (%)
are presented in Table 2 and Table 3. Table 2 shows that GDPCA outperforms

34 K. Avrachenkov et al.

Table 2. Classification accuracy (%) comparison with linear algorithms.

Dataset Cora Citeseer Pubmed CCT MNIST

TSVM [16] 57.5 64.0 62.2 – 83.2

KNN [11] 43.9 47.4 63.8 57.1 74.2

LP [34] 68.0 45.3 63.0 53.5 34.2

ManiReg [4] 59.5 60.1 70.7 – –

PRSSL [1] 69.3 45.9 68.4 55.8 87.2

GDPCA 77.7 73.1 76.1 61.1 88.4

other SOTA linear algorithms, especially it is significantly better on the Cora,
Citeseer and Pubmed, where it outperforms the others by 8%, 9% and 5% respec-
tively. Moreover, Table 3 shows that our linear GDPCA framework provides per-
formance that is close to the best neural network algorithms results. Note that
GDPCA has a fixed explicit solution (5) as opposed to the neural network algo-
rithms, which depend on the layer’s weights initialization process. Furthermore,
Table 2 and Table 3 show that GDPCA has a good performance on standard
Cora, Citeseer, Pubmed and MNIST as well as on real dataset CCT.

Table 3. Classification accuracy (%) comparison with neural network algorithms.

Dataset Cora Citeseer Pubmed CCT MNIST

SemiEmb [31] 59.0 59.6 71.1 – –

DeepWalk [23] 67.2 43.2 65.3 – –

Planetoid [32] 75.7 64.7 77.2 – –

GCN [19] 81.5 70.3 79.0 55.2 81.4

GDPCA 77.7 73.1 76.1 61.1 88.4

Computational Complexity. We finish this experiment section by compar-
ing the computational complexity of GDPCA with the SOTA algorithms that
obtained the most similar performance, namely GCN7 and Planetoid8. The algo-
rithmic complexity of GDPCA is O(Ink) in the case of PowerIteration, where
e′ is the number of non-zero elements in matrix (Dσ−1AD−σ + δSD−2σ+1), and
O(Ink) in the case of GMRES. Note that PowerIteration can be computed in
the distributed over node regime [6, p. 135], and GMRES can be distributed
over classes. The comparison of GDPCA framework with GCN and Planetoid
algorithms in big-O notation is presented in Table 4. Figure 3 provides the time
(in seconds) of 50 completed trainings on CPU(1.4 GHz quad-core Intel Core i5)
for each algorithms. It shows a clear advantage of GDPCA over the GCN and
Planetoid especially with GMRES, in terms of computational time.
7 https://github.com/tkipf/gcn.
8 https://github.com/kimiyoung/planetoid.

https://github.com/tkipf/gcn
https://github.com/kimiyoung/planetoid

Graph Diffusion & PCA Framework for Semi-supervised Learning 35

Table 4. Comparison of computational complexity, where l is the number of layers, n
is the number of nodes, d is the number of features, r is the number sampled neighbors
per node, k is the batch size; φ is the number of random walks; p is the walk length;
w is the window size; m is a representation size; k is the number of classes.

Algorithm GCN GDPCA Planetoid

Time O(led + lndm) O(Ink) O(φnpw(m + m log n))

Memory O(lnd + ld2) O(e′) O(nld2)

Fig. 3. Computational time of 50 completed trainings on CPU.

Significance of the Covariance Matrix. In this experiment, the aim is to ver-
ify that the use of the covariance matrix S actually leads to an improvement. In
order to do so, we compare GDPCA with PRSSL (δ = 0) and other values of δ, as
well as with variants of GDPCA where S is replaced with the following efficient
similarity matrices: WCOS =

[COS(Xi,Xj)]
n,n
i,j=1

d−1 and WRBF =
[RBF (Xi,Xj)]

n,n
i,j=1

d−1 .
Table 5 displays the average accuracies of each variant along with their statis-
tical significance evaluated with t-tests. It shows that using S in GDPCA is
significantly better on the Cora, Citeseer and Pubmed datasets, where it out-
performs the others at least by 7%, 8% and 3% respectively. Notice that Table 2
and Table 3 contain accuracy on a test set of fixed dataset splits: as in [32] for
Citeseer, Cora, Pubmed and CCT datasets; as in [24] for MNIST dataset, and
Table 5 has accuracy on test sets averaged over 50 random splits. All experiments
mentioned above are available through a GitHub repository9.

9 https://github.com/KamalovMikhail/GDPCA.

https://github.com/KamalovMikhail/GDPCA

36 K. Avrachenkov et al.

Table 5. Average accuracy (%), � denotes the statistical significance for p < 0.05.

Dataset GDPCA GDPCA PRSSL GDPCA GDPCA

δ = 1 (S) δ = 10−3 (S) δ = 0 δ = 1 (WCOS) δ = 1 (WRBF)

Cora 77.3 � 71.8 69.8 70.1 68.3

Citeseer 73.0 � 65.1 44.8 64.8 44.5

Pubmed 68.7 75.8 � 67.9 72.6 71.1

CCT 60.4 � 54.5 55.6 54.2 56.2

MNIST 62.5 85.3� 82.6 60.6 59.2

5 Conclusion

In this work, we proposed a novel minimization problem for semi-supervised
learning that can be applied to both graph-structured and non-graph based
datasets. We provided an explicit solution to the problem, leading to a new
linear framework called Graph diffusion & PCA. This framework allows to over-
come the Curse of dimensionality, through the use of reorganized PCA, and the
sparsity of the adjacency matrix, by considering the covariance matrix, which
are both common issues in graph-based semi-supervised learning. We demon-
strated the impact of these improvements in experiments on several datasets
with and without an underlying graph structure. We also compared it to state-
of-the art algorithms and showed that GDPCA clearly outperforms the other
linear graph-based diffusion ones. As for the comparison with neural networks,
the experiments showed that the performance are similar, while GDPCA has
a significantly lower computational time in addition to providing an explicit
solution. In future works, we plan to generalize GDPCA to a nonlinear case
keeping the low computational complexity and improving classification perfor-
mance. Also, we want to avoid the bottleneck that arises in the dense covariance
matrix S, which can lead to high memory consumptions. Particularly, by dis-
tributed PI regimes [6, p. 135] and GMRES, we can directly compute covariance
between nodes for a small distributed portion of nodes. This preserves the space
consumption as opposed to the precomputed (S).

A Proof of Proposition 1

Proof. This proof uses the same strategy as the proof of Proposition 2 in [1].
Rewriting Problem (4) in matrix form with the standard Laplacian L = D − A
and with Z.i, Y.i ∈ R

n×1:

Q(Z) = 2
k∑

i=1

ZT
.i D

σ−1LDσ−1Z.i

+ μ

k∑

i=1

(Z.i − Y.i)T D2σ−1(Z.i − Y.i) − δ

k∑

i=1

Z.iSZT
.i

Graph Diffusion & PCA Framework for Semi-supervised Learning 37

where S = X̄T X̄/(d − 1) ∈ R
n×n. Considering Q(Z)

∂Z = 0:

2ZT (Dσ−1LDσ−1 + Dσ−1LT Dσ−1) + 2μ(Z − Y)T D2σ−1 − δZT (S + ST) = 0

Multiplying by D−2σ+1 and replacing L = D − A results in:

ZT (2I − 2Dσ−1AD−σ + μI − 2δSD−2σ+1) − μY T = 0

Taking out the μ over the parentheses and transposing the equation:

Z =
μ

(2 + μ)
(I − 2

(2 + μ)
(Dσ−1AD−σ + δSD−2σ+1))−1Y

Finally, the desired result is obtained with α = 2/(2 + μ). ��

B Proof of Proposition 2

Proof. Apply Theorem 1 of sums of spectral radii [35] for the following inequality:

ρ(Dσ−1AD−σ + δSD−2σ+1) ≤ ρ
(
Dσ−1AD−σ

)
+ ρ(δSD−2σ+1) < 1/α

based on the fact that spectral radius of a matrix similar to the stochastic matrix
is equal to 1 (Gershgorin bounds):

1 + δρ(SD−2σ+1) < 1/α

apply the Theorem 7 [26] for replacing ρ(SD−2σ+1) by the γ maximum singular
value of SD−2σ+1 we obtain the desired result in (6). ��

C Generation of Synthetic Adjacency Matrix

For selecting the best synthetic adjacency matrix for GDPCA, we have consid-
ered three standard distances, such as Cosine, Minkowski, Dice and the number
of neighbours from 1 till 14 for KNN algorithm. The accuracy of GDPCA on
above parameters on the validation set for MNIST and CCT datasets are shown
in Fig. 4. Figure 4 shows that the best GDPCA accuracy on the validation set is
obtained with the use of 7 neighbours and Dice distance for the CCT dataset
is obtained with the use of 7 neighbours and Cosine distance for the MNIST
dataset.

38 K. Avrachenkov et al.

Fig. 4. Estimate different adjacency matrix for GDPCA.

References

1. Avrachenkov, K., Mishenin, A., Gonçalves, P., Sokol, M.: Generalized optimization
framework for graph-based semi-supervised learning. In: Proceedings of the 2012
SIAM International Conference on Data Mining, pp. 966–974. SIAM (2012)

2. Baeza-Yates, R., Navarro, G.: Block addressing indices for approximate text
retrieval. J. Am. Soc. Inf. Sci. 51(1), 69–82 (2000)

3. Bair, E., Hastie, T., Paul, D., Tibshirani, R.: Prediction by supervised principal
components. J. Am. Stat. Assoc. 101(473), 119–137 (2006)

4. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric frame-
work for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7,
2399–2434 (2006)

5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(2) (2012)

6. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical
Methods, vol. 23. Prentice Hall, Englewood Cliffs (1989)

7. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural
Netw. 20(3), 542 (2009). (chapelle, o. et al., eds.; 2006)[bibbook reviews]

8. Day, S.J., Altman, D.G.: Blinding in clinical trials and other studies. BMJ
321(7259), 504 (2000)

9. Ding, C., He, X.: K-means clustering via principal component analysis. In: Pro-
ceedings of the Twenty-first International Conference on Machine Learning, p. 29
(2004)

10. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7(2), 179–188 (1936)

11. Fix, E.: Discriminatory analysis: nonparametric discrimination, consistency prop-
erties. USAF school of Aviation Medicine (1951)

12. Freund, R.M.: Quadratic functions, optimization, and quadratic forms (2004)
13. Grover, A., Zweig, A., Ermon, S.: Graphite: iterative generative modeling of graphs.

In: International Conference on Machine Learning, pp. 2434–2444. PMLR (2019)
14. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness:

probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev. 53(2), 217–288 (2011)

15. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)
16. Joachims, T.: Transductive inference for text classification using support vector

machines. In: ICML, vol. 99, pp. 200–209 (1999)

Graph Diffusion & PCA Framework for Semi-supervised Learning 39

17. Johnson, R., Zhang, T.: Graph-based semi-supervised learning and spectral kernel
design. IEEE Trans. Inf. Theory 54(1), 275–288 (2008)

18. Kamalov, M., Avrachenkov, K.: GenPR: generative PageRank framework for semi-
supervised learning on citation graphs. In: Filchenkov, A., Kauttonen, J., Pivo-
varova, L. (eds.) AINL 2020. CCIS, vol. 1292, pp. 158–165. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59082-6 12

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations. ICLR
(2017)

20. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural
networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018)

21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

22. Masic, I., Miokovic, M., Muhamedagic, B.: Evidence based medicine-new
approaches and challenges. Acta Informatica Medica 16(4), 219 (2008)

23. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

24. Rifai, S., Dauphin, Y.N., Vincent, P., Bengio, Y., Muller, X.: The manifold tangent
classifier. Adv. Neural. Inf. Process. Syst. 24, 2294–2302 (2011)

25. Ritchie, A., Scott, C., Balzano, L., Kessler, D., Sripada, C.S.: Supervised princi-
pal component analysis via manifold optimization. In: 2019 IEEE Data Science
Workshop (DSW), pp. 6–10. IEEE (2019)

26. Rojo, O., Soto, R., Rojo, H.: Bounds for the spectral radius and the largest singular
value. Comput. Math. Appl. 36(1), 41–50 (1998)

27. Roli, F., Marcialis, G.L.: Semi-supervised PCA-based face recognition using self-
training. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.)
SSPR /SPR 2006. LNCS, vol. 4109, pp. 560–568. Springer, Heidelberg (2006).
https://doi.org/10.1007/11815921 61

28. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869
(1986)

29. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93 (2008)

30. Walder, C., Henao, R., Mørup, M., Hansen, L.: Semi-Supervised Kernel PCA.
IMM-Technical Report-2010-10, Technical University of Denmark, DTU Informat-
ics, Building 321 (2010)

31. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised
embedding. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks:
Tricks of the Trade. LNCS, vol. 7700, pp. 639–655. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35289-8 34

32. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with
graph embeddings. In: Proceedings of Machine Learning Research, vol. 48, pp.
40–48. PMLR, New York, 20–22 June 2016

33. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation (2002)

34. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian
fields and harmonic functions. In: Proceedings of the 20th International conference
on Machine learning (ICML 2003), pp. 912–919 (2003)

35. Zima, M.: A theorem on the spectral radius of the sum of two operators and its
application. Bull. Aust. Math. Soc. 48(3), 427–434 (1993)

https://doi.org/10.1007/978-3-030-59082-6_12
http://arxiv.org/abs/1810.05997
https://doi.org/10.1007/11815921_61
https://doi.org/10.1007/978-3-642-35289-8_34

Exact Counting and Sampling of Optima
for the Knapsack Problem

Jakob Bossek1(B) , Aneta Neumann2 , and Frank Neumann2

1 Statistics and Optimization, University of Münster, Münster, Germany
bossek@wi.uni-muenster.de

2 School of Computer Science, The University of Adelaide, Adelaide, Australia
{aneta.neumann,frank.neumann}@adelaide.edu.au

Abstract. Computing sets of high quality solutions has gained increas-
ing interest in recent years. In this paper, we investigate how to obtain
sets of optimal solutions for the classical knapsack problem. We present
an algorithm to count exactly the number of optima to a zero-one knap-
sack problem instance. In addition, we show how to efficiently sample
uniformly at random from the set of all global optima. In our experimen-
tal study, we investigate how the number of optima develops for classical
random benchmark instances dependent on their generator parameters.
We find that the number of global optima can increase exponentially for
practically relevant classes of instances with correlated weights and prof-
its which poses a justification for the considered exact counting problem.

Keywords: Zero-one knapsack problem · Exact counting · Sampling ·
Dynamic programming

1 Introduction

Classical optimisation problems ask for a single solution that maximises or min-
imises a given objective function under a given set of constraints. This scenario
has been widely studied in the literature and a vast amount of algorithms are
available. In the case of NP-hard optimisation problems one is often interested
in a good approximation of an optimal solution. Again, the focus here is on a
single solution.

Producing a large set of optimal (or high quality) solutions allows a decision
maker to pick from structurally different solutions. Such structural differences
are not known when computing a single solution. Computing a set of optimal
solutions has the advantage that more knowledge on the structure of optimal
solutions is obtained and that the best alternative can be picked for implemen-
tation. As the number of optimal solutions might be large for a given problem,
sampling from the set of optimal solutions provides a way of presenting different
alternatives.

Related to the task of computing the set of optimal solutions, is the task
of computing diverse sets of solutions for optimisation problems. This area of
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 40–54, 2021.
https://doi.org/10.1007/978-3-030-92121-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_4&domain=pdf
http://orcid.org/0000-0002-4121-4668
http://orcid.org/0000-0002-0036-4782
http://orcid.org/0000-0002-2721-3618
https://doi.org/10.1007/978-3-030-92121-7_4

Exact Counting and Sampling of Optima for the Knapsack Problem 41

research has obtained increasing attention in the area of planning where the goal
is to produce structurally different high quality plans [9–11,19]. Furthermore,
different evolutionary diversity optimisation approaches which compute diverse
sets of high quality solutions have been introduced [14,15,20]. For the classical
traveling salesperson problem, such an approach evolves a diverse set of tours
which are all a good approximation of an optimal solution [3].

Counting problems are frequently studied in the area of theoretical computer
science and artificial intelligence [2,6–8]. Here the classical goal is to count the
number of solutions that fulfill a given property. This might include counting the
number of optimal solutions. Many counting problems are #P-complete [21] and
often approximations of the number of such solutions, especially approximations
on the number of optimal solutions are sought [5]. Further examples include
counting the number of shortest paths between two nodes in graphs [13] or exact
counting of minimum-spanning-trees [1]. For the knapsack problem (KP), the
problem of counting the number of feasible solutions, i.e. the number of solutions
that do not violate the capacity constraint, is #P-complete. As a consequence,
different counting approaches have been introduced to approximately count the
number of feasible solutions [4,18,22].

In this paper, we study the classical zero-one knapsack problem (KP). We
develop an algorithm that is able to compute all optimal solutions for a given
knapsack instance. The algorithm adapts the classical dynamic programming
approach for KP in the way that all optimal solutions are produced implicitly.
As the number of such solutions might grow exponentially with the problem size
for some instances, we develop a sampling approach which samples solutions for
the set of optimal solutions uniformly at random.

We carry out experimental investigations for different classes of knapsack
instances given in the literature (instances with uniform random weights and
instances with different correlation between weights and profits). Using our app-
roach, we show that the number of optimal solutions significantly differs between
different knapsack instance classes. In particular, for instances with correlated
weights and profits – a group of great importance in practical applications – an
exponential growth of optima is observed. In addition, we point out that chang-
ing the knapsack capacity slightly can reduce the number of optimal solutions
from exponential to just a single solution.

The paper is structured as follows. In the next section, we introduce the task
of computing the set of optimal solutions for the knapsack problem. Afterwards,
we present the dynamic programming approach for computing the set of optimal
solutions and show how to sample efficiently from the set of optimal solutions
without having to construct the whole set of optimal solutions. In our experi-
mental investigations, we show the applicability of our approach to a wide range
of knapsack instances and point out insights regarding the number of optimal
solutions for these instances. Finally, we finish with some concluding remarks.

42 J. Bossek et al.

2 Problem Formulation

We now introduce the problem of computing all optimal solutions for the knap-
sack problem. In the following, we use the standard notation [n] = {1, . . . , n} to
express the set of the first n positive integers. The problem studied is the clas-
sical NP-hard zero-one knapsack problem (KP). We are given a knapsack with
integer capacity W > 0 and a finite set of n items, each with positive integer
weight wi and associated integer profit or value vi for i ∈ [n]. Each subset s ⊂ [n]
is called a solution/packing. We write

w(s) =
∑

i∈s

wi and v(s) =
∑

i∈s

vi

for the total weight and value respectively. A solution is feasible if its total weight
does not exceed the capacity. Let

S = {s | s ⊂ [n] ∧ w(s) ≤ W}
be the set of feasible solutions. The goal in the optimisation version of the prob-
lem is to find a solution s∗ ∈ S such that

s∗ = arg maxs∈Sv(s).

Informally, in the optimisation version of the KP, we strive for a subset of items
that maximises the total profit under the constraint that the total weight remains
under the given knapsack capacity.

Let vmax be the value of an optimal solution s∗ and let

S∗ = {s | s ∈ S ∧ v(s) = vmax}
be the set of optimal solutions. In this work we study a specific counting prob-
lem which we refer to as #KNAPSACK∗ in the following. Here, the goal is to
determine exactly the cardinality of the set S∗. Note that this is a special case
of the classic counting version #KNAPSACK where we aim to count the set of
all feasible solutions S, and S∗ ⊂ S. In addition, we are interested in procedures
to sample uniformly at random a subset of k out of |S∗| solutions with k ≤ |S∗|.

3 Exact Counting and Sampling of Optima

In this section we introduce the algorithms for the counting and sampling prob-
lems stated. We first recap the classic dynamic programming algorithm for the
zero-one KP as it forms the foundation for our algorithm(s).

3.1 Recap: Dynamic Programming for the KP

Our algorithms are based on the dynamic programming approach for the optimi-
sation version (see, e.g. the book by Kellerer et al. [12]). This well-known algo-
rithm maintains a table V with components V (i, w) for 0 ≤ i ≤ n, 0 ≤ w ≤ W .

Exact Counting and Sampling of Optima for the Knapsack Problem 43

Here, component V (i, w) holds the maximum profit that can be achieved with
items up to item i, i.e., {1, . . . , i}, and capacity w. The table is constructed
bottom-up following the recurrence

V (i, w) = max
{

V (i − 1, w)︸ ︷︷ ︸
(a) leave item i

, V (i − 1, w − wi) + vi︸ ︷︷ ︸
(b) take item i

}

for 1 ≤ i ≤ n, 0 ≤ w ≤ W . Essentially, the optimal value V (i, w) is achieved by
making a binary decision for every item i ∈ [n] relying on pre-calculated optimal
solutions to sub-problems with items from {1, . . . , i − 1}. The options are (a)
either leaving item i where the optimal solution is realised by the maximum
profit achieved with items {1, . . . , i − 1} and capacity w. Option (b) deals with
putting item i into the knapsack (only possible if wi < w) gaining profit vi at the
cost of additional wi units of weight. In consequence, the optimal profit V (i, w)
is the optimal profit with items from {1, . . . , i − 1} and capacity w − wi, i.e.,
V (i, w) = V (i − 1, w − wi) + vi. Initialization follows

V (0, w) = 0 ∀ 0 ≤ w ≤ W (1)
V (i, w) = −∞ ∀w < 0 (2)

which covers the base cases of an empty knapsack (Eq. (1)) and a negative
capacity, i.e., invalid solution (Eq. (2)), respectively. Eventually, V (n,W) holds
the profit of an optimal solution.

3.2 Dynamic Programming for #KNAPSACK∗

We observe that if V (i − 1, w) = V (i − 1, w − wi) + vi we can achieve the
same maximum profit V (i, w) by both options (a) or (b). Analogously to V (i, w)
let C(i, w) be the number of solutions with maximum profit given items from
{1, . . . , i} and capacity w. Then there are three update options for C(i, w) for
1 ≤ i ≤ n and 0 ≤ w ≤ W (we discuss the base case later): (a’) Either, as
stated above, we can obtain the same maximum profit V (i, w) by packing or
not packing item i. In this case, C(i, w) = C(i − 1, w) + C(i − 1, w − wi) since
the item sets leading to V (i − 1, w) and V (i − 1, w − wi) are necessarily disjoint
by construction. Options (b’) and (c’) correspond to (a) and (b) leading to the
recurrence

C(i, w) =

⎧
⎪⎨

⎪⎩

C(i − 1, w) + C(i − 1, w − wi) if V (i − 1, w) = V (i − 1, w − wi) + vi

C(i − 1, w) if V (i − 1, w) > V (i − 1, w − wi) + vi

C(i − 1, w − wi) otherwise.

(3)

Analogously to Eqs. (1) and (2) the bases cases

C(0, w) = 1 ∀ 0 ≤ w ≤ W (4)
C(i, w) = 0 ∀w < 0 (5)

44 J. Bossek et al.

Algorithm 1: DP-algorithm for #KNAPSACK∗

Input: Number of items n, capacity W
1 for w ← 0 to W do
2 V (0, w) ← 0;
3 C(0, w) ← 1;

4 for i ← 0 to n do
5 V (i, 0) ← 0;
6 C(i, 0) ← 1;

7 for i ← 1 to n do
8 for w ← 1 to W do
9 if wi > w then

10 V (i, w) ← V (i − 1, w);
11 C(i, w) ← C(i − 1, w);

12 else
13 if V (i − 1, w) = V (i − 1, w − wi) + vi then
14 V (i, w) ← V (i − 1, w);
15 C(i, w) ← C(i − 1, w) + C(i − 1, w − wi);

16 else if V (i − 1, w) > V (i − 1, w − wi) + vi then
17 V (i, w) ← V (i − 1, w);
18 C(i, w) ← C(i − 1, w);

19 else
20 V (i, w) ← V (i − 1, w − wi) + vi;
21 C(i, w) ← C(i − 1, w − wi);

22 return V , C

handle the empty knapsack (the empty-set is a valid solution) and the case of
illegal items (no valid solution(s) at all). The base cases are trivially correct. The
correctness of the recurrence follows inductively by the preceding argumentation.
Hence, we wrap up the insights in the following lemma whose proof is embodied
in the preceding paragraph.

Lemma 1. Following the recurrence in Eq. (3) C(i, w) stores the number of
optimal solutions using items from {1, . . . , i} given the capacity w.

Algorithm 1 shows pseudo-code for our algorithm. The algorithm directly
translates the discussed recurrences for tables V and C. Note that the pseudo-
code is not optimised for performance and elegance, but for readability.

Theorem 1. Let S∗ be the set of optimal solutions to a zero-one knapsack prob-
lem with n items and capacity W . There is a deterministic algorithm that cal-
culates |S∗| exactly with time- and space-complexity O(n2W).

Proof. The correctness follows from Lemma 1. For the space- and time-complexity
note that two tables with dimensions (n+1)× (W +1) are filled. For Table V the
algorithm requires constant time per cell and hence time and space O(nW). Table

Exact Counting and Sampling of Optima for the Knapsack Problem 45

Table 1. Exemplary knapsack instance (left) and the dynamic programming tables

V (i, w) (center) and C(i, w) (right) respectively. Table cells highlighted in light-gray
indicate components where two options are possible: either packing item i or not.
Light-green cells indicate the total value of any optimal solution for V (·, ·) and |S∗|
for C(·, ·).

W = 8

i wi vi

1 3 3

2 8 10

3 2 3

4 2 4

5 2 3

V (·, ·)

i

w
0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 0 0 3 3 3 3 3 3

2 0 0 0 3 3 3 3 3 10

3 0 0 3 3 3 6 6 6 10

4 0 0 4 4 7 7 7 10 10

5 0 0 4 4 7 7 10 10 10

C(·, ·)

i

w
0 1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 1 2 2 1 1 1 1

4 1 1 1 1 1 2 2 1 2

5 1 1 1 1 2 3 1 3 4

C stores the number of solutions which can be exponential in the input size n as we
shall see later. Therefore, C(i, j) ≤ 2n and O(log(2n)) = O(n) bits are necessary
to encode these numbers. Thus, the addition in line 15 in Algorithm 1 requires time
O(n) which results in space and time requirement of O(n2W). �

Note that the complexity reduces to O(nW) if |S∗| = poly(n). Furthermore,
the calculation of row i only relies on values in row i − 1. Hence, we can reduce
the complexity by a factor of n if only two rows of V and C are stored and the
only value of interest is the number of optimal solutions.

For illustration we consider a simple knapsack instance with n = 5 items
fully described by the left-most table in Table 1. Let W = 8. In this setting there
exist four optima s1 = {2}, s2 = {1, 4, 5}, s3 = {1, 3, 4} and s4 = {3, 4, 5} with
profit 10 each and thus |S∗| = 4. The dynamic programming tables are shown in
Table 1 (center and right). For improved visual accessibility we highlight table
cells where both options (packing item i or not) are applicable and hence an
addition of the number of combinations of sub-problems is performed in C by
the algorithm (cf. first case in the recurrence in Eq. 3).

3.3 Uniform Sampling of Optimal Solutions

The DP algorithm introduced before allows to count |S∗| and hence to solve
#KNAPSACK∗ exactly. The next logical step is to think about a sampler, i.e., an
algorithm that samples uniformly at random from S∗ even if S∗ is exponential in
size. In fact, we can utilize the tables C and V for this purpose as they implicitly
encode the information on all optima. A similar approach was used by Dyer [4]
to approximately sample from the (approximate) set of feasible solutions in his
dynamic programming approach for #KNAPSACK. Our sampling algorithm
however is slightly more involved due to a necessary case distinctions.

46 J. Bossek et al.

Algorithm 2: Uniform Sampling of Optima
Input: DP tables V and C (see Algorithm 1), number of items n, capacity W ,

desired number of solutions k.
1 S ← ∅;
2 while k > 0 do
3 L ← ∅;
4 i ← n;
5 w ← W ;
6 while i > 0 and w > 0 do
7 if wi ≤ w ∧ V (i, w) = V (i−1, w) ∧ V (i, w) = V (i−1, w−wi)+ vi then

8 q ← C(i−1,w−wi)
C(i,w)

;

9 Let r be a random number in [0, 1];
10 if r < q then
11 L ← L ∪ {i};
12 w ← w − wi;

13 else if V (i, w) > V (i − 1, w) then
14 L ← L ∪ {i};
15 w ← w − wi;

16 i ← i − 1;

17 S ← S ∪ {L};
18 k ← k − 1;

19 return S

The algorithm starts at V (n,W) respectively and reconstructs a solution
L ⊂ [n], initialized to L = ∅, bottom-up by making occasional random decisions.
Assume the algorithm is at position (i, w), 1 ≤ i ≤ n, 1 ≤ w ≤ W . Recall (cf.
Algorithm 1) that if V (i−1, w) < V (i−1, w−wi)+vi we have no choice and we
need to put item i into the knapsack. Likewise, if V (i−1, w) > V (i−1, w−wi)+vi,
item i is guaranteed not to be part of the solution under reconstruction. Thus, in
both cases, the decision is deterministic. If V (i−1, w) equals V (i−1, w−wi)+vi,
there are two options how to proceed: in this case with probability

C(i − 1, w − wi)
C(i, w)

item i is added to L and with the converse probability

C(i − 1, w)
C(i, w)

= 1 − C(i − 1, w − wi)
C(i, w)

item i is ignored. If i was packed, the algorithm proceeds (recursively) from
V (i−1, w−wi) and from V (i−1, w) otherwise. This process is iterated while i > 0
and w > 0. To sample k solutions we may repeat the procedure k times which
results in a runtime of O(kn). This is polynomial as long as k is polynomially
bounded and of benefit for sampling from an exponential-sized set S∗ if W is

Exact Counting and Sampling of Optima for the Knapsack Problem 47

low and hence Algorithm 1 runs in polynomial time. Detailed pseudo-code of
the procedure is given in Algorithm 2.

We now show that Algorithm 2 in fact samples each optimal solution uni-
formly at random from S∗.

Theorem 2. Let S∗ be the set of optimal solutions for the knapsack problem
and s ∈ S∗ be an arbitrary optimal solution. Then the probability of sampling s
using the sampling approach is 1/|S∗|.
Proof. Let s ∈ S∗ be an optimal solution. Note that after running Algorithm 1
we have C(n,W) = |S∗|. For convenience we assume that C(i, w) = 1 for w < 0
to capture the case of invalid solutions. Consider the sequence of 1 ≤ r ≤ n
decisions made while traversing back from position (n,W) until a termination
criterion is met (either i ≤ 0 or w ≤ 0) in Algorithm 2. Let qi = ai

bi
, i ∈ [r] be

the decision probabilities in iterations i ∈ [r]. Here, qi corresponds to q in line 8
of Algorithm 2 if there is a choice whether the corresponding item is taken or
not. If there is no choice we can set qi = 1 = x

x with x = C(i − 1, w) if the item
is not packed and x = C(i − 1, w − wi) if the item is packed. A key observation
is that (1) b1 = C(n,W), (2) bi = ai−1 holds for i = 2, . . . , r by construction of
C and (3) ar = 1 since the termination condition applies after r iterations (see
base cases for C in Eq. 4 and Eq. 5). Hence, the probability to obtain s is

r∏

i=1

qi =
a1

b1
· a2

b2
· . . . · ar−1

br−1
· ar

br

=
a1

b1
· a2

a1
· . . . · ar−1

ar−2
· 1
ar−1

=
1
b1

=
1

C(n,W)

=
1

|S∗| .

�
Theorem 3. Let S∗ be the set of optimal solutions for the knapsack problem
with n items. Algorithm 2 samples k uniform samples of S∗ in time O(kn).

Proof. The probabilistic statement follows Theorem 3. For the running time we
note that each iteration takes at most n iterations each with a constant number
of operations being performed. This is repeated k times which results in O(kn)
runtime which completes the proof. �
4 Experiments

In this section we complement the preceding sections with an experimental study
and some derived theoretical insights. We first detail the experimental setup,
continue with the analysis and close with some remarks.

48 J. Bossek et al.

4.1 Experimental Setup

The main research question is to get an impression and ideally to understand
how the number of global optima develops for classical KP benchmark instances
dependent on their generator-parameters. To this end we consider classical ran-
dom KP benchmark generators as studied, e.g., by Pisinger in his seminal paper
on hard knapsack instances [17]. All considered instance groups are generated
randomly with item weights wi sampled uniformly at random within the data
range {L, . . . , R} with L = 1 and varying R for i ∈ [n]; in any case L < R. Item
profits vi are in most cases based on a mapping of item weights. The reader may
want to take a look at Fig. 1 alongside the following description for visual aid.

scorr ss invscorr

uncorr wcorr ascorr

0 100 200 0 100 200 0 100 200

0

100

200

0

100

200

Weight

V
al
ue

Fig. 1. Showcase of considered instance groups. We show each one instance with n =
100 items, L = 1 and R = 250. The gray dashed diagonal lines serves to aid recognising
the differences between correlated instance groups.

Uncorrelated (uncorr). Here, both weights and profits are sampled uniformly
at random from {L, . . . , R}.

Weakly Correlated (wcorr). Weights wi are distributed in {L, . . . , R} and
profits vi are sampled from [wi −R/10, wi +R/10] ensuring vi ≥ 1. Here, the
values are typically only a small percentage off the weights.

Almost Strongly Correlated (ascorr). Weights are distributed in {L, . . . , R}
and vi are sampled from [wj + R/10 − R/500, wj + R/10 + R/500].

Exact Counting and Sampling of Optima for the Knapsack Problem 49

Strongly Correlated (scorr). Weights wi are uniformly distributed from the
set {L, . . . , R} while profits are corresponding to wi+R/10. Here, for all items
the profit equals the positive constant plus some fixed additive constant.

Subset Sum (susu). In this instance group we have wi = vi ∀i ∈ [n], i.e., the
profit equals the weight. This corresponds to strong correlation with additive
constant of zero.

Inversely Strongly Correlated (invscorr). Here, first the profits vi are sam-
pled from {L, . . . , R} and subsequently weights we set wi = vi + R/10. This
is the counterpart of strongly correlated instances.

Correlated instances may seem highly artificial on first sight, but they are of
high practical relevance. In economics this situation arises typically if the profit
of an investment is directly proportional to the investment plus some fixed
charge (strongly correlated) with some problem-dependent noise (weakly/almost
strongly correlated).

In our experiments we vary the instance group, the number of items n ∈
{50, 100, . . . , 500} and the upper bound R ∈ {25, 50, 100, 500}. In addition, we
study different knapsack capacities by setting D = 11 and

W =

⌊
d

D + 1

n∑

i=1

wi

⌋

for d = 1, . . . , D [16,17]. Intuitively – for most considered instance groups – the
number of optima is expected to decrease on average for very low and very high
capacities as the number of feasible/optimal combinations is likely to decrease.
For each combination of these parameters, we construct 25 random instances
and run the DP algorithm to count the number of optima.

Python 3 implementations of the algorithms and generators and the code
for running the experiments and evaluations will be made available in a public
GitHub repository upon acceptance. The experiments were conducted on a Mac-
Book Pro 2018 with a 2,3 GHz Quad-Core Intel Core i5 processor and 16 GB
RAM. The operating system was macOS Catalina 10.15.6 and python v3.7.5 was
used. Random numbers were generated with the built-in python module random
while joblist v0.16.0 served as a multi-core parallelisation backend.

4.2 Insights into the Number of Optima

Figure 2 depicts the distribution of the number of optima for each combination
considered in the experiments via boxplots. The data is split row-wise by instance
group and col-wise by R (recall that L = 1 in any case). Different box-colors
indicate the knapsack capacity which – for sake of interpretability – is given in
percentage of the total weight, i.e.,
100 · (d

D+1)�. We observe different patterns
dependent on the instance group. For uncorrelated instances (uncorr), we observe
only few optima with single outliers reaching 28 = 256 for R = 50 and large n.

50 J. Bossek et al.

Fig. 2. Boxplots of the number of optima as a function of the number of items n. The
data is split by instance group (rows) and the upper bound R (columns). Different
colors indicate the knapsack capacity (shown as percentage of the sum of all items
weights).

Median values are consistently below 24 = 16. In line with expectation the
numbers are highest for relatively small R and high n. In fact, the ratio

H =
n

R

Exact Counting and Sampling of Optima for the Knapsack Problem 51

is a good indicator. It is the expected number of elements with weight w =
1, . . . , R. In consequence, H > 1 and especially H � 1 indicates many elements
with the same weight. In contrast, H < 1 indicates that on average there will
be at most one element of weight w = 1, . . . , R. For all correlated instances, i.e.,
scorr, ascorr, wcorr, invscorr and susu, we observe a very different pattern. Here,
the number of optima grows exponentially with growing n given a fixed upper
bound R. Even if H is low there is huge number of optima. By far the highest
count of optima can be observed for subset sum (susu) instances where even
peaks with up to ≈3% of all 2n solutions are optimal. Here, the boxplots look
degenerate, because the variance is very low. Recall that for this type of instance
we have wi = vi ∀i ∈ [n] and thus for each solution s the equality w(s) = v(s)
holds. In consequence we aim to maximally exploit the knapsack capacity.

To get a better understanding we consider a subset-sum type knapsack
instance with wi ∈ {1, . . . , R}, wi = vi,∀i ∈ [n]. Assume for ease of calcula-
tions that n is a multiple of R and there are exactly (n/R) items of each weight
w ∈ {1, . . . , R}, i.e., |{i ∈ [n] |wi = w}| = n/R. Note that this corresponds
to the expected number of w-weights if n such weights are sampled uniformly
at random from {1, . . . , R}. Consider W = 1

2

∑n
i=1 wi. Recall that given this

instance, one way we can build an optimum s ⊂ [n] with w(s) = v(s) = W is
by choosing each

(
1
2

) · (n
R

)
items from each weight class, i.e., half of these items

(note that there are many more combinations leading to profit W). With this
we get

|S∗| ≥
(n

R
n
2R

)R

≥
((

n

R
· 2R

n

) n
2R

)R

= 2
n
2 .

Here we used to the well-known lower bound
(
n
k

) ≥ (
n
k

)k for the binomial coef-
ficient. This simple bound establishes that we can expect at least 2n/2 optima
for subset-sum instances if the capacity is set accordingly.

With respect to the knapsack capacity Fig. 2 also reveals different patterns.
For inverse strongly correlated instances we observe a decreasing trend with
increasing capacity. The vice versa holds for weakly, almost strongly and strongly
correlated instances. This is in line with intuition as the size of the feasible search
space also grows significantly.

However, note that in general the knapsack capacity can have a massive effect
on the number of optima.

Theorem 4. For every even n there exist a KP instance and a weight capacity
W such that |S∗| is exponential, but |S∗| = 1 for W ′ = W + 1.

Proof. Consider an instance with n items (n even), where wi = vi = 1 for
i ∈ [n− 1] and wn = n

2 +1. Let vn > n
2 +1. Now consider the knapsack capacity

W = n
2 . Then every subset of n

2 items from the first n − 1 items is optimal
with total weight W and total value W while the n-th item does not fit into the
knapsack. There are at least

52 J. Bossek et al.

(
n − 1

n
2

)
=

(n − 1)!
(n/2)!(n − 1 − n/2)!

≥ (n − 1)!
((

n
2

)
!
)2

≥
√

2π
√

n − 1(n − 1)n−12nen

2en−14(2π)nn+1

=
2n−3e√

2π
·
(

n − 1
n

)n−1

︸ ︷︷ ︸
≥e−1

·
√

n

n2
·
√

1 − 1
n︸ ︷︷ ︸

≥1/
√
2

≥ 1√
π

· 2n−4

n3/2

= Ω(2n−4/n3/2)

optima in this case. Here we basically used Stirling’s formula to lower/upper
bound the factorial expressions to obtain an exponential lower bound. Now
instead consider the capacity W ′ = W + 1. The n-th item now fits into the
knapsack which results in a unique optimum with weight W ′ = n

2 + 1 and value
vn > n

2 + 1 which cannot be achieved by any subset of light-weight items. �
4.3 Closing Remarks

Knapsack instances with correlations between weights and profits are of high prac-
tical interest as they arise in many fixed charge problems, e.g., investment plan-
ning. In this type of instances item profits correspond to their weight plus/minus
a fixed or random constant. Our experimental study suggests an exponential
increase in the number of global optima for such instances which justifies the study
and relevance of the considered counting and sampling problem.

5 Conclusion

We considered the problem of counting exactly the number of optimal solutions
of the zero-one knapsack problem. We build upon the classic dynamic program-
ming algorithm for the optimisation version. Our modifications allow to solve
the counting problem in pseudo-polynomial runtime complexity. Furthermore,
we show how to sample uniformly at random from the set of optimal solutions
without explicit construction of the whole set. Computational experiments and
derived theoretical insights reveal that for variants of problem instances with
correlated weights and profits (a group which is highly relevant in real-world
scenarios) and for a wide range of problem generator parameters, the number of
optimal solutions can grow exponentially with the number of items. These obser-
vations support the relevance of the considered counting and sampling problems.

Future work will focus on (approximate and exact) counting/sampling of
high-quality knapsack solutions which all fulfill a given non-optimal quality

Exact Counting and Sampling of Optima for the Knapsack Problem 53

threshold. In addition, in particular if the set of optima has exponential size,
it is desirable to provide the decision maker with a diverse set of high-quality
solutions. Even though the introduced sampling is likely to produce duplicate-
free samples if the number of solutions is exponential, it seems more promising to
bias the sampling process towards a diverse subset of optima, e.g., with respect
to item-overlap or entropy. This opens a whole new avenue for upcoming inves-
tigations.

References

1. Broder, A.Z., Mayr, E.W.: Counting minimum weight spanning trees. J. Algo-
rithms 24(1), 171–176 (1997)

2. Cai, J.Y., Chen, X.: Complexity Dichotomies for Counting Problems: Volume 1,
Boolean Domain. Cambridge University Press, USA, 1st edn. (2017)

3. Do, A.V., Bossek, J., Neumann, A., Neumann, F.: Evolving diverse sets of tours for
the travelling salesperson problem. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2020, pp. 681–689. ACM (2020)

4. Dyer, M.: Approximate counting by dynamic programming. In: Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Computing. STOC 2003, pp.
693–699. Association for Computing Machinery, New York, NY, USA (2003)

5. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: On the relative complexity
of approximate counting problems. In: Jansen, K., Khuller, S. (eds.) APPROX
2000. LNCS, vol. 1913, pp. 108–119. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44436-X 12

6. Fichte, J.K., Hecher, M., Meier, A.: Counting complexity for reasoning in abstract
argumentation. In: Proceedings of the The Thirty-Third AAAI Conference on Arti-
ficial Intelligence, AAAI 2019, pp. 2827–2834. AAAI Press (2019)

7. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Exploiting treewidth for pro-
jected model counting and its limits. In: Beyersdorff, O., Wintersteiger, C.M. (eds.)
SAT 2018. LNCS, vol. 10929, pp. 165–184. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94144-8 11

8. Fournier, H., Malod, G., Mengel, S.: Monomials in arithmetic circuits: complete
problems in the counting hierarchy. Comput. Complex. 24(1), 1–30 (2015)

9. Katz, M., Sohrabi, S.: Reshaping diverse planning. In: Proceedings of the The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 9892–
9899. AAAI Press (2020)

10. Katz, M., Sohrabi, S., Udrea, O.: Top-quality planning: finding practically useful
sets of best plans. In: Proceedings of the The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, pp. 9900–9907. AAAI Press (2020)

11. Katz, M., Sohrabi, S., Udrea, O., Winterer, D.: A novel iterative approach to
top-k planning. In: Proceedings of the Twenty-Eighth International Conference
on Automated Planning and Scheduling, ICAPS 2018, pp. 132–140. AAAI Press
(2018)

12. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin
(2004). https://doi.org/10.1007/978-3-540-24777-7

13. Mihalák, M., Šrámek, R., Widmayer, P.: Approximately counting approximately-
shortest paths in directed acyclic graphs. Theory Comput. Syst. 58(1), 45–59
(2016)

https://doi.org/10.1007/3-540-44436-X_12
https://doi.org/10.1007/3-540-44436-X_12
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.1007/978-3-540-24777-7

54 J. Bossek et al.

14. Neumann, A., Gao, W., Doerr, C., Neumann, F., Wagner, M.: Discrepancy-based
evolutionary diversity optimization. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO 2018, pp. 991–998 (2018)

15. Neumann, A., Gao, W., Wagner, M., Neumann, F.: Evolutionary diversity opti-
mization using multi-objective indicators. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO 2019, pp. 837–845 (2019)

16. Pisinger, D.: Core problems in knapsack algorithms. Oper. Res. 47(4), 570–575
(1999)

17. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9),
2271–2284 (2005)

18. Rizzi, R., Tomescu, A.I.: Faster FPTASes for counting and random generation of
knapsack solutions. Inf. Comput. 267, 135–144 (2019)

19. Sohrabi, S., Riabov, A.V., Udrea, O., Hassanzadeh, O.: Finding diverse high-
quality plans for hypothesis generation. In: Proceedings of the 22nd European
Conference on Artificial Intelligence, ECAI 2016. Frontiers in Artificial Intelligence
and Applications, vol. 285, pp. 1581–1582. IOS Press (2016)

20. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimiza-
tion. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2011, pp. 641–648 (2011)

21. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci.
8, 189–201 (1979)

22. Štefankovič, D., Vempala, S., Vigoda, E.: A deterministic polynomial-time approx-
imation scheme for counting knapsack solutions. SIAM J. Comput. 41(2), 356–366
(2012)

Modeling of Crisis Periods in Stock
Markets

Apostolos Chalkis1,2, Emmanouil Christoforou1,2(B), Theodore Dalamagas1,
and Ioannis Z. Emiris1,2

1 ATHENA Research and Innovation Center, Marousi, Greece
{dalamag,emiris}@athenarc.gr

2 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Athens, Greece

{achalkis,echristo}@di.uoa.gr

Abstract. We exploit a recent computational framework to model and
detect financial crises in stock markets, as well as shock events in cryp-
tocurrency markets, which are characterized by a sudden or severe drop
in prices. Our method manages to detect all past crises in the French
industrial stock market starting with the crash of 1929, including finan-
cial crises after 1990 (e.g. dot-com bubble burst of 2000, stock market
downturn of 2002), and all past crashes in the cryptocurrency market,
namely in 2018, and also in 2020 due to covid-19. We leverage copulae
clustering, based on the distance between probability distributions, in
order to validate the reliability of the framework; we show that clus-
ters contain copulae from similar market states such as normal states,
or crises. Moreover, we propose a novel regression model that can detect
successfully all past events using less than 10% of the information that
the previous framework requires. We train our model by historical data
on the industry assets, and we are able to detect all past shock events
in the cryptocurrency market. Our tools provide the essential compo-
nents of our software framework that offers fast and reliable detection,
or even prediction, of shock events in stock and cryptocurrency markets
of hundreds of assets.

Keywords: Copula · Crisis detection · Stock market · Clustering ·
Financial portfolio · Bitcoin · Investment risk

1 Introduction

Modern finance has been pioneered by Markowitz who set a framework to study
choice in portfolio allocation under uncertainty [6,8]. Within this framework,
portfolios are characterized by their returns, and by their risk which is defined
as the variance (or volatility) of the portfolios’ returns. An investor would build
a portfolio to maximize its expected return for a chosen level of risk. In nor-
mal times, stocks are characterized by somewhat positive returns and a mod-
erate volatility, in up-market times (typically bubbles), by high returns and
low volatility, and during financial crises, by strongly negative returns and high
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 55–65, 2021.
https://doi.org/10.1007/978-3-030-92121-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_5

56 A. Chalkis et al.

Fig. 1. Copulae that correspond to cryptocurrencies’ states. Left, a normal period
(16/12/2017) and right, a shock event due to Covid-19 (15/03/2020). The middle plot
shows the mass of interest to characterize the market state.

volatility [1]. Thus, it is crucial to describe the time-varying dependency between
portfolios’ return and volatility. To capture this dependency, in [3] they rely on
the copula representation of the portfolios distribution, which offers a very pow-
erful tool. A copula is a bivariate probability distribution for which the marginal
probability distribution of each variable is uniform. Following Markowitz’ frame-
work, the variables considered are the portfolios’ return and volatility. Figure 1
illustrates a copula showing a positive (left) and negative (right) dependency
between return and variance.

We illustrate the power of the framework in [3] to detect shocks in two differ-
ent markets: the French industrial stock market and the market of digital assets.
We use the daily returns of 30 French industrial assets to detect all reported
financial crises after 1990. We also detect earlier crises, such as the crash of 1929
(Fig. 5). Interestingly, the indicator recognizes the period of military occupation
of France (1940–45) as normal; this is related to the strict regulation during that
period, which led to a paradoxical rise in nominal stock values [7,10]. Also, we
use the daily returns of 12 cryptocurrencies with the longest history available
to detect all shock events in the cryptocurrency market. The indicator detects
successfully the 2018 cryptocurrency crash and the timeline of its most notable
events, such as the crash of nearly all cryptocurrencies in the beginning of 2018
and the fall of Bitcoin’s market capitalization and price in the end of 2018.
Finally, it detects the shock event in early 2020 due to covid-19.

We validate the reliability of the framework by clustering based on probability
distributions’ distances. Our work is complementary to that in [4] The computed
copulae form clusters that sort the value of the indicator, resulting to clusters of
similar financial states (normal, crisis). We employ quadratic regression models
to model the copula structure so as to capture several patterns of the mass of
portfolios during different market states. We train our model using the French
industry assets and we use it to detect shock events in the cryptocurrency market.
Our trained model successfully detects all past events. It uses less than 10% of the
information on the dependency between portfolios’ return and volatility that is
required in [3]. Lastly, the open-source implementation1 of our methods provides

1 https://github.com/TolisChal/crises detection.

https://github.com/TolisChal/crises_detection

Modeling of Crisis Periods in Stock Markets 57

a software framework for shock event detection and modeling in stock markets
of hundreds of assets.

The rest of the paper is organized as follows. Section 2 presents the compu-
tational framework [3] and uses real data to detect past crises and shock events.
Section 3 exploits clustering and regression models to provide more sophisticated
tools on crisis detection and modeling.

2 Detecting Shock Events with Copulae

In this section we present the computational framework in [3] and then we exploit
it to detect past crises and crashes in two markets with different characteristics.

Let a portfolio x invest in n assets. The set of portfolios in which a long-only
asset manager can invest can be represented by the canonical simplex Δn−1 :=
{(x1, . . . , xn) ∈ R

n | ∑n
i=1 xi = 1, and xi ≥ 0}} ⊂ R

n. Given a vector of asset
returns R ∈ R

n and the variance-covariance matrix Σ ∈ R
n×n of the distribution

of asset returns, we say that any portfolio x ∈ Δn−1 has return fret(x,R) = RT x
and variance (volatility) fvol(x,Σ) = xT Σx.

To capture the relationship between return and volatility in a given time
period we approximate the copula between portfolios’ return and volatility. Thus,
we define two sequences of m bodies each, Δn−1 ∩ Si := {x ∈ Δn−1 | si ≤
fret(x,R) ≤ si+1} and Δn−1 ∩ Ui := {x ∈ Δn−1 | ui ≤ fvol(x,Σ) ≤ ui+1}, i ∈
[m]. Moreover, we compute si, ui ∈ R such that Δn−1 ∩ vol(Si) and Δn−1 ∩
vol(Ui) are all equal to a small fixed portion of vol(Δn−1) (e.g. 1%). Then, to

obtain the copula one has to estimate all the ratios vol(Qij)

vol(Δn−1)
where Qij := {x ∈

Δn−1 | si ≤ fret(x,R) ≤ si+1 and uj ≤ fvol(x,Σ) ≤ uj+1}.
To compute these ratios, we leverage uniform sampling from Δn−1 [12]. Let

us consider up- and down- (main) diagonal bands: we define the indicator as
the ratio of the down-diagonal over the up-diagonal band. The indicator is the
ratio of the mass of portfolios in the blue area over the mass of portfolios in
the red one in Fig. 1. When the value of the indicator is smaller than 1 then
the copula corresponds to a normal period. Otherwise, it probably comes from
a crisis period. Considering the scalability of this method, it can be applied
for stock markets with a few thousands of assets, since the cost per uniformly
distributed sample in Δn−1 using the method in [12] is O(n).

2.1 Shock Detection Using Real Data

We now use two data sets from two different asset sections. First, we use the
daily returns of 30 French industrial asset returns2. Second, we use the daily
returns of 12 out of the top 100 cryptocurrencies, ranked by CoinMarketCap’s3

market cap (cmc rank) on 22/11/2020, having the longest available history
(Table 1). We compute the daily return for each coin using the daily close price

2 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
3 https://coinmarketcap.com/.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://coinmarketcap.com/

58 A. Chalkis et al.

Fig. 2. Warning (yellow) and Crises (red) periods detected by the indicator. Top for
industry assets (1990–2020), bottom for cryptocurrencies (2014–2020). (Color figure
online)

obtained by CoinMarketCap, for several notable coins such as Bitcoin, Litecoin
and Ethereum.

The indicator is estimated on copulae by drawing 500, 000 points. We com-
pute the indicator per copula over a rolling window of k = 60 days and with
a band of ±10% with respect to the diagonal. When the indicator exceeds 1
for more than 60 days but less than 100 days, we report the time interval as
a “warning” (yellow color); see Fig. 5. When the indicator exceeds 1 for more
than 100 days we report the interval as a “crisis” (red); see Fig. 2, 5, and 7. The
periods are more than 60 days long to avoid detection of isolated events whose
persistence is only due to the auto-correlation implied by the rolling window.

We compare results for industrial assets with the database for financial crises
in Europe [5] from 1990 until 2020. The first warnings in 1990 correspond to the
early 90’s recession, the second crisis in 2000 to 2001 to the dot-com bubble burst,
the warning and third crisis in 2001 and 2002 to the stock market downturn of
2002, and the fourth crisis in 2008 to 2009 corresponds to the sub-prime crisis.

Our cryptocurrencies indicator detects successfully the 2018 (great) cryp-
tocurrency crash. The first shock event detected in 2018 (mid-January to late
March) corresponds to the crash of nearly all cryptocurrencies, following Bit-
coin’s, whose price fell by about 65% from 6 January to 6 February 2018, after an
unprecedented boom in 2017. Intermediate warnings (mid-May to early August)
should correspond to cryptocurrencies collapses (80% from their peak in Jan-
uary) until September. The detected crash at the end of 2018 (November 2018
until early January 2019) corresponds to the fall of Bitcoin’s market capitaliza-
tion (below $100 billion) and price by over 80% from its peak, almost one-third
of its previous week value. Finally, the detected event in early 2020 corresponds
to the shock event due to covid-19.

Modeling of Crisis Periods in Stock Markets 59

Fig. 3. Left, spectral clustering (k = 6) on EMD matrix. Right, k-medoids (k = 6) on
copulae features. Clusters appear to contain similar indicator values.

3 Exploring the Dynamics of Copulae

Several clustering methods confirm the indicator’s reliability. Then, we model
the structure of copulae using a novel regression model to detect shock events.

3.1 Clustering of Copulae

In order to further evaluate our results we clustered the copulae of the industry
returns. To confirm whether the copulae are able to distinguish different market
states (normal, crisis and intermediate), as well as to validate the indicator, we
experimented with clustering based on probability distributions distances. We
select various number of clusters, such as 6 and 8, and show that the resulting
clusters include copulae from similar market states, with similar indicator values.

To cluster the probability distributions distances of the copulae, we com-
puted a distance matrix (D) between all copulae using the earth mover’s dis-
tance (EMD) [13]. The EMD between two distributions is the minimum amount
of work required to turn one distribution into the other. Here we use a fast and
robust EMD algorithm, which appears to improve both accuracy and speed [11].
Then, we apply spectral clustering [9], a method to cluster points using the
eigenvectors of the affinity matrix (A) which we derive from the distance matrix,
computed by the radial basis function kernel, replacing the Euclidean distance
with EMD, where Aij = exp(−D2

ij/2σ2), and for σ we chose the standard devi-
ation of distances. Using the k largest eigenvectors of the laplacian matrix, we
construct a new matrix and apply k-medoids clustering by treating each row as
a point, so as to obtain k clusters. The results with k = 6 and k = 8 are shown
on the indicators’ values in Fig. 3, 8, and 9. Clusters appear to contain copulae
with similar indicator values. Crisis and normal periods are assigned to clusters
with high and low indicator values respectively. Therefore, the clustering of the
copulae is proportional to discretising the values of the indicator.

Other experiments included clustering on features generated form the copu-
las, based on the indicator. We generate vector representations for each copula
using the rates between all the possible combinations of the indicators’ cor-
ners: for UL, UR being the upper left and right corner of a copula respectively,

60 A. Chalkis et al.

Fig. 4. Left: copula on 21/09/2014 using cryptocurrency returns. Middle: proportion
of the mass of the left copula that our model uses as input. Right: copula that the
model estimates. We trained our model with the industry asset returns.

and for LL, LR the lower left and right corners, the vector representation is
[UL

UR

UL

LL

UL

LR

UR

LL

UR

LR

LL

LR
]. These representations allow us to use clustering, such as

k-medoids. Results of the clustering also follow the values of the indicator as
expected (Fig. 3, 10).

3.2 Modeling Copulae

We further explore the dynamics of copulae by modeling the mass distribution
using a quadratic regression model.

We compute the 10×10 copulae of the industry data set. That is N = 49 689
copulae in total while each consists of 10 × 10 = 100 cells. Each cell has a
value while they all sum up to 1. For all copulae we pick a certain subset S
of k cells, e.g. the 3 × 3 left up corner as Fig. 4 illustrates; that is |S| = 9.
For each copula we represent the values of the k cells that belong to S as a
vector X ∈ R

k. Thus, in total we get the vectors X1, . . . , XN . Then, for each
cell that does not belong to S we fit a quadratic regression model. In particular,
let Yij ∈ R, i = 1, . . . , 100− k, j = 1, . . . , N the value of the i-th cell in the j-th
copula. Then, we define the following models,

model Mi : min
Σi�0

N∑

j=1

(Yj − XT
j ΣiXj)

2, i = 1, . . . , 100 − k, (1)

where Σi � 0 declares that the matrix Σi is a positive semidefinite matrix. To
solve the optimization problems in Eq. (1) we use the matlab implementation of
the Trust Region Reflective Algorithm [2], provided by function lsqnonlin().

To illustrate the efficiency and transferability of our model, we train it on
industry asset returns and use it to detect the shock events in the cryptocurrency
market from Sect. 2.1; we use the copulae of the industry asset returns. For each
copula the vector Xi ∈ R

9 corresponds to the 3 × 3 left-down corner cell, as
Fig. 4 (middle) shows. We exploit the model to estimate the 10 × 10 copula of

Modeling of Crisis Periods in Stock Markets 61

each sliding window of the cryptocurrencies’ returns. Finally, we compute the
indicator of each estimated copula and plot the results in Fig. 6. Interestingly,
the copulae that our model estimates suffice to detect all the past shock events
that we also detect using the exact copulas, such as the 2018 cryptocurrency
crash (see Sect. 2.1), except the first warning period (mid-May) of 2018.

Acknowledgements. This research is carried out in the context of the project
“PeGASUS: Approximate geometric algorithms and clustering with applications in
finance” (MIS 5047662) under call “Support for researchers with emphasis on young
researchers: cycle B” (EDBM103). The project is co-financed by Greece and the Euro-
pean Union (European Social Fund-ESF) by the Operational Programme Human
Resources Development, Education and Lifelong Learning 2014–2020. We thank
Ludovic Calès for his precious guidance throughout this work.

A Data

Table 1. Cryptocurrencies used to detect shock events in market.

Coin Symbol Dates

Bitcoin BTC 28/04/2013–21/11/2020

Litecoin LTC 28/04/2013–21/11/2020

Ethereum ETH 07/08/2015–21/11/2020

XRP XRP 04/08/2013–21/11/2020

Monero XMR 21/05/2014–21/11/2020

Tether USDT 25/02/2015–21/11/2020

Dash DASH 14/02/2014–21/11/2020

Stellar XLM 05/08/2014–21/11/2020

Dogecoin DOGE 15/12/2013–21/11/2020

DigiByte DGB 06/02/2014–21/11/2020

NEM XEM 01/04/2015–21/11/2020

Siacoin SC 26/08/2015–21/11/2020

62 A. Chalkis et al.

B Crises Indicator

Fig. 5. Warnings (yellow) and Crises (red) detected by indicator (bottom) for industry
assets, against real residual events (top) and systematic crises (middle). (Color figure
online)

Fig. 6. The shock events we detect in the cryptocurrency market using the indicator
from Eq. (1). Note that we trained the model using the daily returns of the French
industry assets.

Modeling of Crisis Periods in Stock Markets 63

Fig. 7. Warning (yellow) and Crises (red) periods detected by indicator (bottom) for
cryptocurrencies against BTC daily close price (top). (Color figure online)

C Clustering of Copulae

Fig. 8. Clustering of copulae using spectral clustering on EMD distances with k = 6.

64 A. Chalkis et al.

Fig. 9. Clustering of copulae using spectral clustering on EMD distances with k = 8.

Fig. 10. Clustering using k-medoids on copulae features.

Modeling of Crisis Periods in Stock Markets 65

References

1. Billio, M., Getmansky, M., Pelizzon, L.: Dynamic risk exposures in hedge
funds. Comput. Stat. Data Anal. 56(11), 3517–3532 (2012). https://doi.org/
10.1016/j.csda.2010.08.015, http://www.sciencedirect.com/science/article/pii/
S0167947310003439

2. Branch, M.A., Coleman, T.F., Li, Y.: A subspace, interior, and conjugate gradient
method for large-scale bound-constrained minimization problems. SIAM J. Sci.
Comput. 21(1), 1–23 (1999). https://doi.org/10.1137/S1064827595289108

3. Calès, L., Chalkis, A., Emiris, I.Z., Fisikopoulos, V.: Practical volume computation
of structured convex bodies, and an application to modeling portfolio dependencies
and financial crises. In: Speckmann, B., Tóth, C. (eds.) Proceedings International
Symposium Computational Geometry (SoCG). Leibniz International Proceedings
Informatics, vol. 99, pp. 19:1–15. Dagstuhl, Germany (2018). https://doi.org/10.
4230/LIPIcs.SoCG.2018.19

4. Di Lascio, F.M.L., Durante, F., Pappadà, R.: Copula–based clustering methods.
In: Úbeda Flores, M., de Amo Artero, E., Fernández Sánchez, J. (eds.) Copulas and
Dependence Models with Applications, pp. 49–67. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-64221-5 4

5. Duca, M.L., et al.: A new database for financial crises in European countries.
Technical Report 13, European Central Bank & European Systemic Risk Board,
Frankfurt, Germany (2017)

6. Kroll, Y., Levy, H., Markowitz, H.: Mean-variance versus direct utility maximiza-
tion. Journal of Finance 39(1), 47–61 (1984)

7. Le Bris, D.: Wars, inflation and stock market returns in France, 1870–1945. Financ.
Hist. Rev. 19(3), 337–361 (2012). https://doi.org/10.1017/S0968565012000170

8. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952). https://doi.org/
10.1111/j.1540-6261.1952.tb01525.x

9. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-
rithm. In: Proceedings 14th International Conference Neural Information Process-
ing Systems: Natural and Synthetic, pp. 849–856. NIPS 2001, MIT Press, Cam-
bridge, MA, USA (2001)

10. Oosterlinck, K.: French stock exchanges and regulation during world war II. Financ.
Hist. Rev. 17(2), 211–237 (2010). https://doi.org/10.1017/S0968565010000181

11. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: IEEE 12th
International Conference Computer Vision, pp. 460–467. IEEE, September 2009.
https://doi.org/10.1109/ICCV.2009.5459199

12. Rubinstein, R., Melamed, B.: Modern Simulation and Modeling. Wiley, New York
(1998)

13. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for
image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000)

https://doi.org/10.1016/j.csda.2010.08.015
https://doi.org/10.1016/j.csda.2010.08.015
http://www.sciencedirect.com/science/article/pii/S0167947310003439
http://www.sciencedirect.com/science/article/pii/S0167947310003439
https://doi.org/10.1137/S1064827595289108
https://doi.org/10.4230/LIPIcs.SoCG.2018.19
https://doi.org/10.4230/LIPIcs.SoCG.2018.19
https://doi.org/10.1007/978-3-319-64221-5_4
https://doi.org/10.1007/978-3-319-64221-5_4
https://doi.org/10.1017/S0968565012000170
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1017/S0968565010000181
https://doi.org/10.1109/ICCV.2009.5459199

Feature Selection in Single-Cell RNA-seq
Data via a Genetic Algorithm

Konstantinos I. Chatzilygeroudis1,2(B), Aristidis G. Vrahatis3,
Sotiris K. Tasoulis3, and Michael N. Vrahatis2

1 Computer Engineering and Informatics Department (CEID), University of Patras,
Patras, Greece

costashatz@upatras.gr
2 Computational Intelligence Laboratory, Department of Mathematics,

University of Patras, Patras, Greece
vrahatis@math.upatras.gr

3 Department of Computer Science and Biomedical Informatics,
University of Thessaly, Volos, Greece

arisvrahatis@uth.gr, stasoulis@uth.gr

Abstract. Big data methods prevail in the biomedical domain leading to
effective and scalable data-driven approaches. Biomedical data are known
for their ultra-high dimensionality, especially the ones coming from molec-
ular biology experiments. This property is also included in the emerging
technique of single-cell RNA-sequencing (scRNA-seq), where we obtain
sequence information from individual cells. A reliable way to uncover their
complexity is by using Machine Learning approaches, including dimen-
sional reduction and feature selection methods. Although the first choice
has had remarkable progress in scRNA-seq data, only the latter can offer
deeper interpretability at the gene level since it highlights the dominant
gene features in the given data. Towards tackling this challenge, we pro-
pose a feature selection framework that utilizes genetic optimization prin-
ciples and identifies low-dimensional combinations of gene lists in order to
enhance classification performance of any off-the-shelf classifier (e.g., LDA
or SVM). Our intuition is that by identifying an optimal genes subset, we
can enhance the prediction power of scRNA-seq data even if these genes
are unrelated to each other. We showcase our proposed framework’s effec-
tiveness in two real scRNA-seq experiments with gene dimensions up to
36708. Our framework can identify very low-dimensional subsets of genes
(less than 200) while boosting the classifiers’ performance. Finally, we pro-
vide a biological interpretation of the selected genes, thus providing evi-
dence of our method’s utility towards explainable artificial intelligence.

Keywords: Feature selection · Optimization · Single-cell RNA-seq ·
High-dimensional data

1 Introduction

Almost two decades ago, the Human Genome Project [11] was completed, where
the human genome was analyzed, offering the complete set of genetic informa-
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 66–79, 2021.
https://doi.org/10.1007/978-3-030-92121-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_6

Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm 67

tion. The evolution of DNA sequencing from this point has undoubtedly brought
about a great revolution in the field of biomedicine [29]. Although new technolo-
gies and analysis tools are constantly emerging, their experimental data have
ultra-high dimensionality hindering success of traditional methods [8]. Hence,
data mining approaches in such data create several computational challenges
that novel or updated existing computational methodologies can address. Indica-
tively, a gene expression experiment includes each sample measurements for the
entire genome, which contains tens of thousands of genes.

Meanwhile, classification in gene expression profiles is a longstanding research
field with remarkable progress in complex disease identification, and treat-
ment [13]. Started with data from the microarrays high-throughput technol-
ogy [6] and continued with sequencing data [35]. We are now in the single-cell
sequencing era, which allows biological information to be extracted from indi-
vidual cells offering a deeper analysis at the cellular level. An indicative under-
case transcriptomics study has gene measurements simultaneously for the entire
genome isolating hundreds or thousands or even millions of cells in recent years.
Given that we obtain measurements of tens of thousands of genes for each cell, in
the computational perspective, we have to manage single-cell RNA-sequencing
(scRNA-seq) data with ultra-high complexity.

Several single-cell RNA-seq data challenges are addressed through classifi-
cation methods under the Machine Learning family [26]. These methods shed
light on various biological issues such as the new cell types of identification [27],
the cellular heterogeneity dissection [16], the cell cycle prediction [28], the cell
sub-populations [7], the cells classification [25] and much more [33]. Despite the
remarkable progress and promising results in the above challenges, the increasing
scRNA-seq data generation, and the related technologies improvements creates
new challenges and the need for novel classification methods under the perspec-
tive of supervised learning.

The nature of scRNA-seq technology, that is to examine individual cells from
specific tissues, creates a quite sparse counts matrix since for every cell usually
exists a high fraction of genes which are not informative [31]. Two appropri-
ate ways to deal with this inherent particularity are dimensionality reduction
techniques and feature selection methods. Dimension reduction techniques in
scRNA-seq data aim to transfer the original RD cell’s space, where D is the genes
expression profiles, to a lower-dimensional RK space, with K � D. Such meth-
ods have gained ground in recent years with promising results in visualization
[34] as in classification performance tasks [26]. Indicatively, the t -distributed
stochastic neighbor embedding [21] and uniform manifold approximation and
projection [5] techniques are usually applied in scRNA-seq data to obtain low-
dimensional embedding offering a better visualization to uncover the relationship
among cells and their categories.

However, their major drawback is that the reduced-dimensional projected
space does not contain information about each gene since the original space
has been transformed. It does not allow us a further biological analysis and a
deeper interpretation of a given case under study (disease, biological process).

68 K. I. Chatzilygeroudis et al.

In gene expressions data, feature selection or variable selection is selecting a
subset of genes for model construction or results interpretation. It has been
shown that feature selection in such data improves the classification performance
and offers the potential for a better data interpretation in a given study since
we know its dominant and redundant genes (features), which are related to
the various class separation. There are numerous feature selection algorithms
with promising results in gene expression data [1,12,20]. In scRNA-seq data,
feature selection methods aim to identify uninformative genes (features) with
no meaningful biological variation across cells (samples) [31]. Identifying the
appropriate set of marker genes interprets the scRNA-seq data at the gene level
with a deeper biological meaning [3,30].

Some studies considered the feature selection problem in such data as an opti-
mization task from the mathematical perspective. In [19], the authors described
a fitness function that incorporates both performance and feature size. Applying
the Particle Swarm Optimization (PSO) method and the utilization of Convolu-
tional Neural Networks, they offer promising results in classifying the different
types of cancer based on tumor RNA-Seq gene expression data.

In [24], a feature selection approach is proposed for RNA-seq gene expres-
sion data. It reduces the irrelevant features by applying an ensemble L1-norm
support vector machine methodology. Its classification performance in RNA-seq
data shown promising results, especially in small n – large p problems, with
n samples and p features (genes). scTIM [15] framework utilizes a multiobjec-
tive optimization technique aiming to maximize gene specificity by considering
the gene-cell relationship while trying to minimize the number of selected genes.
This model allows the new cell type discovery as well as the better cell categories
separation. M3Drop [3], describes two feature selection methods for scRNA-seq
data which isolate genes with the high proportion of zero values among their
cells, also called the “dropouts” effect. It is a central feature of scRNA-seq due
to the considerable technical and biological noise.

Despite the remarkable progress of feature selection methods in gene expres-
sions, their adaptation in single-cell RNA-seq is at a very early stage. Given
that these data have high complexity, dimensionality, and sparsity, lead us on
the necessity of incorporating an optimization method for the appropriate feature
(genes) selection. Our intuition here is that across the genome, several combina-
tions of certain genes will be dominant in cell separation of a given experimental
study.

In this paper, we propose a novel feature selection method and analysis,
called Feature Selection via Genetic Algorithm (FSGA), that tackles the above
challenges. FSGA utilizes genetic optimization principles and identifies low-
dimensional sets of features. The aim here is to use a simple distance-based
classifier (we use a KNN classifier) during the feature selection process in order
to identify feature groups that are nicely separated in Euclidean space. This
property is desirable in most classification methods, and thus we expect to boost
the performance of any classifier. We showcase FSGA’s effectiveness in two real
scRNA-seq experiments with gene dimensions up to 36708. Our framework can

Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm 69

identify very low-dimensional subsets of genes (less than 200) while boosting the
classifiers’ performance. The obtained results offer new insights in the single-
cell RNA-seq data analysis offering the potential that variants of the proposed
method can work also in other data types.

2 Approach

2.1 Problem Formulation

scRNA-seq datasets have very high-dimensional feature spaces, with features
spaces going up to D = 30K dimensions. We would like to find a group of K
features where K � D and we can achieve similar or even better classification
performance. We represent the feature space as x = [x1, x2, . . . , xD]T ∈ R

D and
define the problem of feature selection as (see also [1,12]):

f∗ = argmax
f

J(xf) (1)

where f = [b1, b2, . . . , bD]T ∈ B
D with bi being a Boolean1 value whether we

select the dimension i, xf ∈ R
K is the feature dimension vector where we keep

only the dimensions as defined by f , and J is training and evaluating the per-
formance of a given feature vector.

2.2 Feature Selection via Genetic Algorithms

We choose to tackle this problem using a Genetic Algorithm (GA). GAs operate
on a population of individuals and attempt to produce better individuals every
generation. At each generation, a new population is created by selecting indi-
viduals according to their level of performance and recombining them together
using operators borrowed from natural evolution. Offspring might also undergo
a mutation operation. In more detail, any GA has the following generic steps:

1. Initialization of the population

2. Evaluation of the population

3. Selection of the fittest individuals

4. Crossover between some of the selected individuals

5. Mutation of some individuals

The previous two steps produce a new population
6. Go back to step 2

There a few critical parameters to choose so that a GA can be effective: (1)
gene representation, (2) selection pressure, (3) crossover operation, (4) mutation
operation, (5) initialization of the population and (6) performance measure.
Below we detail our choices.

1 We define B as the space of Boolean variables.

70 K. I. Chatzilygeroudis et al.

Gene Representation. In order to be able to use GAs for solving the problem
as defined in Eq. (1), we use the vectors f = [b1, b2, . . . , bD]T ∈ B

D for the
gene representation. This is a natural choice for this task as changing the values
in the gene will correspond in selecting different features for the classification
[1,12,14,17].

Selection Operator. We adopt a selection operator that selects the top-50%
individuals of the population (according to the performance measure). More
sophisticated selection operators can be used here to improve performance. We
also always insert the best individual back into the new population (thus making
the algorithm elitist).

Crossover Operator. The crossover operator consists of combining two (2)
individuals (called parents) to produce a new one (offspring). We randomly
determine parts of the gene parent vectors to be swapped.

Mutation Operator. Each offspring individual can undergo a mutation oper-
ator. For each individual we randomly switch any dimension of its gene vector.
So, with some probability we change which features the offspring keeps for the
classification.

Initialization of the Population. One crucial aspect of the initial population
is to push for as little as possible number of selected features, but not hurt
performance. For this reason, we produce the initial population where for each
individual each feature dimension has an 1� chance of being selected. This
procedure produces populations with small number of selected features, but
keeps diversity in which feature dimensions are being selected.

Objective Function (Performance Measure). When optimizing for the best
features, in each run of the algorithm we split the datasets into three sets: (a)
training set, (b) validation set, and (c) test set. The sets are roughly 60%, 20%
and 20% of the size of the original dataset respectively (keeping the percentage
of classes similar in each dataset). At each evaluation, we use the training set to
train the KNN-classifier, and create an objective function of the form:

J(xf) = 0.6 ∗ accval + 0.4 ∗ acctrain − Psparseness (2)

where accval is the accuracy of the classifier in the validation set, acctrain is
the accuracy of the classifier in the training set, and Psparseness = 10 ∗ ∑D

i=1 bi
is a penalty score penalizing high dimensionality of the selected feature space.
The proposed objective function is slightly different from the ones in the liter-
ature [1,12,14,17]; we are doing the weighted average of the validation and the
training set accuracy. The reasoning behind this weighted average is to not let
the algorithm overfit a specific part of the dataset. At the end of each generation,
we report the accuracy on the test set (see Sect. 3), but the algorithm never uses
this.

Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm 71

Fig. 1. Convergence of algorithm in GSE52583 dataset. Solid lines are the median
over 20 replicates and the shaded regions are the regions between the 25-th and 75-th
percentiles.

3 Experimental Analysis on scRNA-seq Datasets

We evaluated the classification performance of our FSGA method using two
real transcriptomics datasets from single-cell RNA-seq studies. Datasets were
obtained from Gene Expression Omnibus [10] and ArrayExpress [4]. More spe-
cific, the first dataset (accession number: GSE52583) [32] has transcriptomics
experimental data profiles for 23, 228 genes. It is a transcriptome analysis of 201
distal mouse lung epithelial cells from four developmental stages. The second
dataset (accession number: E-MTAB-2805) has studied expression patterns for
36078 genes at single cell level across the different cell cycle stages in 288 mouse
embryonic stem cells [7].

The evaluation process was split into to three (3) parts: (a) evaluating the
optimization process and whether our proposed scheme was converging to good
individuals in all runs, (b) evaluating whether the produced features provide
a good set of features for any classifier, and (c) try to determine whether the
selected features have a biological meaning.

To tackle both challenges we chose to use a simple KNN classifier when opti-
mizing for the best features. The KNN performs k-nearest-neighbor classification
model [2] using the default parameters with Euclidean as distance measure as
well KD-tree option as search method for N = 5 nearest neighbors. The ratio-
nale behind this choice is that a) KNN is fast, and b) a set of features that

72 K. I. Chatzilygeroudis et al.

works well under KNN directly means that these features are nicely separated
in Euclidean space. The first fact gave us the ability to run many replicates and
have meaningful comparisons and statistics, while the second one makes it more
likely for other classifiers to work well (see below).

If not mentioned otherwise, all plots are averaged (or taking median/
percentiles) over 20 replicates.

3.1 Evaluation of Feature Selection Process

In order to evaluate the feature selection process, we keep track of the best
individual of the optimization at each generation as well as the number of selected
feature dimensions of the best individual.

The results show that the optimization is able to find high-performing indi-
viduals (see Fig. 1 and Fig. 2). In both datasets, we achieve a median accuracy
score over 0.75 in the test set (this is the set that both the classifier and the
optimizer have never seen). This showcases that our objective function is able
to produce classifiers with nice generalization properties.

Moreover, the results demonstrate that the optimization process increases the
dimensionality of the feature space as long as this helps the process get better
performance. Once the performance stabilizes to a fixed value, the dimensionality
of the feature space stops increasing. This is a desirable property of a feature
selection process since we do not want it to keep adding dimensions if they do
not help in the classification performance. The algorithm converges at around 77
dimensions for the GSE52583 dataset and around 165 dimensions for E-MTAB-
2805 dataset (median values over 20 replicates). Our initialization process is
crucial for achieving these results (see Sect. 2.2), as preliminary results with
a population with individuals containing many dimensions did not manage to
converge to low number of features.

3.2 Evaluation of Selected Features

In this section, we want to evaluate the quality of the selected features both
quantitatively and qualitatively. For a principled analysis, we perform the fol-
lowing steps:

– For each run of our algorithm2, we take the feature dimensions of the best
individual at convergence;

– We take those feature dimensions and modify the datasets (i.e., we include
only those input dimensions);

– Using the modified datasets we train three (3) different classification methods,
namely KNN, LDA and SVM [9,23];

– We compare the performance of the algorithms using our selected features
against training the same classifiers using all the feature dimensions (we use
Accuracy and F1-score for comparisons);

2 We have 20 runs/replicates.

Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm 73

Fig. 2. Convergence of algorithm in E-MTAB-2805 dataset. Solid lines are the median
over 20 replicates and the shaded regions are the regions between the 25-th and 75-th
percentiles.

– All executions are done using the 10-fold cross validation process in 20 inde-
pendent trials.

Parameter setting for all methods was chosen based on a fitting procedure in
order to optimize their performance. Minor variations for the selected values do
not affect the results significantly and thus an extensive analysis is excluded. All
algorithms were run with the corresponding default parameters. We exclude an
extensive parameter analysis of all classifiers since our aim was to highlight for
each classifier its difference between the classification performance in the original
and in the reduced feature space.

The results showcase that in almost all cases the feature space produced
by our algorithm increases the performance of any classification method (see
Fig. 3). In all cases, except when using LDA on the E-MTAB-2805 dataset, our
feature selection approach boosts significantly the performance of all classifiers.
Even in the worst case (LDA/E-MTAB-2805), the result of the classification
is comparable with training in the full feature dimensions by using only 180
dimensions. The performance improvement to the SVM classifier is highlighting
the effectiveness of our approach to generate separable feature spaces.

74 K. I. Chatzilygeroudis et al.

Fig. 3. Evaluation of selected features using different classifiers (20 replicates). We
compare using two (2) metrics: accuracy (top row) and F1-Score (bottom row). For
each algorithm, we show results before and after the usage of our feature selection
algorithm for both datasets. The box plots show the median (black line) and the
interquartile range (25th and 75th percentiles); the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually. The number
of stars indicates that the p-value of the Mann-Whitney U test is less than 0.05, 0.01,
0.001 and 0.0001 respectively.

Figure 4 shows tSNE plots [22] of one typical feature selection run of the
algorithm in the GSE52583 and the E-MTAB-2805 datasets respectively for
qualitative inspection/verification. The plots showcase the effectiveness of the
proposed method to find feature dimensions that can separate the classes in
different regions of the space.

Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm 75

Fig. 4. 2D t-SNE visualizations are illustrated for comparisons between the original
datasets and the datasets with reduced features using our FSGA method. Each point
represents a cell sample, and each color represents a different cell type according to
original data annotation. Our method shows its superiority by efficiently discriminating
the cell classes in both datasets.

3.3 Biological Analysis

We further examine the selected genes for each dataset concerning their enrich-
ment in Gene Ontology terms for various Biological Processes (see Table 1) using
the Functional Annotation Tool David [18]. Through this analysis, we aim to
examine how our list of selected genes relates to terms corresponding to the
respective biological case under-study. Both datasets extract genes which are

76 K. I. Chatzilygeroudis et al.

related to cellular functions. Both studies are relevant with these functions since
their studies are related with the developmental stages of distal mouse lung
epithelial cells and the different cell cycle stages in Mouse Embryonic Stem
Cells.

Table 1. Enrichment analysis for GSE52583 and E-MTAB-2805 datasets using gene
ontology terms of the selected features obtained from the proposed framework. The
first column contains the gene ontology terms for various biological processes. The
second column represents the number of genes that present enrich action in each term.
The third column represents a modified Fisher’s exact p-value.

Term Count P-Value

GSE52583

Negative regulation of cellular process 55 9.0E-2

Cellular macromolecule metabolic process 127 1.2E-10

Cellular nitrogen compound metabolic process 96 1.9E-6

Positive regulation of cellular metabolic process 54 3.4E-6

Cellular catabolic process 31 8.7E-5

Cellular response to chemical stimulus 44 1.0E-3

Response to extracellular stimulus 6 3.8E-2

Regulation of secretion by cell 7 6.2E-2

Negative regulation of cell differentiation 7 9.4E-2

EM-TAB-2805

Intracellular transport 11 2.5E-2

Establishment of localization in cell 13 2.8E-2

Positive regulation of cell communication 11 5.4E-2

Cell communication 31 7.0E-2

Regulation of cellular component size 6 9.0E-2

Circulatory system process 8 2.2E-3

Response to extracellular stimulus 6 3.8E-2

Regulation of secretion by cell 7 6.2E-2

Negative regulation of cell differentiation 7 9.4E-2

4 Discussion and Conclusion

Machine Learning tasks have become the first choice for gaining insight into
large-scale and high-dimensional biomedical data. These approaches can tackle
part of such data complexity offering a platform for effective and robust com-
putational methods. Part of this complexity comes from a plethora of molecular
biology experimental data having extremely high dimensionality. An indicative
example is the single-cell RNA-seq (scRNA-seq), an emerging DNA sequencing

Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm 77

technology with promising capabilities but significant computational challenges
due to the large-scaled generated data.

Given that this technology offers the opportunity to understand various bio-
logical phenomena and diseases better, there is a need for novel computational
methods to deal with this complexity and dimensionality. Dimensionality reduc-
tion methods are an appropriate choice, but they do not give us explanatory
power at the gene level. A significant challenge here is identifying the feature list
in terms of genes (dimensions), which will maintain or increase the performance
of various machine learning tasks.

Highlighting the salient by eliminating the irrelevant features in a high dimen-
sional dataset such as the high-throughput gene expression experiments, may
lead to the strengthening of a traditional classifier’s performance [24]. Also, given
a features list which is dominant in terms of class separation in a classification
process, we obtain a better understanding and interpretation of a given gene
expressions dataset.

On the other hand, deep learning has gained ground in biomedical data min-
ing methods. However, its inherent black-box feature offers a poor interpretabil-
ity for a better understanding of such data. In the case of gene expressions
where the data contain a record of tens of thousands of genes, it is crucial to
find the genes and especially the combination of these genes, which will better
capture the information contained in the data set. Also, through the develop-
ing of interpretable ML approaches offers the opportunity not only for a better
data interpretation but also for finding the dominant genes which may need to
be considered individually or in combination for their potential effect on the
under-study case (e.g. a disease, a biological process).

Through our proposed feature selection method using a Genetic Algorithm,
we provided evidence about its potential in single-cell RNA-sew analysis regard-
ing the classification performance. Our intuition was that an optimal combina-
tion of genes could improve both the classification performance and the inter-
pretability of a given data. The first is critical since even if this feature subset
contains genes unrelated to each other, their combination might be highly corre-
lated with the classification. The latter can contribute in the emerging explain-
able artificial intelligence field.

The obtained results offer new insights in the single-cell RNA-seq data anal-
ysis offering the potential that variants of the proposed method can work also
in other data types. Our contribution, which is lies in the intuition that specific
combinations of small gene groups have a key role in our scRNA-seq data, is
partly confirmed by the above results.

References

1. Alba, E., Garcia-Nieto, J., Jourdan, L., Talbi, E.G.: Gene selection in cancer classi-
fication using PSO/SVM and GA/SVM hybrid algorithms. In: 2007 IEEE Congress
on Evolutionary Computation, pp. 284–290. IEEE (2007)

2. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric
regression. Am. Stat. 46(3), 175–185 (1992)

78 K. I. Chatzilygeroudis et al.

3. Andrews, T.S., Hemberg, M.: M3drop: dropout-based feature selection for scr-
naseq. Bioinformatics 35(16), 2865–2867 (2019)

4. Athar, A., et al.: Arrayexpress update-from bulk to single-cell expression data.
Nucleic Acids Res. 47(D1), D711–D715 (2019)

5. Becht, E., et al.: Dimensionality reduction for visualizing single-cell data using
UMAP. Nat. Biotechnol. 37(1), 38 (2019)

6. Brown, M.P., et al.: Knowledge-based analysis of microarray gene expression data
by using support vector machines. Proc. Nat. Acad. Sci. 97(1), 262–267 (2000)

7. Buettner, F., et al.: Computational analysis of cell-to-cell heterogeneity in single-
cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol.
33(2), 155–160 (2015)

8. Chattopadhyay, A., Lu, T.P.: Gene-gene interaction: the curse of dimensionality.
Ann. Transl. Med. 7(24) (2019)

9. Chatzilygeroudis, K., Hatzilygeroudis, I., Perikos, I.: Machine learning basics. In:
Intelligent Computing for Interactive System Design: Statistics, Digital Signal Pro-
cessing, and Machine Learning in Practice, pp. 143–193 (2021)

10. Clough, E., Barrett, T.: The gene expression omnibus database. In: Mathé, E.,
Davis, S. (eds.) Statistical Genomics. MMB, vol. 1418, pp. 93–110. Springer, New
York (2016). https://doi.org/10.1007/978-1-4939-3578-9 5

11. Collins, F.S., Morgan, M., Patrinos, A.: The human genome project: lessons from
large-scale biology. Science 300(5617), 286–290 (2003)

12. Dhaenens, C., Jourdan, L.: Metaheuristics for data mining. 4OR 17(2), 115–139
(2019). https://doi.org/10.1007/s10288-019-00402-4

13. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for
the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457),
77–87 (2002)

14. Estévez, P.A., Caballero, R.E.: A Niching genetic algorithm for selecting features
for neural network classifiers. In: Niklasson, L., Bodén, M., Ziemke, T. (eds.)
ICANN 1998. PNC, pp. 311–316. Springer, London (1998). https://doi.org/10.
1007/978-1-4471-1599-1 45

15. Feng, Z., et al.: scTIM: seeking cell-type-indicative marker from single cell RNA-seq
data by consensus optimization. Bioinformatics 36(8), 2474–2485 (2020)

16. Hedlund, E., Deng, Q.: Single-cell RNA sequencing: technical advancements and
biological applications. Mol. Aspects Med. 59, 36–46 (2018)

17. Hong, J.H., Cho, S.B.: Efficient huge-scale feature selection with speciated genetic
algorithm. Pattern Recogn. Lett. 27(2), 143–150 (2006)

18. Huang, X., Liu, S., Wu, L., Jiang, M., Hou, Y.: High throughput single cell RNA
sequencing, bioinformatics analysis and applications. In: Gu, J., Wang, X. (eds.)
Single Cell Biomedicine. AEMB, vol. 1068, pp. 33–43. Springer, Singapore (2018).
https://doi.org/10.1007/978-981-13-0502-3 4

19. Khalifa, N.E.M., Taha, M.H.N., Ali, D.E., Slowik, A., Hassanien, A.E.: Artificial
intelligence technique for gene expression by tumor RNA-seq data: a novel opti-
mized deep learning approach. IEEE Access 8, 22874–22883 (2020)

20. Liang, S., Ma, A., Yang, S., Wang, Y., Ma, Q.: A review of matched-pairs feature
selection methods for gene expression data analysis. Comput. Struct. Biotechnol.
J. 16, 88–97 (2018)

21. Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S., Kluger, Y.: Fast
interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.
Nat. Methods 16(3), 243–245 (2019)

22. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.1007/s10288-019-00402-4
https://doi.org/10.1007/978-1-4471-1599-1_45
https://doi.org/10.1007/978-1-4471-1599-1_45
https://doi.org/10.1007/978-981-13-0502-3_4

Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm 79

23. McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition, vol.
544. John Wiley & Sons, New York (2004)

24. Moon, M., Nakai, K.: Stable feature selection based on the ensemble l 1-norm sup-
port vector machine for biomarker discovery. BMC Genom. 17(13), 65–74 (2016)

25. Poirion, O.B., Zhu, X., Ching, T., Garmire, L.: Single-cell transcriptomics bioin-
formatics and computational challenges. Front. Genet. 7, 163 (2016)

26. Qi, R., Ma, A., Ma, Q., Zou, Q.: Clustering and classification methods for single-cell
RNA-sequencing data. Briefings Bioinform. 21(4), 1196–1208 (2020)

27. Regev, A., et al.: Science forum: the human cell atlas. Elife 6, e27041 (2017)
28. Scialdone, A., et al.: Computational assignment of cell-cycle stage from single-cell

transcriptome data. Methods 85, 54–61 (2015)
29. Shendure, J., et al.: DNA sequencing at 40: past, present and future. Nature

550(7676), 345 (2017)
30. Taguchi, Y.: Principal component analysis-based unsupervised feature extraction

applied to single-cell gene expression analysis. In: Huang, D.-S., Jo, K.-H., Zhang,
X.-L. (eds.) ICIC 2018. LNCS, vol. 10955, pp. 816–826. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95933-7 90

31. Townes, F.W., Hicks, S.C., Aryee, M.J., Irizarry, R.A.: Feature selection and
dimension reduction for single-cell RNA-seq based on a multinomial model.
Genome Biol. 20(1), 1–16 (2019)

32. Treutlein, B., et al.: Reconstructing lineage hierarchies of the distal lung epithelium
using single-cell RNA-seq. Nature 509(7500), 371 (2014)

33. Vrahatis, A.G., Tasoulis, S.K., Maglogiannis, I., Plagianakos, V.P.: Recent machine
learning approaches for single-cell RNA-seq data analysis. In: Maglogiannis, I.,
Brahnam, S., Jain, L.C. (eds.) Advanced Computational Intelligence in Healthcare-
7. SCI, vol. 891, pp. 65–79. Springer, Heidelberg (2020). https://doi.org/10.1007/
978-3-662-61114-2 5

34. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and
analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Meth-
ods 14(4), 414 (2017)

35. Witten, D.M., et al.: Classification and clustering of sequencing data using a Pois-
son model. Ann. Appl. Stat. 5(4), 2493–2518 (2011)

https://doi.org/10.1007/978-3-319-95933-7_90
https://doi.org/10.1007/978-3-662-61114-2_5
https://doi.org/10.1007/978-3-662-61114-2_5

Towards Complex Scenario Instances
for the Urban Transit Routing Problem

Roberto Dı́az Urra(B), Carlos Castro, and Nicolás Gálvez Ramı́rez

Casa Central, Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile
{roberto.diazu,nicolas.galvez}@usm.cl, carlos.castro@inf.utfsm.cl

Abstract. Transportation systems are critical components of urban
cities, by hugely impacting the quality of life of their citizens. The correct
design of the bus routes network is a fundamental task for a successful
system. Thus, Urban Transit Routing Problem (UTRP) aims to find a set
of bus routes that minimises users travelling time and system operator
costs. Most instances of the UTRP lack real-life demand data informa-
tion, where well-known benchmark instances are very small w.r.t. current
standards and/or they have been randomly generated. State-of-the-art
relaxation techniques are based on inherent features of urban transport
systems and they cannot significantly reduce the order of magnitude of
complex instances. In this work, we propose a relaxation technique based
on well-known clustering algorithms which preserves demand behaviour
and road structure by keeping central and periphery locations connected.
We also apply this proposal in a well-known complex study case, the RED
system from Santiago of Chile, to encourage researchers to improve the
approximation models for other big scenarios.

Keywords: UTRP · Public transport system · Route planning ·
Clustering · Relaxation

1 Introduction

Urban transportation systems are critical to the performance of most cities: they
must be carefully planned to be capable to transport citizens to their destina-
tions in a fast and comfortable manner. A poorly designed system will impact
negatively the quality of life of its users [6].

Their design is traditionally split into various stages [1]: network design, fre-
quency setting, timetable development, bus scheduling and driver scheduling.
Each of them is considered a complex problem by itself and it is solved indepen-
dently. The Urban Transit Routing Problem UTRP, an NP-Hard problem [7], is
one of several formulations for the network design stage [4], where a set of bus
routes must be selected for public transportation to minimise the user average
travel time and the costs of the system operator.

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 80–97, 2021.
https://doi.org/10.1007/978-3-030-92121-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_7

Towards Complex Scenario Instances for the UTRP 81

A UTRP instance has three basics elements:

– Road Network: A weighted undirected graph that models the city road
structure and the locations that must be covered by the bus routes.

– Demand Matrix: A structure whose function is to set the number of pas-
sengers travelling from one location to another within a time slot period.

– Route Parameters: A set of constraints bounding the number of solutions.

A UTRP solution is a route network that is represented by a vector set
of connected locations, where each of them encodes a single bus route. These
routes must allow users to reach their destinations as quickly as possible, i.e., by
avoiding transfers between bus routes. Simultaneously, the routes set must have
a low maintenance cost to ease system sustainability. Therefore, the UTRP is a
multi-objective problem whose goals are to minimise both the average passenger
travel time and the costs of the system operator [10].

A current issue in transportation research is the lack of public benchmark
data. Two main reasons are identified [10]: (1) The data collection regarding
public transportation is hard to obtain because passengers can not be easily
traced and surveys could be very expensive and inaccurate, and (2) the eval-
uation and quality of solutions in real-life systems rely on diverse and highly
ad-hoc metrics, thus they could be used in a reduced amount of scenarios.

In the UTRP scene, benchmark instances are very small, randomly generated
[10] and/or based on assumptions on population density data [5]. Moreover, the
biggest state-of-the-art instances are very small w.r.t. real-life scenarios. Thus,
real-life adjusted approximations are desired, e.g., relaxing the number of bus
stops and keeping demand distribution by zones. A basic reduction could be
found in [14], where UTRP instances are relaxed by combining nodes placed on
street junctions. This compression is similar to an inherent feature in most urban
transport systems: several bus stops are spread in huge areas because of traffic
direction or public convergence, but they could be seen as the same strategical
point. However, this relaxation is not enough for complex scenarios.

A well-known complex scenario is the urban transport system from Santiago
of Chile, called Red Metropolitana de Movilidad (RED). It gained worldwide
attention in 2007 after its premature implementation despite several design
issues, e.g., most of the critical infrastructure and system conditions required
were not in operation [11]. Today, RED bus system transports near 6.2 million
users from 34 communes from Santiago Metropolitan Area. It covers around 680
km2 in urban zones [13] and comprises 11.320 bus stops grouped in more than
800 demand zones.

In this work, we discuss a relaxation technique for UTRP instances, based
on well-known clustering algorithms. Through this method, we simplify complex
instances by reducing their road network structure and preserving their demand
behaviour. We use as our study case the RED public transport system from San-
tiago, Chile. Finally, we analyse the performance difference between the different
clustering algorithms tested and how they affect our proposal.

This paper is organised as follows: the next section discusses state-of-the-art
UTRP instances and their roots. In Sect. 3, this work proposal is explained in

82 R. D. Urra et al.

detail. In Sect. 4, the designed proposal is applied to the selected study case,
and a description of the available data for this procedure is done. In Sect. 5, the
features of the proposal output are analysed. Finally, in Sect. 6, conclusions and
future perspectives about the UTRP systems and their development are set.

2 UTRP Instance Benchmark Analysis

As stated in [5,10], most UTRP instances are fictitious, randomly generated
and/or simplified. This leads to an inaccurate approximation of their real-life
counterparts. Table 1 presents the most well-known UTRP instances and their
features. Note that, all shown features can be seen as solving complexity metrics.
Following we present an analysis focused on the applied methodology to generate
the UTRP instances.

Table 1. UTRP instances summary.

Instance Nodes Links Routes Route length LBATT MST

Mandl [8] 15 21 4–8 2–8 10.0058 63

Mumford0 [10] 30 90 12 2–15 13.0121 94

Mumford1 [10] 70 210 15 10–30 19.2695 228

Mumford2 [10] 110 385 56 10–22 22.1689 354

Mumford3 [10] 127 425 60 12–25 24.7453 394

Nottingham100 [5] 100 187 40 10–25 19.2974 254

Edinburgh200 [5] 200 362 90 5–25 20.8211 476

NottinghamR [14] 376 656 69 3–52 7.1003 418

The most straightforward metrics are the number of nodes and links: while
they tend to be higher, the instance search space and solution evaluation time
will highly increase. Thus, the Mandl instance, the most used one for algorithm
comparison, is the easiest benchmark case of the set; conversely, NottinghamR is
the most complex one. However, all these instances are very small w.r.t. big cities
that have thousands of bus stops or locations, e.g., RED system from Santiago
of Chile which includes more than 10000 nodes.

The amount and length of the routes, which are commonly set by the net-
work designer, critically constrain the feasible solution space. More and longer
routes lead to a bigger search space; conversely, fewer and shorter routes hardly
constrain the search space. Thus, diversification is directly affected, leading to
either very slow or premature convergence.

LBATT and MST metrics are respectively the lower bounds of the average
passenger travel time and the costs of the system operator. These metrics show
the complexity of each instance in both solving criteria, i.e., small values in each
of both metrics imply a major effort for solving.

Towards Complex Scenario Instances for the UTRP 83

How instances are generated is also relevant, because the metrics values could
change significantly. For instance, LBATT and MST are differently approached
in [5] and [14]. The former uses a small subset taken from the source data,
which produces higher LBATT and smaller MST values due to bigger dis-
tances between locations and the small number of nodes, respectively. The latter
includes information on each street junction, which increase the number of short-
distance travels and, consequently, the number of nodes. Thus, lower LBATT and
higher MST values are set.

Table 2 summarises the selected methods to generate each UTRP instance
discussed in this work.

Table 2. Generation of basic elements of UTRP instances

Instance Node splacement Link
information

Demand
matrix

Comment

Mandl Unknown method. Information
based on Swiss Network [8]

Smallest instance

Mumford0 Random
coordinates

Euclidean
distance

Random
uniform value

Do not fit real
scenarios

Mumford1

Mumford2

Mumford3

Nottingham100
Edinburgh200

Randomly picked
bus stops from
UK National
Public Transport
Data Repository

Google
distance
API

Census
Data

Bus stop random
selection can leave
low-density areas
unconnected

NottinghamR Snapped street
junctions. Based
on UK Ordnance
Survey

ArcGIS
function
“Closest
Facility”

Census
Data

Real-life data, but
relatively small w.r.t.
big cities. Reduction is
limited to mix nodes
representing the same
locations and
streets

Mumford instances use random procedures for node placement and demand
behaviour, thus their features hardly fit real scenarios. Nottingham100 and Edin-
burgh200 partially use real-life data to address the scenario fitting issue. How-
ever, the bus-stop random selection procedure tends to pick those located in
high-density areas obviating periphery and low demanded zones. NottinghamR
instance addresses both issues of their predecessors, but it is still small w.r.t. big
cities that include thousands of bus stops and/or locations. The node grouping
technique proposed in [14] is a weak effort for massive cases, i.e., it is unable
to reduce the order of magnitude of the instances. Therefore, a relaxation tech-
nique for intractable and complex scenarios is required to address them with
state-of-the-art solving algorithms.

84 R. D. Urra et al.

3 Relaxing UTRP Instances

In this section, we present our relaxation proposal. We define basic concepts as
the road network and demand matrix. Then, we show how to transform these
elements.

3.1 Basic Definitions

Each UTRP instance includes a road network represented by an undirected
graph, where each node maps to a location, i.e., bus stop, and each link maps
to a road connecting two of them. Note that links use travel times, in minutes,
as weight. Each location represents a bidirectional travelling spot.

Definition 1. Given a node set N = {n1, . . . , nm}, and a link set L =
{(ni, nj) ∈ N2 | connected(ni, nj) ∧ ni �= nj}. Then, a road network R is
an undirected graph R = (N,L) such that each node ni is a location and each
link (ni, nj) ∈ L is a direct connection between locations.

The demand of passengers is represented by a square hollow matrix whose
dimension is equal to the number of nodes. In this matrix, each entry is the
number of passengers that travel from one location to another during a time
frame. This matrix is also symmetric, i.e., the demand of any two locations is
the same regardless of the travel direction.

Definition 2. Given a road network R = (N,L) with node set N =
{n1, . . . , nm}. We define D|N |×|N | as the Demand Matrix. Each entry Dxy ∈ Z

indicates the number of passengers that travel from nx to ny. Note that Dxx = 0.

To formalise this work proposal; which relax the previously presented UTRP
instance components: the Road network and the Demand matrix; some basic
clustering definitions are introduced.

Definition 3. Given a set of locations S, where each element s ∈ S has a
position pos(s). The centroid of the set S is the average position between all
their elements.

CS =
1

|S|
∑

s∈S

pos(s) (1)

Definition 4. Given a location set S. A clustering algorithm α generates a set
of clusters A by including m location subsets.

A =

{
ai

∣∣∣∣∣ ai ⊂ S ∧ ai ∩ aj = ∅ ∀i �= j ∧
⋃

1≤i≤m

ai = S

}
(2)

Thus, each cluster ai ∈ A, i.e., a location set, has its own centroid Cai
. From

here, we use the reduced notation a ∈ A for each cluster; hence, we understand
that |A| = m.

Towards Complex Scenario Instances for the UTRP 85

Definition 5. Similarly, given a location set S, a set of zones Z includes q
location subsets.

Z =

{
zi

∣∣∣∣∣ zi ⊂ S ∧ zi ∩ zj = ∅ ∀i �= j ∧
⋃

1≤i≤q

zi = S

}
(3)

Thus, each zone zi ∈ Z, i.e., a location set, has its own centroid Czi . From
here, we use the reduced notation z ∈ Z for each cluster; hence, we understand
that |Z| = q.

Let us note that the main difference between a cluster (Eq. 2) and a zone
(Eq. 3) is the former is generated by a clustering algorithm, meanwhile, the
latter is part of the original data set by the network designer.

3.2 Relaxed Road Network

The Relaxed Road Network (RRN) is generated by applying the follow-
ing criterion over the original road network: Two centroids of two clusters are
connected, if and only if there are a pair of locations, one from each cluster,
connected on the source road network. A basic RRN is shown in Example 1.

Definition 6. Given a road network R = (N,L) and a set of clusters A gen-
erated by a clustering algorithm α. Then, N̂ is the set of centroids from each
cluster generated by α:

N̂ = {Ca | a ∈ A} (4)

and L̂ is a set of links between connected centroids from N̂ .

L̂ = {(Ca, Ca∗) | ∃(ni, nj) ∈ L ∧ ni ∈ a ∧ nj ∈ a∗} (5)

Thus, let R̂ be a RRN represented by undirected graph such that R̂ = (N̂ , L̂).

Example 1. Let R be a road network with |N | = 16 locations and its set of
connections L, as shown in Fig. 1. A clustering algorithm α groups the locations
in a cluster set A = {a1, a2, a3}. The centroid Ca2 is connected to the others
centroids, as there are connections between at least one of their locations on
the road information. The centroids Ca1 and Ca3 are disconnected because they
have not locations connected between them.

3.3 Relaxed Demand Matrix

The demand information of each relaxed instance is represented by a double-
weighted demand matrix called Relaxed Demand Matrix (RDM). The RDM
maps the original case demand data into the newly generated RRN scenario.

The first step for the RDM generation, is to compute a demand correction
factor for each combination of centroids and zones. This double-weight factor is
composed by a distance-based weight and a location-based weight.

86 R. D. Urra et al.

a2

a1
a3

Fig. 1. RRN construction example. The circles are locations inside clusters and
the squares are the centroids of each cluster. The resulting road network connects the
white centroid (Ca2) with the black (Ca1) and the gray (Ca3) centroids. These links
are generated because there is at least one location directly connected between their
clusters. (Color figure online)

The location-based weight allows to proportionally redistribute the demand
of each zone because its locations might be split between many clusters. Thus,
this factor is set as the proportion of the locations from a zone in a cluster w.r.t.
all locations in that zone.

The distance-based weight corrects the demand contribution of each zone in a
cluster. In each cluster, the centroid appropriately represents each nearby loca-
tion. However, if the distance of a location w.r.t the centroid grows, it becomes
more inaccurate to represent its demand behaviour.

Definition 7. Given a clusters set A and a zones set Z. Let dist(X,Y) and
distmax be the distance between two locations X and Y , and the maximum dis-
tance parameter, respectively. For each cluster a ∈ A, its double-weight factor
w.r.t. a zone z ∈ Z, is defined as the multiplication of both location-based and
distance-based weights.

dw(a, z) = max
{

1 − dist(Ca, Cz)
distmax

, 0
}

︸ ︷︷ ︸
distance-based weight

·
(|a ∩ z|

|z|
)

︸ ︷︷ ︸
location-based weight

(6)

Note that distmax is a parameter set by the network designer (see Sect. 4.3 for
more details).

Therefore, the locations and zones whose demand influence is marginal; i.e., they
are far enough from a cluster centroid; are consequently treated as outliers, as
shown in Example 2.

Example 2. Let R̂ be a RRN and Z = {z1, z2} a zones set, as is shown in Fig. 2.
Let us note that R̂ is composed by a centroid set N̂ = {Ca1 , Ca2} linked to a
cluster set A = {a1, a2}. For the purposes of this example, it is not necessary to
show the connection links of the RRN.

Towards Complex Scenario Instances for the UTRP 87

Fig. 2. Double-weight factor example. Circles represent locations: a1 and a2 ele-
ments are black-coloured and white-coloured, respectively. The grey circle centred on
Ca1 (black square) with radius distmax bounds the demand contribution of those zones
belonging to the cluster. Note that, each zone centroid is represented by a star figure.
(Color figure online)

Note that, each zone contributes a different amount of elements, i.e., demand,
to each cluster centroid. Thus:

1. The demand contribution of zone z1 to the cluster a1 is corrected by a
distance-based weight ∈ [0, 1], because its distance w.r.t centroid Ca1 is lower
than distmax. Meanwhile, the location-based weight equals to |a1∩z1|

|z1| = 6
6 = 1,

because the a1 cluster contains all the locations from the z1 zone. Note that
l1 location is not an outlier, it belongs to a1.

2. The z2 zone does not contribute any demand to the a1 cluster, i.e., the
distance-based weight equals zero, because Cz2 lies outside the boundary
fixed by distmax distance from Ca1 , despite the positive value of its location-
based weight: |a1∩z2|

|z2| = 1
9 . Note that, location l2 is an outlier in the cluster

assignment.
3. The z2 zone contributes a proportioned demand to the cluster a2, because

|a2∩z2|
|z2 = 8

9 < 1. For sake of simplicity, we obviate the effect from the distance-
based weight.

The original demand data includes the travel information between all pairs
of zones in a time window schedule divided into several time frames. For each
time frame, there are different amounts of travels between zones introducing a
new dimension to the demand matrix. However, UTRP relies on a unique time
frame matrix. Thus, the temporal dimension needs to be reduced to a single
time slot.

Definition 8. Given a zone set Z, a demand time frames set T , and a non-
symmetric demand matrix between zones by times frames F|Z|×|Z|×|T |. Each
matrix element Fxyw is the number of travels between zones zx and zy on time
frame tw. Note that F is a hollow matrix, i.e., Fxxw = 0;∀x.

88 R. D. Urra et al.

For each pair of zones (zx, zy) ∈ Z2, we select the time frame with the maximum
amount of travels.

t′ = arg max
t∈T

(Fxyt) (7)

Thus, the Simplified Demand Zone Matrix E|Z|×|Z| is symmetric and each
element denotes the maximum amount of travels between two zones in all time
frames.

Exy = max{Fxyt′ , Fyxt′} (8)

Once all these elements are defined, we can combine them in order to generate
the RDM.

Definition 9. Given an RRN R̂ composed by a centroid set N̂ = {Ca1 , · · · ,
Cam

} linked to a cluster set A = {a1, · · · , am}, a zone set Z = {z1, · · · , zk} and
a Simplified Demand Zone Matrix E|Z|×|Z|. The Relaxed Demand Matrix

D|A|×|A| contains the amount of travels between any node pair (Cax
, Cay

) ∈ N̂2

Dxy =
∑

zi∈Z

∑

zj∈Z

dw(ax, zi) × dw(ay, zj) × Eij ; ∀(ax, ay) ∈ A2 (9)

4 Experimental Configuration

In this section, we set up this work proposal w.r.t. the selected study case: RED
network, the public transport system from Santiago of Chile. The information
about the RED system is published annually by the DTPM (Directorio de Trans-
porte Público Metropolitano and it includes bus-stop location and zone-grouped
passenger demand data [3].

4.1 Clustering Algorithms

Clustering algorithms are strictly necessary to generate the RRN and RDM. Thus,
the selection of the tested clustering algorithms and their features are summarised
in Table 3. These algorithms are available in the scikit-learn toolkit [12].

The performance difference between the selected clustering algorithms is
analysed through the similarity of their outputs, to observe strong variations
triggered in the relaxation process. Note that, most selected algorithms are
stochastic, then the comparison is made over ten executions of each algorithm.
Two metrics are set for this task: (1) the Adjusted Rand index (ARI) [15] and
(2) the Unique Match index (UMI). In both, if their values are closer to their
maximum implies a bigger similarity.

The adjusted Rand index (ARI) (see Definition 10) measures the similarity
between two clustering algorithms outputs by counting the number of agree-
ments between them including an adjustment establishing random clustering as
a baseline [15]. A numerical example for this metric is presented in Example 4.

Towards Complex Scenario Instances for the UTRP 89

Table 3. Summary of selected clustering algorithms

Algorithm Parameters Description

K-Means Number of
Clusters

It adjusts cluster centroids utilizing iteration,
labelling near elements and then recalculating
their positions

Agglomerative Number of
Clusters

It starts with single element clusters and
successively mix those with the lowest average
distance between their elements

Spectral Number of
Clusters

It performs a low-dimension embedding of the
similarity matrix between elements, to then
cluster the components of the eigenvectors

Gaussian
Mixture

Number of
Clusters

It creates several clusters based on non-spherical
Gaussians distributions to fit the data sample.
Then, each of them is filled with those elements
with the highest probability to be generated
between all clusters

Mean shift Bandwidth It updates a candidate list for centroids, which
could fit as the mean of the elements within a
given region. These candidates are filtered, in a
post-processing stage, to eliminate
near-duplicates

Affinity
Propagation

Damping,
sample
preference

It defines node exemplars by checking the
similarity between each pair of elements. Then, it
iteratively updates the w.r.t. the values from
other pairs. Nodes associated with the same
exemplar are grouped in the same cluster

DBSCAN Neighbourhood
distance
size

It finds core samples of high density, to then
expands clusters from them. It better suites data
with non-homogeneous density distribution

OPTICS Minimum
cluster
membership

It resembles DBSCAN, but it automatically
addresses neighbourhood distance size by means
of a position ordering hierarchy

Definition 10. Given a location set S and two sets of clusters A and B gener-
ated by clustering algorithms α and β, respectively. Let us define the following
concepts:

– Let a be the number of pairs that are classified as belonging to the same cluster
in A and B.

– Let b be the number of pairs that are in different clusters in both A and B.
– Let c be the number of pairs that are in the same cluster in A, but in different

clusters in B.
– Let d be the number of pairs that are in different clusters in A, but in the

same cluster in B.

90 R. D. Urra et al.

Then, the value of the Adjusted Rand Index (ARI) for the cluster sets A
and B is defined as follows.

ARI(A,B) =
2(ab − cd)

(b + c)(c + d) + (b + d)(d + a)
(10)

Note that, a + b is the number of agreements, meanwhile c + d is the number
of disagreements. Thus, ARI outputs values in the [−1, 1] range.

Example 3. Let S = {s1, . . . , s6} be a location set. Let us define a few possible
clusters sets:

– A1 = {{s1, s2}, {s3, s4}, {s5, s6}}
– A2 = {{s5, s6}, {s1, s2}, {s3, s4}}
– A3 = {{s4, s5, s6}, {s1, s2}, {s3}}
– A4 = {{s5}, {s1}, {s2, s3, s4, s6}}
– A5 = {{s1, s3}, {s5, s6}, {s2, s4}}

Note that, ARI will output bigger values for a higher number of agreements
between cluster sets. Thus:

1. The value of ARI(A1, A2) = +1.00 because these cluster are a permutation
of the same subsets. Therefore, they are a perfect match whose value is the
maximum.

2. In the A3 set, the s4 location is switched to a different cluster. Thus, the value
decreases (to ARI(A1, A3) = +0.44) as the number of agreements does.

3. Between the sets A4 and A5 there are not many resemblances, thus the ARI
value is near zero (ARI(A4, A5) = −0.06). These cluster sets were randomly
generated for this example.

The Unique Match Index (UMI) (Definition 11) is the proportion of unique
matches of a centroid set w.r.t. another centroid set. A unique match occurs
when only one centroid of the second set has a centroid of the first set as the
nearest. An example of this metric can be seen in Example 4.

Definition 11. Given two cluster sets A = {a1, . . . , an} and B = {b1, . . . , bn}
with centroid sets CA = {ca1 , . . . , can

} and CB = {cb1 , . . . , cbn}, respectively. Let
dist(x, y) be a distance function between locations/centroids x and y.

Let us also define the M(c, CB) ⊂ CB as a centroid subset whose elements
have to c ∈ CA as the closest matching centroid. Thus, |M(c, CB)| is the number
of matches of c in CB.

M(c, CB) =
{

z
∣∣∣ z ∈ CB , dist(z, c) < dist(z, c′) ∀c′ ∈ CA, c′ �= c

}
(11)

Then, the Unique Match Index between centroid sets CA and CB is defined
as the proportion of centroids in CA with a single match in CB:

Towards Complex Scenario Instances for the UTRP 91

UMI(CA, CB) =

∣∣∣
{

c
∣∣∣ c ∈ CA, |M(c, CB)| = 1

}∣∣∣
n

(12)

Note that, UMI outputs values in the [0, 1] range.

Example 4. Given two cluster sets A = {a1, a2, a3, a4} and B = {b1, b2, b3, b4}
with 4 clusters each one, and their centroid sets CA = {ca1 , ca2 , ca3 , ca4} and
CB = {cb1 , cb2 , cb3 , cb4}, respectively. As shown in the Fig. 3, two different sce-
narios are analysed.

– The Fig. 3a states a full match between centroid sets. Here, each centroid has a
unique match in both sets given by the small differences between both cluster-
ing outputs. Thus, the RRN produced by our technique will be very similar.

– The opposite scenario is shown in Fig. 3b. Thus, centroids Ca2 and Ca4 move
away from their previous matches and they approach other centroids in CB

which already had a match. Here, the UMI value is not symmetric and can
be equal to zero. This, our technique is likely to produce a different RRN for
each centroid set.

Ca1

Ca4

Ca3

Ca2

Cb1

Cb4Cb3

Cb2

UMI(CA, CB) = 4/4 = +1.00

UMI(CB , CA) = 4/4 = +1.00

(a) Full match.

Ca1

Ca4

Ca3

Ca2

Cb1

Cb4Cb3

Cb2

UMI(CA, CB) = 2/4 = +0.50

UMI(CB , CA) = 0/4 = +0.00

(b) Partial match.

Fig. 3. UMI example. A and B centroids are black-coloured and white-coloured
squares, respectively. The arrows point to the closest centroid from the other set. Note
that, the centroids pointed by a single arrow have a unique match and, consequently,
increase the UMI value.

4.2 Relaxed Road Network

RED network information includes the position of 11.320 bus stops and 803
passenger zones. Each bus stop position is mapped to a geographical coordinate
pair, i.e., latitude and longitude. All bus stops are spread in pairs to address
bidirectional traffic. Regrettably, RED data does not include the required link
set between locations. Before the RRN is generated, RED data is pre-processed
as follows:

92 R. D. Urra et al.

1. Each bus stop position is mapped to a 3D Euclidean coordinate by assuming
the Earth as a sphere whose radius equals 6371 km. Thus, the Euclidean
distance can be set between any two locations in the network.

2. Each bus stop pair must be unified to fulfil the bidirectional bus stop feature
of the UTRP. The Agglomerative Clustering algorithm [9] is used to link
clusters within a distance of 200 meters. Each generated centroid is, therefore,
a unique bus stop that covers a wider area. This procedure reduces the number
of locations by 62.3%, i.e., from 11.320 to 4.260 nodes.

3. The road network is set through the k-neighbours algorithm [9], by using
k = 7 as the main parameter value. In this step, a fully connected network is
generated, including no links through invalid extensions of terrain, e.g., hills,
big parks, airports, etc. However, some links skip small urban features, e.g.,
bridges, that could not have a near road. Thus, there is no proper way to
avoid these details without using geographical data.

In order to generate several relaxations, different versions of the RRN are
created. In this way, for each selected clustering algorithm, three different RRN
sizes were defined: 35, 90, and 135 clusters.

4.3 Relaxed Demand Matrix

The DTPM publishes the passenger demand information as matrices which
include the average number of travels between each pair from the 803 prede-
fined zones. The average calculation is done through five working days and it is
presented as a schedule of 24 h divided into 48 time frames of half an hour each.
These matrices were generated by tracing user behaviour through smart-card
databases and GPS information from buses [3]. Thus, the unique parameter to
be set, in order to perform the procedures described in Sect. 3.3, is the distmax

value. This parameter is set as the average distance between all connected cen-
troids on the RRN:

distmax = dist =
1

|L̂|
∑

(Ci,Cj)∈L̂

dist(Ci, Cj) (13)

All experiments of this work are implemented on Jupyter Notebook running
Python 3.8.1 as the kernel. Tests are executed in a workstation with an AMD
FX-8350 4.0 GHz CPU, 16 GB RAM and Windows 10 Pro 64-bit OS.

5 Experimental Highlights

In this section, we discuss the most relevant results obtained by applying the
discussed proposal in the selected study case.

Towards Complex Scenario Instances for the UTRP 93

5.1 Clustering Algorithm Recomendation

From the clustering algorithm set proposed in Sect. 4.1, we recommend the use of
the following: K-Means, Agglomerative, Spectral and Gaussian Mixture. They
can easily fit the desired relaxed scenario and they generate fully connected
networks given its main parameter: Number of Clusters. Dismissed algorithms
are less versatile. Mean Shift and Affinity Propagation algorithms are discarded
because their hyper-parameters must be carefully tuned to generate valid or
different scenarios. In addition, DBSCAN and OPTICS are dismissed because
they cannot handle the homogeneous distribution of bus stops after their noise-
reduction procedure which isolates or overlook most peripheral areas.

In Fig. 4, an example of these behaviours is shown. While Agglomerative clus-
tering generates a well-fitted RRN with 135 nodes, Affinity propagation needs
a fine hyper-parameter tuning setting to generate a 61 node relaxation. Note
that, the latter algorithm cannot generate instances with less or more density of
nodes. Moreover, DBSCAN generates clusters with huge size differences, which
may be not connected. This behaviour is more noticeable in peripheral zones
due to this algorithm noise-reduction procedure. Through this recommendation,
and the number of nodes for the relaxation given in Sect. 4.2, twelve new UTRP
instances are generated.

5.2 UTRP Relaxing Scenarios

Each recommended algorithm could correctly perform and fit each selected relax-
ation scenario. As Fig. 5 shows, while bigger the number of clusters, the better
the approximation to the original scenario. Let us note, the more complex relax-
ation (Fig. 5c) has one and two orders of magnitude less than the mixed location
(Fig. 5d) and the original RED instance, respectively,

The fitting behaviour mentioned above is noticeable in peripheral zones,
big urban structures and geographical features, e.g., airports, fields, hills, etc.
Figure 6 shows how the urban elements are better detected with a bigger

(a) K-Means
135 nodes.

(b) Affinity Prop.
61 nodes.

(c) DBSCAN
180 nodes.

Fig. 4. Comparison of RRN generated by different clustering algorithms.

94 R. D. Urra et al.

(a) 35 clusters (b) 90 clusters (c) 135 clusters (d) Mixed locations

Fig. 5. RED instance relaxation by means of Gaussian Mixture. (Color figure oline)

cluster amount. Once again, note that the proposed relaxation is dramatically
less complex than the original scenario.

(a) 35 clusters. (b) 90 clusters. (c) 135 clusters. (d) RED bus stops.

Fig. 6. Comparison between original RED scenario and its relaxation by means of
Agglomerative clustering.

5.3 Similarity Between Clustering Algorithms

The features of instances previously discussed are consistent between the recom-
mended algorithms. In Table 4, the values of the similarity metrics discussed in
Sect. 4.1 are shown.

The average of both metrics is in the highest quartile of their respective
ranges for each compared pair. The standard deviation also points to low data
dispersal. Therefore, outputs are not identical, but quite similar, i.e., each RRN
shares a similar configuration of clusters and centroids.

These similarities hold for all relaxation scenarios discussed and, even, in their
complexity metrics (see Sect. 2). As shown in Table 5, the complexity metrics
values of the generated UTRP instances are quite similar for each relaxation
scenario.

As expected, most of the metrics change their value proportionally w.r.t. an
increasing number of nodes. However, the LBATT metric value is almost constant
between different levels of relaxation. This behaviour relies on the relaxation
proposal which does a proper distribution of the demand for different RRN
configurations.

Towards Complex Scenario Instances for the UTRP 95

Table 4. Average (top) and Standard deviation (bottom) of the similarity metrics
applied between recommended algorithms for the 90 cluster relaxation.

ARI Kmn Agg Spc Gau

Kmn
0.633 0.547 0.554 0.615

0.022 0.012 0.013 0.025

Agg
0.547 1.000 0.530 0.546

0.012 0.000 0.006 0.019

Spc
0.554 0.530 0.854 0.559

0.013 0.006 0.023 0.020

Gau
0.615 0.546 0.559 0.604

0.025 0.019 0.020 0.032

UMI Kmn Agg Spc Gau

Kmn
0.823 0.811 0.766 0.817

0.026 0.033 0.029 0.037

Agg
0.822 1.000 0.783 0.816

0.026 0.000 0.028 0.032

Spc
0.764 0.746 0.924 0.767

0.026 0.028 0.024 0.034

Gau
0.817 0.817 0.770 0.801

0.032 0.023 0.037 0.039

Table 5. Summary of complexity metrics for the generated UTRP relaxed instances.
The bus average speed used to set LBATT equals 19.31 km/h [2].

Crit. |N |
35 90 135

|L| dist LBATT MST |L| dist LBATT MST |L| dist LBATT MST

Min 64 4745 35.70 426 187 2988 35.85 689 293 2430 35.87 814

Max 72 5389 36.11 475 197 3174 36.30 712 308 2518 37.16 844

Average 69 4946 35.89 444 193 3053 36.13 698 301 2461 36.24 828

Std Dev. 3.6 297.5 0.206 21.7 4.32 82.5 0.198 9.95 6.18 39.22 0.62 12.4

5.4 Demand Distribution

As previously stated, a critical feature of the relaxation procedure is to pre-
serve the demand distribution, in order to generate a good approximation of the
original scenario and to explain the similarities between recommended cluster
algorithms. As Fig. 7 shows, the relaxed scenarios follow a very similar demand

(a) 35 clusters (b) 90 clusters (c) 135 clusters (d) RED zones

Fig. 7. Comparison of the demand distribution between generated instances using
Spectral Clustering and the RED original data. Link colour is the flow of passengers
travelling on the shortest route to their destination. (Color figure oline)

96 R. D. Urra et al.

distribution w.r.t. the original scenario. Let us also note, the better resemblance
of the demand distribution, while the number of clusters is bigger.

6 Conclusions and Perspectives

In this work, a clustering-based technique to relax high complexity UTRP
instances is defined. This procedure reduces the size of the Santiago RED system
instance, a well-known complex scenario, up to two orders of magnitude. The
proposal also offers a high-quality approximation of the travel demand distribu-
tion and the road network features. Several clustering algorithms have also been
tested, four of which are recommended because they allow inputting the number
of clusters. Dismissed algorithms did not fit well to the study case: they discard
peripheral locations as noise, they cannot classify homogeneous data and/or they
need careful hyper-parameter tuning. The recommended algorithms also uphold
the study case properties after the relaxation process by presenting similar out-
put and performance, even when they are quite different from each other.

From this point onwards, several research paths are available such as mapping
the solution of a relaxed instance back to the original scenario, revisiting RRN
building by using a georeferencing system for better approximation, and testing
algorithms relying on a hyper-parameter tuning procedure.

Acknowledgments. The work of Roberto Dı́az-Urra was supported by the Chilean
government: CONICYT-PCHA/MagisterNacional/2013-21130089.

References

1. Ceder, A., Wilson, N.H.: Bus network design. Transp. Res. Part B Methodol. 20(4),
331–344 (1986)

2. Directorio de Transporte Público Metropolitano: Informe de gestión 2017 (2017).
http://www.dtpm.gob.cl/index.php/documentos/informes-de-gestion. Accessed
22 June 2020

3. Directorio de Transporte Público Metropolitano: Matrices de viaje 2017 (2017).
http://www.dtpm.gob.cl/index.php/documentos/matrices-de-viaje. Accessed 22
June 2020

4. Ibarra-Rojas, O.J., Delgado, F., Giesen, R., Muñoz, J.C.: Planning, operation, and
control of bus transport systems: a literature review. Transp. Res. Part B Methodol.
77, 38–75 (2015)

5. John, M.P.: Metaheuristics for designing efficient routes and schedules for urban
transportation networks. Ph.D. thesis, Cardiff University (2016)

6. Lee, R.J., Sener, I.N.: Transportation planning and quality of life: where do they
intersect? Transp. Policy 48, 146–155 (2016)

7. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: models
and algorithms. Transp. Sci. 18(1), 1–55 (1984)

8. Mandl, C.: Applied network optimization (1980)
9. Manning, C.D., Schütze, H., Raghavan, P.: Introduction to Information Retrieval.

Cambridge University Press, Cambridge (2008)

http://www.dtpm.gob.cl/index.php/documentos/informes-de-gestion
http://www.dtpm.gob.cl/index.php/documentos/matrices-de-viaje

Towards Complex Scenario Instances for the UTRP 97

10. Mumford, C.L.: New heuristic and evolutionary operators for the multi-objective
urban transit routing problem. In: 2013 IEEE Congress on Evolutionary Compu-
tation, pp. 939–946 (2013)

11. Muñoz, J.C., Batarce, M., Hidalgo, D.: Transantiago, five years after its launch.
Res. Transp. Econ. 48, 184–193 (2014)

12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

13. Red Metropolitana de Movilidad: Información del Sistema | Red Metropolitana
de Movilidad (2020). http://www.red.cl/acerca-de-red/informacion-del-sistema.
Accessed 22 June 2020

14. Heyken Soares, P., Mumford, C.L., Amponsah, K., Mao, Y.: An adaptive scaled
network for public transport route optimisation. Public Transp. 11(2), 379–412
(2019). https://doi.org/10.1007/s12469-019-00208-x

15. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (2010)

http://www.red.cl/acerca-de-red/informacion-del-sistema
https://doi.org/10.1007/s12469-019-00208-x

Spirometry-Based Airways Disease
Simulation and Recognition Using
Machine Learning Approaches

Riccardo Di Dio1,2(B), André Galligo1,2, Angelos Mantzaflaris1,2,
and Benjamin Mauroy2

1 Université Côte d’Azur, Inria, Nice, France
riccardo.di dio@univ-cotedazur.fr

2 Université Côte d’Azur, CNRS, LJAD, VADER Center, Nice, France

Abstract. The purpose of this study is to provide means to physicians
for automated and fast recognition of airways diseases. In this work, we
mainly focus on measures that can be easily recorded using a spirome-
ter. The signals used in this framework are simulated using the linear bi-
compartment model of the lungs. This allows us to simulate ventilation
under the hypothesis of ventilation at rest (tidal breathing). By changing
the resistive and elastic parameters, data samples are realized simulating
healthy, fibrosis and asthma breathing. On this synthetic data, different
machine learning models are tested and their performance is assessed. All
but the Naive bias classifier show accuracy of at least 99%. This represents
a proof of concept that Machine Learning can accurately differentiate dis-
eases based on manufactured spirometry data. This paves the way for fur-
ther developments on the topic, notably testing the model on real data.

Keywords: Lung disease · Machine Learning · Mathematical modeling

1 Introduction

Having a fast and reliable diagnosis is a key step for starting the right treat-
ment on time; towards this goal, Machine Learning (ML) techniques constitute
potential tools for providing more information to physicians in multiple areas
of medicine. More specifically, as far as respiratory medicine is concerned, there
is a recent blooming of publications regarding the investigations of Artificial
Intelligence (AI), yet the majority of them refers to computer vision on thoracic
X-Rays or MRI [9]. However, for lung diseases using Pulmonary Function Tests
(PFTs) recent studies have only scratched the surface of their full potential, by
coupling spirometry data with CT scans for investigating Chronic Obstructive
Polmunary Diseases COPD on large datasets like COPDGene [3]. In our study,
only normal ventilation is used allowing diagnosis also for children. Our aim is to
provide a first proof-of-concept and provide the first positive results that could
lead to fast, accurate and automated diagnosis of these diseases, similarly e.g.
to Cystic Fibrosis (CF) where Sweat chloride test is a central asset [8].
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 98–112, 2021.
https://doi.org/10.1007/978-3-030-92121-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_8

Tidal Breathing Disease Simulation and Recognition Using ML 99

Normally, ML models are trained and tested on data and labels are provided
by medical doctors. However, the originality of this study consists in using math-
ematical equations to simulate the ventilation following the directives of IEEE
[2], then this data will be used to train the ML models. The obtained volume
flows respect the expectations for both healthy and not healthy subjects. Using
a synthetic model with a low number of parameters allows us to have everything
under control.

During this study, the lungs are modeled as elastic balloons sealed in the
chest wall and the airways are modeled as rigid pipes, this allows to play with few
parameters to simulate healthy and not healthy subjects and create synthetic
volumetric data of tidal breathing. This data is then split and used to train
and test different ML models for diagnosis. The accuracies reached during the
study are very high, however, the choice of the parameters and the restriction of
synthetic data allowed for promising results. Further tests are needed with real
data to validate the accuracy reached. Nevertheless, this study points out that
not every classifier is suited for this task.

A brief introduction to human lungs and its physiology is given in 1.1, then
Sect. 1.2 shows how ventilation has been modeled. In Sect. 2.1 is shown how the
dataset has been realized, Sect. 2.3 reflects the training of the models on the
dataset and finally in Sect. 3 and 4 the results are exposed and discussed.

1.1 Lung Ventilation

The respiratory system can be split in two different areas, the bronchial tree
(also referred as conducting zone) and the acini, the respiratory zone. The very
beginning of the bronchial tree is composed of the trachea which is directly
connected to the larynx, the mouth and the nose. The trachea can be seen as
the root of our tree, which then ramifies into two bronchi that will split again
and again until about 23 divisions [21]. During each division, the dimensions of
the children are smaller compared to the parent, according to Weibel’s model,
the reduction factor between each split is around 0.79 [7,12–14]. After the very
first ramification, the two bronchi leads to the left and the right lung. Inside the
lungs, the ventilation takes place. The lungs are inflated and deflated thanks to
the respiratory muscles. Their role is to transport the air deep enough in the
lung so that the gas exchanges between air and blood could occur efficiently.

Some diseases affect the physiological behavior of the bronchial tree and of
the lungs. In asthma, a general shrinking of the bronchi happens and the patient
feels a lack of breath due to the increased total resistance of the bronchial tree.
In mechanical terms, the patient will need a greater muscular effort in order to
provide adequate pressure for restoring a normal flow within the lungs.

In cystic fibrosis, there is an accumulation of mucus within the bronchial
tree that will impact the capacity of the lungs to inflate and deflate, hence its
rigidity. Normally, it is harder to breath for patients with cystic fibrosis because
of the increased rigidity of their lungs.

The lungs mechanical properties can be used to build a mathematical model
that can mimic the respiratory system.

100 R. Di Dio et al.

1.2 Mathematical Modeling

The more tractable model to mimic the lung mechanics and ventilation is to
mimic separately its resistive and elastic parts. We represent the resistive tree
using a rigid tube with given length l and radius r. The resistance R of such a
tube can be calculated by using Poiseuille’s law that depends on the air viscosity
μair [11].

R =
8μairl

πr4
(1)

The elastic part of the lung can be mimicked with an elastic balloon with elas-
tance property E. Figure 1a is a representation of such a model. However, for
this study, the model used is slightly more sophisticated to get a better repre-
sentation of the distribution of the ventilation, see Fig. 1b. The profile of the
pressure used to mimic the muscular action is taken from L. Hao et al. [2] and
represents a standard for tidal breathing. It is necessary to highlight that the
hypotheses of linearity used in this model are respected in the regime of tidal
breathing [18].

(a) Mono-compartment model (b) Bi-compartment model

Fig. 1. (a) Mono-compartment model of the lung. The Bronchial tree is collapsed
in the tube having the total resistance R and the alveoli are mimicked by balloons
characterized by their elastance E. (b) Parallel bi-compartment model. This model
better respects the anatomy of the respiratory system.

The fundamental equation that links the resistance R and the elastance E
to the Pressure P , Volume V and its derivative in time V̇ can be easily derived
from the Mono-compartment model:

Pext − Palv = ΔP (t) = RV̇ (t) (2)

Tidal Breathing Disease Simulation and Recognition Using ML 101

Palv − Ppl = Pel(t) = EV (t) (3)

Pel represents the pressure drop between the acini and the pleural space, this
depends on the elastance of the compartment. ΔP is the air pressure drop
between the airways opening and the acini and it takes into account the resis-
tance of the airways and the parenchyma. The total pressure drop of the model
is the sum of the two contributions:

P (t) = Pel + ΔP (t) (4)

This equation holds true regardless of whether P (t) is applied at airways’ opening
or at the outside of the elastic compartment [18].

In the parallel model, Fig. 1b, there are two governing equations, one for each
compartment, respectively of volume V1 and V2:

{
P (t) = E1V1(t) + (R1 + Rt)V̇1(t) + RtV̇2(t)
P (t) = E2V2(t) + (R2 + Rt)V̇2(t) + RtV̇1(t)

(5)

where R1 and R2 refers to the resistances of each bronchi, Rt is the resistance
of the trachea and E1 and E2 are the elastances of the left and right lung,
respectively, see Fig. 1b. These are the parameters of the model. V1(t) and V2(t)
are the volumes associated to each lung and P (t) is the muscular pressure that
drives the lung ventilation.

Let us take the derivative of each equation:
{

Ṗ (t) = E1V̇1(t) + (R1 + Rt)V̈1(t) + RtV̈2(t)
Ṗ (t) = E2V̇2(t) + (R2 + Rt)V̈2(t) + RtV̈1(t)

(6)

We substitute V̈2 from Eq. (6)a into Eq. (6)b and replace V̇2 with its expression
derived in Eq. (5)a. The equation for compartment 1 alone is:

R2Ṗ (t) + E2P (t) =
[
R1R2 + Rt(R1 + R2)

]
V̈1(t)

+
[
(R2 + Rt)E1 + (R1 + Rt)E2

]
V̇1(t) + E1E2V1(t)

(7)

Because the model is symmetric, the equation for compartment 2 is the same as
(7) with inverted indexes 1 and 2. Then remembering that V (t) = V1(t) + V2(t)
the referral equation for the bi-compartment parallel model is:

(R1 + R2)Ṗ (t) + (E1 + E2)P (t) =
[
R1R2 + Rt(R1 + R2)

]
V̈ (t)

+
[
(R2 + Rt)E1 + (R1 + Rt)E2

]
V̇ (t)

+ E1E2V (t)

(8)

102 R. Di Dio et al.

2 Methods

2.1 Creation of the Dataset

It is possible to mimic the behavior of healthy subjects by setting physiological
values of Req = Rt + R1R2

R1+R2
and Eeq = E1E2

E1+E2
. In the literature, they are set to:

Req = 3 cmH2O/L/s and Eeq = 10 cmH2O/L [2]. In this work, we mimic cystic
fibrosis by doubling the healthy elastance (doubling the rigidity of the balloons):
Eeq = 20 cmH2O/L, and asthmatic subjects by setting Req = 5 cmH2O/L/s. It
is possible to follow the characteristic approach of electrical analysis [1] in which
complex differential equations are studied in the frequency domain through the
Laplace transform. The Laplace transform of Eq. (8) is:

H(s) =
s(R1 + R2) + (E1 + E2)

s2
[
R1R2 + Rt(R1 + R2)

]
+ s

[
(R2 + Rt)E1 + (R1 + Rt)E2

]
+ E1E2

(9)
Figure 2a shows the module and phase of the transfer function of the system in
the cases of healthy, fibrosis and asthma, while Fig. 2b shows the responses of
each system to physiological P (t).

(a) Transfer Function (b) System Response

Fig. 2. (a) Three different transfer functions, in the subplot above there is the module
of the transfer function: |H(ω)| and below the phase: φ(ω). Increasing the rigidity
affects the response of the system at lower frequencies whereas increasing the total
resistance affects higher frequencies. Tidal breathing happens at around 0.25 Hz being
in the middle of the cutting frequence of H(ω). Consequently the output of the Volume
changes. Figure (b) represents the output of the system (Volumetric signal) for one
sample for each class.

Gaussian noise with mean μ = 0 and standard deviation σ = 0.5 for the Req

parameter and σ = 5 for the Eeq parameter, is added to Req and Eeq to mimic
physiological diversity among different subjects as showed in Fig. 3a, there are
1000 samples for each class.

Tidal Breathing Disease Simulation and Recognition Using ML 103

(a) Parameter distribution (b) Tidal breathing simulation.

Fig. 3. (a) Synthetic data distribution, the three different clusters are well visible in
this space. (b) Mean and Std features taken from volumetric signals of tidal breathing.
These signals are the output of the model as explained in Eq. (8)

2.2 Training Machine Learning Algorithms

Before talking about the training, a short summary for each classifier used is
reported. The implementation has been done using Python and the open-source
library scikit-learn.

Naive Bayes. Naive Bayes classifier is a classifier that naively apply the Bayes
theorem. A classifier is a function f that take an example xxx = (x1, x2, ..., xn)
where xi is the ith feature and transform it in a class y. According to Bayes
theorem the probability P of an example xxx being class y is:

P (y | xxx) =
P (xxx | y)P (y)

P (xxx)
(10)

Assuming that all the attributes are independent, the likelihood is:

P (xxx | y) = P (x1, x2, ..., xn | y) =
n∏

i=1

P (xi | y), (11)

hence, rewriting the posterior probability:

P (y | xxx) =
P (y)

∏n
i=1 P (xi | y)
P (xxx)

(12)

because P (xxx) is constant with regards of y, Eq. 12 can be rewritten and used to
define the Naive Bayes (NB) classifier:

104 R. Di Dio et al.

P (y | xxx) ∝ P (y)
n∏

i=1

P (xi | y)

⇓

ŷ = arg max
y

P (y)
n∏

i=1

P (xi | y),

(13)

Albeit the hypothesis of independence among attributes is never respected
in real world, this classifier still has very good performance. Indeed, it has been
observed that its classification accuracy is not determined by the dependencies
but rather by the distribution of dependencies among all attributes over classes
[6,22].

Logistic Regression. Despite its name, this is actually a classification algo-
rithm. This is a linear classifier used normally for binary classification even
though it can be extended to multiclass through different techniques like OvR
(One versus Rest) or multinomial [19]. In our work, the newton-cg solver has
been used together with multinomial multiclass. In this configuration, the �2
regularization is used and the solver learns a true multinomial logistic regression
model using the cross-entropy loss function [15]. Using these settings allows the
estimated probabilities to be better calibrated than the default “one-vs-rest”
setting, as suggested in the official documentation of scikit-learn [16].

When multinomial multiclass is used, the posterior probabilities are given by
a softmax transformation of linear functions of the feature variables [15]:

P (yk|xxx) =
ewwwT

k xxx∑
j ewT

j xxx
(14)

where www ∈ R
n is the vector of trainable weights, xxx is the feature vector and y is

the class label. Using 1-of-K encoding scheme, it is possible to define a matrix TTT
composed by n rows (being N the total number of features for each class) and k
columns (being K the total number of classes) [15]. In our case N = 2 and K = 3.
Each vector tntntn will have one in the position of its class and zeros all over the rest.
In this scenario, the cross-entropy loss function to minimize for the multinomial
classification regularized with �2 is:

min
www

(1
2
wwwTwww −

N∑
n=1

K∑
k=1

tnk ln(ŷnk)
)

(15)

being ŷnk = P (yk|xnxnxn).

Perceptron. For linear separable datasets, Perceptron can achieve perfect per-
formances because it guarantees to find a solution, hence the learning rate η is
not essential and by default is set to 1.0 in scikit-learn. In our implementation,

Tidal Breathing Disease Simulation and Recognition Using ML 105

the loss function is the number of mislabelled samples and it is not regularized.
The weights of the model are updated on mistakes as follows:

wj+1 = wj + η
(
y(i) − ŷ(i)

)
x
(i)
j (16)

where i is the sample, j is the feature, y is the target and ŷ its respective pre-
diction [19]. The weights are updated with Stochastic Gradient Descent (SGD)
optimizer, meaning that the gradient of the loss is estimated for each sample at
a time and the model is updated along the way [17].

Support-Vector Machines. This is one of the most robust supervised ML
algorithms, it is used for both regression and classification problems and it can
be used in a non-linear fashion thanks to kernel tricks [10]. In SVMs, we used
the Radial Basis Function (rbf) kernel:

K(X,X ′) = eγ||X−X′||2 (17)

When implementing this function, there are 2 parameters required:

– γ, which is the term in the expression of the rbf and it is the coefficient of
multiplication for the euclidean distance.

– C, which is the error Cost, this is not directly related to the kernel function,
instead it is the penalty associated with misclassified instances.

Setting these parameters together is important for achieving good results. In our
case, a vast selection of pairs reports similar results, as shown in Fig. 4.

Fig. 4. Heat map for setting the best pair of γ and C in rbf kernel function for SVMs,
brightest colors correspond to highest validation accuracy.

106 R. Di Dio et al.

Random Forest. Random Forest (RF) is an ensemble of decision tree estima-
tors in which each estimator classifier has been used with 100 trees and Gini
impurity as criterion. The class prediction is performed by averaging the proba-
bilistic prediction of each estimator instead of using the voting system as imple-
mented in its original publication [4]. Random Forests follows the exhaustive
search approach for the construction of each tree, where the main steps are
listed in Algorithm 1 [5].

Algorithm 1. Pseudocode for tree construction - Exhaustive search
1: Start at the root node
2: for each X do
3: Find the set S that minimizes the sum of the node impurities

in the two child nodes and choose the split S∗ ∈ X∗ that gives the
minimum overall X and S

4: if Stopping criterion is reached then
5: Exit
6: else
7: Apply step 2 to each child node in turn

2.3 Training

Once the dataset is ready, simulations are performed and significant statistical
features are extracted from the signals (examples of output signals of the system
are shown in Fig. 2b). Here, for facilitating the graphical representation, two fea-
tures are extracted: mean and standard deviation. These features have enough
information to correctly differentiate among the three classes. Before training
each of the previous models, standard scaling has been fit on the training set
and applied on both training and test sets. The dataset has been split randomly
by keeping the size of the training set at 80% of the total dataset. Hence per-
formances have been evaluated on 800 samples after having checked the correct
balance among the classes. The classifiers previously reported have been trained
and tested and their relative decision plots can be seen in Fig. 7.

3 Results

3.1 Lung Model

The parallel model used is a good representation of the lung when detailed
geometrical characteristics are not important to model. Working with this model
allows to control the resistance and elastance of the respiratory system, allowing
the simulation of certain diseases. However, it is important to ensure that the
results given by our model are coherent with reality. Because of this, the output
signals of volumes and flows have been observed and visually compared with real

Tidal Breathing Disease Simulation and Recognition Using ML 107

signals, see Fig. 2b. The flow Φ has been calculated as Φ(t) = ∂V (t)/∂t. Pressure-
Volume plots and Flow-Volume plots have been evaluated for each class, see
Fig. 5. In typical Pressure-Volume plots a decreasing of compliance is manifested
as a shift on the right of the loop. However the model that we are using is pressure
driven. In a pressure driven model, when the compliance decreases, the pressure
control yields less and less volume for the same pressure level, causing a lowering
of the loop curve. Asthmatic subjects on the other hand are simulated as having
same compliance as healthy subjects but greater resistance, and because of this,
their flow is lower than the others in a pressure driven model as visible in Fig. 5b.

(a) Pressure-Volume loop (b) Flow-Volume loop

Fig. 5. (a) Pressure-Volume loop and (b) Flow-volume loop of synthetic data for
healthy and diseases.

The model performs a transformation (Req, Eeq) ∈ R
2 → S, with S ⊆ R,

which is the signal space, in our case the signal is V (t) ∈ S. By extracting fea-
tures from the signal space, we pass to R

N , where N is the number of features
extracted. Here, we have extracted two features, therefore we have a mapping
R

2 : (Req, Eeq) → R
2 : (μ, σ) where μ and σ are the extracted features, respec-

tively the mean and the standard deviation of the signal. The image of this
mapping is particularly useful to set limits in the prediction of the AI. Indeed,
for measurements that are not contained in the image, and thus inconsistent, it
makes sense to have a separate treatment that will alert when a measurement
must be discarded and replaced by a new one because it is not physiological.
To achieve this, a physiological region has been defined (gray area in Fig. 6a),
the boundary of the rectangle region (the physiological set) is passed to the sys-
tem and the output path is then patched again to form a polygon of acceptable
measurements (gray area in Fig. 6b). Out of this patch of acceptable measure-
ments, the data will not be passed to the AI for prediction and a message of
“wrong acquisition” will be displayed. In Fig. 6, the data distribution is obtained
with standard deviation σ(Req) = 1 cmH2O/L/s and σ(Eeq) = 3.5 cmH2O/L
to allow for a better spreading and overlapping. Moreover, because we want the
elliptic patch of each class to be comprehensive of almost all its possible samples,
we fix the width and the height of the ellipse to be three times the respective
standard deviation.

108 R. Di Dio et al.

(a) (b)

Fig. 6. Data distribution and visual representation of each set in the (Req, Eeq) space
(a) and in the (μ, σ) space (b)

3.2 Machine Learning Results

Fig. 7. Decision regions and accuracy of the implemented classifiers. The regions should
be shortened according to the limitations indicated in Fig. 6b.

Multiple Machine Learning algorithms have been tested against synthetic data
retrievable using spirometers. Their performances are shown in Fig. 7 in terms of
accuracy and decision boundaries. In this section, there are some considerations
regarding the different classifiers used. By looking at the data distribution in
Fig. 3b, we observe that a linear separation will not be perfect but still good.
Multinomial logistic regression and Perceptron have been used and compared
for such a linear separation. Their performances are then compared with other

Tidal Breathing Disease Simulation and Recognition Using ML 109

commonly used non-linear classifiers; the first to be tried has been Naive Bayes
because of its interpretability and ease of use, however its poor performance led
us to try more sophisticated models like SVM with rbf kernel and RF. These
latter classifiers lead to great performance, even if they have local errors close to
the decision region boundaries. Nevertheless, these regions are characterized by
spurious areas located on both bottom corners in the case of SVM (Fig. 7 SVM
subplot) and the right-up region in the case of RF.

– Naive Bayes: It is possible to see how this algorithm is not suited for this
kind of multi-class classification. Indeed, this classifier is usually used for
binary classification (it is used a lot for spam detection). In this particular
dataset, Naive Bayes fails in detecting a border between healthy and asth-
matic subjects and the found boarder is not significant compared with other
classifiers.

– Logistic Regression: This classifier is one of the most used in biomedical
applications, both for its easy comprehension and its great performances when
the classes are linearly separable. In this case, classes are not linearly separa-
ble. Nevertheless, this keeps a good level of generalization without renouncing
to ease of usage, comprehension and good performances.

– Random Forest: RF is probably one of the most powerful classifiers. It is
used also in biomedical applications for its good performances and its resis-
tance to overfitting. It is an ensemble method where multiple decision trees
(DTs) are singularly trained. Finally the average of the predictions of all the
estimators will be used to make the decision of the RF classifier. DTs are
used in medicine because of their clarity in the decision, however with RF
there is a loss of this explainability in the decision, caused by an enhancing
of complexity due to the ensemble.

– Perceptron: This is a linear model as long as only one layer is provided.
It is powerful and performs very well in this particular situation. It can be
useful to increase the deepness of its structure once there are lots of features
and their relationships are not of easy interpretation. Also, in contrast with
logistic regression it can be easily used for non-linearity.

– Support Vector Machine: This model is widely used in a lot of appli-
cations. In this work, the Radial Basic Function kernel has been used. Its
non-linear nature allows to follow better the separation between healthy and
asthma. In this dataset, this is the most performant model to distinguish
these two classes. However, like the Naive Bayes it creates a green area below
the red and blue zone that are incorrect.

In contrast with Deep Learning, ML models are normally faster to train.
Figure 8a shows the differences of training times among the used classifiers. Even
if the timings are very small, it is interesting to see, for instance, how fast the
Perceptron is compared to Random Forest (RF). This is an interesting property
for large datasets. Figure 8b shows the Receiver Operating Characteristic (ROC)
curves and the respective calculated Area Under the Curve (AUC) for each clas-
sifier. ROC curves have been adapted for multiclass using the macro averaging
technique. As expected, SVM and RF outperforms the other classifiers, however,

110 R. Di Dio et al.

using this metric is possible to observe the difference between Logistic Regres-
sion and Perceptron. The origin of this difference is probably on the separation
between asthma and fibrosis as observable in Fig. 7.

(a) (b)

Fig. 8. (a) Different timings of training for each classifiers. Trainings are performed
using the CPU runtime on Colab. (b) Macro averaging of Receiver Operating Charac-
teristic curve for each curve, zoom on the upper left part. RF and SVM are overlapped
and their value is fixed on 1.

It is worth to mention that we carried out supplementary simulations using
data more spread than in Fig. 3a, which resulted in even more overlaps between
the different classes (see Fig. 6). In these cases, the decision regions of each
classifier stay very similar to those shown in Fig. 7 with a resulting lower accuracy
due to the overlapping.

4 Conclusions and Outlook

As a brief recap, in this work the following has been done:
A second order ODE mathematical model of the lung has been used to gener-

ate synthetic data of asthma, cystic fibrosis and healthy subjects. This data has
been used to train Machine Learning models. The models have been evaluated
on different synthetic data sampled from the same distribution of the training
set. A solution has been proposed for non physiological measurements, see Sub-
sect. 3.1. Finally, differences among the classifiers have been studied in terms of
accuracy, ROC curves and training timings.

We elaborated on the potential use of modern ML techniques to diagnose
diseases of the human respiratory system. The direct conclusion of this work is
the ability of ML algorithms to distinguish among linear separable clusters in
the R

2 (Req, Eeq) space, also in the non-linear feature space of f(g(Req, Eeq))
where g : R

2 → S is the parallel lung model and f : S → R
N is the feature

extraction with N being the number of features.
One limitation of our work is the training and testing based entirely on

simulated data and the utilization of the same pressure profile for all the classes.
After the present proof-of-concept, future work will include training on simulated

Tidal Breathing Disease Simulation and Recognition Using ML 111

data and testing on acquired real data. Moreover, the usage of depth camera
will be investigated to extract tidal breathing patterns [20]. Furthermore, the
pressure was assumed to be uniform throughout the lungs and there was no
difference in the application of the pressure among the three considered cases.
This condition is in principle not respected because some patients can increase
their muscle effort in order to keep a satisfactory ventilation. However, it is
possible to assist the patients and train them to follow a specific pattern while
breathing in the spirometer.

To conclude, the different ML models presented are proven in principle reli-
able, therefore they could provide the physicians with real-time help for the
diagnosis decision.

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Curie grant agree-
ment No 847581 and is co-funded by the Région SUD Provence-Alpes-Côte d’Azur and
IDEX UCA JEDI.

References

1. Otis, A.B., et al.: Mechanical factors in distribution of pulmonary ventilation. J.
Appl. Physiol. 8(4), 427–443 (1956)

2. Hao, L., et al.: Dynamic characteristics of a mechanical ventilation system with
spontaneous breathing. IEEE Access 7, 172847–172859 (2019). https://doi.org/10.
1109/ACCESS.2019.2955075

3. Bodduluri, S., et al.: Deep neural network analyses of spirometry for structural
phenotyping of chronic obstructive pulmonary disease. JCI Insight 5(13) (2020).
https://doi.org/10.1172/jci.insight.132781

4. Breiman, L.: Random forests. Technical Report (2001)
5. Di Dio, R.: Analyzing movement patterns to facilitate the titration of medications

in late stage parkinson’s disease. Master’s thesis, Politecnico di Torino (2019)
6. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier

under zero-one loss. Mach. Learn. 29(2), 103–130 (1997). https://doi.org/10.1023/
A:1007413511361

7. Weibel, E.R.: Geometry and dimensions of airways of conductive and transitory
zones. In: Morphometry of the Human Lung, Springer, Berlin (1963)

8. Philip, M., et al.: Diagnosis of cystic fibrosis: consensus guidelines from the cys-
tic fibrosis foundation. J. pediatr. 181, S4–S15 (2017). https://doi.org/10.1016/j.
jpeds.2016.09.064

9. Gonem, S.: Applications of artificial intelligence and machine learning in respira-
tory medicine. Thorax 75(8), 695–701 (2020). https://doi.org/10.1136/thoraxjnl-
2020-214556

10. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann.
Statist. 36(3), 1171–1220 (2008). https://doi.org/10.1214/009053607000000677

https://doi.org/10.1109/ACCESS.2019.2955075
https://doi.org/10.1109/ACCESS.2019.2955075
https://doi.org/10.1172/jci.insight.132781
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1016/j.jpeds.2016.09.064
https://doi.org/10.1016/j.jpeds.2016.09.064
https://doi.org/10.1136/thoraxjnl-2020-214556
https://doi.org/10.1136/thoraxjnl-2020-214556
https://doi.org/10.1214/009053607000000677

112 R. Di Dio et al.

11. Pfitzner, J.: Poiseuille and his law. Anaesthesia 31(2), 273–275 (1976). https://
doi.org/10.1111/j.1365-2044.1976.tb11804.x

12. Horsfield, K., Cumming, G.: Morphology of the bronchial tree in man. J. Appl.
Physiol. 24(3), 373–383 (1968)

13. Mauroy, B., Filoche, M., Weibel, E.R., Sapoval, B.: An Optimal Bronchial tree may
be dangerous. Nature 427(6975), 633–636. https://doi.org/10.1038/nature02287

14. Tawhai, M.H., Hunter, P., Tschirren, J., Reinhardt, J., McLennan, G., Hoffman,
E.A.: Ct-based geometry analysis and finite element models of the human and
ovine bronchial tree. J. Appl. Physiol. 97(6), 2310–2321 (2004)

15. Schulz, H.: Pattern Recognition and Machine Learning (2011)
16. Scikit learn documentation - logistic regression. https://scikit-learn.org/stable/

modules/linear model.html#logistic-regression
17. Scikit learn documentation - perceptron. https://scikit-learn.org/stable/modules/

linear model.html#perceptron
18. Bates, T., Jaspm, H.: Lung Mechanics, an inverse modeling approach. Cambridge

University Press, Cambridge (2009)
19. Raschka, S.: Python Machine Learning. Packt, Maharashtra (2018)
20. Wang, Y., Hu, M., Li, Q., Zhang, X.P., Zhai, G., Yao, N.: Abnormal respiratory

patterns classifier may contribute to large-scale screening of people infected with
COVID-19 in an accurate and unobtrusive manner (2020)

21. Weibel, E.R.: The Pathway for Oxygen. Harvard University Press, Cambridge
(1984)

22. Zhang, H.: The optimality of naive Bayes. In: Technical report (2004). www.aaai.
org

https://doi.org/10.1111/j.1365-2044.1976.tb11804.x
https://doi.org/10.1111/j.1365-2044.1976.tb11804.x
https://doi.org/10.1038/nature02287
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#perceptron
https://scikit-learn.org/stable/modules/linear_model.html#perceptron
www.aaai.org
www.aaai.org

Long-Term Hypertension Risk Prediction
with ML Techniques in ELSA Database

Elias Dritsas(B), Nikos Fazakis, Otilia Kocsis, Nikos Fakotakis,
and Konstantinos Moustakas

Department of Electrical and Computer Engineering, University of Patras,
26504 Rion, Greece

dritsase@ceid.upatras.gr, {fazakis,okocsis,moustakas}@ece.upatras.gr,
fakotaki@upatras.gr

http://www.vvr.ece.upatras.gr/en/

Abstract. Hypertension is a leading risk factor for cardiovascular dis-
eases (CVDs) which in their turn are among the main causes of death
worldwide and public health concern, with heart diseases being the most
prevalent ones. The early prediction is considered one of the most effec-
tive ways for hypertension control. Based on the English Longitudinal
Study of Ageing (ELSA) [2], a large-scale database of ageing partici-
pants, a dataset is engineered to evaluate the long-term hypertension
risk of men and women aged older than 50 years with Machine Learning
(ML). We evaluated a series of ML prediction models concerning AUC,
Sensitivity, Specificity and selected the stacking ensemble as the best
performer. This work aims to identify individuals at risk and facilitate
earlier intervention to prevent the future development of hypertension.

Keywords: Hypertension · Risk prediction · Supervised learning

1 Introduction

Hypertension condition, usually referred to as High Blood Pressure (HBP), is
related to increased blood pressure. It may occur as a primary condition to age-
ing people or as a secondary condition triggered by some other disease usually
occurring in the kidneys, arteries, heart or endocrine system. Isolated systolic
hypertension, an elevation in systolic but not diastolic pressure, is the most
prevalent type of hypertension in those aged 50 or more, occurring either from
the beginning or as a development after a long period of systolic-diastolic hyper-
tension, with or without treatment. The effect of age on blood pressure increase is
mainly related to structural changes in the arteries (e.g., high arteries stiffness).
In many cases, the condition is undiagnosed [25] and, the early identification of

Partially supported by the SmartWork project (GA 826343), EU H2020, SC1-DTH-03-
2018 - Adaptive smart working and living environments supporting active and healthy
ageing.

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 113–120, 2021.
https://doi.org/10.1007/978-3-030-92121-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_9

114 E. Dritsas et al.

hypertension risk is necessary, as it is a primary risk factor for cardiovascular
diseases.

HBP is a multifactorial disease with various risk factors [25]. Individuals with
family history are at increased risk to develop hypertension, too. Moreover, the
blood vessels gradually lose some of their elastic quality with ageing, which can
considerably increase blood pressure. Concerning gender, men are more likely to
suffer from HBP until the age of 64, while women are more likely to get HBP
after the age of 65 and older. The HBP also relates to race, i.e., dark-skinned
people are at higher risk of developing HBP. Besides, sedentary lifestyle increases
the risk of getting high blood pressure [22]. Another crucial factor is nutrition.
An unhealthy diet, especially with high sodium, calories, trans-fat and sugar,
carries an additional risk for HBP [23]. In [27], authors examine the importance
of early life displacement, nutrition and adult-health status in hypertension.

Overweight or obese individuals [21] are also at increased risk of developing
HBP. Moreover, the excessive use of alcohol can dramatically increase blood
pressure, raising the risk of hypertension [31]. Smoking, either active or passive,
can temporarily raise blood pressure and lead to damaged arteries. Another
significant factor concerns stress. In particular, extensive stress may increase
blood pressure [5] due to harmful lifestyle habits such as poor diet, physical
inactivity, and tobacco or alcohol consumption [32]. Septoe et al. [32] assessed
the health behaviours in hypertensive older people in the ELSA database. They
found that hypertensives are less likely to smoke than non-hypertensives, but are
more likely to drink heavily and be sedentary. Finally, other chronic conditions,
such as high cholesterol, diabetes [8,35] and sleep apnea [14] may increase the
risk of developing HBP which is particularly common in the case of people with
resistant hypertension [4].

Machine learning (ML) is a branch of artificial intelligence (AI) that is often
utilized in the literature for screening or risk assessment in the cases of various
chronic health conditions, such as diabetes, hypertension, cardiovascular diseases
etc. In this study, we focus on hypertension disease for which numerous risk
prediction tools have been designed. Moreover, in the relevant literature, ML
techniques are suggested to tackle the limitations of risk score systems which
are validated in different populations or cohorts in works such as [15,29].

The main contributions of this work are: i) the construction of a balanced
dataset that is derived from the ELSA database, ii) a comparative evaluation
of different ML models, and iii) the proposal of a stacking ensemble for the
long-term hypertension risk prediction of older people aged at least 50 years.
Besides, the generated dataset may contribute to the prognosis of hypertension
as we choose to monitor the attributes’ values of individuals who, in reference
waves, have not been diagnosed with hypertension. Finally, these models are
part of the predictive AI tools integrated in the SmartWork system, which aims
to sustain workability of older office workers [17]. Specifically, the workability
modeling will be based on personalized models obtained from integration of the
health condition of specific patient models. Hypertension is one of the chronic
conditions that will be considered in SmartWork. For the workability modeling,

Long-Term Hypertension Risk Prediction with ML Techniques 115

several other elements should be taken into account, as analyzed in [16], however,
they are out of the scope of the current study.

The rest of this paper is organized as follows. Section 2 presents the main
parts of the methods for the long-term risk prediction of hypertension. In par-
ticular, the design of a training and testing dataset, feature selection and the
experiments set up are analyzed. Section 3 concludes the paper.

2 Methods for the Long-Term Risk Prediction

The importance of HBP as a risk factor for cardiovascular disease [4] has driven
the implementation of risk prediction tools, as summarized in Table 1, and several
ML-based approaches for hypertension prediction [9,26].

Table 1. HBP risk scoring systems.

Model Tool Risk factors included

Framingham hypertension risk score
[15]

Age, Gender, BMI, Systolic Blood Pressure
(SBP), Diastolic Blood Pressure (DBP), parental
hypertension, Smoking

A Hypertension Risk Score for
Middle-Aged and Older Adults [18]

Age, SBP or DBP, Smoking, family history of
hypertension, T2DM, BMI, the age–DBP
interaction, Gender, Physical activity

A point-score system for predicting
incident hypertension [3]

Gender, Age, Family history of premature CVDs,
SBP, DBP

Chien et al. [7]: Chinese and Taiwan
HBP clinical risk model

Age, Gender, BMI, SBP and DBP

Lim et al. 2013, [24]: Korean risk
model for incident hypertension

Age, Gender, Smoking, SBP, DBP, parental
hypertension, BMI

Fava et al. 2015, [10]: Swedish risk
model

Age, Gender, heart rate, obesity
(BMI >30Kg/m2), diabetes,
hypertriglyceridemia, prehypertension, family
history of hypertension, sedentary behaviour,
alcohol, marital status, work type, (white collar),
smoking

In this work, we aim to correctly classify each instance in ELSA Database
as either hypertensive or non-hypertensive and achieve high sensitivity and Area
Under Curve (AUC) through supervised ML, meaning that the hypertension
class can be predicted correctly. Note that, the hypertension or non-hypertension
class labels are indicated by the follow-up assessment after 2-years. In the fol-
lowing sections, we are demonstrating the main components of the process.

2.1 Training and Test Dataset

In the ELSA database, a hybrid data collection is conducted, using both ques-
tionnaires (non-invasive way) and clinical tests (invasive way) [20]. Except from

116 E. Dritsas et al.

questionnaires, tests were also performed by clinical nurses, including blood tests,
blood pressure measurements, and other frailty-related tests (e.g., mobility). The
training and test dataset for the hypertension prediction model was derived from
the ELSA database, based on waves 2, 4 and 6 as reference ones, and the corre-
sponding waves 3, 5 and 7 for the follow-up assessment. Note that, participants
that already had HBP at the reference waves were excluded from the engineered
dataset. However, the population distributions were not well aligned with the
reported prevalence of hypertension for the respective age groups. Thus, the
engineered dataset was balanced using random undersampling, in order to be
inline with the European level of the HBP prevalence namely, 27% for people
younger than 44 years, 40% for those in the age group of 45–54, 60% for those
in the age group of 55–64, 78% for those in the age group of 65–74, and over
80% for those older than 75 years [34]. The distributions of participants per age
group in the balanced dataset satisfying similar to the aforementioned criteria,
are shown in Table 2.

Table 2. Distribution per age group of newly diagnosed HBP at 2-years follow-up in
the balanced dataset.

HBP 50–54 55–59 60–64 65–69 70–74 75+ Total

Ref Wave 2 No 58 137 62 56 46 63 422

F-up wave 3 Yes 23 82 37 44 36 49 271

Ref wave 4 No 83 92 123 76 50 55 479

F-up wave 5 Yes 33 55 74 59 39 43 303

Ref wave 6 No 43 53 70 47 55 59 327

F-up wave 7 Yes 17 32 42 37 43 46 217

All waves No 184 282 255 179 151 177 1228

Yes 73 169 153 140 118 138 791

2.2 Feature Selection

The initial features set considered for the training of the ML-based models
included 106 variables, with 61 being categorical and 45 numeric attributes,
among those collected at the reference waves of the ELSA dataset. To avoid
overfitting, we reduce the dataset dimensionality, and thus complexity, consid-
ering only the relevant features to the hypertension class. From the wrapper
feature selection methods, we used the stepwise backward elimination using
Logistic model with Ridge regularization (L2-penalty) [30], namely, Loss =
∑M

i=1(hif ib − log(1 + ef ib)) + λ
∑p

i=1 b2i , where hi is the target binary vari-
able for the (non-)hypertension class. Also, b =

[
b1, b2, . . . , bp

]T are the regres-

sion weights attached to features row vector f i =
[
fi1, fi2, fi3, . . . , fip

]T
, i =

1, 2, . . . ,M (M denotes the dataset size with M � p), and λ ≥ 0 is the regular-
ization parameter that controls the significance of the regularization term.

Long-Term Hypertension Risk Prediction with ML Techniques 117

The final list of features was reduced to 18 attributes, among which the
most important are: age, gender, weight(Kg) and BMI, ethnicity, cholesterol
levels (total, HDL and LDL-mg/dL), work behaviour (sedentary versus non-
sedentary work), drinking and smoking habits, systolic and diastolic blood pres-
sure (mmHg), heart rate (bpm), physical activity, diagnosis of other chronic
conditions (e.g. diabetes, cholesterol), perceived job pressure, and self-assessed
health status.

2.3 Performance Evaluation of ML Models

In this section, the performance of several ML models is evaluated using 3 -cross
validation experimentation setup on the engineered balanced dataset. Logistic
Regression (LR) [28], Näıve Bayes (NB) [19], k -Nearest Neighbors with k = 5
(5NN), Decision Trees (DT), Random Forests (RFs) [6] and a Stacking ensemble
were applied. As base classifiers for the stacking ensemble the Logistic Regression
with Ridge estimator (LRR) and the RFs models were used, while as a meta-
classifier LRR was also applied [12]. Moreover, using the Wald test statistic [13],
we determined the discrimination ability of models based on the ELSA dataset.
All tests indicated the significance of the calculated Areas Under Roc Curve
(AUC), as all p-values were 0 (<0.05).

Table 3. Performance of ML models for hypertension risk prediction.

LR [18] LRR NB 5NN DT RFs Stacking

AUC 0.807
(0.76 0.85)

0.816
(0.77 0.86)

0.758
(0.71 0.81)

0.653
(0.63 0.75)

0.692
(0.63 0.75)

0.798
(0.70 0.85)

0.823
(0.78 0.87)

Sens 0.819
(0.76 0.87)

0.782
(0.72 0.83)

0.702
(0.64 0.76)

0.513
(0.45 0.56)

0.815
(0.76 0.86)

0.689
(0.63 0.75)

0.756
(0.70 0.81)

Spec 0.702
(0.62 0.78)

0.748
(0.67 0.82)

0.710
(0.62 0.79)

0.702
(0.62 0.78)

0.611
(0.52 0.70)

0.794
(0.71 0.86)

0.786
(0.71 0.85)

In Table 3, the first LR method applied on the engineered dataset is based on
[18] and is used as a benchmark comparison model. It utilizes the same features
of this work except for the hypertension family history variable, as it is not
available in ELSA. The second LRR model has considered the features selected
with stepwise backward elimination, as discussed in Sect. 2.2; the same holds true
for the rest of the ML models. Several performance metrics are utilized to assess
the risk prediction performance of previous ML models. AUC, Sensitivity (Sens)
and Specificity (Spec) along with their deviations [33] are considered to assess the
risk prediction performance of previous ML models in hypertension screening.
The results, summarized in Table 3, reveal the heterogeneity in performance
among different ML algorithms in the ELSA dataset. Finally, in the current
dataset, the quantitative analysis of the risk models showed that the predictive
ability of ensemble machine learning with stacking is promising and superior in
terms of AUC against the single ML models.

118 E. Dritsas et al.

3 Conclusions

In conclusion, we employed ML to develop a high precision prediction model
for hypertension prognosis in the elderly using the stacking ensemble method-
ology. In comparison with other works, the main limitation of this work is the
size of the dataset. As ELSA database is on-going, more data on hypertension
condition will be available for experimentation in the future studies. Also, the
direct comparison of the suggested ML-based risk models was also limited by
the lack of some relevant information (such as microalbumin, urine albumin cre-
atinine ratio) or different populations between our dataset and other published
studies [1,20]. However, the current analysis, in combination with diagnostic
tools, may assist clinicians to make personalized lifestyle modifications or treat-
ment decisions to prevent or delay the development of hypertension. As future
work, handling of missing values with techniques such as [11] can be explored
and thus further improve the prediction abilities of the proposed methodology.
Moreover, the semi-supervised learning schemes can also be exploited in order
to take advantage of the vast unlabeled instances available in ELSA and thus
further improving knowledge extraction from the engineered dataset.

References

1. AlKaabi, L.A., Ahmed, L.S., Al Attiyah, M.F., Abdel-Rahman, M.E.: Predicting
hypertension using machine learning: Findings from qatar biobank study. PLoS
One 15(10), e0240370 (2020)

2. Banks, J., et al.: ELSA English Longitudinal Study of Ageing English Longitudinal
Study of Ageing: Waves 0-9, 1998-2019 (2021). https://doi.org/10.5255/UKDA-
SN-5050-22, https://beta.ukdataservice.ac.uk/datacatalogue/doi/?id=5050

3. Bozorgmanesh, M., Hadaegh, F., Mehrabi, Y., Azizi, F.: A point-score system
superior to blood pressure measures alone for predicting incident hypertension:
tehran lipid and glucose study. J. Hypertens. 29(8), 1486–1493 (2011)

4. Carey, R.M., et al.: Resistant hypertension: detection, evaluation, and manage-
ment: a scientific statement from the American heart association. Hypertension
72(5), e53–e90 (2018)

5. Chamik, T., Viswanathan, B., Gedeon, J., Bovet, P.: Associations between psycho-
logical stress and smoking, drinking, obesity, and high blood pressure in an upper
middle-income country in the African region. Stress Health 34(1), 93–101 (2018)

6. Chang, W., et al.: A machine-learning-based prediction method for hypertension
outcomes based on medical data. Diagnostics 9(4), 178 (2019)

7. Chien, K.L., et al.: Prediction models for the risk of new-onset hypertension in
ethnic Chinese in Taiwan. J. Hum. Hypertens. 25(5), 294–303 (2011)

8. De Boer, I.H., et al.: Diabetes and hypertension: a position statement by the Amer-
ican diabetes association. Diabetes Care 40(9), 1273–1284 (2017)

9. Echouffo-Tcheugui, J.B., Batty, G.D., Kivimäki, M., Kengne, A.P.: Risk models to
predict hypertension: a systematic review. PloS one 8(7), e67370 (2013)

10. Fava, C., et al.: A genetic risk score for hypertension associates with the risk of
ischemic stroke in a Swedish case-control study. Eur. J. Hum. Genet. 23(7), 969–
974 (2015)

https://doi.org/10.5255/UKDA-SN-5050-22
https://doi.org/10.5255/UKDA-SN-5050-22
https://beta.ukdataservice.ac.uk/datacatalogue/doi/?id=5050

Long-Term Hypertension Risk Prediction with ML Techniques 119

11. Fazakis, N., Kostopoulos, G., Kotsiantis, S., Mporas, I.: Iterative robust semi-
supervised missing data imputation. IEEE Access 8, 90555–90569 (2020). https://
doi.org/10.1109/ACCESS.2020.2994033

12. Fitriyani, N.L., Syafrudin, M., Alfian, G., Rhee, J.: Development of disease pre-
diction model based on ensemble learning approach for diabetes and hypertension.
IEEE Access 7, 144777–144789 (2019)

13. Goksuluk, D., Korkmaz, S., Zararsiz, G., Karaagaoglu, E.: easyROC: an interactive
web-tool for ROC curve analysis using R language environment. R J. 8, 213–230
(2016). https://doi.org/10.32614/RJ-2016-042

14. Hou, H., et al.: Association of obstructive sleep apnea with hypertension: a sys-
tematic review and meta-analysis. J. Glob. Health 8(1), 010405 (2018)

15. Kivimaki, M., et al.: Validating the Framingham hypertension risk score: results
from the Whitehall ii study. Hypertension 54(3), 496–501 (2009)

16. Kocsis, O., et al.: Conceptual architecture of a multi-dimensional modeling frame-
work for older office workers. In: Proceedings of the 12th ACM International Con-
ference on PErvasive Technologies Related to Assistive Environments, pp. 448–452
(2019)

17. Kocsis, O., et al.: Smartwork: designing a smart age-friendly living and working
environment for office workers. In: Proceedings of the 12th ACM International
Conference on PErvasive Technologies Related to Assistive Environments, pp. 435–
441 (2019)

18. Kshirsagar, A.V., et al.: A hypertension risk score for middle-aged and older adults.
J. Clin. Hypertens. 12(10), 800–808 (2010)

19. Kublanov, V.S., Dolganov, A.Y., Belo, D., Gamboa, H.: Comparison of machine
learning methods for the arterial hypertension diagnostics. Appl. Bionics Biomech.
2017 (2017)

20. LaFreniere, D., Zulkernine, F., Barber, D., Martin, K.: Using machine learning to
predict hypertension from a clinical dataset. In: 2016 IEEE symposium series on
computational intelligence (SSCI), pp. 1–7. IEEE (2016)

21. Landi, F., et al.: Body mass index is strongly associated with hypertension: Results
from the longevity check-up 7+ study. Nutrients 10(12), 1976 (2018)

22. Lee, P.H., Wong, F.K.: The association between time spent in sedentary behaviors
and blood pressure: a systematic review and meta-analysis. Sports Medicine 45(6),
867–880 (2015)

23. Lelong, H., Galan, P., Kesse-Guyot, E., Fezeu, L., Hercberg, S., Blacher, J.: Rela-
tionship between nutrition and blood pressure: a cross-sectional analysis from the
nutrinet-santé study, a french web-based cohort study. Am. J. Hypertens. 28(3),
362–371 (2015)

24. Lim, N.K., Son, K.H., Lee, K.S., Park, H.Y., Cho, M.C.: Predicting the risk of
incident hypertension in a Korean middle-aged population: Korean genome and
epidemiology study. J. Clinic. Hypertens. 15(5), 344–349 (2013)

25. Lionakis, N., Mendrinos, D., Sanidas, E., Favatas, G., Georgopoulou, M.: Hyper-
tension in the elderly. World J. Cardiol. 4(5), 135 (2012)

26. López-Mart́ınez, F., Schwarcz, A., Núñez-Valdez, E.R., Garcia-Diaz, V.: Machine
learning classification analysis for a hypertensive population as a function of several
risk factors. Exp. Syst. Appl. 110, 206–215 (2018)

27. McEniry, M., Samper-Ternent, R., Flórez, C.E., Cano-Gutierrez, C.: Early life
displacement due to armed conflict and violence, early nutrition, and older adult
hypertension, diabetes, and obesity in the middle-income country of Colombia. J.
Aging Health 31(8), 1479–1502 (2019)

https://doi.org/10.1109/ACCESS.2020.2994033
https://doi.org/10.1109/ACCESS.2020.2994033
https://doi.org/10.32614/RJ-2016-042

120 E. Dritsas et al.

28. Nusinovici, S., et al.: Logistic regression was as good as machine learning for pre-
dicting major chronic diseases. J. Clinic. Epidemiol. 122, 56–69 (2020)

29. Otsuka, T., et al.: Development of a risk prediction model for incident hypertension
in a working-age Japanese male population. Hypertens. Res. 38(6), 419–425 (2015)

30. Pereira, J.M., Basto, M., da Silva, A.F.: The logistic lasso and ridge regression in
predicting corporate failure. Proc. Econ. Finance 39, 634–641 (2016)

31. Santana, N.M.T., et al.: Consumption of alcohol and blood pressure: results of the
elsa-brasil study. PLoS One 13(1), e0190239 (2018)

32. Steptoe, A., McMunn, A.: Health behaviour patterns in relation to hypertension:
the english longitudinal study of ageing. J. Hypertens. 27(2), 224–230 (2009)

33. Trevethan, R.: Sensitivity, specificity, and predictive values: foundations, pliabili-
ties, and pitfalls in research and practice. Front. Public Health 5, 307 (2017)

34. Wolf-Maier, K., et al.: Hypertension prevalence and blood pressure levels in 6
European countries, Canada, and the united states. Jama 289(18), 2363–2369
(2003)

35. Zaki, N., Alashwal, H., Ibrahim, S.: Association of hypertension, diabetes, stroke,
cancer, kidney disease, and high-cholesterol with COVID-19 disease severity and
fatality: a systematic review. Diab. Metab. Syndr. Clinic. Res. Rev. 14(5), 1133–
1142 (2020)

An Efficient Heuristic for Passenger Bus
VRP with Preferences and Tradeoffs

Suhendry Effendy, Bao Chau Ngo, and Roland H. C. Yap(B)

National University of Singapore, 13 Computing Drive, Singapore, Singapore
{effendy,ngobc,ryap}@comp.nus.edu.sg

Abstract. One category of vehicle routing problems (VRP) involving
groups of people are School Bus Routing Problems (SBRP). In this
paper, we investigate a form of SBRP where passengers can be dropped
off at a number of possible locations. If the location is not the home
address, they continue on foot. Different drop-off choices allow for differ-
ent set of passengers to be dropped off together which affects the total
vehicle driving distance. There is an inevitable trade-off between two
goals, reducing driving versus walking distance. Unlike typical SBRP,
the set of passengers are not known well in advance and there is little
time to compute a solution, hence, efficiency is more important than
optimality. In this short paper, we propose a model with an efficient
incremental algorithm for such problems. We demonstrate the efficacy
with experiments on real-world datasets with quick solving while bal-
ancing trade-offs.

1 Introduction

Vehicle Routing Problems (VRP) [3] are generally NP-hard problems common in
logistics and transportation. There are a wealth of VRP variants; Kilby and Shaw
[3] highlights many real-world problems that have not been studied in academia.
In this short paper, we are concerned with novel VRPs exemplified by the fol-
lowing example. Consider a transportation problem—a number of employees
are transported home from a depot by buses. The set of passengers vary daily
due to differing shifts or schedules among the employees. Passengers can either
be dropped off at their home address or at some preferred (close-by) stops. If
the passenger is not dropped off at their home, they can walk home from the
stop. Flexibility in choosing stops allows multiple passengers to be dropped off
together at a stop even though they have different home addresses—this has
the advantage of reducing the bus driving distance. Two trade-offs arise: (i) the
fewer the drop-off locations, the shorter the bus travel distance and time; but
(ii) it means some passengers have to walk. The primary goal of the logistics
provider is to reduce costs, i.e. driving distance. Conversely, the goal of individ-
ual passengers would be to reduce any walking distance. These two objectives
naturally conflict. A practical transportation service needs to balance this trade-
off (Challenge #1). Additionally, in our problem, the set of passengers is not

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 121–127, 2021.
https://doi.org/10.1007/978-3-030-92121-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_10

122 S. Effendy et al.

known until a registration cut-off time. To allow for more passengers, the cut-
off and departure times are close in time. This requires the routing algorithm
to be efficient (Challenge#2) with a strict computation time limit, trading
optimality for faster running time. Our problem is a variation of the School Bus
Routing Problem (SBRP) [1,6] but not in a school bus setting. It adds passenger
preferences with a more complex goal requiring balancing opposing objectives
so that both logistics operator and passengers are “happy”.

In this paper, we propose a general form of set cover which maps to our
SBRP problem. This leads to an efficient incremental algorithm to find solu-
tions with different number of stops which in turn allows for a trade-off analysis
between driving distance and individual walking distance. We show our incre-
mental algorithm can be on par with VRP solvers in solution quality while being
considerably faster on real-world datasets. We also show that trade-offs giving a
value proposition for both the service provider and passengers can be efficiently
obtained.

2 Related Work

The School Bus Routing Problem (SBRP) is originally about school bus trans-
port for students where multiple students can be assigned to bus stops. Several
surveys on SBRP are available [1,6]. SBRP differs from other VRPs as passen-
gers/students are clustered to stops. Many formulations divide the problem into
a stop selection phase and a VRP generation phase. We differ from most studied
SBRPs as it is not a school bus setting with additional requirements.

The General Vehicle Routing Problem (GVRP) [2] is an extension of the
classical VRP where the destination nodes are partitioned into multiple clusters.
The goal of GVRP is to find a set of routes which visit each cluster exactly once
[5,7–9]. Both SBRP and GVRP have clusters, but in SBRP (and our problem)
the clusters are not necessarily mutually exclusive.

Recently, Lewis, et al. [4] proposed a heuristic-based iterated local search
algorithm for SBRP. It differs from our problem as they do not consider passen-
ger preferences. In this paper, we also need to deal with the trade-off between
different objective functions, thus, a fine-grain algorithm is more preferable for
our case. Unlike many SBRP, we need to deal with passenger preferences and
have a more complex optimization goal trading off median/average passenger
walking time with driving distance, whereas in typical SBRP, minimizing the
number of buses or driving distance is common.

3 Preliminaries

Let C = {c1, c2, . . . } be a set of passengers. Each passenger c has a set of
preferred stops represented by a well-ordered set T (c) = {t

(c)
1 , t

(c)
2 , . . . } with

ordering t
(c)
i ≺(c) t

(c)
j iff i < j. Let S ⊂ ⋃c T (c) be the set of chosen stops.

Definition 1. Set S is satisfying if and only if T (c) ∩ S �= ∅ for all c ∈ C.

Efficient Heuristic for Passenger Bus VRP 123

Let υ(c, S) denotes the preferred stop of c with respect to S, namely, υ(c, S) =
min(T (c) ∩ S) with respect to the ordering ≺(c) on S. Let Υ (C,S) denotes the
set of all chosen stops of C with respect to S, i.e. Υ (C,S) = { υ(c, S) : c ∈ C }.

Definition 2. Set S is fully-utilized iff S is satisfying and |S| = |Υ (C,S)|.
Each stop in a fully-utilized S is a preferred stop of some passenger(s) in C.

The vehicles routes to visit all locations in a fully-utilized set S from a depot
d is represented by R(S) = {R1, R2, . . . }. The total distance of all the routes in
R(S) is cost(S), and the distance between location a and b is denoted by δ(a, b).

4 An Incremental Algorithm

Our problem is an SBRP with the addition of preferences and two challenges:
(i) (Challenge#1) a trade-off analysis to find a solution which can suit both
the logistics provider and the passengers; (ii) (Challenge#2) a strict compu-
tational time limit. We present a hybrid local search algorithm which uses a
number of heuristics. It gives a set of k chosen stops and routes for each integer
k, allowing a trade-off analysis between vehicle driving distance and passenger
walking distance to be performed. It is efficient as we have a low polynomial
time and incremental algorithm on k.

The algorithm starts with an initial chosen set of stops which is obtained by
aggregating all the most preferred stop from each passenger, i.e. S0 =

⋃ {t
(c)
1 }.

Observe that S0 is fully-utilized so all the preferences are met. No stop selection
or trade-off analysis is needed with S0 since all passengers get their best choice.
Next, we present a hybrid algorithm which computes a new set of stops Si where
|Si| < |Si−1|. Any off-the-shelf VRP algorithm is used to obtain the initial R(S0).
An incremental local search is used to obtain Si and R(Si) for subsequent i > 0.

We repeatedly decrease the size of S with local moves RemoveOne or
Implode (greedily picking the one with lower cost) and produce the routes
at each iteration. Each local move decreases the size of the current set of stops
by one so that a route is generated for each Si. The algorithm terminates when
it cannot further reduce the size of S or when some other stopping criterion is
met. We propose the following two local moves.

A. RemoveOne(Si) Operation. Find a fully-utilized set Si+1 such that Si+1 =
Si \ {x∗} where x∗ ∈ Si and cost(Si+1) is minimum among all possible Si+1, so
Si+1 ⊂ Si.

This operation considers all Si+1 that can be obtained by removing exactly
one stop from Si. For a tuple 〈x〉 where x ∈ Si, the corresponding route and cost
of removing x are constructed incrementally from R(Si) and cost(Si).

Let pi, x, pj be three locations in Si ∪ {d} that are visited consecutively
by the same vehicle in R(Si). The new route is obtained by decoupling x from
R(Si), i.e. alter the route pi → x → pj in R(Si) into pi → pj in R(Si+1). The
cost of Si \ {x} can be computed as follows.

cost(Si \ {x}) = cost(Si) − δ(pi, x) − δ(x, pj) + δ(pi, pj) (1)

124 S. Effendy et al.

The tuple 〈x∗〉 is 〈x〉 with the least cost(Si \ {x}).
The time complexity for this operation is O(|S|2|C|) as there are O(|Si|)

possible tuples and O(|S||C|) for each tuple to check the fully-utilized constraint.

B. Implode(Si) Operation. Find a fully-utilized set Si+1 such that Si+1 = (Si \
{x∗, y∗}) ∪ {z∗} where x∗, y∗ ∈ Si, x∗ �= y∗, z∗ /∈ Si and cost(Si+1) is minimum
among all possible Si+1. Note that with this move, the resulting Si+1 is not a
subset of Si.

This operation consists of two remove operations and one insert operation.
For each tuple 〈x, y, z〉 where x, y ∈ Si and z /∈ Si, the corresponding route and
cost for (Si \{x, y})∪{z} are constructed incrementally from R(Si) and cost(Si)
in three steps, i.e. remove x, remove y, insert z, one step at a time.

The cost of removing x and y (and their routes) can be computed similarly to
the RemoveOne operation. Let S′′

i = Si \ {x, y} and R(S′′
i) be its routes. The

location z is inserted into R(S′′
i) such that the resulting cost is minimum while

the route changes are minimal, i.e. z is only inserted between any two consecutive
locations in R(S′′

i). Let pi and pj be two locations that are visited consecutively
by the same vehicle in R(S′′

i). The cost of inserting z can be computed as follows.

cost(S′′
i ∪ {z}) = min

〈pi, pj〉
{ cost(S′′

i) + δ(pi, z) + δ(z, pj) − δ(pi, pj) } (2)

To insert z between pi and pj , simply alter the route pi → pj into pi → z → pj .
The tuple 〈x∗, y∗, z∗〉 is the tuple 〈x, y, z〉 with the least cost((Si \{x, y})∪{z}).

The time complexity to perform this operation naively is O(|S|3|T ||C|) as
there are O(|Si|2|T |) possible tuples of 〈x, y, z〉 and O(|S||C|) for each tuple
to check the fully-utilized constraint. However, observe that any passenger who
becomes unsatisfied due to the removal of location x and y (i.e. c such that
T (c) ∩ (Si \ {x, y}) = ∅) needs to have z as their preferred stop to make the
set satisfying. This allows the following optimization which only considers x, y,
and z which are neighbours to each other, e.g., within a certain distance. Let
the number of such tuples be η(S, T), then the time complexity to perform the
Implode operation can be reduced to O(η(S, T)|S||C|). In our evaluation with
real-world datasets, the η(S, T) is much smaller compared to the number of all
possible tuples.1

As S0 and any other Si for i > 0 in the subsequent iterations are fully-utilized
sets, then any valid routes to visit all the stops in each of these sets is a valid
solution for the corresponding SBRP. Additional constraints on the routes such
as capacity and time-window can also be integrated into the local moves as well.

1 To illustrate, compare the number of bus stops in a neighbourhood within a city.
An example from the P1 dataset (Sect. 5) experiments is that on average, there are
8.5M possible tuples but only 5K tuples in η(S, T), showing that the RemoveOne

optimization is effective.

Efficient Heuristic for Passenger Bus VRP 125

Table 1. Summary of the evaluation on real-world datasets.

Dataset k0 D0 kmin Dmin Median Wmin Average Wmin

P1 318 814.9 km 139 675.2 km (82.9%) 202.0 m 205.5 m

P2 127 407.7 km 71 359.4 km (88.2%) 199.4 m 184.6 m

P3 107 367.2 km 69 328.2 km (89.4%) 27.6 m 135.5 m

P4 214 575.2 km 104 496.9 km (86.4%) 138.0 m 171.0 m
k0 and D0 are the number of stops and the total driving distance for the initial solution,
respectively. kmin, Dmin, and Wmin are the number of stops, the total driving distance, and
the walking distance when the number of drop-off locations is minimum, respectively.

Fig. 1. Evaluation on the P1 dataset. (a) Trade-off between the total driving distance
and walking distance. (b) Comparing solution quality (driving distance) of the incre-
mental algorithm versus solving each sub-problem as a VRP instance.

5 Evaluation

We evaluate with real-world datasets. As a general VRP solver, we used jsprit2

for R(S0) (we found it gave shorter routing than OR-Tools on our instances).
The real-world dataset is an employee home bus transportation problem where
buses transport all the employees from a depot to their home addresses (details
are confidential to the company). There are 4 different problem instances (P1
to P4). The number of passengers are: P1: 318, P2: 127, P3: 107, and P4: 214.
The preferred drop-off locations for each passenger is their home address and all
bus stops within 500 meters from their home, prioritized by distance, which also
gives the walking preferences. There are 2631 relevant bus stops in total in each
of P1-P4. We note that this is not a small VRP instance given the number of
stops. All buses have 1.5 hours to complete all routes.

Table 1 summarizes the results. Overall, our algorithm reduces the number of
stops by at least 35% and the total driving distance by at least 10% in these real-
world instances. Figure 1 shows the evaluation result on the P1 dataset (other

2 https://github.com/graphhopper/jsprit.

https://github.com/graphhopper/jsprit

126 S. Effendy et al.

datasets have a similar trend). Figure 1a shows the trade-off between the total
driving distance and walking distance (summarized by median/average); each
dot is a set of chosen stops of a certain size. To illustrate the trade-off analysis
in Fig. 1a, consider the following analysis—find the set of stops such that the cost
function αDi+βWi is minimized where Di,Wi are the total driving distance and
walking distance from the stops. Suppose α = 0.001, β = 1, and using median
walking distance for Wi, the minimum can be found when |S| = 227. We note
that 60 RemoveOne and 119 Implode operations are used for P1.

To evaluate the quality of the produced routes, we run each chosen set of
stops Si from our algorithm on jsprit, comparing each route cost. Figure 1b shows
this comparison for P1. Although our incremental algorithm is only greedy, the
total driving distance is on par with running jsprit on each set of stops with
the advantage of being substantially more efficient. Our incremental algorithm
takes 175 s of CPU-time, on a Core(TM) i7-6700 3.40 GHz machine—the initial
routing takes 78 s by jsprit and producing all the remaining routes for P1 (k =
139 . . . 317) takes 97 s. The repeated VRP solver method using jsprit requires
16494 s of CPU-time, much larger than the time limit (in our setting, it is <
1800 s). We highlight also that the comparison with jsprit omits the stop selection
problem, so the computation cost will be higher if that is taken into account.

The evaluation shows that using a general VRP solver to generate a route
for each set of stops can be too expensive, e.g., two orders of magnitude more
running time in our experiments. This is not practical for our problem given the
strict running time requirement. The problem solving and coordination of the
entire transportation schedule with all parties needs to fit within the cutoff to
the departure time. More importantly, a general-purpose VRP solver does not
deal with the stops selection; thus, it is insufficient to solve the problem. The
comparison is simply to show that our heuristics give good enough route quality
at a low running time.

6 Conclusion

In this short paper, we solve a real-world SBRP with complex features having
preferences and the balancing of opposing costs, reducing vehicle costs versus
overall passenger satisfaction. There is also a strict computational limit which
requires the solution to be efficient. We present a formulation using a set cover
variation which this problem can be mapped into. We give an efficient hybrid
greedy local search which incrementally solves our SBRP varying the number of
stops. Our algorithm can also handle typical VRP side constraints, e.g., capacity
and time windows. The evaluation on the real-world dataset shows that a bal-
anced trade-off can reduce the total driving distance at different median/average
walking distances. Our algorithm is also shown to be efficient. We believe this
is a challenging problem combining novel features different from traditional
approaches. We successfully combine a general-purpose VRP solver with (addi-
tional) local search, complex objectives and constraints. Our setting and solution
are also practical and applicable in many group transportation settings such as
worker transportation.

Efficient Heuristic for Passenger Bus VRP 127

Acknowledgements. This research is supported by the National Research Founda-
tion Singapore under its AI Singapore Programme (Award Number: [AISG-100E-2018-
009])

References

1. Ellegood, W.A., Solomon, S., North, J., Campbell, J.F.: School bus routing problem:
contemporary trends and research directions. Omega 95 (2020). https://doi.org/10.
1016/j.omega.2019.03.014

2. Ghiani, G., Improta, G.: An efficient transformation of the generalized vehicle rout-
ing problem. Eur. J. Oper. Res. 122(1), 11–17 (2000). https://doi.org/10.1016/
S0377-2217(99)00073-9

3. Kilby, P., Shaw, P.: Vehicle routing. In: Rossi, F., Van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming. Elsevier, New York (2006)

4. Lewis, R., Smith-Miles, K.: A heuristic algorithm for finding cost-effective solutions
to real-world school bus routing problems. J. Discrete Algorithms 52, 2–17 (2018).
https://doi.org/10.1016/j.jda.2018.11.001

5. Moccia, L., Cordeau, J.F., Laporte, G.: An incremental tabu search heuristic for the
generalized vehicle routing problem with time windows. J. Oper. Res. Soc. 63(2),
232–244 (2012). https://doi.org/10.1057/jors.2011.25

6. Park, J., Kim, B.I.: The school bus routing problem: a review. Eur. J. Oper. Res.
202(2), 311–319 (2010). https://doi.org/10.1016/j.ejor.2009.05.017

7. Pop, P.C., Kara, I., Marc, A.H.: New mathematical models of the generalized vehicle
routing problem and extensions. Appl. Math. Model. 36(1), 97–107 (2012). https://
doi.org/10.1016/j.apm.2011.05.037

8. Pop, P.C., Matei, O., Sitar, C.P.: An improved hybrid algorithm for solving the
generalized vehicle routing problem. Neurocomputing 109, 76–83 (2013). https://
doi.org/10.1016/j.neucom.2012.03.032

9. Pop, P.C., Zelina, I., Lupşe, V., Sitar, C.P., Chira, C.: Heuristic algorithms for
solving the generalized vehicle routing problem. Int. J. Comput. Commun. Control
6(1), 158–165 (2011). https://doi.org/10.15837/ijccc.2011.1.2210

https://doi.org/10.1016/j.omega.2019.03.014
https://doi.org/10.1016/j.omega.2019.03.014
https://doi.org/10.1016/S0377-2217(99)00073-9
https://doi.org/10.1016/S0377-2217(99)00073-9
https://doi.org/10.1016/j.jda.2018.11.001
https://doi.org/10.1057/jors.2011.25
https://doi.org/10.1016/j.ejor.2009.05.017
https://doi.org/10.1016/j.apm.2011.05.037
https://doi.org/10.1016/j.apm.2011.05.037
https://doi.org/10.1016/j.neucom.2012.03.032
https://doi.org/10.1016/j.neucom.2012.03.032
https://doi.org/10.15837/ijccc.2011.1.2210

Algorithm for Predicting the Quality
of the Product Based on Technological

Pyramids in Graphs

Damir N. Gainanov1,2, Dmitriy A. Berenov1, and Varvara A. Rasskazova2(B)

1 Ural Federal University, Ekaterinburg, Russia
berenov@dc.ru

2 Moscow Aviation Institute (National Research University), Moscow, Russia

Abstract. In this paper, the problem of the quality of the product is
investigated in the conditions when the reassignment can be organized
in the process of realization of a technological route. The information
on the completed technological routes forms a training sample for the
pattern recognition problem and the choice of the technological route
for the continuation of the production process is carried out taking into
account the expected quality indicators of the final product. To reduce
the dimensionality of the problem, a given set of executed technological
routes is divided into discrete classes, in each of which an algorithm for
constructing a decision tree can be implemented. The paper gives a for-
mal description of the developed algorithm for the node of the decision
tree and a polynomial heuristic dichotomy algorithm in a multi-class pat-
tern recognition problem is proposed for it. Computational experiments
are carried out to confirm the effectiveness of the proposed algorithm by
comparing the obtained solution with the exact solution.

Keywords: Predictive analysis · Graph theory · Heuristic algorithm ·
Metallurgical production

1 Introduction

The paper proposes a mathematical model for the study of the applied prob-
lem of reassigning the technological route in the process of its execution for
discrete production. Consideration of this class of problems is motivated by its
importance for the optimization of production costs. For example, in a mean-
ingful sense, the manufacture of defective products can be stopped earlier if
the receipt of the defect was predicted or, more generally, any running process
can be reassigned if its continuation in the planned version can lead to the
receipt of the product of inadequate quality. This approach significantly reduces
the expenditure of both time and material resources. Thus, the task of reas-
signing the technological route can be interpreted as the problem of product
quality forecasting, which will be made as a result of the execution of this route.
In this formulation, the problem can be investigated using methods of analysis
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 128–141, 2021.
https://doi.org/10.1007/978-3-030-92121-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_11

Algorithm for Predicting the Quality of the Product 129

of infeasible systems of conditions, well-established in the application to pattern
recognition, see, for example, [1–3].

The mathematical model of the applied problem under study can be ade-
quately described in the language of graph theory. The technological route can
be represented as a directed path in the graph, the vertices of which are the
aggregates of technological lines. Then the manufacture of each individual unit
of production is described by a certain technological route, while the production
process itself on each unit (vertex of the graph) is characterized by a certain set
of values of the parameters of this process. As a result of processing the obtained
data, the problem is reduced to the solving of the classical problem of pattern
recognition in a geometric setting, when it is necessary to build a decision rule
for the assignment of the input vector to one of the classes. To solve the problem
of pattern recognition in its geometric setting, various algorithms can be used;
they are described, for example, in [5,6,8,9]. An alternative covering algorithm
from [11] can also be applied to solve the problem. Full-scale research on gen-
eral optimization methods for solving manufacturing problems could be also find
in [12].

During the long-term operation of the production under consideration, a
large amount of historical data is accumulated, which characterizes the realized
technological processes for each manufactured product. These data in the model
under consideration are formed as directed graph routes along with sets of values
of technological parameters of routes. In general, a whole network of multi-
class pattern recognition problems is created on the set of such data on the
executed technological processes, the solutions of which will be used to optimize
the assignment of technological routes. In practical use of the constructed model,
in the process of executing of each technological route when reaching certain
nodal points (nodal vertices of the graph), the previously constructed decision
rules of the corresponding recognition problems are applied, which predict the
quality of a unit of production that will be obtained with further continuation
of a given technological process. Depending on the result of this forecast, one
of the possible decisions will be made: continuation of the planned technological
route, reassigning the route to another, more promising route, or stopping the
route. The implementation of this strategy can significantly improve the quality
of products, as well as reduce production costs due to the reduction of production
defects.

This paper presents an algorithm for solving a multi-class problem of pattern
recognition in its geometric setting, the implementation of which determines the
classification of the expected products. The developed algorithm is based on
the principles of constructing logical decision trees and a polynomial heuristic
dichotomy algorithm used for each nonterminal vertex of the decision tree.

2 Basic Definitions

Let us consider a discrete production, consisting of a number of technological
processes which are executing by technological aggregates and lines.

130 D. N. Gainanov et al.

Let A = {A1, . . . , An} be the set of technological aggregates involved in
production.

The product unit (PU) is understood as an indivisible part of the output or
input products obtained by the aggregate or production line. For instance, in
the metallurgical production typical examples of PU are: the steel produced in
steelmaking aggregate and released in the steel ladle; the slabs obtained by the
machine for continuous casting of steel; hot-rolled coil which are produced as a
final result of the hot rolling mill; cold-rolled steel coil which are produced as a
final result of the work of the cold rolling mill.

Definition 1. The directed graph
−→
G = (A, E) with the set of vertices A and the

set of arcs E ⊆ A2 is called the infrastructural graph if (A1, A2) ∈ E if and only
if the output PU of the aggregate A1 can serve as the input PU for the aggregate
A2.

Definition 2. The technological pyramid Pir
(−→

G, v
)
with the root vertex v, v ∈

A of the infrastructural graph
−→
G = (A, E) is the subgraph generated by the set of

vertices
{

v ∪ −→
G(v) ∪ −→

G2 (v) ∪ · · · ∪ −→
Gk(v)

)}
and such that every directed path

of the graph
−→
G starting at vertex v is lying entirely in this subgraph.

Here
−→
Gk(v) denotes the set of all vertices v′, v′ ∈ A of the graph

−→
G such

that there exists a simple directed path from vertex v to vertex v′ of length k.

Definition 3. The vertex v ∈ A in the infrastructural graph (or in its techno-
logical pyramid) is called a fork-vertex if

∣∣∣−→G(v′)
∣∣∣ > 1.

Definition 4. The vertex v ∈ A in the infrastructural graph (or in its techno-
logical pyramid) is called the terminal vertex if there are no arcs in the graph (or
in the technological pyramid respectively) which leaves from this vertex.

Definition 5. Any simple directed path in the infrastructural graph
−→
G = (A, E)

of the form
Pi =

(
Ai1 , Ai2 , . . . , Aik(i)

)
,

where Aij ∈ A and
(
Aij , Aij+1

) ∈ E for all Aij , Aij+1 ∈ Pi, is called the tech-
nological route (TR) of the production under consideration.

In Definition 5 the number of arcs of the infrastructural graph which
are included in the sequence of the directed path—the number (k(i) − 1)—
describes the length of the corresponding TR Pi. Wherein the set of all TRs
P = {P1,P2, . . . } forms the technological base of production under considera-
tion.

We denote by PU = {pui : i = [1, n]} the set of all possible product units of
production under consideration.

Let each product unit pui : i = [1, n] be characterized by a set of parameters
Pi =

{
pi1 , pi2 , . . . , pin(i)

}
, where i = [1, n] and n(i) ∈ [1,K]—is the number of

different parameters for the given product unit.

Algorithm for Predicting the Quality of the Product 131

Definition 6. The sequence

AIi =
(
Ai1, Pi1 (AIi) , . . . , Ais, Pis (AIi)

)
,

where Pij (AIi) is the set of parameter values for puij in a particular implemen-
tation of the technological route AIi, is called the executed technological route
(ETR).

Let U,U ⊂ A be the set of terminal vertices of some technological pyramid
Pir

(−→
G, v

)
with root node v, v ∈ A, of the infrastructural graph

−→
G = (A, E).

For each terminal vertex u ∈ U,U ⊂ A, there is a certain product unit pui ∈ PU
which is the output product unit for this vertex, and there may be several such
product units depending on the types of ETRs as a result of which these product
units were received.

Definition 7. An ETR is called a productive ETR if the output product unit of
the terminal vertex Ais of this ETR AIi—let us denote this vertex as term(AIi)—
is one of the types of the final product deliverable to the market.

In the framework of this paper, the generalized problem of assigning a TR
is considered, in which it is supposed that it is possible to control the choice
of the further passage to processing a product unit in the fork-vertices of the
infrastructural graph

−→
G . This means that the TR in the process of its execution

can be reassigned in order to increase production efficiency and reduce the level
of rejection.

3 Formulation of the Problem

As a result of the production activity of the production under consideration,
the set of executed technological routes will be generated at the current time
moment t:

PETR(t) = {AIi : i ∈ [1, q(t)]} . (1)

Consider the set (1) of all productive ETRs.
For each productive ETR AIi one can define two parameters for PU of its

terminal vertex pui = pu (term (AIi)) : Price(pui) is the market price of the pui,
and C(pui) is the production cost of the product unit pui.

Let there be a set of productive ETRs such that the initial sections to the
fork-vertex are coincident in the part of the passage of aggregates. Then each
productive ETR can be represented as a sequence:

AIi = (BIi, CIi) , i ∈ [1, q (t)] ,

where BIi is the ETR from the initial vertex v1 to the considered fork-
vertex v′ and CIi—ETR from the vertex v′ to the terminal vertex term (AIi).

132 D. N. Gainanov et al.

Since each ETR AIi passages a certain technological route—we denote such
route as P (AIi)—then the set of all ETRs can be divided into several classes

PETR (t) = P(1)
ETR (t) ∪ P(2)

ETR (t) ∪ . . . ∪ P(l)
ETR (t) (2)

such as AIi and AIj belong to the same class if and only if P (AIi) = P (AIj).

We denote by Pi = P
(
P(i)

ETR (t)
)

a technological route which is common for

all ETRs from P(i)
ETR (t). Then the problem is to determine which of TRs Pi

should be chosen for further passage when reaching the fork-vertex v′.
For each class P(i)

ETR (t) from (2) and some fork-vertex v, which belongs to TR
Pi = P

(
P(i)

ETR (t)
)
, one can construct the sample Z (Pi, v). This sample contains

start-parts of all ETRs AIj such that AIj ∈ P(i)
ETR (t) from the beginning and

until fork-vertex v under consideration:

Z (Pi, v) =
{

(Ef (AIj) , i, BIj) : AIj ∈ P(i)
ETR (t)

}
, (3)

where

Ef (AIj) =
Price

(
term (AIj)

) − C
(
term (AIj)

)

C
(
term (AIj)

) .

Let’s break the set of Ef (AIj) into several intervals E1, E2, . . . , Em each of
which indicates the class of product quality obtained by implementation of ETR
AIj .

Next, we represent the sample (3) in the form of the corresponding multidi-
mensional vectors

aj =
(
aj0, aj1, ajm1 , . . . , ajn

)
,

where aj0 ∈ {E1, . . . , Em} is the value of the ETR’s efficiency, aj1 is the identifier
of the technological route of this ETR. We assign the vector aj = (aj1, . . . , ajn)
to the class Ki, if aj0 ∈ Ei. Then each aj vector will be assigned to one of
the classes K1, . . . ,Km and the well-known problem of pattern recognition in
geometric formulation arises.

3.1 The Concept of Decision Tree Construction

A set of n-dimensional vectors is given

A =
{

(ai1 , . . . , ain) : i ∈ [1, N]
}

,

and its partition into m classes

A = A1 ∪ A2 ∪ . . . ∪ Am .

It is required to construct a decision rule for assigning the vector ai to one of
the classes. The solution will be sought in the class of logical decision trees given
by a directed binary tree

−→
G = (V,E) with root vertex v0 ∈ V .

Algorithm for Predicting the Quality of the Product 133

The binary tree
−→
G = (V,E) defines the process of sequentially separating

of the sample A into two subsamples at the vertices of degree 2 so that each
terminal vertex vi corresponds to a subset Avi

⊆ A, which can be assigned
to one of the classes classvi

∈ [1,m]. In the case under consideration, linear
functions will be used to separate the subsample at each vertex of the decision
tree.

If v is a vertex of degree 2 in the graph
−→
G , then a vector nv and a scalar

variable Ev are given for it, such that Av is separated into two subsamples of A′
v

and A
′′
v according to the following rule:

A′
v =

{
ai ∈ Av : 〈nv , ai〉 ≤ Ev

}
,

A
′′
v =

{
ai ∈ Av : 〈nv , ai〉 > Ev

}
,

and for the root-vertex v0 we should have:

Av0 = A .

It is required to construct the decision tree
−→
G = (V,E) with minimal number

of vertices, and at each terminal vertex v ∈ V we have:

p (v) =

∣∣ {ai ∈ Av : ai ∈ classv}
∣∣

|Av| ≥ pmin , (4)

that is, the fraction of vectors belonging to the some class classv is not less than
a given value pmin. If pmin = 1 then each terminal vertex corresponds to the
vectors of one particular class.

The rule (4) acts if |Av| ≥ Kmin. If |Av| < Kmin then the process
of further separating of the sample Av is not performed and the vertex v is
declared terminal, and the rule (4) may not be executed. In other words, for
|Av| < Kmin the sample Av is not representative enough for constructing a
further decision rule.

3.2 Algorithm for Constructing the Decision Function for the Node
of Decision Tree

Suppose that we have a vertex v ∈ V for which Av is given. Suppose we have a
partition

Av = (Av ∩ A1) ∪ ∪ (Av ∩ Am) , (5)

in which there are m′ non-empty sets. If m′ = 1 then the vertex v is terminal
and p (v) = 1, if 2 ≤ m′ ≤ m then we will sequentially calculate the values:

pi (v) =

∣∣ {Av ∩ Ai}
∣∣

|Av| , i ∈ [1,m] .

If there exists i0 ∈ [1,m] such that pi0 (v) ≥ pmin then the vertex v is
terminal and the class classv = i0, if |Av| < Kmin then the vertex v is terminal
and

classv = arg max
i

{∣∣pi (v)
∣∣ : i ∈ [1,m′]

}
.

134 D. N. Gainanov et al.

Consider the case
⎧
⎪⎨
⎪⎩

2 ≤ m′ ≤ m ,

|Av| ≥ Kmin ,

pi (v) < pmin ∀ i ∈ [1,m] ,

and denote by
I = {i : Av ∩ Ai
= ∅ , i ∈ [1,m]} .

Let some vector nv and a scalar value Ev be assigned. Then the vertex v is
associated with two vertices v1 and v2 that are children of the vertex v in the
constructed decision tree such that:

Av1 =
{
aj ∈ Av : 〈nv , aj〉 ≤ Ev

}
,

Av2 =
{
aj ∈ Av : 〈nv , aj〉 > Ev

}
.

Let

p (Av1) =
(|Av1 ∩ A1|

|Av1 |
, . . . ,

|Av1 ∩ An|
|Av1 |

)
,

p (Av2) =
(|Av2 ∩ A1|

|Av2 |
, . . . ,

|Av2 ∩ An|
|Av2 |

)
.

Consider the following value

discrim (Av , nv , Ev) =
∑
i ∈ I

∣∣∣∣
|Av1 ∩ Ai|

|Av1 |
− |Av2 ∩ Ai|

|Av2 |
∣∣∣∣ .

The value discrim (Av , nv , Ev) will be called the separating force of the function

f (a) = a · nv − Ev

concerning the subsample Av. The meaning of this notion is that the stronger the
vectors from the classes Ai of the training sample are separated in the half-space
obtained by dividing the space by a hyperplane

f (a) = a · nv − Ev = 0 ,

the more the function f (a) separates vectors from the training sample into
classes.

Thus, the formulation is natural, where it is required to find nv ∈ Rn and
Ev ∈ R for the sample (5) such that the value of quantity discrim (Av, nv, Ev)
reaches its maximum. The naturalness of such formulation is also confirmed by
the fact that for m = 2 the best solution is achieved for discrim (Av, nv, Ev) = 2,
which corresponds to a linear separation into classes Av ∩ A1 and Av ∩ A2 by
the hyperplane f (a) = nv · a − E = 0.

For an arbitrary subset A′ ⊆ A we introduce the notation for the center of
the subsample

C (A′) =
1

|A′|
∑
i∈A′

{ai : ai ∈ A′} ,

Algorithm for Predicting the Quality of the Product 135

and
A (I) = {ai : ai ∈ A, i ∈ I} .

Let be given the partition I = I1 ∪ I2, where I1
= ∅, I2
= ∅. Consider the
interval [C (I1) , C (I2)] ⊂ Rn. Let n (I1, I2) be the normal vector

C (I2) − C (I1)
‖C (I2) − C (I1) ‖ ,

then we divide the interval [C (I1) , C (I2)] into M parts, where the length of
each part is

‖C (I2) − C (I1) ‖
M

.

We consider the (M − 1) separating functions fj (a) = a·nv−Ej , which are pass-
ing sequential through all (M − 1) dividing points of the interval [C (I1) , C (I2)].
We will search the best option for the separating force among these functions:

j0 = arg max {discrim (Av, nv, Ej) : j ∈ [1,M − 1]} .

It is easy to see that for j0 we have Av1
= ∅, Av2
= ∅.
We denote by

discrim (I1, I2) = discrim (Av, nv, Ej0) .

In the case of C (A (I1)) = C (A (I2)) any two most distant points from the
sample Av are chosen and for the interval which connects these points it is used
the same procedure for constructing (M − 1) separating planes and choosing the
best of them. In the general case it is assumed that all partitions of the form
I = I1 ∪ I2 are searched, and the chosen partition is such that discrim (I1, I2)
reaches its maximum.

Consider the partition I = I1 ∪ I2 and denote by

a (I1, I2) =
∑ ∑

{(as − at) : as ∈ Av ∩ Ii ∀ i ∈ I1, at ∈ Av ∩ Ij ∀ j ∈ I2} .

The most practical efficiently seems the algorithm for separating the sample Av

in the vertex v which chooses the partition I = I1 ∪ I2, for which |a (I1, I2) |
is maximal among all partitions I = I1 ∪ I2. Then the choice of the vector
n (I1, I2) and the scalar value E (I1, I2) can be made according to the procedure
described above for the obtained fixed partition I = I1 ∪ I2.

We introduce the notation:

aij =
∑ ∑

{(as − at) : as ∈ Ai, at ∈ Aj} , i, j ∈ [1,m] ,

then for I = I1 ∪ I2 we have

a (I1, I2) =
∑∑

{aij : i ∈ I1, j ∈ I2} . (6)

Proceeding from the relation (6) it is possible to significantly reduce the amount
of computation when choosing the optimal partition I = I1 ∪ I2 for the sample
Av using the previously calculated values aij ∀ i, j ∈ I.

136 D. N. Gainanov et al.

3.3 Algorithm for Constructing an Optimal Partition of a Set
of Classes

We consider the problem of finding the partition I = I1 ∪ I2 that delivers the
maximum of the function |a (I1, I2)|. We denote by Ki the number of points in
the set {as : as ∈ Ai}, that is,

Ki = |{as : as ∈ Ai}| .

It is easy to see that

aij =
∑

as∈Ai

∑
at∈Aj

(as − at) =
∑

as∈Ai

Kj · as −
∑

at∈Aj

Ki · at

= Ki · Kj ·
(
C (Ai) − C (Aj)

)
.

Thus, the problem reduces to the following.
For a given set of points A ⊂ R

n and its partition A = A1 ∪ A2 ∪ . . . Ak it is
required to find the partition I = I1∪I2, where I = [1, k], such that the function

|a (I1, I2)| =

∣∣∣∣∣∣
∑
i∈I1

∑
j∈I2

Ki · Kj · (C (Ai) − C (Aj))

∣∣∣∣∣∣
takes the maximal value among all possible partitions I = I1∪I2. Obviously, the
problem obtained has a much smaller dimension than in the original formulation.
Since in the formulation mentioned above only centers of the subsets Ai, i ∈ [1, k]
participate, then we will further simplify the formulation of the problem.

Suppose that are given a finite set of points C = {ci, i = [1, k]} (which serve
as an analogue of the centers of the subsets in previous formulation) and a set
of natural numbers ni, i ∈ [1, k], (which serve as an analogue of the number
of points in the subsets of Ai, i ∈ [1, k] in the previous formulation). Then the
problem is formulated as follows:

⎧
⎪⎨
⎪⎩

∣∣∣∣∣
∑
i∈I1

∑
j∈Ij

ni · nj · (ci − cj)

∣∣∣∣∣ −→ max ,

I = I1 ∪ I2 .

(7)

The following particular cases of the problem (7) are also of interest. Let
ni = n for all i ∈ [1, k]. Then the formulation of the problem takes the form:

⎧
⎪⎨
⎪⎩

∣∣∣∣∣
∑
i∈I1

∑
j∈I2

ni · nj · (ci − cj)

∣∣∣∣∣ = n2

∣∣∣∣∣
∑
i∈I1

∑
j∈Ij

(ci − cj)

∣∣∣∣∣ −→ max ,

I = I1 ∪ I2 .

(8)

The next simplification is to consider the case ni = 1 for all i ∈ [1, k]. Then
the formulation of the problem takes the form:⎧

⎨
⎩

|I2|
∑
i∈I1

ci − |I1| · ∑
i∈I2

ci −→ max ,

I = I1 ∪ I2 .
(9)

Algorithm for Predicting the Quality of the Product 137

We formulate the problem (9) in the following form:
⎧
⎪⎪⎨

⎪⎪⎩

|I2| · |I1|
∑

i∈I1
ci

|I1| − |I1| · |I2| ·
∑

i∈I2
ci

|I2| = |I1| · |I2| ·
(

1
|I1) · ∑

i∈I1

ci − 1
|I2) · ∑

i∈I2

ci

)

−→ max ,

I = I1 ∪ I2 .

Finally, the problem of the species under discussion has a good geometric
interpretation in the following formulation.

Let
C (I ′) =

1
|I ′| ·

∑
i∈I

ci for all I ′ ⊂ I, I = [1, k]

{
‖C (I1) − C (I2) ‖ −→ max ,

I = I1 ∪ I2 .
(10)

Let us consider in detail the problem of (10). We use the standard notation
convA for the convex hull of the set A. For the set of points A it is obvious that

C (I1) ∈ convA ,

C (I2) ∈ convA ,

and, consequently,
[C (I1) , C (I2)] ⊂ convA .

Proposition 1. Let a finite set C = {ci : i ∈ [1, k]} , C ⊂ R
n be given. Let

ci1 , ci2 ∈ C be two vectors such that

‖ci1 − ci2‖ = max
i,j∈I,i �=j

‖ci − cj‖ .

Then, if I1 ∪ I2 = I is the optimal solution of the problem (10), then

‖C (I1) − C (I2) ‖ ≤ ‖ci1 − ci2‖ . (11)

Proof. Let us prove that under the conditions of this statement that ‖ci1 − ci2‖
is the diameter of the set A, which means

‖ci1 − ci2‖ = max
a,b∈convA

ρ (a, b) ,

where ρ (a, b) is the Euclidean distance between points a, b in the space R
n.

Assume in contrary, that for some pair of points a, b ∈ convC, such that
[a, b] is the diameter of the convC, at least one of these points is not extreme.
For definiteness, suppose b
∈ vert (convC), where by the vert (·) are denoted the
extreme points of the convC.

Consider the interval [a, b]. Since b is not an extreme point, there is a segment
[c, d] for which the point b is interior and [c, d] ⊂ convC. Then we obtain a
triangle with vertices a, c, d in which b is an interior point of the interval [c, d].
All sides of this triangle lie in the set convA.

138 D. N. Gainanov et al.

It is easy to see that in this case one of the inequalities holds: ρ (a, c) > ρ (a, b)
or ρ (a, d) > ρ (a, b) in contradiction with the maximality of ρ (a, b).

Thus, the points ci1 , ci2 lie on the ends of some diameter of the set convC
and, since C (I1) ∈ convA and C (I2) ∈ convA, then [C (I1) , C (I2)] ⊂ convA
and, therefore, the inequality (11) holds.

Further we will construct a heuristic algorithm for solving the problem (10),
that is for finding the partition I = I1 ∪ I2 such that the value ρ (C (I1) , C (I2))
reaches its maximum. Let’s denote this algorithm as L. Let’s also denote as A
a full search algorithm which finds an exact solution of the problem (10). We
will compare the quality of the approximate solution of the problem (10) found
using heuristic algorithm L and the exact one found by A.

First let’s describe the full search algorithm A for finding exact solution for
the partition I = I1 ∪ I2.

Algorithm A.

1. We consider all partitions I = I1 ∪ I2.
2. For each partition suppose:

CI1 =
1

|I1|
∑
i∈I1

Ci and CI2 =
1

|I2|
∑
i∈I2

Ci .

3. If the length of the interval [CI1 , CI2]
= 0 then the normal vector nI1,I2 is
constructed and the value EI1,I2 is fixed such that discrim (Av, nI1,I2 , EI1,I2) is
maximal (search through all hyperplanes perpendicular to nI1,I2 and bypass-
ing [CI1 , CI2] for M steps from the point CI1 to the point CI2).

4. Among all partitions of the form I = I1 ∪ I2 one need to choose a partition,
for which the value discrim (Av, nI1,I2 , EI1,I2) (from the item 3) reaches its
maximum.

Algorithm L splits the projection of the set C on the direction [a, b] with max-
imum distanced points a, b ∈ C. Moreover this algorithm checks only partitions
where maximum intervals covering points of each subset are not intersected. It
is clear that there are not more than (k − 1) such partitions.

Let C = {c1, c2, . . . , ck} be the projection of the set C on the direction
[a, b] with maximum distanced points. Then C could be linear ordered by any
coordinate of its points, which is not equal to zero for all points from C. So,
the set C contains not more than k different points. Let {c1, c2, . . . , cm} be the
mentioned ordered set of different points.

Let’s consider (m − 1) points of the form bi = 0.5 ·ci+0.5 ·ci−1, i = [1,m−1].
Then we can state for algorithm L to check only partitions of the form:

I1 (bi) =
{

i ∈ [1,m] : 〈ci,−→ab〉 < 〈ci, bi〉
}

,

I2 (bi) =
{

i ∈ [1,m] : 〈ci,−→ab〉 > 〈ci, bi〉
}

.

Thus, algorithm L will check not more than (m − 1) different partitions for
C and, sequentially, not more than (k − 1) different partitions for initial set C.

Algorithm for Predicting the Quality of the Product 139

For algorithm A one need to check 2k pairs of subsets of C, which generates
2k−1 different partitions of the form I = I1 ∪ I2. Then for each mentioned pair
one need to execute O (n) iterations to calculate closeness between subsets of
the pair ρ (C (I1) , C (I2)). Thus, the complexity of A is O (n · 2m).

At the same time algorithm L needs O (
n · m2

)
iterations to extract the pair

of maximum distanced points of C, and O (n · m) iterations to calculate projec-
tions of points of the initial set on the direction with maximum distanced points.
Finally, this algorithm needs O (

m2
)

iterations to define the best partition of
the initial set into two subsets. Note that variable n not active on this step of
the complexity’s estimate, because we mean one-dimensional projection C of the
initial set C of n-dimensional points. Thus, the complexity of L is O (

n · m2
)
.

To compare the quality of different solutions, each partition could be per-
formed by binary couple α = (α1, α2, . . . , αm) , αi ∈ {0, 1} for all i ∈ [1,m]. In
this case αi = 0 if and only if i ∈ I1 and αi = 1 if and only if i ∈ I1.

Let two partitions I = I1 ∪ I2 and I ′ = I ′
1 ∪ I ′

2 be given. Let one need
to calculate the closeness between these partitions performed by corresponding
binary couples α and α′.

For any binary couple α = (α1, α2, . . . , αm) it is defined a complemen-
tary couple α = (α1, α2, . . . , αm) such that αi = 1 − αi for all i ∈ [1,m].
Let hamming (α, α′) denotes Hamming’s distance between corresponding binary
couples α and α′, that is

hamming (α, α′) = |{i : αi
= α′
i, i ∈ [1,m]}| .

When comparing results of implementation of two algorithms A and L we will
use the same set of points C and calculate the closeness between exact (global
optimal) partition I = I1 ∪ I2 obtained by A and partition I ′ = I ′

1 ∪ I ′
2, which is

the best one found by algorithm L. To calculate the closeness mentioned above
we will use the naturalness formula:

ρ (α, α′) = min {hamming (α, α′) , hamming (α, α′)} , (12)

where α, α′ are binary couples corresponding to partitions I = I1 ∪ I2 and
I ′ = I ′

1 ∪ I ′
2.

Computational experiments were carried out using 100 random sets of 32
points in two-dimensional space R

2. These experiments show rather interesting
results despite the difference between computational complexity of algorithms A
and L. The best partitions obtained by these algorithms are very close one each
other in means of criterion (12)—the value of closeness is equal to 94,9%. Thus,
algorithm L is polynomial with complexity O (

n · m2
)
, but solutions obtained

by this algorithm could be very close to exact ones obtained by exponential
algorithm.

What about applied interest, it should be note that obtained results show
that proposed polynomial algorithm L could be used for solving problem (10)
with huge size of input data.

Let’s have a look to the differences between the proposed algorithm for con-
structing a decision tree and others known algorithms.

140 D. N. Gainanov et al.

In the well-known algorithm Principal Direction Divisive Partitioning
(PDDP) ([14]) the problem of constructing a binary tree is characterized so
that it solves the problem of unsupervised clustering (of documents) and there-
fore does not have any starting partition of the original sample into a set of
classes. So, our quality criteria for solving the dichotomy problem for the binary
tree node is not applicable for PDDP algorithm. But in our case this quality
criteria plays very important role.

Well known machine learning algorithm C5.0 ([15–17]) allows one to build
a decision tree in forecasting problems has become in a sense a standard. The
main difference of algorithm proposed in the present work in comparison to
the approach in the algorithm C5.0, is that the algorithm of the C5.0 at each
node proposes division of the sample using only one parameter, which is chosen
as the most effective for the sample corresponding to the current node of the
decision tree. This approach has its advantages, especially in applications where
the interpretation of the obtained decision rule is important. For example, it
is of great importance in the problems of pattern recognition in the field of
medical diagnostics. In the technological problems of recognition with a large
number of parameters and very large sample volumes considered in this paper,
the use of axis-parallel splits can lead to inaccurate classification and artificial
and excessive increase in the size of the resulting decision trees, and therefore
the construction of an effective heuristic dichotomy algorithm with separating
planes of the general (non parallel) position is of considerable interest.

Conclusion

To solve the problem of the quality of discrete production an approach has been
developed, in which the research is reduced to solving the problem of pattern
recognition in a geometric formulation. A heuristic algorithm for constructing a
decision rule is developed which is aiming to find the best possible partition of
training sample corresponding to each vertex of decision tree. Substantial reduc-
ing of the computational complexity of considered algorithm is reached. Thus,
for the production under consideration, a large number of problems of pattern
recognition are constructed for each of which a decision tree is constructed.

An important feature of the approach is that the set P(t) of ETRs is continu-
ously expanding, thus providing all the new data to improve the decision rule. To
achieve the effectiveness of the proposed approach in practice it is necessary to
carry out additional training as soon as a new portion of the ETRs arrives. This
will ensure the continuous improvement of the decision rules and consequently
the improvement of production efficiency. Algorithms proposed in the present
paper were implemented for solving applied problem on the optimization of the
assignment of technological routes for metallurgical production.

Algorithm for Predicting the Quality of the Product 141

References

1. Eremin, I.I.: Improper Models of Optimal Planning. Library of Mathematical Eco-
nomics, Nauka, Moscow (1988)

2. Eremin, I.I., Mazurov, V.D., Astafév, N.N.: Improper Problems of Linear and
Convex Programming. Library of Mathematical Economics, Nauka, Moscow (1983)

3. Khachai, M.Yu., Mazurov, Vl.D., Rybin, A.I.: Committee constructions for solving
problems of selection, diagnostics, and prediction. Proc. Steklov Inst. Math. 1, 67–
101 (2002)

4. Gainanov, D.N., Berenov, D.A.: Big data technologies in metallurgical produc-
tion quality control systems. In: Proceedings of the Conference on Big Data and
Advanced Analitycs, pp. 65–70. Minsk State University Press, Minsk, Belarus’
(2017)

5. Gainanov, D.N.: Combinatorial Geometry and Graphs in the Analysis of Infeasible
Systems and Pattern Recognition. Nauka, Moscow (2014)

6. Gainanov, D.N.: Graphs for Pattern Recognition. Infeasible Systems of Linear
Inequalities. DeGruyter (2016)

7. Gainanov, D.N.: Combinatorial properties of infeasible systems of linear inequali-
ties and convex polyhedra. Math. Not. 3(38), 463–474 (1985)

8. Mazurov, Vl.D.: Committees Method in Problems of Optimization and Classifica-
tion. Nauka, Moscow (1990)

9. Mazurov, Vl.D., Khachai, M.Yu.: Committees of systems of linear inequalities.
Autom. Rem. Contr. 2, 43–54 (2004)

10. Khachai, M.Yu.: On the estimate of the number of members of the minimal com-
mittee of a system of linear inequalities. J. Comput. Math. Math. Phys. 11(37),
1399–1404 (1997)

11. Gainanov, D.N.: Alternative covers and independence systems in pattern recogni-
tion. Pattern Recognit. Image Anal. 2(2), 147–160 (1992)

12. Liu, X., Pei, J., Liu, L., Cheng, H., Zhou, M., Pardalos, P.M.: Optimization
and Management in Manufacturing Engineering. SOIA, vol. 126. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-64568-1

13. Gainanov, D.N., Matveev, A.O.: Lattice diagonals and geometric pattern recogni-
tion problems. Pattern Recognit. Image Anal. 3(1), 277–282 (1991)

14. Boley, D.: Principal direction divisive partitioning. Data Min. Knowl. Disc. 2(4),
325–344 (1998)

15. Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the 5th Aus-
tralian Joint Conference on Artificial Intelligence, pp. 343–348 (1992)

16. Quinlan, J.R.: C4.5 – Programs for Machine Learning. Morgan Kaufman Publisher
Inc., San Mateo (1993)

17. Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res.
4, 77–90 (1996)

https://doi.org/10.1007/978-3-319-64568-1

Set Team Orienteering Problem
with Time Windows

Aldy Gunawan1(B), Vincent F. Yu2,3, Andro Nicus Sutanto2,
and Panca Jodiawan2

1 School of Computing and Information Systems, Singapore Management University,
80 Stamford Road, Singapore 178902, Singapore

aldygunawan@smu.edu.sg
2 Department of Industrial Management, National Taiwan University of Science

and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan
vincent@mail.ntust.edu.tw

3 Center for Cyber-Physical System Innovation, National Taiwan University
of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan

Abstract. This research introduces an extension of the Orienteering
Problem (OP), known as Set Team Orienteering Problem with Time
Windows (STOPTW), in which customers are first grouped into clus-
ters. Each cluster is associated with a profit that will be collected if at
least one customer within the cluster is visited. The objective is to find
the best route that maximizes the total collected profit without violat-
ing time windows and time budget constraints. We propose an adaptive
large neighborhood search algorithm to solve newly introduced bench-
mark instances. The preliminary results show the capability of the pro-
posed algorithm to obtain good solutions within reasonable computa-
tional times compared to commercial solver CPLEX.

Keywords: Orienteering problem · Time windows · Adaptive large
neighborhood search

1 Introduction

The Orienteering Problem (OP) was first introduced by [9] for which a set of
nodes is given, each with a score. The objective is to determine a path, limited
in length or travel time, that visits a subset of nodes and maximizes the sum
of the collected scores. The Orienteering Problem (OP) has received a lot of
attentions since many researchers have worked on it as well as its applications
and extensions [2], such as the inventory problem [10], Capacitated Team OP [8],
and Set OP [1].

The Set OP (SOP) was presented by [1]. The main difference lies on grouping
nodes into clusters and each cluster is associated with a profit. This profit is
collected by visiting at least one node in the respective cluster. Due to the time
budget constraint, only a subset of clusters can be visited on a path. Various

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 142–149, 2021.
https://doi.org/10.1007/978-3-030-92121-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_12

Set Team Orienteering Problem with Time Windows 143

applications of the SOP can be found in mass distributions, yet it may benefit
less to visit all customers within a particular district. Therefore, only delivering
products to one customer and letting other customers within the same district
to collect from the visited customer will actually help the distributor in terms of
travelling time or travelled distance. [1] proposed a matheuristic algorithm and
applied it in the context of the mass distribution problem. [7] introduced the
applications of the SOP in the travel guide problems. Variable Neighborhood
Search (VNS) is proposed to solve SOP. The Team Orienteering Problem with
Time Windows (TOPTW) is an extension of the Team OP [5] where the visit
on each node is constrained by a given time window. This TOPTW has been
studied in the past few years. For more details, please refer to [2].

Our work introduces another extension of the SOP and TOPTW - namely,
the Set Team OP with Time Windows (STOPTW). STOPTW considers both
multiple paths and time windows. The visits to nodes are also bounded by the
given time windows. We thus propose an adaptive large neighborhood search
algorithm (ALNS) to solve newly introduced benchmark instances. The prelim-
inary results of our experiments show the capability of the proposed algorithm
to generate good solutions within reasonable computational times.

2 Problem Description

Given a complete directed graph G = (N,A) where N represents a set of nodes,
N = {n0, n1, . . . , n|N |}, A represents a set of arcs A = {aij}, and n0 and n|N |
are the start and end nodes, respectively. Given a pair of nodes ni and nj , there
exists an arc aij with cost cij . In SOP, all nodes are grouped as clusters as disjoint
sets s0, s1, . . . , sm, with S = {s0, s1, . . . , sm}, si ∩sj = ∅ for i �= j, 0 ≤ i, j ≤ |N |,
and each node ni is associated with exactly one particular set in S. All disjoint
sets s0, s1, . . . , sm have associated profits p0, p1, . . . , pm for visiting at least one
node within the set. We note that s0 and sm represent the starting and ending
sets with p0 = pm = 0, respectively. The basic mathematical model of the SOP
is presented in [7] while the TOPTW mathematical model can be referred to [2].

In the context of the STOPTW, each node has a non-negative service time
si and time window [Ei, Fi], where Ei and Fi are the earliest and the latest
start times of service at node i, respectively. A visit beyond the time window
Fi is not allowed while an early visit is possible with additional waiting times
before entering at the earliest start time Ei. Each node i can only be visited once
and must be visited within its respective time window. Each set sj can only be
visited at most once as well. Given h paths, each path must start its visit from
the start node and also return to the end node. The objective of the STOPTW
is to determine h paths, limited by a given time budget Tmax and time windows,
such that each path visits a subset of S and maximizes the total collected profit.

3 Proposed Algorithm

The initial solution is generated based on the nearest distance criterion. Each
path h starts from node n0 and follows up by visiting the nearest unvisited

144 A. Gunawan et al.

nodes. This is done until it reaches Tmax or no more nodes can be visited. The
time window constraint has to be considered, and the path ends at node n0.

The initial solution is further improved by the proposed Adaptive Large
Neighborhood Search (ALNS) (Algorithm1). This proposed algorithm is adopted
from a similar algorithm for solving another combinatorial optimization problem,
namely the vehicle routing problem [3].

The main idea is to use a set of destroy operators for removing nodes from
the current solution and to use a set of repair operators for reinserting them
into more profitable positions. A particular score is assigned to each selected
operator in order to assess its performance upon generating a new neighborhood
solution. The better the new generated solution is, the higher is the score given
to the corresponding operator.

Let Sol0, Sol∗, and Sol′ be the current solution, the best found solution
so far, and the starting solution at each iteration, respectively, we first set
Sol0, Sol∗, and Sol′ to be the same as the generated initial solution. The
current temperature (Temp) is set to the initial temperature (T0) and will
decrease by α after ηSA iterations. The number of iterations Iter is set to
zero. Let R = {Rr|r = 1, 2, . . . , |R|} be a set of destroy operators and
I = {Ii|i = 1, 2, . . . , |I|} be a set of repair operators. All operators j(j ∈ R∪ I)
initially have the same weight wj and probability pj to be selected, based on:

pj =

{ wj∑
k∈R wk

∀j ∈ R
wj∑

k∈I wk
∀j ∈ I

(1)

ALNS adopts the Simulated Annealing (SA) acceptance criteria, under which
a worse solution may be accepted with a certain probability [6]. Therefore, each
of the operator’s score sj is adjusted by:

sj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sj + δ1, if the new solution is the
best found solution so far

sj + δ2, if the new solution improves
the current solution

sj + δ3, if the new solution does not
improve the current solution,
but it is accepted

∀j ∈ R ∪ I (2)

with δ1 > δ2 > δ3. The operator’s weight wj is then adjusted by following:

wj =

{
(1 − γ)wj + γ

sj

χj
, if χj > 0

(1 − γ)wj , if χj = 0
∀j ∈ R ∪ I (3)

where γ refers to the reaction factor (0 < γ < 1) to control the influence of
the recent success of an operator on its weight, and χj is the frequency of using
operator j.

Set Team Orienteering Problem with Time Windows 145

At each iteration, a certain number of nodes are removed from Sol0 by using
a selected destroy operator. The removed nodes are then reinserted into Sol0
by applying another selected repair operator. Sol0 is directly accepted if its
objective function value is better than Sol∗ or Sol′; otherwise, it will only be

accepted with probability e
−(Sol0−Sol′)

Temp . Each operator’s score sj is then updated
according to (2). After ηALNS iterations, each operator’s weight wj is updated by
(3), and its probability pj is updated according to (1). ALNS is terminated when
there is no solution improvement after θ successive temperature reductions.

Algorithm 1: ALNS pseudocode
1 Sol0, Sol∗, Sol′ ← Initial Solution
2 Temp ← T0
3 Iter ← 0
4 FoundBestSol ← False
5 Set sj and wj such that pj is equally likely
6 while NoImpr < θ do
7 RemovedNodes ← 0
8 while RemovedNodes < π do
9 Sol0 ← Destroy(Rr)

10 UpdateRemovedNodes(RemovedNodes, Rr)

11 end
12 while RemovedNodes > 0 do
13 Sol0 ← Repair(Ii)
14 UpdateRemovedNodes(RemovedNodes, Ii)

15 end

16 AcceptanceCriteria(Sol0, Sol∗, Sol′, Temp)
17 Update sj

18 if Iter mod ηALNS = 0 then
19 Update wj and pj

20 end
21 if Iter mod ηSA = 0 then
22 if FoundBestSol = False then
23 NoImpr ← NoImpr + 1
24 end
25 else
26 NoImpr ← 0
27 end
28 FoundBestSol ← False
29 Temp ← Temp × α

30 end
31 Iter ← Iter + 1

32 end
33 Return Sol∗

Four destroy and six repair operators used in the proposed ALNS are:

Random removal (R1): select q nodes randomly and remove them from
the current solution. RemovedNodes is increased by q.
Worst removal (R2): remove the node with the smallest removal profit.
The removal profit is defined as the difference in objective function values
between including and excluding a particular node.
Shaw removal (R3): remove a node that is highly related with other
removed nodes in a predefined way. In other words, it tries to remove some

146 A. Gunawan et al.

similar nodes, such that it is easier to replace the positions of one another
during the repair process. The last removed node is denoted as node i, while
the next candidate of the removed node is denoted as node j. The relatedness
value (ϕj) of node j to node i is calculated by:

ϕj =

{
φ1c

′
ij + φ2t

′
ij + φ3lij + φ4|Pi − Pj |, if i ∈ S

φ1c
′′
ij + φ2t

′′
ij + φ3lij + φ4|Di − Dj |, if i ∈ C

(4)

Unvisited removal (R4): this operator removes selected nodes that are not
visited due to the time windows violation. When selecting nodes, random
numbers are generated to determine whether they will be removed or not.
Greedy insertion (I1): insert a removed node to a position resulting in the
highest insertion profit (i.e., the difference in objective function value after
and before inserting a node to a particular position).
Regret insertion (I2): the regret value is calculated by the difference in
Total Profit when node j is inserted in the best position and in the second
best position. The idea is to select a node that leads to the largest regret
value if it is not inserted into its best position. In other words, this operator
tries to insert the node that one will regret the most if it is not inserted now.
Greedy visit insertion (I3): the insertion is decided by the changes in
the number of visited nodes for every inserted node. Since we consider time
windows, after inserting a particular node, there will be some nodes that
cannot be visited again. Here, we try to find an insertion with the highest
number of visited nodes.
Random insertion (I4): the insertion is decided by choosing a random
position in the current solution and trying to insert any removed nodes into
that position.
First feasible position insertion (I5): this operator is adopted from [4].
Every removed node is inserted into the first position that makes the solution
feasible, one at a time.
Last feasible position insertion (I6): it works similarly to the previous
operator. The main difference lies on the position of inserting it. It should
start from last node of the feasible solution.

4 Computational Results

We first modified a set of TOPTW instances that are taken from Solomon’s
dataset - namely, Set A. There are 29 instances (c100, r100, and rc100) where
each instance contains 100 nodes. We group nodes into clusters using a method
proposed by [1]. The number of clusters is set to 20% of the total number of
nodes. After randomly inserting nodes into each cluster, the cluster profit is cal-
culated by adding all profits from all respective nodes in a particular cluster.
Another set of larger instances, Set B, is introduced by modifying the above-
mentioned instances. A hundred more nodes are added with respective parame-
ters, such as service times, locations, profits, etc. This experiment is performed

Set Team Orienteering Problem with Time Windows 147

on a Windows 7 professional computer with Intel core i7-4790 CPU @3.60 GHz
processor with 16.00 GB RAM. AMPL is utilized to run the mathematical pro-
gramming using CPLEX, while Microsoft Visual C++ 2019 is used to code our
ALNS algorithm. The obtained results are compared to those of the commer-
cial software CPLEX (Table 1). The profit and computational (CPU) times are
based on 10 runs of ALNS. We also calculate the gap (%) between CPLEX and
ALNS results.

Table 1. Total profit comparison between ALNS and CPLEX when solving Set A

Instance CPLEX ALNS

Profit CPU time Profit CPU time Gap (%)

c100 1808.89 753.22 1666.44 109.40 2.79

r100 1387.92 3300.81 1223.80 109.87 2.58

rc100 1601.50 3600 1389.23 108.31 6.11

For solving Set A instances, our proposed ALNS is comparable to CPLEX.
Here, our main purpose is to test the current performance of ALNS and empha-
size the CPU time, which is much lower than the one of CPLEX. We note that
ALNS outperforms CPLEX for 5 instances - namely, r102, r104, r107, r108, and
rc104. The average gap in terms of the solution quality is 3.62%. We report the
performance of ALNS in solving Set B. The 29 instances are served by four dif-
ferent numbers of vehicles, from one to four vehicles. CPLEX is also used to solve
those instances with the maximum CPU times of 2 h (7200 s). The results are

Table 2. Total profit comparison between ALNS and CPLEX when solving Set B

Number of vehicles Instance CPLEX ALNS

Profit CPU time Profit CPU time Gap (%)

1 c100 243.33 6405.1 282.56 1233.35 −26.85

r100 133 6602.95 201.25 1657.66 −89.15

rc100 224 7200 219 1708.86 −19.6

2 c100 561.11 7200 458 972 15.6

r100 313.5 7200 371.75 1198.46 −29.19

rc100 394.13 7200 383.75 1128.79 −4.58

3 c100 687.78 7200 646.67 1046.7 3.36

r100 406.92 6682.44 533.08 980.55 −37.98

rc100 466.38 7200 552.75 1032.34 −24.85

4 c100 802.22 7200 833.22 893.25 −8.43

r100 451.33 7200 700.75 829.2 −69.26

rc100 483.5 7200 720.75 860.85 −61.2

148 A. Gunawan et al.

summarized in Table 2. We observe that ALNS outperforms CPLEX for solving
larger instances. This can be seen from the calculated average gaps, which are
−50.63%, −8.5%, −21.53%, and −48.16% for one, two, three, and four vehicles,
respectively. For most instances, CPLEX is unable to obtain the optimal solu-
tions, and therefore we only report the best found solutions within 2 h of CPU
time.

5 Conclusion

This research introduces the Set Team Orienteering Problem with Time Win-
dows (STOPTW) as a new extension of TOPTW, where customers are grouped
into clusters and a profit is associated with each cluster. The profit collection
will only happen if at least one customer is visited in a particular cluster. The
objective of STOPTW is to maximize the total collected cluster profit with-
out violating any time windows. We propose an Adaptive Large Neighborhood
Search (ALNS) algorithm to solve STOPTW, while CPLEX is used to obtain
optimal solutions for comparison purposes. The computational study shows that
our algorithm outperforms CPLEX in solving newly larger introduced instances.
More development on the algorithm can be considered as future research. Other
destroy and removal operators can also be developed to provide better solutions.
Since STOPTW is a new problem, other (meta)heuristics can also be considered.

Acknowledgment. This research was partially supported by the Ministry of Science
and Technology of Taiwan under grant MOST 108-2221-E-011-051-MY3 and the Cen-
ter for Cyber-Physical System Innovation from The Featured Areas Research Center
Program within the framework of the Higher Education Sprout Project by the Ministry
of Education (MOE) in Taiwan.

References

1. Archetti, C., Carrabs, F., Cerulli, R.: The set orienteering problem. Eur. J. Oper.
Res. 267, 264–272 (2018)

2. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of
recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2),
315–332 (2016)

3. Gunawan, A., Widjaja, A.T., Vansteenwegen, P., Yu, V.F.: Vehicle routing problem
with reverse cross-docking: an adaptive large neighborhood search algorithm. In:
Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL 2020. LNCS, vol. 12433, pp. 167–182.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4 11

4. Hammami, F., Rekik, M., Coelho, L.C.: A hybrid adaptive large neighborhood
search heuristic for the team orienteering problem. Comput. Oper. Res. 123,
105034 (2020)

5. Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R.W.: The team orienteering
problem with time windows: an LP-based granular variable neighborhood search.
Eur. J. Oper. Res. 220(1), 15–27 (2012)

6. Lutz, R.: Adaptive large neighborhood search (2015)

https://doi.org/10.1007/978-3-030-59747-4_11

Set Team Orienteering Problem with Time Windows 149

7. Pěnička, R., Faigl, J., Saska, M.: Variable neighborhood search for the set orien-
teering problem and its application to other orienteering problem variants. Eur. J.
Oper. Res. 276(3), 816–825 (2019)

8. Tarantilis, C.D., Stavropoulou, F., Repoussis, P.P.: The capacitated team orien-
teering problem: a bi-level filter-and-fan method. Eur. J. Oper. Res. 224(1), 65–78
(2013)

9. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9),
797–809 (1984). https://doi.org/10.1057/jors.1984.162

10. Vansteenwegen, P., Mateo, M.: An iterated local search algorithm for single-vehicle
cyclic inventory. Eur. J. Oper. Res. 237(3), 802–813 (2014)

https://doi.org/10.1057/jors.1984.162

Reparameterization of Computational
Chemistry Force Fields Using GloMPO

(Globally Managed Parallel Optimization)

Michael Freitas Gustavo1,2 and Toon Verstraelen1(B)

1 Center of Molecular Modeling, Ghent University, Ghent, Belgium
toon.verstraelen@ugent.be

2 Software for Chemistry and Materials B.V., Amsterdam, Netherlands

Abstract. This paper introduces GloMPO (Globally Managed Parallel
Optimization), an optimization framework which manages traditional
optimization algorithms in real-time. For particularly difficult optimiza-
tion tasks (like the reparameterization of computational chemistry mod-
els), classical approaches converge to poor minima. By managing an opti-
mization task, GloMPO: 1) improves the efficiency with which an itera-
tion budget is used; 2) provides better answers 60% to 80% of the time
as compared to traditional approaches; and 3) is often able to identify
several independent and degenerate minima.

Keywords: Computational chemistry · Black-box optimization ·
Global optimization · ReaxFF · Reparameterization

1 Introduction

The computational modeling of chemical systems has become a fundamentally
important technology in the development of new chemical compounds and mate-
rials. The most important quantity required to study a given system is the poten-
tial energy surface (PES). A PES represents the energy of a system, typically as
a function of atomic positions. These positions can be absolute, like in a Carte-
sian coordinate system, or relative, like expressing the position of two atoms as
the distance between them.

The PES can be derived exactly from quantum mechanics and physical con-
stants, but direct solution of these equations is not possible. Over the years,
very many approaches have been developed to estimate the PES. All methods
attempt to balance the computational cost of the calculation with the answer’s
accuracy.

These methods can be grouped into three broad categories: 1) ab-initio meth-
ods, which introduce some simplifying assumptions to the direct equations; 2)
semi-empirical methods, which introduce simplifications to some aspects of the
quantum mechanical equations through small parameterized models; or 3) fully
empirical methods, which entirely substitute quantum mechanical equations
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 150–156, 2021.
https://doi.org/10.1007/978-3-030-92121-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_13&domain=pdf
http://orcid.org/0000-0002-1832-8413
http://orcid.org/0000-0001-9288-5608
https://doi.org/10.1007/978-3-030-92121-7_13

Globally Managed Parallel Optimization 151

with parameterized models. In order to tackle large systems, fully empirical
approaches are required as semi-empirical or ab-initio ones are too expensive.

ReaxFF [1] is an example of a fully empirical model which includes hundreds
of global parameters, parameters for chemical elements and pairs, triplets and
quadruplets of elements; often there is no clear physical interpretability for what
these parameters represent. However, these sorts of models are the current state-
of-the-art in simulating chemical reactions computationally on a large scale.

Determining the appropriate values for each parameter involves adjusting
them until the differences between model predictions and some set of train-
ing data are minimized. In practice, the error functions, which combine all the
deviations between training data and model into a sigle value, have proven to
be extremely difficult to optimize. Not only are the problems very high dimen-
sional, but they are also expensive to evaluate because they involve computations
of properties of many chemical arrangements. Many such calculations involve a
geometry optimization of the arrangements of atoms before chemical properties
can be extracted. These optimizations are not deterministic and can lead to dif-
ferent arrangements and, hence, properties; in this way the error function can
show stochastic behavior. The complexity of evaluation also hinders the calcula-
tion of analytical derivatives of the cost function. Finally, the PES can explode
rapidly to very large or non-numerical values if atoms move very close together.
This means that the error function is very oscillatory, and fluctuates over several
orders of magnitude.

Optimization techniques typically used within the community have, to date,
not been tremendously sophisticated because the expense, high-dimensionality,
and black-box nature of the problems put severe constraints on the types of
algorithms which can be applied. For example, SOPPE [2] (Sequential One-
Parameter Parabolic Extrapolation) was the default approach for several years
and typically required an expert to make manual fine-tuning adjustments.

Recently, more sophisticated algorithms such as CMA-ES, MCFF and
OGOLEM have been applied with some success [3], however, one continues to
face issues of stability, convergence to (bad) local minima, and computational
efficiency. One particular hurdle has been the construction of the error function
itself. While conceptually simple, it requires interfacing several pieces of software
and strong programming skills. This represents a barrier for most researchers in
the field.

2 GloMPO Package

To address these challenges, our team aims to create a standardized reparameter-
ization interface which is simple enough to encourage broad adoption. ParAMS
[4] is a new tool which is able to construct an error function for several computa-
tional chemistry models, including ReaxFF, GFN-xTB, DFTB and others. This
deals with the ‘upstream’ work of the reparameterization problem. In this work
we introduce GloMPO (Globally Managed Parallel Optimization) to handle the
optimization and ‘downstream’ post-processing aspects.

152 M. Freitas Gustavo and T. Verstraelen

GloMPO is a novel optimization framework which manages several child
optimizers in real-time. It aims to ensure that function evaluations are used
efficiently (i.e. not wasted exploring bad minima), and that all available compu-
tational resources are applied to the optimization task (since some algorithms
or codes are not adequately parallelized).

Figure 1 illustrates GloMPO’s function. Given any global minimization task,
GloMPO starts several child optimizers which represent instances of any tradi-
tional optimization algorithm. GloMPO monitors the progress of each child and
compares them. It is empowered to terminate ones which appear to be converg-
ing to poor local minima (usually defined as a larger value than already seen by
another child). Terminated optimizers are replaced with new instances. When
good iterations are found by one child, GloMPO shares them with the others.
If the children can use this information in some way (for example, by sampling
the suggested point in subsequent evaluations), this can accelerate convergence.

Fig. 1. Schematic of GloMPO’s supervision of an optimization task over time. As child
optimizers appear to have converged to values higher than the best seen thus far, they
are shutdown and replaced with new instances.

By managing several independent optimizer instances, the distribution of
sampled points is spread over a wider area. In the context of ReaxFF, this often
produces answers which are virtually degenerate in cost function value, but far
apart in parameter space. Having access to several such solutions is invaluable

Globally Managed Parallel Optimization 153

to computational chemists as they try and identify deficiencies in their training
sets, and select one which works best for their application.

GloMPO is open-source and publicly available (see end). It supports run-
ning children as threads and processes, and further supports a second layer (of
threads or processes) for parallelized function evaluations for optimizers which
use multiple evaluations per iteration. GloMPO is compatible with any opti-
mization task and optimization algorithm, and all major decision criteria are
customizable. Finally, by providing a single interface to optimization regardless
of the task or type of optimizer used, and given its modular design and customiz-
ability, GloMPO can be configured to manage complex optimization workflows
through a single standardized interface.

3 Results

To quantify the effect of GloMPO’s management, a benchmark test was run
on the 66D Rastrigin, 20D Schwefel, 20D Deceptive, and 4D Shubert func-
tions. ‘Normal optimization’ is defined here as repeated application of a tradi-
tional optimization algorithm (in this case CMA-ES [5]) to a minimization task.
We compare GloMPO to repeated optimization because this is the traditional
workflow for hard-to-optimize problems like the reparameterization of ReaxFF.
Researchers, anticipating the difficulties they will face, often repeat optimizations
and accept the lowest value of the set. We similarly define the best minimum of
normal optimization as the lowest value found by any optimizer. In competition
are GloMPO optimizations which operate on the same task, using the same type
of child optimizers, and limited to the same iteration budget. In other words,
the only point of difference between the two approaches is GloMPO’s ability to
replace optimizers exploring poor minima with new optimizer instances.

Overall, 4800 tests were conducted in this way. The distribution of answers
found by normal repeated optimization and GloMPO are shown in Fig. 2.
GloMPO demonstrates a clear improvement in both the mean final value and
overall distribution of explored points; this performance proved to be robust
across test configurations which changed the number of optimizers, available
iteration budget, and other GloMPO settings. Overall, GloMPO identified a
better answer than normal optimization (70 ± 13)% of the time. GloMPO con-
figurations which actively shared good evaluations with one another performed
particularly well, winning (86 ± 6)% of their comparisons.

GloMPO was also used to reparameterize two ReaxFF force fields. The first
was a 12 parameter model describing cobalt [6] in various configurations, and the
second was an 87 parameter model for disulfide compounds [7]. For statistical
significance the optimization of each set was repeated 10 times.

Figure 3a shows the averages and standard deviations of the ten minima
found by normal and GloMPO optimizations for the cobalt trainings. It again
shows an improvement in quality of answers obtained by GloMPO. Not only is
the average answer improved, the standard deviation is much tighter, in other
words GloMPO has a higher chance of producing a good minimum as compared

154 M. Freitas Gustavo and T. Verstraelen

Fig. 2. Violin plot of final solutions from normal sequential optimization (solid red) and
GloMPO managed (hatched blue) on four common global optimization test functions.
Mean values are shown by the corresponding thick lines. Minima have been normalized
to make the four functions visually comparable. Configurations were run 100 times
each across 48 different configurations. GloMPO managed the same optimizer types as
the normal optimization runs, CMA-ES. (Color figure online)

to normal optimization. Of particular note for the cobalt optimizations is the
identification of degenerate sets; parameter sets whose error values are relatively
close, but are located far from one another in parameter space. GloMPO on aver-
age found 3.4 degenerate sets during each optimization, sometimes as many as 6
in a single run. This is compared to normal optimizations which only averaged
2.4.

In the case of the disulfide model, the dimensionality was much higher and the
error surface was poorly conditioned. This proved to be a tougher challenge than
the cobalt trainings, and normal optimization approaches failed to consistently
identify good solutions. Figure 3b shows the difference between the GloMPO
minimum and normal optimization minimum across the 10 conducted runs. In
this case, GloMPO performed better in eight out of the ten trials.

Globally Managed Parallel Optimization 155

Fig. 3. Comparison between normal and GloMPO optimization of two ReaxFF models.
Repeated ten times each.

4 Conclusion

GloMPO is able to find better solutions to global optimization problems between
57% to 83% of the time when compared to traditional approaches. These figures
are robust to changes in configuration and optimization task. GloMPO-generated
solutions are on average lower, and have smaller variance, than their unmanaged
counterparts. It also provides several qualitative advantages:

1. GloMPO prevents the inefficient use of function evaluations by preventing
optimizers from exploring minima which are worse than that already seen by
another optimizer.

2. GloMPO ensures that all computational resources are applied to the opti-
mization problem.

3. GloMPO is fully customizable in terms of its decision making, and can be
applied to any optimization problem using any combination of child algo-
rithms. This flexibility means it can be leveraged as workflow manager.

4. GloMPO provides a standardized interface to optimization.
5. GloMPO provides standardized outputs regardless of the types of child opti-

mizers used. The resulting log of trajectories can be analyzed and help in
better conditioning of the optimization task.

156 M. Freitas Gustavo and T. Verstraelen

Software Availability and Requirements

Project name: GloMPO

Project home page: www.github.com/mfgustavo/glompo

Operating system: Platform independent

Programming language: Python >3.6

Other requirements: >AMS2020.1 for ReaxFF interface

License: GPL-3.0

Acknowledgments. The authors thank the Flemish Supercomputing Centre (VSC),
funded by Ghent University, FWO and the Flemish Government for use of their com-
putational resources. Funding for the project was provided by the European Union’s
Horizon 2020 research and innovation program under grant agreement No 814143. T.V.
is furthermore supported by the Research Board of Ghent University (BOF).

References

1. van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive
force field for hydrocarbons. J. Phys. Chem. A. 105(41), 9396–9409 (2001). https://
doi.org/10.1021/jp004368u

2. Larsson, H.R., van Duin, A.C.T., Hartke, B.: Global optimization of parameters in
the reactive force field ReaxFF for SiOH. J. Comput. Chem. 34, 2178–2189 (2013).
https://doi.org/10.1002/jcc.23382

3. Shchygol, G., Yakovlev, A., Trnka, T., van Duin, A.C.T., Verstraelen, T.:
ReaxFF parameter optimization with Monte-Carlo and evolutionary algorithms:
guidelines and insights. J. Chem. Theory Comput. 15(12), 6799–6812 (2019).
https://doi.org/10.1021/acs.jctc.9b00769

4. Komissarov, L., Rüger, R., Hellström, M., Verstraelen, T.: ParAMS: parameter
optimization for atomistic and molecular simulations. J. Chem. Inf. Model. (2021).
https://doi.org/10.1021/acs.jcim.1c00333

5. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation
in evolution strategies. Evol. Comput. 9(2), 159–195 (2001).
https://doi.org/10.1162/106365601750190398

6. LaBrosse, M.R., Johnson, J.K., van Duin, A.C.T.: Development of a transferable
reactive force field for cobalt. J. Phys. Chem. A. 114(18), 5855–5861 (2010). https://
doi.org/10.1021/jp911867r

7. Müller, J., Hartke, B.: ReaxFF reactive force field for disulfide mechanochemistry,
fitted to multireference ab initio data. J. Chem. Theory Comput. 12(8), 3913–3925
(2016). https://doi.org/10.1021/acs.jctc.6b00461

www.github.com/mfgustavo/glompo
https://doi.org/10.1021/jp004368u
https://doi.org/10.1021/jp004368u
https://doi.org/10.1002/jcc.23382
https://doi.org/10.1021/acs.jctc.9b00769
https://doi.org/10.1021/acs.jcim.1c00333
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1021/jp911867r
https://doi.org/10.1021/jp911867r
https://doi.org/10.1021/acs.jctc.6b00461

Towards Structural Hyperparameter
Search in Kernel Minimum

Enclosing Balls

Hanna Kondratiuk1,2(B) and Rafet Sifa1(B)

1 Fraunhofer IAIS, Sankt-Augustin, Germany
{hanna.kondratiuk,rafet.sifa}@iais.fraunhofer.de

2 University of Bonn, Bonn, Germany

Abstract. In this paper we attempt to provide a structural methodol-
ogy for an informed hyper-parameter search when fitting Kernel Min-
imum Enclosing Balls (KMEBs) to datasets. Our approach allows us
to control the number of resulting support vectors, which can be an
important aspect for practical applications. To address this problem, we
particularly focus on searching the width of Gaussian kernel and intro-
duce two methods that are based on Greedy Exponential Search (GES)
and Divide and Conquer (DaC) approaches. Both algorithms in case
of non-convergence return the approximate result for the width value
corresponding to the closest bound for the number of support vectors.
We evaluate our method on standard benchmark datasets for prototype
extraction using a Frank-Wolfe algorithm to fit the balls and conclude
distance choices that yield descriptive results. Moreover, we compare the
number of execution of the fitting algorithm and the number of iterations
it took for our methods to result in convergence.

Keywords: Minimum enclosing balls · Kernel methods · Prototype
extraction

1 Introduction

In the scope of data prototyping, the choice of the hyperparameters in KMEBs
is crucial. Selected prototypes should not only be representative, but also quan-
tifiable and interpretable at the same time in order to assist human analyst in
decision making [4]. In order to achieve that, for the method proposed in [1],
one needs to specify the usually low number of prototypes to compute as per
interpritability for human analyst.

In [3] it was observed, that while finding KMEBs using Frank-Wolfe algorithm
and Gaussian Kernel, the number of support vectors grows with the decreasing

Supported by the Competence Center for Machine Learning Rhine Ruhr (ML2R) which
is funded by the Federal Ministry of Education and Research of Germany (grant no.
01—S18038B).

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 157–166, 2021.
https://doi.org/10.1007/978-3-030-92121-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_14

158 H. Kondratiuk and R. Sifa

sq. euclidean euclidean cityblock minkowski cosine hamming

Fig. 1. Toy example illustrating the idea of utilizing Kernel Minimum Enclosing Balls
for prototyping using Gaussian kernel with a number of distances. Chosen prototypes
are highlighted here in green and in blue is highlighted the data that is used to compute
the prototypes. Prototypes are the support vectors, that are the points from dataset
that correspond to the non-zero components of the Lagrange multipliers μ. Here we
can observe, that change of the distance of the kernel retrieves different prototypes.
(Color figure online)

values of gaussian width parameter σ, however not monotonically and with not-
icable oscillations. This fact can still be used to control the number of support
vectors in the result of the Frank-Wolfe algorithm. As would be empirically
shown in the scope of the paper, it retrieves meaningful prototypes for a number
of toy and real-world datasets.

One illustration of the KMEBs algorithm providing the meaningful proto-
types is shown at Fig. 1, retrieving the critical points or capturing the struc-
ture of that data. The data consists of one hundred points with noise ratio set
to respectively 0.05 and 0.1 for two circles and moons examples. There were
exactly thirty prototypes produced with KMEBs algorithm depending on the
chosen distance. Here we may notice, that having chosen the ratio of number
of prototypes to number of points set to 0.3, the algorithm is able to represent
the structure of the data. The topology of circles and moons is clearly captured
for squared euclidean distance, euclidean and hamming distance. Miskowski dis-
tance of the power 4 and cityblock distance is capturing the moon and outer
circle topology as well, however number of the prototypes in the inner circle stay
underrepresented for both cases.

On this example we can clearly see the practical application to specify and
fix the number of the prototypes that we aspire to compute via KMEBs. The
scope of use of the method is not only restricted in prototyping, but also can be
used in a number of fields. For instance, it can be used to find the σ parameter
in a novelty detection tasks, when the only parameter is a pre-defined ratio of
number of support vectors to the number of data points.

Towards Structural Hyperparameter Search 159

1 Input: K , k, tmax

2 Initialize: μ0 = 1
n
1

3 for t = 0, . . . , tmax do
4 η = 2

t+2

5 Choose i vi ∈ R
n s.t. i = argminj∈{1,...,n} [2Kμt − k]j

6 μt+1 = μt + η(vi − μt)

7 Output: μtmax

Algorithm 1: Frank-Wolfe Algorithm for finding KMEBs. The Frank-
Wolfe algorithm is used in order to solve the problem in the following
setting. Given a initial guess μ0 for the solution, each iteration of the algo-
rithm determines which direction νt ∈ Δn−1 minimizes the inner prod-
uct νᵀ∇Dkernel(μ) and applies a conditional gradient update μt+1 =
μt + ηt(νt − μt) with decreasing step size ηt = 2

t+2 ∈ [0, 1].

2 Overview of the Problem

Minimum Enclosing Balls (MEB) problem is posed as

c∗, r∗ = argmin
c, r

r2
∥
∥xi − c

∥
∥
2 − r2 ≤ 0 i ∈ [1, . . . , n].

where xi is the point from the dataset, c is the center of the ball and r is
ball’s radius.

The kernelized MEB problem is derived as shown in [1] by using Karush-
Kuhn-Tucker conditions and kernel trick, and it takes form of:

μ∗ = argmin
μ

μᵀK μ − μᵀk

where the goal is to find a Lagrange multiplier μ that resides in the standard
simplex Δn−1 = {μ ∈ R

n|μ � 0,μᵀ1 = 1}, K ∈ R
n×n is a kernel matrix,

k contains kernel matrix’s diagonal (i.e. k = diag[K]) and μ ∈ R
n contains

Lagrange multipliers.
Support vectors in the context of KMEBs problem are the data points that

correspond to the non-zero components of Lagrange multipliers vector μtmax
,

where μtmax
is the result of the iterative Frank-Wolfe algorithm summarized

in Algorithm 1. The function of support vectors number for Gaussian kernel is
defined as

p(tmax, σ, d) =
n∑

i=0

sgn(μtmaxi
)

with sign function taking only non-negative values as the output of the Frank-
Wolfe algorithm is essentially traversing through the simplex vertices.

160 H. Kondratiuk and R. Sifa

Given the fixed number p∗ of support vectors, we attempt to find such σ that
for fixed number of iterations inside of Frank-Wolfe algorithm t∗max and provided
distance function d∗ holds:

p(t∗max, σ, d∗) = p∗ (1)

The dependence of number of support vectors on σ is not monotone, hence it
introduces additional challenges in hyper-parameter search. Firstly, as the func-
tion of support vectors numbers returns different discrete values, that eliminates
the usage of traditional optimization methods based on the assumption of exist-
ing derivative. Secondly, there is no theoretical guarantee, that for the desired
number of support vectors p∗: ∃σ : p(t∗max, σ, d∗) = p∗.

Choosing p∗ or the ratio of number of prototypes to number of points is
dataset and application dependent. The ratio of number of prototypes to number
of points is defined as

r =
p∗

n
∈

(min∀σ>0 p(σ)
n

,
max∀σ>0 p(σ)

n

)

with number of support vectors p∗ ∈ [1,min(n, t∗max)] and n being the data size.
For instance, in the behaviour prototyping scope, we would specify the number
of support vectors p∗ according to the number of prototypes we want to extract,
that is usually a small natural number greater than 1. In novelty detection
application, the ratio r is defined in between 1

n and min(n,t∗
max)

n , with second
value corresponding to using all the points possible as support vectors (that is
an extreme case) and 1

n corresponding to the other extreme of computing only
one support vector. In the scope of classification, the ratio of support vectors r
can be chosen using cross-validation while for novelty detection using the false
positive rate.

However, we note, that it is not guaranteed that there exists parameter σ
such that p = 1 or p = min(n, t∗max). On the contrary, there are examples of
the datasets when the minimum number of support vectors over high-power
exponential interval is greater than 1 and the maximum number of support
vectors is smaller than min(n, t∗max) for infinitely small σ. Despite that, there
is a strong empirical evidence, that the intermediate values of natural number
sequence exist:

∃σ > 0 : ∀p∗ ∈ {j ∈ N
∗ : min

∀σ>0
p(σ) ≤ j ≤ max

∀σ>0
p(σ)} : p(t∗max, σ, d∗) = p∗

as we may observe in the experimental section.
Given those facts, we propose two depth-restricted algorithms: Greedy Expo-

nential Search (GES) and Divide and Conquer (DaC), attempting to solve the
root finding problem for (1) and returning the approximate solution for the case
when the algorithm does not converge in lmax iterations.

Towards Structural Hyperparameter Search 161

1 Input: p∗, distance d∗, tmax, depth lmax, number of intervals to spawn c

2 Initialize: exponential interval, svsdiff = max(n, t∗
max)

3 for t = 0, . . . , lmax do
4 svsprev = 0, σprev = 0
5 for σ in exponential interval do
6 svs = p(t∗

max, σ, d∗)
7 if svs = p∗ then
8 return σ

9 if svs �= 1 AND svsprev = 1 then

10 σhigher = σ, svshigher = svs

11 if svsprev �= min(n, t∗
max) AND svs = min(n, t∗

max) then

12 σlower = σprev , svslower = svsprev

13 if |svs − p∗| < svsdiff then
14 σexp = σ
15 svsdiff = |svs − p∗|
16 svsprev = svs, σprev = σ

17 exponential interval = tsi(σexp, σhigher, c)
⋃

tsi(σexp, σlower, c)

18 return σexp

Algorithm 2: Greedy Exponential Search. After initializing the desired
number of support vectors p∗, distance d∗, number of Frank-Wolfe iterations
t∗max, the algorithms depth lmax and number of intervals c at line 1 to spawn
around the found sigma. At line 2 we initialize exponential interval of i.e.
[1040, 1039, . . . , 10−40] and initialize the difference between desired support
vectors number p∗ and p(t∗max, σ, d∗) for current sigma. We denote this
difference by svsdiff and initialize it as the maximum possible difference
of support vectors, that is max(n, t∗max). For depth lmax we would repeat
the same operation enclosed in for loop with line 3. At line 5 we traverse
through the initial interval where for each sigma we compute the number
of support vectors svs (line 6) and define the ‘higher’ and ‘lower’ sigma
values in lines 10 and 12 that correspond to the extreme cases of sigma
parameter. In line 14 we equalize σexp value to the σ that had the nearest
support vector number to the desired p∗. Thus, we can assure that we keep
the closest value of the support vectors. At line 17 we span the union of
two sided intervals for the closest value for σexp corresponding to the closest
value to p∗. Then this interval is used at depth 1 in line 5 and the search
continues.

3 Proposed Approach

We concentrate our attempts to approach the problem by narrowing it down
to Gaussian kernel with chosen distance function d∗ and the assumption, that
with the growth of σ the number of support vectors decreases with notice-
able oscillations. The proposed algorithms are summarized at Algorithm 2 and
Algorithm 3, and both of them provide the approximate solution in case of
exceeding the pre-defined depth parameter lmax. GES and DaC also rely on
the assumption that t∗max � 1, n � 1, max

∀σ>0
p(t∗max, σ, d∗) = min(n, t∗max)

162 H. Kondratiuk and R. Sifa

σexp σhigherσexp − |σhigher−σexp|
21 σexp + |σhigher−σexp|

21

σlower σexpσexp − |σlower−σexp|
21 σexp + |σlower−σexp|

21

σexp

Fig. 2. Two-sided interval (tsi) search idea utilized in GES

and min
∀σ>0

p(t∗max, σ, d∗) = 1, as there is no prior knowledge what are the values

min∀σ>0 p(σ). If max
∀σ>0

p(t∗max, σ, d∗) = min(n, t∗max) and min
∀σ>0

p(t∗max, σ, d∗) = 1

does not hold, then we can replace 1 by min∀σ>0 p(σ) in line 9 and min(n, t∗max)
by max

∀σ>0
p(t∗max, σ, d∗) in line 11 in both Algorithm 2 and Algorithm 3. Finding

the maximum and minimum values is possible during the first step of going over
initial exponential interval.

As the initialization step, both of the algorithms use the powers of 10 as the
way to quickly identify the region when kernel provides the meaningful values for
the prototyping with the intervals. It can be seen at lines 5 and called exponential
interval in GES and interval in DaC respectively. Gaussian kernel can take both
extremes, from being 1 matrix corresponding to the high values of σ and only
one prototype, to identity matrix, corresponding to the low sigma value and
maximum number of support vectors, that has empirically shown to be smaller
or equal to the min(tmax, n).

The Greedy Exponential Search (GES) at each iteration saves the new
appearances of the number of support vectors and two critical values of sigma
σhigher, σlower, corresponding to the minimum number of support vectors (that
is 1) and maximum number of support vectors. Then such value σexp is found
that corresponds to the support vectors number closest to p∗. The visual rep-
resentation of the tsi can be found at Fig. 2. For the σ′ two-sided exponential
intervals are constructed for σhigher, σlower, and the resulting sigma interval for
the next step is taken as the union of the two. The two-sided interval tsi spawns
the bi-sectional division over the interval σexp ± 2−i|σhigher − σexp| for tsi(σexp,
σhigher, c) and σexp±2−i|σlower−σexp| for tsi(σexp, σlower, c) ∀i ∈ {1 . . . c}. With
the unity of those two intervals the next iteration step of GES is performed until
the resulting σ∗ is found or lmax iterations have passed. The following approach
is inspired by the observation in [2] that for support vector machines searching
through exponentially growing sequences of the hyperparameters is a practical

Towards Structural Hyperparameter Search 163

1 Input: p∗, distance, tmax, depth lmax, number of equal intervals to spawn g

2 Initialize: interval, svsdiff = max(n, t∗
max), count = 0

3 for t = 0, . . . , lmax do
4 svsprev = 0, σprev = 0
5 for σ in interval do
6 svs = p(t∗

max, σ, d∗), count = count + 1
7 if svs = p∗ then
8 return σ

9 if svs �= 1 AND svsprev = 1 then

10 σhigher = σ, svshigher = svs

11 if svsprev �= min(n, t∗
max) AND svs = min(n, t∗

max) then

12 σlower = σprev , svslower = svsprev

13 if |svs − p∗| < svsdiff then
14 σclosest = σ
15 svsdiff = |svs − p∗|
16 svsprev = svs, σprev = σ

17 if |p(t∗
max, σhigher, d∗) − p∗| > |p(t∗

max, σlower, d∗) − p∗| then
18 σ′

higher = (σhigher + σlower)/2, direction = True

19 else
20 σ′

lower = (σhigher + σlower)/2, direction = False

21 if p∗ �∈ [p(σ′
higher), p(σ′

lower)] then

22 if direction then
23 σ′

lower = (σhigher + σlower)/2

24 else
25 σ′

higher = (σhigher + σlower)/2

26 interval = linspace(σhigher, σlower, g + 5 · count)

27 else
28 interval = linspace(σhigher, σlower, g)

29 return σclosest;

Algorithm 3: Divide and Conquer. In the similar fashion, we define the
interval borders as meaningful values (that are not corresponding to the
extreme 1 support vector and min(n, t∗max) support vectors) at lines 10 and
12, and save in σclosest the value of σ that yields the smaller difference
svsdiff . Then in line 17 we define to which direction it makes sense to
adhere and cut the respective interval in a half in 18 and 20. If the desired
svs number is not encapsulated in the interval [p(σ′

higher), p(σ′
lower)], then

we assume that we come one step back and jump to another side of the
interval with breaking it in more pieces as shown in 26 as it hints at the
non-monotonic behavior.

method to identify the fitting ones. Opposed to uniform grid search, it spawns
the bi-sectional search of depth c only around the σ values that are correspond-
ing to support vector values that are greater than 1, lower than min(n, t∗max)
and that full-fill the condition on line 13 of GES. By full-filling that condition
we ensure that it would span the tsi around the sigma closest to the desired
number p∗, hence we call this algorithm Greedy Exponential Search.

164 H. Kondratiuk and R. Sifa

The summary of the second proposed algorithm is shown at Algorithm 3.
The Divide and Conquer approach is concentrated on the assumption, that we
acquire quicker convergence if we cut the interval in two, with traversing through
the half-interval where respective number of support vectors is closer to the p∗.
We find the values σhigher, σlower such that 1 < p(t∗max, σ, d∗) < min(t∗max, n),
that correspond to the highest and lowest support vector numbers in the interval.
Over this interval we perform the bisection to two intervals. We choose the left
half-interval if |p(t∗max, σ′

higher, d
∗) − p∗| > |p(t∗max, σ′

lower, d
∗) − p∗| and right

interval otherwise, where σ′
lower and σ′

higher are two values defining the half-
interval. Then we check, whether p∗ is in the interval of [p(σ′

higher), p(σ′
lower)].

If the interval chosen does not include p∗, then the algorithm returns for one
step and chooses the other side of the interval. After that, the half-interval is
divided into g equal parts and this division is passed as an interval to the next
iteration. There is a possibility that the interval limits show p∗ is not included,
but the inner values of the interval may contain p∗ (due to the non-monotone
and oscillating behavior). That is why in the algorithm depth value count is
introduced in order to account for the possibility. It is used in case if the support
vector number p∗ does not lie in the subdivision to enlarge the number of linspace
divisions.

GES can we also viewed as complementary approach to the DaC, as they
both concentrate on different strategies. Namely, GES is going more “wide”
than “deep” using the tsi, as it makes use of spanning the intervals around the
obtained sigma values corresponding to support vectors that become iteratively
closer to the desired value p∗. For DaC the algorithm rather searches the σ value
“deep” reducing the interval in a half until while the number of support vectors
of interval sides includes the desired number of support vectors p∗. However,
both algorithms might not reach the resulting σ as the both intervals at some
step l may not even contain p∗.

4 Results

In our experimental set-up the initialization of the interval was [10−20, 10−19,
. . . , 1019, 1020], and the target value of support vectors is shown at the table
as p∗, the maximum depth of the algorithm was fixed to lmax = 10, as l we
assign the number of the runs before the algorithm converged and number of
intervals spawned is g = 10, c = 20. The number of iterations in Frank-Wolfe
was set to t∗max = 2000 and seed was fixed to 120 for random noise in Moon
and Circles conceptual examples. At the table we can observe that Divide and
Conquer is inclined to have a greater number of runs of Frank-Wolfe algorithm
comparing to Greedy Exponential Search. Coherently, it finds σ corresponding
to the targeted value of support vectors p(σ) = p∗ on almost all the example
datasets, including the toy datasets shown in the introduction section (Moons,
Circles), as well as benchmark datasets as MNIST, Faces and Faces Olivetti. On
the example of the experiments, we may conclude that the algorithm converges
in all the cases but with squared euclidean distance on MNIST and Olivetti
Faces. Greedy Exponential Search in the case of reaching depth l = 10 still

Towards Structural Hyperparameter Search 165

Table 1. Comparison of the DaC and GES algorithms for each of the used distances.
Parameter l is the depth, when the solution was found, with 11 meaning that the
algorithm did not converge with lmax = 10 iterations and returns approximate result.
k is the number of calls to Frank-Wolfe algorithm and p(σ) is the number of support
vectors for the returned sigma. In the case of convergence p(σ) = p∗

Data p∗ sqeucl. eucl. manh. mink. cos hamming

l k p(σ) l k p(σ) l k p(σ) l k p(σ) l k p(σ) l k p(σ)
Moons 30 7 1954 30 3 78 30 10 119264 30 5 857 30 5 1380 30 5 886 30
Circles 30 3 88 30 6 334 30 3 83 30 6 335 30 11 390 31 5 886 30
MNIST 10 11 2240 11 3 193 10 3 56 10 3 189 10 3 247 10 3 200 10
Faces 10 3 76 10 3 269 10 3 59 10 3 155 10 3 89 10 3 83 10

Olivetti 10 11 2190 11 3 179 10 6 335 10 6 827 10 1 15 10 3 152 10

(a) DaC

Data p∗ sqeucl. eucl. manh. mink. cos hamming

l k p(σ) l k p(σ) l k p(σ) l k p(σ) l k p(σ) l k p(σ)
Moons 30 4 256 30 4 271 30 3 147 30 4 273 30 4 258 30 5 345 30
Circles 30 4 271 30 4 222 30 6 314 30 4 268 30 3 151 30 5 345 30
MNIST 10 11 763 11 11 801 13 7 394 10 11 763 11 3 155 10 11 763 11
Faces 10 5 230 10 4 197 10 5 316 10 7 358 10 3 188 10 4 276 10

Olivetti 10 5 234 10 4 187 10 6 357 10 2 103 10 1 15 10 4 196 10

(b) GES

has comparatively low number of Frank-Wolfe iterations, that however results
in more frequent approximate solutions, such as, for instance, euclidean distance
case for MNIST (Table 1). The resulting prototypes computed on MNIST and
Faces datasets are shown at Fig. 3. For each distance choice algorithms extract
exactly 10 prototypes in accordance with p∗ = 10 in Table 1.

Fig. 3. Comparison of prototypes using the squared euclidean, euclidean, cityblock,
minkowski, cosine and hamming distances obtained from GES and DaC algorithms.
Hamming distance provides the most meaningful prototypes in MNIST, that is
explained by the nature of the data as data images are really sparse and the fact that
hamming distance calculates the number of the different entries in the data. Minkowski
distance identifies few types of number 5, euclidean distance identifies all the classes
apart from class 8. In Faces dataset, on contrary, the most meaningful prototypes are
provided by euclidean, squared euclidean, cityblock and minkowski distances, allowing
to have a variety of prototypes to preview a dataset.

166 H. Kondratiuk and R. Sifa

5 Future Work

As a further research objective, we plan to optimize the presented algorithms,
expand the number of the benchmark datasets, investigate different use cases
(such as novelty detection [5]) and address the problem not only with the Gaus-
sian kernel, but also with Distance-Based and Categorical (i.e. k0, k1) kernels.

References

1. Bauckhage, C., Sifa, R.: Joint selection of central and extremal prototypes based on
kernel minimum enclosing balls. In: Proceedings DSAA (2019)

2. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector
classification (2003)

3. Kondratiuk, H., Sifa, R.: Towards an empirical and theoretical evaluation of gradient
based approaches for finding kernel minimum enclosing balls. In: Proceedings DSAA.
IEEE (2020)

4. Sifa, R.: Matrix and Tensor Factorization for Profiling Player Behavior. LeanPub,
Victoria (2019)

5. Sifa, R., Bauckhage, C.: Novelty discovery with kernel minimum enclosing balls. In:
Kotsireas, I.S., Pardalos, P.M. (eds.) LION 2020. LNCS, vol. 12096, pp. 414–420.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53552-0 37

https://doi.org/10.1007/978-3-030-53552-0_37

Using Past Experience for Configuration
of Gaussian Processes in Black-Box

Optimization

Jan Koza1(B) , Jǐŕı Tumpach2, Zbyněk Pitra3 , and Martin Holeňa4

1 Faculty of Information Technology, Czech Technical University, Prague, Czechia
kozajan@fit.cvut.cz

2 Faculty of Mathematics and Physics, Charles University, Prague, Czechia
tumpach@cs.cas.cz

3 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University,
Prague, Czechia

4 Academy of Sciences, Institute of Computer Science, Prague, Czechia
martin@cs.cas.cz

Abstract. This paper deals with the configuration of Gaussian pro-
cesses serving as surrogate models in black-box optimization. It exam-
ines several different covariance functions of Gaussian processes (GPs)
and a combination of GPs and artificial neural networks (ANNs). Dif-
ferent configurations are compared in the context of a surrogate-assisted
version of the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES), a state-of-the-art evolutionary black-box optimizer. The configu-
ration employs a new methodology, which consists of using data from
past runs of the optimizer. In that way, it is possible to avoid demand-
ing computations of the optimizer only to configure the surrogate model
as well as to achieve a much more robust configuration relying on 4600
optimization runs in 5 different dimensions.

The experimental part reveals that the lowest rank difference error,
an error measure corresponding to the CMA-ES invariance with respect
to monotonous transformations, is most often achieved using rational
quadratic, squared exponential and Matérn 5

2
kernels. It also reveals

that these three covariance functions are always equivalent, in the sense
that the differences between their errors are never statistically significant.
In some cases, they are also equivalent to other configurations, including
the combination ANN-GP.

Keywords: Black-box optimization · Gaussian processes · Artificial
neural networks · Covariance functions · Surrogate modeling

1 Introduction

Gaussian processes (GPs) [35] are stochastic models increasingly important in
machine learning. They are frequently used for regression, providing an estimate

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 167–182, 2021.
https://doi.org/10.1007/978-3-030-92121-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_15&domain=pdf
http://orcid.org/0000-0003-2727-5787
http://orcid.org/0000-0003-1911-1301
http://orcid.org/0000-0002-2536-9328
https://doi.org/10.1007/978-3-030-92121-7_15

168 J. Koza et al.

not only of the expected value of the dependent variable, but also of the distribu-
tion of its values. They are also encountered in classification and play an impor-
tant role in optimization, especially black-box optimization [20,22], where the
distribution of values provides search criteria that are alternatives to the objec-
tive function value, such as the probability of improvement or expected improve-
ment. Moreover, the importance of GPs in machine learning incited attempts
to combine them with the kind of machine learning models most frequently
employed in the last decades – artificial neural networks (ANNs), including deep
networks [5,6,8,20,21,40]. The importance of this research direction is supported
by recent theoretical results concerning the relationships of asymptotic proper-
ties of important kinds of ANNs to properties of GPs [27,31,32].

In optimization, the alternative search criteria provided by a GP are use-
ful primarily if GPs serve as surrogate models for black-box objective functions,
i.e. pointwise observable functions for which no analytic expression is available
and the function values have to be obtained either empirically, e.g. through
measurements or experiments, or by means of simulations. Surrogate modeling,
aka metamodeling [4,10,11,26,33,34,36] is an approach used in black-box opti-
mization since the late 1990s to deal with situations when the evaluation of
a black-box objective is expensive, e.g., in time-consuming simulations [13], or
due to costly experiments [2]. The surrogate model is a regression model trained
on the data evaluated so far using the black-box objective function. Predictions
of such model are used instead of the original function to save the expensive
evaluations.

Using GPs as surrogate models in black-box optimization brings a specific
problem not known from using them directly as optimizers (e.g. in [22]), nor
from GP models for regression or classification. It is connected with assessing
the quality of the surrogate model approximation for different choices of GP
covariance functions. As will be recalled below in Subsect. 2.1, the covariance
function of a GP is crucial for modeling relationships between observations cor-
responding to different points in the input space. This problem consists in the
fact that although the quality of the GP depends solely on its predictions and
the true values of the black-box objective function, to obtain the prediction
needs in addition a complete run of an optimizer, which is typically much more
demanding. The problem is particularly serious when combing GPs and ANNs
because then separate runs are needed for all considered combinations of GP
covariance functions with the considered ANN topologies. That motivated the
research reported in this paper, in which we have investigated 10 GP configura-
tions, differing primarily through the choice of the covariance function: Instead
of running the optimizer specifically for the configuration task, we used compre-
hensive data from its 4600 previous runs.

The next section recalls the fundamentals of Gaussian processes and their
integration with neural networks. In Sect. 3, the employed past optimization
data and the algorithm with which they were obtained are introduced. The core
part of the paper is Sect. 4, which brings experimental results of configuring GPs
based on those data.

GP-Configuration in Black-Box Optimization 169

2 Gaussian Processes and Their Neural Extension

2.1 Gaussian Processes

A Gaussian process on a set X ⊂ R
d, d ∈ N, is a collection of random variables

(f(x))x∈X , any finite number of which has a joint Gaussian distribution [35].
It is completely specified by a mean function μ : X → R, typically assumed
constant, and by a covariance function κ : X × X → R such that for x,x′ ∈ X ,

Ef(x) = μ, cov(f(x), f(x′)) = κ(x,x′). (1)

Therefore, a Gaussian process is usually denoted GP(μ, κ) or GP(μ, κ(x,x′)).
The value of f(x) is typically accessible only as a noisy observation y =

f(x) + ε, where ε is a zero-mean Gausssian noise with a variance σn > 0. Then

cov(y,y′) = κ(x,x′) + σ2
nI(x = x′), (2)

where I(proposition) equals for a true proposition 1, for a false proposition 0.
Consider now the prediction of the random variable f(x�) in a point x� ∈ X

if we already know the observations y1, . . . , yn in points x1, . . . ,xn. Introduce
the vectors x = (x1, . . . ,xn)�, y = (y1, . . . , yn)� = (f(x1) + ε, . . . f(xn) + ε)�,
µ(x) = (μ(x1), . . . , μ(xλ)), k� = (κ(x1,x�), . . . , κ(xn,x�))� and the matrix K ∈
R

n×n such that (K)i,j = κ(xi,xj) + σ2
nI(i = j). Then the probability density of

the vector y of observations is

p(y;µ, κ, σ2
n) =

exp
(
− 1

2 (y − µ(x))�K−1(y − µ(x))
)

√
(2π)n det(K)

, (3)

where det(A) denotes the determinant of a matrix A. Furthermore, as a con-
sequence of the assumption of Gaussian joint distribution, also the conditional
distribution of f(x�) conditioned on y is Gaussian, namely

N (µ(x�) + k�
� K−1(y − µ(x)), κ(x�,x�) − k�

� K−1k�). (4)

According to (2), the relationship between the observations y and y′ is deter-
mined by the covariance function κ. In the reported research, we have considered
9 kinds of covariance functions, listed below. In their definitions, the notation
r = ‖x′ − x‖ is used, and among the parameters of κ, aka hyperparameters of
the GP, frequently encountered are σ2

f , � > 0, called signal variance and charac-
teristic length-scale, respectively. Other parameters will be introduced for each
covariance function separately.

(i) Linear : κLIN(x,x′) = σ2
0 + σ2

fx
�x′, with a bias σ2

0 .
(ii) Quadratic is the square of the linear covariance: κQ(x,x′) = (σ2

0 +
σ2

0x
�x′)2.

(iii) Rational quadratic: κRQ(x,x′) = σ2
f

(
1 + r2

2α�2

)−α

, with α > 0.

(iv) Squared exponential : κSE(x,x′) = σ2
f exp

(
− r2

2�2

)
.

170 J. Koza et al.

(v) Matérn 5
2 : κ

5
2
Mat(x,x′) = σ2

f

(
1 +

√
5r
� + 5r2

3�2

)
exp

(
−

√
5r
�

)
.

(vi) Neural network :

κNN(x,x′) = σ2
f arcsin

(
2x̃�Σx̃′

√
(1 + 2x̃�Σx̃)(1 + 2x̃′�Σx̃′)

)

(5)

where x̃ = (1,x), x̃′ = (1,x′) and Σ ∈ R
d+1×d+1 is positive definite.

The name of this covariance function is due to the fact that for a simple
ANN with d inputs connected to one output, computing the function
f(x) = erf(w0 +

∑d
j=1 wjxj) with erf(z) = 2√

π

∫ z

0
e−t2dt, if the weights

are random variables and the vector (w0, w1, . . . , wd) has the distribution
N (0, Σ), then

Ef(x)f(x′) = κNN(x,x′). (6)

(vii) The isotropic version of a covariance function with spatially varying length-
scales �j : X → (0,+∞), j = 1, . . . , d, originally proposed by Gibbs [15]:

κGibbs(x,x′) = σ2
f

(
2�(x)�(x′)

�2(x) + �2(x′)

) d
2

exp
(

− r2

�2(x) + �2(x′)

)
. (7)

(viii) One composite covariance function, namely the sum of κSE and κQ:
κSE+Q(x,x′) = κSE(x,x′) + κQ(x,x′).

(ix) Spectral mixture of Q components, Q ∈ N [39,40]:

κSM (x,x′) =

Q∑

q=1

cq

√
(2π�2q)d

d∏

j=1

exp(−2π2�2q(xj − x′
j)

2) cos(2π(µq)j(xj − x′
j)),

(8)

where cq ∈ R, �q > 0,µq ∈ R
d, q = 1, . . . , Q. Its name is due to the

fact that the function S defined S(s) =
√

(2π�2q)d exp(−2π2�2‖s‖2) is the
spectral density of κSE.

2.2 GP as the Output Layer of a Neural Network

The approach integrating GPs into an ANN as its output layer has been inde-
pendently proposed in [6] and [40]. It relies on the following two assumptions:

1. If nI denotes the number of the ANN input neurons, then the ANN computes
a mapping net of nI-dimensional input values into the set X on which is the
GP. Consequently, the number of neurons in the last hidden layer equals the
dimension d, and the ANN maps an input v into a point x = net(v) ∈ X ,
corresponding to an observation f(x + ε) governed by the GP (Fig. 1). From
the point of view of the ANN inputs, we get GP(μ(net(v)), κ(net(v),net(v′))).

2. The GP mean μ is assumed to be a known constant, thus not contributing to
the GP hyperparameters and independent of net.

GP-Configuration in Black-Box Optimization 171

Due to the assumption 2., the GP depends only on the parameters θκ of the
covariance function. As to the ANN, it depends on the one hand on the vector
θW of its weights and biases, on the other hand on the network architecture,
which we will treat as fixed before network training starts.

Consider now n inputs to the neural network, v1, . . . ,vn, mapped to the inputs
x1 = net(v1), . . . , xn = net(vn) of the GP, corresponding to the observations
y = (y1, . . . , yn)�. Then the log-likelihood of θ is

L(θ) = ln p(y;μ, κ, σ2
n) (9)

= − 1
2 (y − μ)�K−1(y − μ) − ln(2π) − 1

2 ln det(K), (10)

where μ is the constant assumed in 2., and

(K)i,j = κ(net(vi),net(vj)). (11)

Fig. 1. Schema of the integration
of a GP into an ANN as its output
layer.

Let model training, searching for the vector
(θκ, θW), be performed in the simple but, in
the context of neural networks, also the most
frequent way – as gradient descent. The par-
tial derivatives forming ∇(θκ,θW)L can be com-
puted as:

∂L
∂θκ

�

=
n∑

i,j=1

∂L
∂Ki,j

∂Ki,j

∂θκ
�

, (12)

∂L
∂θW

�

=
n∑

i,j,k=1

∂L
∂Ki,j

∂Ki,j

∂xk

∂ net(vk)
∂θW

�

. (13)

In (12), the partial derivatives ∂L
∂Ki,j

, i, j =
1, . . . , n, are components of the matrix deriva-
tive ∂L

∂K , for which the calculations of matrix
differential calculus [30] together with (3) and
(9) yield

∂L
∂K

=
1
2

(
K−1yy�K−1 − K−1

)
. (14)

172 J. Koza et al.

3 Gaussian Processes as Black-Box Surrogate Models

3.1 Combining GPs with the Black-Box Optimizer CMA-ES

In the reported research, we used the state-of-the-art black-box evolutionary
optimizer Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [16,19].
The CMA-ES performs unconstrained optimization on R

d, iteratively sampling
populations of points from the d-dimensional distribution N (m,σ2C), and uses
a part of the sampled points, corresponding to the lowest objective function val-
ues, to update the distribution. Hence, it updates the expected value m, serving
as the current estimate of the function optimum, the matrix C and the step-size
σ. The CMA-ES is invariant with respect to monotonous transformations of the
objective function. Hence, to make use of objective function evaluations in a set
of points, it needs to know only their ordering. Details of the algorithm can be
found in [16,19]. Using GPs as surrogate models for CMA-ES has a long tradi-
tion [3,25,29,37,38]. In particular the doubly trained surrogate (DTS) CMA-ES
[3] belongs to the most successful surrogate-assisted CMA-ES versions, together
with [1,17], which use polynomials, and [28], which uses a ranking SVM.

In the DTS-CMA-ES, the criterion according to which the points for evalua-
tion by the true black-box objective function BB are selected, is the probability
of improvement (POI). Using the notation introduced in Sect. 2.1 and consid-
ering (4) implies that the probability of improvement of the Gaussian process
(f(x))x∈X below some threshold T > 0 in a point x� ∈ X is

PoIf (x�|T) = P (f(x�) ≤ T) = φ

(
T − μ(x�) − k�K

−1(y − μ)
√

κ(x�,x�) − k�
� K−1k�

)

, (15)

where φ denotes the cumulative distribution function of N (0, 1).
The algorithm DTS-CMA-ES consecutively trains two GPs (f1(x))x∈X and

(f2(x))x∈X to find an evaluation of the population P = x1, . . . ,xλ. It performs
active learning of points to be evaluated by the true black-box objective function
BB, and the ordering ρf according to which the points in the population are
chosen for the evaluation by the BB is given by the probability of improvement:

ρf : X λ → Π(λ), (∀(x1, . . . ,xλ) ∈ X λ)
(ρf (x1, . . . ,xλ))i < (ρf (x1, . . . ,xλ))j ⇒ PoIf (xi|ymin) ≥ PoIf (xj |ymin), (16)

where Π(λ) denotes the set of permutations of 1, . . . , λ and ymin is the minimal
BB value found so far during the current optimization run. As to the number
of actively learned points, it is based on the ranking difference error (RDE)
between both trained GPs. The RDE of a GP f2 with respect to a GP f1 for
x = (x1, . . . ,xλ) ∈ X λ considering k ∈ N best points:

RDE≤k(f1(x), f2(x)) =

∑
i,(ρf1 (x))i≤k |(ρf2(x))i − (ρf1(x))i|

maxπ∈Π(λ)

∑k
i=1 |i − π−1(i)|

. (17)

GP-Configuration in Black-Box Optimization 173

The way in which the DTS-CMA-ES performs active learning of the points
evaluated by the BB between two CMA-ES iterations (in the CMA-ES evo-
lutionary terminology called generations) is described in Algorithm 1, which
uses an archive A of points previously evaluated in this way and the notation
fi(x) = (fi(x1), . . . , fi(xλ)), i = 1, 2 and k(A) = max{h : |Th| ≤ Nmax}, where

Th =
λ⋃

j=1

{x ∈ Nh(xj ;A) : mσ2C(x,xj) < rmax} for h = 1, . . . , |A|, (18)

Nh(x;A) denotes the set of h nearest neighbors of x in the archive A, rmax >
0, Nmax ∈ N, Nmax ≥ λ and mσ2C is the Mahalanobis distance with respect to
σ2C:

mσ2C(x,x′) =
√

(x − x′)�σ−2C−1(x − x′). (19)

Algorithm 1. Using the surrogate model between two CMA-ES generations in
DTS-CMA-ES
Require: x1, . . . ,xλ ∈ X , archive A, μ, σ and C – parameters of the CMA-ES, Nmax ∈

N with Nmax ≥ λ, rmax > 0, β, εmin, εmax, αmin, αmax ∈ (0, 1)
1: if this is the 1st call of the algorithm in the current CMA-ES run, then
2: set α = ε = 0.05
3: else
4: take over the returned values of α, ε from its previous call in the run
5: end if
6: Train a Gaussian process f1 on Tk(A), estimating the parameters of κ through

maximization of the likelihood (3)
7: Evaluate BB(xj) for fj not yet BB-evaluated and such that (ρf1(x1, . . . ,xλ))j ≤

�αλ�
8: Update A to A ∪ {(xj : (ρf1(x1, . . . ,xλ))j ≤ �αλ�}
9: Train a Gaussian process f2 on Tk(A), estimating the parameters of κ through

maximization of the likelihood (3)
10: For xj that have already been BB-evaluated, update f2(xj) = BB(xj)
11: Update ε to (1 − β)ε + β RDE≤� λ

2 �(f1(x1, . . . ,xλ), f2(x1, . . . ,xλ)) and α to αmin +

max(0, min(1, ε−εmin
εmax−εmin

))(αmax − αmin)

12: For every j such that (ρf1(x1, . . . ,xλ))j > �αλ�, update f2(xj) to f2(xj) −
min{f2(xj′) : (ρf1(x1, . . . ,xλ))j′ > �αλ�} + min{f2(xj′) : (ρf1(x1, . . . ,xλ))j′ ≤
�αλ�}

13: Return f2(x1), . . . , f2(xλ), ε, α

3.2 Using Data from Past CMA-ES Runs

The black-box optimization sequences for the configurations of GPs have been
collected from 4600 runs of the open-source implementation of the DTS-CMA-
ES algorithm for the 23 nonlinear noiseless benchmark functions available on

174 J. Koza et al.

the platform for comparing continuous optimizers COCO [7,18]. The COCO
noiseless function collection also contains a linear benchmark, the linear slope.
However, the GP surrogate model achieved for it on test data a mean squared
error 0 or nearly 0 (of the order 10−4 or lower) with 5 from the 9 covariance
functions considered in Sect. 2, thus configuring it for this benchmark makes no
sense. Each of those benchmarks has been considered in the dimensions d =
2, 3, 5, 10, 20, and for each combination of benchmark function and dimension,
40 runs are available. More important than the number of runs, however, is the
number of their generations because data from each generation apart the first
can be used for testing all those surrogate models that could be trained with data
from the previous generations. The benchmarks and their numbers of available
generations for individual dimensions are listed in Table 1.

Table 1. Noiseless benchmark functions of the platform comparing continuous opti-
mizers (COCO) [7,12] and the number of available generations of DTS-CMA-ES runs
for each of them in each considered dimension

Benchmark function

name

Available generations

in dimension

2 3 5 10 20

Separable

1 Sphere 4689 6910 11463 17385 25296

2 Separable Ellipsoid 6609 9613 15171 25994 55714

3 Separable Rastrigin 7688 11308 17382 27482 42660

4 Büche-Rastrigin 8855 13447 22203 31483 49673

Moderately ill-conditioned

5. Attractive Sector 16577 25200 38150 45119 72795

6. Step Ellipsoid 7103 9816 24112 34090 56340

7. Rosenbrock 7306 11916 21191 32730 71754

8. Rotated Rosenbrock 7687 12716 24084 35299 71017

Highly ill-conditioned

9. Ellipsoid with High Conditioning 6691 9548 15867 25327 59469

10. Discus 6999 9657 15877 25478 45181

11. Bent Cigar 10369 18059 28651 34605 56528

12. Sharp Ridge 7760 11129 20346 30581 48154

13. Different Powers 6653 10273 17693 31590 61960

Multi-modal with global structure

14. Non-separable Rastrigin 7855 11476 19374 28986 44446

15. Weierstrass 9294 13617 24158 27628 40969

16. Schaffers F7 9031 13960 24244 34514 56247

17. Ill-Conditioned Schaffers F7 9598 13404 25802 31609 53836

18. Composite Griewank-Rosenbrock 9147 16268 24456 34171 53536

Multi-modal weakly structured

19. Schwefel 9081 13676 24219 33753 53104

20. Gallagher’s Gaussian 101-me Points 7645 12199 18208 25366 43186

21. Gallagher’s Gaussian 21-hi Points 7629 11086 17881 26626 44971

22. Katsuura 8751 11233 17435 25030 37366

23. Lunacek bi-Rastrigin 8983 13966 19405 29762 44420

GP-Configuration in Black-Box Optimization 175

Due to the way how the DTS-CMA-ES works, the collected sequences have
several specific properties:

(i) The first GP (f1(x))x∈X trained after the g-th generation of the CMA-ES
has as training data only pairs (x, BB(x)) in which the true value BB(x)
was obtained before the g-th generation. It does not depend on the results
of the CMA-ES in the g-th and later generations.

(ii) The second GP (f2(x))x∈X trained after the g-th generation of the CMA-
ES has as training data pairs (x, BB(x)) in which the true value BB(x)
was obtained before the g-th generation, as well as the pairs (a, BB(a))
in which a is one of the points a1, . . . ,a�αgλ	 selected with active learning
among the points x1, . . . ,xλ generated in the g-th generation. It does not
depend on the results of the CMA-ES in the g +1-st and later generations.

(iii) The CMA-ES in the g + 1-st generation depends on the values BB(a) in
the points a ∈ {a1, . . . ,a�αgλ	} selected with active learning and on the
values f2(x) for x ∈ {x1, . . . ,xλ}\{a1, . . . ,a�αgλ	}. Due to (ii), it indirectly
depends also on (x, BB(x)) with x generated in an earlier than g-th gen-
eration.

4 Empirical Investigation of GP Configurations

In the experiments described below, we used two different libraries implementing
Gaussian processes. For those without an ANN, we used Matlab’s toolbox GPML
that accompanies the book of Rasmussen and Williams [35]. Except the spectral
mixture kernel, which was implemented in Python using GPyTorch library as
well as the combination of GP and ANN [14].

4.1 Experimental Setup

We compare Gaussian processes with nine different covariance functions and one
surrogate model combining Gaussian processes and neural networks. For pure
GPs, we covered all kernels described in Sect. 2.1 and we used a simple linear
kernel for the GP with ANN.

As to the combination ANN-GP, we decided to train it on the same set of
training data Tk(A) as was used in steps 6 and 9 of Algorithm 1. Due to the condi-
tion (18), this set is rather restricted and allows training only a rather restricted
ANN. Therefore, we decided to use a multilayer perceptron with a single hidden
layer, thus a topology (nI , nH , nO), where nI is the dimension of the training
data, i.e. nI ∈ {2, 3, 5, 10, 20}, and

nH = nO =

⎧
⎪⎨

⎪⎩

2 if nI = 2,

3 if nI = 3, 5,

5 if nI = 10, 20.

(20)

As the activation function for both the hidden and output layer, we chose a logis-
tic sigmoid.

176 J. Koza et al.

We trained the weights and biases of the neural network together with the
parameters of the Gaussian process as proposed in [40] and outlined in Sect. 2.2.
As a loss function, we used the Gaussian log-likelihood and optimized the param-
eters with Adam [23] for a maximum of 1000 iterations. We also kept a 10%
validation set out of the training data to monitor overfitting, and we selected
the model with the lowest L2 validation error during the training.

4.2 Results

The results are presented first in a function-method view in Table 2, then in
a dimension-method view in Table 3. The interpretation of the results in both
tables is the same. A Non-parametric Friedman test was conducted on RDEs
across all results for particular functions and function types in Table 2, and for
a particular combination of dimensions and function types in Table 3. If the null
hypothesis of the equality of all ten considered methods was declined, a post
hoc test was performed, and its results were corrected for multiple hypotheses
testing using the Holm method. In the tables, we highlight bold those methods
that are not significantly different from the method achieving the lowest RDE.
Additionally, the number n ∈ N of other methods that achieved a significantly
worse RDE is reported using the ∗n notation.

If we look closely at the results in Table 2, we can see that the lowest val-
ues of the average RDE are achieved using the rational quadratic covariance
function in most cases. Specifically, the rational quadratic kernel performs best
on 16 functions, Matérn 5

2 on 3, squared exponential on 2, and Quadratic on 2
functions out of the total of 23. Interestingly, the two functions on which the
Quadratic kernel is the best performing are functions 5 and 6, which are both
based on quadratic functions [12]. This suggests that the quadratic kernel can
indeed adequately capture the functions with the global structure of quadratic
polynomial. On the other hand, the Matérn 5

2 kernel is the best performing on
functions 19, 22, and 23, which are highly multimodal and therefore hard to
optimize.

Similar results can also be seen in Table 3, where the RDEs are grouped by
the input space dimension. The rational quadratic covariance function is the best
in the 18 cases, Matérn 5

2 in 4, Quadratic in 2, and squared exponential once.
Again Matérn 5

2 covariance function was the best kernel when solving heav-
ily multimodal weakly structured problems. We also analyzed the correlation
between the dimensionality of the problem and the resulting average RDE for
every considered method. For this purpose, we computed Pearson’s and Spear-
man’s correlation coefficients. Both coefficients detected a statistically significant
positive correlation in the linear, quadratic, Gibbs, and spectral mixture kernels.
The correlation of squared exponential kernel was found significant only by the
Pearson’s coefficient. Interestingly, both methods discovered a significant nega-
tive correlation for the neural network covariance function.

However, it is important to note here that the best three covariance matrices:
rational quadratic, squared exponential, and Matérn, 5

2 are statistically equiva-
lent in all cases according to the Friedman-posthoc test with Holm correction.

http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=30
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=35

GP-Configuration in Black-Box Optimization 177

Table 2. Comparison of average RDE values for different surrogate models depending
on a particular benchmark function. There are nine different covariance functions for
Gaussian processes and the ANN-GP combination with a linear kernel. Those methods
that were not significantly different from the best performing are marked in bold. The
number in the upper index indicates the number of methods that performed signifi-
cantly worse.

Function

Method GP ANN

κLIN κQ κRQ κSE κ
5
2
Mat

κNN κGibbs κSE+Q κSM κLIN

S
e
p
a
ra

b
le

F
u
n
c
ti

o
n
s

1 .238 .193 .056∗6 .063∗6 .070∗4 .168 .130∗1 .161 .225 .242

2 .231 .181 .096∗5 .098∗5 .099∗5 .187 .153∗2 .222 .280 .128∗2

3 .236 .185∗1 .142∗5 .147∗4 .160∗4 .185∗1 .202∗1 .224 .503 .300

4 .251 .170∗2 .134∗6 .160∗3 .153∗4 .189∗1 .213∗1 .224 .471 .352

All .239 .182∗2 .107∗7 .117∗7 .121∗7 .182∗1 .175∗4 .208 .370 .256

M
o
d
e
ra

te
c
o
n
d
it

io
n
in

g 5 .209∗2 .138∗5 .203∗3 .215∗2 .208∗2 .199∗3 .246 .254 .440 .351

6 .231∗1 .185∗3 .194∗2 .224∗1 .206∗1 .192∗3 .249 .243 .438 .200∗2

7 .231 .183 .129∗4 .138∗3 .143∗2 .182 .184∗1 .198 .187∗1 .307

8 .206 .179 .128∗4 .140∗3 .140∗3 .175 .170∗3 .167∗1 .263 .307

All .219∗1 .171∗4 .163∗5 .179∗4 .174∗4 .187∗3 .212∗2 .216 .342 .291

H
ig

h
c
o
n
d
it

io
n
in

g

a
n
d

u
n
im

o
d
a
l

9 .235 .179 .095∗5 .101∗5 .099∗5 .182 .141∗1 .209 .295 .142∗1

10 .243 .152∗1 .105∗4 .114∗4 .115∗4 .196 .144∗2 .241 .357 .147∗2

11 .183 .166∗2 .145∗4 .153∗3 .151∗3 .196 .187∗2 .236 .290 .257

12 .231 .202 .116∗4 .208∗1 .220∗1 .169∗1 .177∗1 .210 .375 .198∗1

13 .234 .211 .140∗5 .165∗4 .162∗4 .187∗2 .204∗2 .227 .310 .289

All .225∗1 .182∗2 .120∗7 .148∗6 .149∗6 .186∗2 .171∗5 .224 .326 .205∗2

M
u
lt

i-
m

o
d
a
l

a
d
e
q
u
a
te

g
lo

b
a
l
st

ru
c
tu

re

14 .242 .172∗3 .144∗4 .141∗4 .173∗2 .182∗2 .200∗1 .215 .488 .316

15 .221∗1 .189∗2 .172∗3 .169∗3 .173∗3 .185∗2 .207∗2 .234 .492 .551

16 .242 .199∗2 .160∗5 .211∗2 .185∗2 .189∗2 .227∗1 .245 .463 .391

17 .259 .203∗2 .157∗4 .207∗2 .182∗4 .191∗2 .210∗2 .245 .480 .380

18 .232∗1 .206∗2 .143∗5 .154∗4 .148∗4 .200∗2 .249 .217∗1 .537 .397

All .239∗2 .194∗4 .155∗7 .177∗5 .172∗5 .189∗4 .218∗2 .231∗2 .493 .408

M
u
lt

i-
m

o
d
a
l

w
e
a
k

g
lo

b
a
l
st

ru
c
tu

re

19 .237 .164∗3 .161∗2 .174∗1 .155∗4 .191 .218 .216 .383 .210∗1

20 .214 .197∗1 .145∗4 .170∗2 .152∗4 .184∗2 .169∗2 .206 .372 .389

21 .203 .215 .128∗6 .155∗3 .145∗5 .192 .160∗2 .224 .391 .347

22 .237 .208∗1 .168∗3 .156∗3 .147∗3 .213∗1 .210∗1 .206∗1 .543 .589

23 .229 .209∗1 .144∗3 .127∗4 .118∗4 .197∗1 .217 .220 .545 .446

All .224∗2 .199∗2 .149∗7 .156∗7 .144∗7 .195∗2 .195∗2 .214∗2 .442 .397

http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=5
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=10
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=15
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=20
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=30
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=35
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=40
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=45
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=50
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=55
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=60
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=65
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=70
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=75
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=80
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=85
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=90
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=95
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=100
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=105
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=110
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=115
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf#page=120

178 J. Koza et al.

Table 3. Comparison of average RDE values for different surrogate models depending
on the type of benchmark function and the input space dimension. There are nine
different covariance functions for Gaussian processes and the ANN-GP combination
with a linear kernel. Those methods that were not significantly different from the best
performing are marked in bold. The number in the upper index indicates the number
of methods that performed significantly worse.

Function

Method GP ANN

κLIN κQ κRQ κSE κ
5
2
Mat

κNN κGibbs κSE+Q κSM κLIN

D
im

e
n
si

o
n
s

2

SEP .172 .162 .097∗5 .106∗4 .110∗4 .179 .135∗1 .198 .280 .252

MOD .160∗2 .154∗2 .174∗2 .167∗2 .201 .189 .182∗1 .194 .286 .341

HC .157∗2 .177 .129∗4 .135∗4 .147∗3 .212 .142∗4 .222 .227 .204

MMA .187∗2 .179∗2 .155∗3 .170∗2 .179∗2 .200∗2 .195∗2 .231 .437 .416

MMW .184∗2 .182∗2 .137∗3 .140∗4 .148∗3 .205 .169∗2 .221 .414 .443

All .172∗3 .172∗3 .139∗6 .144∗6 .157∗4 .198∗2 .165∗4 .215∗1 .333 .334

D
im

e
n
si

o
n
s

3

SEP .204 .175∗1 .114∗5 .117∗5 .123∗5 .196 .163∗1 .218 .378 .258

MOD .201 .160∗3 .172∗3 .177∗3 .173∗3 .198 .187∗1 .226 .342 .313

HC .210 .173∗1 .132∗4 .141∗3 .143∗3 .199 .149∗3 .234 .264 .174∗1

MMA .227 .198∗2 .159∗4 .164∗4 .180∗3 .193∗2 .201∗2 .232 .458 .353

MMW .215 .197∗1 .148∗4 .155∗2 .145∗5 .208 .204∗1 .213∗1 .427 .387

All .214∗1 .182∗4 .145∗7 .153∗6 .154∗6 .199∗1 .180∗4 .223∗1 .360 .278∗1

D
im

e
n
si

o
n
s

5

SEP .241 .189∗1 .111∗7 .118∗5 .121∗5 .193 .171∗1 .226 .421 .270

MOD .249 .174∗3 .157∗5 .168∗3 .159∗4 .195∗1 .205 .224 .387 .297

HC .241 .180∗1 .119∗6 .136∗3 .136∗3 .185∗1 .148∗3 .240 .337 .202∗1

MMA .251 .189∗2 .149∗5 .167∗4 .169∗4 .183∗2 .206∗2 .240 .478 .373

MMW .241 .205∗1 .140∗4 .143∗4 .136∗6 .202∗1 .185∗2 .209 .459 .363

All .247∗1 .185∗4 .136∗7 .148∗7 .146∗7 .190∗4 .177∗4 .229∗1 .403 .289∗1

D
im

e
n
si

o
n
s

1
0

SEP .271 .203∗1 .123∗4 .117∗5 .127∗4 .188∗1 .183∗1 .216 .456 .293

MOD .256 .195∗2 .151∗5 .167∗4 .155∗5 .192∗2 .243 .228 .407 .298

HC .264 .198∗1 .111∗5 .159∗1 .156∗2 .179∗1 .166∗1 .230 .412 .206∗1

MMA .274 .204∗2 .159∗5 .175∗4 .162∗4 .187∗3 .224∗1 .233 .538 .422

MMW .246 .206 .139∗5 .146∗4 .131∗6 .183∗2 .211 .215 .454 .363

All .264∗1 .200∗3 .138∗7 .155∗6 .149∗6 .185∗4 .205∗3 .226∗1 .443 .313∗1

D
im

e
n
si

o
n
s

2
0

SEP .288 .196 .109∗4 .132∗4 .120∗4 .168∗3 .250 .188 .445 .348

MOD .228 .197∗1 .143∗2 .173 .145∗2 .174∗2 .245 .206 .523 .353

HC .253 .184 .111∗1 .171 .164∗1 .155 .249 .197 .471 .255

MMA .258 .201∗2 .155∗4 .206∗2 .170∗2 .184∗2 .266 .220 .596 .480

MMW .234 .204 .181 .198 .160 .179 .205 .213 .538 .436

All .249 .194∗3 .140∗6 .180∗4 .156∗5 .169∗4 .244 .203∗2 .513 .375

GP-Configuration in Black-Box Optimization 179

Finally, the combination ANN-GP with the linear kernel was statistically
equivalent to the best-performing kernel on six different functions. In those cases,
it performed better than just GP with the linear kernel. However, in the rest of
the benchmark functions, the linear covariance function produced better results
without the ANN.

5 Conclusion and Future Work

The paper addressed the configuration of Gaussian processes serving as surro-
gate models for black-box optimization, primarily the choice of the GP covari-
ance function. To this end, it employs a novel methodology, which consists in
using data from past runs of a surrogate-assisted version of the state-of-the-art
evolutionary black-box optimization method CMA-ES. This allowed to avoid
demanding runs of the optimizer only with the purpose to configure the surro-
gate model, as well as to achieve a much more robust configuration relying on
4600 optimization runs in 5 different dimensions.

The results in Tables 2 and 3 reveal that the lowest RDE values are most
often achieved using the covariance functions rational quadratic, squared expo-
nential, and Matérn 5

2 . Moreover, these three covariance functions are always
equivalent, in the sense that among the RDE values achieved with them, no pair
has been found significantly different by the performed Friedman-posthoc test
with Holm correction for simultaneous hypotheses testing. Occasionally, they are
also equivalent to other configurations, e.g. to the covariance functions linear or
quadratic, or even to the combination ANN-GP. To our knowledge, the compar-
ison of GP covariance functions presented in this paper is the first in the context
of optimization data. Therefore, it is not surprising that the conclusions drawn
from it are not identical to conclusions drawn from comparisons performed with
other kinds of data [6,9,24,39,40].

The paper also reports our first attempt to use a combined ANN-GP model
for surrogate modeling in black-box optimization. Such combined models will be
the main direction of our future research in this area. We want to systematically
investigate using different GP covariance functions as well as different ANN
topologies, including the direction of deep Gaussian processes [5,8,20,21], in
which only the topology is used from an ANN, but all neurons are replaced by
GPs. Moreover, in addition to the selection of the training set used in DTS-CMA-
ES and described in Algorithm 1, we want to consider also alternative ways of
training set selection, allowing to train larger networks. Finally, we intend to
perform research into transfer learning of surrogate models: An ANN-GP model
with a deep neural network will be trained on data from many optimization runs,
such as those employed in this paper, and then the model used in a new run of
the same optimizer will be obtained through additional learning restricted only
to the GP and last 1–2 layers of the ANN.

180 J. Koza et al.

Acknowledgment. The research reported in this paper has been supported by the
Czech Science Foundation (GAČR) grant 18-18080S and was also partially supported
by SVV project number 260 575. Computational resources were supplied by the project
“e-Infrastruktura CZ” (e-INFRA LM2018140) provided within the program Projects
of Large Research, Development and Innovations Infrastructures.

References

1. Auger, A., Brockhoff, D., Hansen, N.: Benchmarking the local metamodel CMA-ES
on the noiseless BBOB’2013 test bed. In: GECCO 2013, pp. 1225–1232 (2013)

2. Baerns, M., Holeňa, M.: Combinatorial Development of Solid Catalytic Materials.
Design of High-Throughput Experiments, Data Analysis, Data Mining. Imperial
College Press/World Scientific, London (2009)

3. Bajer, L., Pitra, Z., Repický, J., Holeňa, M.: Gaussian process surrogate models
for the CMA evolution strategy. Evol. Comput. 27, 665–697 (2019)

4. Booker, A., Dennis, J., Frank, P., Serafini, D., Torczon, V., Trosset, M.: A rigorous
framework for optimization by surrogates. Struct. Multidiscip. Optim. 17, 1–13
(1999)

5. Bui, T., Hernandez-Lobato, D., Hernandez-Lobato, J., Li, Y., Turner, R.: Deep
Gaussian processes for regression using approximate expectation propagation. In:
ICML, pp. 1472–1481 (2016)

6. Calandra, R., Peters, J., Rasmussen, C., Deisenroth, M.: Manifold Gaussian pro-
cesses for regression. In: IJCNN, pp. 3338–3345 (2016)

7. The COCO platform (2016). http://coco.gforge.inria.fr
8. Cutajar, K., Bonilla, E., Michiardi, P., Filippone, M.: Random feature expansions

for deep Gaussian processes. In: ICML, pp. 884–893 (2017)
9. Duvenaud, D.: Automatic model construction with Gaussian processes. Ph.D. the-

sis, University of Cambridge (2014)
10. El-Beltagy, M., Nair, P., Keane, A.: Metamodeling techniques for evolutionary

optimization of computaitonally expensive problems: promises and limitations. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 196–
203. Morgan Kaufmann Publishers (1999)

11. Emmerich, M., Giotis, A., Özdemir, M., Bäck, T., Giannakoglou, K.: Metamodel-
assisted evolution strategies. In: PPSN VII, pp. 361–370. ACM (2002)

12. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2010: presentation of the noisy functions. Technical report, INRIA,
Paris Saclay (2010)

13. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling:
A Practical Guide. Wiley, New York (2008)

14. Gardner, J.R., Pleiss, G., Bindel, D., Weinberger, K.Q., Wilson, A.G.: GPyTorch:
blackbox matrix-matrix Gaussian process inference with GPU acceleration (2019)

15. Gibbs, M.: Bayesian Gaussian processes for regression and classification. Ph.D.
thesis, University of Cambridge (1997)

16. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A.,
Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Compu-
tation, vol. 192, pp. 75–102. Springer, Heidelberg (2006). https://doi.org/10.1007/
3-540-32494-1 4

17. Hansen, N.: A global surrogate assisted CMA-ES. In: GECCO 2019, pp. 664–672
(2019)

http://coco.gforge.inria.fr
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4

GP-Configuration in Black-Box Optimization 181

18. Hansen, N., Auger, A., Ros, R., Merseman, O., Tušar, T., Brockhoff, D.: COCO: a
platform for comparing continuous optimizers in a black box setting. Optim. Meth.
Softw. 35 (2020). https://doi.org/10.1080/10556788.2020.1808977

19. Hansen, N., Ostermaier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9, 159–195 (2001)

20. Hebbal, A., Brevault, L., Balesdent, M., Talbi, E., Melab, N.: Efficient global opti-
mization using deep gaussian processes. In: IEEE CEC, pp. 1–12 (2018). https://
doi.org/10.1109/CEC40672.2018

21. Hernández-Muñoz, G., Villacampa-Calvo, C., Hernández-Lobato, D.: Deep Gaus-
sian processes using expectation propagation and Monte Carlo methods. In: ECML
PKDD, pp. 1–17, paper no. 128 (2020)

22. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13, 455–492 (1998)

23. Kingma, D., Ba, J.: Adam: a method for stochastic optimization (2014). Preprint
arXiv:1412.6980

24. Kronberger, G., Kommenda, M.: Evolution of covariance functions for Gaussian
process regression using genetic programming. In: Moreno-Dı́az, R., Pichler, F.,
Quesada-Arencibia, A. (eds.) EUROCAST 2013. LNCS, vol. 8111, pp. 308–315.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53856-8 39

25. Kruisselbrink, J., Emmerich, M., Deutz, A., Bäck, T.: A robust optimization app-
roach using kriging metamodels for robustness approximation in the CMA-ES. In:
IEEE CEC, pp. 1–8 (2010)

26. Leary, S., Bhaskar, A., Keane, A.: A derivative based surrogate model for approxi-
mating and optimizing the output of an expensive computer simulation. J. Global
Optim. 30, 39–58 (2004)

27. Lee, J., Bahri, Y., Novak, R., Schoenholz, S., Pennington, J., et al.: Deep neural
networks as Gaussian processes. In: ICLR, pp. 1–17 (2018)

28. Loshchilov, I., Schoenauer, M., Sebag, M.: Intensive surrogate model exploitation
in self-adaptive surrogate-assisted CMA-ES (saACM-ES). In: GECCO 2013, pp.
439–446 (2013)

29. Lu, J., Li, B., Jin, Y.: An evolution strategy assisted by an ensemble of local
Gaussian process models. In: GECCO 2013, pp. 447–454 (2013)

30. Magnus, J., Neudecker, H.: Matrix Differential Calculus with Applications in
Statistics and Econometrics. Wiley, Chichester (2007)

31. Matthews, A., Hron, J., Rowland, M., Turner, R.: Gaussian process behaviour in
wide deep neural networks. In: ICLR, pp. 1–15 (2019)

32. Novak, R., Xiao, L., Lee, J., Bahri, Y., Yang, G., et al.: Bayesian deep convolutional
networks with many channels are Gaussian processes. In: ICLR, pp. 1–35 (2019)

33. Ong, Y., Nair, P., Keane, A., Wong, K.: Surrogate-assisted evolutionary optimiza-
tion frameworks for high-fidelity engineering design problems. In: Jin, Y. (ed.)
Knowledge Incorporation in Evolutionary Computation, vol. 167, pp. 307–331.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-44511-1 15

34. Rasheed, K., Ni, X., Vattam, S.: Methods for using surrogate modesl to speed up
genetic algorithm optimization: informed operators and genetic engineering. In:
Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 103–123.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-44511-1

35. Rasmussen, E., Williams, C.: Gaussian Processes for Machine Learning. MIT Press,
Cambridge (2006)

36. Ratle, A.: Kriging as a surrogate fitness landscape in evolutionary optimization.
Artif. Intell. Eng. Des. Anal. Manuf. 15, 37–49 (2001)

https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1109/CEC40672.2018
https://doi.org/10.1109/CEC40672.2018
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-53856-8_39
https://doi.org/10.1007/978-3-540-44511-1_15
https://doi.org/10.1007/978-3-540-44511-1

182 J. Koza et al.

37. Ulmer, H., Streichert, F., Zell, A.: Evolution strategies assisted by Gaussian pro-
cesses with improved pre-selection criterion. In: IEEE CEC, pp. 692–699 (2003)

38. Volz, V., Rudolph, G., Naujoks, B.: Investigating uncertainty propagation in
surrogate-assisted evolutionary algorithms. In: GECCO 2017, pp. 881–888 (2017)

39. Wilson, A., Adams, R.: Gaussian process kernels for pattern discovery and extrap-
olation. In: ICML, pp. 2104–2112 (2013)

40. Wilson, A., Hu, Z., Salakhutdinov, R., Xing, E.: Deep kernel learning. In: ICAIS,
pp. 370–378 (2016)

Travel Demand Estimation
in a Multi-subnet Urban Road Network

Alexander Krylatov1,2(B) and Anastasiya Raevskaya1

1 Saint Petersburg State University, Saint Petersburg, Russia
a.krylatov@spbu.ru

2 Institute of Transport Problems RAS, Saint Petersburg, Russia

Abstract. Today urban road network of a modern city can include sev-
eral subnets. Indeed, bus lanes form a transit subnet available only for
public vehicles. Toll roads form a subnet, available only for drivers who
ready to pay fees for passage. The common aim of developing such sub-
nets is to provide better urban travel conditions for public vehicles and
toll-paying drivers. The present paper is devoted to the travel demand
estimation problem in a multi-subnet urban road network. We formulate
this problem as a bi-level optimization program and prove that it has
a unique solution under quite a natural assumption. Moreover, for the
simple case of a road network topology with disjoint routes, we obtain
important analytical results that allow us to analyze different scenarios
appearing within the travel demand estimation process in a multi-subnet
urban road network. The findings of the paper contribute to the traffic
theory and give fresh managerial insights for traffic engineers.

Keywords: Bi-level optimization · Travel demand estimation ·
Multi-subnet urban road network

1 Introduction

An urban road area of a modern city is a multi-subnet complex composited
network, which has been permanently growing over the past 40 years due to the
worldwide urbanization process [15]. The increasing dynamics of motorization
leads to various negative outcomes such as congestions, accidents, decreasing of
average speed, traffic jams and noise, lack of parking space, inconveniences for
pedestrians, pollution and environmental damage [29]. The continuing growth
of large cities challenges authorities, civil engineers, and researchers to face a
lot of complicated problems at all levels of management [24]. The efficient traffic
management is appeared to be the only way for coping with these problems since
capacities of the actual road networks today are often close to their limits and

The work was jointly supported by a grant from the Russian Science Foundation (No.
20-71-00062 Development of artificial intelligence tools for estimation travel demand
values between intersections in urban road networks in order to support operation of
intelligent transportation systems).

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 183–197, 2021.
https://doi.org/10.1007/978-3-030-92121-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_16&domain=pdf
http://orcid.org/0000-0002-6634-1313
http://orcid.org/0000-0002-6240-177X
https://doi.org/10.1007/978-3-030-92121-7_16

184 A. Krylatov and A. Raevskaya

already cannot be increased. Therefore, the development of intelligent systems
for decision-making support in the field of large urban road network design
seems to be of crucial interest [1,28]. However, the reliability of decisions made
by such systems highly depends on the precision of travel demand information
[9,10], while the travel demand estimation is a highly sophisticated problem
itself [7,8].

In the present paper, we concentrate on a bi-level formulation of the travel
demand estimation problem, which employs the user equilibrium assignment
principle [6,17]. Clear consideration of various alternative bi-level travel demand
estimation problems with user equilibrium assignment in the lower level is given
in [26]. Since those bi-level programs appeared to be NP-hard, researchers pro-
posed a single-level optimization model based on the stochastic user equilibrium
concept to estimate path flows and hence, the travel demand [4,23]. However,
there also exists an approach that estimates the set of routes and their flows
under the static user-equilibrium assignment principle [2]. Other methods face
NP-hard bi-level travel demand estimation problems via heuristics or approxima-
tion [16,20]. Inspired by the recent findings on a composited complex network
of multiple subsets [21,25], and traffic assignment in a network with a tran-
sit subnetwork [12,13,27], this paper investigates the travel demand estimation
problem in a multi-subnet composited urban road network.

In the paper we consider a multi-subnet urban road network under arc-
additive travel time functions. Section 2 presents a multi-subnet urban road net-
work as a directed graph, while Sect. 3 is devoted to travel demand estimation
in such kind of network. We formulate the demand estimation problem in a
multi-subnet urban road network as a bi-level optimization program and prove
that it has a unique solution under quite a natural assumption. Section 4 gives
important analytical results for a road network with disjoint routes, which are
directly applied in Sect. 5 for demand estimation by toll road counters. Actually,
the simple case of a road network topology in Sect. 5 allows us to analyze dif-
ferent scenarios appearing within the estimation process. Section 6 contains the
conclusions.

2 Multi-subnet Urban Road Network

Let us consider a multi-subnet urban road network presented by a directed graph
G = (V,E), where V represents a set of intersections, while E ⊆ V ×V represents
a set of available roads between the adjacent intersections. If we define S as
the ordered set of selected vehicle categories, then G = G0 ∪ ⋃s∈S Gs, where
G0 = (V0, E0) is the subgraph of public roads, which are open to public traffic,
and Gs = (Vs, Es) is the subgraph of roads, which are open only for the s-th
category of vehicles, s ∈ S. Denote W ⊆ V × V as the ordered set of pairs of
nodes with non-zero travel demand Fw

0 > 0 and/or Fw
s > 0, s ∈ S, for any

w ∈ W . W is usually called as the set of origin-destination pairs (OD-pairs).
Any set of sequentially linked arcs initiating in the origin node of OD-pair w
and terminating in the destination node of the OD-pair w we call route between

Travel Demand Estimation in a Multi-subnet Urban Road Network 185

the OD-pair w, w ∈ W . The ordered sets of all possible routes between nodes
of the OD-pair w, w ∈ W , we denote as Rw

0 for the subgraph G0 and Rw
s for

the subgraph Gs, s ∈ S. Demand Fw
s > 0 for any s ∈ S and w ∈ W is assigned

between the available public routes Rw
0 and routes for vehicles of s-th category

Rw
s . Thus, on the one hand,

∑
r∈Rw

s
pw

r = Pw
s , where pw

r is the traffic flow of
the s-th category vehicles through the route r ∈ Rw

s , while Pw
s is the overall

traffic flow of the s-th category vehicles through the routes Rw
s . On the other

hand, the difference (Fw
s − Pw

s) is the traffic flow of the s-th category vehicles,
which can be assigned between the available public routes Rw

0 for any s ∈ S
and w ∈ W , since Pw

s satisfies the following condition: 0 ≤ Pw
s ≤ Fw

s for any
s ∈ S, w ∈ W . Therefore, demand Fw

0 > 0 is assigned between the available
public routes Rw

0 together with the traffic flow
∑

s∈S(Fw
s − Pw

s):
∑

r∈Rw
0

fw
r =

Fw
0 +

∑
s∈S(Fw

s − Pw
s), where fw

r is the traffic flow through the public route
r ∈ Rw

0 between nodes of OD-pair w ∈ W .
Let us introduce differentiable strictly increasing functions on the set of real

numbers te(·), e ∈ E. We suppose that te(·), e ∈ E, are non-negative and
their first derivatives are strictly positive on the set of real numbers. By xe

we denote traffic flow on the edge e, while x is an appropriate vector of arc-
flows, x = (. . . , xe, . . .)T, e ∈ E. Defined functions te(xe) are used to describe
travel time on arcs e, e ∈ E, and they are commonly called arc delay, cost or
performance functions. In this paper we assume that the travel time function of
the route r ∈ Rw

0 ∪⋃s∈S Rw
s between OD-pair w ∈ W is the sum of travel delays

on all edges belonging to this route. Thus, the travel time through the route
r ∈ Rw

0 ∪ ⋃s∈S Rw
s between OD-pair w ∈ W can be defined as the following

sum: ∑

e∈E

te(xe)δw
e,r ∀r ∈ Rw

0 ∪
⋃

s∈S

Rw
s , w ∈ W,

where, by definition,

δw
e,r =

{
1, if edge e belongs to the route r ∈ Rw

0 ∪⋃s∈S Rw
s ,

0, otherwise. ∀e ∈ E,w ∈ W,

while, naturally,

xe =
∑

w

∑

s∈S

∑

r∈Rw
s

pw
r δw

e,r +
∑

w

∑

r∈Rw
0

fw
r δw

e,r, ∀e ∈ E,

i.e., traffic flow on the arc is the sum of traffic flows through those routes, which
include this arc.

3 Demand Estimation in a Multi-subnet Road Network

The first consideration of the travel demand estimation problem as an inverse
traffic assignment problem was made in very general terms under the assumption
that the locations of OD-pairs, as well as a matrix of route choice, are given [5].

186 A. Krylatov and A. Raevskaya

However, the traffic assignment search is the optimization problem, where loca-
tions of OD-pairs and travel demand values are believed to be given, while an
equilibrium assignment pattern is to be found [19]. Hence, the inverse traffic
assignment search should be the optimization problem, where the equilibrium
assignment pattern x̄ is given, while locations of OD-pairs and travel demand
values are to be found [11]. Therefore, let us introduce the following mapping:

χ(F) = arg min
x

∑

e∈E

∫ xe

0

te(u)du, (1)

subject to ∑

r∈Rw
0

fw
r = Fw

0 +
∑

s∈S

Fw
s , ∀w ∈ V × V, (2)

fw
r ≥ 0 ∀r ∈ Rw

0 , w ∈ V × V, (3)

where, by definition,

xe =
∑

w

∑

r∈Rw
0

fw
r δw

e,r ∀e ∈ E. (4)

Mapping χ(F) applies the optimization program (1)–(3) with definitional con-
straint (4) to the feasible travel demand patterns F . In other words, if one applies
mapping χ(F) to a feasible travel demand pattern F then the corresponding
equilibrium traffic assignment pattern x will be obtained [14,18]. Indeed, the
solution of (1)–(3) satisfies user-equilibrium behavioral principle, formulated by
J. G. Wardrop: “The journey times in all routes actually used are equal and less
than those that would be experienced by a single vehicle on any unused route” [22].
Thus, the travel demand estimation search as an inverse traffic assignment prob-
lem can be formulated as follows [11]:

min
F

||χ(F) − x̄||

subject to
Fw
0 ≥ 0 ∀w ∈ V × V,

Fw
s ≥ 0 ∀w ∈ V × V, s ∈ S,

where mapping χ(F) is given by the optimization program (1)–(3) with defini-
tional constraint (4).

Let us develop the travel demand estimation problem for a multi-subnet urban
road network. For this purpose, we refer to the principle, like the user-equilibrium
one, which should be satisfied by the equilibrium traffic assignment pattern in
a multi-subnet urban road network: “The journey times in all routes actually
used are equal and less than those that would be experienced by a single vehicle
on any unused route, as well as the journey times in all routes actually used in
any subnet less or equal than the journey times in all routes actually used in a
public road network”. Thus, we introduce the following mapping:

χ̂(F) = arg min
x

∑

e∈E

∫ xe

0

te(u)du, (5)

Travel Demand Estimation in a Multi-subnet Urban Road Network 187

with constraints ∀ w ∈ W
∑

r∈Rw
s

pw
r = Pw

s , ∀s ∈ S, (6)

∑

r∈Rw
0

fw
r = Fw +

∑

s∈S

(
Fw

s − Pw
s

)
, (7)

pw
r ≥ 0 ∀r ∈ Rw

s ,∀s ∈ S, (8)

fw
r ≥ 0 ∀r ∈ Rw

0 , (9)

0 ≤ Pw
s ≤ Fw

s ∀s ∈ S, (10)

with definitional constraint

xe =
∑

w

∑

s∈S

∑

r∈Rw
s

pw
r δw

e,r +
∑

w

∑

r∈Rw
0

fw
r δw

e,r, ∀e ∈ E. (11)

Mapping χ̂(F) applies the optimization program (5)–(10) with definitional con-
straint (11) to the feasible travel demand patterns F . In other words, if one
applies mapping χ̂(F) to a feasible travel demand pattern F then the corre-
sponding equilibrium traffic assignment pattern x for a multi-subnet urban road
network will be obtained. Thus, the travel demand estimation search in a multi-
subnet urban road network as an inverse traffic assignment problem can be
formulated as follows:

min
F

||χ̂(F) − x̄|| (12)

subject to
Fw
0 ≥ 0 ∀w ∈ V × V, (13)

Fw
s ≥ 0 ∀w ∈ V × V, s ∈ S, (14)

where mapping χ̂(F) is given by the optimization program (5)–(10) with defini-
tional constraint (11).

Theorem 1. Travel demand estimation problem (12)–(14) with mapping χ̂(F)
given by the optimization program (5)–(10) and definitional constraint (11) has
the unique solution, which satisfies the following conditions:

if
∑

e∈E

te(x̄e)δw
e,rw

s

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

≤ ∑

e∈E

te(x̄e)δw
e,rw

0
, then Pw

s = Fw
s ,

=
∑

e∈E

te(x̄e)δw
e,rw

0
, then 0 < Pw

s < Fw
s ,

≥ ∑

e∈E

te(x̄e)δw
e,rw

0
, then Pw

s = 0,

∀w ∈ W, s ∈ S,

where rw
0 is the shortest path in the public road network between OD-pair w,

while rw
s is the shortest path in the s-th subnetwork between OD-pair w under

congestion x̄.

188 A. Krylatov and A. Raevskaya

Proof. Since functions te(xe), e ∈ E, are strictly increasing, then the goal func-
tion (5) is convex. Hence, the optimization problem (5)–(10) has the unique
solution [3]. In other words, if one applies mapping χ̂(F) to a feasible travel
demand pattern F then the unique equilibrium traffic assignment pattern x for
a multi-subnet urban road network will be obtained. However, it is not clear if
for any image of χ̂(F) (feasible equilibrium traffic assignment pattern x) there
exists the unique preimage (feasible travel demand pattern F).

Assume that there exist feasible travel demand patterns F̄ and F̂ such that
x̄ = χ̂(F̄) = χ̂(F̂). According to (11), there also should exist route-flow assign-
ment patterns p̄, f̄ and p̂, f̂ as well as matrix Δ, which satisfy the following
matrix equations:

x̄ = Δ
(

p̄
f̄

)

and x̄ = Δ
(

p̂

f̂

)

. (15)

Moreover, since any feasible travel demand pattern satisfies
∑

r∈Rw
s

pw
r = Pw

s

and
∑

r∈Rw
0

fw
r = Fw

0 +
∑

s∈S(Fw
s − Pw

s) for any w ∈ V × V , s ∈ S, then there

exist vectors P̄ and P̂ as well as matrix A such that

P̄ = A
(

p̄
f̄

)

and P̂ = A
(

p̂

f̂

)

. (16)

Therefore, due to (15) and (16), the following matrix equations hold:
(

A
Δ

)(
p̄
f̄

)

=
(

P̄
x̄

)

and
(

A
Δ

)(
p̂

f̂

)

=
(

P̂
x̄

)

.

Since x̄ is actually the user-equilibrium assignment for F̄ and F̂ , both systems
have solutions, i.e. there exist nonzero vectors p̄, f̄ and nonzero vectors p̂, f̂
which solve these systems respectively. Let us subtract the first system from the
second: (

A
Δ

)[(
p̄
f̄

)

−
(

p̂

f̂

)]

=
(

P̄ − P̂
O

)

. (17)

Thus, we obtain a non-zero route-flow assignment, which corresponds to the
zero arc-flow assignment. For feasible (without negative components) route-flow
assignment patterns p̄, f̄ and p̂, f̂ , matrix equation (17) holds if and only if
p̄ = p̂ and f̄ = f̂ . Therefore, for any image of χ̂(F) (feasible equilibrium traffic
assignment pattern x) there exists the unique preimage (feasible travel demand
pattern F). In other words, travel demand estimation problem (12)–(14) with
mapping χ̂(F) given by the optimization program (5)–(10) and definitional con-
straint (11) has the unique solution.

Let us consider the Lagrangian of the problem (5)–(10) with definitional
constraint (11):

L =
∑

e∈E

∫ xe

0

te(u)du +
∑

w∈W

⎡

⎣
∑

s∈S

tws

⎛

⎝Pw
s −

∑

r∈Rw
s

pw
r

⎞

⎠

Travel Demand Estimation in a Multi-subnet Urban Road Network 189

+ tw0

⎛

⎝Fw +
∑

s∈S

(
Fw

s − Pw
s

)
−
∑

r∈Rw
0

fw
r

⎞

⎠

+
∑

s∈S

∑

r∈Rw
s

(−pw
r)ηw

r +
∑

r∈Rw
0

(−fw
r)ξw

r +
∑

s∈S

((− Pw
s

)
γw

s + (Pw
s − Fw

s) ζw
s

)
]

,

where tw0 , tws , s ∈ S, ηw
r ≥ 0, r ∈ Rw

s and s ∈ S, ξw
r ≥ 0, r ∈ Rw

0 , γw
s ≥ 0,

ζw
s ≥ 0, s ∈ S, for any w ∈ W are Lagrangian multipliers. If we differentiate

this Lagrangian and use Karush–Kuhn–Tucker conditions, then we obtain the
following set of equalities and inequalities:

– for subnets:

∑

e∈E

te(xe)δw
e,r

{
= tws for pw

r > 0,
≥ tws for pw

r = 0, ∀r ∈ Rw
s , s ∈ S,w ∈ W, (18)

– for the public road network:

∑

e∈E

te(xe)δw
e,r

{
= tw0 for fw

r > 0,
≥ tw0 for fw

r = 0, ∀r ∈ Rw
0 , w ∈ W, (19)

– for subnets within the public road network:

tws

⎧
⎨

⎩

≤ tw0 for Pw
s = Fw

s ,
= tw0 for 0 < Pw

s < Fw
s ,

≥ tw0 for Pw
s = 0,

∀s ∈ S,w ∈ W. (20)

Therefore, the unique solution of the optimization problem (5)–(10) satisfies
conditions (18)–(20). Thus, the equilibrium traffic assignment pattern x̄ satisfies
(18)–(20). No doubt that the shortest paths in the congested multi-subnet road
network are active (non-zero route-flows) and so equilibrium travel times equal
to corresponding travel times in shortest paths. �	

4 Multi-subnet Road Network with Disjoint Routes

Let us consider the particular case of a multi-subnet urban road network pre-
sented by the directed graph G = (V,E). The set S is still the set of selected
vehicle categories and G = G0 ∪⋃s∈S Gs, where G0 = (V0, E0) is the subgraph
of public roads, which are open to public traffic, and Gs = (Vs, Es) is the sub-
graph of roads, which are open only for the s-th category of vehicles, s ∈ S. We
also believe that there is only one OD-pair with non-zero travel demands, i.e.,
|W | = 1, F0 > 0 and Fs > 0, s ∈ S. We assume that the topology of the graph G
is such that any route initiating in the origin node of the OD-pair and terminat-
ing in its destination node has no common arcs with all other available routes
between this OD-pair. The ordered sets of all possible routes between nodes of
the single OD-pair we denote as R0, |R0| = n0, for the subgraph G0 and Rs,

190 A. Krylatov and A. Raevskaya

|Rs| = ns, for the subgraph Gs, s ∈ S. Demand Fs > 0 for any s ∈ S is assigned
between the available public routes R0 and routes for vehicles of s-th category
Rs. Thus, on the one hand,

∑
r∈Rs

pr = Ps, where pr is the traffic flow of the
s-th category vehicles through the route r ∈ Rs, while Ps is the overall traffic
flow of the s-th category vehicles through the routes Rs. On the other hand, the
difference (Fs −Ps) is the traffic flow of the s-th category vehicles, which can be
assigned between the available public routes R0 for any s ∈ S, since Ps satisfies
the following condition: 0 ≤ Ps ≤ Fs for any s ∈ S. Therefore, demand F0 > 0
is assigned between the available public routes R0 together with the traffic flow∑

s∈S(Fs − Ps):
∑

r∈R0
fr = F0 +

∑
s∈S(Fs − Ps), where fr is the traffic flow

through the public route r ∈ R0 between nodes of OD-pair w ∈ W .
Let us also introduce polynomial strictly increasing functions on the set of

real numbers tr(·), r ∈ R0 ∪ ⋃s∈S Rs, which are travel cost functions for the
defined graph. We assume that

tr(pr) = as
r + bs

r(pr)ms
r , as

r ≥ 0, bs
r > 0, ∀r ∈ Rs, s ∈ S,

tr(fr) = a0
r + b0r(fr)m0

r , a0
r ≥ 0, b0r > 0, ∀r ∈ R0,

(21)

where ms
r ≥ 1 for any r ∈ Rs, s ∈ S, and m0

r ≥ 1 for any r ∈ R0. Moreover,
without loss of generality we believe that

a0
1 ≤ . . . ≤ a0

n0
and as

1 ≤ . . . ≤ as
ns

∀s ∈ S. (22)

Fortunately, the travel demand pattern can be found explicitly for this particular
case of multi-subnet road network.

Theorem 2. Travel demand estimation problem (12)–(14) with mapping χ̂(F)
given by the optimization program (5)–(10) and definitional constraint (11) for
the single-commodity multi-subnet urban road network with disjoint routes and
polynomial cost functions (21) has the unique solution, which can be found explic-
itly as follows:

if as
1 + bs

1(p1)
ms

1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

≤ a0
1 + b01(f1)

ms
1 , then Ps = Fs,

= a0
1 + b01(f1)

ms
1 , then 0 < Ps < Fs,

≥ a0
1 + b01(f1)

ms
1 , then Ps = 0,

∀s ∈ S, (23)

while

Ps =
ks∑

i=1

ms
i

√
as
1 + bs

1(p1)ms
1 − as

i

bs
i

, ∀s ∈ S, (24)

where 0 ≤ ks ≤ ns, s ∈ S, is such that

as
1 ≤ . . . ≤ as

ks
< as

1 + bs
1(p1)

ms
1 ≤ as

ks+1 ≤ . . . as
ns

∀s ∈ S, (25)

and

F0 +
∑

s∈S

(Fs − Ps) =
k0∑

i=1

m0
i

√
a0
1 + b01(f1)m0

1 − a0
i

b0i
, (26)

Travel Demand Estimation in a Multi-subnet Urban Road Network 191

where 0 ≤ k0 ≤ n0 is such that

a0
1 ≤ . . . ≤ a0

k0
< a0

1 + b01(f1)
m0

1 ≤ a0
k0+1 ≤ . . . a0

n0
. (27)

Proof. According to the proof of the Theorem 1, the unique travel demand pat-
tern in a multi-subnet urban road network has to satisfy conditions (18)–(20).
For the single-commodity multi-subnet road network with disjoint routes condi-
tions (18)–(20) have the following form:

tr(pr)
{

= ts for pr > 0,
≥ ts for pr = 0, ∀r ∈ Rs, s ∈ S, (28)

where ts = as
1 + bs

1(p1)
ms

1 for s ∈ S, since, according to (22), the first route is
the shortest one,

tr(fr)
{

= t0 for fr > 0,
≥ t0 for fr = 0, ∀r ∈ R0, (29)

where t0 = a0
1 + b01(f1)

m0
1 , since, according to (22), the first route is the shortest

one,

ts

⎧
⎨

⎩

≤ t0 for Ps = Fs,
= t0 for 0 < Ps < Fs,
≥ t0 for Ps = 0,

∀s ∈ S. (30)

Therefore, (23) does hold.
Due to polynomial travel cost functions, expression (28) can be re-written as

follows:

as
r + bs

r(pr)ms
r

{
= ts for pr > 0,
≥ ts for pr = 0, ∀r ∈ Rs, s ∈ S,

or

pr =

{
ms

r

√
ts−as

r

bsr
, if as

r ≤ ts,
0, if as

r > ts,
∀i ∈ Rs, s ∈ S.

Once condition (22) holds, then there exists ks, 0 ≤ ks ≤ ns, such that

for r ≤ ks, as
r <

for r > ks, as
r ≥
}

ts ∀s ∈ S.

Hence, the following equalities hold:

ns∑

i=1

pi =
ks∑

i=1

pi =
ks∑

i=1

ms
i

√
ts − as

i

bs
i

= Ps ∀s ∈ S,

thus

Ps =
ks∑

i=1

ms
i

√
ts − as

i

bs
i

∀s ∈ S. (31)

Therefore, conditions (24) and (25) do hold.

192 A. Krylatov and A. Raevskaya

Secondly, due to polynomial travel cost functions, expression (29) can be
re-written as follows:

a0
r + b0r(fr)m0

r

{
= t0 for fr > 0,
≥ t0 for fr = 0, ∀r ∈ R0,

or

fr =

{
m0

r

√
t0−a0

r

b0r
if a0

r ≤ t0,
0 for a0

r > t0,
∀r ∈ Rs, s ∈ S. (32)

Once condition (22) holds, then there exists k0, 0 ≤ k0 ≤ n0, such that

for r ≤ k0, a0
r <

for r > k0, a0
r ≥
}

t0.

Hence, the following equalities hold:

n0∑

i=1

fi =
k0∑

i=1

fi =
k0∑

i=1

m0
i

√
t0 − a0

i

b0i
= F0 +

∑

s∈S

(Fs − Ps) ∀s ∈ S,

thus

F0 +
∑

s∈S

(Fs − Ps) =
k0∑

i=1

m0
i

√
t0 − a0

i

b0i
. (33)

Therefore, conditions (26) and (27) do hold. �	
Let us consider the travel demand estimation problem for the single-

commodity multi-subnet urban road network with disjoint routes and linear cost
functions in order to obtain important analytical relationships between travel
demands.

Corollary 1. Travel demand estimation problem (12)–(14) with mapping χ̂(F)
given by the optimization program (5)–(10) and definitional constraint (11) for
the single-commodity multi-subnet urban road network with disjoint routes and
linear cost functions (21) has the unique solution, which satisfies the following
conditions:

if
Ps +

ks∑

i=1

as
i

bsi

ks∑

i=1

1
bsi

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

≤

=

≥

F0 +
∑

s∈S

(Fs − Ps) +
k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

then Ps = Fs,

then 0 < Ps < Fs,

then Ps = 0,

(34)

where 0 ≤ ks ≤ ns, s ∈ S, is such that

as
1 ≤ . . . ≤ as

ks
<

Ps +
ks∑

i=1

as
i

bsi

ks∑

i=1

1
bsi

≤ as
ks+1 ≤ . . . as

ns
∀s ∈ S, (35)

Travel Demand Estimation in a Multi-subnet Urban Road Network 193

and 0 ≤ k0 ≤ n0 is such that

a0
1 ≤ . . . ≤ a0

k0
<

F0 +
∑

s∈S

(Fs − Ps) +
k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

≤ a0
k0+1 ≤ . . . a0

n0
. (36)

Proof. Since travel cost functions are linear then ts, s ∈ S, and t0 can be obtained
from (31) and (33) respectively as follows:

ts =
Ps +

ks∑

i=1

as
i

bsi

ks∑

i=1

1
bsi

, s ∈ S, and t0 =
F0 +

∑

s∈S

(Fs − Ps) +
k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

.

�	
The technique for the travel demand search in the multi-subnet road network

with only disjoint routes and linear travel cost functions follows directly from
the corollary. Let us consider its application to a simple topology network with
a toll road.

5 Toll Road Counters for Travel Demand Estimation

In Fig. 1, we consider a simple topology network, which consists of 4 nodes and 4
arcs, and single OD-pair (1, 3). We assume that the travel demand from origin 1
to destination 3 in the presented network includes drivers who are ready to pay
fees for better passage conditions and drivers who are not ready to pay fees for
passage. In other words, the overall travel demand from origin 1 to destination
3 is F0 + F1, where F1 is drivers who are ready to pay fees for better travel
conditions, while F0 is drivers who are not ready to pay fees. The overall travel
demand is assigned between the available disjoint public routes R0, where R0

consists of two routes: 1 → 2 → 3 and 1 → 4 → 3. We believe that travel time
through both alternative routes is modeled by linear functions: tr(fr) = a0

r+b0rfr,
a0

r ≥ 0, b0r > 0 for any r ∈ R0, where fr is the traffic flow through route r, r ∈ R0.
Suppose that the road administration built a toll road from origin 1 to des-

tination 3 and wants to estimate the total travel demand in the road network
by toll road counters (Fig. 2). In other words, the number of drivers who chose
the toll road for passage is counted by the fee payment system, and the road
administration intends to use this data for the estimation of total travel demand
from origin 1 to destination 3. Therefore, the road administration faces the multi-
subnet urban road network with disjoint routes and one toll road subnet. Indeed,
demand F1 of drivers who are ready to pay fees for better passage conditions
is assigned between the available disjoint public routes R0 and routes for toll-
paying drivers R1, where R1 in our example consists of a single route 1 → 3.

194 A. Krylatov and A. Raevskaya

Fig. 1. Public road network Fig. 2. Toll road subnetwork within
the public road network

Thus, on the one hand,
∑

r∈R1
pr = P1, where pr is the traffic flow of the toll-

paying drivers through the route r ∈ R1, while P1 is the overall traffic flow of
drivers through the routes R1, counted by the fee payment system. On the other
hand, the difference (F1 − P1) is the traffic flow of the drivers who are ready to
pay fees, but assigned between the available public routes R0, since P1 satisfies
the following condition: 0 ≤ P1 ≤ F1. Therefore, demand F0 > 0 is assigned
between the available public routes R0 together with the traffic flow (F1 − P1):∑

r∈R0
fr = F0 + (F1 −P1), where fr is the traffic flow through the public route

r ∈ R0 from origin 1 to destination 3. We believe that travel time through the
subnet routes is modeled by linear functions: tr(pr) = a1

r + b1rpr, a1
r ≥ 0, b1r > 0

for any r ∈ R1, where pr is the traffic flow through route r, r ∈ R1. Moreover,
we believe the ratio

γ =
F1

F0 + F1
(37)

is known. Actually, this ratio means how many percentages of drivers are ready
to pay fees for passage and it can be evaluated due to the opinion poll of drivers.

According to the corollary, the travel demand estimation problem in the
one-subnet urban road network with disjoint routes and linear cost functions
has the unique solution, which satisfies (34), while actually used routes in toll
road subnetwork within the public road network can be found due to (35), (36).
Let us mention that for one-subnet urban road network with disjoint routes and
linear travel time functions, the condition (34) can be relaxed. Indeed, if there
exist k0, 1 ≤ k0 ≤ n0, and k1, 1 ≤ k1 ≤ n1, such that

P1 +
k1∑

i=1

a1
i

b1i

k1∑

i=1

1
b1i

≤

(
1
γ − 1

)
P1 +

k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

, (38)

then

F1 = P1 and F0 =
(

1
γ

− 1
)

P1. (39)

Actually, condition (38) means that the equilibrium travel time in public road
network exceeds the equilibrium travel time through toll road subnetwork, i.e.

Travel Demand Estimation in a Multi-subnet Urban Road Network 195

no one driver who ready to pay fees for passage can experience less travel time
in public road network.

If condition (38) does not hold, then 0 < P1 < F1 and there exist k0, 1 ≤
k0 ≤ n0, and k1, 1 ≤ k1 ≤ n1, such that

P1 +
k1∑

i=1

a1
i

b1i

k1∑

i=1

1
b1i

=
F0 + F1 − P1 +

k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

(40)

and, hence,

F0 + F1 =

⎛

⎜
⎜
⎜
⎝

P1 +
k1∑

i=1

a1
i

b1i

k1∑

i=1

1
b1i

+
P1 −

k0∑

i=1

a0
i

b0i

k0∑

i=1

1
b0i

⎞

⎟
⎟
⎟
⎠

k0∑

i=1

1
b0i

, (41)

while
F1 = γ (F0 + F1) and F0 = (1 − γ) (F0 + F1) . (42)

Actually, condition (40) means that the equilibrium travel time in toll road
subnetwork is equal to the equilibrium travel time in public road network, i.e.
the demand of drivers who are ready to pay toll for better passage conditions is
not fully satisfied.

Therefore, obtained conditions allow the road administration to estimate
travel demand in the multi-subnet urban road network only by toll road counters.
Table 1 reflects available scenarios that can support decision-making.

Table 1. Scenarios for decision-making support.

Condition Scenario Estimation

Inequality (38)
holds

The equilibrium travel time in toll
road sub-network is less than
equilibrium travel time in public road
network, i.e. no one toll-paying driver
can experience less travel time in
public road network

Travel demand pattern can be
obtained by (39)

Inequality (38)
does not hold

The equilibrium travel time in toll
road sub-network is equal to the
equilibrium travel time in public road
network, i.e. the demand of drivers
who are ready to pay toll for better
passage conditions is not fully satisfied

Travel demand pattern can be
obtained by (42) under (41)

196 A. Krylatov and A. Raevskaya

6 Conclusion

The present paper is devoted to the travel demand estimation problem in a
multi-subnet urban road network. We formulated this problem as a bi-level opti-
mization program and proved that it had the unique solution under quite natural
assumption. Moreover, for the simple case of a road network topology with dis-
joint routes, we obtained important analytical results that allowed us to analyze
different scenarios appearing within the travel demand estimation process in a
multi-subnet urban road network. The findings of the paper contribute to the
traffic theory and give fresh managerial insights for traffic engineers.

References

1. Bagloee, S., Ceder, A.: Transit-network design methodology for actual-size road
networks. Transp. Res. Part B 45, 1787–1804 (2011)

2. Bar-Gera, H.: Primal method for determining the most likely route flows in large
road network. Transp. Sci. 40(3), 269–286 (2006)

3. Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear Programming: Theory and Algo-
rithms, 2nd edn. Wiley, New York (1993)

4. Bell, M., Shield, C., Busch, F., Kruse, C.: A stochastic user equilibrium path flow
estimator. Transp. Res. Part C 5(3), 197–210 (1997)

5. Bierlaire, M.: The total demand scale: a new measure of quality for static and
dynamic origin-destination trip tables. Transp. Res. Part B 36, 837–850 (2002)

6. Fisk, C.: On combining maximum entropy trip matrix estimation with user optimal
assignment. Transp. Res. Part B 22(1), 69–73 (1988)

7. Frederix, R., Viti, F., Tampere, C.: Dynamic origin-destination estimation in
congested networks: theoretical findings and implications in practice. Transp. A
Transp. Sci. 9(6), 494–513 (2013)

8. Hernandez, M., Valencia, L., Solis, Y.: Penalization and augmented Lagrangian for
O-D demand matrix estimation from transit segment counts. Transp. A Transp.
Sci. 15(2), 915–943 (2019)

9. Heydecker, B., Lam, W., Zhang, N.: Use of travel demand satisfaction to assess
road network reliability. Transportmetrica 3(2), 139–171 (2007)

10. Kitamura, R., Susilo, Y.: Is travel demand instable? A study of changes in struc-
tural relationships underlying travel. Transportmetrica 1(1), 23–45 (2005)

11. Krylatov, A., Raevskaya, A., Zakharov, V.: Travel demand estimation in urban
road networks as inverse traffic assignment problem. Transp. Telecommun. 22(2),
287–300 (2021)

12. Krylatov, A., Zakharov, V.: Competitive traffic assignment in a green transit net-
work. Int. Game Theory Rev. 18(2), 1640003 (2016)

13. Krylatov, A., Zakharov, V., Tuovinen, T.: Optimal transit network design. In:
Optimization Models and Methods for Equilibrium Traffic Assignment. STTT,
vol. 15, pp. 141–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
34102-2 7

14. Krylatov, A., Zakharov, V., Tuovinen, T.: Principles of wardrop for traffic assign-
ment in a road network. In: Optimization Models and Methods for Equilibrium
Traffic Assignment. STTT, vol. 15, pp. 17–43. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-34102-2 2

https://doi.org/10.1007/978-3-030-34102-2_7
https://doi.org/10.1007/978-3-030-34102-2_7
https://doi.org/10.1007/978-3-030-34102-2_2
https://doi.org/10.1007/978-3-030-34102-2_2

Travel Demand Estimation in a Multi-subnet Urban Road Network 197

15. Lampkin, W., Saalmans, P.: The design of routes, service frequencies and schedules
for a municipal bus undertaking: a case study. Oper. Res. Q. 18, 375–397 (1967)

16. Lundgren, J., Peterson, A.: A heuristic for the bilevel origin-destination matrix
estimation problem. Transp. Res. Part B 42, 339–354 (2008)

17. Nguyen, S.: Estimating an OD matrix from network data: a network equilibrium
approach. Publication 60, Centre de Recherche sur les Transports, Universitet de
Motreal

18. Patriksson, M.: The Traffic Assignment Problem: Models and Methods. VSP,
Utrecht (1994)

19. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis with Mathemat-
ical Programming Methods. Prentice-Hall Inc., Englewood Cliffs (1985)

20. Shen, W., Wynter, L.: A new one-level convex optimization approach for estimating
origin-destination demand. Transp. Res. Part B 46, 1535–1555 (2012)

21. Sun, G., Bin, S.: Router-level internet topology evolution model based on multi-
subnet composited complex network model. J. Internet Technol. 18(6), 1275–1283
(2017)

22. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings
of the Institution of Civil Engineers, vol. 2, pp. 325–378 (1952)

23. Wei, C., Asakura, Y.: A Bayesian approach to traffic estimation in stochastic user
equilibrium networks. Transp. Res. Part C 36, 446–459 (2013)

24. Xie, F., Levinson, D.: Modeling the growth of transportation networks: a compre-
hensive review. Netw. Spat. Econ. 9, 291–307 (2009)

25. Yang, H., An, S.: Robustness evaluation for multi-subnet composited complex net-
work of urban public transport. Alex. Eng. J. 60, 2065–2074 (2021)

26. Yang, H., Sasaki, T., Iida, Y., Asakura, Y.: Estimation of origin-destination matri-
ces from link traffic counts on congested networks. Transp. Res. Part B 26(6),
417–434 (1992)

27. Zakharov, V.V., Krylatov, A.Y.: Transit network design for green vehicles routing.
Adv. Intell. Syst. Comput. 360, 449–458 (2015)

28. Zakharov, V., Krylatov, A., Ivanov, D.: Equilibrium traffic flow assignment in case
of two navigation providers. In: Camarinha-Matos, L.M., Scherer, R.J. (eds.) PRO-
VE 2013. IAICT, vol. 408, pp. 156–163. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40543-3 17

29. Zhao, F., Zeng, X.: Optimization of transit route network, vehicle headways, and
timetables for large-scale transit networks. Eur. J. Oper. Res. 186, 841–855 (2008)

https://doi.org/10.1007/978-3-642-40543-3_17
https://doi.org/10.1007/978-3-642-40543-3_17

The Shortest Simple Path Problem
with a Fixed Number of Must-Pass

Nodes: A Problem-Specific
Branch-and-Bound Algorithm

Andrei Kudriavtsev1 , Daniel Khachay1 , Yuri Ogorodnikov1 , Jie Ren2,
Sheng Cheng Shao2, Dong Zhang2, and Michael Khachay1(B)

1 Krasovsky Institute of Mathematics and Mechanics, Yekaterinburg, Russia
{kudriavtsev,dmx,yogorodnikov,mkhachay}@imm.uran.ru

2 Huawei Technologies Co. Ltd., Shenzhen, China
{renjie21,shaoshengcheng,zhangdong48}@huawei.com

Abstract. The Shortest Simple Path Problem with Must-Pass Nodes
is the well-known combinatorial optimization problem having numer-
ous applications in operations research. In this paper, we show, that
this problem remains intractable even for any fixed number of must-
pass nodes. In addition, we propose a novel problem-specific branch-and-
bound algorithm for this problem and prove its high performance by a
numerical evaluation. The experiments are carried out on the real-life
benchmark dataset ‘Rome99’ taken from the 9th DIMACS Implemen-
tation Challenge. The results show that the proposed algorithm outper-
forms the well-known solver Gurobi equipped with the best known MILP
models both in obtained accuracy and execution time.

Keywords: Shortest Simple Path Problem with Must-Pass Nodes ·
Branch-and-Bound algorithm · Milp models

1 Introduction

The Shortest Simple Path Problem with Must-Pass Nodes (SSPP-MPN) is the
well-known combinatorial optimization problem studied from the middle of 1960s
(see, e.g. [7,15]). The problem has numerous applications in operations research,
e.g. in the field of optimal routing in communication networks [13,14,16].

As for the classic Shortest Path Problem (SPP), in SSPP-MPN, the goal is to
find a path connecting given source and destination nodes in a weighted network
by a path of the smallest total cost. The only difference is that this path should
visit (pass) a given subset of dedicated nodes.

This seemingly minor detail makes a tremendous impact on the computa-
tional complexity of the problem in question. Indeed, without loss of generality,
assume the cost function to be non-negative. Then, the SPP can be solved to
optimality in quadratic time by the seminal Dijkstra’s algorithm [5]. Meanwhile,
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 198–210, 2021.
https://doi.org/10.1007/978-3-030-92121-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_17&domain=pdf
http://orcid.org/0000-0001-5683-4862
http://orcid.org/0000-0001-9276-4128
http://orcid.org/0000-0002-1750-1368
http://orcid.org/0000-0003-3555-0080
https://doi.org/10.1007/978-3-030-92121-7_17

SSPP-k -MPN: A Branch-and-Bound Algorithm 199

the SSPP-MPN is strongly NP-hard enclosing the classic Traveling Salesman
Problem (TSP).

Furthermore, under our assumption, the simple-path constraint, optional for
the SPP, is obligatory for the SSPP-MPN. Indeed, relaxation of this constraint
immediately implies tractability of the SSPP-k-MPN for any fixed number k
of must-pass nodes, whilst otherwise, as we show in this paper, this problem
remains NP-hard even for k = 1.

Related Work. To the best of our knowledge, the SSPP-MPN was introduced
in [15], where the first simple but erroneous algorithm (as was shown in [7])
was proposed. In [11], dynamic programming scheme and the first branch-and-
bound algorithm based on the flow MILP-model for the classic Shortest Path
Problem were developed. Although these algorithms are correct, they can hardly
be applied to solving even moderate-size instances of the problem, due to their
high computational complexity.

Recently, a substantial progress in the design of algorithms for the SSPP-
MPN and related problems was achieved. For instance, in the paper [1], a number
of compact MILP-models were proposed that gives us an opportunity for solving
the problem using the well-known MIP-solvers. In [16] an efficient multi-stage
meta-heuristic algorithm were proposed.

Numerous promising algorithmic results were obtained for the well-known
shortest k-Vertex-Disjoint Paths Problem (or just k-DPP), which appears to be
close to the SSPP-MPN. In k-DPP, we are given by an edge-weighted graph
G = (V,E, c) and a collection of source-destination pairs C = {(si, ti) ∈ V 2}.
The goal is to to find k vertex-disjoint simple paths of the smallest total cost,
such that each ith path connects si with ti.

As known [12], the DPP is NP-hard if k belongs to the instance. Furthermore,
for the digraphs, the k-DPP is NP-hard for any fixed k ≥ 2 as well [8].

Nevertheless, many efficient algorithms were proposed for the case of planar
graphs. Thus, the authors of [17] proved that the planar k-DPP can be solved
to optimality in O(kn log n) time, if all the sources belong to one face, while all
the destinations to another one. In [4], O(4knω/2+2) time FPT algorithm was
proposed for the case of the planar k-DPP, where all sources and destinations
are located at the boundary of a common face.

Finally, we should notice the recent breakthrough result obtained by
Börklund and Husfeldt [2], who proved that k-DPP is polynomially solvable
for k = 2 in the class of undirected graphs.

Unlike to the aforementioned problems, the SSPP-MPN with a fixed number
of must-pass nodes is rather weakly explored in terms of algorithm design. Even
the question on polynomial solvability/intractability of the problem (becoming
quite topical in the light of [2]) still remains open.

Apparently, few elegant heuristics proposed in [9,13] together with their
numerical evaluation on instances of small and moderate size are the only algo-
rithmic results for this problem. In this paper, we try to bridge this gap.

200 A. Kudriavtsev et al.

Our Contribution is two-fold:

(i) we prove that the SSPP-k-MPN is NP-hard for an arbitrary k ≥ 1;
(ii) we propose a novel problem-specific branch-and-bound algorithm and prove

its efficiency numerically on a real-life dataset from the 9th DIMACS Imple-
mentation Challenge – Shortest Paths [6].

The rest of the paper is structured as follows. In Sect. 2, we remind formula-
tion of the SSPP-MPN and MILP-models, which afterwards will be used in the
numerical experiments as baselines. In Sect. 3, we provide a short explanation
of the mutual polynomial-time cost-preserving reduction of the SSPP-k-MPN
and (k +1)-DPP and obtain the NP-hardness of the former problem as a simple
consequence.

Further, in Sect. 4, we discuss the main idea of the proposed algorithm. As
in Sect. 3, we keep the description short postponing the complete version to the
forthcoming paper. Section 5 provides numerical evaluation carried out on the
DIMACS [6] dataset ‘Rome99’. Finally, in Sect. 6 we summarize our results and
discuss some questions that remain open.

2 Problem Statement

An instance of the SSPP-MPN is given by a weighted directed graph G =
(V,A, c), where c : A → R+ specifies direct transportation costs, an ordered
pair (s, t) ∈ V 2, where s and t are called a source and destination, respectively,
and a finite subset F ⊂ V of must-pass nodes, each of them should be visited
by any feasible path. The goal is to construct a shortest simple (or elementary)
feasible path departing from s and arriving to t.

For decades, a number of MILP models were proposed for the SSPP-MPN.
The first of them having the following form:

(DFJ) : min
∑

(i,j)∈A

cijxij (1)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =

⎧
⎪⎨

⎪⎩

−1, i = t,

1, i = s,

0, otherwise
(j ∈ V) (2)

∑

(i,j)∈A

xij =
∑

(j,i)∈A

xji = 1 (i ∈ F) (3)

∑

i,j∈S

xij ≤ |S| − 1, (∅ �= S ⊂ V) (4)

xij ∈ {0, 1}, (i, j ∈ V) (5)

appears to be a straightforward adaptation of the classic Dantzig-Fulkerson–
Johnson model [3] for the Asymmetric Traveling Salesman Problem (ATSP).

Hereinafter, each variable xij indicates an assignment of the arc (i, j) to
the s-t-path to be constructed. The objective function minimized in equation

SSPP-k -MPN: A Branch-and-Bound Algorithm 201

(1) denotes the total transportation cost. Equations (2) and (4) represent the
flow conservation and subtour elimination constraints, respectively, whilst eq.
(3) ensures that each must-pass node is visited exactly once.

As for the ATSP, model DFJ appears to be the most simple and convenient
for the theoretical treatment of the problem. Unfortunatelly, its application for
solving large-scale instances of the problem using one of the well-known MIP-
solvers, e.g. CPLEX or Gurobi, is difficult due to the exponential number of
constraints.

Recently [1], several novel approaches for developing polynomial-size MILP
models for the SSPP-MPN were intoduced and numerically compared. In this
paper, for numerical comparison with our Branch-and-Bound algorithm, we take
two best-performers. We call these models A1 and A2, respectively.

To ensure subtour elimination, model A1 incorporates dual variables πi and
penalties with a big M constant, as follows:

(A1) : min
∑

(i,j)∈A

cijxij (6)

s.t. (2), (3), (5)
∑

(i,s)∈A

xis =
∑

(j,t)∈A

xtj = 0 (7)

πj − πi ≤ cij + M · (1 − xij) ((i, j) ∈ A) (8)
πj − πi ≥ cij − M · (1 − xij) ((i, j) ∈ A) (9)

πs = 0 (10)
πi ≥ 0 (i ∈ V). (11)

On the other hand, in A2, the same affect is obtained by inclusion of the auxiliary
continuous flow variables:

(A2) : min
∑

(i,j)∈A

cijxij (12)

s.t. (2), (3), (5), (7)
∑

(ij)∈A

xij ≤ 1 (j ∈ V \ (F ∪ {s, t})) (13)

∑

(i,j)∈A

fij −
∑

(j,i)∈A

fji =

⎧
⎪⎨

⎪⎩

|F | + 1, i = s,

−1, i ∈ F ∪ t,

0, otherwise
(i ∈ V) (14)

xij ≤ fij ≤ (|F | + 1) · xij ((i, j) ∈ A). (15)

As it shown in [1], in both models, the number of decision variables and
constraints depends linearly on |V | + |A|.

Hereinafter, we consider the SSPP-MPN setting, where the number of must-
pass nodes |F | = k for some k ∈ N. We call this problem SSPP-k-MPN.

202 A. Kudriavtsev et al.

3 Computational Complexity

In this section, we briefly discuss the polynomial-time cost-preserving reduction
between the SSPP-k-MPN and (k + 1)-DPP for any fixed k, which leads us to
the proof of the intractabllity of the problem in question.

Theorem 1. For any fixed k ∈ N, SSPP-k-MPN is polynomially equivalent to
(k + 1)-DPP.

Consider a short sketch of the proof.

(i). Indeed, to prove the cost-preserving reduction of (k + 1)-DPP to SSPP-
k-MPN, suppose that an instance of the former problem is specified by
an edge-weighted digraph G = (V,A, c) and a finite collection of source-
destination pairs C = {(si, ti) : i ∈ {1, . . . , k + 1}}. Augment the graph G
with new vertices W1, . . . ,Wk and zero-cost arcs (ti,Wi) and (Wi, si+1) and
consider the SSPP-k-MPN instance defined the resulting digraph, the source
s1, the destination tk, and the set of must-pass nodes F = {W1, . . . ,Wk}
(Fig. 1 illustrates the case of k = 1). By construction, each feasible path in
the constructed instance induces a feasible solution of the initial (k+1)-DPP
instance of the same cost.

(a) (b)

Fig. 1. Example of reducing 2-DPP to SSPP-1-MPN: (a) the initial 2-DPP instance
and (b) the corresponding SSPP-1-MPN instance with a single must-pass node W

(a) (b)

Fig. 2. Example of the backward reduction: (a) the initial SSPP-1-MPN instance with
the must-pass node W and (b) the corresponding instance of the 2-DPP (with OD-pairs
(s, W ′) and (W ′′, t))

SSPP-k -MPN: A Branch-and-Bound Algorithm 203

(ii). On the other hand, consider an instance of the SSPP-k-MPN defined by a
digraph G = (V,A, c), a source s, destination t, and a set of must-pass nodes
F = {W1, . . . ,Wk}, for some fixed k. Split each must-pass node Wi into W ′

i

and W ′′
i , such that each inbound arc of Wi become incident to W ′

i and each
outbound arc incident to W ′′

i . Then, to an arbitrary ordering Wi1 , . . . ,Wik

of the set F , assign the appropriate instance of the (k+1)-DPP specified by
the graph G with splitted nodes Wi and the collection of source-destination
pairs C = {(s,W ′

i1
), (W ′′

i1
,W ′

i2
), . . . , (W ′′

ik
, t)} (Fig. 2). Again, any feasible

solution of each among k! produced (k + 1)-DPP instances induces a same-
cost feasible solution of the initial instance of the SSPP-k-MPN. Therefore,
we are done with the reverse reduction.

As a simple consequence of Theorem 1 and complexity results obtained in
[8] for the k-DPP, we obtain

Theorem 2

(i) SSPP-k-MPN on digraphs is strongly NP-hard for any fixed k ≥ 1
(ii) for any fixed k, an arbitrary polynomial time algorithm for the k-DPP

induces the appropriate algorithm for the SSPP-k-MPN

4 Branch-and-Bound Algorithm

Our algorithm extends the branching framework proposed in [11].

Main Idea. At any node of the branching tree, we introduce an auxiliary
weighted digraph G′ = (Z,A′), where

(i) Z = {s, t} ∪ F ;
(ii) for any nodes z′ �= z′′, (z′, z′′) ∈ A′ if and only if, in the graph G, there exists

a path P = z′, z1, . . . , zr, z
′′ for some r, such that {z1, . . . , zr} ∩ Z = ∅;

(iii) we weight any arc (z′, z′′) ∈ A′ with a length of the shortest such path P .

Then, we find1 the shortest Hamiltonian s-t path P ′ in the graph G′ and
transform it to the corresponding path P in the graph G.

If the obtained P is simple, then a feasible solution of the SSPP-MPN is
found. In this case, we update the record and branch cut the branch off. Oth-
erwise, we proceed with branching at the current node by removing (from the
graph G) the edges incident to a node visited by the path P more than once.

A branch is pruned any time when one of the following conditions is met:

(i) a feasible solution found, in this case we check and possibly update the
current upper bound

(ii) the auxiliary graph G′ has no Hamiltonian paths
(iii) a non-simple path P is obtained, whose cost is greater than the current

upper bound.
1 Or show that G′ has no Hamiltonian paths. Since |F | is fixed, this task can be solved

in a constant time.

204 A. Kudriavtsev et al.

Branching. Our branching strategy is based on arc exclusion for any vertex of
the graph G visited by the appropriate relaxed solution more than once. Suppose,
at the current tree-node, we found a not-simple path (see Fig. 3). Eliminating
separately each arc of this path incident to a more-than-once-passed vertex2,
we obtain child nodes in the branching tree. In this paper, we use Breadth-first
search strategy for exploration of the branching tree.

Fig. 3. Non-simple path and the appropriate child nodes in a search tree

Stopping Criteria in our algorithm are as follows:

(i) the instance is infeasible (there exists a must-pass node, which cannot be
visited by a simple path)

(ii) an exact solution is found (at root relaxation)
(iii) an admissible value of the gap is achieved (at an arbitrary node of the search

tree)
(iv) the entire search tree is explored
(v) established calculation time limit is reached

Lower Bounds. We use a standard promotion strategy for the lower bounds.
Each not-a-leaf node of the search tree contains its own lower bound, called local
LB, while the bound belonging to the root node is called global LB (or just LB).
For an arbitrary not-a-leaf node of the branching tree,

(i) we initialize the local LB with a cost of the found relaxed solution,
(ii) update the local LB for the first time, when all its child nodes initialize

their local LBs,
(iii) after that, we recalculate the local LB any time, when an arbitrary child

node updates its own local LB.

2 Highlighted by red crosses.

SSPP-k -MPN: A Branch-and-Bound Algorithm 205

Fig. 4. Local-search heuristic

Local Search. In parallel with the main branching procedure, we use a simple
local search heuristic. Any time, when in a tree node, we obtain an enough
short but not a simple path, we provide it to the pool of parallel workers with
intension to make it simple (Fig. 4). Our experiments show that this simple
heuristic significantly speeds up the overall computation process.

Implementation. Our algorithm is implemented on Python 3.8 including net-
workx and multiprocessing packages, without any outer or non-standard depen-
decies.

5 Numerical Evaluation

To evaluate performance of the proposed algorithm, we carry out the following
numerical experiment.

Experimental Setup. As a test benchmark, we take ‘Rome99 ’ dataset from
the 9th Implementation Challenge—Shortest Paths [6] that provides a large
portion of the directed road network of the city of Rome, Italy, from 1999. This
network is represented by a weighted digraph G of 3353 vertices and 8870 arcs.

For each k ∈ {2, 4, 6, 8}, we generate 500 instances on the same graph G with
k must-pass nodes exactly, where the source s and destination d vertices and the
subset F are sampled at random.

As a baseline, we use the well-known MIP-optimizer Gurobi [10] applied to
the aforementioned models A1 and A2. We establish 1% gap tolerance for all
the algorithms. Time limits are 300 s for our algorithm vs. 3600 s for Gurobi.
Computational platform is Intel(R) Xeon(R) CPU 4× 2.60 GHz 8 GB RAM
with Centos 8 Linux OS.

Results. In Table 1 and Fig. 5a–5c one can find the short summary of the
obtained results in terms of the compared algorithms: the proposed BnB and
the Gurobi optimizer applied to the MILP models A1 and A2. First group of
columns presents the ratio of obtained feasible solutions (see Fig. 5a). Second

206 A. Kudriavtsev et al.

Table 1. Evaluation summary: best values are highlighted

Feas. sol. ratio (%) Avg. gap (%) Avg. time (sec)

MPN A1 A2 BnB A1 A2 BnB A1 A2 BnB

2 97.4 100.0 100.0 26.15 4.47 3.23 2842.56 1596.08 29.72

4 89.6 99.8 99.8 26.15 13.36 3.70 3398.52 3021.57 47.98

6 32.4 99.4 99.4 32.19 15.59 4.55 3580.81 3365.34 70.85

8 16.6 99.0 99.4 33.85 15.38 4.89 3594.15 3477.99 241.15

group reflects the average gaps for the aforementioned methods calculated by
the formula (UB − LB)/UB. Here UB is the objective value of the best found
solution and LB is the best lower bound, respectively. Finally, last group shows
the average computation time of the proposed methods (see Fig. 5c). The time
limit for BnB was set to 300 s, while for A1 and A2 computation time was limited
to 1 h.

As it follows from Table 1, the proposed algorithm finds feasible solution in
99% of instances, even for 8 must-pass nodes. It also provides a significantly
better approximation ratio in comparison to the solutions obtained by Gurobi
with significantly less computational time consumption.

Table 2. Gaps probability distributions

Gap percentiles (%)

of must-pass nodes

2 4 6 8

α level (%) BnB A2 BnB A2 BnB A2 BnB A2

10 0.0 0.0 0.2 0.6 0.6 1.1 0.7 5.7

20 0.1 0.0 0.7 1.0 0.9 7.3 1.2 8.9

30 0.4 0.2 1.0 5.6 1.6 10.4 2.0 11.1

40 0.8 0.7 1.6 9.5 2.2 13.8 2.9 13.0

50 1.5 0.9 2.4 13.2 3.1 16.8 3.7 15.4

60 2.5 1.0 3.4 15.7 4.3 18.0 4.9 17.5

70 4.2 5.4 4.3 19.0 5.5 20.2 6.2 19.8

80 5.8 8.9 5.9 23.1 7.1 23.0 7.8 22.3

90 8.7 16.2 9.6 27.4 10.9 27.4 10.3 24.8

100 33.1 34.4 28.7 40.8 29.3 41.6 33.4 34.4

SSPP-k -MPN: A Branch-and-Bound Algorithm 207

(a) (b)

(c)

Fig. 5. (a) obtained ratio of feasible solutions; (b) average gap with 95% confidence
bounds; (c) average time complexity with 95% confidence bounds

Sufficiently large amount of the considered empirical data allows us not to
restrict ourselves to simple averages and leads to more complicated statistical
findings. In the sequel, we present empirical estimations for probabilistic dis-
tributions of the observed gaps. We exclude A1 from this study because this
algorithm gives too small ratio of feasible solutions (see Table 1 and Fig. 5a). We
present the estimated distributions in Table 2 and illustrate them together with
the appropriate densities in Fig. 6a–d respectively.

208 A. Kudriavtsev et al.

(a)

(b)

(c)

(d)

Fig. 6. Empirical distribution functions and densities for random gaps obtained by
BnB and A2 for: (a) two, (b) four, (c) six, and (d) eight must-pass nodes

SSPP-k -MPN: A Branch-and-Bound Algorithm 209

6 Conclusion

In this paper, we proposed a novel branch-and-bound algorithm for the Shortest
Simple Path Problem with a fixed number of Must-Pass Nodes. Results of the
numerical evaluation show that the proposed technique outperforms well-known
Gurobi solver applied to the best-known models for SSPP-MPN to date. As a
future work, we plan to extend our algorithm to a number of related problems
and test it on data sets of a larger scale.

Acknowledgements. This research was performed as a part of research carried out
in the Ural Mathematical Center with the financial support of the Ministry of Sci-
ence and Higher Education of the Russian Federation (Agreement number 075-02-
2021-1383) and partially funded by Contract no. YBN2019125124. All computations
were performed on supercomputer ‘Uran’ at Krasovsky Institute of Mathematcs and
Mechanics.

References

1. Castro de Andrade, R.: New formulations for the elementary shortest-path problem
visiting a given set of nodes. Eur. J. Oper. Res. 254(3), 755–768 (2016). https://
doi.org/10.1016/j.ejor.2016.05.008

2. Björklund, A., Husfeldt, T.: Shortest two disjoint paths in polynomial time. SIAM
J. Comput. 48(6), 1698–1710 (2019). https://doi.org/10.1137/18M1223034

3. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling salesman
problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954). https://doi.org/10.1287/
opre.2.4.393

4. Datta, S., Iyer, S., Kulkarni, R., Mukherjee, A.: Shortest k-disjoint paths via deter-
minants, February 2018

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390

6. DIMACS: 9th DIMACS Implementation Challenge - Shortest Paths (2006). http://
users.diag.uniroma1.it/challenge9/download.shtml. Accessed 4 Feb 2021

7. Dreyfus, S.: An appraisal of some shortest path algorithm. Oper. Res. 17, 395–412
(1969). https://doi.org/10.1287/opre.17.3.395

8. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theor. Comput. Sci. 10(2), 111–121 (1980). https://doi.org/10.1016/0304-
3975(80)90009-2

9. Gomes, T., Martins, L., Ferreira, S., Pascoal, M., Tipper, D.: Algorithms for deter-
mining a node-disjoint path pair visiting specified nodes. Opt. Switch. Netw. 23
(2017). https://doi.org/10.1016/j.osn.2016.05.002

10. Gurobi Optimization LLC.: Gurobi optimizer reference manual (2020). http://
www.gurobi.com

11. Ibaraki, T.: Algorithms for obtaining shortest paths visiting specified nodes. SIAM
Rev. 15(2), 309–317 (1973). http://www.jstor.org/stable/2028603

12. Karp, R.: Reducibility among combinatorial problems. vol. 40, pp. 85–103 (01
1972). https://doi.org/10.1007/978-3-540-68279-0 8

13. Martins, L., Gomes, T., Tipper, D.: Efficient heuristics for determining node-
disjoint path pairs visiting specified nodes. Networks 70(4), 292–307 (2017)
https://doi.org/10.1002/net.21778

https://doi.org/10.1016/j.ejor.2016.05.008
https://doi.org/10.1016/j.ejor.2016.05.008
https://doi.org/10.1137/18M1223034
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1007/BF01386390
http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml
https://doi.org/10.1287/opre.17.3.395
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/j.osn.2016.05.002
http://www.gurobi.com
http://www.gurobi.com
http://www.jstor.org/stable/2028603
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1002/net.21778

210 A. Kudriavtsev et al.

14. Rak, J.: Resilient Routing in Communication Networks. Computer Communica-
tions and Networks, Springer (2015)

15. Saksena, J.P., Kumar, S.: The routing problem with ‘K’ specified nodes. Oper.
Res. 14(5), 909–913 (1966). http://www.jstor.org/stable/168788

16. Su, Z., Zhang, J., Lu, Z.: A multi-stage metaheuristic algorithm for shortest simple
path problem with must-pass nodes. IEEE Access 7, 52142–52154 (2019). https://
doi.org/10.1109/ACCESS.2019.2908011

17. Verdière, E.C.D., Schrijver, A.: Shortest vertex-disjoint two-face paths in planar
graphs ACM Trans. Algor. 7(2), 1–12 (2011). https://doi.org/10.1145/1921659.
1921665

http://www.jstor.org/stable/168788
https://doi.org/10.1109/ACCESS.2019.2908011
https://doi.org/10.1109/ACCESS.2019.2908011
https://doi.org/10.1145/1921659.1921665
https://doi.org/10.1145/1921659.1921665

Medical Staff Scheduling Problem
in Chinese Mobile Cabin Hospitals

During Covid-19 Outbreak

Shaowen Lan1,2, Wenjuan Fan1,2(B), Kaining Shao1,2, Shanlin Yang1,2,
and Panos M. Pardalos3

1 School of Management, Hefei University of Technology, Hefei 230009, China
fanwenjuan@hfut.edu.cn

2 Key Laboratory of Process Optimization and Intelligent Decision-Making
of Ministry of Education, Hefei 230009, China

3 Center for Applied Optimization, Department of Industrial and Systems
Engineering, University of Florida, Gainesville, FL 32611-6595, USA

Abstract. In this paper, we discuss the medical staff scheduling prob-
lem in the Mobile Cabin Hospital (MCH) during the pandemic outbreaks.
We investigate the working contents and patterns of the medical staff in
the MCH of Wuhan during the outbreak of Covid-19. Two types of med-
ical staff are considered in the paper, i.e., physicians and nurses. Besides,
two different types of physicians are considered, i.e., the expert physi-
cian and general physician, and the duties vary among different types
of physicians. The objective of the studied problem is to get the mini-
mized number of medical staff required to accomplish all the duties in the
MCH during the planning horizon. To solve the studied problem, a gen-
eral Variable Neighborhood Search (general VNS) is proposed, involving
the initialization, the correction strategy, the neighborhood structure,
the shaking procedure, the local search procedure, and the move or not
procedure. The mutation operation is adopted in the shaking procedure
to make sure the diversity of the solution and three neighborhood struc-
ture operations are applied in the local search procedure to improve the
quality of the solution.

Keywords: Medical staff scheduling · Mobile Cabin Hospital ·
Covid-19 pandemic · Variable neighborhood search

1 Introduction

In the past years, there are several times of pandemic outbreaks all over the
world, each bringing huge threats to human health and society operation. Take
the Covid-19 pandemic as an example, it is a new infectious disease and spreads
world-wide quickly. Patients suffer from the pandemic with lower respiratory
tract infection and the symptoms including fever, dry cough, and even dys-
pnea [5]. The disease caused by Covid-19 has an incubation period, and the
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 211–218, 2021.
https://doi.org/10.1007/978-3-030-92121-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_18

212 S. Lan et al.

patients in the incubation period usually do not have obvious symptoms, such
as cough and fever, hence many of them are infected without being aware of
it, and they may continue to infect others. Therefore, once an epidemic appears
and it is not contained in time, it will spread quickly in a short time and may
become a pandemic.

The outbreaks of pandemic bring huge pressure on the local hospitals due
to the strong infectiousness of the disease and the explosive growth of infected
patients. The inefficiency isolation, treatment, and management measures of the
hospitals will exacerbate the spread of the pandemic, especially the nosocomial
infection. The mobile cabin hospitals (MCHs) are a kind of modular health
equipment with emergency treatment, which can relieve the shortage of medical
sources [6]. MCH is used to quarantine and diagnose the mild-moderate patients,
which plays an important role in controlling the Covid-19 pandemic in Wuhan,
China [4]. In Wuhan city, the MCHs are composed of different functions units,
such as the ward unit, severe disease observation and treatment unit, medical
imaging examination unit, clinic testing unit, nucleic acid test unit, etc.

Patients in a MCH are with similar symptoms and degrees of illness, there-
fore, the treatment plans for these patients are very similar. It can help medical
staff develop a relatively standardized work model and improve the efficiency of
the diagnosis. MCH is composed of many ward units, and the clinical treatment
and medical observation of patients are provided in the ward unit. Medical staff
in the MCHs include physicians and nurses, who need to undertake different
duties in various units. Physicians, in the ward units, are supposed to diagnose
and provide the treatment plan for the patients, and nurses in the units need to
observe the vital signs of patients, dispense medicine for patients, etc. The times
of doing the duties, i.e., diagnosis and the medical observation for each patient,
are quite different in a day. Therefore, the required number of physicians and
nurses in the same unit at a time is different.

Considering the above background, a novel medical staff scheduling problem
in MCH during a pandemic outbreak is investigated in this paper. It takes into
account the infectivity of the pandemic and the MCH can effectively prevent
the spread of the pandemic. In the following, the details of the studied problem
are illustrated in Sect. 2. The proposed general VNS is introduced in Sect. 3. We
summarize our work in Sect. 4. The experimental results are provided in Sect. 5.

2 Problem Description

In this paper, medical staff denote the group of physicians and nurses, where two
types of physicians are considered, i.e., the general physicians and the expert
physicians. Generally, the number of physicians is very limited, especially the
expert physicians. Five types of duties are considered, i.e., expert physician
consultation, general diagnosis, medical observation, medicine distribution, and
nucleic acid test. It is worth noting that all patients are with mild symptoms
when they enter the MCH and part of the patients may deteriorate and need to be
transferred to large hospitals. The expert physician consultation, fulfilled by the

Medical Staff Scheduling Problem in Chinese MCHs 213

expert physicians, is usually provided to patients with deteriorating symptoms
or who may satisfy the criteria of recovery. The general diagnosis provided by the
general physicians is to make the treatment plan for patients with mild symp-
toms. Medical observation, medicine distribution, and nucleic acid test need to
be accomplished by different nurses in a shift. Variances in the working contents
and the resource limitations of medical staff require that the specific schedules
should be formulated for different types of medical staff. Nurses are operated
round on three shifts in a day and three shifts are SN1 (8 AM–4 PM), SN2 (4
PM–0 AM), SN3 (0 AM–8 AM).

The purpose of the paper is to get the minimum number of medical staff
required to accomplish all the duties in the MCH during the planning horizon,
generally two months. For each physician or each nurse, the total working time
in the planning horizon cannot exceed W I or WN , respectively. Besides, for
each physician or nurse, the maximum number of days of them in the MCH is
denoted by DI or DN , respectively, because that the medical staff in MCH is
dispatched from different hospitals and they also need to go back to work. The
arriving day for each physician or nurse is denoted by AI

i , i = 1, 2, . . . , I, where
I is the total number of physicians, or AN

r , r = 1, 2, . . . , R, where R is the total
number of nurses. For each medical staff, s/he cannot work in two successive
shifts. In a week, each medical staff has a day off. In a shift, the minimum
number of physicians for a patient is Ip, p = 1, 2, . . . , P , where P is the total
number of patients. For each physician, the maximum number of patients s/he
can diagnose is N IP

i , i = 1, 2, . . . , I, in a shift. For each nurse, the maximum
number of patients s/he can serve is NNP

r , r = 1, 2, . . . , R, in a shift.

Fig. 1. An example of the assignment between physicians and patients.

214 S. Lan et al.

The length of patients’ stay in the MCH is different. For each patient, the
length of stay is denoted by Lp, p = 1, 2, . . . , P . For each patient, s/he is under
the charge of a physician, which means the physician needs to diagnose the
patient until s/he leaves the MCH. There is an assignment between physician and
patient, and when the physician is on duty, the diagnosis of the assigned patient
should be fulfilled by the physician. An example of the assignment between
physicians and patients is provided in Fig. 1. In the example, each physician
cannot be assigned more than three patients at the same time. Besides, the
arriving day of the assigned patients should be later than the arriving day of the
physician and the leaving time of the assigned patients should be earlier than
the leaving day of the physician.

3 The Proposed VNS

To solve the studied medical staff scheduling problem in the MCH, a general
VNS [1,2] is proposed, which involves the initialization, the correction strategy,
the neighborhood structure, the shaking procedure, the local search procedure,
and the move or not procedure. The processes of the proposed general VNS are
provided in Algorithm 1.

Algorithm 1: Proposed general VNS
Input: neighborhood structure nk, k = 1, 2, . . . , kmax, kmax denotes the

maximum number of neighborhood structures, the time limitation Tmax

Output: solution x and fitness fx
1 x, fx ← Initializationfunction;
2 t ← 0;

3 fbest ← fx;
4 while t ≤ Tmax do
5 k ← 0;
6 while k ≤ kmax do
7 x′, fx′ ← Local search function(x, fx, k);
8 if fx′ ≤ fx then
9 x, fx ← Shaking function(x′, fx′);

10 k ← 0 fbest ← minfx, fx′ ;

11 else
12 ks ← Random(1, kmax) ;
13 x, fx ← Shaking function(x′, fx′ , ks);
14 k ← k + 1;

15 if fx < fbest then

16 fbest ← fx

17 return x, fx;

For the general VNS, two encoding schemes are applied. One of them is for
the physician scheduling and another one is for the nurse scheduling. An example

Medical Staff Scheduling Problem in Chinese MCHs 215

of solution for the proposed VNS is provided in Fig. 2. Three parts are involved
in the solution. The first part is for the physician scheduling, each element of the
solution means that the index of physician whom the specific patient is assigned
to. In the figure, each patient is assigned to a physician, for example, patients P1

and P4 are assigned to physician I1, and patients P2 is assigned to physician I2.
An element with “zero” value is the second part of the solution, which means the
encoding for physician scheduling is end and the encoding for nurse scheduling
will be start. Therefore, the last part is for the nurse scheduling, each element
of the solution means the index of nurse whom the duty is assigned to. Duties
are grouped by the shift and each duty is assigned to a nurse. Besides, a nurse
cannot be assigned to more than one duty in a shift.

Fig. 2. An example of solution for the proposed VNS.

Initialization: First, get the range of each element in the solution. Then, ran-
domly generate a value in the range of each element in the solution. In this way,
generate several feasible solutions for the problem, and choose the best of them
as the initial solution.

Correction Strategy: The aim of the correction strategy is to ensure the fea-
sibility of the solution, by correcting the elements out of range in the solution.
Besides, some constraints for the studied problem should be verified in the correc-
tion strategies. For example, the maximum number of patients can be assigned
to a physician at the same time, the arriving day of patients cannot be earlier
than the assigned physician, and the leaving day of patients cannot be later than
the assigned physicians.

Neighborhood Structure: There are three neighborhood structures applied
in the paper, i.e., swapping, insertion, and 2-opt. The swapping neighborhood
is to randomly select two elements and swap the values between them in the
physician scheduling part and nurse scheduling part of the solution, respectively.
The insertion neighborhood is to randomly select one element in the solution, and
then insert an element before the selected element and delete the final element of
the solution. Besides, if the selected element is in the physician scheduling part,
delete the final element of the physician scheduling part. In 2-opt neighborhood,
it needs to choose the operation is adopted in the physician scheduling part or
nurse scheduling part at first. Then, select two elements of the solution in the
specific range, and reverse the values between these two elements.

216 S. Lan et al.

Shaking Procedure: The shaking procedure is to make sure the diversity of
the solution to avoid trapping into local optimal. In this paper, if the solution
is improved by the local search procedure, the shaking procedure adopts the
mutation operation in the Genetic Algorithm [3]. In detail, randomly choose an
element in the solution, which are from the physician scheduling part and nurse
scheduling part of the solution, respectively. Then, in the physician scheduling
part, randomly select a value a physician who is scheduled in the current solution
and replace the value of the element with the index of the selected physician. In
the nurse scheduling part, select a nurse who is not in the shift of the chosen
duty and replace the value of the element with the new one. Otherwise, ran-
domly select a neighborhood structure and perturb the solution in the selected
neighborhood.

Local Search Procedure: The local search procedure in the paper is to search
the local optimal in the special neighborhood structure. There are three neigh-
borhood structure operations applied, i.e., swapping, insertion, and 2-opt. The
input of the local search procedure is a solution, the fitness of the solution, and
the special neighborhood structure. The local search procedure will return a new
solution and its fitness. The local search procedure is provided in Algorithm2.

Algorithm 2: Local search procedure
Input: neighborhood structure nk, k = 1, 2, . . . , kmax, solution x and fitness fx
Output: new solution x and fitness fx

1 while k ≤ kmax do
2 x′, fx′ ← Search solution in neighborhood k(x, fx, k);
3 if fx′ ≤ fx then
4 x, fx ← x′, fx′ ;
5 k ← 0

6 else
7 k ← k + 1;

8 return x, fx;

Move or Not: If the solution provided by the local search procedure is better
than the current solution, the current solution and its fitness will be replaced by
the better ones and the neighborhood structure is not changed. Otherwise, the
current solution remains and the neighborhood structure is changed to the next
one.

4 Experiments

In this section, the proposed approach is evaluated. All experiments are car-
ried out in Python running on Windows 10 with an Intel (R) CoreTM i5-8400

Medical Staff Scheduling Problem in Chinese MCHs 217

CPU @2.81 GHz and 16 GB RAM. Ten instances with different scales have been
tested where the number of patients is from 100 to 1000 with increments of
100. Besides, the proposed general VNS is compared with four variants of it,
i.e., VNS1, VNS2, VNS3, and VNS4. VNS1, VNS2, and VNS3 are only use two
neighborhood structures in the local search procedure. In detail, VNS1 does not
apply the 2-opt neighborhood, VNS2 does not apply the swapping neighborhood,
and VNS3 does not apply the insertion neighborhood. VNS4 does not adopt the
mutation operation in the shaking procedure when the solution is improved by
the local search procedure.

For each instance, each algorithm is executed 10 times and the maximum
iteration is set as 200. The Relative Percentage Deviation (RPD) is used
to measure the performance of the algorithms which is defined by RPDa =
(AveObja−Min)

Min ∗ 100. Where RPDa and AveObja represent the RPD value and
the average objective value in 10 runs of the algorithm a, respectively. Min is
the best-found objective value of the instance. The results of these compared
algorithms can be seen in Table 1 and the average objective value of 10 runs and
the RPD value are denoted as Ave and RPD, respectively. The experimental
results show that the proposed general VNS is better than other competitors
which verify the effectiveness of the designed neighborhood structures and the
proposed shaking procedure.

Table 1. The experimental results between all compared algorithms.

Patient
number

Proposed VNS VNS1 VNS2 VNS3 VNS4

Ave RPD Ave RPD Ave RPD Ave RPD Ave RPD

100 35.6 22.76 37.1 27.93 38.0 31.03 38.3 32.07 37.6 29.66

200 52.3 8.96 54.5 13.54 53.5 11.46 53.5 11.46 53.1 10.63

300 101.1 11.1 102.5 12.64 101.8 11.87 101.4 11.43 105.4 15.82

400 133.2 8.29 137.2 11.54 140.4 14.15 139.3 13.25 141.2 14.8

500 184.6 5.49 187 6.86 188.7 7.83 187 6.86 188.9 7.94

600 220.7 7.14 224.7 9.08 223.4 8.45 226.9 10.15 225.5 9.47

700 274.3 5.1 278.4 6.67 276.4 5.9 280.2 7.36 279.2 6.97

800 299.6 2.6 305.9 4.76 303.4 3.9 305.7 4.69 300.4 2.88

900 361.3 4.12 368.9 6.31 370.5 6.77 372.7 7.41 367.9 6.02

1000 389.6 2.26 395 3.67 395.5 3.81 389.7 2.28 392.7 3.07

5 Conclusions

The problem studied in the paper is inspired by the real-world pandemic out-
break, i.e., the Covid-19 pandemic. The MCH can deal with the shortage of
medical sources during the pandemic outbreaks, which can release the burden of

218 S. Lan et al.

the local hospitals and effectively slow down the spread of the pandemic. In this
paper, we investigate the medical staff scheduling problem in the MCH by con-
sidering multiple specific features, for example, the different arriving days and
leaving days of medical staff, the duty assignment rules between physicians and
patients, and the various duties of physicians and nurses. Such features increase
the difficulty of the problem and make our studied problem closer to the real-
ity. To solve the studied problem, a general VNS is proposed with the specific
encoding strategy for the problem and the shaking procedure and local search
procedure.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (Nos. 72071057 and 71922009), the Basic scientific research Projects in
central colleges and Universities (JZ2018HGTB0232), and Innovative Research Groups
of the National Natural Science Foundation of China (71521001).

References

1. Hansen, P., Mladenović, N., Moreno Pérez, J.A., Moreno Pérez, J.A.: Variable
neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407
(2010). https://doi.org/10.1007/s10479-009-0657-6

2. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997). https://doi.org/10.1016/S0305-0548(97)00031-2

3. Pan, J.C.H., Shih, P.H., Wu, M.H., Lin, J.H.: A storage assignment heuristic method
based on genetic algorithm for a pick-and-pass warehousing system. Comput. Ind.
Eng. 81, 1–13 (2015). https://doi.org/10.1016/j.cie.2014.12.010

4. Wang, B., et al.: Epidemiological and clinical course of 483 patients with COVID-
19 in Wuhan, China: a single-center, retrospective study from the mobile cabin
hospital. Eur. J. Clin. Microbiol. Infect. Dis. 39(12), 2309–2315 (2020). https://doi.
org/10.1007/s10096-020-03927-3

5. Yuki, K., Fujiogi, M., Koutsogiannaki, S.: COVID-19 pathophysiology: a review.
Clin. Immunol. 215, 108427 (2020). https://doi.org/10.1016/j.clim.2020.108427

6. Zhang, J., et al.: The clinical characteristics and prognosis factors of mild-moderate
patients with COVID-19 in a mobile cabin hospital: a retrospective, single-center
study. Front. Public Health 8, 1–11 (2020). https://doi.org/10.3389/fpubh.2020.
00264

https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/j.cie.2014.12.010
https://doi.org/10.1007/s10096-020-03927-3
https://doi.org/10.1007/s10096-020-03927-3
https://doi.org/10.1016/j.clim.2020.108427
https://doi.org/10.3389/fpubh.2020.00264
https://doi.org/10.3389/fpubh.2020.00264

Performance Evaluation of Adversarial
Attacks on Whole-Graph Embedding

Models

Mario Manzo1, Maurizio Giordano2, Lucia Maddalena2,
and Mario R. Guarracino3,4(B)

1 University of Naples “L’Orientale”, Naples, Italy
2 National Research Council, Rome, Italy

3 University of Cassino and Southern Lazio, Cassino, Italy
mario.guarracino@unicas.it

4 National Research University Higher School of Economics, Moscow, Russia

Abstract. Graph embedding techniques are becoming increasingly
common in many fields ranging from scientific computing to biomedical
applications and finance. These techniques aim to automatically learn
low-dimensional representations for a variety of network analysis tasks.
In literature, several methods (e.g., random walk-based, factorization-
based, and neural network-based) show very promising results in terms
of their usability and potential. Despite their spreading diffusion, little is
known about their reliability and robustness, particularly when applied
to the real world of data, where adversaries or malfunctioning/noisy data
sources may supply deceptive data. The vulnerability emerges mainly by
inserting limited perturbations in the input data when these lead to a
dramatic deterioration in performance. In this work, we propose an anal-
ysis of different adversarial attacks in the context of whole-graph embed-
ding. The attack strategies involve a limited number of nodes based on
the role they play in the graph. The study aims to measure the robust-
ness of different whole-graph embedding approaches to those types of
attacks, when the network analysis task consists in the supervised classi-
fication of whole-graphs. Extensive experiments carried out on synthetic
and real data provide empirical insights on the vulnerability of whole-
graph embedding models to node-level attacks in supervised classification
tasks.

Keywords: Whole-graph embedding · Adversarial attacks · Graph
classification

1 Introduction

Graph structure plays an important role in many real-world applications. Repre-
sentation learning on structured data with machine and deep learning methods
has shown promising results in various applications, including drug screening
[46], protein analysis [41], and knowledge graph completion [27].
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 219–236, 2021.
https://doi.org/10.1007/978-3-030-92121-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_19

220 M. Manzo et al.

Many graph embedding methods have been developed aiming at mapping
graph data into a vector space [5]. The result is a low-dimensional feature repre-
sentation for each node in the graph where the distance between the nodes in the
destination space is preserved as much as possible. Actually, working on embed-
ded data turns out to be easier and faster than on the original data. Furthermore,
the resulting vectors in the transformed space can be adopted for downstream
analysis, either by analyzing the target space or by applying machine learning
(ML) techniques to the vector space. Indeed, by maintaining the topological
information of the graph, low-dimensional representations can be adopted as
features for different tasks such as graphs/nodes classification or clustering.

Despite the remarkable success, the lack of interpretability and robustness
of these models makes them highly risky in fields like biomedicine, finance, and
security, to name a few. Typically, sensitive information concerns the user-user
relationship within the graph. A user who connects with many users with sen-
sitive information may have sensitive information as well. As heuristics learned
from graph-based methods often produce good predictions, they could also jeop-
ardize the model. For example, an ill-intentioned person could disguise himself
by connecting to other people on a social network. Such an “attack” on the
model is simple enough but could lead to severe consequences [11]. Due to a
large number of daily interactions, even if only a few of them are fraudulent, the
ill-intentioned could gain enormous benefits.

The concept of graph robustness was first introduced in the 1970s [10] and
is certainly interdisciplinary. This aspect has generated a variety of points of
view, opening up to challenging and implicit problems with the aim of providing
fundamental knowledge.

Robustness in networked systems is commonly defined as a measure of their
ability to continue operating when one or more of their parts are naturally dam-
aged or targeted by an attack [4]. The study of network robustness concerns the
understanding of interconnected complex systems. For example, consider a net-
work that is prone to natural failures or targeted attacks. A natural failure occurs
when a single element fails due to natural causes such as obsolescence. The con-
sequence is an additional load of the whole remaining network, causing a series of
cascading faults. Not all failures come from natural causes; some may be induced
by targeted attacks, penetrating the network and sabotaging an important part of
it. The antonym of network robustness is vulnerability [42], defined as a measure
of a network’s susceptibility to the spread of perturbations across the network.
The concepts of robustness and vulnerability can be extended to different types of
networks, such as biological ones. Also in this case, they are two important indi-
cators to verify the possible fault of a part of the network or any criticalities that
can compromise the general functions with irreversible impact.

Robustness and vulnerability analysis is a crucial problem for today’s research
focusing on machine learning, deep learning, and AI algorithms operating on net-
worked data in several domains, from cybersecurity to online financial trading,
from social media to big-data analytics. In these contexts, while the networked
systems (i.e., the graph-structured data) are the target of the attacks or pertur-
bations, the real goal is to cause either the malfunctioning (intentionally or not)

Performance Evaluation of Adversarial Attacks 221

or an induced fraudulent behavior of the algorithms which operate on the
modified data.

According to this interpretation, adversarial machine learning [23] is the
area of research in which ML models vulnerability is studied under adversar-
ial manipulation of their input intended to cause incorrect classification [12].
Neural networks and many other machine learning models are highly vulnerable
to adversarial perturbations of the input to the model either at train or at test
time, or both.

Several works on adversarial machine learning in the literature focus on the
computer vision domain [2,34] with application to image recognition. Specifi-
cally, they address the problem of studying and improving the robustness of
classification methods when adversarial images are present in the training and/or
testing stages. More recently, adversarial ML has been increasingly utilized in
other domains, such as natural language processing (NLP) [16] and cybersecu-
rity [36]. Examples of applications in computer vision and NLP domains include
handling autonomous cars’ systems vulnerability, fake news, and financial fraud
detection algorithms. In the cybersecurity domain, adversaries can be terrorists
and fraudulent attackers. Examples of AI cyber systems that can be vulnerable
to adversarial attacks are detection algorithms of malware stealing user infor-
mation and/or collecting money and network worms causing network damages
and malicious functionality.

In this work, we focus on adversarial ML techniques and approaches in the
domain of machine learning models applied to the classification of biological net-
works. In this domain, we do not think of a scenario in which a “real adversary”
intentionally introduces malicious perturbations in the input of learning mod-
els. In our interpretation of “adversarial attacks” within the realm of biological
networks, we mean any type of perturbation to the graph structure, either due
to noise introduced by the experimental environment from where the biologi-
cal data is extracted or to the lack of information due to corrupted sources or
incomplete pre-processing of raw data.

We propose a broad experimentation phase to address the various aspects
mentioned above, using several methods and datasets. To the best of our knowl-
edge, a performance analysis of whole-graph embedding methods under condi-
tions of adversarial attacks has never been carried out.

The paper is structured as follows. Section 2 provides an overview of the state-
of-art about adversarial attacks on whole-graph embedding models. Section 3
gives details about the problem statement. Section 4 provides a comprehensive
experimental phase, while Sect. 5 concludes the paper.

2 Related Work

The literature concerning adversarial attacks for graph data is very recent and
often aimed at node-level or link-level applications [8,39]. Here, we focus on
graph-level applications, and specifically on adversarial attacks on whole-graph
embedding methods, for which few recent papers (mainly preprints) are available.

222 M. Manzo et al.

In [40], Tang et al. design a surrogate model that consists of convolutional
and pooling operators to generate adversarial samples to fool the hierarchical
Graph Neural Networks (GNN)-based graph classification models. Nodes pre-
served by the pooling operator are set as attack targets. Then the attack targets
are perturbed slightly to trick the pooling operator in hierarchical GNNs into
selecting the wrong nodes to preserve. Furthermore, a robust training on the tar-
get models is performed to demonstrate that the retrained graph classification
models can better defend against the attack from the adversarial samples.

Chen et al. [7] propose a graph attack framework named GraphAttacker
that works to adjust the structures and to provide the attack strategies accord-
ing to the graph analysis tasks. It generates adversarial samples based on the
Generative Adversarial Network (GAN) through alternate training on three key
components: the Multi-strategy Attack Generator, the Similarity Discriminator,
and the Attack Discriminator. Furthermore, to achieve attacks within pertur-
bation budget, a novel Similarity Modification Rate to quantify the similarity
between nodes and thus to constrain the attack budget is introduced.

Another graph attack framework, named Graph Backdoor, is presented by
Xi et al. [48]. It can be applied readily without knowing data models or tun-
ing strategies to optimize both attack effectiveness and evasiveness. It works
in different ways: i) graph-oriented – it defines triggers as specific subgraphs,
including topological structures and descriptive features, entailing a large design
spectrum for the adversary; ii) input-tailored – it dynamically adapts triggers
to individual graphs; and iii) attack-extensible – it can be instantiated for both
transductive and inductive tasks.

The vulnerability of Graph Convolutional Networks (GCNs) to adversarial
attacks has been debated in the literature. In [24], Jin et al. introduce a robust-
ness certificate for graph classification using GCNs under structural attacks. The
method is based on Lagrange dualization and convex envelope, which result in
tight approximation bounds computable by dynamic programming. Applied in
conjunction with robust training, it allows an increased number of graphs to be
certified as robust.

Faber et al. [14] discuss the particularities of explaining GNN predictions.
In graphs, the structure is fundamental, and a slight modification can lead to
little knowledge of the data. Therefore, the explanation is reflected in adversar-
ial attacks. The authors argue that the explanation methods should stay with
the training data distribution and produce Distribution Compliant Explanation
(DCE). To this end, they propose a novel explanation method, Contrastive GNN
Explanation, for graph classification that adheres to DCE.

You et al. [49] propose a graph contrastive learning (GraphCL) framework
for learning unsupervised representations of graph data. The impact of various
combinations of graph augmentations in different tasks (semi-supervised, unsu-
pervised, transfer learning, and adversarial attacks) is explored. The proposed
framework can produce graph representations of similar or better generalizabil-
ity, transferability, and robustness than state-of-the-art methods.

Performance Evaluation of Adversarial Attacks 223

In [9], Chung et al. present a framework named Graph Augmentations with Bi-
level Optimization (GABO). It is built to provide a graph augmentation approach
based on bi-level optimization to investigate the effects on graph classification per-
formance. The augmentation procedure can be applied without a priori domain
knowledge about the task. Indeed, the framework combines a Graph Isomorphism
Network (GIN) layer augmentation generator with a bias transformation.

All the above described approaches propose different types of adversarial
attacks. However, none of them shares our aim, i.e., to compare the robustness
to adversarial attacks of different whole-graph embedding methods.

3 Background

In this section, we introduce the formalization of a graph adversarial attack for
the graph classification task. We will first give some preliminary notions about
graphs and the whole-graph embedding problem. Then, we introduce the graph
adversarial attack and related strategies for graph classification.

3.1 Whole-Graph Embedding

A graph G = (V,E) is represented by a pair of sets: V = {vi}Ni=1 is the set of
nodes, and E ⊆ V ×V is the set of edges, each one represented by a pair of nodes
(vi, vj), where vi is the source node and vj the target node. This definition holds
for unweighted graphs, which means graphs whose vertices relation is simply rep-
resented by a connection between them. Let W be a set of real numbers, called
weights, such that for each (vi, vj) ∈ E there exists a weight wi,j ∈ W asso-
ciated to the edge; then G(V,E,W) is called a weighted graph. An alternative
representation of a weighted graph is through its adjacency matrix A = {Ai,j},
whose elements are:

Ai,j =

{
wi,j if (vi, vj) ∈ E

0 otherwise

For unweighted graphs, a unitary weight is considered for each edge to obtain the
adjacency matrix. In general, the adjacency matrix A is not symmetric, since the
occurrence of an edge from node v to node u does not imply the existence of the
edge (u, v). This is only the case of undirected graphs, in which the connection
between two nodes u and v has no direction, thus both (u, v) ∈ E and (v, u) ∈ E
and A is symmetric. In the following, we will refer to generic graphs G = (V,E),
specifying their weights or their directionality only if needed.

In a very general definition, graph embedding learns a mapping from a graph
to a vector space with the purpose of preserving main graph properties.

Definition 1. Given a graph G = (V,E), a graph embedding (or node-level
graph embedding) is a mapping φ: vi ∈V → yi ∈ R

d, i = 1, . . . , N, d ∈ N, such
that the function φ preserves some proximity measure defined on graph G.

224 M. Manzo et al.

Specifically, it is a space reduction that maps the nodes of a graph into a d-
dimensional feature vector space, also known as latent space, trying to maintain
structural information in terms of connections between vertices. The goal of keep-
ing as much information as possible about the graph space in the transformation
is linked to the choice of node/edge properties for the initial representation of
the graph. The criticality concerns the final latent space that expresses valuable
information, for applications such as classification or grouping, despite being in
a lower-dimensional search space.

The concept of graph embedding refers to node-level since it maps each node
in a graph into a vector, preserving node-node proximity (similarity/distance).

Definition 2. Given a set of graphs G = {Gi}Mi=1 with the same set of vertices
V, a whole-graph embedding is a mapping ψ : Gi → yi ∈ R

d, i = 1, . . . , M,
d ∈ N, such that the function ψ preserves some proximity measure defined on G.

In this context, the fundamental condition is that the nodes of the graphs rep-
resent the same information. This requires an alignment procedure that verifies
this property to provide compliant embedding.

Unlike graph embedding, which is adopted in applications such as link pre-
diction and node label predictions, whole-graph embedding is more suited to
graph classification, graph similarity ranking, and graph visualization.

3.2 Graph Adversarial Attacks

Generally, a network can become damaged through two primary ways: natural
failure and targeted attack. Natural failures typically occur when a part fails
due to natural causes. This results in the malfunction or elimination of a node
or edge in the graph. Despite random network failures are much more common,
they are less harmful than targeted attacks. This phenomenon has been verified
across a range of graph structures [4]. Otherwise, targeted attacks carefully and
through precise rules select the nodes and edges of the network for removal to
maximally disrupt network functionality.

Our attention is focused on the modifications to the discrete structures and
different attack strategies. Generally, the attacker tries to add or delete edges
from G to create the new graph. These kinds of actions are varied since adding
or deleting nodes can be performed by a series of modifications to the edges.
Editing edges requires more effort than editing nodes. Indeed choosing a node
only requires O(|V |) complexity, while choosing an edge requires O(|V |2). In our
experiments, we consider two attack strategies

– Degree-based Attack (DA): a percentage p of graph nodes having the highest
degree is removed. The degree (or connectivity) δvi

of node vi is the number
of edges connected to it and can be computed using the graph adjacency
matrix A = {Ai,j} as

δvi
=

∑
j �=i

Ai,j .

Performance Evaluation of Adversarial Attacks 225

The effect of a DA is to reduce the total number of edges in the network as
fast as possible [22]. It only takes into account the neighbors of the target
node v when making a decision and can be considered a local attack. It is
performed with a low computational overhead.

– Betweenness-based Attack (BA): a percentage p of graph nodes having the
highest betweenness centrality is removed. The betweenness centrality for a
node vi is defined as

bvi
=

∑
j,k �=i

σj,k(vi)
σj,k

,

where σj,k is the total number of shortest paths from node vj to node vk and
σj,k(vi) is the number of those paths that pass through the target node vi.
The effect of a BA is to destroy as many paths as possible [22]. It is considered
a global attack strategy due to the path information is aggregated from the
whole network. Clearly, global information carries significant computational
overhead compared to local attacks.

The robustness of the whole-graph embedding methods to adversarial attacks
will be evaluated in terms of their performance for the task of graph classification
on the attacked data.

4 Experiments

In our experiments, we analyze and compare the behavior of some whole-graph
embedding methods under attack conditions for the task of graph classification.
There are different challenges in this topic [40]

– Selection of the target nodes and edges for the attack. Suppose one or a few
nodes or edges are perturbed at random. In that case, the graph classification
results may not change because such a perturbation may not affect or destroy
the intrinsic characteristics of graphs discriminating for the classification.
In this regard, node selection strategies have been chosen as illustrated in
Sect. 3.2.

– Parameters setting to generate effective results. The choice is undoubtedly
difficult as the starting graphs are perturbed. A consequence could also fall on
the computational costs during classification. As is well known, optimizing the
parameters is a crucial aspect for obtaining the best performance. Concerning
this point, we explored the parameter space to choose those that lead to the
best results.

– Robustness is always an essential factor in evaluating the performance of the
models. In the scenario of adversarial attacks, how to improve the robustness
of the classification models? This is one of the two crucial points on which
the paper was founded. In fact, as it is possible to observe through provided
results, it is not certain that, by weakening the structure of the graphs, the
transformation into a vector space, through the embedding phase, necessarily

226 M. Manzo et al.

produces an unrepresentative features vector, affecting the classification. We
will see how some methods adapt even when the graph structures are less
dense and informative.

– Vulnerability, in the same way, is always an essential factor in evaluating the
performance of the models. In the scenario of adversarial attacks, how to
identify the vulnerability of the classification models? It is the second crucial
node on which the paper was founded. As it is possible to observe through the
provided results, also in this case, by weakening the structure of the graphs,
the transformation into a vector space, through the embedding phase, could
produce an unrepresentative feature vector, affecting the classification. We
will see how some methods do not fit when the graph structures are less
dense and informative.

– Data-driven selection. The choice of data is driven by the characteristics of
the graphs. In this way, models can show robustness or highlight critical
issues when a variation of the data occurs. We decided to stress the various
methods chosen for the evaluation based on different characteristics related
to data. As we can see from Table 1, for example, three of the five datasets are
unweighted. This detail is fundamental for calculating the centrality measures
and, therefore, for selecting the nodes to be attacked.

4.1 Datasets

Table 1 illustrates the main properties of the datasets adopted in the experiments
and includes synthetic and real network datasets, concerning some case studies
of our current research on graph classification and clustering [17,29,30].

LFR is a synthetic dataset introduced in [21] based on the Lancichinetti–
Fortunato–Radicchi (LFR) method [25]. As described in [29], we generated two
classes of graphs containing 81 nodes, constructed using two different values of
the parameter μ (expected proportion of edges having a vertex in one community
and the other vertex in another community): 600 graphs with 0.1 µ and 1000
with 0.5 µ. Therefore, this dataset includes many small and unweighted graphs,
subdivided into classes differing by well-defined community properties.

The MREG model [47] is adopted to generate the synthetic Multiple Random
Eigen Graphs (MREG) dataset. Settings for MREG parameters, chosen based
on the authors suggestions and our previous choices [29], are: d = 2 (model
dimension), n = 100 (number of nodes), h1, h2 ∈ R

n, where h1(i) = 0.1,∀i,
h2(i) = −0.1, i = 1, . . . , 50, h2(i) = 0.1, i = 51, . . . , 100. The total number of
unweighted graphs is 300, each composed of 100 nodes each, equally subdivided
into 3 classes using λ = [24.5, 4.75] for class c1, λ = [20.75, 2.25] for class c2, and
λ = [24.5, 2.25] for class c3. In [47], further parameters’ details are given.

The Brain fMRI dataset contains real networks built in [3] from functional
magnetic resonance imaging (fMRI) time-series data [1] from the Center for
Biomedical Research Excellence (COBRE) dataset. It is composed of 54 graphs
from Schizophrenia subjects and 70 graphs from healthy controls. Each graph
includes 263 nodes corresponding to different brain regions. The edges weights
represent the Fisher-transformed correlation between the fMRI time-series of the

Performance Evaluation of Adversarial Attacks 227

nodes after ranking [3], and we only kept the weights of the positively correlated
edges. The dataset ends up including dense weighted graphs with a high average
degree but a small diameter.

The Kidney dataset describes real metabolic networks created for validating
related research [18,20,30]. It contains networks derived from data of 299 patients
divided into three classes: 159 clear cell Renal Cell Carcinoma (KIRC), 90 Papil-
lary Renal Cell Carcinoma (KIRP), and 50 Solid Tissue Normal samples (STN).
We obtained the networks by mapping gene expression data coming from the
Genomic Data Commons (GDC, https://portal.gdc.cancer.gov) portal (Projects
TCGA-KIRC and TCGA-KIRP) on the biochemical reactions extracted from
the kidney tissue metabolic model [44] (https://metabolicatlas.org). Specifically,
given the stoichiometric matrix of the metabolic model, the graph nodes rep-
resent the metabolites, and the edges connect reagent and product metabolites
in the same reaction, weighted by the average of the expression values of the
genes/enzymes catalyzing that reaction [20]. Different reactions represented by
multiple edges connecting two metabolites were fused in a single edge, where the
weight includes the sum of the weights of the fused edges. Disconnected nodes,
due to reactions not catalyzed by an enzyme, and recurrent metabolites, were
not included [20]. The simplification procedure described in [18] is applied to
reduce the complexity of the network, leading to reduce the number of nodes
from 4022 to 1034. Overall, the dataset includes sparse weighted graphs with a
small average degree but wide diameter.

MUTAG [13] is a popular benchmark dataset and is composed of networks
of 188 mutagenic aromatic and heteroaromatic nitro compounds. The nodes
represent atoms, while the edges represent chemical bonds between them. The
graphs contain both vertex and edge labels. The two classes indicate whether or
not the compound has mutagenic effects on a bacterium. Contrary to the other
datasets, the nodes are not perfectly aligned. Indeed, the MUTAG networks have
an average of eighteen vertices, but the labels are only seven.

4.2 Compared Methods

In the experiments, we compared the classification results obtained using the
network embeddings produced by seven whole-graph embedding methods, briefly
described in the following

– GL2vec [6]. It is an extended version of Graph2vec. The method is named
Graph and Line graph to vector (GL2vec) because it concatenates the embed-
ding of an original graph to that of the corresponding line graph. The line
graph is an edge-to-vertex dual graph of the original graph. Specifically,
GL2vec integrates either the edge label information or the structural infor-
mation, which Graph2vec misses with the embeddings of the line graph.

https://portal.gdc.cancer.gov
https://metabolicatlas.org

228 M. Manzo et al.

Table 1. Main properties of the adopted datasets

LFR MREG Kidney Brain fMRI MUTAG

Graphs 1600 300 299 124 188

Classes 2 3 3 2 2

Samples per class 600/1000 100/100/100 159/90/50 70/54 125/63

Vertices 82 100 1034 263 17.93

Average edges 844.45 1151.71 3226.00 19748.88 39.59

Average edge density 0.13 0.23 0.01 0.57 0.138454

Distinct vertex labels 82 100 1034 263 7

Edge weights ✗ ✗ � � ✗

Minimum diameter 3 2 126 0.03 5

Maximum diameter 7 3 455.36 0.07 15

Average degree 20.60 23.03 6.24 150.18 2.19

– Graph2vec [33]. It provides a Skip-Gram neural network model, typically
adopted in the NLP domain. It learns data-driven distributed representa-
tions of arbitrarily sized graphs. The resulting embeddings are learned in an
unsupervised manner and are task-unaware.

– IGE [15]. It extracts handcrafted invariant features based on graph spectral
decomposition. These features are easy to compute, permutation-invariant,
and include sufficient information on the graph’s structure.

– NetLSD [43]. It computes a compact graph signature derived from the solu-
tion of the heat equation involving the normalized Laplacian matrix. It is
permutation and size-invariant, scale-adaptive, and computationally efficient.

– FGSD [45]. It provides a graph representation based on a family of graph
spectral distances with uniqueness, stability, sparsity, and computational effi-
ciency properties.

– FeatherGraph [38]. It adopts characteristic functions defined on graph vertices
to describe the distribution of node features at multiple scales. The probability
weights of the characteristic function are defined as the transition probabilities
of random walks. The node-level features are combined by mean pooling to
create graph-level statistics.

– Netpro2vec [31]. It is a neural-network method that produces embedding of
whole-graphs which are independent from the task and nature of the data.
It first represents graphs as textual documents whose words are formed by
processing probability distributions of graph node paths/distances (e.g., the
Transition Matrix, TM, or the Node Distance Distribution, NDD). Then, it
embeds graph documents by using the doc2vec method [26].

4.3 Implementation Details

For the first six whole-graph embedding methods (GL2vec, Graph2vec, IGE,
NetLSD, FGSD, and FeatherGraph), we used their implementation provided

Performance Evaluation of Adversarial Attacks 229

in the Karate Club software [37]. Our Netpro2vec framework, implemented
in Python, is publicly available (https://github.com/cds-group/Netpro2vec). It
also includes the code for extracting the NDD and TM distribution matri-
ces, based on the GraphDistances R package [19], and the doc2vec embed-
ding is performed using the gensim Natural Language Processing (NLP) library
[35]. Even though the method can exploit different distribution distances as
well their combinations, in the experimental results, we only report the two
obtained using NDD (Netpro2vecndd) and the combination of NDD with TM1
(Netpro2vecndd+tm1), which lead to the best performance results.

The dimension d of the latent feature space for GL2Vec, Graph2Vec, FGSD,
and Netpro2vec was set to 512; this value has been experimentally chosen so as
to maximize accuracy. Instead, for IGE, FeatherGraph, and NetLSD, the output
dimension cannot be specified as an input parameter.

For classification, we adopted an SVM model with a linear kernel
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html). To
avoid hiding the effect of adversarial attacks, we did not apply any feature selec-
tion, even though it could certainly provide higher performance results for any
of the considered methods. We validated the developed models through ten-fold
stratified cross-validation iterated ten times, measuring the mean and standard
deviation of classification accuracy and Matthews correlation coefficient (MCC)
[32].

All the experiments were run on Google Colab Machine, which provides by
default a virtual machine based on a bi-processor with two CPUs @ 2.30 GHz
Intel(R) Xeon(R), 13 GB RAM and 33 GB HDD.

4.4 Performance Evaluation

Performance results obtained using the seven whole-graph embedding methods
described in Sect. 4.2 on the five datasets detailed in Sect. 4.1 are reported in the
bar plots of Fig. 1. Detailed numerical results are given in Tables 2 and 3. Here,
we consider the results achieved using the original network data (Unattacked),
as well as those using data that underwent the removal of the 30% and 50% of
the nodes having the highest betweenness centrality (BA) or the highest degree
(DA), respectively. The choice of these percentages p of nodes to be removed aims
at investigating the effects of both moderate (30%) and strong (50%) adversarial
attacks. The performance is evaluated in terms of the Accuracy and MCC values,
defined as

Accuracy =
TP + TN

TP + FN + FP + TN
,

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

respectively. Here, TP, TN, FP, and FN indicate the number of true positives,
true negatives, false positives, and false negatives. While the Accuracy provides
the percentage of correctly classified samples, MCC gives the correlation coeffi-
cient between observed and predicted binary classifications.

https://github.com/cds-group/Netpro2vec
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

230 M. Manzo et al.

Table 2. Accuracy (%) and MCC (mean and std over ten iterations) of adversarial
attacks on whole-graph embedding models (30% of attacked nodes). In boldface the
best results for each dataset and each attack.

Dataset Method Accuracy MCC

Unattacked BA DA Unattacked BA DA

LFR GL2Vec 94.59± 1.75 84.66± 2.45 87.66± 2.12 0.88± 0.03 0.66± 0.05 0.74± 0.04

Graph2vec 91.94± 2.04 84.41± 2.74 89.44± 2.13 0.82± 0.04 0.66± 0.05 0.77± 0.04

IGE 100.00± 0.00 97.06± 1.34 97.17± 1.17 1.00± 0.00 0.93± 0.02 0.93± 0.02

NetLSD 100.00± 0.00 99.09± 0.73 99.04± 0.71 1.00± 0.00 0.98± 0.01 0.97± 0.01

FGSD 100.00± 0.00 97.97± 0.99 99.15± 0.68 1.00± 0.00 0.95± 0.02 0.98± 0.01

FeatherGraph 100.00± 0.00 98.99± 0.69 99.00± 0.74 1.00± 0.00 0.97± 0.01 0.97± 0.01

Netpro2vecndd 100.00± 0.00 98.41± 0.96 97.40± 1.16 1.00± 0.00 0.96± 0.01 0.94± 0.02

Netpro2vecndd+tm1 100.00± 0.00 95.26± 1.16 72.13± 2.99 1.00± 0.00 0.89± 0.03 0.38± 0.07

MREG GL2Vec 66.83± 7.14 65.23± 7.63 64.23± 8.09 0.44± 0.10 0.48± 0.11 0.47± 0.12

Graph2vec 38.70± 8.46 40.60± 9.46 46.27± 9.30 0.08± 0.13 0.11± 0.14 0.19± 0.14

IGE 65.80± 8.60 62.67± 7.53 65.70± 7.55 0.49± 0.12 0.44± 0.11 0.49± 0.11

NetLSD 71.57± 7.05 58.03± 8.38 58.30± 8.29 0.58± 0.10 0.37± 0.12 0.38± 0.12

FGSD 59.60± 6.08 59.73± 7.71 65.93± 7.97 0.40± 0.09 0.40± 0.11 0.49± 0.12

FeatherGraph 59.60± 6.08 62.80± 7.77 66.10± 6.77 0.40± 0.09 0.44± 0.11 0.49± 0.10

Netpro2vecndd 63.07± 7.60 42.70± 8.73 55.33± 9.44 0.45± 0.11 0.14± 0.13 0.33± 0.14

Netpro2vecndd+tm1 36.80± 8.48 34.77± 7.95 30.87± 8.47 0.05± 0.12 0.02± 0.12 0.03± 0.13

Brain fMRI COBRE GL2Vec No conv No conv No conv No conv No conv No conv

Graph2vec 43.85± 11.27 46.29± 13.43 42.58± 12.38 −0.18± 0.24 −0.09± 0.27 −0.18± 0.25

IGE 44.88± 14.70 48.99± 13.33 53.69± 14.64 −0.11± 0.30 −0.03± 0.28 0.05± 0.30

NetLSD 56.12± 6.59 55.98± 12.10 56.01± 8.70 0.01± 0.18 0.09± 0.26 0.03± 0.21

FGSD 56.54± 2.20 54.68± 12.75 48.31± 13.90 0.00± 0.00 0.07± 0.26 −0.06± 0.29

FeatherGraph 53.77± 5.89 52.65± 7.77 53.77± 12.30 −0.06± 0.16 −0.08± 0.17 0.01± 0.28

Netpro2vecndd 56.58± 12.74 58.58± 10.20 52.97± 11.36 0.11± 0.27 0.14± 0.23 −0.00± 0.27

Netpro2vecndd+tm1 56.58± 12.74 59.18± 13.32 53.30± 12.70 0.11± 0.27 0.17± 0.28 0.05± 0.27

Kidney RNASeq GL2Vec 90.09± 4.74 82.58± 6.73 59.83± 6.05 0.83± 0.08 0.71± 0.11 0.25± 0.16

Graph2vec 90.79± 5.11 79.87± 7.05 58.08± 5.94 0.83± 0.08 0.66± 0.12 0.21± 0.17

IGE No conv No conv No conv No conv No conv No conv

NetLSD 53.46± 7.02 59.07± 7.14 62.23± 8.68 0.11± 0.16 0.25± 0.15 0.36± 0.15

FGSD No conv No conv No conv No conv No conv No conv

FeatherGraph 81.51± 7.96 81.67± 6.44 84.36± 6.64 0.68± 0.13 0.69± 0.10 0.74± 0.11

Netpro2vecndd 83.53± 6.42 87.22± 6.17 85.83± 6.19 0.71± 0.11 0.79± 0.10 0.76± 0.10

Netpro2vecndd+tm1 91.27± 4.45 87.33± 5.86 90.91± 5.60 0.86± 0.07 0.79± 0.09 0.85± 0.09

MUTAG GL2Vec 76.11± 8.48 59.09± 10.57 67.82± 9.44 0.31± 0.24 0.05± 0.24 0.27± 0.21

Graph2vec 66.32± 9.72 64.07± 9.79 63.63± 10.02 0.39± 0.24 0.15± 0.24 0.15± 0.24

IGE 83.72± 7.92 83.22± 8.13 84.93± 7.45 0.61± 0.16 0.63± 0.17 0.67± 0.16

NetLSD 86.23± 7.68 83.71± 8.03 83.38± 7.54 0.69± 0.16 0.63± 0.18 0.62± 0.17

FGSD 86.01± 7.77 78.68± 9.57 81.21± 8.79 0.70± 0.16 0.55± 0.19 0.60± 0.18

FeatherGraph 82.40± 8.24 69.72± 7.22 68.23± 7.20 0.60± 0.17 0.23± 0.22 0.17± 0.23

Netpro2vecndd 71.42± 9.19 61.75± 8.78 62.34± 0.06 0.35± 0.21 0.00± 0.22 0.12± 0.23

Netpro2vecndd+tm1 72.06± 9.64 73.95± 8.60 76.51± 9.27 0.34± 0.19 0.41± 0.20 0.47± 0.21

For the LFR dataset, the performance on unattacked graphs is high for all
methods. Indeed, as already shown in [31], most of the considered methods suc-
ceed in producing whole-graph embeddings that lead to an almost perfect linear
separation between the two LFR classes. In the case of moderate attacks, NetLSD
and FGSD (but also FeatherGraph and Netpro2vec with NDD) respond better
to both the types of adversarial attack, showing a lower reduction in Accuracy
and MCC values as compared to the other methods. For stronger attacks, Feath-
erGraph reveals the most robust method, experiencing only a slight performance
decrease.

Performance Evaluation of Adversarial Attacks 231

Fig. 1. Bar plots of the accuracy (%) and MCC of adversarial attacks on whole-graph
embedding models

In the case of the MREG dataset, discordant results can be observed. Indeed,
the best-performing method using unattacked data (NetLSD) experiences a dra-
matic performance decrease when handling both types of attacks. In contrast, the
second-best method (GL2vec) is subject to a much lower performance decrease
under attack, and this behavior holds whichever the strength of the attack. On
the other side, the attacks can even be beneficial for classification performance,
as for FeatherGraph that improves its performance under the moderate BA and
the stronger DA.

For both the fMRI and Kidney datasets, Netpro2vec, mainly when based
on NDD+TM1, appears to be the method that best exploits the network
edges’ weights. At the same time, it proves to be quite robust to adversar-
ial attacks, experiencing slightly decreased performance for both moderate and
strong attacks. Instead, NetLSD improves its performance when handling mod-
erate DAs, showing the best performance among all the compared methods, and

232 M. Manzo et al.

Table 3. Accuracy (%) and MCC (mean and std over ten iterations) of adversarial
attacks on whole-graph embedding models (50% of attacked nodes). In boldface the
best results for each dataset and each attack.

Dataset Method Accuracy MCC

Unattacked BA DA Unattacked BA DA

LFR GL2Vec 94.59± 1.75 85.36± 2.65 83.04± 2.56 0.88± 0.03 0.68± 0.05 0.63± 0.05

Graph2vec 91.94± 2.04 88.74± 2.36 85.51± 2.69 0.82± 0.04 0.75± 0.05 0.70± 0.05

IGE 100.00± 0.00 91.46± 2.10 94.17± 1.85 1.00± 0.00 0.81± 0.04 0.87± 0.03

NetLSD 100.00± 0.00 93.60± 1.93 92.97± 1.99 1.00± 0.00 0.86± 0.04 0.85± 0.04

FGSD 100.00± 0.00 77.96± 2.54 82.58± 2.97 1.00± 0.00 0.52± 0.05 0.62± 0.06

FeatherGraph 100.00± 0.00 97.17± 1.19 94.62± 1.79 1.00± 0.00 0.93± 0.02 0.88± 0.03

Netpro2vecndd 100.00± 0.00 82.99± 2.55 86.67± 2.40 1.00± 0.00 0.63± 0.05 0.71± 0.05

Netpro2vecndd+tm1 100.00± 0.00 82.99± 2.55 62.99± 3.73 1.00± 0.00 0.63± 0.05 0.18± 0.08

MREG GL2Vec 66.83± 7.14 58.07± 8.46 59.57± 8.28 0.44± 0.10 0.37± 0.12 0.39± 0.12

Graph2vec 38.70± 8.46 58.07± 8.46 40.77± 8.18 0.08± 0.13 0.37± 0.12 0.11± 0.12

IGE 65.80± 8.60 54.13± 6.73 55.53± 7.47 0.49± 0.12 0.31± 0.10 0.33± 0.11

NetLSD 71.57± 7.05 49.37± 7.78 50.20± 7.48 0.58± 0.10 0.24± 0.11 0.26± 0.11

FGSD 59.60± 6.08 54.60± 7.98 56.63± 8.13 0.40± 0.09 0.32± 0.12 0.35± 0.12

FeatherGraph 59.60± 6.08 61.37± 8.02 57.73± 8.18 0.40± 0.09 0.42± 0.12 0.37± 0.12

Netpro2vecndd 63.07± 7.60 41.83± 9.18 42.93± 7.92 0.45± 0.11 0.12± 0.14 0.14± 0.12

Netpro2vecndd+tm1 36.80± 8.48 33.87± 8.71 34.70± 7.93 0.05± 0.12 0.00± 0.13 0.02± 0.12

Brain fMRI COBRE GL2Vec No conv No conv No conv No conv No conv No conv

Graph2vec 43.85± 11.27 51.13± 11.93 46.27± 13.14 −0.18± 0.24 −0.00± 0.25 −0.10± 0.27

IGE 44.88± 14.70 48.96± 13.21 56.83± 13.16 −0.11± 0.30 −0.02± 0.27 0.12± 0.27

NetLSD 56.12± 6.59 50.68± 10.30 54.41± 6.25 0.01± 0.18 −0.08± 0.20 −0.02± 0.13

FGSD 56.54± 2.20 48.49± 13.51 45.22± 11.42 0.00± 0.00 −0.05± 0.28 −0.12± 0.23

FeatherGraph 53.77± 5.89 52.63± 12.04 60.65± 13.51 −0.06± 0.16 0.02± 0.26 0.20± 0.28

Netpro2vecndd 56.58± 12.74 52.46± 13.24 53.83± 11.31 0.11± 0.27 0.02± 0.28 0.01± 0.26

Netpro2vecndd+tm1 56.58± 12.74 56.35± 12.46 53.83± 11.31 0.11± 0.27 0.11± 0.25 0.01± 0.26

Kidney RNASeq GL2Vec 90.09± 4.74 73.39± 7.56 68.49± 7.34 0.83± 0.08 0.55± 0.12 0.44± 0.14

Graph2vec 90.79± 5.11 73.02± 7.30 67.42± 7.44 0.83± 0.08 0.54± 0.12 0.42± 0.14

IGE No conv No conv No conv No conv No conv No conv

NetLSD 53.46± 7.02 61.13± 8.00 63.27± 7.76 0.11± 0.16 0.34± 0.14 0.38± 0.13

FGSD No conv No conv No conv No conv No conv No conv

FeatherGraph 81.51± 7.96 81.37± 6.83 89.00± 4.79 0.68± 0.13 0.69± 0.11 0.82± 0.07

Netpro2vecndd 83.53± 6.42 87.52± 5.66 87.35± 5.30 0.71± 0.11 0.80± 0.10 0.79± 0.08

Netpro2vecndd+tm1 91.27± 4.45 89.20± 5.36 88.87± 5.68 0.86± 0.07 0.82± 0.09 0.81± 0.09

MUTAG GL2Vec 76.11± 8.48 63.37± 9.25 67.39± 10.10 0.31± 0.24 0.00± 0.22 0.24± 0.24

Graph2vec 66.32± 9.72 59.86± 9.32 63.10± 8.28 0.39± 0.24 0.02± 0.24 0.09± 0.21

IGE 83.72± 7.92 83.93± 7.85 83.56± 7.47 0.61± 0.16 0.65± 0.17 0.63± 0.17

NetLSD 86.23± 7.68 84.25± 7.61 83.48± 7.77 0.69± 0.16 0.64± 0.16 0.62± 0.17

FGSD 86.01± 7.77 79.27± 8.80 79.54± 9.17 0.70± 0.16 0.57± 0.17 0.55± 0.20

FeatherGraph 82.40± 8.24 66.44± 2.30 67.82± 4.63 0.60± 0.17 0.00± 0.00 0.10± 0.18

Netpro2vecndd 71.42± 9.19 71.22± 8.09 65.55± 8.54 0.35± 0.21 0.30± 0.22 0.13± 0.23

Netpro2vecndd+tm1 72.06± 9.64 71.60± 11.32 78.52± 8.30 0.34± 0.19 0.37± 0.20 0.53± 0.18

the same can be said for FeatherGraph under strong attack. Other methods,
such as GL2vec on fMRI or IGE and FGSD on Kidney, fail to reach convergence
in all the unattacked and attacked cases, yielding no classification model.

On the MUTAG dataset, the best-performing method (NetLSD) experiences
a tiny performance decrease in handling moderate and strong adversarial attacks.
The same can also be said for IGE and Netpro2vec, which maintain similar
performance, if not better, regardless of the attacks.

Overall, we can conclude that FeatherGraph, NetLSD, Netpro2vec, and IGE
appear to be more robust than the other methods under both moderate and
strong adversarial attacks. We also observed unexpected behaviors in some cases,

Performance Evaluation of Adversarial Attacks 233

where an improvement in performance rather than a degradation occurs. Indeed,
removing central (important) nodes does not always weaken the significance of
the graph description. Therefore, these nodes can be considered important but
not fundamental for the transformation from a graph to a vector space. This
point deserves further attention in future experiments.

We wish to emphasize that the above analysis is primarily intended to inves-
tigate the robustness to adversarial attacks of the considered methods rather
than their performance for the classification task. Indeed, further optimization
steps, such as feature selection or class balancing, have been purposely omitted
for all the methods, which would certainly help in achieving better classification
performance.

5 Conclusions and Future Work

We have analyzed and compared different whole-graph embedding methods to
understand their behavior under adversarial attacks better. We have performed
attacks on graphs supposing the subsequent data analysis task is supervised
classification. During the attacks, we have analyzed the unique features of each
embedding method to highlight strengths and weaknesses, varying the type of
attack and dataset. In this regard, the robustness of the graph analysis task
model is an important issue. Future works concern many directions. First,
extending the analysis on different types of datasets and attacks to propose
defense mechanisms that can partially or entirely erase the highlighted limits of
existing solutions. Besides, it would be interesting to analyze the embedding fea-
tures that the methods create for the classification task. Methods like SHapley
Additive exPlanations (SHAP) [28] could be applied to learn feature importance
and explain the model output.

Acknowledgments. This work has been partially funded by BiBiNet project
(H35F21000430002) within POR-Lazio FESR 2014–2020. It was carried out also within
the activities of the authors as members of the ICAR-CNR INdAM Research Unit and
partially supported by the INdAM research project “Computational Intelligence meth-
ods for Digital Health”. Mario Manzo thanks Prof. Alfredo Petrosino for the guidance
and supervision during the years of working together. The work of Mario R. Guarracino
was conducted within the framework of the Basic Research Program at the National
Research University Higher School of Economics (HSE).

References

1. Aine, C.J., Jeremy Bockholt, H., Bustillo, J.R., et al.: Multimodal neuroimaging
in schizophrenia: description and dissemination. Neuroinformatics 15(4), 343–364
(2017)

2. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer
vision: a survey. IEEE Access 6, 14410–14430 (2018). https://doi.org/10.1109/
ACCESS.2018.2807385

https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.1109/ACCESS.2018.2807385

234 M. Manzo et al.

3. Arroyo-Relión, J.D., et al.: Network classification with applications to brain con-
nectomics [Internet]. Ann. Appl. Stat. 13(3), 1648 (2019)

4. Beygelzimer, A., et al.: Improving network robustness by edge modification. Phys-
ica A Stat. Mech. Appl. 357(3–4), 593–612 (2005)

5. Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey of graph embed-
ding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9),
1616–1637 (2018)

6. Chen, H., Koga, H.: GL2vec: graph embedding enriched by line graphs with
edge features. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS,
vol. 11955, pp. 3–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36718-3 1

7. Chen, J., et al.: GraphAttacker: a general multi-task graphattack framework. In:
arXiv preprint arXiv:2101.06855 (2021)

8. Chen, L., et al.: A survey of adversarial learning on graphs. In: CoRR
abs/2003.05730 (2020). arXiv: 2003.05730

9. Chung, H.W., Datta, A., Waites, C.: GABO: graph augmentations with bi-level
optimization. In: arXiv preprint arXiv:2104.00722 (2021)

10. Chvátal, V.: Tough graphs and Hamiltonian circuits. Discret. Math. 5(3), 215–228
(1973)

11. Dai, H., et al.: Adversarial attack on graph structured data. In: CoRR
abs/1806.02371 (2018). arXiv: 1806.02371

12. Dalvi, N., et al.: Adversarial classification. In: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2004, pp. 99–108. Association for Computing Machinery, Seattle (2004).
https://doi.org/10.1145/1014052.1014066. ISBN 1581138881

13. Debnath, A.K., et al.: Structure-activity relationship of mutagenic aromatic and
heteroaromatic nitro compounds. Correlation with molecular orbital energies and
hydrophobicity. J. Med. Chem. 34 (1991). https://doi.org/10.1021/jm00106a046

14. Faber, L., Moghaddam, A.K., Wattenhofer, R.: Contrastive graph neural network
explanation. In: arXiv preprint arXiv:2010.13663 (2020)

15. Galland, A., Lelarge, M.: Invariant embedding for graph classification. In: ICML
2019 Workshop on Learning and Reasoning with Graph-Structured Representa-
tions (2019)

16. Gao, J., et al.: Black-box generation of adversarial text sequences to evade deep
learning classifiers. In: 2018 IEEE Security and Privacy Workshops (SPW), pp.
50–56 (2018). https://doi.org/10.1109/SPW.2018.00016

17. Granata, I., et al.: A short journey through whole graph embedding techniques.
In: International Conference on Network Analysis (NET 2020) (2020)

18. Granata, I., et al.: Model simplification for supervised classification of metabolic
networks. Ann. Math. Artif. Intell. 88(1), 91–104 (2020)

19. Granata, I., Guarracino, M.R., Maddalena, L., Manipur, I.: Network distances for
weighted digraphs. In: Kochetov, Y., Bykadorov, I., Gruzdeva, T. (eds.) MOTOR
2020. CCIS, vol. 1275, pp. 389–408. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58657-7 31 ISBN 978-3-030-58657-7

20. Granata, I., et al.: Supervised classification of metabolic networks. In: 2018 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2688–
2693. IEEE (2018)

21. Gutiérrez-Gómez, L., Delvenne, J.-C.: Unsupervised network embeddings with
node identity awareness. Appl. Netw. Sci. 4(1), 82 (2019)

22. Holme, P., et al.: Attack vulnerability of complex networks. Phys. Rev. E 65(5),
056109 (2002)

https://doi.org/10.1007/978-3-030-36718-3_1
https://doi.org/10.1007/978-3-030-36718-3_1
http://arxiv.org/abs/2101.06855
http://arxiv.org/abs/2003.05730
http://arxiv.org/abs/2104.00722
http://arxiv.org/abs/1806.02371
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.1021/jm00106a046
http://arxiv.org/abs/2010.13663
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1007/978-3-030-58657-7_31
https://doi.org/10.1007/978-3-030-58657-7_31

Performance Evaluation of Adversarial Attacks 235

23. Huang, L., et al.: Adversarial machine learning. In: Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence, AISec 2011, pp. 43–58. Associa-
tion for Computing Machinery, Chicago (2011). https://doi.org/10.1145/2046684.
2046692. ISBN 9781450310031

24. Jin, H., et al.: Certified robustness of graph convolution networks for graph classi-
fication under topological attacks. In: Advances in Neural Information Processing
Systems, vol. 33 (2020)

25. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

26. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

27. Lin, Y., et al.: Learning entity and relation embeddings for knowledge graph com-
pletion. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 29,
January 2015

28. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774
(2017)

29. Maddalena, L., et al.: On whole graph embedding techniques. In: Interna-
tional Symposium on Mathematical and Computational Biology (BIOMAT 2020),
November 2020

30. Manipur, I., et al.: Clustering analysis of tumor metabolic networks. BMC Bioin-
form. (2020). https://doi.org/10.1186/s12859-020-03564-9. ISSN 1471–2105

31. Manipur, I., et al.: Netpro2vec: a graph embedding framework for biomedical appli-
cations. IEEE/ACM Trans. Comput. Biol. Bioinform. (2021)

32. Matthews, B.W.: Comparison of the predicted and observed secondary structure of
T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struct. 405(2),
442–451 (1975). https://doi.org/10.1016/0005-2795(75)90109-9. ISSN 0005–2795

33. Narayanan, A., et al.: graph2vec: learning distributed representations of graphs.
In: ArXiv abs/1707.05005 (2017)

34. Qiu, S., et al.: Review of artificial intelligence adversarial attack and defense tech-
nologies. Appl. Sci. 9(5) (2019). https://doi.org/10.3390/app9050909. ISSN 2076–
3417

35. Řeh̊uřrek, R., Sojka, P.: Software framework for topic modelling with large corpora.
English. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pp. 45–50. ELRA, Valletta, May 2010

36. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end
attack against state of the art API call based malware classifiers. In: Bailey, M.,
Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050,
pp. 490–510. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-
5 23 ISBN 978-3-030-00470-5

37. Rozemberczki, B., Kiss, O., Sarkar, R.: Karate Club: an API oriented open-source
Python framework for unsupervised learning on graphs. In: Proceedings of the
29th ACM International Conference on Information and Knowledge Management
(CIKM 2020). ACM (2020)

38. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather,
from statistical descriptors to parametric models. In: Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pp. 1325–
1334 (2020)

39. Sun, L., et al.: Adversarial attack and defense on graph data: a survey. In: CoRR
abs/1812.10528 (2018). arXiv: 1812.10528

https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1186/s12859-020-03564-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.3390/app9050909
https://doi.org/10.1007/978-3-030-00470-5_23
https://doi.org/10.1007/978-3-030-00470-5_23
http://arxiv.org/abs/1812.10528

236 M. Manzo et al.

40. Tang, H., et al.: Adversarial attack on hierarchical graph pooling neural networks.
In: arXiv preprint arXiv:2005.11560 (2020)

41. Thorne, T., Stumpf, M.P.H.: Graph spectral analysis of protein interaction network
evolution. J. Royal Soc. Interface 9(75), 2653–2666 (2012)

42. Tong, H., et al.: On the vulnerability of large graphs. In: 2010 IEEE International
Conference on Data Mining, pp. 1091–1096. IEEE (2010)

43. Tsitsulin, A., et al.: NetLSD: hearing the shape of a graph. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2347–2356 (2018)

44. Uhlén, M., et al.: Tissue-based map of the human proteome. Science 347(6220)
(2015)

45. Verma, S., Zhang, Z.-L.: Hunt for the unique, stable, sparse and fast feature learn-
ing on graphs. In: Advances in Neural Information Processing Systems, pp. 88–98
(2017)

46. Vlietstra, W.J., et al.: Using predicate and provenance information from a knowl-
edge graph for drug efficacy screening. J. Biomed. Semant. 9(1), 1–10 (2018)

47. Wang, S., et al.: Joint embedding of graphs. IEEE Trans. Pattern Anal. Mach.
Intell. 43(4), 1324–1336 (2021). https://doi.org/10.1109/TPAMI.2019.2948619

48. Xi, Z., et al.: Graph backdoor. In: 30th USENIX Security Symposium (USENIX
Security 2021) (2021)

49. You, Y., et al.: Graph contrastive learning with augmentations. In: Advances in
Neural Information Processing Systems, vol. 33 (2020)

http://arxiv.org/abs/2005.11560
https://doi.org/10.1109/TPAMI.2019.2948619

Algorithm Selection on Adaptive
Operator Selection: A Case Study

on Genetic Algorithms

Mustafa Mısır1,2(B)

1 Istinye University, Istanbul, Turkey
mustafa.misir@istinye.edu.tr

2 Duke Kunshan University, Kunshan, China

Abstract. The present study applies Algorithm Selection (AS) to Adap-
tive Operator Selection (AOS) for further improving the performance of
the AOS methods. AOS aims at delivering high performance in solving
a given problem through combining the strengths of multiple operators.
Although the AOS methods are expected to outperform running each
operator separately, there is no one AOS method can consistently per-
form the best. Thus, there is still room for improvement which can be
provided by using the best AOS method for each problem instance being
solved. For this purpose, the AS problem on AOS is investigated. The
underlying AOS methods are applied to choose the crossover operator for
a Genetic Algorithm (GA). The Quadratic Assignment Problem (QAP)
is used as the target problem domain. For carrying out AS, a suite of
simple and easy-to-calculate features characterizing the QAP instances
is introduced. The corresponding empirical analysis revealed that AS
offers improved performance and robustness by utilizing the strenghts of
different AOS approaches.

1 Introduction

Various algorithms, each dedicated to solve a particular problem, have been
developed to tackle the optimization and decision problems. The studies on
different problems, however, have revealed that each algorithm has its own
strengths and weaknesses. Thus, an algorithm that performs well on a certain
set of problem instances, delivers poor performance on other instances of the
same problem. In other words, there is no one algorithm performs well on all the
instance of a particular problem. This claim is also supported by the No Free
Lunch theorem [1]. From this perspective, one way to outperform such algo-
rithms is to develop a strategy to determine which algorithm is likely to perform
the best on a given problem instance. This idea has been studied under the
Algorithm Selection Problem (ASP) [2]. The traditional approach to handle the
ASP is generating performance prediction models. Such a model can forecast
the performance of the existing algorithms on a new problem instance. Then,
the algorithm(s) which is expected to perform the best can be applied to solve
this particular instance.
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 237–251, 2021.
https://doi.org/10.1007/978-3-030-92121-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_20

238 M. Mısır

Further, fine-tuned, selection among algorithms can be done through Adap-
tive Operator Selection (AOS) [3], a.k.a. adaptive operator allocation [4], sim-
ilarly to Selection Hyper-heuristics (SHHs) [5]. AOS can be referred as Online
Algorithm Selection (AS) while the aforementioned ASP is mainly concerned
with Offline AS. Online AS has more potential compared to Offline AS consider-
ing that Offline AS is a special case of Online AS. This potential can be justified
by referring to the condition that the performance of algorithms can differ on
different parts of the search space [6]. Determining the best algorithm on-the-fly
while a problem instance solved can help to deliver better performance than
the traditional Offline AS. The possible performance gain of combining multiple
algorithms in an AOS setting was also shown from a theoretical perspective [7].
It should be noted that algorithms used under AOS are usually expected to be
used to perturb a given solution. Thus, unlike the traditional algorithm selection
strategies, the AOS methods can take advantage of the algorithms’ strengths at
the solution level. However, the algorithm base used under AOS is mostly com-
posed of simple move operators that make rather small changes on a solution.
Yet, there exists studies [8] utilizing complete algorithms as well.

This work focuses on using AS without loosing the advantages of AOS so
that the performance beyond the independent performance of Offline AS and
AOS alone can be reached or exceeded. An existing AS system, i.e. ALORS [9],
is accommodated for performing AS. The task of AOS stays the same while AS is
employed to choose the best AOS method. In other words, AS performs selection
decision at a higher level. In order to experimentally analyze the proposed idea, a
suite of well-known AOS techniques are employed. The goal of AOS here is to pick
the best crossover operator at each generation for a Genetic Algorithm (GA).
The GA is applied to the widely-used benchmarks of the Quadratic Assignment
problem.

In the remainder of the paper, Sect. 2 gives an overview both on AS and
AOS. Section 3 introduces the proposed approach. Then, a detailed experimental
analysis is presented in Sect. 4. The paper is finalized with a summary and
discussed in Sect. 5.

2 Background

2.1 Adaptive Operator Selection

Adaptive Operator Selection (AOS) [3,10] has been mainly studied to choose the
right operator on-the-fly for evolutionary algorithms (EAs). AOS is composed
of two sub-mechanisms including Operator Selection and Credit Assignment.
Operator Selection is the main component that decides which operator to apply
next. Next can mean next generation for evolutionary algorithms while it can
mean next iteration for other type of algorithms. This decision usually depends
on a measure which reflects the performance or behavior of each operator. Credit
Assignment is responsible to take care of this evaluation step of operators. While

Algorithm Selection on Adaptive Operator Selection 239

these terminologies belong to AOS, they have been widely used in a broder
perspective in Selection Hyper-heuristics1 [11,12].

From the operator selection perspective, the idea is to efficiently explore the
search space while exploiting good search regions. Exploration and exploita-
tion dilemma has been the central subject of reinforcement learning (RL) [13].
In terms of AOS, multi-armed bandits (MABs) [14] have been widely used to
address this dilemma. A MAB can be considered a single state RL2. Prior to
utilizing MAB for AOS, Probability Matching (PM) [15] has been used to per-
form basic AOS through roulette wheel selection referring to the current credits
of each operator. The shortcomings of PM have been tried to addressed by
Adaptive Pursuit (AP) [4] which comes from Learning Automata (LA) [16], i.e.
stateless RL. Pure LA has been also used in SHHs [17,82,83]. An extreme value
based credit assignment strategy was delivered for AOS as ExAOS [18] by inte-
grating it to some existing selection approaches like PM and AP. A comparative
analysis of AOS with PM and AP using varying credit assignment schemes for
multi-objective optimization was reported in [19]. Both PM and AP were also
integrated to NSGA-III in [20]. LSAOS-DE [21] was offered as a landscape-based
AOS for differential evolution. In [22], Hybrid Non-dominated Sorting Genetic
Algorithm (HNSGA) with AOS was proposed as a variant of NSGA-II [23], using
a credit assignment step depends on the survival of the solutions generated by
each operator. Evolvability metrics were accommodated for credit assignment in
[24]. The speed up achieved for the sake of expensive calculation of the evolvabil-
ity metrics, in [25]. Self-organizing Neural Networks [26] was proposed, requiring
an offline training phase for a continous state-discrete action markov decision
process (MDP) scenario. In [27–29], AOS was emulated in distributed settings.

Regarding MAB, the objective is to minimize the regret which comes from
the total reward achieved compared to the maximum reward could have been
collected. As a MAB algorithm, Upper Confidence Bound (UCB) [30] has been
widely referred for AOS [3] mainly due to its theoretical guarantees. In order to
revise this idea considering the changing search requirements, Dynamic Multi-
Armed Bandit (DMAB) [3] was proposed. DMAB essentially employs the Page-
Hinkley (PH) statistical test [31] to determine the drastic changes in the reward
distribution, resulting in restarting the whole AOS learning process. It is then
extend with ExAOS as Ex-DMAB [32]. Sliding Multi-Armed Bandit (SLMAB)
[33] was developed, limiting the reward update scheme. Two credit-assignment,
reward schemes were incorporated as SR-B and AUC-B in [34]. While SR-B
utilized a rank-based reward scheme, AUC-B basically uses Area Under Curve
(AUC) [35] from machine learning. Fitness-Rate-Ranking based Multi-armed
Bandit (FRRMAB) [36] was developed to perform AOS relying on instance fit-
ness improvement, as also in [37], and applied in a multi-objective scenario [38].
Fitness-Rate-Average based Multi-armed Bandit (FRAMAB) [39] borrows the
basic idea of FRRMAB while incorporating average fitness improvement, as a
hyper-heuristic. In [40], FRRMAB was also used as a hyper-heuristic component

1 a hyper-heuristic bibliography: https://mustafamisir.github.io/hh.html.
2 http://www.yisongyue.com/courses/cs159/lectures/rl-notes.pdf.

https://mustafamisir.github.io/hh.html
http://www.yisongyue.com/courses/cs159/lectures/rl-notes.pdf

240 M. Mısır

of MOEAs for Search-based Software Engineering (SBSE) [41]. Self-organizing
Neural Network (SONN) was applied as a AOS for crossover selection of a GA
in [26].

2.2 Algorithm Selection

Algorithm Selection (AS) is about predicting the high performing algorithm,
hopefully the best, among a set of available algorithms for a particular problem
instance. In order to perform such prediction, an AS model is generated to map a
group of instance features that are able to reflect the differences of the instance of
the corresponding problem to the algorithms’ performance. SATZilla [42] is one
of the well known AS approaches due to its success in the SAT competitions3. It
accommodates pure AS as well as a number of supportive components such as
pre-solvers and back-up solvers. Its recent version [43] additionally incorporates
the cost-sensitive classification models, as in [44] offering an AS system based on
cost-sensitive hierarchical clustering (CSHC). ArgoSmArT4 [45] was introduced
as another AS system yet considering combination of different policies used in
the SAT solvers. It essentially seeks the best combination of policies, in particular
for variable selection, polarity selection and restart policies. ArgoSmArT k-NN5

[46] is a general AS system operating based on k-nearest neighbors. SNAPP6

[47] also utilizes k-NN for AS. Although all these AS approaches happen to
provide effective solutions for AS, they can also suffer for providing the best AS
decisions at a high level. AutoFolio [48] seeks the best possible AS setting through
algorithm configuration/parameter tuning [49]. It essentially search across the
space of possible components to be used in an AS method.

Besides utilizing AS for choosing an algorithm for a given instance, it is
also possible to derive effective algorithm schedules, used in an AS approach
called 3S7, [50]. An algorithm schedule is all about generating a schedule that
assigns a time budget to run each selected algorithm in an interleaving manner.
While it a general algorithm schedule can be derived for a particular problem
as static schedules, a different schedule can be used depending on the instance
to be solved as dynamic schedules [51] – CPHydra8. SUNNY [52] also falls into
this category as a schedule based portfolio system without any offline training,
targeting the Constraint Satisfaction Problems (CSPs) [53]. Its generic version9

is also available to be able to show its capabilities beyond the CSPs. T-SUNNY
[54] was introduced as an extension by additionally performing a training phase
to deliver better algorithm schedules. These schedules are primarily expected to
be run on a single CPU (core). In [55], 3S was extended as p3S such that parallel

3 http://www.satcompetition.org/.
4 http://argo.matf.bg.ac.rs/downloads/software/ArgoSmart.zip.
5 http://argo.matf.bg.ac.rs/downloads/software/ArgoSmartkNN.zip.
6 https://sites.google.com/site/yurimalitsky/downloads/SNNAP ver1.5.zip.
7 https://sites.google.com/site/yurimalitsky/downloads/3S-2011.tar.
8 http://homepages.laas.fr/ehebrard/cphydra.html.
9 https://github.com/CP-Unibo/sunny-as.

http://www.satcompetition.org/
http://argo.matf.bg.ac.rs/downloads/software/ArgoSmart.zip
http://argo.matf.bg.ac.rs/downloads/software/ArgoSmartkNN.zip
https://sites.google.com/site/yurimalitsky/downloads/SNNAP_ver1.5.zip
https://sites.google.com/site/yurimalitsky/downloads/3S-2011.tar
http://homepages.laas.fr/ehebrard/cphydra.html
https://github.com/CP-Unibo/sunny-as

Algorithm Selection on Adaptive Operator Selection 241

schedules can be generated. aspeed [56] was developed to deliver both sequential
and parallel solver schedules with the help of answer set programming.

The performance of AS heavily depends on the underlying algorithm set.
Algorithm portfolios [57] is a tightly related concept to AS, aiming at determin-
ing an algorithm set mainly involving diverse algorithms. Diversity here refers to
the capability of solving different types of instances so that the algorithm base
can help to handle a varying set of instances. The main purpose of algorithm
portfolios is to perform the constituent algorithms in parallel so that at least one
of the algorithms can solve the target problem instance. ppfolio10 [58] offers such
a basic setting. Yet, they can also be used to come up with an efficient portfolio
to be used for algorithm selection.

Algorithms portfolios can be automatically generated at some extend. ISAC
[59] return different configurations for a given algorithm such that a diverse
portfolio is achieved. Evolving ISAC (EISAC) [60,61] updates such configu-
ration based portfolios over-time with new instances. ISAC+ [62] integrates
multiple algorithms while utilizing CSHC [44] as a method to choose which
algorithm-configuration pairs to keep. Hydra11 [63] was introduced as as another
configuration-based portfolio tool. Its version of directly targeting mixed-integer
programming was also offered as a separate tool, i.e. Hydra-MIP [64]. OSCAR
[65] provides a portfolio generation system to be used for Online AS by choos-
ing from available design choices of a given algorithm. A similar idea has been
followed in [66] by using Design of Experiments (DOE) [67] to perform cheap
algorithm configuration which can drastically narrow down the configuration
space of a given algorithm. ADVISER12 [68] offers a rather basic algorithm con-
figuration based portfolio system yet operating as-a-service. Any portfolio gener-
ation task, concerning different both parametric and non-parametric algorithms,
was handled on a remote machine after submitting it through a web interface.
ADVISER+13 [69] extends ADVISER by providing new functionalities on the
front-end, helping better user experience and the back-end, by running the sub-
mitted portfolio generation tasks in parallel for better response time.

One of the issue with the algorithm selection techniques is their need for
the complete performance data. Depending on the algorithms and the prob-
lem type, it can be quite costly mainly to generate such data. ALORS [9] was
introduced to address this issue by generating algorithm selection models with
incomplete/sparse data. Matrix factorization (MF) [70] was incorporated for this
purpose since it is able to extract useful features both for instances and algo-
rithms [71]. In case AS will be applied to a totally new problem, this incomplete
data can be chosen such that it will reveal more information at a cheaper cost
than randomly picking them [72].

10 http://www.cril.univ-artois.fr/∼roussel/ppfolio/.
11 http://www.cs.ubc.ca/labs/beta/Projects/Hydra/ – unrelated to the aforemen-

tioned CPHydra.
12 http://research.larc.smu.edu.sg/adviser/.
13 http://research.larc.smu.edu.sg/adviserplus/.

http://www.cril.univ-artois.fr/~roussel/ppfolio/
http://www.cs.ubc.ca/labs/beta/Projects/Hydra/
http://research.larc.smu.edu.sg/adviser/
http://research.larc.smu.edu.sg/adviserplus/

242 M. Mısır

In order to provide a unified testbed for AS, ASlib14 [73] was released. ASlib
provides various AS benchmarks from different problem domains. Each bench-
mark is mainly composed of a set of algorithms, a group of problem instances
and their features.

3 Algorithm Selection for AOS

Algorithm Selection (AS) is performed to build a rank-prediction model that can
forecast the Adaptive Operator Selection (AOS) methods’ performance in a per-
instance basis. The predictions lead to determine the expected best AOS method
for each selection task. AOS, here, is utilized to choose among the crossover
operators of a Genetic Algorithm (GA) for the Quadratic Assignment Problem
(QAP). In that respect, AS performs the selection of selectors, similarly to a
work using AS on Selection Hyper-heuristics (SHHs) [74]. ALORS is used as
the AS technique. Unlike the traditional AS techniques, ALORS performs selec-
tion through a feature-to-feature mapping. The source features are the ones,
directly derived from the problem instances of a domain. The target features
are automatically extracted ones through Matrix Factorization (MF). For MF,
Singular Value Decomposition (SVD) [75] is employed. SVD is applied to the
performance data for deriving matrices of rank 3 which is the dimension of the
resulting matrices. The aforementioned mapping is achieved by Random Forest
(RF) [76].

3.1 Instance Features

The present study targets the Quadratic Assignment Problem (QAP) [77,78].
The QAP is concerned with matching n facilities to n locations such that the
cost incurred due to the movements between these facilities is minimized. The
cost is calculated through a weight or flow element and distance as shown in
Eq. 1. fπiπj

represents the flow between the facilities πi and πj in the solution
π. dij shows the distance between the locations i and j.

min

n∑

i

n∑

j

fπiπj
dij (1)

For representing the QAP instances, 18 simple features are introduced as
listed in Table 1. n as the size of the given QAP instance is used as the first
feature. The remaining features are directly extracted from the flow and distance
matrices. Among the latter group, there are also basic features considering both
flow and distance related measures.

14 http://aslib.net.

http://aslib.net

Algorithm Selection on Adaptive Operator Selection 243

Table 1. The QAP instance features (std: standard deviaton; coeff var: coefficient of
variation; non zero ratio: ratio of the number of non-zero entries)

Source Features

Basic (1) size (n)

Distance matrix (6) mean cost, min cost, max cost, std cost, coeff var cost,
non zero ratio cost

Flow matrix (6) mean flow, min flow, max flow, std flow, coeff var flow,
non zero ratio flow

Joint (5) mean cost × mean flow, max cost × max flow,
max cost × min flow, min cost × max flow,
min cost × min flow

4 Computational Analysis

The Algorithm Selection (AS) dataset is composed of 6 AOS methods includ-
ing Self-Organizing Neural Network (SONN) [26], Probability Matching (PM)
[15], Adaptive Pursuits (AP) [4], Multi-Armed Bandit (MAB) [32], Reinforce-
ment Learning (RL) [79] and Random. Random is essentially a uniform random
selection strategy. For the target problem, 134 Quadratic Assignment Problem
(QAP) instances from QAPLIB15 [80] are accommodated. As the candidate set
for the AOS methods, the crossover operators used in the Genetic Algorithm
(GA) consists of cycle crossover (CX), distance-preserving crossover (DPX),
partially-mapped crossover (PMX) and order crossover (OX), as in [81]. The
AOS × QAP instance performance data was directly taken from [26] which also
took it from [81]. Thus, the settings used to generate were the same.

Table 2 reports the average rank across all the instances both for each each
AOS method and ALORS. The results illustrate that ALORS outperforms all the
constituent AOS approaches. Besides that the predictions are more robust than
the standalone use of AOS, referring to the standard deviations. Among the AOS
techniques, SONN delivers the best performance while the worst performance
comes by PM comes with the worst performance, even falling behind Random.
Table 3 gives the further details on each instance group. Although the instance
group sizes are unbalanced, their performance in terms of average ranks still
reveals the success of ALORS. Being said that in this evaluation SONN falls
behind RL.

Figure 1 shows the selection distribution concerning each AOS method. AS’
decisions are somewhat aligned with the performance of the AOS methods
(Table 2). SONN as the best performing AOS method is selected most frequently.
A similar trend is realized for AP, especially for the cases SONN delivers rela-
tively poor performance. Random selection seems to be helpful in particular for
the instances that the AOS strategies offer similar or the same performance in
terms of the solution quality.

15 http://anjos.mgi.polymtl.ca/qaplib/.

http://anjos.mgi.polymtl.ca/qaplib/

244 M. Mısır

Table 2. The average rank performance of AS, i.e. ALORS, besides the constituent
AOS methods

Method Avg. Rank (Std.)

Random 4.22 ± 1.37

PM 4.50 ± 1.32

AP 4.07 ± 1.36

MAB 4.00 ± 1.18

RL 3.87 ± 1.40

SONN 3.71 ± 1.40

ALORS 3.62 ± 1.19

Table 3. The rank performance of AS on each instance group (the size of each group
is shown in parenthesis)

Random PM AP MAB RL SONN ALORS

bur (8) 4.38 3.94 3.94 3.94 3.94 3.94 3.94

chr (14) 5.11 5.04 4.82 3.71 3.75 2.79 2.79

els (1) 4 4 4 4 4 4 4

esc (20) 4 4.15 4 3.88 4.1 3.88 4

kra (3) 4.83 4.17 6.5 5.5 4 1.5 1.5

had (5) 4 4 4 4 4 4 4

lipa (16) 4.69 4.69 3.91 4.19 3.78 3.22 3.53

nug (15) 3.83 4 4.23 3.63 3.57 4.4 4.33

rou (3) 5 4 4.67 3 4.33 3.5 3.5

scr (3) 3.83 3.83 5 3.83 3.83 3.83 3.83

sko (13) 3.27 6 4.04 4.08 3.81 3.35 3.46

ste (3) 3 5.33 2.83 5.33 4 4.17 3.33

tai (26) 4.38 4.29 3.62 4.12 4.02 3.96 3.62

tho (2) 6.5 2.5 3.75 5 2.5 4.75 3

wil (2) 1.75 6.5 2.75 3.5 3.5 6.5 3.5

AVG 4.17 4.43 4.14 4.11 3.81 3.85 3.49

Std. 1.07 0.97 0.90 0.68 0.42 1.06 0.68

Figure 2 reports the contribution of each QAP instance feature on the AS
model derived by ALORS. The contribution is identified in the form of Gini
importance provided by Random Forest (RF). RF is the method used for feature-
to-feature mapping of ALORS. The outcome shows that non zero ratio flow
happens to be the most significant feature among the feature set. There are
other features like mean flow, coeff var cost and std cost, also contributing to
the selection model. The features utilizing min cost or min flow are the least
critical features as their importance measures are mostly zero.

Algorithm Selection on Adaptive Operator Selection 245

Fig. 1. AOS selection frequencies

Fig. 2. Feature importance analysis

246 M. Mısır

5 Conclusion

Algorithm Selection (AS) has been known as a meta-algorithm managing a suite
of algorithms aiming to solve a target problem. The idea is to pick the best
algorithm(s) when a new problem instance arrives. The existing AS studies as
well as SAT competitions revealed the success and effectiveness of AS. Adaptive
Operator Selection (AOS) is a field also relates to AS. AS as a term is mainly
used to denote offline selection procedures, meaning that algorithms are selected
before hand a target instance is being solved. AOS, however, performs selection
on-the-fly, in an online manner. In that respect, AOS can be considered Online
AS. Considering the Offline aspect of AS, the traditional AS can be categorized
as Offline AS. This study applies Offline AS to Online AS, i.e. AOS, for better
performance than the direct use of AOS. Existing empirical results revealed
that there is no one AOS methods always perform superior as other, low-level
algorithms. This fact gives an opportunity to take advantage of AOS by placing
a higher level on top of various AOS methods. For this purpose, an AS system,
i.e. ALORS is applied for automatically choosing crossover operators in a genetic
algorithm (GA). The quadratic assignment problem (QAP) has been targeted
as the problem domain. The experimental results showed that AS offers better
performance with higher robustness than the constituent AOS methods.

For enhancing the reported contributions, as follow-up research, the appli-
cation domains will be expanded, going beyond the QAP. Other existing AOS
methods together with heuristic selection strategies will be used to further extend
the dataset. The portfolio aspects of AOS will be investigated while offering par-
allelization of the constituent AOS methods. Problem independent features like
in [65,74] will be incorporated for cross-domain algorithm selection for AOS.

Acknowledgement. This study was supported by the 2232 Reintegration Grant from
Scientific and Technological Research Council of Turkey (TUBITAK) under Project
119C013.

References

1. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans.
Evol. Comput. 1, 67–82 (1997)

2. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

3. Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO), Atlanta, GA, USA, pp. 913–920 (2008)

4. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of the 7th International Conference on Genetic and Evolutionary
Computation (GECCO), pp. ACM. 1539–1546 (2005)

5. Mısır, M.: Hyper-heuristics: autonomous problem solvers. In: Pillay, N., Qu, R.
(eds.) Automated Design of Machine Learning and Search Algorithms. NCS, pp.
109–131. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72069-8 7

https://doi.org/10.1007/978-3-030-72069-8_7

Algorithm Selection on Adaptive Operator Selection 247

6. Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proceedings of
the 3rd International Conference on Genetic Algorithms (ICGA). pp. 61–69 (1989)

7. He, J., He, F., Dong, H.: Pure strategy or mixed strategy? In: Hao, J.-K., Midden-
dorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 218–229. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29124-1 19

8. Grobler, J., Engelbrecht, A., Kendall, G., Yadavalli, S.: Alternative hyper-heuristic
strategies for multi-method global optimization. In: Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), Barcelona, Spain, pp. 826–833,
18–23 July 2010

9. Mısır, M., Sebag, M.: ALORS: an algorithm recommender system. Artif. Intell.
244, 291–314 (2017)

10. Thierens, D.: Adaptive strategies for operator allocation. Paramet. Sett. Evol.
Algor. 54, 77–90 (2007)

11. Mısır, M.: Intelligent hyper-heuristics: a tool for solving generic optimisation prob-
lems. PhD thesis, Department of Computer Science, KU Leuven (2012)

12. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695–1724 (2013)

13. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.
Artif. Intell. Res. 4, 237–285 (1996)

14. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv.
Appl. Math. 6(1), 4–22 (1985)

15. Goldberg, D.: Probability matching, the magnitude of reinforcement, and classifier
system bidding. Mach. Learn. 5(4), 407–425 (1990)

16. Thathachar, M., Sastry, P.: Networks of Learning Automata: Techniques for Online
Stochastic Optimization. Kluwer Academic Publishers, Boston (2004). https://doi.
org/10.1007/978-1-4419-9052-5

17. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: An intelligent
hyper-heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.)
LION 2012. LNCS, pp. 461–466. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34413-8 45

18. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87700-4 18

19. Hitomi, N., Selva, D.: A classification and comparison of credit assignment strate-
gies in multiobjective adaptive operator selection. IEEE Trans. Evol. Comput. 21,
294–314 (2016)

20. Gonçalves, R.A., Pavelski, L.M., de Almeida, C.P., Kuk, J.N., Venske, S.M., Del-
gado, M.R.: Adaptive operator selection for many-objective optimization with
NSGA-III. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp.
267–281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0 19

21. Sallam, K.M., Elsayed, S.M., Sarker, R.A., Essam, D.L.: Landscape-based adap-
tive operator selection mechanism for differential evolution. Inf. Sci. 418, 383–404
(2017)

22. Mashwani, W.K., Salhi, A., Yeniay, O., Jan, M.A., Khanum, R.A.: Hybrid adaptive
evolutionary algorithm based on decomposition. Appl. Soft Comput. 57, 363–378
(2017)

23. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

https://doi.org/10.1007/978-3-642-29124-1_19
https://doi.org/10.1007/978-1-4419-9052-5
https://doi.org/10.1007/978-1-4419-9052-5
https://doi.org/10.1007/978-3-642-34413-8_45
https://doi.org/10.1007/978-3-642-34413-8_45
https://doi.org/10.1007/978-3-540-87700-4_18
https://doi.org/10.1007/978-3-319-54157-0_19

248 M. Mısır

24. Soria Alcaraz, J.A., Ochoa, G., Carpio, M., Puga, H.: Evolvability metrics in adap-
tive operator selection. In: Proceedings of the Annual Conference on Genetic and
Evolutionary Computation (GECCO), pp. 1327–1334. ACM (2014)

25. Soria-Alcaraz, J.A., Espinal, A., Sotelo-Figueroa, M.A.: Evolvability metric esti-
mation by a parallel perceptron for on-line selection hyper-heuristics. IEEE Access
5, 7055–7063 (2017)

26. Teng, T.H., Handoko, S.D., Lau, H.C.: Self-organizing neural network for adaptive
operator selection in evolutionary search. In: Proceedings of the 10th Learning and
Intelligent OptimizatioN Conference (LION). LNCS, Naples, Italy (2016)

27. Candan, C., Goeffon, A., Lardeux, F., Saubion, F.: A dynamic island model for
adaptive operator selection. In: Proceedings of the 14th International Conference
on Genetic and Evolutionary Computation Conference (GECCO), pp. 1253–1260.
ACM (2012)

28. Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: Non stationary operator selec-
tion with island models. In: Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, pp. 1509–1516. ACM (2013)

29. Goëffon, A., Lardeux, F., Saubion, F.: Simulating non-stationary operators in
search algorithms. Appl. Soft Comput. 38, 257–268 (2016)

30. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2), 235–256 (2002)

31. Page, E.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
32. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed ban-

dits and extreme value-based rewards for adaptive operator selection in evolution-
ary algorithms. In: Stützle, T. (ed.) LION 2009. LNCS, vol. 5851, pp. 176–190.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11169-3 13

33. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. Ann. Math. Artif. Intell. 60(1), 25–64 (2010)

34. Fialho, Á., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive oper-
ator selection. In: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation (GECCO), 767–774. ACM (2010)

35. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Patt. Recogn. 30(7), 1145–1159 (1997)

36. Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits
for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans.
Evol. Comput. 18(1), 114–130 (2014)

37. Mashwani, W.K., Salhi, A., Yeniay, O., Hussian, H., Jan, M.: Hybrid non-
dominated sorting genetic algorithm with adaptive operators selection. Appl. Soft
Comput. 56, 1–18 (2017)

38. Zhang, Q., Liu, W., Li, H.: The performance of a new version of moea/d on cec09
unconstrained mop test instances. In: IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 203–208. IEEE (2009)

39. Ferreira, A.S., Gonçalves, R.A., Pozo, A.: A multi-armed bandit selection strategy
for hyper-heuristics. In: IEEE Congress on Evolutionary Computation (CEC), pp.
525–532. IEEE (2017)

40. Strickler, A., Lima, J.A.P., Vergilio, S.R., Pozo, A.T.: Deriving products for vari-
ability test of feature models with a hyper-heuristic approach. Appl. Soft Comput.
49, 1232–1242 (2016)

41. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. ACM Comput. Surv. (CSUR) 45(1), 11 (2012)

42. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32(1), 565–606 (2008)

https://doi.org/10.1007/978-3-642-11169-3_13

Algorithm Selection on Adaptive Operator Selection 249

43. Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: Satzilla 2012: Improved
algorithm selection based on cost-sensitive classification models. In: Proceedings
of SAT Challenge 2012: Solver and Benchmark Descriptions, pp. 57–58 (2012)

44. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: Proceedings of the 23rd Inter-
national Joint Conference on Artifical Intelligence (IJCAI). pp. 608–614 (2013)

45. Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT
solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 31

46. Nikolić, M., Marić, F., Janičić, P.: Simple algorithm portfolio for SAT. Arti. Intell.
Rev. 40(4), 457–465 (2011). https://doi.org/10.1007/s10462-011-9290-2

47. Collautti, M., Malitsky, Y., Mehta, D., O’Sullivan, B.: SNNAP: solver-based near-
est neighbor for algorithm portfolios. In: Blockeel, H., Kersting, K., Nijssen, S.,
Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 435–450.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3 28

48. Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: an automatically
configured algorithm selector. J. Artif. Intell. Res. 53, 745–778 (2015)

49. Hutter, F., Hoos, H., Stutzle, T.: Automatic algorithm configuration based on local
search. In: Proceedings of the National Conference on Artificial Intelligence, vol.
22, 1152p. Menlo Park, CA, AAAI Press; MIT Press; Cambridge, MA; London
(2007)

50. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-
7 35

51. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science (2008)

52. Amadini, R., Gabbrielli, M., Mauro, J.: Sunny: a lazy portfolio approach for con-
straint solving. Theory Pract. Logic Program. 14, 509–524 (2014)

53. Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. AI Mag.
13(1), 32 (1992)

54. Lindauer, M., Bergdoll, R.-D., Hutter, F.: An empirical study of per-instance algo-
rithm scheduling. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016.
LNCS, vol. 10079, pp. 253–259. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50349-3 20

55. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Parallel SAT solver
selection and scheduling. In: Milano, M. (ed.) CP 2012. LNCS, pp. 512–526.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 38

56. Hoos, H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling via
answer set programming. Theory Pract. Logic Program. 1–26 (2014)

57. Gomes, C., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1), 43–62 (2001)
58. Roussel, O.: Description of ppfolio 2012. In: Proceedings of SAT Challenge, 46 p

(2012)
59. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC-instance-specific algo-

rithm configuration. In: Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI’10), pp. 751–756 (2010)

60. Malitsky, Y., Mehta, D., O’Sullivan, B.: Evolving instance specific algorithm con-
figuration. In: Proceedings of the 6th International Symposium on Combinatorial
Search (SoCS) (2013)

https://doi.org/10.1007/978-3-642-02777-2_31
https://doi.org/10.1007/s10462-011-9290-2
https://doi.org/10.1007/978-3-642-40994-3_28
https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.1007/978-3-319-50349-3_20
https://doi.org/10.1007/978-3-319-50349-3_20
https://doi.org/10.1007/978-3-642-33558-7_38

250 M. Mısır

61. Malitsky, Y.: Evolving instance-specific algorithm configuration. In: Instance-
Specific Algorithm Configuration, pp. 93–105. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11230-5 9

62. Ansótegui, C., Malitsky, Y., Sellmann, M.: MaxSAT by improved instance-specific
algorithm configuration. In: Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI) (2014)

63. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms
for portfolio-based selection. In: Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI), pp. 210–216 (2010)

64. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Hydra-MIP: automated algorithm
configuration and selection for mixed integer programming. In: Proceedings of the
18th RCRA International Workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (2011)

65. Mısır, M., Handoko, S.D., Lau, H.C.: OSCAR: online selection of algorithm port-
folios with case study on memetic algorithms. In: Dhaenens, C., Jourdan, L.,
Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 59–73. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19084-6 6

66. Gunawan, A., Lau, H.C., Mısır, M.: Designing a portfolio of parameter config-
urations for online algorithm selection. In: the 29th AAAI Conference on Artifi-
cial Intelligence: Workshop on Algorithm Configuration (AlgoConf), Austin/Texas,
USA (2015)

67. Montgomery, D.C.: Design and Analysis of Experiments, John Wiley & Sons, Hobo-
ken (2017)

68. Mısır, M., Handoko, S.D., Lau, H.C.: ADVISER: a web-based algorithm portfolio
deviser. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS,
vol. 8994, pp. 23–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19084-6 3

69. Lau, H., Mısır, M., Xiang, L., Lingxiao, J.: ADVISER+: toward a usable web-based
algorithm portfolio deviser. In: Proceedings of the 12th Metaheuristics Interna-
tional Conference (MIC), Barcelona, Spain, pp. 592–599 (2017)

70. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

71. Mısır, M.: Matrix factorization based benchmark set analysis: a case study on
HyFlex. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 184–195.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9 16

72. Mısır, M.: Data sampling through collaborative filtering for algorithm selection.
In: the 16th IEEE Congress on Evolutionary Computation (CEC), pp. 2494–2501.
IEEE (2017)

73. Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell.
237, 41–58 (2017)

74. Mısır, M.: Algorithm selection across selection hyper-heuristics. In: the Data Sci-
ence for Optimization (DSO) @ IJCAI 2020 workshop at the 29th International
Joint Conference on Artificial Intelligence (IJCAI). (2021)

75. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions.
Numer. Math. 14(5), 403–420 (1970)

76. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
77. Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9(4), 586–599 (1963)
78. Burkard, R.E., Cela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment

problem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Opti-
mization, pp. 1713–1809. Springer, Boston (1998). https://doi.org/10.1007/978-1-
4613-0303-9 27

https://doi.org/10.1007/978-3-319-11230-5_9
https://doi.org/10.1007/978-3-319-11230-5_9
https://doi.org/10.1007/978-3-319-19084-6_6
https://doi.org/10.1007/978-3-319-19084-6_3
https://doi.org/10.1007/978-3-319-19084-6_3
https://doi.org/10.1007/978-3-319-68759-9_16
https://doi.org/10.1007/978-1-4613-0303-9_27
https://doi.org/10.1007/978-1-4613-0303-9_27

Algorithm Selection on Adaptive Operator Selection 251

79. Handoko, S.D., Nguyen, D.T., Yuan, Z., Lau, H.C.: Reinforcement learning for
adaptive operator selection in memetic search applied to quadratic assignment
problem. In: Proceedings of the Companion Publication of the 2014 Annual Con-
ference on Genetic and Evolutionary Computation, pp. 193–194. ACM (2014)

80. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB-a quadratic assignment problem
library. J. Glob. Optim. 10(4), 391–403 (1997)

81. Francesca, G., Pellegrini, P., Stützle, T., Birattari, M.: Off-line and on-line tuning:
a study on operator selection for a memetic algorithm applied to the QAP. In:
Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 203–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20364-0 18

82. Mısır, M., Wauters, T., Verbeeck, K., Vanden Berghe, G.: A new learning hyper-
heuristic for the traveling tournament problem. In: Proceedings of the 8th Meta-
heuristic International Conference (MIC) (2009)

83. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-
heuristic as a general problem solver: an implementation in HyFlex. J. Sched.
16(3), 291–311 (2013)

https://doi.org/10.1007/978-3-642-20364-0_18

Inverse Free Universum Twin Support
Vector Machine

Hossein Moosaei1,2(B) and Milan Hlad́ık2

1 Department of Mathematics, Faculty of Science, University of Bojnord,
Bojnord, Iran

moosaei@ub.ac.ir
2 Department of Applied Mathematics, Faculty of Mathematics and Physics,

Charles University, Prague, Czech Republic
{hmoosaei,hladik}@kam.mff.cuni.cz

Abstract. Universum twin support vector machine (U-TSVM) is an
efficient method for binary classification problems . In this paper, we
improve the U-TSVM algorithm and propose an improved Universum
twin bounded support vector machine (named as IUTBSVM) . Indeed,
by introducing a different Lagrangian function for the primal problems,
we obtain new dual formulations so that we do not need to compute
inverse matrices. Also to reduce the computational time of the proposed
method, we suggest smaller size of the rectangular kernel matrices than
the other methods. Numerical experiments on several UCI benchmark
data sets indicate that the IUTBSVM is more efficient than the other
three algorithms, namely U-SVM, TSVM, and U-TSVM in sense of the
classification accuracy.

Keywords: Support vector machine · Twin SVM · Universum data ·
U-SVM, U-TSVM

1 Introduction

Support vector machine (SVM) [21,22] emerges from the idea of structural risk
minimization (SRM) and has been used in many applications such as heart
disease, text categorization, computational biology, bioinformatics, image classi-
fication, real-life data sets, lung cancer, colon tumor, etc. [1–3,8,12,20,23]. The
standard SVM finds two parallel support hyperplanes with maximum margin
between them by solving a constrained quadratic programming problem (QPP).

The generalized eigenvalue proximal SVMs (GEPSVMs) [10] were proposed
to reduce the computational cost of SVM. In this method, two nonparallel hyper-
planes are generated such that each of them is closest to one of the two classes
and as far as possible from the other class. Motivated by GEPSVMs, Jayadeva
et al. [7] proposed twin support vector machine (TSVM) so that the main idea
of the both methods is the same, but formulations are different from that of

The authors were supported by the Czech Science Foundation Grant P403-18-04735S.

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 252–264, 2021.
https://doi.org/10.1007/978-3-030-92121-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_21&domain=pdf
http://orcid.org/0000-0002-0640-2161
http://orcid.org/0000-0002-7340-8491
https://doi.org/10.1007/978-3-030-92121-7_21

Inverse Free Universum Twin Support Vector Machine 253

GEPSVMs and are similar to SVM. Indeed, the TSVM generates two nonpar-
allel hyperplanes such that each plane is close enough to its own class and as
far as possible from the other class by solving two smaller size of QPPs rather
than a single large QPP in SVM; this makes it faster than classical SVM [7].
The SVM-based methods were noticed very quickly so far and researchers pro-
posed variants of SVM and TSVM to improve the performance of classification
[11,16–19].

In supervised learning algorithms, we face labeled data and consider them
for classifying data and ignore any other information which is related to the
problem and data. In order to overcome this disadvantage, a new research line is
opened. It allows us to incorporate the prior knowledge embedded in the unla-
beled samples into the supervised learning problem. Indeed, the new unlabeled
data, which belongs to no class, is used in model and these new data are named
as Universum. The Universum learning, which has been proved to be useful to
the supervised and semi-supervised learning, was also applied to increase the
performance of various interesting applications, such as text classification [9],
electroencephalogram (EEG) signals for the diagnosis of neurological disorders
[14], and so on. However, constructing an impressive Universum classifier is still
a challenging topic and it would be the main concentrate of this study. Weston
et al. [24] used of prior information of data in the SVM model and termed their
model as Universum SVM (U-SVM). They shown that the U-SVM performs
better generalization performance than standard SVM. Sinz et al. [15] analyzed
U-SVM and presented a least-squares version of the U-SVM algorithm. They also
concluded that the use of Universum data is very useful. To improve the U-SVM,
Qi et al. [13] firstly incorporated Universum data into TSVM and proposed twin
support vector machines with Universum data (U-TSVM). Their experiments on
various data sets showed that the classification accuracy of U-TSVM is better
than the classical TSVM algorithms that do not use Universum data.

In this paper, we propose an improved version of twin bounded support
vector machine with Universum data and we name it IUTBSVM. In fact, one
of the common drawbacks, which is inevitable in many methods, is comput-
ing the inverse matrices. In contrast to these methods, we introduce a different
Lagrangian function for the primal problems so that we get different dual prob-
lems, which overcomes this drawback, i.e., we do not need to compute inverse
matrices for solving the dual problems. In IUTBSVM, we will also use the
reduced kernel, which has not been utilized for U-TSVM so far. This reduces
the computational cost of nonlinear problems compared to other methods.

To verify the effectiveness of our proposed method, we conduct experiments
on several UCI benchmark data sets. The experiments demonstrate efficiency
of our proposed algorithm over three other algorithms, U-SVM, TSVM and U-
TSVM, in sense of the classification accuracy.

2 Related Works

In this section, we briefly review the U-SVM, TSVM, and U-TSVM formulations.
The following notation is used throughout this paper. Suppose that a data

set (xi, yi) is given for training with the input xi ∈ R
n and the corresponding

254 H. Moosaei and M. Hlad́ık

target value or label yi = 1 or −1, i.e.,

{(x1, y1) , . . . , (xm, ym)} ∈ (Rn × {±1})m. (1)

We will denote the Universum data by

U = {x∗
1, . . . , x

∗
r},

which includes r samples. The data points belonging to positive and negative
classes are represented by matrices A and B, respectively. Also the data points
in U, represented by matrix U so that each row of U represents a Universum
sample. The function φ : Rl → R

p is a nonlinear map to higher dimension (p > l).

2.1 Universum Support Vector Machine

The Universum support vector machines (U-SVM) was proposed by Weston et
al. [24]. We associate the Universum data with both classes so that we have

(x∗
1, 1), . . . , (x∗

r , 1), (x∗
1,−1), . . . , (x∗

r ,−1).

That is why we extend the notation as follows:

xm+j = x∗
j , ym+j = 1, for j = 1, . . . , r,

xm+r+j = x∗
j , ym+r+j = −1, for j = 1, . . . , r,

ψm+j = ψj , for j = 1, . . . , 2r.

The U-SVM formulation reads as follows:

min
w,b,ξ,ψ

1
2
‖w‖2 + C

m∑

i=1

ξi + Cu

2r∑

j=1

ψj

s.t. yi

(
w�φ(xi) + b

) ≥ 1 − ξi, (2)

yj

(
w�φ(xj) + b

) ≥ −ε − ψj ,

ξi ≥ 0, ψj ≥ 0, i = 1, . . . , m, j = m + 1, . . . , m + 2r,

where parameters C and Cu, which control the trade-off between the minimiza-
tion of training errors and the maximization of the number of Universum sam-
ples, are positive real numbers, and ξi, ψj ∈ R, are slack variables. Next, ε > 0 is
a parameter for the ε-insensitive tube. For the case of Cu = 0, this formulation
is reduced to a standard SVM classifier [4]. In general, the parameter ε can be
set to zero or a small positive value.

The Wolfe dual to problem (2) can be described as follows:

min
α

1
2

m+2r∑

i=1

m+2r∑

j=1

αiαjyiyjφ(xi)T φ(xj) −
m+2r∑

i=1

μiαi

subject to
m+2r∑

i=1

yiαi = 0, (3)

0 ≤ αi ≤ C, μi = 1, i = 1, . . . , m,

0 ≤ αi ≤ Cu, μi = −ε, i = m + 1, . . . , m + 2r,

Inverse Free Universum Twin Support Vector Machine 255

where αi is the Lagrange multiplier. By solving the above quadratic program-
ming problem, the decision function of U-SVM can be obtained as folows:

f(x) = sgn(wT φ(x) + b) = sgn(
m+2r∑

i=1

αiyiφ(xi)T φ(x) + b).

As in SVM, a new sample is classified as +1 or −1, by using of the above decision
function.

2.2 Universum Twin Support Vector Machine

Universum twin support vector machine, which is called U-TSVM, was proposed
by Qi et al. [13]. The nonlinear U-TSVM solves the following pair of QPPs:

min
w1, b1, q1,φ1

‖K(A,DT)w1 + eT
1 b1‖2 + c1e

T
2 q1 + cueT

u φ1,

subject to −(K(B,DT)w1 + e2b1) + q1 ≥ e2, (4)
(K(U,DT)w1 + eub1) + φ1 ≥ (−1 + ε)eu,

q1 ≥ 0, φ1 ≥ 0,

and

min
w2, b2, q2,φ2

‖K(B,DT)w2 + eT
2 b2‖2 + c2e

T
1 q2 + cueT

u φ2,

subject to (K(A,DT)w2 + e1b2) + q2 ≥ e1, (5)
−(K(U,DT)w2 + eub2) + φ2 ≥ (−1 + ε)eu,

q2 ≥ 0, φ2 ≥ 0,

where c1, c2, cu are positive parameters, e1, e2, eu are vectors of ones of appro-
priate dimensions, q1, q2, φ1 and φ2 are slack vectors, D = [AT BT]T , and K is
an appropriately chosen kernel.

By applying the KKT conditions, the Wolfe dual formulations of (4) and (5)
can be obtained, respectively as follows:

max
α1, μ1

eT
2 α1 − 1

2
(αT

1 G − μT
1 O)(HT H)−1(GT α1 − OT μ1) + (ε − 1)eT

u μ1

subject to 0 ≤ α1 ≤ c1, 0 ≤ μ1 ≤ cu, (6)

max
α2, μ2

eT
2 α2 − 1

2
(αT

2 H − μT
2 O)(GT G)−1(HT α2 − OT μ2) + (ε − 1)eT

u μ2

subject to 0 ≤ α2 ≤ c2, 0 ≤ μ2 ≤ cu, (7)

where α1, α2, μ1, and μ2 are the Lagrangian coefficients, H = [K(A,DT) e1],
G = [K(B,DT) e2], and O = [K(U,DT) eu]. The separating hyperplanes can
be obtained from the solution of (6) and (7) by

[wT
1 , b1]T = −(HT H)−1(GT α1 − OT μ1),

256 H. Moosaei and M. Hlad́ık

and
[wT

2 , b2]T = (GT G)−1(HT α2 − OT μ2).

To avoid the possible ill conditioning when GT G or HT H are (nearly) sin-
gular, the inverse matrices (GT G)−1and (HT H)−1 are approximately replaced
by (GT G + δI)−1and (HT H + δI)−1, where δ is a small positive scalar.

A new data point x is assigned to class i ∈ {1,−1} by using the following
decision rule:

class i = arg min
i=1,2

|K(xT ,DT)wi + bi|
‖wi‖2 .

3 Improvements on Twin Bounded Support Vector
machine with Universum Data

In this section, we improve U-TSVM to obtain two non-parallel hyperplane clas-
sifiers, named as IUTBSVM (Improvements on twin bounded support vector
machine with Universum data). In this method, by introducing a slightly dif-
ferent in mathematical model, a different Lagrangian function is constructed
so that we avoid computation of large-scale inverse matrices, that appear in
classical methods.

3.1 Linear IUTBSVM

Here the data points belonging to classes +1 and −1 are represented by matrices
A and B, respectively. The Universum data are represented by matrix U .

Linear IUTBSVM tries to find two nonparallel hyperplanes which defined as
follows:

f1(x) = xT w1 + b1 = 0, and f2(x) = xT w2 + b2 = 0. (8)

The primal problem for finding the first hyperplane can be described as follows:

min
w1, b1, ξ, ψ

1
2
‖t‖2 +

c2
2

(‖w1‖2 + b21) + c1e
T
2 ξ + cueT

u ψ

subject to Aw1 + e1b1 = t

− (Bw1 + e2b1) + ξ � e2 (9)
(Uw1 + eub1) + ψ � (−1 + ε)eu

ξ, ψ � 0,

where c1, c2cu > 0 are parameters, e1, e2, eu are vectors of ones of appropriate
dimensions, and ξ and ψ are slack vectors.

Inverse Free Universum Twin Support Vector Machine 257

The primal problem for the second hyperplane is as follows:

min
w2, b2, ξ, ψ

1
2
‖t‖2 +

c4
2

(‖w2‖2 + b22) + c3e
T
1 ξ + cueT

u ψ

subject to Bw2 + e2b2 = t

(Aw2 + e1b2) + ξ � e1 (10)
(Uw2 + eub2) + ψ � (1 − ε)eu

ξ, ψ � 0,

where c3, c4, cu > 0 are parameters, e1, e2, eu are vectors of ones of appropriate
dimensions, and ξ and ψ are slack vectors.

We should note that we only added a variable t to both mathematical models.
So the Lagrangian function of problem (9) reads

L(θ) =
1
2
‖t‖2 +

c2
2

(‖w1‖2 + b21) + c1e
T
2 ξ + cueT

u ψ

+ λT (Aw1 + e1b1 − t) − αT (−(Bw1 + e2b1) + ξ − e2)

− βT ((Uw1 + eub1) + ψ + (1 − ε)eu) − pT ξ − qT ψ, (11)

where θ = (w1, b1, t, ξ, ψ, λ, α, β, p, q) are variables and λ, α, β, p, q are
Lagrangian multipliers.

According to the necessary and sufficient KKT conditions on the Eq. (11),
we have the following results:

∂L

∂w1
= c2w1 + AT λ + BT α − UT β = 0 (12)

∂L

∂b1
= c2b1 + eT

1 λ + eT
2 α − eT

u β = 0 (13)

∂L

∂t
= t − λ = 0 (14)

∂L

∂ξ
= c1e2 − α − p = 0 (15)

∂L

∂ψ
= cueu − β − q = 0 (16)

∂L

∂λ
= Aw1 − e1b1 − t = 0 (17)

∂L

∂α
= −(−(Bw1 − e2b1) + ξ − e2) � 0 (18)

αT ∂L

∂α
= αT (−(Bw1 − e2b1) + ξ − e2) = 0 (19)

∂L

∂β
= −((Uw1 − eub1) + ψ + (1 − ε)eu) � 0 (20)

βT ∂L

∂β
= βT ((Uw1 − eub1) + ψ + (1 − ε)eu) = 0 (21)

258 H. Moosaei and M. Hlad́ık

∂L

∂p
= −ξ � 0 (22)

pT ∂L

∂p
= pT ξ = 0 (23)

∂L

∂q
= −ψ � 0 (24)

qT ∂L

∂q
= qT ψ = 0 (25)

α, β, p, q � 0 (26)

From (12), (13), and (14), we obtain

w1 = − 1
c2

(
AT λ + BT α − UT β

)
(27)

b1 = − 1
c2

(
eT
1 λ + eT

2 α − eT
u β

)

t = λ

From (15), (16) and (26) we have 0 � α � c1e2 and 0 � β � cueu. So the
dual problem is stated as follows:

max − 1
2

[
λT αT βT

]
Q

⎡

⎣
λ
α
β

⎤

⎦ + c2
[
0 eT

2 (ε − 1)eT
u

]
⎡

⎣
λ
α
β

⎤

⎦ , (28)

subject to 0 � α � c1e2, 0 � β � cueu,

where

Q =

⎡

⎣
AAT + C2I ABT −AUT

BAT BBT −BUT

−UAT −UBT UUT

⎤

⎦ +

⎡

⎣
E E −E
E E −E

−E −E E

⎤

⎦ ,

and E the a matrix with all entries equal to 1. Problem (28), can be written as
follows:

min
1
2
ST QS + c2r

T S (29)

subject to 0 � α � c1e2, 0 � β � cueu.

Here

Q = QT , S =

⎡

⎣
λ
α
β

⎤

⎦ , r =

⎡

⎣
0

−e2
(1 − ε)eu

⎤

⎦ ,

Q is a symmetric positive definite matrix. Then we can solve this problem by the
Matlab function “quadprog.m”. By solving this problem and using the relations
(27), we can find the first hyperplane.

Inverse Free Universum Twin Support Vector Machine 259

In the similar way, we find the dual problem to problem (10) as follows:

min
1
2
ST QS + c4r

T S (30)

subject to 0 � α � c3e1, 0 � β � cueu

where

Q =

⎡

⎣
BBT + C4I −BAT −BUT

−ABT AAT AUT

−UBT UAT UUT

⎤

⎦ +

⎡

⎣
E −E −E

−E E E
−E E E

⎤

⎦

Q = QT , S =

⎡

⎣
λ
α
β

⎤

⎦ , r =

⎡

⎣
0

−e1
(ε − 1)eu

⎤

⎦ .

The second hyperplane is determined by the optimal solution of the dual
problem and using the following expressions

w2 = − 1
c4

(
BT λ − AT α − UT β

)
, (31)

b2 = − 1
c4

(
eT
2 λ − eT

1 α − eT
u β

)
.

It is worth pointing out that problems (29) and (30) do not face computation
of the inverse matrix, in contrast to other classical methods such as TSVM and
U-TSVM.

A new data point x is assigned to class i ∈ {1,−1} by using the following
decision rule:

class i = arg min
i=1,2

|xT wi + bi|
‖wi‖2 .

3.2 Nonlinear IUTBSVM

In the classical TSVM with Universum data, we find two nonparallel hyperplanes
as follows:

f1(x) = K(x,DT)w1 + b1 and f2(x) = K(x,DT)w2 + b2, (32)

where D = [AT BT]T and K is an appropriate chosen kernel.
In this subsection, we introduce a nonlinear version of the IUTBSVM, totally

different to other methods. Indeed, we do not need to consider the above kernel
surfaces.

A nonlinear mapping Ψ(·) is used to map x into a higher dimensional feature
space, i.e., Ψ(·) : Rm → Rl, such that

X = Ψ(x),

260 H. Moosaei and M. Hlad́ık

where X ∈ R
l and l > m. We call function K a kernel if there is a map Ψ(·)

such that K(x, y) = 〈Ψ(x), Ψ(y)〉. So the primal problems in nonlinear case can
be expressed as follows

min
1
2
‖t‖2 +

c2
2

(‖w1‖2 + b21) + c1e
T
2 ξ + cueT

u ψ

subject to Ψ(A)w1 + e1b1 = t

− (Ψ(B)w1 + e2b1) + ξ � e2 (33)
(Ψ(U)w1 + eub1) + ψ � (−1 + ε)eu

ξ, ψ � 0

where c1, c2 > 0, cu > 0 are parameters, e1, e2, eu are vectors of ones of appro-
priate dimensions, and ξ and ψ are slack vectors. The second primal problem
is

min
1
2
‖t‖2 +

c4
2

(‖w2‖2 + b22) + c3e
T
1 ξ + cueT

u ψ

subject to Ψ(B)w2 + e2b2 = t

(Ψ(A)w2 + e1b2) + ξ � e1 (34)
(Ψ(U)w2 + eub2) + ψ � (1 − ε)eu

ξ, ψ � 0

where c1, c2, cu > 0 are parameters, e1, e2, eu are vectors of ones of appropriate
dimensions, and ξ and ψ are slack vectors.

Similarly to the linear case of IUTBSVM, the dual problem to problem (33)
draws

min
1
2
ST QS + c2r

T S (35)

subject to 0 � α � c1e2, 0 � β � cueu

where

Q =

⎡

⎣
K(A,AT) + C2I K(A,BT) −K(A,UT)

K(B,AT) K(B,BT) −K(B,UT)
−K(U,AT) −K(U,BT) K(U,UT)

⎤

⎦ +

⎡

⎣
E E −E
E E −E

−E −E E

⎤

⎦ ,

Q = QT , S =

⎡

⎣
λ
α
β

⎤

⎦ , r =

⎡

⎣
0

−e2
(1 − ε)eu

⎤

⎦ ,

and E is the matrix with all entries equal to 1. Notice that Q is a symmetric
positive definite matrix. By solving the above dual problem, the first of nonlinear
hyperplane is determined as follows:

− 1
c2

(
K(x,AT)λ + K(x,BT)α − K(x,UT)β

)
+ b1 = 0, (36)

Inverse Free Universum Twin Support Vector Machine 261

where

b1 = − 1
c2

(
eT
1 λ + eT

2 α − eT
u β

)
.

Analogously, the dual problems of the problem (34) is:

min
1
2
ST QS + c4r

T S (37)

subject to 0 � α � c3e1, 0 � β � cueu

where

Q =

⎡

⎣
K(B,BT) + c4I −K(B,AT) −K(B,UT)

−K(A,BT) K(A,AT) K(A,UT)
−K(U,BT) K(U,AT) K(U,UT)

⎤

⎦ +

⎡

⎣
E −E −E

−E E E
−E E E

⎤

⎦ ,

Q = QT , S =

⎡

⎣
λ
α
β

⎤

⎦ , r =

⎡

⎣
0

−e1
(ε − 1)eu

⎤

⎦ .

By solving the above problem, the resulting nonlinear hyperplane takes the form
of

1
c4

(
K(x,BT)λ − K(x,AT)α − K(x,UT)β

)
+ b2 = 0, (38)

where

b2 = − 1
c4

(
eT
2 λ − eT

1 α − eT
u β

)
.

Therefore we construct two decision functions as follows:

f1(x) = − 1
c2

(
K(x,AT)λ + K(x,BT)α − K(x,UT)β

)
+ b1,

b1 = − 1
c2

(
eT
1 λ + eT

2 α − eT
u β

)
,

and

f2(x) = − 1
c4

(
K(x,BT)λ − K(x,AT)α − K(x,UT)β

)
+ b2,

b2 = − 1
c4

(
eT
2 λ − eT

1 α − eT
u β

)
.

For any unknown input x, we assign it to the class i ∈ {1,−1} by the rule

class i = arg min
i=1,2

|fi(x)|.

262 H. Moosaei and M. Hlad́ık

4 Numerical Experiments

In this section, to illustrate the validity and efficiency of the proposed method,
we apply it on several UCI benchmark data sets [5] and compare our method
with the U-SVM, TSVM, and U-TSVM methods. All experiments are carried out
in Matlab 2019b on a PC with Intel(R) CORE(TM) i7-7700HQ CPU@2.80 GHz
machine with 16 GB of RAM. For solving the dual problems of the methods,
we used “quadprog.m” function in Matlab. In the experiments, we opt for the
Gaussian kernel function k(xi, xj) = exp

(−‖xi−xj‖2

γ2

)
.

Notice that we used 5-fold cross-validation to assess the performance of the
algorithms in aspect of classification accuracy.

4.1 Parameter Selection

The accuracy highly depends on the parameter values. Therefore choosing the
parameters is very important for performance of classifiers. That is why we
adopted the grid search method to choose the best values of the parameters for
each algorithms [6].

To reduce the computational cost of the parameter selection, we set the
regularization parameter values c1 = c3 and c2 = c4 in IUTBSVM method and
c1 = c2 for U-TSVM. The optimal values for c1, c2, c3 and c4 in all methods were
selected from the set

{
2i | i = −8,−7, . . . , 7, 8

}
, the parameters of the Gaussian

kernel γ were selected from the set {2i | i = −8,−7, . . . , 7, 8}, parameter ε in
U-TSVM, and our IUTBSVM methods was chosen from set {0.1, 0.2, . . . , 0.5}.

4.2 Results Comparisons and discussion for UCI Data Sets

For a more detailed analysis, we compared our proposed IUTBSVM with U-SVM,
TSVM, and U-TSVM on several benchmark data sets from UCI machine learning
repository [5] including Australian, Pima Indian Diabetes, Heart-Statlog, Ger-
man, Haberman, Hayes-Roth, House-vote84, Housing, Ionosphere, Mushrooms,
Sonar, Spect, Wdbc, and Bupa.

For each data set, we randomly select the 40% of data sets from different
classes to generate the Universum data.

The experimental results are displayed in Table 1. From the prospective of
the classification accuracy, the proposed method IUTBSVM outperforms the
others in 12 out of 14 data sets. Therefore the results demonstrated that our
proposed IUTBSVM is more efficient than the other standard methods in the
aspect of classification accuracy.

Inverse Free Universum Twin Support Vector Machine 263

Table 1. Classification accuracy of U-SVM, TSVM, U-TSVM, and IUTBSVM with
Gaussian kernel.

Data sets U-SVM TSVM U-TSVM IUTBSVM

Acc ± std Acc ± std Acc ± std Acc ± std

Australian 44.6 3 ± 0.59 65.93 ± 3.35 59.12 ± 3.84 68.40 ± 1.88

Pima Indian Diabetes 65.10 ± 0.23 67.44 ± 5.82 69.13 ± 3.67 72.91 ± 2.48

Heart-Statlog 44.44 ± .06 85.18 ± 2.92 72.59 ± 10.00 80.37 ± 4.26

German 31.60 ± 1.55 73.20 ± 2.63 70.30 ± 1.03 76.10± 1.24

Haberman 73.53 ± 0.53 75.51 ± 5.36 68.96 ± 6.02 75.74 ± 4.36

Hayes-Roth 50.00 ± 1.68 54.00 ± 10.83 60.85 ± 8.57 64.47 ± 11.93

House-vote84 84.13 ± 2.74 95.38 ± 2.61 85.06 ± 2.60 97.01 ± 1.29

Housing 84.85 ± 3.47 93.08 ± 0.03 89.13 ± 2.10 94.86 ± 1.29

Ionosphere 70.10 ± 6.74 89.45 ± 2.60 88.06 ± 6.13 96.86 ± 1.086

Mushrooms 95.67 ± 1.28 98.67 ± 0.31 99.21 ± 0.14 100.00 ± 0.00

Sonar 46.63 ± 1.00 65.45 ± 9.79 69.75 ± 5.23 89.90 ± 3.11

Spect 58.79 ± 0.42 70.37 ±7.12 51.39 ± 9.72 73.38 ± 8.01

Wdbc 86.28 ± 2.14 87.53 ± 3.42 72.71 ± 8.70 92.61 ± 1.50

Bupa 42.02 ± 0.00 69.56 ± 3.39 62.60 ± 2.78 56.52 ± 8.26

5 Conclusions

In this paper, we proposed a new inverse free U-TSVM and named this method
as IUTBSVM. The main contribution of this work is introducing a different
Lagrangian function to that by changes in the primal problems, leading to spe-
cific dual problems. In contrast to the other methods, we do not need to compute
inverse matrices, which is always a complicated computing task. We also sug-
gested a reduced kernel to decrease computational time of nonlinear IUTBSVM.
The numerical experiments performed on several UCI benchmark data sets illus-
trate efficiency of the proposed method.

References

1. Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., Yarifard, A.A.:
Computer aided decision making for heart disease detection using hybrid neu-
ral network-genetic algorithm. Comput. Methods Programs Biomed. 141, 19–26
(2017)

2. Bazikar, F., Ketabchi, S., Moosaei, H.: Dc programming and DCA for parametric-
margin ν-support vector machine. Appl. Intell. 50(6), 1763–1774 (2020)

3. Cai, Y.D., Ricardo, P.W., Jen, C.H., Chou, K.C.: Application of SVM to predict
membrane protein types. .f Theoret. Biol. 226(4), 373–376 (2004)

4. Cherkassky, V., Mulier, F.M.: Learning from Data: Concepts, Theory, and Meth-
ods. Wiley, New York (2007)

5. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

264 H. Moosaei and M. Hlad́ık

6. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector
classification (2003). https://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf

7. Jayadeva, Khemchandani, R., Chandra, S.: Twin support vector machines for pat-
tern classification. IEEE Trans. Patt. Anal. Mach. Intell. 29(5), 905–910 (2007)

8. Ketabchi, S., Moosaei, H., Razzaghi, M., Pardalos, P.M.: An improvement on para-
metric ν -support vector algorithm for classification. Ann. Oper. Res. 276(1–2),
155–168 (2019)

9. Liu, C.L., Hsaio, W.H., Lee, C.H., Chang, T.H., Kuo, T.H.: Semi-supervised text
classification with universum learning. IEEE Trans. Cybernet. 46(2), 462–473
(2015)

10. Mangasarian, O.L., Wild, E.W.: Multisurface proximal support vector machine
classification via generalized eigenvalues. IEEE Trans. Patt. Anal. Mach. Intell.
28(1), 69–74 (2005)

11. Moosaei, H., Ketabchi, S., Razzaghi, M., Tanveer, M.: Generalized twin support
vector machines. Neural Process. Lett. 53(2), 1545–1564 (2021)

12. Noble, W.S.: Support vector machine applications in computational biology. In:
Schoelkopf, B., Tsuda, K., Vert, J.P. (eds.) Kernel Methods in Computational
Biology, pp. 71–92. MIT Press, Cambridge(2004)

13. Qi, Z., Tian, Y., Shi, Y.: Twin support vector machine with universum data. Neural
Netw. 36, 112–119 (2012)

14. Richhariya, B., Tanveer, M.: EEG signal classification using universum support
vector machine. Exp. Syst. Appl. 106, 169–182 (2018)

15. Sinz, F.H., Chapelle, O., Agarwal, A., Schölkopf, B.: An analysis of inference with
the universum. In: Proceedings of the 20th International Conference on Neural
Information Processing Systems, NIPS 2007, pp. 1369–1376., Curran Associates
Inc., Red Hook (2008)

16. Tang, L., Tian, Y., Li, W., Pardalos, P.M.: Structural improved regular simplex
support vector machine for multiclass classification. Appl. Soft Compu. 91, 106235
(2020)

17. Tang, L., Tian, Y., Li, W., Pardalos, P.M.: Valley-loss regular simplex support
vector machine for robust multiclass classification. Knowl. Based Syst. 216, 106801
(2021)

18. Tang, L., Tian, Y., Pardalos, P.M.: A novel perspective on multiclass classification:
regular simplex support vector machine. Inf. Sci. 480, 324–338 (2019)

19. Tang, L., Tian, Y., Yang, C., Pardalos, P.M.: Ramp-loss nonparallel support vector
regression: robust, sparse and scalable approximation. Knowl.-Based Syst. 147,
55–67 (2018)

20. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. J. Mach. Learn. Res. 2(Nov), 45–66 (2001)

21. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013).
https://doi.org/10.1007/978-1-4757-3264-1

22. Vapnik, V., Chervonenkis, A.: Theory of Pattern Recognition. Nauka, Moscow
(1974)

23. Wang, X.Y., Wang, T., Bu, J.: Color image segmentation using pixel wise support
vector machine classification. Patt. Recogn. 44(4), 777–787 (2011)

24. Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.: Inference with the uni-
versum. In: Proceedings of the 23rd International Conference on Machine Learning,
ICML 2006, pp. 1009–1016 (2006)

https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://doi.org/10.1007/978-1-4757-3264-1

Hybridising Self-Organising Maps
with Genetic Algorithms

Abtin Nourmohammadzadeh(B) and Stefan Voß

Institute of Information Systems (IWI), University of Hamburg, Hamburg, Germany
{abtin.nourmohammadzadeh,stefan.voss}@uni-hamburg.de

https://www.bwl.uni-hamburg.de/en/iwi

Abstract. The aim of this work is to develop a hybridised approach
consisting of the Self-Organising Map (SOM), which is an artificial neural
network, and a Genetic Algorithm (GA) to tackle large and complex
optimisation problems by decomposition. The approach is tested on the
travelling salesman problem (TSP), which is a very important problem in
combinatorial optimisation. The SOM clusters the nodes into a specified
number of groups. Then, the resulting smaller TSPs within each cluster
are solved, and finally, the solutions of the clusters are connected to
build a high quality solution for the whole TSP. In the two latter steps,
a GA is used. Our approach is examined on some random examples
including 100 to 10000 nodes as well as 12 benchmark instances. The
results with various numbers of clusters are compared to each other and
also to the case of solving the TSP with all nodes and without any
clustering. Furthermore, the effect of each component algorithm in the
hybridised approach is evaluated by some complementary experiments
in which the clustering and the optimisation algorithm are replaced by
other methods.

Keywords: Clustering · Self-Organising Map (SOM) · Genetic
Algorithm (GA) · Travelling Salesman Problem (TSP)

1 Introduction

Metaheuristics have been extensively used as efficient alternatives for classi-
cal optimisation methods to find appropriate solutions for complex problems
in operations research. Meanwhile, the decomposition of hard problems into a
number of sub-problems which can be tackled in an easier way is considered
as one other methodology to find good solutions in shorter computation times.
Clustering can be used as an approach to decompose problems. Artificial Neural
Networks (ANNs) [2] have a strong ability in clustering. Hence, the development
and application of methods which consist of metaheuristics and ANNs together
can be followed to achieve the advantages of both in an optimisation process.

In this work, we devise a method which employs a neural network called Self-
Organising Map (SOM) [21] to cluster or break an optimisation problem into a
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 265–282, 2021.
https://doi.org/10.1007/978-3-030-92121-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_22&domain=pdf
http://orcid.org/0000-0003-0383-0379
http://orcid.org/0000-0003-1296-4221
https://doi.org/10.1007/978-3-030-92121-7_22

266 A. Nourmohammadzadeh and S. Voß

number of easier sub-problems. Then, the sub-problems are tackled by a genetic
algorithm (GA). Consequently, the partial solutions are combined together with
the aid of another GA to build a complete solution for the original problem.

A problem which properly suits this solution methodology is the Travelling
Salesman Problem (TSP). The TSP is a classical NP-hard combinatorial opti-
misation problem and is referred to as easy to describe but hard to solve [26]. It
involves N cities or nodes and a salesman who seeks to find the shortest possible
tour through all nodes, which includes each node exactly once.

The TSP was originally defined in 1832 [1] and is one of the most thor-
oughly investigated optimisation problems. Many real-world applications have
been found for the TSP, for example, in vehicle routing and communication net-
works [24]. This increases the significance of finding a good solution for the TSP
within a short time. A wide variety of solution methodologies including exact,
heuristic and metaheuristic approaches have been applied to the TSP.

In [9], a very early attempt in solving the TSP is addressed, which uses
a Branch and Bound algorithm on an IBM 7090 computer. It was found
that the average computational time grows exponentially while the number of
nodes increases. In a considerable attempt, [4] certifies an optimal TSP tour
through 85900 cities. Various metaheuristics such as the Ant Colony Optimi-
sation (ACO) [32], Simulated Annealing (SA) [14], and GAs [25] are used and
also new algorithms are still being developed to deal with the TSP. In the meta-
heuristic optimisation, it is aimed at finding a (near) optimal solution by iterative
improvement of candidate solutions, for details see [13]. Novel metaheuristics are
also employed to solve the TSP such as the fixed set search (FSS) in [19] or the
POPMUSIC in [30].

Our approach can be applied to the TSP as follows. The SOM divides the
nodes into a number of groups and so the original TSP is decomposed to some
smaller TSPs. Henceforth, it is analogous to solving a special variant of this
problem known as the clustered TSP [3,16,18,23,25,28]. In the clustered TSP,
there are some pre-determined clusters of the cities, and the salesman must visit
the cities of each cluster consecutively. Thus, the whole problem is decomposed to
some smaller TSPs, which are easier to solve. Consequently, the partial solutions
corresponding to clusters are linked together to build a complete tour for the
original TSP. The GA is responsible for providing good solutions within clusters
and also an appropriate connection of these solutions, which leads to an optimal
or sub-optimal overall solution to the entire TSP.

The remainder of this paper is organised as follows: In Sect. 2, a short
overview of some related works is provided. Section 3 is devoted to explaining
the solution methodologies. The numerical results and related comparisons are
covered in Sect. 4. Finally, Sect. 5 presents some conclusions and recommends
directions for future research.

Hybridising Self-Organising Maps with Genetic Algorithms 267

2 Related Works

There have been several works regarding the application of clustering in the
TSP. [28] uses an automatic clustering approach in which the cluster’s size is
controlled by a parameter. In [25], a GA for the TSP is proposed, computa-
tional results are reported on a set of Euclidean problems, and comparisons
are provided with another heuristic. A novel evolutionary algorithm based on
a clustering algorithm is proposed for the TSP in [23]. Furthermore, the tours
are improved by a local search. Simulations on some standard test problems are
made, and the results verify the efficiency of the proposed approach.

In a work similar to ours, [18] applies a Firefly Algorithm (FA) and K-means
clustering to the problem. Their approach consists of the three steps of cluster-
ing the nodes, finding the optimal path in each cluster, and reconnecting the
clusters, too. [12] addresses clustering the cities, then using the NEH heuris-
tic, which provides an initial solution that is refined using a modification of the
metaheuristic Multi-Restart Iterated Local Search (MRSILS).

The applications of the clustered TSP in several fields like vehicle routing,
manufacturing, computer operations, examination timetabling, cytological test-
ing, and integrated circuit testing are described in [22]. [16] uses approximation
algorithms for a clustered TSP. [3] proposes the use of a memetic algorithm
(MA) that combines the global search ability of a GA with a local search to
refine solutions to the clustered TSP.

Different methods can be used for clustering; however, the SOM is chosen
as a capable clustering tool in numerous works. [10] uses the SOM for robust
clustering. In a very recent research, [20] gives chest x-ray images of COVID-19
patients to an SOM network and finds a distinct classification between sick and
healthy patients. A combination of SOM and K-means to study the marketing
of online games in Taiwan is the subject of [31]. The method provides a good
evaluation of the market segmentation. In [29], an SOM is used for clustering
the flood disaster risks.

The application of SOMs for the TSP has been observed in some papers. [8]
uses a modified Kohonen self-organising map with one-dimensional neighbour-
hood to solve the symmetrical TSP. The solutions generated by the Kohonen
network are improved using the 2-opt algorithm. [5] aims at looking for the
incorporation of an efficient initialisation method and the definition of a param-
eter adaptation law to achieve better results and faster convergence of the SOM
when it is applied to the TSP. [11] proposes novel adaptation rules for the SOM
to solve the prize-collecting travelling salesman problem (PC-TSP), which aims
to find a cost-efficient tour to collect prizes by visiting a subset of a given set of
locations.

An overview of the related works shows that in dealing with the TSP, there is
a lack of an approach which uses an SOM for the node clustering and also applies
a GA to tackle the resulting sub-problems. Hence, this subject is investigated in
this work.

268 A. Nourmohammadzadeh and S. Voß

3 Solution Methodologies

In this section, the general concepts of the SOM and the GA are explained in the
first two parts and subsequently, our approach, which uses these two methods,
is introduced.

3.1 Self-Organising Map

An SOM or self-organising feature map (SOFM), introduced by Kohonen in [21],
is a type of ANNs which is trained by unsupervised learning. The SOM provides a
low-dimensional and discretised representation of the input space of the training
samples, called a map, and is, therefore, a method to do dimensionality reduction.
The difference between SOMs and other ANNs is that SOMs apply competitive
learning rather than error-correction learning (such as backpropagation with
gradient descent), and it is also envisaged by their neighbourhood function usage
to preserve the topological properties of the input space.

SOMs operate in two phases like most neural networks: training and map-
ping. Training builds the map using input examples (a competitive process, also
called vector quantisation), whereas in the mapping phase an input vector is
automatically classified.

The map space includes components called nodes or neurons. It is pre-defined,
usually as a finite two-dimensional region where nodes are arranged in a regular
hexagonal or rectangular grid. A weight vector is associated with each node,
which is a position in the input space; that is, it has the same dimension as
each input vector. While nodes in the map space stay fixed, training consists in
moving weight vectors toward the input data (reducing a distance metric) with-
out spoiling the topology induced from the map space. Thus, the self-organising
map describes a mapping from a higher-dimensional input space to a lower-
dimensional map space. Once trained, the map can classify a vector from the
input space by finding the node with the closest (smallest distance metric) weight
vector to the input space vector.

Figure 1 illustrates the training process of a simple SOM network. It can be
seen, that a neuron of the network is affected by any single datum in the training
set. However, in each iteration, the neuron is mostly influenced by the nearest
datum and moved toward it. Finally, after iterative changes of the neurons’
positions, the SOM network tends to lay on the data and approximate them.

3.2 Genetic Algorithm

A GA is a metaheuristic inspired by the process of natural selection. GAs belong
to the larger class of evolutionary algorithms (EAs). GAs are commonly used to
generate high-quality solutions to optimisation and search problems by relying on
biologically inspired operators such as mutation, crossover and selection, see [17].

GAs usually start with a population of random candidate solutions and apply
the genetic operators in each iteration to a proportion of the population to

Hybridising Self-Organising Maps with Genetic Algorithms 269

…

SOM Network

Training Data

Fig. 1. Training process of the SOM

improve the solutions. The algorithm continues iteratively until a termination
condition occurs.

3.3 Our Approach

Our solution approach uses both the SOM and the GA, and consists of three
steps. In the first step, an SOM of a given size is applied to our data of nodes’
(cities’) coordinates. According to the mentioned training process, the cities’
coordinates are used as the training data and they iteratively contribute to the
movements of the SOM neurons or the network shape. According to the final
position of the map, the cities are clustered based on the nearest SOM neuron to
them. Figure 2 visualises an example of the SOM clustering of cities when once
an SOM of the size 1 × 2 and once one of the size 2 × 2 is used. So, the cities
of each cluster are known and the sub-TSPs are constituted. Then, the GA is
applied to each sub-problem to minimise the length of the sub-tours. Another
GA is used which tries to find a good order for connecting the sub-tours. The GA
codes the order of visiting the cities and clusters as strings of unique numbers.
After this step, a solution for the entire original TSP is found. Figure 3 depicts a
solution built according to this method for a small TSP by connecting the cities
of each cluster, and then, the clusters. Figure 4 shows the related encoding used
in the GA.

These codes are in form of strings which include the city labels. The first
element of the string is the label of the first city that the salesman visits, the
second element represents the second city and it continues so up to the last
element, which is the last city of the tour. The code for connecting the clusters
is exactly the same and in the overall solution, the last city in the solution of
one cluster is joined with the first city in the solution of the next cluster.

Our GA begins with a population (nPop) of random initial solutions. In each
iteration, a proportion (Cross rate) of candidate solutions of the population is
selected for doing crossovers according to the roulette wheel selection method [7].
One-point crossover is used. In addition, another proportion (nMutat) of the
population is chosen randomly from the population for mutation. In mutations,
two elements or genes from the encoding strings (see Fig. 4) are randomly chosen
and their positions are exchanged. Our GA terminates as soon as a pre-defined

270 A. Nourmohammadzadeh and S. Voß

maximum number of iterations (Maxit) is executed. Parameter tuning, i.e. deter-
mining the values of nPop, Cross rate, Mutat rate, Maxit, is separately done
for each sub-problem and the cluster-connecting problem. To set the first three
parameters, the Taguchi method [15] is used, whereas, for Maxit, experiments
with increasing numbers of iterations are conducted. Whenever results are not
improved, we stop and choose the last effective Maxit. The pseudocode of our
GA is given as Algorithm 2.

Cluster 2
Cluster 1

SOM

(a) SOM of size 1× 2

Cluster 1

Cluster 2

Cluster 3

Cluster 4

SOM

(b) SOM of size 2× 2

Fig. 2. SOM clustering of cities

Fig. 3. An example solution

Hybridising Self-Organising Maps with Genetic Algorithms 271

Fig. 4. Encodings scheme of the GA

Algorithm 1: Our Algorithm for the TSP
Data: Nodes’ coordinates
Result: A good quality feasible solution for the TSP

1 - Apply the SOM to the city coordinates.
2 - Cluster the nodes based on the final position of the SOM nodes
3 - Solve the sub-TSPs within the clusters by the GA
4 - Apply the GA to find a good order of travelling between the clusters

Algorithm 2: Our GA
Data: Probem input
Result: A good quality solution

1 - Set the GA parameters, nPop, Cross rate, Mutat rate and Maxit
2 - Generate nPop random candidate solutions.
3 - Evaluate the population.
4 - It = 1.
5 while It ≤ Maxit do
6 - Choose the candidates for crossover by roulette wheel selection.
7 - Do the crossovers.
8 - Choose the candidates for mutation randomly.
9 - Do the mutations.

10 - Merge the crossover and mutation results with the population.
11 - Sort the population and choose the first best nPop of them as the new

population.
12 - It = It + 1.

13 end
14 - Report the best solution of the population.

4 Computation Results

In this section, the computational results of our method are presented and it
is compared to other methods. The computational experiments of this paper
are executed on a computer with a Core(TM) i7 processor, 3.10 GHz CPU and
16 GB of RAM. PYTHON is used for programming the algorithms.

As the first series of experiments, TSPs with random positions of cities are
generated in a [0, 100]× [0, 100] area. The number of cities or nodes are from
100 to 10000. For each problem size, 20 random instances are tested and their
average is regarded.

272 A. Nourmohammadzadeh and S. Voß

As mentioned in the previous section, before each GA application, its param-
eters are tuned by the Taguchi design of experiments and trial and error method.
Figure 5 shows an example for this parameter setting. In Taguchi, three levels
are considered as the potential values of each parameter and a number of exper-
iments is conducted with some designed combinations of the levels. Accordingly,
a quantity called signal to noise (S/N) ratio is calculated for each level. The
smaller S/N values are better in this minimisation problem. However, in the
trial and error approach used to determine the maximum number of iterations,
the experiments are done by growing numbers of Maxit, starting from 50 iter-
ations.

Fig. 5. An example for tuning the GA parameters: according to the results, nPop =
100, Cross rate = 0.6, Mutat rate = 0.2 are chosen by the Taguchi method and
Maxit = 150 is set by the trial and error approach.

For better understanding, the results are normalised in the interval [0,1]
based on the minimum of zero and a maximum equal to the worst objective

Hybridising Self-Organising Maps with Genetic Algorithms 273

value among the solutions of the first GA iteration. Our approach with different
sizes of SOM map and another approach based on the method presented in [18]
using the K-means classification and firefly optimisation algorithm are applied
to the generated test problems. To have a better judgement between these two
methods, the considered numbers of clusters in K-means, i.e. Ks, are equal to the
total number of SOM nodes (clusters). In addition, the approach of considering
all TSP cities at once without any clustering is used to find solutions for the
same problems and the results are shown in Table 1. The average results of
all methods are summarised in Tables 2, 3, 4 and 5. In the first column, the
problem sizes or the numbers of TSP cities are shown. For each method, firstly,
the average numbers of cities in the considered clusters are shown, then the
average objective values, and finally, the execution times are tabulated. It is
worth noting that the time required for setting the GA parameters and training
the SOM are considered in the reported execution times.

Table 1. Results of the GA for solving the complete instances without any clustering

Size Solving the whole problem

Obj. value Time (s)

100 0.43 32.61

200 0.45 82.18

500 0.52 189.26

1000 0.56 292.40

2000 0.62 508.37

5000 0.63 1530.75

10000 0.68 3751.30

Table 2. Clustering with the SOM of size 1 × 2 and the K-means with K = 2

Size Our approach K-means and Firefly

Clusters Obj. value Time (s) Clusters Obj. value Time (s)

100 (48, 52) 0.44 32.25 (46, 54) 0.45 33.08

200 (92, 108) 0.46 81.05 (110, 90) 0.48 82.10

500 (235, 265) 0.49 132.65 (242, 258) 0.49 147.12

1000 (462, 538) 0.49 185.47 (396, 604) 0.52 198.65

2000 (1082, 918) 0.52 310.25 (1260, 740) 0.54 318.72

5000 (2237, 2763) 0.57 562.75 (2062, 2938) 0.59 576.42

10000 (5734, 4266) 0.63 1689.82 (5842, 4158) 0.66 1720.48

274 A. Nourmohammadzadeh and S. Voß

Table 3. Clustering with the SOM of size 2 × 2 and K-means with K = 4

Size Our approach K-means and Firefly

Clusters Obj. value Time Clusters Obj. value Time

100 (29, 28, 23, 20) 0.48 35.91 (28, 28, 22, 22) 0.48 37.10

200 (42, 48, 52, 58) 0.46 71.15 (44, 50, 54, 42) 0.49 76.32

500 (110, 134, 127, 129) 0.47 121.32 (121, 132, 114, 133) 0.50 132.41

1000 (225, 280, 263, 232) 0.51 158.62 (231, 292, 246, 231) 0.53 169.72

2000 (565, 441, 532, 463) 0.48 219.35 (572, 448, 582, 398) 0.51 232.46

5000 (1320, 1157, 1408, 1115) 0.54 312.86 (1292, 1163, 1452, 1093) 0.56 324.66

10000 (2608, 2572, 2380, 2440) 0.58 528.35 (2636, 2532, 2420, 2412) 0.60 549.08

Table 4. Clustering with the SOM of size 3 × 3

Size Our approach

Clusters Obj. value Time

100 (10, 13, 9, 12, 11, 12, 11, 12, 10) 0.54 43.27

200 (17, 15, 23, 18, 31, 20, 27, 30, 19) 0.48 78.15

500 (55, 62, 65, 63, 52, 48, 55, 48, 52) 0.47 121.32

1000 (115, 120, 118, 98, 107, 111, 108, 98, 125) 0.49 148.83

2000 (230, 202, 251, 203, 238, 208, 242, 202, 224) 0.46 172.05

5000 (540, 564, 550, 576, 569, 530, 585, 528, 558) 0.48 215.88

10000 (1203, 1127, 1037, 1152, 1218, 1069, 1138, 1065, 991) 0.53 321.6

Table 5. Clustering with the K-means with K = 9

Size K-means and Firefly

Clusters Obj. value Time

100 (9, 14, 10, 12, 14, 10, 12, 9, 10) 0.56 51.36

200 (20, 18, 25, 19, 25, 22, 28, 28, 15) 0.53 106.16

500 (58, 60, 68, 62, 50, 45, 53, 50, 54) 0.50 130.62

1000 (117, 122, 121, 103, 105, 109, 101, 102, 120) 0.51 164.37

2000 (235, 206, 246, 195, 239, 205, 245, 207, 222) 0.48 190.52

5000 (546, 572, 555, 578, 580, 541, 582, 531, 515) 0.50 232.96

10000 (1184, 1095, 949, 1168, 1225, 1056, 1195, 1092, 1036) 0.56 328.60

As it is evident, except for the smallest sizes containing 100 and 200 cities, the
clustering methods can provide better solutions in shorter computational times.
As the problem size grows, having more clusters, i.e. more nodes (neurons) in the
SOM network and larger Ks in the K-means, increases the ability of the methods
in finding good quality solutions more quickly. In comparison to the approach
which uses the K-means and the Firefly algorithm, it is observed that our SOM
with the complementary GA is superior in terms of both the objective value and
the computation time. Figure 6 and Fig. 7 illustrate the average objective values
and computational times of all methods, respectively.

Hybridising Self-Organising Maps with Genetic Algorithms 275

100 5,0001,000 2,000 5,000 10,000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Nr. of cities in TSP

O
b
je
ct
iv
e
va

lu
e

Whole problem with the GA

Our approach with the SOM of size 1 × 2 and GA

Our approach with the SOM of size 2 × 2 and GA

Our approach with the SOM of size 3 × 3 and GA

K-means with K = 2 and Firefly

K-means with K = 4 and Firefly

K-means with K = 9 and Firefly

Fig. 6. Objective function comparison between the methods

Table 6. The results of applying the methods to 12 benchmark TSP instances from
TSPLIB [27]

Instance Our approach K-means and Firefly Whole problem

Obj. value Time Obj. value Time Obj. value Time

eil51 0 16.17 0.1 18.09 0.12 15.82

berlin52 0 17.42 0.08 17.68 0.08 15.95

pr76 0.10 25.92 0.12 29.72 0.15 35.81

rat99 0.10 27.60 0.14 31.53 0.16 37.06

kroA100 0.07 36.15 0.15 42.78 0.15 48.92

lin105 0.11 38.61 0.16 44.32 0.20 57.61

pr124 0.08 38.77 0.10 46.50 0.16 55.21

pr136 0.12 43.62 0.15 46.56 0.20 57.90

pr150 0.14 44.36 0.20 46.93 0.22 62.82

rat195 0.15 47.25 0.21 51.43 0.25 63.91

kroA200 0.10 48.39 0.18 54.21 0.21 65.31

ts225 0.11 52.76 0.21 57.02 0.24 67.05

276 A. Nourmohammadzadeh and S. Voß

100 5,0001,000 2,000 5,000 10,000
0

1,000

2,000

3,000

4,000

5,000

Nr. of cities in TSP

E
xe
cu

ti
on

ti
m
e
(s
)

Whole problem with the GA

Our approach with the SOM of size 1 × 2 and GA

Our approach with the SOM of size 2 × 2 and GA

Our approach with the SOM of size 3 × 3 and GA

K-means with K = 2 and Firefly

K-means with K = 4 and Firefly

K-means with K = 9 and Firefly

Fig. 7. Execution time comparison between the methods

Table 7. The p-values of the pairwise comparisons of the methods in terms of the
objective value and the execution time based on the Friedman test with the Bergmann-
Hommel post hoc procedure: a = Whole problem with the GA, b = Our approach with
the SOM of size 1 × 2 and GA, c = Our approach with the SOM of size 2 × 2 and GA,
d = Our approach with the SOM of size 3 × 3 and GA, e = K-means with K = 2, f =
K-means with K = 4, g = K-means with K = 9

P-values a b c d e f g

a – 6.21 × 10−7 2.01 × 10−8 3.81 × 10−10 1.72 × 10−5 3.43 × 10−7 6.12 × 10−8

b 6.21 × 10−7 – 5.52 × 10−4 4.87 × 10−5 2.25 × 10−5 9.12 × 10−6 6.44 × 10−8

c 2.01 × 10−8 5.52 × 10−4 – 4.25 × 10−4 2.18 × 10−5 3.12 × 10−5 7.36 × 10−7

d 3.81 × 10−10 4.87 × 10−5 4.25 × 10−4 – 6.01 × 10−3 3.72 × 10−5 4.12 × 10−6

e 1.72 × 10−5 2.25 × 10−5 2.18 × 10−5 6.01 × 10−3 – 5.20 × 10−3 1.15 × 10−4

f 3.43 × 10−7 9.12 × 10−6 3.12 × 10−5 3.72 × 10−5 5.20 × 10−3 – 3.17 × 10−3

g 6.12 × 10−8 6.44 × 10−8 7.36 × 10−7 4.12 × 10−6 1.15 × 10−4 3.17 × 10−3 –

P-values a b c d e f g

a – 3.92 × 10−9 8.05 × 10−10 4.22 × 10−12 6.52 × 10−6 8.20 × 10−8 2.17 × 10−11

b 2.32 × 10−9 – 1.84 × 10−5 7.15 × 10−6 3.16 × 10−7 7.30 × 10−8 5.12 × 10−10

c 1.07 × 10−10 6.82 × 10−6 – 5.78 × 10−5 3.62 × 10−6 2.08 × 10−6 9.96 × 10−8

d 8.50 × 10−13 6.65 × 10−7 5.80 × 10−6 – 7.72 × 10−4 1.01 × 10−6 7.42 × 10−8

e 1.02 × 10−5 3.21 × 10−6 1.98 × 10−5 5.05 × 10−4 – 7.01 × 10−4 6.19 × 10−4

f 9.90 × 10−8 3.82 × 10−7 1.15 × 10−7 8.42 × 10−6 7.20 × 10−4 – 6.65 × 10−4

g 3.76 × 10−9 5.91 × 10−9 2.19 × 10−9 3.29 × 10−8 6.39 × 10−6 3.08 × 10−4 –

Hybridising Self-Organising Maps with Genetic Algorithms 277

The next series of experiments includes the examination of our approach and
the others on 12 benchmark TSP instances from the TSPLIB [27] including 51
to 225 cities. The results are given in Table 6. The first column contains the
instance names, which include each a number showing the number of cities. For
example eil51 and ts225 include 51 and 225 cities, respectively. The number of
clusters is equal to �Number of cities

20 � or one for every 20 cities. The objective
values are here normalised in [0,1] like the previous experiments but based on the
minimums equal to the known optimal values. The solution of each instance with
each of the methods is replicated 10 times due to the stochastic nature of the
methods and the possibility of a different result in each replication. The average
objective value is referred to for each instance. As it is evident, our approach
outperforms the others in many instances in terms of both the objective value
and the execution time.

To find out if there are statistically significant differences between the results
and execution times of the three methods, a non-parametric method called the
Friedman test with the Bergmann-Hommel post hoc procedure [6] is applied
based on the results of all instances. The calculated p-values are presented in
Table 7, which indicate that the hypothesis of the equality of objective values
and computation times of the methods are rejected regarding the confidence
level of 0.05.

Finally, in order to assess the contribution of each constituent algorithm,
we exchange the optimisation algorithms between the two compared hybrid
approaches, i.e. the SOM-GA and the K-means-Firefly. It means that the Firefly
optimisation algorithm is hybridised with the SOM and the GA is combined
with the K-means. The two new approaches are called SOM-Firefly and K-
means-GA, respectively. Figure 8 and 9 provide a comparative illustration of the
solution quality and the execution time of the two mentioned hybrid approaches
along with those of the SOM-GA and the K-means-Firefly algorithm.

278 A. Nourmohammadzadeh and S. Voß

100 5,0001,000 2,000 5,000 10,000

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Nr. of cities in TSP

O
b
je
ct
iv
e
va

lu
e

SOM-Firefly
K-means-GA
SOM-GA

K-means-Firefly

Fig. 8. Objective function comparison between all the methods

It can be observed that the solution quality drops slightly while the compu-
tation time grows if the Firefly algorithm replaces the GA as the optimisation
algorithm. On the other hand, K-means-GA results are even weaker than those
of K-means-Firefly in most of the cases, which shows that this combination of
the component algorithms has not been successful. Nonetheless, this approach
is the fastest among the four. All in all, it can be deduced from this examination
that the SOM plays a more considerable role in the success of our hybridised
SOM-GA optimisation methodology than the GA and both algorithms are a
good match together.

The four methods are also statistically compared and the corresponding p-
values according to the Friedman test with the Bergmann-Hommel post hoc pro-
cedure are given in Table 8. These p-values show significant differences between
the performance of any pair of the methods.

Hybridising Self-Organising Maps with Genetic Algorithms 279

100 5,0001,000 2,000 5,000 10,000
0

50

100

150

200

250

300

350

Nr. of cities in TSP

E
xe
cu

ti
on

ti
m
e
(s
)

SOM-Firelfy
K-means-GA

K-means-Firefly
SOM-GA

Fig. 9. Execution time comparison between all the methods

Table 8. The p-values of the pairwise comparisons of the methods based of the Fried-
man test with the Bergmann-Hommel post hoc procedure: a = SOM-Firefly, b = K-
means-GA, c = SOM-GA, d = K-means-Firefly

P-values a b c d

a – 2.92 × 10−4 1.70 × 10−5 5.36 × 10−7

b 2.92 × 10−4 – 3.41 × 10−4 6.08 × 10−6

c 1.70 × 10−5 3.41 × 10−4 – 2.76 × 10−6

d 5.36 × 10−7 6.08 × 10−6 2.76 × 10−6 –

P-values a b c d

a – 1.56 × 10−6 8.94 × 10−6 1.98 × 10−9

b 9.51 × 10−5 – 5.06 × 10−5 7.40 × 10−8

c 5.62 × 10−6 1.40 × 10−5 – 4.77 × 10−7

d 2.58 × 10−9 3.02 × 10−7 5.22 × 10−8 –

5 Conclusions

In this work, an optimisation approach including a clustering phase by the SOM
and two GA phases is developed. The GA is embedded in our method to solve the

280 A. Nourmohammadzadeh and S. Voß

sub-problems and also to find a good connection of the sub-tours. This approach
is applied to instances of the TSP. The results verify that this approach is more
capable in comparison to solving the whole problem at once as well as another
approach with clustering and metaheuristic application. For larger instances,
considering more clusters provides better results in shorter elapsed times. In an
additional series of experiments, the contributions of the SOM and the GA in
the whole approach are measured. This shows that the clustering algorithm or
the SOM has a larger effect on the success of our hybrid SOM-GA approach.

Nonetheless, we are aware of many other successful methods in dealing with
the TSP in the literature. So the TSP instances are just used to evaluate the
abilities of our approach in the first step. As a future extension, this solution
methodology can be applied to other optimisation problems, in which clustering
might be applicable. One worth topic for further research can be examining
the impact of having more clusters with regard to the fact that the problems
within clusters are solved independently. Another future direction in terms of
the application for the TSP is to use our method for larger TSPs and TSPs with
multiple salesmen. In addition, a TSP with non-deterministic cost of travelling
between the cities, which is more realistic, can be investigated. Other clustering
approaches can be tested as well.

As mentioned above, examining our method on other combinatorial optimi-
sation problems is strongly recommended. This should be done with the idea
in mind not to necessarily derive some new “best” method for the considered
problem(s) but to gain additional insights into popular solution concepts that
are more and more discussed in the realm of artificial intelligence.

References

1. Der Handlungsreisende - wie er sein soll und was er zu tun hat, um Aufträge zu
erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiß zu sein - von
einem alten Commis-Voyageur. Springer (1832)

2. Aggarwal, C.C.: Neural Networks and Deep Learning. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94463-0

3. Alsheddy, A.: Solving the free clustered TSP using a memetic algorithm. Int. J.
Adv. Comput. Sci. Appl. 8(8), 404–408 (2017). https://doi.org/10.14569/ijacsa.
2017.080852

4. Applegate, D.L., et al.: Certification of an optimal TSP tour through 85,900 cities.
Oper. Res. Lett. 37(1), 11–15 (2009). https://doi.org/10.1016/j.orl.2008.09.006

5. Bai, Y., Zhang, W., Jin, Z.: An new self-organizing maps strategy for solving the
traveling salesman problem. Chaos, Solitons & Fractals 28(4), 1082–1089 (2006).
https://doi.org/10.1016/j.chaos.2005.08.114

6. Bergmann, B., Hommel, G.: Improvements of general multiple test procedures
for redundant systems of hypotheses. In: Bauer, P., Hommel, G., Sonnemann, E.
(eds.) Multiple Hypothesenprüfung/Multiple Hypotheses Testing. MEDINFO, vol.
70, pp. 100–115. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-
52307-6 8

7. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algo-
rithms. Evol. Comput. 4(4), 361–394 (1996). https://doi.org/10.1162/evco.1996.4.
4.361

https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.14569/ijacsa.2017.080852
https://doi.org/10.14569/ijacsa.2017.080852
https://doi.org/10.1016/j.orl.2008.09.006
https://doi.org/10.1016/j.chaos.2005.08.114
https://doi.org/10.1007/978-3-642-52307-6_8
https://doi.org/10.1007/978-3-642-52307-6_8
https://doi.org/10.1162/evco.1996.4.4.361
https://doi.org/10.1162/evco.1996.4.4.361

Hybridising Self-Organising Maps with Genetic Algorithms 281

8. Brocki, �L, Koržinek, D.: Kohonen self-organizing map for the traveling salesperson
problem. In: Jab�loński, R., Turkowski, M., Szewczyk, R. (eds.) Recent Advances in
Mechatronics, pp. 116–119. Springer, Heidelberg (1999). https://doi.org/10.1007/
978-3-540-73956-2 24

9. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman
problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954). https://doi.org/10.1287/
opre.2.4.393

10. D’Urso, P., Giovanni, L.D., Massari, R.: Smoothed self-organizing map for robust
clustering. Inf. Sci. 512, 381–401 (2020). https://doi.org/10.1016/j.ins.2019.06.038

11. Faigl, J., Hollinger, G.A.: Self-organizing map for the prize-collecting traveling
salesman problem. In: Villmann, T., Schleif, F.-M., Kaden, M., Lange, M. (eds.)
Advances in Self-Organizing Maps and Learning Vector Quantization. AISC,
vol. 295, pp. 281–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07695-9 27

12. Fuentes, G.E.A., Gress, E.S.H., Mora, J.C.S.T., Maŕın, J.M.: Solution to trav-
elling salesman problem by clusters and a modified multi-restart iterated local
search metaheuristic. PLoS ONE 13(8), e0201868 (2018). https://doi.org/10.1371/
journal.pone.0201868

13. Gendreau, M., Potvin, J.Y. (eds.): Handbook of Metaheuristics. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-1665-5

14. Grabusts, P., Musatovs, J.: The application of simulated annealing method for
solving travelling salesman problem. In: Proceedings of the 4th Global Virtual
Conference. Publishing Society, pp. 225–229 (2016). https://doi.org/10.18638/gv.
2016.4.1.732

15. Grice, J.V., Montgomery, D.C.: Design and analysis of experiments. Technometrics
42(2), 208 (2000). https://doi.org/10.2307/1271458

16. Guttmann-Beck, N., Knaan, E., Stern, M.: Approximation algorithms for not nec-
essarily disjoint clustered TSP. J. Graph Algorithms Appl. 22(4), 555–575 (2018).
https://doi.org/10.7155/jgaa.00478

17. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley, Hoboken (2003).
https://doi.org/10.1002/0471671746

18. Jaradat, A., Matalkeh, B., Diabat, W.: Solving traveling salesman problem using
firefly algorithm and k-means clustering. In: 2019 IEEE Jordan International Joint
Conference on Electrical Engineering and Information Technology (JEEIT). IEEE,
pp. 586–589 (2019). https://doi.org/10.1109/jeeit.2019.8717463

19. Jovanovic, R., Tuba, M., Voß, S.: Fixed set search applied to the traveling sales-
man problem. In: Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-
Davidson, P., Godoy del Campo, J. (eds.) HM 2019. LNCS, vol. 11299, pp. 63–77.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05983-5 5

20. King, B., Barve, S., Ford, A., Jha, R.: Unsupervised clustering of COVID-19 chest
X-ray images with a self-organizing feature map. In: 2020 IEEE 63rd International
Midwest Symposium on Circuits and Systems (MWSCAS). IEEE (2020). https://
doi.org/10.1109/mwscas48704.2020.9184493

21. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol.
Cybern. 43(1), 59–69 (1982). https://doi.org/10.1007/bf00337288

22. Laporte, G., Palekar, U.: Some applications of the clustered travelling sales-
man problem. J. Oper. Res. Soc. 53(9), 972–976 (2002). https://doi.org/10.1057/
palgrave.jors.2601420

https://doi.org/10.1007/978-3-540-73956-2_24
https://doi.org/10.1007/978-3-540-73956-2_24
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1016/j.ins.2019.06.038
https://doi.org/10.1007/978-3-319-07695-9_27
https://doi.org/10.1007/978-3-319-07695-9_27
https://doi.org/10.1371/journal.pone.0201868
https://doi.org/10.1371/journal.pone.0201868
https://doi.org/10.1007/978-1-4419-1665-5
https://doi.org/10.18638/gv.2016.4.1.732
https://doi.org/10.18638/gv.2016.4.1.732
https://doi.org/10.2307/1271458
https://doi.org/10.7155/jgaa.00478
https://doi.org/10.1002/0471671746
https://doi.org/10.1109/jeeit.2019.8717463
https://doi.org/10.1007/978-3-030-05983-5_5
https://doi.org/10.1109/mwscas48704.2020.9184493
https://doi.org/10.1109/mwscas48704.2020.9184493
https://doi.org/10.1007/bf00337288
https://doi.org/10.1057/palgrave.jors.2601420
https://doi.org/10.1057/palgrave.jors.2601420

282 A. Nourmohammadzadeh and S. Voß

23. Liu, D., Wang, X., Du, J.: A clustering-based evolutionary algorithm for traveling
salesman problem. In: 2009 International Conference on Computational Intelligence
and Security. IEEE, pp. 118–122 (2009). https://doi.org/10.1109/cis.2009.80

24. Matai, R., Singh, S., Lal, M.: Traveling salesman problem: an overview of appli-
cations, formulations, and solution approaches. In: Davendra, D. (ed.) Traveling
Salesman Problem, Theory and Applications. InTech (2010). https://doi.org/10.
5772/12909

25. Potvin, J.Y., Guertin, F.: The clustered traveling salesman problem: a genetic app-
roach. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics, pp. 619–631. Springer,
Boston (1996). https://doi.org/10.1007/978-1-4613-1361-8 37

26. Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem
heuristics: leading methods, implementations and latest advances. Eur. J. Oper.
Res. 211(3), 427–441 (2011). https://doi.org/10.1016/j.ejor.2010.09.010

27. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput.
3(4), 376–384 (1991). https://doi.org/10.1287/ijoc.3.4.376

28. Schneider, J.J., Bukur, T., Krause, A.: Traveling salesman problem with clustering.
J. Stat. Phys. 141(5), 767–784 (2010). https://doi.org/10.1007/s10955-010-0080-z

29. Suhriani, I.F., Mutawalli, L., Widiami, B.R.A., Chumairoh: Implementation self
organizing map for cluster flood disaster risk. In: Proceedings of the International
Conference on Mathematics and Islam. SCITEPRESS - Science and Technology
Publications, pp. 405–409 (2018). https://doi.org/10.5220/0008522604050409

30. Taillard, É.D., Helsgaun, K.: POPMUSIC for the travelling salesman problem. Eur.
J. Oper. Res. 272(2), 420–429 (2019). https://doi.org/10.1016/j.ejor.2018.06.039

31. Yu, S., Yang, M., Wei, L., Hu, J.S., Tseng, H.W., Meen, T.H.: Combination of self-
organizing map and k-means methods of clustering for online games marketing.
Sens. Mater. 32(8), 2801 (2020). https://doi.org/10.18494/sam.2020.2800

32. Yuanyuan, L., Jing, Z.: An application of ant colony optimization algorithm in TSP.
In: 2012 Fifth International Conference on Intelligent Networks and Intelligent
Systems. IEEE, pp. 61–64 (2012). https://doi.org/10.1109/icinis.2012.20

https://doi.org/10.1109/cis.2009.80
https://doi.org/10.5772/12909
https://doi.org/10.5772/12909
https://doi.org/10.1007/978-1-4613-1361-8_37
https://doi.org/10.1016/j.ejor.2010.09.010
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1007/s10955-010-0080-z
https://doi.org/10.5220/0008522604050409
https://doi.org/10.1016/j.ejor.2018.06.039
https://doi.org/10.18494/sam.2020.2800
https://doi.org/10.1109/icinis.2012.20

How to Trust Generative Probabilistic
Models for Time-Series Data?

Nico Piatkowski1(B), Peter N. Posch2, and Miguel Krause2

1 ME Group, Fraunhofer IAIS, 53757 Sankt Augustin, Germany
nico.piatkowski@iais.fraunhofer.de

2 Finance Group, TU Dortmund, 44227 Dortmund, Germany
{peter.posch,miguel.krause}@tu-dortmund.de

Abstract. Generative machine learning methods deliver unprecedented
quality in the fields of computer vision and natural language processing.
When comparing models for these task, the user can fast and reliably
judge generated data with her bare eye—for humans, it is easy to decide
whether an image or a paragraph of text is realistic. However, generative
models for time series data from natural or social processes are largely
unexplored, partially due to a lack of reliable and practical quality mea-
sures. In this work, measures for the evaluation of generative models for
time series data are studied—in total, over 1000 models are trained and
analyzed. The well-established maximum mean discrepancy (MMD) and
our novel proposal: the Hausdorff discrepancy (HD) are considered for
quantifying the disagreement between the sample distribution of each
generated data set and the ground truth data. While MMD relies on the
distance between mean-vectors in an implicit high-dimensional feature
space, the proposed HD relies on intuitive and explainable geometric
properties of a “typical” sample. Both discrepancies are instantiated for
three underlying distance measures, namely Euclidean, dynamic time
warping, and Frechét distance. The discrepancies are applied to evaluate
samples from generative adversarial networks, variational autoencoders,
and Markov random fields. Experiments on real-world energy prices and
humidity measurements suggest, that considering a single score is insuf-
ficient for judging the quality of a generative model.

Keywords: Generative models · Time series · Deep learning ·
Hausdorff discrepancy · MMD

1 Introduction

Most natural and social processes are not static—they generate data over time,
exhibit non-linear interdependencies between non-consecutive measurements, and
gradually change their fundamental dynamics. The underlying data generating
mechanisms are often largely unknown, not well understood, or not fully observ-
able at all. In these cases, the observed dynamics can be characterized only

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 283–298, 2021.
https://doi.org/10.1007/978-3-030-92121-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_23

284 N. Piatkowski et al.

Fig. 1. Overview on the evaluation pipeline considered in this work. Time-series data
is sampled from a probabilistic model and then evaluated via various measures.

indirectly, using intuitive-but-oversimplified abstractions or hard-to-understand-
but-powerful non-linear blackbox models. Here, we aim at mimicking such pro-
cesses, generating new data whose distribution shall be indistinguishable from the
real-world measurements. Thus, allowing those methods to be used as drop-in-
samplers for Monte Carlo techniques and in all situations for which samples from
the underlying data distribution are required.

In this paper, we benchmark generative adversarial networks (GAN), vari-
ational autoencoders (VAE), and Markov random fields (MRF), as depicted in
Fig. 1. Synthesizing new data from any of these generators we can easily simulate
distributions which then can then be used in the former mentioned applications.
In order to pick the best generator we assess statistical properties and measures
of the artificially generated data and discuss their usefulness.

Generative models for time-series have indeed been of interest for the data
science community. An overview of existing work is provided in Table 1. Here, we
provide a short summary: VAE-related work on time-series data focuses mainly
on data imputation [9] and anomaly detection [28], there are many studies on
GANs generating synthetic time series. In particular, Esteban et al. [7] train
and evaluate GANs on real-valued medical time series and measure their gener-
ation capability via Maximum Mean Discrepancy and their “Train on Synthetic,
Test on Real” (TSTR) measure. Using the synthetic image generation capa-
bility of GANs Brophy et al. [3] convert EEG time series in greyscale images
and use a GAN to generate synthetic greyscale images and map them back to
time series. Zhang et al. [30] use GANs for smart grid data, simulating synthetic
energy generation and consumption over day and night time. Chen et al. [4] use

How to Trust Generative Probabilistic Models for Time-Series Data? 285

Table 1. Overview on related work about generative models for time-series data. The
column OPT indicated if a hyper-parameter optimization was conducted.

Paper Models Quality measure OPT

This work GAN, VAE, MRF MMD, Hausdorff discrepancy Yes

Esteban et al. [7] RGAN, RCGAN MMD, TSTR No

Brophy et al. [3] WGAN MMD, FID No

Zhang et al. [30] CGAN MMD, DTW k-means
clustering

No

Wiese et al. [27] Quant GANs Wasserstein-1 distance, DY
metric, Dependency scores

Yes

Chen et al. [4] Wasserstein GAN,
CGAN

Mode diversity, statistical
resemblance

No

Yoon et al. [29] TimeGAN Visualization, Discriminative
Score, Predictive Score (MAE)

No

Arlitt et al. [2] HMM Auto-correlation,
marginal/conditional
distributions

No

Piatkowski et al. [21] STRF, MRF Likelihood, NNZ ratio No

a Wasserstein GAN and a Conditional GAN to generate realistic wind and solar
power scenarios for renewable power plants and verify the statistical properties
of the scenarios via mode diversity and statistical resemblance. Focusing on the
generation of financial time series Wiese et al. [27] introduce Quant GANs and
evaluate them via distributional metrics and dependency scores. Additionally
Takahashi et al. [25] show GANs can reproduce various stylized facts of financial
time series. Yoon et al. [29] introduce a time-series generation approach that
combines GANs with autoregressive models. The resulting TimeGAN should
preserve the temporal dynamics of time series in the generation process, in a
manner that new sequences respect the original relationships between variables
across time. Referring to sequence models, Kaiser and Bengio [13] present dis-
crete autoencoding sequence models and show that sampling from the discrete
latent code allows to get valid but highly diverse samples for language and trans-
lation tasks. In reinforcement learning, Metz et al. [19] show that discretizing
action spaces and using sequence models can yield improvements. Referring to
Markov models, Arlitt et al. [2] use a Hidden Markov model (HMM) to gen-
erate synthetic energy consumption time series data. Piatkowski et al. [21] use
discrete probabilistic graphical models, like Markov random fields to predict
spatio-temporal sensor states for traffic and temperature time series. Markov
random fields are furthermore applied to evaluate the spatial-temporal depen-
dency among adjacent pixels in time series of images [8].

Our contributions can be summarized as follows:

– We provide the first domain agnostic study of generative models for time-
series data.

286 N. Piatkowski et al.

– We propose and investigate a new measure for comparing samples from two
distributions based on the Hausdorff distance. In contrast to established dis-
tance metrics like the maximum mean discrepancy, our novel Hausdorff dis-
crepancy takes the shape of the generated sample into account which gives
is the perspective of assessing various statistical properties at once, including
tails and multi modality.

– Our empirical comparison of three generative models and six distance mea-
sures reveals that classic explicit probabilistic models like Markov random
fields still deliver the best performance in terms of reproduction of the empir-
ical moments of the underlying distribution.

2 Generative Probabilistic Models

Probabilistic models capture the rich structures in complex data sets. These
models can be divided in basically two major categories: implicit and explicit
models. Explicit models give us explicit access to a likelihood function P(X).
This allows us to compute the probability of observing specific events, analytic
computation of all marginal probabilities, computing the mode, as well as sam-
pling from the underlying distribution. Implicit models are likelihood-free and
only allow us to draw samples form the estimated distribution, but cannot be
used to get, e.g., pointwise evaluations of the distribution itself [20]. We do now
discuss the implicit and explicit models considered in this work.

Generative Adversarial Network (GAN). The framework of generative adversar-
ial networks [10] is a recent method for data generation. In a nutshell, two models
are trained simultaneously: The generator G : Z → X gets as input a random
vector Z from a measure Q over Z, e.g. multivariate Gaussian, and shall output
a new point from the data domain X . The discriminator D : X → [0; 1] esti-
mates the probability that a data point comes from the original data distribution
P. Training can be interpreted as if G and D play a two-player minimax game
against each other to determine their parameters with value function V (G;D).

min
G

max
D

V (G;D) = EP[log D(X)] + EQ[log(1 − D(G(Z)))]

The training procedure for G consists in maximizing the probability of D
making a failure. Simultaneously, D has to maximizes the probability of assigning
the correct class (generated or real data) to training examples and synthetic
records from G. The random input of G comes, e.g. from a multivariate Gaussian
prior Q with unit covariance matrix. To ensure the estimation of D near its
optimal solution we alternate in an numerical implementation approach of the
game between steps optimizing of D and one step of optimizing G. After several
steps of training, if G and D have enough capacity, the mini game reaches a
Nash equilibrium, which corresponds to the G(Z) being drawn from the data
domain X . To generate new independent samples we map random input vectors
from the prior Q with the trained generator to the data space X [4].

How to Trust Generative Probabilistic Models for Time-Series Data? 287

Variational Auto-Encoder (VAE). A Variational autoencoder [17,22] is a genera-
tive latent variable model which connects ideas from deep learning and Bayesian
inference. Given the observable variables X and latent variables Z from a prior
P(z), the VAE learns simultaneously a generative model Pθ(x|z), parameterized
by θ, and an inference model Qφ(z|x), parameterized by φ. The inference model,
which approximates it’s true posterior Pθ(z|x) ∝ P(z)Pθ(x|z), is called encoder
and encodes the data into parameters of the posterior distribution. The gen-
erative model, called decoder, learns to reconstruct samples from the posterior
with some plausible surrogate. To make sampling easy, we parameterize the pos-
terior distribution following Kingma and Welling [17] by a Gaussian with its
mean and variance predicted by the encoder. Typically, encoder and decoder are
parameterized by multi-layer neural networks.

To infer the marginal likelihood logPθ(x) and train the VAE we maximize
the evidence lower bound (ELBO)

logPθ(x) ≥ L(φ, θ;x) = EQ(z|x)[logPθ(x, z) − logQφ(z|x)]
= −DKL(Qφ(z|x)||Pθ(z)) + EQφ(z|x)[logPθ(x|z)]

The ELBO consists of the KL-divergence DKL, which acts as a regular-
izer, encouraging the posterior Qφ(z|x) to be close to the prior P(z) and an
expected reconstruction error [22]. As prior over the latent variables Z we choose
a isotropic normal Gaussian P = N (0, I), which is commonly used [26]. If Pθ(x|z)
and Qφ(z|x) are differentiable and can be computed pointwise, we can maximize
the ELBO via gradient descent algorithms [18]. During the training of the VAE
we use the reparametrization trick [17] to sample from posterior Qφ(z|x) to
ensure that we can train the encoder and decoder as one network via backprop-
agation. The trained decoder can reconstruct a sensible data sample from every
point in the latent space with non-zero probability under the prior and allows for
the generation of new samples. Precisely, to sample from the posterior Qθ(z|x)
we generate a random point z of the learned latent variable distribution by sam-
pling ε ∼ N (0, I) and using the reparameterization trick z = μx + Σx ∗ ε, where
μx, Σx are the mean and the variance parameters of the approximate posterior,
predicted by the trained encoder. Then we decode z with the trained decoder to
generate new realistic time series samples [26].

Markov Random Field (MRF). Markov random fields are a class of undirected
probabilistic graphical models that have been applied successfully for the gener-
ative modelling of various types of spatio-temporal data [21]. In an MRF, each
time point is treated as a random variable whose dependence to the other vari-
ables is estimated explicitly via a structure learning algorithm. The resulting
structure tells us which time points have the most impact on which other time-
points, resulting in the conditional independence structure G = (V,E). Any
arbitrary time-series x of length-T can then be assigned a probability via

P(x) =
1

Z(θ)

∏

(v,u)∈E

exp(〈θ, φ(v,u)(x)〉)

288 N. Piatkowski et al.

where θ ∈ R
d are the learnable model parameters and Z(θ) is the partition

function.
It has been shown that Markov random fields with large cliques are equivalent

to deep stochastic neural networks, so-called deep Boltzmann machines [20]. In
case of discrete data, the parameters θ of an MRF can be estimated consistently,
i.e., we are asymptotically guaranteed to recover the true underlying probability
mass function. Nevertheless, discretizing numeric data implies a subtle loss of
accuracy.

3 Discrepancy

Given a ground truth sample D from the underlying data distribution, our main
goal is to tell whether a data set T that was generated by a generative model
is close to the distribution that underlies D. This is of course the well-known
two-sample problem, which is still an open problem in general. In the context of
this paper, we are satisfied with measuring similarity between samples—we will
not provide a definite statistical answer. However, there are indeed well known
approaches for this task.

Maximum Mean Discrepancy. To test whether two samples are drawn from the
same distribution, Gretton et al. [11] proposed the maximum mean discrepancy
(MMD), which maps the distance between the embedding of the two samples
into a reproducing kernel Hilbert space (RKHS) and determines the distance
between samples in that space.

Definition 1 (Maximum Mean Discrepancy [11]). Let Fk be a RKHS
defined on a topological space X with reproducing kernel k, and P,Q two prob-
ability measures on X . The mean embedding of P in Fk is μk(P) ∈ Fk such
that EPf(X) = 〈f, μk(P)〉Fk

for all f ∈ Fk. Let further DP = {x1, . . . , xm} and
DQ = {y1, . . . , yn} denote sets of observations, sampled from P and Q, respec-
tively. The MMD and its unbiased estimate ˜MMD are defined via

MMDFk
(P,Q) = sup

f∈Fk

||EPf(X) − EQf(X)||2Fk
,

˜MMDFk
(P,Q) =

1
|DP|2

∑

x∈DP

∑

y∈DP

k(x, y) − 2
|DP||DQ|

∑

x∈DP

∑

y∈DQ

k(x, y)

+
1

|DQ|2
∑

x∈DQ

∑

y∈DQ

k(x, y).

Using a characteristic kernel, e.g. the radial basis function (RBF) kernel,
MMD is a metric, which implies that MMD(P,Q) = 0 if and only if P = Q [24].
Here, we consider kernels of the form k(x, y) = exp(−γd(x, y)) where d is some
distance function, i.e., when d is the Euclidean distance, we recover the RBF
kernel.

How to Trust Generative Probabilistic Models for Time-Series Data? 289

As explained in [24], the RBF kernel is indeed characteristic. However, it
is also well known that the plan euclidean distance which underlies the RBF
kernel is outperformed by other measures when it comes to the comparison of
time series. Thus, we will consider specialized distances for time-series data to
compute the MMD, namely dynamic time warping and the Fréchet distance.
While these perform well in practice, it is unknown if the induced kernel is
characteristic. In this case, MMD loses its theoretically certified properties and
just gives us a notion of similarity.

The Hausdorff Discrepancy. A well-known measure for the dissimilarity between
two shapes is given by the Hausdorff distance. Given two compact figures in a
metric space, the Hausdorff distance measures how far both shapes are from
being isometric.

Definition 2 (Hausdorff distance [6]). Let A and B be two non-empty sub-
sets of a metric space (M,d). The Hausdorff distance between both sets is given
by

dH(A,B) = max
{

sup
x∈A

inf
y∈B

d(x, y), sup
x∈B

inf
y∈A

d(x, y)
}

The above distance measure has various applications in computer vision and
graphics related areas. However, in data science and machine learning, the Haus-
dorff distance is unused—up to now. Based on dH(A,B), we define the following
discrepancy between two samples from two distributions:

Definition 3 (Hausdorff Discrepancy). Let X,Y be random variables both
having state space X and following distributions P,Q, respectively. Let further
D = {x1, . . . , xN}, E = {y1, . . . , yN} be two (random) data sets of size N , con-
taining independent samples from P and Q, respectively. We define the Hausdorff
discrepancy between P,Q as

HD(P,Q) = max
{
EE

[
max
x∈D

min
y∈E

d(x, y) | D
]

,EE

[
max
x∈E

min
y∈D

d(x, y) | D
]}

Note, that max and min replace sup and inf because we assume finite data
sets of known size N . The intuition is that the Hausdorff discrepancy compared
the shape of the generated sample—if all data points are lying at similar posi-
tions, one could assume that the distributions which generated those sets are
similar.

3.1 Distance Measures on Time-Series Data

Both, MMD and HD require another core distance which is able to measure
distance between single data points. Here, we consider dynamic time warping
and the Fréchet distances for that purpose.

290 N. Piatkowski et al.

Dynamic Time Warping. To determine the similarity between two sequences,
Sankoff and Kruskal [23] introduced the dynamic time warping (DTW) to over-
come the limitation of the Euclidean distance to local and global shifts in the
time dimension. Given two time series X,Y of length |X|, |Y | we construct a
warp path

W = w1, . . . , wK , max(|X|, |Y |) ≤ k ≤ |X| + |Y | (1)

with K the length of the warp path. The kth element is defined as wk = (i, j),
where i is the index from time series X and j is the index of Y . This warp path
starts at w1 = (1, 1) and ends with wK = (|X|, |Y |) and can be constructed as

To find the optimal warp path we are interested in the minimum-distance
warping path.

This path can be found by a dynamic programming approach [15]. We will
consider the following DTW kernel for two time series X,Y :

kdtw(x, y) = exp(γ DTW(X,Y)). (2)

Fréchet Distance. The Fréchet distance is a measure of similarity of two given
curves with the advantage that it takes into account the order of the points along
the curves. The distance can be illustrated by a man who is walking his dog.
The man walks on one curve, the dog on the other curve. Both are not allowed
to go backwards but are allowed to control their speed. The Fréchet distance is
than the minimal length of a leash between the man and his dog. The Fréchet
distance, given two curves in A : [a, a′] �→ V,B : [b, b′] �→ V in an Euclidean
vector space V is defined as

δF (A,B) = inf
α,β

max
t∈[0,1]

d(A(α(t)), B(β(t))) (3)

with a distance function d and where α : [0, 1] �→ [a, a′], β : [0, 1] �→ [b, b′] range
over continuous, increasing functions [1].

Similar to the DTW kernel we define the Fréchet kernel for two time series
X,Y as

kF (X,Y) = exp(γδF (X,Y)). (4)

4 Empirical Evaluation

We will now conduct a comparative study, involving all models and distance
measures described above. In order to understand how good the measures work
for each method, we perform a visual inspection of the synthetic data points
as known from the image domain [14]. In addition, we compute the first four
empirical moments. Let us now describe our experimental setting in more detail.
For reproducability, all data sets and all code are available online1.

1 https://github.com/mk406/GenerativeProbabilisticModels.git.

https://github.com/mk406/GenerativeProbabilisticModels.git

How to Trust Generative Probabilistic Models for Time-Series Data? 291

Table 2. Hyperparameter search space for implicit probabilistic models.

Parameter Values

Iterations 10000, 30000

Batch size 64, 128

Hidden layers units 128, 256

Hidden layer 2, 3

Droprate 0.3, 0.4

Learning rate G 0.0002, 0.0004

Learning rate D 0.002, 0.004

Discriminator iterations 2, 3

(a) GAN hyperparameters and grid values.

Parameter Values

Epochs 500, 1000

Batch size 64, 128

Latent dimension 4, 6

Hidden layer 1, 2, 3, 4

Hidden layers units 48, 128, 256

Learning rate 0.001, 0.002, 0.004

(b) VAE hyperparameters and grid values.

4.1 Hyper-parameter Search

While artificial neural networks are universal function approximators in general,
this is not necessary true for any single neural network. The ability to approx-
imate a target function heavily depends on the architecture of the underlying
network. Thus, we apply an extensive grid search over various hyperparameters
and the network architecture to find the best model specification for the GANs
and VAEs. The hyperparameters for our GAN models consist in the number of
iterations of the minimax game, the batch size, the number of units of each layer
of the generator and the discriminator, the number of hidden layers, the drop
rate of the regularization layer of the discriminator, the number of times we train
alternatively between steps of optimizing the discriminator and one optimizing
step of the generator and the learning rates of the generator and discriminator.
For the learning rates of the discriminator and the generator we consider the two
time-scale update rule (TTUR) [12], which was shown empirically to converge
to a stationary local Nash equilibrium by choosing different learning rates for
generator and discriminator. Similar to Chollet [5] we choose the Leaky-ReLU
activation as activation functions for the generator and the discriminator to
induce sparse gradients, expect for the output layer where we use a linear acti-
vation for the generator and a sigmoid activation for the discriminator. To induce
robustness we use a dropout layer in the discriminator to increase stochasticity
and prevent the GAN to get stuck during the training process [5]. Both, gener-
ator and discriminator are trained using RMSProp. All hyperparameters of the
generator and discriminator model are listed in Table 2a. Inspired by progressive
growing [14] we choose an increasing number of units for each following hidden
layer for the generator and for the discriminator vice-versa a decreasing number
of units for each hidden layer. The number of units in each hidden layer are
multiples of the number units hyperparameter. As layer type we choose fully
connected layers for all hidden layers of the model. The hyperparameters of our
VAE models consist in the numbers of epochs, batch sizes, numbers of hidden
layers, numbers of units, learning rates and the numbers of units in the output
layer of the encoder (input layer of the decoder), that build up the dimension

292 N. Piatkowski et al.

of the latent space. The VAE model is trained as one neural network using the
Adam optimizer [16]. For the grid search, we apply the following structure: Our
encoder consists of an input layer, followed by hidden layers with an decreasing
number of units and an output layer. The decoder is constructed the same way
vice-versa. The number of units in each layer are multiples of the number units
hyperparameter. As layer type, we choose fully connected layers for all hidden
layers of the model. As activation functions we choose ReLU activation’s except
for the output layer of the encoder and the decoder for which we choose linear
activation’s. Finally, for the MRF, we apply a cth-order variant of the Chow-
Liu Algorithm to estimate the underlying conditional independence structure
between all points in time. The choice of c determines how many variables can
interact simultaneously. This value controls how complex the functional relation
between values at different time-points can be. E.g., a third order model (c = 3)
can learn XOR-relations between values while a second order model can not.
We evaluated models with c ∈ {2, 3, 4}. Moreover, the numeric time-series data
is discretized into k bins which are defined by each time points k-quantiles. We
consider k ∈ {64, 128}. New time-series are synthesized by performing Gibbs
sampling from P̂ with 100 burn-in samples. The discrete time-series are finally
de-discretized by replacing each discrete state by the mean value of its corre-
sponding interval. Since the loss function (the negative log-likelihood) of the
MRF is convex, there is no need to tune optimization related parameters like
learning rate. The hyperparameter search-space is hence much smaller compared
to the GAN or the VAE.

4.2 Data

Two real-world data sets are considered as ground truth. The first data set
contains hourly day-ahead electricity prices of the German power market from
SMARD starting from 01 January 2014 up to 30 June 2020. All 24 prices of each
hour of a day are simultaneously delivered in an daily auction at the European
Power Exchange (EEX). The distribution of these prices over a day exhibits
different levels of autocorrelations as well as typical stylized facts, such as a
morning ramp-up when productions starts and a (often less pronounced) evening
ramp as people come home. The data set contains N = 2373 data points of
length T = 24. The second data set contains humidity readings collected from
54 sensors deployed in the Intel Berkeley Research lab between 28 February
2004 and 05 April 2004. As the sensors measure humidity as per-second data
we resample the data to hourly data for each sensor using the mean. In order
to eliminate possible unrealistic outliers and defect sensors we only keep relative
humidity values between 0% and 100% and removed incomplete days. The data
set contains N = 1033 data points of length T = 24. All GANs, VAEs, and
MRFs (in total 550 per data set) are then used to sample 10 new data sets, each
containing the same number of N data points as the corresponding ground truth
data set.

How to Trust Generative Probabilistic Models for Time-Series Data? 293

Table 3. Results for energy prices data set with the Maximum Mean Discrepancy
(MMD) and the respective core distances. E = EUCLID, D = DTW, F = FRECHET.

Model MMD-E MMD-D MMD-F

GAN (64, 3, 0.4, 3, 256, 10000, 0.002, 0.0002) 0.002146 0.002053 0.002232

(64, 3, 0.4, 3, 128, 10000, 0.002, 0.0002) 0.004019 0.002237 0.002162

(64, 2, 0.4, 2, 256, 30000, 0.002, 0.0002) 0.009049 0.008315 0.007140

(64, 3, 0.3, 3, 128, 30000, 0.002, 0.0002) 0.035339 0.031543 0.020427

VAE (1000, 6, 128, 3, 256, 0.002) 0.008521 0.007223 0.005334

(1000, 4, 128, 4, 48, 0.002) 0.009519 0.007385 0.004971

(1000, 6, 128, 1, 128, 0.001) 0.113087 0.091368 0.057671

(500, 6, 128, 4, 128, 0.001) 0.245581 0.185878 0.120332

MRF (Y128 C4) 0.019986 0.107307 0.180475

(Y64 C2) 0.020482 0.106376 0.186436

(Y128 C3) 0.020044 0.107198 0.180200

(Y64 C3) 0.020556 0.108981 0.187261

Table 4. Results for energy prices data set with the Hausdorff Discrepancy (HD) and
the respective core distances. E = EUCLID, D = DTW, F = FRECHET.

Model HD-E HD-D HD-F

GAN (64, 3, 0.4, 3, 256, 10000, 0.002, 0.0002) 470.848890 205.778159 74.794100

(64, 3, 0.4, 3, 128, 10000, 0.002, 0.0002) 475.632360 224.281684 84.998204

(64, 2, 0.4, 2, 256, 30000, 0.002, 0.0002) 431.590117 214.077600 91.473012

(64, 3, 0.3, 3, 128, 30000, 0.002, 0.0002) 451.570817 179.705832 71.061972

VAE (1000, 6, 128, 3, 256, 0.002) 464.533760 217.399043 82.775642

(1000, 4, 128, 4, 48, 0.002) 479.927298 171.587436 67.878177

(1000, 6, 128, 1, 128, 0.001) 437.526727 241.730902 98.208595

(500, 6, 128, 4, 128, 0.001) 480.036966 136.806716 51.370512

MRF (Y128 C4) 464.181700 168.314610 74.080645

(Y64 C2) 463.950905 173.128946 75.745309

(Y128 C3) 463.976769 157.697151 76.692775

(Y64 C3) 457.425072 181.018805 67.802015

To evaluate a model we compare the 10 data sets with the original data via
MMD and HD measures and calculate the mean over all 10 sets.

4.3 Results

It can be seen in Tables 3, 4, 5 and 6, that both discrepancies, MMD and HD,
are in favor of the neural model. However, a visual inspection of the generated
series reveals, that the results of the GANs an VAEs exhibit less extreme paths

294 N. Piatkowski et al.

Table 5. Results for intel humidity data set with the Maximum Mean Discrepancy
(MMD) and the respective core distances. E = EUCLID, D = DTW, F = FRECHET.

Model MMD-E MMD-D MMD-F

GAN (128, 3, 0.4, 2, 256, 30000, 0.002, 0.0004) 0.005880 0.008524 0.005098

(128, 2, 0.3, 2, 128, 10000, 0.002, 0.0004) 0.007726 0.007497 0.005851

(128, 3, 0.4, 2, 256, 10000, 0.002, 0.0004) 0.006307 0.007784 0.004057

(128, 3, 0.4, 3, 128, 10000, 0.004, 0.0004) 0.183665 0.141075 0.096112

(64, 3, 0.4, 3, 128, 10000, 0.002, 0.0002) 0.147775 0.108733 0.065924

VAE (1000, 4, 128, 3, 256, 0.001) 0.004476 0.005662 0.006548

(1000, 4, 64, 4, 48, 0.004) 0.006513 0.004333 0.004907

(1000, 6, 64, 4, 256, 0.001) 0.041662 0.027782 0.020678

(1000, 4, 64, 4, 256, 0.001) 0.034065 0.022247 0.016933

VAE (Y128 C4) 0.020789 0.093830 0.157937

(Y128 C2) 0.020886 0.093393 0.158031

(Y64 C2) 0.021723 0.094068 0.155414

(Y64 C3) 0.022418 0.096205 0.160263

Table 6. Results for Intel humidity data set with the Hausdorff Discrepancy (HD) and
the respective core distances. E = EUCLID, D = DTW, F = FRECHET.

Model HD-E HD-D HD-F

GAN (128, 3, 0.4, 2, 256, 30000, 0.002, 0.0004) 138.288455 40.095867 15.722096

(128, 2, 0.3, 2, 128, 10000, 0.002, 0.0004) 129.190451 42.390750 15.788611

(128, 3, 0.4, 2, 256, 10000, 0.002, 0.0004) 127.806623 34.395313 14.353081

(128, 3, 0.4, 3, 128, 10000, 0.004, 0.0004) 111.065010 33.471478 15.398804

(64, 3, 0.4, 3, 128, 10000, 0.002, 0.0002) 126.163026 19.285610 10.191569

VAE (1000, 4, 128, 3, 256, 0.001) 147.398243 25.087964 13.105644

(1000, 4, 64, 4, 48, 0.004) 126.312667 20.525052 11.543398

(1000, 6, 64, 4, 256, 0.001) 105.658204 20.046526 8.230774

(1000, 4, 64, 4, 256, 0.001) 126.321157 17.922368 13.509255

MRF Y128 C4 134.843024 67.664796 24.793203

Y128 C2 136.950436 68.803114 25.629733

Y64 C2 138.410524 67.167855 25.358533

Y64 C3 137.430849 65.161503 25.299679

and are smoother than the MRF shapes. As the original shapes include various
extreme paths, the MRF generator seems to generate more realistic samples.
Comparing the first four moments of the synthetic samples in Tables 7 and 8
underpin this impression: the best statistics are generated by our MRF model.

How to Trust Generative Probabilistic Models for Time-Series Data? 295

Table 7. First four moments of the original energy price data and the generated data.
The closer a method’s values are to the values of the original data, the better.

Model Mean Variance Skew Kurtosis

Original energy prices 34.05556 219.87474 −0.53591 5.71138

GAN (64, 3, 0.4, 3, 256, 10000, 0.002, 0.0002) 33.66485 160.34268 −0.38958 1.20340

(64, 3, 0.4, 3, 128, 10000, 0.002, 0.0002) 33.80683 133.58552 −0.25212 1.38344

(64, 2, 0.4, 2, 256, 30000, 0.002, 0.0002) 31.99768 125.25381 −0.22987 1.07421

(64, 3, 0.3, 3, 128, 30000, 0.002, 0.0002) 28.66481 133.07252 −0.63094 2.39743

VAE (1000, 6, 128, 3, 256, 0.002) 31.24921 174.50482 −0.16907 0.44592

(1000, 4, 128, 4, 48, 0.002) 31.10025 230.43423 −0.29231 0.86731

(1000, 6, 128, 1, 128, 0.001) 23.83706 156.17970 0.10782 −0.08631

(500, 6, 128, 4, 128, 0.001) 16.43303 393.18478 0.14104 0.25116

MRF (Y128 C4) 33.84105 223.85882 −0.53837 5.30267

(Y64 C2) 34.02851 230.16112 −0.55635 5.09282

(Y128 C3) 33.77426 224.10990 −0.50680 5.27949

(Y64 C3) 34.02733 231.01562 −0.52250 4.92158

Table 8. First four moments of the original Intel humidity data set and the generated
data. The closer a method’s values are to the values of the original database, the better.

Model Mean Variance Skew Kurtosis

Original humidity data 40.17782 42.41655 −0.70570 1.42076

GAN (128, 3, 0.4, 2, 256, 30000, 0.002, 0.0004) 41.16504 50.26162 0.19975 0.32837

(128, 2, 0.3, 2, 128, 10000, 0.002, 0.0004) 39.86462 43.74342 0.05770 0.40597

(128, 3, 0.4, 2, 256, 10000, 0.002, 0.0004) 39.86064 46.71354 0.06230 0.27192

(128, 3, 0.4, 3, 128, 10000, 0.004, 0.0004) 35.05371 24.74748 0.01518 0.48845

(64, 3, 0.4, 3, 128, 10000, 0.002, 0.0002) 35.34650 92.89869 0.45984 0.33655

VAE (1000, 4, 128, 3, 256, 0.001) 39.90946 40.45797 −0.24321 1.05061

(1000, 4, 64, 4, 48, 0.004) 39.40994 45.99996 −0.42118 0.86559

(1000, 6, 64, 4, 256, 0.001) 37.45328 81.30920 −0.35601 0.42926

(1000, 4, 64, 4, 256, 0.001) 38.06910 78.10967 −0.33326 0.44448

MRF (Y128 C4) 40.11159 42.00935 −0.71421 1.39157

(Y128 C2) 40.09451 42.04563 −0.73389 1.53284

(Y64 C2) 40.08659 44.91162 −0.69460 1.41515

(Y64 C3) 39.97168 44.30150 −0.66962 1.15169

5 Conclusion

We presented the first comparison of multiple methods for the generation of syn-
thetic time-series. Three model classes, namely GANs, VAEs, and MRFs, have
been considered on two real-world time-series data sets. For each model class,

296 N. Piatkowski et al.

up to several hundred models have been trained. Six discrepancy measures have
been used to select the best models from these sets. Looking at the standard
maximum mean discrepancy, generative adversarial networks outperform varia-
tional autoencoders and Markov random fields on 4 out of 6 distance measures.
However, when considering our new proposal, the Hausdorff discrepancy, this
pictures changes and variational autoencoder win in 4 out of 6 cases. Finally
a visual inspection of the samples shows that GANs and VAEs generate sam-
ples with less extreme values—all samples are close to the mean of the data
set. Markov random field generates more realistic samples whose extreme values
are similar to those of the original data. This observation is strengthened when
we investigate the first four moments of the original data distribution and the
generated samples of all methods: We find Markov Random fields outperform
neural models, reproducing statistical properties much better than their popu-
lar but heuristic counterparts. Our findings suggest that one shall not trust a
single quality measure when judging the quality of a generated data set. Even
state-of-the-art measures can be misleading—they carry only limited information
about the support of the learned probability measure and the major statistical
properties of the underlying random variable.

Acknowledgments. Parts of this work have been funded by the Federal Ministry
of Education and Research of Germany as part of the competence center for machine
learning ML2R (01IS18038B). Parts of this work have been supported by the Deutsche
Forschungsgemeinschaft via SFB 823.

References

1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
Int. J. Comput. Geom. Appl. 5(01n02), 75–91 (1995)

2. Arlitt, M., Marwah, M., Bellala, G., Shah, A., Healey, J., Vandiver, B.: IoTAbench:
an Internet of Things analytics benchmark. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, pp. 133–144 (2015)

3. Brophy, E., Wang, Z., Ward, T.E.: Quick and easy time series generation with
established image-based GANs. arXiv preprint arXiv:1902.05624 (2019)

4. Chen, Y., Wang, Y., Kirschen, D., Zhang, B.: Model-free renewable scenario gen-
eration using generative adversarial networks. IEEE Trans. Power Syst. 33(3),
3265–3275 (2018)

5. Chollet, F.: Deep Learning with Python. Manning, Shelter Island (2018). Safari
Tech Books Online

6. Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching.
In: International Conference on Pattern Recognition, vol. 1, pp. 566–568. IEEE
(1994)

7. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation
with recurrent conditional GANs. CoRR abs/1706.02633 (2017)

8. Fischer, R., Piatkowski, N., Pelletier, C., Webb, G.I., Petitjean, F., Morik, K.: No
cloud on the horizon: probabilistic gap filling in satellite image series. In: Interna-
tional Conference on Data Science and Advanced Analytics, pp. 546–555 (2020)

http://arxiv.org/abs/1902.05624

How to Trust Generative Probabilistic Models for Time-Series Data? 297

9. Fortuin, V., Baranchuk, D., Rätsch, G., Mandt, S.: GP-VAE: deep probabilistic
time series imputation. In: International Conference on Artificial Intelligence and
Statistics, pp. 1651–1661. PMLR (2020)

10. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, vol. 27, pp. 2672–2680 (2014)

11. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel
method for the two-sample-problem. In: Advances in Neural Information Process-
ing Systems, vol. 19, pp. 513–520 (2006)

12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In:
Advances in Neural Information Processing Systems, vol. 30, pp. 6626–6637 (2017)

13. Kaiser, �L., Bengio, S.: Discrete autoencoders for sequence models. arXiv preprint
arXiv:1801.09797 (2018)

14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. In: International Conference on Learning
Representations (2018)

15. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: Proceedings of
the 2001 SIAM International Conference on Data Mining, pp. 1–11. SIAM (2001)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

18. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoen-
coder. arXiv preprint arXiv:1703.01925 (2017)

19. Metz, L., Ibarz, J., Jaitly, N., Davidson, J.: Discrete sequential prediction of con-
tinuous actions for deep RL. arXiv preprint arXiv:1705.05035 (2017)

20. Piatkowski, N.: Hyper-parameter-free generative modelling with deep Boltzmann
trees. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet,
C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11907, pp. 415–431. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-46147-8 25

21. Piatkowski, N., Lee, S., Morik, K.: Spatio-temporal random fields: compressible
representation and distributed estimation. Mach. Learn. 93(1), 115–139 (2013).
https://doi.org/10.1007/s10994-013-5399-7

22. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and
approximate inference in deep generative models. In: Proceedings of the 31th Inter-
national Conference on Machine Learning, pp. 1278–1286 (2014)

23. Sankoff, D., Kruskal, J.: The symmetric time-warping problem: from continuous
to discrete. In: Time Warps, String Edits and Macromolecules: The Theory and
Practice of Sequence Comparison, pp. 125–161. Addison Wesley (1983)

24. Sriperumbudur, B.K., Gretton, A., Fukumizu, K., Schölkopf, B., Lanckriet, G.R.:
Hilbert space embeddings and metrics on probability measures. J. Mach. Learn.
Res. 11, 1517–1561 (2010)

25. Takahashi, S., Chen, Y., Tanaka-Ishii, K.: Modeling financial time-series with gen-
erative adversarial networks. Phys. A 527, 121261 (2019)

26. Wan, Z., Zhang, Y., He, H.: Variational autoencoder based synthetic data gen-
eration for imbalanced learning. In: 2017 Symposium Series on Computational
Intelligence (SSCI), pp. 1–7. IEEE (2017)

27. Wiese, M., Knobloch, R., Korn, R., Kretschmer, P.: Quant GANs: deep generation
of financial time series. Quant. Finance 20(9), 1419–1440 (2020)

28. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for
seasonal KPIs in web applications. In: WWW Conference, pp. 187–196 (2018)

http://arxiv.org/abs/1801.09797
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1703.01925
http://arxiv.org/abs/1705.05035
https://doi.org/10.1007/978-3-030-46147-8_25
https://doi.org/10.1007/s10994-013-5399-7

298 N. Piatkowski et al.

29. Yoon, J., Jarrett, D., van der Schaar, M.: Time-series generative adversarial net-
works. In: Advances in Neural Information Processing Systems, pp. 5508–5518
(2019)

30. Zhang, C., Kuppannagari, S.R., Kannan, R., Prasanna, V.K.: Generative adver-
sarial network for synthetic time series data generation in smart grids. In: 2018
International Conference on Communications, Control, and Computing Technolo-
gies for Smart Grids (SmartGridComm), pp. 1–6. IEEE (2018)

Multi-channel Conflict-Free Square Grid
Aggregation

Roman Plotnikov1,2(B) and Adil Erzin1,2

1 Sobolev Institute of Mathematics, SB RAS, Novosibirsk 630090, Russia
{prv,adilerzin}@math.nsc.ru

2 St. Petersburg State University, St. Petersburg 199034, Russia

Abstract. We consider minimizing the delay during an interference-
conflict-free aggregation session in wireless sensor networks when the
network elements can use various frequency channels for the data trans-
mission. In general, this problem is known to be NP-hard. We focus on
a particular case when sensors are positioned at the square grid nodes
and have the same transmission ranges equal to their interference ranges.
We propose an approximation algorithm with guaranteed estimates. The
algorithm consists of two stages. At the first stage, the nodes transmit
the data upwards or downwards until all data are collected at the nodes
of the first row. At the second stage, all the nodes of the first row trans-
mit the data to the sink. Also, we present a new ILP formulation of
the problem on the arbitrary network topology and provide the exper-
iment results. We use the GUROBI solver to get the optimal solutions
on the small-size instances and compare the results yielded by the pro-
posed algorithm with optimal solutions. We also compare the proposed
algorithm with the known approach in a two-channel case and show how
the number of channels affects the schedule length depending on the
instances sizes.

Keywords: Multichannel aggregation · Square grid · Conflict-free
scheduling · Heuristic algorithm · ILP formulation

1 Introduction

Wireless networks that use radio communications to transmit data have become
widespread over the last 20 years. During the convergecasting, each network
element sends a packet of aggregated data received from its child nodes and
its data to the parent node once during the entire aggregation session. This
requirement is dictated by the transmission process’s excessive power consump-
tion and entails building a spanning aggregation tree (AT) with arcs directed to
the receiver called the base station (BS). The faster the aggregated data reaches

The Russian Science Foundation supports this research (Grant No. 19-71-10012.
Project “Multi-agent systems development for automatic remote control of traffic flows
in congested urban road networks”).

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 299–314, 2021.
https://doi.org/10.1007/978-3-030-92121-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_24&domain=pdf
http://orcid.org/0000-0003-2038-5609
http://orcid.org/0000-0002-2183-523X
https://doi.org/10.1007/978-3-030-92121-7_24

300 R. Plotnikov and A. Erzin

BS, the better the schedule. TDMA scheduling divides time into equal-length
slots, assuming that it is long enough to send or receive one data packet [4]. Min-
imizing the convergecast time, in this case, is equivalent to reducing the number
of time slots required for all packets to reach the receiver [17].

If the only frequency channel is used for the data transmission then the prob-
lem involves two components: AT and a schedule that assigns a transmission time
slot for each node so that each node transmits after all of its children in the tree
have, and potentially interfering links scheduled to be sent at different time slots.
The latter condition means that the TDMA schedule must be interference-free.
That is, no receiving node is within the interference range of another transmit-
ting node. There are two types of collisions in wireless networks: primary and
secondary. A primary collision occurs when more than one node transmits simul-
taneously to the same destination. In tree-based aggregation, this happens when
more than one child nodes of the same parent node send their packets during
the same time slot. A secondary collision occurs when a node eavesdrops on
the transmissions destined for another node. The links of the underlying com-
munication graph cause this collision, but not in the aggregation tree. Using
different frequencies for the data transmission (communication channels) allows
to eliminate the conflicts and to reduce the conflict-free schedule length.

The conflict-free data aggregation problem is NP-hard [3] even if and AT is
known and only one frequency channel is used [5]. Therefore, almost all existing
results in literature are approximation polynomial algorithms when the network
elements use one channel [1,3,11–14,16–18] or several channels [2,10,15]. In [1] a
novel cross-layer approach is presented for reducing the latency in disseminating
aggregated data to the BS over multi-frequency radio links. Their approach forms
the AT to increase the simultaneity of transmissions and reduce buffering delay.
Aggregation nodes are picked, and time slots are allocated to the individual
sensors so that the readiest nodes can transmit their data without delay. The
use of different radio channels allows avoiding colliding transmissions. Their
approach is validated through simulation and outperforms previously published
schemes.

In [12], the authors investigate the question: “How fast can information be
collected from a wireless sensor network organized as a tree?” To address this,
they explore and evaluate several different techniques using realistic simulation
models under the many-to-one communication paradigm known as convergecast-
ing. First, min-time scheduling on a single frequency channel is considered. Next,
they combine scheduling with transmission power control to mitigate the effects
of interference and show that while power control reduces the schedule length
under a single frequency, scheduling transmissions using multiple frequencies is
more efficient. The authors gave lower bounds on the schedule length without
interference conflicts and proposed algorithms that achieve these bounds. They
also evaluate the performance of various channel assignment methods and find
empirically that for moderate-sized networks of about 100 nodes, multi-frequency
scheduling can suffice to eliminate most of the interference. The data collection
rate no longer remains limited by interference but by the routing tree’s topology.

Multi-channel Conflict-Free Square Grid Aggregation 301

To this end, they construct degree-constrained spanning trees and capacitated
minimal spanning trees and show significant improvement in scheduling perfor-
mance over different deployment densities. Lastly, they evaluate the impact of
varying interference and channel models on the schedule length.

In [10], the authors focus on designing a multi-channel min-latency aggrega-
tion scheduling (MC-MLAS) protocol, using a new joint approach for tree con-
struction, channel assignment, and transmission scheduling. This paper combines
orthogonal channels and partially overlapping channels to consider the total
latency involved in data aggregation. Extensive simulations verify the superior-
ity of MC-MLAS in WSNs.

In [15], the authors consider a problem of min-length scheduling for the
conflict-free convergecasting in a wireless network in a case when each ele-
ment of a network uses its frequency channel. This problem is equivalent to
the well-known NP-hard problem of telephone broadcasting since only the con-
flicts between the same parent children are considered. They propose a new
integer programming formulation and compare it with the known one by run-
ning the CPLEX software package. Based on numerical experiment results, they
concluded that their formulation is preferable to solve the considered problem
by CPLEX than the known one. The authors also propose a novel approxi-
mate algorithm based on a genetic algorithm and a local search metaheuristic.
The simulation results demonstrate the high quality of the proposed algorithm
compared to the best-known approaches. However, if the network has a regular
structure, it is a lattice, it is solved in polynomial time. Known that in a square
lattice, in each node of which information is located, the process of single-channel
data aggregation is simple [9]. Moreover, in some cases, for example, when the
transmission range is 1 [9] or 2 [6], one can build an optimal schedule. If the
transmission range is greater than 2, then one can find a solution close to the
optimal [5,7].

In [8] the two-channel min-latency aggregation scheduling on a square grid is
considered. A polynomial approximation algorithm is proposed for solving this
problem, and it is shown that in most cases the proposed algorithm yields a
better solution than convergecasting using only one channel.

1.1 Our Contribution

In this paper, the MC-MLAS problem with a given number of channels in a
square lattice is considered. We propose a new heuristic approximation algo-
rithm and provide the precise value of the length of a schedule constructed by
the algorithm depending on the instance parameters. Also, for the first time, we
propose an ILP formulation of the MC-LAS. We present the simulation results
where GUROBI solved the considered problem on several instances and com-
pared our heuristic results. We compared the new algorithm with the previous
one proposed for the case of two frequency channels.

The rest of the paper is organized as follows. The problem formulation is
given in Sect. 2, the heuristic algorithm is described in Sect. 3, ILP formulation

302 R. Plotnikov and A. Erzin

is presented in Sect. 4, simulation results and a posteriori analysis are provided
in Sect. 5, and Sect. 6 concludes the paper.

2 Problem Formulation

We suppose that the network elements are positioned at the nodes of a (n +
1) × (m + 1) square grid. For convenience, we call the network elements the
sensors, vertices, or nodes equivalently. A sink node (or BS) is located at the
origin (0, 0). During each time slot, any sensor except the sink node can either be
idle, send the data, or receive the data. We assume that each sensor has the same
transmission distance d ≥ 2 in L1 metric. A sink node can only receive the data
at any time slot. Each data transmission is performed using one of k available
frequency channels (for short, further, they are referred to as channels), and
each sensor can use any channel for data transmission and receiving. Besides,
we suppose that the following conditions met:

– each vertex sends a message only once during the aggregation session (except
the sink, which always can only receive messages);

– once a vertex sends a message, it can no longer be a destination of any trans-
mission;

– if some vertex sends a data packet by the channel c, then during the same
time slot, none of the other vertices within a receiver’s interference range can
use the channel c;

– a vertex cannot receive and transmit at the same time slot.

The problem consists of constructing the conflict-free min-length schedule of
the data aggregation from all the vertices to the BS.

We assume that the interference range equals the transmission range. Such
assumption is usually used in different WSN models. However, in many real
applications, the interference range exceeds the transmission range. The pro-
posed algorithm can be adapted to the problem with arbitrary interference range
by splitting simultaneous transmissions into several conflict-free transmissions
performed during different time slots.

3 Heuristic Algorithm

We call the row a set of sensors positioned at the grid nodes with the same
ordinates. This section describes the heuristic algorithm for the approximate
solution to the considered problem and performs its theoretical analysis. The
algorithm consists of two stages. At the first stage, which is called a vertical
aggregation, the nodes transmit the data upwards or downwards. By the end of
this stage, all the data are sent to the nodes of the 0-th row. At the second stage,
horizontal aggregation, all the nodes of the 0-th row transmit the data to the
sink.

Multi-channel Conflict-Free Square Grid Aggregation 303

3.1 Vertical Aggregation

The network consists of m + 1 rows. Assume that m = Md + rv, where
rv ∈ {0, . . . , d − 1}. Let’s call the distance between these rows the difference
of ordinates between their elements.

Lemma 1. If the distance between two rows equals r ≤ d, then all elements from
one row can send the data to the nodes of another row during �(d − r)/k� + 1
time slots.

Proof. Note that any two vertices of the same row can simultaneously send the
data vertically at a distance r only if they use different channels or the distance
between them is not less than d − r + 1. We split all the nodes in a row into
�n/(d− r + 1)� groups in such way that each of the first �n/(d− r + 1)� groups
consists of d−r+1 vertices that are positioned sequentially. Similarly, split each
group into �(d−r)/k�+1 subgroups so that each of the first �(d−r)/k� subgroups
of the same group consists of k vertices that are positioned sequentially. Note
that for each i ∈ {1, . . . , �(d − r)/k� + 1} all vertices in the i-th subgroup of all
groups can send the data vertically simultaneously without conflicts if they use
the channels in the same order. Therefore, all the nodes can send the data in
�(d − r)/k� + 1 time slots.

Md

(M 1)d

t = 1 2

d
1

(M 2)d

…

(M 3)d

…

d

d
1

…
dt …

2
d

d
1

1
2
d

2
d

…

…

…

k

d
2

…
…

…

k

k-1

k 1

d
k

+1

k

…

d

k

k

…

k

…
…

k

…

k

…
…k

d
d

…

d
k …

k k

k k+1
…
…

…d 1 mod k

d 1 mod k

d

+1

d
2 …

d
k …

k

…

… … …

…

…

d
d

d
d

…

…

d

…d 1 mod k

d

T1

T2

(M 4)d

k

Fig. 1. Vertical aggregation (Color figure online)

Let us describe the vertical aggregation. For convenience purposes, color the
rows in two colors in the following way. For each i ∈ {0, . . . ,m}, i-th row is

304 R. Plotnikov and A. Erzin

colored in green if i is a multiple of d, and it is colored in blue otherwise. At
first, we consider the case when rv = 0, so the most remote row from the origin
is green, and M ≥ 4, so the number of rows is at least 4d + 1. We focus on
the last 4d + 1 rows and assume that each other blue row (maybe except the
first d− 1 blue rows) repeats the similar data transmissions as the row that lies
above distance 3d. The transmissions of the last 4d + 1 rows are schematically
presented in Fig. 1.

During the first time slots, only the blue rows transmit the data avoiding
the conflicts. Each green row transmits downwards at the distance d only when
all nodes above it have already transmitted their data. During the first T1 time
slots (the exact expression of this value as function of k and d is given below),
the rows (M − 1)d+1, . . . ,Md− 1 transmit their data to the nodes of the green
rows (M − 1)d and Md. Besides, during the first �(d − 1)/k� + 1 time slots all
blue rows from (M −2)d+1 to (M −1)d−1 and all blue rows from (M −4)d+1
to (M − 3)d − 1 transmit in a following order. At the first time slot, the rows
(M − 3)d − k, . . . , (M − 3)d − 1 transmit simultaneously the data upwards at
the distance d using different channels. At the second time slot, the rows from
(M − 3)d− 2k to (M − 3)d− k − 1 simultaneously transmit their data upwards
at the distance d and the rows from (M −1)d−k to (M −1)d−1 simultaneously
transmit their data downwards at the distance d. Similarly, at the third time slot,
the rows from (M − 3)d− 3k to (M − 3)d− 2k− 1 simultaneously transmit their
data upwards at the distance d and the rows from (M−1)d−2k to (M−1)d−k−1
simultaneously transmit their data downwards at the distance d. This process
proceeds in a similar manner until the (�(d − 1)/k� + 1)-th time slot, when the
last d − 1 (mod k) rows (from (M − 2)d + 1 to (M − 2)d + (d − 1(mod k)))
transmit the data downwards.

After the first �(d − 1)/k� + 1 time slots, all the rows in a set {(M − 2)d +
1, . . . , (M − 1)d − 1} have transmitted their data as well as the rows in a set
{(M − 4)d + 1, . . . , (M − 3)d − 1}. After this, the rows from (M − 3)d + 1 to
(M − 2)d− 1 transmit their data to the neighboring green rows during the next
T1 time slots.

Let us describe how d − 1 sequential blue rows transmit their data to the
neighboring two green rows and calculate the total time of these transmis-
sions T1. Obviously, the longer the transmission distance, the less time a row
requires for conflict-free transmission. Therefore, the rows located below the
central row transmit their data upwards, and the rows located above it transmit
their data downwards. According to the Lemma 1, T1 = 2

∑�d/2�−1
r=1 (�r/k�+1)+

xd(�d/(2k)� + 1) where xd = 1 if d is even and xd = 0 otherwise.
The blue rows (M − 3)d + 1, . . . , (M − 2)d − 1 transmit their data during

T2 = T1 + �(d − 1)/k� + 1 time slots. Note that if M − 1 is a multiple of 3,
then during the first T2 time slots all the blue rows may transmit their data if at
each time slot each node below the (M − 4)d-th row performs the same action
as the node that lies above it at the distance 3d. In this case, after T2 time slots
only M − 2 time slots are required for the sequential top down transmissions
by the green nodes at the distance d, and the total vertical transmission takes

Multi-channel Conflict-Free Square Grid Aggregation 305

T3 = T2 +M − 2 time slots. This is also the case if M − 1 ≡ 2 (mod 3), because
in this case the rows from 1 to d − 1 may perform the same actions as the rows
(M − 3)d + 1 to (M − 2)d − 1 since they don’t transmit below the (M − 3)d-th
row. If M − 1 ≡ 1 (mod 3), vertical aggregation may be performed in T3 time
slots if each node from 1 to d − 1 performs the same action as the row that lies
above it at the distance 2d. That is, during the first �(d − 1)k� + 1 time slots
the nodes in these rows don’t transmit, and they perform the similar vertical
transmission to the neighboring green nodes at the rows 0 and d during the next
T1 time slots as the nodes in the rows (M − 3)d + 1, . . . , (M − 2)d − 1.

The above reasoning is valid for the case when M ≥ 4. Let us consider the
other variants.

– M = 1. In this case, T1 time slots are enough for sending the data from the
blue nodes, and one more time slot is required for sending the data from d-th
row to 0-th row.

– M = 2. In this case, the rows 1, . . . , d− 1 cannot transmit downwards at the
distance d. The entire aggregation cannot be performed as a reduced variant
of the general approach. For that reason, at first, the rows d + 1, . . . , 2d − 1
transmit downwards at the distance d during the first �(d− 1)/k� time slots,
and after that during T1 time slots the rows 1, . . . , d − 1 transmit to their
neighboring green rows. These transmissions are the same as the transmissions
made by the rows (M − 3)d + 1, . . . , (M − 1)d − 1 in the general approach,
and the last 2d-th row transmits the data to the d-th row in (T2− 1)-th time
slot. In total, T1 time slots are required for the vertical aggregation.

– M = 3. In this case, all the transmissions are performed exactly in the same
way as in a general approach, and the vertical aggregation needs T2 + 1 time
slots.

The only case that is left to considering is one when rv > 0. Except three
subcases that will be mentioned below, in this case, during the first �rv/k�
time slots the most remote rv rows transmit downwards at the distance d while
all the rows below the (m − rv − d)-th row perform the same operations as
in general algorithm. After that, during another T1 time slots, the rows (M −
1)d+1, . . . ,Md−1 transmit the data to the rows (M −1)d and Md. If �rv/k� <
�(d−1)/k� then the total schedule length does not increase, otherwise it increases
by 1. We may conclude that Lv

Md+rv
= Lv

Md + ��rv/k�/�(d − 1)/k��, where Lv
m

is the length of vertical aggregation schedule of m + 1 rows.
There exist three exceptions that should be considered separately. The first

one is when M = 0. In this case, at first, the rows 1, . . . , rv − 1 transmit to the
rows 0 and rv, and then, the row rv transmits to the row 0. The total vertical
aggregation takes 2

∑�rv/2�−1
r=1 (�(d− rv + r)/k� + 1) + xrv (�(d− rv/2)/k� + 1) +

�(d − rv)/k� + 1 time slots, where xrv = 1 if rv is even and xrv = 0, otherwise.
The second case is when M = 2. In this case, at first �rv/k� + 1 time slots

the highest rv rows transmit at the distance d simultaneously with upward
transmissions at the same distance by the rows 1, . . . , d − 1 in a similar way
as in the general algorithm the rows (M − 2)d + 1, . . . , (M − 1)d − 1 trans-
mit the data downwards simultaneously with upward transmissions of the rows

306 R. Plotnikov and A. Erzin

(M −4)d+1, . . . , (M −3)d−1 during the first �(d−1)/k�+1 time slots. In this
case, Lv

Md+rv
= Lv

Md + ��rv/k�/�(d − 1)/k�� + 1.
And, finally, the third case is when M = 1. In this case, the schedule length

is increased by �rv/k� time slots by the downward transmissions of the highest
rv rows at a distance d during the first time slots.

Consequently, the following lemma is true.

Lemma 2. The vertical aggregation is performed in time O(d2/k + M).

In a case when the number of channels is 2, and m is big, this algorithm con-
structs a significantly shorter schedule of vertical aggregation than the algorithm
presented in [8], where the length of vertical aggregation schedule is O(m).

3.2 Horizontal Aggregation

After the vertical aggregation, all the data are collected in the 0-th row. From
this moment, it is required to aggregate the data to the sink node in a minimum
time using only horizontal transmissions. Let us color each d-th node in green,
starting from the most remote, and color other nodes, except the sink, in blue.
After the node transmitted its data, it changes the color to gray.

There is no need to use more than �d/2� channels for the horizontal aggre-
gation. In this subsection, we assume that only k′ = min(k, �d/2�) channels are
used.

The main algorithm steps are illustrated in Fig. 2. During any time slot, each
blue node (except the last 3d and, maybe, the first n (mod d) nodes) repeats
the node’s action that lies at the distance 3d to the right until all blue nodes
transmit. Therefore, we focus on 3d nodes that are the farthest from the sink.
Enumerate the nodes to the right from 0 to n starting from the sink. Then for
any j ∈ {0, . . . , �n/d�}, the node n − jd is green.

During the first �d/k′�+ �log2 k′�−1 time slots the nodes n−3d+1, . . . , n−
2d − 1 stay idle while the next blue nodes to the right transmits in the order
described below.

Let us divide the last d nodes in �d/k′� groups and enumerate them from
right to left. The last group contains d (mod k′) elements, and each other group
contains k′ nodes. For each i ∈ {1, . . . , �d/k′� − 1}, at i-th time slot, k′ nodes of
the (i+ 1)-th group transmit the data to the most right k′ nodes using separate
channels, and at (�d/k′�−1)-th time slot the nodes of the last group transmit the
data to the most right d (mod k′) nodes. During the same time slots, the nodes
{n−2d+1, . . . , n−d−1} perform the same actions but symmetrically about the
(n−d)-th node. That is, at the first time slot, the nodes n−d−k′, . . . , n−d−1
transmit the data to the nodes n − 2d, . . . , n − 2d + k′ − 1 using k′ channels,
at the next time slot the next to the left group of k′ transmits the data to
the same recipients, and so on. Notice that during the first �d/k′� − 2 time
slots, any conflicts are excluded because the distance between the nodes that
transmit the data to the left and the most remote d (mod k′) nodes (which receive
messages from the left) always exceeds d. Similarly, the distance between the

Multi-channel Conflict-Free Square Grid Aggregation 307

Fig. 2. Horizontal aggregation

nodes transmitting the data to the right and the nodes receiving messages from
the right always exceeds d. But this is not the case for the transmissions of the
(�d/k′�−1)-th time slot when, for example, the nodes n−d (mod k′) −1, . . . , n−1
hear not only the nodes that transmit the data to them, but also the nodes
n−d−d (mod k′) −1, . . . , n−d−1 that transmit to the left. The similar situation
holds for the nodes n−2d+1, . . . , n−2d+d (mod k′)−1, that hear not only the
nodes that transmit to them, but also the nodesn − d + 1, . . . , n − 2d + d (mod
k′) −1, that transmit to the right. It is not hard to see that these transmissions
can be performed without conflicts if the order of channels (from left to right)
for the data transmissions to the left will be the same as the order of channels
for the data transmissions to the right.

After this, the nodes n− k′, . . . , n− 1 transmit to the most right node in the
following order. At the first time slot, the nodes n − k′, . . . , n − �k′/2� transmit
to the right using different channels, and then similarly, at each time slot, half
of the rest, not gray nodes (or the largest integer that is less than a half in a
case when the number of remaining not gray nodes is odd) transmits to the right
using different channels. �log2 k′� time slots are enough for these transmissions.
During the same time interval, the nodes n − 2d + 1, . . . , n − 2d + k′ perform
transmissions to the left using the different channels, which also differ from the
channels used by the nodes in a group {n− k′, . . . , n− 1}. It is possible because
at each time slot, not more than �k′/2� nodes of a group transmit the data.
After the described transmissions, that take T4 = �d/k′� + �log2 k′� − 1 time

308 R. Plotnikov and A. Erzin

slots, each node of the most right 2d nodes is either gray or green, since each
blue node of the most right 2d nodes has transmitted its data. But all of the
nodes {n − 3d + 1, . . . , n − 2d − 1} are blue. During the next T4 time slots, the
nodes {n−3d+1, . . . , n−2d−1} perform exactly the same transmissions as the
nodes {n − 2d + 1, . . . , n − d − 1} did starting from the first time slot. In total,
after 2T4 time slots, all blue nodes in the most remote group of 3d nodes have
transmitted their data.

Note that the two most right green nodes, the n-th and the (n − d)-th, may
transmit to the (n−2d)-th node during the time interval [T4 +1, 2T4]. Although
there is some freedom for choosing time slots for these transmissions. To be
specific, we assign the transmission of the n-th node to the (T4 + 1)-th time
slot and the transmission of the (n − d)-th node to the 2T4-th time slot, as it is
shown in Fig. 2.

Let us denote n = Nd + rh, where N ≥ 3, rh ∈ {0, . . . , d − 1}. We assume
that at any time slot each node form the rh-th to the (n−3d−1)-th repeats the
same action as the node that is located at the distance 3d to the right of it. Then
after the first 2T4 time slots, all blue nodes in this range will transmit the data.
It is not hard to see that the nodes 1, . . . , rh−1 can also transmit during the first
2T4 time slots. Indeed, since rh < d, rh − 1 blue nodes in a row may transmit
to two neighbor nodes, 0-th and rh-th, before d − 1 blue nodes in a row, using
the same algorithm, i.e., in less than T4 time slots. If N is a multiple of 3 then
during the first T4 time slots all nodes from rh + 1 to rh + d − 1 stay idle, and
therefore the nodes {1, . . . , rh − 1} may transmit during the first T4 time slots
without conflicts. If N ≡ 1 or 2 (mod 3) then the nodes {rh + 1, . . . , rh + d− 1}
transmit during the first T4 time slots which allows performing a conflict-free
transmission by the nodes {1, . . . , rh − 1} during the next T4 time slots.

In total, all blue nodes transmit the data during 2T4 time slots and the most
remote two green nodes. After that, another �n/d� − 2 time slots are required
for sequential data transmissions of the green nodes to the sink. And, according
to the explanations given above, the following lemma is proved.

Lemma 3. If N ≥ 3 then the length of horizontal aggregation schedule is Lh
N =

2(�d/k′� + �log2 k′�) + �n/d� − 4 = O(d/k + log k + N).

Remark 1. Due to the lack of space we give the following horizontal aggrega-
tion schedule length for the remaining cases without explanations (however, the
strategy remains the same, and the reader is able to obtain them by oneself):

– Lh
0 = �rh/k′′� + �log2 k′′�

– Lh
1 = max(0, srh(�rh/k′′� + �(d− rh)/k′� − �d/k′�)) + �d/k′� + �log2 k′� + srh

– Lh
2 = �d/k′� + �log2 k′� + max(1, srh(�rh/k′′� − 1)) + max(1, srh�log2 k′′�) +

srh−1. Here srh = 1 if rh > 0 and srh = 0 otherwise, and k′′ = min(k, �rh/2�).

4 ILP Formulation

This section presents an ILP formulation of the MC-MLAS problem for solving
the problem using GUROBI or CPLEX to estimate the quality of approximation

Multi-channel Conflict-Free Square Grid Aggregation 309

algorithms. To the best of our knowledge, this is the first ILP formulation proposed
for this problem.

Let n be the number of nodes in the network given as a graph G = (V,E), V =
{v1, v2, . . . , vn}, where v1 is a sink. Consider a directed graph G = (V, ∪ {v0}, A)
which contains two oppositely directed arcs for each edge in G and additional
vertex v0 and arc (v1, v0). We aim to construct a min-time schedule of aggre-
gating the data in the vertex v0. The scheduling consists of the rooted in v0
aggregation tree generation and assignment to each vertex a time slot and a
channel to transmit the data to its recipient.

Let us denote the variables. For each i = 0, . . . , n, let ui be the number of
arcs in a path in AT from vi to v0. For each i, j ∈ {0, . . . , n}, let xij be 1 if there
exists an arc (vi, vj) in AT and xij = 0, otherwise. For each i = 0, . . . , n and
t = 1, . . . , n, let sit be 1 if vi sends the data during t-th time slot and sit = 0,
otherwise. Let rit be 1 if vi receives the data in t-th time slot and rit = 0,
otherwise. For each i = 0, . . . , n and p = 1, . . . , k, let zip be 1 if vi sends the
data using p-th channel and zip = 0, otherwise. And let wip be 1 if vi receives
the data using p-th channel and wip = 0, otherwise.

Let us introduce the parameters of the ILP model. For each i, j = 1, . . . , n,
let aij be 1 if vj is within the interference range of vi (to avoid a conflict, the
time slot and the channel of vi cannot be the same as the time slot and the
channel of the vertex vj), and aij = 0, otherwise.

Then, the ILP is the following.

n∑

t=1

tr0t → min; (1)

n∑

t=1

sit = 1, i = 1, . . . , n; (2)

n∑

j=0

xij = 1, i = 1, . . . , n; (3)

1 − (n + 1)(1 − xij) ≤ ui − uj ≤ 1 + (n + 1)(1 − xij) (4)

sit + xit − rjt ≤ 1, (i, j) ∈ A, t = 1, . . . , n; (5)

sit + rit ≤ 1, i = 0, . . . , n, t = 1, . . . , n; (6)

n∑

t′=t+1

rit′ + nsit ≤ n, i = 0, . . . , n, t = 1, . . . , n; (7)

xij + xlj + slt ≤ 3, (i, j), (l, j) ∈ A, t = 1, . . . , n; (8)

310 R. Plotnikov and A. Erzin

k∑

p=0

wip = 1, i = 0, . . . , n; (9)

k∑

p=0

zip = 1, i = 0, . . . , n; (10)

wjp + xij − zip ≤ 1, i, j = 0, . . . , n, p = 1, . . . , k; (11)

sjt + rit + aij + wip + zjp − xji ≤ 4, i, j, t = 1, . . . , n, p = 1, . . . , k. (12)

In this formulation, the objective function (1) is the number of the time slots
to aggregate the data in v0. Since there is one arc ending in v0, there is one
transmission to this vertex, and

∑n
t=1 tr0t equals a value of the time slot of this

last transmission. Constraints (2)–(3) mean that each vertex, except v0, sends
a message only once and has the only addressee. Constraints (4) require the
aggregation of data via tree arcs from the leaves to the root. Constraints (5)
link sending and receiving time slots: if vertex vi sends a message to vertex vj at
time slot t then node vj receives a message at the same time slot. Constraints (6)
forbid simultaneous data transmission and receiving for each vertex. Constraints
(7) state that a vertex cannot receive messages after it performed a transmission.
Constraints (8) eliminate the primary conflicts: a simultaneous receiving of the
data by one vertex from two different senders is forbidden. Constraints (9)–(10)
define the only channel for sending and the only channel for receiving for every
vertex. Constraints (11) link channels for every sender and receiver: if vertex vi
sends a message to vertex vj , then the used by vi channel should be the same
as the receiving channel of vj . Finally, constraints (12) provide elimination of
the secondary conflicts: if vertex vj belongs to the interference range of vertex
vi then vi cannot use the same time slot and channel for data receiving as vj
uses for sending its message to some third vertex.

5 Simulation

We implemented the proposed algorithm using the programming language C++.
We also constructed the ILP model described in Sect. 4 and used GUROBI soft-
ware for its solving. Unfortunately, the model appeared to be rather large, and
in time less than 3 h, GUROBI yields a guaranteed optimal solution only for
small-size instances (n,m ≤ 5; d, k ≤ 3) in our computer x64 Intel Core i3-9100
CPU 8GB RAM. In other cases, we keep the best approximate solution found by
GUROBI in 3 h. For the comparison, we also implemented the algorithm for two
channels scheduling proposed in [8], which we call Aold. The algorithm presented
in this paper we call Anew.

The results of the simulation for small-size instances are presented in Table 1.
Both algorithms, Aold and Anew, yield optimal or near-optimal solutions. In the

Multi-channel Conflict-Free Square Grid Aggregation 311

table, LB1 is the lower bound that equals �log2(n + 1)(m + 1)� (at each time
slot, the number of transmitting nodes cannot exceed a half of the nodes that

Table 1. Small sizes: comparison of GUROBI, Aold, and Anew

n m d k LB1 LB2 G obj Aold Anew G time

2 2 2 2 4 4 4 4 4 2.1 s

2 3 2 2 4 4 4 5 5 2.9 s

3 3 2 2 4 5 5 6 6 33.7 s

4 3 2 2 5 5 5 6 6 142.4 s

4 4 2 2 5 6 6 6 6 1200 s

5 4 2 2 5 7 7 7 7 486 s

5 5 2 2 6 5 7 8 9 3 h

3 3 3 2 4 5 5 6 6 4069 s

4 3 3 2 5 2 6 7 7 3 h

4 4 3 2 5 0 6 8 8 3 h

5 4 3 2 5 0 7 8 8 3 h

5 5 3 2 6 0 8 8 8 3 h

3 3 3 3 4 4 5 - 6 3 h

4 3 3 3 5 4 5 - 7 3 h

4 4 3 3 5 3 6 - 8 3 h

5 4 3 3 5 0 6 - 8 3 h

5 5 3 3 6 0 7 - 8 3 h

Table 2. Moderate sizes: comparison of Aold and Anew

n × m d Aold Anew

2 ch 2 ch 3 ch 4 ch 5 ch 7 ch 10 ch

5 × 5 3 8 8 8 8 8 8 8

4 11 11 10 10 10 10 10

7 × 7 3 10 11 11 11 11 11 11

4 12 13 11 11 11 11 11

5 14 14 12 12 12 12 12

10 × 10 3 12 12 12 12 12 12 12

4 14 13 12 12 12 12 12

5 15 14 12 11 11 11 11

7 21 20 18 16 16 16 16

25 × 25 3 22 22 22 22 22 22 22

4 24 20 19 19 19 19 19

5 24 21 19 18 18 18 18

7 29 25 23 20 20 20 20

10 40 35 28 25 22 21 21

50 × 50 3 38 38 38 38 38 38 38

4 39 32 31 31 31 31 31

5 39 31 29 28 28 28 28

7 44 33 30 28 28 28 28

10 52 41 34 30 27 26 25

312 R. Plotnikov and A. Erzin

did not communicate yet). LB2 is the lower bound found by GUROBI. Columns
“G obj” and “G time” show the objective values and running times of GUROBI.
Optimums (which coincide with any of the lower bounds) are marked in bold.

In Tables 2 and 3, we present the scheduling lengths obtained by Aold and
Anew for different instances. In both tables, the results obtained on the instances
with different numbers of channels are given in separate columns: “2 ch”, “3 ch”,
“4 ch”, “5 ch”, “7 ch”, and “10 ch”. Table 2 shows the results on moderate-size
instances. It is seen that starting from size 10 × 10, the algorithm Anew on two
channels outperforms Aold, and its advantage grows up with the increase of size
and number of channels. However, it is worth mentioning that there exist a couple
of cases when Aold yields the result that is slightly (by 1 time slot, to be precise)
better than some of the results obtained by Anew: in a case n,m = 7, d = 3 and
in a case n,m = 7, d = 3.

The big-size instances are presented in Table 3. Here, the gap between the
results of Aold and Anew in the case of two channels significantly grows up with
the increase in transmission distance and size. Also, the usage of more channels
allows decreasing the schedule length significantly. This effect is also enhanced
with the increase in size and transmission distance. It is also worth mention-

Table 3. Large sizes: comparison of Aold and Anew

n × m d Aold Anew

2 ch 2 ch 3 ch 4 ch 5 ch 7 ch 10 ch

100 × 100 3 72 72 72 72 72 72 72

4 69 57 55 55 55 55 55

5 69 51 49 48 48 48 48

7 72 47 44 42 42 42 42

10 80 51 44 40 37 36 35

50 426 402 279 217 179 138 107

500 × 500 3 338 338 338 338 338 338 338

4 319 257 255 255 255 255 255

5 309 211 209 208 208 208 208

7 301 161 158 156 156 156 156

10 300 131 124 120 117 116 115

50 630 441 311 245 205 162 129

750 × 750 3 504 504 504 504 504 504 504

4 476 382 381 381 381 381 381

5 459 311 309 308 308 308 308

7 444 233 230 228 228 228 228

10 437 181 174 170 167 166 165

50 757 451 321 255 215 172 139

1000 × 1000 3 672 672 672 672 672 672 672

4 632 507 505 505 505 505 505

5 609 411 409 408 408 408 408

7 586 304 301 299 299 298 298

10 575 231 224 220 217 216 215

50 885 461 331 265 225 182 149

Multi-channel Conflict-Free Square Grid Aggregation 313

ing that in the big-size case, the schedule length yielded by Anew significantly
decreases with the growth of d. That happens because of the linear dependence
of the schedule length on m/d and n/d.

6 Conclusion

This paper considers the problem of multi-channel conflict-free data aggrega-
tion in a square grid and proposes a new efficient approximation algorithm. A
posteriori analysis confirmed that, in general, the proposed algorithm yields a
significantly better solution than the previously known heuristic that can be
applied for the case when only two frequencies are used. And the advantage of
the new approach substantially increases with the growth of the problem size
and the number of frequency channels. We also propose the first ILP formulation
for the general case of the considered problem (i.e., without any restrictions on
network topology) and solved several small instances using the GUROBI solver
applied to the new formulation. In all these test cases, our heuristic appeared to
be optimal or near-optimal.

References

1. Bagaa, M., et al.: Data aggregation scheduling algorithms in wireless sensor net-
works: solutions and challenges. IEE Commun. Surv. Tutor. 16(3), 1339–1368
(2014)

2. Bagaa, M., Younis, M. and Badache, N.: Efficient data aggregation scheduling in
wireless sensor networks with multi-channel links. In: MSWiM 2013, 3–8 November
2013, Barcelona, Spain (2014). https://doi.org/10.1145/2507924.2507995

3. Chen, X., Hu, X., Zhu, J.: Minimum data aggregation time problem in wireless
sensor networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp.
133–142. Springer, Heidelberg (2005). https://doi.org/10.1007/11599463 14

4. Demirkol, I., Ersoy, C., Alagoz, F.: MAC protocols for wireless sensor networks: a
survey. IEEE Commun. Mag 44, 115–121 (2006)

5. Erzin, A., Pyatkin, A.: Convergecast scheduling problem in case of given aggre-
gation tree. The complexity status and some special cases. In: 10-th International
Symposium on Communication Systems, Networks and Digital Signal Processing,
Article 16, 6 p. IEEE-Xplore, Prague (2016)

6. Erzin, A.: Solution of the convergecast scheduling problem on a square unit grid
when the transmission range is 2. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D.
(eds.) LION 2017. LNCS, vol. 10556, pp. 50–63. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69404-7 4

7. Erzin, A., Plotnikov, R.: Conflict-free data aggregation on a square grid when
transmission distance is not less than 3. In: Fernández Anta, A., Jurdzinski, T.,
Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp.
141–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6 11

8. Erzin, A., Plotnikov, R.: Two-channel conflict-free square grid aggregation. In:
Kotsireas, I.S., Pardalos, P.M. (eds.) LION 2020. LNCS, vol. 12096, pp. 168–183.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53552-0 18

https://doi.org/10.1145/2507924.2507995
https://doi.org/10.1007/11599463_14
https://doi.org/10.1007/978-3-319-69404-7_4
https://doi.org/10.1007/978-3-319-69404-7_4
https://doi.org/10.1007/978-3-319-72751-6_11
https://doi.org/10.1007/978-3-030-53552-0_18

314 R. Plotnikov and A. Erzin

9. Gagnon, J., Narayanan, L.: Minimum latency aggregation scheduling in wireless
sensor networks. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.) ALGOSEN-
SORS 2014. LNCS, vol. 8847, pp. 152–168. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46018-4 10

10. Ghods, F., et al.: MC-MLAS: Multi-channel minimum latency aggregation schedul-
ing in wireless sensor networks. Comput. Netw. 57, 3812–3825 (2013)

11. Guo, L., Li, Y., Cai, Z.: Minimum-latency aggregation scheduling in wireless sensor
network. J. Combinat. Optim. 31(1), 279–310 (2014). https://doi.org/10.1007/
s10878-014-9748-7

12. Incel, O.D., Ghosh, A., Krishnamachari, B., Chintalapudi, K.: Fast data collection
in tree-based wireless sensor networks. IEEE Trans. Mob. Comput. 11(1), 86–99
(2012)

13. Li, J., et al.: Approximate holistic aggregation in wireless sensor networks. ACM
Trans. Sensor Netw. 13(2), 1–24 (2017)

14. Malhotra, B., Nikolaidis, I., Nascimento, M.A.: Aggregation convergecast schedul-
ing in wireless sensor networks. Wirel. Netw. 17, 319–335 (2011)

15. Plotnikov, R., Erzin, A., Zalyubovskiy, V.: Convergecast with unbounded num-
ber of channels. MATEC Web Conf. 125, 03001 (2017). https://doi.org/10.1051/
matecconf/20171250

16. de Souza, E., Nikolaidis, I.: An exploration of aggregation convergecast scheduling.
Ad Hoc Netw. 11, 2391–2407 (2013)

17. Wan, P.-J. et al.: Minimum-latency aggregation scheduling in multihop wireless
networks. In Proceedings of the ACM MOBIHOC, May 2009, pp. 185–194 (2009)

18. Wang, P., He, Y., Huang, L.: Near optimal scheduling of data aggregation in wire-
less sensor networks. Ad Hoc Netw. 11, 1287–1296 (2013)

https://doi.org/10.1007/978-3-662-46018-4_10
https://doi.org/10.1007/978-3-662-46018-4_10
https://doi.org/10.1007/s10878-014-9748-7
https://doi.org/10.1007/s10878-014-9748-7
https://doi.org/10.1051/matecconf/20171250
https://doi.org/10.1051/matecconf/20171250

Optimal Sensor Placement by Distribution
Based Multiobjective Evolutionary Optimization

Andrea Ponti1, Antonio Candelieri2(B), and Francesco Archetti1

1 Department of Computer Science, Systems and Communication,
University of Milano-Bicocca, Milan, Italy

a.ponti5@campus.unimib.it, francesco.archetti@unimib.it
2 Department of Economics, Management and Statistics,

University of Milano-Bicocca, Milan, Italy
antonio.candelieri@unimib.it

Abstract. The optimal sensor placement problem arises in many contexts for the
identification of optimal “sensing spots”, within a network, for monitoring the
spread of “effects” triggered by “events”. There are usually different and conflict-
ing objectives as cost, time and reliability of the detection In this paper sensor
placement (SP) (i.e., location of sensors at some nodes) for the early detection of
contaminants in water distribution networks (WDNs) will be used as a running
example. The best trade-off between the objectives can be defined in terms of
Pareto optimality.

The evaluation of the objective functions requires the execution of a simulation
model: to organize the simulation results in a computationally efficient way we
propose a data structure collecting simulation outcomes for every SP which is par-
ticularly suitable for visualization of the dynamics of contaminant concentration
and evolutionary optimization.

In this paper wemodel the sensor placement problem as amulti objective opti-
mization problem with boolean decision variables and propose a Multi Objective
Evolutionary Algorithm (MOEA) for approximating and analyzing the Pareto set.

The key element is the definition of information spaces, in which a candidate
placement can be represented as a matrix or, in probabilistic terms as a histogram.

The introduction of a distance between histograms, namely the Wasserstein
(WST) distance, enables to derive new genetic operators: the new algorithm
MOEA/WST has been tested on a benchmark problem and a real world network.
The computational metrics used are hypervolume and coverage: their values are
compared with NSGA-II’s in terms of the number of generations.

The experiments offer evidence of a good relative performance of
MOEA/WST in particular for relatively large networks and low generation counts.

The computational analysis has been limited in this paper toWDNs but the key
aspect of the method, that is the representation of feasible solutions as histograms,
is suitable for problems as the detection of “fake-news” on the web where the
problem is to identify a small set of blogs which catch as many cascades as early
as possible and more generally Multi-objective simulation optimization problems
which are also amenable to the probabilistic representation of feasible solutions
as histograms.

© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 315–332, 2021.
https://doi.org/10.1007/978-3-030-92121-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_25

316 A. Ponti et al.

Keywords: Sensor placement · Water network · Multi objective optimization ·
Evolutionary optimization · Wasserstein distance

1 Introduction

the identification of optimal “sensing spots”, within a network, for monitoring the spread
of “effects” triggered by “events” is referred to as the “Optimal Sensor Placement”
problem and has been receiving substantial attention in the literature. Many real-world
problems fit into this general framework. A wide ranging analysis of methodological as
well application issues is given in [1, 2] focused respectively on sensor networks and
spatial interaction models.

As an example of another problem fitting naturally in this framework one could
consider the detection of “fake-news” on the web: posts are published by bloggers, are
hyperlinked to other bloggers’ posts and contents, and then cascade through the web.
Posts are time stamped so we can observe their propagation in the blogosphere: in this
setting the placement problem is to identify a small set of blogs which catch as many
cascades as early as possible. In this paper sensor placement (SP) (i.e., location of sensors
at some nodes) for the early detection of contaminants in water distribution networks
(WDNs) will be used as a running example.

The evaluation of the objective functions requires the execution of a simulation
model: to organize the simulation results in a computationally efficient way we propose
a data structure collecting simulation outcomes for every SP which is particularly suit-
able for visualization of the dynamics of contaminant concentration and evolutionary
optimization. This data structure enables the definition of information spaces, in which
a candidate placement can be characterized as a matrix or, in probabilistic terms as a
histogram.

In this paper we model the sensor placement problem as a multi objective optimiza-
tion problemwith boolean decision variables and propose aMultiObjectiveEvolutionary
Algorithm (MOEA) for approximating and analyzing the Pareto set.

However, searching for an optimal SP is NP-hard: even for mid-size networks,
efficient heuristics are required, among which evolutionary approaches are often used.

Evolutionary algorithms (EAs) have a long history in multi objective optimization,
with many successful applications, also for sensor placement in WDNs.

Most of the evolutionary approaches do not usemodels of the objective functions and
therefore cannot make predictions about elements of the search space not yet evaluated:
as a consequence, a large number of function evaluations can be required.

A solution proposed in the literature to mitigate this problem is the development of
problem specific operators [3–5].

Another line of research, associateswith EAs probabilisticmodels given byGaussian
model of the objectives [6, 7]: Themodel is updated based on the points already evaluated
in order to improve the sample efficiency of the EA.

In this paper a different distribution-based approach is taken in which the fit-
ness of a sensor placement, computed over different simulation runs, is represented
probabilistically by a discrete probability distribution.

Optimal Sensor Placement by Distribution 317

Definition of a mapping from the search space (where each SP is represented as
a binary vector) into an information space, whose elements are instances of the pro-
posed data structure, to enable a deep analysis of the search landscape and speed up
optimization.

There are many models to measure the dissimilarity or distance between two proba-
bility distributions those mostly used in machine learning are the entropy based ones like
Kullback-Leibler (KL) and Jensen-Shannon (JS) whose application to gauge network
dissimilarity has been first proposed in [8].

In this paper we focused on the Wasserstein (WST) distance, which is based on
entirely different approach, namely optimal transport problems. The introduction of a
probabilistic. distance between histograms representing sensor placements, is the key
element to derive new genetic operators enabling the evolutionary algorithm to work
in the information space, which are the distinguishing feature of the new algorithm
MOEA/WST.

TheWasserstein distance can be traced back to the works of Gaspard Monge [9] and
Lev Kantorovich [10]. Recently, also under the name of Earth Mover Distance (EMD)
it has been gaining increasing importance in several fields [11–13].

Important methodological references are [14, 15] for a complete analysis of the
mathematical foundations) and [16] for an up to date survey of numerical methods.

The key novelty elements of the new algorithm Multi Objective Evolutionary
Algorithm are:

• The introduction of a probabilistic distance, Wasserstein distance, between sensor
placements mapped into histograms in the information space.

• The formulation of Wasserstein enabled selection operators and new indicators to
assess the quality of the Pareto set and to choose among its elements.

• The formulation of a crossover operators which enables the generation of “feasible
by design” children from two feasible parents.

1.1 Organization of the Paper

Section 2 describes the Pareto analysis and the hypervolume indicator. Section 3 intro-
duces the Wasserstein distance and gives the basic definitions and computational tools.
Section 4 introduces the formulation of the optimization problems, the structure of the
simulation model and the computation of the objective functions. Section 5 introduces
the probabilistic representation of a feasible solution and the search and information
space. Section 6 describes the proposed algorithm MOEA/WST focusing on the solu-
tions proposed about evolutionary operators, termination criteria and performance indi-
cators of the approximate Pareto set. Section 7 presents the experimental setting and the
computational results. Section 8 contains concluding remarks.

318 A. Ponti et al.

2 Background Knowledge on Multiobjective Optimization: Pareto
Analysis and Performance Metric

This section contains the basic definitionof the solution set inmultiobjective optimization
through the Pareto analysis and the main indicator, the hypervolume of the quality of its
approximation.

2.1 Pareto Analysis

Multiobjective optimization problem (MOP) can be stated as follows:

minF(x) = (f1(x), . . . , fm(x))

Pareto rationality is the theoretical framework to analyse multi objective optimization
problems where m objective functions f1(x), . . . , fm(x), where fi(x) :→ R are to be
simultaneously optimized in the search space Ω ⊆ R

d . Here we use x to be compliant
with the typical Pareto analysis’s notation, clearly in this study x is a sensor placement s.

Let u, v ∈ R
m u is said to dominate v if and only if ui ≥ vi ∀i = 1, . . . , n and uj > vj

for at least one index j.
To refer to the vector of all objectives evaluated at a location x. The goal in multi

objective optimization is to identify the Pareto frontier of f(x). A point x∗ is pareto
optimal for the problem 2 if there is no point x such that F(x) dominate F(x∗). This
implies that any improvement in a Pareto optimal point in one objective leads to a
deterioration in another. The set of all Pareto optimal points is the Pareto set and the set
of all Pareto optimal objective vectors is the Pareto front (PF). The interest in finding
locations x having the associatedF(x) on the Pareto frontier is clear: all of them represent
efficient trade-offs between conflicting objectives and are the only ones, according to
the Pareto rationality, to be considered by the decision maker.

The issue of the quality evaluation of Pareto solutions sets is the key issue in multi
objective optimization. A very recent and wide survey on this issue [17] where 100
quality indicators are analyzed.

2.2 Hypervolume

To measure the progress of the optimization a natural and widely used metric is the
hypervolume indicator that measures the objective space between a non-dominated set
and a predefined reference vector. An example of Pareto frontier, alongwith the reference
point to compute the hypervolume, is reported in Fig. 1.

Agood approximation of the Pareto setwill result into a low/high hypervolumevalue;
thus, hypervolume is a reasonable measure for evaluating the quality of the optimization
process [18].

The grey shaded area is the original hypervolume: a new point A improves the
approximation to the exact Pareto front and increases the hypervolume by the blue
shaded area.

The improvement of the hypervolume can also be used in the selection of the new
point as in [19]. This approach has been further developed in [20] in which it is shown
off to compute the gradient of the expected hypervolume improvement to speed up the
selection process.

Optimal Sensor Placement by Distribution 319

Fig. 1. An example of Pareto frontier, with the associated hypervolume, for two minimization
objectives. (f1 is the detection time and f2 is its standard deviation)

2.3 Coverage

Given two approximationsA andB of the Pareto front theC metric (Coverage)C(A,B) is
defined by the percentage of solutions in B that are dominated by at least one solution in
A. C(B,A) is the percentage of solutions in A that are dominated by at least one solution
in B. C(A,B) �= 1 − C(B,A) so that both must be considered to assess. C(A,B) = 1
means that all solutions in B are dominated by some solution in A; C(A,B) = 0 implies
that no solution in B is dominated by a solution in A.

3 The Wasserstein Distance – Basic Notions and Numerical
Approximation

This section deals with a methodology to compute the dissimilarity or distance between
two probability distributions.

Consider two discrete distributions f (x) = ∑n
i=1 fiδ(x − xi) and g(x) =

∑n
′

i=1 giδ(y − yi) where
∑n

i=1 fi = ∑n
′

i=1 gi = 1 and δ(.) is the Kronecker delta.

δ(x) =
{
1 if x = 0
0 otherwise

The unit cost of transport between xi and yj is defined as the p-th power of the “ground
metric” d(x, y), in this case the Euclidean norm cij = ∣

∣
∣
∣xi − yj

∣
∣
∣
∣p. The transport plan

γij represent the mass transported from xi to yj. The WST distance between discrete
distributions f and g is:

Wq(f , g) = min
γij∈�

(
n∑

i=1

n′∑

j=1
γij

∣
∣xi − yj

∣
∣p

) 1
p

s.t.
n′∑

j=1
γij = fi,

n∑

i=1
γij = gj, γij ≥ 0

The constraints above ensure that the total mass transported from xi and the total mass
to yj matches respectively fi and gj.

320 A. Ponti et al.

In the specific case of p = 1 theWasserstein distance is also called the EarthMover’s
Distance (EMD). Intuitively, γ (x, y) indicates howmuch earth must be transported from
x to y in order to transform the distributions f into the distribution g. The Earth Mover’s
distance is the minimum cost of moving and transforming a pile of earth from the shape
of f into the shape of g.

There are some particular cases, very relevant in applications, where WST can
be written in an explicit form. Let F and G be the cumulative distribution for one-
dimensional distributions f and g in the unit interval and F−1 and G−1 be their quantile
functions, then.

Wp(f , g) =
(∫ 1

0

∣
∣
∣F−1(x) − G−1(x)

∣
∣
∣
p
dx

) 1
p

.

In the case of one dimensional histograms the computation of WST can be performed
by a simple sorting and the application of the following formula.

Wp(f , g) =
(
1

n

n∑

i

∣
∣x∗

i − y∗
i

∣
∣p

) 1
p

where x∗
i and y∗

i are the sorted samples.
In this paper we use p = 1.
Wasserstein distances are generallywell defined andprovide an interpretable distance

metric between distributions. Computing Wasserstein distances requires in general the
solution of a constrained linear optimization problem which has, when the support of
the probability distributions is multidimensional, a very large number of variables and
constraints. In the general case it is shows to be equivalent to a min-flow algorithm of
quadratic computational complexity [21] and, in specific cases, to linear [22, 23].

In the case of 1-dimensional histograms the computation of EMD, can be done
sorting the ordered samples.

4 The Formulation of Optimal Sensor Placement

This section contains the basic optimization model for sensor placement and the
simulation framework for the computation of the objective functions.

4.1 Problem Formulation

We consider a graph G = (V ,E) We assume a set of possible locations for placing
sensors, that is L ⊆ V . Thus, a SP is a subset of sensor locations, with the subset’s size
less or equal to p depending on the available budget. An SP is represented by a binary
vector s ∈ {0, 1}|L| whose components are si = 1 if a sensor is located at node i, si = 0
otherwise. Thus, an SP is given by the nonzero components of s.

For a water distribution network, the vertices in V represent junctions, tanks,
reservoirs or consumption points, and edges in E represent pipes, pumps, and valves.

Optimal Sensor Placement by Distribution 321

Let A ⊆ V denote the set of contamination events a ∈ A which must be detected by
a sensor placement s, and dai the impact measure associated to a contamination event a
detected by the ith sensor.

A probability distribution is placed over possible contamination events associated
to the nodes. In the computations we assume – as usual in the literature – a uniform
distribution, but in general discrete distributions are also possible. In this paper we
consider as objective functions the detection time and its standard deviation.

We consider a general model of sensor placement, where dai is the “impact” of a
sensor located at node I when the contaminant has been introduced at node a.

(P1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min f1(s) = ∑

a∈A
αa

∑

i=1,..,|L|
daixai

s.t.
∑

i=1,..,|L|
si ≤ p

si ∈ {0, 1}

• αa is the probability for the contaminant to enter the network at node a.
• dai is the “impact” for a sensor located at node i to detect the contaminant introduced
at node a. In this problem dai is the detection time for a sensor located in node i od
the event a.

• xai = 1 if si = 1 and i is the first sensor in the placement s to detect the contaminant
injected at node a; 0 otherwise.

In our study we assume that all nodes have the same probability of being hit by a
contamination event, that is αa = 1/|A|.

Therefore f1(s) is:

f1(s) = 1

|A|
∑

a∈A
t̂a

where t̂a = ∑
i=1,..,|L| daixai.

As a measure of risk, we consider the standard deviation of f1.

f2(s) = STDf1(s) =
√

1

|A|
∑

a∈A

(
t̂a − f1(s)

)2

This model can be specialized to different objective functions as:

• f1: For each event a and sensor placement s, t̂a is the minimum detection time MDT
also defined as MDTa = mini:si=1 dai.

• f2: the standard deviation of the sample average approximation of f1.

Evaluating the above objective functionsmight be expensive for large scale networks
because it requires to perform the hydraulic simulation for a large set of contamination
events, each one associated to a different locationwhere the contaminant is injected. Sim-
ulating the contaminant propagation allows to compute the average MinimumDetection

322 A. Ponti et al.

Time (MDT) provided by a specific SP over all the simulated events. Finally, the SP
minimizing the average of the MDT is searched for. However, searching for an optimal
SP is NP-hard: even for mid-size networks, efficient searchmethods are required, among
which evolutionary approaches are often used.

4.2 Network Hydraulic Simulation

The Water Network Tool for Resilience (WNTR) [24] is a Python package used to
simulate the hydraulic simulation of the net. The simulation is computationally costly
as we need one execution for each contamination events. A detailed description of the
data structure is given in (Ponti et al. 2021).

In this study, each simulation has been performed for 24 h, with a simulation step of
1 h. We assume L = V and A = V (i.e., the most computationally demanding problem
configuration) with a budget constraint on the number of sensors p.

Let’s denote with S� the so-called “sensor matrix”, with � = 1, . . . , |L| an index
identifying the location where the sensor is deployed at. Each row corresponds to a
simulation step �t and each column to an event-node. Each entry s�ta represents the
concentration of the contaminant for the event a ∈ A at the simulation step t = 0, ..,K ,
with Tmax = K�t, for a sensor located in node �. Without loss of generality, we assume
that the contaminant is injected at the beginning of the simulation (i.e., t = 0).

Analogously, a “sensor placement matrix”, H (s) ∈ R
(K+1)×|A| is defined, where

every entry h(s)
ta represents themaximumconcentration over those detected by the sensors

in s, for the event a and at time step t.
Suppose to have a sensor placement s consisting ofm sensors with associated sensor

matrices S1, . . . , Sm, then hta = maxj=1,...,m sjta∀a ∈ A (Fig. 2).

Fig. 2. The entries of the left matrix are s32ta . The entries of the right matrix are h(s)
ta where s denote

a placement in which sensors are deployed in nodes 23 and 32.

Indeed, we can now explicit the computation of t̂a in the of f1(s) and f2(s): t̂a is the
minimum time step at which concentration reaches or exceeds a given threshold τ for
the scenario a, that is t̂a = mint=1,...,K {hta ≥ τ }.

Optimal Sensor Placement by Distribution 323

5 Distributional Representation and the Information Space

This section contains one key contribution of the paper: the representation of the can-
didate solutions as discrete probability distributions and the description of the structure
and functionality of the information space.

5.1 Probabilistic Representation of a Solution

The information inH (s) about a placement canbe represented as ahistogram.Weconsider
the time steps in the simulation �ti = ti − ti−1 where i = 1, . . . , k are equidistanced
in the simulation time horizon (0,TMAX). We consider the discrete random variable |Ai|
where Ai = {

a ∈ A : t̂a ∈ �ti
}
that is the number of events detected in �ti (Fig. 3).

For each placement, the matrix H (s) can be represented by an histogram (Fig. 4).

Fig. 3. The histogram of a sensor placement with p = 4 (|A| = 9).

We have added an extra bin whose value represents for any sensor placement (his-
tograms) the number of contamination events which were undetected during the simula-
tion (and hence the detection probability). Histogram can be scalarized amounting to a
ranking of SP. The “ideal” placement is that in which |Aˆ1 | = |A|. The relation between
SP and histograms is many to one: one histogram indeed can be associated to different
SP.

Intuitively the larger the probability mass in lower �ti the better is the sensor place-
ment, the larger the probability mass in the higher �t the worse is sensor placement.
The worst SPs are those for which no detection took place in the simulation horizon.

5.2 Search Space and Information Space

Our search space consists of all the possible SPs, given a set L of possible locations for
their deployment, and resulting feasible with respect to the constraints in (P). Formally,
s ∈ Ω ⊆ {0, 1}|L|. Beyond the computation of f1 and f2, the matrix H (s) offers a much
richer representation and enables the computation of the histograms.

For the sake of simplicity, let’s denote with π this computational process:

s
π→H (s) ⇒ φ

(
H (s)

)
= (f1(s), f2(s))

324 A. Ponti et al.

We use φ
(
H (s)

)
to stress the fact that the computation is actually performed over H (s)

– within the “information space” – and then it generates the observation of the two
objectives (f1(s), f2(s)).

In this paper the landscape is explored through histograms in the information space
and their Wasserstein distance.

Fig. 4. Search space, information space and objectives.

6 The Algorithm MOEA/WST

This section contains the analysis of the new algorithm proposed. It is shown how
all the mathematical constructs presented in the previous sections are structured in
the MOEA/AST algorithm. The Sect. 6.1 offers a global view of the interplay of all
algorithmic components which are described in the following Sects. 6.2 to 6.6.

6.1 General Framework

See Fig. 5.

Fig. 5. The general framework of MOEA/WST.

Optimal Sensor Placement by Distribution 325

6.2 Chromosome Encoding

In the algorithm each chromosome (individual) consists in a |L|-dimensional binary
array that encodes a sensor placement. Each gene represents a node in which a sensor
can be placed. A gene assumes value 1 if a sensor is located in the corresponding node,
0 otherwise.

6.3 Initialization

The initial population is given by 40 individuals. Our algorithm randomly samples the
initial chromosomes. All the individuals in the population have to be different (sampling
without replacement).

Among this population we select the non-dominated solutions (Initial Pareto set).

6.4 Selection

In order to select the pairs of parents to be mated using the crossover operation, we have
introduced a problem specific selection method that takes place into the information
space.

First,we randomly sample from the actual Pareto set twopairs of individuals (F1,M1)

and (F2,M2). Thenwe choose the pair (Fi,Mi) as the parents of the new offspring, where
i = argmaxi∈{1,2} D(Fi,Mi). This favors exploration and diversification (Fig. 6).

Fig. 6. Histogram representation of points of the approximate Pareto set.

In this paperwe used theWasserstein distance between the histograms corresponding
to the sensor placement Fi and Mi.

If at least one individual of the pair of parents is not feasible (i.e., the placement
contains more sensors than the budget p) the Constraint Violation (CV) is considered
instead. Let’s c = [ci] be a generic individual and p the budget, the Constraint Violation
is defined as follow.

CV (c) = max

(

0,
∑

i

c − p

)

Then we choose the pair of parents (Fi,Mi)with i = argmini∈{1,2}(CV (Fi) + CV (Mi)).

326 A. Ponti et al.

6.5 Crossover

The standard crossover operators applied to sensor placement might generate unfeasible
childrenwhichmight induce computational inefficiency in terms of function evaluations.
To avoid this in MOEA/WST it has been introduced a problem specific crossover which
generates two “feasible-by-design” children from two feasible parents.

Denote with x, x′ ∈ � two feasible parents and with J (FatherPool) and J ′ (Moth-
erPool) the two associated sets J = {i : xi = 1} and J ′ = {

i : x′
i = 1

}
. To obtain two

feasible children, c and c′ are initialized as [0, . . . , 0]. In turn, c and c′ samples an index
from J and from J ′, respectively, without replacement. Therefore, the new operator rules
out children with more than p non-zero components.

In the following figure (Fig. 7), an example comparing the behaviour of our crossover
compared to a typical 1-point crossover.

Fig. 7. A schematic representation of the new crossover operator.

6.6 Mutation

The aim of mutation is to guarantee diversification in the population and to avoid getting
trapped into local optima.We consider the bitflipmutation operator, for which amutation
probability is typically used to set the “relevance” of exploration in GA.

We have been using the bitflip mutation in Pymoo (each gene has a probability of
mutation of 0.1).

7 Computational Results

The search space for this example is quite limited, allowing us to solve the problem via
exhaustive search. More precisely, only 561 SPs are feasible according to the constraints
in (P). Thus, we exactly know the Pareto set, the Pareto frontier and the associated
hypervolume.

We have used Pymoo by setting 100 generations and a population size of 40.
After 100 generations NSGA-II andMOEA/WST obtained the same results in terms

of hypervolume and coverage.

Optimal Sensor Placement by Distribution 327

There is anyway a significant difference in terms of coverage of the approximate
Pareto front (APF) to the optimal one (OPF) between the two algorithms. A smaller
value of C(OPF,APF) means a better approximation. The index C(APF,OPF) is not
meaningful because no solution in the APF can dominate OPF (Fig. 8).

Fig. 8. Coverage between the optimal Pareto frontier and the approximate one.

7.1 Hanoi

Hanoi is a benchmark used in the literature [25].
The following Figs. (9, 10, 11, 12, 13, 14, 15 and 16) display the average value

and standard deviation of hypervolume (y-axis) obtained from experiments for different
values of p. In each experiment 30 replications have been performed to generate the
estimation sample.

Fig. 9. Hypervolume per generation p ≤ 3 (left) and p ≤ 5 (right).

In terms of hypervolume MOEA/WST and NSGA-II offer a balanced performance.
The difference in values of hypervolume between MOEA/WST and NSGA-II

has been tested for statistical significance for different values of p and different
generations/iterations counts.

328 A. Ponti et al.

Fig. 10. Hypervolume per generation p ≤ 9 (left) and p ≤ 15 (right).

We run the Wilcoxon test for MOEA/WST and NSGA-II for the samples in gen-
erations 25/50/100 (each new generation requires 10 function evaluations). The null
hypothesis (H0) is that the samples are from the same distribution (Table 1).

Table 1. Comparing hypervolume of MOEA/WST against NSGA-II (values are ×109) with
respect to different budgets “p” and number of generations. Statistical significance has been
investigated through a Wilcoxon test (p-value is reported).

p Generations MOEA/WST NSGA-II MOEA/WST vs NSGA-II p-value

3 25 0.2188 (0.3790) 0.2190 (0.4538) 0.811

50 1.0828 (0.5942) 1.5883 (0.2969) <0.001

75 1.7426 (0.2608) 2.0804 (0.1797) <0.001

100 2.0769 (0.2225) 2.2808 (0.1601) <0.001

5 25 1.4279 (0.4120) 1.4253 (0.4577) 0.900

50 2.0264 (0.0910) 2.0250 (0.1439) 0.423

75 2.1552 (0.0878) 2.1579 (0.1258) 0.809

100 2.2140 (0.0785) 2.2702 (0.1299) 0.088

9 25 2.2084 (0.0608) 2.0404 (0.1079) <0.001

50 2.3189 (0.0521) 2.2350 (0.0721) <0.001

75 2.3625 (0.0461) 2.3064 (0.0587) <0.001

100 2.3880 (0.0389) 2.3517 (0.0529) 0.006

15 25 2.2891 (0.0560) 2.1830 (0.0715) <0.001

50 2.3827 (0.0456) 2.3170 (0.0612) <0.001

75 2.4116 (0.0421) 2.4001 (0.0482) 0.432

100 2.4317 (0.0415) 2.4364 (0.0444) 0.552

Optimal Sensor Placement by Distribution 329

The following figures display the graphs of coverage as the function of number of
generations. The graphs show that MOEA/WST improves comparatively it coverage as
the number p increases.

Fig. 11. Coverage per generation (left p = 3, right p = 5)

Fig. 12. Coverage per generation (left p = 9, right p = 15)

To add further elements of assessment of the comparative performance of themethods
in more challenging conditions the authors have tested them on the real-life problem
described in Sect. 7.4.

7.2 Neptun

Neptun is the WDN of the Romanian city of Timisoara, with an associated graph of 333
nodes and 339 edges, analyzed in the European project Icewater [8]. Therefore, each
sensor placement in Neptun is a boolean vector of 333 components.

We run the Wilcoxon test for MOEA/WST and NSGA-II for the samples in genera-
tions 50, 100, 150, 200 and 250. The null hypothesis (H0) is that the samples are from
the same distribution (Table 2).

In Neptun the comparative performance of MOEA/WST is quite impressive in terms
of hypervolume.

It is also worth remarking that NSGA-II comes from Pymoo, a consolidated software
framework, while MOEA/WST is still highly experimental.

330 A. Ponti et al.

Fig. 13. Hypervolume per generation p ≤ 25.

Table 2. Comparing hypervolume of MOEA/WST against the NSGA-II’s (values are ×109)
Statistical significance has been investigated through a Wilcoxon test (p-value is reported).

Generations MOEA/WST NSGA-II MOEA/WST vs NSGA-II p-value

50 1.3377 (0.0826) 0.0000 (0.0000) <0.001

100 1.3916 (0.0900) 0.0000 (0.0000) <0.001

150 1.4150 (0.0915) 0.0000 (0.0000) <0.001

200 1.4350 (0.0848) 1.2232 (0.0374) <0.001

250 1.4530 (0.0880) 1.1042 (0.0448) <0.001

8 Conclusions

The key result of this paper has been the proposal of MOEA/WST, a new evolutionary
algorithm on discrete structures.

Its distinguishing feature is that it works not only in the search space but in an infor-
mation spacewhich allows individuals (sensor placements) to bemapped into probability
distributions whose distance is given by the WST distance between the discrete distri-
butions associated to placements. The role of WST distance is to capture the interplay
of sensor placements and to model the dependence of informational utility of placing a
sensor in a location on the presence of pre-existing sensors. On two small scale bench-
mark networks, MOEA/WST and NSGA-II offer a balanced performance in terms of
hypervolume.

On a real-world network with 333 nodes the hypervolume values of MOEA/WST
are much better as a function of number of generations.

The computational analysis of MOEA/WST has been limited in this paper to WDNs
but the key aspect of the method, that is the representation of feasible solutions as
histograms, is suitable for any problem inwhichwe aremonitoring the spread of “effects”
triggered by “events” as the detection of “fake-news” on the web: in this setting the
placement problem is to identify a small set of blogs which catch as many cascades as
early as possible.

Optimal Sensor Placement by Distribution 331

Acknowledgements. This study has been partially supported by the Italian project “PERFORM-
WATER 2030” – programma POR (Programma Operativo Regionale) FESR (Fondo Europeo di
SviluppoRegionale) 2014–2020, innovation call “Accordi per laRicerca e l’Innovazione” (“Agree-
ments for Research and Innovation”) of Regione Lombardia, (DGR N. 5245/2016 - AZIONE
I.1.B.1.3 – ASSE I POR FESR 2014–2020) – CUP E46D17000120009.This study has also
been partially supported by the Italian project ENERGIDRICA co-financed by MIUR.We greatly
acknowledge the DEMS Data Science Lab for supporting this work by providing computational
resources (DEMS – Department of Economics, Management and Statistics).

References

1. Boginski, V.L., Commander, C.W., Pardalos, P.M., Ye, Y.: Sensors: Theory, Algorithms, and
Applications. Springer, New York (2011). https://doi.org/10.1007/978-0-387-88619-0

2. Mallozzi, L.,D’Amato, E., Pardalos, P.M.: Spatial InteractionModels. Springer,Cham (2017).
https://doi.org/10.1007/978-3-319-52654-6

3. Deb, K., Myburgh, C.: A population-based fast algorithm for a billion-dimensional resource
allocation problem with integer variables. Eur. J. Oper. Res. 261, 460–474 (2017)

4. Vesikar, Y., Deb, K., Blank, J.: Reference point based NSGA-III for preferred solutions. In:
2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1587–1594. IEEE
(2018)

5. Wang, Y., van Stein, B., Bäck, T., Emmerich, M.: A tailored NSGA-III for multi-objective
flexible job shop scheduling. In: 2020 IEEESymposiumSeries onComputational Intelligence
(SSCI), pp. 2746–2753. IEEE (2020)

6. Knowles, J.D.: ParEGO: a hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Trans Evol Comput 10, 50–66 (2006).
https://doi.org/10.1109/TEVC.2005.851274

7. Zhang, Q., Liu, W., Tsang, E.P.K., Virginas, B.: Expensive multiobjective optimization by
MOEA/D with Gaussian process model. IEEE Trans Evol Comput 14, 456–474 (2010).
https://doi.org/10.1109/TEVC.2009.2033671

8. Schieber, T.A., Carpi, L., Díaz-Guilera, A., Pardalos, P.M., Masoller, C., Ravetti, M.G.:
Quantification of network structural dissimilarities. Nat. Commun. 8, 1–10 (2017)

9. Monge, G.:Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale
des Sciences de Paris (1781)

10. Kantorovich, L.: On the transfer of masses. In: Doklady Akademii Nauk, pp. 227–229 (1942).
(in Russian)

11. Bonneel, N., Peyré, G., Cuturi,M.:Wasserstein barycentric coordinates: histogram regression
using optimal transport. ACM Trans. Graph. 35, 71–81 (2016)

12. Huang, G., Quo, C., Kusner, M.J., Sun, Y., Weinberger, K.Q., Sha, F.: Supervised word
mover’s distance. In: Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 4869–4877 (2016)

13. Weng, L.: From GAN to WGAN. arXiv preprint arXiv:190408994 (2019)
14. Villani, C.: Optimal Transport: Old and New. Springer, Heidelberg (2008). https://doi.org/10.

1007/978-3-540-71050-9
15. Peyré, G., Cuturi, M.: Computational optimal transport: with applications to data science.

Found. Trends® Mach. Learn. 11, 355–607 (2019)
16. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11,

355–607 (2019). https://doi.org/10.1561/2200000073
17. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation: a survey.

ACM Comput. Surv. (CSUR) 52, 1–38 (2019)

https://doi.org/10.1007/978-0-387-88619-0
https://doi.org/10.1007/978-3-319-52654-6
https://doi.org/10.1109/TEVC.2005.851274
https://doi.org/10.1109/TEVC.2009.2033671
http://arxiv.org/abs/190408994
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1561/2200000073

332 A. Ponti et al.

18. Fleischer, M.: The measure of Pareto optima applications to multi-objective metaheuristics.
In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS,
vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-
8_37

19. Beume, N., Naujoks, B., Emmerich, M.T.M.: SMS-EMOA: Multiobjective selection based
on dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007). https://doi.org/10.
1016/j.ejor.2006.08.008

20. Yang, K., Emmerich, M., Deutz, A., Bäck, T.: Multi-objective Bayesian global optimiza-
tion using expected hypervolume improvement gradient. Swarm Evol. Comput. 44, 945–956
(2019)

21. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE 12th
International Conference on Computer Vision, pp. 460–467. IEEE (2009)

22. Atasu, K., Mittelholzer, T.: Linear-complexity data-parallel earth mover’s distance approx-
imations. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June
2019, pp. 364–373. PMLR (2019)

23. Shirdhonkar, S., Jacobs, D.W.: Approximate earth mover’s distance in linear time. In: 2008
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

24. Klise, K.A., Murray, R., Haxton, T.: An Overview of the Water Network Tool for Resilience
(WNTR) (2018)

25. Vasan, A., Simonovic, S.P.: Optimization of water distribution network design using
differential evolution. J. Water Res. Plan. Manage. 136, 279–287 (2010)

26. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf. Process.
Lett. 70, 39–45 (1999)

https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1016/j.ejor.2006.08.008

Multi-objective Parameter Tuning
with Dynamic Compositional Surrogate

Models

Dmytro Pukhkaiev(B), Oleksandr Husak, Sebastian Götz , and Uwe Aßmann

Software Technology Group, Technische Universität Dresden, Dresden, Germany
{dmytro.pukhkaiev,oleksandr.husak,sebastian.goetz1,

uwe.assmann}@tu-dresden.de

Abstract. Multi-objective parameter tuning is a highly-practical black-
box optimization problem, in which the target system is expensive to
evaluate. To identify well-performing solutions within the limited budget,
a substitution of the target system with a surrogate model, its cheap-to-
evaluate approximation, introduces immense benefits. Some surrogates
may be more successful for particular objective functions, other at cer-
tain stages of optimization. Alas, most state-of-the-art approaches do
not address this issue, requiring either to be selected at design time; or
lack granularity, changing all models for all objective functions simulta-
neously. In this paper we provide an approach allowing to individually
assign surrogate models to different objective functions and to dynam-
ically combine them into multi-objective compositional surrogate mod-
els. To ensure a high prediction quality, our approach contains a model
validation strategy based on the cross-validation principle. Moreover, we
unite multiple compositional surrogates within a portfolio to even further
increase the quality of the search process. Finally, we use the proposed
validation strategy to enable a dynamic sampling plan, allowing to get
high-quality solutions with even fewer evaluations. The evaluation with a
WFG benchmark suite for multi-objective optimization showed that our
approach outperforms existing multi-objective model-based approaches.

Keywords: Parameter tuning · Hyperparameter optimization ·
Multi-objective optimization · Surrogate models

1 Introduction

Parameter tuning (PT) problems are omnipresent in science and engineering
and are also known as (but are not limited to): parameter configuration [3,15],
hyperparameter optimization [9,17,20] and design space exploration [28,29]. The
goal of PT is to find an optimal configuration for a certain target system with
respect to one or several non-functional properties. The target system can vary in
its evaluation cost: from a cheap-to-evaluate synthetic function [40] to a software
system [3], whose single evaluation can span to hours or even days of continuous

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 333–350, 2021.
https://doi.org/10.1007/978-3-030-92121-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_26&domain=pdf
http://orcid.org/0000-0003-1537-7815
https://doi.org/10.1007/978-3-030-92121-7_26

334 D. Pukhkaiev et al.

execution. A configuration denotes a combination of parameters, which serve as
an input to the target system, affecting its quality.

While the optimization of cheap target systems is often done with help of
heuristic-based solvers [2,5,32], expensive target systems can be evaluated only
a limited number of times, depending on the optimization budget, requiring a
thorough choice of configurations to be evaluated. Here, surrogate-model-based
approaches [1,8,18,21,23,24,28,34] come into play, where under a surrogate
model1 we understand an approximation of the target system, which is cheap to
evaluate.

In this paper we consider solving multi-objective expensive PT problems,
limiting the related work to model-based multi-objective optimization (MBMO).
Existing MBMO approaches can be split into three major groups, differing in
the type of their surrogate models: 1) multiple single-objective models for dif-
ferent objectives [1,8,18,24,34], 2) pure multi-objective models [10,23], able to
handle multiple dimensions with a single surrogate model, and 3) scalarized
models [21,28], transforming the problem into a single-objective one. Existing
MBMO approaches have two major deficiencies:

P1. Coarse Granularity. A lack of a fine-granular assignment of surrogate
models to objective functions prevents from using the best-suited surrogates.

P2. Static Sampling Plan. The number of configurations to be sampled
randomly is decided at design time, although its optimal value is problem-
dependent and cannot be determined in advance.

In this paper we aim to improve the quality of MBMO approaches with a
novel approach called TutorM. It provides the following contributions:

Compositional Surrogate Models. TutorM is able to combine different sur-
rogate models into compositional surrogate models, which are automatically
switched at runtime, based on their accuracy. Compositional surrogates allow
to achieve a prediction quality unreachable by its parts in isolation (P1).

Portfolio of Surrogate Models. Our approach can group multi-objective
surrogate models (both pure and compositional) into a portfolio and then
combine their solution sets into a more diverse Pareto front approximation,
further increasing the quality of the optimization (P1).

Model Validation Strategy. TutorM incorporates a surrogate validation strat-
egy, which is based on the cross-validation principle that allows to disable
under-performing models at certain stages of the search process. This vali-
dation strategy enables a dynamic sampling plan, allowing to obtain high-
performing configurations faster (P2).

We evaluate our approach with a WFG benchmark suite for multi-objective
optimization [16]. Our findings show that TutorM outperforms state-of-the-art
MBMO approaches, improving the final result quality by 5 pp.

1 We use the notions “surrogate model”, “model” and “surrogate” interchangeably.

Multi-objective PT with Dynamic Compositional Surrogate Models 335

2 State of the Art

An intuition behind PT is to find the best performing configuration among a
set of possible variants to optimize a certain black-box target system. A formal
definition of a single-objective PT problem can be defined as follows:

x∗ = arg min
x∈S

f(x), (1)

where f is a black-box target system, x ∈ S is a configuration within the search
space S and x∗ is the sought optimal configuration.

Multi-objective PT, is a multi-objective optimization (MOO) problem, which
assumes finding a set of configurations P (Pareto front) such that a solution
quality (f1(x), . . . , fk(x)) of each configuration x ∈ P is not dominated by any
other configuration within the objective space f(x). A configuration A ∈ S is
said to dominate another configuration B ∈ S , denoted A � B iff fi(A) ≤ fi(B)
for all i ∈ {1, . . . , k} and fi(A) < fi(B) for at least one i ∈ {1, . . . k}.

Note, that the number of allowed target system evaluations is strictly limited,
due to its expensive evaluation time tf . Thus, numerous classical optimization
algorithms such as: exact solvers [11] and their relaxations [35] become infeasi-
ble. Multi-objective heuristic-based solvers, often in form of evolutionary algo-
rithms [2,5,32] are inefficient in such a setting as they also operate directly with
the target system, using its output as a reference for the subsequent search.

When the number of feasible evaluations is limited, a proxy between the
target system and the optimizer is necessary. The role of such a proxy is often
played by a surrogate model, an approximation f̂ of the real target system f ,
whose evaluation tf̂ is cheap in comparison to the target system: tf̂ � tf .

To simplify the understanding of multi-objective surrogate-model-based opti-
mization, we must first consider a single-objective scenario.

2.1 Single-Objective Surrogate-Model-Based Optimization

Single-objective approaches that make use of surrogate models can be separated
into three major groups: offline, online and hybrid. Offline approaches [3,22]
train the model before the search process starts, during which only optimization
of the surrogate model is performed. Online methods (sequential model-based
optimization, SMBO) [9,17,31,33,36] enrich the model with new data during
the search. Hybrid approaches use a surrogate model from previous optimiza-
tion processes with the help of transfer learning [14,37]. Despite some minor
differences between the groups, the concept of surrogate-based-optimization can
be described with help of classic SMBO [19,27]. In the following, we are pro-
viding notes for the variations, when necessary. A simplified SMBO workflow is
depicted in Fig. 1.

An SMBO process starts with obtaining an initial data set, where each item is
a pair of a configuration and its corresponding value of the objective function. A
randomized sampling plan (Sobol sampling, Mersenne Twister, etc.) is normally
utilized for selecting configurations. The initial sampling set is treated as minimal

336 D. Pukhkaiev et al.

sampling
surrogate
creation

surrogate
optimization

candidate
selection

candidate
evaluation

yes

no

[termination criteria were met]

Fig. 1. Simplified SMBO/MBMO workflow

evidence about the search needed to create an accurate surrogate model. Note,
that even some offline approaches [3] utilize the initial sampling set as input for
the trained surrogate model, which then generates promising configurations.

The surrogate model can be created in a form of a frequentist [31,33] or
a Bayesian [6,37] regression, a random forest [17], a Generative Adversarial
Network [3], Gaussian Process Bandits [14], but is not limited to them. In
some cases [9,30], several surrogate models are created. After being created, the
model is used by an optimization algorithm: multi-start local search [14,17], grid
search [3,31], pattern search [22], Nelder-Mead Simplex [33], random search [30].

After finding an optimal point (or several points [4,25]) using the surrogate,
this configuration is evaluated with the target system and the process iterates
until some termination criteria is reached, which can be: time [9,14,17], num-
ber of evaluations [9,14,17,37], performance evaluation metric [31,36]. In some
cases, surrogate optimization may be again substituted with the sampling plan to
randomly increase exploration [9] or based on the quality of the prediction [31].

2.2 Multi-objective Surrogate-Model-Based Optimization

Model-based multi-objective optimization (MBMO) is a generalization of SMBO
to treat MOO problems. The general workflow remains unchanged, while inter-
nal strategies of surrogate creation and surrogate optimization are subjects to
changes.

Surrogate Creation. MBMO has three major variants of surrogate models:
multiple single-objective models, pure multi-objective model and scalarized model.

Utilization of multiple single-objective models is a widely used approach
[1,8,18,24,34], where each objective function is approximated by a respective
surrogate. It is the most straightforward solution, since multiple surrogates do
not address possible correlations between the objective functions. The set of
used surrogate instances is rich: Support Vector Machines (SVMs) [34], ran-
dom forests [8], Gaussian Process Regressors (GPRs) [8,24], radial basis func-
tions [1,18,24], polynomial regressions [24]. Note, that all listed approaches are
using the same surrogate model for different dimensions, though in [34] the
authors adapt hyperparameters of each SVM individually.

Pure multi-objective surrogate model aims at building a single surrogate
model, able to handle multiple dimensions simultaneously [10,23]. Pareto-
SVM [23] constructs an aggregated surrogate model by combining a One-class

Multi-objective PT with Dynamic Compositional Surrogate Models 337

SVM with a Regression SVM, where the former is used to characterize domi-
nated, nondominated and yet unexplored configurations and the latter to map
the characterized configurations onto target values. These values are then used
to guide the optimization algorithm. Multivariate GPR is another viable choice
for a multi-objective surrogate [10].

Scalarizing can be used as a pre-processing step that allows to use SMBO.
ParEGO [21] performs scalarizing with random weights on each iteration, allow-
ing it to move over the non-dominated front. ParEGO uses GPR as a surrogate
model. Hypermapper 2.0 [28] applies multiple random forests and then scalarizes
them into a single-objective acquisition function which is then optimized.

Surrogate Optimization. The optimization step is determined by the type of
surrogate model(s). Scalarized surrogate models can be complemented with clas-
sical SMBO optimizations: local search [28], Nelder-Mead Simplex [21]. Multi-
objective surrogate models are optimized primarily with MOEA approaches:
NSGA-II [10,23], CMA-ES [23]. Multiple single-objective models are optimized
with either a single optimizer: NSGA-II [18], CMA-ES [8], custom MOEA [34],
local search [8]; or multiple single-objective optimization algorithms which are
then aggregated into a non-dominated front: Sequential Quadratic Program-
ming [24], local search [1]. Optimization is wrapped up in the selection phase
where a single [21] or multiple configurations [1,8,18,23,24,26,34,39] are evalu-
ated using the target system and are used to update the surrogate model(s).

3 Problem Definition

Presented MBMO approaches possess two major deficiencies:

P1. Coarse Granularity. Adapting the no-free-lunch theorem for optimiza-
tion (NFLT) [38] to the context of surrogate models, we can assume that there
exist no surrogate model superior to all other models for every possible PT prob-
lem, which is also true for different objective functions. However, most of the
discussed approaches (except for [24]) use static surrogates. In [24] the authors
mention that different instances of surrogates can be beneficial for various search
space surfaces. They address this issue by presenting a portfolio of low-level
surrogates (GPR, RBF and polynomial regression), which are used as a pre-
diction basis on different iterations. A decision, which low-level surrogate to
select, is based on the prediction of a high-level surrogate (RankBoost ranking
approach [12]). However, the low-level models are not assigned individually for
different objectives, but are duplicated for each objective, lacking granularity
and violating the NFLT. The same rationale is applicable for the runtime per-
formance of models, although partially addressed by [24] via dynamic switching
of surrogates, the inability of changing the model for a specific objective function
remains.

338 D. Pukhkaiev et al.

P2. Static Sampling Plan. Another issue of MBMO approaches is related to
their sampling plans. All the aforementioned approaches have a static sampling
plan, i.e., the user has to specify the size of the initial sampling set, which may
vary depending on the problem, either slowing the search process down by not
using an accurate model or underfitting it. For SMBO approaches, only in [31]
the authors developed a dynamic sampling plan that validated the surrogate
model (regression) based on the quality of its prediction and substituted the
model with sampling until it was accurate again. Unfortunately, their validation
strategy was domain-dependent (study of energy-efficiency); thus, leaving the
question of the dynamic sampling plan’s general effectiveness open.

Research Questions. The goal of this paper is to increase quality of multi-
objective PT by increasing its granularity w.r.t. surrogate-objective coupling
and providing a dynamic sampling strategy. To reach it, we aim to answer the
following research questions:

RQ1. Does a dynamic combination of different single-objective models into a
multi-objective compositional surrogate benefit the optimization quality?

RQ2. Does a combination of several models into a portfolio further enhance the
optimization quality?

RQ3. Is it possible to develop a universal dynamic sampling plan? What is the
effect of its utilization?

4 Dynamic Compositional Surrogate Models
with TutorM

General Workflow. We start with comparing the workflows of MBMO and
our approach (TutorM), whose simplified versions are depicted in Fig. 1 and
2 respectively. For the sake of simplicity, assume we are using a single multi-
objective surrogate model and a two-dimensional experiment.

sampling

surrogate
creation

surrogate
optimization

candidate
selection

candidate
evaluation

yes

no

[termination criteria were met]

[surrogate model exists]

no
yes

[surrogate model is valid]

yes

no

Fig. 2. Simplified TutorM workflow

From Fig. 1 and 2 we can see that the MBMO process is only partially iter-
ative, while TutorM is purely iterative. The main difference is the sampling
strategy : MBMO starts with a sampling plan, whose size is specified by the user.

Multi-objective PT with Dynamic Compositional Surrogate Models 339

The optimal sampling size is problem-dependent and thus, unituitive. Both being
too large and too small poses problems to the optimization. The former results
in underachieving solutions, when the model is already accurate, but is not used.
The latter implies a start with an over-fitted surrogate model, which can follow
with a wrongly selected search direction.

In our approach, we recognize that the purpose of the sampling plan and
of the surrogate model is the same: namely, to provide new configurations for
the evaluation. The only difference is in their internal logic: the sampling plan
is experiment-independent, while surrogate-model-based selection is performed
based on the current approximation of the search space being experiment-
dependent. Consequently, at the experiment’s beginning, when no surrogate
model is available, TutorM starts sampling configurations randomly (with Sobol
sequence), switches to the surrogate-model-based selection if the surrogate model
withstands a validation check and switches back to the sampling plan usage if
the model does not satisfy this check anymore (dynamic sampling plan).

Validation Strategy. The model validation strategy decides whether to use
model-based configuration selection or to stick with the sampling plan. Its pur-
pose is to show how well the surrogate extrapolates already performed measure-
ments (variance) and how well it can evaluate yet unseen data (bias).

To discuss our validation strategy, we need to rewind our search process
forward until the following state: assume, we have reached iteration i, where
0 < i � ∞. Until this point, n ≥ i configurations have been evaluated by the
target system, i.e., one or more configurations can be evaluated per iteration.

The main metric of our validation strategy is the coefficient of determination:

R2(y, ŷ) = 1 −
∑nsamples−1

i=0 (yi − ŷi)2
∑nsamples−1

i=0 (yi − ȳi)2
, (2)

where ȳ = 1
nsamples

∑nsamples−1
i=0 yi, ŷi is a predicted value of the i-th sample, yi

is the true value of the respective sample and nsamples is the overall number of
samples. This metric may be misleading if used straightforwardly, as there is no
mechanism to prevent over-fitting [28,31]. Thus, we apply a two-staged validation
strategy (see Fig. 3). In the outer stage, we split n measured configurations into
two sets: 0.75n for training and 0.25n testing, rounded to a larger integer for the
training set. We leave the testing set intact until the surrogate evaluation.

In the inner stage, we need to split the 0.75n configurations from the training
set further into inner training and testing sets (with the same train/test split,
leaving 0.56n for inner training and 0.19n for inner testing). The inner training
and testing sets are used for the surrogate creation. In our approach n gradually
grows from 0, enabling model creation starting from 10 configurations (6 for
training, 2 for inner testing, 2 for outer testing). Until this point the model is
considered invalid and the sampling plan is utilized. As at the beginning of the
search process n is very small, we would like to avoid a separate inner testing
set. Thus, instead of a simple hold-out split we are using k-fold cross-validation.

340 D. Pukhkaiev et al.

We subdivide the outer training set 0.75n into k equal folds, and perform k
rounds of model creation, changing the fold used for testing in each round. We
compute the accuracy at each of k rounds and compare it to a user-defined
threshold (in form of a hyperparameter). If the accuracy of the model does not
pass the threshold for all k variants, we consider the model invalid and use the
sampling plan.

If the model passed the cross-validation phase, we create it using the full
training set of 0.75n configurations and evaluate with the outer training set
of 0.25n. Here, we define a second threshold to determine if the model can
extrapolate the unknown data. In case of success, we use this model as a basis
for subsequent surrogate optimization and candidate selection steps (see Fig. 2).

The accuracy of the model that passed the outer validation phase is also used
to rank surrogate. But, the ranking is only possible if several different models are
available, leading us to our main contribution: compositional surrogate models.

Measured
configurations

train set

Surrogate evaluation
test set

 train
Cross-validation

 train train

test

Surrogate model

Surrogate creation

Surrogate creation

Surrogate model

Fig. 3. Surrogate model validation strategy

Compositional Surrogate Models. The general idea is very simple and yet
powerful: utilize separate surrogate models to approximate different objective
functions in a multi-objective optimization problem, which solves the coarse-
granularity problem of the existing approaches with multiple single-objective
models [1,8,18,24,34].

To construct such a compositional surrogate we used the classic composite
design pattern [13], where the compositional surrogate plays a role of a compos-
ite, while individual surrogates are leaves. Composite pattern ensures a unified
treatment of SMBO surrogates and their compositions, allowing to easily switch
between single- and multi-objective cases.

Utilizing compositional surrogates enables the following enhancements to the
MBMO workflow:

Dynamic Surrogate Creation. Starting from this point we assume having
two single-objective surrogate models and one multi-objective model (see Fig. 4).

At the start of the search process, all surrogate models are registered within
TutorM, which operates with them individually. It means that during the cross-
validation phase each surrogate is validated on every objective function (and
on all objective functions simultaneously for multi-objective models, see Fig. 4).
On different iterations, some models may or may not pass the cross-validation.
Those, which passed, form m sets of usable models, where m is the number of
objective functions. Combining these sets, we create s multi-objective compos-
ites, where s is the largest number of models that passed the cross-validation

Multi-objective PT with Dynamic Compositional Surrogate Models 341

threshold for an objective function (in Fig. 4 three single-objective models passed
the cross-validation for the objective o1, resulting in three compositional surro-
gates). Newly created compositional surrogates are then ranked depending on
their accuracy. The best-ranked composite model is used for optimization and
candidate selection.

S1

S2

M1

o1

o2

o1+o2

S1o1
S1o2
S2o1
S2o2
M1o1
M1o2

M1o1o2

[S1o1;S2o2]

[S2o1;S2o2]

[M1o1;S2o2]

M1o1o2

Cross-validation Validation

Fig. 4. Creation and validation of compositional models. S{X} represent single-
objective surrogate models, M{X} multi-objective models, o{X} objective function, ✓

a model passed the respective validation phase, ✗ the validation phase was not passed

Surrogate Portfolio. To find the best-ranked compositional model TutorM
creates a set of composites from the models that passed the validation. Using
a single, even the most accurate, model is wasteful for such an effort. Thus, we
adapt the stacking concept of [1] to support multi-objective surrogates. We unite
the created models into a portfolio and bind an optimization algorithm to each of
them, using the models instead of the target system. Each optimizer constructs
a Pareto front approximation, which are then used in the candidate selection
stage.

Candidate Selection. During candidate selection, one or several configurations
should be picked for an evaluation with the target system. In TutorM this number
is exposed as a hyperparameter (default 10). If the most accurate surrogate
model is used, these configurations are randomly sampled from its Pareto front
approximation. In case of a surrogate portfolio, Pareto front approximations from
all valid models are stacked together into a unified solution, which is more diverse
than each single solution it is combined from. Afterwards, the configurations are
randomly sampled from the stacked solution as in the previous case. Stacking
helps to increase exploration, while keeping the exploitation at a comparable
level, as all the models which are combined are valid.

The search process continues until one or several termination criteria are
met, in our case it is the number of function evaluations.

5 Evaluation

We evaluate our approach with a WFG [16] benchmark suite for multi-objective
optimization, implemented within pagmo library for massively parallel opti-
mization [7]. All benchmark functions are continuous. We consider bi-objective

342 D. Pukhkaiev et al.

problems with two-dimensional parameter spaces (if applicable). For WFG2 and
3 we consider bi-objective problems with a three-dimensional parameter space.

We consider relative hypervolume (r-h) as our primary metric. In general,
hypervolume denotes an area dominated by a solution set, which is calculated
using a static reference point. In our evaluation we compare relative hypervol-
umes, where 100.0 is a hypervolume of a baseline solution: NSGA-II with 50.000
evaluations. We also discuss the width of the non-dominated front if necessary.

Table 1 contains a description of all the approaches we use in the evaluation as
well as their mean relative hypervolume over all problems. For a fair comparison
we use the same implementations of the surrogates and optimization algorithms
for all strategies, changing only the way they are combined. The only exception
is the scalarized-model-based approach, where we use Hypermapper 2.0 [28].

Table 1. Evaluated approaches and their mean relative hypervolumes aggregated by all
problems. GPR - Gaussian Process Regressor, MLPR - Multi-layer Perceptron Regressor,
GBR - Gradient Boosting Regressor, SVR - Support Vector Regressor, RF - Random
forest.

Surrogate type Surrogate model Optimization algorithm Budget r-h

No model - NSGA-II
50000 99.725

1000 77.056

Scalarized model RF Local search 1000 75.888

Multiple single-
[GPR,GPR]

MOEA/D + NSGA-II 1000

91.907

[MLPR,MLPR] 92.205

objective models [GBR,GBR] 90.646

[SVR,SVR] 84.220

Pure multi-objective
GPR MOEA/D + NSGA-II 1000 92.772

model

Compositional model [GPR,SVR,MLPR,GBR] MOEA/D + NSGA-II 1000 97.652

The measurements were performed on an Intel Core i7-8700 CPU worksta-
tion with 64 GB RAM using Fedora Server 29 running on kernel 4.18. Each
experiment was repeated 5 times2.

5.1 Results

We discuss the approaches in order of the increasing result quality (according
to Table 1). Hypermapper 2.0 showed the weakest performance. The reason for
that can be explained with Fig. 5, which shows final Pareto-front approximations
using the WFG1 problem instance. From Fig. 5 we can see that this scalarization-
based approach biased one of the objective functions (f2), not being able to
explore the full width of the real non-dominated front.
2 Evaluated strategies and benchmark setup are available online: https://github.com/

Valavanca/compositional-system-for-hyperparameter-tuning/tree/LION21.

https://github.com/Valavanca/compositional-system-for-hyperparameter-tuning/tree/LION21
https://github.com/Valavanca/compositional-system-for-hyperparameter-tuning/tree/LION21

Multi-objective PT with Dynamic Compositional Surrogate Models 343

Fig. 5. Final Pareto front approximations (WFG1). f1 and f2 are the objective func-
tions, which should be minimized.

NSGA-II shows similar final performance to Hypermapper 2.0. It was able
to reach 77 r-h in 2% of the budget, meaning that the optimization process
slows down immensely, bringing only 23 pp. improvement in the next 49.000
evaluations. Figure 5 shows us that NSGA-II also biased f2, which apparently
leads to the local optima, preventing from discovering the real surface of the
non-dominated front. However, we can also see that within a sufficient budget,
NSGA-II is able to get out of the local optima.

Approaches with multiple single-objective models show superior results com-
pared to both heuristic-based and scalarized approaches. The closeness to the
real Pareto front depends on a type of the surrogate model, being the furthest
for MLPR and closest for GBR duplications (see Fig. 5). Table 1 also shows us
that using the same model in pure (GPR) and multi-model setting ([GPR,GPR])
is almost negligible. However, in Fig. 5 we can see that the multi-model GPR
provided a wider Pareto front approximation, while the pure GPR moved closer
to the real Pareto front, but in a narrower region.

Utilization of compositional surrogate models pays of with the best results.
In terms of the final Pareto front approximation, TutorM shows a comparable
solution quality to the pure GPR (advancing over the baseline with 50.000 eval-
uations), but is significantly wider (see Fig. 5). From Table 1 we can see that in

344 D. Pukhkaiev et al.

general TutorM provides the solution quality comparable to the baseline (only
2 pp. less), while saving 98% of evaluation effort.

5.2 Runtime Behavior

To understand the reasons for the superior final performance of TutorM, we
need to discuss its runtime behavior. We use WFG1 as a running example. Our
paper contains three contributions. Therefore, to see the effect of each improve-
ment we split TutorM into three variants, gradually adding enhancements: 1)
basic version with compositional models only, 2) with the surrogate portfolio, 3)
with dynamic sampling plan. Different configurations of TutorM are gathered in
Table 2. Figure 6 depicts the runtime performance of the evaluated approaches.
For a better clarity, we left only the best-performing approach among each sur-
rogate type.

Table 2. Evaluated variants of TutorM.

Variant Cross-validation Outer validation Model Initial sampling

threshold threshold selection size

TutorM: basic −∞ −∞ Best 100

TutorM: portfolio −∞ −∞ Stack 100

TutorM: dynamic 0.65 0.7 Stack 0

Compositional Surrogate Models. The only difference of TutorM in its basic
version from classic MBMO approaches lies in having a set of models instead of
a predefined surrogate model. In this version, TutorM does not use its validation
strategy, meaning that all built models are combined into compositional surro-
gates. Moreover, TutorM does not use its portfolio, implying that only the most
accurate model is used by the optimizer to guide the search.

Utilization of compositional surrogate models demonstrates a start similar to
the other approaches, for which over-fitting is the most probable reason. Despite
not using its validation strategy, TutorM still relies on the accuracy-metric to
pick the “best-performing” model. While the number of evaluations is too small,
optimization of a chosen model results in a flatter start. When the models become
more accurate (at around 400 evaluations), R2 becomes more meaningful, result-
ing in better overall performance of TutorM, during the subsequent iterations of
the search process.

Thus, we can answer RQ1: utilization of compositional surrogate models
improves the overall quality of obtained solutions in comparison to a static uti-
lization of the same surrogate models. However, such benefits can be gained only
in a long run, when all models become more accurate.

Multi-objective PT with Dynamic Compositional Surrogate Models 345

Fig. 6. Alteration of r-h for WFG1. Diamonds represent the most accurate surrogate
model at the respective iteration. The respective surrogate is used by TutorM: basic,
while portfolio-based versions combine predictions of multiple surrogates.

Portfolio of Compositional Surrogate Models. Here, we enhance the basic
version of TutorM with a portfolio support, allowing it to combine the results
obtained from the optimization of all surrogate models on each iteration.

From Fig. 6 we can see that a simultaneous utilization of all available com-
binations of surrogate models completely negates the problem observed for the
basic version: slow start. Portfolio gives a wider set of configurations, out of
which the candidates for the evaluation are selected. This results in an instant
growth of r-h and the quality improvement preserves the same trend as of the
basic version, for which the search accelerated with the growing accuracy of
models.

Now, let us consider which surrogate was the most accurate at each itera-
tion (colored diamonds in Fig. 6). We can see that the most accurate model is
very similar for all TutorM variants throughout the search process. Nevertheless,
the versions with portfolio show a much steeper growth of r-h, especially at the
start of the search, when the surrogates are still unstable. In this situation a
single model can easily predict an under-achieving configuration, which is the

346 D. Pukhkaiev et al.

case for the basic TutorM. With a portfolio, on contrary, solution sets from all
surrogates are combined together, meaning some configurations may reappear
in solution sets of various models. These overlapping configurations have a much
higher chance to be well-performing, as various extrapolations pointed on them.

Thus, we can answer RQ2: combination of several models into a portfolio
overcomes the deficiency of basic TutorM, allowing to create more diverse Pareto
front approximations at each iteration of the search process. It allows selecting
more promising solutions for the evaluation right from the start of the search
process, enhancing the overall quality of optimization.

Portfolio of Dynamic Compositional Surrogate Models. Finally, we add
a dynamic sampling plan, which allows deciding on whether to use the surrogate
or the sampling strategy from the beginning of the search. Dynamic sampling
plan pursues two goals: 1) freeing the user from an unintuitive choice for a
sampling size; 2) promoting the search space exploration, when the models are
inaccurate.

In contrast to the other approaches, this version starts without any config-
urations measured. We can see that the beginning of the search looks exactly
like for the approaches with static sampling: r-h grows extremely slow using
the random search. However, as soon as the first model passes the validation
check, solution quality raises dramatically, meaning that in case of extremely
expensive target system evaluations, dynamic sampling plan is strongly recom-
mended. During several subsequent iterations, the models are still overfitted,
resulting in a frequent change of the most accurate surrogate. Despite this fact,
the utilization of surrogate models are already beneficial over the random search.

When the static approaches transfer into the surrogate-based optimization
phase, TutorM is already far ahead in terms of the solution quality. With the
growing number of performed evaluations the validation strategy starts slowing
the search down, forbidding inaccurate models to take part in the optimization
process. These models, inaccurate on their own, can be beneficial when used in
the portfolio, providing diversity to the combined Pareto front approximation.
Thus, portfolio-based TutorM without model validation outperforms the version
with dynamic sampling in the long run.

The answer to RQ3 is the following: a dynamic sampling strategy can be
extremely convenient during the beginning of the search process, which is of
the utmost importance for expensive target systems. At a certain point, the
validation strategy hinders the search by restricting certain models, narrowing
diversity of the Pareto front approximation.

5.3 Threats to Validity

There are several threats to internal validity. The choice of internal hyperparam-
eters in TutorM, e.g., of the values for validation thresholds can either bloat the
number of compositional models in the portfolio or degrade TutorM to random
search, if all the models were to be prohibited. The choice of the optimizer to

Multi-objective PT with Dynamic Compositional Surrogate Models 347

work with the surrogate model and its hyperparameters can also be critical for
the quality of the obtained solutions. Surrogate models themselves are vulner-
able to hyperparameters. Thus, an approach that can configure parameters of
surrogates at runtime, would have been of an immense aid to the search and is
a promising direction for future work.

A threat to external validity lies in our benchmark set, which consists of well-
known, but still synthetic benchmarks only. Adding an evaluation of a real-world
scenario will increase the external validity.

6 Conclusion and Future Work

Parameter configuration of contemporary software systems, hyperparameter
optimization of machine learning algorithms and parameter tuning of meta-
heuristics in search-based software engineering are just a small subset of the
use cases of multi-objective surrogate-based optimization. In this paper we have
identified two major issues common for state-of-the-art approaches in this field:
coarse granularity and a static sampling plan.

To tackle these issues we propose an approach that allows combining different
surrogate models into compositional surrogate models, which delivers solutions
of a higher quality than reachable by the individual models they are comprised of.
Moreover, we enhance our approach with a portfolio of surrogate models, allow-
ing to combine solutions from different surrogates. Such a portfolio diversifies
intermediate Pareto front approximations and further improves the result qual-
ity. Finally, we present a dynamic sampling strategy that provides high-quality
solutions faster. Our findings show that TutorM outperforms state-of-the-art
MBMO approaches, improving the final result quality by 5 pp.

There are several promising directions worth of further investigation. On the
one hand, parameter control of surrogate models can increase the quality of
the obtained solutions. On the other hand, enabling dynamism in portfolios can
increase performance of our approach by discarding non-scaling models.

Acknowledgments. This work was supported (in part) by the German Research
Foundation (DFG) within the Collaborative Research Center SFB 912–HAEC and
project HybridPPS (Project ID 418727532). It was also supported by BMBF project
“Software Campus” (grant no. 01IS17044), AIF/IFL-funded project “IPS Framework”
(grant no. 20961 BR/2) and SAB-funded project “PROSPER” (grant no. 100379935).

References

1. Akhtar, T., Shoemaker, C.A.: Efficient multi-objective optimization through
population-based parallel surrogate search. arXiv preprint arXiv:1903.02167 (2019)

2. Azzouz, R., Bechikh, S., Ben Said, L.: Dynamic multi-objective optimization using
evolutionary algorithms: a survey. In: Bechikh, S., Datta, R., Gupta, A. (eds.)
Recent Advances in Evolutionary Multi-objective Optimization. ALO, vol. 20, pp.
31–70. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42978-6 2

http://arxiv.org/abs/1903.02167
https://doi.org/10.1007/978-3-319-42978-6_2

348 D. Pukhkaiev et al.

3. Bao, L., Liu, X., Wang, F., Fang, B.: Actgan: automatic configuration tuning for
software systems with generative adversarial networks. In: Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2019, pp. 465–476. IEEE Press (2019)

4. Bartz-Beielstein, T., Lasarczyk, C.W.G., Preuss, M.: Sequential parameter opti-
mization. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 773–
780 (2005)

5. Bechikh, S., Elarbi, M., Ben Said, L.: Many-objective optimization using evolu-
tionary algorithms: a survey. In: Bechikh, S., Datta, R., Gupta, A. (eds.) Recent
Advances in Evolutionary Multi-objective Optimization. ALO, vol. 20, pp. 105–
137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42978-6 4

6. Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing
the hyperparameters of machine learning algorithms. In: Proceedings of the 12th
Python in Science Conference, pp. 13–20. Citeseer (2013)

7. Biscani, F., et al.: esa/pagmo2: pagmo 2.15.0, April 2020. https://doi.org/10.5281/
zenodo.3738182

8. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrmbo: a
modular framework for model-based optimization of expensive black-box functions.
arXiv preprint arXiv:1703.03373 (2017)

9. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter opti-
mization at scale. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International
Conference on Machine Learning. Proceedings of Machine Learning Research, vol.
80, pp. 1437–1446. PMLR, Stockholm, Sweden, 10–15 July 2018

10. Feng, Z., Wang, J., Ma, Y., Ma, Y.: Integrated parameter and tolerance design
based on a multivariate gaussian process model. Eng. Optim. 53(8), 1349–1368
(2021). https://doi.org/10.1080/0305215X.2020.1793976

11. Fomin, F.V., Kaski, P.: Exact exponential algorithms. Commun. ACM 56(3), 80–
88 (2013)

12. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. J. Mach. Learn. Res. 4(November), 933–969 (2003)

13. Gamma, E.: Design Patterns: Elements of Reusable Object-oriented Software.
Pearson Education India, Delhi (1995)

14. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google
vizier: a service for black-box optimization. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2017, pp. 1487–1495. Association for Computing Machinery, New York (2017)

15. Horn, D., Bischl, B.: Multi-objective parameter configuration of machine learning
algorithms using model-based optimization. In: 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 1–8 (2016)

16. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

17. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

18. Isaacs, A., Ray, T., Smith, W.: An evolutionary algorithm with spatially distributed
surrogates for multiobjective optimization. In: Randall, M., Abbass, H.A., Wiles,
J. (eds.) Progress in Artificial Life, pp. 257–268. Springer, Heidelberg (2007)

19. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

https://doi.org/10.1007/978-3-319-42978-6_4
https://doi.org/10.5281/zenodo.3738182
https://doi.org/10.5281/zenodo.3738182
http://arxiv.org/abs/1703.03373
https://doi.org/10.1080/0305215X.2020.1793976
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

Multi-objective PT with Dynamic Compositional Surrogate Models 349

20. Kaltenecker, C., Grebhahn, A., Siegmund, N., Apel, S.: The interplay of sampling
and machine learning for software performance prediction. IEEE Softw. 37(4),
58–66 (2020). https://doi.org/10.1109/MS.2020.2987024

21. Knowles, J.: Parego: a hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput.
10(1), 50–66 (2006)

22. Lama, P., Zhou, X.: Aroma: Automated resource allocation and configuration of
mapreduce environment in the cloud. In: Proceedings of the 9th International Con-
ference on Autonomic Computing, ICAC 2012, pp. 63–72. Association for Com-
puting Machinery, New York (2012)

23. Loshchilov, I., Schoenauer, M., Sebag, M.: A mono surrogate for multiobjective
optimization. In: Proceedings of the 12th Annual Conference on Genetic and Evo-
lutionary Computation. pp. 471–478. GECCO 2010, Association for Computing
Machinery, New York (2010)

24. Lu, X., Sun, T., Tang, K.: Evolutionary optimization with hierarchical surrogates.
Swarm Evol. Comput. 47, 21–32 (2019), special Issue on Collaborative Learning
and Optimization based on Swarm and Evolutionary Computation

25. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
IRACE package: iterated racing for automatic algorithm configuration. Oper. Res.
Perspect. 3, 43–58 (2016)

26. Mlakar, M., Petelin, D., Tušar, T., Filipič, B.: GP-DEMO: differential evolution
for multiobjective optimization based on gaussian process models. Euro. J. Oper.
Res. 243(2), 347–361 (2015)

27. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for
seeking the extremum. Towards Glob. Optim. 2(117–129), 2 (1978)

28. Nardi, L., Koeplinger, D., Olukotun, K.: Practical design space exploration. In:
2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), pp. 347–358 (2019)

29. Palesi, M., Givargis, T.: Multi-objective design space exploration using genetic
algorithms. In: Proceedings of the Tenth International Symposium on Hard-
ware/Software Codesign, CODES 2002, pp. 67–72. Association for Computing
Machinery, New York (2002)

30. Pukhkaiev, D., Semendiak, Y., Götz, S., Aßmann, U.: Combined selection and
parameter control of meta-heuristics. In: 2020 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pp. 3125–3132 (2020)

31. Pukhkaiev, D., Götz, S.: BRISE: energy-efficient benchmark reduction. In: Pro-
ceedings of the 6th International Workshop on Green and Sustainable Software,
pp. 23–30. ACM (2018)

32. Qu, B., Zhu, Y., Jiao, Y., Wu, M., Suganthan, P., Liang, J.: A survey on multi-
objective evolutionary algorithms for the solution of the environmental/economic
dispatch problems. Swarm Evol. Comput. 38, 1–11 (2018)

33. Trindade, Á.R., Campelo, F.: Tuning metaheuristics by sequential optimisation of
regression models. Appl. Soft Comput. 85, 105829 (2019)

34. Rosales-Pérez, A., Coello, C.A.C., Gonzalez, J.A., Reyes-Garcia, C.A., Escalante,
H.J.: A hybrid surrogate-based approach for evolutionary multi-objective optimiza-
tion. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2548–2555 (2013)

35. Roub́ıček, T.: Relaxation in Optimization Theory and Variational Calculus, vol. 4.
Walter de Gruyter, Berlin (2011)

https://doi.org/10.1109/MS.2020.2987024

350 D. Pukhkaiev et al.

36. Sarkar, A., Guo, J., Siegmund, N., Apel, S., Czarnecki, K.: Cost-efficient sam-
pling for performance prediction of configurable systems. In: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 342–352
(2015)

37. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Hyperparameter optimization
machines. In: 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pp. 41–50 (2016)

38. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

39. Yuan, J., Wang, K., Yu, T., Fang, M.: Reliable multi-objective optimization of
high-speed WEDM process based on gaussian process regression. Int. J. Mach.
Tools Manuf. 48(1), 47–60 (2008)

40. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

Corrected Formulations for the Traveling
Car Renter Problem

Brenner Humberto Ojeda Rios(B), Junior Cupe Casquina(B),
Hossmell Hernan Velasco Añasco(B), and Alfredo Paz-Valderrama(B)

Escuela Profesional de Ingenieŕıa de Sistemas, Universidad Nacional de San Agust́ın
de Arequipa, Arequipa, Peru

{bojeda,jcupec,hvelasco,apazv}@unsa.edu.pe

Abstract. This paper presents two corrected formulations to the mixed
integer quadratically constrained programming model of the Traveling
Car Renter Problem (CaRS), proposed by da Silva and Ochi (2016, An
efficient hybrid algorithm for the Traveling Car Renter Problem. Expert
Systems with Applications, 64, 132–140). In the CaRS, various vehicle
types are available for rent in the cities, each one with its own rental cost;
when a car is returned to the city where it was rented, an additional tax
must be charged, the objective is to construct a Hamiltonian circuit that
minimizes the total cost of the circuit plus the return cost of cars. We
highlight the original formulation errors, propose corrections to these
errors, provide an analytical validation of the corrections, and present
computational experiments using a MIP solver.

Keywords: Traveling car renter problem · Mathematical
programming · Optimization

1 Introduction

Goldbarg et al. [5] presented a variant of the classical Traveling Salesman Prob-
lem that models central aspects of renting a car from the customer’s viewpoint.
Such variant is called Traveling Car Renter Problem (CaRS). The goal is to
perform the tour at the lowest possible cost. In CaRS, various vehicle types are
available for rent, each one with its own characteristics and operating costs (fuel
consumption, toll fees, and rental cost); additionally, there is an extra charge to
be paid to return a vehicle to the city where it was rented if it was delivered in
a different city [2].

The first mathematical formulation (an integer quadratic programming
model) for CaRS was proposed in [3], but something seems to be missing. Da
Silva and Ochi [7] confirmed those in the instance Mauritania10e from the CaRS
library [8], where optimal values of the experiments evidencing that some con-
straints are missing. Consequently, da Silva and Ochi [7] proposed another math-
ematical formulation based on the famous Miller-Tucker-Zemlin Traveling Sales-
man Problem (MTZ-TSP) formulation [6], but there is evidence of it was not
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 351–363, 2021.
https://doi.org/10.1007/978-3-030-92121-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_27

352 B. H. O. Rios et al.

formulated correctly, for considering wrongly the relationship among the vari-
ables pci,j , w

c
i and rci . All tested instances in [3] and [7] were retrieved from the

CaRS library [8].
CaRS is defined as a set of different types of cars C and a graph G(V,E),

where V is a set of n cities (vertices) and E is a set of roads (edges) composed
by pairs of cities. The cost of using a car c ∈ C on an road (i, j) is given by Dc

ij .
An additional cost F c

ij must be paid every time a car c is rented in a city i and
delivered to j, with i �= j, which corresponds to the extra fee to return the car c
to i. The goal is to build a Hamiltonian circuit that minimizes the total cost of
the tour plus the extra fee of returning the cars.

This paper highlights the errors in the mixed integer quadratically con-
strained programming model of the CaRS and proposes two corrected models.
The original mathematical formulation appeared on p. 135 of [7] is repeated here
for convenience:

min
∑

(i,j)∈E

|C|∑

c=1

Dc
i,j ∗ xc

i,j +
∑

i∈V

∑

j∈V

|C|∑

c=1

F c
i,j ∗ pci,j (1)

s.t. ui − uj + (n − 1) ∗ xc
i,j + (n − 3) ∗ xc

j,i ≤ n − 2
∀i, j = 2, . . . , n; i �= j ∀c ∈ C (2)

acj =
n∑

i=1

xc
i,j ∀j ∈ V ∀c ∈ C (3)

|C|∑

c=1

acj = 1 ∀j ∈ V (4)

dci =
n∑

j=1

xc
i,j ∀i ∈ V ∀c ∈ C (5)

|C|∑

c=1

dci = 1 ∀i ∈ V (6)

rci ≥ aci − dci ∀i ∈ V ∀c ∈ C (7)
∑

i∈V

rci ≤ 1 ∀c ∈ C (8)

wc
i ≥ dci − aci ∀i ∈ V ∀c ∈ C (9)

∑

i∈V

wc
i ≤ 1 ∀c ∈ C (10)

|c|∑

c=1

rc1 = 1 (11)

Corrected Formulations for the Traveling Car Renter Problem 353

|c|∑

c=1

wc
1 = 1 (12)

pci,j = wc
i ∗ rcj ∀i, j = 1, . . . , n ∀c ∈ C (13)

Parameter Dc
i,j represents an operational cost associated with each car type

c and arc(i, j) ∈ A, i �= j, while F c
i,j represents the return fee that must be paid

by the car renter every time a car c is taken from city i and delivered in city
j. The binary decision variable xc

i,j = 1 if car renter goes from city i to j using
car c. The continuous decision variable ui represents the order in which city i
is visited (1 ≤ ui ≤ n − 1 ∀i = 2, . . . , n). The binary decision variable acj = 1
if car renter arrives city j using car c. The binary decision variable dci = 1 if
car renter departs from city i using car c. The following two variables (rci and
wc

i) are similar to acj and dci , the difference is that they are used to indicate the
change of car between sub-tours. The binary decision variable rci = 1 if car renter
returns car c when visiting i. The binary decision variable wc

i = 1 if car renter
withdraws car c when visiting i. Finally, the binary decision variable pci,j = 1 if
return fee is paid for taking car c from city i to city j.

The objective function (1) adds travel costs and extra fees for returning the
cars to the cities where they were rented. The constraint (2) is adapted from the
Miller-Tucker-Zemlin formulation for the CaRS presented by [1]. Restrictions (3)
and (4) ensure that each city is visited only once by exactly one car. Restrictions
(5) and (6) ensure that each city is left only once for exactly one car. Restrictions
(7) and (9) models the rental and delivery of each car. Restrictions (8) and (10)
ensure that each car is rented only once. Restrictions (11) and (12) ensure that a
single car must be rented and delivered to the first visited city (city 1). Finally,
constraint (13) defines the rate of return that must be paid whenever a car c is
rented in the city i and delivered to j, i �= j.

The remainder of this paper is organized as follows. In Sect. 2, the errors
in the original mixed integer quadratically constrained programming model are
explained. Corrections to the model are proposed in Sect. 3 and are validated in
Sect. 4.

2 Explanation of Errors in the Original Formulation

According to the version of CaRS studied in [7], any car must be rented at most
once (CaRS with no repetition) and the return fees paid must be calculated con-
sidering the city 1 as the first city on the tour. The lack of restrictions on pci,j can

1 3→ 2 3→16 3→ 3 3→ 15 3→ 21 3→ 20 3→ 26 3→ 22 3→ 25 3→ 13 3→ 18 3→ 19 3→ 17 2→

23 2→ 9 2→ 11 2→ 7 2→ 8 2→ 5 2→ 24 2→ 6 2→ 4 2→ 12 2→ 10 3→ 14 3→ 1

Fig. 1. Inconsistent solution of the mixed integer quadratically constrained program-
ming model proposed by [7].

354 B. H. O. Rios et al.

lead to wrong optimal value. In the instance BrasilAM26n from CaRS library
[8], for example, suppose that Table 1 variables are all equal to 1, which corre-
sponds to solution in the Fig. 1. Although it meets all formulation constraints,
it is clearly inconsistent. Car 3 is rented twice (cities 1 and 10). Moreover, gen-
erated solution by the mathematical formulation of [7] has value equal to 201,
which is contradictorily lower than the optimal value (202). Our experiments
confirmed those optimal values evidencing that some constraints are missing in
the original mathematical formulation. Both variables rci and wc

i are the cause
of the problem, the value of pci,j depends on these ones variables, and the return
fees paid depends on pci,j .

In the previous example (see Fig. 1), variables r210, r
3
17 and r11 take the value 1,

since setting all values xc
i,j to 1 generates unambiguously a single solution, so the

cars 2 is delivered in the city 10 (r210), whereas the car 3 is delivered twice, first in
city 17 (r317) and then in city 1 (r11). Something similar happens with the variable
w (w2

17, w
1
1 and w3

10 are equals to 1). Consequently, pci,j is erroneously calculated
in the constraint (13), the return fees paid is calculated only considering rented
cars in the cities 10 and 17, without considering the city 1 as the first city to
rent a car in the tour. This explains why the value of the solution in Fig. 1 is 201
rather than 215. In addition, both rci and wc

i show a strange behavior (r11 = 1
and w1

1 = 1). Due to the complicated relationship between rci and wc
i in the

CaRS, the constraints (7) and (9) in the original mathematical formulation are
incorrect. As a result, the original mathematical formulation admits inconsistent
solutions that allows to rent the same vehicle type more than once on the tour
and calculate the return fees without considering the city 1 as the first city of
the tour.

Table 1. Variables of da Silva and Ochi formulation [7] that creates an inconsistent
solution if are set to 1

Var. Meaning Var. Meaning Var. Meaning Var. Meaning

x3
1,2 1

3−→ 2 x3
20,26 20

3−→ 26 x3
19,17 19

3−→ 17 x2
8,5 8

2−→ 5

x3
2,16 2

3−→ 16 x3
26,22 26

3−→ 22 x2
17,23 17

2−→ 23 x2
5,24 5

2−→ 24

x3
16,3 16

3−→ 3 x3
22,25 22

3−→ 25 x2
23,9 23

2−→ 9 x2
24,6 24

2−→ 6

x3
3,15 3

3−→ 15 x3
25,13 25

3−→ 13 x2
9,11 9

2−→ 11 x2
6,4 6

2−→ 4

x3
15,21 15

3−→ 21 x3
13,18 13

3−→ 18 x2
11,7 11

2−→ 7 x2
4,12 4

2−→ 12

x3
21,20 21

3−→ 20 x3
18,19 18

3−→ 19 x2
7,8 7

2−→ 8 x2
12,10 12

2−→ 10

x3
14,1 14

3−→ 1 x3
10,14 10

3−→ 14

3 Proposed Formulations

In this subsection, we refer to the da silva’s model as the original model. Due
to the bad relationship between rci and wc

i in the original model, the restrictions
(7) and (9) are incorrect. As a result, the model admits inconsistent solutions
that allow the same type of car to be rented more than once on tour.

Corrected Formulations for the Traveling Car Renter Problem 355

3.1 First Correction Proposal - Model01

The first formulation incorporates four changes for the original model. First, the
constraint (3) is replaced by (14). Second, the constraint (5) is replaced by (15).
In the first two changes we include i �= j to prevent that the optimal solution
takes the value zero. Third, the constraint (7) is replaced by the constraint (16).
Fourth, the constraint (9) is replaced by (17).

acj =
n∑

i=1,i �=j

xc
i,j ∀j ∈ V ∀c ∈ C (14)

dci =
n∑

j=1,j �=i

xc
i,j ∀i ∈ V ∀c ∈ C (15)

rci = aci · (1 − dci) ∀i ∈ V ∀c ∈ C (16)

wc
i = dci · (1 − aci) ∀i ∈ V ∀c ∈ C (17)

Table 2. Values of the binary decision variable rci in the constraint (7) of the original
model and the constraint (16) of the corrected model.

Original model Corrected model

ac
i dci rci ≥ ac

i − dci rci = ac
i (1 − dci)

0 0 0|1 0

0 1 0|1 0

1 0 1 1

1 1 0|1 0

In Table 2, all possible combinations of the binary decision variables aci and
dci are shown, to check the constraint (7).

1. If the salesman does not reach the city i using the car c and does not leave
the city i using the same car c (i.e., if aci = 0 and dci = 0), by CaRS definition,
the correct constraint will force the salesman to not return the car c when
visiting i (rci = 0); however, the constraint (7) allows an ambiguous behavior
rci (1 or 0).

2. If the salesman does not reach the city i using the car c and leaves the city
i using the same car c (i.e., if aci = 0 and dci = 1), by definition of CaRS,
the correct restriction will force the salesman to not return the car c when he
visits i (rci = 0); however, constraint (7) allows an ambiguous behavior rci (1
or 0) once again.

356 B. H. O. Rios et al.

3. If the salesman arrives in the city i using the car c and does not leave the city
i using the same car c (i.e., if aci = 1 and dci = 0), by CaRS definition, the
correct constraint will force the salesman to return the car c when visiting i
(rci = 1).

4. If the salesman arrives in the city i using the car c and leaves the city i using
the same car c (i.e., if aci = 1 and dci = 1), by definition of CaRS, the correct
restriction will force the salesman to not return the car c when visiting i
(rci = 0); however, constraint (7) allows an ambiguous behavior rci (1 or 0)
again.

The same reasoning applies to explain the fourth change, when the constraint
(9) is replaced by the constraint (17). Table 3 is used to check the constraint (9),
it shows the values of the variable wc

i in the constraint (9) of the original model
and the constraint (17) of the corrected model.

Table 3. Values of the binary decision variable wc
i in the constraint (9) of the original

model and constraint (17) of the corrected model.

Original model Corrected model

ac
i dci wc

i ≥ dci − ac
i wc

i = dci (1 − ac
i)

0 0 0|1 0

0 1 1 1

1 0 0|1 0

1 1 0|1 0

3.2 Second Correction Proposal - Model02

The second formulation incorporates four changes. First, the restrictions (3) and
(5) are replaced by the restrictions (18) and (19), respectively. These two changes
include the condition i �= j for the sums, preventing the optimal solution takes
a value equal to zero. Second, the constraints (7) and (9) are replaced by the
equations (20) and (21), respectively. The last two changes are based on the DFJ
model proposed by [4].

acj =
n∑

i=1,i �=j

xc
i,j ∀j ∈ V ∀c ∈ C (18)

dci =
n∑

j=1,j �=i

xc
i,j ∀i ∈ V ∀c ∈ C (19)

rci =

(
∑

j∈V

xc
j,i

)(
∑

c′∈C,
c′ �=c

∑

h∈V

xc′
i,h

)
∀c ∈ C,∀i ∈ V (20)

Corrected Formulations for the Traveling Car Renter Problem 357

wc
i =

(
∑

j∈V

xc
i,j

)(
∑

c′∈C,
c′ �=c

∑

h∈V

xc
h,i

)
∀c ∈ C,∀i ∈ V (21)

For didactic reasons, four new variables are used to explain the equations
(20) and (21) (two variables for each equation). In the equation (20), rci can be
represented as the product of Ac

j,i and Bc′
i,h, where:

Ac
j,i =

(
∑

j∈V

xc
j,i

)
(22)

Bc′
i,h =

(
∑

c′∈C,
c′ �=c

∑

h∈V

xc
h,i

)
(23)

Since rci is a binary variable, then Ac
j,i and Bc′

i,h are also binary variables.
Ac

j,i, indicates whether the car c travels from city j to city i (Ac
j,i = 1) or

not (Ac
j,i = 0). Bc′

i,h, indicates whether the car c′ travels from the city i to h

(Bc′
i,h = 1) or not (Bc′

i,h = 0), where the car c′ is different from the car used by
the salesman to arrive to the city i.

Table 4 shows the values of the variable rci in the restrictions (7) and (20). It
is used to check the constraint (7).

Table 4. Values of the binary decision variable rci in the constraint (7) of the original
model and constraint (20) of the corrected model.

Original model Corrected model

ac
i dci rci ≥ ac

i − dci Ac
j,i Bc′

i,h rci = Ac
j,i · Bc′

i,h

0 0 0|1 0 1 0

0 1 0|1 0 0 0

1 0 1 1 1 1

1 1 0|1 1 0 0

1. If the salesman does not reach the city i using the car c (i.e., Ac
j,i = 0 or

aci = 0) and leaves the city i using the car c′ (i.e., Bc′
i,h = 1 or dci = 0),

by definition of CaRS, the correct restriction will force the salesman to not
return the car c when visiting i (rci = 0). However, constraint (7) allows an
ambiguous behavior for rci (1 or 0).

2. If the salesman does not reach the city i using the car c (i.e., Ac
j,i = 0 or

aci = 0) and does not leave the city i using the car c′ (i.e., Bc′
i,h = 0 or dci = 1),

by the CaRS definition, the correct constraint will force the salesman to not
return the car c when visiting i (rci = 0). However, constraint (7) allows an
ambiguous behavior for rci (1 or 0).

358 B. H. O. Rios et al.

3. If the salesman arrives to city i using the car c (i.e., Ac
j,i = 1 or aci = 1) and

leaves the city i using the car c′ (i.e., Bc′
i,h = 1 or dci = 0), by definition of

CaRS, the correct constraint forces the salesman to return the car c when
visiting i (rci = 1).

4. If the salesman arrives to city i using the car c (i.e., Ac
j,i = 1 or aci = 1)

and does not leave the city i using the car c′ (i.e., Bc′
i,h = 0 or dci = 1),

by definition of CaRS, the correct restriction will force the salesman to not
return the car c when visiting i (rci = 0). However, constraint (7) allows an
ambiguous behavior for rci (1 or 0).

In the above explanation, note that 1 − Bc′
i,h is equivalent to dci , just as Ac

j,i

is equivalent to aci . On the other hand, the equation (21), wc
i can be represented

as the product of Ec
,j and M c′

h,j , where:

Ec
i,j =

(
∑

j∈V

xc
i,j

)
(24)

M c′
h,j =

(
∑

c′∈C,
c′ �=c

∑

h∈V

xc
h,i

)
(25)

Ec
i,j indicates whether there is a car c traveling from city i to city j (Ec

i,j =
1) or not (Ec

i,j = 0). M c′
h,j indicates whether there is a car c′ traveling from city

h to city j (M c′
h,j = 1) or not (M c′

h,j = 0), where the car c′ is different from the
car with which the salesman arrives in the city i.

Table 5. Values of the binary decision variable wc
i in the constraint (9) of the original

model and the constraint (21) of the corrected model.

Original model Corrected model

ac
i dci wc

i ≥ dci − ac
i Mc′

h,j Ec
i,j wc

i = Mc′
h,j · Ec

i,j

0 0 0|1 1 0 0

0 1 1 1 1 1

1 0 0|1 0 0 0

1 1 0|1 0 1 0

In Table 5, all possible combinations of variables for the constraints (9) and
(21) are shown. The explanation for replacing the equation (9) with (21) is
analogous to the previous one. Note that aci = 1 − M c′

h,j and dci = Ec
h,j .

Corrected Formulations for the Traveling Car Renter Problem 359

4 Experiments

Model01 and Model02 were implemented on a computer with an Intel Core i5-
2450M processor, 2.50 GHz x4 CPU, and 3.8 Gb of RAM in the Ubuntu operating
system. Gurobi 7.0.0 was used as an optimizer (two threads were employed). To
model CaRS, the Gurobi C++ interface was used. The processing time of the
experiment was limited to 5000 s.

In order to define the lower limits for some problems in the CArSLIB library,
tests were performed on 56 instances (28 Euclidean and 28 non-Euclidean) of
the problem. These instances are available at http://www.dimap.ufrn.br/lae/
en/projects/CaRS.php.

Tables 6 and 7 show the results of models Model01 and Model02 for non-
Euclidean and Euclidean instances, respectively. The columns Name, n, |C|,
and Tempo show, respectively, the instance name, the number of cities, the
number of available cars, and the execution timeout in seconds (required by
the solver). The columns Model01 and Model02 display, respectively, the results
of the formulations presented in Sect. 3. The Sol column shows the cost of the
optimal solution or the best entire solution found by the solver until the time
limit is reached. The Lim column displays the lower bound calculated by the
solver. The column Gap shows the percentage deviation derived from the values
presented in Sol and Lim. The derived percentage deviation is calculated using
the formula (26). The value 0.00%, in the column Gap, indicates that the instance
was solved by the solver optimally with the corresponding model. The value 5000
in the Time column means that the solver has stopped due to the time limit.

Gap =
|(Lim − Sol)|

Sol
× 100 (26)

In Table 6, Model01 stands out from other model for its speed in finding opti-
mal solutions or closer to optimum (in most instances). For example, between
the Peru13n and Argelia15n instances (with the exception of BrasilAM26n),
Model01 finds the optimal solutions in less time than the other model. Specif-
ically, in Argelia15n, Model01 finds the optimal solution in 225.06 s, while
Model02 in 1648.91. With the exception of the BrasilSP32n instance, all models
were able to solve the same instances optimally. In the BrasilSP32n instance,
Model02 was the only model that found the optimal solution. For instances with
more than 32 cities, the solver has reached the time limit.

In Table 7, Model02 found more solutions close to the optimum than
Model01. For instances between Bolivia10e (inclusive) and Russia17e (inclu-
sive), with the exception of Argelia15e, Model01 found optimal solutions in less
time than the other model. In the instances BrasilPR25e, BrasilMG30e and
BrasilRS32e, Model01 turns out to be slower than Model02. With the exception
of BrasilCO40e, all models were able to find optimal solutions for the same
instances. Model02 was the only model that found the optimal solution for
BrasilCO40e. Model02 tends to achieve better values for the objective function
than other model.

http://www.dimap.ufrn.br/lae/en/projects/CaRS.php
http://www.dimap.ufrn.br/lae/en/projects/CaRS.php

360 B. H. O. Rios et al.

Table 6. Results for non-Euclidean instances

Instance Model01 Model02

Name n |C| Time Sol Lim Gap(%) Time Sol Lim Gap(%)

Bolivia10n 10 3 0,91 681 681,0 0,00 0,94 681 681,0 0,00

Peru13n 13 2 0,10 693 693,0 0,00 0,23 693 693,0 0,00

Angola12n 12 2 0,09 656 656,0 0,00 0,47 656 656,0 0,00

EUA17n 17 2 0,31 822 822,0 0,00 0,9 822 822,0 0,00

Congo15n 15 2 0,19 886 886,0 0,00 1,06 886 886,0 0,00

Argentina16n 16 2 0,32 894 894,0 0,00 0,53 894 894,0 0,00

BrasilRJ14n 14 2 0,10 167 167,0 0,00 0,81 167 167,0 0,00

BrasilRN16n 16 2 0,37 188 188,0 0,00 0,52 188 188,0 0,00

BrasilAM26n 26 3 5,90 202 202,0 0,00 5,57 202 202,0 0,00

AfricaSul11n 11 3 9,20 714 714,0 0,00 11,07 714 714,0 0,00

Arabia14n 14 5 111,08 1026 1026,0 0,00 205,74 1026 1026,0 0,00

Argelia15n 15 3 225,06 863 863,0 0,00 1648,91 863 863,0 0,00

Cazaquistao15n 15 5 491,61 1043 1043,0 0,00 309,29 1043 1043,0 0,00

Australia16n 16 4 346,51 1061 1061,0 0,00 289,35 1061 1061,0 0,00

Canada17n 17 4 400,05 1136 1136,0 0,00 159,22 1136 1136,0 0,00

China17n 17 3 2054,43 918 918,0 0,00 2308,87 918 918,0 0,00

Russia17n 17 5 5000,00 1094 929,0 15,08 5000,00 1098 924,0 15,85

BrasilPR25n 25 3 422,16 226 226,0 0,00 160,99 226 226,0 0,00

BrasilSP32n 32 4 5000,00 257 242,0 5,84 5000,00 254 254,0 0,00

BrasilMG30n 30 4 5000,00 272 260 4,41 5000,00 271 261,0 3,69

BrasilRS32n 32 4 5000,00 269 250,0 7,06 5000,00 269 247,0 8,18

BrasilCO40n 40 5 5000,00 579 527,9 8,81 5000,00 586 528,0 9,90

BrasilNO45n 45 5 5000,00 546 507,0 7,14 5000,00 559 507,0 9,30

att48nA 48 3 5000,00 987 965,9 2,13 5000,00 987 966,0 2,13

BrasilNE50n 50 5 5000,00 613 577,9 5,71 5000,00 622 578,0 7,07

berlin52nA 52 3 5000,00 1303 1274,9 2,15 5000,00 1314 1275,0 2,97

rd100nB 100 4 5000,00 1365 1290,1 5,49 5000,00 1400 1274,0 9,00

Londrina100n 100 3 5000,00 1152 1135,9 1,39 5000,00 1148 1136,0 1,05

Table 8 summarizes the computational results presented in Tables 6 and 7.
The rows show: the number of best solutions obtained with each model (# Best
Solutions); the number of best processing times to achieve the best values of
the objective function (# best Times); the number of problems solved opti-
mally (# Problems solved); the minimum (minimum gap) percentage deviation;
the medium percentage deviation (average gap); maximum (maximum gap) per-
centage deviation; and the average processing time (Average time).

For non-Euclidean instances, as shown in Table 8, Model01 achieved the best
values for the objective function, best processing times and best average time.
Model02 achieved an optimal solution more than the other model and the lowest

Corrected Formulations for the Traveling Car Renter Problem 361

Table 7. Results for Euclidean instances

Instance Model01 Model02

Name n |C| Time Sol Lim Gap(%) Time Sol Lim Gap(%)

Bolivia10e 10 3 0,23 592 592 0,00 0,35 592 592 0,00

Peru13e 13 2 0,06 672 672 0,00 0,15 672 672 0,00

Angola12e 12 2 0,1 719 719 0,00 0,62 719 719 0,00

EUA17e 17 2 0,26 912 912 0,00 0,71 912 912 0,00

Congo15e 15 2 0,23 756 756 0,00 0,56 756 756 0,00

Argentina16e 16 2 0,34 955 955 0,00 0,82 955 955 0,00

BrasilRJ14e 14 2 0,32 294 294 0,00 0,87 294 294 0,00

BrasilRN16e 16 2 0,33 375 375 0,00 1,19 375 375 0,00

BrasilAM26e 26 3 8,89 467 467 0,00 18,27 467 467 0,00

AfricaSul11e 11 3 0,12 567 567 0,00 0,44 567 567 0,00

Arabia14e 14 5 1,91 851 851 0,00 3,26 851 851 0,00

Argelia15e 15 3 15,15 840 840 0,00 5,26 840 840 0,00

Cazaquistao15e 15 5 3,76 904 904 0,00 16,00 904 904 0,00

Australia16e 16 4 46,55 1051 1051 0,00 123,28 1051 1051 0,00

Canada17e 17 4 26,16 1251 1251 0,00 29,48 1251 1251 0,00

China17e 17 3 16,44 1003 1003 0,00 29,55 1003 1003 0,00

Russia17e 17 5 80,46 1061 1061 0,00 89,7 1061 1061 0,00

BrasilPR25e 25 3 162,3 508 508 0,00 62,51 508 508 0,00

BrasilSP32e 32 4 5000,00 588 553 5,95 5000,00 588 518 11,90

BrasilMG30e 30 3 783,29 529 529 0,00 2031,73 529 529 0,00

BrasilRS32e 32 4 2107,53 491 491 0,00 729,89 491 491 0,00

BrasilCO40e 40 5 5000,00 672 641 4,61 3880,07 668 668 0,00

BrasilNO45e 45 5 5000,00 903 756 16,27 5000,00 861 782 9,18

att48eA 48 3 5000,00 35645 32232 9,58 5000,00 35176 32084 8,79

BrasilNE50e 50 5 5000,00 756 717 5,16 5000,00 756 718 5,03

berlin52eA 52 3 5000,00 9185 8321 9,41 5000,00 9174 8272 9,83

rat99eB 99 5 5000,00 3820 2464 35,50 5000,00 4027 2434 39,56

rd100eB 100 4 5000,00 18136 8810 51,43 5000,00 18032 8814 51,12

value of the minimum percentage deviation of the models. In general, Model01
tends to find solutions close to the optimum in less time than Model02. If the
time required by the solver is considered, the best results were produced by
Model01.

For Euclidean instances, in Table 8, Model02 achieved better values for the
objective function, greater number of problems solved in an optimized way, the
lowest minimum, average, and maximum percentage deviation, and the shortest
processing time average. Model01 achieved the best processing times in relation
to the other model. In general, Model02 produced the best results for Euclidean
instances.

362 B. H. O. Rios et al.

Table 8. Summary of computational results

Model01 Model02

Non-Euclidean

#Best solutions 24 22

#Best times 11 3

#Problems solved 17 18

Minimum gap 1,39 1,05

Average gap 2,33 2,47

Maximum gap 15,08 15,85

Average time 2109,60 2146,65

Euclidean

#Best solutions 23 25

#Best times 17 4

#Problems solved 20 21

Minimum gap 4,61 5,03

Average gap 4,93 4,84

Maximum gap 51,43 51,12

Average time 1544,84 1500,96

5 Conclusion

This study presented two corrected formulations for CaRS. The models were
implemented in Gurobi. An experiment with 56 CaRS instances, divided into
two classes (Euclidean and non-Euclidean), was reported. The best results for
the non-Euclidean instances were obtained with Model01. On the other hand,
Model02 produced the best results for Euclidean instances regarding a number
of problems solved to optimality and processing time computed by the solver.

References

1. Desrochers, M., Laporte, G.: Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints. Oper. Res. Lett. 10(1), 27–36 (1991)

2. Felipe, D., Goldbarg, E.F.G., Goldbarg, M.C.: Scientific algorithms for the car renter
salesman problem. In: 2014 IEEE Congress on Evolutionary Computation (CEC),
pp. 873–879. IEEE (2014). https://doi.org/10.1109/CEC.2014.6900556

3. Goldbarg, M.C., Goldbarg, E.F., Asconavieta, P.H., da Menezes, M.S., Luna, H.P.:
A transgenetic algorithm applied to the traveling car renter problem. Expert Syst.
Appl. 40(16), 6298–6310 (2013). https://doi.org/10.1016/j.eswa.2013.05.072

4. Goldbarg, M.C., Goldbarg, E.F.G., Luna, H.P.L., Menezes, M.S., Corrales, L.: Inte-
ger programming models and linearizations for the traveling car renter problem.
Optim. Lett. 12(4), 743–761 (2017). https://doi.org/10.1007/s11590-017-1138-5

https://doi.org/10.1109/CEC.2014.6900556
https://doi.org/10.1016/j.eswa.2013.05.072
https://doi.org/10.1007/s11590-017-1138-5

Corrected Formulations for the Traveling Car Renter Problem 363

5. Goldbarg, M.C., Asconavieta, P.H., Goldbarg, E.F.G.: Memetic algorithm for the
traveling car renter problem: an experimental investigation. Memetic Comput. 4(2),
89–108 (2012). https://doi.org/10.1007/s12293-011-0070-y

6. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of trav-
eling salesman problems. J. ACM 7(4), 326–329 (1960). https://doi.org/10.1145/
321043.321046

7. da Silva, A.R.V., Ochi, L.S.: An efficient hybrid algorithm for the traveling car
renter problem. Expert Syst. Appl. 64, 132–140 (2016). https://doi.org/10.1016/j.
eswa.2016.07.038

8. da Silva, P.H.A.: Cars library (2011). http://www.dimap.ufrn.br/lae/en/projects/
CaRS.php

https://doi.org/10.1007/s12293-011-0070-y
https://doi.org/10.1145/321043.321046
https://doi.org/10.1145/321043.321046
https://doi.org/10.1016/j.eswa.2016.07.038
https://doi.org/10.1016/j.eswa.2016.07.038
http://www.dimap.ufrn.br/lae/en/projects/CaRS.php
http://www.dimap.ufrn.br/lae/en/projects/CaRS.php

Hybrid Meta-heuristics for the Traveling
Car Renter Salesman Problem

Brenner Humberto Ojeda Rios(B), Junior Cupe Casquina(B),
Hossmell Hernan Velasco Añasco(B), and Alfredo Paz-Valderrama(B)

Escuela Profesional de Ingenieŕıa de Sistemas, Universidad Nacional de San Agust́ın
de Arequipa, Arequipa, Peru

{bojeda,jcupec,hvelasco,apazv}@unsa.edu.pe

Abstract. The Traveling Car Renter Problem (CaRS) is a generaliza-
tion of the classic Traveling Salesman Problem (TSP), where the tour
of visits can be broken down into contiguous paths that can be trav-
eled with different rental cars. The objective is to determine the Hamil-
tonian circuit that has a final minimum cost, considering the penalty
paid for each vehicle change on tour. The penalty is the cost of return-
ing the car to the city where it was rented. CaRS is classified as an
NP-hard problem. The research focuses on hybrid procedures that com-
bine meta-heuristics and methods based on Linear Programming to deal
with CaRS. The hybridized algorithms are scientific algorithms (ScA),
variable neighborhood descent (VND), adaptive local search procedure
(ALSP), and a new ALSP variant called iterative adaptive local search
procedure (IALSP). The following techniques are proposed to deal with
the CaRS: ScA+ALSP, ScA+IALSP, and ScA+VND+IALSP. A mixed
integer programming model is proposed for the CaRS, which is used in
ALSP and IALSP. Nonparametric tests are used to compare the algo-
rithms in a set of instances in the literature.

Keywords: Traveling car renter problem · Mathematical
programming · Metaheuristics

1 Introduction

Hybridization of metaheuristics with other optimization techniques for harp
combinatorial optimization problems has recently gained prominence within the
research field of metaheuristics. Nowadays, the focus of research has changed
from being rather algorithm-oriented to being more problem-oriented; conse-
quently, a cross-fertilization of different areas of optimization, algorithms, math-
ematical modeling, operational research, statistics, etc., is sought to solve prob-
lems in the best possible way [3]. This change produced a large number of pow-
erful and efficient hybrid algorithms. Some of these were successfully applied to
logistic problems that occur in the car rental industry.

The car rental business is an interesting segment due to its significant
growth [23], comprising USD 27.11 billion in revenue in 2015 in the U.S. while
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 364–378, 2021.
https://doi.org/10.1007/978-3-030-92121-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_28&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_28

Hybrid Meta-heuristics for the Traveling Car Renter Salesman Problem 365

the average car rental fleet grew 5% [18]. This growth trajectory has been steady
since 2010 and is forecasted to continue [19]. Concerning the global car rental
market, it was valued at approximately USD 58.26 billion in 2016 and is expected
to reach approximately USD 124.56 billion by 2022, growing at a CAGR (com-
pound annual growth rate) of around 13.55% between 2017 and 2022 [21]. The
car rental market is expected to witness significant growth due to the increasing
tourism industry. The major driving factor for the car rental market is growth in
the international tourism market and expansion of international airline services,
which in turn supports the demand for car rental services [14].

Goldbarg et al. [12] presented a variant of the classic Traveling Salesman
Problem (TSP), which models the central aspects of renting a car from the cus-
tomer’s perspective, called the Traveling Car Renter Salesman Problem (CaRS).
The CaRS is a generalization of the TSP, where the path can be broken down
into contiguous paths that are covered by different rented cars [12]. In CaRS, a
customer intends to use rented cars to visit a certain set of cities, with the idea of
minimizing the cost related to car rental. Several vehicles from different compa-
nies are available in each city, generating a wide variety of choices for renting cars
along the way. The TSP is a particular case of CaRS, this happens when there is
only one vehicle available to rent in the first city of the tour, and there is no pos-
sibility of changing that vehicle in other cities [25]. Several meta-heuristics have
been applied to the CaRS, such as Ant colony optimization [25]; transgenetic
algorithms [2,11]; memetic algorithms [12]; scientific algorithms [9]; a hybrid
between an evolutionary algorithm (EA) and Adaptive Local Search Procedure
(ALSP) [24]; and Iterated Adaptive Local Search Procedure (IALSP) [22]. How-
ever, for the moment, the ScA is the best simple meta-heuristic (non-hybrid) for
the CaRS.

The combining of linear programming techniques and metaheuristics has
shown to be a powerful tool to solve combinatorial optimization problems [20].
This approach was presented for CaRS in [24]; the employed algorithm was
EA+ALSP and obtained the best-known results for this problem. In this study,
we investigate the potential of the ScA and VND in a new ALSP variant called
iterative adaptive local search procedure (IALSP).

The article is organized into six sections, including this one. Section 2 presents
the CaRS and its mathematical formulation. Section 3 presents the solutions
methods to deal with CaRS. The hybrid algorithms are proposed in Sect. 4. The
analysis of the results produced in the computational experiments is presented
in Sect. 5, and the final conclusions are presented in Sect. 6.

2 CaRS

Formally, the CaRS is defined as a set of different types of cars C and a graph
G(V,E), where V is a set of n cities (vertices) and E is a set of roads (edges)
composed by pairs of cities. The cost of using a car c ∈ C on a road (i, j) is
given by Dc

ij . An additional cost F c
ij must be paid every time a car c is rented

in a city i and delivered to j, with i �= j, which corresponds to the extra fee to

366 B. H. O. Rios et al.

Table 1. Description of the parameters of the mathematical formulation for the CaRS.

Parameter Description

|C| Cardinality of set C

F c
i,j Fee to return car c rented in city i and delivered to city j

Dc
i,j Cost of transporting the car c on the edge (i, j)

Table 2. Description of the variables of the mathematical formulation for the CaRS.

Var. Description

xc
i,j Indicates whether the salesman is going from the city i to j with

the car c (xc
i,j = 1) or not (xc

i,j = 0)

pc
i,j Indicates whether the car c is rented in i and is returned in j

(pc
i,j = 1) or not (pc

i,j = 0)

ac
j Indicates whether the salesman arrives in city j using the car c

(ac
j = 1) or not (ac

j = 0)

dc
i Indicates whether the salesman leaves the city i using the car c

(dc
i = 1) or not (dc

i = 0)

rci Indicates whether the salesman delivers the car c when visiting the
city i (rci = 1) or not (rci = 0)

wc
i Indicates whether the salesman rents the car c in the city i

(wc
i = 1) or not (wc

i = 0)

ui Represents the order in which the city i is visited
(1 ≤ ui ≤ n − 1 ∀i = 2, . . . , n)

return the car c to i. The goal is to build a Hamiltonian circuit that minimizes
the total cost of the tour plus the extra fee of returning the cars.

2.1 Mathematical Formulation

We present a mathematical formulation based on the model introduced by da
Silva [24], which is based on the formulation Miller-Tucker-Zemlin Traveling
Salesman Problem (MTZ-TSP) [15]. Table 1 and 2 describe the parameters and
variables used in the formulation.

min
∑

(i,j)∈E

|C|∑

c=1

Dc
i,j ∗ xc

i,j +
∑

i∈V

∑

j∈V

|C|∑

c=1

F c
i,j ∗ pci,j (1)

s.t. ui − uj + (n − 1) ∗ xc
i,j + (n − 3) ∗ xc

j,i ≤ n − 2
∀i, j = 2, . . . , n; i �= j ∀c ∈ C (2)

ac
j =

n∑

i=1,i �=j

xc
i,j ∀j ∈ V ∀c ∈ C (3)

Hybrid Meta-heuristics for the Traveling Car Renter Salesman Problem 367

|C|∑

c=1

ac
j = 1 ∀j ∈ V (4)

dci =
n∑

j=1,j �=i

xc
i,j ∀i ∈ V ∀c ∈ C (5)

|C|∑

c=1

dci = 1 ∀i ∈ V (6)

rci =

(
∑

j∈V

xc
ji

)(
∑

c′∈C,
c′ �=c

∑

h∈V

xc′
ih

)
∀c ∈ C,∀i ∈ V (7)

∑

i∈V

rci ≤ 1 ∀c ∈ C (8)

wc
i =

(
∑

j∈V

xc
ij

)(
∑

c′∈C,
c′ �=c

∑

h∈V

xc
hi

)
∀c ∈ C,∀i ∈ V (9)

∑

i∈V

wc
i ≤ 1 ∀c ∈ C (10)

|c|∑

c=1

rc1 = 1 (11)

|c|∑

c=1

wc
1 = 1 (12)

pci,j = wc
i ∗ rcj ∀i, j = 1, . . . , n ∀c ∈ C (13)

The objective function (1) adds travel costs and extra fees for returning the
cars to the cities where they were rented. The constraint (2) is adapted from the
Miller-Tucker-Zemlin formulation for the CaRS presented by [7]. Restrictions (3)
and (4) ensure that each city is visited only once by exactly one car. Restrictions
(5) and (6) ensure that each city is left only once for exactly one car. Restrictions
(7) and (9) models the rental and delivery of each car. Restrictions (8) and (10)
ensure that each car is rented only once. Restrictions (11) and (12) ensure that a
single car must be rented and delivered to the first visited city (city 1). Finally,
constraint (13) defines the rate of return that must be paid whenever a car c is
rented in the city i and delivered to j, i �= j.

3 Solution Methods

This section presents the algorithms used in the hybridization (metaheuristics
and methods based on linear programming).

368 B. H. O. Rios et al.

3.1 The Scientific Algorithms

The Scientific Algorithms, proposed by [9], are a metaheuristic inspired in the
scientific research process. This new metaheuristic introduces the concepts of
theme, researches, and literature from a computational point of view. There
are briefly explained as follows.

1. Researches: population of candidate solutions.
2. Search theme: subset of non-fixed variables.
3. Literature: memory or relevant information that is used to bias the search.

The interactions of the theme, researches, and literature contexts result in
the search procedure of the scientific algorithms.

3.2 The ALSP and IALSP Algorithms

The Iterated Adaptive Local Search Procedure (IALSP) is a new variant of the
ALSP algorithm presented in [24]; both algorithms are exploration mechanisms
for the problem solution space. The IALSP is inspired by the idea of avoiding
the use of stages such as 1-stage, 10-stages or tree strategies, since this is a very
slow process to get the best strategy to solve a problem. Thus, ALSP without
step strategy becomes iterative.

Let M be a mathematical formulation and A a solution given by an algorithm,
both M and A for CaRS. A can be transformed into a solution for M , denoted
by A′. Let S be a set of variables of the same type in A′ (S ⊂ A′), which
represents a unique solution in M . To know the value of a variable in S we
use the notation xi(S) as in [24]. Additional constraints xi = xi(S) ∀xi in S,
denoted by C(S), are added to M . Now, let S̄ be a subset of S (S̄ ⊂ S) and
M ′ an extended formulation (M ′ = M ∪ C(S̄)). Assuming that S̄ = S and
|S| = n, there are 2n distinct sub-problems including S̄ = ∅ and S̄ = S, since
a sub-problem is a subset in S. Each sub-problem S̄ has its own complexity,
optimal solution, solution space and linear relaxation. The difficulty between
sub-problems is related to |S̄|. There are two extreme cases when S is given
to a MIP. First case, if S̄ = ∅, all the variables will be fixed and therefore the
optimization will be instantaneous. Second case, if S̄ = S, no variables will be
fixed and therefore we’ll have the original problem.

Variables in ALSP and IALSP can be in one of the three states: fixed, test,
and non-fixed. In this paper, we consider it more appropriate to refer to the
collection of variables (same status) as a set instead of a group, see [13]. T is
a set of test variables, S is a set of fixed variables and S̄ is a set of non-fixed
variables.

Figure 1 shows the process of changing of variables among the sets S, T , and
S̄. In the beginning, all variables are in S. Both T and S̄ are empty. Subsequently,
a subset of variables from S is chosen randomly and it’s assigned to T with
|T | = size, S is updated with the difference between S and T . Finally, there
are two cases in which variables from T change of set. In the first case, if the

Hybrid Meta-heuristics for the Traveling Car Renter Salesman Problem 369

Fig. 1. Status of the variables among the ALSP and IALSP sets.

maximum gap between linear relaxation and incumbent solution values for a sub-
problem M ′ is large or the optimization is finished by the time limit, variables
from T will be added to S and T will become empty, the process is repeated
again. In the second case, if optimized sub-problem finds a solution equal to or
better than the incumbent solution, variables from T will be added to S̄ and
T will become empty, the process is repeated with S = S − T . This process
continues until S becomes empty or the runtime for algorithm is exceeded. The
behavior of IALSP described above is the same developed by ALSP. IALSP is
different from ALSP because it widens the interaction between the sets S, T and
S̄. Thus, under certain conditions, IALSP can move all the variables of the sets
S̄ and T to S, with the aim of restarting by itself, to do this, two conditions are
necessary:

– First, when the maximum time to perform a local search is exceeded. This
avoids solving difficult problems early.

– Second, when the maximum gap between linear relaxation and incumbent
solution values for a sub-problem is exceeded. This avoids solving a problem
with similar complexity as the original problem.

3.3 VND Algorithm

The VND [16] consists of exploring the space of solutions through systematic
exchanges of neighborhood structures until reaching a local minimum, which

370 B. H. O. Rios et al.

is minimal in relation to all these neighborhoods (with a strong emphasis on
intensification). Its search methodology consists of a deterministic neighborhood
change.

Algorithm 1. Pseudocode for VND.
Require: An initial solution (π), a runtime parameter (prop loctime), and a set of

neighborhood structures (ζ).
Ensure: The best solution
1. while prop loctime not exceeded do
2. k ← 1
3. while k ≤ |ζ| do
4. π′ ← localSearch(π,k)
5. if f(π′) < f(π) then
6. π ← π′

7. k ← 1
8. else
9. k ← k+1

10. end if
11. end while
12. end while
13. return π

In this work, the VND algorithm is adapted to deal with the CaRS. The
pseudocode of the Algorithm 1 presents the structure of the algorithm in ques-
tion. The first step of the algorithm is the definition of a set of neighborhood
structures. Let ζ be a set of three ordered neighborhood structures, consisting
of N1, N2 and N3. Such order aims to facilitate the search for closer neighbors
and whose computational cost is lower in relation to searches in more distant
neighborhoods. The number of neighborhood structures is defined as |ζ|. Let
π be an initial solution generated by an arbitrary algorithm. The i-th neigh-
borhood of π (Ni(π)) contains all the solutions that can be obtained from π
by applying the i-th neighborhood structure. From the initial solution π, the
method explores the first neighborhood structure, N1, through a local search.
If it does not find a better solution, the algorithm starts to explore the second
neighborhood structure and successively up to N3. Whenever the method finds
a better solution than the current π, the algorithm restarts the local search in
the first neighborhood explored. The algorithm ends when the best solution is
not improved after prop loctime seconds.

The final solution should be the local optimum for all neighborhoods. As a
result, the chance of achieving a global optimum is greater when using VND
instead of a single neighborhood structure.

Local Searches for VND. Let σ = σ1, . . . , σn a permutation or sequence
that defines the current order of cities on the tour, where σi is the city in the
i-th position, for i = 1, . . . , n. The neighborhood of a permutation σ comprises

Hybrid Meta-heuristics for the Traveling Car Renter Salesman Problem 371

all the sequences that can be reached by applying a local search operator. The
neighborhood structures used were independent swaps [5], 2-opt [6] and 3-opt [4].
The Algorithm 2 presents the local search procedure for the VND.

Algorithm 2. Local search procedure in VND.
Require: An initial solution π and an integer k.
Ensure: The local optimum π′

1. if k = 1 then
2. π′ ← 2-opt(π)
3. end if
4. if k = 2 then
5. π′ ← 3-opt(π)
6. end if
7. if k = 3 then
8. π′ ← independent swaps(π)
9. end if

10. return π′

2-opt and 3-opt are neighborhoods derived from exchange movements
between two and between three edges belonging to a solution, respectively. Inde-
pendent swaps are neighborhoods that can be obtained by a serie of swaps
(exchanges of two positions). Two exchange movements are independent if
max{i, j} < min{k, l} or min{i, j} > max{k, l}. Figure 2 illustrates two inde-
pendent swaps, where i < j < k < l.

Fig. 2. Two independent swaps.

The initial solution π consists of two vectors: a vector of numbers representing
a sequence of cities on the tour and a vector of letters representing the salesman’s
sequence of cars. VND applies six improvement operators (local searches) to
the vector of cities. Such operators are α1, α2, α3, α4, α5 and α6. Neighborhood
structures incorporate improvement operators as follows: 2-opt incorporates α1,
3-opt incorporates operators from α2 to α5 (used in sequence), and independent
swaps incorporates the α6 operator. Figures 3, 4, 5, 6, 7 and 8 illustrate examples
of the application of the operators for a solution of CaRS. The stopping criterion
for each operator was limited by the prop oprtime time.

372 B. H. O. Rios et al.

Operators from α2 to α5 consider 4 cities c1, c2, c3 and c4, and two adjacent
intervals l1 and l2, where l1 is the interval between c1 and c2, and l2 the interval
between c3 and c4.

The operator α1 reverses the direction of cities in an interval in a tour. This
procedure considers a city pair c1 and c2, so that the path between these cities
is reversed (note that this path is not necessarily crossed by a single car). After
the cost of the new tour is verified, if an improvement is found, then the solution
is updated. Figure 3 shows an example of this operator reversing a path between
cities 2 and 7.

Fig. 3. Example of operator α1.

The operator α2 exchanges two adjacent intervals l1 and l2 in a tour. After
the cost of the new tour is verified, if an improvement is found, the solution
is updated. Figure 4 shows an example of this operator changing the interval
between cities 8 and 7 with the interval between cities 5 and 2.

Fig. 4. Example of operator α2.

The operator α3 selects two adjacent intervals l1 and l2, reverses the direction
of l2, and then exchanges l1 and l2. After the cost of the new tour is verified,
if an improvement is found, the solution is updated. Figure 5 shows an example
of this operator. First the interval between cities 8 and 7 is inverted, then this
interval is changed with the interval between cities 5 and 2.

The operator α4 selects two adjacent intervals l1 and l2, reverses the direction
of l1, and then exchanges l1 and l2. After the cost of the new tour is verified,
if an improvement is found, the solution is updated. Figure 6 shows an example
of this operator. First, the interval between cities 5 and 2 is reversed, then this
interval is changed with the interval between cities 8 and 7.

The operator α5 selects two adjacent intervals l1 and l2, reverses the sense
of both intervals, and then exchanges l1 and l2. After the cost of the new tour
is verified, if an improvement is found, the solution is updated. Figure 7 shows

Fig. 5. Example of operator α3.

Hybrid Meta-heuristics for the Traveling Car Renter Salesman Problem 373

Fig. 6. Example of operator α4.

an example of this operator. The intervals between 8 and 7, and 5 and 2 are
reversed, so both intervals are switched.

Fig. 7. Example of operator α5.

The operator α6 randomly selects four cities c1, c2, c3 and c4, such that c1
is visited before c2, c2 visited before c3 and c3 visited before c4. After two inde-
pendent swaps are applied, if an improvement is found, the solution is updated.
Figure 8 shows an example of this operator making independent swaps. Cities 4,
2, 7 and 3 are selected. The first movement of exchange occurs between cities 4
and 2, and the second between cities 7 and 3.

Fig. 8. Example of operator α6.

4 Proposed Hybrid Algorithms

The heuristic algorithms used in hybridization with approaches based on lin-
ear programming are scientific algorithms (ScA), an evolutionary algorithm
(EA) [24], and an adaptation of the variable neighborhood descent (VND). The
algorithms are based on linear programming and use a mathematical formulation
internally are ALSP and IALSP.

The hybridizations investigated in this work were ScA+ALSP, ScA+IALSP,
and ScA+VND+IALSP. ScA was chosen because it is the best simple (non-
hybrid) metaheuristic to deal with CaRS. Each hybrid algorithm calls a
MIP solver, which makes use of a mathematical formulation. Currently, the
EA+IALSP is the state-of-the-art algorithm for the problem.

ScA+ALSP and ScA+IALSP are sequential hybrid algorithms. Thus, each
proposed approach was a sequential execution of a meta-heuristic that is per-
formed before an approach based on linear programming. These algorithms have

374 B. H. O. Rios et al.

two phases in their execution, a construction phase followed by an improvement
phase. Sca was the algorithm used in the construction phase, and ALSP or IALSP
was used in the improvement phase. On the other hand, ScA+VND+IALSP com-
bines three phases: construction, heuristic improvement, and exact improvement.
The Algorithm 3 presents the pseudocode for ScA+VND+IALSP.

Algorithm 3. ScA+VND+IALSP for CaRS
1. Generate the initial solution using ScA
2. while total time not exceeded do
3. Improve solution using VND
4. Improve solution using IALSP
5. end while
6. Inform better solution found

5 Computational Experiments

In order to validate the proposed algorithms, these were executed on an Intel
Core i5 PC, 4Gb of RAM, on Ubuntu 16.04.2 LTS and using the C++ lan-
guage. Gurobi 7.0.0 was used as MIP solver. The algorithms were implemented
with Model011. To evaluate the performance of these algorithms, computational
experiments were carried out on 17 non-Euclidean instances in the CArSLIB
(See Footnote 1) [25]. We consider a diverse set of instances that vary between
14 and 300 vertices. Instances with more than 100 vertices (large instances) are
the most challenging in CaRS. All algorithms were parameterized with the irace
(See Footnote 1) tool. After the parameterization was performed, 30 independent
executions of each hybrid algorithm were performed for each instance.

The algorithms’ general performance was analysed with the averages of the
values obtained by them in each instance. The Friedman test [10] was used to
verify significant differences between the solutions obtained by the algorithms.
This test was performed using the XLSTAT software [1]. For the interpretation
of the test, we use H0 (null hypothesis, samples come from the same population)
and Ha (alternative hypothesis, samples do not come from the same population).
The level of significance was α = 0.05. If the calculated p-value is less than the
significance level α = 0.05, we must reject the null hypothesis H0 and accept the
alternative hypothesis Ha.

If the Friedman test rejects the null hypothesis, then we must execute the
Nemenyi post-hoc procedure [17] to find concrete pairs that produce differences.
If Nemenyi is executed, the correction of Bonferroni [8] must be used because
there are multiple comparison in k groups.

1 The detailed experimental package of the algorithms, parameterization and compar-
ison between the models for the CaRS is available at https://repositorio.ufrn.br/
jspui/handle/123456789/24822.

https://repositorio.ufrn.br/jspui/handle/123456789/24822
https://repositorio.ufrn.br/jspui/handle/123456789/24822

Hybrid Meta-heuristics for the Traveling Car Renter Salesman Problem 375

Table 3. Results of the algorithms for non-Euclidean instances of the CaRS

Instance ScA EA+ALSP ScA+ALSP ScA+IALSP ScA+VND+IALSP

Name n |C| Time Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

BrasilRJ14n 14 2 0,54 167,00 167 168,17 167 167,00 167 167,00 167 167,00 167

BrasilRN16n 16 2 0,54 188,00 188 192,80 188 188,00 188 188,00 188 188,00 188

BrasilPR25n 25 3 9,54 226,03 226 228,2 226 226,00 226 226,00 226 226,00 226

BrasilAM26n 26 3 3,50 202,87 202 209,47 202 202,13 202 202,07 202 202,00 202

BrasilMG30n 30 4 19,17 273,03 271 277,83 271 272,97 271 272,27 271 271,1 271

BrasilRS32n 32 4 23,94 269,47 269 276,50 269 269,00 269 269,03 269 269,00 269

BrasilSP32n 32 4 23,40 257,37 254 262,47 254 256,40 254 255,87 254 255,21 254

BrasilCO40n 40 5 50,40 578,77 575 584,87 574 574,97 574 574,22 574 574,11 574

BrasilNO45n 45 5 62,37 553,80 547 558,23 547 548,33 540 548,10 541 545,63 539

att48nA 48 3 80,37 995,60 989 997,07 988 989,03 987 988,26 987 988,16 987

rd100nB 100 4 750,60 1390,70 1372 1377,30 1362 1374,53 1358 1368,10 1358 1365,30 1359

ch130n 130 5 1080,00 1681,43 1673 1654,33 1638 1650,30 1638 1649,23 1638 1646,53 1637

kroB150n 150 3 1080,00 2951,07 2939 2861,57 2852 2860,40 2850 2858,47 2848 2857,67 2844

d198n 198 4 2160,00 3161,50 3149 3065,73 3054 3069,23 3053 3067,23 3052 3063,30 3056

Aracaju200n 200 3 2160,00 1916,90 1909 1850,60 1840 1854,03 1847 1852,23 1844 1848,73 1840

Teresina200n 200 5 2160,00 1389,57 1379 1365,89 1355 1363,16 1352 1358,47 1351 1356,07 1349

Curitiba300n 300 5 3240,00 2157,73 2140 2124,60 2113 2120,37 2111 2115,87 2108 2101,20 2091

Table 4. Multiple comparisons using the Nemenyi procedure for non-Euclidean
instânces.

Algorithm Frequency Sum of ranks Avg. of ranks Groups

ScA+VND+IALSP 17 21,500 1,265 A

ScA+IALSP 17 38,000 2,235 A B

ScA+ALSP 17 49,500 2,912 B C

ScA 17 72,000 4,235 C

EA+ALSP 17 74,000 4,353 C

Table 5. p-values between pairs of algorithms for non-Euclidean instânces

ScA EA+ALSP ScA+ALSP ScA+IALSP ScA+VND+IALSP

ScA 1 1,000 0,105 0,002 0,000

EA+ALSP 1,000 1 0,060 0,001 0,000

ScA+ALSP 0,105 0,060 1 0,723 0,020

ScA+IALSP 0,002 0,001 0,723 1 0,380

ScA+VND+IALSP 0,000 0,000 0,020 0,380 1

After carrying out the experiments, Friedman’s test found significant dif-
ferences between the solutions obtained by the ScA, EA+ALSP, ScA+ALSP,
ScA+IALSP, and ScA+VND+IALSP algorithms, with a p-value less than
0.0001. Since the calculated p-value is less than the significance level 0.05, we
must reject the null hypothesis H0 of equality of means and accept the alternative

376 B. H. O. Rios et al.

hypothesis Ha. The risk of rejecting the null hypothesis H0, while it is true is
less than 0.01%.

Table 3 shows the results of the ScA, EA+ALSP, ScA+ALSP, ScA+IALSP
and ScA+VND+IALSP. The best solutions are in boldface. The columns related
with the instances show: the instance name, Name; the number of cities (vertices)
in the graph, n; the number of cars, |C|; and the maximum processing time, in
seconds, given for each algorithm. Columns avg. and best show the average and
the best solution found by the algorithms in the 30 independent executions,
respectively.

Table 4 presents the results of the Nemenyi procedure (two-tail test). Four
columns are shown, in addition to the column with the name of the algorithms.
These columns are the number of averages for each instance for each algorithm
(frequency), mean of ranks, sum of ranks, and group of the results of the algo-
rithms. In this procedure, 3 groups of algorithms are identified (A, B and C).
Those algorithms with the best performance belong to group A, with the worst
performance to group C and the rest to group B. Algorithms that do not have
statistical differences between them show the same letters. The results shows
that ScA+VND+IALSP and ScA+IALSP are different to the ScA, EA+ALSP,
and ScA+ALSP algorithms, because they correspond to different groups.

A Table 5 presents the p-values between pairs of algorithms. Significant dif-
ferences are shown between the ScA+VND+IALSP algorithm, and the ScA,
EA+ALSP and ScA+ALSP algorithms, given that the its p-values are less than
the significance level of 0.05. The same table shows significant differences between
the ScA+IALSP algorithm, and the ScA and EA+ALSP algorithms.

The results show a clear superiority of ScA+IALSP and ScA+VND+IALSP
algorithms for the state of the art (ScA and EA+ALSP), finding equal or better
solutions in all instances.

6 Conclusion

This work presented hybrid approaches of meta-heuristics with methods based
on linear programming for the CaRS. A mathematical formulation was pre-
sented. Three algorithms have also been proposed for the CaRS, two of which
are sequential hybridizations and the other is a more complex hybridiza-
tion, involving VND as part of feedback of the algorithm. The sequential
hybrid algorithms were ScA+ALSP and ScA+IALSP. The last hybrid algo-
rithm implemented was ScA+VND+IALSP. In terms of solution quality of
the hybrid algorithms, the best results were obtained by ScA+VND+IALSP
and ScA+IALSP, followed by ScA+ALSP. The experiments demonstrated the
efficiency of ScA+VND+IALSP, which obtained better solutions at the same
time than state-of-the-art algorithms. In this sense, the results are consid-
ered very promising, so it was possible to show the relevance of developing
hybrid approaches to solve CaRS. The hybrid algorithms ScA+VND+IALSP
and ScA+IALSP obtained the expected results taking advantage of the power
of local searches of the VND and IALSP algorithms; these obtained better results

Hybrid Meta-heuristics for the Traveling Car Renter Salesman Problem 377

among all the investigated algorithms. The proposed algorithms are very promis-
ing due to the fact that, in almost all instances tested, significant improvements
have been achieved in relation to the state of the art.

References

1. Addinsoft: Data analysis and statistical solution for Microsoft excel, Paris, France
(2017)

2. Asconavieta, P.H., Goldbarg, M.C., Goldbarg, E.F.: Evolutionary algorithm for
the car renter salesman. In: 2011 IEEE Congress on Evolutionary Computation
(CEC), pp. 593–600. IEEE (2011)

3. Blum, C., Raidl, G.R.: Hybrid Metaheuristics: Powerful Tools for Optimization.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30883-8

4. Christofides, N., Eilon, S.: An algorithm for the vehicle-dispatching problem. J.
Oper. Res. Soc. 20, 309–318 (1969). https://doi.org/10.1057/jors.1969.75

5. Congram, R.K., Potts, C.N., van de Velde, S.L.: An iterated dynasearch algorithm
for the single-machine total weighted tardiness scheduling problem. INFORMS J.
Comput. 14(1), 52–67 (2002)

6. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6),
791–812 (1958)

7. Desrochers, M., Laporte, G.: Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints. Oper. Res. Lett. 10(1), 27–36 (1991)

8. Dunn, O.J.: Multiple comparisons among means. J. Am. Stat. Assoc. 56(293),
52–64 (1961)

9. Felipe, D., Goldbarg, E.F.G., Goldbarg, M.C.: Scientific algorithms for the car
renter salesman problem. In: 2014 IEEE Congress on Evolutionary Computation
(CEC), pp. 873–879. IEEE (2014)

10. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

11. Goldbarg, M.C., Goldbarg, E.F., Asconavieta, P.H., Menezes, M.S., Luna, H.P.: A
transgenetic algorithm applied to the traveling car renter problem. Expert Syst.
Appl. 40(16), 6298–6310 (2013). https://doi.org/10.1016/j.eswa.2013.05.072

12. Goldbarg, M.C., Asconavieta, P.H., Goldbarg, E.F.G.: Memetic algorithm for the
traveling car renter problem: an experimental investigation. Memetic Comput.
4(2), 89–108 (2011). https://doi.org/10.1007/s12293-011-0070-y

13. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations
of Groups in Terms of Generators and Relations. Courier Corporation (2004)

14. Martyshenko, N.S., Vinichuk, O.Y.: Determining the prospects for car rental mar-
ket in Primorsky krai (Russia). Int. Rev. Manag. Mark. 6(2), 213–218 (2016)

15. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM 7(4), 326–329 (1960). https://doi.org/10.
1145/321043.321046

16. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

17. Nemenyi, P.: Distribution-free multiple comparisons. In: International Biometric
Society, Washington, DC, vol. 18, p. 263 (1962)

18. Auto Rental News: U.S. car rental revenue and fleet size comparisons (from
2005–2015) (2017). http://www.autorentalnews.com/content/research-statistics.
aspx. Accessed 07 July 2017

https://doi.org/10.1007/978-3-319-30883-8
https://doi.org/10.1057/jors.1969.75
https://doi.org/10.1016/j.eswa.2013.05.072
https://doi.org/10.1007/s12293-011-0070-y
https://doi.org/10.1145/321043.321046
https://doi.org/10.1145/321043.321046
http://www.autorentalnews.com/content/research-statistics.aspx
http://www.autorentalnews.com/content/research-statistics.aspx

378 B. H. O. Rios et al.

19. Oliveira, B.B., Carravilla, M.A., Oliveira, J.F.: Fleet and revenue management in
car rental companies: a literature review and an integrated conceptual framework.
Omega 71, 11–26 (2016)

20. Raidl, G.R., Puchinger, J.: Combining (integer) linear programming techniques and
metaheuristics for combinatorial optimization. In: Blum, C., Aguilera, M.J.B., Roli,
A., Sampels, M. (eds.) Hybrid Metaheuristics. SCI, vol. 114, pp. 31–62. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78295-7 2

21. ZION Market Research: Car rental market by car type (luxury cars, executive
cars, economy cars, SUV cars and MUV cars) for local usage, airport trans-
port, outstation and others: global industry perspective, comprehensive analysis,
size, share, growth, segment, trends and forecast, 2016–2022 (2017). https://www.
zionmarketresearch.com/report/car-rental-market. Accessed 07 July 2017

22. Rios, B.H.O., Goldbarg, E.F.G., Goldbarg, M.C.: A hybrid metaheuristic for the
traveling car renter salesman problem. In: 2017 Brazilian Conference on Intelligent
Systems (BRACIS). IEEE, October 2017. https://doi.org/10.1109/bracis.2017.20

23. Seay, S., Narsing, A.: Transitioning to a lean paradigm: a model for sustainability
in the leasing and rental industries. Acad. Strateg. Manag. J. 12(1), 113 (2013)

24. da Silva, A.R.V., Ochi, L.S.: An efficient hybrid algorithm for the traveling car
renter problem. Expert Syst. Appl. 64, 132–140 (2016). https://doi.org/10.1016/
j.eswa.2016.07.038

25. da Silva, P.H.A.: O problema do caixeiro viajante alugador: um estudo algoŕıtmico.
Ph.D. thesis, Universidade Federal do Rio Grande do Norte (2011)

https://doi.org/10.1007/978-3-540-78295-7_2
https://www.zionmarketresearch.com/report/car-rental-market
https://www.zionmarketresearch.com/report/car-rental-market
https://doi.org/10.1109/bracis.2017.20
https://doi.org/10.1016/j.eswa.2016.07.038
https://doi.org/10.1016/j.eswa.2016.07.038

HybridTuner: Tuning with Hybrid
Derivative-Free Optimization

Initialization Strategies

Benjamin Sauk1 and Nikolaos V. Sahinidis2(B)

1 Department of Chemical Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

2 H. Milton Stewart School of Industrial and Systems Engineering and School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology,

Atlanta, GA 30332, USA
nikos@gatech.edu

https://sahinidis.coe.gatech.edu

Abstract. To utilize the full potential of advanced computer architec-
tures, algorithms often need to be tuned to the architecture being used.
We propose two hybrid derivative-free optimization (DFO) methods to
maximize the performance of an algorithm after evaluating a small num-
ber of possible algorithmic configurations. Our autotuner (a) reduces the
execution time of dense matrix multiplication by a factor of 1.4× com-
pared to state-of-the-art autotuners, (b) identifies high-quality tuning
parameters within only 5% of the computational effort required by other
autotuners and (c) can be applied to any computer architecture.

Keywords: Autotuners · Derivative-free optimization · GPU
computing

1 Introduction

As the landscape of high performance computing evolves, the need to design
software that is optimal on a variety of computer architectures has grown. To
meet this need, algorithms are designed with tunable parameters to allow for
performance portability. Tuning is the problem of selecting a set of parameters
that maximize the performance of an algorithm [39]. Identifying an optimal set

This work was conducted as part of the Institute for the Design of Advanced
Energy Systems (IDAES) with funding from the Office of Fossil Energy, Cross-Cutting
Research, U.S. Department of Energy. This work used the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1548562. Specifically, it used the Bridges system, which
is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing
Center (PSC). We also gratefully acknowledge the support of the NVIDIA Corporation
with the donation of the NVIDIA Tesla K40 GPU used for this research.

c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 379–393, 2021.
https://doi.org/10.1007/978-3-030-92121-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_29&domain=pdf
http://orcid.org/0000-0002-1138-966X
http://orcid.org/0000-0003-2087-9131
https://doi.org/10.1007/978-3-030-92121-7_29

380 B. Sauk and N. V. Sahinidis

of parameters in this space is challenging as it requires solving a multi-extremal
optimization problem in the absence of an explicit algebraic function to relate
input tuning parameters to an output performance metric.

To overcome the challenges in this problem, parameter tuning has been solved
with derivative-free optimization techniques [35]. As solution strategies in this
field involve querying a black-box, the number of simulations required to iden-
tify optimal solutions to a problem increases with the number of variables. In
practice, tuning problems are challenging in cases with more than thirty vari-
ables, though some methods have been observed to find reasonable solutions for
problems with hundreds of tuning variables [3]. As there is no way to validate
whether optimal parameters have been found for problems with a large search
space, many users determine tuning parameters with heuristics, often producing
inefficient algorithms.

Autotuning aims to automate the tuning process, where a programmer
defines lower and upper bounds for all parameters and a search strategy selects
the best set of parameters. Autotuners have been employed for compiler opti-
mization, and machine learning applications. In machine learning, where hyper-
parameters affect classification accuracy, Bayesian Optimization is commonly
utilized for hyperparameter tuning [7]. Applications of autotuning have found
widespread usage in computing with graphics processing units (GPUs) [25,36],
optimizing dense linear algebra kernels [13,25,29,38], and compiler optimiza-
tion [3,4,40], among other problems.

In this work, we investigate the benefits of new autotuning strategies based
on hybridizing derivative-free optimization algorithms. In contrast to modeling
the tuning space with a highly sophisticated neural network, or developing a
model after weeks of training, hybrid derivative-free optimization algorithms
enable near-optimal tuning parameters on any system in less time than more
exhaustive methods. The primary contributions of this paper are as follows:

1. We propose an algorithmic framework to combine local and global DFO
approaches for parameter tuning. Two methods, Bandit DFO and Hybrid
DFO, are introduced that identify the best or near-optimal solutions for all
problems that are considered in this work.

2. We demonstrate that, by combining local and global DFO strategies, it is
possible to improve the performance of dense matrix multiplication by a fac-
tor of 1.4× compared to optimal parameters identified by OpenTuner [3],
ActiveHarmony [39] and Bayesian Optimization [7].

3. We share our implementation with the community facilitating the develop-
ment and use of hybrid autotuning algorithms. We provide the proposed
Bandit DFO and Hybrid DFO as free and open-source software available at
https://github.com/bsauk/HybridTuner. The proposed methods can be used
with any derivative-free optimization solvers. We include several open-source
DFO solvers in our implementation.

In Sect. 2, we review related literature, including the field of autotuning, the
literature on derivative-free optimization algorithms, and hybrid tuning algo-
rithms closely related to this work. In Sect. 3, we propose hybrid DFO algorithms

https://github.com/bsauk/HybridTuner

HybridTuner 381

and describe advantages of hybrid methods over other approaches. In Sect. 4,
we present a computational comparison between autotuners and our proposed
hybrid methods to measure the performance of the proposed method for tuning
matrix multiplication. We provide conclusions in Sect. 5.

2 Literature Review

2.1 Autotuners

Algorithmic parameter tuning or autotuning has been studied over the last two
decades [39]. ActiveHarmony is one of the first autotuners developed [39]. It uses
a Nelder-Mead simplex search strategy to suggest points to evaluate that may
be potentially optimal. Audet and Orban were the first to utilize derivative-free
optimization in the autotuning space when they tuned a trust-region algorithm
with four tuning parameters with the MADS algorithm [6]. Later, Audet et
al. developed the Optimization of Algorithms (OPAL) framework and used it
to tune an algorithm called DFO with nine tuning parameters [5]. PetaBricks
generates several algorithms from a list of algorithmic options, and automates
code generation from provided inputs [2]. Algorithms tuned by the PetaBricks
compiler are divided into sub-problems that are tuned independently of each
other using a genetic algorithm. OpenTuner is an autotuner that combines sev-
eral local search strategies to determine high quality solutions [3], by solving the
multi-armed bandit with sliding window, area under the curve credit assignment
problem (AUC Bandit Meta Technique) [32]. This technique balances exploiting
strategies that have performed well in recent iterations with the potential benefit
of having other strategies explore the search space. Hutter et al. explored using
a local DFO solver to tune the CPLEX algorithm [21], and then investigated
using a global DFO solver to tune SAT solvers [20].

Other autotuning approaches hide the tuning process from users. These auto-
tuners are designed for domain-specific languages where each autotuner is devel-
oped for one specific application, and optimizes an algorithm given assumptions
that must hold true for the particular application of interest. Automatically
Tuned Linear Algebra Software (ATLAS) [44], is a software that was devel-
oped by Whaley et al. to automate the empirical tuning and optimization of
basic linear algebra subroutines (BLAS). ATLAS optimizes the performance of
BLAS on any computer, regardless of architecture, without requiring an exten-
sive knowledge of the system or the underlying linear algebra involved. For
BLAS and LAPACK libraries, algorithmic developers have developed autotuning
approaches for their algorithms based on heuristics and experimental observa-
tions to allow for performance portability [25]. The Optimized Sparse Kernel
Interface (OSKI) [43] improves the performance of sparse matrix kernels. OSKI
uses heuristics to tune sparse algorithms automatically without any input.

In the machine learning literature, hyperparameter tuning refers to techniques
to select parameters for neural networks, such as learning rate, momentum, and
categorical decisions, such as the type of activation function to select. Some param-
eters have been observed to affect the accuracy of classificationmodels produced by

382 B. Sauk and N. V. Sahinidis

neural networks or support vector machines. As accuracy is affected by the selec-
tion of hyperparameters, considerable effort has been invested in hyperparameter
optimization. Tuning these algorithms is challenging and is typically addressed
with random search, grid search, or with Bayesian Optimization using Gaussian
Process models [8]. Bayesian Optimization is widely regarded as the most efficient
way to perform hyperparameter tuning [7,8,37]. Other stochastic strategies, such
as the Covariance Matrix Adaption Evolution Strategy, have been observed to
outperform Bayesian Optimization solvers as the iteration budget increases [27].
While the focus of this work is on online parameter tuning, there has also been
some work developing models offline with the F-race [9] and irace algorithms [26].
These methods rely on sampling the search space to identify statistically signifi-
cant parameters and determining an optimal set of parameters, and they have been
applied to tuning ant colony optimization algorithms.

2.2 Derivative-Free Optimization Algorithms

DFO algorithms are divided into groups depending on how they search for an
optimal solution. One such distinction is between direct methods, such as the
Nelder-Mead simplex [30], that search over a certain pattern and model-based
methods, such as the trust region method [34], that rely on a model to guide the
search. DFO solvers are also classified by whether they search for local or global
solutions, and whether they are deterministic or employ stochastic elements.
For a more detailed discussion of DFO solvers, readers are referred to [35]. In
this work, several DFO solvers that are investigated are listed in Table 1, and
expanded upon in the remainder of this section.

Table 1. DFO solvers considered

Solver Type

HOPSPACK [33] local, direct

SID-PSM [12] local, direct

SNOBFIT [22] global, model

DAKOTA MESH ADAPTIVE SEARCH (MADS) [1] local, direct

DAKOTA SOGA [1] global, stochastic

TOMLAB/glcDirect [19] global, deterministic

TOMLAB/glcFast [19] global, deterministic

TOMLAB/glcSolve [19] global, deterministic

2.3 Existing Hybrid Tuning Algorithms

Hybrid algorithms combine simple solvers that may otherwise be unable to escape
from a local optima. Hybrid search algorithms have been demonstrated to be effec-
tive at identifying optimal tuning parameters for different computational algo-
rithms [3]. In several cases, local DFO solvers have been combined with global
strategies to improve their accuracy with fewer function evaluations [14,42].

HybridTuner 383

One line of research involving deterministic hybrid tuning algorithms com-
bines the DIRECT algorithm with implicit filtering [11], pattern search tech-
niques [17], or with surrogate models [18]. In the work of Hemker et al. [18], in
every iteration, instead of evaluating a point at the center of a box, as is done
in DIRECT, the point to be evaluated is determined by minimizing a surrogate
over the area of the domain that is being considered. The authors test this imple-
mentation on a problem with 17 variables and bound constraints, but found that
the hybrid implementation was unable to determine an optimal solution after
400 function evaluations.

Griffin et al. [17] developed a hybrid framework that combines DIRECT and
APPSPACK [16]. APPSPACK is a predecessor of HOPSPACK and is also a
generating set search DFO solver. The work of Griffin et al. focuses on solv-
ing small problems with two, three, or four variables, and describes how the
framework scales with an increasing number of CPU cores. The authors utilize
the asynchronous nature of the DIRECT algorithm, and parallelize the search
process. Their algorithm does not use DIRECT to initialize the starting point
of the APPSPACK algorithm, but instead interleaves the execution of the two
algorithms throughout the entire search.

OpenTuner is a hybrid strategy that is initialized with a random starting
point, and then explores the search space with several local search strategies [3].
The multi-armed bandit problem is maximized after every iteration to select
a solver to locate the next trial point. OpenTuner has been demonstrated to
perform well for parameter tuning on high-dimensional problems, such as tuning
GCC, while it identifies optimal solutions for smaller problems within a fraction
of the iterations required by exhaustive search.

3 Proposed Hybrid Tuning Algorithms

Our proposed methodology derives from the observation that certain global DFO
strategies identify high quality solutions quickly, but then struggle to escape
from a local minima to obtain a globally optimal solution. We propose two
hybrid methodologies, Bandit DFO and Hybrid DFO. We create Bandit DFO by
combining a global DFO solver with several local DFO solvers that are selected
by solving the multi-armed bandit function. In Hybrid DFO, we initialize a local
DFO strategy with the solution found by a global DFO strategy that is executed
for a small fraction of the computational budget.

The methods we propose here borrow ideas from OpenTuner, but significantly
improve tuning performance by combining local with global DFO solvers. Addi-
tionally, merely implementing a global DFO solver in the OpenTuner framework
would be insufficient to obtain near-optimal solutions as quickly as the proposed
Bandit DFO method. A key improvement in our implementation is the frequency
at which we solve the multi-armed bandit problem. We identified that solving the
bandit problem less frequently results in faster convergence to optimal solutions,
when including model-based DFO solvers.

384 B. Sauk and N. V. Sahinidis

3.1 Multi-armed Bandit Technique

The multi-armed bandit problem with a sliding window, area under the curve
credit assignment problem is a technique developed for programmatic autotun-
ing [3,32]. This problem is inspired by attempting to maximize profit when
gambling on numerous slot machines [15]. If multiple machines are available,
initially, one has to sample each of the machines to discover the expected profit
from each game. Then, there is a balance between exploiting machines that have
worked well with exploring options that have not been evaluated recently.

This framework translates well into a hybrid autotuner. In hybrid algorithms,
there is a trade-off between exploiting solvers that are currently performing
well, and exploring the potential of other solvers with unknown or previously
poor performance. Different techniques have been proposed in the literature to
balance the trade-off between these objectives, such as simulated annealing [28]
and particle swarm optimization [24].

The multi-armed bandit problem is solved at every iteration in the Open-
Tuner framework to select which local solver to use at the current iteration. This
approach also includes a sliding window to bias the current selection towards
solvers that have performed well recently, while ignoring results outside of the
current time window. The following optimization problem is solved to determine
which technique (t) to select:

argmax
t

2
Nt(Nt + 1)

Nt∑

i=1

iVti + C

√
2 logW

Ht

Here, Nt is the number of times that technique t has been used in the current
time window, and Vti is 1 if the use of technique t in time period i resulted in
discovering a better solution. The length of the sliding window is defined as W .
Ht is the frequency of using technique t in the current time window. Finally,
the non-negative parameter C controls the exploration and exploitation trade-
off. Large values of this parameter put more emphasis on exploration; smaller
values on exploitation. Traditionally, this maximization problem is solved at
every iteration to determine the solver that is expected to perform the best in
the next iteration.

While solving the bandit problem at every iteration may be appropriate when
using local direct DFO methods, in practice, we observed that model-based DFO
strategies require several iterations before suggesting a better candidate solution.
To allow model-based DFO methods to find better trial points, we introduced
another hyperparameter, n, into the algorithm to control the frequency of solv-
ing the multi-armed bandit problem. This modification is critical to the perfor-
mance of our algorithm, and can be set to one to recover the original formulation.
Figure 1 outlines our multi-armed bandit function implementation. During ini-
tialization, it is possible to select a starting point either manually, or by using
a DFO solver for a small number of function evaluations. In this work, we ini-
tialize Bandit DFO with the DIRECT search method. The hyperparameters in
this implementation are:

HybridTuner 385

– C to control the exploration and exploitation trade-off;
– MaxEvals is the tuning function limit;
– W is the number of iterations to consider in the sliding window; and
– n is the number of iterations between solving the multi-armed bandit problem.

Select hyperparameters

Initialize starting point

Solve Bandit problem

Call DFO solver for n iterations

Iterations > MaxEvals

Terminate

Update starting point

yes

no

Fig. 1. Algorithmic framework of proposed Bandit DFO method

3.2 Initialization Strategy

The proposed Hybrid DFO algorithm is outlined in Fig. 2. It has previously been
observed that the DIRECT algorithm locates near-optimal solutions with a small
number of iterations but is unable to converge to a globally optimal solution.
We improve the performance of DIRECT by initializing a local DFO solver
with the solution returned from DIRECT after a small number of iterations.
DIRECT has been combined with local optimizers before, but its application was
limited to small problems [16,23]. To extend this idea to large-scale problems,
we investigated what percentage of the experimental budget to allocate to global
search to identify a near-optimal solution.

386 B. Sauk and N. V. Sahinidis

We initialize the HOPSPACK and SID-PSM algorithms with a starting point
identified from TOMLAB glcDirect. While HOPSPACK and SID-PSM are local
direct search DFO solvers, they have been observed experimentally to iden-
tify the best measured solutions in previous tuning experiments [36]. We have
observed that initializing these solvers with an intermediate solution obtained
by DIRECT, leads to faster convergence to near-optimal solutions in comparison
to other similar techniques. From experimentation, we identified that assigning
5%–10% of the iteration budget to a global DFO method leads to near-optimal
performance with this hybrid approach. Allocating global solvers 5%–10% of the
computational budget corresponded to approximately two or three iterations for
each tuning problem that was considered in this work. The hyperparameters
that we consider are:

– nGlobal controls the number of iterations given to DIRECT; and
– nLocal is the number of iterations given to a local DFO solver.

In the next section, several state-of-the-art autotuners are compared against
our proposed hybrid approaches.

4 Computational Results

We conducted computational experiments on two different machines. The first,
running CentOS7, with an Intel Xeon E5-1630 at 3.7 GHz and 8 GB of RAM,
with a NVIDIA Tesla K40 GPU with 15 streaming multiprocessors, 12 GB of
RAM, and a peak memory bandwidth of 288 GB/s. Algorithms were compiled
with the NVCC CUDA 9.1 compiler or the GCC 4.8.5 compiler when applicable.
For the other experiments, the Pittsburgh Supercomputing Center, Bridges, was
used to perform experimentation on a NVIDIA Tesla P100 GPU [31,41]. Dense
matrix-matrix multiplication is performed on each GPU with a matrix multi-
plication algorithm developed by modifying example code provided by NVIDIA
in the CUDA 9.1 release to allow for the inclusion of tunable parameters. We
created the modified example code to create a tuning space that considers algo-
rithmic options and NVCC compiler optimizations. The parameter space for this
problem is 3.4 × 1011 unique combinations. The GCC examples are codes from
the PolyBench 4.2.1 benchmark suite [45].

Given the size of the parameter space and that the objective function is a
black-box, we are unable to enumerate all parameter combinations to determine
an optimal set of tuning parameters for each problem. Instead, we compared
solvers by their performance relative to the best solution found in each experi-
ment. Solvers that identify parameters that produce the highest observable per-
formance in the shortest number of function evaluations are regarded as the best
autotuner in each experiment. In all of the figures provided below, Bandit refers
to our Bandit DFO algorithm, Hybrid refers to the Hybrid DFO algorithm, and
Bayesian refers to solving the problem with Bayesian Optimization.

HybridTuner 387

Select hyperparameters

Initialize starting point

Run glcDirect for nGlobal iterations

Update starting point

Run local DFO solver with new
starting point for nLocal iterations

Terminate

Fig. 2. Algorithmic framework of proposed Hybrid DFO method

4.1 Matrix Multiplication on the Tesla K40

In the matrix multiplication experiment, we addressed the problem of tuning
17 parameters. These parameters are listed in Table 2, along with their corre-
sponding lower and upper bounds. Parameters consist of categorical choices and
integer decisions. Categorical choices are represented as 0 or 1 binary decisions
such as whether to use GPU shared memory. Integer choices include methods for
optimizing spatial locality through tiling. GPU specific parameters, such as the
number of threads in a thread block, are adjusted by varying an integer value,
while maintaining hardware constraints. The inner loop of matrix multiplication
is unrolled based on the loop unrolling parameter. The remainder of the param-
eters are NVCC compiler optimizations. We considered the parameters that the
authors of [10] identified as NVCC parameters that could be tuned to outperform
the -O2 or -O3 compiler flags. All parameters investigated in this experiment are
integer variables. As several DFO solvers only operate on continuous variables,
and may attempt to evaluate fractional trial points, we rounded values to the
nearest integer before passing them to the matrix multiplication kernel.

388 B. Sauk and N. V. Sahinidis

Table 2. Algorithmic options for tuning dense matrix-matrix multiplication

Tunable parameter Lower bound Upper bound

Store transpose of matrix A 0 1

Store transpose of matrix B 0 1

Use of shared memory 0 1

Block size 1 63

Number of threads in x direction 1 32

Loop unrolling 1 256

No-align-double 0 1

Relocatable-device-code 0 1

Single-precision denormals support 0 1

Single-precision floating-point division 0 1

Single-precision floating-point square root 0 1

Cache modifier on global load 0 2

Optimization level 0 3

Fusion of multiplication and addition 0 1

Allow expensive optimizations 0 1

Maximum amount of register count 24 63

Preserve resolved relocations 0 1

We report results only for square matrices of size 10000 by 10000. Not shown
here are results from additional experiments that we conducted with 2000 by
2000 and 6000 by 6000 matrices, for which we observed similar trends to those
of the figures shown below on both the Tesla K40 and the Tesla P100 GPUs.
The tuning objective was to maximize performance of the matrix multiplication
kernel. Performance was measured in gigaflops (GFLOPs) and was calculated
as the number of operations required to perform dense matrix multiplication
divided by the amount of time required to perform all of the operations. All
solvers were allowed to call the matrix-matrix multiplication kernel 1000 times,
and the best performance obtained in the experiment was reported against the
iteration number in the figures below. The same random starting point was given
to all solvers, if an initial starting point was accepted.

As shown in Fig. 3 for multiplication of 10000 by 10000 matrices, we observed
that the autotuners have different performance profiles. ActiveHarmony termi-
nated before finding a solution above 200 GFLOPs, less than half of the peak per-
formance obtained by our Bandit DFO. OpenTuner identified a solution with a
performance of 350 GFLOPs after 300 function evaluations, using 10 times more
function evaluations than the Hybrid DFO solvers to obtain a similar result. The
Bayesian strategy has a similar performance to Bandit DFO for the first 400 iter-
ations. However, the algorithm was terminated by the operating system on our
machine because it ran out of memory after 500 iterations.

HybridTuner 389

The proposed hybrid initialization technique discovered a solution with a
performance over 300 GFLOPs within the first 20 iterations. Hybrid DFO never
escaped from the locally optimal solution initially obtained by the TOMLAB
solvers and terminates after 400 iterations. Both Hybrid DFO and Bandit DFO
use a DIRECT algorithm initially. However, Bandit DFO explored a different
search direction than Hybrid DFO, leading to a worse performance for the first
600 iterations. After 550 function evaluations, the SID-PSM sover in Bandit
DFO escaped from the previous local optima and improved to over 400 GFLOPs.
Bandit DFO converged to a parameter set that outperformed the best solution
obtained by the other autotuners by more than 80 GFLOPs after 600 iterations.

Number of function evaluations
0 200 400 600 800 1000

Pe
rf

or
m

an
ce

 (G
FL

O
Ps

)

0

100

200

300

400

500

ActiveHarmony
Bandit
Bayesian
Hybrid
OpenTuner

Fig. 3. Comparison of the performance of different autotuners tuning dense matrix
multiplication for 10000 × 10000 matrices on the Tesla K40 GPU

4.2 Matrix Multiplication on the Tesla P100

We also performed the same set of matrix multiplication experiments on another
GPU, the Tesla P100. Figure 4 displays the results for the multiplication of
square 10000 by 10000 matrices. ActiveHarmony and OpenTuner obtained sub-
optimal solutions and terminated after 400 and 700 function evaluations respec-
tively. Unlike on the Tesla K40, Bayesian Optimization was able to be run for
1000 iterations on the Pittsburgh Supercomputing Center Bridges. While we
do not report all of the results here, we note that the Bayesian strategy had
the same performance profile on all three of the matrix sizes that we experi-
mented on, converging to a performance around 1600 GFLOPs. In each case,
the Bayesian approach arrives at a slightly different set of optimal parameters,
even though the performance was similar.

390 B. Sauk and N. V. Sahinidis

Bandit DFO was the first to achieve a performance over 2000 GFLOPs, and
then outperformed all of the other solvers after 550 function evaluations. The
use of multiple DFO solvers combined with the DIRECT strategy performed
well in both obtaining near-optimal solutions, and converging to the best solu-
tion observed in our experiments. The second-best performing strategy was our
Hybrid DFO algorithm. This algorithm was the fastest solver to find a solution
with a performance over 2100 GFLOPs. Our main results on the P100 GPU align
with the results on the K40 GPU. Parameters obtained by using our hybrid tun-
ing algorithms are superior to those obtained with other autotuners, either in
terms of performance, or in the number of function evaluations required to iden-
tify the best known solution. Near-optimal solutions are obtained within the first
200 iterations with the proposed algorithms, while OpenTuner, ActiveHarmony,
and Bayesian Optimization fail to find near-optimal solutions after 1000 itera-
tions. From experiments conducted here, our proposed hybrid methods are the
best solvers to use for this type of tuning problem. For problems with fewer than
20 variables, and a vast parameter space, both of our hybrid methods identified
near-optimal solutions quickly and identified better solutions than any other
strategy within the first 1000 function evaluations.

Number of function evaluations
0 200 400 600 800 1000

Pe
rf

or
m

an
ce

 (G
FL

O
Ps

)

0

500

1000

1500

2000

2500

ActiveHarmony
Bandit
Bayesian
Hybrid
OpenTuner

Fig. 4. Comparison of the performance of different autotuners tuning dense matrix
multiplication for 10000 × 10000 matrices on the Tesla P100 GPU

5 Conclusions

This paper investigates hybrid tuning algorithms for parameter tuning. While
previous approaches rely on heuristics, or local direct search derivative-free opti-
mization algorithms, we propose hybridizing global DFO algorithms with local

HybridTuner 391

methods. We propose two hybrid methodologies, Bandit DFO and Hybrid DFO,
that combine different DFO strategies to improve the rate at which tuners con-
verge to an optimal solution.

We demonstrate that the two proposed hybrid algorithms outperform three
state-of-the-art autotuners, ActiveHarmony, OpenTuner, and Bayesian Opti-
mization with Gaussian Process models. Bandit DFO reduces the execution time
of dense matrix multiplication by a factor of 1.4× compared to algorithms gen-
erated by other autotuners on a problem with a parameter space of 3.4 × 1011

combinations. In additional results, that we were unable to present due to space
limitations, we found that the proposed algorithms have advantages over other
autotuners for tuning the GCC compiler.

By combining global DFO strategies with local strategies, our hybrid algo-
rithms identify the best observed parameters for the tuning applications that we
present here. The proposed hybrid algorithms are generic and can tune problems
of various sizes. To facilitate the development and use of autotuning software, we
provided an open-source implementation of our Bandit DFO and Hybrid DFO
algorithms for parametric autotuning.

References

1. Adams, B.M., et al.: DAKOTA, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty Quantification, and
Sensitivity Analysis: Version 6.5 User’s Manual. Sandia National Laboratories,
Albuquerque/Livermore (2016). https://dakota.sandia.gov/

2. Ansel, J., et al.: PetaBricks: a language and compiler for algorithmic choice. In:
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 38–49. Association for Computing Machinery,
New York (2009)

3. Ansel, J., et al.: OpenTuner: an extensible framework for program autotuning.
In: Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, pp. 303–316. Association for Computing Machinery, New York (2014)

4. Ashouri, A., Mariani, G., Palermo, G., Park, E., Cavazos, J., Silvano, C.:
COBAYN: compiler autotuning framework using Bayesian networks. ACM Trans.
Archit. Code Optim. (TACO) 13, 1–26 (2016)

5. Audet, C., Dang, C.-K., Orban, D.: Algorithmic parameter optimization of the
DFO method with the OPAL framework. In: Suda, R., Naono, K., Teranishi, K.,
Cavazos, J. (eds.) Software Automatic Tuning, pp. 255–274. Springer, New York
(2011). https://doi.org/10.1007/978-1-4419-6935-4 15

6. Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free
optimization. Soc. Ind. Appl. Math. 17, 642–664 (2006)

7. Balandat, M., et al.: BoTorch: programmable Bayesian optimization in PyTorch,
pp. 1–20. arXiv preprint arXiv:1910.06403 (2019)

8. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Wein-
berger, K.Q. (eds.) Proceedings of the 24th International Conference on Neural
Information Processing Systems, pp. 2546–2554. Curran Associates Inc., Red Hook
(2011)

https://dakota.sandia.gov/
https://doi.org/10.1007/978-1-4419-6935-4_15
http://arxiv.org/abs/1910.06403

392 B. Sauk and N. V. Sahinidis

9. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race:
an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.
(eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp.
311–336. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-
9 13

10. Bruel, P., Gonzalez, M., Goldman, A.: Autotuning GPU compiler parameter using
OpenTuner. In: XXII Symposium of Systems of High Performance Computing,
Bangalore, India, pp. 1–12. IEEE (2015)

11. Carter, R., Gablonsky, J., Patrick, A., Kelley, C., Eslinger, O.: Algorithms for
noisy problems in gas transmission pipeline optimization. Optim. Eng. 2, 139–157
(2001). https://doi.org/10.1023/A:1013123110266

12. Custódio, A.L., Vicente, L.N.: SID-PSM: a pattern search method guided by
simplex derivatives for use in derivative-free optimization. Departamento de
Matemática, Universidade de Coimbra, Coimbra, Portugal (2008)

13. Davidson, A., Owens, J.: Toward techniques for auto-tuning GPU algorithms. In:
Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7134, pp. 110–119. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28145-7 11

14. Fan, S.S., Zahara, E.: A hybrid simplex search and particle swarm optimization
for unconstrained optimization. Eur. J. Oper. Res. 181, 527–548 (2007)

15. Fialho, A., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. Ann. Math. Artif. Intell. 60, 25–64 (2010).
https://doi.org/10.1007/s10472-010-9213-y

16. Gray, G.A., Kolda, T.G.: Algorithm 856: APPSPACK 4.0: parallel pattern search for
derivative-free optimization. ACM Trans. Math. Softw. 32, 485–507 (2006)

17. Griffin, J.D., Kolda, T.G.: Asynchronous parallel hybrid optimization combining
DIRECT and GSS. Optim. Methods Softw. 25, 797–817 (2010)

18. Hemker, T., Werner, C.: DIRECT using local search on surrogates. Pac. J. Optim.
7, 443–466 (2011)

19. Holmström, K., Göran, A.O., Edvall, M.M.: User’s Guide for TOMLAB 7. Tomlab
Optimization. http://tomopt.com

20. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

21. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an antomatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

22. Huyer, W., Neumaier, A.: SNOBFIT-stable noisy optimization by branch and fit.
ACM Trans. Math. Softw. 35, 1–25 (2008)

23. Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A.,
Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. 1, pp. 431–440. Kluwer
Academic Publishers, Boston (2001)

24. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, Piscataway, NJ, USA, pp.
1942–1948 (1995)

25. Li, Y., Dongarra, J., Tomov, S.: A note on auto-tuning GEMM for GPUs. In: Allen,
G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2009. LNCS, vol. 5544, pp. 884–892. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01970-8 89

26. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L., Birattari, M., Stützle, T.: The
irace package: iterated racing for automatic algorithm configuration. Oper. Res.
Perspect. 3, 43–58 (2016)

https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1023/A:1013123110266
https://doi.org/10.1007/978-3-642-28145-7_11
https://doi.org/10.1007/s10472-010-9213-y
http://tomopt.com
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-01970-8_89
https://doi.org/10.1007/978-3-642-01970-8_89

HybridTuner 393

27. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural
networks, pp. 1–15. arXiv preprint arXiv:1604.07269 (2016)

28. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–
1092 (1953)

29. Nath, R., Tomov, S., Dongarra, J.: An improved MAGMA GEMM for Fermi graph-
ics processing units. Int. J. High Perform. Comput. Appl. 24, 511–515 (2010)

30. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J.
7, 308–313 (1965)

31. Nystrom, N., Levine, M., Roskies, R., Scott, J.: Bridges: a uniquely flexible HPC
resource for new communities and data analytics. In: Proceedings of the 2015
XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfras-
tructure, pp. 1–8. Association for Computing Machinery, New York (2015)

32. Pacula, M., Ansel, J., Amarasinghe, S., O’Reilly, U.-M., et al.: Hyperparameter
tuning in bandit-based adaptive operator selection. In: Di Chio, C. (ed.) EvoAp-
plications 2012. LNCS, vol. 7248, pp. 73–82. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29178-4 8

33. Plantenga, T.D.: HOPSPACK 2.0 user manual. Technical report SAND2009-
6265, Sandia National Laboratories, Albuquerque, NM and Livermore, CA (2009).
https://software.sandia.gov/trac/hopspack/

34. Powell, M.J.D.: UOBYQA: unconstrained optimization BY quadratic approxima-
tion. Math. Program. 92, 555–582 (2002). https://doi.org/10.1007/s101070100290

35. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms
and comparison of software implementations. J. Glob. Optim. 56, 1247–1293
(2013). https://doi.org/10.1007/s10898-012-9951-y

36. Sauk, B., Ploskas, N., Sahinidis, N.V.: GPU parameter tuning for tall and skinny
dense linear least squares problems. Optim. Methods Softw. 35, 638–660 (2020)

37. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q.
(eds.) Proceedings of the 25th International Conference on Neural Information
Processing Systems, pp. 2951–2959. Curran Associates Inc., Red Hook (2012)

38. Tan, G., Li, L., Triechle, S., Phillips, E., Bao, Y., Sun, N.: Fast implementation
of DGEMM on Fermi GPU. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 35–46. Asso-
ciation for Computing Machinery, New York (2011)

39. Ţăpuş, C., Chung, I., Hollingsworth, J.: Active harmony: towards automated per-
formance tuning. In: Proceedings of the ACM/IEEE Conference on Supercomput-
ing, pp. 1–11. IEEE Computer Society Press, Washington, DC (2002)

40. Tartara, M., Reghizzi, S.: Continuous learning of compiler heuristics. ACM Trans.
Archit. Code Optim. (TACO) 9, 1–25 (2013)

41. Towns, J., et al.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16,
62–74 (2014)

42. Vaz, A.I.F., Vicente, L.N.: A particle swarm pattern search method for bound
constrained global optimization. J. Glob. Optim. 39, 197–219 (2007). https://doi.
org/10.1007/s10898-007-9133-5

43. Vuduc, R., Demmel, J., Yelick, K.: OSKI: a library of automatically tuned sparse
matrix kernels. J. Phys: Conf. Ser. 16, 521–530 (2005)

44. Whaley, R., Petitet, A., Dongarra, J.: Automated empirical optimizations of soft-
ware and the ATLAS project. Parallel Comput. 27, 3–35 (2001)

45. Yuki, T., Pouchet, L.N.: PolyBench/C 4.2.1. https://www.cs.colostate.edu/
∼pouchet/software/polybench/polybench-fortran.html

http://arxiv.org/abs/1604.07269
https://doi.org/10.1007/978-3-642-29178-4_8
https://doi.org/10.1007/978-3-642-29178-4_8
https://software.sandia.gov/trac/hopspack/
https://doi.org/10.1007/s101070100290
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/s10898-007-9133-5
https://doi.org/10.1007/s10898-007-9133-5
https://www.cs.colostate.edu/~pouchet/software/polybench/polybench-fortran.html
https://www.cs.colostate.edu/~pouchet/software/polybench/polybench-fortran.html

Sensitivity Analysis on Constraints
of Combinatorial Optimization Problems

Julian Schulte(B) and Volker Nissen

Ilmenau University of Technology, Ilmenau, Germany
julian.schulte@tu-ilmenau.de

Abstract. Combinatorial optimization problems in practice are subject
to a variety of constraints, such as resource limitations or organizational
regulations. Since these model parameters can have a major impact, for
example, on the performance of a scheduling system, it is crucial to
know how changes in the constraints affect the optimal solution value.
The question of how changes in input parameters of an optimization
model, such as right-hand side values of constraints, affect the output
of the model is the main concern of sensitivity analysis. Although well
established in the domain of linear programming, the literature on com-
binatorial optimization lacks universal sensitivity analysis approaches
which are applicable to practical problems. In this paper, a general app-
roach is proposed which allows to identify how the optimal solution of
a combinatorial optimization problem is affected when model parame-
ters, such as constraints, are changed. Using evolutionary bilevel opti-
mization in combination with data mining and visualization techniques,
the suggested concept of bilevel innovization allows to find trade-offs
among constraints and objective function value. Additionally, it enables
decision-makers to gain insights into the overall model behavior under
changing framework conditions. The concept of bilevel innovization as a
tool for sensitivity analysis is illustrated, without loss of generality, by
the example of the generalized assignment problem.

Keywords: Sensitivity analysis · Combinatorial optimization ·
Evolutionary bilevel optimization · Data mining · Generalized
assignment

1 Introduction

In practical applications, combinatorial optimization problems are generally sub-
ject to a variety of constraints, such as resource and time limitations or organiza-
tional and legal regulations [21]. In personnel scheduling, these constraints may
concern, for example, the size and structure of a company’s workforce, staffing
policies or working time regulations. In vehicle routing, as another example, vehi-
cle capacities or fleet size may be relevant as well as due dates or time window
regulations. Since these model parameters can have a major impact, for instance,
on the performance of a scheduling system, it is crucial to know how changes in
the constraints affect the optimal solution value. This is especially relevant in
c© Springer Nature Switzerland AG 2021
D. E. Simos et al. (Eds.): LION 2021, LNCS 12931, pp. 394–408, 2021.
https://doi.org/10.1007/978-3-030-92121-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92121-7_30&domain=pdf
https://doi.org/10.1007/978-3-030-92121-7_30

Sensitivity Analysis on Constraints of Combinatorial Optimization Problems 395

(strategic) planning situations, where a company has to determine this kind of
framework conditions rather than solely optimizing the combinatorial problem.

The analysis of the behavior of an optimization model and the answering of
questions such as “Given a specific change of a parameter, what is the new opti-
mal solution value?” or “What is the new optimal solution value when several
parameters change simultaneously?” are the main focus of sensitivity analysis
(SA) [12]. Although SA is well established in the field of linear optimization and
an important part of the model building as well as decision-making process [13],
the literature on combinatorial optimization lacks universal sensitivity analy-
sis approaches which are applicable to practical problems. Hall and Posner [12]
performed an extensive study of sensitivity analysis approaches for scheduling
problems and provide suggestions for SA that can be applied to a variety of
scheduling problems. However, they indicate various issues which remain open.
From these issues (especially issues I1, I2, I9), we identified three main require-
ments that should at least be met for a SA approach to be useful in practice:

1. Problem independence: The sensitivity analysis should neither require a
detailed analysis of the mathematical model nor rely on certain model or
problem characteristics.

2. Algorithm independence: The sensitivity analysis should not rely on algorithm
properties, such as duality or an algorithmic analysis of a heuristic. Thereby,
a solution method can be chosen that is most suitable not for SA but to solve
the problem at hand.

3. Simultaneous independent changes of multiple parameters: The sensitivity
analysis should identify how simultaneous changes of multiple parameters
affect the optimal solution. To get full insight into the model behavior, it is
furthermore important that these changes can occur independently of each
other, in contrast to, e.g., parametric programming approaches.

To the best of our knowledge, in the literature on combinatorial optimization
there exists no approach that meets these requirements (see [1,11,15] for recent
works and reviews on SA in combinatorial optimization). In the general oper-
ational research literature, however, the approach of global sensitivity analysis
has been identified that fulfills the above criteria. The idea of global SA was
introduced into the domain of operations research in order to overcome deficits
of classical, duality-based sensitivity analysis approaches [29]. In general, global
SA is not limited to optimization problems but relevant in all disciplines that
deal with mathematical modeling, such as economics or engineering [3,25]. In
contrast to local SA methods, which perform analyses around one point of inter-
est in the input parameter space, e.g., by varying one parameter at a time, global
SA methods perform simultaneous variations of input parameters that cover the
entire parameter space, e.g., by sampling data points via Monte Carlo simulation
and subsequently applying statistical methods [3,24].

Although fulfilling the mentioned requirements, the general application of
global SA in combinatorial optimization is limited by its focus on uncertainty
in the model input parameters and the fundamental assumption that proba-
bility distributions can be assigned to each input parameter [3]. Therefore, if

396 J. Schulte and V. Nissen

uncertainty is the primary concern of the problem to be analyzed and there is
information about the probability distribution of the model inputs (e.g., con-
straint values), global SA could be used to get a better model and problem
understanding. However, if the primary interest of the sensitivity analysis is to
identify efficient trade-offs regarding e.g., resource usage and objective function
value, a different approach is needed.

The identification of optimal constraint configurations, such as the number of
vehicles or shifts, does not necessarily have to be part of a sensitivity analysis, but
can also be considered an optimization problem itself. Examples are the problems
of location routing [23] or shift design [8]. While these approaches allow to find
trade-offs regarding several types of constraints and the optimal solution value,
they provide only limited information about how a model responds to certain
input parameter changes and therefore do not allow to answer questions related
to sensitivity analysis.

In order to overcome this limitation and provide decision-makers with deeper
insights into the overall model behavior, Schulte et al. [26] proposed the concept
of bilevel innovization (BLI). The concept was demonstrated in the context of
a personnel scheduling problem which was solved using a Genetic Algorithm
(GA). Here, the scheduling problem was analyzed regarding how variations in
the number and qualification of employees as well as the use of different shifts
influence the objective function value.

Due to its fulfillment of the aforementioned requirements and the successful
application to a problem of practical size, in this paper we propose the concept
of bilevel innovization as general approach for sensitivity analysis on constraints
in combinatorial optimization (see Sect. 2 for more information on BLI). To
illustrate the general applicability, the concept is demonstrated by the example
of the generalized assignment problem. The problem was chosen because of its
easy comprehensibility and high practical relevance due to its transferability to
numerous fields of application, such as workforce planning, project management,
vehicle routing and production planning [20,22].

The remainder of this paper is structured as follows: In Sect. 2, the general
concept of bilevel innovization is presented. In Sect. 3 and 4, the single steps of
the BLI process are demonstrated in detail by the example of the generalized
assignment problem. Section 3 focuses on bilevel optimization, whereas Sect. 4
illustrates the application of visualization and data mining methods within the
BLI process to gain insights into model behavior. Finally, conclusions and sug-
gestions for further research are presented in Sect. 5.

2 Bilevel Innovization

In the following, we briefly describe the general idea of bilevel innovization
as well as the underlying concepts. The main assumption behind using bilevel
innovization for sensitivity analysis on constraints in combinatorial optimization
is that there exist trade-offs between the optimal solution value and the con-
straint values (e.g., resource limitations). This kind of (strategic) problem can

Sensitivity Analysis on Constraints of Combinatorial Optimization Problems 397

be formulated as a hierarchical optimization problem (bilevel problem), where
the lower-level problem optimizes its objective based on the parameters deter-
mined by the upper-level optimization problem. The upper-level, in turn, opti-
mizes its objectives under consideration of the lower-level results [6,18]. In the
context of BLI and SA, the upper-level problem determines the constraints of
the lower-level problem, which is the actual problem under consideration for SA.

A popular approach to solve bilevel problems is using an Evolutionary Algo-
rithm (EA) at the upper-level and any kind of optimization algorithm at the
lower-level, resulting in a nested EA [27,28]. Since the upper-level problem faces
at least two conflicting objectives, i.e., lower-level and upper-level objective,
a multi-objective optimization problem has to be solved. Due to the usage of
an EA at the upper-level, an evolutionary multi-objective algorithm is applied.
Evolutionary multi-objective optimization (EMO) supports the decision-making
process by providing a set of Pareto optimal solutions. The final solution to be
selected by the decision-maker will, therefore, be a trade-off among the consid-
ered objectives (see [4,10] for more detailed information on EMO).

In general, the bilevel innovization process (see Fig. 1) can be divided into
two parts: data generation and data analysis. The first part serves the pur-
pose of generating the data set for the subsequent analysis by solving the inves-
tigated bilevel optimization problem. The data analysis part is based on the
visual analytics process [14] and aims to gain insights into model behavior and
to extract rules that support decision-making regarding possible modifications
of parameters (e.g., resource allocation). Visual analytics integrates model-based
and visual analysis methods and consequently combines the strengths of machine
and human capabilities. Here, the user is in a constant loop of data processing
(e.g., feature creation), visualization (e.g., scatter or box plots) and model build-
ing (e.g., regression or decision trees) in order to gain knowledge of the problem.

Fig. 1. Bilevel innovization process [26]

398 J. Schulte and V. Nissen

3 Data Generation

3.1 Lower-Level Model

Starting point is the actual problem to be analyzed and the lower-level optimiza-
tion model, respectively. The model behavior is represented by the lower-level
objective function value. The optimization algorithm here is freely selectable
depending on the considered problem. Details regarding problem instances and
parameter settings are described in Sect. 3.4. Due to the bilevel notation we use
y instead of x as decision vector.

Problem Description: The generalized assignment problem (GAP) is con-
cerned with the optimal assignment of n tasks to m agents and can be formulated
as follows [20,22]:

min
y

m∑

i=1

n∑

j=1

cijyij (1a)

subject to:
m∑

i=1

yij = 1 j = 1, ..., n (1b)

n∑

j=1

rijyij ≤ bi i = 1, ...,m (1c)

yij ∈ {0, 1} ∀i, j (1d)

where cij is the cost and rij the capacity requirement of assigning task j to
agent i. Each task j has to be assigned to one agent i (1b) and one agent can be
assigned multiple tasks while not exceeding the agent’s capacity bi (1c). Whether
a task j is assigned to agent i is indicated by the binary decision variable yij

(1d). The objective is to minimize the overall assignment cost of tasks to agents
(1a). For more details on the GAP we refer to [20,22].

Algorithm Description: In the original application of bilevel innovization, a
GA was applied to solve the lower-level problem. To emphasize the algorithm
independence of BLI, here the lower-level problem is solved by a branch-and-cut
algorithm using the open-source MILP solver Cbc1.

Stopping Criterion: To provide efficient evaluations, a stopping criterion
should be implemented. For metaheuristic algorithms, this may be based on
convergence rate or a solution quality threshold. For enumerative approaches, as
in this case, a time limit can be used.

3.2 Decision Variables (Input Data)

The next step is to determine the parameters of the lower-level model to be
investigated (e.g., resource constraints). These will serve as decision variables at
1 https://github.com/coin-or/Cbc.

https://github.com/coin-or/Cbc

Sensitivity Analysis on Constraints of Combinatorial Optimization Problems 399

the upper-level EMO problem. The decision variables may, for instance, change
the right-hand side value of a particular constraint (in the following referred to
as constraint value) or cause constraints to be added or removed.

Variable Selection: For the example of the generalized assignment problem,
the issue to be analyzed is how variations in the resource constraints (Eq. 1c)
affect the overall assignment cost (Eq. 1a). Therefore, the right-hand side value
bi of each resource constraint is used as one of the decision variables.

Variable Translation to Objective Value: Furthermore, it has to be deter-
mined how the selected decision variables are to be represented at the upper-
level problem. One approach is to consider each decision variable as an individual
objective, which is then integrated into the upper-level problem. The second app-
roach is to use scalarization methods to aggregate multiple decision variables to
a single value (for more information on scalarization see [10]).

Since there is no indication that we are facing constraints of different kinds,
for the considered GAP, we decided on scalarization using linear weighting to
convert the m resource constraint values into one single objective value. To reflect
their initial importance, the weights are set to the normalized resource capacities
of the initial data of the selected problem instance (see Sect. 3.4).

Variable Bounds: To limit the search space, the upper and lower bounds of
the decision variables should be set to a reasonable value, e.g., the area on which
the sensitivity analysis is focused. To get a general overview of the considered
GAP, we set the upper bound of each constraint to the maximum value needed
to assign all tasks to one agent and the lower bound to zero.

3.3 Upper-Level Model

Now, the resulting upper-level problem has to be modeled. For solving the upper-
level problem, an evolutionary multi-objective algorithm is used. In the context
of sensitivity analysis, it is assumed that at least two conflicting objectives are
optimized within the bilevel optimization problem, one of which should be the
lower-level objective function value.

Bilevel Problem: Bilevel optimization problems can generally be formulated
as follows [27,28]:

min
x,y

F (x, y) (2a)

subject to: G(x, y) ≤ 0 (2b)
y ∈ argmin

y
{f(x, y) : g(x, y) ≤ 0} (2c)

where x and y are the vectors of decision variables determined by the upper- and
lower-level problem, respectively. Moreover, F (x, y) and f(x, y) are the objective
functions and G(x, y) and g(x, y) the constraints of the upper- and lower-level
problem. For the sensitivity analysis, x represents the vector of constraint values.
For each x, the GAP f(x, y) will be optimized yielding the vector of assigned

400 J. Schulte and V. Nissen

tasks y. Therefore, the upper-level objective function F (x, y) is dependent on
the scalarized constraint values (upper-level decision) as well as the cost of the
assigned tasks at the lower level, which in turn is influenced by the determined
value of each constraint.

Problem Description: The upper-level problem corresponds to the trade-off
decision that is analyzed within the sensitivity analysis. For the GAP, the trade-
off regarding cost and constraint values is of interest. As mentioned in Sect. 3.1,
the upper-level objective is created by linear weighting of the m agent capacity
constraints (3b), with the weights wi representing the relative importance of
the constraint values Bi of the initial lower-level problem data set (3c). The
value range of xi is limited by predefined upper (UB) and lower (LB) bounds
(3d). The objective of the upper-level problem is to minimize the scalarized
constraint values (3a) subject to constraints (3b)–(3d) and the total assignment
cost resulting from the lower-level problem decision (3e).

Algorithm Description: Following the taxonomy given by Talbi [28], the algo-
rithm applied to solve the sensitivity analysis problem is a nested constructing
approach with a metaheuristic at the upper-level and an exact optimization
algorithm at the lower-level. In this type of bilevel model, an upper-level meta-
heuristic calls a lower-level MILP solver during its fitness assessment. In doing
so, the upper-level heuristic determines the decision vector x (here the values of
the different constraints) as input for the lower-level algorithm, which in turn
determines the decision vector y (optimized task assignment). Both decision
vectors are subsequently used to solve the bilevel problem at the upper-level.

min
x,y

F (Wx, y) (3a)

subject to: Wx =
m∑

i=1

wixi (3b)

wi =
Bi∑m

ι=1 Bι
i = 1, ...,m (3c)

UB ≥ xi ≥ LB i = 1, ...,m (3d)
y ∈ argmin

y
{(1a) − (1d)} (3e)

At the upper-level, the NSGA-II [7] is used to solve the multi-objective prob-
lem of minimizing constraint values and assignment cost. The chromosome of
the upper-level individuals is denoted by the one-dimensional integer vector
x = (x1, ..., xm) with each value representing one constraint of the GAP. For
reproduction, one-point, uniform and intermediate crossover are applied, ran-
domly selected for each reproduction process. Furthermore, random integer as
well as random walk mutation are used (see [16] for more details).

Stopping Criterion: The primary aim of solving the upper-level problem is not
to find the best possible solutions to the optimization problem but to generate
data for the subsequent analysis. For this purpose, a stopping criterion (see [17])

Sensitivity Analysis on Constraints of Combinatorial Optimization Problems 401

measures convergence based on how many non-dominated individuals of the
current iteration dominate those of the previous iteration.

3.4 N Optimization Runs

For the actual data generation, a number of independent runs of the upper-level
algorithm have to be conducted in order to obtain as many different solutions
as possible for the subsequent analysis. The number of runs depends, among
others, on the problem structure, the number and characteristics of the decision
variables at the upper-level and the required computation time. Since BLI is
to be considered an iterative process, one may start with only a few runs and
gradually increase until satisfactory data is created.

Problem Instances: In this study, we use the benchmark data sets for the
GAP presented in [5]. For the demonstration, the first instance of the set “gapa”
with m = 5 agents and n = 100 tasks was chosen. The selection was arbitrary,
however, experiments on other instances showed similar behavior.

Parameter Settings: For the upper-level GA, a population size of 50, a thresh-
old of 5% (as recommended in [17]), and 10 restarts are chosen, with each restart
having a random initial population. The lower bound of the decision variables is
set to zero, the upper bound to the maximum of all constraint values required to
assign all tasks to one agent. If the stopping criterion is not activated, a genera-
tion number of 100 is selected. The mutation rate is set to 1/v, with v being the
number of genes of the encoded upper-level individual. At the lower-level, a MILP
solver with a time limit of 10 s is used. Experiments on the actual benchmark
instances with larger time limits did not yield results where the improvements
justified the considerable larger computation times.

Optimization Output Data: The last step of the data generation stage is
to prepare the obtained data sets, i.e., evaluated individuals of the different
optimization runs, in a suitable manner for the following visual analytics task.
All values associated with each evaluated individual, such as objective or decision
variable values, are henceforth referred to as features.

Data Collection: One key aspect of bilevel innovization is not only to analyze
the final Pareto-optimal solution set but to collect all individuals that are evalu-
ated at the upper-level algorithm. In order to perform a comprehensive analysis,
it is further recommended to not only store the objective function value of the
lower-level algorithm but to collect all data that may be useful for the analysis.
Possible additional features could be constraint usage, constraint slack or, when
using a heuristic at the lower-level, constraint violations.

Feature Creation: In addition to the features obtained during optimization,
new features can be created based on the available data. This can either be done
in advance or during the analysis based on new insights.

402 J. Schulte and V. Nissen

For the example of the GAP, we introduce two additional features for all
evaluated upper-level individuals s ∈ S. The first feature (see Eq. (4)) represents
the overall capacity of all agents and can be considered as decoding of the upper-
level objective Wx (3b). The second feature (see Eq. (5)) serves as efficiency
indicator and measures the euclidean distance from each solution s ∈ S to the
nearest Pareto-optimal solution p ∈ P , with fd representing each upper-level
objective in a d-dimensional objective space, here constraint values and cost
(see [9] for more information on this efficiency measure).

capacitys =
m∑

i=1

bi i = 1, ...,m (4)

efficiency distances = min
p

√√√√
d∑

f=1

(fds − fdp)2 ∀p ∈ P (5)

4 Data Analysis

In the context of bilevel innovization, each data record is at least composed of the
objective values of an evaluated individual at the upper-level problem (output
data) and the corresponding decision variables (input data). As is common in
visual analytics, data analysis can be considered an iterative process, and one
can step back to create new features or generate additional data.

4.1 Visualization of Output Data

The first step is to visualize the output data. Depending on the spread of the
data, an area of interest for deeper analysis can be selected manually (e.g.,
range around the Pareto-optimal front). Subsequently, the filtered data can be
visualized again to explore shape and distribution of the objective values. This
may lead to first insights regarding the model’s behavior.

Within the 10 optimization runs of the upper-level algorithm, 19,787 solu-
tions have been evaluated. For 747 of these individuals, no feasible solution was
found, i.e., the constraints were set too tight or the time limit was too short. Fur-
thermore, for each solution, the gap between optimal solution value of the linear
relaxation (regarding (1d)) and the actual solution was measured. For all feasi-
ble solutions this gap is on average 0.46%, which indicates that the lower-level
stopping criterion was set to a reasonable value.

Area of Interest Selection: The left plot in Fig. 2 shows all 19,040 feasible as
well as the 652 Pareto-optimal solutions (in the following referred to as efficient
solutions) of the different optimization runs. To narrow the analysis and to focus
on efficient trade-offs, we further filtered the data by determining cut-off points
at each dimension of the objective space. The capacity cut-off was chosen by
first selecting all solutions with minimum cost value and subsequently selecting
the smallest capacity value within the remaining solutions. The same procedure

Sensitivity Analysis on Constraints of Combinatorial Optimization Problems 403

was applied for the cost cut-off point. These (edge) cut-off points especially aim
at removing solutions with the smallest possible cost value but different capacity
values along the y-Axis. The capacity and cost cut-off values were set to 1,558
and 3,209, respectively. By the application of the capacity cut-off 6,987 solutions
were removed, while the cost cut-off removed 25 solutions. As a result, 12,028
solutions remain in the area of interest for subsequent analysis (see Fig. 2 right).

Fig. 2. Feasible objective space (left) and selected area of interest (right)

What we can already identify from the output data visualization is that,
while maintaining feasible solutions, the minimum cost of 1,693 can be achieved
with the maximum required capacity of 1,558. Further, a total capacity of at
least 810 must met to maintain feasible solutions at maximum cost of 3,340.

Target Area Identification: Prior to a more detailed examination of the input
data, further target areas within the selected area of interest have to be identi-
fied. This could either be done manually [19] or by the application of a clustering
algorithm to support the identification of suitable cut-off points [26]. Another
option is the use of specific measures, such as the efficiency of a solution mea-
sured by its distance to Pareto-optimal solutions [9]. Figure 3 exemplary shows
target areas based on clustering (left) and on solution efficiency (right). For the
clustering, a k-means clustering algorithm was used with k = 4 and capacity
and cost as feature variables. The number of clusters was selected based on the
number of desired target areas. For the target areas based on efficiency, the pre-
viously introduced feature efficiency distance was used. Here, the distance was
normalized to a 0–1 scale and subsequently the solutions were partitioned in 10
target area groups.

The clustered target areas allow an analysis in respect of the different objec-
tives, e.g., low-cost and high-cost solutions. The efficiency-based target areas can
be used to examine what distinguishes efficient from inefficient solutions. In the
further course of analysis, we focus on the trade-off between cost and capacity.
Therefore, we chose the clustered target areas as basis. Furthermore, we focus

404 J. Schulte and V. Nissen

Fig. 3. Target areas based on clustering (left) and efficiency distance (right)

on the most efficient solutions. Thus, only solutions in the efficiency distance
group “0.0–0.1” are analyzed. Figure 4 shows the resulting 5 target areas (TA),
where TA1 contains 2,425 solutions, TA2 3,012 solutions, TA3 2,859 solutions,
TA4 1623 solutions and TA5 2,109 solutions.

Fig. 4. Selected target areas

Target areas with low cost are further referred to as high performance areas.
Consequently, TA1 is the highest and TA4 is the lowest performing area. In
terms of efficiency, TA1 to TA4 are considered equivalent, with TA5 being the
only inefficient area.

Sensitivity Analysis on Constraints of Combinatorial Optimization Problems 405

4.2 Data Mining and Visualization of Input Data

The next step is to further analyze the target areas by applying data min-
ing methods, such as clustering, classification or regression. The objectives here
could be either to obtain more precise rules, as to which input parameter config-
urations lead to which target areas, or to gain deeper insights into the individual
target areas. Each objective aims to uncover interesting patterns and identify
relationships between the decision variables and the model output in order to
gain a better understanding of the behavior of the analyzed model and support
decision-making. This process is supported by the visualization of the input
data (or decision variables). Suitable visualization techniques are, among others,
scatter plots, parallel coordinate plots, radar charts, pie charts or box plots.

In this study, we focus on gaining deeper insights into the structure of TA1.
Thereby, we apply a k-means clustering algorithm to the input data, with the
constraints b1–b5 as feature variables. The number of clusters k = 2 was chosen
based on a silhouette score analysis. The aim of clustering is to identify solution
groups within the target area with correlated constraint values. Figure 5 shows
the resulting clusters C1 (1,424 solutions) and C2 (1,001 solutions) with respect
to the output data (left) and input data (right). The parallel coordinate plot
(right) visualizes the average value of each capacity constraint within the two
clusters.

Fig. 5. Visualization of output data (left) and input data (right) of clustered target
area TA1

The left plot in Fig. 5 shows that both clusters are distributed across the
entire target area, with C1 being slightly more dense on the top left and C2
on the bottom right. However, not much conclusion can be drawn from this
plot. The right plot, with the visualization of the input data (on which the
clustering was aimed), shows a much clearer picture. Here we identify two solu-
tion groups, which are primarily differing in the use of b1 and b5. To support
decision-making, the clusters are visualized once again with regard to the out-
put data, however, this time with aggregated values. In order to be comparable,
the values of the corresponding variables are first normalized to a 0–1 scale.

406 J. Schulte and V. Nissen

The resulting box plots (see Fig. 6) show the normalized values of the two upper-
level objectives as well as the efficiency distance measure. While not distinguish-
able in the first place, the aggregated values reveal that both clusters have a
different focus. Therefore, if the decision-maker is interested in low cost, clus-
ter C1 should further be investigated. On the other hand, if the interest tends
towards low capacity, further investigations should focus on C2. If there is no
particular interest, focus should be on C1 due to it’s higher efficiency.

Fig. 6. Normalized output data distribution

To obtain more precise rules that support decision-making regarding the
design or configuration of the constraint values (e.g., allocation of additional
resources), further analysis can focus on the application of supervised learning
algorithms, such as decision trees or linear/logistic regression. In the EMO lit-
erature, various kinds of data mining methods for extracting knowledge from
multi-objective optimization data are described, depending on application area,
problem and data structure (for a comprehensive review, see [2]).

Each of the steps mentioned in Sects. 4.1 to 4.2 may lead to a better under-
standing of the problem and model, respectively. This knowledge can in turn be
used to restart the data generation process at any step, such as to adjust the
lower-level model, add or remove decision variables, pick a new algorithm at the
upper level or conduct more optimization runs.

5 Conclusions

In this paper, a problem and algorithm independent approach for sensitivity
analysis on constraints of combinatorial optimization problems was proposed.
The approach was demonstrated by a sensitivity analysis of the well-known
and practically important generalized assignment problem. By applying bilevel
innovization it was shown that while the objective value (i.e., cost) of the prob-
lem can generally be decreased by increasing the capacity constraints, higher

Sensitivity Analysis on Constraints of Combinatorial Optimization Problems 407

performing solutions with respect to the cost objective and efficiency are pri-
marily driven by an increase of constraint b5. Furthermore, the application of a
clustering algorithm on the selected target area revealed two groups of solutions,
each with a different focus on one of the two upper-level objectives. The insights,
however, are limited in that they only apply to the selected target area. For fur-
ther analysis, the individual target areas could be analyzed in more detail or
supervised learning algorithms can be applied to obtain more precise rules that
support decision-making. In the course of the sensitivity analysis, evolutionary
bilevel optimization in combination with visualization techniques and data min-
ing methods was used. Thereby it was possible to determine how changes in the
input parameters of a model (agent capacity) affect its outputs (cost). Insights
into the model behavior were gained and recommendations could be given that
support the decision-making process regarding design or configuration of con-
straints, such as the allocation and mix of resources. By considering not only
Pareto-optimal but all solutions evaluated during optimization, a broad data
base was obtained to identify what distinguishes different solution groups.

Further research will investigate the use of bilevel innovization for different
types of problems, both benchmark problems as well as real world problems. For
example, it should be examined how problems with numerous constraints can
be analyzed by applying dimensionality reduction techniques, such as principal
component analysis. Furthermore, it is of interest how different types of upper-
and lower-level algorithms affect the data analysis results.

References

1. Al-Maliky, F., Hifi, M., Mhalla, H.: Sensitivity analysis of the setup knapsack
problem to perturbation of arbitrary profits or weights. Int. Trans. Oper. Res.
25(2), 637–666 (2018)

2. Bandaru, S., Ng, A.H., Deb, K.: Data mining methods for knowledge discovery
in multi-objective optimization: part a - survey. Expert Syst. Appl. 70, 139–159
(2017)

3. Borgonovo, E., Plischke, E.: Sensitivity analysis: a review of recent advances. Eur.
J. Oper. Res. 248(3), 869–887 (2016)

4. Branke, J., Deb, K., Miettinen, K., S�lowiński, R. (eds.): Multiobjective Optimiza-
tion. LNCS, vol. 5252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88908-3

5. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment prob-
lem. Comput. Oper. Res. 24(1), 17–23 (1997)

6. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann.
Oper. Res. 153(1), 235–256 (2007). https://doi.org/10.1007/s10479-007-0176-2

7. Deb, K., Pratap, A., Agarwal, S.: A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

8. Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A.: The minimum
shift design problem. Ann. Oper. Res. 155(1), 79–105 (2007). https://doi.org/10.
1007/s10479-007-0221-1

9. Dudas, C., Ng, A.H., Pehrsson, L.: Integration of data mining and multi-objective
optimisation for decision support in production systems development. Int. J. Com-
put. Integr. Manuf. 27(9), 824–839 (2014)

https://doi.org/10.1007/978-3-540-88908-3
https://doi.org/10.1007/978-3-540-88908-3
https://doi.org/10.1007/s10479-007-0176-2
https://doi.org/10.1007/s10479-007-0221-1
https://doi.org/10.1007/s10479-007-0221-1

408 J. Schulte and V. Nissen

10. Emmerich, M.T.M., Deutz, A.H.: A tutorial on multiobjective optimization: funda-
mentals and evolutionary methods. Nat. Comput. 17(3), 585–609 (2018). https://
doi.org/10.1007/s11047-018-9685-y

11. Fernández-Baca, D., Venkatachalam, B.: Sensitivity analysis in combinatorial opti-
mization. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and
Metaheuristics, 2nd edn, pp. 455–472. Chapman and Hall/CRC (2018)

12. Hall, N.G., Posner, M.E.: Sensitivity analysis for scheduling problems. J. Sched.
7(1), 49–83 (2004). https://doi.org/10.1023/B:JOSH.0000013055.31639.f6

13. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research, 10th edn.
McGraw-Hill Education, New York (2015). internat. student ed. edn

14. Keim, D.: Mastering the Information Age: Solving Problems with Visual Analytics.
Eurographics Association, Goslar (2010)

15. Kimbrough, S.O., Kuo, A., Lau, H.C.: On decision support for deliberating with
constraints in constrained optimization models. In: Pelikan, M., Branke, J. (eds.)
Proceedings of the 12th Annual Conference Companion on Genetic and Evolution-
ary Computation - GECCO 2010, p. 1833. ACM Press, New York (2010)

16. Luke, S.: Essentials of Metaheuristics: A Set of Undergraduate Lecture Notes, 2nd
edn. lulu.com, Morrisville (2013). Online version 2.0 edn

17. Marti, L., Garcia, J., Berlanga, A., Molina, J.M.: An approach to stopping criteria
for multi-objective optimization evolutionary algorithms: the MGBM criterion. In:
2009 IEEE Congress on Evolutionary Computation, pp. 1263–1270. IEEE (2009)

18. Migdalas, A., Pardalos, P.M., Värbrand, P. (eds.): Multilevel Optimization: Algo-
rithms and Applications. Nonconvex Optimization and Its Applications, vol. 20.
Springer, Boston (1998). https://doi.org/10.1007/978-1-4613-0307-7

19. Nojima, Y., Tanigaki, Y., Ishibuchi, H.: Multiobjective data mining from solutions
by evolutionary multiobjective optimization. In: Bosman, P.A.N. (ed.) Proceedings
of the Genetic and Evolutionary Computation Conference - GECCO 2017, pp. 617–
624. ACM Press, New York (2017)

20. Öncan, T.: A survey of the generalized assignment problem and its applications.
INFOR: Inf. Syst. Oper. Res. 45(3), 123–141 (2007)

21. Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.): Handbook of Combinatorial Opti-
mization. LNCS, Springer, New York (2013). https://doi.org/10.1007/978-1-4419-
7997-1

22. Pentico, D.W.: Assignment problems: a golden anniversary survey. Eur. J. Oper.
Res. 176(2), 774–793 (2007)

23. Prodhon, C., Prins, C.: A survey of recent research on location-routing problems.
Eur. J. Oper. Res. 238(1), 1–17 (2014)

24. Saltelli, A.: Global Sensitivity Analysis: The Primer. Wiley, Chichester (2008)
25. Saltelli, A., Annoni, P.: How to avoid a perfunctory sensitivity analysis. Environ.

Model. Softw. 25(12), 1508–1517 (2010)
26. Schulte, J., Feldkamp, N., Bergmann, S., Nissen, V.: Knowledge discovery in

scheduling systems using evolutionary bilevel optimization and visual analytics.
In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 439–450. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-12598-1 35

27. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to
evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–
295 (2018)

28. Talbi, E.G.: A taxonomy of metaheuristics for bi-level optimization. In: Talbi, E.G.,
Brotcorne, L. (eds.) Metaheuristics for Bi-Level Optimization. SCI, vol. 482, pp.
1–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37838-6 1

29. Wagner, H.M.: Global sensitivity analysis. Oper. Res. 43(6), 948–969 (1995)

https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1023/B:JOSH.0000013055.31639.f6
https://doi.org/10.1007/978-1-4613-0307-7
https://doi.org/10.1007/978-1-4419-7997-1
https://doi.org/10.1007/978-1-4419-7997-1
https://doi.org/10.1007/978-3-030-12598-1_35
https://doi.org/10.1007/978-3-642-37838-6_1

Author Index

Agombar, Rhys 1
Añasco, Hossmell Hernan Velasco 351, 364
Ansótegui, Carlos 7
Archetti, Francesco 315
Aßmann, Uwe 333
Avrachenkov, Konstantin 25

Bauckhage, Christian 1
Berenov, Dmitriy A. 128
Boisbunon, Aurélie 25
Bossek, Jakob 40

Candelieri, Antonio 315
Casquina, Junior Cupe 351, 364
Castro, Carlos 80
Chalkis, Apostolos 55
Chatzilygeroudis, Konstantinos I. 66
Christoforou, Emmanouil 55

Dalamagas, Theodore 55
Di Dio, Riccardo 98
Dritsas, Elias 113

Effendy, Suhendry 121
Emiris, Ioannis Z. 55
Erzin, Adil 299

Fakotakis, Nikos 113
Fan, Wenjuan 211
Fazakis, Nikos 113
Freitas Gustavo, Michael 150

Gainanov, Damir N. 128
Galligo, André 98
Giordano, Maurizio 219
Götz, Sebastian 333
Guarracino, Mario R. 219
Gunawan, Aldy 142

Hladík, Milan 252
Holeňa, Martin 167
Husak, Oleksandr 333

Jodiawan, Panca 142

Kamalov, Mikhail 25
Khachay, Daniel 198
Khachay, Michael 198
Kocsis, Otilia 113
Kondratiuk, Hanna 157
Koza, Jan 167
Krause, Miguel 283
Krylatov, Alexander 183
Kudriavtsev, Andrei 198

Lan, Shaowen 211
Luebbering, Max 1

Maddalena, Lucia 219
Mantzaflaris, Angelos 98
Manzo, Mario 219
Mauroy, Benjamin 98
Mısır, Mustafa 237
Moosaei, Hossein 252
Moustakas, Konstantinos 113

Neumann, Aneta 40
Neumann, Frank 40
Ngo, Bao Chau 121
Nissen, Volker 394
Nourmohammadzadeh, Abtin 265

Ogorodnikov, Yuri 198

Pardalos, Panos M. 211
Paz-Valderrama, Alfredo 351, 364
Piatkowski, Nico 283
Pitra, Zbyněk 167
Plotnikov, Roman 299
Ponti, Andrea 315
Posch, Peter N. 283
Pukhkaiev, Dmytro 333

410 Author Index

Raevskaya, Anastasiya 183
Ramírez, Nicolás Gálvez 80
Rasskazova, Varvara A. 128
Ren, Jie 198
Rios, Brenner Humberto Ojeda 351, 364

Sahinidis, Nikolaos V. 379
Sauk, Benjamin 379
Schulte, Julian 394
Sellmann, Meinolf 7
Shah, Tapan 7
Shao, Kaining 211
Shao, Sheng Cheng 198
Sifa, Rafet 1, 157
Sutanto, Andro Nicus 142

Tasoulis, Sotiris K. 66
Tierney, Kevin 7
Tumpach, Jiří 167

Urra, Roberto Díaz 80

Verstraelen, Toon 150
Voß, Stefan 265
Vrahatis, Aristidis G. 66
Vrahatis, Michael N. 66

Yang, Shanlin 211
Yap, Roland H. C. 121
Yu, Vincent F. 142

Zhang, Dong 198

	 Guest Editorial
	 Organization
	 Contents
	An Optimization for Convolutional Network Layers Using the Viola-Jones Framework and Ternary Weight Networks
	1 Introduction
	2 Background
	3 Methodology
	4 Experiments
	5 Results
	6 Discussion and Future Work
	7 Conclusion
	References

	Learning to Optimize Black-Box Functions with Extreme Limits on the Number of Function Evaluations
	1 Introduction
	2 Related Work
	2.1 Candidate Generators
	2.2 Candidate Selectors

	3 Hyperparameterized Parallel Few-Shot Optimization (HPFSO)
	3.1 Candidate Generators
	3.2 Sub-selection of Candidates
	3.3 Hyperparameterized Scoring Function

	4 Numerical Results
	4.1 Experimental Setup
	4.2 Effectiveness of Hyperparameter Tuning
	4.3 Importance of the Selection Procedure
	4.4 Comparison with the State of the Art

	5 Conclusion
	References

	Graph Diffusion & PCA Framework for Semi-supervised Learning
	1 Introduction
	2 Graph-Based Semi-supervised Learning
	3 Graph Diffusion with Reorganized PCA Loss
	3.1 PCA for Binary Clustering (PCA-BC)
	3.2 Generalization of PCA-BC for GB-SSL

	4 Experiments
	4.1 Datasets Description
	4.2 State-of-the-Art (SOTA) Algorithms
	4.3 Results

	5 Conclusion
	A Proof of Proposition 1
	B Proof of Proposition 2
	C Generation of Synthetic Adjacency Matrix
	References

	Exact Counting and Sampling of Optima for the Knapsack Problem
	1 Introduction
	2 Problem Formulation
	3 Exact Counting and Sampling of Optima
	3.1 Recap: Dynamic Programming for the KP
	3.2 Dynamic Programming for #KNAPSACK*
	3.3 Uniform Sampling of Optimal Solutions

	4 Experiments
	4.1 Experimental Setup
	4.2 Insights into the Number of Optima
	4.3 Closing Remarks

	5 Conclusion
	References

	Modeling of Crisis Periods in Stock Markets
	1 Introduction
	2 Detecting Shock Events with Copulae
	2.1 Shock Detection Using Real Data

	3 Exploring the Dynamics of Copulae
	3.1 Clustering of Copulae
	3.2 Modeling Copulae

	A Data
	B Crises Indicator
	C Clustering of Copulae
	References

	Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm
	1 Introduction
	2 Approach
	2.1 Problem Formulation
	2.2 Feature Selection via Genetic Algorithms

	3 Experimental Analysis on scRNA-seq Datasets
	3.1 Evaluation of Feature Selection Process
	3.2 Evaluation of Selected Features
	3.3 Biological Analysis

	4 Discussion and Conclusion
	References

	Towards Complex Scenario Instances for the Urban Transit Routing Problem
	1 Introduction
	2 UTRP Instance Benchmark Analysis
	3 Relaxing UTRP Instances
	3.1 Basic Definitions
	3.2 Relaxed Road Network
	3.3 Relaxed Demand Matrix

	4 Experimental Configuration
	4.1 Clustering Algorithms
	4.2 Relaxed Road Network
	4.3 Relaxed Demand Matrix

	5 Experimental Highlights
	5.1 Clustering Algorithm Recomendation
	5.2 UTRP Relaxing Scenarios
	5.3 Similarity Between Clustering Algorithms
	5.4 Demand Distribution

	6 Conclusions and Perspectives
	References

	Spirometry-Based Airways Disease Simulation and Recognition Using Machine Learning Approaches
	1 Introduction
	1.1 Lung Ventilation
	1.2 Mathematical Modeling

	2 Methods
	2.1 Creation of the Dataset
	2.2 Training Machine Learning Algorithms
	2.3 Training

	3 Results
	3.1 Lung Model
	3.2 Machine Learning Results

	4 Conclusions and Outlook
	References

	Long-Term Hypertension Risk Prediction with ML Techniques in ELSA Database
	1 Introduction
	2 Methods for the Long-Term Risk Prediction
	2.1 Training and Test Dataset
	2.2 Feature Selection
	2.3 Performance Evaluation of ML Models

	3 Conclusions
	References

	An Efficient Heuristic for Passenger Bus VRP with Preferences and Tradeoffs
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 An Incremental Algorithm
	5 Evaluation
	6 Conclusion
	References

	Algorithm for Predicting the Quality of the Product Based on Technological Pyramids in Graphs
	1 Introduction
	2 Basic Definitions
	3 Formulation of the Problem
	3.1 The Concept of Decision Tree Construction
	3.2 Algorithm for Constructing the Decision Function for the Node of Decision Tree
	3.3 Algorithm for Constructing an Optimal Partition of a Set of Classes

	References

	Set Team Orienteering Problem with Time Windows
	1 Introduction
	2 Problem Description
	3 Proposed Algorithm
	4 Computational Results
	5 Conclusion
	References

	Reparameterization of Computational Chemistry Force Fields Using GloMPO (Globally Managed Parallel Optimization)
	1 Introduction
	2 GloMPO Package
	3 Results
	4 Conclusion
	References

	Towards Structural Hyperparameter Search in Kernel Minimum Enclosing Balls
	1 Introduction
	2 Overview of the Problem
	3 Proposed Approach
	4 Results
	5 Future Work
	References

	Using Past Experience for Configuration of Gaussian Processes in Black-Box Optimization
	1 Introduction
	2 Gaussian Processes and Their Neural Extension
	2.1 Gaussian Processes
	2.2 GP as the Output Layer of a Neural Network

	3 Gaussian Processes as Black-Box Surrogate Models
	3.1 Combining GPs with the Black-Box Optimizer CMA-ES
	3.2 Using Data from Past CMA-ES Runs

	4 Empirical Investigation of GP Configurations
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion and Future Work
	References

	Travel Demand Estimation in a Multi-subnet Urban Road Network
	1 Introduction
	2 Multi-subnet Urban Road Network
	3 Demand Estimation in a Multi-subnet Road Network
	4 Multi-subnet Road Network with Disjoint Routes
	5 Toll Road Counters for Travel Demand Estimation
	6 Conclusion
	References

	The Shortest Simple Path Problem with a Fixed Number of Must-Pass Nodes: A Problem-Specific Branch-and-Bound Algorithm
	1 Introduction
	2 Problem Statement
	3 Computational Complexity
	4 Branch-and-Bound Algorithm
	5 Numerical Evaluation
	6 Conclusion
	References

	Medical Staff Scheduling Problem in Chinese Mobile Cabin Hospitals During Covid-19 Outbreak
	1 Introduction
	2 Problem Description
	3 The Proposed VNS
	4 Experiments
	5 Conclusions
	References

	Performance Evaluation of Adversarial Attacks on Whole-Graph Embedding Models
	1 Introduction
	2 Related Work
	3 Background
	3.1 Whole-Graph Embedding
	3.2 Graph Adversarial Attacks

	4 Experiments
	4.1 Datasets
	4.2 Compared Methods
	4.3 Implementation Details
	4.4 Performance Evaluation

	5 Conclusions and Future Work
	References

	Algorithm Selection on Adaptive Operator Selection: A Case Study on Genetic Algorithms
	1 Introduction
	2 Background
	2.1 Adaptive Operator Selection
	2.2 Algorithm Selection

	3 Algorithm Selection for AOS
	3.1 Instance Features

	4 Computational Analysis
	5 Conclusion
	References

	Inverse Free Universum Twin Support Vector Machine
	1 Introduction
	2 Related Works
	2.1 Universum Support Vector Machine
	2.2 Universum Twin Support Vector Machine

	3 Improvements on Twin Bounded Support Vector machine with Universum Data
	3.1 Linear IUTBSVM
	3.2 Nonlinear IUTBSVM

	4 Numerical Experiments
	4.1 Parameter Selection
	4.2 Results Comparisons and discussion for UCI Data Sets

	5 Conclusions
	References

	Hybridising Self-Organising Maps with Genetic Algorithms
	1 Introduction
	2 Related Works
	3 Solution Methodologies
	3.1 Self-Organising Map
	3.2 Genetic Algorithm
	3.3 Our Approach

	4 Computation Results
	5 Conclusions
	References

	How to Trust Generative Probabilistic Models for Time-Series Data?
	1 Introduction
	2 Generative Probabilistic Models
	3 Discrepancy
	3.1 Distance Measures on Time-Series Data

	4 Empirical Evaluation
	4.1 Hyper-parameter Search
	4.2 Data
	4.3 Results

	5 Conclusion
	References

	Multi-channel Conflict-Free Square Grid Aggregation
	1 Introduction
	1.1 Our Contribution

	2 Problem Formulation
	3 Heuristic Algorithm
	3.1 Vertical Aggregation
	3.2 Horizontal Aggregation

	4 ILP Formulation
	5 Simulation
	6 Conclusion
	References

	Optimal Sensor Placement by Distribution Based Multiobjective Evolutionary Optimization
	1 Introduction
	1.1 Organization of the Paper

	2 Background Knowledge on Multiobjective Optimization: Pareto Analysis and Performance Metric
	2.1 Pareto Analysis
	2.2 Hypervolume
	2.3 Coverage

	3 The Wasserstein Distance – Basic Notions and Numerical Approximation
	4 The Formulation of Optimal Sensor Placement
	4.1 Problem Formulation
	4.2 Network Hydraulic Simulation

	5 Distributional Representation and the Information Space
	5.1 Probabilistic Representation of a Solution
	5.2 Search Space and Information Space

	6 The Algorithm MOEA/WST
	6.1 General Framework
	6.2 Chromosome Encoding
	6.3 Initialization
	6.4 Selection
	6.5 Crossover
	6.6 Mutation

	7 Computational Results
	7.1 Hanoi
	7.2 Neptun

	8 Conclusions
	References

	Multi-objective Parameter Tuning with Dynamic Compositional Surrogate Models
	1 Introduction
	2 State of the Art
	2.1 Single-Objective Surrogate-Model-Based Optimization
	2.2 Multi-objective Surrogate-Model-Based Optimization

	3 Problem Definition
	4 Dynamic Compositional Surrogate Models with TutorM
	5 Evaluation
	5.1 Results
	5.2 Runtime Behavior
	5.3 Threats to Validity

	6 Conclusion and Future Work
	References

	Corrected Formulations for the Traveling Car Renter Problem
	1 Introduction
	2 Explanation of Errors in the Original Formulation
	3 Proposed Formulations
	3.1 First Correction Proposal - Model01
	3.2 Second Correction Proposal - Model02

	4 Experiments
	5 Conclusion
	References

	Hybrid Meta-heuristics for the Traveling Car Renter Salesman Problem
	1 Introduction
	2 CaRS
	2.1 Mathematical Formulation

	3 Solution Methods
	3.1 The Scientific Algorithms
	3.2 The ALSP and IALSP Algorithms
	3.3 VND Algorithm

	4 Proposed Hybrid Algorithms
	5 Computational Experiments
	6 Conclusion
	References

	HybridTuner: Tuning with Hybrid Derivative-Free Optimization Initialization Strategies
	1 Introduction
	2 Literature Review
	2.1 Autotuners
	2.2 Derivative-Free Optimization Algorithms
	2.3 Existing Hybrid Tuning Algorithms

	3 Proposed Hybrid Tuning Algorithms
	3.1 Multi-armed Bandit Technique
	3.2 Initialization Strategy

	4 Computational Results
	4.1 Matrix Multiplication on the Tesla K40
	4.2 Matrix Multiplication on the Tesla P100

	5 Conclusions
	References

	Sensitivity Analysis on Constraints of Combinatorial Optimization Problems
	1 Introduction
	2 Bilevel Innovization
	3 Data Generation
	3.1 Lower-Level Model
	3.2 Decision Variables (Input Data)
	3.3 Upper-Level Model
	3.4 N Optimization Runs

	4 Data Analysis
	4.1 Visualization of Output Data
	4.2 Data Mining and Visualization of Input Data

	5 Conclusions
	References

	Author Index

