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Abstract. In this work we ask the following question: Can we trans-
form any encryption scheme into a trapdoor function (TDF)? Alterna-
tively stated, can we make any encryption scheme randomness recover-
able? We propose a generic compiler that takes as input any encryption
scheme with pseudorandom ciphertexts and adds a trapdoor to invert
the encryption, recovering also the random coins. This universal TDFier
only assumes in addition the existence of a hinting pseudorandom gener-
ator (PRG). Despite the simplicity, our transformation is quite general
and we establish a series of new feasibility results:

– The first identity-based TDF [Bellare et al. EUROCRYPT 2012]
from the CDH assumption in pairing-free groups (or from factor-
ing), thus matching the state of the art for identity-based encryption
schemes. Prior works required pairings or LWE.

– The first collusion-resistant attribute-based TDF (AB-TDF) for all
(NC1, resp.) circuits from LWE (bilinear maps, resp.). Moreover, the
first single-key AB-TDF from CDH. To the best of our knowledge, no
AB-TDF was known in the literature (not even for a single key) from
any assumption. We obtain the same results for predicate encryption.

As an additional contribution, we define and construct a trapdoor garbling
scheme: A simulation secure garbling scheme with a hidden “trigger” that
allows the evaluator to fully recover the randomness used by the garbling
algorithm. We show how to construct trapdoor garbling from the DDH
or LWE assumption with an interplay of key-dependent message (KDM)
and randomness-dependent message (RDM) techniques.
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Trapdoor garbling allows us to obtain alternative constructions of
(single-key) AB-TDFs with additional desirable properties, such as adap-
tive security (in the choice of the attribute) and projective keys. We
expect trapdoor garbling to be useful in other contexts, e.g. in case
where, upon successful execution, the evaluator needs to immediately
verify that the garbled circuit was well-formed.

1 Introduction

Seminal results in 1970’s laid the foundations of public-key cryptography by
introducing the notion of trapdoor functions [14,35]. These are families of injec-
tive functions, where each function can be computed in the forward direction,
but a randomly chosen function is one-way. Moreover, any function in the family
can be efficiently inverted using the function’s associated trapdoor key.

The historical interest in TDFs stems from this primitive being sufficient for
CPA-secure public-key encryption (PKE) schemes. Recent results, however, have
substantially changed this perspective, showing TDFs (or extensions thereof)
enable many applications which are beyond the reach of traditional public-key
encryption techniques [3,4,18,25,32]. Most notably, a recent result of Hohen-
berger, Koppula and Waters shows that TDFs generically imply the existence
of CCA-secure PKE schemes [25], while whether or not CPA-secure PKE is suf-
ficient is a long standing open problem. Also, recent advances in TDFs have led
to many new feasibility results (e.g. rate-1 oblivious transfer) [18].

What makes trapdoor functions a strong primitive is its inversion property:
The inversion algorithm recovers the entire input, in contrast to randomized PKE
schemes where the decryption algorithm may not necessarily recover the encryp-
tion randomness. Such a property is crucially used in all the above applications,
and in particular is the central ingredient of the recent result of Hohenberger et
al. [25] for enforcing well-formedness of ciphertexts.

We now have constructions of TDFs from a range of specific assumptions,
including factoring/QR/DCR [19,33], LWE/DDH [32], low-noise LPN [27], and
CDH [20,21]. One limitation of these results is that they employ what appear
to be ad-hoc techniques to obtain TDFs. Consequently, it is not clear whether
and how these techniques will scale to obtain TDFs for more advanced primitives
such as Identity-Based Encryption (IBE) or Attribute-Based Encryption (ABE).
As we argue below, while TDFs for such advanced primitives will have additional
applications, our knowledge of how these advanced TDFs may be realized is quite
limited.

TDFs for Advanced Encryption. In this work, we are interested in realizing
TDF notions for advanced encryption primitives, such as ABE or IBE. For exam-
ple, under Identity-Based TDFs (IB-TDFs), one deterministically evaluates an
input x ∈ {0, 1}n as Eval(pp, id, x) to get an image y; an inverter with knowl-
edge of tdid, a user secret key for identity id, may retrieve x as Invert(tdid, y).
More generally, under Attribute-Based TDFs (AB-TDFs), one deterministically
evaluates an input x relative to a public parameter pp and attribute α to get an
image y; the value of x can be recovered from y by using a trapdoor key tdC for a
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circuit C where C(α) = 1. Moreover, if C(α) = 0, then even given tdC it should
be computationally infeasible to recover x from y. This notion can be extended
to allow many key corruptions, as in the standard ABE setting, or even to hide
the attribute if C(α) = 0, as in predicate encryption (PE).

Why TDFs for Advanced Encryption? In addition to being an interest-
ing notion on its own, AB-TDFs enable applications that cannot be obtained
using either TDFs or randomized ABE schemes alone. For example, while TDFs
allow us to build CCA-secure PKE schemes [25], we do not know whether TDFs
are sufficient for realizing stronger primitives, such as Designated-Verifier Non-
Interactive Zero-Knowedge (DV-NIZK). On the other hand, the work of [31]
shows that DV-NIZK can be realized using any single-key AB-TDFs or, more
generally, under what they called single-key weak-function hiding ABE. At a
high level, this latter notion requires that using skC to decrypt any (possi-
bly malformed) ciphertext c with a public attribute x should reveal nothing
beyond whether or not C(x) = 1. Any AB-TDF (or equivalently a randomness-
recoverable ABE) by design has this property as one can decrypt and re-encrypt
to reject all malformed ciphertexts.

Also, the direct usage of IB/AB-TDF can be beneficial: As shown in [5],
they directly imply secure constructions of deterministic encryption [2,7] (lifted
to the IBE/ABE settings) that allow users to publicly search over encrypted data
while maintaining the maximum level of privacy possible. Another application of
this class of primitives is the construction of hedged IBE/ABE [3,36] where the
encryption algorithm is made resilient to the presence of low-quality randomness.

Assumptions Behind AB-TDFs/IB-TDFs. While single-key ABE can be
built from any CPA-secure PKE, we do not have any constructions of (even)
single-key AB-TDFs for general circuits. The closest result is the approach
of [31], which shows that, assuming LWE, one can build an ABE scheme where
the decryption algorithm recovers an “encoded” version of the underlying ran-
domness, which nonetheless is sufficient for checking whether the ciphertext is
well-formed (i.e. the LWE noise values sampled during encryption, as opposed
to the encryption coins themselves). Even in the simpler IBE setting, the only
known constructions of IB-TDFs (for the multi-key setting) are from pair-
ings/LWE [5]. Recent advancements in the IBE landscape showed construc-
tions from CDH/DDH [12,15,16], however it is currently not clear whether these
assumptions are sufficient for constructing IB-TDFs.

Difficulties in Building AB-TDFs. Let us review the construction of single-
key ABE from CPA-secure PKE, as a way to understand the underlying dif-
ficulties in realizing AB-TDFs. For circuits of size m, the public parameter
pp := {pki,b}i∈[m],b∈{0,1} contains 2m public keys; a secret key for a circuit
C ∈ {0, 1}m is the sequence of secret keys {ski,Ci

}. To encrypt a message m rel-
ative to (pp, α) we garble the universal circuit which has [α,m] hardwired, and
which on input C returns m if and only if C(α) = 1. The resulting ciphertext
consists of the garbled circuit as well as an encryption of the (i, b) label under
pki,b. Making the above scheme randomness recoverable encounters two major
difficulties: (1) The random coins used to generate the garbled circuit during
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encryption should be kept private to ensure circuit privacy; and (2) The random
coins used to encrypt the 2m labels should also be kept secret, since otherwise
the security of the garbled circuit will be lost. Using a TDF (or equivalently
a randomness recoverable PKE) to encrypt the labels does not get us too far
either, because it will only allow us to recover half of the randomness used to
encrypt the labels (and none of the coins used to garble the circuit).

The same obstacles emerge trying to extend the approach of [15,16] to get
IB-TDFs: During encryption we generate a sequence of garbled circuits, and
recovering the underlying random coins seems hopeless, as explained above.

1.1 Our Results

We propose a generic approach for building TDFs for advanced encryption func-
tionalities. Our first contribution is the construction of a universal TDFier :
Given any IBE/ABE/PE with pseudorandom ciphertexts, our compiler returns
a secure IB/AB/P-TDF. Our transformation is insensitive to the exact security
and functionality of the underlying encryption scheme: For example, if the base
ABE is single-key (resp., collusion) secure for a function family F , then so is the
resulting AB-TDFs. The only additional building block needed by our compiler
is a hinting PRG [29]. More precisely, we prove the following theorem.

Theorem 1 (Informal). If there exists a {PKE, IBE, ABE, PE} with pseu-
dorandom ciphertext and a hinting PRG, then there exists a {TDF, IB-TDF,
AB-TDF,P-TDF}. Moreover, if the hinting PRG is robust, the constructed
scheme provides deterministic-encryption security.

To complement our result, we define and construct hinting PRGs that satisfy
(k, n)-robustness: The hinting PRG provides pseudorandomness even if the seed
is not uniformly distributed, but is a (k, n)-source (i.e., the n-bit seed has at
least k-bits min-entropy). By tweaking the hinting-PRG construction of [29], we
show the following.

Theorem 2 (Informal). If the {CDH, LWE} problem is hard, then there exists
a (k, n)-robust hinting PRG.

One of the most surprising features of our compiler is its simplicity : Once all
components are in place, our transformation adds a very small (conceptual and
computational) overhead. Yet, it is quite general. It allows us to establish a new
series of feasibility results, such as:

– The first IB-TDF from the CDH assumption in pairing-free groups (or under
factoring), thus matching the state of the art for IBE schemes. Prior work [5]
gave two specialized constructions from pairings and LWE, respectively.

– The first (collusion-resistant) {AB-TDF, P-TDF} for NC1 circuits from bilin-
ear maps. To the best of our knowledge, this is the first provably secure version
of AB-TDF from any assumption.

– The first (collusion-resistant) {AB-TDF, P-TDF} for all circuits from the
LWE assumption. We believe that there might already be a way to build



224 S. Garg et al.

(many-key) AB-TDF for circuits from LWE, by using the techniques of [1,9]
in the context of [5]. The resulting construction might be more efficient than
our HPRG-based LWE-based one, but ours is generic.

As an added bonus, using our compiler, the public/secret keys of the result-
ing TDF are identical to that of the underlying encryption scheme. This means
that the trapdoor functionality (i.e. the randomness recoverability) can be added
to the encryption after the fact, without the need to redistribute keys, by just
including some additional public parameters (which can be reused across multi-
ple instances of the scheme).

Trapdoor Projective Garbled Circuits. We also initiate the study of ran-
domness recoverability for garbled circuits. Our result is a new notion of trapdoor
garbled circuits: Given a garbled circuit P̃ and garbled labels {�i,b} produced
for a circuit P : {0, 1}m → {0, 1} using randomness r, we require the follow-
ing properties. (1) Randomness recoverability: For any x such that P(x) = 1,
given (P̃, {�i,xi

}) we can recover r; and (2) Privacy: We have simulation security
against any input x such that P(x) = 0. We note that a randomness recover-
able single-key ABE (constructed from Theorem 1 above) allows one to build
a trapdoor garbled circuit, but it will not be projective (i.e., one label for each
input wire value). The projective property of garbled circuits is crucially used
in many applications, and hence is a desirable feature to have. One of our main
contributions is a construction of trapdoor garbling under standard assumptions.

Theorem 3 (Informal). If the {DDH, LWE} problem is hard, then there exists
a trapdoor (projective) garbling scheme for all circuits.

Our scheme builds on an interplay of key-dependent message (KDM) and
randomness-dependent message (RDM) techniques, which may be of indepen-
dent interest. As an immediate application, we obtain a single-key AB-TDF that
is simultaneously (1) adaptively secure (in the choice of the identity/attribute),
(2) perfectly correct, and (3) has projective keys (i.e. one label for each input
wire value).1 We believe trapdoor garbling may find further applications in the
future.

2 Technical Overview

In this section we give an overview of our techniques for building TDFs from
advanced encryption schemes.

2.1 A Universal TDFier

Our construction of universal TDFier is quite simple and the best way to present
it is to just describe the scheme. It builds on the mirroring technique of [20].

1 Our generic conversion starting from any single-key ABE does not preserve property
(1) and (3).
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Before delving into the technical details, we recall the notion of a hinting PRG
and we briefly define the security notion of (k, n)-robustness that is at the heart
of our transformation.

Robust Hinting PRGs. The notion of hinting PRG [29] was introduced in
the context of upgrading CPA-secure scheme into CCA-secure ones.2 A hinting
PRG, is a function that takes as input an n-bit seed and returns n-many �-bit
strings, for some polynomial � = �(λ). A hinting PRG is required to satisfy an
enhanced notion of pseudorandomness. In the security game, we define a 2-by-n
matrix where the rows corresponding to the bit representation of the seed are
populated with the outputs of the hinting PRG, whereas the other entries are
sampled uniformly �-bit strings. The requirement is that it is computationally
hard to distinguish such 2-by-n matrix from a uniform one. Note that such a
notion does not follow from the standard definition of pseudorandomness: The
pseudorandom entries of the 2-by-n matrix give a “hint” about the input seed.
Nevertheless, it was shown that such a notion can be achieved under standard
assumptions, such as CDH or LWE [29].

In this work we are interested in a stronger notion of security that we
call (k, n) robustness. Loosely speaking, we require that the above guaran-
tee is retained even if the n-bit seed is not sampled uniformly, but rather
from a distribution with k-bits of min entropy. We observe that the schemes
in [29], which are in turn based on the constructions of chameleon encryp-
tion from [12,13,16,17,21], can be shown to satisfy (k, n)-robustness with some
tweaking of the parameters and of the security analysis. Henceforth, we simply
assume we are given a (k, n)-robust hinting PRG.

Universal TDFier. We are now ready to show how to add randomness recover-
ability to any encryption scheme (i.e. construction a TDF). We only require such
an encryption to satisfy a mild structural property, which is usually referred to
as pseudorandom ciphertext : Ciphertexts c ∈ Enc(pk, ·) must be computationally
indistinguishable from uniformly sampled bitstrings {0, 1}|c|. Our actual com-
piler will be slightly more general, allowing us to capture all ciphertext domains
that form a (not necessarily Abelian) group, with efficiently samplable elements.
This will allow us to capture a large class of encryption schemes and will signif-
icantly expand the scope of our compiler. However, for the sake of this overview
we assume ciphertexts are indistinguishable from uniformly random strings.

We describe our universal TDFier for the simple case of PKE, which already
contains the main ideas of our approach. We refer the reader to the main body
for the generalization to IBE/ABE/PE. The key generation algorithm consists of
sampling a key pair (sk, pk) of the input PKE, along with the public parameters

ppHPRG of a (k, n)-robust hinting PRG and n random strings ri
$←− {0, 1}|c|. The

index key of the TDF consists of

(pk, ppHPRG, r1, . . . , rn)
2 Although there is some resemblance with our approach, we note that the compiled

scheme of [29] is not randomness recoverable unless one starts with a randomness
recoverable encryption scheme, which is tautological.
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and the trapdoor is set to sk. On input some string x ∈ {0, 1}n, we define the
evaluation algorithm of the TDF as follows. For all i ∈ [n]:

– If xi = 0: Compute yi = Enc(pk, $; zi), where zi = HPRG.Eval(ppHPRG, x, i).
– If xi = 1: Compute yi = Enc(pk, $; zi) ⊕ ri, where zi = HPRG.Eval

(ppHPRG, x, i).

Return the image y = (y1, . . . , yn). Here $ denotes some distinguished string,
which is instrumental to ensure correctness of the inversion. Given the trapdoor
sk, one can recover the input x from an image y = (y1, . . . , yn) bit by bit, setting
xi = 0 if Dec(sk, yi) = $ and xi = 1 otherwise. Setting $ to be a large enough
string, we can show that the scheme achieves perfect correctness with all but
negligible probability, over the random choice of the index key.

Besides adding small overhead to the runtime of the encryption scheme (i.e.
n evaluations of a hinting PRG and n calls to the encryption algorithm), the
public/secret keys of the compiled scheme are identical to that of the underlying
PKE, except for some additional public parameters (ppHPRG, r1, . . . , rn). This
means that we can take any encryption scheme (with pseudorandom ciphertexts)
and add randomness recoverability almost for free.

Security Proof (Sketch). We provide a high-level idea of the proof strategy, to
motivate the security requirements for the underlying building blocks. To prove
CPA-security, we modify the distribution of the challenge image through a series
of hybrids, which we summarize below.

– Hybrid 0: This is the original distribution.
– Hybrid 1: In this hybrid we compute the public parameters after the challenge

ciphertext. More precisely, for all i ∈ [n]:
• If xi = 0: Compute yi = Enc(pk, $; zi), where zi = HPRG.Eval

(ppHPRG, x, i). The set ri = yi ⊕ si, where si
$←− {0, 1}|c|

• If xi = 1: Compute yi = si
$←− {0, 1}|c| and set ri = yi ⊕ Enc(pk, $; zi),

where zi = HPRG.Eval(ppHPRG, x, i).
This step is reminiscent of the mirroring technique from [20] and will allow
us to later equivocate the challenge image. Note that so far the distribution
did not change.

– Hybrid 2: In this hybrid we change the si (as defined above) to be encryptions
of $ with fresh random coins. Indistinguishability follows from the pseudo-
randomness of the ciphertexts of the encryption scheme. The effect of this
change is to remove the “signal” of x in the challenge image: Regardless
of the value of xi, we always compute yi as an encryption of $ and ri as
Enc(pk, $) ⊕ Enc(pk, $). However we are not yet done: The usage of pseudo-
random/truly random coins still contains some lingering information about
x.

– Hybrid 3: In this hybrid we compute all ciphertexts for the challenge image
with truly random coins. It is tempting to conclude that the indistinguisha-
bility follows from the pseudorandomness of the hinting PRG, however note
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that x is not necessarily uniformly sampled.3 Our final weapon to deploy
is the notion of (k, n)-robustness of the hinting PRG: Provided that x has
enough min-entropy, this step goes trough.

– Hybrid 4: In the last step we change all ciphetexts to encrypt 0 (padded to the
appropriate length). Since they are all computed using truly random coins,
we can now invoke the CPA-security of the encryption scheme.

The proof is concluded by observing that the image in the last hybrid has no
pre-image.

2.2 Trapdoor Garbled Circuits and Single-Key ABE

We will now show an alternative way of building single-key AB-TDFs. We will
start with a single-key ABE built from a CPA-secure PKE and garbled circuits
and develop new techniques that will allow us to make this scheme randomness
recoverable. This new approach has several advantages when compared with our
generic transformation:

– The resulting AB-TDF is adaptively secure in the choice of the attribute
string α.

– The resulting AB-TDF has projective keys, i.e. one labels per input wire.

Along the way, we define and construct a notion we call trapdoor garbling, which
may be of independent interest.

An ABE scheme ABE is defined as follows. The public parameter pp :=
{pki,b} consist of 2n public keys; the secret key for a circuit C is skC := {ski,Ci

}.
To encrypt a message m to an attribute α, we garble the universal circuit P[α,m]
(where P[α,m](C) = m iff C(α) = 1) to get (P̃, {lbi,b}); we then output ct :=
(P̃, {PKE.Enc(pki,b, lbi,b)}). Let ρ be the randomness used to garble C[α,m] and
let {ri,b} be the randomness used to encrypt the labels {lbi,b}.

How to Make ABE Randomness Recoverable? Recall the two sources of
randomness ρ, {ri,b} mentioned above. At first, one might think that recovering
ρ would be too much to ask for, since otherwise the whole security of the garbled
circuit is lost. We, however, notice that there is some wiggle room here: Only
legitimate inverters—namely one who has skC where C(α) = 1—need to be able
to recover ρ, while security should hold against illegitimate inverters. This brings
us to the notion of trapdoor garbling.

Trapdoor Garbling. We explain the idea of trapdoor garbling in the above
context. Letting (P̃, {lbi,b}) be as above, trapdoor garbling requires: (1) Ran-
domness Recoverability: for any C such that C(α) = 1, given (P̃, {lbi,Ci

}) one
may efficiently recover ρ; we call this trapdoor mode; and (2) Security: for any

3 One could define the security of the TDF to hold only for uniformly sampled inputs
(i.e. one-wayness) however this precludes many interesting applications, such as
deterministic and searchable encryption.
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C such that C(α) = 0 (which we call security mode), the pair (P̃, {lbi,Ci
}) can

be simulated in the standard sense (and in particular without knowing m or α).

Realizing Trapdoor Garbling. Let us see the challenges involved in adding
a trapdoor mode to Yao’s garbling scheme. For Yao’s scheme, the garbling ran-
domness ρ may be split into (A) ρk: the coins used to generate all the underlying
wire keys and (B) ρc: the coins used to generate the underlying ciphertexts for
the garble tables. Yao’s scheme guarantees coin recovery for neither case. Let
Key be the set of all keys produced during the garbling algorithm (i.e., two keys
per wire). Our first observation is that if the underlying secret-key encryption
scheme SKE := (G,Enc,Dec) is randomness recoverable and that if a secret key
is just the coins of G, then recovering all the keys in Key will enable recover-
ing both ρk and ρc. We can recover ρk because a key is just the coins of G;
and we can recover ρc because we can decrypt every ciphertext to recover the
underlying coins. Now to recover Key in trapdoor mode, letting kout,1 be the
output-wire key for value 1, we simply add an encryption SKE.Enc(kout,1, k) for
any k ∈ Key to P̃.4 We will have randomness recoverability, but we have intro-
duced key-dependent-message (KDM) circularity involving multiple keys (since
kout,1 encrypts all the keys in Key, and is in turn encrypted under those keys
via a chain of “hops”). While we have multi-key KDM-secure SKE schemes, we
have to make sure both Conditions (A) and (B) above hold. Fortunately, the
DDH-based SKE schemes of Boneh et al. (SKEBHHO) [10] and the LWE-based
Dual-Regev’s SKE scheme [22,34] provide both Conditions (A) and (B). For con-

creteness, under SKEBHHO, a key is chosen as s
$←− {0, 1}n; to encrypt Enc(s, g):

we return (g1, . . . , gn, s · g), where g := (g1, . . . , gn) $←− G
n and s · g =

∏
gsi

i .5

The proof of security is exactly like Yao’s scheme [30,37], breaking the circularity
using the underlying KDM-secure scheme.

ABE Made Randomness Recoverable? Unfortunately, we are not done yet,
because in the ABE scheme we need to recover both ρ (the garbled circuit
randomness) and {ri,b}, the randomness used to encrypt the labels {lbi,b} under
{pki,b}. Trapdoor garbling allows us to recover ρ, but we are left with recovering
{ri,b}. Even if the underlying PKE scheme is randomness recoverable, we can
only recover half of {ri,b}, those corresponding to the bits of C. Moreover, we
cannot make ri,0 and ri,1 related (so to have either one reveal the other one)
because the ABE security will be lost. So, it seems we are stuck here. To get
around this, we augment the garbled circuit P̃ even further! We now add to
P̃ an encryption of SKEBHHO.Enc(kout,1, ri,b) for all i and b, where recall that

4 In Yao’s scheme [30,37], the key kout,1 is put in the clear in P̃ with the corresponding
bit 1 for it; we do not put kout,1 in the clear in P̃, but rather we encrypt 1 under kout,1

to assert the underlying recovered key corresponds to bit 1; similarly, we encrypt 0
under the output-wire key kout,0 for bit 0.

5 One might complain that the scheme is not randomness recoverable in a strict sense,
in that the coins used to sample the group elements are not recovered. We note,
however, that in our ABE application, these group elements g may be chosen during
key-generation time and put in pp. We ignore these issues for simplicity.



How to Build a Trapdoor Function from an Encryption Scheme 229

kout,1 is the output-wire key for bit 1. Doing so will indeed make the underlying
ABE scheme randomness recoverable, but we have now introduced a much more
complicated circularity, involving both KDM and RDM (randomness-dependent
messaging) at the same time. In particular, (i) pki,b encrypts lbi,b using coins
ri,b and (ii) ri,b is encrypted under kout,1; and (iii) kout,1 is encrypted under
lbi,b (via a sequence of intermediate encryptions). We have RDM dependence
because of (ii) and similarly we have KDM dependence. We now introduce a
technique that will allow us to handle the above circularity, using a careful choice
of encryption schemes. To make things more concrete, let us focus on a special
case of the above circularity which nonetheless captures all the difficulties: (A)
pki,b encrypts kout,1 using coins ri,b and (B) kout,1 encrypts ri,b using fresh coins
(under the SKE scheme).

Handling RDM+KDM. Let SKE := (G,Enc,Dec) be an SKE scheme and
PKE := (G,Enc,Dec) be a PKE scheme. We need security in the presence of

pk,PKE.Enc(pk, s; r),SKE.Enc(s, r), (1)

where all the variables are chosen at random and that SKE.Enc uses fresh coins
to encrypt. By having security, we mean semantic security against both pk and
s. We give a technique that allows us to reduce RDM+KDM in the sense of Eq. 1
to KDM alone. Focusing on DDH, SKE will be SKEBHHO (see above) and PKE
will be the dual version of PKEbhho, where the roles of randomness and secret
keys are swapped.

Let |s| = n. Let PKEbhho be the n-bit version of BHHO (defined below). We
will define a dual version of n-bit BHHO, which we call PKEdbhho, satisfying:

1. An encryption randomness under PKEdbhho is a secret key under PKEbhho.
Also, a secret key under PKEdbhho is an encryption randomness under
PKEbhho.

2. Looking at the PKE part of Eq. 1, we require

pkdbhho,PKEdbhho.Enc(pkdbhho, s; rdbhho) ≡ pkbhho,PKEbhho.Enc(pkbhho, s; rbhho), (2)

where (pkdbhho, skdbhho) is a key pair under PKEdbhho, skbhho := rdbhho, pkbhho
is the corresponding public key for skbhho under PKEbhho and rbhho := skdbhho.

Instantiating Eq. 1 with PKEdbhho, using Eq. 2, we may rewrite Eq. 1 as

pkbhho,PKEbhho.Enc(pkbhho, s; rbhho),SKEBHHO.Enc(s, skbhho), (3)

where everything is chosen randomly. Since the randomness of PKEbhho.Enc (i.e.,
rbhho) never appears as a plaintext, Eq. 3 is secure by [10].6

We quickly review k-bit BHHO [10], where the secret key size is n. (In our
ABE instantiation, k will be n, because we need to encrypt a secret key of the

6 The result of [10] concerns a single PKE scheme; in our setting SKEBHHO is just
the secret-key version of BHHO, and by choosing the public parameter to be the
same across the two schemes, we will have cross KDM security.
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SKE scheme.) We have a public parameter g := (g1, . . . , gn). The secret key of
PKEbhho is sk ∈ {0, 1}n and the public key is (g, gpub), where gpub := sk · g. To
encrypt k group elements (g′

1, . . . , g
′
k), sample k exponents r := (f1, . . . , fk) and

set ct := (gf1 , gf1
pub · g′

1, . . . ,g
fk , gfk

pub · g′
k).

Dual BHHO. We define k-bit PKEdbhho as follows: the secret key is k random
exponents (f1, . . . , fk) and the public key is (g, g′

1, . . . ,g
′
k) := (g, gf1 , . . . ,gfk),

where g is as above. To encrypt k-group elements (g′
1, . . . , g

′
k), sample s

$←−
{0, 1}n and return (s · g, (s · g′

1) × g′
1, . . . , (s · g′

k) × g′
k).

Now notice that an encryption randomness under k-bit PKEdbhho is an n-bit
string, a secret key for k-bit PKEbhho. Also, a secret key for k-bit PKEdbhho is
a tuple of k exponents, an encryption randomness for k-bit PKEbhho. Finally,
Eq. 2 may be verified by inspection. (See Lemma 5.)

For LWE we can do a similar trick, by plugging in Regev’s PKE scheme [34]
and Dual-Regev’s secret-key scheme [22] in Eq. 1. While dual PKE/SKE Regev
is known, we are the first to introduce Dual BHHO. We believe our RDM/KDM
switching technique may find other applications in the future.

Back to the AB-TDF scheme, Eq. 1 may now be used to reduce RDM+KDM
(created by encrypting ρ and {ri,b} under kout,1) to a KDM-only setting. At this
point, we can rely on the underlying KDM-secure schemes to argue security for
the garbled circuit.

How is Adaptive Security Obtained? We now have a randomness-
recoverable single-key ABE scheme. Unlike the construction in Sect. 2.1 which
only provides selective security, we obtain adaptive security in the sense that
the attribute α may be chosen based on the ABE public parameter. We get
this exactly because of the same reason that single-key ABE constructed from
CPA-secure PKE provides adaptive security in the choice of α. The difference in
our setting is that (after the RDM+KDM to KDM reduction) we have KDM-
dependency, but notice that the input wires for the corrupted circuit C are
chosen non-adaptively ; this is why we can use the KDM results as is. In other
words, the adaptive choice of α, only specifies the circuit P[α], but the input C
to this circuit is chosen non-adaptively, and not after seeing P̃.

2.3 Related Works

The work of Kitagawa et al. [28] shows a generic approach for constructing TDFs,
starting from randomness-recoverable KDM-secure symmetric encryption and
PKE with pseudorandom ciphertexts. We highlight the main conceptual and
technical differences in the following.

– Robustness: The TDF from [28] is not robust, i.e. it does not offer
deterministic-encryption security. This means that none of our results on
deterministic IBE/ABE follows from their work. This is not just an artifact
of the analysis, in fact there is a concrete attack7 if one allows non-uniform

7 We remark that this attack does not invalidate any claim made in [28], but rather
exemplifies the separation between their approach and ours.
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(but high-entropy) inputs: In their scheme, a domain point is of the form
(s, r1, . . . , rn). Fixing a distribution where the first n/2 bits of s and the
variables (r1, . . . , rn/2) are fixed to 0, we obtain an image that contains

Enc(pk, 0; 0), . . . ,Enc(pk, 0; 0),Enc(pk, sn/2+1; rn/2+1), . . . ,Enc(pk, sn; rn)

which is easily distinguishable from uniform. The high-level issue (that our
approach overcomes using robust hinting PRGs) is the locality of the output
bits of the TDF.

– Generality: The work of [28] does not elaborate on more advanced primi-
tives than TDFs. Although it appears to be likely that one could generalize
their techniques to construct IB/AB-TDF, they would suffer from the above
mentioned drawbacks. Furthermore, we view the connection of hinting PRGs
with IB/AB-TDF as an important conceptual contribution of our work.

– Assumptions: Our work requires hinting PRGs, whereas [28] assumes
randomness-recoverable KDM-secure symmetric encryption. These assump-
tions are not known to be equivalent: From hinting PRGs, one can build
KDM-secure encryption, but it is not randomness recoverable.

Finally, we mention that [31] showed8 a construction of trapdoor garbling
(although with a different syntax) for NC1 circuits, assuming CDH or LWE.
Their approach does not appear to be extendable to all circuits, due to the
reliance on information-theoretic secret-sharing.

3 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote computa-

tional indistinguishability and use ≡ to denote two distributions are identical.
For a distribution S we use x

$←− S to mean x is sampled according to S and
use y ∈ S to mean y ∈ sup(S), where sup denotes the support of a distribu-

tion. For a set S we overload the notation to use x
$←− S to indicate that x is

chosen uniformly at random from S. If A(x1, . . . , xn) is a randomized algorithm,
then A(a1, . . . , an), for deterministic inputs a1, . . . , an, denotes the random vari-
able obtained by sampling random coins r uniformly at random and returning
A(a1, . . . , an; r). We use [n] := {1, . . . , n} and [i, i+s] := {i, i+1, . . . , i+s}. The
min-entropy of a distribution S is defined as H∞(S) �= − log(maxx Pr[S = x]).
We call a distribution S a (k, n)-source if H∞(S) ≥ k and sup(S) ⊆ {0, 1}n.
We recall the standard notion of statistical distance. Unless otherwise stated, we
assume the length of a randomness value to a function is λ.

Definition 1 (Statistical Distance). Let X and Y be two random variables
over a finite set U. The statistical distance between X and Y is defined as

SD [X ,Y] =
1
2

∑

u∈U

|Pr[X = u] − Pr[Y = u]| .

8 The scheme appears in Appendix D in an older version of the paper.
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3.1 Standard Lemmas

We recall the Markov inequality.

Lemma 1 (Markov Inequality). Let X be a non-negative random variable.
Then, for all ε > 0:

Pr[X ≥ ε] ≤ E[X ]
ε

where E[X ] denotes the expected value of X .

We recall the definition of universal hash and the leftover hash lemma [26].

Definition 2 (Universal Hash Functions). An ensemble of functions H :
X → Y is called universal, if it holds for all x 
= x′ ∈ X that

Pr
h

[h(x) = h(x′)] ≤ 1/|Y|

where h
$←− H.

Lemma 2 (Leftover Hash Lemma). Let X be a random variable over X and
h : S × X → Y be a universal hash function, where |Y| ≤ 2m for some m > 0. If
m ≤ H∞(X ) − 2 log

(
1
ε

)
, then

SD[(h(S,X ),S), (U ,S)] ≤ ε

where S is uniform over S and U is uniform over Y.

3.2 Standard TDFs

We recall the notion of trapdoor functions (TDFs).

Definition 3 (Trapdoor Functions). Let n = n(λ) be a polynomial. A family
of trapdoor functions (KeyGen,Eval, Invert) with domain {0, 1}n consists of the
following algorithms.

– KeyGen(1λ): On input the security parameter, the key generation algorithm
returns the index key ik and the trapdoor td.

– Eval(ik, x): On input the index key ik and an input string x ∈ {0, 1}n, the
evaluation algorithm returns an image y.

– Invert(td, y): On input a trapdoor td and an image y, the inversion algorithm
returns a pre-image x.

We require the following properties.

– (Correctness) There exists a negligible function negl such that for all λ ∈ N

it holds that

Pr
(ik,td)

[∃x ∈ {0, 1}n s.t. Invert(td,Eval(ik, x)) 
= x] = negl(λ)

where the probability is taken over (ik, td) $←− KeyGen(1λ).
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– (One-Wayness) There exists a negligible function negl such that for all λ ∈ N

and all PPT adversaries A it holds that

Pr [A(ik,Eval(ik, x)) = x] = negl(λ)

where (ik, td) $←− KeyGen(1λ) and x
$←− {0, 1}n.

3.3 Predicate Trapdoor Functions

In the following we define a generalized notion of TDFs, that we call predicate
TDFs. A predicate TDF allows one to evaluate a function with respect to an
attribute α and issue trapdoors for circuits C. The trapdoor tdC allows one to
invert the function if and only if C(α) = 1 and otherwise the input (as well as
the attribute) is hard to recover. This notion generalizes identity-based TDFs [5]
in the same way as functional encryption [11] generalizes identity-based [8] and
attribute-based encryption [24]. We give a formal definition below.

Definition 4 (Predicate TDFs). Let n = n(λ) be a polynomial. A family of
predicate TDFs (Setup,KeyGen,Eval, Invert) with domain {0, 1}n consists of the
following algorithms.

– Setup(1λ): On input the security parameter, the setup algorithm returns a
master secret key msk and some public parameters pp.

– KeyGen(msk, C): On input the master secret key msk and a circuit C, the key
generation algorithm returns a trapdoor tdC .

– Eval(pp, α, x): On input the public parameters pp, an attribute α, and an input
string x ∈ {0, 1}n, the evaluation algorithm returns an image y.

– Invert(tdC , y): On input a trapdoor tdC for a circuit C and an image y, the
inversion algorithm returns a pre-image x.

We require the following notion of correctness.

– (Correctness) There exists a negligible function negl such that for all λ ∈ N

it holds that

Pr
(pp,msk)

[∃(x, α, C) s.t. Invert(KeyGen(msk, C),Eval(pp, α, x)) ∧ C(α) = 1] = negl(λ)

where the probability is taken over (pp,msk) $←− Setup(1λ).

Deterministic Security. We now define a strong notion of security for predi-
cate TDFs, i.e. we require that evaluating the TDF over two inputs with enough
min-entropy yields two computationally indistinguishable distributions. This is
the natural generalization of the standard notion of security for deterministic
encryption [7] and thus we refer to it as deterministic security. Note that the
following definitions assume without loss of generality that the key generation
algorithm is deterministic. This can always be enforced by drawing the random
coins from a PRF applied to the input circuit C.
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Definition 5 (Deterministic CPA Security). A predicate TDF is (k, n)-
CPA secure if there exists a negligible function negl such that for all λ ∈ N,
all PPT adversaries A, any two (k, n)-sources S0 and S1, all pairs of attributes
(α0, α1) it holds that

Pr
[
AKeyGen(msk,·)(pp, α0, α1,Eval(pp, αb, xb)) = b

]
− 1/2 = negl(λ)

where (pp,msk) $←− Setup(1λ), b
$←− {0, 1}, xb

$←− Sb, and the adversary never
queries the KeyGen oracle on some C such that C(α0) = 1 or C(α1) = 1.

To draw an analogy to the standard public-key settings (i.e. encryption without
randomness recovery) the above definition corresponds to the notion of one-sided
security for predicate encryption (where the attribute is not hidden if C(α) = 1).
However, in our settings this seems to be the best-possible notion to achieve:
Since the secret keys for accepting predicates are required to recover all random
coins of the evaluation function, it is impossible to fully hide the attribute α if
C(α) = 1. This is because one can always try to recompute the ciphertext with
a candidate attribute and see whether the result matches.

Selective vs Adaptive Security. We note that the definition as stated above
captures the selective variant of security, where the challenge attributes are fixed
ahead of times and prior to the adversary seeing the public parameters of the
scheme. The stronger (and perhaps more natural) notion of adaptive security
allows the adversary to choose the challenge attributes (α0, α1) depending on
the public parameters of the scheme and possibly the answers of some queries to
the KeyGen oracle. The formal definition is the same as Definition 5 modified in
the natural way. We remark that any selectively secure scheme can be shown to
be also adaptively secure although with an exponential decrease in the success
probability of the reduction (via complexity leveraging).

4 Robust Hinting PRGs

A hinting pseudorandom generator (PRG) is a notion introduced in [29] and has
since found several applications (e.g. [28,31]). Roughly speaking, it stretches the
input n-bit seed into a n · �-bit string. In the security game, the distinguisher
is given a 2-by-n matrix where the entries corresponding to the seed are taken
from the output of the hinting PRG and the others are uniformly sampled. The
distinguisher has to tell this distribution apart from a uniformly random 2-by-n
matrix. In this work we are interested in a stronger notion of hinting PRG where
the seed is not required to be uniformly sampled, instead we only impose that
it has high-enough min-entropy. We call this notion robust hinting PRG and
we provide formal definitions in the following. We recall the syntax of hinting
PRG [29].

Definition 6 (Hinting PRGs). Let n = n(λ) and � = �(λ) be two polynomials.
A family of hinting PRGs consists of the following algorithms.
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– Setup(1λ): On input the security parameter 1λ, the setup algorithm returns
the public parameters pp.

– Eval(pp, x, i): On input the public parameters pp, an input string x ∈ {0, 1}n,
and an index i, the evaluation algorithm returns an image y ∈ {0, 1}�.

The security that we require is essentially identical to that of [29], except that we
only require the seed to have high min-entropy, as opposed to be uniformly sam-
pled. We name this notion (k, n)-robustness and we present a formal definition
below.

Definition 7 (Robustness). A hinting PRG (Setup,Eval) is (k, n)-robust if
there exists a negligible function negl such that for all λ ∈ N, all PPT adversaries
A, all (k, n)-sources S it holds that

Pr
[

A
(

pp, yb
0,

(
yb
1,0, . . . , y

b
n,0

yb
1,1, . . . , y

b
n,1

))

= b

]

− 1/2 = negl(λ)

where

– pp
$←− Setup(1λ), x

$←− S, and b
$←− {0, 1}.

– y0
0

$←− {0, 1}� and y1
0 ← Eval(pp, x, 0).

– For all i ∈ [n] :
(
y0

i,0, y
0
i,1

) $←− {0, 1}2�, y1
i,xi

← Eval(pp, x, i) and y1
i,xi⊕1

$←−
{0, 1}�.

In the full version we show how to instantiate robust hinting PRGs assuming
the hardness of the CDH or the LWE problem.

5 A Universal TDFier

In the following we show how a generic compiler that takes as input any encryp-
tion scheme (that satisfies some mild structural properties) and makes it random-
ness recoverable, i.e. transforms it into a TDF. We call this scheme a universal
TDFier.

5.1 One-Sided Predicate Encryption

We recall the notion of predicate encryption with one-sided security [23], which
one of the most general derivations of the standard notion of public-key encryp-
tion.

Definition 8 (Predicate Encryption). A family of one-sided predicate
encryption schemes (Setup,KeyGen,Enc,Dec) consists of the following algo-
rithms.

– Setup(1λ): On input the security parameter, the setup algorithm returns a
master secret key msk and some public parameters pp.
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– KeyGen(msk, C): On input the master secret key msk and a circuit C, the key
generation algorithm returns a secret key skC .

– Enc(pp, α,m): On input the public parameters pp, an attribute α, and a mes-
sage m, the evaluation algorithm returns a ciphertext c.

– Dec(skC , c): On input a secret key skC for a circuit C and a ciphertext c, the
decryption algorithm returns a message m.

We require the following properties.

– (Correctness) For all λ ∈ N, all (pp,msk) in the support of Setup(1λ), all
messages m, all attributes α, all circuits C such that C(α) = 1, and all skC

in the support of KeyGen(msk, C), it holds that

Dec(skC ,Enc(pp, α,m)) = m.

– (One-Sided CPA Security) There exists a negligible function negl such that
for all λ ∈ N, all PPT adversaries A, and all pairs of attributes (α0, α1) it
holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎣

AKeyGen(msk,·)(c) = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp,msk) $←− Setup(1λ)
(m0,m1) ← AKeyGen(msk,·)(pp)

b
$←− {0, 1}

c
$←− Enc(pp, αb,mb)

⎤

⎥
⎥
⎥
⎥
⎦

− 1/2 = negl(λ)

where the adversary never queries the KeyGen oracle on some C such that
C(α0) = 1 or C(α1) = 1.

We remark that we require the scheme to satisfy perfect correctness, which is
the case for most natural candidates of predicate encryption schemes (we refer
the reader to the full version for a detailed discussion). We also note that generic
transformation from approximate to perfect correctness are known [6].

Pseudorandom Ciphertexts. We additionally require that the ciphertext
space satisfies some group-like structural properties. More specifically, we require
the existence of a (not necessarily Abelian) group H with group operation ◦
such that (i) all ciphertexts in the range of the encryption algorithm consist of
elements of H and (ii) undecryptable ciphertexts are computationally indistin-
guishable from uniformly sampled elements in H. We define this more formally
below.

Definition 9 (Pseudorandom Ciphertexts). A one-sided predicate encryp-
tion scheme (Setup,KeyGen,Enc,Dec) has pseudorandom ciphertexts if there
exists a negligible function negl and a group H such that for all λ ∈ N, all
PPT adversaries A, and attributes α it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

AKeyGen(msk,·)(c) = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp,msk) $←− Setup(1λ)
m ← AKeyGen(msk,·)(pp)

b
$←− {0, 1}

c
$←− Enc(pp, α,m) if b = 0

c
$←− H if b = 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1/2 = negl(λ)
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where the adversary never queries the KeyGen oracle on some C such that
C(α) = 1.

As an example, schemes that have ciphertexts indistinguishable from uniformly
sampled bit strings satisfy this notion of security, since the set of all binary
strings {0, 1}p of length p = p(λ) form a group with group operation ⊕. We will
also consider schemes that have ciphertexts indistinguishable from uniformly
sampled integers in Z

d
q , with dimension d = d(λ), where the group operation is

the component-wise addition modulo q. Note that also a combination of both
{0, 1}p ×Z

d
q satisfies this definition by defining the group operation canonically.

Selective vs Adaptive Security. As discussed before, we state the security
definition in its selective variant, where the challenge attribute is fixed ahead of
time. The definition can be extended to the adaptive settings canonically.

5.2 The Construction

In the following we present our compiler, which turns any one-sided predicate
encryption scheme with pseudorandom ciphertexts into a predicate TDF for
(k, n)-sources. The scheme is described below.

Construction 4 (Universal TDFier). Let (PE.Setup,PE.KeyGen,PE.Enc,
PE.Dec) be a one-sided predicate encryption scheme with pseudorandom cipher-
texts over H with group operation ◦, and let (HPRG.Setup,HPRG.Eval) be a
(k, n)-robust hinting PRG. Our scheme (Setup,KeyGen,Eval, Invert) is defined
as follows.

– Setup(1λ): Invoke (ppPE,msk) $←− PE.Setup(1λ) and ppHPRG
$←− HPRG.

Setup(1λ), then sample (r1, . . . , rn) $←− H
n and a uniform u

$←−
{0, 1}|C|+|α|+3λ. Set the public parameters of the scheme to be pp :=
(ppPE, ppHPRG, r1, . . . , rn, u) and the master secret key to msk.

– KeyGen(msk, C): Return the trapdoor tdC ← PE.KeyGen(msk, C).
– Eval(pp, α, x): On input some x ∈ {0, 1}n, for all i ∈ [n], proceed as follows.

• If xi = 0: Compute

di ← PE.Enc(ppPE, α, u; zi)

where zi ← HPRG.Eval(ppHPRG, x, i). Set ci := di.
• If xi = 1: Compute

di ← PE.Enc(ppPE, α, u; zi)

where zi ← HPRG.Eval(ppHPRG, x, i). Set ci := di ◦ ri.
Return the image y := (c1, . . . , cn).

– Invert(tdC , y): On input some y ∈ H
n, for all i ∈ [n], proceed as follows: If

u = Dec(tdC , ci) then set x̃i := 0, else set x̃i := 1. Return (x̃1, . . . , x̃n).
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Before proceeding with the analysis of our scheme, we highlight two important
facts about the compiled TDF.

1. The public parameters of the scheme consist of the public parameters of the
encryption scheme ppPE, together with some independently sampled strings
(ppHPRG, r1, . . . , rn, u).

2. The master secret key and the user-specific keys are identical to those of the
underlying encryption scheme.

Taken together, these imply that the underlying (predicate) encryption scheme
can be upgraded to TDF (or, equivalently, made randomness recoverable) after
the fact : Users of an existing (predicate) encryption scheme can decide to
upgrade it to a TDF without the need to update their public nor their secret
keys. Instead they just need to add some public parameters (fixed once and for
all) and modify their encryption/decryption procedure to achieve randomness
recoverability. Alternatively, one can think of the above compiler as to add a
dual mode to the encryption algorithm: Users are can choose whether they want
to make their encryption randomness recoverable or not, without the need to
change the public/secret keys of the scheme.

Correctness. We now show that the scheme as described above satisfies per-
fect correctness with all but negligible probability over the choice of the public
parameters.

Theorem 5 (Correctness). Let (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) be a
one-sided predicate encryption with perfect correctness. Then Construction 4 sat-
isfies correctness.

Proof. We assume without loss of generality that the encryption algorithm of the
one-sided predicate encryption scheme uses exactly λ-many bits of randomness.
Recall that H is a bound on the ciphertext space of the scheme. Note that each
secret key tdC defines a one-to-one mapping H → PC , where the multiset PC is
populated by plaintexts (possibly with repeated elements). Define P to be the
multiset that contains (possibly with repeated elements) all Pi for i ∈ [2|C|],
where |P | = |H| · 2|C|. Let Su ⊆ P be the subset of P where all entries of Su are
equal to u. In expectation, over the random choice of u, we have that

E [|Su|] =
|P |
2|u| =

|H| · 2|C|

2|u| .

By Lemma 1, we have that

|Su| ≤ |H| · 2|C| · 2λ

2|u|

except with probability 2−λ, over the random choice of u. Define Tu ⊆ H to be
the set of all pre-images of Su. Note that

|Tu| ≤ |Su| ≤ |H| · 2|C| · 2λ

2|u| .
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Let Ru be the set such that for all r ∈ Ru there exist ciphertexts
PE.Enc(ppPE, ·, u) such that PE.Enc(ppPE, ·, u) ◦ r ∈ Tu. Note that there are at
most 2|α| ·2λ many ciphertexts in the support of PE.Enc(ppPE, ·, u) and therefore
we can bound

|Ru| ≤ |H| · 2|C| · 2λ · 2|α| · 2λ

2|u| =
|H| · 2|C|+|α|+2λ

2|u|

by a counting argument. Thus the probability that a uniformly chosen r
$←− H

belongs to Ru is at most

Pr[r ∈ Ru] ≤ |H| · 2|C|+|α|+2λ

|H| · 2|u| =
2|C|+|α|+2λ

2|C|+|α|+3λ
=

1
2λ

.

Note that a decryption error only happens whenever some ri maps a valid encryp-
tion of u to some other encryption of u, i.e. r ∈ Ru. By a union bound, the
probability that at least one of the elements (r1, . . . , rn) belong to such a set is
also negligible. This concludes our proof. �

Security. We now turn to prove the deterministic CPA security of our scheme.
Note that we restrict our analysis to the selective variant of the security
definition.

Theorem 6 (CPA Security). Let (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) be
a one-sided predicate encryption scheme with pseudorandom ciphertexts over
H with group operation ◦, and let (HPRG.Setup,HPRG.Eval) be a (k, n)-robust
hinting PRG. Then Construction 4 satisfies selective (k, n)-CPA security.

Proof. The proof proceeds by a series on hybrids where we gradually change the
distribution of the public parameters and of the challenge ciphertext.

– Hybrid H0: This is the original experiment with the challenge bit b fixed to
0.

– Hybrid H1: In this hybrid we first compute the challenge ciphertext and then
we set the values of (r1, . . . , rn) accordingly. More specifically, for all i ∈ [n],
we do the following:

• If xi = 0 compute ci ← PE.Enc(ppPE, α, u; zi), then define ri := ci ◦ si,

where si
$←− H.

• If xi = 1 compute ci
$←− H and define ri := ci ◦ PE.Enc(ppPE, α0, u; zi).

Since H is a group and in particular all elements of H have an inverse, the
distribution induced by this hybrid is identical to the previous one and thus
the change described here is only syntactical.

– Hybrids H2 . . . Hn+1: For all i ∈ [2, n + 1] we define Hi as the previous one,
except for the following modification:

• If xi = 0 compute ci ← PE.Enc(ppPE, α0, u; zi), then define ri := ci ◦ si,

where si
$←− PE.Enc(ppPE, α0, u).
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• If xi = 1 compute ci
$←− PE.Enc(ppPE, α0, u), then define the variable

ri := ci ◦ PE.Enc(ppPE, α0, u; zi).
I.e. instead of sampling a random mask, we compute an encryption of u
under the appropriate attribute using fresh random coins. Indistinguishabil-
ity follows from a routine reduction against the (selective) pseudorandom
ciphertexts of the one-sided predicate encryption scheme.

– Hybrid Hn+2: In this hybrid we compute the challenge ciphertext and the
setup using fresh random coins. More precisely, for all i ∈ [n] we do the
following:

• If xi = 0 compute ci
$←− PE.Enc(ppPE, α0, u), then define ri := ci ◦ si,

where si
$←− PE.Enc(ppPE, α0, u).

• If xi = 1 compute ci
$←− PE.Enc(ppPE, α0, u), then define ri := ci ◦ si,

where si
$←− PE.Enc(ppPE, α0, u).

Note that the only difference between this hybrid and the previous one is
that we use fresh coins instead of pseudorandom ones derived from applying
the hinting PRG to x0. Furthermore, note that the only information about
x is encoded in the positions where we used truly random coins instead of
pseudorandom. Since x0 is a (k, n)-source, indistinguishability follows by a
reduction against the (k, n)-robustness of the hinting PRG.

– Hybrid Hn+3: In this hybrid we fix the challenge bit b to 1. Note that the
challenge ciphertext does no longer depend on the input x so the only differ-
ence here is that we compute all ciphertexts as PE.Enc(ppPE, α1, u) instead of
PE.Enc(ppPE, α0, u). Indistinguishability follows by a standard hybrid argu-
ment against the one-sided CPA security of the predicate encryption scheme.

– Hybrids Hn+4 . . . H2n+5: In these hybrids we undo the changes that we per-
formed in the previous hybrids, except for switching the challenge bit. The
indistinguishability arguments are identical. The final hybrid is the original
experiment with b fixed to 1.

To summarize, we have that

H0 ≡ H1
c≡ H2

c≡ . . .
c≡ Hn+1

c≡ Hn+2
c≡ Hn+3

c≡ Hn+4
c≡ . . .

c≡ H2n+4 ≡ H2n+5

which implies that the scheme is selective (k, n)-CPA secure. �

6 Trapdoor Garbled Circuits and Adaptive Single-Key
AB-TDFs

The AB-TDF scheme in Sect. 5 is only selectively secure. In this section we
show an alternative way of building single-key AB-TDFs, that provides adaptive
security in the choice of the attribute α (i.e., α can be chosen adaptively based on
the ABE public parameter). Along the way, we define a concept called trapdoor
garbling, and show how to build it from DDH/LWE.

Adaptive Security for Single-Key AB-TDF. For simplicity, we will focus
on one-wayness only (as opposed to deterministic-encryption security). Here the
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adversary after seeing pp can choose a circuit C and an attribute α satisfying
C(α) = 0, and is tasked with recovering a random x

$←− {0, 1}n from skC and
y := Eval(pp, α, x).

6.1 Definition

Garbled circuits in a traditional sense allows one to garble a circuit P : {0, 1}m →
{0, 1}, so that a garbled circuit and a corresponding garbled label for an input x
reveals nothing beyond P(x)—in particular, the randomness used by the garbling
algorithm as well as any possible circuit-hardcoded information should remain
hidden. We introduce and realize a notion of garbled circuits which allows one to
recover the randomness on specific garbled inputs. We define it for the universal
circuit below.

Definition 10 (Trapdoor Garbling). Let U[·, ·] be a circuit that works as
follows: the output of U[s1, s2](C) is s2 if C(s1) = 1, and is a special symbol $
otherwise. We define a trapdoor garbling scheme GRB = (Garble,Eval,Sim) for
U[·, ·] : {0, 1}m → {0, 1}κ ∪ {$}.
– Garble(1λ, s1, s2; ρ): On input the security parameter 1λ and private hardcoded

strings s1, s2, and randomness ρ, the garbling algorithm returns a garbled
circuit Ũ and a set of m pairs of labels {�i,0, �i,1}i∈[m].

– Eval(Ũ, {�i,Ci
}i∈[m]): On input a garbled circuit Ũ and a set of labels

{�i,Ci
}i∈[m], the evaluation algorithm returns an output string y ∈ {0, 1}κ ∪

{$}.
We require the following properties.

– (Correctness) For all λ ∈ N, all s1, all s2 ∈ {0, 1}κ, C ∈ {0, 1}m, and garbling

randomness ρ, letting (Ũ, {�i,0, �i,1}i∈[m])
$←− Garble(1λ, s1, s2; ρ):

• if U[s1, s2](C) = $, then Eval
(
Ũ, {�i,xi

}i∈[m]

)
= $

• else, Eval
(
Ũ, {�i,Ci

}i∈[m]

)
= (s2, ρ).

– (Simulation Security) For any “admissible” PPT adversary A, the fol-

lowing holds. Letting ((s1, s2, C), st) $←− A(1λ), ρ
$←− {0, 1}∗, and

(Ũ, {�i,0, �i,1}i∈[m]) = Garble(1λ, s1, s2; ρ):
(
st, Ũ, {�i,Ci

}i∈[m]

)
c≡ (st,Sim (1λ, |s1|, |s2|,U[s1, s2](C)

))
.

We say A is admissible if U[s1, s2](C) = $, where all strings are as above.

6.2 Tools for Building Single-Key AB-TDFs

We show how to build single-key AB-TDFs from DDH/LWE. (All our results will
also apply to the predicate-encryption setting.) Our techniques will implicitly
also realize trapdoor garbling (Definition 10).
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Definition 11 (Randomness Recoverable SKE). We say SKE :=
(G,Enc,Dec) is randomness recoverable if (1) a key is chosen at random from
{0, 1}n for some n = n(λ); and (2) given k and Enc(k,m; r) we can recover both
m and r.

Notation. We use the shorthand {ai,b} to mean {ai,b}i∈[m],b∈{0,1}.
We will now define and later realize an enhanced version of Yao’s garbled

circuits. Informally, this enhancement allows the recovery of the garbled circuits
coins, in trapdoor mode (i.e., when we have labels corresponding to an input
which makes the circuit evaluate to one). We explained the high-level idea in the
introduction, and will now formalize it.

In the construction below, we assume the following for Yao’s scheme for
garbling single-bit output circuits:

Construction 7 (Enhanced Garbled Circuits). We describe an enhanced
way of garbling U[·, ·], introduced in Definition 10. Let P[·] be a circuit, where
for α ∈ {0, 1}k and C ∈ {0, 1}m, P[α](C) = C(α). Let (Garble,Eval) be Yao’s
garbled-circuit scheme for P[·], as described in [30,37], with the following slight
modification: Letting kout,0 and kout,1 be the keys for the two values of the output
wire, instead of appending (kout,0, 0) and (kout,1, 1) to the garbled circuit, we
append Enc(kout,0, 0) and Enc(kout,1, 1) to the garbled circuit (i.e., the values of
kout,0 and kout,1 are not copied in the garbled circuit in the clear).

– Garble(α, x): Sample (C̃, {lbi,b}) $←− Garble(P, α) and let kout,1 be output wire
for bit value 1. Let Key be the set of all keys for the circuit wires (i.e., two
keys for each wire), and let CT = {Enc(kout,1, x)} ∪ {Enc(kout,1, k) : k ∈ Key \
{kout,1}}. Let C̃en := (CT, C̃), and return (C̃en, {lbi,b}i∈[m],b∈{0,1}).

– Eval(C̃en, lb): Parse C̃en := (CT, C̃). Let b := Eval(C̃, lb). If b = 0, return $;
otherwise, letting kout,1 be the key for the output wire, return (Dec(kout,1,CT)),
where Dec(kout,1,CT) = {Dec(kout,1, c) : c ∈ CT}.
The following lemma shows that given an enhanced garbled circuit and a

sequence of accepting labels, then in addition to x, we can recover the random-
ness used to garble the circuit.

Lemma 3 (Randomness Recoverability of the Enhanced Garbled Cir-
cuit). Suppose SKE := (G,Enc,Dec) is randomness recoverable. Fix randomness
ρ for Eval and let (C̃en, {lbi,b}) := Garble(α, x; ρ). Assuming Eval(C̃en, {lbi,Ci

}) =
(x, ω), then given ω we can recover the original randomness ρ.

Proof. Notice that ρ consist of two sources of randomness: (1) those used to
generate the keys for the wires (i.e., the keys in set Key, Construction 7) and (2)
the random coins used to encrypt the keys. Given kout,1, we can recover all the
keys in Key (since they are all encrypted under kout,1) and hence by Definition 11
all random coins involving Source (1) are recovered. Having recovered all the
keys in Key, by Definition 11 we can recover all the coins used to generate the
ciphertexts. �
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6.3 Single-Key AB-TDFs Construction

We now give the construction.

Construction 8 (Single-Key AB-TDF). Let m and k be the size of the
circuit and attribute.

Ingredients. A randomness recoverable secret-key encryption scheme SKE =
(G,Enc,Dec) (Definition 11), a PKE scheme PKE = (G,Enc,Dec) and an
enhanced Yao’s garbling scheme (Garble,Eval) (Construction 7).

Input to the TDF. The input to a function is of the form (r, ρ), consisting of
2n randomness values r := {ri,b} for PKE.Enc and a randomness string ρ for the
garble function Garble(U[α, r]).

– Setup(1λ): for i ∈ [m] and b ∈ {0, 1}: (pki,b, ski,b)
$←− PKE.G(1λ). Let pp :=

{pki,b}i∈[m],b∈{0,1} and msk := {ski,b}i∈[m],b∈{0,1}.
– KeyGen(msk, C): output skC := (C, sk1,C1 , . . . , skm,Cm

).
– Eval(pp, α, x): parse x := (r := {ri,b}i∈[m],b∈{0,1}, ρ). Let (C̃, lb) = Garble

(α, x; ρ), and parse lb := {lbi,b}i∈[m],b∈{0,1}. Let cti,b := PKE.Enc(pki,b,

lbi,b; ri,b) and return y := (C̃, {cti,b}).
– Invert(skC , y): Parse skC := (C, s̃k1, . . . , ˜skm) and y := (C̃, ˜ct1, . . . , ˜ctm) and

let �i := PKE.Dec( ˜ski, c̃ti) for i ∈ [m]. Run Eval(C̃, {�i}); if the output is
$, return ⊥; otherwise, parsing the output (x, ω), return (x, ρ) where ρ is
computed from ω as shown in Lemma 3.

Lemma 4 (Correctness). Assuming SKE := (G,Enc,Dec) is randomness
recoverable (Definition 11), the resulting scheme PE-TDF in Construction 8
has perfect correctness (Definition 3).

Proof. The proof follows because by Lemma 3 the enhanced version of Yao’s
garbled circuit is randomness recoverable (hence recovering ρ), and also all the
random coins used to encrypt the labels (i.e., r in Construction 8) are outputted
by the evaluation algorithm on an accepting sequence of garbled labels. �
Instantiating the Encryption Schemes in Construction 8. Construction 8
introduces a circularity: the labels of the garbled circuit are encrypted under a
PKE scheme using randomness r, and the underlying randomness r is hardwired
into the circuit being garbled. We now show how to overcome this circularity in
a provable way using the following instantiations: the underlying PKE scheme
will be Dual-BHHO (which we call PKEdbhho), while the secret-key encryption
scheme is BHHO, adapted to the private-key setting.

Construction 9 (Private-Key BHHO). Define SKE = (SKE.G,SKE.Enc,
SKE.Dec) as follows:

– SKE.G(1λ): return s
$←− {0, 1}n.

– SKE.Enc(s, g′): sample (g1, . . . , gn) $←− G and return (g1, . . . , gn, g′ × Πgsi
i ).

– SKE.Dec(s, ct): parse ct := (g, g′′); return, g′′/(s · g).
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Randomness Recoverability. For SKE of Construction 9, the encryption algo-
rithm also samples n group elements, and one might complaint that we cannot
necessarily recover the underlying coins used to generate these group elements.
However, this fact can be handled by putting all these group elements in the
public parameter pp of the TD-ABE scheme (Construction 8). In other words,
the algorithm Setup of Construction 8 will include n group elements in pp for
every private-key encryption that is going to be performed during Eval (more
specifically, during Garble). We ignore this fact here, and we hereon assume these
group elements are generated as part of each encryption.

We review the scheme of k-block BHHO, which outputs k ciphertexts each
sampled under BHHO.

Construction 10 (k-block BHHO [10]). We review the definition of the
BHHO scheme PKEbhho for encrypting k group elements.

– S(1λ): Sample n random group elements pp := g := (g1, . . . , gn), where n ∈
ω(log p), where p = |G|.

– G(pp): On pp := g, return (pk, sk := s), where s
$←− {0, 1}n and pk := (g, s·g).

By abusing notation, we may sometimes write pk = G(pp, sk).
– Enc(pk,m := (g′

1, . . . , g
′
k)): To encrypt m under pk := (g, gpk), sample a k-

tuple randomness (r1, . . . , rk) $←− Z
k
p and return ct := (gr1 , gr1

pk ·g′
1, . . . ,g

rk , grk

pk ·
g′

k).
– Dec(sk, ct): Obvious.

Construction 11 (k-block Dual BHHO). Define PKEdbhho = (S,G,Enc,
Dec), the k-block version of DualBHHO, as follows.

– S(1λ): Sample n randomgroup elements pp := g := (g1, . . . , gn), where n ∈
ω(log(|G|)).

– G(g): On pp := g, return (pk, sk), where sk := (r1, . . . , rk) $←− Z
k
p and pk :=

(g, gr1 , . . . ,grk). By abusing notation,wemay sometimeswrite pk = G(pp, sk).
– Enc(pk, gm): To encrypt

k group element (g1, . . . , gk) under pk := (g, g1, . . . ,gk), sample randomness

s
$←− {0, 1}n and return ct := (s · g, (s · g1) × g1, . . . , (s · gk) × gk), where

s · g := Πgsi
i .

– Dec(sk, ct): parse sk := (r1, . . . , rk) and ct := (g1, g2, . . . , gk+1), then return
(g2/(g1)r1 , . . . , gk+1/(g1)rk).

We now prove a technique for switching RDM+KDM security to KDM
security. Recall that under PKEdbhho the encryption randomness is a string
s ∈ {0, 1}n, the same as a secret key for PKEbhho. Similarly, a secret key
(r1, . . . , rk) under PKEdbhho corresponds to encryption randomness for k-block
PKEbhho. We give the following lemma, and will then discuss its usefulness.

Lemma 5 (RDM/KDM Switching Lemma). Let m = (m1, . . . ,mk) be a
sequence of k group elements, to be encrypted. Fix a public parameter g :=
(g1, . . . , gn) across both PKEbhho and PKEdbhho. Let
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– r := (r1, . . . , rk) ∈ Z
k
p be a secret key under PKEdbhho and let pk be the

corresponding public key; pk := (g, gr1 , . . . ,grk).
– s ∈ {0, 1}n be a randomness value under PKEdbhho. Also, let pk′ be the cor-

responding BHHO public key under s:That is, pk′ := (g, s · g).

Up to “rearrangement of the terms”:

pk,Encdbhho(pk,m; s) = pk′,Encbhho(pk′,m; r),

where = indicates that the two distributions are identical.

Usefulness of Lemma 5. Let SKE be the private-key BHHO scheme (Con-
struction 9) and assume |s| = n. Then we can reduce a combination of RDM
and KDM attacks into a solely KDM scenario.

pk,Encdbhho(pk, s; s′),SKE.Enc(s, s′)
︸ ︷︷ ︸

RDM+KDM

≡ pk′,Encbhho(pk′, s; r),SKE.Enc(s, s′)
︸ ︷︷ ︸

KDM Only

(4)

where s
$←− {0, 1}n, r $←− Z

n
p , pk := PKEdbhho.G(pp, r), s′ $←− {0, 1}n and pk′ :=

Gbhho(pp, s′). Notice that the randomness r in the righthand side is not used
anywhere else in that side, so we do not have randomness dependency anymore.

Proof of Lemma 5. The proof follows easily by inspection. Letting g :=
(g1, . . . , gn):

pk,Encdbhho(pk,m; s) :=

⎛

⎜
⎜
⎜
⎝

g1, g2, . . . , gn

gr1
1 , gr1

2 , . . . , gr1
n

...
grk
1 , grk

2 , . . . , grk
n

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

s · g
(s · g)r1 · m1

...
(s · g)rk · mk

⎞

⎟
⎟
⎟
⎠

.

Thus, we may concisely write

pk,Encdbhho(pk,m; s) :=

⎛

⎜
⎜
⎜
⎝

g1, g2, . . . , gn, s · g
gr1
1 , gr1

2 , . . . , gr1
n , (s · g)r1 · m1

...
grk
1 , grk

2 , . . . , grk
n , (s · g)rk · mk

⎞

⎟
⎟
⎟
⎠

, (5)

Recall that pk′ = (g1, . . . , gn, s · g), which is the first column of the matrix
in Eq. 5. Thus, the matrix in Eq. 5 corresponds to pk′,Encbhho(pk′,m; r), up to
obvious rearrangement of the terms. �
Lemma 6 (Adaptive Security for AB-TDF). Assuming the DDH assump-
tion holds. Instantiating Construction with SKE of Construction 9 and PKE of
Construction 11 and an enhanced garbled circuit (Construction 7), the AB-TDF
scheme of Construction 8 is single-key adaptively secure.
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Proof. Let (C̃, {lbi,b}) be the resulting garbled circuits and labels. Let

– k1,0, k1,1, . . . , km,0, km,1 be the input labels of the garbled circuit (i.e., lbi,b =
ki,b), and let {pki,b} be the 2n pairs of public keys and secret keys used to
encrypt the corresponding input label.

– Key be the set of all keys sampled during the garbled circuit construction
(Construction 7).

Also, let kout,0 and kout,1 be the output-wire keys corresponding to bit values
zero and one. Let CTall be the set of all ciphertexts in the image y. We may split
CTall into three subsets:

1. CTall1: label encryptions:

CTall1 : {PKEdbhho.Enc(pki,b, ki,b; ri,b) : i ∈ [m], b ∈ {0, 1}};

2. CTall2: encryptions of the random coins {ri,b} used in Step 1. as well as the
garbled circuit keys Key, made under kout,1:

CTall2 :=
{SKE.Enc(kout,1, ri,b) : i ∈ [m], b ∈ {0, 1}} ∪ {SKE.Enc(kout,1, k) : k ∈ Key \ {kout,1}}

where all encryptions in CTall2 use fresh randomness.
3. CTall3: all intermediate key encryptions, as per Yao’s garbled circuit construc-

tion (Construction 7).

Notice the RDM/KDM circularity involved between CTall1 and CTall2: pki,b

are encrypting ki,b (which in turn encrypt kout,1 via a sequence of hops), and the
random coins used to encrypt ki,b under pki,b are encrypted under kout,1.

We will now use Lemma 5 to reduce the above RDM+KDM dependency to
KDM-dependency alone, at which point we can use the BHHO result to argue
security for the garbled circuit.

Let hi,b
$←− Z

k
p be the randomness used to generate (pki,b, ski,b), and note that

this randomness is never encrypted in CT. Also, recall that ri,b
$←− {0, 1}n. By

Lemma 5

PKEdbhho.Enc(pki,b, ki,b; ri,b) := PKEbhho.Enc(pk′
i,b, ki,b;hi,b), (6)

where pk′
i,b = PKEbhho.G(pp, ri,b). In other words, ri,b is now the secret key of

pk′
i,b. With this in mind, we may write

CTall1 : {PKEbhho.Enc(pk′
i,b, ki,b;hi,b) : i ∈ [m], b ∈ {0, 1}}. (7)

Notice that CTall2 is now encrypting the secret keys of pk′
i,b, and thus we are

in a KDM-only scenario.
Once having reduced RMD/KDM to KDM-only in the garbled circuits, the

rest of the proof follows as in [30,37]. �
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Instantiation Using LWE. Instantiating Construction 8 with SKE which is
dual-Regev’s circularly-secure SKE scheme [22], with PKE which is Regev’s PKE
scheme [34] and an enhanced garbled circuit (Construction 7) based on SKE
above, the AB-TDF scheme of Construction 8 is adaptively secure. The proof
will be the same, since we can prove the RDM/KDM switching lemma (Lemma 5)
based on these encryption schemes. See the full version for further details.
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15. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13
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