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Abstract. By the impossibility result of Gentry and Wichs, non-
falsifiable assumptions are needed to construct (even non-zero-knowledge)
adaptively sound succinct non-interactive arguments (SNARGs) for hard
languages. It is important to understand whether this impossibility result
is tight. While it is known how to construct adaptively sound non-succinct
non-interactive arguments for NP from falsifiable assumptions, adaptively
sound SNARGs for NP from non-falsifiable assumptions, and adaptively
sound SNARGs for P from falsifiable assumptions, there are no known
non-adaptively sound SNARGs for NP from falsifiable assumptions. We
show that Gentry-Wichs is tight by constructing the latter. In addition, we
prove it is non-adaptively knowledge-sound in the algebraic group model
and Sub-ZK (i.e., zero-knowledge even if the CRS is subverted) under a
non-falsifiable assumption.
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1 Introduction

Due to excellent efficiency properties, zk-SNARKs (zero-knowledge succinct non-
interactive arguments of knowledge, [22]) are currently the most popular argu-
ment systems for NP. Zk-SNARKs are usually defined in the CRS model, where
a universally trusted third party generates a CRS used by both the prover
and the verifier. A more realistic model is subversion zero-knowledge (Sub-
ZK, [1,3,5,14]); a Sub-ZK SNARK is zero-knowledge even if the CRS was
subverted. Zk-SNARGs are zero-knowledge succinct non-interactive argument
systems that are not necessarily knowledge-sound. NIZKs are non-interactive
zero-knowledge argument systems that are not necessarily succinct.

Unfortunately, known SNARKs for NP are based on non-falsifiable assump-
tions. Gentry and Wichs [17] showed that this is (in a quite precise sense)
unavoidable. Their impossibility result balances four aspects of efficient NIZKs:
succinctness, adaptive soundness, reliance on falsifiable assumptions, and hard-
ness of the languages. All four aspects are highly desirable:

(1) Succinctness plays a crucial role in the practical adaptation since non-succinct
NIZKs are not efficient enough for applications like cryptocurrencies.
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Table 1. Some known (im)possibility results. Impossibility results mean that one can-
not achieve all ◦’s at the same time. Possibility results achieve ✓’s but do not achieve
✗’s. AS = adaptive soundness, s = succinctness, HL = hard languages, FA = falsifiable
assumptions, PZK = perfect zero-knowledge, BBR = black-box reduction.

(2) A falsifiable assumption is an assumption where a challenger can efficiently
decide whether the adversary broke it. Non-falsifiable assumptions are con-
troversial in general [36].

(3) Adaptive soundness guarantees that the SNARK stays sound even if the
malicious prover can choose the input x after seeing the CRS. Non-adaptive
soundness guarantees soundness only if x is chosen before the CRS is fixed.

(4) Most of the applications need SNARKs for hard languages (i.e., languages
with hard subset membership problem) like circuit satisfiability; SNARKs
for easy languages have their uses, but they are limited.

Gentry and Wichs [17] proved that non-falsifiable assumptions are needed to
construct (even non-zero-knowledge) adaptively sound succinct non-interactive
arguments (SNARGs) for hard languages under black-box reductions. Assum-
ing black-box reductions (or stronger non-uniform black-box-reductions, [7]),
Gentry-Wichs is known to be tight in three aspects, see Table 1. First, non-
succinct adaptively sound falsifiable NIZKs are known for NP [13]. Second,
adaptively sound falsifiable SNARGs are known for P [21,29] (note that in this
case, zero-knowledge is not important). Third, adaptively sound non-falsifiable
SNARGs are known for NP [16,22,23,31,32,37]. However, it is a major open
problem whether Gentry-Wichs is tight in the fourth aspect; i.e., whether non-
adaptively sound falsifiable SNARGs for hard languages are possible.1

Our Contributions. We construct the first falsifiable non-adaptively sound
SNARG FANA for NP. Thus, Gentry-Wichs is tight. We also prove that FANA is
both non-adaptively knowledge-sound and Sub-ZK (zero-knowledge, even if the
CRS is maliciously generated, [1,3,5,14]). While the last two properties are not
related to Gentry-Wichs, they are important in applications.

1 Note that even non-succinct falsifiable adaptively sound NIZKs for NP do not exist
when one aims to obtain perfect zero-knowledge, [38]. The impossibility result of [38]
is known to be tight, see Table 1. Thus, we will focus on [17].
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FANA is inspired by [10,12] who proposed two NIZKs (DGPRS and FLPS)
for well-known constraint systems SSP [9] and SAP [23], correspondingly. We
emphasize that DGPRS and FLPS do not seem to be good starting points for our
goal:

(a) They are quasi-adaptive SNARGs (QA-SNARGs [27]). (We use the term
QA-SNARG instead of the common QA-NIZK to emphasize the succinctness
property.) In QA-SNARGs, the NP language is parameterized by a language
parameter lpar. Both the quasi-adaptive soundness and zero-knowledge prop-
erties hold only if lpar is honestly generated. Since the latter is an undesirable
trust assumption, we aim to avoid it by constructing a SNARG and not a
QA-SNARG.

(b) They are quasi-adaptively sound [27] (which means the argument system is
sound against an adversary who chooses the input x after seeing lpar and
crs), and thus they do not seem to be candidates for non-adaptive NIZKs.

(c) They are commit-and-prove argument systems, having a non-succinct
perfectly-binding commitment and are thus not succinct.

(d) They are for the SSP [9] and the SAP [23], which are less standard and less
powerful constraint systems compared to the QAP [16].

(e) They are not known to be knowledge-sound.
(f) They are not known to be Sub-ZK.

We solve Items a to c by carefully modifying the construction and the sound-
ness proof of [10,12]. In DGPRS and FLPS, the prover commits to the input x
and the witness w by using a perfectly-binding and several succinct commitment
schemes, including a functional SSB commitment scheme [12]. Functional SSB
commitment schemes satisfy the following helpful property: for a small locality
parameter q (q < 10 in DGPRS and FLPS), one can reprogram its commitment
key ck during the security proof so that the reduction will obtain q linear com-
binations of the input and witness coordinates; moreover, in existing schemes,
the commitment length is q + 1 group elements.

The quasi-adaptive soundness proof of [10,12] consists of several games.
Assume that A is a successful soundness adversary. The first game is the classic
(quasi-adaptive) soundness game. In the second game, one picks a random J,
which is a guess for the SSP/SAP/QAP constraint that is not satisfied. One
aborts if the guess was wrong. (This results in n-time security loss where n is
the number of constraints.) Crucially, one uses the perfectly binding commit-
ment scheme to extract values required to do this check. In the third game, one
additionally modifies the commitment key of the functional SSB scheme to be
a function of J. One can do so due to the “function-set hiding” property [12]
of the functional SSB scheme. One then shows that the last game is secure by
constructing two different reductions to two different security assumptions.

In comparison, we check whether the reduction guessed a non-satisfied con-
straint correctly by using the succinct functional SSB commitment. Thus, we
do not need the perfectly binding commitment at all, solving Item c. Hence, we
have a succinct NIZK, i.e., a SNARG. Moreover, since the language parameter
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lpar in DGPRS and FLPS is the commitment key of the perfectly-binding com-
mitment scheme and we will not use the latter at all, FANA will not have lpar.
Importantly, it means that FANA is not a QA-NIZK but a usual NIZK. This
solves Item a. Moreover, since FANA is secure under a variant of the security
assumptions of [10,12], we have a falsifiable SNARG.

At this moment, it might seem that we have breached the Gentry-Wichs
impossibility result since DGPRS and FLPS are quasi-adaptively sound. How-
ever, this is not the case. Namely, since we use the functional SSB commitment
to check whether the Jth constraint is satisfied, we cannot do a check (and a
conditional abort) before changing the commitment key. In the case of (quasi-
)adaptive soundness, x (and thus also the unsatisfied constraint’s number) can
depend on ck, where the latter depends on J. A malicious prover can thus, after
seeing ck, choose x so that the Jth constraint is satisfied.

We solve this seeming contradiction by resorting to non-adaptive soundness,
i.e., we ask A to output x before seeing ck so that it cannot depend on J that
is embedded in ck. In this case, the security proof follows. This solves Item
b. Since we now have a non-adaptively sound SNARG for NP under falsifiable
assumptions, we have also shown that Gentry-Wichs is tight. We emphasize
that while this change to [10,12] may sound simple, it is pretty surprising: as
we already argued, DGPRS and FLPS do not seem to be suitable starting points
for our endeavor. It also results in a multiple changes to the construction of the
SNARG, including the omission of perfectly-binding commitment and lpar.

Additional Features. While we have already solved our main open problem,
to make FANA more attractive in practice, we will also tackle Items d to f.
In addition, we will base FANA on an—arguably—better falsifiable assumption,
which also results in slight efficiency gain. Due to this, FANA’s argument length
and verifier’s complexity are almost the same as in FLPS.

Finally, FANA relies on the González-Hevia-Ràfols bilateral subspace QA-
NIZK BLS from [19]. For FANA to be non-adaptively sound, non-adaptively
knowledge-sound, and Sub-ZK, BLS has to satisfy quasi-adaptive σ-strong sound-
ness, adaptive knowledge-soundness, and Sub-ZK. Here, quasi-adaptive σ-strong
soundness is a new security property of QA-SNARGs that lies between quasi-
adaptive soundness and quasi-adaptive strong soundness [28]. We prove that
BLS satisfies all three properties. Since bilateral subspace QA-NIZKs have many
independent applications, this constitutes a contribution of independent interest.

QAP (Item d). DGPRS is for SSP (Square Span Program, [9]), a constraint
system that has an efficient reduction to Boolean circuit satisfiability. In many
applications, it is desirable to construct a (QA-)SNARG for arithmetic circuits.
FLPS is for SAP (Square Arithmetic Program, [23,24]), a constraint system
that has an efficient reduction to arithmetic circuit satisfiability for circuits that
consist of addition and square gates. The use of square gates instead of general
multiplication gates results in a factor of two overhead.

The constraint system QAP (Quadratic Arithmetic Program, [16]) models
efficiently arithmetic circuits with general multiplication gates. FANA is directly
for QAP. In the pairing-based setting, SNARKs for QAP have one complication
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compared to SNARKs for SSP and SAP: namely, in the former, the prover
outputs an element in both source groups. Hence, differently from DGPRS and
FLPS, we use functional SSB commitments in both source groups G1 and G2. In
the soundness proof, this means adding one more game to change the functional
SSB ck in both groups. Adding another commitment means that, at least when
using the same approach as DGPRS and FLPS, SNARKs for QAP are necessarily
less efficient. We mitigate it by using a different assumption.

Better Assumption. The q-type assumptions S-TSDH (Square Target Strong
Diffie-Hellman) and SA-TSDH (Square Arithmetic Target Strong Diffie-
Hellman) used in [10] and [12] respectively, look quite complicated.2 To argue
that such assumptions are sensible, one can prove that they hold in the generic
group model (GGM). In a GGM proof, one considers a generic adversary that is
only allowed to (i) execute group operations in the source and target groups, (ii)
perform the pairing operation, and (iii) check for equality of two group elements.
GGM is a very restrictive model. One of the many criticisms against GGM is
that the target group GT is a subgroup of the finite field, and thus it is ques-
tionable whether it can be modeled as a generic group, [26]. Indeed, one can
use the finite field structure to operate on the elements of the GT . To address
this issue, [26] defined the semi-GGM, where one assumes that only the source
groups are generic. A significant drawback of S-TSDH and SA-TSDH is that,
in their definition, the adversary can output a value in the target group. Thus,
they are not (known to be) secure in the semi-GGM.

Moreover, the adversary of the {∗}TSDH assumptions is required to output
some elements together with their “knowledge components” [8]. To prove sound-
ness under {∗}TSDH assumptions, the prover of the SNARG must also output
the knowledge components. Due to this, {∗}TSDH assumptions “force” one to
design SNARGs that might not be optimal.

Instead of {∗}TSDH assumptions, we introduce a very different-looking
assumption QA-LINRES. QA-LINRES (see Definition 2) holds in the algebraic
group model (AGM, [15]).3 Since the QA-LINRES adversary does not have to
output “knowledge components”, QA-LINRES allows to design more efficient
SNARGs. Even without counting the cost of perfectly-binding commitment in
DGPRS and FLPS, FANA is efficiency-wise competitive with DGPRS and FLPS
despite being for QAP and thus involving one more functional SSB commitment.

Knowledge-Soundness (Item e). In many applications, knowledge-soundness is
desirable. It is especially important in the case of succinct NIZKs, where the
verifier only has access to a succinct commitment to the witness. Such com-
mitments can be information-theoretically opened to an exponential number of
witnesses, and it is important to know which witness was used by the adversary.
Unfortunately, neither DGPRS nor FLPS is known to be knowledge-sound.
2 DGPRS, FLPS, and FANA also rely on two standard assumptions SKerMDH [19] and

DDH. We focus on the least standard assumptions, S-TSDH and SA-TSDH.
3 We recall that the AGM is a modern, somewhat more realistic alternative to the

GGM. In particular, like the semi-GGM, the AGM of [15] considers only the source
groups to be “algebraic”. Thus, QA-LINRES also holds in the semi-GGM.
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Sub-ZK (Item f). DGPRS and FLPS are proven to be sound and zero-knowledge,
assuming that both lpar and crs are trusted. Since in many applications, it is cru-
cial to avoid trust assumptions (like crs’s correctness), this situation is not satis-
factory. Instead, one should aim to prove Sub-ZK [5]. It is known that the most
efficient zk-SNARK [23] is also Sub-ZK [1,3,14] under non-falsifiable assump-
tions. As noted in [2], non-falsifiable assumptions are also needed due to the
well-known impossibility result of [18]. In Theorem 2, we prove that FANA is
Sub-ZK assuming that BLS is Sub-ZK.

Efficiency. The FANA argument π is succinct, consisting of 9 elements of G1

and 5 elements of G2.

The Bilateral Subspace Argument. FANA uses a bilinear subspace argu-
ment system that, in particular, allows one to prove that different commitments
in both G1 and G2 commit to the same message. As a contribution of indepen-
dent interest, we study the quasi-adaptively strongly sound and perfectly zero-
knowledge González-Hevia-Ràfols bilateral subspace argument system BLS [19].

Let σ be an efficiently computable function. We define a new soundness
notion for QA-SNARGs, σ-strong soundness, that lies between soundness and
strong soundness [28]. Since BLS is quasi-adaptively strongly sound, it is also
quasi-adaptively σ-strongly sound for any efficiently computable σ. While quasi-
adaptive strong soundness of BLS is known to be sufficient for the non-adaptive
(knowledge-) soundness of FANA, we show that it suffices that BLS is σx-strongly
sound for a particular function σx. There are two primary motivations for intro-
ducing the new security notion. First, it allows one to capture the exact security
property of BLS needed by FANA. Second, it may be possible (though we leave it
for future work) to construct more efficient bilinear subspace argument systems
that are σx-strongly sound but not strongly sound.

In Theorem 1, we prove BLS is adaptively sound under the non-falsifiable
assumption SKerMDHdl from [2]. We prove that BLS is adaptively knowledge-
sound in the AGM under the SDLdl assumption from [2]. (See Theorem 1.) Both
SKerMDHdl and SDLdl belong to the family of non-adaptive oracle assump-
tions, where the adversary is initially given access to the oracle who solves the
discrete logarithm assumption. After that, the adversary has to break either
the SKerMDH or the SDL [6] assumption on a fresh instance. We believe such
assumptions are significantly more realistic than knowledge assumptions under-
lying efficient zk-SNARKs.

As shown in [2], to prove that a QA-SNARG is Sub-ZK, one must prove that
the QA-SNARG is both black-box zero-knowledge (that is, zero-knowledge, if
lpar and crs are trusted) and non-black-box persistent zero-knowledge (that is,
zero-knowledge, if lpar and crs are not trusted; this notion was defined in [2]). In
the latter case, one assumes that one can extract the simulation trapdoor from
a malicious crs. Zero-knowledge does not follow from persistent zero-knowledge
since the former is black-box and the latter is non-black-box, [2]. In Theorem
1, we prove that (1) BLS is perfectly zero-knowledge, and (2) BLS is persistent
zero-knowledge under a novel knowledge-assumption GHR-KE, similar to the
KW-KE assumption [2].
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Since bilateral subspace argument systems have many more applications, the
BLS section constitutes a significant independent contribution.

Summary of Security Results. To not overwhelm the reader, we did not
describe all security results in the introduction. As a corollary of various theorems
of the current paper, we can informally state the following result.

Corollary 1 (Informal). FANA is a SNARG that is non-adaptively sound
under the falsifiable SKerMDH, DDH, and QA-LINRES assumptions (where
the latter is a new falsifiable assumption that holds under the PDL assumption
in the AGM). It is non-adaptively knowledge-sound in the AGM if additionally
the non-falsifiable assumptions SKerMDHdl and SDLdl [2] hold. It is Sub-ZK
under the DDH and the non-falsifiable GHR-KE assumption (where the latter is
a new knowledge assumption that holds in the AGM).

Full Version. Due to the lack of space, we postpone most of the security proofs
and several additional results to the full version, [35].

Open Problems. To be precise, we showed that [17] is tight with respect to
black-box reductions [17] and non-uniform black-box reductions [7]. We leave
the study of general non-black-box reductions as an interesting open problem.

2 Preliminaries

For a matrix A = (Aij), Ai denotes its ith row and A(j) denotes its jth column.
The cokernel of A is defined as coker(A) = {a : a�A = 0}. Let colspace(A) be
the column space of A. For matrices A and B, denote A//B := (A

B ).
Assume n is a power of two. Let ω be the nth primitive root of unity modulo

p (ω exists, given that n | (p − 1).) Then,

– Z(X) :=
∏n

i=1(X −ωi−1) = Xn −1 is the unique degree n monic polynomial,
such that Z(ωi−1) = 0 for all i ∈ [1, n].

– For i ∈ [1, n], let �i(X) be the ith Lagrange polynomial, i.e., the unique degree
n − 1 polynomial, such that �i(ωi−1) = 1 and �i(ωj−1) = 0 for i �= j. Let
Z ′(X) = dZ(X)/dX = nXn−1. It is well known that

�i(X) := Z(X)
Z′(ωi−1)(X−ωi−1) =

(Xn−1)ωi−1

n(X−ωi−1) for X �= ωi−1.

Given X ∈ Zp, one can efficiently compute {�i(X)}n
i=1. Lz(X) :=

∑n
i=1 zi�i(X)

is the interpolating polynomial of the vector z ∈ Z
n
p at points ωi−1.

We denote assignment by ← and (uniformly random) sampling by ←$ . PPT
denotes probabilistic polynomial-time; λ ∈ N is the security parameter. We
assume all adversaries are stateful, i.e., keep up a state between different execu-
tions. For an algorithm A, range(A) is the range of A, i.e., the set of valid outputs
of A, RNDλ(A) denotes the random tape of A (for given λ), and r ←$RNDλ(A)
denotes the uniformly random choice of the randomizer r from RNDλ(A). By
y ← A(x; r) we denote the fact that A, given an input x and a randomizer r,
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outputs y. Let negl(λ) be an arbitrary negligible function, and poly(λ) be an
arbitrary polynomial function. We write a ≈λ b if |a − b| ≤ negl(λ).

Bilinear Groups. A bilinear group generator Pgen(1λ) returns (p,G1,G2,GT ,
ê, [1]1, [1]2), where G1, G2, and GT are three additive cyclic groups of prime
order p, ê : G1 × G2 → GT is an efficiently computable non-degenerate bilinear
pairing, and [1]ι is a fixed generator of Gι. While [1]ι is a part of p, for the sake
of clarity, we often give it as an explicit input to different algorithms. We assume
n | (p − 1), where n is a large deterministically fixed upper bound on the size of
the statements that one handles in this bilinear group. As in [5], we assume that
Pgen is deterministic and cannot be subverted. The bilinear pairing is of Type-3,
i.e., there is no efficient isomorphism between G1 and G2. We use the by-now
standard bracket notation, i.e., for ι ∈ {1, 2, T}, we write [a]ι to denote a[1]ι. We
denote ê([a]1, [b]2) by [a]1 • [b]2. We use freely the bracket notation together with
matrix notation, e.g., AB = C iff [A]1 • [B]2 = [C]T . For an integer (vector) a,
we denote [a]∗ := ([a1]1, [a2]2).

Assumptions. Let κ∗, κ ∈ N, with κ∗ ≥ κ, be small constants. Let p be a large
prime. A PPT-sampleable distribution Dκ∗,κ is a matrix distribution [11] if it
samples matrices A ∈ Z

κ∗×κ
p of full rank κ. Dκ∗,κ is robust [27] if it samples

matrices A whose upper κ × κ submatrix Ā is invertible. Denote the lower
(κ∗ − κ) × κ submatrix of A by A. Denote Dκ = Dκ+1,κ. We denote Dκ+1,κ

by Dκ. In the full version [35], we define five common distributions [11]: Uκ

(uniform), Lκ (linear), ILκ (incremental linear), Cκ (cascade), SCκ (symmetric
cascade). All mentioned distributions can be made robust with minimal changes.

Let d1(n), d2(n) ∈ poly (λ). (d1(n), d2(n))-PDL (Power Discrete Loga-
rithm, [31,39]) holds relative to Pgen, if ∀ PPT A,

AdvpdlPgen,d1,d2,A(λ) := Pr

[
p ← Pgen(1λ), x ←$Z

∗
p :

A(p, [(xi)d1(n)
i=0 ]1, [(xi)d2(n)

i=0 ]2) = x

]

≈λ 0.

The q-PDL assumption in G1 (resp., G2) is equal to the (q, 0)-PDL (resp., (0, q)-
PDL) assumption. The symmetric discrete logarithm (SDL [6]) assumption is
equal to the (1, 1)-PDL assumption.

Let ι ∈ {1, 2}. DDHGι
(Decisional Diffie-Hellman) holds relative to Pgen, if

∀ PPT A, AdvddhPgen,Gι,A(λ) := |ε0A(λ) − ε1A(λ)| ≈λ 0, where

εβ
A(λ) := Pr[p ← Pgen(1λ);x, y, z ←$Zp : A(p, [x, y, xy + βz]ι) = 1].

Let ι ∈ {1, 2}. Dκ∗,κ-KerMDHGι
(Kernel Diffie-Hellman) holds relative to

Pgen, if ∀ PPT A, Advkermdh
Pgen,Gι,Dκ∗,κ,A(λ) :=

Pr[p ← Pgen(1λ);A ←$Dκ∗,κ; [c]3−ι ← A(p, [A]ι) : A�c = 0κ ∧ c �= 0�] ≈λ 0.

Dκ∗,κ-SKerMDH (Split Kernel Diffie-Hellman, [19]) holds relative to Pgen,
if ∀ PPT A, Advskermdh

Pgen,Gι,Dκ∗,κ,A(λ) :=

Pr

[
p ← Pgen(1λ);A ←$Dκ∗,κ; ([c1]1, [c2]2) ← A(p, [A]1, [A]2) :

A�(c1 − c2) = 0κ ∧ c1 − c2 �= 0κ∗

]

≈λ 0.
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According to Lemma 1 of [19], if Dκ∗,κ-KerMDH holds in generic symmet-
ric bilinear groups, then Dκ∗,κ-SKerMDH holds in generic asymmetric bilinear
groups. The KerMDH assumption holds also for Type-1 pairings, where G1 = G2,
but then one needs κ ≥ 2, which affects efficiency.

Algebraic Group Model (AGM). The AGM is a new model [15] used to prove
the security of a cryptographic assumption, protocol, or a primitive. Essentially,
in the AGM, one assumes that each PPT algorithm A is algebraic in the following
sense. Assume A’s input includes [xι]ι and no other elements from the group
Gι. We consider a less restrictive version of the AGM that gives the adversary
additional access to random oracles. More precisely, assume A has an access to
oracles O1 and O2. For ι ∈ {1, 2}, Oι samples and outputs a random element
[qιk]ι from Gι. The oracle access models the ability of A to create random group
elements without knowing their discrete logarithms.

We assume that if A outputs group elements [yι]ι, then A knows matrices
N ι, such that yι = N ι(

xι
qι
). Formally, a PPT algorithm A is (Pgen-)algebraic

if there exists an efficient extractor ExtA, such that for any PPT-sampleable
distribution D, AdvagmPgen,D,A,ExtA(λ) :=

Pr

⎡

⎢
⎣

p ←$Pgen(1λ);x = ([x1]1, [x2]2) ←$D; r ←$RNDλ(A);

([y1]1, [y2]2) ←$ AO1,O2(x; r); (N1,N2) ← ExtA(x; r) :
y1 �= N1(

x1
q1 ) ∨ y2 �= N2(

x2
q2 )

⎤

⎥
⎦ = negl(λ) .

For ι ∈ {1, 2}, Oι is an oracle that samples and returns a random element
from Gι. [qι]ι is the list of all elements output by Oι. The AGM states that
for any PPT-sampleable D and PPT A, there exists a PPT ExtA, such that
AdvagmPgen,D,A,ExtA(λ) = negl(λ).

Quadratic Arithmetic Program (QAP). QAP was introduced in [16] as a
relation R where for an input x and a witness w, (x,w) ∈ R can be verified by
using a parallel quadratic check. QAP has an efficient reduction from the (either
Boolean or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for QAP
results in an efficient zk-SNARK for Circuit-SAT.

In QAP, one considers arithmetic circuits that consist only of fan-in-2 multi-
plication gates, but either input of each multiplication gate can be any weighted
sum of wire values [16]. In arithmetic circuits, n is the number of multiplication
gates, m is the number of wires, and m0 < m is the number of public inputs.

For the sake of efficiency, we require the existence of the n-th primitive root of
unity modulo p, denoted by ω. (However, this is not needed for the new protocols
to work.) Let U ,V ,W ∈ Z

n×m
p be instance-dependent matrices and let z ∈ Z

m
p

be a witness. A QAP is characterized by the constraint Uz◦V z = Wz, where ◦
denotes the entrywise product of two vectors and z = ( x

w ). For j ∈ [1,m], define
uj(X) := LU (j)(X), vj(X) := LV (j)(X), and wj(X) := LW (j)(X) to be inter-
polating polynomials of the jth columns of the corresponding matrices. Thus,
uj , vj , wj ∈ Z

(≤n−1)
p [X]. Let u(X) =

∑m
j=1 zjuj(X), v(X) =

∑m
j=1 zjvj(X), and

w(X) =
∑m

j=1 zjwj(X). Then Uz ◦ V z = Wz iff Z(X) | (u(X)v(X) − w(X))
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iff u(X)v(X) ≡ w(X) (mod Z(X)) iff there exists a polynomial h(X) such that
u(X)v(X) − w(X) = h(X)Z(X).

An QAP instance Iqap is equal to (Zp,m0, {uj , vj , wj}m
j=1). Iqap defines the

following relation:

RIqap =

{
(x,w) : x = (z1, . . . , zm0)

� ∧ w = (zm0+1, . . . , zm)� ∧
u(X)v(X) ≡ w(X) (mod Z(X))

}

(1)

where u(X), v(X), and w(X) are defined as above. Alternatively, (x,w) ∈ R =
RIqap if there exists a (degree ≤ n−2) polynomial h(X), such that the following
key equation holds:

χ(X) := u(X)v(X) − w(X) − h(X)Z(X) = 0, (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, (i) the first m0 coefficients zj in u(X)
are equal to the public inputs, and (ii) u(X), v(X), and w(X) are all computed
by using the same coefficients zj for j ∈ [1,m].

SAP and SSP. Square arithmetic programs (SAPs, [23]) are QAPs with the
extra condition U = V ; thus, all multiplication gates in the arithmetic circuit
have equal inputs, i.e., they are square gates. Square span program (SSP, [9])
are QAPs with the restriction that U = V = W ; see [34]. There is an efficient
relation between the arithmetic circuit evaluation problem and QAP/SAP and
another one between the Boolean circuit evaluation problem and SSP. SSP is
useful when the concrete zero-knowledge language is related to Boolean circuits.

2.1 Underlying Commitment Schemes

We will use several different commitment schemes that are all specific cases of
the Multi-Pedersen commitment scheme.

EMP Commitment. Let ι ∈ {1, 2}. Let q (the locality parameter) and n
(the plaintext length) be two integers. Let D be a (matrix) distribution on
q×(m+1) matrices. In the (q,D)-Extended Multi-Pedersen commitment scheme
EMP [12,20], the commitment key is ck = [G]ι, where G ←$D. The commitment
EMP.Com(ck;a; r), where a ∈ Z

m
p and r ←$Zp, is defined as [G]ι( a

r ). The inter-
polation commitment scheme [33] is a perfectly-hiding EMP commitment scheme,
with ck := [�1(x), . . . , �m(x), Z(x)]ι ∈ G

1×(m+1)
ι for a random trapdoor x ←$Zp.

Functional SSB Commitment [12]. Let F be a fixed function. In general, F
may depend on p, but we will not emphasize it for notational simplicity. In our
applications, F : a �→ [a]ι for ι ∈ {1, 2}. Let F be a function family, where f ∈ F
inputs a vector x and outputs an element from the domain of F . An F -extractable
functional somewhere statistically-binding (SSB) commitment scheme [12] Γ =
(Pgen,KC,Com, LExtF ) for a function family F makes it possible to commit to
a vector x, such that the following properties hold. (1) The commitment key ck
is chosen depending on the description of a function tuple f1, . . . , fq ∈ F , (2)
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commitment keys corresponding to different function tuples are computationally
indistinguishable, and (3) given the extraction key, one can extract from the
commitment the vector (F (f1(x)), . . . , F (fq(x))).

More precisely, an F-extractable functional SSB commitment scheme Γ =
(Pgen,KC,Com, LExtF ) for a function family F consists of the following
polynomial-time algorithms. We will omit algorithms (like trapdoor opening)
and properties not needed in the current paper.

Parameter generation: Pgen(1λ) returns parameters p (for example, group
description). Recall that F depends on p.

Commitment key generation: for parameters p, a positive integer n ∈
poly(λ), a locality parameter q ∈ [1, n], and a tuple S = (f1, . . . , f|S|) ⊆ F
with |S| ≤ q, KC(p, n, q,S) outputs a commitment key ck and a trapdoor
td = (ek, tk). Here, ek is the extraction key, and tk is the trapdoor key. ck,
ek, and tk implicitly specify p, the message space M, the randomizer space
R, and the commitment space C, s.t. F (M) ⊆ C. For any other input, KC
outputs (ck, td) = (⊥,⊥).

Commitment: for a commitment key ck �= ⊥, a message x ∈ Mn, and a
randomizer r ∈ R, Com(ck;x; r) outputs a commitment c ∈ C.

Local extraction: for p ∈ Pgen(1λ), a positive integer n ∈ poly(λ), a local-
ity parameter q ∈ [1, n], a tuple S = (f1, . . . , f|S|) ⊆ F with 1 ≤ |S| ≤
q, (ck, (ek, tk)) ∈ KC(p, n, q,S), and c ∈ C, LExtF (ek; c) returns a tuple(
F (f1(x)), . . . , F (f|S|(x))

) ∈ M|S|;

For {fi}q
i=1 ⊆ F and vector x let us denote xS = (f1(x), . . . , fq(x)).

An F -extractable functional SSB commitment scheme Γ for function family
F can satisfy the following security requirements.

Function-Set Hiding: ∀λ, PPT A, n ∈ poly (λ), q ∈ [1, n], AdvfshΓ,n,q,A(λ) :=
2 · |εfshΓ,n,q,A(λ) − 1/2| ≈λ 0, where εfshΓ,n,q,A(λ) :=

Pr

[
p ← Pgen(1λ); (S0, S1) ← A(p, n, q) s.t. ∀i ∈ {0, 1}.Si ⊆ F ∧ |Si| ≤ q;

β ←$ {0, 1} ; (ckβ , tdβ) ← KC(p, n, q, Sβ) : A(ckβ) = β

]
.

Intuitively, ck reveals computationally no information about S.

Almost Everywhere Perfectly Hiding: ∀λ, unbounded A, n ∈ poly(λ), q ∈ [1, n],
AdvaephΓ,n,q,A(λ) := 2 · |εaephΓ,n,q,A(λ) − 1/2| = 0, where εaephΓ,n,q,A(λ) :=

Pr

[
p ← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q; (ck, td) ← KC(p, n, q, S);
(x0, x1) ← A(ck) s.t. x0S = x1S ;β ←$ {0, 1} ; r ←$ R : A(Com(ck;xβ ; r)) = β

]
.

Intuitively, given ck, that depends on S, the commitment hides perfectly the
values of xi for i �∈ S.

Local F-Extractability: ∀λ, p ∈ Pgen(1λ), n ∈ poly (λ), q ∈ [1, n], S =
(f1, . . . , f|S|) ⊆ F with |S| ≤ q, (ck, (ek, tk)) ← KC(p, n, q,S), and PPT A,
AdvlextF,Γ,n,q,A(λ) :=

Pr[x, r ← A(ck) : LExtF (ek;Com(ck;x; r)) �= (
F (f1(x)), . . . , F (f|S|(x))

)
] = 0.
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KC(p, n, q, [M ]ι ∈ G
q×n
ι ):

Set implicitly M = R = Z
n
p and C = G

q+1
ι ;

Sample R $Z
(q+1)×(q+1)
p so that it has full rank; Sample $Z

n
p ;

Set [M ]ι M 0
1 ι

∈ Z
(q+1)×(n+1)
p ;

Set ck R[M ]ι ∈ G
(q+1)×(n+1)
ι , td (ek R−1, tk );

return (ck, td);

Com(ck;x ∈ Z
n
p ; r ∈ Zp)

return ck( x
r );

LExt(ek; [c]ι)

return ek[c]ι without the last element;

Fig. 1. Functional SSB commitment scheme FSSBι for linear functions in Gι.

Intuitively, given ck, that depends on S, and an extraction key, one can extract
F (xS). (This property was called somewhere perfect F -extractability in [12].)

Computational Hiding: ∀ PPT A, n ∈ poly (λ), q ∈ [1, n],
AdvchΓ,n,q,A(λ) := 2 · |εchΓ,n,q,A(λ) − 1/2| = negl(λ), where εchΓ,n,q,A(λ) :=

Pr

⎡

⎢
⎣

p ← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td) ← KC(p, n, q,S); (x0,x1) ← A(ck);β ←$ {0, 1} ; r ←$ R :
A(Com(ck;xβ ; r)) = β

⎤

⎥
⎦ .

Intuitively, given ck, that can depend on any S, the commitment hides compu-
tationally the vector x.

Construction. [12] constructed a functional SSB scheme for the family of all lin-
ear functions, see Fig. 1. It represents q linear functions by a matrix [M ]ι ∈ G

q×n
ι ,

where each row contains coefficients of one function. Clearly, the commitment
computes [c]ι ← Com(ck;x; r) = ck( x

r ) = R[M ′]ι( x
r ) = [RM xR(��x+r) ]ι, while

LExt(ek; [c]ι) computes ek · [c]ι = R−1[RM ′( x
r )]ι = [M ′( x

r )]ι = [M x��x+r ]ι,
and returns [Mx]ι.

Proposition 1 ([12]). Let Pgen be a bilinear group generator. Fix data size
n and locality parameter q. The commitment scheme in Fig. 1 is (i) function-
set hiding relative to Pgen under the DDHGι

assumption: for each PPT A,
there exists a PPT B, such that AdvfshΓ,n,q,A(λ) ≤ �log2(q + 1)� · AdvddhGι,Pgen,B(λ).
(ii) locally F -extractable for F = [·]ι (thus, F depends on p), (iii) almost
everywhere perfectly-hiding, (iv) computationally-hiding. More precisely, for all
PPT A, there exist PPT B1 and unbounded B2, such that AdvchΓ,n,q,A(λ) ≤
AdvfshΓ,n,q,B1

(λ) + AdvaephΓ,n,q,B2
(λ).

Due to (iv), computational hiding does not have to be proven separately since it
always follows from function-set hiding and almost everywhere perfect hiding.
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2.2 Sub-ZK NIZK and QA-NIZK

In the current paper, we use both NIZKs and quasi-adaptive NIZKs [27]. To
save space, we first give a complete description of QA-NIZKs (both since QA-
NIZKs are less known and their security definitions subsume those of NIZKs)
and then point out the differences in the case of NIZKs. We postpone the formal
definitions of non-QA NIZKs to the full version [35].

A QA-NIZK argument system in the CRS model proves membership in the
language Llpar defined by a relation Rlpar = {(x,w)}, where both are determined
by a language parameter lpar. In the honest case, lpar is sampled from a dis-
tribution Dp; let setup.lpar be the PPT algorithm that does this sampling. We
assume that lpar contains p, and thus, we do not include p as an argument to
algorithms that also input lpar; recall that we assumed that p cannot be sub-
verted. A distribution Dp is witness-sampleable if there exists a PPT algorithm
setup.ltrap that samples (lpar, ltrap) such that lpar is distributed according to Dp,
and the membership of lpar in Lp can be efficiently verified given ltrap. The CRS
crs can depend on lpar, but the simulator has to be a single algorithm that works
for the whole collection of relations Rp = {Rlpar}lpar∈image(Dp). We will assume
that crs contains lpar implicitly.

The zero-knowledge simulator is usually required to be a single (non-black-
box) PPT algorithm that works for the whole collection of relations Rp =
{Rlpar}lpar∈image(Dp); that is, one requires uniform simulation (see [27]). Fol-
lowing [1,3,14], we accompany the universal simulator Sim with an adversary-
dependent extractor. We assume Sim also works when one cannot efficiently
establish whether lpar ∈ image(Dp). The simulator is not allowed to create new
lpar or crs but has to operate with one given to it as an input.

A Sub-ZK QA-NIZK argument system in the CRS model for a set of
witness-relations Rp = {Rlpar}lpar∈image(Dp) is a tuple of PPT algorithms Π =
(Pgen, setup.lpar,Kcrs,PARV,CV,P,V,Sim). In the case of witness-sampleable
languages, setup.lpar is replaced by setup.ltrap. Here, Pgen is the parameter
generation algorithm, setup.lpar is the language parameter generation algo-
rithm, setup.ltrap is the corresponding lpar/ltrap generation algorithm in the
witness-sampleable case, Kcrs is the CRS generation algorithm, PARV is the lpar-
verification algorithm, CV is the CRS verification algorithm, P is the prover, V
is the verifier, and Sim is the simulator.

Π can satisfy the following security notions. Intuitively, quasi-adaptive
soundness is soundness in the case when lpar is honestly generated. Quasi-
adaptive strong soundness is soundness when lpar is honestly generated from
a witness-sampleable distribution, and the adversary additionally gets access to
ltrap. Adaptive soundness is soundness in the case of maliciously generated lpar.
In all previous cases, the adversary sees crs before creating the input x. Non-
adaptive soundness is soundness in the case of maliciously generated lpar when
the adversary has to fix x before seeing crs. Similar intuition holds in the case
of various knowledge-soundness notions. Quasi-adaptive (knowledge)-soundness
follows from adaptive (knowledge-)soundness. (Quasi-)adaptive soundness fol-
lows from (quasi-)adaptive knowledge-soundness.
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Perfect Completeness: ∀ λ, PPT A,

Pr

⎡
⎢⎣
p ← Pgen(1λ); lpar ← setup.lpar(p); (crs, td) ← Kcrs(lpar);

(x,w) ← A(crs);π ← P(lpar, crs,x,w) : PARV(lpar) = 1∧
CV(lpar, crs) = 1 ∧ ((x,w) 	∈ Rlpar ∨ V(lpar, crs,x, π) = 1)

⎤
⎥⎦ = 1.

Computational Quasi-Adaptive Strong Soundness: defined if lpar is witness-
sampleable. For any stateful PPT A, AdvstrsoundPgen,Π,A(λ) :=

Pr

[
p ← Pgen(1λ); (lpar, ltrap) ← setup.ltrap(p); (crs, td) ← Kcrs(lpar);

(x, π) ← A(lpar, ltrap, crs) : V(lpar, crs,x, π) = 1 ∧ ¬(∃w.Rlpar(x,w) = 1)

]
≈λ 0.

In the definition of computational quasi-adaptive soundness (also defined in
the non-witness-sampleable case), the only difference is that one samples lpar ←
setup.lpar(p), and the adversary does not get ltrap as an input.

Computational Non-adaptive Soundness: ∀ stateful PPT A, AdvnasPgen,Π,A(λ) :=

Pr

[
p ← Pgen(1λ); (lpar,x) ← A(p); (crs, td) ← Kcrs(lpar);π ← A(crs) :

PARV(lpar) = 1 ∧ V(lpar, crs,x, π) = 1 ∧ ¬(∃w.Rlpar(x,w) = 1)

]
≈λ 0.

Computational Adaptive Soundness: ∀ stateful PPT A, AdvasPgen,Π,A(λ) :=

Pr

[
p ← Pgen(1λ); lpar ← A(p); (crs, td) ← Kcrs(lpar); (x, π) ← A(crs) :

PARV(lpar) = 1 ∧ V(lpar, crs,x, π) = 1 ∧ ¬(∃w.Rlpar(x,w) = 1)

]
≈λ 0.

Computational Adaptive Knowledge-Soundness: ∀ PPT stateful adversary A,
there exist a PPT extractor ExtA, s.t. AdvaksPgen,Π,A(λ) :=

Pr

⎡
⎢⎣
p ← Pgen(1λ); r ←$RNDλ(A); lpar ← A(p, r);

(crs, td) ← Kcrs(lpar); (x, π) ← A(crs; r);w ← ExtA(p, crs; r) :

PARV(lpar) = 1 ∧ V(lpar, crs,x, π) = 1 ∧ Rlpar(x,w) = 0

⎤
⎥⎦ ≈λ 0.

A knowledge-sound argument system is called an argument of knowledge.

Computational (resp., Perfect) Zero Knowledge: ∀ PPT (resp., unbounded)
adversary A, |εzk

0 − εzk
1 | ≈λ 0 (resp., |εzk

0 − εzk
1 | = 0), where εzk

b :=

Pr[p ← Pgen(1λ); lpar ← Dp; (crs, td) ← Kcrs(lpar) : AOb(·,·)(lpar, crs) = 1].

That is, A is given an oracle access to Ob(·, ·), where O0(x,w) returns ⊥ (reject)
if (x,w) �∈ Rlpar, and otherwise it returns P(lpar, crs,x,w). Similarly, O1(x,w)
returns ⊥ (reject) if (x,w) �∈ Rlpar, and otherwise it returns Sim(lpar, crs, td,x).

Intuitively, zero knowledge in this sense corresponds to black-box zero-
knowledge in the case when lpar and crs are trusted.

Computational (resp., Perfect) Persistent Zero Knowledge: ∀ PPT subverter Z,
there exists a PPT extractor ExtZ , s.t. ∀ PPT (resp., unbounded) adversary A,
|εzk

0 − εzk
1 | ≈λ 0 (resp., |εzk

0 − εzk
1 | = 0), where εzk

b :=
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Pr

[
p ← Pgen(1λ); r ←$RNDλ(Z); (lpar, crs, aux) ← Z(p, r); td ← ExtZ(p, r) :

PARV(lpar) = 1 ∧ CV(lpar, crs) = 1 ∧ AOb(·,·)(lpar, crs, aux) = 1

]
.

The oracles are as above. Persistent zero-knowledge corresponds to non-black-
box zero-knowledge in the case when lpar and crs are not trusted.

Π is Sub-ZK if it is both perfectly ZK and perfectly persistent zero-
knowledge. ZK does not follow from persistent zero-knowledge in the case of
QA-NIZKs [2] and thus, one has to prove both properties separately.

NIZKs. In the case of a (non-QA) NIZK, there is no language parame-
ter and thus, no algorithms setup.lpar and PARV; other algorithms (includ-
ing the adversary) do not take lpar as an argument or output it. Thus, Π =
(Pgen,Kcrs,CV,P,V,Sim). Moreover, one deals with a single non-parametrized
language L. Otherwise, all properties of QA-NIZKs carry over but in a simpli-
fied form. Note that (1) one is not interested in quasi-adaptive (strong) soundness
and (2) Sub-ZK and persistent zero-knowledge coincide. We postpone the formal
definitions of non-QA NIZKs to the full version [35].

SNARKs. A (QA-)NIZK is succinct ((QA-)SNARG) if the argument π has a
sublinear (desirably, logarithmic) length in poly(λ) (|x|+ |w|). A (QA-)SNARK
is a (QA-)SNARG that is additionally knowledge-sound.

Gentry-Wichs Impossibility Result. Gentry and Wichs [17] proved that if
an NP language L has a sub-exponentially (resp., exponentially) hard subset-
membership proof and Π is a complete SNARG in the CRS model with |π| =
poly(λ) (|x| + |w|)o(1) (resp., |π| = poly(λ) (|x| + |w|)c + o(|x| + |w|) for some
constant c < 1) for L, then there is a black-box reduction from the adaptive
soundness of Π to a falsifiable assumption X only when X is false.

3 Sub-ZK Bilateral Subspace QA-SNARK

A bilateral subspace argument system, with lpar = [M ]∗, allows to prove that
[c1]1 ∈ G

n1
1 and [c2]2 ∈ G

n2
2 satisfy ( c1c2 ) ∈ colspace

(
M1
M2

)
. Following [10,12],

we will use it to construct QA-SNARGs. Next, we prove that BLS, a variant
of the González-Hevia-Ráfols bilateral subspace QA-SNARG, satisfies stronger
properties, needed for FANA to be non-adaptively knowledge-sound and Sub-ZK.

First, let σ be any efficiently computable function. A distribution Dp is σ-
witness-sampleable if (1) there exists a PPT algorithm setup.ltrapσ that samples
(lpar, σ(ltrap)) such that lpar is distributed according to Dp, and (2) for any
language trapdoor ltrap′, such that the membership of lpar in the parameter lan-
guage Lp can be efficiently verified given ltrap′, it holds that σ(ltrap) = σ(ltrap′).
(In the context of the current paper, think of ltrap as the discrete logarithm
of lpar, and σ(ltrap) as an efficient—fixed—leakage function of ltrap.) We will
prove that BLS satisfies the following new security property that follows from
the quasi-adaptive strong soundness (see page 14):

Computational Quasi-Adaptive σ-Strong Soundness: defined if lpar is σ-
witness-sampleable. For any stateful PPT A, Advσ−strsound

Pgen,Π,A (λ) :=
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Pr

⎡
⎢⎣
p ← Pgen(1λ); (lpar, σ(ltrap)) ← setup.ltrapσ(p); (crs, td) ← Kcrs(lpar);

(x, π) ← A(lpar, σ(ltrap), crs) : V(lpar, crs,x, π) = 1∧
¬(∃w.Rlpar(x,w) = 1)

⎤
⎥⎦ ≈λ 0.

This notion agrees with the quasi-adaptive strong soundness when σ = id is
the identity function and with the quasi-adaptive soundness if σ is a constant
function. While BLS is quasi-adaptively strongly sound and thus also quasi-
adaptively σ-strongly sound for any efficient σ, we find it instructive to define σ-
strong soundness. In particular, for the non-adaptive soundness of FANA, we will
need BLS to be σx-strongly sound for a well-defined function σx. It is possible
that one can find a more efficient version of BLS that is quasi-adaptively σx-
strongly sound but not quasi-adaptively strong sound.

Assume that the matrix security parameter is κ = 2 (if κ = 1 then SKerMDH
does not hold, [19]). Assume τ := corank(M) = n1 + n2 − rank(M) ≥ 1; here,
n1, n2 can be smaller or larger (only the latter case was studied in [19]) than m.
For lpar ∈ G

n1×m
1 × G

n2×m
2 , where lpar = [M ]∗, define the bilateral subspace

language (also known as the subspace concatenation language, [19])

Llpar :=
{
([c1]1, [c2]2) ∈ G

n1
1 × G

n2
2 : ∃w ∈ Z

m
p .( c1c2 ) =

(
M1
M2

)
w

}
.

That is, c1 = M1w and c2 = M2w.
A distribution Dκ is efficiently verifiable [2], if there exists a PPT algorithm

MATV([Ā]2) that outputs 1 if Ā is invertible (recall that we assume that the
matrix distribution is robust) and well-formed with respect to Dκ, and otherwise
outputs 0. Clearly, the standard distributions (see the full version [35]) U1, Lκ,
ILκ, Cκ, and SCκ (for any κ) are verifiable [2], while the verification whether
[Ā]2 is invertible is intractable for Uκ if κ > 1. To be able to handle Uκ, [2] added
parts of [Ā]1 to crs. However, in the Uκ case, they proved adaptive soundness
under the SKerMDHdl (that we will define in Sect. 3.1) assumption instead of
the KerMDHdl assumption (see [2] for more discussion), which resulted in the
choice κ = 2. [Ā]1 is always in crs of a bilateral subspace argument system and
thus the adaptive soundness relies on (a variant of) the SKerMDHdl assumption.

As before, assume that the distribution Dκ is robust. Extending the defini-
tion of [2], we say that Dκ is efficiently verifiable, if there exists an algorithm
MATV([Ā]1, [Ā]2) that outputs 1 if Ā is invertible and well-formed with respect
to Dκ and otherwise outputs 0. Here, MATV gets two inputs, [Ā]1 and [Ā]2;
there are cases when an efficient MATV does not exist when only [Ā]1 is given
as the input. In particular, under this definition, also U2 is efficiently verifiable.

We depict a slight variant of the González-Hevia-Ràfols bilateral sub-
space QA-SNARG argument system BLS for L[M1]1,[M2]2 in Fig. 2. Compared
to [19], we add the CRS verification algorithm CV and assume the existence of
setup.ltrapσ for some efficiently computable function σ. As in [19], the prover’s
work is dominated by 2mκ exponentiations, the verifier’s work is dominated
by (n1 + n2 + 2κ)κ pairings, and the argument consists of 2κ group elements.
Theorem 1 generalizes a theorem from [19] to any nι × m matrices Mι (even if
m > nι), given that τ := n1 + n2 − rank(M) ≥ 1. This generalization is impor-
tant since in FANA (see Eq. (4)), m > n2. On top of the known results that BLS
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Lp = {[M ]∗ ∈ G
n1×m
1 × G

n2×m
2 : τ := n1 − rank(M1) = n2 − rank(M2) ≥ 1}

setup.lpar(p)

([M ]∗, σ(M1, M2)) $ setup.ltrapσ(p);
return lpar [M ]∗;

BLS.Kcrs(p, lpar = ([M1]1, [M2]2))

A $Dκ; // A ∈ Z
(κ+1)×κ
p , Ā is invertible

K1 $Z
n1×κ
p ;K2 $Z

n2×κ
p ;Δ $Z

κ×m
p ;

C1 K1Ā;C2 K2Ā; // Cι ∈ Z
nι×κ
p

[P 1]1 K1 [M1]1 + [Δ]1;
[P 2]2 K2 [M2]2 − [Δ]2; // [P ι]ι ∈ G

κ×m
ι

crs ([Ā, C2, P 1]1, [Ā, C1, P 2]2);
td (K1, K2);
return (crs, td);

BLS.P(p, crs; ([c1]1, [c2]2), )

ζ $Z
κ
p ;

[ψ1]1 [P 1]1 + [ζ]1;
[ψ2]2 [P 2]2 − [ζ]2; // [ψι]ι ∈ G

κ
ι

return ψ ([ψ1]1, [ψ2]2);

BLS.Sim(p, crs; ([c1]1, [c2]2), td)

ζ $Z
κ
p ;

[ψ1]1 K1 [c1]1 + [ζ ]1; // [cι]ι ∈ G
nι
ι

[ψ2]2 K2 [c2]2 − [ζ ]2; // [ψι]ι ∈ G
κ
ι

return ψ ([ψ1]1, [ψ2]2);

BLS.V(p, crs; ([c1]1, [c2]2), ψ)

return [c1]1 • [C1]2 + ([C2]1 • [c2]2)
?= [ψ1]1 • [Ā]2 + ([Ā]1 • [ψ2]2) ; // in G

1×κ
T

BLS.CV([M ]∗, crs):

return 1 if the following checks all succeed

crs = ([Ā, C2, P 1]1, [Ā, C1, P 2]2);
[P 1]1 ∈ G

κ×m
1 ∧ [Ā]2 ∈ G

κ×κ
2 ∧ [C1]2 ∈ G

n1×κ
2 ;

[P 2]2 ∈ G
κ×m
2 ∧ [Ā]1 ∈ G

κ×κ
2 ∧ [C2]1 ∈ G

n2×κ
1 ;

( ) [Ā]1 • [1]2 = [1]1 • [Ā]2;
(∗) [M1]1 • [C1]2 + [M2]2 • [C2]1 = [P 1]1 • [Ā]2 + [P ]2 • [Ā]1;

MATV([A]2) = 1;

Fig. 2. The Sub-ZK bilateral subspace QA-SNARG BLS, for efficiently verifiable Dκ.

is quasi-adaptively (strongly) sound and zero-knowledge, we prove that BLS is
quasi-adaptively σ-strongly sound (for any efficient σ), adaptively sound, adap-
tively knowledge-sound, persistent zero-knowledge, and thus Sub-ZK. To state
Theorem 1, we will first need to define several security assumptions.

3.1 New Security Assumptions

To state Theorem 1, we will first need to define two (non-falsifiable) non-adaptive
security assumptions, SKerMDHdl and SDLdl, that state that the SKerMDH and
SDL [6] assumptions stay secure even if one is given a non-adaptive access to
a discrete logarithm oracle in both G1 and G2. [30] used KerMDH to prove
the quasi-adaptive soundness of their QA-SNARG Πkw (assuming that lpar is
honestly generated and witness-sampleable), and [2] used (non-falsifiable) non-
adaptive interactive assumptions KerMDHdl and SDLdl to prove the adaptive
soundness and knowledge-soundness of Πkw. Witness-sampleability makes it pos-
sible for the reduction to generate lpar together with ltrap, and then use the
knowledge of ltrap. The use of a non-falsifiable but reasonable looking non-
adaptive interactive assumption allows the reduction to obtain ltrap by using
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the (non-polynomial-time) discrete logarithm oracles. Thus, one does not have
to assume anymore that lpar is honestly generated. See [2] for discussion.

The intuition behind using different assumptions, compared to [2], is similar
to the reason why BLS is sound under the SKerMDH and not under the KerMDH
assumption. See [19] for discussion.

For ι ∈ {1, 2}, the oracle dlι([y]ι) returns the discrete logarithm y of [y]ι. The
Dκ∗,κ-SKerMDHdl assumption [2] holds relative to Pgen, if ∀ PPT A,

Advskermdhdl
Dκ∗,κ,Pgen,A(λ) := Pr

⎡
⎢⎣
p ← Pgen(1λ); st ← Adl1(·),dl2(·)(p);

A ←$Dκ∗,κ; ([c1]1, [c2]2) ← A(p, st, [A]1, [A]2) :

A�(c1 − c2) = 0κ ∧ c1 − c2 	= 0κ∗

⎤
⎥⎦ ≈λ 0.

The SDLdl assumption [2] holds relative to Pgen, if for any PPT A,

AdvsdldlPgen,A(λ) := Pr

[
p ← Pgen(1λ); st ← Adl1(·),dl2(·)(p);x ←$Zp :

A(p, st, [x]1, [x]2) = x

]
≈λ 0.

In the version of SKerMDHdl and SDLdl from [2], A was only given access to
the oracle dl1. We decided to not change the name of the assumption.

[2] proved the persistent zero-knowledge of the Kiltz-Wee QA-SNARG argu-
ment system [30] under a new knowledge assumption KW-KE and then proved
KW-KE’s security in the algebraic group model, [15]. Since BLS is sufficiently
different from [30], we need to define another knowledge assumption, GHR-KE
(the González-Hevia-Ràfols knowledge-of-exponent). Intuitively, GHR-KE states
that if one outputs an lpar and a crs, such that PARV and CV accept (lpar, crs)
correspondingly, then one must know td = (K1,K2). This also gives an intuition
of the role that is filled by PARV and CV. In the full version [35], we prove the
security of GHR-KE in the AGM.

Definition 1. Fix κ ≥ 1, n > m ≥ 1, and a distribution Dκ. Let BLS.PARV
and BLS.CV be as in Fig. 2. (Dp, κ,Dκ)-GHR-KE holds relative to Pgen if for
any PPT A, there exists a PPT extractor ExtA, s.t. AdvghrkeDp,κ,Dκ,Pgen,A,ExtA(λ) :=

Pr

⎡
⎢⎢⎢⎢⎣
p ← Pgen(1λ); r ←$RNDλ(A); (lpar := [M ]∗, crs) ← A(p, r);

(K1, K2) ← ExtA(p, r) : crs = ([Ā, C1, P 2]1, [Ā, C2, P 1]2)∧
BLS.PARV(lpar) = 1 ∧ BLS.CV(lpar, crs) = 1∧
(P 1 + P 2 	= K�

1 M1 + K�
2 M2)

⎤
⎥⎥⎥⎥⎦ ≈λ 0.

3.2 Security Proof of BLS

Theorem 1. Fix λ, n1, n2, m, let ñ = n1 + n2. Let κ = 2. Let σ be any effi-
cient function. Let Dp be a matrix distribution on [M ]∗ ∈ G

n1×m
1 × G

n2×m
2 ,

such that ñ − rank(M) ≥ 1, where M :=
(

M1
M2

)
. Then (1) BLS is perfectly

complete and perfectly zero-knowledge. (2) If (Dp, κ,Dκ)-GHR-KE holds rela-
tive to Pgen, then BLS is perfectly persistent zero-knowledge. (3) Assume Dκ is
efficiently verifiable. If Dκ-SKerMDHdl holds relative to Pgen, then BLS is com-
putationally adaptively sound. (4) Assume Dp is σ-witness-sampleable and Dκ
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is efficiently verifiable. If Dκ-SKerMDH holds relative to Pgen then BLS is com-
putationally quasi-adaptively σ-strongly sound. (5) Assume that Dκ is robust. If
BLS is computationally adaptively sound and SDLdl holds relative to Pgen, then
BLS is computationally adaptively knowledge-sound in the AGM.

4 A Non-adaptive SNARK FANA for QAP

Next, we propose a non-adaptively sound Sub-ZK SNARK FANA for QAP by
following the ideas from [10,12] who proposed (quasi-adaptively sound) QA-
SNARGs for SSP and SAP. A significant difference between QAP and SSP/SAP
is that in QAP, one has to deal with different polynomials uj(X) and vj(X) in
groups G1 and G2; this complicates the argument system since one has to include
a functional SSB commitment in both groups. (In both [10,12], a functional
SSB commitment is only given in G1.) On top of doing a version of the usual
zk-SNARK with perfectly-hiding commitments to the evaluations a = A(x),
b = B(x), and c = C(x) of three polynomials A(X), B(X), C(X) (see Eq. (3);
here, x is a trapdoor), we add (in both groups) a functional SSB commitment
to specific values, explained later. We then use a bilateral subspace argument
system [19] to show that all commitments are consistent.

More precisely, let u(X), v(X), and w(X) be defined as in Sect. 2. In the new
zk-SNARG, we define the following polynomials with randomizers ra, rb, rc:

A(X) =u(X) + raZ(X),

B(X) = v(X) + rbZ(X),

C(X) =w(X) + rcZ(X),

h(X) = (A(X)B(X) − C(X))/Z(X)

= (u(X)v(X) − w(X))/Z(X) + (rav(X) + rbu(X) − rc) + rarbZ(X).

(3)

V checks [a]1 • [b]2 − [c]1 • [1]2 = [h(x)]1[Z(x)]2, where [a = A(x), c = C(x)]1,
[b = B(x)]2 are circuit-dependent perfectly-hiding commitments. Intuitively, V
checks [V (x)]2 = [0]2, where V (X) := A(X)B(X) − C(X) − h(X)Z(X).

Let [gu]1 ← FSSB1.KC(p,m + 2, N1, [Nu]1) and [gv]2 ← FSSB2.KC(p,m +
1, N2, [Nv]2) be commitment keys of the functional SSB commitment scheme,
with gu ∈ Z

(N1+1)×(m+3)
p and gv ∈ Z

(N2+1)×(m+2)
p . Here, N1 and N2 are locality

parameters set to N1 := 4 and N2 := 2. (We define [Nu]1 and [Nv]2 in Lemma
3; the choice of N1 and N2 will become later.)

In addition, we commit to the bases u(X) = (ui(X))mi=1, v(X) = (vi(X))mi=1,
and w(X) = (wi(X))mi=1. For example, [c]1 =

∑m
j=1 zj [wj(x)]1 + rc[Z(x)]1.

Since wj(X) =
∑n

i=1 Wij�i(X), then [c]1 =
∑n

i=1

∑m
j=1 Wijzj [�i(X)]1 +

rc[Z(x)]1 =
∑n

i=1

∑m
j=1(Wz)i[�i(X)]1 + rc[Z(x)]1 = [g�]1

(
W z
rc

)
, where [g�]ι :=

[�1(x), . . . , �n(x), Z(x)]ι. Thus, [c]1 is an interpolation commitment [33] to the
vector Wz (i.e., the vector of all output wires of all multiplication gates) with
the randomness rc. Similar formulas hold for [a]1 and [b]2.

Let Ĝ = (Im0‖0m0×(m−m0)) ∈ Z
m0×m
p . Let ûi(X) = 0 for i ≤ m0 and

ûi(X) = ui(X) for i > m0. Using ûi(X) instead of ui(X) helps us to prove
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efficiently that the prover used the correct public input (z1, . . . , zm0)
� = x. We

use BLS to prove that several commitments commit to the same message while
using different commitment keys, with

H1 =

⎛

⎜
⎜
⎜
⎝

Ĝ
(1)

. . . Ĝ
(m)

0m0 0m0 0m0 0m0 0m0

û1(x) . . . ûm(x) Z(x) 0 0 0 0
w1(x) . . . wm(x) 0 0 Z(x) 0 0
g
(1)
u . . . g

(m)
u g

(m+1)
u 0N1+1 g

(m+2)
u g

(m+3)
u 0N1+1

⎞

⎟
⎟
⎟
⎠

.

H2 =
(

v1(x) . . . vm(x) 0 Z(x) 0 0 0
g
(1)
v . . . g

(m)
v 0N2+1 g

(m+1)
v 0N2+1 0N2+1 g

(m+2)
v

)

.

(4)

Here, H1 ∈ Z
(m0+N1+3)×(m+5)
p and H2 ∈ Z

(N2+2)×(m+5)
p . The witness is

(z, ra, rb, rc, ru, rv), where ru and rv are randomizers needed to randomize addi-
tional commitments.4

We use the bilateral subspace argument system to guarantee that

(x//a//c//c̃u//b//c̃v) ∈ colspace
(

H 1
H 2

)
. (5)

That is, there exists BLS.w = (z = ( x
w ), ra, rb, rc, ru, rv), such that

– [a]1 =
∑m

j=1 zj [ûj(x)]1 + ra[Z(x)]1 =
∑m

j=m0+1 zj [uj(x)]1 + ra[Z(x)]1,
– [c]1 =

∑m
j=1 zj [wj(x)]1 + rc[Z(x)]1,

– [c̃u]1 = FSSB1.Com([gu]1;z//ra//rc; ru),
– [b]2 =

∑m
j=1 zj [vj(x)]2 + rb[Z(x)]2, and

– [c̃v]2 = FSSB1.Com([gv]2; (
z
rb
); rv).

4.1 Description of FANA

We depict FANA in Fig. 3. The CRS of FANA consists of the public elements
needed to compute all the commitments, [h(x)]1, and the bilateral subspace
argument system. The input of P and V is x. The argument π includes [a, c]1
and [b]2 (perfectly-hiding commitments to Uz, Wz, and V z, with randomizers
ra, rc, and rb) and [c̃u]1 and [c̃v]2 (functional SSB commitments to z//ra//rc

and ( z
rb
)). On top of that, the argument also contains [h(x)]1 and a bilateral

subspace argument BLS.π. Here, h(X) is as in the description of the QAP.

5 FANA: Assumptions and Soundness Proofs

5.1 The QA-LINRES Assumption

In the full version [35], we reproduce the known assumptions n-TSDH [37] (a
well-known, relatively standard pairing-based assumption), n-S-TSDH (Assump-
tion 7 and Assumption 8 in [10]; used to prove the soundness of the SNARG
4 In [12], the structure of corresponding matrices was different, and thus one ended

up with dimensions [H1]1 ∈ G
(2m+2)×(2m+3)
1 , [H2]2 ∈ G

5×(2m+3)
2 .In particular, they

used Elgamal encryption as a perfectly-binding commitment in G1 (resulting in the
addend 2m in the number of rows of G1).
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Kcrs(p,RIqap ): // n is implicit in p,R, matrices are as in Eq. (4)

Nu $Z
N1×(m+1)
p ; ([gu]1, tdu) FSSB1.KC(p, m + 2, N1, [Nu]1);

Nv $Z
N2×(m+1)
p ; ([gv]2, tdv) FSSB2.KC(p,m + 1, N2, [Nv]2);

x $Z
∗
p; Create BLS.lpar [H]∗ as in Eq. (4);

(BLS.crs,BLS.td) BLS.Kcrs(p,BLS.lpar);
crs ([gu, (xi)ni=0]1, [gv, (xi)ni=0]2,BLS.lpar,BLS.crs); td BLS.td;
return (crs, td);

CV(crs): Create BLS.lpar [H]∗ as in Eq. (4); Check BLS.CV(BLS.lpar,BLS.crs) = 1;

P(crs, = ( 1, . . . , m0); = ( j)mj=m0+1):
1. ra, rb, rc, ru, rv $Zp;
2. A(X) m

j=1 juj(X) + raZ(X); B(X) m
j=1 jvj(X) + rbZ(X);

3. C(X) m
j=1 jwj(X) + rcZ(X);

4. h(X) (A(X)B(X) − C(X))/Z(X);
5. [a]1 m

j=m0+1 j [uj(x)]1 + ra[Z(x)]1; [c]1 m
j=1 j [wj(x)]1 +

rc[Z(x)]1; [b]2 m
j=1 j [vj(x)]2 + rb[Z(x)]2;

6. [c̃u]1 FSSB1.Com([gu]1; //ra//rc; ru);
7. [c̃v]2 FSSB2.Com([gv]2; ( rb

); rv);
8. [h(x)]1 n−2

i=0 hi[xi]1;
9. BLS. [ //a//c//c̃u]1//[b//c̃v]2;

10. BLS.π BLS.P(BLS.lpar,BLS.crs;BLS. ; ( , ra, rb, rc, ru, rv));
11. π ([a, c, c̃u, h(x)]1, [b, c̃v]2,BLS.π).

V(crs, = ( 1, . . . , m0);π):
BLS. [ //a//c//c̃u]1//[b//c̃v]2;
check BLS.V(BLS.lpar,BLS.crs,BLS. ,BLS.π) accepts and ([a]1 +

m0
j=1 j [uj(x)]1) • [b]2 − [c]1 • [1]2 = [h(x)]1 • [Z(x)]2.

Sim(crs, td = BLS.td, = ( 1, . . . , m0)):
1. ru, rv, μ1, μ2, μ3 $Zp;
2. [a]1 μ1[Z(x)]1 − m0

j=1 j [uj(x)]1; [b]2 μ2[Z(x)]2;
3. [c]1 μ3[Z(x)]1;
4. [c̃u]1 FSSB1.Com([gu]1;0m+2; ru);
5. [c̃v]2 FSSB2.Com([gv]2;0m+1; rv);
6. [h(x)]1 μ1μ2[Z(x)]1 − μ3[1]1;
7. BLS. [ //a//c//c̃u]1//[b//c̃v]2;
8. BLS.π BLS.Sim(BLS.lpar = [H]∗,BLS.crs,BLS.td;BLS. ).
9. π ([a, c, c̃u, h(x)]1, [b, c̃v]2,BLS.π).

Fig. 3. New zk-SNARK FANA for QAP.

DGPRS for SSP), n-Q-TSDH (Assumption 8 in [10]; used to prove the soundness
of range proofs and some other argument systems), and n-SA-TSDH [12] (used
to prove the soundness of a SNARG for SAP). The last three assumptions are
known to hold under if n-TSDH and a suitable knowledge assumption hold. One
can similarly define a new TSDH-related assumption QA-TSDH (see the full
version [35]) to prove the non-adaptive soundness of FANA.
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While {S,Q,SA,QA}TSDH naturally extend the well-known assumption
TSDH, they look complicated. Each of them is intrinsically related to the under-
lying language: S-TSDH is related to the SSP language, SA-TSDH is related to
the SAP language, and QA-TSDH is related to the QAP language. Since SAP is
a more involved language than SSP, SA-TSDH is more involved than S-TSDH.

Most importantly, in {S,Q,SA,QA}TSDH, A returns an element [ν]T of the
target group GT . The widely-accepted way to motivate the security of an assump-
tion like {S,Q,SA,QA}TSDH is to analyze its security in the generic group model
GGM, or in some of its weakenings like the algebraic group mode, AGM [15].
As explained in [26], in pairing-based settings, GT , being a subgroup of the mul-
tiplicative group of a finite field, should not be thought of as a generic group.
Instead, [26] proposed the semi-GGM, where only G1 and G2 are considered to
be generic groups. Since an {S,Q,SA,QA}TSDH adversary returns [ν]T in the
target group, {S,Q,SA,QA}TSDH is not secure in the semi-GGM.

Fortunately, this is a problem of the concrete assumptions, not intrinsic to
the QA-SNARGs. We prove that FANA is sound under a different assumption,
QA-LINRES, where the adversary only returns elements in G1 and G2.

Definition 2 (QA-LINRES). n-Quadratic Arithmetic Linear Residuosity (n-
QA-LINRES) holds relative to Pgen, if ∀ PPT A, Advqa-linresPgen,n,A(λ) = negl(λ),
where Advqa-linresPgen,n,A(λ) :=

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p ← Pgen(1λ);x, y ←$Z
∗
p; ck ← (([xi]1, [xi]2)ni=0, [y]1, [y]2);π ← A(p, ck) :

π =
(
J, [A(x), αu(x), β̂u, C(x), αw(x), β̂w, h(x)]1, [B(x), αv(x), β̂v]2

)
∧

A(x) = αu(x)(x − ωJ−1) + β̂u/y ∧ B(x) = αv(x)(x − ωJ−1) + β̂v/y ∧
C(x) = αw(x)(x − ωJ−1) + β̂w/y ∧ A(x)B(x) − C(x) = h(x)Z(x)∧
β̂uβ̂v �= β̂wy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

QA-LINRES is falsifiable since the challenger who created x and y can efficiently
verify that the conditions hold. Like {∗}TSDH, QA-LINRES is parameterized
by n (the size of the instance) but does not depend on the instance otherwise.

Next, we will motivate the choice of the assumption. The penultimate equality
above, A(x)B(x) − C(x) = h(x)Z(x), is the key equation of the QAP. The first
three equalities are explicitly motivated by the soundness proof of FANA; they
intuitively guarantee that (say) when one divides the polynomial A(X) with
X −ωJ−1, then the remainder is (integer) βu and the quotient is the polynomial
αu(X). To guarantee that (say) βu is an integer (and thus does not depend on
x), the {S,Q,SA,QA}TSDH assumptions introduce a new indeterminate y and
require that the adversary also outputs [βuy]1. Since ck only contains [y]1 (and
no [xiy]1), it means that an algebraic adversary must know the integer βu.

This trick means that in the case of the say SA-TSDH assumption (see the
full version, [35]), the adversary has to return [βu, βw]1 together with knowledge-
components [β̂w, β̂w]1; this makes the assumption more complicated. Moreover,
in the soundness proof, the reduction has to extract all four elements. While



56 H. Lipmaa and K. Pavlyk

[βu, βw]1 can be extracted from the perfectly-binding commitment scheme, the
other two are extracted from the functional SSB commitment scheme, making
the output of the functional SSB commitment longer. Following this blueprint,
in the case of the QA-SNARG for QAP, there are three elements [βu, βw]1, [βv]2
and thus there would be also three extra knowledge components [β̂u, β̂w]1, [β̂v]2.

In QA-LINRES, the adversary only has to return the knowledge-components
[β̂u, β̂w]1, [β̂v]2 but not [βu, βw]1, [βv]2. This results in a cleaner assumption (the
adversary has to return fewer elements) and a more efficient QA-SNARG (the
length of the functional SSB commitment is reduced by one group element).

Since the adversary of QA-LINRES does not output elements like [βu]1
together with their knowledge components anymore, the security of QA-LINRES
cannot be directly ascertained under Damgård’s knowledge-of-exponent assump-
tions. Hence, in the full version [35], we will prove that QA-LINRES holds in
the AGM under the standard PDL assumption.

Theorem 2. (1) FANA is perfectly complete. (2) If BLS is perfectly zero-
knowledge and FSSB1 and FSSB2 are almost everywhere perfectly-hiding then
FANA is perfectly zero-knowledge. (3) If BLS is perfectly persistent zero-
knowledge, FANA is perfectly zero-knowledge, and FSSB1 and FSSB2 are
computationally-hiding then FANA is Sub-ZK.

Recall that if FSSBι is function-set hiding and almost everywhere perfectly-
hiding, then it is also computationally-hiding; thus, for (3) it suffices if we assume
function-set hiding and almost everywhere perfectly-hiding properties.

5.2 Non-adaptive Soundness of FANA

Our non-adaptive soundness proof proceeds in four games. In the last game,
Game4, we construct two reductions. The first reduction is to the quasi-adaptive
σ-strong soundness (for a fixed σx) of BLS that guarantees that no PPT non-
adaptive soundness adversary A is successful if there exists no witness BLS.w,
s.t. Eq. (5) holds; this includes the case A used a wrong public input.

Assume now that there exists at least one witness BLS.w, such that Eq. (5)
holds. Then, a successful A left at least one constraint unsatisfied. The adversary
B3 (constructed in the second, QA-LINRES, reduction) samples J ←$ [1, n] and
guesses that the Jth QAP constraint (UJz)(V Jz) = WJz is unsatisfied. B3

aborts in Game4 if the guess was correct. In Game3 and Game4, we modify the
functional SSB scheme’s commitment key to be able to extract six elements
(namely, ([α̂u(x), β̂u, α̂w(x), β̂w]1, [α̂v(x), β̂v]2; other elements can be computed
in a straightforward way) needed to break QA-LINRES. B3 works with the
modified commitment keys; inside the QA-LINRES experiment, B3 aborts if A
satisfied the Jth constraint. This incurs an n-times security loss.

Crucially, B3 makes the decision to abort based on the information in modi-
fied functional SSB commitment keys. Thus, we can only abort in the last game
Game4. This is the main reason why we have both a succinct argument (abortion
is not based on information, extracted from the perfectly-binding commitment



Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 57

as in [10,12]) and non-adaptive soundness (in the adaptive case, A sees the mod-
ified commitment key before creating the input, and then it can covertly choose
the unsatisfied constraint based on it).

With the modified commitment keys, β̂u = UJz, β̂v = V Jz, and β̂w =
WJz for some z. If B3 aborts, then β̂uβ̂v �= β̂w. (The quasi-adaptive σx-
strong soundness of BLS guarantees that such a z exists.) Since A(X) =∑n

i=1 Uiz�i(X) + raZ(X), we get A(X) ≡ UJz (mod Z(X)) and thus A(X) ≡
UJz (mod X − ωJ−1). Similarly, B(X) ≡ V Jz (mod X − ωJ−1) and C(X) ≡
WJz (mod X − ωJ−1). Thus, for some polynomials αu(X), αv(X), and αw(X),

A(X) =αu(X)(X − ωJ−1) + β̂u, B(X) =αv(X)(X − ωJ−1) + β̂v,

C(X) =αw(X)(X − ωJ−1) + β̂w.

In the malicious case, [β̂u]1, [β̂v]2, and [β̂w]1 can depend on x; e.g., [β̂u]1 =
[β̂u(x)]1. Consider first the case y = 1. Then, the verification equation
A(X)B(X) − C(X) = h(X)Z(X) guarantees that β̂u(X)β̂v(X) − β̂w(X) ≡ 0
(mod X − ωJ−1) as a polynomial while the QA-LINRES assumption states
β̂uβ̂v �= β̂w. To obtain a contradiction, we need to guarantee that B3 returned
([β̂u, β̂v]1, [β̂w]2), such that β̂u, β̂v, and β̂w do not depend on x. We achieve this
by sampling a random y and adding ([y]1, [y]2) to crs; then an algebraic adver-
sary can create (say) [β̂u]1 = [UJzy]1, such that β̂u/y is in a non-trivial relation
only if β̂u does not depend on the trapdoor x.

Importantly, the non-adaptive soundness of FANA follows from falsifiable
assumptions. Knowing which constraint J was unsatisfied, we use the local
extractability of the functional SSB scheme to recover a succinct local witness
that allows one to reduce the non-adaptive soundness to QA-LINRES. Thus,
we do not need to have a perfectly-binding commitment. In comparison, [10,12]
used witness-sampleability to extract some elements of that local witness from
the perfectly-binding commitment scheme.

Let σx : ltrap �→ x. Clearly, σx can be computed efficiently: given (H1,H2),
σx uses one of the entries of H1 that contains Z(x) to compute the value of x.
For ι ∈ {1, 2}, let FSSBι be the Fauzi-Lipmaa-Pindado-Siim functional SSB com-
mitment scheme in Gι. Let BLS be the González-Hevia-Ràfols bilateral subspace
argument system. Let N1 = 4 and N2 = 2.

Theorem 3. Assume that FSSBι is locally [·]ι-extractable and function-set hid-
ing for ι ∈ {1, 2}, BLS is quasi-adaptively σx-strongly sound, and n-QA-LINRES
holds relative to Pgen. Then the QA-SNARK FANA from Fig. 3 is non-adaptively
sound. More precisely, there exist PPT adversaries B1,B′

1,B2,B3 against the
function-set hiding property of FSSB1, the function-set hiding property of FSSB2,
the quasi-adaptive σx-strong soundness of BLS, and the n-QA-LINRES assump-
tion, respectively, such that

AdvnasPgen,FANA,A(λ) ≤AdvfshFSSB1,m+2,N1,B1
(λ) + AdvfshFSSB2,m+1,N2,B′

1
(λ)+

Advσx−strsound
Pgen,BLS,B2

(λ) + n · Advqa-linresPgen,n,B3
(λ).
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For the quasi-adaptive σx-strong soundness of BLS, the language parameter dis-
tribution of BLS must be σx-witness-sampleable. On the other hand, [10,12]
assumed that BLS.lpar is witness-sampleable and thus also lpar for their QA-
SNARG (for SSP/SAP) is witness-sampleable; by this reason alone, their
SNARGs are only quasi-adaptively sound (i.e., sound, assuming lpar is honestly
generated). FANA is not a QA-SNARG and thus has no language parameter.

Proof. (of Theorem 3). The non-adaptive soundness proof consists of the follow-
ing games. Let A be an adversary against the non-adaptive soundness. We recall
that in the terminology of arithmetic circuits, A has two avenues of cheating:
either by using a wrong public input or by leaving some constraints unsatisfied.

Game1: this is the non-adaptive soundness game for non-QA NIZKs (see page
14 but remember that in the case of NIZKs, there is no lpar). The output is 1
if A produces a false accepting proof, i.e., either (1) there exists at least one
constraint i, such that (Uz)i(V z)i �= (Wz)i, or (2) the various committed
values are either different or do not start with x.

Game2: This game also samples J ←$ [1, n] as a guess for the unsatisfied equation
i in the case (1).

Game3: Let δuj(X) (resp., δwj(X) / δZ(X)) be the quotient of the division of
uj(X) (resp., wj(X) / Z(X)) with X − ωJ−1. We will show later that the
remainder is UJj (resp., WJj / 0). We redefine the commitment key of the
FSSB1 scheme as ([gu]1, tdu) ← FSSB1.KC(p,m + 2, N1, [Nu]1) for

[Nu]1 ←
[

δu1(x) ... δum(x) δZ(x) 0
UJ1y ... UJmy 0 0

δw1(x) ... δwm(x) 0 δZ(x)
WJ1y ... WJmy 0 0

]

1

∈ G
N1×(m+2)
1 . (6)

In Lemma 3, this change allows us to use the local extractability of
FSSB1 to extract [α̂u, β̂u, α̂w, β̂w]1(= [αu(x), β̂u, αw(x), β̂w]1) related to the
QA-LINRES assumption (see Definition 2).

Game4: Let δvj(X) be the quotient of the division of vj(X) with X − ωJ−1. We
will show later that the remainder is VJj . We redefine the commitment key of
the FSSB2 scheme as ([gv]2, tdv) ← FSSB2.KC(p,m + 1, N2, [Nv]2) for

[Nv]2 ←
[

δv1(x) ... δvm(x) δZ(x)
VJ1y ... VJmy 0

]

2
∈ G

N2×(m+1)
2 . (7)

In Lemma 3, this change allows us to use the local extractability of FSSB2 to
extract [α̂v, β̂v]2(= [αv(x), β̂v]2) related to the QA-LINRES assumption.
We show that in Game4, either one can (1) break the quasi-adaptive σx-
strong soundness of BLS or (2) with probability 1/n, compute [β̂u, β̂w]1 and
[β̂v]2, where β̂u/y = UJz, β̂v/y = V Jz, and β̂w/y = WJz, and thus break
QA-LINRES. (Here, we need FSSBι to be locally [·]ι-extractable.)

See Fig. 4 for the formal description of all games.

Game1 and Game2 are clearly indistinguishable.

Lemma 1. There exist a PPT adversary B1, such that |Pr[Game3(A) = 1] −
Pr[Game2(A) = 1]| ≤ AdvfshFSSB1,m+2,N1,B1

(λ).
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Game1 / Game2 / Game3 / Game4

p Pgen(1λ); (p); // Non-adaptive NIZK soundness adversary A (no lpar)

J $ [1, n]; (crs, td) Kcrs(p);π

A

A(crs);

if V(crs, , π) = 1 ∧ ¬(∃ .R( , ) = 1) then return 1; else return 0;fi ;

Kcrs(p)

Nu $Z
N1×(m+1)
p ; ([gu]1, tdu) FSSB1.KC(p,m + 2, N1, [Nu]1);

Choose [Nu]1 as in Eq. (6); ([gu]1, tdu) FSSB1.KC(p,m + 2, N1, [Nu]1);

Nv $Z
N2×(m+1)
p ; ([gv]2, tdv) FSSB2.KC(p, m + 1, N2, [Nv ]2);

Choose [Nv]2 as in Eq. (7); ([gv ]2, tdv) FSSB2.KC(p, m + 1, N2, [Nv]2);
x $Z

∗
p; Create BLS.lpar [H]∗ as in Eq. (4);

(BLS.crs,BLS.td) BLS.Kcrs(p,BLS.lpar);
crs ([gu, (xi)ni=0]1, [gv, (xi)ni=0]2,BLS.lpar,BLS.crs); td BLS.td;
return (crs, td);

Fig. 4. Games in the proof of Theorem 3. Dotted boxed part is only in Game2,
dashed boxed part is only in Game3, and boxed part is only in Game4. The parts
with several boxes are present in all corresponding games.

Proof. If A’s success in the two games differs then one can distinguish between
two different [gu]1’s: the distinguisher B1 obtains x from A(p), creates crs from
the correct Game2 or Game3 distribution but embedding [gu]1 to it, and then
obtains π from A. If A succeeds, then B1 guesses that [gu]1 was modified. Clearly,
B1 has at least the same advantage as A. ��

The analysis of Lemma 2 is similar.

Lemma 2. There exist a PPT adversary B′
1, such that |Pr[Game4(A) = 1] −

Pr[Game3(A) = 1]| ≤ AdvfshFSSB2,m+1,N2,B′
1
(λ).

Finally, we bound the advantage of A in Game4.

Lemma 3. Assume FSSB1 is locally [·]1-extractable and FSSB2 is locally [·]2-
extractable. There exist PPT adversaries B2 and B3, such that

|Pr[Game4(A) = 1] ≤ Advσx−strsound
Pgen,BLS,B2

(λ) + n · Advqa-linresPgen,n,B3
(λ).

Proof. Let A be a non-adaptive soundness adversary in Game4. Let ev be
the event that Eq. (5) does not hold, that is, there does not exist BLS.w =
(z, ra, rb, rc, rsph, ru, rv), such that Eq. (5) (and the paragraph after it) holds.
Clearly,

Pr[Game4(A) = 1] ≤ Pr[Game4(A) = 1|ev] + Pr[Game4(A) = 1|ev].

First Reduction. We bound the first addend Pr[Game4(A) = 1|ev] by the advan-
tage of an adversary B2 against the quasi-adaptive σx-strong soundness (see
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B2(p,BLS.lpar = [H]∗, σx(BLS.ltrap) = x,BLS.crs) // QA σx-strong soundness

(p); // = ( 1, . . . , m0)

Nu $Z
N1×(m+1)
p ;Nv $Z

N2×(m+1)
p ; // Generate crs

([gu]1, tdu = (eku, tku)) FSSB1.KC(p, m + 2, N1, [Nu]1);
([gv]2, tdv = (ekv, tkv)) FSSB2.KC(p, m + 1, N2, [Nv]2);
Create BLS.lpar [H]∗ as in Eq. (4);
FANA.crs ([gu, (xi)ni=0]1, [gv, (xi)ni=0]2,BLS.lpar,BLS.crs);
π

A

A(FANA.crs); // π = ([a, c, c̃u, h(x)]1, [b, c̃v ]2,BLS.π)
BLS. ([ //a//c//c̃u]1//[b//c̃v]2);
return (BLS. ,BLS.π);

B3(p, ([xi]1, [xi]2)ni=0, [y]1, [y]2) // QA-LINRES

(p); // = ( 1, . . . , m0)

Nu $Z
N1×(m+1)
p ;Nv $Z

N2×(m+1)
p ; // Generate crs

([gu]1, tdu = (eku, tku)) FSSB1.KC(p, m + 2, N1, [Nu]1);
([gv]2, tdv = (ekv, tkv)) FSSB2.KC(p, m + 1, N2, [Nv]2);
Create BLS.lpar = [H]∗ as in Eq. (4);
BLS.crs BLS.Kcrs(p,BLS.lpar);
FANA.crs ([gu, (xi)ni=0]1, [gv, (xi)ni=0]2,BLS.lpar,BLS.crs);
π

A

A(FANA.crs); // π = ([a, c, c̃u, h(x)]1, [b, c̃v ]2,BLS.π)
[α̂u, β̂u, α̂w , β̂w]1 FSSB1.LExt(eku; [c̃u]1);

[α̂v, β̂v ]2 FSSB2.LExt(ekv; [c̃v]2);
[a ]1 [a]1 + m0

j=1 j [uj(x)]1;
if [β̂u]1 • [β̂v ]2 = [β̂w ]1 • [y]2 then return ⊥;
else return (J, [a , α̂u, β̂u, c, α̂w , β̂w, h(x)]1, [b, α̂v, β̂v ]2);fi ;

Fig. 5. The quasi-adaptive σx-strong soundness adversary B2 and the n-QA-LINRES
adversary B3 in Lemma 3. A is a non-adaptive soundness adversary in Game4.

page 15 for the definition) of BLS. In Fig. 5, we depict B2. B2 receives its input,
sampled according to the distribution specified by Game4. (The necessity to
have σx(ltrap) = x as part of the input is precisely why BLS needs to be quasi-
adaptively σx-strongly sound.) Given σx(ltrap) = x, B2 constructs the rest of
FANA.crs. Finally, B2 uses the output of A to break the quasi-adaptively σx-
strong soundness of BLS. Thus, Pr[Game4(A) = 1|ev] ≤ Advσx−strsound

Pgen,BLS,B2
(λ).

Notably, quasi-adaptive σx-strong soundness of BLS suffices since BLS.lpar is
a part of FANA.crs and thus honestly generated; moreover, σx is efficient.

Second Reduction. Assume ev = false. To bound the second addend
Pr[Game4(A) = 1|ev], we construct an adversary B3 (see Fig. 5) against the n-
QA-LINRES assumption. B3 queries A to obtain x. After that, B3 uses its input
to create FANA.crs according to the CRS distribution specified by the game
(Game3 or Game4). B3 sends FANA.crs to A, who outputs π. B3 uses the local
extractability of FSSB1 and FSSB2 to extract certain values and then finishes as
in Fig. 5, aborting when β̂uβ̂v �= β̂wy.
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Let us explain why B3 succeeds with probability at least 1/n. First, since
FSSB1 is locally [·]1-extractable and FSSB2 is locally [·]2-extractable, B3 can
extract [α̂u, β̂u, α̂w, β̂w]1 := [Nu (z//ra//rc)]1 ← FSSB1.LExt(eku; [c̃u]1) and
[α̂v, β̂v]2 := [Nv ( z

rb
)]2 ← FSSB2.LExt(ekv; [c̃v]2). (LExt is defined as in Fig. 1).

We will next show that if that B3 does not abort, then it succeeds in breaking
QA-LINRES. That is, the following conditions lifted from Definition 2 hold in
relation to the values output by B3:

(a) β̂uβ̂v �= β̂wy,
(b) a′ = α̂u · (x − ωJ−1) + β̂u/y, where a′ is as in Fig. 5 description of B3),
(c) b = α̂v · (x − ωJ−1) + β̂v/y,
(d) c = α̂w · (x − ωJ−1) + β̂w/y,
(e) a′b − c = h(x)Z(x).

Trivially, if B3 does not abort, then Item a holds. Since the FANA verifier accepts,
[a′]1 • [b]2 − [c]1 • [1]2 = [h(x)]1 • [Z(x)]2. Thus, Item e holds.

Next, since ev = false, there exists at least one BLS.w = (z =
( x
w ), ra, rb, rc, rsph, ru, rv), such that Eq. (5) holds. Fix any such BLS.w (it

does not have to be known to the reduction or even the one used by the
adversary). Due to Eqs. (6) and (7), α̂u =

∑m
j=1 zjδuj(x) + raδZ(x) and

β̂u = (
∑m

j=1 zjUJj)y = UJzy. The quotient of uj(X)/(X−ωJ−1) is δuj(X). Since
uj(X) =

∑n
i=1 Uij�i(X), the remainder of uj(X)/(X − ωJ−1) is UJj . Clearly,

Z(X) = δZ(X)(X − ωJ−1). Since Eq. (5) holds, a′ =
∑m

j=1 zjuj(x) + raZ(x) =
∑m

j=1 zj(δuj(x)(x − ωJ−1) +UJj) + raδZ(x)(x − ωJ−1) = α̂u · (x − ωJ−1) + β̂u/y.
Thus, Item b holds. Similarly, Item c and d hold. Hence, if B3 does not abort,
then all five conditions hold.

Finally, we need to argue that B3 does not abort with a probability of at least
1/n. Since ev = false, we have that BLS.w starts with w. Thus, according to Eq.
(1), for A to be successful, there must exist an i such that (Uz)i(V z)i �= (Wz)i.
Since J is chosen uniformly at random and the non-adaptive soundness adversary
A chooses the input before seeing crs, with probability ≥ 1/n, the Jth constraint
is not satisfied. Thus, with probability ≥ 1/n, A(X)B(X)−C(X) does not divide
by X−ωJ−1, where A,B,C are defined as always. Then, β := A(X)B(X)−C(X)
mod (X−ωJ−1) is non-zero. However, β = (UJz)(V Jz)−WJz = β̂uβ̂v/y2−β̂w/y
and thus B3 does not abort with probability ≥ 1/n. Thus, Item a holds with
probability ≥ 1/n.

Since (1) if B3 does not abort, then all five conditions hold, and (2) B3 does
not abort with probability ≥ 1/n, Pr[Game4(A) = 1|ev] ≤ n · Advqa-linresPgen,n,B3

(λ). ��
Combining the lemmas proves the theorem. ��

5.3 Adaptive Knowledge-Soundness of FANA

Theorem 4. Assume the setting of Theorem 3. If FANA is non-adaptively sound
and BLS is adaptively knowledge-sound, then FANA is non-adaptively knowledge-
sound.



62 H. Lipmaa and K. Pavlyk

Acknowledgment. We thank Prastudy Fauzi, Zaira Pindado, Carla Ràfols, Janno
Siim, and anonymous reviewers for helpful comments.

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6_1

2. Abdolmaleki, B., Lipmaa, H., Siim, J., Zając, M.: On QA-NIZK in the BPK model.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I.
LNCS, vol. 12110, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45374-9_20

3. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On subversion-resistant
SNARKs. J. Cryptol. 34(3), 1–42 (2021)

4. Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70936-7_7

5. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6_26

6. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15317-4_24

7. Chung, K.M., Lin, H., Mahmoody, M., Pass, R.: On the power of nonuniformity
in proofs of security. In: ITCS 2013, pp. 389–400 (2013)

8. Damgård, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36

9. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8_28

10. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-
NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp.
314–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_11

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1_8

12. Fauzi, P., Lipmaa, H., Pindado, Z., Siim, J.: Somewhere statistically binding com-
mitment schemes with applications. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS,
vol. 12674, pp. 436–456. Springer, Heidelberg (2021). https://doi.org/10.1007/978-
3-662-64322-8_21

13. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317
(1990)

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-662-64322-8_21
https://doi.org/10.1007/978-3-662-64322-8_21


Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 63

14. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5_11

15. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

16. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

17. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: 43rd ACM STOC, pp. 99–108 (2011)

18. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994)

19. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6_25

20. González, A., Ráfols, C.: New techniques for non-interactive shuffle and range
arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 427–444. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39555-5_23

21. González, A., Ràfols, C.: Shorter pairing-based arguments under standard assump-
tions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS,
vol. 11923, pp. 728–757. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34618-8_25

22. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

23. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

24. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63715-0_20

25. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175_6

26. Jager, T., Rupp, A.: The semi-generic group model and applications to pairing-
based cryptography. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
539–556. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8_31

27. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

28. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces.
Cryptology ePrint Archive, Report 2013/109 (2013). https://eprint.iacr.org/2013/
109

29. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In: 51st
ACM STOC, pp. 1115–1124 (2019)

https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-030-34618-8_25
https://doi.org/10.1007/978-3-030-34618-8_25
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-642-42033-7_1
https://eprint.iacr.org/2013/109
https://eprint.iacr.org/2013/109


64 H. Lipmaa and K. Pavlyk

30. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4

31. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

32. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7_3

33. Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. In:
Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 185–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31517-1_10

34. Lipmaa, H.: Simulation-Extractable ZK-SNARKs Revisited. Technical Report
2019/612, IACR (2019). https://ia.cr/2019/612. Accessed 8 Feb 2020

35. Lipmaa, H., Pavlyk, K.: Gentry-Wichs Is Tight: A Falsifiable Non-Adaptively
Sound SNARG. Technical report, IACR (2021)

36. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4_6

37. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252
(2013)

38. Pass, R.: Unprovable security of perfect NIZK and non-interactive non-malleable
commitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 334–354.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_19

39. Stachowiak, G.: Proofs of knowledge with several challenge values. Cryptology
ePrint Archive, Report 2008/181 (2008). https://eprint.iacr.org/2008/181

https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1007/978-3-319-31517-1_10
https://ia.cr/2019/612
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-642-36594-2_19
https://eprint.iacr.org/2008/181

	Gentry-Wichs is Tight: a Falsifiable Non-adaptively Sound SNARG
	1 Introduction
	2 Preliminaries
	2.1 Underlying Commitment Schemes
	2.2 Sub-ZK NIZK and QA-NIZK

	3 Sub-ZK Bilateral Subspace QA-SNARK
	3.1 New Security Assumptions
	3.2 Security Proof of BLS

	4 A Non-adaptive SNARK FANA for QAP
	4.1 Description of FANA

	5 FANA: Assumptions and Soundness Proofs
	5.1 The QA-LINRES Assumption
	5.2 Non-adaptive Soundness of FANA
	5.3 Adaptive Knowledge-Soundness of FANA

	References




